ERIC Educational Resources Information Center
Wong, Sissy S.; Firestone, Jonah B.; Ronduen, Lionnel G.; Bang, EunJin
2016-01-01
Science, Technology, Engineering, and Mathematics (STEM) education has become one of the main priorities in the United States. Science education communities and researchers advocate for integration of STEM disciplines throughout the teaching curriculum. This requires teacher knowledge in STEM disciplines, as well as competence in scientific…
NASA Astrophysics Data System (ADS)
Hinton, Tracy Barger
With the large expected growth in STEM-related careers in American industries, there are not enough graduates to fill these positions (United States Department of Labor, 2015). Increased efforts are being made to reform STEM education from early childhood to college level studies, mainly through increased efforts to incorporate new technologies and project-based learning activities (Hegedorn & Purnamasari, 2012). At the middle school level, a robotics educational platform can be a worthwhile activity that provides hands-on learning as students learn basic programming and engineering skills (Grubbs, 2013). Based on the popularity of LEGO toys, LEGO Education developed an engaging and effective way to learn about computer programming and basic engineering concepts (Welch & Huffman, 2011). LEGO MINDSTORMS offers a project-based learning environment that engages students in real-life, problem-solving challenges. The purpose of this qualitative study was to investigate the instructional use of a robotics educational curriculum on middle school students' attitudes toward and interests in STEM and their experiences with LEGO Robotics activities. Participants included 23 seventh grade students who were enrolled in a Career Cluster Technologies I class in a suburban middle school. Data for the study were collected from three focus group interviews, open-ended surveys, classroom observations, and the Career Cruising program. Findings revealed that the robotics activities led to an increased interest and higher self-efficacy in STEM tasks. If students continue to nurture and develop their STEM interests, it is possible that many of them may develop higher confidence and eventually set personal goals related to STEM classes and careers. While other studies have been conducted on similar topics, this qualitative research is unique because it contributed to the gap in research that investigates the impact of an in-class robotics curriculum on middle school students' attitudes and interests in STEM. Throughout the robotics unit, students exhibited positive reactions, including much excitement and enjoyment as they solved the robotics challenges. In addition, students demonstrated a greater interest in STEM courses and careers as a result of this hands-on activity. Middle school teachers should incorporate STEM-based activities such as robotics to help students gain hands-on STEM skills.
ERIC Educational Resources Information Center
Dowey, Ana Lucrecia
2013-01-01
The under participation of minority females in STEM fields has been a chronic problem in the United States, mainly when it is analyzed through the lens of their relative representation in the population. The results of the first or quantitative phase, of this two phase sequential, mixed method study, revealed academic achievement or performance in…
Foth, Christian; Ezcurra, Martín D; Sookias, Roland B; Brusatte, Stephen L; Butler, Richard J
2016-09-15
Archosauromorpha originated in the middle-late Permian, radiated during the Triassic, and gave rise to the crown group Archosauria, a highly successful clade of reptiles in terrestrial ecosystems over the last 250 million years. However, scientific attention has mainly focused on the diversification of archosaurs, while their stem lineage (i.e. non-archosaurian archosauromorphs) has often been overlooked in discussions of the evolutionary success of Archosauria. Here, we analyse the cranial disparity of late Permian to Early Jurassic archosauromorphs and make comparisons between non-archosaurian archosauromorphs and archosaurs (including Pseudosuchia and Ornithodira) on the basis of two-dimensional geometric morphometrics. Our analysis recovers previously unappreciated high morphological disparity for non-archosaurian archosauromorphs, especially during the Middle Triassic, which abruptly declined during the early Late Triassic (Carnian). By contrast, cranial disparity of archosaurs increased from the Middle Triassic into the Late Triassic, declined during the end-Triassic extinction, but re-expanded towards the end of the Early Jurassic. Our study indicates that non-archosaurian archosauromorphs were highly diverse components of terrestrial ecosystems prior to the major radiation of archosaurs, including dinosaurs, while disparity patterns of the Ladinian and Carnian indicate a gradual faunal replacement of stem archosaurs by the crown group, including a short interval of partial overlap in morphospace during the Ladinian.
Relationship of Middle School Student STEM Interest to Career Intent
ERIC Educational Resources Information Center
Christensen, Rhonda; Knezek, Gerald
2017-01-01
Understanding middle school students' perceptions regarding STEM dispositions, and the role attitudes play in establishing STEM career aspirations, is imperative to preparing the STEM workforce of the future. Data were gathered from more than 800 middle school students participating in a hands-on, real world application curriculum to examine the…
Impact of Environmental Power Monitoring Activities on Middle School Student Perceptions of STEM
ERIC Educational Resources Information Center
Knezek, Gerald; Christensen, Rhonda; Tyler-Wood, Tandra; Periathiruvadi, Sita
2013-01-01
Middle school is a crucial stage in student development as students prepare for a fast changing future. The science, technology, engineering and mathematics (STEM) skills that students acquire in middle school lay the foundation for a successful career in STEM. Moreover, most STEM occupations require competencies in science, math and logical…
NASA Astrophysics Data System (ADS)
Christensen, Rhonda; Knezek, Gerald; Tyler-Wood, Tandra
2015-12-01
This study examines positive dispositions reported by middle school and high school students participating in programs that feature STEM-related activities. Middle school students participating in school-to-home hands-on energy monitoring activities are compared to middle school and high school students in a different project taking part in activities such as an after-school robotics program. Both groups are compared and contrasted with a third group of high school students admitted at the eleventh grade to an academy of mathematics and science. All students were assessed using the same science, technology, engineering and mathematics (STEM) dispositions instrument. Findings indicate that the after-school group whose participants self-selected STEM engagement activities, and the self-selected academy of mathematics and science group, each had highly positive STEM dispositions comparable to those of STEM professionals, while a subset of the middle school whole-classroom energy monitoring group that reported high interest in STEM as a career, also possessed highly positive STEM dispositions comparable to the STEM Professionals group. The authors conclude that several different kinds of hands-on STEM engagement activities are likely to foster or maintain positive STEM dispositions at the middle school and high school levels, and that these highly positive levels of dispositions can be viewed as a target toward which projects seeking to interest mainstream secondary students in STEM majors in college and STEM careers, can hope to aspire. Gender findings regarding STEM dispositions are also reported for these groups.
2013-01-01
student achievement or par- ticipation in STEM fields. For example, facilitators of a middle school student program...Assessment Annual Cost navy Seaperch Middle school Middle school robotics competition 45% 35,000 students , 4,000 teachers missing number of annual...participating in Seaperch increased interest in studying engineering in 25% of middle school and 30% of high school students program
Increasing Middle School Student Interest in STEM Careers with Videos of Scientists
ERIC Educational Resources Information Center
Wyss, Vanessa L.; Heulskamp, Diane; Siebert, Cathy J.
2012-01-01
Students are making choices in middle school that will impact their desire and ability to pursue STEM careers. Providing middle school students with accurate information about STEM (Science, Technology, Engineering, Mathematics) careers enables them to make more knowledgeable choices about courses of study and career paths. Practical ways of…
Productive potential of cassava plants (Manihot esculenta Crantz) propagated by leaf buds.
Neves, Reizaluamar J; Diniz, Rafael P; Oliveira, Eder J DE
2018-04-23
New techniques of rapid multiplication of cassava (Manihot esculenta Crantz) have been developed, requiring technical support for large-scale use. This work main to evaluate the agronomic performance of plantlets obtained by leaf buds technique against stem cuttings in the field conditions. The work was conducted using the randomized block design in a factorial scheme with 3 varieties (BRS Kiriris, 98150-06, 9624-09) × 4 origins of the plantlets (conventional - stem cuttings of 20 cm length, leaf buds of the upper, middle and inferior stem part) × 2 agrochemicals (control and treated). There was a remarkable decrease in some agronomic traits that ranged from 23% (number of branches) to 62% (shoot weight) when using leaf buds plantlets. The treatment of plantlets with agrochemicals promoted significant increases in all traits, ranging from 26% (number of roots per plant) to 46% (shoot weight). The plantlets originating from leaf buds of the upper and middle parts were able to generate stem-like plants similar to stem-derived ones. Despite its lower agronomic performance under field conditions, multiplication by leaf buds may generate five times the number of propagules in comparison with the conventional multiplication, and therefore it could be a viable alternative for rapid cassava multiplication.
STEM Vocational Socialization and Career Development in Middle Schools
ERIC Educational Resources Information Center
Kendall, Katherine A.
2017-01-01
Economic forecasts predict an unprecedented shortage of STEM workers in the United States. This study examined the vocational anticipatory socialization factors and classroom stratagems influencing middle school students' science, technology, engineering and mathematics (STEM) career development. Student attitudes towards STEM content areas and…
Preparing Students for Middle School through After-School STEM Activities
ERIC Educational Resources Information Center
Moreno, Nancy P.; Tharp, Barbara Z.; Vogt, Gregory; Newell, Alana D.; Burnett, Christopher A.
2016-01-01
The middle school years are a crucial time for cultivating students' interest in and preparedness for future STEM careers. However, not all middle school children are provided opportunities to engage, learn and achieve in STEM subject areas. Engineering, in particular, is neglected in these grades because it usually is not part of science or…
ERIC Educational Resources Information Center
Christensen, Rhonda; Knezek, Gerald; Tyler-Wood, Tandra
2015-01-01
This study examines positive dispositions reported by middle school and high school students participating in programs that feature STEM-related activities. Middle school students participating in school-to-home hands-on energy monitoring activities are compared to middle school and high school students in a different project taking part in…
ERIC Educational Resources Information Center
Lesseig, Kristin; Slavit, David; Nelson, Tamara Holmlund
2017-01-01
Given the current emphasis on science, technology, engineering, and math (STEM) education and its key attributes, middle school is an optimal time to implement STEM-based curricula. However, the interdisciplinary and open-ended nature of STEM projects often makes implementation difficult. In this article, we describe a professional development…
STEM and Career Exploratory Classes
ERIC Educational Resources Information Center
Chase, Darrell
2010-01-01
Districts face increasing pressure to improve students' mastery of curriculum in the fields of science, technology, engineering and mathematics (STEM). Yet the number of students enrolling in science and math courses drops dramatically in middle and high school. At Sylvester Middle School, Chinook Middle School and Cascade Middle School of the…
Preparing Students for Middle School Through After-School STEM Activities
NASA Astrophysics Data System (ADS)
Moreno, Nancy P.; Tharp, Barbara Z.; Vogt, Gregory; Newell, Alana D.; Burnett, Christopher A.
2016-12-01
The middle school years are a crucial time for cultivating students' interest in and preparedness for future STEM careers. However, not all middle school children are provided opportunities to engage, learn and achieve in STEM subject areas. Engineering, in particular, is neglected in these grades because it usually is not part of science or mathematics curricula. This study investigates the effectiveness of an engineering-integrated STEM curriculum designed for use in an after-school environment. The inquiry-based activities comprising the unit, Think Like an Astronaut, were intended to introduce students to STEM careers—specifically engineering and aerospace engineering—and enhance their skills and knowledge applicable related to typical middle school science objectives. Results of a field test with a diverse population of 5th grade students in nine schools revealed that Think Like an Astronaut lessons are appropriate for an after-school environment, and may potentially help increase students' STEM-related content knowledge and skills.
Middle school students' attitudes toward math and STEM career interests: A 4-year follow-up study
NASA Astrophysics Data System (ADS)
Schneider, Madalyn R.
The purpose of the current study is to examine middle school students' attitudes toward math, intent to pursue STEM-related education and occupations, and STEM interest from middle school to high school. The data used in this study are from a larger, on-going National Science Foundation (NSF) grant-funded study that is investigating middle school students' disengagement while using the Assistments system (Baker, Heffernan & San Pedro, 2012), a computer-based math tutoring system. The NSF grant study aims to explore how disengagement with STEM material can aid in the prediction of students' college enrollment as well as how it may interact with other factors affecting students' career choices (San Pedro, Baker, Bowers, Heffernan, 2013). Participants are students from urban and suburban schools in Massachusetts measured first in middle school and again four years later. Measures at Time 1 included: various items related to attitudes toward mathematics, occupations they could see themselves doing as adults, and the Brief Self-Control Scale (Tangney, Baumeister, & Luzio Boone, 2004). Measures at Time 2 included: items requesting the students' current mathematics and science courses and intended majors or occupations following high school graduation. Exploratory factor analysis, multiple regression and logistic regression analyses were used to test the following four hypotheses: I. There will be several distinct factors that emerge to provide information about middle school students' attitudes toward math; II. Students' attitudes toward math will correlate positively and significantly with students' intent to pursue STEM-related careers at Time 1 with a medium effect; III. Middle school attitudes toward mathematics will relate positively and significantly to level of high school mathematics and science courses with a medium effect; IV. Middle school intent to pursue STEM will correlate positively and significantly with high school intent to pursue STEM majors/careers with a medium effect. Results supported a 2-factor model of Attitudes toward Mathematics consisting of Math Self-Concept and Attitudes toward Assistments. Other significant findings include: a positive relationship between students' Attitudes toward Assistments and level of math class taken in high school; a positive relationship between students' Math Self-Concept and Self Control; a positive relationship between Self Control and students' endorsement of STEM careers while in middle school, and discrepancy between male and female students' endorsement of STEM careers as early as middle school. Although many of the study's primary hypotheses were not supported, the present study provides a framework and baseline for several important considerations. Limitations, including those related to the present study's small sample size, and future implications of the present study, which add to career development literature in STEM, are discussed in regard to both research and practice. Keywords: career development, middle school, attitudes, math, STEM, self-concept
Filling the Gap: Integrating STEM into Career and Technical Education Middle School Programs
ERIC Educational Resources Information Center
Wu-Rorrer, Ray
2017-01-01
The field of STEM education is an educational framework that has surged in application over the past decade. Science, Technology, Engineering, and Math (STEM) is infused in nearly every facet of our society. Filling the gap of current research in middle school career and technical education (CTE) and STEM programs is important as traditional CTE…
The depositional web on the floodplain of the Fly River, Papua New Guinea
NASA Astrophysics Data System (ADS)
Day, Geoff; Dietrich, William E.; Rowland, Joel C.; Marshall, Andrew
2008-03-01
Floodplain deposition on lowland meandering rivers is usually interpreted as either lateral accretion during channel migration or overbank deposition. Previous studies on the Fly River in Papua New Guinea suggest, however, that floodplain channels (consisting of tie channel and tributary channels) play an important role in conveying sediment out across the floodplain. Here we report the results of an intensive field study conducted from 1990 to 1998 that documents the discharge of main stem water from the Fly River onto its floodplain and maps the spatial pattern of sediment deposition on the floodplain (using as a tracer elevated particulate copper introduced into the system by upstream mining). An extensive network of water level recorders demonstrates significant hydraulic heads from the main stem out the floodplain channels. For the monitoring period 1995-1998, net water discharge into the floodplain channels was about 20% of the flow. Another 20% is estimated to spill overbank from the main stem in wet years. Annual floodplain coring from 1990 to 1994 obtained over 800 samples across the 3500 km2 Middle Fly floodplain for use in documenting temporal and spatial patterns of sediment deposition. Early samples record the rapid spread of sediment up to 10 km away from the main stem via floodplain channels. Later, more intensive coring samples documented a well-defined exponential decline in sediment deposition from the nearest channel (which differed little between floodplain and main stem channels). Deposition, averaging about 6-9 mm/a, occurred in a 1 km corridor either side of these channels and effectively ceased beyond that distance. About 40% of the total sediment load was deposited on the floodplain, with half of that being conveyed by the over 900 km of floodplain channels (equal to about 0.09% sediment deposition/km of main stem channel length). Levee topographies along the main stem and floodplain channels are similar but cannot be explained by the observed exponential functions. Channel margin shear flow during extended periods of flooding may give rise to the localized levee deposition. Our study demonstrates that tie and tributary floodplain channels can inject large volumes of sediment-laden main stem waters great distances across the floodplain where they spill overbank, forming a narrow band of deposition, thereby creating a depositional web.
Peterson, David A.; Clark, Melanie L.; Foster, Katharine; Wright, Peter R.; Boughton, Gregory K.
2010-01-01
Ongoing development of coalbed natural gas in the Powder River structural basin in Wyoming and Montana led to formation of an interagency task group to address concerns about the effects of the resulting production water on biological communities in streams of the area. The interagency task group developed a monitoring plan and conducted sampling of macroinvertebrate, algal, and fish communities at 47 sites during 2005-08 to document current ecological conditions and determine existing and potential effects of water produced from coalbed natural gas development on biological communities. Macroinvertebrate, algal, and fish community composition varied between drainage basins, among sites within drainage basins, and by year. Macroinvertebrate communities of the main-stem Tongue River were characterized by higher taxa richness and higher abundance of Ephemeroptera, for example, compared to macroinvertebrate communities in plains tributaries of the Tongue River and the main-stem Powder River. Fish communities of the Tongue River were characterized by higher taxa richness and abundance of introduced species compared to the Powder River where native species were dominant. Macroinvertebrate community metric values from sites in the middle reach of the main-stem Powder River, from below Willow Creek to below Crazy Woman Creek, differed from metric values in the upper and lower reaches of the Powder River. Metrics indicative of communitywide differences included measures of taxa richness, relative abundance, feeding mode, and tolerance. Some of the variation in the macroinvertebrate communities could be explained by variation in environmental variables, including physical (turbidity, embeddedness, bed substrate size, and streamflow) and chemical (alkalinity and specific conductance) variables. Of these environmental variables, alkalinity was the best indicator of coalbed natural gas development because of the sodiumbicarbonate signature of the production water. Algal samples from the main-stem Powder River generally confirmed the pattern observed in the macroinvertebrate communities. Algal communities at sites in the middle reach of the Powder River commonly were characterized by dominance by a single taxon and by low biovolume of algae compared to other sites. In contrast to the macroinvertebrate and algal communities, species richness of fish communities was highest in the middle reach of the Powder River. Although a few significant differences in fish metrics were determined along the main-stem Powder River, the differences did not correspond to the pattern observed for the macroinvertebrate and algae communities. Differences in biological communities were noted between years, potentially due to the effects of drought. Macroinvertebrate community metrics, such as Diptera taxa richness, were significantly different in the severe drought year of 2006 from metric values in 2005 and 2007-08. Waterquality data collected during the study indicated that, with few exceptions, water-quality constituents generally did not exceed State or Federal acute and chronic criteria for the protection of aquatic life.
Colorado River fish monitoring in Grand Canyon, Arizona; 2002–14 humpback chub aggregations
Persons, William R.; Van Haverbeke, David R.; Dodrill, Michael J.
2017-01-31
The humpback chub (Gila cypha) is an endangered cyprinid species endemic to the Colorado River. The largest remaining population of the species spawns and rears in the Little Colorado River in Grand Canyon. Construction and operation of Glen Canyon Dam has altered the main-stem Colorado River in Glen and Grand Canyons. Cold, clear water releases from the dam result in a river that is generally unsuitable for successful humpback chub reproduction. During the early 1990s, nine locations within the main-stem Colorado River were identified as humpback chub aggregations—areas with a consistent and disjunct group of fish with no significant exchange of individuals with other aggregations. We monitored main-stem Colorado River aggregations of humpback chub in Grand Canyon during 2010 to 2014 and compared our results to previous investigations. Relative abundance, as described by catch per unit effort (fish per hour) of adult humpback chub at most main-stem aggregations, generally increased from the 1990s to 2014. In addition, distribution of humpback chub in the main-stem Colorado River has increased since the 1990s. Movement of humpback chub between the Little Colorado River and other aggregations likely adds fish to those aggregations. There is clear evidence of reproduction near the 30-Mile aggregation, and reproduction at Middle Granite Gorge and downstream seems likely based on catches of gravid fish and captures of very young fish, especially during relatively warm water releases from Glen Canyon Dam, 2004 to 2011. Humpback chub relative abundance at Shinumo and Havasu Creek inflows increased following translocations of young humpback chub starting in 2009. In light of this information, we modify the original nine aggregations, combining two previously separate aggregations and dropping two locations to form six distinct aggregations of humpback chub. Trends in humpback chub abundance at main-stem aggregations, relative to management actions (for example, translocations) or changing environmental conditions (for example, river warming), informs management of the species across a riverscape scale within the Colorado River.
The regulatory sciences for stem cell-based medicinal products.
Yuan, Bao-Zhu; Wang, Junzhi
2014-06-01
Over the past few years, several new achievements have been made from stem cell studies, many of which have moved up from preclinical stages to early, or from early to middle or late, stages thanks to relatively safe profile and preliminary evidence of effectiveness. Moreover, some stem cell-based products have been approved for marketing by different national regulatory authorities. However, many critical issues associated mainly with incomplete understanding of stem cell biology and the relevant risk factors, and lack of effective regulations still exist and need to be urgently addressed, especially in countries where establishment of appropriate regulatory system just commenced. More relevantly, the stem cell regulatory sciences need to be established or improved to more effectively evaluate quality, safety and efficacy of stem cell products, and for building up the appropriate regulatory framework. In this review, we summarize some new achievements in stem cell studies, especially the preclinical and clinical studies, the existing regulations, and the associated challenges, and we then propose some considerations for improving stem cell regulatory sciences with a goal of promoting the steadfast growth of the well-regulated stem cell therapies abreast of evolvement of stem cell sciences and technologies.
A Journey from STEM to STEAM: A Middle School Case Study
ERIC Educational Resources Information Center
Hunter-Doniger, Tracey; Sydow, Lindsey
2016-01-01
This article examines the initial journey of a middle school in South Carolina from a STEM (science, technology, engineering, and math) curriculum to a STEAM (STEM + art) curriculum. This is the first of a three-year longitudinal study that investigated the perceptions of the effectiveness, relative importance, and sustainability of a STEAM…
STEM integration in middle school career and technical education programs: A Delphi design study
NASA Astrophysics Data System (ADS)
Wu-Rorrer, Billy Ray
The purpose of this qualitative method study with a Delphi research design sought to determine how STEM programs can be effectively integrated into middle school career and technical education programs by local, state, and national educators, administrators, directors, specialists, and curriculum writers. The significance of the study is to provide leaders in CTE with a greater awareness, insight, and strategies about how CTE programs can more effectively integrate academics into career and technical education programs through STEM-related programming. The findings will increase the limited amount of available literature providing best practice strategies for the integration of STEM curriculum into middle school CTE programs. One basic question has guided this research: How can STEM programs be effectively integrated into middle school career and technical education programs? A total of twelve strategies were identified. The strategies of real-world applications and administrative buy-in were the two predominant strategies consistently addressed throughout the review of literature and all three sub-questions in the research study. The Delphi design study consisted of pilot round and three rounds of data collection on barriers, strategies, and professional development for STEM integration in middle school career and technical education programs. Four panelists participated in the pilot round, and 16 panel members not involved in the pilot round participated in the three rounds of questioning and consensus building. In the future, more comprehensive studies can build upon this foundational investigation of middle school CTE programs.
ERIC Educational Resources Information Center
Michael, Kurt Y.; Alsup, Philip R.
2016-01-01
Research focusing on science, technology, engineering, and math (STEM) education among conservative Protestant Christian school students is scarce. Crenshaw's intersectionality theory is examined as it pertains to religion as a group identifier. The STEM Semantic Survey was completed by 157 middle school students attending six different private…
Multivariate Assessment of Middle School Students' Interest in STEM Career: a Profile from Turkey
NASA Astrophysics Data System (ADS)
Koyunlu Ünlü, Zeynep; Dökme, İlbilge
2018-05-01
According to a report by the Turkish Industry and Business Association, Turkey will need approximately 1 million individuals to be employed in Science Technology Engineering Mathematics (STEM) fields by 2023, and 31% of this requirement will not be met. For continuous economic development, there is a need to integrate STEM into education in Turkey, which brings the need for research in this area. This study, based on a survey model, aimed to determine the level of interest of a sample of Turkish middle school students in STEM careers on the basis of gender, where they lived, grade levels, their end-of-semester grades, and their parents' educational status and levels of income. The research data was collected using the STEM Career Interest Survey (STEM-CIS) and Personal Information Form, which were applied to 851 middle school students (fifth and eighth graders). The collected data was analyzed with SPSS using Mann Whitney U and Kruskal Wallis H tests. It was found that middle school students' interest in STEM careers differed according to sex, where they lived, and grade levels but it did not differ in relation to their parents' educational status and the levels of income of the family. It is believed that the results obtained in this study reflecting the profile in Turkey will guide educational policy makers, curriculum developers, teachers, pre-service teachers, and researchers about STEM education.
Anquetin, Jérémy; Barrett, Paul M; Jones, Marc E H; Moore-Fay, Scott; Evans, Susan E
2009-03-07
The discovery of a new stem turtle from the Middle Jurassic (Bathonian) deposits of the Isle of Skye, Scotland, sheds new light on the early evolutionary history of Testudinata. Eileanchelys waldmani gen. et sp. nov. is known from cranial and postcranial material of several individuals and represents the most complete Middle Jurassic turtle described to date, bridging the morphological gap between basal turtles from the Late Triassic-Early Jurassic and crown-group turtles that diversify during the Late Jurassic. A phylogenetic analysis places the new taxon within the stem group of Testudines (crown-group turtles) and suggests a sister-group relationship between E. waldmani and Heckerochelys romani from the Middle Jurassic of Russia. Moreover, E. waldmani also demonstrates that stem turtles were ecologically diverse, as it may represent the earliest known aquatic turtle.
Anquetin, Jérémy; Barrett, Paul M.; Jones, Marc E.H.; Moore-Fay, Scott; Evans, Susan E.
2008-01-01
The discovery of a new stem turtle from the Middle Jurassic (Bathonian) deposits of the Isle of Skye, Scotland, sheds new light on the early evolutionary history of Testudinata. Eileanchelys waldmani gen. et sp. nov. is known from cranial and postcranial material of several individuals and represents the most complete Middle Jurassic turtle described to date, bridging the morphological gap between basal turtles from the Late Triassic–Early Jurassic and crown-group turtles that diversify during the Late Jurassic. A phylogenetic analysis places the new taxon within the stem group of Testudines (crown-group turtles) and suggests a sister-group relationship between E. waldmani and Heckerochelys romani from the Middle Jurassic of Russia. Moreover, E. waldmani also demonstrates that stem turtles were ecologically diverse, as it may represent the earliest known aquatic turtle. PMID:19019789
ERIC Educational Resources Information Center
Cohen, Jonathan D.; Renken, Maggie; Calandra, Brendan
2017-01-01
As part of the design and development of an informal learning environment meant to increase urban middle school students' interest in technology-focused STEM careers, and to support their twenty-first century skill development, researchers developed and administered the ICT/Twenty-First Century Skills Questionnaire. Both STEM-ICT professionals and…
Ananvoranich, S; Lafontaine, D A; Perreault, J P
1999-01-01
Our previous report on delta ribozyme cleavage using a trans -acting antigenomic delta ribozyme and a collection of short substrates showed that the middle nucleotides of the P1 stem, the substrate binding site, are essential for the cleavage activity. Here we have further investigated the effect of alterations in the P1 stem on the kinetic and thermodynamic parameters of delta ribozyme cleavage using various ribozyme variants carrying single base mutations at putative positions reported. The kinetic and thermodynamic values obtained in mutational studies of the two middle nucleotides of the P1 stem suggest that the binding and active sites of the delta ribozyme are uniquely formed. Firstly, the substrate and the ribozyme are engaged in the formation of a helix, known as the P1 stem, which may contain a weak hydrogen bond(s) or a bulge. Secondly, a tertiary interaction involving the base moieties in the middle of the P1 stem likely plays a role in defining the chemical environment. As a con-sequence, the active site might form simultaneously or subsequently to the binding site during later steps of the pathway. PMID:10037808
NASA Astrophysics Data System (ADS)
Ha`o, Celeste
2015-08-01
This paper presents the development of "MANU 'Imiloa, Modern & Ancient ways of Navigating our Universe." Given the large bodies of research indicating that indigenous peoples are vastly underrepresented in STEM and particularly in astronomy, and that the middle school years serve as a bottleneck in the STEM pipeline, innovative approaches to engaging indigenous populations at the middle school level should be of great interest to the international astronomy education community. Manu `Imiloa is an integrated astronomy and STEM curriculum project, based in the indigenous Hawaiian culture, that serves as a place-based model of how astronomy and STEM can be meaningfully taught to middle school (age 12-15) students. Fusing the culture-based instructional model of Moenahā, with the reemerging cultural practice of Polynesian navigation, Manu `Imiloa breathes life into astronomy through the art of Polynesian wayfinding.
Sources and transport of algae and nutrients in a Californian river in a semi-arid climate
Ohte, N.; Dahlgren, R.A.; Silva, S.R.; Kendall, C.; Kratzer, C.R.; Doctor, D.H.
2007-01-01
1. To elucidate factors contributing to dissolved oxygen (DO) depletion in the Stockton Deep Water Ship Channel in the lower San Joaquin River, spatial and temporal changes in algae and nutrient concentrations were investigated in relation to flow regime under the semiarid climate conditions. 2. Chlorophyll-a (chl-a) concentration and loads indicated that most algal biomass was generated by in-stream growth in the main stem of the river. The addition of algae from tributaries and drains was small (c.15% of total chl-a load), even though high concentrations of chl-a were measured in some source waters. 3. Nitrate and soluble-reactive phosphorus (SRP) were available in excess as a nutrient source for algae. Although nitrate and SRP from upstream tributaries contributed (16.9% of total nitrate load and 10.8% of total SRP load), nutrients derived from agriculture and other sources in the middle and lower river reaches were mostly responsible (20.2% for nitrate and 48.0% for SRP) for maintaining high nitrate and SRP concentrations in the main stem. 4. A reduction in nutrient discharge would attenuate the algal blooms that accelerate DO depletion in the Stockton Deep Water Ship Channel. The N : P ratio, in the main stem suggests that SRP reduction would be a more viable option for algae reduction than nitrogen reduction. 5. Very high algal growth rates in the main stem suggest that reducing the algal seed source in upstream areas would also be an effective strategy. ?? 2007 Blackwell Publishing Ltd.
Morphometric variation of extant platyrrhine molars: taxonomic implications for fossil platyrrhines
Nova Delgado, Mónica; Galbany, Jordi
2016-01-01
The phylogenetic position of many fossil platyrrhines with respect to extant ones is not yet clear. Two main hypotheses have been proposed: the layered or successive radiations hypothesis suggests that Patagonian fossils are Middle Miocene stem platyrrhines lacking modern descendants, whereas the long lineage hypothesis argues for an evolutionary continuity of all fossil platyrrhines with the extant ones. Our geometric morphometric analysis of a 15 landmark-based configuration of platyrrhines’ first and second lower molars suggest that morphological stasis may explain the reduced molar shape variation observed. Platyrrhine lower molar shape might be a primitive retention of the ancestral state affected by strong ecological constraints throughout the radiation of the main platyrrhine families. The Patagonian fossil specimens showed two distinct morphological patterns of lower molars, Callicebus—like and Saguinus—like, which might be the precursors of the extant forms, whereas the Middle Miocene specimens, though showing morphological resemblances with the Patagonian fossils, also displayed new, derived molar patterns, Alouatta—like and Pitheciinae—like, thereby suggesting that despite the overall morphological stasis of molars, phenotypic diversification of molar shape was already settled during the Middle Miocene. PMID:27190704
2011-09-01
anadromous fish in the Columbia River System River Basin (From: NPPC, 1992). ........................................................6 Figure 5. Major...needed to travel for stream-type species (Gilbert, 1913). The majority of Chinook spawn in the middle and upper main stems of rivers and in larger...distribution and migration 4 Upon leaving the rivers of Oregon, Washington, and British Columbia, juvenile Chinook move up the coast in a
Geomorphic responses of Duluth-area streams to the June 2012 flood, Minnesota
Fitzpatrick, Faith A.; Ellison, Christopher A.; Czuba, Christiana R.; Young, Benjamin M.; McCool, Molly M.; Groten, Joel T.
2016-09-01
In 2013, the U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency, completed a geomorphic assessment of 51 Duluth-area stream sites in 20 basins to describe and document the stream geomorphic changes associated with the June 2012 flood. Heavy rainfall caused flood peaks with annual exceedance probabilities of less than 0.002 (flood recurrence interval of greater than 500 years) on large and small streams in and surrounding the Duluth area. A geomorphic segment-scale classification previously developed in 2003–4 by the U.S. Geological Survey for Duluth-area streams was used as a framework to characterize the observed flood-related responses along a longitudinal continuum from headwaters to rivermouths at Lake Superior related to drainage network position, slope, geologic setting, and valley type. Field assessments in 2013 followed and expanded on techniques used in 2003–4 at intensive and rapid sites. A third level of assessment was added in 2013 to increase the amount of quantitative data at a subset of 2003–4 rapid sites. Characteristics of channel morphology, channel bed substrate, exposed bars and soft sediment deposition, large wood, pools, and bank erosion were measured; and repeat photographs were taken. Additional measurements in 2013 included identification of Rosgen Level II stream types. The comparative analyses of field data collected in 2003–4 and again in 2013 indicated notable geomorphic changes, some of them expected and others not. As expected, in headwaters with gently sloping wetland segments, geomorphic changes were negligible (little measured or observed change). Downstream, middle main stems generally had bank and bluff erosion and bar formation as expected. Steep bedrock sites along middle and lower main stems had localized bank and bluff erosion in short sections with intermittent bedrock. Lower main stem and alluvial sites had bank erosion, widening, gravel bar deposition, and aggradation. Bar formation and accumulation of gravel was more widespread than expected among all main stems, especially for sites upstream and downstream from channel constrictions from road crossings, or even steep sites with localized, more gently sloping sections. Decreases in large wood and pools also were observed throughout the longitudinal continuum of main-stem sites, with immediate implications for fish and benthic invertebrate aquatic habitat. Whether or not the geomorphic conditions will return to their preflood condition depends on the location along the longitudinal continuum. The amount of large wood and pools may return after more moderate floods, whereas bars with coarse material may remain in place, locally altering flow direction and causing continued bank erosion. Results from this study can be used by local managers in postflood reconstruction efforts and provide baseline information for continued monitoring of geomorphic responses to the June 2012 flood.
The Development of the STEM Career Interest Survey (STEM-CIS)
NASA Astrophysics Data System (ADS)
Kier, Meredith W.; Blanchard, Margaret R.; Osborne, Jason W.; Albert, Jennifer L.
2014-06-01
Internationally, efforts to increase student interest in science, technology, engineering, and mathematics (STEM) careers have been on the rise. It is often the goal of such efforts that increased interest in STEM careers should stimulate economic growth and enhance innovation. Scientific and educational organizations recommend that efforts to interest students in STEM majors and careers begin at the middle school level, a time when students are developing their own interests and recognizing their academic strengths. These factors have led scholars to call for instruments that effectively measure interest in STEM classes and careers, particularly for middle school students. In response, we leveraged the social cognitive career theory to develop a survey with subscales in science, technology, engineering, and mathematics. In this manuscript, we detail the six stages of development of the STEM Career Interest Survey. To investigate the instrument's reliability and psychometric properties, we administered this 44-item survey to over 1,000 middle school students (grades 6-8) who primarily were in rural, high-poverty districts in the southeastern USA. Confirmatory factor analyses indicate that the STEM-CIS is a strong, single factor instrument and also has four strong, discipline-specific subscales, which allow for the science, technology, engineering, and mathematics subscales to be administered separately or in combination. This instrument should prove helpful in research, evaluation, and professional development to measure STEM career interest in secondary level students.
Is Science Me? Exploring Middle School Students' STE-M Career Aspirations
ERIC Educational Resources Information Center
Aschbacher, Pamela R.; Ing, Marsha; Tsai, Sherry M.
2014-01-01
This study explores middle school students' aspirations in science, technology, engineering, and medical (STE-M) careers by analyzing survey data during their eighth and ninth grade years from an ethnically and economically diverse sample of Southern California urban and suburban public school students (n = 493). Students were classified based on…
STEM Learning through Engineering Design: Impact on Middle Secondary Students' Interest towards STEM
ERIC Educational Resources Information Center
Shahali, Edy Hafizan Mohd; Halim, Lilia; Rasul, Mohamad Sattar; Osman, Kamisah; Zulkifeli, Mohd Afendi
2017-01-01
The purpose of this study was to identify students' changes of (i) interest toward STEM subjects and (ii) interest to pursuing STEM career after participating in non-formal integrated STEM education programme. The programme exposed students with integrated STEM education through project based learning involving the application of five phases…
NASA Astrophysics Data System (ADS)
Alsup, Philip R.
Inspiring learners toward career options available in STEM fields (Science, Technology, Engineering, and Mathematics) is important not only for economic development but also for maintaining creative thinking and innovation. Limited amounts of research in STEM education have focused on the population of students enrolled in religious and parochial schools, and given the historic conflict between religion and science, this sector of American education is worthy of examination. The purpose of this quantitative study is to extend Gottfredson's (1981) Theory of Circumscription and Compromise as it relates to occupational aspirations. Bem's (1981) Gender Schema Theory is examined as it relates to the role of gender in career expectations, and Crenshaw's (1989) Intersectionality Theory is included as it pertains to religion as a group identifier. Six professionals in STEM career fields were video recorded while being interviewed about their skills and education as well as positive and negative aspects of their jobs. The interviews were compiled into a 25-minute video for the purpose of increasing understanding of STEM careers among middle school viewers. The research questions asked whether middle school students from conservative, Protestant Christian schools in a Midwest region increased in STEM-subject attitude and STEM-career interest as a result of viewing the video and whether gender interacted with exposure to the video. A quasi-experimental, nonequivalent control groups, pretest/posttest factorial design was employed to evaluate data collected from the STEM Semantic Survey. A Two-Way ANCOVA revealed no significant differences in dependent variables from pretest to posttest. Implications of the findings are examined and recommendations for future research are made. Descriptors: STEM career interest, STEM attitude, STEM gender disparity, Occupational aspirations, Conservative Protestant education.
ERIC Educational Resources Information Center
Brown, Patrick L.; Concannon, James P.; Marx, Donna; Donaldson, Christopher W.; Black, Alicia
2016-01-01
The purpose of this teacher research study is to ascertain students' interest in STEM and beliefs about STEM before and after STEM specific instruction, explore possible differences in STEM self-efficacy by gender, and explore differences in STEM self-efficacy by group role. Our primary data sources include a modified attitudinal survey and…
Comparison of Science Process Skills with STEM Career Interests of Middle School Students
ERIC Educational Resources Information Center
Zorlu, Fulya; Zorlu, Yusuf
2017-01-01
This study was aimed to examine the relation between the STEM (Science, Technology, Engineering and Mathematics) career interests and science process skills of middle school seventh grade students. Method of this study was the relational survey method. The study was conducted on the basis of voluntariness and participants were 133 seventh grade…
The Baltimore City Schools Middle School STEM Summer Program with VEX Robotics
ERIC Educational Resources Information Center
Mac Iver, Martha Abele; Mac Iver, Douglas J.
2015-01-01
In 2011 Baltimore City Schools submitted a successful proposal for an Investing in Innovations (i3) grant to offer a three year (2012-2014) summer program designed to expose rising sixth through eighth grade students to VEX robotics. The i3-funded Middle School Science, Technology, Engineering and Mathematics (STEM) Summer Learning Program was…
ERIC Educational Resources Information Center
Newman, Jane L.; Dantzler, John; Coleman, April N.
2015-01-01
The purpose of Science in Action (SIA) was to examine the relationship between implementing quality science, technology, engineering, and math (STEM) service-learning (SL) projects and the effect on students' academic engagement in middle school science, civic responsibility, and resilience to at-risk behaviors. The innovative project funded by…
Opinions of Secondary School Science and Mathematics Teachers on STEM Education
ERIC Educational Resources Information Center
Yildirim, Bekir; Türk, Cumhur
2018-01-01
In this study, the opinions of middle school science teachers and mathematics teachers towards STEM education were examined. The research was carried out for 30 hours with 28 middle school science and mathematics teachers who were working in Istanbul during the spring semester of 2016-2017 academic year. 75% of these teachers are female teachers…
A Campus-Wide Study of STEM Courses: New Perspectives on Teaching Practices and Perceptions
Vinson, Erin L.; Smith, Jeremy A.; Lewin, Justin D.; Stetzer, MacKenzie R.
2014-01-01
At the University of Maine, middle and high school science, technology, engineering, and mathematics (STEM) teachers observed 51 STEM courses across 13 different departments and collected information on the active-engagement nature of instruction. The results of these observations show that faculty members teaching STEM courses cannot simply be classified into two groups, traditional lecturers or instructors who teach in a highly interactive manner, but instead exhibit a continuum of instructional behaviors between these two classifications. In addition, the observation data reveal that student behavior differs greatly in classes with varied levels of lecture. Although faculty members who teach large-enrollment courses are more likely to lecture, we also identified instructors of several large courses using interactive teaching methods. Observed faculty members were also asked to complete a survey about how often they use specific teaching practices, and we find that faculty members are generally self-aware of their own practices. Taken together, these findings provide comprehensive information about the range of STEM teaching practices at a campus-wide level and how such information can be used to design targeted professional development for faculty. PMID:25452485
NASA Astrophysics Data System (ADS)
Hughes, Roxanne M.; Nzekwe, Brandon; Molyneaux, Kristen J.
2013-10-01
Currently, there are policy debates regarding the efficacy and legality of single sex formal and informal education programs. This issue is particularly poignant in science education due to the historical marginalization of women in these fields. This marginalization has resulted in women being positioned as a stigmatized group within many science, technology, engineering, and mathematics (STEM) related fields. Research points to adolescence as the age where this sense of marginalization begins to develop. As a result, policy responses have utilized various frameworks such as: increased access for women, changing pedagogy to address women's learning styles, changing the language and culture of science to prevent marginalization of stigmatized groups, and finally exploring the role that individual identity plays in the marginalization of women. This study adds to the policy debate as it applies to single sex education by comparing middle school participants' STEM identity formation during two informal science learning environments (an all girls' STEM camp and a co-educational STEM camp). Additionally, this study focuses on the influence of camp activities within two informal science education programs: particularly the provision of role models and authentic STEM research activities, as means to improve STEM identity and make these fields relevant to the lives of middle school students. The results indicate that both camps improved girls' STEM identities. These findings suggest that the single sex environment is not as important to STEM identity as the pedagogy used within the program.
ERIC Educational Resources Information Center
Franz-Odendaal, Tamara A.; Blotnicky, Karen; French, Frederick; Joy, Phillip
2016-01-01
To enhance understanding of factors that might improve STEM career participation, we assessed students' self-perceptions of competency and interest in science/math, engagement in STEM activities outside of school, and knowledge of STEM career requirements. We show that the primary positive influencer directing students to a STEM career is high…
ERIC Educational Resources Information Center
Grant, Brooke L.; Liu, Xiufeng; Gardella, Joseph A.
2015-01-01
This paper examines the roles that 52 university Science, Technology, Engineering, and Mathematics (STEM) students play in an Interdisciplinary Science and Engineering Partnership that connects several middle schools, high schools, institutions of higher learning, businesses, and community institutions. It also examines the support these students…
Interest-Driven Learning among Middle School Youth in an Out-of-School STEM Studio
ERIC Educational Resources Information Center
Evans, Michael A.; Lopez, Megan; Maddox, Donna; Drape, Tiffany; Duke, Rebekah
2014-01-01
The concept of connected learning proposes that youth leverage individual interest and social media to drive learning with an academic focus. To illustrate, we present in-depth case studies of Ryan and Sam, two middle-school-age youth, to document an out-of-school intervention intended to direct toward intentional learning in STEM that taps…
ERIC Educational Resources Information Center
Ntemngwa, Celestin; Oliver, J. Steve
2018-01-01
The research study reported here was conducted to investigate the implementation of integrated STEM lessons within courses that have a single subject science focus. The purpose also included development of a pedagogical theory. This technology-based teaching was conceptualized by school administrators and teachers in order to provide middle school…
ERIC Educational Resources Information Center
Carroll, Maureen P.
2014-01-01
This paper describes the journey of a group of university students as they worked with underserved middle school students as mentors in a STEM-based afterschool program. Design thinking provided a frame within which students learned how to be mentors, how to create user-centered learning experiences, and how to share their experiences as…
ERIC Educational Resources Information Center
DeThomas, Elizabeth M.
2017-01-01
This mixed methods research study examined the effects of middle and high school mathematics experiences on students' choice of college major, particularly whether students decided to major in a STEM field. Social cognitive career theory was used to examine potential influences of mathematics self-efficacy and how those influences and mathematics…
Advancing Elementary and Middle School STEM Education
ERIC Educational Resources Information Center
English, Lyn D.
2017-01-01
Navigating the current STEM agendas and debates is complex and challenging. Perspectives on the nature of STEM education and how it should be implemented without losing discipline integrity, approaches to incorporating the arts (STEAM) and how equity in access to STEM education can be increased are just a few of the many issues faced by…
Myers, Donna N.; Koltun, G.F.; Francy, Donna S.
1998-01-01
Discharges of fecal bacteria (fecal coliform bacteria and Escherichia coli ) to the middle main stem of the Cuyahoga River from storm water, combined sewers, and incompletely disinfected wastewater have resulted in frequent exceedances of bacteriological water-quality standards in a 23-mile reach of the river that flows through the Cuyahoga Valley National Recreation Area. Contamination of the middle main stem of the Cuyahoga River by bacteria of fecal origin and subsequent transport to downstream areas where water-contact recreation is an important use of the river are a concern because of the potential public-health risk from the presence of enteric pathogens. Independent field investigations of bacterial decay, dilution, dispersion, transport, and sources, and bacterial contamination of streambed sediments, were completed in 1991-93 during periods of rainfall and runoff. The highest concentration of fecal coliform bacteria observed in the middle main stem during three transport studies exceeded the single-sample fecal coliform standard applicable to primary-contact recreation by a factor of approximately 1,300 and exceeded the Escherichia coli standard by a factor of approximately 8,000. The geometric-mean concentrations of fecal bacteria in the middle main stem were 6.7 to 12.3 times higher than geometric-mean concentrations in the monitored tributaries, and 1.8 to 7.0 times larger than the geometric-mean concentrations discharged from the Akron Water Pollution Control Station. Decay rates of fecal bacteria measured in field studies in 1992 ranged from 0.0018 per hour to 0.0372 per hour for fecal coliform bacteria and from 0.0022 per hour to 0.0407 per hour for Escherichia coli. Most of the decay rates measured in June and August were significantly higher than decay rates measured in April and October. Results of field studies demonstrated that concentrations of fecal coliform bacteria were 1.2 to 58 times higher in streambed sediments than in the overlying water. Sediments are likely to be a relatively less important source of fecal bacteria during rainfall and runoff in the middle main stem relative to bacterial loading from point sources. Numerical streamflow and transport simulation models were calibrated and verified with data collected during field studies. Of the constituents modeled, bacteria exhibited the poorest correspondence between observed and simulated values. The simulation results for a dye tracer indicated that the model reasonably reproduced the timing of dissolved constituents as well as dilution and dispersion effects. Calibrated and verified models for 1991 and 1992 data sets were used to simulate the improvements to bacteriological water quality that might result from reductions in concentrations of fecal bacteria discharged from two major sources. The model simulation resulting in the greatest improvement in bacteriological water-quality was one in which concentrations of fecal coliform bacteria and Escherichia coli were reduced by 90 percent in the Cuyahoga River at the Old Portage gaging station, and to geometric-mean bathing-water standards in the effluent of the Akron Water Pollution Control Station (BWS/90 scenario). Compared to the results of the base-simulation, when the BWS/90 scenario was applied in the 1991 model simulation, Escherichia coli concentrations were reduced 98.5 percent at Botzum, 97.5 percent at Jaite, and 91.1 percent at Independence. For 1992 model simulations, similar percent reductions in the concentrations of Escherichia coli were predicted at the three stream sites when the same reductions were applied to sources. None of the model simulations resulted in attainment of bacteriological water-quality standards.The potential benefits of source reductions to human health and recreational uses were estimated by comparing the number of illnesses per 1,000 people from concentrations of Escherichia coli associated with the BWS/90 simulation, with the base simulation, and with the geometric-mean standard for Escherichia coli. The predicted 22 to 26 illnesses per 1,000 people predicted by the E. coli concentrations resulting from BWS/90 simulation are 2.8 to 3.3 times higher than the 8 illnesses per 1,000 people associated with the geometric-mean primary-contact water-quality standard for Escherichia coli. Risks associated with the base simulation are 4.6 to 4.9 times higher than that associated with the geometric-mean primary- contact water-quality standard for Escherichia coli. The illness risks predicted from the BWS/90 scenario, although larger than acceptable, would nevertheless be an improvement over conditions that were encountered during field studies in 1991-93.
The Impact of Length of Engagement in After-School STEM Programs on Middle School Girls
NASA Astrophysics Data System (ADS)
Cupp, Garth Meichel
An underrepresentation of females exists in the STEM fields. In order to tackle this issue, work begins early in the education of young women to ensure they are interested and have the confidence to gain a career in the STEM fields. It is important to engage girls in STEM opportunities in and out of school to ignite their interest and build their confidence. Brigid Barron's learning ecology perspective shows that girls pursuing STEM outside of the classroom is critical to their achievement in the STEM pipeline. This study investigated the impact after-school STEM learning opportunities have on middle school girls by investigating (a) how the length of engagement in after-school programs can affect the confidence of female students in their science and math abilities; (b) how length of engagement in after-school programs can affect the interest of female students in attaining a career in STEM; (c) how length of engagement in after-school programs can affect interest in science and math classes; and (d) how length of engagement can affect how female students' view gender parity in the STEM workforce. The major findings revealed no statistical significance when comparing confidence in math or science abilities or the perception that gender plays a role in attaining a career in STEM. The findings revealed statistical significance in the areas when comparing length of engagement in the girls' interest in their math class and attaining a career in three of the four STEM fields: science, technology, and engineering. The findings showed that multiple terms of engagement in the after-school STEM programs appear to be an effective catalyst to maintain the interest of girls pursuing STEM-related careers, in addition to allowing their interest in a topic to provide a new lens for the way they see their math work during the school day. The implications of this study show that schools must engage middle school girls who are interested in STEM in a multitude of settings, including outside of the classroom in order to maintain engagement in the STEM pipeline.
NASA Astrophysics Data System (ADS)
Mills, Leila A.
This study examines middle school students' perceptions of a future career in a science, math, engineering, or technology (STEM) career field. Gender, grade, predispositions to STEM contents, and learner dispositions are examined for changing perceptions and development in career-related choice behavior. Student perceptions as measured by validated measurement instruments are analyzed pre and post participation in a STEM intervention energy-monitoring program that was offered in several U.S. middle schools during the 2009-2010, 2010-2011 school years. A multiple linear regression (MLR) model, developed by incorporating predictors identified by an examination of the literature and a hypothesis-generating pilot study for prediction of STEM career interest, is introduced. Theories on the career choice development process from authors such as Ginzberg, Eccles, and Lent are examined as the basis for recognition of career concept development among students. Multiple linear regression statistics, correlation analysis, and analyses of means are used to examine student data from two separate program years. Study research questions focus on predictive ability, RSQ, of MLR models by gender/grade, and significance of model predictors in order to determine the most significant predictors of STEM career interest, and changes in students' perceptions pre and post program participation. Analysis revealed increases in the perceptions of a science career, decreases in perceptions of a STEM career, increase of the significance of science and mathematics to predictive models, and significant increases in students' perceptions of creative tendencies.
Ready, Aim, Fire Your Cannons!
ERIC Educational Resources Information Center
Enderson, Mary C.
2015-01-01
This article presents a science, technology, engineering, and mathematics (STEM) activity, building an air cannon, in a mathematics classroom. It describes an investigation grounded in STEM concepts that elementary and middle school teachers carried out to think about ways of implementing STEM activities into their instruction. This particular…
Reassessing the improbability of a muscular crinoid stem
Gorzelak, Przemysław; Głuchowski, Edward; Salamon, Mariusz A.
2014-01-01
Muscular articulations in modern stalked crinoids are only present in the arms. Although it has been suggested that certain coiled-stemmed fossil taxa may have been functionally adapted to utilize muscles, evidence supporting this interpretation is lacking. Here, we use cathodoluminescence and SEM to reveal the skeletal microstructure of the enigmatic coiled-stemmed taxon Ammonicrinus (Flexibilia). Based on the well-established link between skeletal microstructure and the nature of infilling soft tissues in modern echinoderms, we reconstructed the palaeoanatomy of the Middle Devonian ammonicrinids. We show that their median columnals with elongated lateral columnal enclosure extensions (LCEE) have stereom microstructure unexpectedly resembling that in the crinoid muscular arm plates. In particular, large ligamentary facets, that are present on each side of a transverse ridge, are mainly comprised of fine galleried stereom that is indicative of the mutable collagenous tissues. In contrast, fine labyrinthic stereom, commonly associated with muscles, is situated in the periphery on each side of the surface of elongated LCEE. Our findings thus strongly suggest that the muscles may have also been present in the stem of ammonicrinids. These results reassess the previous hypotheses about evolution of muscles in crinoids and provide new insights into the mode of life of Ammonicrinus. PMID:25116414
Reassessing the improbability of a muscular crinoid stem
NASA Astrophysics Data System (ADS)
Gorzelak, Przemysław; Głuchowski, Edward; Salamon, Mariusz A.
2014-08-01
Muscular articulations in modern stalked crinoids are only present in the arms. Although it has been suggested that certain coiled-stemmed fossil taxa may have been functionally adapted to utilize muscles, evidence supporting this interpretation is lacking. Here, we use cathodoluminescence and SEM to reveal the skeletal microstructure of the enigmatic coiled-stemmed taxon Ammonicrinus (Flexibilia). Based on the well-established link between skeletal microstructure and the nature of infilling soft tissues in modern echinoderms, we reconstructed the palaeoanatomy of the Middle Devonian ammonicrinids. We show that their median columnals with elongated lateral columnal enclosure extensions (LCEE) have stereom microstructure unexpectedly resembling that in the crinoid muscular arm plates. In particular, large ligamentary facets, that are present on each side of a transverse ridge, are mainly comprised of fine galleried stereom that is indicative of the mutable collagenous tissues. In contrast, fine labyrinthic stereom, commonly associated with muscles, is situated in the periphery on each side of the surface of elongated LCEE. Our findings thus strongly suggest that the muscles may have also been present in the stem of ammonicrinids. These results reassess the previous hypotheses about evolution of muscles in crinoids and provide new insights into the mode of life of Ammonicrinus.
NASA Astrophysics Data System (ADS)
Neil-Burke, Merah Bell
The aim of this qualitative study was to determine how professional development might be designed to meet the needs of teachers delivering interdisciplinary STEM instruction in an urban middle school. This study was framed and guided by three bodies of literature: literature in support of the theory of change, adult learning theory, and effective STEM professional development. The study, designed to be collaborative in nature, employed an action research variation of participatory classroom action research, (CAR) to find out how STEM professional development could be designed to meet the needs of teachers delivering interdisciplinary STEM instruction. A sample of five middle school teachers from grades six through eight was interviewed using semi-structured, in-depth interview technique to identify their perceived needs. Observational techniques were utilized to determine how STEM teachers' instructional practices change as a result of exposure to STEM professional development for interdisciplinary instruction. Data from these interviews were used to design the professional development. Planning and implementation of the professional development were accomplished using the CAR model with data being collected in all phases of the CAR cycle for teaching interdisciplinary STEM. The findings suggest that interdisciplinary STEM professional development that is collaborative, along with a curriculum that supports the process of discipline integration, is an effective approach to meeting teachers' needs for the teaching of interdisciplinary STEM instruction. Lastly, the findings imply that certain barriers such as limited time to collaborate, plan, reflect, and practice could impede teachers' ability to use an interdisciplinary approach to classroom instructional practices. However, these barriers may become diminished when teachers, support each other through communication and collaboration. Thus, the essential elements included in the design and implementations of this interdisciplinary STEM professional development are the following: time to plan, to practice, to reflect, and to collaborate with other teachers. These findings reveal the need for support from school administration and curriculum writers.
ERIC Educational Resources Information Center
Nakamoto, Jonathan; Bojorquez, Juan Carlos
2017-01-01
The purpose of this study was to assess the impact of the Pathways to STEM Initiative (PSI) on students and science teachers and to describe the level of PSI implementation. One group of middle schools participated in PSI, which included project-based science, technology, engineering, and math (STEM) coursework; extra-curricular STEM opportunities…
Boosting the Numbers of STEM Majors? the Role of High Schools with a STEM Program
ERIC Educational Resources Information Center
Bottia, Martha Cecilia; Stearns, Elizabeth; Mickelson, Roslyn Arlin; Moller, Stephanie
2018-01-01
This article investigates whether attending a high school that offers a specialized science, technology, engineering, and/or mathematics program (high school with a STEM program) boosts the number of students majoring in STEM when they are in college. We use a longitudinal sample of students in North Carolina, whom we follow from middle school…
the field. STEM Career Expo at Fermilab From NCTV17, April 20, 2018: The next generation of scientists Career Expo. Watch the 90-second segment. In photos: Dare to Dream shares joys of STEM with Latina middle Lab professionals discussed their work, shared their experiences in different career areas and
Robotics Intrigue Middle School Students and Build STEM Skills
ERIC Educational Resources Information Center
Grubbs, Michael
2013-01-01
As science, technology, engineering and mathematics (STEM) education demands greater integration across all subject areas, technology teachers can showcase many of the cross-curricular projects already occurring inside their classrooms that intrigue students and build their STEM skills. Robotics, just one of those projects, has become an excellent…
Deconstruction Geography: A STEM Approach
ERIC Educational Resources Information Center
Gehlhar, Adam M.; Duffield, Stacy K.
2015-01-01
This article will define the engineering design process used to create an integrated curriculum at STEM Center Middle School, and it features the planning, implementation, and revision of the Deconstruction Geography unit. The Science Technology Engineering and Math (STEM) Center opened in the fall of 2009 as a way to relieve overcrowding at the…
Middle-Skill STEM State Policy Framework. Executive Summary
ERIC Educational Resources Information Center
Rosenblum, Ian; Kazis, Richard
2014-01-01
The sector of the economy frequently referred to as STEM (Science, Technology, Engineering and Mathematics) is the subject of much national interest and debate. While there is general consensus across various stakeholders such as policymakers, educators, and industry that STEM education and careers are essential to maintaining an innovative and…
Middle-Skill STEM State Policy Framework
ERIC Educational Resources Information Center
Rosenblum, Ian; Kazis, Richard
2014-01-01
The sector of the economy frequently referred to as STEM (Science, Technology, Engineering and Mathematics) is the subject of much national interest and debate. While there is general consensus across various stakeholders such as policymakers, educators, and industry that STEM education and careers are essential to maintaining an innovative and…
[Caloric value and energy allocation of Chloris virgata in northeast grassland].
Guo, J; Wang, R; Wang, W
2001-06-01
The rules of seasonal changes in caloric values of individual plant, stem, and leaves of Chloris virgata were similar, which had two peak values from early July to early August, and then decreased gradually. Those of inflorescence assumed U shape, and had two peak values in early August and middle September, respectively. The seasonal changes in caloric values of dead standing were irregular, and the maximum value was appeared in early August. The seasonal changes in existent energy value of the aboveground parts in Chloris virgata population presented double peak curve. The two peak values were appeared in early August and early September respectively, and the maximum value was 7381.27 kJ.m-2 in early September. The energy allocation in different seasons was leaf > stem in early July, stem > leaf > dead standing in middle July, stem > leaf > inflorescence > dead standing in August, stem > inflorescence > leaf > dead standing in early September, and stem > inflorescence > dead standing > leaf in middle September. The vertical structure of energy in the aboveground parts was that the energy value gradually increased from the earth's surface to 20 cm high, and then decreased. The maximum value, which accounted for 25.75% of energy in the aboveground parts, was appeared in the layer of 10-20 cm high. In the underground parts, the energy value progressively decreased with the increase of depth, and the maximum value, which accounted for 74.21% of energy in the underground parts, was appeared in the layer of 0-10 cm depth.
NASA Astrophysics Data System (ADS)
Miller, Joelle A.
Focusing on Science, Technology, Engineering and Mathematics (STEM) literacy is a national priority for the United States. As competition increases internationally for scientific and technological innovations, the United States is concentrating on building its STEM capacity (Stephens, 2011). Despite the numerous STEM reform efforts there continues to be a decline in STEM graduates and STEM competencies (McNally, 2012; Langdon, Mckittrick, Beede, Doms, & Khan, 2011; Herschback, 2011). With attention focused on increasing STEM college majors and occupations among the student population, the current research investigation centered on the role of parent aspirations, student self-beliefs, and activities outside the classroom to determine the outcome of middle and high school students choosing a STEM college major. Research suggested that students formulate their degree attainment during their middle and high school years, and even earlier (Roach, 2006; Maltese & Tai, 2011); therefore, it was logical to investigate STEM persistence during middle and high school years. The study analyzed NELS:88, a longitudinal national public data set created by the National Center for Educational Statistics that used 12,144 participants. The students' self-reported data spanned over a 12-year period. Students completed five surveys in the NELS:88 data collection (NCES, 2011). Binary and multivariate logistical regressions determined if activities outside the classroom, parent aspirations, and student self-beliefs influenced STEM college majors. Conclusions of the study found significant relationships between the variables and STEM persistence. Individuals who participated in STEM activities after school were more likely to major in STEM (p<.001,Exp(B)=1.106). There was a significant positive relationship between parent aspirations and increased odds of choosing a STEM major (p<.0001, Exp(B)=1.041). There was a significant relationship between student self-beliefs and choosing a STEM major as students with higher self-beliefs had a decreased odds of choosing a non-STEM major (p<.05, Exp(B)=.988). When all three variables were considered together, self-beliefs were no longer significant (p<.166) but parent aspirations, (p<.0001, Exp(B)=1.034) and activities outside of the classroom (p<.0001, Exp(B)=1.097), both significantly predicted STEM participation. The results of the research inform policy makers in regard to funding decisions and the development of programs, especially ones that occur outside of the school day. The analysis may guide decisions for school administrators on how to influence student retention within the STEM pipeline. The findings add to existing research and provide a better understanding of predictors affecting student persistence in STEM.
Impact of Fab Lab Tulsa on Student Self-Efficacy toward STEM Education
ERIC Educational Resources Information Center
Dubriwny, Nicholas; Pritchett, Nathan; Hardesty, Michelle; Hellman, Chan M.
2016-01-01
Student self-confidence is important to any attempt to increase interest and achievement in Science, Technology, Engineering, and Math (STEM) education. This study presents a longitudinal examination of Fab Lab Tulsa's impact on attitude and self-efficacy toward STEM education among middle-school aged students. Paired samples t-test showed a…
Team-Based Introductory Research Experiences in Mathematics
ERIC Educational Resources Information Center
Baum, Brittany Smith; Rowell, Ginger Holmes; Green, Lisa; Yantz, Jennifer; Beck, Jesse; Cheatham, Thomas; Stephens, D. Christopher; Nelson, Donald
2017-01-01
As part of Middle Tennessee State University's (MTSU's) initiative to improve retention of at-risk STEM majors, they recruit first-time, full-time freshman STEM majors with mathematics ACT scores of 19 to 23 to participate in MTSU's "Mathematics as a FirstSTEP to Success in STEM" project (FirstSTEP). This article overviews MTSU's…
ERIC Educational Resources Information Center
Executive Office of the President, 2013
2013-01-01
Given that many jobs of the future will be STEM jobs, that our K-12 system is "middle of the pack" in international comparisons, and that progress on STEM education at multiple levels is critical to building a just and inclusive society, there is an urgent need to continue to improve STEM education in the United States. Much knowledge…
NASA Astrophysics Data System (ADS)
Ocumpaugh, Jaclyn; San Pedro, Maria Ofelia; Lai, Huei-yi; Baker, Ryan S.; Borgen, Fred
2016-12-01
Research suggests that trajectories toward careers in science, technology, engineering, and mathematics (STEM) emerge early and are influenced by multiple factors. This paper presents a longitudinal study, which uses data from 76 high school students to explore how a student's vocational self-efficacy and interest are related to his or her middle school behavioral and affective engagement. Measures of vocational self-efficacy and interest are drawn from STEM-related scales in CAPAExplore, while measures of middle school performance and engagement in mathematics are drawn from several previously validated automated indicators extracted from logs of student interaction with ASSISTments, an online learning platform. Results indicate that vocational self-efficacy correlates negatively with confusion, but positively with engaged concentration and carelessness. Interest, which also correlates negatively with confusion, correlates positively with correctness and carelessness. Other disengaged behaviors, such as gaming the system, were not correlated with vocational self-efficacy or interest, despite previous studies indicating that they are associated with future college attendance. We discuss implications for these findings, which have the potential to assist educators or counselors in developing strategies to sustain students' interest in STEM-related careers.
ERIC Educational Resources Information Center
Wall, Amanda; Miller, Samuel D.
2015-01-01
This qualitative case study explored 4 middle grades teachers' naïve theories of motivation, and the links between these theories and their thoughts and actions related to motivation. Their naïve theories of motivation stemmed from their overall visions for teaching, and their strong identities as middle grades educators. These naïve theories also…
Engaging Diverse Learners through the Provision of STEM Education Opportunities. Briefing Paper
ERIC Educational Resources Information Center
Howard-Brown, Beth; Martinez, Danny; Times, Chris
2012-01-01
Science, technology, engineering, and mathematics (STEM) are viewed as fundamental elements in the preparation of our next generation. This is evidenced by President Obama's goal of "moving our nation from the middle to the top of the pack in math and science education" and his focus on (a) hiring additional STEM teachers; (b) enhancing…
Nomura, T; Honmou, O; Harada, K; Houkin, K; Hamada, H; Kocsis, J D
2005-01-01
I.V. delivery of mesenchymal stem cells prepared from adult bone marrow reduces infarction size and ameliorates functional deficits in rat cerebral ischemia models. Administration of the brain-derived neurotrophic factor to the infarction site has also been demonstrated to be neuroprotective. To test the hypothesis that brain-derived neurotrophic factor contributes to the therapeutic benefits of mesenchymal stem cell delivery, we compared the efficacy of systemic delivery of human mesenchymal stem cells and human mesenchymal stem cells transfected with a fiber-mutant F/RGD adenovirus vector with a brain-derived neurotrophic factor gene (brain-derived neurotrophic factor-human mesenchymal stem cells). A permanent middle cerebral artery occlusion was induced by intraluminal vascular occlusion with a microfilament. Human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells were i.v. injected into the rats 6 h after middle cerebral artery occlusion. Lesion size was assessed at 6 h, 1, 3 and 7 days using MR imaging, and histological methods. Functional outcome was assessed using the treadmill stress test. Both human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells reduced lesion volume and elicited functional improvement compared with the control sham group, but the effect was greater in the brain-derived neurotrophic factor-human mesenchymal stem cell group. ELISA analysis of the infarcted hemisphere revealed an increase in brain-derived neurotrophic factor in the human mesenchymal stem cell groups, but a greater increase in the brain-derived neurotrophic factor-human mesenchymal stem cell group. These data support the hypothesis that brain-derived neurotrophic factor contributes to neuroprotection in cerebral ischemia and cellular delivery of brain-derived neurotrophic factor can be achieved by i.v. delivery of human mesenchymal stem cells.
NASA Astrophysics Data System (ADS)
Dowey, Ana Lucrecia
The under participation of minority females in STEM fields has been a chronic problem in the United States, mainly when it is analyzed through the lens of their relative representation in the population. The results of the first or quantitative phase, of this two phase sequential, mixed method study, revealed academic achievement or performance in science accounted for most of the variance of mean scores for students' attitudes and interests in science as measured by the TOSRA Likert-scale survey, when compared to the degree of parent education and ethnicity/ racial background. Additionally, this study investigated possible sources of perceived self-efficacy in eighteen seventh grade Hispanic female students by conducting personal semi-structured interviews. The purpose of this study was to explore if middle school female student ethnic/racial backgrounds and academic performance influence their attitudes and interests toward science and to study the possible effects external (family, school, peers, and community) and internal factors may have for Hispanic student self-efficacy toward science. The results revealed that of the five ethnic/racial groups studied, Asian/Filipino female students expressed higher positive attitudes and interests toward science, than the rest of the student ethnic groups studied, followed by the Hispanic student group. The results indicated that students' perceived encouragement from their mothers, regardless of the mother's degree of education, as being the main source of these girls' perceived self-efficacy in science. However, the lack of perceived school-related, peer-related, and community-related support was evident. These results are encouraging because they demonstrate how verbal persuasion, in the form of encouragement and support, fosters perceived self-efficacy for minority female students.
ERIC Educational Resources Information Center
Mohr-Schroeder, Margaret J.; Jackson, Christa; Miller, Maranda; Walcott, Bruce; Little, David L.; Speler, Lydia; Schooler, William; Schroeder, D. Craig
2014-01-01
It is a well-known fact that, in general, many students have a lack of interest and proficiency in mathematics and science. Therefore, it is imperative that we prepare and inspire all students, specifically students of underrepresented populations, to learn science, technology, engineering, and mathematics (STEM) content. Now in its fourth year,…
ERIC Educational Resources Information Center
Smith, Dimitra Jackson
2016-01-01
Increasing the representation of African American females is essential to ensure the United States (U.S.) remains a viable competitor in the STEM (science, technology, engineering, and mathematics) workforce. With minorities anticipated to represent half of the resident U.S population by 2050, fostering STEM talent among this population is vital.…
76 FR 13572 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
.... Specifically, it addresses the following flooding sources: Left Bank Overflow Main Stem Skagit River, Left Bank Overflow Main Stem Skagit River/South Fork Skagit River, Left Bank Overflow North Fork Skagit River, Main Stem Skagit River, North Fork Skagit River, Overflow from the Main Stem Skagit River between the North...
Anthracobunids from the Middle Eocene of India and Pakistan Are Stem Perissodactyls
Cooper, Lisa Noelle; Seiffert, Erik R.; Clementz, Mark; Madar, Sandra I.; Bajpai, Sunil; Hussain, S. Taseer; Thewissen, J. G. M.
2014-01-01
Anthracobunidae is an Eocene family of large mammals from south Asia that is commonly considered to be part of the radiation that gave rise to elephants (proboscideans) and sea cows (sirenians). We describe a new collection of anthracobunid fossils from Middle Eocene rocks of Indo-Pakistan that more than doubles the number of known anthracobunid fossils and challenges their putative relationships, instead implying that they are stem perissodactyls. Cranial, dental, and postcranial elements allow a revision of species and the recognition of a new anthracobunid genus. Analyses of stable isotopes and long bone geometry together suggest that most anthracobunids fed on land, but spent a considerable amount of time near water. This new evidence expands our understanding of stem perissodactyl diversity and sheds new light on perissodactyl origins. PMID:25295875
ERIC Educational Resources Information Center
Christensen, Rhonda; Knezek, Gerald
2018-01-01
The Going Green! Middle Schoolers Out to Save the World project aims to direct middle school students' enthusiasm for hands-on activities toward interest in science and other STEM areas while guiding them to solve real-world problems. Students in this project are taught by their teachers to use energy monitoring equipment to audit standby power…
A campus-wide study of STEM courses: new perspectives on teaching practices and perceptions.
Smith, Michelle K; Vinson, Erin L; Smith, Jeremy A; Lewin, Justin D; Stetzer, MacKenzie R
2014-01-01
At the University of Maine, middle and high school science, technology, engineering, and mathematics (STEM) teachers observed 51 STEM courses across 13 different departments and collected information on the active-engagement nature of instruction. The results of these observations show that faculty members teaching STEM courses cannot simply be classified into two groups, traditional lecturers or instructors who teach in a highly interactive manner, but instead exhibit a continuum of instructional behaviors between these two classifications. In addition, the observation data reveal that student behavior differs greatly in classes with varied levels of lecture. Although faculty members who teach large-enrollment courses are more likely to lecture, we also identified instructors of several large courses using interactive teaching methods. Observed faculty members were also asked to complete a survey about how often they use specific teaching practices, and we find that faculty members are generally self-aware of their own practices. Taken together, these findings provide comprehensive information about the range of STEM teaching practices at a campus-wide level and how such information can be used to design targeted professional development for faculty. © 2014 M. K. Smith et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Xu, Shi-qin; Ji, Xi-bin; Jin, Bo-wen
2016-02-01
Independent measurements of stem sap flow in stems of Calligonum mongolicum and environmental variables using commercial sap flow gauges and a micrometeorological monitoring system, respectively, were made to simulate the variation of sap flow density in the middle range of Hexi Corridor, Northwest China during June to September, 2014. The results showed that the diurnal process of sap flow density in C. mongolicum showed a broad unimodal change, and the maximum sap flow density reached about 30 minutes after the maximum of photosynthetically active radiation (PAR) , while about 120 minutes before the maximum of temperature and vapor pressure deficit (VPD). During the studying period, sap flow density closely related with atmosphere evapor-transpiration demand, and mainly affected by PAR, temperature and VPD. The model was developed which directly linked the sap flow density with climatic variables, and good correlation between measured and simulated sap flow density was observed in different climate conditions. The accuracy of simulation was significantly improved if the time-lag effect was taken into consideration, while this model underestimated low and nighttime sap flow densities, which was probably caused by plant physiological characteristics.
Impact of animal health programmes on poverty reduction and sustainable livestock development.
Pradere, J P
2017-04-01
Based on data from publications and field observations, this study analyses the interactions between animal health, rural poverty and the performance and environmental impact of livestock farming in low-income countries and middle-income countries. There are strong statistical correlations between the quality of Veterinary Services, livestock productivity and poverty rates. In countries with effective Veterinary Services, livestock growth stems mainly from productivity gains and poverty rates are the lowest. Conversely, these analyses identify no statistical link between the quality of Veterinary Services and increased livestock production volumes. However, where animal diseases are poorly controlled, productivity is low and livestock growth is extensive, based mainly on a steady increase in animal numbers. Extensive growth is less effective than intensive growth in reducing poverty and aggravates the pressure of livestock production on natural resources and the climate.
A Day at the Races: NREL Hosts Colorado Middle School Students With STEM Skills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lung, Linda
Technology and imagination came together at the National Renewable Energy Laboratory on May 20 when 53 teams from 18 Colorado middle schools turned a parking lot into a raceway. The students used the technological know-how picked up in science, technology, engineering, and math (STEM) classes to design and build model electric cars. Powered either by a solar panel or a lithium-ion battery, each car competed in time trials and double elimination races. The final races, between eight cars competing in each category, were over in less than 10 seconds.
Student Perceptions of a Summer Robotics Camp Experience
ERIC Educational Resources Information Center
Conrad, James; Polly, Drew; Binns, Ian; Algozzine, Bob
2018-01-01
Research on the effectiveness of STEM-focused (science, technology, engineering, and mathematics-focused) schools and other learning experiences (e.g., short-term camps) on student outcomes is sparse. This study documented perceptions of STEM content and careers for elementary, middle, and secondary school students participating in…
ERIC Educational Resources Information Center
Blotnicky, Karen A.; Franz-Odendaal, Tamara; French, Frederick; Joy, Phillip
2018-01-01
Background: A sample of 1448 students in grades 7 and 9 was drawn from public schools in Atlantic Canada to explore students' knowledge of science and mathematics requirements for science, technology, engineering, and mathematics (STEM) careers. Also explored were their mathematics self-efficacy (MSE), their future career interests, their…
Virginia Demonstration Project Encouraging Middle School Students in Pursuing STEM Careers
NASA Technical Reports Server (NTRS)
Bachman, Jane T.; Kota, Dena H.; Kota, Aaron J.
2011-01-01
Encouraging students at all grade levels to consider pursuing a career in Science, Technology, Engineering, and Mathematics (STEM) fields i s a national focus. In 2005, the Naval Surface Warfare Center, Dahlgren Division (NSWCDD), a Department of Defense laboratory located in Da hlgren, Virginia, began work on the Virginia Demonstration Project (VDP) with the goal of increasing more student interest in STEM educatio n and pursuing STEM careers. This goal continues as the program enters its sixth year. This project has been successful through the partici pation of NSWCDD's scientists and engineers who are trained as mentor s to work in local middle school classrooms throughout the school year, As an extension of the in-class activities, several STEM summer aca demies have been conducted at NSWCDD, These academies are supported by the Navy through the VDP and the STEM Learning Module Project. These projects are part of more extensive outreach efforts offered by the National Defense Education Program (NDEP), sponsored by the Director, Defense Research and Engineering. The focus of this paper is on the types of activities conducted at the summer academy, an overview of the academy planning process, and recommendations to help support a nati onal plan of integrating modeling and simulation-based engineering and science into all grade levels. based upon the lessons learned
Bioinspiring an Interest in STEM
ERIC Educational Resources Information Center
Laut, Jeffrey; Bartolini, Tiziana; Porfiri, Maurizio
2015-01-01
Attracting K-12 students to pursue careers in science, technology, engineering, and mathematics (STEM) is viewed as a critical element for benefiting both the economy and society. This paper describes an outreach program, conducted in a Brooklyn, New York, USA, public middle school, aimed at educating students in mechatronics, biology, and…
Robotic Cooperative Learning Promotes Student STEM Interest
ERIC Educational Resources Information Center
Mosley, Pauline; Ardito, Gerald; Scollins, Lauren
2016-01-01
The principal purpose of this investigation is to study the effect of robotic cooperative learning methodologies on middle school students' critical thinking, and STEM interest. The semi-experimental inquiry consisted of ninety four six-grade students (forty nine students in the experimental group, forty five students in the control group), chosen…
A Model of Factors Contributing to STEM Learning and Career Orientation
ERIC Educational Resources Information Center
Nugent, Gwen; Barker, Bradley; Welch, Greg; Grandgenett, Neal; Wu, ChaoRong; Nelson, Carl
2015-01-01
The purpose of this research was to develop and test a model of factors contributing to science, technology, engineering, and mathematics (STEM) learning and career orientation, examining the complex paths and relationships among social, motivational, and instructional factors underlying these outcomes for middle school youth. Social cognitive…
ERIC Educational Resources Information Center
Pittinsky, Todd L.; Diamante, Nicole
2015-01-01
The United States education system must improve its ability to produce scientists, engineers, and programmers. Despite numerous national, state, and local efforts to make the study of STEM (science, technology, engineering, and mathematics) subjects more fun in K-12, initial interest in those subjects drops off precipitously in middle and later…
Distribution Tables and Private Tests: The Failure of Middle School Reform in Japan.
ERIC Educational Resources Information Center
LeTendre, Gerald K.
1994-01-01
In November 1992, Japanese Ministry of Education declared middle school teachers could no longer use distribution tables produced by private testing companies to predetermine high school students' curricula. Failure to implement reform stems from structural and cultural roots. By presorting students and molding their expectations, traditional…
Middle School to Professional Development: Interdisciplinary STEM for Multiple Stakeholders
ERIC Educational Resources Information Center
Suriel, Regina L.; Spires, Robert W.; Radcliffe, Barbara J.; Martin, Ellice P.; Paine, Deborah G.
2018-01-01
The STEMITL project is an interdisciplinary collaboration between a Southeastern University's middle grades education department and local PDS partner school districts incorporating six full-day immersive projects for seventh-grade students. During the 2016-2017 academic year, seventh-grade students were brought to the university's newly…
NASA Astrophysics Data System (ADS)
Ali, N. A.; Paglierani, R.; Raftery, C. L.; Romero, V.; Harper, M. R.; Chilcott, C.; Peticolas, L. M.; Hauck, K.; Yan, D.; Ruderman, I.; Frappier, R.
2015-12-01
The Multiverse education group at UC Berkeley's Space Sciences Lab created the NASA-funded "Five Stars Pathway" model in which five "generations" of girls and women engage in science together in an afterschool setting, with each generation representing one stage in the pathway of pursuing a career in science, technology, engineering, or math (STEM). The five stages are: elementary-age students, middle-school-age students, undergraduate-level college students, graduate-level college students and professional scientists. This model was field-tested at two Girls Inc. afterschool locations in the San Francisco Bay Area and distributed to Girls Inc. affiliates and other afterschool program coordinators nationwide. This presentation will explore some of the challenges and success of implementing a multigenerational STEM model as well as distributing the free curriculum for interested scientists and college students to use with afterschool programs.
NASA Astrophysics Data System (ADS)
Swanson Hoyle, Kylie Jayne
After-school programs, such as a STEM Career Club, can promote student interest, engagement, and awareness of STEM majors and fields, as well as encourage teachers to become more knowledgeable and competent in STEM areas. In this dissertation study, two schools were selected from a larger NSF-funded project to participate in this study. Teacher- Coaches (T-Coaches) from two rural middle schools in the southeastern United States (U.S.) participated in teacher professional development (TPD) sessions and Professional Learning Community (PLC) meetings to prepare them to lead an after-school STEM Club. The Community of Practice (CoP) framework and Social Cognitive Theory are employed to investigate underlying factors that contribute to teacher interactions and preparations, and differing STEM program outcomes. Data from the Dimensions of Success (DoS) observation tool, the teacher belief interview (TBI), T-Coach participation and attendance at TPD, attendance and audio recordings from PLC meetings, and T-Coach card sorts were analyzed over approximately 6 meetings for 5 months. Findings are presented in two chapters. In Chapter Four, a comparative case study of the interactions of the teachers at two participating middle schools is analyzed. Results indicate that for each case, the club's T-Coaches interacted positively to prepare for club meetings and have a well-functioning CoP within their PLC. The first case (Northern Middle School) interacted in ways that aligned with the CoP framework (enterprise and repertoire), which led them to achieve, on average, desirable ratings on 7 of the 12 DoS dimensions. However, the other case (Southern Middle School), the T-Coaches interacted in ways that demonstrated more equal levels of enterprise, mutuality, and repertoire; this PLC had higher DoS ratings during the STEM Clubs in all dimensions (11/12 met desirable ratings). These findings suggest that high levels of all of the social learning characteristics within PLCs can support more exemplary STEM Club implementation. In Chapter Five, results from the two schools of teachers' beliefs and practices indicate that for STEM program success, the whole of the team is better than the sum of its parts. Since individuals' values on each team aligned with different DoS dimensions, it was more likely that each dimension would be represented during STEM Clubs. Findings suggest that it was necessary for two T-Coaches who valued a certain dimension to ensure a DoS dimension would be met on the DoS rating. However, it was not sufficient that T-Coaches only valued a certain dimension. The dimension was not met if the T-Coaches did not have the training and preparation to meaningfully act on their beliefs. Informed by factors from Bandura's Social Cognitive Theory, these T-Coaches carried out different behaviors at the STEM Clubs depending on their personal beliefs and values, and the environment. Five TPD participation scenarios, ranging from full to no TPD preparation, identified from the findings seemed to predict the quality of the STEM Club, based on DoS scores. The following conclusions can be drawn: 1) Professional learning community meetings aided in the development of T-Coaches' community of practice and preparation for STEM clubs; 2) A CoP with high levels of all of the social learning characteristics (enterprise, mutuality, and repertoire) led to more desirable club outcomes than a team with lower levels in any of these areas; 3) At least two people who have developed the content knowledge and relevant skills and who value club success were needed at club meetings to ensure STEM Club success; 4) Teacher-Coaches became more prepared to lead successful STEM Clubs through engaged attendance at TPD and PLC meetings; 5) Interdisciplinary teacher teams, including non-STEM teachers, can successfully lead STEM clubs if the individuals are able to learn the content/skills.
Challenges for a New Generation of STEM Students
ERIC Educational Resources Information Center
Abeysekera, Krishani; Perkins-Hall, Sharon; Davari, Sadegh; Hackler, Amanda Smith
2017-01-01
STEM competitions are fairly widespread in middle schools and high schools, but do not commonly occur at the university level. We have developed a repeatable model for a one-day competition in which high school, community college and university students can build confidence in their own critical thinking abilities and develop enthusiasm for…
ERIC Educational Resources Information Center
Barrett, Bradford S.; Moran, Angela L.; Woods, John E.
2014-01-01
Background: Given the continued need to educate the public on both the meteorological and engineering hazards posed by the severe winds of a tornado, an interdisciplinary science, technology, engineering, and mathematics (STEM) module designed by the faculty from the Oceanography and Mechanical Engineering Departments at the United States Naval…
2011-01-28
NASA Administrator Charles Bolden visits with students from Albert Hill Middle School during a visit to the MathScience Innovation Center, Friday, Jan. 28, 2011, in Richmond, Va. During his visit, Bolden highlighted the importance of science, technology, engineering and math, or STEM, as he shared his life experiences with the students. Photo Credit:(NASA/Paul E. Alers)
2011-01-28
NASA Administrator Charles Bolden speaks to students from Albert Hill Middle School during a visit to the MathScience Innovation Center, Friday, Jan. 28, 2011, in Richmond, Va. During his talk, Bolden highlighted the importance of science, technology, engineering and math, or STEM, as he shared his life experiences with the students. Photo Credit (NASA/Paul E. Alers)
Embracing Controversy in the Classroom
ERIC Educational Resources Information Center
Cannard, Kelly
2005-01-01
Discussing controversial topics such as stem cell research is a great way for students to build scientific understanding, enhance communication skills, and develop an appreciation for civic decision making. Tackling a topic such as stem cells at the middle level, however, can be a challenge because most young adolescents see the world in black and…
"They Sit Selfishly." Beginning STEM Educators' Expectations of Young Adolescent Students
ERIC Educational Resources Information Center
Jordan, Robert; DiCicco, Mike; Sabella, Laura
2017-01-01
To meet the demand for certified math and science teachers, alternative certification programs attempt to provide fast-track training and licensure of STEM-area educators (Goldhaber, Kreig, Theobald, & Brown, 2014). Teachers prepared in programs with a middle level specialization have been shown to participate in effective practices such as…
Building a STEM Pathway: Xavier University of Louisiana's Summer Science Academy
ERIC Educational Resources Information Center
Haynes, Mariana
2015-01-01
This report examines how Xavier University of Louisiana's summer bridge program for middle and high school students prepares students of color to succeed in science, technology, engineering, and mathematics (STEM) fields. This extensive report--interspersed with video highlights of the program--provides a lens into the kind of academic and social…
Integrated STEM: Focus on Informal Education and Community Collaboration through Engineering
ERIC Educational Resources Information Center
Burrows, Andrea; Lockwood, Meghan; Borowczak, Mike; Janak, Edward; Barber, Brian
2018-01-01
This article showcases STEM as an interdisciplinary field in which the disciplines strengthen and support each other (not as separate science, technology, engineering, and mathematics disciplines). The authors focus on an open-ended, complex problem--water quality--as the primary teaching and learning task. The participants, middle school female…
ERIC Educational Resources Information Center
Reeve, Edward M.
2015-01-01
Science, Technology, Engineering, and Mathematics (STEM) is a term seen almost daily in the news. In 2009, President Obama launched the Educate to Innovate initiative to move American students from the middle to the top of the pack in science and math achievement over the next decade (The White House, n.d.). Learning about the attributes of STEM…
NASA Astrophysics Data System (ADS)
Hughes, Roxanne
2014-03-01
This study examined the longitudinal effects of participation in an all-girls STEM summer camp on young women's interest in STEM fields and motivation to pursue these fields. The SciGirls camp has been in existence since 2006, with its goal of providing a safe space for young women to explore STEM careers and strengthen their interest in these careers. Over 166 middle school age girls have participated in the program since it began in 2006. Of those participants, 60 responded to at least one of the follow up surveys that are sent every three years - 2009 and 2012. The surveys attempt to determine participants' level of interest in STEM. The survey was qualitative in nature and asked open ended questions. Results indicated that the camp had a positive effect on participants' perceptions of scientists and their work. This study adds to the literature that looks at the longitudinal impacts of informal STEM educational programs that expose young women to female scientist role models and mentors. This study supports the research that claims that exposing young women at an early age to science role models can positively alter their perception of science careers which can eventually increase the number of women who pursue these careers. This increase is important at a time when men still outnumber women in many science and engineering fields. This study was funded in part by the National Science Foundation Division of Materials Research through DMR 0654118.
Narrowing the Retention Gap of High School Females in an Integrated STEM Program
NASA Astrophysics Data System (ADS)
Seigworth, Clifton F.
This study examined the differences in the overall sense of belonging of female high school students in an integrated STEM program in comparison to gender, ethnicity, and socio-economic status. The researcher surveyed female and male students in grades 8 through 12 to determine if there were differences in attitudes toward STEM. Additionally, the researcher assessed the STEM teachers to determine if a relationship existed between the teachers' years of experience and level of education to their self-efficacy and attitudes pertaining to STEM. Lastly, the administrators and counselors of both the middle and high schools were surveyed using a written evaluation to understand and gain their perspective of an integrated STEM program with regard to increasing female participation in STEM-related courses.
Adolescent Literacy Tutoring: Face-to-Face and Via Webcam Technology
ERIC Educational Resources Information Center
Houge, Timothy T.; Peyton, David; Geier, Constance; Petrie, Bruce
2007-01-01
The purpose of this research project was to examine the effectiveness of supervised literacy tutoring delivered by 25 secondary teacher candidates to middle and high school students via webcam technology and in person. The results stem from two semester-long studies of technology-delivered tutoring from a university to middle and high school…
ERIC Educational Resources Information Center
McCollough, Cherie; Jeffery, Tonya; Moore, Kim; Champion, Joe
2016-01-01
This paper outlines a University-School District partnership with the intent to increase the number of middle grades mathematics and science teachers. This externally funded initiative includes onsite, authentically situated professional development for pre- and in-service teachers at three different urban, low-socioeconomic schools with a…
ERIC Educational Resources Information Center
Schnabel, Stephanie L.
2017-01-01
Collaboration between school libraries and classroom teachers can have a powerful impact on student learning. School librarians routinely collaborate with English language arts and social studies curriculum and less frequently with areas in STEM education. This research examines middle school mathematics teachers' extent of or willingness to…
NASA Astrophysics Data System (ADS)
Thompson, Jeffrey R.; Hu, Shi-xue; Zhang, Qi-Yue; Petsios, Elizabeth; Cotton, Laura J.; Huang, Jin-Yuan; Zhou, Chang-yong; Wen, Wen; Bottjer, David J.
2018-01-01
The Permian-Triassic bottleneck has long been thought to have drastically altered the course of echinoid evolution, with the extinction of the entire echinoid stem group having taken place during the end-Permian mass extinction. The Early Triassic fossil record of echinoids is, however, sparse, and new fossils are paving the way for a revised interpretation of the evolutionary history of echinoids during the Permian-Triassic crisis and Early Mesozoic. A new species of echinoid, Yunnanechinus luopingensis n. sp. recovered from the Middle Triassic (Anisian) Luoping Biota fossil Lagerstätte of South China, displays morphologies that are not characteristic of the echinoid crown group. We have used phylogenetic analyses to further demonstrate that Yunnanechinus is not a member of the echinoid crown group. Thus a clade of stem group echinoids survived into the Middle Triassic, enduring the global crisis that characterized the end-Permian and Early Triassic. Therefore, stem group echinoids did not go extinct during the Palaeozoic, as previously thought, and appear to have coexisted with the echinoid crown group for at least 23 million years. Stem group echinoids thus exhibited the Lazarus effect during the latest Permian and Early Triassic, while crown group echinoids did not.
Petty, J. Todd; Hansbarger, Jeff L.; Huntsman, Brock M.; Mazik, Patricia M.
2012-01-01
We quantified movements of brook trout Salvelinus fontinalis and brown trout Salmo trutta in a complex riverscape characterized by a large, open-canopy main stem and a small, closed-canopy tributary in eastern West Virginia, USA. Our objectives were to quantify the overall rate of trout movement and relate movement behaviors to variation in streamflow, water temperature, and access to coldwater refugia. The study area experienced extremely high seasonal, yearly, and among-stream variability in water temperature and flow. The relative mobility of brook trout within the upper Shavers Fork watershed varied significantly depending on whether individuals resided within the larger main stem or the smaller tributary. The movement rate of trout inhabiting the main stem during summer months (50 m/d) was an order of magnitude higher than that of tributary fish (2 m/d). Movement rates of main-stem-resident brook trout during summer were correlated with the maximum water temperature experienced by the fish and with the fish's initial distance from a known coldwater source. For main-stem trout, use of microhabitats closer to cover was higher during extremely warm periods than during cooler periods; use of microhabitats closer to cover during warm periods was also greater for main-stem trout than for tributary inhabitants. Main-stem-resident trout were never observed in water exceeding 19.5°C. Our study provides some of the first data on brook trout movements in a large Appalachian river system and underscores the importance of managing trout fisheries in a riverscape context. Brook trout conservation in this region will depend on restoration and protection of coldwater refugia in larger river main stems as well as removal of barriers to trout movement near tributary and main-stem confluences.
Lu, Xu; Yang, Hua; Liu, Xinguang; Shen, Qian; Wang, Ning; Qi, Lian-wen; Li, Ping
2017-01-01
The most unique components of Ginkgo biloba extracts are terpene trilactones (TTLs) including ginkgolides and bilobalide. Study of TTLs biosynthesis has been stagnant in recent years. Metabolic profiling of 40 compounds, including TTLs, flavonoids, and phenolic acids, were globally analyzed in leaf, fibrous root, main root, old stem and young stem extracts of G. biloba. Most of the flavonoids were mainly distributed in the leaf and old stem. Most of phenolic acids were generally distributed among various tissues. The total content of TTLs decreased in the order of the leaf, fibrous root, main root, old stem and young stem. The TTLs were further analyzed in different parts of the main root and old stem. The content of TTLs decreases in the order of the main root periderm, the main root cortex and phloem and the main root xylem. In old stems, the content of TTLs in the cortex and phloem was much higher than both the old stem periderm and xylem. The expression patterns of five key genes in the ginkgolide biosynthetic pathway were measured by real-time quantitative polymerase chain reaction (RT-Q-PCR). Combining metabolic profiling and RT-Q-PCR, the results showed that the fibrous root and main root periderm tissues were the important biosynthesis sites of ginkgolides. Based on the above results, a model of the ginkgolide biosynthesis site and transport pathway in G. biloba was proposed. In this putative model, ginkgolides are synthesized in the fibrous root and main root periderm, and these compounds are then transported through the old stem cortex and phloem to the leaves. PMID:28603534
NASA Astrophysics Data System (ADS)
Tillman, Daniel
The purpose of this three-paper manuscript dissertation was to study digital fabrication as an instructional technology for supporting elementary and middle school science and mathematics education. Article one analyzed the effects of digital fabrication activities that were designed to contextualize mathematics education at a summer mathematics enrichment program for upper elementary and middle school students. The primary dependent variables studied were the participants' knowledge of mathematics and science content, attitudes towards STEM (science, technology, engineering, and mathematics) and STEM-related careers. Based upon the data collected, three results were presented as having justifiable supporting empirical evidence: (1) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in non-significant overall gains in students' mathematics test scores and attitudes towards STEM. (2) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in noteworthy gains on the "Probability & Statistics" questions. (3) Some students who did poorly on the scored paper test on mathematics and science content were nonetheless nominated by their teachers as demonstrating meritorious distinction during the digital fabrication activities (termed "Great Thinkers" by the 5th-grade teachers). Article two focused on how an instructional technology course featuring digital fabrication activities impacted (1) preservice elementary teachers' efficacy beliefs about teaching science, and (2) their attitudes and understanding of how to include instructional technology and digital fabrication activities into teaching science. The research design compared two sections of a teaching with technology course featuring digital fabrication activities to another section of the same course that utilized a media cycle framework (Bull & Bell, 2005) that did not feature digital fabrication activities. Based upon analysis of the data collected, two main results were determined to have justifiable supporting empirical evidence: (1) After the instructional technology course featuring digital fabrication activities, the participants reported statistically significant overall gains in science teaching efficacy beliefs. (2) When asked to describe their future plans for using three instructional technologies in their teaching, the top five most mentioned instructional technologies were: interactive whiteboards, video, class website, interactive online timeline, and digital fabrication. Of the participants that mentioned digital fabrication, the specific content areas mentioned were: history (four out of eight students mentioned), social studies (two out of eight), and science, math, engineering, and technology were each mentioned once. Article three assessed the impact of a series of lessons incorporating a NASA-themed transmedia book featuring digital fabrication activities on 5th-grade students who had been recognized as advanced in mathematics. The main dependent variables studied were the students' knowledge of science content from the Virginia Standards of Learning, attitude towards science, and student reported likes and dislikes about the project. Based upon analysis of the data collected, three main results were presented: (1) Students demonstrated significant positive gains in correct answers to questions on the topic of "Force, Matter, Energy, & Motion" from pretest to posttest. (2) There were nonsignificant gains reported by students on the attitude survey questions about attitude towards science, but this was chiefly because of one question that was significantly impacted in a negative direction. (3) Students articulated five main categories of likes and six main categories of dislikes of the experience, thereby providing insight into their own perception of some of the affordances and constraints of the educational activities. The five topics mentioned most often by students as self-reported likes about the experience included: hands-on activities including building, making, or designing (18 of 29 students mentioned; 62.1%), experimenting (9 of 29; 31.0%), presenting (9 of 29; 31.0%), drawing (6 of 29; 20.7%), and working in groups (6 of 29; 20.7%). The six topics most mentioned by students as self-reported dislikes about the experience included: taking tests (13 of 29 students mentioned; 44.8%), drawing (7 of 29; 24.1%), confusing / too fast (4 of 29; 13.8%), class discussions (4 of 29; 13.8%), reviewing (4 of 29; 13.8%), and attitude surveys (4 of 29; 13.8%). Cumulatively these three articles aim to contribute to the body of research studying the impact of digital fabrication as an instructional technology for supporting upper elementary and middle school science and mathematics education. This goal is described in greater detail in the "Manuscript Theme" section that begins on the next page. Keywords: STEM, digital fabrication, upper elementary science education, contextual mathematics, modeling-based science instruction, transmedia books, performance assessment, preservice elementary teacher education, science teaching efficacy beliefs
ERIC Educational Resources Information Center
Miles, Rhea; Slagter van Tryon, Patricia J.; Mensah, Felicia Moore
2015-01-01
TechMath is a professional development program that forms collaborations among businesses, colleges, and schools for the purpose of promoting Science, Technology, Engineering, and Mathematics (STEM) careers. TechMath has provided strategies for creating highquality professional development by bringing together teachers, students, and business…
ERIC Educational Resources Information Center
DeJarnette, Nancy K.
2012-01-01
Recent attention has been brought to light in the United States regarding low numbers of students pursing STEM (Science, Technology, Engineering and Math) disciplines and degree programs (National Science Board, 2010). There is a great need in America for talented scientists and engineers. Numerous programs abound for high school and middle school…
Igniting the Spark: Tech Trek STEM Camps for Girls. Summary of Survey Findings
ERIC Educational Resources Information Center
American Association of University Women, 2014
2014-01-01
Tech Trek opens up STEM possibilities for girls in many contexts. It expands and influences their academic and social lives, starting in middle school and continuing on into their careers. The program seeks out talented girls, sparks their interest, illuminates the value of a college education, and validates their passions. Tech Trek's exciting,…
Taxonomy, phylogeny, and coevolution of pines and their stem rusts
C. I. Millar; B. B. Kinloch
1991-01-01
We review and reinterpret major events in the evolution of pines and their stem rusts using information from their taxonomy, genetics, biogeography, and fossil history. Understanding of pine evolution has been significantly revised in the last 20 years. Pines appear to have evolved early in the Mesozoic and to have diversified and migrated throughout middle latitudes...
Impact of Robotics and Geospatial Technology Interventions on Youth STEM Learning and Attitudes
ERIC Educational Resources Information Center
Nugent, Gwen; Barker, Bradley; Grandgenett, Neal; Adamchuk, Viacheslav I.
2010-01-01
This study examined the impact of robotics and geospatial technologies interventions on middle school youth's learning of and attitudes toward science, technology, engineering, and mathematics (STEM). Two interventions were tested. The first was a 40-hour intensive robotics/GPS/GIS summer camp; the second was a 3-hour event modeled on the camp…
ERIC Educational Resources Information Center
Ocumpaugh, Jaclyn; San Pedro, Maria Ofelia; Lai, Huei-yi; Baker, Ryan S.; Borgen, Fred
2016-01-01
Research suggests that trajectories toward careers in science, technology, engineering, and mathematics (STEM) emerge early and are influenced by multiple factors. This paper presents a longitudinal study, which uses data from 76 high school students to explore how a student's vocational self-efficacy and interest are related to his or her middle…
ERIC Educational Resources Information Center
James, Jamie Smith
2014-01-01
The purpose of this quantitative research study was to evaluate to what degree Science, Technology, Engineering and Mathematics (STEM) education influenced mathematics and science achievement of seventh grade students in one Middle Tennessee school district. This research used an independent samples t test at the a = 0.05 level to evaluate…
ERIC Educational Resources Information Center
Robertson, William; Lesser, Lawrence M.
2013-01-01
Edutainment has recently been a major growing area of education, showing great promise to motivate students with relevant activities. The authors are among innovators who have developed cutting-edge fusions of popular culture and STEM concepts to engage and to motivate middle school students, using vehicles such as music/song and skateboarding.…
ERIC Educational Resources Information Center
Kesici, Sahin; Erdogan, Ahmet
2010-01-01
The purpose of this study is to clarify whether middle school students' mathematics anxiety differentiates or not, according to their low and high achievement motivation and their level of self-esteem stemming from social comparison. This study also aims to clarify the effects of these two variables on mathematics anxiety. The study groups were…
ERIC Educational Resources Information Center
Kieschnick, Lauren E.
2013-01-01
This dissertation examines the strategies that promote mathematical self-efficacy in the middle level mathematics classroom. The need for more self-efficacious students to pursue mathematics is prevalent in the United States due to the need of workers in the STEM fields. Finding strategies to promote mathematical self-efficacy will provide…
ERIC Educational Resources Information Center
Yuen, Timothy T.; Boecking, Melanie; Stone, Jennifer; Tiger, Erin Price; Gomez, Alvaro; Guillen, Adrienne; Arreguin, Analisa
2014-01-01
Robotics provide the opportunity for students to bring their individual interests, perspectives and areas of expertise together in order to work collaboratively on real-world science, technology, engineering and mathematics (STEM) problems. This paper examines the nature of collaboration that manifests in groups of elementary and middle school…
Engineering-Based Problem Solving in the Middle School: Design and Construction with Simple Machines
ERIC Educational Resources Information Center
English, Lyn D.; Hudson, Peter; Dawes, Les
2013-01-01
Incorporating engineering concepts into middle school curriculum is seen as an effective way to improve students' problem-solving skills. A selection of findings is reported from a science, technology, engineering and mathematics (STEM)-based unit in which students in the second year (grade 8) of a three-year longitudinal study explored…
Huntsman, Brock M; Petty, J Todd; Sharma, Shikha; Merriam, Eric R
2016-10-01
Coldwater fishes in streams, such as brook trout (Salvelinus fontinalis), typically are headwater specialists that occasionally expand distributions downstream to larger water bodies. It is unclear, however, whether larger streams function simply as dispersal corridors connecting headwater subpopulations, or as critical foraging habitat needed to sustain large mobile brook trout. Stable isotopes (δ(13)C and δ(15)N) and a hierarchical Bayesian mixing model analysis was used to identify brook trout that foraged in main stem versus headwater streams of the Shavers Fork watershed, West Virginia. Headwater subpopulations were composed of headwater and to a lesser extent main stem foraging individuals. However, there was a strong relationship between brook trout size and main stem prey contributions. The average brook trout foraging on headwater prey were limited to 126 mm standard length. This size was identified by mixing models as a point where productivity support switched from headwater to main stem dependency. These results, similar to other studies conducted in this watershed, support the hypothesis that productive main stem habitat maintain large brook trout and potentially facilitates dispersal among headwater subpopulations. Consequently, loss of supplementary main stem foraging habitats may explain loss of large, mobile fish and subsequent isolation of headwater subpopulations in other central Appalachian watersheds.
NASA Astrophysics Data System (ADS)
Race, M. S.; Lafayette Library; Learning Center Foundation (Lllcf)
2011-12-01
In these times of budget cuts, tight school schedules, and limited opportunities for student field trips and teacher professional development, it is especially difficult to expose elementary and middle school students to the latest STEM information-particularly in the space sciences. Using our library as a facilitator and catalyst, we built a volunteer-based, multi-faceted, curriculum-linked program for students and teachers in local middle schools (Grade 8) and showcased new astronomical and planetary science information using mainly NASA resources and volunteer effort. The project began with the idea of bringing free NASA photo exhibits (FETTU) to the Lafayette and Antioch Libraries for public display. Subsequently, the effort expanded by adding layers of activities that brought space and science information to teachers, students and the pubic at 5 libraries and schools in the 2 cities, one of which serves a diverse, underserved community. Overall, the effort (supported by a pilot grant from the Bechtel Foundation) included school and library based teacher workshops with resource materials; travelling space museum visits with hands-on activities (Chabot-to-Go); separate powerpoint presentations for students and adults at the library; and concurrent ancillary space-related themes for young children's programs at the library. This pilot project, based largely on the use of free government resources and online materials, demonstrated that volunteer-based, standards-linked STEM efforts can enhance curriculum at the middle school, with libraries serving a special role. Using this model, we subsequently also obtained a small NASA-Space Grant award to bring star parties and hand-on science activities to three libraries this Fall, linking with numerous Grade 5 teachers and students in two additional underserved areas of our county. It's not necessary to reinvent the wheel, you just collect the pieces and build on what you already have.
Interest-Driven Learning Among Middle School Youth in an Out-of-School STEM Studio
NASA Astrophysics Data System (ADS)
Evans, Michael A.; Lopez, Megan; Maddox, Donna; Drape, Tiffany; Duke, Rebekah
2014-10-01
The concept of connected learning proposes that youth leverage individual interest and social media to drive learning with an academic focus. To illustrate, we present in-depth case studies of Ryan and Sam, two middle-school-age youth, to document an out-of-school intervention intended to direct toward intentional learning in STEM that taps interest and motivation. The investigation focused on how Ryan and Sam interacted with the designed elements of Studio STEM and whether they became more engaged to gain deeper learning about science concepts related to energy sustainability. The investigation focused on the roles of the engineering design process, peer interaction, and social media to influence youth interest and motivation. Research questions were based on principles of connected learning (e.g., self-expression, lower barriers to expertise, socio-technical supports) with data analyzed within a framework suggested by discursive psychology. Analyzing videotaped excerpts of interactions in the studio, field notes, interview responses, and artifacts created during the program resulted in the following findings: problem solving, new media, and peer interaction as designed features of Studio STEM elicited evidence of stimulating interest in STEM for deeper learning. Further research could investigate individual interest-driven niches that are formed inside the larger educational setting, identifying areas of informal learning practice that could be adopted in formal settings. Moreover, aspects of youth's STEM literacy that could promote environmental sustainability through ideation, invention, and creativity should be pursued.
NASA Astrophysics Data System (ADS)
Kager, Elisabeth
Middle school is a critical time for the development of girls' attitudes toward science, technology, engineering, and mathematics (STEM). Existing research has indicated declining positive attitudes toward these fields among girls throughout adolescence. This study investigated how, to what extent, and for whom participation in a summer STEM Camp at a Midwestern college in the United States affected the STEM attitudes and career aspirations of 23 female participants, ages 10-14 years. Using a concurrent triangulation design, the researcher collected pre- and post-questionnaire data (N = 20), interviewed participants (N = 9), read journal entries (N = 22), and wrote field notes. The researcher adapted the Fennema-Sherman Attitude Scales (FSAS) to measure five of the original nine attitude scales concerning STEM: Male Domain, Confidence, Usefulness, Success, and Motivation. In addition to these standardized, Likert-type scale questions, the questionnaire included demographic items to gauge participants' anticipated career choices and the level of STEM motivation (e.g., extracurricular activities and guardians' STEM involvement). The interview questions elicited information about the participants' Camp experiences and the Camp's influence on participants' attitudes and career aspirations. The journal prompts provoked participants to think about their perceptions of, and relationship with, science and mathematics as well as how supportive their parents and peers had been regarding these two fields. Participants' incoming STEM attitudes were positive. Accordingly, there was no statistically significant difference between pre- and post-scores of attitudes toward STEM. Nevertheless, qualitative results showed that the Camp did strengthen participants' positive attitudes through enthusiastic instructors, STEM-motivated peers, and hands-on activities that allowed for creative freedom. Participating in the STEM Camp challenged participants' prior career aspirations by introducing them to new STEM fields and careers to be considered. Meta-inference showed that participating in the Camp had a positive effect on the participants' attitude toward, motivation in, and awareness of STEM. The results suggest that camp instructors should collaboratively plan inquiry-based activities to maximize interrelatedness of STEM fields and to ensure cognitively challenging tasks for participants and that classroom teachers should adopt interactive, hands-on, and collaborative teaching strategies to boost the positive STEM attitudes of girls.
A Safe Education for All: Recognizing and Stemming Harassment in Music Classes and Ensembles
ERIC Educational Resources Information Center
Carter, Bruce Allen
2011-01-01
This article addresses the pervasiveness of harassment in schools in the United States and presents ways to recognize and stem bullying in music classrooms. Music educators are in a unique position to recognize atypical behaviors in their students. Music educators who teach middle and high school ensembles often retain the same students in their…
ERIC Educational Resources Information Center
Quigley, Cassie F.; Herro, Dani
2016-01-01
In response to a desire to strengthen the economy, educational settings are emphasizing science, technology, engineering, and mathematics (STEM) curriculum and programs. Yet, because of the narrow approach to STEM, educational leaders continue to call for a more balanced approach to teaching and learning, which includes the arts, design, and…
Charge It! Translating Electric Vehicle Research Results to Engage 7th and 8th Grade Girls
ERIC Educational Resources Information Center
Egbue, Ona; Long, Suzanna; Ng, Ean-Harn
2015-01-01
Despite attempts to generate interest in science and technology careers, US students continue to show reduced interest in science, technology, engineering and mathematics (STEM) majors at the collegiate level. If girls are not engaged in STEM learning by the middle school level, studies show that they are even less likely to choose a science- or…
ERIC Educational Resources Information Center
Levine, Mindy; Serio, Nicole; Radaram, Bhasker; Chaudhuri, Sauradip; Talbert, William
2015-01-01
There continues to be a persistent, widespread gender gap in multiple STEM disciplines at all educational and professional levels: from the self-reported interest of preschool aged students in scientific exploration to the percentages of tenured faculty in these disciplines, more men than women express an interest in science, a confidence in their…
ERIC Educational Resources Information Center
Pasha-Zaidi, Nausheen; Afari, Ernest
2016-01-01
The current study addresses student perceptions of math and science professors in the Middle East. Gender disparity in science, technology, engineering, and math (STEM) education continues to exist in higher education, with male professors holding a normative position. This disparity can also be seen in the United Arab Emirates. As female…
ERIC Educational Resources Information Center
Hiller, Suzanne E.; Kitsantas, Anastasia
2014-01-01
The purpose of the present quasi-experimental study was to examine the impact of a horseshoe crab citizen science program on student achievement and science, technology, engineering, and mathematics (STEM) career motivation with 86 (n = 86) eighth-grade students. The treatment group conducted fieldwork with naturalists and collected data for a…
ERIC Educational Resources Information Center
Southern Regional Education Board (SREB), 2012
2012-01-01
Schools that give students access to STEM (science, technology, engineering and mathematics) studies are accomplishing several objectives: introducing students to higher-level academic and career studies, expanding project-based learning in the curriculum, enticing students to remain in school until graduation, and preparing students for…
ERIC Educational Resources Information Center
Miller, Jennifer Renea
2016-01-01
This study investigated a Makerspace professional development program, the Makers' Guild, provided to teachers within north Texas over the course of a semester. The research employed a constructionist approach delivered via 2D and 3D technologies during STEM instructional activities within a creative space. Participants reported statistically…
Age differences in implicit memory: conceptual, perceptual, or methodological?
Mitchell, David B; Bruss, Peter J
2003-12-01
The authors examined age differences in conceptual and perceptual implicit memory via word-fragment completion, word-stem completion, category exemplar generation, picture-fragment identification, and picture naming. Young, middle-aged, and older participants (N = 60) named pictures and words at study. Limited test exposure minimized explicit memory contamination, yielding no reliable age differences and equivalent cross-format effects. In contrast, explicit memory and neuropsychological measures produced significant age differences. In a follow-up experiment, 24 young adults were informed a priori about implicit testing. Their priming was equivalent to the main experiment, showing that test trial time restrictions limit explicit memory strategies. The authors concluded that most implicit memory processes remain stable across adulthood and suggest that explicit contamination be rigorously monitored in aging studies.
Clinical analysis of eight patients with blunt main stem bronchial injuries.
Lei, Jie; Zhao, Jinbo; Tian, Feng; Wang, Xiaoping; Zhou, Yongan; Li, Xiaofei; Wang, Jian
2017-01-01
Blunt main stem bronchial injuries are rare but potentially life-threatening injuries in clinical. The aim of this study was to sum up the experience on diagnosis and treatment of blunt main stem bronchial injuries. This report retrospective1y analyzed eight cases of main stem bronchial injuries induced by blunt chest trauma between 2013 and 2016 in Tangdu Hospital, Fourth Military Medical University. There were eight patients, including four men and four women. The definitive diagnosis was confirmed by fibrobronchoscopy. Mean time between injury and treatment in our hospital was 4.25 days (range, 1-12 days). Mean length of airway tear was 1.04 cm (range, 0.5-2 cm). In four patients there was an injury to the left main stem bronchus, in three patients to the right main stem bronchus and in one patient to the ambilateral main stem bronchus. Emergent operation was performed in two patients and elective operation in six patients. End to end bronchial anastomosis was performed via right thoracotomy in two patients and via left thoracotomy in three patients, and primary repair was performed via right thoracotomy in two patients and via left thoracotomy in the remaining one patient. There was no death in this group. Seven patients had no complications and were able to take part in normal activities. One patient suffered from anastomotic stricture after operation was healed by granulation tissue resection and cryotherapy under fibrobronchoscopy. Fibrobronchoscopy is able to define the blunt main stem bronchial injuries precisely and surgical approach is the preferred method for patients with these life-threatening complications.
Stem cells in the Drosophila digestive system.
Zeng, Xiankun; Chauhan, Chhavi; Hou, Steven X
2013-01-01
Adult stem cells maintain tissue homeostasis by continuously replenishing damaged, aged and dead cells in any organism. Five types of region and organ-specific multipotent adult stem cells have been identified in the Drosophila digestive system: intestinal stem cells (ISCs) in the posterior midgut; hindgut intestinal stem cells (HISCs) at the midgut/hindgut junction; renal and nephric stem cells (RNSCs) in the Malpighian Tubules; type I gastric stem cells (GaSCs) at foregut/midgut junction; and type II gastric stem cells (GSSCs) at the middle of the midgut. Despite the fact that each type of stem cell is unique to a particular organ, they share common molecular markers and some regulatory signaling pathways. Due to the simpler tissue structure, ease of performing genetic analysis, and availability of abundant mutants, Drosophila serves as an elegant and powerful model system to study complex stem cell biology. The recent discoveries, particularly in the Drosophila ISC system, have greatly advanced our understanding of stem cell self-renewal, differentiation, and the role of stem cells play in tissue homeostasis/regeneration and adaptive tissue growth.
A case study investigation of practices and beliefs of teachers at a STEM-focused elementary school
NASA Astrophysics Data System (ADS)
Martin, Billy J.
Proponents of STEM education have highlighted the need for increasing STEM skills among students. To address this need, there have been recommendations to create new STEM-focused schools, a majority of which are to be STEM-focused elementary and middle schools. However, STEM school research remains focused on outcomes at the secondary and postsecondary level, with little attention being given to knowing more about the role that elementary education plays in STEM outcomes. Case study design was used to investigate teachers at one STEM-focused elementary school to identify the practices and beliefs reported as important in STEM teaching and learning. Using survey and in-depth interviews, it was found that designation as a STEM-focused school promotes the use of more inquiry-oriented teaching practices and facilitates the use of strategies for developing confidence and competence in STEM among staff and students. The information uncovered in this study could provide leaders of any organization desiring to become a STEM-focused institution information about specific beliefs and practices that have the greatest potential to support changes in teaching.
NASA Astrophysics Data System (ADS)
Hinds, Beverley Fiona
The purpose of this qualitative study was to determine what inspires or leads seventh-grade African-American girls toward an interest in STEM, to characterize and describe the context of an out-of-school STEM learning environment, explore the impact on the seventh- grade African-American girls who participated in the program as it relates to individual STEM identity, and identify personal and academic experiences of seventh-grade African- American girls that contribute to the discouragement or pursuit of science and math-related academic pathways and careers. Notable findings in this study included the following: 1. Participants were interested in STEM and able to identify both external and internal influences that supported their involvement and interest in STEM activities. External influences expanded and elevated exposure to STEM experiences. 2. The MJS program provided an opportunity for participants to overcome challenges related to science and math knowledge and skills in school. 3. The MJS program increased levels of interest in STEM for the participants. 4. All participants increased their capacity to demonstrate increased knowledge in STEM content as a result of the learning experiences within the MJS program, and participants transferred this knowledge to experiences outside of the program including school. 5. The STEM learning environment provided multiple opportunities for participants to meet high expectation and access to engaging activities within a supportive, well-managed setting. 6. The MJS program participants demonstrated behaviors related to building a STEM identity through the components described by Carlone and Johnson (2007), including recognition-internal and external acknowledgement of being a STEM person; competence-demonstrating an understanding of STEM content; and performance-publically exhibiting STEM knowledge and skills. The findings in this study suggested that African-American seventh-grade girls interested in STEM are inspired and encouraged to participate in STEM by both internal and external factors. Highly effective afterschool STEM programs increase interest, knowledge and skills in STEM. The capacity for building a STEM identity was expanded as explored/measured by the components of recognition, competence, and performance (Carlone & Johnson, 2007). The learning environment conditions and support for building a STEM identity enhance the pursuit of STEM-related fields for African-American middle school girls. Application of these factors add to the potential for a decrease in the gap of representation of African-American women engaged in STEM. Future studies may explore how African-American middle schools girls interested in STEM construct identity as it relates to STEM, racial, and gender identity development and how the mentoring experience in afterschool STEM programs impacts the career choices of pre-teaching students.
Middle School Students Take the STEM Wheel | News | NREL
first place win in the Lithium-Ion Battery Design category at NREL's 28th Middle School Electric Car Ridge High School in Littleton, NREL's 28th car competition offered students the opportunity to design a Design, Lithium-Ion Battery Race, Solar Sprint Design, Solar Sprint Race, and finally, Spirit. After a
ERIC Educational Resources Information Center
Mac Iver, Martha Abele; Mac Iver, Douglas J.
2014-01-01
Attendance is probably the most fundamental behavioral indicator of student engagement with school. Though many students fall off-track to success for the first time in ninth grade, poor attendance patterns often begin increasing in middle school and become worse in high school. Missing school during the secondary grades can often be traced to low…
Carter-Arnold, J L; Neilsen, N L; Amelse, L L; Odoi, A; Dhar, M S
2014-09-01
Stem cell therapies are used routinely in equine practice. Most published reports characterise stem cells derived from younger horses; however, middle-aged horses are often in athletic performance, and experience degenerative medical conditions. Thus, mesenchymal stem cells (MSCs) from this group should be investigated. To describe differences in in vitro adherence, proliferation and potential for differentiation of equine bone marrow-derived MSCs (equine BMMSCs) harvested from middle-aged (10-13 years old) female donors. Descriptive study of stem cell characteristics. Equine BMMSCs from 6 horses were cultured in vitro and evaluated for viability, proliferation, osteogenesis, chondrogenesis, adipogenesis, cluster-of-differentiation markers and gene expression. Equine BMMSCs from all 6 donors demonstrated fibroblastic, cellular morphology, adherence to plastic and expression of cluster-of-differentiation markers. They varied in their rate of proliferation and trilineage differentiation. The equine BMMSCs of one of 6 donors demonstrated a higher rate of proliferation, enhanced ability for cell passaging and a more robust in vitro differentiation. Comparatively, equine BMMSCs from 2 donors demonstrated a lower rate of proliferation and lack of osteogenic and chondrogenic differentiation. The results of this study confirm that donor-to-donor variation in equine BMMSCs exists and this variation can be documented using in vitro assays. Subjective assessment suggests that the rate of proliferation tends to correlate with differentiation potential. © 2013 EVJ Ltd.
Is Science Me? Exploring Middle School Students' STE-M Career Aspirations
NASA Astrophysics Data System (ADS)
Aschbacher, Pamela R.; Ing, Marsha; Tsai, Sherry M.
2014-12-01
This study explores middle school students' aspirations in science, technology, engineering, and medical (STE-M) careers by analyzing survey data during their eighth and ninth grade years from an ethnically and economically diverse sample of Southern California urban and suburban public school students ( n = 493). Students were classified based on their responses to questions about their science ability beliefs and subjective task values using latent class analysis (LCA). Four distinct groups of students were identified: Science is Me; I Value Science But Don't Do It Well; I Can Do Science but I Don't Value It Highly; and Science is Not Me. Few students (22 %) were classified as having strong science ability beliefs, and only a third as strongly valuing learning/doing science; a majority (57 %) were in the Science is Not Me category, underscoring the scope of the challenge to invite more young people to want to learn science. As predicted, students who believed they could do science and valued science were more likely than others to indicate interest in STE-M careers. This relationship between perceptions and aspirations was true regardless of gender, ethnicity, and type of STE-M field, but varied depending on socioeconomic status. Using LCA to organize information about students' science self-perceptions may help target specific interventions to student interests and aspirations and better support and encourage their persistence in STE-M careers.
Recruitment variation of crappies in response to hydrology of Tennessee reservoirs
Sammons, S.M.; Bettoli, P.W.; Isermann, D.A.; Churchill, T.N.
2002-01-01
Black crappies Pomoxis nigromaculatus and white crappies P. annularis were sampled to index recruitment in seven Tennessee reservoirs (four main-stem and three tributary storage impoundments). Crappie recruitment in tributary storage impoundments appeared to be consistently higher in years of high discharge during the prespawn period (1 January-31 March). A similar relation was found in one main-stem impoundment; however, crappie recruitment in two main-stem impoundments was inversely related to discharge during the spawning period (1 April-30 May), and little recruitment variation was found in the fourth main-stem impoundment. In general, reservoir hydrology appeared to have a stronger effect on crappie recruitment in tributary storage impoundments than in main-stem impoundments, possibly because recruitment was more variable in tributary systems. Thus, it is likely that crappie populations will rarely have strong year-classes simultaneously over a wide geographic area or even within a single watershed.
ERIC Educational Resources Information Center
Afterschool Alliance, 2010
2010-01-01
The 21st Century's information economy has been creating more jobs that require not only a college education but also a fair amount of expertise in the fields of science, technology, engineering and math--collectively known as STEM. The last several decades have seen the industrial- and manufacturing-based economy shift to a service economy fueled…
ERIC Educational Resources Information Center
Peterman, Karen; Kermish-Allen, Ruth; Knezek, Gerald; Christensen, Rhonda; Tyler-Wood, Tandra
2016-01-01
This article describes Energy for ME and Going Green! Middle Schoolers Out to Save the World, two Science, Technology, Engineering, and Mathematics (STEM) education programs with the common goal of improving students' attitudes about scientific careers. The authors represent two project teams, each with funding from the National Science…
NASA Astrophysics Data System (ADS)
Saad, Marissa Elizabeth
The United States must provide quality science, technology, engineering, and math (STEM) education in order to maintain a leading role in the global economy. Numerous initiatives have been established across the United States that promote and encourage STEM education within the middle school curriculum. Integrating active learning pedagogy into instructors' lesson plans will prepare the students to think critically - a necessary skill for the twenty first century. This study integrated a three-week long Near Space Balloon project into six eighth grade Earth Science classes from Valley Middle School in Grand Forks, North Dakota. It was hypothesized that after the students designed, constructed, launched, and analyzed their payload experiments, they would have an increased affinity for high school science and math classes. A pre- and post-survey was distributed to the students (n=124), before and after the project to analyze how effective this engineering and space mission was regarding high school STEM interests. The surveys were statistically analyzed, comparing means by the Student's t-Test, specifically the Welch-Satterthwaite test. Female students displayed a 57.1% increase in math and a 63.6% increase in science; male students displayed a 46.6% increase in science and 0% increase in math. Most Likert-scale survey questions experienced no statistically significant change, supporting the null hypothesis. The only survey question that supported the hypothesis was, "I Think Engineers Work Alone," which experienced a 0.24% decrease in student understanding. The results suggest that integrating a three-week long Near Space Balloon project into middle school curricula will not directly influence the students' excitement to pursue STEM subjects and careers. An extensive, yearlong ballooning mission is recommended so that it can be integrated with multiple core subjects. Using such an innovative pedagogy method as with this balloon launch will help students master the scientific process and experience real team collaboration, as they did in this successful mission.
Martin, R; Simon, E; Simon-Oppermann, C
1981-01-01
1. Thermodes were chronically implanted into various levels of the brain stem of sixteen Pekin ducks. The effects of local thermal stimulation on metabolic heat production, core temperature, peripheral skin temperature and respiratory frequency were investigated. 2. Four areas of thermode positions were determined according to the responses observed and were histologically identified at the end of the investigation. 3. Thermal stimulation of the lower mid-brain/upper pontine brain stem (Pos. III) elicited an increase in metabolic heat production, cutaneous vasoconstriction and rises in core temperature in response to cooling at thermoneutral and cold ambient conditions and, further, inhibition of panting by cooling and activation of panting by heating at warm ambient conditions. The metabolic response to cooling this brain stem section amounted to -0.1 W/kg. degrees C as compared with -7 W/kg. degrees C in response to total body cooling. 4. Cooling of the anterior and middle hypothalamus (Pos. II) caused vasodilatation in the skin and did not elicit shivering. The resulting drop in core temperature at a given degree of cooling was greater than the rise in core temperature in response to equivalent cooling of the lower mid-brain/upper pontine brain stem. 5. Cooling of the preoptic forebrain (Pos. I) and of the myelencephalon (Pos. IV) did not elicit thermoregulatory reactions. 6. It is concluded that the duck's brain stem contains thermoreceptive structures in the lower mid-brain/upper pontine section. However, the brain stem as a whole appears to contribute little to cold defence during general hypothermia because of the inhibitory effects originating in the anterior and middle hypothalamus. Cold defence in the duck, which is comparable in strength to that in mammals, has to rely on extracerebral thermosensory structures. PMID:7310688
NASA Astrophysics Data System (ADS)
Hillman, Susan J.; Bloodsworth, Kylie H.; Tilburg, Charles E.; Zeeman, Stephan I.; List, Henrietta E.
2014-10-01
This study was launched from a National Science Foundation GK-12 grant in which graduate fellows in Science, Technology, Engineering, and Mathematics (STEM) are placed in classrooms to engage K-12 students in STEM activities. The investigation explored whether the STEM Fellows' presence impacted the K-12 students' stereotypical image of a scientist. Since finding a valid instrument is critical, the study involved (1) determining the validity of the commonly administered Draw-A-Scientist Test (DAST) against a newly designed six-question survey and (2) using a combination of both instruments to determine what stereotypes are currently held by children. A pretest-posttest design was used on 485 students, grades 3-11, attending 6 different schools in suburban and rural Maine communities. A significant but low positive correlation was found between the DAST and the survey; therefore, it is imperative that the DAST not be used alone, but corroboration with interviews or survey questions should occur. Pretest results revealed that the children held common stereotypes of scientists, but these stereotypes were neither as extensive nor did they increase with the grade level as past research has indicated, suggesting that a shift has occurred with children having a broader concept of who a scientist can be. Finally, the presence of an STEM Fellow corresponded with decreased stereotypes in middle school and high school, but no change in elementary age children. More research is needed to determine whether this reflects resiliency in elementary children's perceptions or limitations in either drawing or in writing out their responses.
ERIC Educational Resources Information Center
Medina, Andrea Lee
2017-01-01
The digital fabrication lab, or Fab Lab, at California State University, Bakersfield provided a 1-week, half-day summer program for local area middle school students. The purpose of this study was to examine the effect this summer program had on their attitudes towards math and science. The theoretical framework used for this study was based on…
ERIC Educational Resources Information Center
Mac Iver, Martha Abele; Mac Iver, Douglas J.
2014-01-01
Recognizing the importance of both keeping middle school students engaged and improving their math skills, Baltimore City Public Schools (City Schools) developed a summer school STEM program involving not only math and science instruction but also the experience of building a robot and competing with those robots in a city-wide tournament.…
Distribution of Tomato spotted wilt virus in dahlia plants.
Asano, S; Hirayama, Y; Matsushita, Y
2017-04-01
Tomato spotted wilt virus (TSWV) causes significant losses in the production of the ornamental plant Dahlia variabilis in Japan. The purpose of this study was to examine the distribution of TSWV in dahlia plants and identify plant parts that can be used in the selection of TSWV-free plants. The distribution of TSWV was investigated using reverse transcriptional polymerase chain reaction (RT-PCR) and tissue blot immunoassay. The detection rate of TSWV in latent infected compound leaves was the highest in the petiole, and it decreased from the veins and rachis to the lamina. The tissue blot immunoassays of the leaflets showed an uneven distribution of TSWV, especially along the edge of the leaf blade. In stems, the detection rate of TSWV was high partway up the stem compared to that in the upper and the lower parts of the stem during the vegetative growth stage. A highly uneven distribution was observed in the bulb. Our results indicated that middle parts of the stem as well as the petioles, rachis, and veins of compound leaves are suitable for detection of TSWV in dahlias. This study is the first to report uneven distribution of TSWV in dahlia plants. In this study, the distribution of Tomato spotted wilt virus (TSWV) in various parts of dahlia plants was investigated for the first time. The distribution of TSWV was uneven in compound leaves, leaflets, stems, and bulbs. The middle parts of the stem or the petiole and leaf veins should be sampled to detect TSWV when selecting healthy plants. © 2017 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Myszkal, Philip Ian
This study explores the potential of the Outreach Workshops in STEM (OWS) to affect Science, Technology, Engineering, and Mathematics (STEM) teachers' content knowledge, self-efficacy, and pedagogical approaches, as well as its viability as a potential form of professional development (PD). The data for the thesis is taken from a larger longitudinal study looking at the potential of OWS to influence middle school students' and teachers' attitudes and beliefs around STEM. The study employs a mixed-methods design, utilizing surveys, open-ended questions, interviews, and observations. The findings show that there were no significant changes in teachers' content knowledge, confidence, or pedagogical approaches. However, the majority of participants reported that they learned new teaching ideas and considered the workshops to be an effective PD opportunity.
NASA Astrophysics Data System (ADS)
Burt, Stacey M.
The problem addressed in this project is the lack of mathematically gifted females choosing to pursue advanced science, technology, engineering, and mathematics (STEM) courses in secondary education due to deficiencies in self-efficacy. The purpose of this project was to study the effects of a child-guided robotics program as it relates to the self-efficacy of mathematically gifted 6th grade female students and their future course choices in the advanced STEM content areas. This mixed-model study utilized a STEM attitude survey, artifacts, interviews, field notes, and standardized tests as measurement tools. Significance was found between genders in the treatment group for the standardized science scores, indicating closure in the achievement gap. Research suggests that STEM enrichment is beneficial for mathematically gifted females.
Hau, Janice; Sarubbo, Silvio; Perchey, Guy; Crivello, Fabrice; Zago, Laure; Mellet, Emmanuel; Jobard, Gaël; Joliot, Marc; Mazoyer, Bernard M.; Tzourio-Mazoyer, Nathalie; Petit, Laurent
2016-01-01
We combined the neuroanatomists’ approach of defining a fascicle as all fibers passing through its compact stem with diffusion-weighted tractography to investigate the cortical terminations of two association tracts, the inferior fronto-occipital fasciculus (IFOF) and the uncinate fasciculus (UF), which have recently been implicated in the ventral language circuitry. The aim was to provide a detailed and quantitative description of their terminations in 60 healthy subjects and to do so to apply an anatomical stem-based virtual dissection, mimicking classical post-mortem dissection, to extract with minimal a priori the IFOF and UF from tractography datasets. In both tracts, we consistently observed more extensive termination territories than their conventional definitions, within the middle and superior frontal, superior parietal and angular gyri for the IFOF and the middle frontal gyrus and superior, middle and inferior temporal gyri beyond the temporal pole for the UF. We revealed new insights regarding the internal organization of these tracts by investigating for the first time the frequency, distribution and hemispheric asymmetry of their terminations. Interestingly, we observed a dissociation between the lateral right-lateralized and medial left-lateralized fronto-occipital branches of the IFOF. In the UF, we observed a rightward lateralization of the orbito-frontal and temporal branches. We revealed a more detailed map of the terminations of these fiber pathways that will enable greater specificity for correlating with diseased populations and other behavioral measures. The limitations of the diffusion tensor model in this study are also discussed. We conclude that anatomical stem-based virtual dissection with diffusion tractography is a fruitful method for studying the structural anatomy of the human white matter pathways. PMID:27252628
Vandenplas, Sam; Vandeghinste, Robbe; Boutet, Agnes; Mazan, Sylvie; Huysseune, Ann
2016-05-01
In the lesser spotted catshark (Scyliorhinus canicula), as in most non-mammalian vertebrates, the dentition renews throughout life. To contribute to our understanding of how continuous tooth replacement is achieved, we searched for evidence for the presence of stem cells in this species. Three-dimensional reconstructions of juvenile (2-3 weeks post-hatch) specimens showed that tooth families merge imperceptibly with so-called interdental zones within a continuous and permanent dental lamina. Interdental regions are composed of three layers, continuous with cervical loop, middle, and outer dental epithelium of the tooth families, respectively. A BrdU pulse-chase experiment revealed that cell proliferation is initiated in the lingual part of the dental lamina and the resulting population shifts one tooth position towards the oral epithelium in around four to five weeks. In the longest chase time (114 days) label-retaining and arguably non-differentiated cells were present at the lingual border of the dental lamina. These were found in the outer and middle dental epithelium, both within and between tooth families. This area of the dental lamina did not show expression or distribution of Sox2. Our data support the hypothesis that stem cells reside at the lingual border of the continuous dental lamina, more specifically in the middle dental epithelium at the level of the tooth families, and in its extension between the tooth families. To demonstrate their true stemness and their role in continuous tooth replacement, it remains to be shown that these cells have the potential to give rise to a complete new successor. Copyright © 2016 Elsevier Inc. All rights reserved.
Vandenplas, Sam; Willems, Maxime; Witten, P Eckhard; Hansen, Tom; Fjelldal, Per Gunnar; Huysseune, Ann
2016-01-01
The Atlantic salmon (Salmo salar) and African bichir (Polypterus senegalus) are both actinopterygian fish species that continuously replace their teeth without the involvement of a successional dental lamina. Instead, they share the presence of a middle dental epithelium: an epithelial tier enclosed by inner and outer dental epithelium. It has been hypothesized that this tier could functionally substitute for a successional dental lamina and might be a potential niche to house epithelial stem cells involved in tooth cycling. Therefore, in this study we performed a BrdU pulse chase experiment on both species to (1) determine the localization and extent of proliferating cells in the dental epithelial layers, (2) describe cell dynamics and (3) investigate if label-retaining cells are present, suggestive for the putative presence of stem cells. Cells proliferate in the middle dental epithelium, outer dental epithelium and cervical loop at the lingual side of the dental organ to form a new tooth germ. Using long chase times, both in S. salar (eight weeks) and P. senegalus (eight weeks and twelve weeks), we could not reveal the presence of label-retaining cells in the dental organ. Immunostaining of P. senegalus dental organs for the transcription factor Sox2, often used as a stem cell marker, labelled cells in the zone of outer dental epithelium which grades into the oral epithelium (ODE transition zone) and the inner dental epithelium of a successor only. The location of Sox2 distribution does not provide evidence for epithelial stem cells in the dental organ and, more specifically, in the middle dental epithelium. Comparison of S. salar and P. senegalus reveals shared traits in tooth cycling and thus advances our understanding of the developmental mechanism that ensures lifelong replacement.
Vandenplas, Sam; Willems, Maxime; Witten, P. Eckhard; Hansen, Tom; Fjelldal, Per Gunnar; Huysseune, Ann
2016-01-01
The Atlantic salmon (Salmo salar) and African bichir (Polypterus senegalus) are both actinopterygian fish species that continuously replace their teeth without the involvement of a successional dental lamina. Instead, they share the presence of a middle dental epithelium: an epithelial tier enclosed by inner and outer dental epithelium. It has been hypothesized that this tier could functionally substitute for a successional dental lamina and might be a potential niche to house epithelial stem cells involved in tooth cycling. Therefore, in this study we performed a BrdU pulse chase experiment on both species to (1) determine the localization and extent of proliferating cells in the dental epithelial layers, (2) describe cell dynamics and (3) investigate if label-retaining cells are present, suggestive for the putative presence of stem cells. Cells proliferate in the middle dental epithelium, outer dental epithelium and cervical loop at the lingual side of the dental organ to form a new tooth germ. Using long chase times, both in S. salar (eight weeks) and P. senegalus (eight weeks and twelve weeks), we could not reveal the presence of label-retaining cells in the dental organ. Immunostaining of P. senegalus dental organs for the transcription factor Sox2, often used as a stem cell marker, labelled cells in the zone of outer dental epithelium which grades into the oral epithelium (ODE transition zone) and the inner dental epithelium of a successor only. The location of Sox2 distribution does not provide evidence for epithelial stem cells in the dental organ and, more specifically, in the middle dental epithelium. Comparison of S. salar and P. senegalus reveals shared traits in tooth cycling and thus advances our understanding of the developmental mechanism that ensures lifelong replacement. PMID:27049953
Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...
NASA Astrophysics Data System (ADS)
Kier, Meredith Weaver
National efforts to interest students in STEM careers are intensifying around the globe, due to a shortage of professionals to fill the growing demands in these fields. Although some US studies find high interest in STEM in K-12 students, longitudinal studies show a decline in interest following middle school. Many students, particularly females and minorities, feel that they do not fit the image of a STEM professional. Little is known about perceptions held by students in rural areas, who have limited access to diverse STEM careers. This dissertation study employed an in school STEM career video intervention with eighty-five rural, minority, eighth grade students in a high poverty district in the southeastern US. Research questions explore students' STEM career interests before and after the STEM career video intervention, and analyze how students in this population negotiate a potential identity in STEM. Applying aspects of Lent, Brown, & Hackett's social cognitive career theory (SCCT), students' exploration sheets and video planning sheets were coded to understand positive or negative contributors to STEM career interests. Students' initial explorations were limited to careers to which they had been previously exposed at home or in class, and were influenced by their personal dispositions Over the course of the intervention, increased knowledge of careers increased the diversity of careers selected, attention to educational level, and the influence of more sophisticated career outcomes on interest. Students selected careers based on personal interests and outcome expectations, but were able to identify how their academic strengths, dispositions, and family support systems related to their career goals. Post survey analyses found the presence of role models and high self-efficacy were new predictors of interest. Study results imply that similar interventions can help students gain more sophisticated understandings of careers, can motivate students without external rewards, and that with extensive exposure to new careers, students will begin to consider their own skill set when trying on careers. Case studies of four highlighted issues of race, access to resources, hands-on experiences and course access, teachers' perceptions of them, and parental support among others that impact their STEM experiences and negotiations of a STEM self.
Payabvash, S; Taleb, S; Benson, J C; McKinney, A M
2017-01-01
Acute stroke presentation and outcome depend on both ischemic infarct volume and location. We aimed to determine the association between acute ischemic infarct topology and lesion volume and stroke severity at presentation and discharge. Patients with acute ischemic stroke who underwent MR imaging within 24 hours of symptom onset or last seen well were included. Infarcts were segmented and coregistered on the Montreal Neurological Institute-152 brain map. Voxel-based analyses were performed to determine the distribution of infarct lesions associated with larger volumes, higher NIHSS scores at admission and discharge, and greater NIHSS/volume ratios. A total of 238 patients were included. Ischemic infarcts involving the bilateral lentiform nuclei, insular ribbons, middle corona radiata, and right precentral gyrus were associated with larger infarct volumes (average, 76.7 ± 125.6 mL versus 16.4 ± 24.0 mL, P < .001) and higher admission NIHSS scores. Meanwhile, brain stem and thalami infarctions were associated with higher admission NIHSS/volume ratios. The discharge NIHSS scores were available in 218 patients, in whom voxel-based analysis demonstrated that ischemic infarcts of the bilateral posterior insular ribbons, middle corona radiata, and right precentral gyrus were associated with more severe symptoms at discharge, whereas ischemic lesions of the brain stem, bilateral thalami, and, to a lesser extent, the middle corona radiata were associated with higher ratios of discharge NIHSS score/infarct volume. Acute ischemic infarcts of the insulae, lentiform nuclei, and middle corona radiata tend to have larger volumes, more severe presentations, and worse outcomes, whereas brain stem and thalamic infarcts have greater symptom severity relative to smaller lesion volumes. © 2017 by American Journal of Neuroradiology.
Exciting middle and high school students about immunology: an easy, inquiry-based lesson.
Lukin, Kara
2013-03-01
High school students in the United States are apathetic about science, technology, engineering and mathematics (STEM), and the workforce pipeline in these areas is collapsing. The lack of understanding of basic principles of biology means that students are unable to make educated decisions concerning their personal health. To address these issues, we have developed a simple, inquiry-based outreach lesson centered on a mouse dissection. Students learn key concepts in immunology and enhance their understanding of human organ systems. The experiment highlights aspects of the scientific method and authentic data collection and analysis. This hands-on activity stimulates interest in biology, personal health and careers in STEM fields. Here, we present all the information necessary to execute the lesson effectively with middle and high school students.
The Perceptions of STEM from Eighth-Grade African-American Girls in a High-Minority Middle School
NASA Astrophysics Data System (ADS)
Hare, LaChanda N.
Even with the existence of STEM curriculum and STEM programs that target women and minorities, African-American females still lag behind other ethnic groups in STEM fields. Reasons for the underrepresentation of females in STEM fields can be traced back to the early years of schooling. The purpose of this study was to identify the factors that impact African-American females' perspectives of STEM subjects and STEM careers. An explanatory sequential mixed-methods approach was used for data collection with a survey, focus group, and interview. Forty male (N=12) and female (N=28) students from different ethnic groups were surveyed. The focus group and interview sessions consisted of 21 African-American females from two distinct groups: those enrolled in the school's STEM program (STEM) and those who were not enrolled in the STEM program (Non-STEM). The self-efficacy theory and social cognitive career theory served as the theoretical constructs guiding the data analysis. Multiple regression results showed that outcome expectation and personal disposition had the greatest influence on the females' interest in STEM content and STEM careers. Results from the qualitative portion of the study revealed that the learning environment and STEM self-efficacy had a significant impact on African-American females' interest in STEM.
ERIC Educational Resources Information Center
Hotaling, Liesl; Lowes, Susan; Stolkin, Rustam; Lin, Peiyi; Bonner, James; Kirkey, William; Ojo, Temitope
2012-01-01
This paper describes the structure and impact of an NSF-funded ITEST project designed to enrich science, technology, engineering, and mathematics (STEM) education using educational modules that teach students to construct, program, and test a series of sensors used to monitor water quality. During the two years of the SENSE IT project, over 30…
Identification of the Centrifuged Lipoaspirate Fractions Suitable for Postgrafting Survival.
Qiu, Lihong; Su, Yingjun; Zhang, Dongliang; Song, Yajuan; Liu, Bei; Yu, Zhou; Guo, Shuzhong; Yi, Chenggang
2016-01-01
The Coleman centrifugation procedure generates fractions with different adipocyte and progenitor cell densities. This study aimed to identify all fractions that are feasible for implantation. Human lipoaspirates were processed by Coleman centrifugation. The centrifugates were divided arbitrarily into upper, middle, and lower layers. Adipocyte viability, morphology, numbers of stromal vascular fraction cells, and adipose-derived mesenchymal stem cells of each layer were determined. The 12-week volume retention of subcutaneously implanted 0.3-ml lipoasperate of each layer was investigated in an athymic mice model. Most damaged adipocytes were located in the upper layers, whereas the intact adipocytes were distributed in the middle and lower layers. A gradient of stromal vascular fraction cell density was formed in the centrifugates. The implant volume retentions of samples from the upper, middle, and lower layers were 33.44 ± 5.9, 55.11 ± 4.4, and 71.2 ± 5.8 percent, respectively. Furthermore, the middle and lower layers contained significantly more adipose-derived stem cells than did the upper layer. The lower layer contains more viable adipocytes and stromal vascular fraction cells leading to the highest implant volume retention, whereas the most impaired cells are distributed in the upper layer, leading to the least volume retention. Although with a lower stromal vascular fraction content, the middle layer has a substantial number of intact adipocytes that are capable of retaining partial adipose tissue volume after implantation, suggesting that the middle layer may be an alternative fat source when large volumes of fat grafts are needed for transplantation.
Beyond the Classroom: The Impact of Informal STEM Experiences on Student Attitudes and Interest
NASA Astrophysics Data System (ADS)
Scinski, Lidia
A lack of social capital can be a critical factor impeding underrepresented minority (URM) students from obtaining the mathematical and scientific background required to achieve educational and career success in STEM fields. In this study, the effects of generating and utilizing social capital within an informal STEM outreach summer camp are examined as resources in strengthening the academic pipeline for Hispanic students towards careers in STEM. Empirical studies have shown that economically disadvantaged and minority students experience larger learning losses during "unschooled" periods of time than their middle-class and White counterparts. The "faucet theory" explains how the achievement gap widens during unschooled periods of time when the resource faucet is turned off and families of students from disadvantaged backgrounds are unable to make up for these resources. Consequently, minority and students of disadvantaged backgrounds are quickly shortcircuited in taking advantage of opportunities to pursue careers in STEM fields. To address the research questions, this study employed a qualitative research design, specifically an instrumental case study design using mixed methods within a bounded program. The methods included multiple measures to collect and analyze data from focus group interviews, electronic documents, observations, and survey administrations. The sample population included forty-nine Hispanic 7th and 8th grade students from middle schools in San Diego County. Results of the study demonstrated that the informal STEM outreach summer camp positively impacted Hispanic students and increased interest and attitudes toward STEM choices. STEM programs offered during out-of-school time need to be relationship based to support young students' social and emotional development (Goldstein, Lee, & Chung, 2010). The resource faucet continued to flow during the summer for iQUEST science camp participants because they were able to tap into social capital in the surrounding community. More specifically, participants were able to generate social capital in two key forms of institutional support: "funds of knowledge" and "emotional and moral support".
Blaivas, Michael; Tsung, James W
2008-05-01
Determining the correct position of endotracheal tubes in critically ill patients may be complicated by external factors such as noise, body habitus, and the need for ongoing resuscitation. Multiple detection techniques have been developed to determine the correct endotracheal tube position, recently including the use of sonography to evaluate lung expansion and diaphragmatic excursion. These techniques have also been applied to diagnosis of right endobronchial main stem intubation, which may be confused with a unilateral pneumothorax in some cases. We describe the sonographic findings in a case series of endobronchial main stem intubations and obstruction, highlighting the utility of this sonographic application. Previous literature and future applications are discussed. Sonographic detection of the sliding lung sign, the lung pulse, and diaphragmatic excursion can accurately detect main stem bronchial intubation as well as bronchial obstruction. Clinical use of lung sonography may decrease the need for chest radiography and may allow more rapid diagnosis of main stem intubation and bronchial obstruction.
Diversifying the STEM pipeline
Boelter, Christina; Link, Tanja C.; Perry, Brea L.; Leukefeld, Carl
2017-01-01
Structured Abstract Purpose The current paper focuses on the description and evaluation of a two-year STEM intervention targeting underserved middle schools students from minority and low SES backgrounds. Design/methodology/approach Middle school students from low-income and minority backgrounds (n = 166) were targeted to participate in a two-year, intensive, hands-on science and technology intervention to increase their interest in biomedical and health sciences. Quantitative and qualitative data were collected from TRY-IT! Students as well as a control group that did not participate in the intervention, teachers, and parents to assess changes in attitudes and knowledge with respect to a variety of STEM-related topics. Findings Quantitative analyses did not reveal significant long-lasting differences between the TRY-IT! and the control group, thus providing a mixed assessment of the effectiveness of the intervention. However, qualitative student responses collected during the second year of participation revealed positive attitudes toward the program experience and benefits of their exposure to science. In light of these findings, insights drawn from reflecting on successes and challenges experienced during the course of planning and implementing the study are provided to guide future programs and research. Originality/value The intervention was developed in response to the continued under representation of minority and lower SES individuals in STEM careers. An effort to boost positive attitudes toward science and math, as well as confidence in the accessibility of STEM careers among this population is important given the promising outlook of this career field compared to others for future generations. PMID:28553067
Fitzpatrick, F.A.; Knox, J.C.
2000-01-01
Clear-cut logging followed by agricultural activity caused hydrologic and geomorphic changes in North Fish Creek, a Wisconsin tributary to Lake Superior. Hydro-geomorphic responses to changes in land use were sensitive to the location of reaches along the main stem and to the relative timing of large floods. Hydrologic and sediment-load modeling indicates that flood peaks were three times larger and sediment loads were five times larger during maximum agricultural activity in the 1920s and 1930s than prior to about 1890, when forest cover was dominant. Following logging, overbank sedimentation rates in the lower main stem increased four to six times above pre-settlement rates. Accelerated streambank and channel erosion in the upper main stem have been and continue to be primary sources of sediment to downstream reaches. Extreme floods in 1941 and 1946, followed by frequent moderate floods through 1954, caused extensive geomorphic changes along the entire main stem. Sedimentation rates in the lower main stem may have decreased in the last several decades as agricultural activity declined. However, geomorphic recovery is slow, as incised channels in the upper main stem function as efficient conveyors of watershed surface runoff and thereby continue to promote flooding and sedimentation problems downstream. [Key words: fluvial geomorphology, floods, erosion, sedimentation, deforestation, agriculture.].
TGFβ lengthens the G1 phase of stem cells in aged mouse brain.
Daynac, Mathieu; Pineda, Jose R; Chicheportiche, Alexandra; Gauthier, Laurent R; Morizur, Lise; Boussin, François D; Mouthon, Marc-André
2014-12-01
Neurogenesis decreases during aging causing a progressive cognitive decline but it is still controversial whether proliferation defects in neurogenic niches result from a loss of neural stem cells or from an impairment of their progression through the cell cycle. Using an accurate fluorescence-activated cell sorting technique, we show that the pool of neural stem cells is maintained in the subventricular zone of middle-aged mice while they have a reduced proliferative potential eventually leading to the subsequent decrease of their progeny. In addition, we demonstrate that the G1 phase is lengthened during aging specifically in activated stem cells, but not in transit-amplifying cells, and directly impacts on neurogenesis. Finally, we report that inhibition of TGFβ signaling restores cell cycle progression defects in stem cells. Our data highlight the significance of cell cycle dysregulation in stem cells in the aged brain and provide an attractive foundation for the development of anti-TGFβ regenerative therapies based on stimulating endogenous neural stem cells. © 2014 AlphaMed Press.
2013-06-01
inside pages STINFO COPY AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT PATTERSON AIR FORCE BASE, OH 45433-7750...Materials and Manufacturing Directorate Materials and Manufacturing Directorate Air Force Research Laboratory Air Force Research Laboratory This... Research Laboratory Materials and Manufacturing Directorate Wright Patterson Air Force Base, OH 45433-7750 Air Force Materiel Command United States
2011-01-28
NASA Administrator Charles Bolden speaks to students from Albert Hill Middle School during a visit to the MathScience Innovation Center, Friday, Jan. 28, 2011, in Richmond, Va., as U.S. Sen. Mark Warner, D-Va., U.S. Rep. Bobby Scott, D-Va., seated, look on. During his talk, Administrator Bolden highlighted the importance of science, technology, engineering and math, or STEM, as he shared his life experiences with the students. (Photo Credit:NASA/Paul E. Alers)
2011-01-28
NASA Administrator Charles Bolden, left, holds a box of spiders as MathScience Innovation Center Instructor Rhonda Hawley describes them during a visit to the "Spider Room" at the center, Friday, Jan. 28. 2011, at the center in Richmond, Va. Earlier, Bolden spoke to students from Albert Hill Middle School, where he highlighted the importance of science, technology, engineering and math, or STEM, as he shared his life experiences with the students. (Photo Credit:NASA/Paul E. Alers)
2011-01-28
NASA Administrator Charles Bolden, right, shares a laugh with U.S. Sen. Mark Warner, D-Va., center and U.S. Rep. Bobby Scott, D-Va., prior to an event at the MathScience Innovation Center, Friday, Jan. 28, 2011, in Richmond, Va. Bolden later spoke to students from Albert Hill Middle School highlighting the importance of science, technology, engineering and math, or STEM, as he shared his life experiences with the students. (Photo Credit:NASA/Paul E. Alers)
Benoit, Julien; Essid, El Mabrouk; Marzougui, Wissem; Khayati Ammar, Hayet; Lebrun, Renaud; Tabuce, Rodolphe; Marivaux, Laurent
2013-11-01
We report the discovery of three isolated primate petrosal fragments from the fossiliferous locality of Chambi (Tunisia), a primate-bearing locality dating from the late early to the early middle Eocene. These fossils display a suite of anatomical characteristics otherwise found only in strepsirhines, and as such might be attributed either to Djebelemur or/and cf. Algeripithecus, the two diminutive stem strepsirhine primates recorded from this locality. Although damaged, the petrosals provide substantial information regarding the ear anatomy of these advanced stem strepsirhines (or pre-tooth-combed primates), notably the patterns of the pathway of the arterial blood supply. Using μCT-scanning techniques and digital segmentation of the structures, we show that the transpromontorial and stapedial branches of the internal carotid artery (ICA) were present (presence of bony tubes), but seemingly too small to supply enough blood to the cranium alone. This suggests that the ICA was not the main cranial blood supply in stem strepsirhines, but that the pharyngeal or vertebral artery primitively ensured a great part of this role instead, an arterial pattern that is reminiscent of modern cheirogaleid, lepilemurid lemuriforms and lorisiforms. This could explain parallel loss of the ICA functionality among these families. Specific measurements made on the cochlea indicate that the small strepsirhine primate(s) from Chambi was (were) highly sensitive to high frequencies and poorly sensitive to low frequencies. Finally, variance from orthogonality of the plane of the semicircular canals (SCs) calculated on one petrosal (CBI-1-569) suggests that Djebelemur or cf. Algeripithecus likely moved (at least its head) in a way similar to that of modern mouse lemurs. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lishness, Alan; Peake, Leigh
2014-11-19
Under Phase I of the Smart Grid Data Access Pilot Program, the Gulf of Maine Research Institute (GMRI) partnered with Central Maine Power (CMP), and the Maine Mathematics and Science Alliance (MMSA) and engaged key vendors Tilson Government Services, LLC (Tilson), and Image Works to demonstrate the efficacy of PowerHouse, an interactive online learning environment linking middle school students with their home electricity consumption data provided through CMP’s Advanced Metering Infrastructure (AMI). The goal of the program is to harness the power of youth to alter home energy consumption behaviors using AMI data. Successful programs aimed at smoking cessation, recycling,more » and seat belt use have demonstrated the power of young people to influence household behaviors. In an era of increasing concern about energy costs, availability, and human impacts on global climate, GMRI sought to demonstrate the effectiveness of a student-focused approach to understanding and managing household energy use. We also sought to contribute to a solid foundation of science-literate students who can analyze evidence to find solutions to increasingly complex energy challenges.« less
Development of an Interdisciplinary STEM Classroom Activity for Radio Receiver Technology
NASA Astrophysics Data System (ADS)
Davis, Kristina
2015-01-01
Introduction The development of a mini STEM-based classroom activity designed to integrate these two fields into one project for middle school aged students is presented here. This lesson involves small groups of students constructing a small AM radio receivers. The lesson surrounding the activity focuses on both the physical nature of electromagnetic and AC waves, circuit design, practical applications to AM radio broadcasting, and research applications of radio telescopes. These tools have shown a significant increase in the lesson's primary concept understanding among 6th grade students, as well as net positive STEM awareness and enthusiasm.Content The primary teaching point for the students to consider and learn during this lesson is 'How does scientific application influence engineering design, and vice versa?' The lesson surrounds the hands-on activity of having students construct their own AM radio receiver. Wave theory and the use of radio instruments for astronomy research are also taught in a traditional lecture format. The activity is designed to complement middle school curriculum, although it has been tested and found suitable for high school and older students as well as the general public.Evaluation and ImpactThe evaluation tool that used for the student groups in this project was a Fryer chart, which is a four panel chart with the main topic listed in the center and a single question in each of the four panels. The students are asked to answer the questions in the chart before and after they participate in the lesson activity, each time in a different colored pencil so that the scores can be given to each student before and after they participated in the activity. Student scores improved from 4.5 to 17.9 out of a total of 20 possible points. This is an overall increase of 67% of the total possible points. The questions asked on the quiz cover the range of wave theory, circuit design, and scientific explanation. This factor of improvement shows that the lesson designed for this fellowship project is effective at teaching students about each of those concepts with a single teaching activity.
NASA Astrophysics Data System (ADS)
Dare, Emily Anna
According to the American Physical Society, women accounted for only 20% of bachelor's degrees in the fields of physics and engineering in 2010. This low percentage is likely related to young girls' K-12 education experiences, particularly their experiences prior to high school, during which time young women's perceptions of Science, Technology, Engineering, and Math (STEM) and STEM careers are formed (Catsambis, 1995; Maltese & Tai, 2011; National Research Council, 2012; Sadler, Sonnert, Hazari, & Tai, 2012; Tai, Liu, Maltese, & Fan, 2006; Scantlebury, 2014; Sikora & Pokropek, 2012). There are no significant gender differences in academic achievement in middle school, yet young women have less positive attitudes towards careers in science than their male peers (Catsambis, 1995; Scantlebury, 2014). This suggests that the low female representation in certain STEM fields is a result of not their abilities, but their perceptions; for fields like physics where negative perceptions persist (Haussler & Hoffman, 2002; Labudde, Herzog, Neuenschander, Violi, & Gerber, 2000), it is clear that middle school is a critical time to intervene. This study examines the perceptions of 6th grade middle school students regarding physics and physics-related careers. A theoretical framework based on the literature of girl-friendly and integrated STEM strategies (Baker & Leary, 1995; Halpern et al., 2007; Haussler & Hoffman, 2000, 2002; Labudde et al., 2000; Moore et al., 2014b; Newbill & Cennamo, 2008; Rosser, 2000; Yanowitz, 2004) guided this work to understand how these instructional strategies may influence student's perceptions of physics for both girls and boys. The overarching goal of this work was to understand similarities and differences between girls' and boys' perceptions about physics and physics-related careers. This convergent parallel mixed-methods study uses a series of student surveys and focus group interviews to identify and understand these similarities and differences. Classroom observations also helped to identify what instructional strategies teachers used that influence student perceptions. Findings from this study indicate very few differences between the perceptions of physics and physics-related careers for 6th grade girls and boys. However, the differences that exist, though subtle, may indicate how K-12 science instruction could more positively influence girls' perceptions. For instance, while girls are just as interested in science class as their male counterparts, they are more motivated when a social context is included; this has implications for how they view physics-related careers. The findings of this study shed light on not only why fewer females pursue careers in physics, but also how K-12 science reform efforts might help to increase these numbers.
Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.
Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam
2015-05-01
Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.
Evaluating the Effectiveness of Project ReCharge: A STEM Based Energy Efficiency Curriculum
NASA Astrophysics Data System (ADS)
Pozarski Connolly, Catherine J.
This research evaluates the effectiveness of Project ReCharge, an energy efficiency, STEM curriculum designed for middle and high school students. The project includes a five-unit curriculum, and monthly professional development spanning a year. The project was implemented in ten schools over three years. Four areas were explored in the study including (1) changes to student content knowledge, (2) changes to student attitudes towards STEM subjects and careers, (3) changes to teacher self-efficacy and beliefs, and (4) changes to teacher content knowledge. A content test for teachers and students, the STEM Semantics Survey, and STEBI-A were used to collect data on 4123 students and 47 teachers. Data were collected in a quasi-experimental design utilizing parametric and nonparametric techniques. Analyses suggest student content knowledge increased significantly from pretest to posttest for all years (Pretest: M = 11.38, SD = 4.97, Posttest: M = 16.67, SD = 5.83, t = 45.05, p < 0.001, d = 0.98). Increases to student attitudes in STEM varied by year and grade, but overall increases were found in science (N = 2362, z = -2.618, p = 0.030, eta 2 = 0.002), and math attitudes (N = 2348, z = -2.280, p = 0.023, eta2 = 0.002). High school students tended to show more increased attitudes in more subject areas than middle school students. No changes to teacher self-efficacy and beliefs were found, and increases to teacher content knowledge only occurred in the third year (N = 22, x2 = 5.158; p = 0.076, eta2 = 0.319).
Astronomy in Denver: Effects of a summer camp on girls’ preconceived notions of careers in STEM
NASA Astrophysics Data System (ADS)
Hoffman, Jennifer L.; Fetrow, Kirsten J.; Broder, Dale E.; Murphy, Shannon M.; Tinghitella, Robin; Hart, Quyen N.
2018-06-01
Despite gains in recent years, gender disparities persist in fields related to science, technology, engineering, and mathematics (STEM). Although young women can perform as well as their male peers in STEM courses and tests, they are less likely to pursue higher education and careers in STEM. Our study examined the effectiveness of a STEM-focused summer camp at increasing middle-school girls’ career aspirations in STEM and self-confidence with respect to scientific topics. The 15 participants were Denver-area girls ages 10 to 13 years old from groups underrepresented in STEM fields. During the weeklong DU SciTech camp, these girls built telescopes and computers, collected and classified insects, completed inquiry activities, and interacted with female STEM professionals from a variety of scientific fields and racial backgrounds. We hypothesized that camp attendance would expand girls’ perceptions of who does science, increase their awareness of and interest in STEM careers, and increase their scientific self-efficacy, or belief in their ability to succeed at STEM tasks. We found that DU SciTech improved the girls’ scientific self-efficacy and awareness of STEM careers, but it did not increase their (already high) interest in pursuing their own careers in STEM. We will present our results and discuss their implications for future summer camps and efforts to broaden STEM participation by young women from underrepresented groups.
Yang, Hui-Feng; Zheng, Jiang-Hua; Jia, Xiao-Guang; Li, Xiao-Jin
2017-03-01
Apocynum venetum belongs to apocynaceae and is a perennial medicinal plant, its stem is an important textile raw materials. The projection of potential geographic distribution of A. venetum has an important significance for the protection and sustainable utilization of the plant. This study was conducted to determine the potential geographic distribution of A. venetum and to project how climate change would affect its geographic distribution. The projection geographic distribution of A. venetum under current bioclimatic conditions in northern China was simulated using MaxEnt software based on species presence data at 44 locations and 19 bioclimatic parameters. The future distributions of A. venetum were also projected in 2050 and 2070 under the climate change scenarios of RCP2.6 and RCP8.5 described in 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). The result showed that min air temperature of the coldest month, annual mean air temperature, precipitation of the coldest quarter and mean air temperature of the wettest quarter dominated the geographic distribution of A. venetum. Under current climate, the suitable habitats of A. venetum is 11.94% in China, the suitable habitats are mainly located in the middle of Xinjiang, in the northern part of Gansu, in the southern part of Neimeng, in the northern part of Ningxia, in the middle and northern part of Shaanxi, in the southern part of Shanxi, in the middle and northern part of Henan, in the middle and southern part of Hebei, Shandong, Tianjin, in the southern part of Liaoning and part of Beijing. From 2050 to 2070, the model outputs indicated that the suitable habitats of A. venetum would decrease under the climate change scenarios of RCP2.6 and RCP8.5. Copyright© by the Chinese Pharmaceutical Association.
Solar cell and photonics outreach for middle school students and teachers
NASA Astrophysics Data System (ADS)
Gilchrist, Pamela O.; Alexander, Alonzo B.
2017-08-01
This paper will describe the curriculum development process employed to develop a solar cell and photonics curriculum unit for students underrepresented in science, technology, engineering and mathematics fields. Information will explain how the curriculum unit was piloted with middle and high school teachers from public schools in North Carolina, high school students from underrepresented groups in an informal science program, and workshop settings. Measures used to develop the curriculum materials for middle school students will be presented along with program findings documenting students' urban versus rural interest in STEM, career aspirations, and 21st century learning skills in informal learning settings.
Francis, Ara
2012-07-01
This study examines the stigma experiences of middle-class parents whose children have physical, psychological and behavioural problems. Qualitative interviews with 34 mothers and 21 fathers demonstrate that parents experience two types of stigma: courtesy stigma and the stigma of being a bad parent. While the former stems from close social proximity to stigmatised children, the latter stems from ostensible culpability for children's problems. Both characteristics are social constructs embedded in the larger contexts of an anxious, intensive parenting culture and the problematisation and medicalisation of childhood. As a consequence, mothers, parents whose children have invisible disabilities, and the parents of young children are particularly susceptible to negative labelling. These findings highlight the constructed and political nature of parents' stigmatisation. © 2012 The Author. Sociology of Health & Illness © 2012 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.
STEM after school programming: The effect on student achievement and attitude
NASA Astrophysics Data System (ADS)
Ashford, Vanessa Dale
Science, technology, engineering and math (STEM) curriculum has become a major component in to 21st century teaching and learning. STEM skills and STEM careers are in demand globally. Disadvantaged and minority students continue to have an achievement gap in STEM classes. They do not perform well in elementary and middle school and frequently do not pursue STEM-based studies in high school or careers in the field. One innovation in STEM education is after-school programming to increase student interest, attitudes, and achievement. This mixed-methods study examines the Discovery Place After-School STEM Program to compare the achievement levels of participants to non-participants in the program and provides recommendations for STEM after-school programming across the district. As part of the study, teachers were interviewed to examine attitudes and perceptions about the program. This study was conducted at an elementary school in a large urban school district in the southeastern United States which has a unique STEM-based after-school program. Student performance data indicated a significant difference in achievement between participants and non-participants in the program as measured by fifth grade science End-of-Grade test. Data from the seven units of study in the program showed significant achievement for three of the seven units.
2011-01-28
NASA Administrator Charles Bolden, right, counts down along with others as U.S. Sen. Mark Warner, D-Va., readies to launch a paper rocket as U.S. Rep. Bobby Scott, D-Va., third right, looks on, Friday, Jan. 28, 2011, at the MathScience Innovation Center in Richmond, Va. Earlier, Bolden, spoke to students from Albert Hill Middle School where he highlighted the importance of science, technology, engineering and math, or STEM, as he shared his life experiences with the students. (Photo Credit:NASA/Paul E. Alers)
NASA Astrophysics Data System (ADS)
McWright, Cynthia Nicole
For decades science educators and educational institutions have been concerned with the status of science content being taught in K-12 schools and the delivery of the content. Thus, educational reformers in the United States continue to strive to solve the problem on how to best teach science for optimal success in learning. The constructivist movement has been at the forefront of this effort. With mandatory testing nationwide and an increase in science, technology, engineering, and mathematics (STEM) jobs with little workforce to fulfill these needs, the question of what to teach and how to teach science remains a concern among educators and all stakeholders. The purpose of this research was to determine if students' chemistry knowledge and interest can be increased by using the 5E learning cycle in a middle school with a high population of English language learners. The participants were eighth-grade middle school students in a large metropolitan area. Students participated in a month-long chemistry unit. The study was a quantitative, quasi-experimental design with a control group using a traditional lecture-style teaching strategy and an experimental group using the 5E learning cycle. Students completed a pre-and post-student attitude in science surveys, a pretest/posttest for each mini-unit taught and completed daily exit tickets using the Expert Science Teaching Educational Evaluation Model (ESTEEM) instrument to measure daily student outcomes in main idea, student inquiry, and relevancy. Analysis of the data showed that there was no statistical difference between the two groups overall, and all students experienced a gain in content knowledge overall. All students demonstrated a statistically significant difference in their interest in science class, activities in science class, and outside of school. Data also showed that scores in writing the main idea and writing inquiry questions about the content increased over time.
A Model of Factors Contributing to STEM Learning and Career Orientation
NASA Astrophysics Data System (ADS)
Nugent, Gwen; Barker, Bradley; Welch, Greg; Grandgenett, Neal; Wu, ChaoRong; Nelson, Carl
2015-05-01
The purpose of this research was to develop and test a model of factors contributing to science, technology, engineering, and mathematics (STEM) learning and career orientation, examining the complex paths and relationships among social, motivational, and instructional factors underlying these outcomes for middle school youth. Social cognitive career theory provided the foundation for the research because of its emphasis on explaining mechanisms which influence both career orientations and academic performance. Key constructs investigated were youth STEM interest, self-efficacy, and career outcome expectancy (consequences of particular actions). The study also investigated the effects of prior knowledge, use of problem-solving learning strategies, and the support and influence of informal educators, family members, and peers. A structural equation model was developed, and structural equation modeling procedures were used to test proposed relationships between these constructs. Results showed that educators, peers, and family-influenced youth STEM interest, which in turn predicted their STEM self-efficacy and career outcome expectancy. STEM career orientation was fostered by youth-expected outcomes for such careers. Results suggest that students' pathways to STEM careers and learning can be largely explained by these constructs, and underscore the importance of youth STEM interest.
Stem Cells in the Trabecular Meshwork for Regulating Intraocular Pressure.
Yun, Hongmin; Zhou, Yi; Wills, Andrew; Du, Yiqin
2016-06-01
Intraocular pressure (IOP) is still the main treatment target for glaucoma. Outflow resistance mainly exists at the trabecular meshwork (TM) outflow pathway, which is responsible for IOP regulation. Changes of TM cellularity and TM extracellular matrix turnover may play important roles in IOP regulation. In this article, we review basic anatomy and physiology of the outflow pathway and TM stem cell characteristics regarding the location, isolation, identification and function. TM stem cells are localized at the insert region of the TM and are label-retaining in vivo. They can be isolated by side-population cell sorting, cloning culture, or sphere culture. TM stem cells are multipotent with the ability to home to the TM region and differentiate into TM cells in vivo. Other stem cell types, such as adipose-derived stem cells, mesenchymal stem cells and induced pluripotent stem cells have been discovered for TM cell differentiation and TM regeneration. We also review glaucomatous animal models, which are suitable to study stem cell-based therapies for TM regeneration.
Stem Cells in the Trabecular Meshwork for Regulating Intraocular Pressure
Yun, Hongmin; Zhou, Yi; Wills, Andrew
2016-01-01
Abstract Intraocular pressure (IOP) is still the main treatment target for glaucoma. Outflow resistance mainly exists at the trabecular meshwork (TM) outflow pathway, which is responsible for IOP regulation. Changes of TM cellularity and TM extracellular matrix turnover may play important roles in IOP regulation. In this article, we review basic anatomy and physiology of the outflow pathway and TM stem cell characteristics regarding the location, isolation, identification and function. TM stem cells are localized at the insert region of the TM and are label-retaining in vivo. They can be isolated by side-population cell sorting, cloning culture, or sphere culture. TM stem cells are multipotent with the ability to home to the TM region and differentiate into TM cells in vivo. Other stem cell types, such as adipose-derived stem cells, mesenchymal stem cells and induced pluripotent stem cells have been discovered for TM cell differentiation and TM regeneration. We also review glaucomatous animal models, which are suitable to study stem cell-based therapies for TM regeneration. PMID:27183473
HIGH VOLTAGE, HIGH CURRENT SPARK GAP SWITCH
Dike, R.S.; Lier, D.W.; Schofield, A.E.; Tuck, J.L.
1962-04-17
A high voltage and current spark gap switch comprising two main electrodes insulatingly supported in opposed spaced relationship and a middle electrode supported medially between the main electrodes and symmetrically about the median line of the main electrodes is described. The middle electrode has a perforation aligned with the median line and an irradiation electrode insulatingly supported in the body of the middle electrode normal to the median line and protruding into the perforation. (AEC)
Lavery, Danielle L; Nicholson, Anna M; Poulsom, Richard; Jeffery, Rosemary; Hussain, Alia; Gay, Laura J; Jankowski, Janusz A; Zeki, Sebastian S; Barr, Hugh; Harrison, Rebecca; Going, James; Kadirkamanathan, Sritharan; Davis, Peter; Underwood, Timothy; Novelli, Marco R; Rodriguez–Justo, Manuel; Shepherd, Neil; Jansen, Marnix; Wright, Nicholas A; McDonald, Stuart A C
2014-01-01
Objective Barrett's oesophagus shows appearances described as ‘intestinal metaplasia’, in structures called ‘crypts’ but do not typically display crypt architecture. Here, we investigate their relationship to gastric glands. Methods Cell proliferation and migration within Barrett's glands was assessed by Ki67 and iododeoxyuridine (IdU) labelling. Expression of mucin core proteins (MUC), trefoil family factor (TFF) peptides and LGR5 mRNA was determined by immunohistochemistry or by in situ hybridisation, and clonality was elucidated using mitochondrial DNA (mtDNA) mutations combined with mucin histochemistry. Results Proliferation predominantly occurs in the middle of Barrett's glands, diminishing towards the surface and the base: IdU dynamics demonstrate bidirectional migration, similar to gastric glands. Distribution of MUC5AC, TFF1, MUC6 and TFF2 in Barrett's mirrors pyloric glands and is preserved in Barrett's dysplasia. MUC2-positive goblet cells are localised above the neck in Barrett's glands, and TFF3 is concentrated in the same region. LGR5 mRNA is detected in the middle of Barrett's glands suggesting a stem cell niche in this locale, similar to that in the gastric pylorus, and distinct from gastric intestinal metaplasia. Gastric and intestinal cell lineages within Barrett's glands are clonal, indicating derivation from a single stem cell. Conclusions Barrett's shows the proliferative and stem cell architecture, and pattern of gene expression of pyloric gastric glands, maintained by stem cells showing gastric and intestinal differentiation: neutral drift may suggest that intestinal differentiation advances with time, a concept critical for the understanding of the origin and development of Barrett's oesophagus. PMID:24550372
Lavery, Danielle L; Nicholson, Anna M; Poulsom, Richard; Jeffery, Rosemary; Hussain, Alia; Gay, Laura J; Jankowski, Janusz A; Zeki, Sebastian S; Barr, Hugh; Harrison, Rebecca; Going, James; Kadirkamanathan, Sritharan; Davis, Peter; Underwood, Timothy; Novelli, Marco R; Rodriguez-Justo, Manuel; Shepherd, Neil; Jansen, Marnix; Wright, Nicholas A; McDonald, Stuart A C
2014-12-01
Barrett's oesophagus shows appearances described as 'intestinal metaplasia', in structures called 'crypts' but do not typically display crypt architecture. Here, we investigate their relationship to gastric glands. Cell proliferation and migration within Barrett's glands was assessed by Ki67 and iododeoxyuridine (IdU) labelling. Expression of mucin core proteins (MUC), trefoil family factor (TFF) peptides and LGR5 mRNA was determined by immunohistochemistry or by in situ hybridisation, and clonality was elucidated using mitochondrial DNA (mtDNA) mutations combined with mucin histochemistry. Proliferation predominantly occurs in the middle of Barrett's glands, diminishing towards the surface and the base: IdU dynamics demonstrate bidirectional migration, similar to gastric glands. Distribution of MUC5AC, TFF1, MUC6 and TFF2 in Barrett's mirrors pyloric glands and is preserved in Barrett's dysplasia. MUC2-positive goblet cells are localised above the neck in Barrett's glands, and TFF3 is concentrated in the same region. LGR5 mRNA is detected in the middle of Barrett's glands suggesting a stem cell niche in this locale, similar to that in the gastric pylorus, and distinct from gastric intestinal metaplasia. Gastric and intestinal cell lineages within Barrett's glands are clonal, indicating derivation from a single stem cell. Barrett's shows the proliferative and stem cell architecture, and pattern of gene expression of pyloric gastric glands, maintained by stem cells showing gastric and intestinal differentiation: neutral drift may suggest that intestinal differentiation advances with time, a concept critical for the understanding of the origin and development of Barrett's oesophagus. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
A Campus-Wide Investigation of Clicker Implementation: The Status of Peer Discussion in STEM Classes
Lewin, Justin D.; Vinson, Erin L.; Stetzer, MacKenzie R.; Smith, Michelle K.
2016-01-01
At the University of Maine, middle and high school teachers observed more than 250 university science, technology, engineering, and mathematics classes and collected information on the nature of instruction, including how clickers were being used. Comparisons of classes taught with (n = 80) and without (n = 184) clickers show that, while instructional behaviors differ, the use of clickers alone does not significantly impact the time instructors spend lecturing. One possible explanation stems from the observation of three distinct modes of clicker use: peer discussion, in which students had the opportunity to talk with one another during clicker questions; individual thinking, in which no peer discussion was observed; and alternative collaboration, in which students had time for discussion, but it was not paired with clicker questions. Investigation of these modes revealed differences in the range of behaviors, the amount of time instructors lecture, and how challenging the clicker questions were to answer. Because instructors can vary their instructional style from one clicker question to the next, we also explored differences in how individual instructors incorporated peer discussion during clicker questions. These findings provide new insights into the range of clicker implementation at a campus-wide level and how such findings can be used to inform targeted professional development for faculty. PMID:26931397
Influence of Grape Seeds and Stems on Wine Composition and Astringency.
Pascual, Olga; González-Royo, Elena; Gil, Mariona; Gómez-Alonso, Sergio; García-Romero, Esteban; Canals, Joan Miquel; Hermosín-Gutíerrez, Isidro; Zamora, Fernando
2016-08-31
The aim of this paper is to study the real influence of seeds and stems on wine composition, astringency, and bitterness. A decolored grape juice and a grape juice macerated for 4 days from the same Cabernet Sauvignon grapes were fermented with or without supplementation with 100% seeds, 300% seeds, or 100% stems. Once alcoholic fermentation had finished, the wines were analyzed and tasted. The presence of seeds and stems increased the concentration of flavan-3-ol monomers with respect to the controls. However, the seeds mainly released (+)-catechin and (-)-epicatechin, whereas the stems mainly released (+)-catechin and (+)-gallocatechin. The seeds and stems also released proanthocyanidins; those from seeds have a lower mDP and a high percentage of galloylation, whereas those from stems have a higher mDP and a relatively high percentage of prodelphinidins. The presence of seeds and stems brought about a slight but significant increase in pH and lowered titratable acidity and ethanol content. The presence of seeds boosted color intensity, whereas stems had the opposite effect. Finally, both seeds and stems increased wine astringency and bitterness.
DeSimone, Leslie A.
2004-01-01
Water-supply withdrawals and wastewater disposal in the Assabet River Basin in eastern Massachusetts alter the flow and water quality in the basin. Wastewater discharges and stream-flow depletion from ground-water withdrawals adversely affect water quality in the Assabet River, especially during low-flow months (late summer) and in headwater areas. Streamflow depletion also contributes to loss of aquatic habitat in tributaries to the river. In 19972001, water-supply withdrawals averaged 9.9 million gallons per day (Mgal/d). Wastewater discharges to the Assabet River averaged 11 Mgal/d and included about 5.4 Mgal/d that originated from sources outside of the basin. The effects of current (2004) and future withdrawals and discharges on water resources in the basin were investigated in this study. Steady-state and transient ground-water-flow models were developed, by using MODFLOW-2000, to simulate flow in the surficial glacial deposits and underlying crystalline bedrock in the basin. The transient model simulated the average annual cycle at dynamic equilibrium in monthly intervals. The models were calibrated to 19972001 conditions of water withdrawals, wastewater discharges, water levels, and nonstorm streamflow (base flow plus wastewater discharges). Total flow through the simulated hydrologic system averaged 195 Mgal/d annually. Recharge from precipitation and ground-water discharge to streams were the dominant inflow and outflow, respectively. Evapotranspiration of ground water from wetlands and non-wetland areas also were important losses from the hydrologic system. Water-supply withdrawals and infiltration to sewers averaged 5 and 1.3 percent, respectively, of total annual out-flows and were larger components (12 percent in September) of the hydrologic system during low-flow months. Water budgets for individual tributary and main stem subbasins identified areas, such as the Fort Meadow Brook and the Assabet Main Stem Upper subbasins, where flows resulting from anthropo-genic activities were relatively large percentages, compared to other subbasins, (more than 20 percent in September) of total out-flows. Wastewater flows in the Assabet River accounted for 55, 32, and 20 percent of total nonstorm streamflow (base flow plus wastewater discharge) out of the Assabet Main Stem Upper, Middle, and Lower subbasins, respectively, in an average September. The ground-water-flow models were used to evaluate water-management alternatives by simulating hypothetical scenarios of altered withdrawals and discharges. A scenario that included no water management quantified nonstorm stream-flows that would result without withdrawals, discharges, septic-system return flow, or consumptive use. Tributary flows in this scenario increased in most subbasins by 2 to 44 percent relative to 19972001 conditions. The increases resulted mostly from variable combinations of decreased withdrawals and decreased infiltration to sewers. Average annual nonstorm streamflow in the Assabet River decreased slightly in this scenario, by 2 to 3 percent annually, because gains in ground-water discharge were offset by the elimination of wastewater discharges. A second scenario quantified the effects of increasing withdrawals and discharges to currently permitted levels. In this simulation, average annual tributary flows decreased in most subbasins, by less than 1 to 10 percent relative to 19972001 conditions. In the Assabet River, flows increased slightly, 1 to 5 percent annually, and the percentage of wastewater in the river increased to 69, 42, and 27 percent of total nonstorm streamflow out of the Assabet Main Stem Upper, Middle, and Lower subbasins, respectively, in an average September. A third set of scenarios quantified the effects of ground-water discharge of wastewater at four hypothetical sites, while maintaining 19972000 wastewater discharges to the Assabet River. Wastewater, discharged at a constant rate that varied among sites from 0.3 to 1
Evaluating the implementation and impacts of middle grades inquiry-based engineering design modules
NASA Astrophysics Data System (ADS)
Harlan, Jessica M.
This dissertation uses a format where I present and discuss three articles that were written in conjunction with my work on a research and evaluation team. The articles are based on a multi-year project researching and evaluating the design, development, and implementation of a middle grades integrated Science, Technology, Engineering, and Mathematics (STEM) program. Each of the articles demonstrates the complexity in researching and evaluating curricular development in multifaceted, rapidly changing environments. While the focus of each article differs, they all examine research and evaluation in the context of the design and development of middle grades engineering-design modules. The selected articles address challenges associated with assessing program objectives and evaluating program quality in complex education programs.The first article, presented in Chapter 2, provides an overview of the nature of the EYE program and examines the extent to which participation in the EYE program resulted in the achievement of program objectives. There is evidence that EYE Module participation has a positive impact on participating students as well as teachers. This study also revealed challenges associated with determining the impact of program participation simultaneously with program revisions and assessment development. The second article, presented in Chapter 3, examined the evaluation of fidelity of implementation of inquiry-oriented educational programs. This article was intended to examine one way of triangulating information to determine fidelity while considering variation in implementation consistent with program theories of learning. When applying this model to implementation of the EYE program, we found many teachers were implementing the modules with low to moderate fidelity, especially math teachers. The third article, presented in Chapter 4, examined the factor structure of an occupational values scale intended to measure student interest in STEM careers. When reviewing the assessment's evidence base, we found no published literature regarding the assessment's psychometric properties. We found that the AWE Work Values scale assesses two separate sets of occupational values: 1) using analytical and problem solving skills and 2) personal satisfaction. In Chapter 5, I discuss the implications of the research presented in these articles to the field of integrated STEM. This includes a need to further develop and test tools and methods for measuring program impact. While the articles address several issues related to research and evaluation within the context of K-12 integrated STEM education, the concepts and implications also apply to the general field of instructional design. The primary lesson is the need to systematically evaluate designed instruction, including measuring fidelity of implementation and designing evaluations in advance to ensure appropriate data are gathered. Recommendations for future research include identification of common outcomes for integrated STEM, psychometric testing of integrated STEM attitude measures, impacts of other factors such as interest in STEM, and development and testing of instructional design models for integrated STEM.
Patients' Main Concerns About Having a Sibling Stem Cell Donor - A Grounded Theory Study.
Kisch, Annika M; Forsberg, Anna
2018-01-01
There is limited knowledge about the perspective of patients undergoing allogeneic haematopoietic stem cell transplantation (HSCT) about having a sibling as donor. It is essential to understand the main concerns of stem cell recipients in order to enable nurses to provide person-centred care. The study aim was to explore patients' main concerns about having a sibling stem cell donor and how the patients handle them, from immediately before until one year after transplantation. Twenty-eight interviews were performed prospectively during one year with ten adult sibling stem cell recipients with a mean age of 52 years (range 19-68 years). The interviews were analyzed by the Grounded Theory method. The core category Recompensation summarises the process in the generated grounded theory including the three main categories; Invest , Compensate and Celebrate . Recompensation is defined as a lasting compensation given by the recipient to the sibling donor for the loss or harm suffered or effort made. The sense of having to reward, protect, appreciate, maintain peace and work on the relationship with the sibling donor at the same time as having to accept a serious illness, cope with their situation and promote their own recovery is strenuous for the recipients. The main concern for stem cell recipients during their first post-transplant year is to recompensate the sibling donor by investing, compensating and celebrating her/him. Although there is a positive aspect of recompensation, it can also imply pressure and guilt.
NASA Astrophysics Data System (ADS)
Hayden, L. B.; Johnson, D.; Baltrop, J.
2012-12-01
Remote sensing has steadily become an integral part of multiple disciplines, research, and education. Remote sensing can be defined as the process of acquiring information about an object or area of interest without physical contact. As remote sensing becomes a necessity in solving real world problems and scientific questions an important question to consider is why remote sensing training is significant to education and is it relevant to training students in this discipline. What has been discovered is the interest in Science, Technology, Engineering and Mathematics (STEM) fields, specifically remote sensing, has declined in our youth. The Center of Excellence in Remote Sensing Education and Research (CERSER) continuously strives to provide education and research opportunities on ice sheet, coastal, ocean, and marine science. One of those continued outreach efforts are Center for Remote Sensing of Ice Sheets (CReSIS) Middle School Program. Sponsored by the National Science Foundation CReSIS Middle School Program offers hands on experience for middle school students. CERSER and NSF offer students the opportunity to study and learn about remote sensing and its vital role in today's society as it relate to climate change and real world problems. The CReSIS Middle School Program is an annual two-week effort that offers middle school students experience with remote sensing and its applications. Specifically, participants received training with Global Positioning Systems (GPS) where the students learned the tools, mechanisms, and applications of a Garmin 60 GPS. As a part of the program the students were required to complete a fieldwork assignment where several longitude and latitude points were given throughout campus. The students had to then enter the longitude and latitude points into the Garmin 60 GPS, navigate their way to each location while also accurately reading the GPS to make sure travel was in the right direction. Upon completion of GPS training the students were able to understand the function of a GPS, how to analyze and comprehend longitude and latitude points, and the importance of GPS devices in real world applications. This paper describes in detail the methodology for organizing a learning environment where participants were able to compile, organize and analyze data, collaborate in a team environment, utilize the scientific method to draw conclusions based on the research they obtained. Various resources and training activities were developed to cultivate student participants' skill set. Students were presented with a problem where they had to develop a hypothesis or scientific question. After clearly defining the problem, it was necessary for the middle school participants to determine the data needed to complete an analysis and ascertain where that data can be found or generated. The training and events held for the CReSIS Middle School Program were proven successful for both these inquiring middle school students at Elizabeth City Middle School, River Road Middle School and the STEM representatives from Elizabeth City State University.Too often, students who live in rural communities or face economic disadvantages often miss out on getting access to important technology. Developing an interest in the STEM fields by a few students' would be considered a total success for the city, community, country, and world.
NASA Astrophysics Data System (ADS)
Carmona Miranda, Karla
In the last 20 years attitudes towards science and science classes in K-12 education have been an important topic of investigation due to the decreasing number of students choosing Science, Technology, Engineering and Math (STEM) related careers, and the increasing need for STEM prepared workers to cover the job demands of the future. The purpose of this study is to confirm a previously measured difference in scientific curiosity between middle school students in El Paso and in Ciudad Juarez, and to collect additional data that might tell us what the possible factors or reasons for this difference are. Our sample consists of 156 middle school students from Juarez public schools, and 448 middle school students from El Paso public middle schools. The Children's Science Curiosity Scale of Harty & Beall (1984) will be used to measure the curiosity level. Additionally, the students will be asked to respond to "Why do you like or dislike science?" Our results show that those obtained by Ortiz (2006) in a similar study persist but with a reduction of standard deviations. The percentage of students that state that they do not like science in Ciudad Juarez and El Paso are 9% and 14%, respectively. The most common reason to like science among students in Ciudad Juarez was related to the topics covered in class, and among students in El Paso was related to the experiments and hands-on activities done in class. After analyzing contingency tables with chi-squared tests and calculating the respective contingency coefficients, it is safe to say that even though relationships between the reasons to like or dislike science and country exist, these relationships are not strong. Other results, limitations, and future research also are discussed.
Hydrological alteration along the Missouri River Basin: A time series approach
Pegg, M.A.; Pierce, C.L.; Roy, A.
2003-01-01
Human alteration of large rivers is common-place, often resulting in significant changes in flow characteristics. We used a time series approach to examine daily mean flow data from locations throughout the main-stem Missouri River. Data from a pre-alteration period (1925-1948) were compared with a post-alteration period (1967-1996), with separate analyses conducted using either data from the entire year or restricted to the spring fish spawning period (1 April-30 June). Daily mean flows were significantly higher during the post-alteration period at all locations. Flow variability was markedly reduced during the post-alteration period as a probable result of flow regulation and climatological shifts. Daily mean flow during the spring fish spawning period was significantly lower during the post-alteration period at the most highly altered locations in the middle portion of the river, but unchanged at the least altered locations in the upper and lower portions of the river. Our data also corroborate other analyses, using alternate statistical approaches, that suggest similar changes to the Missouri River system. Our results suggest human alterations on the Missouri River, particularly in the middle portion most strongly affected by impoundments and channelization, have resulted in changes to the natural flow regime.
STEM Pathways: Examining Persistence in Rigorous Math and Science Course Taking
NASA Astrophysics Data System (ADS)
Ashford, Shetay N.; Lanehart, Rheta E.; Kersaint, Gladis K.; Lee, Reginald S.; Kromrey, Jeffrey D.
2016-12-01
From 2006 to 2012, Florida Statute §1003.4156 required middle school students to complete electronic personal education planners (ePEPs) before promotion to ninth grade. The ePEP helped them identify programs of study and required high school coursework to accomplish their postsecondary education and career goals. During the same period Florida required completion of the ePEP, Florida's Career and Professional Education Act stimulated a rapid increase in the number of statewide high school career academies. Students with interests in STEM careers created STEM-focused ePEPs and may have enrolled in STEM career academies, which offered a unique opportunity to improve their preparedness for the STEM workforce through the integration of rigorous academic and career and technical education courses. This study examined persistence of STEM-interested (i.e., those with expressed interest in STEM careers) and STEM-capable (i.e., those who completed at least Algebra 1 in eighth grade) students ( n = 11,248), including those enrolled in STEM career academies, in rigorous mathematics and science course taking in Florida public high schools in comparison with the national cohort of STEM-interested students to measure the influence of K-12 STEM education efforts in Florida. With the exception of multi-race students, we found that Florida's STEM-capable students had lower persistence in rigorous mathematics and science course taking than students in the national cohort from ninth to eleventh grade. We also found that participation in STEM career academies did not support persistence in rigorous mathematics and science courses, a prerequisite for success in postsecondary STEM education and careers.
Ecological assessment of streams in the Powder River Structural Basin, Wyoming and Montana, 2005-06
Peterson, D.A.; Wright, P.R.; Edwards, G.P.; Hargett, E.G.; Feldman, D.L.; Zumberge, J.R.; Dey, Paul
2009-01-01
Energy and mineral development, particularly coalbed natural gas development, is proceeding at a rapid pace in the Powder River Structural Basin (PRB) in northeastern Wyoming. Concerns about the potential effects of development led to formation of an interagency working group of primarily Federal and State agencies to address these issues in the PRB in Wyoming and in Montana where similar types of resources exist but are largely undeveloped. Under the direction of the interagency working group, an ecological assessment of streams in the PRB was initiated to determine the current status (2005–06) and to establish a baseline for future monitoring.The ecological assessment components include assessment of stream habitat and riparian zones as well as assessments of macroinvertebrate, algal, and fish communities. All of the components were sampled at 47 sites in the PRB during 2005. A reduced set of components, consisting primarily of macroinvertebrate and fish community assessments, was sampled in 2006. Related ecological data, such as habitat and fish community data collected from selected sites in 2004, also are included in this report.The stream habitat assessment included measurement of channel features, substrate size and embeddedness, riparian vegetation, and reachwide characteristics. The width-to-depth ratio (bankfull width/bankfull depth) tended to be higher at sites on the main-stem Powder River than at sites on the main-stem Tongue River and at sites on tributary streams. The streambed substrate particle size was largest at sites on the main-stem Tongue River and smallest at sites on small tributary streams such as Squirrel Creek and Otter Creek. Total vegetative cover at the ground level, understory, and canopy layers ranged from less than 40 percent at a few sites to more than 90 percent at many of the sites. A bank-stability index indicated that sites in the Tongue River drainage were less at risk of bank failure than sites on the main-stem Powder River.Macroinvertebrate communities showed similarity at the river-drainage scale. Macroinvertebrate communities at sites with mountainous headwaters and snowmelt-driven hydrology, such as Clear Creek, Crazy Woman Creek, and Goose Creek, showed similarity with communities from the main-stem Tongue River. The data also indicated similarity among sites on the main-stem Powder River and among small tributaries of the Tongue River. Data analyses using macroinvertebrate observed/expected models and multimetric indices developed by the States of Wyoming and Montana indicated a tendency toward declining biological condition in the downstream direction along the Tongue River. Biological condition for the main-stem Powder River generally improved downstream, from below Salt Creek to near the Wyoming/Montana border, followed by a general decline downstream from the border to the confluence with the Yellowstone River. The biological condition generally was not significantly different between 2005 and 2006, although streamflow was less in 2006 because of drought.Algal communities showed similarity at the river-drainage scale with slight differences from the pattern observed in the macroinvertebrate communities. Although the algal communities from Clear Creek and Goose Creek were similar to those from the main-stem Tongue River, as was true of the macroinvertebrate communities, the algal communities from Crazy Woman Creek had more similarity to those of main-stem Powder River sites than to the Tongue River sites, contrary to the macroinvertebrates. Ordination of algal communities, as well as diatom metrics including salinity and dominant taxa, indicated substantial variation at two sites along the main stem of the Powder River.Fish communities of the PRB were most diverse in the Tongue River drainage. In part due to the effects of Tongue River Reservoir, 15 species of fish were found in the Tongue River drainage that were not found in the Cheyenne, Belle Fourche, or Little Powder River drainages. The number of introduced species and relative abundance of introduced species of fish were higher in the Tongue River and other drainages than at sites on the main-stem Powder River. Although non-native species were identified in the Powder River, the native fish community is largely intact. Western silvery minnow and sturgeon chub—species of special concern—were identified only at sites on the main-stem Powder River and were most common in the Montana segment of the main stem. Fish and habitat sampling on the main-stem Powder River indicated affinity of some species for certain habitats such as pools, runs, riffles, backwaters, or shoals.
Characterizing Vineyard Water Status Variability in a Premium Winegrape Vineyard
NASA Astrophysics Data System (ADS)
Smart, David; Carvahlo, Angela
2017-04-01
One of the biggest challenges in viticulture and winemaking is managing and optimizing yield and quality across vineyard blocks that show high spatial variability. Studies have shown that zonal management of vine water status can contribute significantly to improving overall fruit quality and improving uniformity. Vine water status is a major parameter for vine management because it affects both wine quality and yield. In order to optimize vineyard management and harvesting practices, it is necessary to characterize vineyard variability in terms of water status. Establishing a targeted irrigation program first requires spatially characterizing the variability in vine water status of a vineyard. In California, due to the low or no rainfall during the active growing season, the majority of vineyards implement some type of irrigation management program. As water supplies continue to decrease as a consequence of persistent drought, establishing efficient and targeted water use programs is of growing importance in California. The aim of this work was to characterize the spatial variability of plant-water relations across a non-uniform 4 ha block in Napa Valley with the primary objective of establishing vineyard irrigation management zones. The study plot was divided into three sections, designated the North, Middle and South sections, each at about 1.3 hectares. Stem (Ψstem) and midday (Ψl) leaf water potential and predawn (ΨPD) water potential were measured at 36 locations within the block at 14 (Ψl), 10 (ΨPD) and 2 (Ψstem) points in time throughout the growing season. Of the three techniques utilized to evaluate water status, ΨPD and Ψstem were the most sensitive indicators of water stress conditions. An integrated overview of water use efficiency over the growing season was assessed by measuring the leaf carbon isotope ratio of δ13C. Fully mature leaves were sampled from 280 vines and results show, similarly to ΨPD and Ψstem, that the North section (-28.05%) was significantly different than the South (at -28.31) and Middle (at -28.33) sections. Interblock variability can be reduced by managing water supply to the North section independently of the South and Middle sections. For Napa due to foggy mornings and overcast skies, Ψl provided the least discriminatory water status measurements.
1990-04-01
Breckenridge and Tom’s Brook shelters). During this long period a large number of different projectile point types were produced (i.e., Rice Lobed...Big Sandy, Graham Cave, Kirk Comer Notched, White River Archaic, Hidden Valley Stemmed, Hardin Barbed, Searcy, Rice Lanceolate, Jakie Stemmed, and...point did not exhibit basal grinding); one was a Middle Archaic point similar to the Rice Lobed; two were Late Archaic Rice Sidenotched; five were
NASA Astrophysics Data System (ADS)
McCaslin, Stephanie D.
The areas of Science, Technology, Engineering, and Mathematics have long been overrepresented by men. In the workforce, more men work in these fields than women, and in school, more male students select majors in Science, Technology, Engineering, and Mathematics (STEM) than female students. Research has indicated that female students represent less than a third of college students selecting STEM majors. Several recommendations have been made by prominent educational organizations, such as the American Association of University Women (AAUW), including promoting these subjects to female students through STEM initiatives that are innovative and expose female students to careers in these areas. This qualitative research study sought to analyze the effectiveness of these initiatives by determining what factors are considered when a female student selects a STEM field of study at the college level and to examine how these students perceived the effectiveness of the STEM initiatives in which they participated. A series of interviews were conducted with female college students with declared majors in STEM fields who had participated in STEM initiatives in the state of Maryland. After analysis of the data collected, it was determined that STEM initiatives are not necessarily effective in increasing the number of women who enroll in STEM programs at the college level, however, they are effective in encouraging female students who are already interested in STEM. Female students who participated in these STEM initiatives more frequently were more likely to have a better understanding of STEM options, and were also more likely to complete STEM college degrees in less time than those who did not participate frequently in STEM initiatives.
NASA Astrophysics Data System (ADS)
Vijil, Veronica G.
2011-12-01
An overall increased awareness of the importance of science, technology, engineering, and mathematics (STEM) has prompted attention toward the continued underrepresentation of Hispanic women in this field. The purpose of this collective case study was to explore the support systems, perceived barriers, and prior experiences influencing high school Hispanic girls' decisions to pursue advanced coursework and related careers through a career pathway in science, technology, engineering, and mathematics (STEM) areas. Specifically, participants were interviewed regarding their mathematics and science experiences in elementary and middle schools, as well as perceived supports and barriers to their choices to pursue STEM careers and advanced coursework. Results indicated that the participants linked their elementary and middle school experiences with their teachers rather than specific activities. Accolades such as certificates and good grades for academic achievement contributed to the girls' strong self-efficacy at an early age. The participants possessed self-discipline and self-confidence, using intrinsic motivation to pursue their goals. Support systems included families and a few teachers. Barriers were revealed in different forms including derogatory comments by boys in class, difficult curricula with limited tutors available for higher level courses, and receipt of financial assistance to attend a university of their choice.
NASA Astrophysics Data System (ADS)
Alexander, Lori L.
Math and science is the core of science, technology, engineering and math (STEM) education. It is the staying power of economic growth, job opportunities, new technology, innovation and emerging research on a global spectrum in the 21st century. Data reports that African American women are underrepresented in the STEM career field. The focus of this project was to specifically address African American middle school girls achievement gap, awareness and interests in the STEM pipeline. Data for this research was gathered by using Action Research Methodology approach using journals, questionnaire survey and dialogue. Five parents/educators participated in this empirical research study by sharing their personal, lived and unapologetic experiences through eight weeks of action/reflection inquiry. The finding of this research is that parents need to be engaged about STEM and the importance for girls to do well academically early in school with math and science.
Translating brilliance: Facilitating communication and growth among university and K-12 STEM faculty
NASA Astrophysics Data System (ADS)
Schulze, Sharon
2008-10-01
The STEM world is broad, diverse, and receiving lots of press as a single entity even though STEM practitioners are diverse as any group can be. As barriers to interdisciplinary research blur or fall completely, the importance and connectedness of STEM preparation and communication among young children, middle and high school students, teachers of those students, undergraduates, grad students, post-docs, faculty, corporate researchers, legislators, and the public at large has become more important than ever. The Science House at NC State University has spent 17 years finding creative ways to implement ageless truths and cutting-edge research to foster collaboration among people with common goals and interests but remarkably different cultures and means of communication. In this session we will discuss key lessons from those 17 years of work and find ways to continue to grow communication and collaboration in the pursuit of excellence.
Ifeanacho, Mercy O; Ikewuchi, Catherine C; Ikewuchi, Jude C
2017-05-01
The profile of phenolic compounds in the leaves and stems of Pandiaka heudelotii was investigated using gas chromatography coupled with flame ionization detector. The leaves and stems had high flavonoids and benzoic acid derivatives content, and moderate levels of lignans and hydroxycinnamates. Twenty-eight known flavonoids were detected, which consisted mainly of kaempferol (41.93% in leaves and 47.97% in stems), (+)-catechin (17.12% in leaves and 16.11% in stems), quercetin (13.83% in leaves and 9.39% in stems), luteolin (7.34% in leaves and 7.71% in stems), and artemetin (6.53% in leaves and 4.83% in stems). Of the six known hydroxycinnamates detected, chlorogenic acid (80.79% in leaves and 87.56% in stems) and caffeic acid (18.98% in leaves and 12.30% in stems) were the most abundant, while arctigenin (77.81% in leaves and 83.40% in stems) and retusin (13.82% in leaves and 10.59% in stems) were the most abundant of the nine known lignans detected. Twelve known benzoic acid derivatives were detected, consisting mainly of ellagic acid (65.44% in leaves and 72.89% in stems), p-hydroxybenzoic acid (25.10% in leaves and 18.95% in stems), and vanillic acid (8.80% in leaves and 7.30% in stems). The rich phytochemical profile of the leaves and stems is an indication of their ability to serve as sources of nutraceuticals.
Northeast Tennessee Educators' Perception of STEM Education Implementation
NASA Astrophysics Data System (ADS)
Turner, Kristin Beard
A quantitative nonexperimental survey study was developed to investigate Northeast Tennessee K-8 educators' perceptions of STEM education. This study was an examination of current perceptions of STEM education. Perceived need, current implementation practices, access to STEM resources, definition of STEM, and the current condition of STEM in Northeast Tennessee were also examined. The participating school districts are located in the Northeast Region of Tennessee: Bristol City Schools, Hamblen County Schools, Johnson City Schools, Johnson County Schools, Kingsport City Schools, Sullivan County Schools, and Washington County Schools. Educational professionals including both administrators and teachers in the elementary and/or middle school setting were surveyed. The closed and open form survey consisted of 20 research items grouped by 5 core research questions. Quantitative data were analyzed using single sample t tests. A 4 point Likert scale was used to measure responses with a 2.5 point of neutrality rating. The open-ended question was summarized and recorded for frequency. Research indicated that Northeast Tennessee K-8 educators perceive a need for STEM education to a significant extent. However, many do not feel prepared for implementation. Lack of professional development opportunities and STEM assets were reported as areas of need. Teachers reported implementation of inquiry-based, problem solving activities in their classrooms. The majority of participants reported that the current condition of STEM education in Northeast Tennessee is not meeting the needs of 21st century learners. Challenges facing STEM instruction include: funding designated for STEM is too low, professional development for STEM teacher is insufficient, and STEM Education in K-8 is lacking or inadequate.
Stem Cell Therapy in Bladder Dysfunction: Where Are We? And Where Do We Have to Go?
Lee, Sang-Rae; Song, Yun Seob; Lee, Hong Jun
2013-01-01
To date, stem cell therapy for the bladder has been conducted mainly on an experimental basis in the areas of bladder dysfunction. The therapeutic efficacy of stem cells was originally thought to be derived from their ability to differentiate into various cell types. Studies about stem cell therapy for bladder dysfunction have been limited to an experimental basis and have been less focused than bladder regeneration. Bladder dysfunction was listed in MESH as “urinary bladder neck obstruction”, “urinary bladder, overactive”, and “urinary bladder, neurogenic”. Using those keywords, several articles were searched and studied. The bladder dysfunction model includes bladder outlet obstruction, cryoinjured, diabetes, ischemia, and spinal cord injury. Adipose derived stem cells (ADSCs), bone marrow stem cells (BMSCs), and skeletal muscle derived stem cells (SkMSCs) are used for transplantation to treat bladder dysfunction. The main mechanisms of stem cells to reconstitute or restore bladder dysfunction are migration, differentiation, and paracrine effects. The aim of this study is to review the stem cell therapy for bladder dysfunction and to provide the status of stem cell therapy for bladder dysfunction. PMID:24151627
NASA, Engineering, and Swarming Robots
NASA Technical Reports Server (NTRS)
Leucht, Kurt
2015-01-01
This presentation is an introduction to NASA, to science and engineering, to biologically inspired robotics, and to the Swarmie ant-inspired robot project at KSC. This presentation is geared towards elementary school students, middle school students, and also high school students. This presentation is suitable for use in STEM (science, technology, engineering, and math) outreach events. The first use of this presentation will be on Oct 28, 2015 at Madison Middle School in Titusville, Florida where the author has been asked by the NASA-KSC Speakers Bureau to speak to the students about the Swarmie robots.
Get Students Excited--3D Printing Brings Designs to Life
ERIC Educational Resources Information Center
Lacey, Gary
2010-01-01
Students in technology education programs from middle school through high school around the nation are benefiting from--and enjoying--hands-on experience in mechanical engineering, applied mathematics, materials processing, basic electronics, robotics, industrial manufacturing, and other STEM (science, technology, engineering, and math)-focused…
4 Schools for WIE. Evaluation Report
ERIC Educational Resources Information Center
Erkut, Sumru; Marx, Fern
2005-01-01
With funding from the National Science Foundation, engineering schools at Northeastern University, Tufts University, Worcester Polytechnic Institute, and Boston University joined forces in an effort to increase the number of girls who develop an interest in science, technology, engineering, and mathematics (STEM) fields during the middle school…
Stepping Stones to Research: Providing Pipelines from Middle School through PhD
NASA Astrophysics Data System (ADS)
Noel-Storr, Jacob; Baum, S. A.; RIT Insight Lab SSR Team; Carlson CenterImaging Science Faculty, Chester F.
2014-01-01
We present a decade's worth of strategies designed to promote and provide "Stepping Stones to Research" to provide a realistic pipeline of educational opportunities, with multiple gateways and exit points, for students moving towards STEM careers along the "STEM pipeline". We also illustrate how the Stepping Stones are designed to incidentally co-inside with related external opportunities through which we can also guide and support our mentees on their paths. We present programs such as middle school family science programs, high school research opportunities, high school internships, undergraduate research pathways, research experiences for undergraduates, and other opportunities. We will highlight the presentations being made at this very meeting -- from the first presentation of a high school student, to a dissertation presentation of a PhD graduate -- that have benefited from this stepping stone principle. We also reflect on the essential nature of building a "researcher-trust", even as a young student, of advocates and mentors who can support the continuation of a scientific career.
In Brief: Revitalizing Earth science education
NASA Astrophysics Data System (ADS)
Showstack, Randy
2008-12-01
A 5-year, $3.9-million U.S. National Science Foundation Math Science Partnership grant to Michigan Technological University (MTU), in Houghton, aims to improve instruction in middle-school Earth and space science courses. The program will enable geoscience and education researchers to work with middle-school science teachers to test strategies designed to reform science, technology, engineering, and math (STEM) education. Project lead researcher Bill Rose said the project could be a template for improvement in STEM throughout the United States. Rose, one of seven MTU faculty members involved with the Michigan Institute for Teaching Excellence Program (MITEP), said the project is ``trying to do something constructive to attract more talented young people to advanced science, math, and technology.'' The project includes data collection and analysis overseen by an evaluation team from the Colorado School of Mines. Also participating in the project are scientists from Grand Valley State University, Allendale, Mich.; the Grand Rapids (Mich.) Area Pre-College Engineering Program; the American Geological Institute; and the U.S. National Park Service.
NASA Astrophysics Data System (ADS)
Quigley, Cassie F.; Herro, Dani
2016-06-01
In response to a desire to strengthen the economy, educational settings are emphasizing science, technology, engineering, and mathematics (STEM) curriculum and programs. Yet, because of the narrow approach to STEM, educational leaders continue to call for a more balanced approach to teaching and learning, which includes the arts, design, and humanities. This desire created space for science, technology, engineering, arts, and mathematics (STEAM) education, a transdisciplinary approach that focuses on problem-solving. STEAM-based curricula and STEAM-themed schools are appearing all over the globe. This growing national and global attention to STEAM provides an opportunity for teacher education to explore the ways in which teachers implement STEAM practices, examining the successes and challenges, and how teachers are beginning to make sense of this innovative teaching practice. The purpose of this paper is to examine the implementation of STEAM teaching practices in science and math middle school classrooms, in hopes to provide research-based evidence on this emerging topic to guide teacher educators.
The fishermen were right: experimental evidence for tributary refuge hypothesis during floods.
Koizumi, Itsuro; Kanazawa, Yukiyo; Tanaka, Yuuki
2013-05-01
Fishermen often anecdotally report an unexpected increase of fish caught in small tributary streams during floods, presumably due to refuge-seeking behavior from the main stem. From a population perspective, this implies the significance of refuge habitats and connectivity for population viability against natural disturbances. Despite the plausibility, however, surprisingly few studies have examined the tributary refuge hypothesis, mainly due to the difficulty in field survey during floods. Here, we made use of a large-scale controlled flood to assess whether fishes move into tributaries during flooding in the main stem. A planned water release from the Satsunai River Dam located on Hokkaido Island in Japan rapidly increased the main stem discharge by more than 20-fold. Before, during, and after flooding censuses in four tributaries provided evidence of the refuge-seeking behavior of fishes from the main stem. For example, more than 10 Dolly Varden char, a salmonid fish, were caught in a tributary during the flood, even though almost no individuals were captured before or after the flood. The fish responded immediately to the flooding, suggesting the need for studies during disturbances. In addition, the likelihood of refuge movements varied among tributaries, suggesting the importance of local environmental differences between tributary and the main stem habitats. This is the first study to experimentally confirm the tributary refuge hypothesis, and underscores the roles of habitat diversity and connectivity during disturbances, even though some habitats are not used during normal conditions.
Nagpal, Anjali; Kremer, Karlea L; Hamilton-Bruce, Monica A; Kaidonis, Xenia; Milton, Austin G; Levi, Christopher; Shi, Songtao; Carey, Leeanne; Hillier, Susan; Rose, Miranda; Zacest, Andrew; Takhar, Parabjit; Koblar, Simon A
2016-07-01
Stroke represents a significant global disease burden. As of 2015, there is no chemical or biological therapy proven to actively enhance neurological recovery during the chronic phase post-stroke. Globally, cell-based therapy in stroke is at the stage of clinical translation and may improve neurological function through various mechanisms such as neural replacement, neuroprotection, angiogenesis, immuno-modulation, and neuroplasticity. Preclinical evidence in a rodent model of middle cerebral artery ischemic stroke as reported in four independent studies indicates improvement in neurobehavioral function with adult human dental pulp stem cell therapy. Human adult dental pulp stem cells present an exciting potential therapeutic option for improving post-stroke disability. TOOTH (The Open study Of dental pulp stem cell Therapy in Humans) will investigate the use of autologous stem cell therapy for stroke survivors with chronic disability, with the following objectives: (a) determine the maximum tolerable dose of autologous dental pulp stem cell therapy; (b) define that dental pulp stem cell therapy at the maximum tolerable dose is safe and feasible in chronic stroke; and (c) estimate the parameters of efficacy required to design a future Phase 2/3 clinical trial. TOOTH is a Phase 1, open-label, single-blinded clinical trial with a pragmatic design that comprises three stages: Stage 1 will involve the selection of 27 participants with middle cerebral artery ischemic stroke and the commencement of autologous dental pulp stem cell isolation, growth, and testing in sequential cohorts (n = 3). Stage 2 will involve the transplantation of dental pulp stem cell in each cohort of participants with an ascending dose and subsequent observation for a 6-month period for any dental pulp stem cell-related adverse events. Stage 3 will investigate the neurosurgical intervention of the maximum tolerable dose of autologous dental pulp stem cell followed by 9 weeks of intensive task-specific rehabilitation. Advanced magnetic resonance and positron emission tomography neuro-imaging, and clinical assessment will be employed to probe any change afforded by stem cell therapy in combination with rehabilitation. Nine participants will step-wise progress in Stage 2 to a dose of up to 10 million dental pulp stem cell, employing a cumulative 3 + 3 statistical design with low starting stem cell dose and subsequent dose escalation, assuming that an acceptable probability of dose-limiting complications is between 1 in 6 (17%) and 1 in 3 (33%) of patients. In Stage 3, another 18 participants will receive an intracranial injection with the maximum tolerable dose of dental pulp stem cell. The primary outcomes to be measured are safety and feasibility of intracranial administration of autologous human adult DPSC in patients with chronic stroke and determination of the maximum tolerable dose in human subjects. Secondary outcomes include estimation of the measures of effectiveness required to design a future Phase 2/3 clinical trial. © 2016 World Stroke Organization.
Dang, Jian You; Pei, Xue Xia; Zhang, Ding Yi; Wang, Jiao Ai; Zhang, Jing; Wu, Xue Ping
2016-09-01
Through a three-year field trail, effects of deep plowing time during the fallow period on water storage of 0-200 cm soil before sowing, water consumption of growth period, and growth and development of wheat were investigated. Results demonstrated that soil water storage (SWS) of the fallow period was influenced by deep plowing time, precipitation, and rainfall distribution. With postponing the time of deep plowing in the fallow period, SWS was increased firstly, and then decreased. SWS with deep plowing in early or middle of August was 23.9-45.8 mm more than that with deep plowing in mid-July. It would benefit SWS when more precipitation occurred in the fallow period or more rainfall was distributed in August and September. Deep plowing at a proper time could facilitate SWS, N and P absorption of wheat, and the number of stems before winter and the spike number. The yield of wheat with deep plowing in early or middle August was 3.67%-18.2% higher than that with deep plowing in mid-July, and it was positively correlated with water storage of 0-200 cm soil during the fallow period and SWS of each soil layer during the wheat growth period. However, this correlation coefficient would be weakened by adequate rainfall in spring, the critical growing period for wheat. The time of deep plowing mainly affected the water consumption at soil layer of 60-140 cm during wheat growth. Under current farming conditions of south Shanxi, the increased grain yield of wheat could be achieved by combining the measures of high wheat stubble and wheat straw covering for holding soil water and deep plowing between the Beginning of Autumn (August 6th) and the Limit of Heat (August 21st) for promoting soil water penetration characteristics to improve the number of stems before winter and spike.
Drijkoningen, David; Leunissen, Inge; Caeyenberghs, Karen; Hoogkamer, Wouter; Sunaert, Stefan; Duysens, Jacques; Swinnen, Stephan P
2015-12-01
Many patients with traumatic brain injury (TBI) suffer from postural control impairments that can profoundly affect daily life. The cerebellum and brain stem are crucial for the neural control of posture and have been shown to be vulnerable to primary and secondary structural consequences of TBI. The aim of this study was to investigate whether morphometric differences in the brain stem and cerebellum can account for impairments in static and dynamic postural control in TBI. TBI patients (n = 18) and healthy controls (n = 30) completed three challenging postural control tasks on the EquiTest® system (Neurocom). Infratentorial grey matter (GM) and white matter (WM) volumes were analyzed with cerebellum-optimized voxel-based morphometry using the spatially unbiased infratentorial toolbox. Volume loss in TBI patients was revealed in global cerebellar GM, global infratentorial WM, middle cerebellar peduncles, pons and midbrain. In the TBI group and across both groups, lower postural control performance was associated with reduced GM volume in the vermal/paravermal regions of lobules I-IV, V and VI. Moreover, across all participants, worse postural control performance was associated with lower WM volume in the pons, medulla, midbrain, superior and middle cerebellar peduncles and cerebellum. This is the first study in TBI patients to demonstrate an association between postural impairments and reduced volume in specific infratentorial brain areas. Volumetric measures of the brain stem and cerebellum may be valuable prognostic markers of the chronic neural pathology, which complicates rehabilitation of postural control in TBI. © 2015 Wiley Periodicals, Inc.
Lavranos, T C; Mathis, J M; Latham, S E; Kalionis, B; Shay, J W; Rodgers, R J
1999-08-01
We have previously postulated that granulosa cells of developing follicles arise from a population of stem cells. Stem cells and cancer cells can divide indefinitely partly because they express telomerase. Telomerase is a ribonucleoprotein enzyme that repairs the ends of telomeres that otherwise shorten progressively upon each successive cell division. In this study we carried out cell cycle analyses and examined telomerase expression to examine our hypothesis. Preantral (60-100 microm) and small (1 mm) follicles, as well as granulosa cells from medium-sized (3 mm) and large (6-8 mm) follicles, were isolated. Cell cycle analyses and expression of Ki-67, a cell cycle-related protein, were undertaken on follicles of each size (n = 3) by flow cytometry; 12% to 16% of granulosa cells in all follicles were in the S phase, and less than 2% were in the G(2)/M phase. Telomerase activity (n = 3) was highest in the small preantral follicles, declining at the 1-mm stage and even further at the 3-mm stage. In situ hybridization histochemistry was carried out on bovine ovaries, and telomerase RNA was detected in the granulosa cells of growing follicles but not primordial follicles. Two major patterns of staining were observed in the membrana granulosa of antral follicles: staining in the middle and antral layers, and staining in the middle and basal layers. No staining was detected in oocytes. Our results strongly support our hypothesis that granulosa cells arise from a population of stem cells.
Wang, Qing-Wei; Qi, Lin; Zhou, Wangming; Liu, Cheng-Gang; Yu, Dapao; Dai, Limin
2018-01-01
The growth limitation hypothesis (GLH) and carbon limitation hypothesis (CLH) are two dominant explanations for treeline formation. The GLH proposes that low temperature drives the treeline through constraining C sinks more than C sources, and it predicts that non-structural carbohydrate (NSC) levels are static or increase with elevation. Although the GLH has received strong support globally for evergreen treelines, there is still no consensus for deciduous treelines, which experience great asynchrony between supply and demand throughout the year. We investigated growth and the growing-season C dynamics in a common deciduous species, Erman's birch (Betula ermanii), along an elevational gradient from the closed forest to the treeline on Changbai Mountain, Northeast China. Samples were collected from developing organs (leaves and twigs) and main storage organs (stems and roots) for NSC analysis. Tree growth decreased with increasing elevation, and NSC concentrations differed significantly among elevations, organs, and sampling times. In particular, NSC levels varied slightly during the growing season in leaves, peaked in the middle of the growing season in twigs and stems, and increased continuously throughout the growing season in roots. NSCs also tended to increase or vary slightly in developing organs but decreased significantly in mature organs with increasing elevation. The decrease in NSCs with elevation in main storage organs indicates support for the CLH, while the increasing or static trends in new developing organs indicate support for the GLH. Our results suggest that the growth limitation theory may be less applicable to deciduous species' growth than to that of evergreen species. © 2018 Botanical Society of America.
ERIC Educational Resources Information Center
Mathena, Traci Johnson
2000-01-01
Middle school teacher describes a framework that gives inexperienced, anxious writers the confidence to write. The process, called doing prompts, stems from analyzing prompts or writing assignments that outline the topic for a piece of writing. The process involves analyzing the prompt being called for, completing a graphic organizer, composing…
Program Development for Disadvantaged High-Ability Students
ERIC Educational Resources Information Center
Kim, Mihyeon; Cross, Jennifer; Cross, Tracy
2017-01-01
Examining lessons learned through 4 years of experience of hosting Camp Launch, a university-based residential science, technology, engineering, and mathematics (STEM) enrichment program for low-income, high-ability, middle school students, this article explores components of the program and offers suggestions for implementing programs that serve…
Nutrient-Chlorophyll Relationships in the Indian River Lagoon, Florida
The Indian River Lagoon is a highly diverse estuary located along Florida’s Atlantic coast. The system is made up of the main stem and two side-lagoons: the Banana River and Mosquito Lagoon. We segmented the main stem into three sections based on spatial trends in water quality ...
Nutrient-Chlorophyll Relationships in the Indian River Lagoon, Florida(SEERS)
The Indian River Lagoon is a highly diverse estuary located along Florida’s Atlantic coast. The system is made up of the main stem and two side-lagoons: the Banana River and Mosquito Lagoon. We segmented the main stem into three sections based on spatial trends in water quality ...
[Progress in stem cells and regenerative medicine].
Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi
2015-06-01
Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.
Understanding the gender gap: Social cognitive changes during an introductory stem course.
Hardin, Erin E; Longhurst, Melanie O
2016-03-01
Despite robust support for the basic theoretical model of social cognitive career theory (Lent, Brown, & Hackett, 1994) and predictions that, for example, increases (or declines) in self-efficacy would lead to subsequent increases (or declines) in interest, there has been surprisingly little longitudinal research that has directly examined the extent to which members of different groups (e.g., women and men) actually do experience changes in critical social-cognitive variables over time early in their curricula in the fields of science, technology, engineering, and mathematics (STEM). Knowing the extent to which such changes occur in typical introductory undergraduate courses is important for targeting interventions to increase persistence of underrepresented groups in STEM. We measured social-cognitive-career-theory-relevant variables near the middle and at the end of the 1st semester of a gateway introductory chemistry course and found that women had lower STEM self-efficacy, coping self-efficacy, and STEM interest than did men, even after controlling for actual course performance. Although there were no detrimental changes across the semester for women or men, men experienced a small but significant increase in their perceived support for pursuing a STEM degree, whereas women did not. (c) 2016 APA, all rights reserved).
[Genetic regulation of plant shoot stem cells].
Al'bert, E V; Ezhova, T A
2013-02-01
This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.
Induction of pluripotent stem cells transplantation therapy for ischemic stroke.
Jiang, Mei; Lv, Lei; Ji, Haifeng; Yang, Xuelian; Zhu, Wei; Cai, Liying; Gu, Xiaju; Chai, Changfeng; Huang, Shu; Sun, Jian; Dong, Qiang
2011-08-01
Stroke can cause permanent neurological damage, complications, and even death. However, there is no treatment exists to restore its lost function. Human embryonic stems transplantation therapy was a novel and potential therapeutic approach for stroke. However, as we have seen, the ethical controversy pertains to embryonic stem cell research. Human induced pluripotent stem cells (iPSCs) are the latest generation of stem cells that may be a solution to the controversy of using embryonic cells. In our study, we generated iPSCs from adult human fibroblasts by introduction of four defined transcription factors (Oct4, Sox2, Nanog, and Lin-28). And then, we investigated the efficacy of iPSCs transplantation therapy for stroke on the animal models of middle cerebral artery occlusion. Surprisingly, we found that transplanted iPSCs migrated to injured brain areas, and differentiated into neuron-like cells successfully. After 4-16 days iPSCs grafting, sensorimotor function of rats has been improved significantly. In one word, we may prove that iPSCs therapy in stroke to be an effective form of treatment.
The stem cell patent landscape as relevant to cancer vaccines.
Wang, Shyh-Jen
2011-10-01
Cancer vaccine targeting cancer stem cells is proposed to serve as a potent immunotherapy. Thus, it would be useful to examine the main trends in stem cell patenting activity as a guide for those seeking to develop such cancer vaccines. We found that a substantial number of stem cell patents were granted up to the end of 2010, including ~2000 issued in the US. Many of these have been filed since 2001, including 7,551 applications in the US. Stem cell development, as evidenced by the numbers of PubMed articles, has matured steadily in recent years. However, the other metrics, such as the number of patent applications, the technology-science linkage and the number of patent assignees, have been stagnant. Moreover, the ownership of stem cell patents is still quiet fragmented across multiple organizations, and the number of stem cell patent assignees from the business sector has not increased significantly. Academic and nonprofit institutions not only account for a large share of stem cell patents but also apply for patents continually. Based on this analysis, the strength of stem cell resources seems to remain stagnant in recent years due to the ban on government funding of embryonic stem cell research. Furthermore, the patent prosecution or technical barriers in the field of stem cells would be another main reason that the number of US-issued stem cell patents for each application have been in gradual decline since 2000. Therefore, we consider stem cell technology to still be under development.
Winston Churchill Memorial Trust Fellowship Report
ERIC Educational Resources Information Center
Bramsen, Neil
2014-01-01
In March and April 2014, the author travelled overseas on a 2013 Churchill Fellowship to study education programs that successfully engage and enthuse primary and middle school students in maths, engineering and science (MES) or science, technology, engineering and maths (STEM) learning in schools, universities and institutions in the United…
STEM Applications in Turkish Science High Schools
ERIC Educational Resources Information Center
Colakoglu, Mustafa Hilmi
2016-01-01
The idea of establishing Science High Schools in Turkey was discussed in a multilateral project at the beginning of 1963. The Ministry of National Education (MoNE), Ford Foundation, Middle East Technical University (METU), Ankara University, and International Development Agency (AID) participated in this project to establish these schools. In…
Improving Algebra Preparation: Implications from Research on Student Misconceptions and Difficulties
ERIC Educational Resources Information Center
Welder, Rachael M.
2012-01-01
Through historical and contemporary research, educators have identified widespread misconceptions and difficulties faced by students in learning algebra. Many of these universal issues stem from content addressed long before students take their first algebra course. Yet elementary and middle school teachers may not understand how the subtleties of…
Diversifying the STEM Pipeline
ERIC Educational Resources Information Center
Boelter, Christina; Link, Tanja C.; Perry, Brea L.; Leukefeld, Carl
2015-01-01
Middle school students from low-income and minority backgrounds (n = 166) were targeted to participate in a 2-year, intensive, hands-on science and technology intervention to increase their interest in biomedical and health sciences. Qualitative student responses collected during the 2nd year of participation revealed positive attitudes toward the…
Learn Better by Doing Study: Fourth-Year Results
ERIC Educational Resources Information Center
Moye, Johnny J.; Dugger, William E., Jr.; Starkweather, Kendall N.
2017-01-01
The purpose of the "Learn Better by Doing Study" was to determine the extent to which U.S. public elementary, middle, and high school students were doing hands-on activities in their science, technology, engineering, and mathematics (STEM) classrooms. The International Technology and Engineering Educators Association's (ITEEA's)…
Evaluation of the Alaska Native Science & Engineering Program (ANSEP). Research Report
ERIC Educational Resources Information Center
Bernstein, Hamutal; Martin, Carlos; Eyster, Lauren; Anderson, Theresa; Owen, Stephanie; Martin-Caughey, Amanda
2015-01-01
The Urban Institute conducted an implementation and participant-outcomes evaluation of the Alaska Native Science & Engineering Program (ANSEP). ANSEP is a multi-stage initiative designed to prepare and support Alaska Native students from middle school through graduate school to succeed in science, technology, engineering, and math (STEM)…
Parabolic Mirror: Focusing on Science, Technology, Engineering, and Math
ERIC Educational Resources Information Center
Smith, Karianne; Hughes, William
2013-01-01
In the fall of 2011, Park Forest Middle School (PFMS) students approached the STEM faculty with numerous questions regarding the popular television show Myth Busters, which detailed Greek mathematician, physicist, engineer, and inventor, Archimedes. Two episodes featured attempts to test historical accounts that Archimedes developed a death ray…
Designing across Ages: Multi-Agent-Based Models and Learning Electricity
ERIC Educational Resources Information Center
Sengupta, Pratim
2009-01-01
Electricity is regarded as one of the most challenging topics for students at all levels--middle school--college (Cohen, Eylon, & Ganiel, 1983; Belcher & Olbert, 2003; Eylon & Ganiel, 1990; Steinberg et al., 1985). Several researchers have suggested that naive misconceptions about electricity stem from a deep incommensurability (Slotta & Chi,…
The Middle Latency Response (MLR) and Steady State Evoked Potential (SSEP) in Neonates.
1985-05-01
diagnostic audiologic information will enhance habilitation efforts in prescribing hearing aids and designing appropriate language intervention strategies...auditory evoked brain stem response. A study of patients with sensory hearing loss. SCANDINAVIAN AUDIOLOGY 8: 67-70, 1979. Page 165 "- FILMED 10-85 DTIC * 4 N . . -. N
NASA Astrophysics Data System (ADS)
Delp, Matthew J.
This study utilized survey research to investigate how school districts within K-12 education select, implement, and evaluate Science, Technology, Engineering, and Mathematics (STEM) programs. Thirty school districts within the Math and Science Collaborative located in Western Pennsylvania participated in this research. In addition to characterizing the STEM programs of the participating school districts, this study also analyzed the alignment of these programs to the components of comprehensive STEM programs and critical approaches to substantiate STEM program implementation as stated in the literature (Augustine, 2005; Bybee, 2010a, 2010b; Carnevale et al., 2011; DeJarnette, 2010; Epstein & Miller, 2011b; Gardner et al., 1983; Hossain & Robinson, 2011, 2012; Kuenzi, 2008). Findings suggest that the primary goal for school districts, as it relates to STEM program implementation, is to influence students' interest and pursuit of STEM-related careers and degrees. In order to achieve this goal, results of this study indicate the focus of STEM program implementation occurs with the greatest frequency at the middle school (grades seven and eight) level, are developed as an adaptation to the curriculum, and are very diverse from one school district to the next. In addition, findings suggest that although school districts maintain they aim to promote careers and degrees in STEM, districts rely on traditional methods of evaluating STEM program implementation (i.e. standardized test scores) and do not track the longitudinal impact their STEM programs as they related to degrees and careers in STEM. Furthermore, results indicate district STEM programs are not aligned to the characteristics of comprehensive STEM programs as defined by the literature. In order to address the misalignment of school district goals and evaluation processes involved in STEM program implementation and the absence of the characteristics commensurate with comprehensive STEM programs, this study has created a framework to guide school districts in STEM program selection, implementation, and evaluation.
Push-To-Lock, Push-To-Release Mechanism
NASA Technical Reports Server (NTRS)
Lozano, Anselmo, Jr.
1991-01-01
Latch locked or unlocked with single motion of hand. No tools needed to operate it, and user easily opens or closes it with heavily gloved hand. When unlocked, stem free of main body. In locked state, dowel pins in main body hold stem. Latch equipped with lock and key so only authorized users operate it.
Index of surface-water stations in Texas, January 1984
Carrillo, E.R.; Buckner, H.D.
1984-01-01
This index shows the station number and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2 the 8-digit station number is abbreviated because of space limitation.
Index of surface-water stations in Texas, January 1985
Carrillo, E.R.; Buckner, H.D.; Rawson, Jack
1984-01-01
This index shows the station number -and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2, the 8-digit station number is abbreviated because of space limitation.
Index of surface-water stations in Texas, January 1987
Rawson, Jack; Carrillo, E.R.; Buckner, H.D.
1987-01-01
This index shows the station number and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2, the 8-digit station number is abbreviated because of space limitation.
Index of surface-water stations in Texas, January 1988
Rawson, Jack; Carrillo, E.R.; Buckner, H.D.
1988-01-01
This index shows the station number and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2, the 8-digit station number is abbreviated because of space limitation.
In Situ Activation of Penile Progenitor Cells With Low-Intensity Extracorporeal Shockwave Therapy.
Lin, Guiting; Reed-Maldonado, Amanda B; Wang, Bohan; Lee, Yung-Chin; Zhou, Jun; Lu, Zhihua; Wang, Guifang; Banie, Lia; Lue, Tom F
2017-04-01
We previously reported that progenitor cells, or stem cells, exist within penile tissue. We hypothesized that acoustic wave stimulation by low-intensity extracorporeal shockwave therapy (Li-ESWT) would activate local stem or progenitor cells within the penis, producing regenerative effects. To study the feasibility of in situ penile progenitor cell activation by Li-ESWT. We performed a cohort analysis of young and middle-age male Sprague-Dawley rats treated with 5-ethynyl-2'-deoxyuridine (EdU) pulse followed by Li-ESWT. In addition, Li-ESWT was applied to cultured Schwann cells and endothelial cells to study the molecular mechanism involved in cell proliferation. Thirty minutes before Li-ESWT, each rat received an intraperitoneal injection of EdU. Li-ESWT was applied to the penis at very low (0.02 mJ/mm 2 at 3 Hz for 300 pulses) or low (0.057 mJ/mm 2 at 3 Hz for 500 pulses) energy levels. The endothelial and Schwann cells were treated with very low energy (0.02 mJ/mm 2 at 3 Hz for 300 pulses) in vitro. At 48 hours or 1 week after Li-ESWT, penile tissues were harvested for histologic study to assess EdU + and Ki-67 + cells, and cell proliferation, Ki-67 expression, Erk1/2 phosphorylation, translocation, and angiogenesis were examined in cultured Schwann and endothelial cells after Li-ESWT. Li-ESWT significantly increased EdU + cells within penile erectile tissues (P < .01) at 48 hours and 1 week. There were more cells activated in young animals than in middle-age animals, and the effect depended on dosage. Most activated cells were localized within subtunical spaces. In vitro studies indicated that Li-ESWT stimulated cell proliferation through increased phosphorylation of Erk1/2. The present results provide a possible explanation for the clinical benefits seen with Li-ESWT. The main limitation of the present project was the short period of study and the animal model used. Li-ESWT could be less effective in improving erectile function in old animals because of the decreased number and quality of penile stem or progenitor cells associated with aging. Li-ESWT activation of local penile progenitor cells might be one of the mechanisms that contribute to the beneficial effects of shockwave treatment for erectile dysfunction, which represents a non-invasive alternative to exogenous stem cell therapy. Lin G, Reed-Maldonado AB, Wang B, et al. In Situ Activation of Penile Progenitor Cells With Low-Intensity Extracorporeal Shockwave Therapy. J Sex Med 2017;14:493-501. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Dirigent proteins and dirigent sites in lignifying tissues
NASA Technical Reports Server (NTRS)
Burlat, V.; Kwon, M.; Davin, L. B.; Lewis, N. G.
2001-01-01
Tissue-specific dirigent protein gene expression and associated dirigent (site) localization were examined in various organs of Forsythia intermedia using tissue printing, in situ mRNA hybridization and immunolabeling techniques, respectively. Dirigent protein gene expression was primarily noted in the undifferentiated cambial regions of stem sections, whereas dirigent protein sites were detected mainly in the vascular cambium and ray parenchyma cell initials. Immunolocalization also revealed cross-reactivity with particular regions of the lignified cell walls, these being coincident with the known sites of initiation of lignin deposition. These latter regions are considered to harbor contiguous arrays of dirigent (monomer binding) sites for initiation of lignin biopolymer assembly. Dirigent protein mRNA expression was also localized in the vascular regions of roots and petioles, whereas in leaves the dirigent sites were primarily associated with the palisade layers and the vascular bundle. That is, dirigent protein mediated lignan biosynthesis was initiated primarily in the cambium and ray cell initial regions of stems as well as in the leaf palisade layers, this being in accordance with the occurrence of the lignans for defense purposes. Within lignified secondary xylem cell walls, however, dirigent sites were primarily localized in the S(1) sublayer and compound middle lamella, these being coincident with previously established sites for initiation of macromolecular lignin biosynthesis. Once initiation occurs, lignification is proposed to continue through template polymerization.
Two-photon Photoactivation to Measure Histone Exchange Dynamics in Plant Root Cells.
Rosa, Stefanie; Shaw, Peter
2015-10-20
Chromatin-binding proteins play a crucial role in chromatin structure and gene expression. Direct binding of chromatin proteins both maintains and regulates transcriptional states. It is therefore important to study the binding properties of these proteins in vivo within the natural environment of the nucleus. Photobleaching, photoactivation and photoconversion (photoswitching) can provide a non-invasive experimental approach to study dynamic properties of living cells and organisms. We used photoactivation to determine exchange dynamics of histone H2B in plant stem cells of the root (Rosa et al. , 2014). The stem cells of the root are located in the middle of the tissue, which made it impossible to carry out photoactivation of sufficiently small and well-defined sub-cellular regions with conventional laser illumination in the confocal microscope, mainly because scattering and refraction effects within the root tissue dispersed the focal spot and caused photoactivation of too large a region. We therefore used 2-photon activation, which has much better inherent resolution of the illuminated region. This is because the activation depends on simultaneous absorption of two or more photons, which in turns depends on the square (or higher power) of the intensity-a much sharper peak. In this protocol we will describe the experimental procedure to perform two-photon photoactivation experiments and the corresponding image analysis. This protocol can be used for nuclear proteins tagged with photoactivable GFP (PA-GFP) expressed in root tissues.
A Middle Triassic stem-turtle and the evolution of the turtle body plan.
Schoch, Rainer R; Sues, Hans-Dieter
2015-07-30
The origin and early evolution of turtles have long been major contentious issues in vertebrate zoology. This is due to conflicting character evidence from molecules and morphology and a lack of transitional fossils from the critical time interval. The ∼220-million-year-old stem-turtle Odontochelys from China has a partly formed shell and many turtle-like features in its postcranial skeleton. Unlike the 214-million-year-old Proganochelys from Germany and Thailand, it retains marginal teeth and lacks a carapace. Odontochelys is separated by a large temporal gap from the ∼260-million-year-old Eunotosaurus from South Africa, which has been hypothesized as the earliest stem-turtle. Here we report a new reptile, Pappochelys, that is structurally and chronologically intermediate between Eunotosaurus and Odontochelys and dates from the Middle Triassic period (∼240 million years ago). The three taxa share anteroposteriorly broad trunk ribs that are T-shaped in cross-section and bear sculpturing, elongate dorsal vertebrae, and modified limb girdles. Pappochelys closely resembles Odontochelys in various features of the limb girdles. Unlike Odontochelys, it has a cuirass of robust paired gastralia in place of a plastron. Pappochelys provides new evidence that the plastron partly formed through serial fusion of gastralia. Its skull has small upper and ventrally open lower temporal fenestrae, supporting the hypothesis of diapsid affinities of turtles.
NASA Astrophysics Data System (ADS)
Hart, Quyen N.
2015-01-01
We present a successful model for organizing a small University-sponsored summer camp that integrates astronomy and physics content with other science disciplines and computer programming content. The aim of our science and technology camp is to engage middle school students in a wide array of critical thinking tasks and hands-on activities centered on science and technology. Additionally, our program seeks to increase and maintain STEM interest among children, particularly in under-represented populations (e.g., Hispanic, African-American, women, and lower socioeconomic individuals) with hopes of decreasing disparities in diversity across many STEM fields.During this four-day camp, organized and facilitated by faculty volunteers, activities rotated through many STEM modules, including optics, telescopes, circuit building, computer hardware, and programming. Specifically, we scaffold camp activities to build upon similar ideas and content if possible. Using knowledge and skills gained through the AAS Astronomy Ambassadors program, we were able to integrate several astronomy activities into the camp, leading students through engaging activities, and conduct educational research. We present best practices on piloting a similar program in a university environment, our efforts to connect the learning outcomes common across all the modules, specifically in astronomy and physics, outline future camp activities, and the survey results on the impact of camp activities on attitudes toward science, technology, and science careers.
Pérez de Los Ríos, Miriam; Moyà-Solà, Salvador; Alba, David M
2012-09-01
The internal (nasal and paranasal) cranial anatomy of the Middle Miocene (11.9 Ma [millions of years ago]) great ape Pierolapithecus catalaunicus (Hominidae: Dryopithecini) is described on the basis of computed-tomography scans of the holotype specimen (IPS21350), with particular emphasis on its phylogenetic implications. Pierolapithecus displays the following characters: an anteriorly-restricted maxillary sinus that posteriorly spreads towards the ethmoidal area (thus resembling the pongine condition), although being situated well above the molar roots (as in kenyapithecins, other dryopithecins and pongines); lack of frontal sinus (a synapomorphy of derived pongines, independently acquired by both cercopithecoids and hylobatids); posteriorly-situated turbinals (as in Pongo); anteriorly-projecting nasolacrimal canal (as in Pongo); and probably stepped nasal floor with non-overlapping premaxillary-maxillary contact (as in dryopithecines and stem hominoids, although it cannot be conclusively shown due to bone damage). Overall, Pierolapithecus displays a mosaic of primitive hominid and derived pongine features that are inconsistent with this taxon being a hominine (as previously suggested). Two alternative phylogenetic interpretations are possible: Pierolapithecus may be a stem member of the Hominidae as previously suggested in its original description, or alternatively this taxon may be a stem member of the Ponginae s.l. (with the European dryopithecines being the sister taxon to the Asian pongines). Copyright © 2012 Elsevier Ltd. All rights reserved.
Chen, Jian; Wang, Zhang-wei; Zhang, Xiao-shan; Qin, Pu-feng; Lu, Hai-jun
2015-08-01
In situ research was conducted on the response of mercury enrichment in rice organs to elevated gaseous elemental mercury (GEM) with open-top chambers (OTCs) fumigation experiment and soil Hg enriched experiment. The results showed that Hg concentrations in roots were generally correlated with soil Hg concentrations (R = 0.9988, P < 0.05) but insignificantly correlated with air Hg concentrations (P > 0.05), indicating that Hg in rice roots was mainly from soil. Hg concentrations in stems increased linearly (R(B) = 0.9646, R(U) = 0.9831, P < 0.05) with elevated GEM, and Hg concentrations in upper stems were usually higher than those in bottom stems in OTCs experiment. Hg concentrations in bottom stems were generally correlated with soil Hg concentrations (R = 0.9901, P < 0.05) and second-order polynomial (R = 0.9989, P < 0.05) was fitted for Hg concentrations in upper stems to soil Hg concentrations, and Hg concentrations in bottom stems were usually higher than those in upper stems in soil Hg enriched experiment, indicating the combining impact of Hg from air and soil on the accumulation of mercury in stems. Hg concentrations in foliage were significantly correlated (P < 0.05) with air Hg and linearly correlated with soil Hg (R = 0.9983, P = 0.0585), implying that mercury in foliage was mainly from air and some of Hg in root from soil was transferred to foliage through stem. Based on the function in these filed experiments, it was estimated that at least 60%-94% and 56%-77% of mercury in foliage and upper-stem of rice was from the atmosphere respectively, and yet only 8%-56% of mercury in bottom-stem was attributed to air. Therefore, mercury in rice aboveground biomass was mainly from the atmosphere, and these results will provide theoretical basis for the regional atmospheric mercury budgets and the model of mercury cycling.
Tajiri, Naoki; Lee, Jea Young; Acosta, Sandra; Sanberg, Paul R; Borlongan, Cesar V
2016-01-01
Blood-brain barrier (BBB) permeabilizers, such as mannitol, can facilitate peripherally delivered stem cells to exert therapeutic benefits on the stroke brain. Although this BBB permeation-aided stem cell therapy has been demonstrated in the acute stage of stroke, such BBB permeation in the chronic stage of the disease remains to be examined. Adult Sprague-Dawley rats initially received sham surgery or experimental stroke via the 1-h middle cerebral artery occlusion (MCAo) model. At 1 month after the MCAo surgery, stroke animals were randomly assigned to receive human umbilical cord stem cells only (2 million viable cells), mannitol only (1.1 mol/L mannitol at 4°C), combined human umbilical cord stem cells (200,000 viable cells) and mannitol (1.1 mol/L mannitol at 4°C), and vehicle (phosphate-buffered saline) only. Stroke animals that received human umbilical cord blood cells alone or combined human umbilical cord stem cells and mannitol exhibited significantly improved motor performance and significantly better brain cell survival in the peri-infarct area compared to stroke animals that received vehicle or mannitol alone, with mannitol treatment reducing the stem cell dose necessary to afford functional outcomes. Enhanced neurogenesis in the subventricular zone accompanied the combined treatment of human umbilical cord stem cells and mannitol. We showed that BBB permeation facilitates the therapeutic effects of a low dose of peripherally transplanted stem cells to effectively cause functional improvement and increase neurogenesis in chronic stroke.
Welander, Margareta; Geier, Thomas; Smolka, Anders; Ahlman, Annelie; Fan, Jing; Zhu, Li-Hua
2014-02-01
Adventitious root (AR) formation is indispensable for vegetative propagation, but difficult to achieve in many crops. Understanding its molecular mechanisms is thus important for such species. Here we aimed at developing a rooting protocol for direct AR formation in stems, locating cellular AR origins in stems and exploring molecular differences underlying adventitious rooting in hypocotyls and stems. In-vitro-grown hypocotyls or stems of wild-type and transgenic ecotype Columbia (Col-0) of Arabidopsis thaliana were rooted on rooting media. Anatomy of AR formation, qRT-PCR of some rooting-related genes and in situ GUS expression were carried out during rooting from hypocotyls and stems. We developed a rooting protocol for AR formation in stems and traced back root origins in stems by anatomical and in situ expression studies. Unlike rooting in hypocotyls, rooting in stems was slower, and AR origins were mainly from lateral parenchyma of vascular bundles and neighboring starch sheath cells as well as, to a lesser extent, from phloem cap and xylem parenchyma. Transcript levels of GH3-3, LBD16, LBD29, and LRP1 in hypocotyls and stems were similar, but transcript accumulation was delayed in stems. In situ expression signals of DR5::GUS, LBD16::GUS, LBD29::GUS, and rolB::GUS reporters in stems mainly occurred at the root initiation sites, suggesting their involvement in AR formation. We have developed an efficient rooting protocol using half-strength Lepoivre medium for studying AR formation in stems, traced back the cellular AR origins in stems, and correlated expression of rooting-related genes with root initiation sites.
Cathodoluminescence in the scanning transmission electron microscope.
Kociak, M; Zagonel, L F
2017-05-01
Cathodoluminescence (CL) is a powerful tool for the investigation of optical properties of materials. In recent years, its combination with scanning transmission electron microscopy (STEM) has demonstrated great success in unveiling new physics in the field of plasmonics and quantum emitters. Most of these results were not imaginable even twenty years ago, due to conceptual and technical limitations. The purpose of this review is to present the recent advances that broke these limitations, and the new possibilities offered by the modern STEM-CL technique. We first introduce the different STEM-CL operating modes and the technical specificities in STEM-CL instrumentation. Two main classes of optical excitations, namely the coherent one (typically plasmons) and the incoherent one (typically light emission from quantum emitters) are investigated with STEM-CL. For these two main classes, we describe both the physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments. We then compare STEM-CL with its better known sister techniques: scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy. We finish by comprehensively reviewing recent STEM-CL applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Cathodoluminescence in the scanning transmission electron microscope.
Kociak, M; Zagonel, L F
2016-12-19
Cathodoluminescence (CL) is a powerful tool for the investigation of optical properties of materials. In recent years, its combination with scanning transmission electron microscopy (STEM) has demonstrated great success in unveiling new physics in the field of plasmonics and quantum emitters. Most of these results were not imaginable even twenty years ago, due to conceptual and technical limitations. The purpose of this review is to present the recent advances that broke these limitations, and the new possibilities offered by the modern STEM-CL technique. We first introduce the different STEM-CL operating modes and the technical specificities in STEM-CL instrumentation. Two main classes of optical excitations, namely the coherent one (typically plasmons) and the incoherent one (typically light emission from quantum emitters) are investigated with STEM-CL. For these two main classes, we describe both the physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments. We then compare STEM-CL with its better known sister techniques: scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy. We finish by comprehensively reviewing recent STEM-CL applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Volatile Constituents of Three Piper Species from Vietnam.
Hieua, Le D; Hoic, Tran M; Thangda, Tran D; Ogunwande, Isiaka A
2015-11-01
The chemical compositions of the essential oils obtained by hydrodistillation of three Piper plants grown in Vietnam are reported. The analysis was achieved by means of gas chromatography with flame ionization detection (GC-FID) and gas chromatography coupled with mass spectrometry (GC-MS). The main constituents of the leaf oil of Piper majusculum Blume were β-caryophyllene (20.7%), germacrene D (18.6%) and β-elemene (11.3%). The quantitatively significant compounds of the volatile oils of P. harmandii C. DC were sabinene (leaves, 14.5%; stems, 16.2%), benzyl benzoate (leaves, 20.0%; stems, 29.40%) and benzyl salicylate (leaves, 14.1%; stems, 24.3%). Also, α-cadinol (17.0%) was identified in large proportion in the leaf oil. However, sabinene (leaves, 17.9%; stems, 13.5%), benzyl benzoate (leaves, 20.5%; stems, 32.5%) and β-eudesmol (leaves, 13.8%; stems, 8.4%) were the main constituents of P. brevicaule C. DC. This is the first report on the volatile constituents of both P. harmandii and P. brevicaule.
Aval, Sedigheh Fekri; Lotfi, Hajie; Sheervalilou, Roghayeh; Zarghami, Nosratollah
2017-07-01
Two distinguishing characteristics of stem cells, their continuous division in the undifferentiated state and growth into any cell types, are orchestrated by a number of cell signaling pathways. These pathways act as a niche factor in controlling variety of stem cells. The core stem cell signaling pathways include Wingless-type (Wnt), Hedgehog (HH), and Notch. Additionally, they critically regulate the self-renewal and survival of cancer stem cells. Conversely, stem cells' main properties, lineage commitment and stemness, are tightly controlled by epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulatory events. MicroRNAs (miRNAs) are cellular switches that modulate stem cells outcomes in response to diverse extracellular signals. Numerous scientific evidences implicating miRNAs in major signal transduction pathways highlight new crosstalks of cellular processes. Aberrant signaling pathways and miRNAs levels result in developmental defects and diverse human pathologies. This review discusses the crosstalk between the components of main signaling networks and the miRNA machinery, which plays a role in the context of stem cells development and provides a set of examples to illustrate the extensive relevance of potential novel therapeutic targets. Copyright © 2017. Published by Elsevier Masson SAS.
Huang, Qi; Lv, Xin; He, Yushuang; Wei, Xing; Ma, Meigang; Liao, Yuhan; Qin, Chao; Wu, Yuan
2017-12-01
Patients with epilepsy (PWE) are more likely to suffer from migraine attack, and aberrant white matter (WM) organization may be the mechanism underlying this phenomenon. This study aimed to use diffusion tensor imaging (DTI) technique to quantify WM structural differences in PWE with interictal migraine. Diffusion tensor imaging data were acquired in 13 PWE with migraine and 12 PWE without migraine. Diffusion metrics were analyzed using tract-atlas-based spatial statistics analysis. Atlas-based and tract-based spatial statistical analyses were conducted for robustness analysis. Correlation was explored between altered DTI metrics and clinical parameters. The main results are as follows: (i) Axonal damage plays a key role in PWE with interictal migraine. (ii) Significant diffusing alterations included higher fractional anisotropy (FA) in the fornix, higher mean diffusivity (MD) in the middle cerebellar peduncle (CP), left superior CP, and right uncinate fasciculus, and higher axial diffusivity (AD) in the middle CP and right medial lemniscus. (iii) Diffusion tensor imaging metrics has the tendency of correlation with seizure/migraine type and duration. Results indicate that characteristic structural impairments exist in PWE with interictal migraine. Epilepsy may contribute to migraine by altering WMs in the brain stem. White matter tracts in the fornix and right uncinate fasciculus also mediate migraine after epilepsy. This finding may improve our understanding of the pathological mechanisms underlying migraine attack after epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.
Jaeger, Kristin L.; Curran, Christopher A.; Anderson, Scott W.; Morris, Scott T.; Moran, Patrick W.; Reams, Katherine A.
2017-11-01
The Sauk River is a federally designated Wild and Scenic River that drains a relatively undisturbed landscape along the western slope of the North Cascade Mountain Range, Washington, which includes the glaciated volcano, Glacier Peak. Naturally high sediment loads characteristic of basins draining volcanoes like Glacier Peak make the Sauk River a dominant contributor of sediment to the downstream main stem river, the Skagit River. Additionally, the Sauk River serves as important spawning and rearing habitat for several salmonid species in the greater Skagit River system. Because of the importance of sediment to morphology, flow-conveyance, and ecosystem condition, there is interest in understanding the magnitude and timing of suspended sediment and turbidity from the Sauk River system and its principal tributaries, the White Chuck and Suiattle Rivers, to the Skagit River.Suspended-sediment measurements, turbidity data, and water temperature data were collected at two U.S. Geological Survey streamgages in the upper and middle reaches of the Sauk River over a 4-year period extending from October 2011 to September 2015, and at a downstream location in the lower river for a 5-year period extending from October 2011 to September 2016. Over the collective 5-year study period, mean annual suspended-sediment loads at the three streamgages on the upper, middle, and lower Sauk River streamgages were 94,200 metric tons (t), 203,000 t, and 940,000 t streamgages, respectively. Fine (smaller than 0.0625 millimeter) total suspended-sediment load averaged 49 percent at the upper Sauk River streamgage, 42 percent at the middle Sauk River streamgage, and 34 percent at the lower Sauk River streamgage.
Chemical quality of surface waters in the Brazos River basin in Texas
Irelan, Burdge; Mendieta, H.B.
1964-01-01
The quality of water in the lower main stem can be improved by control and disposal of brines in the upper basin. Also, the maximum concentrations in the water of the lower main stem can be lowered by dilution with water stored in reservoirs on tributaries that yield water of good quality.
R.G. Bramblett; M.D. Bryant; B.E. Wright; R.G. White
2002-01-01
The movement of juvenile salmonids between small tributaries and main-stem habitats in southeast Alaska watersheds is poorly understood. We observed movements of steelhead Oncorhynchus mykiss, coho salmon O. kisutch, and Dolly Varden Salvelinus malma between mainstem and tributary habitats at weirs located...
Predicting College Readiness in STEM: A Longitudinal Study of Iowa Students
NASA Astrophysics Data System (ADS)
Rickels, Heather Anne
The demand for STEM college graduates is increasing. However, recent studies show there are not enough STEM majors to fulfill this need. This deficiency can be partially attributed to a gender discrepancy in the number of female STEM graduates and to the high rate of attrition of STEM majors. As STEM attrition has been associated with students being unprepared for STEM coursework, it is important to understand how STEM graduates change in achievement levels from middle school through high school and to have accurate readiness indicators for first-year STEM coursework. This study aimed to address these issues by comparing the achievement growth of STEM majors to non-STEM majors by gender in Science, Math, and Reading from Grade 6 to Grade 11 through latent growth models (LGMs). Then STEM Readiness Benchmarks were established in Science and Math on the Iowas (IAs) for typical first-year STEM courses and validity evidence was provided for the benchmarks. Results from the LGM analyses indicated that STEM graduates start at higher achievement levels in Grade 6 and maintain higher achievement levels through Grade 11 in all subjects. In addition, gender differences were examined. The findings indicate that students with high achievement levels self-select as STEM majors, regardless of gender. In addition, they suggest that students who are not on-track for a STEM degree may need to begin remediation prior to high school. Results from the benchmark analyses indicate that STEM coursework is more demanding and that students need to be better prepared academically in science and math if planning to pursue a STEM degree. In addition, the STEM Readiness Benchmarks were more accurate in predicting success in STEM courses than if general college readiness benchmarks were utilized. Also, students who met the STEM Readiness Benchmarks were more likely to graduate with a STEM degree. This study provides valuable information on STEM readiness to students, educators, and college admissions officers. Findings from this study can be used to better understand the level of academic achievement necessary to be successful as a STEM major and to provide guidance for students considering STEM majors in college. If students are being encouraged to purse STEM majors, it is important they have accurate information regarding their chances of success in STEM coursework.
Teng, Hong Mei; Fang, Min Feng; Hu, Zheng Hai
2009-02-01
Anatomical, histochemical and phytochemistry methods were used to investigate the structure of vegetative organs, and saponins localization and dynamic changes in Polygala sibirica L. The root consisted of developed periderm and secondary vascular. The secondary phloem was thick, and mainly composed of parenchyma. There were well-developed vessels and fibers in the secondary xylem. The stem was composed of epidermis, cortex and vascular bundle. The ring of sclerenchymatous cells lied between cortex and phloem might be the apoplastic protective screen which could protect the stem from drought. The leaf was bifacial one. The root and stem possessed characteristics adapting to arid environment. Histochemical localization results showed that saponins distributed in secondary phloem and phelloderm of root, in epidermis, cortex and phloem of stem, mainly in mesophyll of leaf. It displayed that saponins accumulated mainly in parenchyma cells of vegetative organs, among of which, the secondary phloem was the main storage site. The HPLC results also showed that the saponins accumulated in all the vegetative organs of Polygala sibirica L., with higher content in roots and lower content in the aerial part that included stems and leaves. The study indicated the aerial part of Polygala sibirica L. also had medicinal value. The saponins content had dynamic variance at the developmental stage, the crude drug should be gathered at period from April to May.
Scientific institutions and effective governance: a case study of Chinese stem cell research.
Zhang, Joy Yueyue
2011-06-01
In terms of stem cell research, China appears both as a "powerhouse" armed with state-of-the-art facilities, internationally trained personnel and permissive regulation and as a "bit player," with its capability for conducting high quality research still in question. The gap between China's assiduous endeavors and the observed outcome is due to a number of factors. Based on interviews with 48 key stakeholders active in Chinese stem cell research, this article examines how the structure of scientific institutions has affected effective governance in China. It is demonstrated that despite China's recent efforts to attract highly competent researchers and to launch new regulatory initiatives, the effects of these attempts have been diminished by an absence of middle-layer positions within research teams and by the uncoordinated administrative structures among regulatory bodies.
Another Path to Belonging: A Case Study of Middle School Students' Perspectives
ERIC Educational Resources Information Center
Green, Marissa; Emery, Alyssa; Sanders, Megan; Anderman, Lynley H.
2016-01-01
This qualitative study explored students' experiences in a small, early-college secondary school in the United States that intentionally aims to create a culture promoting accelerated academic achievement, particularly in the areas of science, technology, engineering, and math (STEM). Past research in the fields of both educational and…
ERIC Educational Resources Information Center
Bernstein, Hamutal; Martin, Carlos; Eyster, Lauren; Anderson, Theresa; Owen, Stephanie; Martin-Caughey, Amanda
2015-01-01
The Urban Institute conducted an implementation and participant-outcomes evaluation of the Alaska Native Science & Engineering Program (ANSEP). ANSEP is a multi-stage initiative designed to prepare and support Alaska Native students from middle school through graduate school to succeed in science, technology, engineering, and math (STEM)…
DOT National Transportation Integrated Search
2015-05-05
Key outcomes or other achievements - This project highlighted the importance of math and science concepts within three of the six STEM-related career clusters as defined by the Mississippi Department of Education: Agriculture, Food and Natural Resour...
Higher Education Access and Equality among Ethnic Minorities in China
ERIC Educational Resources Information Center
Zhu, Zhiyong
2010-01-01
Market reform, financial decentralization, and economic globalization in recent years have greatly accentuated China's social and regional inequalities. These inequalities stem from many factors, including the rise of an urban middle class, a change in the status of women, a resurgence of ethnic identities, an increase in rural-to-urban migration,…
Empowering Girls with Chemistry, Exercise and Physical Activity
ERIC Educational Resources Information Center
Clapham, Emily D.; Ciccomascolo, Lori E.; Clapham, Andrew J.
2015-01-01
Research suggests that a girl's career interests in the areas of science, technology, engineering and mathematics (STEM) declines between grades 6 and 8. Similarly, in middle school, there is a decrease in physical activity among girls. Researchers at the University of Rhode Island (URI) conducted a chemistry-based science camp that took place…
STEM Integration in Middle School Life Science: Student Learning and Attitudes
ERIC Educational Resources Information Center
Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario
2016-01-01
In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts…
Learn Better by Doing Study--Third-Year Results
ERIC Educational Resources Information Center
Moye, Johnny; Dugger, William E., Jr.; Starkweather, Kendall N.
2016-01-01
The purpose of the "Learn Better by Doing" study is to determine the extent to which U.S. public school students are doing hands-on activities in their classrooms. The study asks elementary and secondary (middle and high school) science, technology, engineering, and mathematics (STEM) teachers to respond to 13 statements concerning…
ERIC Educational Resources Information Center
Zhou, Ninger; Pereira, Nielsen L.; Tarun, Thomas George; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik
2017-01-01
The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design…
Beyond the Four Walls: Examining the Use of Authentic Learning Modules
ERIC Educational Resources Information Center
Jagielski, Donna Marie
2016-01-01
While attempting to provide real world experiences in STEM, educators face numerous challenges including adhering to curriculum requirements and working with potentially limited resources. The purpose of this action research study was to examine how the addition of authentic learning modules to the existing University of Arizona Middle School…
Park Forest Middle School STEM Education Fair 2010
ERIC Educational Resources Information Center
Hughes, Bill
2010-01-01
Innovations from the United States have often led the world to new discoveries and solutions to complex problems. However, there are alarming indications that the United States is falling behind other countries in the ability to apply science, technology, engineering, and math to complex problems facing our world. In order for the country to…
Designing Technology Activities that Teach Mathematics
ERIC Educational Resources Information Center
Silk, Eli M.; Higashi, Ross; Shoop, Robin; Schunn, Christian D.
2010-01-01
Over the past three years, the authors have conducted research in middle and high school classrooms in an effort to improve the effectiveness of robotics to teach science, technology, engineering, and mathematics (STEM) education--their focus has been on math. The authors have found that subtle changes in the design and setup of the lesson make a…
The Importance of Early Attitudes toward Mathematics and Science
ERIC Educational Resources Information Center
Ing, Marsh; Nylund-Gibson, Karen
2017-01-01
Background/Context: Given the importance of increasing student participation in science, technology, engineering, and math (STEM), there is a need to understand how factors such as student's attitudes toward math and science in middle and high school are linked to their later college and career choices. Purpose/Objective/Research Question/Focus of…
Middle Schoolers and the Blues
ERIC Educational Resources Information Center
Harris, Renard B.
2004-01-01
American culture stems from a multitude of the diverse perspectives, customs, and habits of the vast groups that have made the United States their home. This nation's complexity of diverse cultures and its ability to strive for common values seem almost over-whelming. Nonetheless, from the cultures of many, one culture can emerge. Through sharing…
Marketing Strategy and Implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report documents the preparation of materials for the marketing campaign that has been designed for middle and high school students in New Mexico to increase interest in participation in national security careers at the National Nuclear Security Administration. The materials and the marketing campaign build on the research that was previously completed, as well as the focus groups that were conducted. This work is a part of the National Nuclear Security Preparedness Project (NSPP). Previous research included outcome analysis to determine appropriate marketing strategies. The analysis was based upon focus groups with middle school and high school students, studentmore » interactions, and surveys completed by students to understand and gauge student interest in Science, Technology, Engineering, and Math (STEM) subjects, interest in careers at NNSA, future job considerations, and student desire to pursue post-secondary education. Further, through the focus groups, students were asked to attend a presentation on NNSA job opportunities and employee requirements. The feedback received from the students was utilized to develop the focus and components of a marketing campaign divided into DISCO (Discovering Intelligence and Security Career Opportunities) for the middle school age group and DISCO…..Your Way! for high school age groups. Both campaigns have an intertwined message that focuses on the education of students in the various national security career opportunities at NNSA using the STEM concepts and the notion that almost any career they can think of has a fit within NNSA. Further, a special emphasis has been placed on the importance of obtaining a national security clearance when working at NNSA and the steps that will need to be taken during middle school, high school, and college to be allowed this opportunity.« less
Antidote: Civic Responsibility. Maine Law.
ERIC Educational Resources Information Center
Phi Alpha Delta Law Fraternity International, Washington, DC.
Designed for middle school through high school students, this unit contains eight lesson plans that focus on Maine state law. The state lessons correspond to lessons in the volume, "Antidote: Civic Responsibility. Drug Avoidance Lessons for Middle School & High School Students." Developed to be presented by educators, law student, or…
Buteler, Micaela; Peterson, Robert K D; Hofland, Megan L; Weaver, David K
2015-12-01
This study investigated the dynamics of parasitism, host plant resistance, pathogens, and predation on the demography of wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), developing in susceptible (hollow stem) and resistant (solid stem) wheat hosts. This study is also the first to investigate the prevalence and impact of cannibalism on wheat stem sawfly mortality. Wheat stem sawflies were sampled in two commercial wheat fields over 4 yr from the egg stage through adult emergence, and multiple decrement life tables were constructed and analyzed. Cannibalism, host plant resistance, or unknown factors were the most prevalent factors causing egg mortality. Summer mortality of prediapause larvae ranged from 28 to 84%, mainly due to parasitism by Bracon cephi (Gahan) and Bracon lissogaster Muesebeck, cannibalism, and host plant resistance. Winter mortality ranged from 6 to 54% of the overwintering larvae, mainly due to unknown factors or pathogens. Cannibalism is a major cause of irreplaceable mortality because it is absolute, with only a single survivor in every multiple infested stem. Subsequent to obligate cannibalism, mortality of feeding larvae due to host plant resistance was lower in hollow stem wheat than in solid stem wheat. Mortality from host plant resistance was largely irreplaceable. Irreplaceable mortality due to parasitoids was greater in hollow stem wheat than in solid stem wheat. Host plant resistance due to stem solidness and parasitism in hollow stems cause substantial mortality in populations of actively feeding larvae responsible for all crop losses. Therefore, enhancing these mortality factors is vital to effective integrated pest management of wheat stem sawfly. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Rothwell, Jonathan
2013-01-01
Workers in STEM (science, technology, engineering, and math) fields play a direct role in driving economic growth. Yet, because of how the STEM economy has been defined, policymakers have mainly focused on supporting workers with at least a bachelor's (BA) degree, overlooking a strong potential workforce of those with less than a BA. This report…
Changing the Face of STEM with Stormwater Research
ERIC Educational Resources Information Center
Musavi, Mohamad; Friess, Wilhelm A.; James, Cary; Isherwood, Jennifer C.
2018-01-01
Background: The University of Maine Stormwater Management and Research Team (SMART) program began in 2014 with the goal of creating a diverse science-technology-engineering-math (STEM) pathway with community water research. The program engages female and underrepresented minority high school students in locally relevant STEM research. It focuses…
Hansbarger, Jeff L.; Petty, J. Todd; Mazik, Patricia M.
2008-01-01
Brook trout (Salvelinus fontinalis) habitat restoration is needed across a range of stream sizes; however, studies quantifying brook trout habitat preferences in streams of differing sizes are rare. We used radio-telemetry to quantify adult brook trout microhabitat use in a central Appalachian watershed, the upper Shavers Fork of the Cheat River in eastern West Virginia. Our objectives were to: 1) quantify non-random microhabitat use by adult brook trout in the Shavers Fork main stem (drainage area = 32 km2) and an adjacent tributary, Rocky Run (drainage area = 7 km2); and 2) construct stream-specific habitat suitability curves (HSCs) for four important microhabitat variables (depth, average current velocity, maximum current velocity within one meter, and distance to cover). Brook trout used a subset of available microhabitats in both the main stem and Rocky Run: trout tended to occupy microhabitats that were deeper, higher velocity, and closer to cover than expected by chance alone. Although specific microhabitat values differed between the main stem and tributary populations, the overall patterns in brook trout microhabitat use were consistent regardless of stream size. Habitat suitability curves were constructed based on brook trout microhabitat use and will be used to design and monitor the effectiveness of future habitat restoration efforts in the Shavers Fork watershed. Our results suggest that habitat enhancement projects that increase the availability of deep, high velocity microhabitats adjacent to cover would benefit brook trout in both small tributaries and larger river main stems.
Petty, J. Todd; Thorne, David; Huntsman, Brock M.; Mazik, Patricia M.
2014-01-01
We tested the hypothesis that brook trout growth rates are controlled by a complex interaction of food availability, water temperature, and competitor density. We quantified trout diet, growth, and consumption in small headwater tributaries characterized as cold with low food and high trout density, larger tributaries characterized as cold with moderate food and moderate trout density, and large main stems characterized as warm with high food and low trout density. Brook trout consumption was highest in the main stem where diets shifted from insects in headwaters to fishes and crayfish in larger streams. Despite high water temperatures, trout growth rates also were consistently highest in the main stem, likely due to competitively dominant trout monopolizing thermal refugia. Temporal changes in trout density had a direct negative effect on brook trout growth rates. Our results suggest that competition for food constrains brook trout growth in small streams, but access to thermal refugia in productive main stem habitats enables dominant trout to supplement growth at a watershed scale. Brook trout conservation in this region should seek to relieve the “temperature-productivity squeeze,” whereby brook trout productivity is constrained by access to habitats that provide both suitable water temperature and sufficient prey.
When I grow up: the relationship of science learning activation to STEM career preferences
NASA Astrophysics Data System (ADS)
Dorph, Rena; Bathgate, Meghan E.; Schunn, Christian D.; Cannady, Matthew A.
2018-06-01
This paper proposes three new measures of components STEM career preferences (affinity, certainty, and goal), and then explores which dimensions of science learning activation (fascination, values, competency belief, and scientific sensemaking) are predictive of STEM career preferences. Drawn from the ALES14 dataset, a sample of 2938 sixth and eighth grade middle-school students from 11 schools in two purposefully selected diverse areas (Western Pennsylvania & the Bay Area of California) was used for the analyses presented in this paper. These schools were chosen to represent socio-economic and ethnic diversity. Findings indicate that, overall, youth who are activated towards science learning are more likely to have affinity towards STEM careers, certainty about their future career goals, and have identified a specific STEM career goal. However, different dimensions of science learning activation are more strongly correlated with different aspects career preference across different STEM career foci (e.g. science, engineering, technology, health, etc.). Gender, age, minority status, and home resources also have explanatory power. While many results are consistent with prior research, there are also novel results that offer important fodder for future research. Critically, our strategy of measuring affinity towards the specific disciplines that make up STEM, measuring STEM and health career goals separately, and looking at career affinity and career goals separately, offers interesting results and underscores the value of disentangling the conceptual melting pot of what has previously been known as 'career interest.' Study findings also have implications for design of science learning opportunities for youth.
Education and outreach using the falcon telescope network
NASA Astrophysics Data System (ADS)
Gresham, Kimberlee C.; Palma, Christopher; Polsgrove, Daniel E.; Chun, Francis K.; Della-Rose, Devin J.; Tippets, Roger D.
2016-12-01
The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness Research in the Department of Physics at the United States Air Force Academy (USAFA). Consisting of commercially available equipment, the FTN is a collaborative effort between USAFA and other educational institutions ranging from two- and four-year colleges to major research universities. USAFA provides the equipment (e.g. telescope, mount, camera, filter wheel, dome, weather station, computers and storage devices) while the educational partners provide the building and infrastructure to support an observatory. The user base includes USAFA along with K-12 and higher education faculty and students. The diversity of the users implies a wide variety of observing interests, and thus the FTN collects images on diverse objects, including satellites, galactic and extragalactic objects, and objects popular for education and public outreach. The raw imagery, all in the public domain, will be accessible to FTN partners and will be archived at USAFA. Currently, there are five Falcon telescopes installed, two in Colorado and one each in Pennsylvania, Chile, and Australia. These five telescopes are in various stages of operational capability but all are remotely operable via a remote desktop application. The FTN team has conducted STEM First Light Projects for three of the U.S. observatories, soliciting proposals from middle and high school students and teachers that suggest and then become what is observed as official STEM first-light objects. Students and teachers learn how to write and submit a proposal as well as how telescopes operate and take data, while university-level students at the U.S. Air Force Academy and The Pennsylvania State University learn how to evaluate proposals and provide feedback to the middle and high school students and teachers. In this paper, we present the current status of the FTN, details of and lessons learned from the STEM First Light Project, and feedback from middle and high school students and teachers.
Lee, Nyoung Keun; Lee, Byung Hoon; Hwang, Yoon Joon; Kim, Su Young; Lee, Ji Young; Joo, Mee
2011-04-01
Acute hemorrhagic leukoencephalitis (AHL) is a rare and usually fatal disease characterized by an acute onset of neurological abnormalities. We describe the case of a 37-year-old man with biphasic AHL with a focus on the rare involvement of the brain stem and cerebellum. Initial computed tomography (CT) and magnetic resonance imaging revealed two hemorrhagic foci in the left middle cerebellar peduncle. After 15 days multifocal hematomas in the contralateral cerebellar hemisphere were imaged using CT. The pathological diagnosis was AHL. Following high-dose steroid treatment, the patient recovered with minor neurological sequelae.
Molecular insight in gastric cancer induction: an overview of cancer stemness genes.
Akhavan-Niaki, Haleh; Samadani, Ali Akbar
2014-04-01
Gastric cancer is one of the most outgoing human cancers in the world. Two main functional types were described: Intestinal adenocarcinoma and diffuse one. The most important purpose of this review is to analyze and investigate the main genetic factors involved in tumorogenesis of stomach and the molecular mechanism of their expression regulation alongside with the importance of cancer stem cells and their relationship with gastric cancer. It is evident that proper diagnosis of molecular case of cancer may lead to absolute treatment and at least reduction in the disease severity. However, stemness factors such as Sox2, Oct3/4, and Nanog were related with induced pluripotent stem cells, proposing a correlation between these stemness factors and cancer stem cells. Moreover, aberrant induction by Helicobacter pylori of the intestinal-specific homeobox transcription factors, CDX1 and CDX2, also plays an important role in this modification. There are some genes which are directly activated by CDX1 in gastric cancer and distinguished stemness-related reprogramming factors like SALL4 and KLF5. Correspondingly, we also aimed to present the main important epigenetic changes such as DNA methylation, histone modification, and chromatin modeling of stemness genes in disease development. Remarkably, a better understanding of molecular bases of cancer may lead to novel diagnostic, therapeutic, and preventive approaches by some genetic and epigenetic changes such as gene amplifications, gene silencing by DNA methylation, losses of imprinting, LOH, and mutations. Consequently, genome-wide searches of gene expression are widely important for surveying the proper mechanisms of cancer emergence and development. Conspicuously, this review explains an outline of the molecular mechanism and new approaches in gastric cancer.
Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine.
Liu, Zhongmin; Tang, Mingliang; Zhao, Jinping; Chai, Renjie; Kang, Jiuhong
2018-04-01
Stem-cell-based therapies have the potential to provide novel solutions for the treatment of a variety of diseases, but the main obstacles to such therapies lie in the uncontrolled differentiation and functional engraftment of implanted tissues. The physicochemical microenvironment controls the self-renewal and differentiation of stem cells, and the key step in mimicking the stem cell microenvironment is to construct a more physiologically relevant 3D culture system. Material-based 3D assemblies of stem cells facilitate the cellular interactions that promote morphogenesis and tissue organization in a similar manner to that which occurs during embryogenesis. Both natural and artificial materials can be used to create 3D scaffolds, and synthetic organic and inorganic porous materials are the two main kinds of artificial materials. Nanotechnology provides new opportunities to design novel advanced materials with special physicochemical properties for 3D stem cell culture and transplantation. Herein, the advances and advantages of 3D scaffold materials, especially with respect to stem-cell-based therapies, are first outlined. Second, the stem cell biology in 3D scaffold materials is reviewed. Third, the progress and basic principles of developing 3D scaffold materials for clinical applications in tissue engineering and regenerative medicine are reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Environmental microbial contamination in a stem cell bank.
Cobo, F; Concha, A
2007-04-01
The aim of this study was to evaluate the main environmental microbial contaminants of the clean rooms in our stem cell bank. We have measured the microbial air contamination by both passive and active air sampling and the microbial monitoring of surfaces by means of Rodac plates. The environmental monitoring tests were carried out in accordance with the guidelines of European Pharmacopeia and US Pharmacopeia. The micro-organisms were identified by means of an automated system (VITEK 2). During the monitoring, the clean rooms are continually under good manufacturing practices specifications. The most frequent contaminants were Gram-positive cocci. The main contaminants in our stem cell bank were coagulase-negative staphylococci and other opportunistic human pathogens. In order to assure the levels of potential contamination in both embryonic and adult stem cell lines, a continuous sampling of air particles and testing for viable microbiological contamination is necessary. This study is the first evaluation of the environmental contaminants in stem cell banks and can serve as initial evaluation for these establishments. The introduction of environmental monitoring programmes in the processing of stem cell lines could diminish the risk of contamination in stem cell cultures.
Mesenchymal stem cells attenuate blood-brain barrier leakage after cerebral ischemia in mice.
Cheng, Zhuo; Wang, Liping; Qu, Meijie; Liang, Huaibin; Li, Wanlu; Li, Yongfang; Deng, Lidong; Zhang, Zhijun; Yang, Guo-Yuan
2018-05-03
Ischemic stroke induced matrixmetallo-proteinase-9 (MMP-9) upregulation, which increased blood-brain barrier permeability. Studies demonstrated that mesenchymal stem cell therapy protected blood-brain barrier disruption from several cerebrovascular diseases. However, the underlying mechanism was largely unknown. We therefore hypothesized that mesenchymal stem cells reduced blood-brain barrier destruction by inhibiting matrixmetallo-proteinase-9 and it was related to intercellular adhesion molecule-1 (ICAM-1). Adult ICR male mice (n = 118) underwent 90-min middle cerebral artery occlusion and received 2 × 10 5 mesenchymal stem cell transplantation. Neurobehavioral outcome, infarct volume, and blood-brain barrier permeability were measured after ischemia. The relationship between myeloperoxidase (MPO) activity and ICAM-1 release was further determined. We found that intracranial injection of mesenchymal stem cells reduced infarct volume and improved behavioral function in experimental stroke models (p < 0.05). IgG leakage, tight junction protein loss, and inflammatory cytokines IL-1β, IL-6, and TNF-α reduced in mesenchymal stem cell-treated mice compared to the control group following ischemia (p < 0.05). After transplantation, MMP-9 was decreased in protein and activity levels as compared with controls (p < 0.05). Furthermore, myeloperoxidase-positive cells and myeloperoxidase activity were decreased in mesenchymal stem cell-treated mice (p < 0.05). The results showed that mesenchymal stem cell therapy attenuated blood-brain barrier disruption in mice after ischemia. Mesenchymal stem cells attenuated the upward trend of MMP-9 and potentially via downregulating ICAM-1 in endothelial cells. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway may influence MMP-9 expression of neutrophils and resident cells, and ICAM-1 acted as a key factor in the paracrine actions of mesenchymal stem cell.
Anatomy, Physiology and Function of the Auditory System
NASA Astrophysics Data System (ADS)
Kollmeier, Birger
The human ear consists of the outer ear (pinna or concha, outer ear canal, tympanic membrane), the middle ear (middle ear cavity with the three ossicles malleus, incus and stapes) and the inner ear (cochlea which is connected to the three semicircular canals by the vestibule, which provides the sense of balance). The cochlea is connected to the brain stem via the eighth brain nerve, i.e. the vestibular cochlear nerve or nervus statoacusticus. Subsequently, the acoustical information is processed by the brain at various levels of the auditory system. An overview about the anatomy of the auditory system is provided by Figure 1.
Association of green stem disorder with agronomic traits in soybean
USDA-ARS?s Scientific Manuscript database
Green stem disorder (GSD) of soybean is the occurrence of non-senescent, fleshy green stems of plants with normal, fully mature pods and seeds. The main focus of this study was to determine the relationship between GSD incidence and agronomic traits and to determine if GSD incidence was associated w...
Developing Non-Formal Education Competences as a Complement of Formal Education for STEM Lecturers
ERIC Educational Resources Information Center
Terrazas-Marín, Roy Alonso
2018-01-01
This paper focuses on a current practice piece on professional development for university lecturers, transformative learning, dialogism and STEM (Science, Technology, Engineering and Mathematics) education. Its main goals are to identify the key characteristics that allow STEM educators to experiment with the usage of non-formal education…
Sassi, Ahlem Ben; Skhiri, Fethia Harzallah; Chraief, Imed; Bourgougnon, Nathalie; Hammami, Mohamed; Aouni, Mahjoub
2014-01-01
The essential oils from the leaves, stems and roots of Chrysanthemum trifurcatum (Desf.) Batt. and Trab. var. macrocephalum (viv.) were obtained by hydrodistillation and their chemical compositions were analysed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), in order to get insight into similarities and differences as to their active composition. A total of fifty compounds were identified, constituting 97.84%, 99.02% and 98.20% of total oil composition of the leaves, stems and roots, respectively. Monoterpene hydrocarbons were shown to be the main group of constituents of the leaves and stems parts in the ratio of 67.88% and 51.29%, respectively. But, the major group in the roots oil was found to be sesquiterpene hydrocarbons (70.30%). The main compounds in leaves oil were limonene (26.83%), γ-terpinene (19.68%), α-pinene (9.7%) and α-terpenyl acetate (7.16%). The stems oil, contains mainly limonene (32.91%), 4-terpenyl acetate (16.33%) and γ-terpinene (5.93%), whereas the main compounds in roots oil were α-calacorene (25.98%), α-cedrene (16.55%), β-bourbobene (14.91%), elemol (7.45%) and 2-hexenal (6.88%). The crude organic extracts of leaves, stems and roots, obtained by maceration with solvents of increasing polarity: petroleum ether, ethyl acetate and methanol, contained tannins, flavonoids and alkaloids. Meanwhile, essential oils and organic extracts were tested for antibacterial activities against eight Gram-positive and Gram-negative strains, using a microdilution method. The oil and methanolic extact from C. trifurcatum leaves showed a great potential of antibacterial effect against Bacillus subtilis and Staphylococcus epidermidis, with an IC50 range of 31.25-62.5 µg/ml.
NASA Astrophysics Data System (ADS)
Moore, Lisa Simmons
This qualitative program evaluation examines the career decision-making processes and career choices of nine, African American women who participated in the Cooperating Hampton Roads Organization for Minorities in Engineering (CHROME) and who graduated from urban, rural or suburban high schools in the year 2000. The CHROME program is a nonprofit, pre-college intervention program that encourages underrepresented minority and female students to enter science, technically related, engineering, and math (STEM) career fields. The study describes career choices and decisions made by each participant over a five-year period since high school graduation. Data was collected through an Annual Report, Post High School Questionnaires, Environmental Support Questionnaires, Career Choice Questionnaires, Senior Reports, and standardized open-ended interviews. Data was analyzed using a model based on Helen C. Farmer's Conceptual Models, John Ogbu's Caste Theory and Feminist Theory. The CHROME program, based on its stated goals and tenets, was also analyzed against study findings. Findings indicated that participants received very low levels of support from counselors and teachers to pursue STEM careers and high levels of support from parents and family, the CHROME program and financial backing. Findings of this study also indicated that the majority of CHROME alumna persisted in STEM careers. The most successful participants, in terms of undergraduate degree completion and occupational prestige, were the African American women who remained single, experienced no critical incidents, came from a middle class to upper middle class socioeconomic background, and did not have children.
Can brook trout survive climate change in large rivers? If it rains.
Merriam, Eric R; Fernandez, Rodrigo; Petty, J Todd; Zegre, Nicolas
2017-12-31
We provide an assessment of thermal characteristics and climate change vulnerability for brook trout (Salvelinus fontinalis) habitats in the upper Shavers Fork sub-watershed, West Virginia. Spatial and temporal (2001-2015) variability in observed summer (6/1-8/31) stream temperatures was quantified in 23 (9 tributary, 14 main-stem) reaches. We developed a mixed effects model to predict site-specific mean daily stream temperature from air temperature and discharge and coupled this model with a hydrologic model to predict future (2016-2100) changes in stream temperature under low (RCP 4.5) and high (RCP 8.5) emissions scenarios. Observed mean daily stream temperature exceeded the 21°C brook trout physiological threshold in all but one main-stem site, and 3 sites exceeded proposed thermal limits for either 63- and 7-day mean stream temperature. We modeled mean daily stream temperature with a high degree of certainty (R 2 =0.93; RMSE=0.76°C). Predicted increases in mean daily stream temperature in main-stem and tributary reaches ranged from 0.2°C (RCP 4.5) to 1.2°C (RCP 8.5). Between 2091 and 2100, the average number of days with mean daily stream temperature>21°C increased within main-stem sites under the RCP 4.5 (0-1.2days) and 8.5 (0-13) scenarios; however, no site is expected to exceed 63- or 7-day thermal limits. During the warmest 10years, ≥5 main-stem sites exceeded the 63- or 7-day thermal tolerance limits under both climate emissions scenarios. Years with the greatest increases in stream temperature were characterized by low mean daily discharge. Main-stem reaches below major tributaries never exceed thermal limits, despite neighboring reaches having among the highest observed and predicted stream temperatures. Persistence of thermal refugia within upper Shavers Fork would enable persistence of metapopulation structure and life history processes. However, this will only be possible if projected increases in discharge are realized and offset expected increases in air temperature. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Stevens, Michael R.; Leib, Kenneth J.; Thomas, Judith C.; Bauch, Nancy J.; Richards, Rodney J.
2018-06-13
In response to the need for more information about selenium (Se) sources and transport, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, completed a study that characterized Se loads in a reach of the Gunnison River between Delta and Grand Junction, Colo. This report identifies where possible dissolved Se loading is occurring in a study reach in the Lower Gunnison River Basin between Delta and Grand Junction on November 19, 2015.The combined Se loads from the Gunnison River at Delta (site 3) and the Uncompahgre River at Delta (site 4) were about 95 percent of the load at the furthest downstream main-stem sample location at the Gunnison River below Roubideau Creek near Delta (site 20) (31.6 and 33.4 pounds per day, respectively), indicating that about 5 percent of the total load (1.8 pounds) was potentially contributed from diffuse groundwater inflow. Main-stem streamflow accounting during November 2015 in a downstream direction was not supportive of substantial net gains or losses in the main-stem water balance.The cumulative load from measured tributary inflows downstream from the Uncompahgre River confluence only amounted to 1.2 pounds of the main-stem loads (1.8 pounds gain) from site 4 to the end of the synoptic reach at site 20. The remaining 33 percent (about 0.6 pounds) of Se load increase was not accounted for by known tributary inflow. Yet, the small changes in the streamflow mass balance in the same reach does not strongly support a net inflow explanation for the apparent gain in load.Based on the results of the loading and streamflow analysis, when errors in the loading estimates are considered, there is no conclusive evidence of an appreciable amount of Se load that is unaccounted for in the study reach of the Gunnison River as was originally hypothesized. Differences determined from comparisons of cumulative tributary loads and Gunnison River main-stem loads for this study are within error estimates of the main-stem loads.
College Bound in Middle School & High School? How Math Course Sequences Matter
ERIC Educational Resources Information Center
Finkelstein, Neal; Fong, Anthony; Tiffany-Morales, Juliet; Shields, Patrick; Huang, Min
2012-01-01
As California competes for jobs in an increasingly competitive global economy, the state faces a looming shortage of highly educated workers (PPIC, 2012). For a variety of reasons, the need for individuals with degrees in science, technology, engineering, and mathematics (STEM) is of particular concern. Nowhere is this more true than in the…
ERIC Educational Resources Information Center
Barak, Moshe; Asad, Khaled
2012-01-01
Background: This research focused on the development, implementation and evaluation of a course on image-processing principles aimed at middle-school students. Purpose: The overarching purpose of the study was that of integrating the learning of subjects in science, technology, engineering and mathematics (STEM), and linking the learning of these…
ERIC Educational Resources Information Center
Kwah, Helen; Milne, Catherine; Tsai, Tzuchi; Goldman, Ricki; Plass, Jan L.
2016-01-01
This formative design study examines how a program curriculum and implementation was emergently (re)designed in dynamic relation to the expressed emotions of teachers and students. The context was a yearlong afterschool game design program for STEM learning at an urban and public all-girls middle school. Using Randall Collins' (Interaction ritual…
ERIC Educational Resources Information Center
Mouza, Chrystalla; Marzocchi, Alison; Pan, Yi-Cheng; Pollock, Lori
2016-01-01
Current policy efforts that seek to improve learning in science, technology, engineering, and mathematics (STEM) emphasize the importance of helping all students acquire concepts and tools from computer science that help them analyze and develop solutions to everyday problems. These goals have been generally described in the literature under the…
ERIC Educational Resources Information Center
Roberts, Amanda
2013-01-01
What is the secret to success in the 21st Century? According to the New Commission on the Skills of the American Workforce (2008), the standard of living for the middle-class American is no longer guaranteed with only a secondary education degree and a strong work ethic. Due to increased global competition, America needs to rank in the top two…
ERIC Educational Resources Information Center
Mathis, Corey A.; Siverling, Emilie A.; Glancy, Aran W.; Moore, Tamara J.
2017-01-01
One of the fundamental practices identified in Next Generation Science Standards (NGSS) is argumentation, which has been researched in P-12 science education for the previous two decades but has yet to be studied within the context of P-12 engineering education. This research explores how elementary and middle school science teachers incorporated…
ERIC Educational Resources Information Center
Roe, Mary F.
2004-01-01
Students in the United States do not read well enough (Showers, Joyce, Scanlon, & Schnaubelt, 1998). While the National Assessment of Educational Progress (2003) reports an encouraging upswing in 8th-grade students' reading performance from 1992 to 2003, this fact does not stem the tide of practical concerns voiced by teachers and community…
ERIC Educational Resources Information Center
Carroll, Becky; Smith, Anita; Castori, Pam
2009-01-01
The Exploratorium is home to XTech, a science education program which began in 2006 and was primarily funded by a three-year National Science Foundation grant (Award # 05-25217) through its ITEST (Innovative Technology Experiences for Students and Teachers) initiative. XTech provided project-based afterschool activities in science, engineering,…
ERIC Educational Resources Information Center
Ulrich, Catherine; Wilkins, Jesse L. M.
2017-01-01
Background: Students' ability to construct and coordinate units has been found to have far-reaching implications for their ability to develop sophisticated understandings of key middle-grade mathematical topics such as fractions, ratios, proportions, and algebra, topics that form the base of understanding for most STEM-related fields. Most of the…
STEM Pathways: Examining Persistence in Rigorous Math and Science Course Taking
ERIC Educational Resources Information Center
Ashford, Shetay N.; Lanehart, Rheta E.; Kersaint, Gladis K.; Lee, Reginald S.; Kromrey, Jeffrey D.
2016-01-01
From 2006 to 2012, Florida Statute §1003.4156 required middle school students to complete electronic personal education planners (ePEPs) before promotion to ninth grade. The ePEP helped them identify programs of study and required high school coursework to accomplish their postsecondary education and career goals. During the same period Florida…
Integrating Engineering Design Challenges into Secondary STEM Education
ERIC Educational Resources Information Center
Carr, Ronald L.; Strobel, Johannes
2011-01-01
Engineering is being currently taught in the full spectrum of the P-12 system, with an emphasis on design-oriented teaching (Brophy, Klein, Portsmore, & Rogers, 2008). Due to only a small amount of research on the learning of engineering design in elementary and middle school settings, the community of practice lacks the necessary knowledge of the…
This Little Piggy Went to MARKET!
ERIC Educational Resources Information Center
Gorton, Carolyn
2012-01-01
Career and technical education (CTE) in Charlotte County, Florida, has a new identity thanks to the creativity and marketing by the K-12 CTE teachers who decided to make a difference. When one walks into any of the elementary or middle school STEM labs, or high school Career and Professional Education (CAPE) Academies, he/she sees a packed house…
ERIC Educational Resources Information Center
DeFlorio, Lydia; Beliakoff, Amber
2015-01-01
Research Findings: Children from families of lower socioeconomic status (SES) enter kindergarten with less developed mathematical knowledge compared to children from middle SES families. This discrepancy is present at age 3 years and likely stems from differences in the home learning environment. This study reports SES-related differences both in…
ERIC Educational Resources Information Center
Christensen, Rhonda; Knezek, Gerald; Tyler-Wood, Tandra; Gibson, David
2013-01-01
The purpose of this paper is to determine whether the changes that were found to occur pre- to post intervention in students' cognitive structures (Mills, 2013; Knezek, Christensen, Tyler-Wood, & Periathiruvadi, 2013) continued to persist two years later. Major findings were: a) semantic perception of science and STEM as a career became more…
The Prevalence and Quality of Source Attribution in Middle and High School Science Papers
ERIC Educational Resources Information Center
Vieyra, Michelle; Weaver, Kari
2016-01-01
Plagiarism is a commonly cited problem in higher education, especially in scientific writing and assignments for science courses. Students may not intentionally plagiarize, but may instead be confused about what proper source attribution entails. Much of this confusion likely stems from high school, either from lack of or inconsistent instruction…
ERIC Educational Resources Information Center
Pinkard, Nichole; Erete, Sheena; Martin, Caitlin K.; McKinney de Royston, Maxine
2017-01-01
Women use technology to mediate numerous aspects of their professional and personal lives. Yet, few design and create these technologies given that women, especially women of color, are grossly underrepresented in computer science and engineering courses. Decisions about participation in STEM are frequently made prior to high school, and these…
Historical Research: How to Fit Minority and Women's Studies into Mathematics Class
ERIC Educational Resources Information Center
Saraco, Margaret R.
2008-01-01
This article presents a lesson for studying minority and women's contributions to the field of mathematics in the middle school classroom. This lesson may be able to stem the tide of the shrinking number of students entering the field of mathematics by helping them become interested in its history. Nonetheless, this project encourages students to…
ERIC Educational Resources Information Center
Aschbacher, Pamela R.; Ing, Marsha
2017-01-01
Background/Context: Much science education reform has been directed at middle and high school students; however, earlier experiences in elementary school may well have an important impact on young people's future science literacy and preparation for possible STEM careers. Purpose/Objective/Research Question/Focus of Study: This study explores the…
Academic Libraries and Automation: A Historical Reflection on Ralph Halsted Parker
ERIC Educational Resources Information Center
Burns, C. Sean
2014-01-01
This paper provides a historical account of Ralph Halsted Parker and his work to automate libraries in the early to middle parts of the twentieth century. One of Parker's motivations to automate stemmed from a desire to professionalize academic librarianship, and this is evident in his administration as library director at the University of…
ERIC Educational Resources Information Center
Garcia, Yeni Violeta
2013-01-01
The inclusion of learners from underrepresented background in biology field research experiences has not been widely explored in the literature. Increased access and equity to experiences for groups historically underrepresented in science, technology, engineering, and mathematics (STEM) has been identified as a priority for many, yet little is…
Xu, Guang-Hui; Zhao, Li-Jun; Gao, Ke-Qin; Wu, Fei-Xiang
2013-01-07
Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought.
Xu, Guang-Hui; Zhao, Li-Jun; Gao, Ke-Qin; Wu, Fei-Xiang
2013-01-01
Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought. PMID:23118437
ERIC Educational Resources Information Center
Thorpe, Christin
2010-01-01
This study aimed to discover what study skills are most useful for middle school students, as well as strategies for integrating study skills instruction into the four main content area classrooms (English, math, science, and social studies) at the middle school level. Twenty-nine in-service middle school teachers participated in the study by…
Seasonal and diel variation in xylem CO2 concentration and sap pH in sub-Mediterranean oak stems.
Salomón, Roberto; Valbuena-Carabaña, María; Teskey, Robert; McGuire, Mary Anne; Aubrey, Doug; González-Doncel, Inés; Gil, Luis; Rodríguez-Calcerrada, Jesús
2016-04-01
Since a substantial portion of respired CO2 remains within the stem, diel and seasonal trends in stem CO2 concentration ([CO2]) are of major interest in plant respiration and carbon budget research. However, continuous long-term stem [CO2] studies are scarce, and generally absent in Mediterranean climates. In this study, stem [CO2] was monitored every 15min together with stem and air temperature, sap flow, and soil water storage during a growing season in 16 stems of Quercus pyrenaica to elucidate the main drivers of stem [CO2] at different temporal scales. Fluctuations in sap pH were also assessed during two growing seasons to evaluate potential errors in estimates of the concentration of CO2 dissolved in xylem sap ([CO2*]) calculated using Henry's law. Stem temperature was the best predictor of stem [CO2] and explained more than 90% and 50% of the variability in stem [CO2] at diel and seasonal scales, respectively. Under dry conditions, soil water storage was the main driver of stem [CO2]. Likewise, the first rains after summer drought caused intense stem [CO2] pulses, suggesting enhanced stem and root respiration and increased resistance to radial CO2 diffusion. Sap flow played a secondary role in controlling stem [CO2] variations. We observed night-time sap pH acidification and progressive seasonal alkalinization. Thus, if the annual mean value of sap pH (measured at midday) was assumed to be constant, night-time sap [CO2*] was substantially overestimated (40%), and spring and autumn sap [CO2*] were misestimated by 25%. This work highlights that diel and seasonal variations in temperature, tree water availability, and sap pH substantially affect xylem [CO2] and sap [CO2*]. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Pearson, Roxanne N.
In 2010, the President's Council of Advisors on Science and Technology recommended that eight hundred new STEM focused elementary and middle schools be established. Unfortunately, districts may be slow to implement STEM at the elementary level because they do not understand how to do so effectively (Zimny, 2017). School administrators need a framework for decision-making and supervisory feedback related to the process of managing these programs (Zimny, 2017). To support administrators in implementing elementary STEM immersion programs, this project explored three questions: What criteria are common among existing STEM immersion program rubrics? What criteria should be included in a comprehensive rubric for managing elementary STEM immersion programs at the district level? What do district documents show about how elementary STEM immersion programs develop, implement, and evaluate those programs? The team developed a comprehensive STEM program review instrument including criteria for effective elementary STEM curriculum and the professional development and administrative support necessary to implement such curriculum. These criteria were organized into three stages, including the planning and development of elementary STEM immersion programs, the implementation of these programs, and the evaluation of these programs after they had been implemented for a significant period of time. The team synthesized best practice indicators relevant to elementary STEM programs from existing K-12 guides, then validated those indicators against current best practice research and feedback from STEM education experts. District documents from seven elementary STEM immersion programs in Missouri and Colorado were examined using the team's rubric. Scores were higher in the areas of program planning, content alignment, and ongoing refinement of curriculum, and lower in the areas of professional development for professional skills and STEM-specific pedagogy, two-way communication with stakeholders, and data collection for program refinement. Scores were lowest for those schools with inadequate documentation of their program management processes. The team recommended districts institute a more rigorous documentation process for managing innovative programs such as STEM immersion. Communication plans should include procedures for two-way communication with all stakeholders. Data collection and refinement efforts should increase, as should professional development opportunities related to professional skills and STEM-specific pedagogy; this should include administrators.
... cord blood mainly because of the promise that stem cell research holds for the future. Most of us would have little use for stem cells now, but research into using them to treat diseases is ongoing — ...
Nabin Gyawali; Thomas B. Lynch; Rodney E. Will
2013-01-01
Traditionally, the main focus of forest production has usually been to maximize allocation of biomass to merchantable stem wood. But the assessment of biomass partitioning in stands is needed to address management concerns such as stem production and allocation, carbon sequestration, wildland fire, whole tree harvesting, etc. Thinning mainly increases the bole diameter...
Pimienta-Barrios, Eulogio; Pimienta-Barrios, Enrique; Salas-Galván, Mariá Eugenia; Zañudo-Hernandez, Julia; Nobel, Park S
2002-06-01
Three natural populations of pitayo (Stenocereus queretaroensis (Weber) Buxbaum), a columnar arborescent cactus, were studied in their subtropical environments in western Mexico. All of the sites were characterized by shallow, nutrient-poor soils. Percentage of colonization by arbuscular mycorrhizae (AM) fungi, stem growth, fruit mass, and percentage germination were greater in S. queretaroensis at Autlan, Jalisco (AJ) than at Zacoalco de Torres, Jalisco (ZTJ) or Santa Rosa, Zacatecas (SRZ). The onset of root colonization by arbuscular mycorrhizae during the middle of the summer wet period preceded increases in stem extension rate and stem phosphorus concentration. Based on previous studies of effects of environmental factors on photosynthesis, climatic conditions were more favorable for photosynthesis at AJ than at SRZ and ZTJ, as indicated by the amount of summer rainfall, the amount of light, and the moderate air temperatures that prevailed during the fall and winter seasons. There was a significant positive correlation between stem growth and percentage of total root length colonized by arbuscules of AM fungi for S. queretaroensis at SRZ and AJ, but not at ZTJ. A negative significant correlation was observed between stem growth and maximal and minimal air temperatures at the three study sites. Stem growth was positively related to rainfall only at SRZ, and light was statistically related to stem growth only at ZTJ. Among sites, S. queretaroensis at AJ had the highest carbon gain and greatest AM colonization, creating physiological conditions that led to the highest stem growth, fruit mass and percentage of seed germination.
NASA Astrophysics Data System (ADS)
Radencic, S.; McNeal, K. S.; Pierce, D.
2012-12-01
The Initiating New Science Partnerships in Rural Education (INSPIRE) program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on the advancement of Earth and Space science education in K-12 classrooms. INSPIRE currently in its third year of partnering ten graduate students each year from the STEM fields of Geosciences, Engineering, Physics and Chemistry at MSU with five teachers from local, rural school districts. The five year project serves to enhance graduate student's communication skills as they create interactive lessons linking their STEM research focus to the state and national standards covered in science and math classrooms for grades 7-12 through inquiry experiences. Each graduate student is responsible for the development of two lessons each month of the school year that include an aspect of their STEM research, including the technologies that they may utilize to conduct their STEM research. The plans are then published on the INSPIRE project webpage, www.gk12.msstate.edu, where they are a free resource for any K-12 classroom teacher seeking innovative activities for their classrooms and total over 300 lesson activities to date. Many of the participating teachers and graduate students share activities developed with non-participating teachers, expanding INSPIRE's outreach of incorporating STEM research into activities for K-12 students throughout the local community. Examples of STEM research connections to classroom topics related to earth and ocean science include activities using GPS with GIS for triangulation and measurement of area in geometry; biogeochemical response to oil spills compared to organism digestive system; hydrogeology water quality monitoring and GIS images used as a determinant for habitat suitability in area water; interactions of acids and bases in the Earth's environments and surfaces; and the importance of electrical circuitry in an electrode used in sediment analysis. INSPIRE is striving to create synergy with other education focused grants at MSU, including those that focus on climate literacy and Earth hazards. Graduate students create at least one lesson plan that links their STEM research to climate related topics to share in their assigned K-12 classrooms. They also assist with a science day sponsored at MSU centered on Earth hazards where local middle school students participate. In addition to the development of interactive experiences that bring current STEM research into the classroom, INSPIRE also creates and organizes inquiry activities for National GIS Day each year. Graduate students not only design the GIS explorations focused on hazards, but they also guide middle school students through these explorations. Additionally, all graduate students involved with INSPIRE are required to participate in at least one Science Fair event either at the local school level or at the regional competitions. Participating teachers have noted that several students had science fair projects that included some aspect of the STEM research topics they had learned about from the graduate students in the classroom.
Wu, Rui; Li, Jianqiao; Liu, Qin; Wang, Hong
2014-07-01
To study the effects of life event and coping style on left-behind middle school student mental health. 1405 left-behind middle school students were selected by multi-stage cluster random sampling method and investigated with Middle School Student Mental Health Scale (MSSMHS), Multidimensional Life Events Rating Questionnaire for Middle School Students (MLERQ) and Trait Coping Style Questionnaire (TCSQ). The mental health detection rate of left-behind middle school students was 26.33%. Life event have significant influence on mental health (F = 447.624, P = 0.000). The main effect for negative coping style on mental health was significant (F = 263.669, P = 0.000). Positive coping style have effect on mental health but the main effect was not significant (F = 2.436, P = 0.119). The interaction effect of life event and negative coping style was significant (F = 23.173, P = 0.000). Life event and coping style has a certain effect on left-behind middle school student mental health, but its mechanism is complicated and still uncertain.
El-Said, Mohammed Mohammed; Emile, Sameh Hany
2018-04-25
In the study by Sarveazad et al. adipose tissue-derived stem cells were injected to reinforce anal sphincter repair. The authors came to the conclusion that injection of stem cells during repair surgery for fecal incontinence may cause replacement of fibrous tissue, which may be a key point in treatment of fecal incontinence. The authors emphasized in their "Discussion" section that the ability of stem cells to differentiate into muscle fibers, replacing the fibrous tissue at the site of repair, is their main action, which may not be accurate. We think that healing of repaired anal sphincter begins with granulation tissue formation, which then matures into fibrous tissue that becomes infiltrated by muscle fibers from the approximated cut ends of the sphincter, resulting in regain of sphincter muscle continuity. This is supported by many experimental studies that have evaluated local injection of stem cells during sphincteroplasty in rats and shown that the injected stem cells do not differentiate into muscle fibers but may induce healing by a strong fibrous tissue. Further studies are needed to determine the main mechanism of action of mesenchymal stems cells in augmenting anal sphincter repair.
WRKY13 acts in stem development in Arabidopsis thaliana.
Li, Wei; Tian, Zhaoxia; Yu, Diqiu
2015-07-01
Stems are important for plants to grow erectly. In stems, sclerenchyma cells must develop secondary cell walls to provide plants with physical support. The secondary cell walls are mainly composed of lignin, xylan and cellulose. Deficiency of overall stem development could cause weakened stems. Here we prove that WRKY13 acts in stem development. The wrky13 mutants take on a weaker stem phenotype. The number of sclerenchyma cells, stem diameter and the number of vascular bundles were reduced in wrky13 mutants. Lignin-synthesis-related genes were repressed in wrky13 mutants. Chromatin immunoprecipitation assays proved that WRKY13 could directly bind to the promoter of NST2. Taken together, we proposed that WRKY13 affected the overall development of stem. Identification of the role of WRKY13 may help to resolve agricultural problems caused by weaker stems. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Pritz, Michael B
2014-11-01
Perforator and secondary branch origin in relation to the neck of cerebral, saccular bifurcation aneurysms were analyzed. These two features were considered important for treatment. From a series of microsurgically clipped saccular cerebral aneurysms, 142 bifurcation aneurysms had detailed imaging studies and operative records that could be analyzed. The incidence of perforator origin from the aneurysm neck was as follows: basilar, 1/15 (7%); internal carotid artery bifurcation, 4/23 (17%); main stem of the middle cerebral artery/secondary branch of the middle cerebral artery, 6/52 (12%); anterior communicating artery region, 5/46 (11%); and distal bifurcation vessels, 0/6 (0%). Aneurysms arising from the anterior communicating artery between the anterior cerebral arteries had a high incidence of perforator origin from the aneurysm neck. The location of secondary branch origin from the aneurysm neck varied depending on the aneurysm group. Perforator origin from the aneurysm neck was infrequent. A subgroup of anterior communicating artery region aneurysms had a high incidence of perforator origin from the aneurysm neck. Although protection of these neck perforators will be difficult, their identification may be even more challenging. Secondary branch origin from the aneurysm neck varied depending on the aneurysm group. Advanced endovascular techniques are needed to obliterate aneurysms in which the secondary branch(es) arise from the aneurysm neck. If this is not possible, craniotomy and clip ligation will be required if complete aneurysm obliteration is the goal. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fidolini, Francesco; Ghinassi, Massimiliano; Aldinucci, Mauro; Billi, Paolo; Boaga, Jacopo; Deiana, Rita; Brivio, Lara
2013-05-01
The present study deals with the fault-sourced, alluvial-fan deposits of the Plio-Pleistocene Upper Valdarno Basin (Northern Apennines, Italy). Different phases of alluvial fan aggradation, progradation and backstep are discussed as possible effects of the interaction among fault-generated accommodation space, sediment supply and discharge variations affecting the axial fluvial drainage. The Upper Valdarno Basin, located about 35 km SE of Florence, is filled with 550 m palustrine, lacustrine and alluvial deposits forming four main unconformity-bounded units (i.e. synthems). The study alluvial-fan deposits belong to the two uppermost synthems (Montevarchi and Torrente Ciuffenna synthems) and are Early to Middle Pleistocene in age. These deposits are sourced from the fault-bounded, NE margin of the basin and interfinger with axial fluvial deposits. Alluvial fan deposits of the Montevarchi Synthem consist of three main intervals: i) a lower interval, which lacks any evidence of a depositional trend and testify balance between the subsidence rate (i.e. fault activity) and the amount of sediment provided from the margin; ii) a coarsening-upward middle interval, pointing to a decrease in subsidence rate associated with an augment in sediment supply; iii) a fining-upward, upper interval (locally preserved), documenting a phase of tectonic quiescence associated with a progressive re-equilibration of the tectonically-induced morphological profile. The basin-scale unconformity, which separates the Montevarchi and Torrente Ciuffenna synthems was due to the entrance of the Arno River into the basin as consequence of a piracy. This event caused a dramatic increase in water discharge of the axial fluvial system, and its consequent embanking. Such an erosional surface started to develop in the axial areas, and propagated along the main tributaries, triggering erosion of the alluvial fan deposits. Alluvial-fan deposits of the Torrente Ciuffenna Synthem accumulated above the unconformity during a phase of tectonic quiescence, and show a fining-upward depositional trend. This trend was generated by a progressive decrease in sediment supply stemming out from upstream migration of the knickpoints developed during the embanking of the axial system.
ERIC Educational Resources Information Center
Leonard, Jacqueline; Buss, Alan; Gamboa, Ruben; Mitchell, Monica; Fashola, Olatokunbo S.; Hubert, Tarcia; Almughyirah, Sultan
2016-01-01
This paper describes the findings of a pilot study that used robotics and game design to develop middle school students' computational thinking strategies. One hundred and twenty-four students engaged in LEGO® EV3 robotics and created games using Scalable Game Design software. The results of the study revealed students' pre-post self-efficacy…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... portion of the leaf blade beyond the middle) in shape, with a smooth or slightly wavy margin, and gray... distinguished it from the related H. giganteus by its smooth and hairless stems; narrow, entire leaf blades; and...-meter-wide transect run through the largest patch of whorled sunflower in that area. These 100 stalks...
Exciting Young Students in Grades K-8 about STEM through an Afterschool Robotics Challenge
ERIC Educational Resources Information Center
Karp, Tanja; Maloney, Patricia
2013-01-01
In this paper, we describe the successful implementation of an afterschool LEGO robotics program for elementary and middle school students that is annually offered by the Whitacre College of Engineering at Texas Tech University. Three events are held on campus: the kickoff, a trial run, and the competition, spread over a period of eight weeks. In…
ERIC Educational Resources Information Center
McNally, Thomas
2012-01-01
This article examines innovative approaches to augmenting science lessons taught in middle and high school, with special emphasis on the importance of the early teen years, when experiences both in and out of school have significant impact on career decisions. This is a reflective essay on the recent work of science educators and educational…
Stewart and Ray's Big Adventure: A Research Experience for Teachers at UMASS/Amherst
ERIC Educational Resources Information Center
McCarthy, Ray
2011-01-01
Late in the winter of 2010, teachers across Massachusetts received invitations to apply for six- to eight-week Research Experiences for Teachers (RET) in which middle or high school teachers in STEM subjects would work alongside scientists and their graduate students as they sought to solve real-world problems. This country-wide effort was funded…
ERIC Educational Resources Information Center
Gallagher, Carole; Huang, Kevin; Van Matre, Joseph
2015-01-01
This five-year evaluation examined the effectiveness of a promising middle-school mathematics intervention funded through an Investing in Innovation (i3) development grant. Evaluation objectives were to: (1) study the impact of an intervention aimed at increasing the academic achievement of students in Algebra I--a gate-keeping course--as measured…
Nordic Internationalists' Contribution to the Field of Comparative and International Education
ERIC Educational Resources Information Center
Genova, Teodora
2016-01-01
This paper stems from a PhD dissertation research focusing on the Nordic representatives' contribution to the field of comparative and international education (CIE) since the middle of the 20th century to the present days. Following the idea of the clear-cut distinction between the two component parts of the field in the region in question, the…
Ham, Inhye; Yang, Gabsik; Lee, Jaejun; Lee, Kyung-Jin; Choi, Ho-Young
2009-01-01
Hyperlipidemia has been implicated in atherosclerosis which is the leading cause of death among world population and resulting from lipid metabolic changes is a major cause of atherosclerosis. Bambusae Caulis in Taeniam belongs to Bambusaceae is the stem of Phyllostachys nigra (Lodd.) Munro var. henonis (Bean) Stapf of Phyllostachys bambusoides Siebold et Zuccarini, the perennial evergreen tree. The green middle layer of stem is dried in string-shape I shadow after the bark had been removed. In this study, the effects of middle layer of PN, PB, PP, and BCT on rat with hyperlipidemia, induced by Triton WR-1339 and high cholesterol diet were investigated. We measured plasma levels of triglyceride, total cholesterol, low-density lipoprotein (LDL)-cholesterol, and high-density lipoprotein (HDL)-cholesterol as measure of its hyperlipidemic effects. As a result, all of the Bambusae Caulis in Taeniam was reduced total cholesterol, LDL. Inhibition rate on LDL-oxidation, hACAT-1, and hACAT-2 was increased dose-dependently. Therefore all of the Bambusae Caulis in Taeniam is a good candidate for the treatment on Triton WR-1339 and high cholesterol diet-induced blood circulatory disorders, obesity, and hyperlipidemia.
Fossil embryos from the Middle and Late Cambrian period of Hunan, south China.
Dong, Xi-Ping; Donoghue, Philip C J; Cheng, Hong; Liu, Jian-Bo
2004-01-15
Comparative embryology is integral to uncovering the pattern and process of metazoan phylogeny, but it relies on the assumption that life histories of living taxa are representative of their antecedents. Fossil embryos provide a crucial test of this assumption and, potentially, insight into the evolution of development, but because discoveries so far lack phylogenetic constraint, their significance is moot. Here we describe a collection of embryos from the Middle and Late Cambrian period (500 million years ago) of Hunan, south China, that preserves stages of development from cleavage to the pre-hatching embryo of a direct-developing animal comparable to living Scalidophora (phyla Priapulida, Kinorhyncha, Loricifera). The latest-stage embryos show affinity to the Lower Cambrian embryo Markuelia, whose life-history strategy contrasts both with the primitive condition inferred for metazoan phyla and with many proposed hypotheses of affinity, all of which prescribe indirect development. Phylogenetic tests based on these embryological data suggest a stem Scalidophora affinity. These discoveries corroborate, rather than contradict, the predictions of comparative embryology, providing direct historical support for the view that the life-history strategies of living taxa are representative of their stem lineages.
NASA Astrophysics Data System (ADS)
Métais, Grégoire; Mennecart, Bastien; Roohi, Ghazala
2017-04-01
A new assemblage of stem pecoran ruminants from the Oligocene Chitarwata Formation (lower Bugti Member), Bugti Hills (Pakistan), consists of three identified genera and another indeterminate ruminant. Although limited, the dental and postcranial material is sufficient to identify the genera Amphitragulus and Mosaicomeryx, two common forms known from middle to late Oligocene deposits of Europe, thus reinforcing the 'middle' Oligocene age of the lowermost Chitarwata Formation. Mosaicomeryx is reported for the first time from the Indian Subcontinent and this occurrence considerably expands its geographical distribution. A new genus and species, Paalitherium gurki, is erected on the basis of an unusual and unique association of characters on its lower molars. The unclear definition and occurrences of? Gelocus gajensis Pilgrim, 1912 are re-examined in the light of new data from the Bugti and Zinda Pir areas (Pakistan). The new ruminant fauna from Paali is clearly distinctive from the early Miocene assemblage known from Bugti. In accordance with other fossil evidence, the ruminant fauna described here suggests the existence of a tropical forested environment under monsoonal regime with soft food supplies during the time of deposition of the lowermost Chitarwata Formation.
An evaluation of the STEMS tree growth projection system.
Margaret R. Holdaway; Gary J. Brand
1983-01-01
STEMS (Stand and Tree Evaluation and Modeling System) is a tree growth projection system. This paper (1) compares the performance of the current version of STEMS developed for the Lake States with that of the original model and (2) reports the results of an analysis of the current model over a wide range of conditions and identifies its main strengths and weaknesses...
Lance S. Evans; Angela Citta; Stewart C. Sanderson
2012-01-01
Eccentricity of stems of Artemisia tridentata Nutt. (big sagebrush) has been reported previously. Analysis of samples observed over 2 years documented that each stem terminal produces about 8-10 branches each year, and during second-year growth, 3-8 of these develop into short, flowering, determinate branches. Each flowering branch produces hundreds of seeds and then...
Effects of historical land-cover changes on flooding and sedimentation, North Fish Creek, Wisconsin
Fitzpatrick, Faith A.; Knox, James C.; Whitman, Heather E.
1999-01-01
Results from hydrologic and sediment-transport modeling indicate that modern flood peaks and sediment loads in North Fish Creek may be double that expected under pre-settlement forest cover. During maximum agricultural activity in the mid-1920's to mid-1930's, flood peaks probably were about 3 times larger and sediment loads were about 5 times larger than expected under pre-settlement forest cover. These results indicate that future changes from pasture or cropland to forest will help reduce flood peaks, thereby reducing erosion and sedimentation. The addition of detention basins (to decrease flood peaks) on tributaries to North Fish Creek, or bank and instream restoration (to decrease erosion) in the upper main stem, also may help reduce the contribution of sediment from the upper main stem to the transitional section and lower main stem of the creek.
Garg, Pankaj; Davis, Gershan; Wilson, John Ian; Sivananthan, Mohan
2010-01-01
We present a case of acute myocardial infarction in a young adult with a history of anabolic steroid abuse. On diagnostic coronary angiography and intravascular ultrasound, he was found to have a distal left main stem thrombus extending into the proximal left anterior descending artery and a large intermediate vessel. As he was hemodynamically stable and pain-free, he was managed conservatively with triple antiplatelet therapy (aspirin, clopidogrel, and abciximab). This was also to avoid the risk of 'wiring the vessel,' especially if there was underlying dissection. Repeat angiography a few weeks later showed complete thrombus resolution. This is the first reported case of extensive left main stem thrombus in a young patient with anabolic steroid abuse. Management of such cases is not straightforward and our case highlights one approach to both diagnosis and treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whittaker, Peter A.
A brief outline of stem cells, stem cell therapy and therapeutic cloning is given. The position of therapeutic cloning with regard to other embryonic manipulations - IVF-based reproduction, embryonic stem formation from IVF embryos and reproductive cloning - is indicated. The main ethically challenging stages in therapeutic cloning are considered to be the nuclear transfer process including the source of eggs for this and the destruction of an embryo to provide stem cells for therapeutic use. The extremely polarised nature of the debate regarding the status of an early human embryo is noted, and some potential alternative strategies for preparingmore » immunocompatible pluripotent stem cells are indicated.« less
NASA Astrophysics Data System (ADS)
Sicardi-Segade, A.; Campos-Mejía, A.; Solano, C.
2016-09-01
Innovation through science and technology will be essential to solve important challenges humanity will have to face in the years to come, regarding clean energies, food quality, medicine, communications, etc. To deal with these important issues, it is necessary to promote STEM (Science, Technology, Engineering and Mathematics) education in children. In this work, we present the results of the strategies that we have implemented to increase the elementary and middle school students interest in science and technology by means of activities that allow them to use and develop their creativity, team work, critical thinking, and the use of the scientific method and the engineering design process.
BIOINFORMATICS IN THE K-8 CLASSROOM: DESIGNING INNOVATIVE ACTIVITIES FOR TEACHER IMPLEMENTATION
Shuster, Michele; Claussen, Kira; Locke, Melly; Glazewski, Krista
2016-01-01
At the intersection of biology and computer science is the growing field of bioinformatics—the analysis of complex datasets of biological relevance. Despite the increasing importance of bioinformatics and associated practical applications, these are not standard topics in elementary and middle school classrooms. We report on a pilot project and its evolution to support implementation of bioinformatics-based activities in elementary and middle school classrooms. Specifically, we ultimately designed a multi-day summer teacher professional development workshop, in which teachers design innovative classroom activities. By focusing on teachers, our design leverages enhanced teacher knowledge and confidence to integrate innovative instructional materials into K-8 classrooms and contributes to capacity building in STEM instruction. PMID:27429860
The Effects of "Girls in Science Day" on Middle School Girls' Attitudes and Interests in Science
NASA Astrophysics Data System (ADS)
Dixon, Carmen S.
Because of the underrepresentation of women in STEM fields, many organizations are hosting days to promote middle school girls' interest in science. The purpose of this dissertation examines one of these days, and is three-fold: Number one, to determine if the event "Girls in Science Day [GIS]" affected the interests and attitudes of the middle school girls who attend. Number two, to examine how GIS affected their interests and attitudes in science, and number three, to examine if there is a long time impact on the girls who attend GIS in middle school by interviewing them when they are older and determine if attending GIS made lasting impressions on their lives. It utilizes a mixed-methods approach by using a quantitative Likert-type scale to determine the first purpose mentioned, pre- and post- attendance interviews to examine purpose two, and longitudinal interviews of past participants to determine purpose three. These methods are then combined using meta-inference and results and implications are examined. Future research is then recommended to improve the status of women in science careers.
ERIC Educational Resources Information Center
Perkins, Nancy; Hazelton, Eric; Erickson, Jeryl; Allan, Walter
2010-01-01
Spatial literacy is a new frontier in K-12 education. This article describes a place-based introductory GIS/GPS middle school curriculum unit in which students used measuring tools, GPS units, and My World GIS software to collect physical and spatial data of trees to create a schoolyard tree inventory. Maine students completed "memory…
Tobin, M F; Pratt, R B; Jacobsen, A L; De Guzman, M E
2013-05-01
Vulnerability to cavitation curves describe the decrease in xylem hydraulic conductivity as xylem pressure declines. Several techniques for constructing vulnerability curves use centrifugal force to induce negative xylem pressure in stem or root segments. Centrifuge vulnerability curves constructed for long-vesselled species have been hypothesised to overestimate xylem vulnerability to cavitation due to increased vulnerability of vessels cut open at stem ends that extend to the middle or entirely through segments. We tested two key predictions of this hypothesis: (i) centrifugation induces greater embolism than dehydration in long-vesselled species, and (ii) the proportion of open vessels changes centrifuge vulnerability curves. Centrifuge and dehydration vulnerability curves were compared for a long- and short-vesselled species. The effect of open vessels was tested in four species by comparing centrifuge vulnerability curves for stems of two lengths. Centrifuge and dehydration vulnerability curves agreed well for the long- and short-vesselled species. Centrifuge vulnerability curves constructed using two stem lengths were similar. Also, the distribution of embolism along the length of centrifuged stems matched the theoretical pressure profile induced by centrifugation. We conclude that vulnerability to cavitation can be accurately characterised with vulnerability curves constructed using a centrifuge technique, even in long-vesselled species. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Wold-Brennon, R.; Cooper, S. K.
2014-12-01
Through collaborations between scientists and educators, the Consortium for Ocean Leadership developed a series of marine geosciences classroom activities and lesson plans -- including the Adopt-a-Microbe project, a collection of hands-on science lessons that use the sub-seafloor microbiology topics to provide engaging pathways for K-12 students to learn about the world around them. The goal of these activities has been to introduce youth to deep ocean exploration, inspire interest in microbial oceanography, and foster higher education goals and career paths in related sciences for our youth. From the beginning, these lessons were developed in close working relationships between scientists and educators, and the lessons geared towards middle school have been recently piloted with the intent to maximize sustained student interest in STEM topics. While teaching these units, educators used surveys, polls, group discussions, and interviews to shed light on correlations between student interest in STEM and their close proximity to exemplary and enthusiastic educators and student leaders who are active in STEM activities such as research projects and expeditions. Educators continue to use Adopt-a-Microbe and related expedition science-based lessons to explore the broader impacts of their professional development in the Geosciences on their students' professed interest in STEM.
Liu, H X; Goodall, G J; Kole, R; Filipowicz, W
1995-01-16
We have performed a systematic study of the effect of artificial hairpins on pre-mRNA splicing in protoplasts of a dicot plant, Nicotiana plumbaginifolia. Hairpins with a potential to form 18 or 24 bp stems strongly inhibit splicing when they sequester the 5' splice site or are placed in the middle of short introns. However, similar 24 bp hairpins sequestering the 3' splice site do not prevent this site from being used as an acceptor. Utilization of the stem-located 3' site requires that the base of the stem is separated from the upstream 5' splice site by a minimum of approximately 45 nucleotides and that another 'helper' 3' splice site is present downstream of the stem. The results indicate that the spliceosome or factors associated with it may have a potential to unfold secondary structure present in the downstream portion of the intron, prior to or at the step of the 3' splice site selection. The finding that the helper 3' site is required for utilization of the stem-located acceptor confirms and extends previous observations, obtained with HeLa cell in vitro splicing systems, indicating that the 3' splice site may be recognized at least twice during spliceosome assembly.
Teaching in Middle School Technology Education: A Review of Recent Practices
ERIC Educational Resources Information Center
Sherman, Thomas M.; Sanders, Mark; Kwon, Hyuksoo
2010-01-01
We review articles published between 1995 and 2008 in four journals that are the primary scholarly resources for Technology Education middle school teaching. This descriptive study identified four main issues that scholars addressed: what should be taught in middle school, the structure and content of curriculum transformation, integrating…
Rowe, T.G.; Allander, Kip K.
2000-01-01
The Upper Truckee River and Trout Creek watersheds, South Lake Tahoe, California and Nevada, were studied from July to December 1996 to develop a better understanding of the relation between surface water and ground water. Base flows at 63 streamflow sites were measured in late September 1996 in the Upper Truckee River and Trout Creek watersheds. Most reaches of the main stem of the Upper Truckee River and Trout Creek had gaining or steady flows, with one losing reach in the mid-section of each stream. Twenty-seven of the streamflow sites measured in the Upper Truckee River watershed were on 14 tributaries to the main stem of the Upper Truckee River. Sixteen of the 40 streamflow sites measured in the Upper Truckee River watershed had no measurable flow. Streamflow in Upper Truckee River watershed ranged from 0 to 11.6 cubic feet per second (ft3/s). The discharge into Lake Tahoe from the Upper Truckee River was 11.6 ft3/s, of which, 40 percent of the flow was from ground-water discharge into the main stem, 40 percent was from tributary inflows, and the remaining 20 percent was the beginning flow. Gains from or losses to ground water along streams ranged from a 1.4 cubic feet per second per mile (ft3/s/mi) gain to a 0.5 ft3/s/mi loss along the main stem. Fourteen of the streamflow sites measured in the Trout Creek watershed were on eight tributaries to the main stem of Trout Creek. Of the 23 streamflow sites measured in the Trout Creek watershed, only one site had no flow. Flows in the Trout Creek watershed ranged from zero to 23.0 ft3/s. Discharge into Lake Tahoe from Trout Creek was 23.0 ft3/s, of which, about 5 percent of the flow was from ground-water discharge into the main stem, 75 percent was from tributary inflows, and the remaining 20 percent was the beginning flow. Ground-water seepage rates ranged from a 1.4 ft3/s/mi gain to a 0.9 ft3/s/mi loss along the main stem. Specific conductances measured during the seepage run in September 1996 increased in a downstream direction in the main stem of the Upper Truckee River and remained relatively constant in the main stem of Trout Creek. Water temperatures measured during the seepage run also increased in a downstream direction in both watersheds. Depths to ground water measured at 62 wells in the study area were used with the results of the seepage run to produce a water-level map in the Upper Truckee River and Trout Creek watersheds. Ground-water levels ranged from 1.3 to 69.8 feet below land surface. In the upper sections of the watersheds ground-water flow is generally toward the main stems of Upper Truckee River and Trout Creek, whereas in the lower sections, ground-water flow generally parallels the two streams and flows toward Lake Tahoe. The altitude of ground water between Lake Tahoe and Highway 50 was nearly the same as the lake-surface altitude from July to November 1996. This suggests ground-water discharge beneath the Upper Truckee River and Trout Creek drainages directly to Lake Tahoe was minimal and that much of the ground-water discharge was to the channels of the Upper Truckee River and Trout Creek upstream from Highway 50. Hydraulic gradients ranged from near zero to 1,400 feet per mile. Samples were collected at six surface-water-quality and eight ground-water-quality sites from July through mid-December 1996. Specific conductance of the ground-water-quality sites was higher than that of the surface-water-quality sites. Water temperature and pH median values were similar between ground-water-quality and surface-water-quality sites but ground water had greater variation in pH and surface water had greater variation in water temperature. Ground-water nutrient concentrations were generally higher than those in streams except for bioreactive iron.
Generalized sediment budgets of the Lower Missouri River, 1968–2014
Heimann, David C.
2016-09-13
Sediment budgets of the Lower Missouri River were developed in a study led by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers. The scope of the study included the development of a long-term (post-impoundment, 1968–2014) average annual sediment budget and selected annual, monthly, and daily sediment budgets for a reach and period that adequate data were available. Included in the analyses were 31 main-stem and tributary stations of the Lower Missouri River and two Mississippi River stations—the Mississippi River below Grafton, Illinois, and the Mississippi River at St. Louis, Missouri.Long-term average annual suspended-sediment loads of Missouri River main-stem stations ranged from 0.33 million tons at the Missouri River at Yankton, South Dakota, station to 71.2 million tons at Missouri River at Hermann, Mo., station. Gaged tributary gains accounted for 9–36 percent of the local reach budgets and cumulative gaged tributary contributions accounted for 84 percent of the long-term average suspended-sediment load of the Missouri River at Hermann, Mo., station. Although the sediment budgets for seven defined main-stem reaches generally were incomplete—missing bedload, reach storage, and ungaged tributary contributions—the budget residuals (net result of sediment inputs and outputs) for six of the seven reaches ranged from -7.0 to 1.7 million tons, or from -9.2 to 4.0 percent of the reach output suspended-sediment load, and were within the 10 percent reported measurement error of annual suspended-sediment loads for large rivers. The remaining reach, downstream from Gavin’s Point Dam, extended from Yankton, S. Dak., to Sioux City, Iowa, and had a budget residual of -9.8 million tons, which was -88 percent of the suspended-sediment load at Sioux City.The Lower Missouri River reach from Omaha, Nebraska, to Nebraska City, Nebr., had periods of concurrent sediment data for each primary budget component with which to analyze and determine a suspended-sediment budget for selected annual, monthly, and daily time increments. The temporal changes in the cumulative annual budget residuals were poorly correlated with the comparatively steady 1968–2011 annual stage trends at the Missouri River at Nebraska City, Nebr., station. An accurate total sediment budget is developed by having concurrent data available for all primary suspended and bedload components for a reach of interest throughout a period. Such a complete budget, with concurrent record for suspended-sediment load and bedload components, is unavailable for any reach and period in the Lower Missouri River. The primary data gaps are in bedload data, and also in suspended-sediment gains and losses including ungaged tributary inputs and sediment storage. Bedload data gaps in the Missouri River Basin are much more prevalent than suspended-sediment data gaps, and the first step in the development of reach bedload budgets is the establishment of a standardized bedload monitoring program at main-stem stations.The temporal changes in flow-adjusted suspended-sediment concentrations analyzed at main-stem Missouri River stations indicated an overall downward change in concentrations between 1968 and 2014. Temporary declines in flow-adjusted suspended-sediment concentrations during and following large floods were evident but generally returned to near pre-flood values within about 6 months.Data uncertainties associated with the development of a sediment budget include uncertainties associated with the collection of suspended-sediment and bedload data and the computation of suspended-sediment loads. These uncertainties vary depending on the frequency of data collection, the variability of conditions being represented by the discrete samples, and the statistical approach to suspended-sediment load computations. The coefficients of variation of suspended-sediment loads of Missouri River tributary stations for 1968–2014 were greater, 75.0 percent, than the main-stem stations, 47.1 percent. The lower coefficient of variation at main-stem stations compared to tributaries, primarily is the result of the lower variability in streamflow and sediment discharge identified at main-stem stations. To obtain similar accuracy between suspended-sediment loads at main-stem and tributary stations, a longer period of record is required of the tributary stations. During 1968–2014, however, the Missouri River main-stem station record was much more complete (87 percent) than the tributary station record (28 percent).
Duris, Joseph W.; Reif, Andrew G.; Olson, Leif E.; Johnson, Heather E.
2011-01-01
The City of Wilmington, Delaware, is in the downstream part of the Brandywine Creek Basin, on the main stem of Brandywine Creek. Wilmington uses this stream, which drains a mixed-land-use area upstream, for its main drinking-water supply. Because the stream is used for drinking water, Wilmington is in need of information about the occurrence and distribution of specific fecally derived pathogenic bacteria (disease-causing bacteria) and their relations to commonly measured fecal-indicator bacteria (FIB), as well as information regarding the potential sources of the fecal pollution and pathogens in the basin. This study focused on five routinely sampled sites within the basin, one each on the West Branch and the East Branch of Brandywine Creek and at three on the main stem below the confluence of the West and East Branches. These sites were sampled monthly for 1 year. Targeted event samples were collected on two occasions during high flow and two occasions during normal flow. On the basis of this study, high flows in the Brandywine Creek Basin were related to increases in FIB densities, and in the frequency of selected pathogen and source markers, in the West Branch and main stem of Brandywine Creek, but not in the East Branch. Water exceeding the moderate fullbody-contact single-sample recreational water-quality criteria (RWQC) for Escherichia coli (E. coli) was more likely to contain selected markers for pathogenic E. coli (eaeA,stx1, and rfbO157 gene markers) and bovine fecal sources (E. hirae and LTIIa gene markers), whereas samples exceeding the enterococci RWQC were more likely to contain the same pathogenic markers but also were more likely to carry a marker indicative of human source (esp gene marker). On four sample dates, during high flow between October and March, the West Branch was the only observed potential contributor of selected pathogen and bovine source markers to the main stem of Brandywine Creek. Indeed, the stx2 marker, which indicates a highly virulent type of pathogenic E. coli, was found only in the West Branch and main stem at high flow but was not found in the East Branch under similar conditions. However, it must be noted that throughout the entire year of sampling there were occasions, during both high and normal flows, when both the East and West Branches were potential contributors of pathogen and microbial-source tracking markers to the main stem. Therefore, this study indicates that under selected conditions (high flow, October through March), West Branch Brandywine Creek Basin was the most likely source of elevated FIB densities in the main stem. These elevated densities are associated with more frequent detection of selected pathogenic E. coli markers (rfbO157 stx1) and are associated with MST markers of bovine source. However, during other times of the year, both the West Branch and East Branch Basins are acting as potential sources of FIB and fecally derived pathogens.
Multipotent Stem Cell and Reproduction.
Khanlarkhani, Neda; Baazm, Maryam; Mohammadzadeh, Farzaneh; Najafi, Atefeh; Mehdinejadiani, Shayesteh; Sobhani, Aligholi
Stem cells are self-renewing and undifferentiated cell types that can be differentiate into functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and protection. The accessibility and adaptability of these amazing cells create them a great therapeutic choice for different part of medical approaches, and it becomes interesting topic in the scientific researches to found obvious method for the most advantageous use of MSC-based therapies. Recent studies in the field of stem cell biology have provided new perspectives and opportunities for the treatment of infertility disorders.
Samant, Suvidha; Huo, Tian; Dawson, Jeffrey O; Hahn, Dittmar
2016-02-01
Quantitative polymerase chain reaction (qPCR) was used to assess the abundance and relative distribution of host infection groups of the root-nodule forming, nitrogen-fixing actinomycete Frankia in four soils with similar physicochemical characteristics, two of which were vegetated with a host plant, Alnus glutinosa, and two with a non-host plant, Betula nigra. Analyses of DAPI-stained cells at three locations, i.e., at a distance of less than 1 m (near stem), 2.5 m (middle crown), and 3-5 m (crown edge) from the stems of both tree species revealed no statistically significant differences in abundance. Frankiae generally accounted for 0.01 to 0.04 % of these cells, with values between 4 and 36 × 10(5) cells (g soil)(-1). In three out of four soils, abundance of frankiae was significantly higher at locations "near stem" and/or "middle crown" compared to "crown edge," while numbers at these locations were not different in the fourth soil. Frankiae of the Alnus host infection group were dominant in all samples accounting for about 75 % and more of the cells, with no obvious differences with distance to stem. In three of the soils, all of these cells were represented by strain Ag45/Mut15. In the fourth soil that was vegetated with older A. glutinosa trees, about half of these cells belonged to a different subgroup represented by strain ArI3. In all soils, the remaining cells belonged to the Elaeagnus host infection group represented by strain EAN1pec. Casuarina-infective frankiae were not found. Abundance and relative distribution of Frankia host infection groups were similar in soils under the host plant A. glutinosa and the non-host plant B. nigra. Results did thus not reveal any specific effects of plant species on soil Frankia populations.
Liebenthal, Einat; Desai, Rutvik H.; Humphries, Colin; Sabri, Merav; Desai, Anjali
2014-01-01
The superior temporal sulcus (STS) in the left hemisphere is functionally diverse, with sub-areas implicated in both linguistic and non-linguistic functions. However, the number and boundaries of distinct functional regions remain to be determined. Here, we present new evidence, from meta-analysis of a large number of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies, of different functional specificity in the left STS supporting a division of its middle to terminal extent into at least three functional areas. The middle portion of the left STS stem (fmSTS) is highly specialized for speech perception and the processing of language material. The posterior portion of the left STS stem (fpSTS) is highly versatile and involved in multiple functions supporting semantic memory and associative thinking. The fpSTS responds to both language and non-language stimuli but the sensitivity to non-language material is greater. The horizontal portion of the left STS stem and terminal ascending branches (ftSTS) display intermediate functional specificity, with the anterior-dorsal ascending branch (fatSTS) supporting executive functions and motor planning and showing greater sensitivity to language material, and the horizontal stem and posterior-ventral ascending branch (fptSTS) supporting primarily semantic processing and displaying greater sensitivity to non-language material. We suggest that the high functional specificity of the left fmSTS for speech is an important means by which the human brain achieves exquisite affinity and efficiency for native speech perception. In contrast, the extreme multi-functionality of the left fpSTS reflects the role of this area as a cortical hub for semantic processing and the extraction of meaning from multiple sources of information. Finally, in the left ftSTS, further functional differentiation between the dorsal and ventral aspect is warranted. PMID:25309312
Skutschas, Pavel; Stein, Koen
2015-01-01
Kokartus honorarius from the Middle Jurassic (Bathonian) of Kyrgyzstan is one of the oldest salamanders in the fossil record, characterized by a mixture of plesiomorphic morphological features and characters shared with crown-group salamanders. Here we present a detailed histological analysis of its long bones. The analysis of a growth series demonstrates a significant histological maturation during ontogeny, expressed by the progressive appearance of longitudinally oriented primary vascular canals, primary osteons, growth marks, remodelling features in primary bone tissues, as well as progressive resorption of the calcified cartilage, formation of endochondral bone and development of cartilaginous to bony trabeculae in the epiphyses. Apart from the presence of secondary osteons, the long bone histology of Kokartus is very similar to that of miniaturized temnospondyls, other Jurassic stem salamanders, miniaturized seymouriamorphs and modern crown-group salamanders. We propose that the presence of secondary osteons in Kokartus honorarius is a plesiomorphic feature, and the loss of secondary osteons in the long bones of crown-group salamanders as well as in those of miniaturized temnospondyls is the result of miniaturization processes. Hitherto, all stem salamander long bong histology (Kokartus, Marmorerpeton and ‘salamander A’) has been generally described as having paedomorphic features (i.e. the presence of Katschenko's Line and a layer of calcified cartilage), these taxa were thus most likely neotenic forms. The absence of clear lines of arrested growth and annuli in long bones of Kokartus honorarius suggests that the animals lived in an environment with stable local conditions. PMID:25682890
Skutschas, Pavel; Stein, Koen
2015-04-01
Kokartus honorarius from the Middle Jurassic (Bathonian) of Kyrgyzstan is one of the oldest salamanders in the fossil record, characterized by a mixture of plesiomorphic morphological features and characters shared with crown-group salamanders. Here we present a detailed histological analysis of its long bones. The analysis of a growth series demonstrates a significant histological maturation during ontogeny, expressed by the progressive appearance of longitudinally oriented primary vascular canals, primary osteons, growth marks, remodelling features in primary bone tissues, as well as progressive resorption of the calcified cartilage, formation of endochondral bone and development of cartilaginous to bony trabeculae in the epiphyses. Apart from the presence of secondary osteons, the long bone histology of Kokartus is very similar to that of miniaturized temnospondyls, other Jurassic stem salamanders, miniaturized seymouriamorphs and modern crown-group salamanders. We propose that the presence of secondary osteons in Kokartus honorarius is a plesiomorphic feature, and the loss of secondary osteons in the long bones of crown-group salamanders as well as in those of miniaturized temnospondyls is the result of miniaturization processes. Hitherto, all stem salamander long bong histology (Kokartus, Marmorerpeton and 'salamander A') has been generally described as having paedomorphic features (i.e. the presence of Katschenko's Line and a layer of calcified cartilage), these taxa were thus most likely neotenic forms. The absence of clear lines of arrested growth and annuli in long bones of Kokartus honorarius suggests that the animals lived in an environment with stable local conditions. © 2015 Anatomical Society.
Determining Sediment Sources in the Anacostia River Watershed
NASA Astrophysics Data System (ADS)
Devereux, O. H.; Needelman, B. A.; Prestegaard, K. L.; Gellis, A. C.; Ritchie, J. C.
2005-12-01
Suspended sediment is a water-quality problem in the Chesapeake Bay. This project is designed to identify sediment sources in an urban watershed, the Northeast Branch of the Anacostia River (in Washington, D.C. and Maryland - drainage area = 188.5 km2), which delivers sediment directly to the Bay. This watershed spans two physiographic regions - the Piedmont and Coastal Plain. Bank sediment and suspended-sediment deposits were characterized using the following techniques: radionuclide (Cs-137) analysis by gamma ray spectrometry, trace-element analysis by ICP-MS, clay mineralogy by XRD, and particle-size analysis by use of a laser particle-size analyzer. Sampling of bank and suspended sediment was designed to: a) characterize tributary inputs from both Piedmont and Coastal Plain sources, and b) differentiate tributary inputs from bank erosion along the main stem of the Northeast Branch. Thirteen sample sites were chosen that represent tributary source areas of each physiographic region and the main stem where mixing occurs. Surface samples of the banks were compared to overbank deposits from a ten year storm (a proxy for the suspended sediments). Fingerprint components are selected from these data. Cesium-137 concentrations were analyzed for bank and overbank deposits for each physiographic region. No clear differences were seen between the two physiographic regions. Significant differences were observed between upland tributaries and the main stem of the Anacostia River. The average activity of Cs-137 for the tributaries was 5.4 bq/kg and the average for the main stem was 1.1 bq/kg. This suggests that there is significant erosion and storage of sediment in the tributaries. The low activity from Cs-137 in the main stem suggests a lack of storage of sediment along the main stem of the river. For the trace-element data, we focused on elements that showed significant variation among the sites. For the bank sediment, these elements include: Sr, V, Y, Ce, and Nd. For the overbank deposits, Zr, V, Ba, Ce, and Cu showed significant variability. In both physiographic regions, Pb is primarily found in bank deposits, while Cu is found in higher concentrations in overbank deposits. The Cs-137 data clearly showed the erosion and storage of sediment patterns in the watershed. The trace-element data indicate that stream banks may be differentiated from overbank deposits.
SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdollahi, H
Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment responsemore » in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging.« less
19. DETAIL VIEW OF SKIFF BOW WITH OAK STEM AND ...
19. DETAIL VIEW OF SKIFF BOW WITH OAK STEM AND FRAMES PLANKED IN CEDAR USING COPPER CLINCH NAILS. TRANSOM OF SECOND SKIFF CAN BE SEEN BACKGROUND. - Lowell's Boat Shop, 459 Main Street, Amesbury, Essex County, MA
Łęczycka, A; Dudkiewicz, M; Czerwiński, J; Malanowski, P; Żalikowska-Hołoweńko, J; Danielewicz, R
2016-06-01
History of hematopoietic stem cell transplantations in Poland begins in early 1980s; the 1st bone marrow allotransplantation was performed in 1983 in the Central Clinical Hospital of the Military Medical Academy in Warsaw. Following years brought the 1st autologous stem cell transplantations. Ten years later, unrelated bone marrow transplantation was performed for the 1st time by the team of the Hematology and Blood and Marrow Transplantation Unit in Katowice. Since then, hematopoietic stem cell transplantation developed to be standard procedure and one of the most important therapies applied in leukemia treatment. The number of allotransplantations in Poland has grown significantly in the past 2 decades, which generated new needs and problems. In 2005, based on a new Transplant Law, a National Transplants Registry was created. Its main role is to collect data (registration of procedures and follow-up data) related to every transplantation case for stem cells and tissues as well as for organs. We present statistics concerning stem cell transplantations performed in Poland, as collected in the National Transplants Registry in the years 2006-2014. There are 18 centers transplanting hematopoietic stem cells in Poland. The total number of hematopoietic stem cell transplantations performed in 2006-2014 was 3,537, with allotransplantations from relatives accounted for 1,491 and from unrelated donors for 2,046. The main indication for allotransplantation in past years was acute leukemia. Copyright © 2016 Elsevier Inc. All rights reserved.
Goode, Daniel J.; Koerkle, Edward H.; Hoffman, Scott A.; Regan, R. Steve; Hay, Lauren E.; Markstrom, Steven L.
2010-01-01
A model was developed to simulate inflow to reservoirs and watershed runoff to streams during three high-flow events between September 2004 and June 2006 for the main-stem subbasin of the Delaware River draining to Trenton, N.J. The model software is a modified version of the U.S. Geological Survey (USGS) Precipitation-Runoff Modeling System (PRMS), a modular, physically based, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on surface-water runoff and general basin hydrology. The PRMS model simulates time periods associated with main-stem flooding that occurred in September 2004, April 2005, and June 2006 and uses both daily and hourly time steps. Output from the PRMS model was formatted for use as inflows to a separately documented reservoir and riverrouting model, the HEC-ResSim model, developed by the U.S. Army Corps of Engineers Hydrologic Engineering Center to evaluate flooding. The models were integrated through a graphical user interface. The study area is the 6,780 square-mile watershed of the Delaware River in the states of Pennsylvania, New Jersey, and New York that drains to Trenton, N.J. A geospatial database was created for use with a geographic information system to assist model discretization, determine land-surface characterization, and estimate model parameters. The USGS National Elevation Dataset at 100-meter resolution, a Digital Elevation Model (DEM), was used for model discretization into streams and hydrologic response units. In addition, geospatial processing was used to estimate initial model parameters from the DEM and other data layers, including land use. The model discretization represents the study area using 869 hydrologic response units and 452 stream segments. The model climate data for point stations were obtained from multiple sources. These sources included daily data for 22 National Weather Service (NWS) Cooperative Climate Station network stations, hourly data for 15 stations from the National Climatic Data Center, hourly data for 1 station from the NWS Middle Atlantic River Forecast Center records, and daily and hourly data for 7 stations operated by the New York City Department of Environmental Protection. The NWS Multisensor Precipitation Estimate data set for 2001-2007 was used for computing daily precipitation for the model and for computing hourly precipitation for storm simulation periods. Calibration of the PRMS model included regression and optimization algorithms, as well as manual adjustments of model parameters. The general goal of the calibration procedure was to minimize the difference between discharge measured at USGS streamgages and the corresponding discharge simulated by the model. Daily streamflow data from 35 USGS streamgages were used in model calibration. The streamflow data represent areas draining from 20.2 to 6,780 square miles. The PRMS model simulates reservoir inflow and watershed runoff for use as input into HECResSim for the purpose of evaluating and comparing the effects of different watershed conditions on main-stem flooding in the Delaware River watershed draining to Trenton, N.J. The PRMS model is useful as a planning tool to simulate the effects of land-use changes and different antecedent conditions on local runoff and reservoir inflow and, as input to the HEC-ResSim model, on flood flows in the main stem of the Delaware River.
Historical early stem development of northern white-cedar (Thuja occidentalis L.) in Maine
Philip V. Hofmeyer; Laura S. Kenefic; Robert S. Seymour
2010-01-01
We used stem analysis to quantify early height and diameter growth rates of 80 northern white-cedar trees (17.4-55.0 cm dbh) harvested in 2005 and 2006 in central and northern Maine. It took an average of 42 years (range, 9-86 years) for sampled trees to grow from stump height to sapling size, 96 years to grow to pole size (range, 28-171), 140 years to grow to...
Cui, Guanglin; Xu, Gang; Zhu, Li; Pang, Zhigang; Zheng, Wei; Li, Zhenfeng; Yuan, Aping
2017-01-01
Considerable evidence supports the idea that stem-like cells may play an essential role during the development of colorectal cancer (CRC). To accomplish this aim, we use immunohistochemistry (IHC) and double IHC with different potential stem-like markers, anti-musashi (Msi), anti-CD133, anti- LGR5 and anti-ALDH1 to examine the presentation of stem-like cells in different compartments including adenoma/CRC epithelium, transitional crypts and tumor stroma in colorectal adenoma and CRC. The results showed that cells positive for stem-like markers were remarkably increased in number and frequently observed in the adenoma/CRC epithelium, transitional crypts and tumor stroma. Notably, the population of cells positive for stem-liker markers was expanded from the base to the middle part of the transitional crypt in both adenoma and CRC tissues, reflecting that stem-like cells are likely involved in the process of colorectal tumorigenesis. Counting results showed that the grading scores of cells positive for LGR5 and ALDH1 in the adenoma/CRC epithelium were significantly increased relative with the control epithelium, and associated with the degree of dysplasia in the adenoma and node involvement in the CRC (all P < 0.05). In addition, the density of cells positive for stem–like markers in the adenomatous/cancerous stroma was also increased and paralleled an increase in the density of proliferative stromal cells labeled by PCNA, which were primarily identified as vimentin positive fibroblasts. Our results have revealed a changed temporal and spatial presentation of stem-like markers in different stages of human colorectal adenoma-carcinoma sequence, which might be a hallmark of the adenoma-carcinoma transition. PMID:28484082
ERIC Educational Resources Information Center
Rosenblum, Ian; Spence, Christopher
2015-01-01
The gap that separates so many workers from the prospect of good-paying, stable jobs demands urgent action by states--even as the unrelenting fast pace of economic change makes a sound response all the more difficult and as the "rules of the game" continue to evolve. This is especially true in the Science, Technology, Engineering and…
ERIC Educational Resources Information Center
Bartholomew, Scott
2016-01-01
With the increasingly ubiquitous nature of mobile devices among K-12 students, many argue for and against the inclusion of these devices in K-12 classrooms. Arguments in favor cite instant access to information and collaboration with others as positive affordances made possible through mobile devices. Self-directed learning, a process where…
ERIC Educational Resources Information Center
Goldhaber, Dan; Gratz, Trevor; Theobald, Roddy
2016-01-01
We investigate the relationship between teacher licensure test scores and student test achievement and high school course-taking. We focus on three subject/grade combinations--middle school math, ninth-grade algebra and geometry, and ninth-grade biology--and find evidence that a teacher's basic skills test scores are modestly predictive of student…
ERIC Educational Resources Information Center
Wong, Sissy S.
2016-01-01
Understanding teachers' beliefs is important because beliefs influence teacher decisions. In science, teacher beliefs have an impact on how science curriculum is interpreted and implemented in the classroom. With the push for science, technology, engineering, and mathematics (STEM) education in the United States, it is also critical to examine the…
ERIC Educational Resources Information Center
Harwell, Michael; Moreno, Mario; Phillips, Alison; Guzey, S. Selcen; Moore, Tamara J.; Roehrig, Gillian H.
2015-01-01
The purpose of this study was to develop, scale, and validate assessments in engineering, science, and mathematics with grade appropriate items that were sensitive to the curriculum developed by teachers. The use of item response theory to assess item functioning was a focus of the study. The work is part of a larger project focused on increasing…
Introduction to regenerative medicine and tissue engineering.
Stoltz, J-F; Decot, V; Huseltein, C; He, X; Zhang, L; Magdalou, J; Li, Y P; Menu, P; Li, N; Wang, Y Y; de Isla, N; Bensoussan, D
2012-01-01
Human tissues don't regenerate spontaneously, explaining why regenerative medicine and cell therapy represent a promising alternative treatment (autologous cells or stem cells of different origins). The principle is simple: cells are collected, expanded and introduced with or without modification into injured tissues or organs. Among middle-term therapeutic applications, cartilage defects, bone repair, cardiac insufficiency, burns, liver or bladder, neurodegenerative disorders could be considered.
ERIC Educational Resources Information Center
Knezek, Gerald; Christensen, Rhonda; Tyler-Wood, Tandra; Gibson, David
2015-01-01
Data gathered from 325 middle school students in four U.S. states indicate that both male (p < 0.0005, RSQ = 0.33) and female (p < 0.0005, RSQ = 0.36) career aspirations for "being a scientist" are predictable based on knowledge of dispositions toward mathematics, science and engineering, plus self-reported creative tendencies. For…
ERIC Educational Resources Information Center
Hughes, Roxanne M.; Nzekwe, Brandon; Molyneaux, Kristen J.
2013-01-01
Currently, there are policy debates regarding the efficacy and legality of single sex formal and informal education programs. This issue is particularly poignant in science education due to the historical marginalization of women in these fields. This marginalization has resulted in women being positioned as a stigmatized group within many…
ERIC Educational Resources Information Center
Assouline, Susan G.; Ihrig, Lori M.; Mahatmya, Duhita
2017-01-01
High-potential students from underresourced rural schools face barriers that reduce options for academic advancement, which widens the excellence gap between them and their more affluent, but similar ability peers. The goal of this study was to investigate the effectiveness of an expanded above-level testing model to identify high-potential rural…
Promises and challenges of stem cell research for regenerative medicine.
Power, Carl; Rasko, John E J
2011-11-15
In recent years, stem cells have generated increasing excitement, with frequent claims that they are revolutionizing medicine. For those not directly involved in stem cell research, however, it can be difficult to separate fact from fiction or realistic expectation from wishful thinking. This article aims to provide internists with a clear and concise introduction to the field. While recounting some scientific and medical milestones, the authors discuss the 3 main varieties of stem cells-adult, embryonic, and induced pluripotent-comparing their advantages and disadvantages for clinical medicine. The authors have sought to avoid the moral and political debates surrounding stem cell research, focusing instead on scientific and medical issues.
Barszcz, Karolina; Kupczyńska, Marta; Klećkowska-Nawrot, Joanna; Janeczek, Maciej; Goździewska-Harłajczuk, Karolina; Dzierzęcka, Małgorzata; Janczyk, Paweł
2017-01-01
The aim of this study was to measure the area of the coronary ostia, assess their localization in the coronary sinuses and to determine the morphology of the stem of the left and right coronary arteries in the domestic shorthair cat. The study was conducted on 100 hearts of domestic shorthair cats of both sexes, aged 2–18 years, with an average body weight of 4.05 kg. A morphometric analysis of the coronary ostia was carried out on 52 hearts. The remaining 48 hearts were injected with a casting material in order to carry out a morphological assessment of the left and right coronary arteries. In all the studied animals, the surface of the left coronary artery ostium was larger than the surface of the right coronary artery ostium. There were four types of the left main coronary artery: type I (23 animals, 49%)–double-branched left main stem (giving off the left circumflex branch and the interventricular paraconal branch, which in turn gave off the septal branch), type II (12 animals, 26%)–double-branched left main stem (giving off the left circumflex branch and the interventricular paraconal branch without the septal branch), type III (11 animals, 23%)–triple-branched left main stem (giving off the left circumflex branch, interventricular branch and the septal branch, type IV (1 animal, 2%)–double-branched left main stem (giving off the interventricular paraconal branch and the left circumflex branch, which in turn gave off the septal branch). The left coronary artery ostium is greater than the right one. There is considerable diversity in the branches of proximal segment of the left coronary artery, while the right coronary artery is more conservative. These results can be useful in defining the optimal strategies in the endovascular procedures involving the coronary arteries or the aortic valve in the domestic shorthair cat. PMID:29020103
Impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon
Dauble, D.D.; Hanrahan, T.P.; Geist, D.R.; Parsley, M.J.
2003-01-01
Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the main-stem Columbia River and 163 km of the main-stem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains, which were once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment and more bars and islands and had lower water surface slopes than did less extensively used areas. Because flows in the main stem are now highly regulated, the predevelopment alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes - specifically, sustained peak flows for scouring - is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries, tailrace spawning areas, and hatcheries) be considered.
Disilvestro, R
2008-07-01
Are there persuasive approaches to embryonic stem cell (ESC) research that appeal, not just to those fellow-citizens in one's own ideological camp, nor just to those undecided citizens in the middle, but to those citizens on the other side of the issue? I believe that there are such arguments and in this short paper I try to develop one of them. In particular, I argue that certain beliefs shared by some proponents and some opponents of ESC research--beliefs about the personal identity and moral status of those who are victims of terrible brain diseases--are beliefs that should lead us to adopt a qualified endorsement of ESC research.
The Emerging Role of PEDF in Stem Cell Biology
Elahy, Mina; Baindur-Hudson, Swati; Dass, Crispin R.
2012-01-01
Encoded by a single gene, PEDF is a 50 kDa glycoprotein that is highly conserved and is widely expressed among many tissues. Most secreted PEDF deposits within the extracellular matrix, with cell-type-specific functions. While traditionally PEDF is known as a strong antiangiogenic factor, more recently, as this paper highlights, PEDF has been linked with stem cell biology, and there is now accumulating evidence demonstrating the effects of PEDF in a variety of stem cells, mainly in supporting stem cell survival and maintaining multipotency. PMID:22675247
Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas
2012-01-01
Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.
Nuclear Mechanics and Stem Cell Differentiation.
Mao, Xinjian; Gavara, Nuria; Song, Guanbin
2015-12-01
Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.
Huang, Weihui; Li, Yadan; Lin, Yufeng; Ye, Xue; Zang, Dawei
2012-07-05
The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion, and monitored the effect of 25 μg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor administration 2 hours after model establishment. Results showed that following administration, the number of endogenous neural stem cells in the infarct area significantly increased, malondialdehyde content in brain tissue homogenates significantly decreased, nitric oxide content, glutathione peroxidase and superoxide dismutase activity significantly elevated, and mouse motor function significantly improved as confirmed by the rotarod and bar grab tests. In particular, the effect of leukemia inhibitory factor in combination with basic fibroblast growth factor was the most significant. Results indicate that leukemia inhibitory factor and basic fibroblast growth factor can improve the microenvironment after cerebral infarction by altering free radical levels, improving the quantity of endogenous neural stem cells, and promoting neurological function of mice with cerebral infarction.
Charge It! Translating Electric Vehicle Research Results to Engage 7th and 8th Grade Girls
NASA Astrophysics Data System (ADS)
Egbue, Ona; Long, Suzanna; Ng, Ean-Harn
2015-10-01
Despite attempts to generate interest in science and technology careers, US students continue to show reduced interest in science, technology, engineering and mathematics (STEM) majors at the collegiate level. If girls are not engaged in STEM learning by the middle school level, studies show that they are even less likely to choose a science- or engineering-related major. This article presents results from a workshop for 7th and 8th grade girls designed to promote knowledge building in the area of sustainability and alternative energy use in transportation and to stimulate greater interest in STEM subjects. The workshop based on research conducted at University X focused on basic concepts of electric vehicles and electric vehicles' batteries. Tests were conducted to evaluate the students' knowledge and perceptions of electric vehicles and to determine the impact of the workshop. Early exposure to meaningful engineering experiences for these young girls may boost interest and the eventual pursuit of engineering and technology education paths.
NASA Astrophysics Data System (ADS)
Koch, Melissa; Gorges, Torie
2016-10-01
Underrepresented populations such as women, African-Americans, and Latinos/as often come to STEM (science, technology, engineering, and mathematics) careers by less traditional paths than White and Asian males. To better understand how and why women might shift toward STEM, particularly computer science, careers, we investigated the education and career direction of afterschool facilitators, primarily women of color in their twenties and thirties, who taught Build IT, an afterschool computer science curriculum for middle school girls. Many of these women indicated that implementing Build IT had influenced their own interest in technology and computer science and in some cases had resulted in their intent to pursue technology and computer science education. We wanted to explore the role that teaching Build IT may have played in activating or reactivating interest in careers in computer science and to see whether in the years following implementation of Build IT, these women pursued STEM education and/or careers. We reached nine facilitators who implemented the program in 2011-12 or shortly after. Many indicated that while facilitating Build IT, they learned along with the participants, increasing their interest in and confidence with technology and computer science. Seven of the nine participants pursued further STEM or computer science learning or modified their career paths to include more of a STEM or computer science focus. Through interviews, we explored what aspects of Build IT influenced these facilitators' interest and confidence in STEM and when relevant their pursuit of technology and computer science education and careers.
Paraneoplastic brain stem encephalitis in a woman with anti-Ma2 antibody.
Barnett, M; Prosser, J; Sutton, I; Halmagyi, G M; Davies, L; Harper, C; Dalmau, J
2001-02-01
A woman developed brain stem encephalopathy in association with serum anti-Ma2 antibodies and left upper lobe lung mass. T2 weighted MRI of the brain showed abnormalities involving the pons, left middle and superior cerebellar peduncles, and bilateral basal ganglia. Immunohistochemical analysis for serum antineuronal antibodies was confounded by the presence of a non-neuronal specific antinuclear antibody. Immunoblot studies showed the presence of anti-Ma2 antibodies. A premortem tissue diagnosis of the lung mass could not be established despite two CT guided needle biopsies, and the patient died as a result of rapid neurological deterioration. The necropsy showed that the lung lesion was an adenocarcinoma which expressed Ma2 immunoreactive protein. Neuropathological findings included prominent perivascular inflammatory infiltrates, glial nodules, and neuronophagia involving the brain stem, basal ganglia, hippocampus and the dentate nucleus of the cerebellum. Ma2 is an autoantigen previously identified in patients with germ cell tumours of the testis and paraneoplastic brain stem and limbic encephalitis. Our patient's clinical and immunopathological findings indicate that this disorder can affect women with lung adenocarcinoma, and that the encephalitic changes predominate in those regions of the brain known to express high concentrations of Ma proteins.
Paraneoplastic brain stem encephalitis in a woman with anti-Ma2 antibody
Barnett, M; Prosser, J; Sutton, I; Halmagyi, G; Davies, L; Harper, C; Dalmau, J
2001-01-01
A woman developed brain stem encephalopathy in association with serum anti-Ma2 antibodies and left upper lobe lung mass. T2 weighted MRI of the brain showed abnormalities involving the pons, left middle and superior cerebellar peduncles, and bilateral basal ganglia. Immunohistochemical analysis for serum antineuronal antibodies was confounded by the presence of a non-neuronal specific antinuclear antibody. Immunoblot studies showed the presence of anti-Ma2 antibodies. A premortem tissue diagnosis of the lung mass could not be established despite two CT guided needle biopsies, and the patient died as a result of rapid neurological deterioration. The necropsy showed that the lung lesion was an adenocarcinoma which expressed Ma2 immunoreactive protein. Neuropathological findings included prominent perivascular inflammatory infiltrates, glial nodules, and neuronophagia involving the brain stem, basal ganglia, hippocampus and the dentate nucleus of the cerebellum. Ma2 is an autoantigen previously identified in patients with germ cell tumours of the testis and paraneoplastic brain stem and limbic encephalitis. Our patient's clinical and immunopathological findings indicate that this disorder can affect women with lung adenocarcinoma, and that the encephalitic changes predominate in those regions of the brain known to express high concentrations of Ma proteins. PMID:11160472
NASA Astrophysics Data System (ADS)
Smith, Charisse F.
Statistically, African-Americans, women, and the disabled are underrepresented in the fields of Science, Technology, Engineering, and Math (STEM). Historically, these underrepresented students, are described as being unrecognized and underdeveloped in the American STEM circuit. Many experience deficient and inadequate educational resources, are not encouraged to pursue STEM education and careers, and are confronted with copious obstructions. In this quantitative study, the researcher collected pretest and posttest survey data from a group of 4th, 5th, and 6th-grade African-American students in Title I funded schools. The reseacher used quantitative analysis to determine any significant differences in the science related attitudes between and within groups who participated in Out of School-Time Science, Technology, Engineering, and Mathematics programs and those who did not. Results revealed no significant differences in the science related attitudes between the groups of the students who participated in the Out of School Time-Science, Technology, Engineering, and Mathematics programs and those who did not. Results also revealed no significant differences in the science related attitudes within the groups of students who participated in the Out of School Time-Science, Technology, Engineering, and Mathematics programs and those who did not.
GREAT I: A Study of the Upper Mississippi River. Volume 1. Main Report
1980-09-01
management of the river system and its interrelated Ensure necessary capability to components within the river corridor . maintain the total river...stem corridor will is a complex resource. It means many probably directly modify many or all things to many people. To call it a other components of the...resource in the "resource" implies that it is some- main stem corridor , Any description thing which man can draw on to satisfy of the Upper
Pastushenko, I; Prieto-Torres, L; Gilaberte, Y; Blanpain, C
2015-11-01
Stem cells are characterized by their ability to self-renew and differentiate into the different cell lineages of their tissue of origin. The discovery of stem cells in adult tissues, together with the description of specific markers for their isolation, has opened up new lines of investigation, expanding the horizons of biomedical research and raising new hope in the treatment of many diseases. In this article, we review in detail the main characteristics of the stem cells that produce the specialized cells of the skin (epidermal, mesenchymal, and melanocyte stem cells) and their potential implications and applications in diseases affecting the skin. Part I deals with the principal characteristics and potential applications of epidermal stem cells in dermatology. Copyright © 2015 Elsevier España, S.L.U. and AEDV. All rights reserved.
Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand.
Tarvainen, Lasse; Räntfors, Mats; Wallin, Göran
2014-05-01
Stem CO2 efflux is known to vary seasonally and vertically along tree stems. However, annual tree- and stand-scale efflux estimates are commonly based on measurements made only a few times a year, during daytime and at breast height. In this study, the effect of these simplifying assumptions on annual efflux estimates and their influence on the estimates of the importance of stems in stand-scale carbon cycling are evaluated. In order to assess the strength of seasonal, diurnal and along-stem variability in CO2 efflux, half-hourly measurements were carried out at three heights on three mature Norway spruce (Picea abies (L.) Karst.) trees over a period of 3 years. Making the common assumption of breast height efflux rates being representative of the entire stem was found to result in underestimations of 10-17% in the annual tree-scale CO2 efflux. Upscaling using only daytime measurements from breast height increased the underestimation to 15-20%. Furthermore, the results show that the strength of the vertical gradient varies seasonally, being strongest in the early summer and non-existent during the cool months. The observed seasonality in the vertical CO2 efflux gradient could not be explained by variation in stem temperature, temperature response of the CO2 efflux (Q10), outer-bark permeability, CO2 transport in the xylem or CO2 release from the phloem. However, the estimated CO2 concentration immediately beneath the bark was considerably higher in the upper stem during the main period of diameter growth, coinciding with the strongest vertical efflux gradient. These results suggest that higher growth rates in the upper stem are the main cause for the observed vertical variation in the stem CO2 effluxes. Furthermore, the results indicate that accounting for the vertical efflux variation is essential for assessments of the importance of stems in stand-scale carbon cycling. © The Author 2014. Published by Oxford University Press. All rights reserved.
Mirza, Sheefa; Jain, Nayan; Rawal, Rakesh
2017-03-01
Lung cancer stem cells are supposed to be the main drivers of tumor initiation, maintenance, drug resistance, and relapse of the disease. Hence, identification of the cellular and molecular aspects of these cells is a prerequisite for targeted therapy of lung cancer. Currently, analysis of circulating tumor cells has the potential to become the main diagnostic technique to monitor disease progression or therapeutic response as it is non-invasive. However, accurate detection of circulating tumor cells has remained a challenge, as epithelial cell markers used so far are not always trustworthy for detecting circulating tumor cells, especially during epithelial-mesenchymal transition. As cancer stem cells are the only culprit to initiate metastatic tumors, our aim was to isolate and characterize circulating tumor stem cells rather than circulating tumor cells from the peripheral blood of NSCLC adenocarcinoma as limited data are available addressing the gene expression profiling of lung cancer stem cells. Here, we reveal that CD44(+)/CD24(-) population in circulation not only exhibit stem cell-related genes but also possess epithelial-mesenchymal transition characteristics. In conclusion, the use of one or more cancer stem cell markers along with epithelial, mesenchymal and epithelial mesenchymal transition markers will prospectively provide the most precise assessment of the threat for recurrence and metastatic disease and has a great potential for forthcoming applications in harvesting circulating tumor stem cells and their downstream applications. Our results will aid in developing diagnostic and prognostic modalities and personalized treatment regimens like dendritic cell-based immunotherapy that can be utilized for targeting and eliminating circulating tumor stem cells, to significantly reduce the possibility of relapse and improve clinical outcomes.
Ultraviolet and Radio Emission from the Northern Middle Lobe of Centaurus A
NASA Technical Reports Server (NTRS)
Neff, Susan
2009-01-01
We present deep GALEX ultraviolet (135 - 280 nm) images of the Northern Middle Lobe (NML) of the nearby radio galaxy Centaurus A. We find that the ultraviolet emission appears to have a complex interaction with soft X-ray, H-alpha emission, and radio emission, which should help constrain various models of energy transport in the NML. We also present new 90cm VLA images of the NML. The radio morphology at this wavelength is indicative of a more complex system than either a straightforward flaring jet (Morganti et al. 1999) or a bubble with trailing stem (Saxton et al. 2001). New limits are placed on the lack of radio emission from any corresponding southern counterpart to the NML.
WaterBotics: Pooling Students to STEM
NASA Astrophysics Data System (ADS)
Stambaugh, Beverly
2015-04-01
The STEM workforce of the future is sitting in today's K-12 classrooms, attending summer camps, and participating in after-school programs. How do we attract more youth -- particularly those currently underrepresented in STEM fields such as girls and minorities -- to explore the marvels of engineering and science? How do we entice them to become active participants - not merely witnesses - in the creation of solutions for our global neighborhood's greatest challenges, from environmental cleanup, to safe and efficient energy production, to improvements in healthcare? The WaterBotics program is one vehicle that has demonstrated success in engaging young learners. This underwater robotics program is designed to provide hands-on experiences for middle and high school age youth to engineering design, information technology tools, and science concepts, and to increase awareness and interest in engineering and IT careers. Middle and high school participants demonstrate increased enjoyment in studying science and engineering and interest in STEM careers as a result of WaterBotics. Such results can be seen from a statewide initiative that reached more than 2,600 middle and high school students in New Jersey in 2006-09 where student learning of science concepts and programming increased (McGrath et al, 2009, 2008). These findings provide the impetus to expand the WaterBotics program nationally. The curriculum can be used either in traditional classroom settings or in after-school and summer-camp settings. This problem-based program requires teams of students to work together to design, build, test, and redesign underwater robots, or "bots" made of LEGO® and other components. Students use the NXT and LEGO Mindstorms® software to program their robots to maneuver in the water, thereby gaining valuable experience with computer programming, as well as 21st Century skills. Teams must complete a series of increasingly sophisticated challenges which culminates with a final challenge that integrates learning from the prior challenges. The nature of these challenges allows for easy adaptation to various real-world scenarios for students to engage in, such as developing a submarine for ocean floor study or designing a vehicle to explore and mine the ocean for mineral resources. First-hand experience with WaterBotics curriculum has shown the increased engagement and excitement for STEM. Starting with a peanut butter and jelly sandwich leads to amazing discovery as students work through the engineering design process, sketching and building their LEGO robots and learning the steps to simple programs that allow their robotic creations to complete various tasks. With LEGOs being so easy to use, students can easily revise their design over and over again until it looks and works as it should. Once the students have the opportunity to test their design in the water for the first time, they are hooked. They can see that something they designed and built actually completes the task, even if it takes multiple tries, and they want to try the next challenge.
Integrating Quantitative Reasoning into STEM Courses Using an Energy and Environment Context
NASA Astrophysics Data System (ADS)
Myers, J. D.; Lyford, M. E.; Mayes, R. L.
2010-12-01
Many secondary and post-secondary science classes do not integrate math into their curriculum, while math classes commonly teach concepts without meaningful context. Consequently, students lack basic quantitative skills and the ability to apply them in real-world contexts. For the past three years, a Wyoming Department of Education funded Math Science Partnership at the University of Wyoming (UW) has brought together middle and high school science and math teachers to model how math and science can be taught together in a meaningful way. The UW QR-STEM project emphasizes the importance of Quantitative Reasoning (QR) to student success in Science, Technology, Engineering and Mathematics (STEM). To provide a social context, QR-STEM has focused on energy and the environment. In particular, the project has examined how QR and STEM concepts play critical roles in many of the current global challenges of energy and environment. During four 3-day workshops each summer and over several virtual and short face-to-face meetings during the academic year, UW and community college science and math faculty work with math and science teachers from middle and high schools across the state to improve QR instruction in math and science classes. During the summer workshops, faculty from chemistry, physics, earth sciences, biology and math lead sessions to: 1) improve the basic science content knowledge of teachers; 2) improve teacher understanding of math and statistical concepts, 3) model how QR can be taught by engaging teachers in sessions that integrate math and science in an energy and environment context; and 4) focus curricula using Understanding by Design to identify enduring understandings on which to center instructional strategies and assessment. In addition to presenting content, faculty work with teachers as they develop classroom lessons and larger units to be implemented during the school year. Teachers form interdisciplinary groups which often consist of math and science teachers from the same school or district. By jointly developing units focused on energy and environment, math and science curricula can be coordinated during the school year. During development, teams present their curricular ideas for peer-review. Throughout the school year, teachers implement their units and collect pre-post data on student learning. Ultimately, science teachers integrate math into their science courses, and math teachers integrate science content in their math courses. Following implementation, participants share their experiences with their peers and faculty. Of central interest during these presentations are: 1) How did the QR-STEM experience change teacher practices in the classroom?; and 2) How did the modification of their teaching practices impact student learning and their ability to successfully master QR? The UW QR-STEM has worked with Wyoming science and math teachers from across the state over the three year grant period.
Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy
Mavroudi, Maria; Zarogoulidis, Paul; Porpodis, Konstantinos; Kioumis, Ioannis; Lampaki, Sofia; Yarmus, Lonny; Malecki, Raf; Zarogoulidis, Konstantinos; Malecki, Marek
2014-01-01
Introduction Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The statistics speak for themselves with the grim reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem cells’ guided gene therapy. Review of therapeutic strategies in preclinical and clinical trials Stem cells have the unique potential for self renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells only. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for therapeutic use of stem cells is their cancerous transformation. Therefore, we discuss various strategies to safeguard stem cell guided gene therapy against iatrogenic cancerogenesis. Perspectives Defining cancer biomarkers to facilitate early diagnosis, elucidating cancer genomics and proteomics with modern tools of next generation sequencing, and analyzing patients’ gene expression profiles provide essential data to elucidate molecular dynamics of cancer and to consider them for crafting pharmacogenomics-based personalized therapies. Streamlining of these data into genetic engineering of stem cells facilitates their use as the vectors delivering therapeutic genes into specific cancer cells. In this realm, stem cells guided gene therapy becomes a promising new frontier in personalized and targeted therapy of cancer. PMID:24860662
Public Awareness on Cord Blood Banking in Saudi Arabia
AlTwijri, Sulaiman; AlSemari, Hadeel; Saade, Mayssa; Alaskar, Ahmed
2018-01-01
Background In the last decade, cord blood (CB) has proven to be a valuable source of hematopoietic stem cells for transplantation to treat many hematological disorders. Since then, many CB banks have been established worldwide. Our aim was to estimate the level of public awareness of CB banking in Saudi Arabia. Study Design and Methods A self-administered questionnaire of 22 multiple choices was conveniently distributed, consisting of demographics, awareness measure, attitude toward banking preference, and donation for research data. Results A total of 1146 participants have completed the questionnaire. The majority were young female 19–25 years old (26%), who are college graduates (57%) with middle class socioeconomic status (82%). The subjective assessment of the overall knowledge was inadequate (66%). For the objective assessment, 12 questions were asked about CB source, collection, storage, and usage. Only half of the subjects (52%) knew that CB is a source of stem cells. More than half did not know the main use of CB. About half did not know about the method of collection nor the condition of storing. Conclusion This study shows a high lack of knowledge about CB banking. More than half of the subjects were unaware of CB banking and its uses. However, most subjects are accepting CB storage, which anticipates great impact and efficacy on educational programs. Moreover, the data demonstrated that health professionals were not the source of knowledge. We recommend having comprehensive educational campaigns with clear information about CB banking to facilitate positive perspectives towards donation and scientific research. PMID:29765424
NASA Astrophysics Data System (ADS)
Hernández-Cortés, P.; Toledo-Romero, M. A.; Delgado, M.; Sánchez-González, C. E.; Martin, F.; Galindo-Moreno, P.; O'Valle, F.
2014-08-01
Objective. Attempts have been made to improve nerve conduits in peripheral nerve reconstruction. We investigated the potential therapeutic effect of a vasoactive intestinal peptide (VIP), a neuropeptide with neuroprotective, trophic and developmental regulatory actions, in peripheral nerve regeneration in a severe model of nerve injury that was repaired with nerve conduits. Approach. The sciatic nerve of each male Wistar rat was transected unilaterally at 10 mm and then repaired with Dl-lactic-ɛ-caprolactone conduits. The rats were treated locally with saline, with the VIP, with adipose-derived mesenchymal stem cells (ASCs) or with ASCs that were transduced with the VIP-expressing lentivirus. The rats with the transected nerve, with no repairs, were used as untreated controls. At 12 weeks post-surgery, we assessed their limb function by measuring the ankle stance angle and the percentage of their muscle mass reduction, and we evaluated the histopathology, immunohistochemistry and morphometry of the myelinated fibers. Main results. The rats that received a single injection of VIP-expressing ASCs showed a significant functional recovery in the ankle stance angle (p = 0.049) and a higher number of myelinated fibers in the middle and distal segments of the operated nerve versus the other groups (p = 0.046). Significance. These results suggest that utilization of a cellular substrate, plus a VIP source, is a promising method for enhancing nerve regeneration using Dl-lactic-ɛ-caprolactone conduits and that this method represents a potential useful clinical approach to repairing peripheral nerve damage.
Index of stations; surface-water data-collections network of Texas, September 1993
Gandara, S.C.; Jones, R.E.
1995-01-01
Table 1 shows the station number and name, latitude and longitude, type of station, and the office principally responsible for collection of the data. An 8-digit permanent numerical designation for all gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering between two main-stem stations are listed between them. A similar order is followed in listing stations by first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is an immediate tributary is indicated by an indention in the table. Each indention represents one rank. This downstream order and system of indention shows which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated.
Index of stations: surface-water data-collection network of Texas, September 1995
Gandara, S.C.; Jones, R.E.
1996-01-01
Table 1 shows the station number and name, latitude and longitude, type of station, and the office responsible for the collection of the data and the record. An 8-digit permanent numerical designation for all gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering between two main-stem stations are listed between them. A similar order is followed in listing stations by first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is an immediate tributary is indicated by an indention in the table. Each indention represents one rank. This downstream order and system of indention shows which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated.
Prasad, K V; Bharathi, K; Srinivasan, K K
1993-10-01
The fresh juice of Musa stem (Puttubale) was tested for its antilithiatic activity. Zinc discs were implanted in the urinary bladder of albino rats to induce urolithiasis. The stones formed were mainly of magnesium ammonium phosphate with traces of calcium oxalate. Musa stem juice (3 mL/rat/day orally) was found to be effective in reducing the formation and also in dissolving the pre-formed stones.
Thomas, Roderick G.; Hay, Michael J. M.
2015-01-01
In Trifolium repens the decline in bud outgrowth that occurs with distance from basal root systems is due to correlative inhibition by the first-formed basal branches. The apical and axillary buds on these basal branches are the source of the inhibitory effect, but their mode of action is unclear. Inhibition might occur via basal branches being a sink for xylem-transported branching stimulants or alternatively by providing a source of inhibitory signals, or by both mechanisms. To distinguish between these mechanisms, four experiments were conducted on plants varying in initial growth stage from 10 to 19 nodes along their main stems to determine any variation in the relative importance of the operative mechanisms of correlative inhibition. Inhibitory signal exported into the main stem, detected as a branching response to girdling of basal branches, was relatively more significant in smaller (initially with 10–15 nodes on the main stem) than in larger (>19 nodes on main stem) plants. This signal was shown not to involve auxin fluxes, and is unidentified. However, across all stages of growth, the predominant mechanism driving correlative inhibition was the action of axillary and apical buds of basal branches as sinks for the stimulatory signal. This study indicates that the relative importance of the mechanisms regulating bud outgrowth in T. repens varies with growth stage and that, during intermediate stages, regulation has some similarity to that in Pisum. PMID:25922495
Kim, Hyun Jung; Han, Jung-Heon; Kim, Seungill; Lee, Heung Ryul; Shin, Jun-Sung; Kim, Jeong-Ho; Cho, Juok; Kim, Young Ho; Lee, Hee Jae; Kim, Byung-Dong; Choi, Doil
2011-04-01
A relationship between pepper trichome and pepper mottle virus (PepMoV) resistance was examined. In an intraspecific F(2) mapping population from the cross between Capsicum annuum CM334 (trichome-bearing and PepMoV resistant) and Chilsungcho (glabrous and PepMoV susceptible), major QTLs for both traits were identified by composite interval mapping in linkage group (LG) 24 corresponding a telomere region on pepper chromosome 10. Ptel1 of putative trichome enhancing locus was a common major QTL for trichome density on the main stem and calyx. Ptel1 apart from HpmsE031 at a 1.03 cM interval was specifically associated to the trichome density on the main stem, whereas Ptel2 near m104 marker on LG2 was specific for the calyx trichome. Epistatic analysis indicated that Ptel1 engaged in controlling the trichome density by mutual interactions with the organ-specific QTLs. For PepMoV resistance, two QTLs (Pep1 and Pep2) were identified on the LG 24. Pep1 was located with Ptel1 in the R-gene cluster (RGC) for potyvirus resistance including Pvr4 with broad spectrum resistance to potyviruses. Pep1 flanking TG420 marker seemed to be the major factors determining correlation with PepMoV resistance. These results indicate that the level of trichome density on pepper main stem can be used as a morphological marker for Pvr4 in pepper breeding.
ERIC Educational Resources Information Center
Rosenblum, Ian; Spence, Christopher
2015-01-01
The gap that separates so many workers from the prospect of good-paying, stable jobs demands urgent action by states--even as the unrelenting fast pace of economic change makes a sound response all the more difficult and as the "rules of the game" continue to evolve. This is especially true in the Science, Technology, Engineering and…
ERIC Educational Resources Information Center
Baldwin, Mark K., Ed.
Begun in 1992, the Selborne Project helps teachers, primarily in middle schools, to use the square kilometer around their school as a theme to integrate nature study into the curriculum. The inspiration for the project stemmed from the 18th-century book, "The Natural History of Selborne," in which Gilbert White detailed nature's presence…
ERIC Educational Resources Information Center
Goldhaber, Dan; Gratz, Trevor; Theobald, Roddy
2016-01-01
We investigate the relationship between teacher licensure test scores and student test achievement and high school course-taking. We focus on three subject/grade combinations-- middle school math, ninth-grade algebra and geometry, and ninth-grade biology--and find evidence that a teacher's basic skills test scores are modestly predictive of…
Atran, Scott
2003-03-07
Contemporary suicide terrorists from the Middle East are publicly deemed crazed cowards bent on senseless destruction who thrive in poverty and ignorance. Recent research indicates they have no appreciable psychopathology and are as educated and economically well-off as surrounding populations. A first line of defense is to get the communities from which suicide attackers stem to stop the attacks by learning how to minimize the receptivity of mostly ordinary people to recruiting organizations.
9. DETAIL VIEW WEST OF MIDDLE TURBINE DRAFT TUBE, SHAFT, ...
9. DETAIL VIEW WEST OF MIDDLE TURBINE DRAFT TUBE, SHAFT, AND PULLEY WHEEL - Willimantic Linen Company, Mill No. 2, South Main Street opposite Durham Street, North bank Willimantic River, Windham, Windham County, CT
Al Jefri, A H; Abujazar, H; Al-Ahmari, A; Al Rawas, A; Al Zahrani, Z; Alhejazi, A; Bekadja, M A; Ibrahim, A; Lahoucine, M; Ousia, S; Bazarbachi, A
2017-04-01
Veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS) of the liver is a serious, early complication of haematopoietic stem cell transplantation (HSCT), severe and very severe forms of which are associated with a high mortality rate. A wide variety of patient, disease and treatment-related risk factors for VOD/SOS have been identified. Several bodies have published recommendations for the diagnosis, prevention and management of VOD/SOS following HSCT. A group of regional experts have developed a consensus statement on the diagnosis, prevention and management of VOD/SOS in the Middle East and North Africa region to help in the management of HSCT patients in the region. Risk factors of particular relevance in the region include iron overload in thalassaemia patients, some hereditary metabolic disorders due to consanguinity and infection with hepatitis virus B or C. Recommendations include diagnosis of VOD/SOS based on established clinical criteria, prophylaxis with defibrotide and/or ursodeoxycholic acid in patients at increased risk of VOD/SOS, and treatment with defibrotide for patients with severe/very severe VOD/SOS (and, if clinically indicated, in those with moderate or rapidly progressing VOD/SOS, as per the new European Society for Blood and Marrow Transplantation classification).
Shi, Dongyan; Meng, Rui; Deng, Wanglong; Ding, Wenchao; Zheng, Qiang; Yuan, Wenji; Liu, Liyue; Zong, Chen; Shang, Peng; Wang, Jinfu
2010-12-01
Microgravity (MG) leads to a decrease in osteogenic potential of human bone marrow-derived mesenchymal stem cells (hMSCs). In the present study, we used large gradient high magnetic field (LGHMF) produced by a superconducting magnet to model MG (LGHMF-MG) and analyzed the effects of LGHMF-MG on survival, cytoskeleton and osteogenic potential of hMSCs. Results showed that the LGHMF-MG treatment for 6 h disrupted the cytoskeleton of hMSCs, and the LGHMF-MG treatment for 24 h led to cell death. LGHMF-MG treatments for 6 h in early stages of osteogenic induction (the pre-treatment before osteogenic induction, the beginning-treatment in the beginning-stage of osteogenic induction and the middle-treatment in the middle-stage of osteogenic induction) resulted in suppression on osteogenesis of hMSCs. The suppression intensity was reduced gradually as the treatment stage of LGHMF-MG was postponed. The LGHMF-MG treatment for 6 h in the ending-stage of osteogenic induction (the ending-treatment) had no obvious effect on osteogenesis of hMSCs. These results indicated that LGHMF-MG should affect the initiation of osteogenesis. Finally, the possible mechanism for the inhibition effect of LGHMF-MG on osteogenesis of hMSCs is discussed.
The Core of Sibling Stem Cell Donation - A Grounded Theory Study.
Kisch, Annika M; Forsberg, Anna
2017-01-01
There is a lack of theoretical framework supporting stem cell transplant nurses in their assessment, judgment and caring interventions of sibling stem cell donors. The purpose of this study was to explore sibling stem cell donors' main concerns and how they deal with them before and after donation. Ten healthy sibling donors, 5 men and 5 women, with a median age of 54 years were included in this study when they were due to donate stem cells to a brother or sister. Data were collected prospectively on three occasions (before the donation and three and twelve months after it) through in-depth interviews, which were recorded and transcribed verbatim for analysis by the Grounded Theory method according to Charmaz. This study describes the efforts of the ten donors to fulfil their duty as a sibling by doing what they considered necessary in order to help. Their efforts were summarised in a process wherein the grounded theory generated three main categories; Prepare, Promote and Preserve. A clear path of transition leading to fulfilment is evident, starting before the donation and continuing for one year afterwards. Being a sibling stem cell donor means doing what you have to do to fulfil your duty and if possible, saving the life of a seriously ill brother or sister. The relationship between the siblings is strengthened by the donation process. Sibling stem cell donation appears to be about fulfilment and the theoretical framework may support clinicians in their evaluation and support of donors.
Silencing of ATP11B by RNAi-Induced Changes in Neural Stem Cell Morphology.
Wang, Jiao; Wang, Qian; Zhou, Fangfang; Wang, Dong; Wen, Tieqiao
2017-01-01
RNA interference (RNAi) technology is one of the main research tools in many studies of neural stem cells. This study describes effects of ATP11B on the morphology change of neural stem cells by using RNAi. ATP11B belongs to P4-ATPases family, which is preferential translocate phosphatidylserine of cell membrane. Although it exists in neural stem cells, its physiological function is poorly understood. By using RNAi technology to downregulate expression of ATP11B, we found distinct morphological changes in neural stem cells. More important, psiRNA-ATP11B-transfected cells displayed short neurite outgrowth compared to the control cells. These data strongly suggest that ATP11B plays a key role in the morphological change of neural stem cells.
Characters related to higher starch accumulation in cassava storage roots
Li, You-Zhi; Zhao, Jian-Yu; Wu, San-Min; Fan, Xian-Wei; Luo, Xing-Lu; Chen, Bao-Shan
2016-01-01
Cassava (Manihot esculenta) is valued mainly for high content starch in its roots. Our understanding of mechanisms promoting high starch accumulation in the roots is, however, still very limited. Two field-grown cassava cultivars, Huanan 124(H124) with low root starch and Fuxuan 01(F01) with high root starch, were characterised comparatively at four main growth stages. Changes in key sugars in the leaves, stems and roots seemed not to be strongly associated with the final amount of starch accumulated in the roots. However, when compared with H124, F01 exhibited a more compact arrangement of xylem vascular bundles in the leaf axils, much less callose around the phloem sieve plates in the stems, higher starch synthesis-related enzymatic activity but lower amylase activity in the roots, more significantly up-regulated expression of related genes, and a much higher stem flow rate (SFR). In conclusion, higher starch accumulation in the roots results from the concurrent effects of powerful stem transport capacity highlighted by higher SFR, high starch synthesis but low starch degradation in the roots, and high expression of sugar transporter genes in the stems. A model of high starch accumulation in cassava roots was therefore proposed and discussed. PMID:26892156
Characters related to higher starch accumulation in cassava storage roots.
Li, You-Zhi; Zhao, Jian-Yu; Wu, San-Min; Fan, Xian-Wei; Luo, Xing-Lu; Chen, Bao-Shan
2016-02-19
Cassava (Manihot esculenta) is valued mainly for high content starch in its roots. Our understanding of mechanisms promoting high starch accumulation in the roots is, however, still very limited. Two field-grown cassava cultivars, Huanan 124(H124) with low root starch and Fuxuan 01(F01) with high root starch, were characterised comparatively at four main growth stages. Changes in key sugars in the leaves, stems and roots seemed not to be strongly associated with the final amount of starch accumulated in the roots. However, when compared with H124, F01 exhibited a more compact arrangement of xylem vascular bundles in the leaf axils, much less callose around the phloem sieve plates in the stems, higher starch synthesis-related enzymatic activity but lower amylase activity in the roots, more significantly up-regulated expression of related genes, and a much higher stem flow rate (SFR). In conclusion, higher starch accumulation in the roots results from the concurrent effects of powerful stem transport capacity highlighted by higher SFR, high starch synthesis but low starch degradation in the roots, and high expression of sugar transporter genes in the stems. A model of high starch accumulation in cassava roots was therefore proposed and discussed.
NASA Technical Reports Server (NTRS)
McDonald, Harry E.
2010-01-01
The United States ranking among the world in science, technology, engineering, and mathematics (STEM) education is decreasing. To counteract this problem NASA has made it part of its mission to promote STEM education among the nation s youth. Mockups can serve as a great tool when promoting STEM education in America. The Orion Cockpit Working Group has created a new program called Students Shaping America s Next Space Craft (SSANS) to outfit the Medium Fidelity Orion Mockup. SSANS will challenge the students to come up with unique designs to represent the flight design hardware. There are two main types of project packages created by SSANS, those for high school students and those for university students. The high school projects will challenge wood shop, metal shop and pre-engineering classes. The university projects are created mainly for senior design projects and will require the students to perform finite element analysis. These projects will also challenge the undergraduate students in material selection and safety requirements. The SSANS program will help NASA in its mission to promote STEM education, and will help to shape our nations youth into the next generation of STEM leaders.
Modeling the leaf angle dynamics in rice plant.
Zhang, Yonghui; Tang, Liang; Liu, Xiaojun; Liu, Leilei; Cao, Weixing; Zhu, Yan
2017-01-01
The leaf angle between stem and sheath (SSA) is an important rice morphological trait. The objective of this study was to develop and validate a dynamic SSA model under different nitrogen (N) rates for selected rice cultivars. The time-course data of SSA were collected in three years, and a dynamic SSA model was developed for different main stem leaf ranks under different N rates for two selected rice cultivars. SSA increased with tiller age. The SSA of the same leaf rank increased with increase in N rate. The maximum SSA increased with leaf rank from the first to the third leaf, then decreased from the third to the final leaf. The relationship between the maximum SSA and leaf rank on main stem could be described with a linear piecewise function. The change of SSA with thermal time (TT) was described by a logistic equation. A variety parameter (the maximum SSA of the 3rd leaf on main stem) and a nitrogen factor were introduced to quantify the effect of cultivar and N rate on SSA. The model was validated against data collected from both pot and field experiments. The relative root mean square error (RRMSE) was 11.56% and 14.05%, respectively. The resulting models could be used for virtual rice plant modeling and plant-type design.
Stem CO2 efflux in six co-occurring tree species: underlying factors and ecological implications.
Rodríguez-Calcerrada, Jesús; López, Rosana; Salomón, Roberto; Gordaliza, Guillermo G; Valbuena-Carabaña, María; Oleksyn, Jacek; Gil, Luis
2015-06-01
Stem respiration plays a role in species coexistence and forest dynamics. Here we examined the intra- and inter-specific variability of stem CO2 efflux (E) in dominant and suppressed trees of six deciduous species in a mixed forest stand: Fagus sylvatica L., Quercus petraea [Matt.] Liebl, Quercus pyrenaica Willd., Prunus avium L., Sorbus aucuparia L. and Crataegus monogyna Jacq. We conducted measurements in late autumn. Within species, dominants had higher E per unit stem surface area (Es ) mainly because sapwood depth was higher than in suppressed trees. Across species, however, differences in Es corresponded with differences in the proportion of living parenchyma in sapwood and concentration of non-structural carbohydrates (NSC). Across species, Es was strongly and NSC marginally positively related with an index of drought tolerance, suggesting that slow growth of drought-tolerant trees is related to higher NSC concentration and Es . We conclude that, during the leafless period, E is indicative of maintenance respiration and is related with some ecological characteristics of the species, such as drought resistance; that sapwood depth is the main factor explaining variability in Es within species; and that the proportion of NSC in the sapwood is the main factor behind variability in Es among species. © 2014 John Wiley & Sons Ltd.
Kumar, Rajat; Kimura, Fumihiko; Ahn, Kwang Woo; Hu, Zhen-Huan; Kuwatsuka, Yachiyo; Klein, John P.; Pasquini, Marcelo; Miyamura, Koichi; Kato, Koji; Yoshimi, Ayami; Inamoto, Yoshihiro; Ichinohe, Tatsuo; Wood, William Allen; Wirk, Baldeep; Seftel, Matthew; Rowlings, Philip; Marks, David I; Schultz, Kirk R.; Gupta, Vikas; Dedeken, Laurence; George, Biju; Cahn, Jean-Yves; Szer, Jeff; Lee, Jong Wook; Ho, Aloysius YL; Fasth, Anders; Hahn, Theresa; Khera, Nandita; Dalal, Jignesh; Bonfim, Carmem; Aljurf, Mahmoud; Atsuta, Yoshiko; Saber, Wael
2016-01-01
Bone marrow (BM) is the preferred graft source for hematopoietic stem cell transplantation (HSCT) in severe aplastic anemia (SAA) compared to mobilized peripheral blood stem cells (PBSC). We hypothesized that this recommendation may not apply to those regions where patients present later in their disease course, with heavier transfusion load and with higher graft failure rates. Patients with SAA who received HSCT from an HLA-matched sibling donor from 1995 to 2009 and reported to the Center for International Blood and Marrow Transplant Research or the Japan Society for Hematopoietic Cell Transplantation were analyzed. The study population was categorized by gross national income per capita (GNI) and region/countries into four groups. Groups analyzed were high income countries (HIC), which were further divided into US-Canada (N=486) and other HIC (N=1264), upper middle-income (UMIC) (N=482), and combined lower middle, low income countries (LM-LIC) (N=142). In multivariate analysis, overall survival (OS) was highest with BM as graft source in HIC compared to PBSC in all countries or BM in UMIC or LM-LIC (p<0.001). There was no significant difference in OS between BM and PBSC in UMIC (p=0.32) or LM-LIC (p=0.23). In LM-LIC the 28-day neutrophil engraftment was higher with PBSC compared to BM (97% vs. 77%, p<0.001). Chronic GVHD was significantly higher with PBSC in all groups. Whereas BM should definitely be the preferred graft source for HLA-matched sibling HSCT in SAA, PBSC may be an acceptable alternative in countries with limited resources when treating patients at high risk of graft failure and infective complications. PMID:26797402
Using FIRST LEGO League Robotics Competitions to Engage Middle School Students in Physics
NASA Astrophysics Data System (ADS)
Rosen, Jeffrey
2009-11-01
As the nation and world grapple with looming crises in sectors such as energy, health care and the environment, it is critical that we keep today's youth interested in careers in science, technology, engineering and math (STEM). Studies indicate that many students lose interest in the sciences by ages 10-13, when they are in grades 4-8 in the U.S. educational system. Many of the interventions to counteract this trend focus on boosting interest in STEM in secondary schools and universities. However the case can be made that the greater need is actually earlier in the education of the child. How can we work with this age group in an exciting way that will promote the study of science? Student robotics competitions might be one effective answer. Programs are currently being run around the country and the world that engage young people in the study of science through robotic competition. Many of these programs rely on mentors to guide the students through the process, which in the most effective programs includes the study of physic concepts through engineering design. During this presentation we will discuss the options for participating in programs that help the students and teachers better understand the science, specifically the physics, which underlies robotics. In particular, we will focus on the international program called FIRST LEGO League (FLL), in which students ages 9-14 are challenged every year to construct a LEGO robot that can navigate and complete a course of theme-related missions. The FLL program is currently operating in almost every state in the U.S. and relies on recruiting qualified mentors and judges who want to impact young people's interest in STEM. Physics professionals can make a tremendous difference in the lives of these eager middle school students.
Environmental Nanoscience: Turning Outreach Activities into a College Freshman Seminar
NASA Astrophysics Data System (ADS)
Nguyen, M. L.; Lau, B.
2017-12-01
Teaching nano concepts can be a daunting task due to the varying science backgrounds of the audience. Nonetheless, nanoscience education is important as nanotechnology expands. Our perspective is that nano education must be available at earlier stages than what is currently available. Through outreach activities, we examined how high school students and STEM middle/high school teachers approached answering questions about nanomaterials and the environment to design an effective freshman-level college seminar with achievable course goals. Specifically, participants were asked: 1) what color would you expect gold nanoparticles to be; 2) what are ways we can remove nanomaterials from the environment; and 3) what do you expect will happen to nanomaterials when salt is introduced into the system? Initial analysis showed STEM middle and high school teachers and high school students responded similarly. In response to question 1, the majority of the responses suggested color was a function of size. For question 2, both groups suggested the use of filters, magnets or a chemical reaction to remove the nanomaterials. For question 3, both groups expected a chemical reaction to occur. Understanding how foundational high school STEM concepts influenced responses could assist in the curriculum development for an introductory undergraduate nanoscience course. For example, familiar principles of physics and chemistry appeared to direct student responses. From these results, we developed three course goals to test in our college freshman seminar: 1) differentiate between properties of nanomaterials and conventional materials; 2) describe the role of nanomaterials in household items; and 3) form an opinion on the potential impacts of nanoscience and technology on the human health and the environment. Surveys from our first semester showed that the seminar was effective in achieving all course goals for the majority of students.
Little Scientists: Identity, Self-Efficacy, and Attitude Toward Science in a Girls' Science Camp
NASA Astrophysics Data System (ADS)
Todd, Brandy
Underrepresentation of women and minorities in the science, technology, and engineering (STEM) fields is a perennial concern for researchers and policy-makers. Many causes of this problem have been identified. Less is known about what constitutes effective methods for increasing women's participation in STEM. This study examines the role that identity formation plays in encouraging girls to pursue STEM education and careers utilizing data from a cohort-based, informal science enrichment program that targets middle-school-aged girls. A Mixed-methods design was employed to examine girls' science interests, efficacy, attitudes, and identity---referred to as affinities. Quantitative data were collected before and after program participation using science affinity scales. Qualitative data included observations, focus groups, and individual interviews. This study builds on past research conducted on the same program. The study is presented in three components: fidelity of implementation, participant affinities, and science identity theory building. Quantitative and qualitative measures reveal that the program was implemented with high fidelity. Participants had high initial affinities for science as compared to a contrast group. Analysis of qualitative data of science affinities revealed several themes in girls' attitudes, experiences, and intentions toward science. Emergent themes discussed include girls' preferences and interests in science, gender and science efficacy, attitudes toward science, and elements of science identities. Archetypes of emergent science identities developed in this study (expert, experimenter, and inventor) inform different ways in which girls engage with and envision science study and careers. Implications for best practice in fostering science engagement and identities in middle-school-aged girls include the importance of hands-on science activities, the need for enthusiastic relatable role models, and an emphasis on deep understanding of scientific principles.
Simpson, Elaine; Courtney, Mary
2008-12-01
The purpose of this study was to develop, implement and evaluate critical thinking strategies to enhance critical thinking skills in Middle Eastern nurses. Critical thinking strategies such as questioning, debate, role play and small group activity were developed and used in a professional development programme, which was trialled on a sample of Middle Eastern nurses (n = 20), to promote critical thinking skills, encourage problem solving, development of clinical judgment making and care prioritization in order to improve patient care and outcomes. Classroom learning was transformed from memorization to interaction and active participation. The intervention programme was successful in developing critical thinking skills in both the nurse educators and student nurses in this programme. This programme successfully integrated critical thinking strategies into a Middle Eastern nursing curriculum. Recommendations are as follows: (1) utilize evidence-based practice and stem questions to encourage the formulation of critical thinking questions; (2) support the needs of nurse educators for them to effectively implement teaching strategies to foster critical thinking skills; and (3) adopt creative approaches to (i) transform students into interactive participants and (ii) open students' minds and stimulate higher-level thinking and problem-solving abilities.
Aging, metabolism and stem cells: Spotlight on muscle stem cells.
García-Prat, Laura; Muñoz-Cánoves, Pura
2017-04-15
All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Would Increasing Engineering Literacies Enable Untapped Opportunities for STEM Education?
ERIC Educational Resources Information Center
Redman, Christine
2017-01-01
The main focus here is to examine the benefits of defining and developing an engineering curriculum for elementary schools. Like many other international educational systems, Australian educational settings have been seeking to effectively implement science, technology, engineering, and mathematics (STEM) education. However, current assumptions…
Stem cells - biological update and cell therapy progress
GIRLOVANU, MIHAI; SUSMAN, SERGIU; SORITAU, OLGA; RUS-CIUCA, DAN; MELINCOVICI, CARMEN; CONSTANTIN, ANNE-MARIE; MIHU, CARMEN MIHAELA
2015-01-01
In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine. PMID:26609255
The significance of sediment contamination in the Elbe River floodplain (Czech Republic)
NASA Astrophysics Data System (ADS)
Chalupová, Dagmar; Janský, Bohumír; Langhammer, Jakub; Šobr, Miroslav; Jiři, Medek; Král, Stanislav; Jiřinec, Petr; Kaiglova, Jana; Černý, Michal; Žáček, Miroslav; Leontovyčova, Drahomíra; Halířová, Jarmila
2015-04-01
The abstract brings the information about the research that was focused on anthropogenic pollution of river and lake sediments in the middle course of the Elbe River (Czech Republic). The main aim was to identify and to evaluate the significance of old polluted sediments in the river and its side structures (old meanders, cut lakes, oxbow lakes) between Hradec Králové and Mělník (confluence with the Moldau River) and to assess the risk coming from the remobilization of the contaminated matter. The Elbe River floodplain has been highly inhabited since the Middle Ages, and, especially in the 20th century, major industrial plants were founded here. Since that time, the anthropogenic load of the river and it`s floodplain has grown. Although the contaminants bound to the sediment particles are usually stable, the main risk is coming from the fact that under changes in hydrological regime and water quality (floods, changes in pH, redox-potential, presence of complex substances etc.), the pollution can be released and remobilized again. The most endangered areas are: the surroundings of Pardubice (chemical factory Synthesia, Inc.; refinery PARAMO), and Neratovice (chemical factory Spolana, Inc.). The chemical factories situated close to these towns represented the most problematic polluters of the Elbe River especially during 2nd half of 20th century. In the research, the main attention was aimed at subaquatic sediments of selected cut lakes situated in the vicinity of the above mentioned sources of pollution. To describe the outreach of contamination, several further fluvial lakes were taken into account too. Sediment sampling was carried out from boats on lakes and with the help of drilling rig in the floodplain. Gained sediment cores were divided into several parts which were analysed separately. Chemical analyses included substances identified by ICPER (International Commission for the Protection of the Elbe River) as well as chemicals considered as significant in the previous explorations (heavy metals, PCB, DDT, HCH, PAHs etc.). The results of grain structure analysis were used for modelling the remobilization of contaminated matter during floods. At the selected river sections, maps of overflow and discharge velocity (Q1, Q5, Q20, Q100) were created. The results of the project provided information of the amount of polluted sediments in the most contaminated localities in the middle course of the Elbe River and described the possibility of remobilization of the polluted sediments during floods. On the basis of these outcomes, the risk management and environmental measures were suggested to protect the ecosystems from contamination stemming from these old pollution loads.
Larval feeding behavior and ant association in frosted elfin, Callophrys irus (Lycaenidae)
Albanese, G.; Nelson, M.W.; Vickery, P.D.; Sievert, P.R.
2007-01-01
Callophrys irus is a rare and declining lycaenid found in the eastern U.S., inhabiting xeric and open habitats maintained by disturbance. Populations are localized and monophagous. We document a previously undescribed larval feeding behavior in both field and lab reared larvae in which late instar larvae girdled the main stem of the host plant. Girdled stems provide a unique feeding sign that was useful in detecting the presence of larvae in the field. We also observed frequent association of field larvae with several species of ants and provide a list of ant species. We suggest two hypotheses on the potential benefits of stem-girdling to C. irus larvae: 1) Stem girdling provides phloem sap as a larval food source and increases the leaf nutrient concentration, increasing larval growth rates and providing high quality honeydew for attending ants; 2) Stem girdling reduces stem toxicity by inhibiting transport of toxins from roots to the stem.
Global fit concept in revision hip arthroplasty for cementless press-fit femoral stems.
Canovas, F; LeBeguec, P; Batard, J; Gaillard, F; Dagneaux, L
2017-06-01
A revision stem may be required after a femoral extended trochanteric osteotomy (ETO) is made during revision hip arthroplasty. The two main complications of straight cementless femoral stems are subsidence due to inadequate osteointegration and stress-shielding. We will describe an original revision method with ETO that uses a straight cementless stem. The goal of this method was to achieve the most extensive press-fit possible during stem implantation to improve the transmission of stresses to the bone and to prevent reduction in bone density. The intramedullary preparation was done after closure and fixation of the ETO, which allows impaction of the revision stem with metaphyseal and diaphyseal press-fit. We report encouraging results with preservation of periprosthetic bone stock and good osteointegration of these revision stems at the final follow-up. Pronounced sagittal curvature or large bone defects are contraindications for this technique. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Survival of Atlantic salmon Salmo salar smolts through a hydropower complex.
Stich, D S; Bailey, M M; Zydlewski, J D
2014-10-01
This study evaluated Atlantic salmon Salmo salar smolt survival through the lower Penobscot River, Maine, U.S.A., and characterized relative differences in proportional use and survival through the main-stem of the river and an alternative migration route, the Stillwater Branch. The work was conducted prior to removal of two main-stem dams and operational changes in hydropower facilities in the Stillwater Branch. Survival and proportional use of migration routes in the lower Penobscot were estimated from multistate (MS) models based on 6 years of acoustic telemetry data from 1669 smolts and 2 years of radio-telemetry data from 190 fish. A small proportion (0·12, 95% c.i. = 0·06-0·25) of smolts used the Stillwater Branch, and mean survival through the two operational dams in this part of the river was relatively high (1·00 and 0·97). Survival at Milford Dam, the dam that will remain in the main-stem of the Penobscot River, was relatively low (0·91), whereas survival through two dams that were removed was relatively high (0·99 and 0·98). Smolt survival could decrease in the Stillwater Branch with the addition of two new powerhouses while continuing to meet fish passage standards. The effects of removing two dams in the main-stem are expected to be negligible for smolt survival based on high survival observed from 2005 to 2012 at those locations. Survival through Milford Dam was been well below current regulatory standards, and thus improvement of passage at this location offers the best opportunity for improving overall smolt survival in the lower river. © 2014 The Fisheries Society of the British Isles.
Survival of Atlantic salmon Salmo salar smolts through a hydropower complex
Stich, D.S.; Bailey, M.M.; Zydlewski, Joseph D.
2014-01-01
This study evaluated Atlantic salmon Salmo salar smolt survival through the lower Penobscot River, Maine, U.S.A., and characterized relative differences in proportional use and survival through the main-stem of the river and an alternative migration route, the Stillwater Branch. The work was conducted prior to removal of two main-stem dams and operational changes in hydropower facilities in the Stillwater Branch. Survival and proportional use of migration routes in the lower Penobscot were estimated from multistate (MS) models based on 6 years of acoustic telemetry data from 1669 smolts and 2 years of radio-telemetry data from 190 fish. A small proportion (0·12, 95% c.i. = 0·06–0·25) of smolts used the Stillwater Branch, and mean survival through the two operational dams in this part of the river was relatively high (1·00 and 0·97). Survival at Milford Dam, the dam that will remain in the main-stem of the Penobscot River, was relatively low (0·91), whereas survival through two dams that were removed was relatively high (0·99 and 0·98). Smolt survival could decrease in the Stillwater Branch with the addition of two new powerhouses while continuing to meet fish passage standards. The effects of removing two dams in the main-stem are expected to be negligible for smolt survival based on high survival observed from 2005 to 2012 at those locations. Survival through Milford Dam was been well below current regulatory standards, and thus improvement of passage at this location offers the best opportunity for improving overall smolt survival in the lower river.
11. DETAIL VIEW WEST OF MIDDLE TURBINE PRESSURE CASE; ACCESS ...
11. DETAIL VIEW WEST OF MIDDLE TURBINE PRESSURE CASE; ACCESS TO WICKET GATES AT BOTTOM - Willimantic Linen Company, Mill No. 2, South Main Street opposite Durham Street, North bank Willimantic River, Windham, Windham County, CT
Middle ear abnormalities in Van Maldergem syndrome.
Verheij, Emmy; Thomeer, Henricus G X M; Pameijer, Frank A; Topsakal, Vedat
2017-01-01
Van Maldergem syndrome (VMS) is a very rare syndrome that was first described in 1992. The main features of this syndrome comprise intellectual disability, blepharo-naso-facial malformation, and hand anomalies. Almost all nine described patients have been shown to be affected by conductive hearing impairment attributed to microtia, and atresia of the outer ear canal. Here, we present a VMS patient with congenital malformations of the middle ear as the main reason for severe conductive bilateral hearing impairment. To our knowledge, this is the first report to describe middle ear abnormalities in VMS. These malformations were seen on high resolution Computed Tomography scanning and during an exploratory tympanotomy. Due to the severity of the middle ear abnormalities and the risk for facial nerve damage, the patient was not offered an ossicular chain reconstruction but a bone conduction device after this exploratory tympanotomy. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hochberg, Uri; Albuquerque, Caetano; Rachmilevitch, Shimon; Cochard, Herve; David-Schwartz, Rakefet; Brodersen, Craig R; McElrone, Andrew; Windt, Carel W
2016-09-01
The 'hydraulic vulnerability segmentation' hypothesis predicts that expendable distal organs are more susceptible to water stress-induced embolism than the main stem of the plant. In the current work, we present the first in vivo visualization of this phenomenon. In two separate experiments, using magnetic resonance imaging or synchrotron-based microcomputed tomography, grapevines (Vitis vinifera) were dehydrated while simultaneously scanning the main stems and petioles for the occurrence of emboli at different xylem pressures (Ψx ). Magnetic resonance imaging revealed that 50% of the conductive xylem area of the petioles was embolized at a Ψx of -1.54 MPa, whereas the stems did not reach similar losses until -1.9 MPa. Microcomputed tomography confirmed these findings, showing that approximately half the vessels in the petioles were embolized at a Ψx of -1.6 MPa, whereas only few were embolized in the stems. Petioles were shown to be more resistant to water stress-induced embolism than previously measured with invasive hydraulic methods. The results provide the first direct evidence for the hydraulic vulnerability segmentation hypothesis and highlight its importance in grapevine responses to severe water stress. Additionally, these data suggest that air entry through the petiole into the stem is unlikely in grapevines during drought. © 2015 John Wiley & Sons Ltd.
An Overview of Lipid Droplets in Cancer and Cancer Stem Cells
Seco, J.
2017-01-01
For decades, lipid droplets have been considered as the main cellular organelles involved in the fat storage, because of their lipid composition. However, in recent years, some new and totally unexpected roles have been discovered for them: (i) they are active sites for synthesis and storage of inflammatory mediators, and (ii) they are key players in cancer cells and tissues, especially in cancer stem cells. In this review, we summarize the main concepts related to the lipid droplet structure and function and their involvement in inflammatory and cancer processes. PMID:28883835
Stem cells in clinical practice: applications and warnings.
Lodi, Daniele; Iannitti, Tommaso; Palmieri, Beniamino
2011-01-17
Stem cells are a relevant source of information about cellular differentiation, molecular processes and tissue homeostasis, but also one of the most putative biological tools to treat degenerative diseases. This review focuses on human stem cells clinical and experimental applications. Our aim is to take a correct view of the available stem cell subtypes and their rational use in the medical area, with a specific focus on their therapeutic benefits and side effects. We have reviewed the main clinical trials dividing them basing on their clinical applications, and taking into account the ethical issue associated with the stem cell therapy. We have searched Pubmed/Medline for clinical trials, involving the use of human stem cells, using the key words "stem cells" combined with the key words "transplantation", "pathology", "guidelines", "properties" and "risks". All the relevant clinical trials have been included. The results have been divided into different categories, basing on the way stem cells have been employed in different pathological conditions.
Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome
Tang, Junnan; Shen, Deliang; Caranasos, Thomas George; Wang, Zegen; Vandergriff, Adam C.; Allen, Tyler A.; Hensley, Michael Taylor; Dinh, Phuong-Uyen; Cores, Jhon; Li, Tao-Sheng; Zhang, Jinying; Kan, Quancheng; Cheng, Ke
2017-01-01
Stem cell therapy represents a promising strategy in regenerative medicine. However, cells need to be carefully preserved and processed before usage. In addition, cell transplantation carries immunogenicity and/or tumourigenicity risks. Mounting lines of evidence indicate that stem cells exert their beneficial effects mainly through secretion (of regenerative factors) and membrane-based cell–cell interaction with the injured cells. Here, we fabricate a synthetic cell-mimicking microparticle (CMMP) that recapitulates stem cell functions in tissue repair. CMMPs carry similar secreted proteins and membranes as genuine cardiac stem cells do. In a mouse model of myocardial infarction, injection of CMMPs leads to the preservation of viable myocardium and augmentation of cardiac functions similar to cardiac stem cell therapy. CMMPs (derived from human cells) do not stimulate T-cell infiltration in immuno-competent mice. In conclusion, CMMPs act as ‘synthetic stem cells’ which mimic the paracrine and biointerfacing activities of natural stem cells in therapeutic cardiac regeneration. PMID:28045024
7 CFR 52.1844 - Definition of terms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... branches of the bunch. (b) A piece of stem means a portion of the branch or main stem. (c) Seeds refers to whole, fully developed seeds which have not been removed during the processing of seeded raisins with seeds. (d) Damaged raisins means raisins affected by sunburn, scars, insect injury, mechanical injury...
7 CFR 52.1844 - Definition of terms.
Code of Federal Regulations, 2011 CFR
2011-01-01
... branches of the bunch. (b) A piece of stem means a portion of the branch or main stem. (c) Seeds refers to whole, fully developed seeds which have not been removed during the processing of seeded raisins with seeds. (d) Damaged raisins means raisins affected by sunburn, scars, insect injury, mechanical injury...
Paratachardina pseudolobata (Cocccoidea: Kerriidae): bionomics in Florida
USDA-ARS?s Scientific Manuscript database
Observations on the bionomics of lobate lac scale, Paratachardina pseudolobata Kondo & Gullan in Florida are reported. Lobate lac scale infests primarily the branches and main stems of <2 cm in dia; rarely were they found on stems larger than 4 cm in dia or on leaves and never on roots. They produce...
The Porter Stemming Algorithm: Then and Now
ERIC Educational Resources Information Center
Willett, Peter
2006-01-01
Purpose: In 1980, Porter presented a simple algorithm for stemming English language words. This paper summarises the main features of the algorithm, and highlights its role not just in modern information retrieval research, but also in a range of related subject domains. Design/methodology/approach: Review of literature and research involving use…
USDA-ARS?s Scientific Manuscript database
Mammary stem cells (MaSC) are essential for growth and maintenance of the mammary epithelium. Two main phases of mammary growth include ductal elongation prior to puberty and lobulo-alveolar growth and development during pregnancy. Some studies have utilized morphological characteristics and retenti...
Integrating human stem cell expansion and neuronal differentiation in bioreactors
Serra, Margarida; Brito, Catarina; Costa, Eunice M; Sousa, Marcos FQ; Alves, Paula M
2009-01-01
Background Human stem cells are cellular resources with outstanding potential for cell therapy. However, for the fulfillment of this application, major challenges remain to be met. Of paramount importance is the development of robust systems for in vitro stem cell expansion and differentiation. In this work, we successfully developed an efficient scalable bioprocess for the fast production of human neurons. Results The expansion of undifferentiated human embryonal carcinoma stem cells (NTera2/cl.D1 cell line) as 3D-aggregates was firstly optimized in spinner vessel. The media exchange operation mode with an inoculum concentration of 4 × 105 cell/mL was the most efficient strategy tested, with a 4.6-fold increase in cell concentration achieved in 5 days. These results were validated in a bioreactor where similar profile and metabolic performance were obtained. Furthermore, characterization of the expanded population by immunofluorescence microscopy and flow cytometry showed that NT2 cells maintained their stem cell characteristics along the bioreactor culture time. Finally, the neuronal differentiation step was integrated in the bioreactor process, by addition of retinoic acid when cells were in the middle of the exponential phase. Neurosphere composition was monitored and neuronal differentiation efficiency evaluated along the culture time. The results show that, for bioreactor cultures, we were able to increase significantly the neuronal differentiation efficiency by 10-fold while reducing drastically, by 30%, the time required for the differentiation process. Conclusion The culture systems developed herein are robust and represent one-step-forward towards the development of integrated bioprocesses, bridging stem cell expansion and differentiation in fully controlled bioreactors. PMID:19772662
Xiao, Yuanmei; Li, Weijuan; Ren, Qingfeng; Ren, Xiaohui; Wang, Zhiming; Wang, Mianzhen; Lan, Yajia
2015-01-01
To investigate the distribution and main influential factors of mental workload of middle school teachers in Nanchang City. A total of 504 middle school teachers were sampled by random cluster sampling from middle schools in Nanchang City, and the mental workload level was assessed with National Aeronautics and Space Administration-Task Load Index (NASA-TLX) which was verified in reliability and validity. The mental workload scores of middle school teachers in Nanchang was approximately normal distribution. The mental workload level of middle school teachers aged 31 -35 years old was the highest. For those no more than 35 years old, there was positive correlation between mental workload and age (r = 0.146, P < 0.05). For those more than 35 years old, the levels of their mental workload had no statistically significant difference. There was a negative correlation between mental workload and educational level(r = -0.172, P < 0.05). The middle school teachers with lower educational level seemed to have a higher mental workload (P < 0.01). The longer a middle school teacher worked per day, the higher the mental workload was. Working hours per day was the most influential factor on mental workload in all influential factors (P < 0.001). Mental workload of middle school teachers was closely related to age, educational level and work hours per day. Working hours per day was the important risk factor of mental workload. Reducing working hours per day, especially reducing it to be no more than 8 hours per day, may be a significant and useful approach alleviating mental workload of middle school teachers in Nanchang City.
NASA Astrophysics Data System (ADS)
Fowlkes, Carol
Science, technology, engineering, and mathematics (STEM) fields are growing and have lucrative job opportunities for college graduates. However, the number of students in STEM majors and the number of those who persist in those majors is declining; there is also a growing gender gap in STEM graduates. This study investigated three perceived classroom experiences in STEM courses and the nature of differences in these experiences by student gender, instructor gender, and by those who persisted or did not persist in STEM majors. A factorial MANOVA was the statistical method by which the differences were explored. The statistical analysis revealed non-significant mean differences in three-way interaction, all two-way interactions, and all main effects. There were not gendered differences in students' perceptions of the opportunities for hands-on learning, the instructor cares about students' success, and the instructor encourages students' contributions. Further research is proposed to continue examination of this topic with a larger data set that is consistent with the literature regarding the population of STEM students and the number of STEM persisters, and the male-gendered nature of STEM fields.
Therapeutic application of stem cells in gastroenterology: an up-date.
Burra, Patrizia; Bizzaro, Debora; Ciccocioppo, Rachele; Marra, Fabio; Piscaglia, Anna Chiara; Porretti, Laura; Gasbarrini, Antonio; Russo, Francesco Paolo
2011-09-14
Adult stem cells represent the self-renewing progenitors of numerous body tissues, and they are currently classified according to their origin and differentiation ability. In recent years, the research on stem cells has expanded enormously and holds therapeutic promises for many patients suffering from currently disabling diseases. This paper focuses on the possible use of stem cells in the two main clinical settings in gastroenterology, i.e., hepatic and intestinal diseases, which have a strong impact on public health worldwide. Despite encouraging results obtained in both regenerative medicine and immune-mediated conditions, further studies are needed to fully understand the biology of stem cells and carefully assess their putative oncogenic properties. Moreover, the research on stem cells arouses fervent ethical, social and political debate. The Italian Society of Gastroenterology sponsored a workshop on stem cells held in Verona during the XVI Congress of the Federation of Italian Societies of Digestive Diseases (March 6-9, 2010). Here, we report on the issues discussed, including liver and intestinal diseases that may benefit from stem cell therapy, the biology of hepatic and intestinal tissue repair, and stem cell usage in clinical trials.
Karioti, Anastasia; Hadjipavlou-Litina, Dimitra; Mensah, Merlin L K; Fleischer, Theophilus C; Skaltsa, Helen
2004-12-29
The chemical composition of the essential oils obtained from the leaves, the barks of the stem and the root, as well as from the fresh and dried fruits of Xylopia aethiopica, growing in Ghana, was investigated by gas chromatography/mass spectrometry analyses. Kovats indices, mass spectra, and standard compounds were used to identify a total of 93 individual compounds. The monoterpene hydrocarbons formed the main portion in all studied samples. beta-Pinene was predominant in all cases, while trans-m-mentha-1(7),8-diene was the main compound in the essential oils of the leaves and the barks of roots and stems. Their potential antioxidant activity was also investigated and found to be significant in scavenging superoxide anion radical.
Kosheleva, N V; Saburina, I N; Zurina, I M; Gorkun, A A; Borzenok, S A; Nikishin, D A; Kolokoltsova, T D; Ustinova, E E; Repin, V S
2016-01-01
It is known that stem and progenitor cells open new possibilities for restoring injured eye tissues. Limbal eye zone, formed mainly by derivatives of neural crest, is the main source of stem cells for regeneration. The current study considers development of innovative technology for obtaining 3D spheroids from L-MMSC. It was shown that under 3D conditions L-MMSC due to compactization and mesenchymal-epithelial transition self-organize into cellular reparative modules. Formed L-MMSC spheroids retain and promote undifferentiated population of stem and progenitor limbal cells, as supported by expression of pluripotency markers - Oct4, Sox2, Nanog. Extracellular matrix synthetized by cells in spheroids allows retaining the functional potential of L-MMSC that are involved in regeneration of both anterior and, probably, posterior eye segment.
Clark, Gregory M.
1997-01-01
Quality Assessment Program. As part of the investigation, intensive monitoring was conducted during water years 1993 through 1995 to assess surface-water quality in the basin. Sampling and analysis focused on nutrients, suspended sediments, and pesticides because of nationwide interest in these constituents. Concentrations of nutrients and suspended sediment in water samples from 19 sites in the upper Snake River Basin, including nine on the main stem, were assessed. In general, concentrations of nutrients and suspended sediment were smaller in water from the 11 sites upstream from American Falls Reservoir than in water from the 8 sites downstream from the reservoir where effects from land-use activities are most pronounced. Median concentrations of dissolved nitrite plus nitrate as nitrogen at the 19 sites ranged from less than 0.05 to 1.60 milligrams per liter; total phosphorus as phosphorus, less than 0.01 to 0.11 milligrams per liter; and suspended sediment, 4 to 72 milligrams per liter. Concentrations of nutrients and suspended sediment in the main stem of the Snake River, in general, increased downstream. The largest concentrations in the main stem were in the middle reach of the Snake River between Milner Dam and the outlet of the upper Snake River Basin at King Hill. Significant differences (p Nutrient and suspended sediment inputs to the middle Snake reach were from a variety of sources. During water year 1995, springs were the primary source of water and total nitrogen to the river and accounted for 66 and 60 percent of the total input, respectively. Isotope and water-table information indicated that the springs derived most of their nitrogen from agricultural activities along the margins of the Snake River. Aquacultural effluent was a major source of ammonia (82 percent), organic nitrogen (30 percent), and total phosphorus (35 percent). Tributary streams were a major source of organic nitrogen (28 percent) and suspended sediment (58 percent). In proportion to its discharge (less than 1 percent), the Twin Falls sewage-treatment plant was a major source of total phosphorus (13 percent). A comparison of discharge and loading in water year 1995 with estimates of instream transport showed a good correlation (relative difference of less than 15 percent) for discharge, total organic nitrogen, dissolved nitrite plus nitrate, total nitrogen, and total phosphorus. Estimates of dissolved ammonia and suspended sediment loads correlated poorly with instream transport; relative differences were about 79 and 61 percent, respectively. The pesticides EPTC, atrazine, desethylatrazine, metolachlor, and alachlor were the most commonly detected in the upper Snake River Basin and accounted for about 75 percent of all pesticide detections. All pesticides detected were at concentrations less than 1 microgram per liter and below water-quality criteria established by the U.S. Environmental Protection Agency. In samples collected from two small agriculturally dominated tributary basins, the largest number and concentrations of pesticides were detected in May and June following early growing season applications. At one of the sites, the pesticide atrazine and its metabolite desethylatrazine were detected throughout the year. On the basis of 37 samples collected basinwide in May and June 1994, total annual subbasin applications and instantaneous instream fluxes of EPTC and atrazine showed logarithmic relations with coefficients of determination (R2 values) of 0.55 and 0.62, respectively. At the time of sampling, the median daily flux of EPTC was about 0.0001 percent of the annual quantity applied, whereas the median daily flux of atrazine was between 0.001 and 0.01 percent.
NASA Astrophysics Data System (ADS)
Quinton, Jessica Elizabeth
Career interests develop over a lifetime and tend to solidify during late adolescence and early adulthood (Lent, Brown, and Hackett, 2002). The primary purpose of the present qualitative study, which is framed in Feminist Standpoint Theory (Haraway, 1988; Harding, 2007; Naples, 2007; Richardson, 2007), is to understand how eighth-grade, young women in a suburban, public, southern, middle school the South Carolina County School District (CCSD) (pseudonym) perceive their accessibility to Science, Technology, Engineering, and Mathematics (STEM) courses and careers. The secondary purpose is to understand these young women's "perceptions and unconscious beliefs about gender in science and mathematics" and how their "perceptions and unconscious beliefs about gender" in the STEM fields may impact the careers that these young women may choose in the future (American Association of University Women, 2010, 9). Within the present study, the perceptions of young women who identified as "Interested in Science," "Somewhat Interested in Science" and "Uninterested in Science" were identified. STEM courses and careers are a major emphasis in education today. Increasing the numbers of Americans who pursue STEM careers is a government priority, as these careers will strengthen the economy (AAUW 2010). The present study reveals how young women who are highly motivated, talented students perceive STEM courses and careers and how they are influenced by their experiences, gendered messages, and knowledge of STEM careers. To analyze the data, four of Saldana's (2010) dramaturgical codes were utilized including: 1. OBJectives, or motives; 2. CONflicts the participants faced; 3. TACtics to dealing with obstacles; and 4. ATTitudes toward the setting, others, and the conflict. The InVivo Codes allowed the participants stories to emerge through the set of dramaturgical codes that allowed for viewing the girls' experience sin different ways that added depth to their stories. The young women in the present study were affected by gendered messages and stereotypes about a woman's place in STEM. The participants felt better suited for some STEM careers based on interest, experience, and skill level. However, the participants perceived other STEM careers to be out of reach due to a lack of knowledge of the careers and the influence of gendered messages.
The Core of Sibling Stem Cell Donation – A Grounded Theory Study
Kisch, Annika M; Forsberg, Anna
2017-01-01
Background: There is a lack of theoretical framework supporting stem cell transplant nurses in their assessment, judgment and caring interventions of sibling stem cell donors. Objective: The purpose of this study was to explore sibling stem cell donors’ main concerns and how they deal with them before and after donation. Method: Ten healthy sibling donors, 5 men and 5 women, with a median age of 54 years were included in this study when they were due to donate stem cells to a brother or sister. Data were collected prospectively on three occasions (before the donation and three and twelve months after it) through in-depth interviews, which were recorded and transcribed verbatim for analysis by the Grounded Theory method according to Charmaz. Results: This study describes the efforts of the ten donors to fulfil their duty as a sibling by doing what they considered necessary in order to help. Their efforts were summarised in a process wherein the grounded theory generated three main categories; Prepare, Promote and Preserve. A clear path of transition leading to fulfilment is evident, starting before the donation and continuing for one year afterwards. Conclusions: Being a sibling stem cell donor means doing what you have to do to fulfil your duty and if possible, saving the life of a seriously ill brother or sister. The relationship between the siblings is strengthened by the donation process. Sibling stem cell donation appears to be about fulfilment and the theoretical framework may support clinicians in their evaluation and support of donors. PMID:28839511
NASA Astrophysics Data System (ADS)
Rustaman, N. Y.; Afianti, E.; Maryati, S.
2018-05-01
A study using one group pre-post-test experimental design on Life organization system topic was carried out to investigate student’s tendency in learning abstract concept, their creativity and collaboration in designing and producing cell models through STEM-based learning. A number of seventh grade students in Cianjur district were involved as research subjects (n=34). Data were collected using two tier test for tracing changes in student conception before and after the application of STEM-based learning, and rubrics in creativity design (adopted from Torrance) and product on cell models (individually, in group), and rubric for self-assessment and observed skills on collaboration adapted from Marzano’s for life-long learning. Later the data obtained were analyzed qualitatively by interpreting the tendency of data presented in matrix sorted by gender. Research findings showed that the percentage of student’s scientific concept mastery is moderate in general. Their creativity in making a cell model design varied in category (expressing, emergent, excellent, not yet evident). Student’s collaboration varied from excellent, fair, good, less once, to less category in designing cell model. It was found that STEM based learning can facilitate students conceptual change, creativity and collaboration.
NASA Astrophysics Data System (ADS)
Lambert, Olivier; Bianucci, Giovanni; Beatty, Brian L.
2014-06-01
Several extinct sperm whales (stem Physeteroidea) were recently proposed to differ markedly in their feeding ecology from the suction-feeding modern sperm whales Kogia and Physeter. Based on cranial, mandibular, and dental morphology, these Miocene forms were tentatively identified as macroraptorial feeders, able to consume proportionally large prey using their massive teeth and robust jaws. However, until now, no corroborating evidence for the use of teeth during predation was available. We report on a new specimen of the stem physeteroid Acrophyseter, from the late middle to early late Miocene of Peru, displaying unusual bony outgrowths along some of the upper alveoli. Considering their position and outer shape, these are identified as buccal maxillary exostoses. More developed along posterior teeth and in tight contact with the high portion of the dental root outside the bony alveoli, the exostoses are hypothesized to have developed during powerful bites; they may have worked as buttresses, strengthening the teeth when facing intense occlusal forces. These buccal exostoses further support a raptorial feeding technique for Acrophyseter and, indirectly, for other extinct sperm whales with a similar oral apparatus ( Brygmophyseter, Livyatan, Zygophyseter). With a wide size range, these Miocene stem physeteroids were major marine macropredators, occupying ecological niches nowadays mostly taken by killer whales.
Sandberg, C.A.; Gutschick, R.C.; Johnson, J.G.; Poole, F.G.; Sando, W.J.
1986-01-01
Twenty eustatic and epeirogenic events mainly dated by conodonts are distinguished between the Middle Devonian and the lower Upper Mississippian in Great Basin, in Rocky Mountains and in the Overthrust belt regions.-Journal Editors
NASA Astrophysics Data System (ADS)
Scipio, Deana Aeolani
This dissertation examines learning within an out-of-school time (OST) Science, Technology, Engineering, and Mathematics (STEM) broadening participation program. The dissertation includes an introduction, three empirical chapters (written as individual articles), and a conclusion. The dissertation context is a chemical oceanography OST program for middle school students called Project COOL---Chemical Oceanography Outside the Lab. The program was a collaboration between middle school OST programming, a learning sciences research laboratory, and a chemical oceanography laboratory. Both labs were located at a research-based university in the Pacific Northwest of the United States. Participants include 34 youth, 12 undergraduates, and five professional scientists. The dissertation data corpus includes six years of ethnographic field notes across three field sites, 400 hours of video and audio recordings, 40 hours of semi-structured interviews, and more than 100 participant generated artifacts. Analysis methods include comparative case analysis, cognitive mapping, semiotic cluster analysis, video interaction analysis, and discourse analysis. The first empirical article focuses on synthesizing productive programmatic features from four years of design-based research.. The second article is a comparative case study of three STEM mentors from non-dominant communities in the 2011 COOL OST Program. The third article is a comparative case study of undergraduates learning to be mentors in the 2014 COOL OST Program. Findings introduce Deep Hanging as a theory of learning in practice. Deep Hanging entails authentic tasks in rich contexts, providing access, capitalizing on opportunity, and building interpersonal relationships. Taken together, these three chapters illuminate the process of designing a rich OST learning environment and the kinds of learning in practice that occurred for adult learners learning to be mentors through their participation in the COOL OST program. In the conclusion, I offer a set of design principles for mentor learning gleaned from empirical findings from the last two empirical chapters on how mentors can productively support the science learning of youth. The findings from this dissertation offer implications for designers of learning environments seeking to leverage experts for mentoring while engaging youth in contemporary science practices in order to broaden participation for youth and adult participants from non-dominant communities in STEM disciplines.
NASA Astrophysics Data System (ADS)
Dussault, Mary E.; Wright, Erika A.; Sadler, Philip; Sonnert, Gerhard; ITEAMS II Team
2018-01-01
Encouraging students to pursue careers in science, technology, engineering, and mathematics (STEM) is a high priority for national K-12 education improvement initiatives in the United States. Many educators have claimed that a promising strategy for nurturing early student interest in STEM is to engage them in authentic inquiry experiences. “Authentic” refers to investigations in which the questions are of genuine interest and importance to students, and the inquiry more closely resembles the way real science is done. Science education researchers and practitioners at the Harvard-Smithsonian Center for Astrophysics have put this theory into action with the development of YouthAstroNet, a nationwide online learning community of middle-school aged students, educators, and STEM professionals that features the MicroObservatory Robotic Telescope Network, professional image analysis software, and complementary curricula for use in a variety of learning settings. This preliminary study examines factors that influence YouthAstroNet participants' Science Affinity, STEM Identity, and STEM Career Interest, using the matched pre/post survey results of 261 participants as the data source. The pre/post surveys included some 40 items measuring affinity, identity, knowledge, and career interest. In addition, the post intervention instrument included a number of items in which students reported the instructional strategies they experienced as part of the program. A simple analysis of pre-post changes in affinity and interest revealed very little significant change, and for those items where a small pre-post effect was observed, the average change was most often negative. However, after accounting for students' different program treatment experiences and for their prior attitudes and interests, a predictor of significant student gains in Affinity, STEM Identity, Computer/Math Identity, and STEM Career Interest could be identified. This was the degree to which students reported using and experiencing the primary "authentic" learning activities of the YouthAstroNet program.
Unrelated haematopoietic stem cell transplantation in Taiwan and beyond.
Yang, K L; Chang, C Y; Lin, S; Shyr, M H; Lin, P Y
2009-06-01
Since its inception in October 1993, the world-renowned Buddhist Tzu Chi Marrow Donor Registry has facilitated more than 1800 cases of stem cell donations for patients in 27 countries to date. Under the auspices of the Buddhist Tzu Chi Stem Cells Center (BTCSCC), the Registry (> 310,000 donors) offers, on average, one case of stem cell donation every day to national or international transplantation community. The accomplishment of the Registry stems from the philosophy and spirit of giving without reward that was inspired by its founder Dharma Master Cheng Yen, the Samaritan devotions of selfless voluntary stem cell donors and the efforts from a dedicated network of volunteer workers. Demographically speaking, slightly less than one third of the donations are provided to domestic patients and the rest to mainland China and countries in Asia, North America, Europe, Middle East, Oceania, and South Africa. While most of the patients belong to the Oriental ethnic group, a few of the patients are non-Oriental. In addition to the Registry, a non-profit umbilical cord blood (UCB) bank is operating since 2002 to provide a complimentary role for patients unable to identify appropriate bone marrow stem cell donors in the Registry in time. To date, with an inventory of over 12,000 units of UCB cryopreserved in the Tzu Chi Cord Blood Bank, 47 units have been employed in 37 cases of transplantation for both paediatric and adult patients domestically and internationally. The fact that Buddhist Tzu Chi Marrow Donor Registry and Cord Blood Bank are established and operating without governmental financial support is unique and special. To facilitate haematopoietic stem cells to its domestic patients experiencing financial burdens, the BTCSCC offers financial aids to the underprivileged for their medical relief. This humanitarian approach and compassion is definitely a role model for many countries in the world.
BRANCH JUNCTIONS AND THE FLOW OF WATER THROUGH XYLEM IN DOUGLAS-FIR AND PONDEROSA PINE STEMS
Water flowing through the xylem of most plants from the roots to the leaves must pass through junctions where branches have developed from the main stem. These junctions have been studied as both flow constrictions and components of a hydraulic segmentation mechanism to protect ...
A Computer-Based Simulation for Teaching Heat Transfer across a Woody Stem
ERIC Educational Resources Information Center
Maixner, Michael R.; Noyd, Robert K.; Krueger, Jerome A.
2010-01-01
To assist student understanding of heat transfer through woody stems, we developed an instructional package that included an Excel-based, one-dimensional simulation model and a companion instructional worksheet. Guiding undergraduate botany students to applying principles of thermodynamics to plants in nature is fraught with two main obstacles:…
ERIC Educational Resources Information Center
McFadden, Justin R.; Roehrig, Gillian H.
2017-01-01
Background: This study presents two teacher design teams (TDTs) during a professional development experience centered on science, technology, engineering, and mathematics (STEM)-integrated curriculum development. The main activity of the study, curriculum design, was framed as a design problem in order to better understand how teachers engaged…
Bessos, Hagop; Fraser, Robin; Seghatchian, Jerard
2008-02-01
This commentary briefly highlights some of the local and the global contemporary issues affecting transfusion medicine worldwide. The main areas of focus addressed this year were: donor recruitment, stem cell plasticity, the effective use of blood, and vCJD.
Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering.
Ardeshirylajimi, Abdolreza
2017-10-01
Due to increasing of the orthopedic lesions and fractures in the world and limitation of current treatment methods, researchers, and surgeons paid attention to the new treatment ways especially to tissue engineering and regenerative medicine. Innovation in stem cells and biomaterials accelerate during the last decade as two main important parts of the tissue engineering. Recently, induced pluripotent stem cells (iPSCs) introduced as cells with highly proliferation and differentiation potentials that hold great promising features for used in tissue engineering and regenerative medicine. As another main part of tissue engineering, synthetic, and natural polymers have been shown daily grow up in number to increase and improve the grade of biopolymers that could be used as scaffold with or without stem cells for implantation. One of the developed areas of tissue engineering is bone tissue engineering; the aim of this review is present studies were done in the field of bone tissue engineering while used iPSCs in combination with natural and synthetic biomaterials. J. Cell. Biochem. 118: 3034-3042, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Purification, characterization and immunomodulatory activity of polysaccharides from stem lettuce.
Nie, Chenzhipeng; Zhu, Peilei; Ma, Shuping; Wang, Mingchun; Hu, Youdong
2018-05-15
Stem lettuce has a long history of cultivation in China and possesses high nutritional and medicinal value. In our previous studies, extraction optimization, characterization, and bioactivities of stem lettuce polysaccharides (SLP) were investigated. In this study, SLP were further separated into two purified polysaccharides, SLP-1 and SLP-2, by anion exchange chromatography followed by size exclusion chromatography. SLP-1, with a molecular weight of 90 KDa, was mainly composed of galacturonic acid, galactose and arabinose in a molar ratio of 17.6:41.7:33.9. SLP-2, with a molecular weight of 44 KDa, was mainly composed of mannose, galacturonic acid, galactose and arabinose in a molar ratio of 11.5:69.5:9.3:8.2. In addition, both purified polysaccharides contain sulphate radicals, have triple helical structures and can promote macrophage proliferation without cytotoxicity. SLP-2 was better able to stimulate phagocytic and nitric oxide production than SLP-1. The results suggest that polysaccharides from stem lettuce could be explored as immunomodulatory agents in the field of pharmaceuticals and functional foods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Klein, Rebecca; Mahlberg, Nicolas; Ohren, Maurice; Ladwig, Anne; Neumaier, Bernd; Graf, Rudolf; Hoehn, Mathias; Albrechtsen, Morten; Rees, Stephen; Fink, Gereon Rudolf; Rueger, Maria Adele; Schroeter, Michael
2016-12-01
The neural cell adhesion molecule (NCAM)-derived peptide FG loop (FGL) modulates synaptogenesis, neurogenesis, and stem cell proliferation, enhances cognitive capacities, and conveys neuroprotection after stroke. Here we investigated the effect of subcutaneously injected FGL on cellular compartments affected by degeneration and regeneration after stroke due to middle cerebral artery occlusion (MCAO), namely endogenous neural stem cells (NSC), oligodendrocytes, and microglia. In addition to immunohistochemistry, we used non-invasive positron emission tomography (PET) imaging with the tracer [ 18 F]-fluoro-L-thymidine ([ 18 F]FLT) to visualize endogenous NSC in vivo. FGL significantly increased endogenous NSC mobilization in the neurogenic niches as evidenced by in vivo and ex vivo methods, and it induced remyelination. Moreover, FGL affected neuroinflammation. Extending previous in vitro results, our data show that the NCAM mimetic peptide FGL mobilizes endogenous NSC after focal ischemia and enhances regeneration by amplifying remyelination and modulating neuroinflammation via affecting microglia. Results suggest FGL as a promising candidate to promote recovery after stroke.
Zhang, Xuemei; Zhou, Yinglian; Li, Hulun; Wang, Rui; Yang, Dan; Li, Bing; Cao, Xiaofang; Fu, Jin
2018-01-01
Ischemic stroke is a major cause of disability and mortality worldwide, while effective restorative treatments are limited at present. Stem cell transplantation holds therapeutic potential for ischemic vascular diseases and may provide an opportunity for neural regeneration. Dental pulp stem cells (DPSCs) origin from neural crest and have neuro-ectodermal features including proliferation and multilineage differentiation potentials. The rat model of middle cerebral artery occlusion (MCAO) was used to evaluate whether intravenous administration of DPSCs can reduce infarct size and to estimate the migration and trans-differentiation into neuron-like cells in focal cerebral ischemia models. Brain tissues were collected at 4 weeks following cell transplantation and analyzed with immunofluorescence, immunohistochemistry and real-time polymerase chain reaction (RT-PCR) methods. Intravenously administration of rat-derived DPSCs were found to migrate into the boundary of ischemic areas and expressed neural specific markers, reducing infarct volume and cerebral edema. These results suggest that DPSCs treatment may serve as a potential therapy for clinical stroke patients in the future. © 2018 The Author(s). Published by S. Karger AG, Basel.
Wang, Jian; Zhu, Jinmao; Huang, RuZhu; Yang, YuSheng
2012-07-01
We explored the rapid qualitative analysis of wheat cultivars with good lodging resistances by Fourier transform infrared resonance (FTIR) spectroscopy and multivariate statistical analysis. FTIR imaging showing that wheat stem cell walls were mainly composed of cellulose, pectin, protein, and lignin. Principal components analysis (PCA) was used to eliminate multicollinearity among multiple peak absorptions. PCA revealed the developmental internodes of wheat stems could be distributed from low to high along the load of the second principal component, which was consistent with the corresponding bands of cellulose in the FTIR spectra of the cell walls. Furthermore, four distinct stem populations could also be identified by spectral features related to their corresponding mechanical properties via PCA and cluster analysis. Histochemical staining of four types of wheat stems with various abilities to resist lodging revealed that cellulose contributed more than lignin to the ability to resist lodging. These results strongly suggested that the main cell wall component responsible for these differences was cellulose. Therefore, the combination of multivariate analysis and FTIR could rapidly screen wheat cultivars with good lodging resistance. Furthermore, the application of these methods to a much wider range of cultivars of unknown mechanical properties promises to be of interest.
Stem Cells for Osteochondral Regeneration.
Canadas, Raphaël F; Pirraco, Rogério P; Oliveira, J Miguel; Reis, Rui L; Marques, Alexandra P
2018-01-01
Stem cell research plays a central role in the future of medicine, which is mainly dependent on the advances on regenerative medicine (RM), specifically in the disciplines of tissue engineering (TE) and cellular therapeutics. All RM strategies depend upon the harnessing, stimulation, or guidance of endogenous developmental or repair processes in which cells have an important role. Among the most clinically challenging disorders, cartilage degeneration, which also affects subchondral bone becoming an osteochondral (OC) defect, is one of the most demanding. Although primary cells have been clinically applied, stem cells are currently seen as the promising tool of RM-related research because of its availability, in vitro proliferation ability, pluri- or multipotency, and immunosuppressive features. Being the OC unit, a transition from the bone to cartilage, mesenchymal stem cells (MSCs) are the main focus for OC regeneration. Promising alternatives, which can also be obtained from the patient or at banks and have great differentiation potential toward a wide range of specific cell types, have been reported. Still, ethical concerns and tumorigenic risk are currently under discussion and assessment. In this book chapter, we revise the existing stem cell-based approaches for engineering bone and cartilage, focusing on cell therapy and TE. Furthermore, 3D OC composites based on cell co-cultures are described. Finally, future directions and challenges still to be faced are critically discussed.
Laub, Brian G.; Thiede, Gary P.; Macfarlane, William W.; Budy, Phaedra
2018-01-01
We explored the conservation potential of tributaries in the upper Colorado River basin by modeling native fish species richness as a function of river discharge, temperature, barrier‐free length, and distance to nearest free‐flowing main‐stem section. We investigated a historic period prior to large‐scale water development and a contemporary period. In the historic period, species richness was log‐linearly correlated to variables capturing flow magnitude, particularly mean annual discharge. In the contemporary period, the log‐linear relationship between discharge and species richness was still evident but weaker. Tributaries with lower average temperature and separated from free‐flowing main‐stem sections often had fewer native species compared to tributaries with similar discharge but with warmer temperature and directly connected to free‐flowing main stems. Thus, tributaries containing only a small proportion of main‐stem discharge, especially those at lower elevations with warmer temperatures and connected to free‐flowing main stems, can support a relatively high species richness. Tributaries can help maintain viable populations by providing ecological processes disrupted on large regulated rivers, such as natural flow and temperature regimes, and may present unique conservation opportunities. Efforts to improve fish passage, secure environmental flows, and restore habitat in these tributaries could greatly contribute to conservation of native fish richness throughout the watershed.
Aural mapping of STEM concepts using literature mining
NASA Astrophysics Data System (ADS)
Bharadwaj, Venkatesh
Recent technological applications have made the life of people too much dependent on Science, Technology, Engineering, and Mathematics (STEM) and its applications. Understanding basic level science is a must in order to use and contribute to this technological revolution. Science education in middle and high school levels however depends heavily on visual representations such as models, diagrams, figures, animations and presentations etc. This leaves visually impaired students with very few options to learn science and secure a career in STEM related areas. Recent experiments have shown that small aural clues called Audemes are helpful in understanding and memorization of science concepts among visually impaired students. Audemes are non-verbal sound translations of a science concept. In order to facilitate science concepts as Audemes, for visually impaired students, this thesis presents an automatic system for audeme generation from STEM textbooks. This thesis describes the systematic application of multiple Natural Language Processing tools and techniques, such as dependency parser, POS tagger, Information Retrieval algorithm, Semantic mapping of aural words, machine learning etc., to transform the science concept into a combination of atomic-sounds, thus forming an audeme. We present a rule based classification method for all STEM related concepts. This work also presents a novel way of mapping and extracting most related sounds for the words being used in textbook. Additionally, machine learning methods are used in the system to guarantee the customization of output according to a user's perception. The system being presented is robust, scalable, fully automatic and dynamically adaptable for audeme generation.
Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis.
Suh, Mi Chung; Samuels, A Lacey; Jetter, Reinhard; Kunst, Ljerka; Pollard, Mike; Ohlrogge, John; Beisson, Fred
2005-12-01
All vascular plants are protected from the environment by a cuticle, a lipophilic layer synthesized by epidermal cells and composed of a cutin polymer matrix and waxes. The mechanism by which epidermal cells accumulate and assemble cuticle components in rapidly expanding organs is largely unknown. We have begun to address this question by analyzing the lipid compositional variance, the surface micromorphology, and the transcriptome of epidermal cells in elongating Arabidopsis (Arabidopsis thaliana) stems. The rate of cell elongation is maximal near the apical meristem and decreases steeply toward the middle of the stem, where it is 10 times slower. During and after this elongation, the cuticular wax load and composition remain remarkably constant (32 microg/cm2), indicating that the biosynthetic flux into waxes is closely matched to surface area expansion. By contrast, the load of polyester monomers per unit surface area decreases more than 2-fold from the upper (8 microg/cm2) to the lower (3 microg/cm2) portion of the stem, although the compositional variance is minor. To aid identification of proteins involved in the biosynthesis of waxes and cutin, we have isolated epidermal peels from Arabidopsis stems and determined transcript profiles in both rapidly expanding and nonexpanding cells. This transcriptome analysis was validated by the correct classification of known epidermis-specific genes. The 15% transcripts preferentially expressed in the epidermis were enriched in genes encoding proteins predicted to be membrane associated and involved in lipid metabolism. An analysis of the lipid-related subset is presented.
Ottsen, Christina Lundsgaard; Berntsen, Dorthe
2015-12-01
Mental time travel is the ability to remember past events and imagine future events. Here, 124 Middle Easterners and 128 Scandinavians generated important past and future events. These different societies present a unique opportunity to examine effects of culture. Findings indicate stronger influence of normative schemas and greater use of mental time travel to teach, inform and direct behaviour in the Middle East compared with Scandinavia. The Middle Easterners generated more events that corresponded to their cultural life script and that contained religious words, whereas the Scandinavians reported events with a more positive mood impact. Effects of gender were mainly found in the Middle East. Main effects of time orientation largely replicated recent findings showing that simulation of future and past events are not necessarily parallel processes. In accordance with the notion that future simulations rely on schema-based construction, important future events showed a higher overlap with life script events than past events in both cultures. In general, cross-cultural discrepancies were larger in future compared with past events. Notably, the high focus in the Middle East on sharing future events to give cultural guidance is consistent with the increased adherence to normative scripts found in this culture. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Chengzhong; Tao, Jun; Zhao, Daqiu; You, Chao; Ge, Jintao
2012-01-01
Calcium is an essential element and imparts significant structural rigidity to the plant cell walls, which provide the main mechanical support to the entire plant. In order to increase the mechanical strength of the inflorescence stems of herbaceous peony, the stems are treated with calcium chloride. The results shows that preharvest sprays with 4% (w/v) calcium chloride three times after bud emergence are the best at strengthening "Da Fugui" peonies' stems. Calcium sprays increased the concentrations of endogenous calcium, total pectin content as well as cell wall fractions in herbaceous peonies stems, and significantly increased the contents of them in the top segment. Correlation analysis showed that the breaking force of the top segment of peonies' stems was positively correlated with the ratio of water insoluble pectin to water soluble pectin (R = 0.673) as well as lignin contents (R = 0.926) after calcium applications.
Stem Cells Transplantation in the Treatment of Patients with Liver Failure.
Tao, Ya-Chao; Wang, Meng-Lan; Chen, En-Qiang; Tang, Hong
2018-02-23
Liver failure is a life-threatening liver disease encompassing severe acute deterioration of liver function. Emergency liver transplantation is the only curative treatment for liver failure, but is restricted by the severe shortage of organ donors. Stem cell, including embroyonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells and hepatic progenitor cells, have capacity to proliferate and differentiate and could be used in a variety of liver diseases including hereditary liver diseases, cirrhosis and liver failure. We summarized the basic experimental and clinical advances of stem cell transplantation in liver failure treatment, and also discussed the advantages and disadvantage of different stem cells subtype in this field, aiming to provide a perspective on the stem cell-based therapy for liver failure. Stem cells, especially mesenchymal stem cells (mainly low immunogenicity and paracrine characteristics) and induced pluripotent stem cells (generation of desired cell type from somatic cell), are feasible candidates for cell therapy in the treatment of liver failure, but there are some drawbacks remaining to be resolved, such as low engraftment, cryotpreservation methods and tumorigenesis. Stem cell transplantation is a promising but challenging strategy and paves a new way for curing liver failure. But more efforts need to be made to overcome problems before this new strategy could be safely and effectively applied to humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Lebon, Eric; Pellegrino, Anne; Tardieu, Francois; Lecoeur, Jeremie
2004-03-01
Shoot architecture variability in grapevine (Vitis vinifera) was analysed using a generic modelling approach based on thermal time developed for annual herbaceous species. The analysis of shoot architecture was based on various levels of shoot organization, including pre-existing and newly formed parts of the stem, and on the modular structure of the stem, which consists of a repeated succession of three phytomers (P0-P1-P2). Four experiments were carried out using the cultivar 'Grenache N': two on potted vines (one of which was carried out in a glasshouse) and two on mature vines in a vineyard. These experiments resulted in a broad diversity of environmental conditions, but none of the plants experienced soil water deficit. Development of the main axis was highly dependent on air temperature, being linearly related to thermal time for all stages of leaf development from budbreak to veraison. The stable progression of developmental stages along the main stem resulted in a thermal-time based programme of leaf development. Leaf expansion rate varied with trophic competition (shoot and cluster loads) and environmental conditions (solar radiation, VPD), accounting for differences in final leaf area. Branching pattern was highly variable. Classification of the branches according to ternary modular structure increased the accuracy of the quantitative analysis of branch development. The rate and duration of leaf production were higher for branches derived from P0 phytomers than for branches derived from P1 or P2 phytomers. Rates of leaf production, expressed as a -function of thermal time, were not stable and depended on trophic competition and environmental conditions such as solar radiation or VPD. The application to grapevine of a generic model developed in annual plants made it possible to identify constants in main stem development and to determine the hierarchical structure of branches with respect to the modular structure of the stem in response to intra- and inter-shoot trophic competition.
NASA Astrophysics Data System (ADS)
Sato, Takumi C.
While many researchers have worked to address the unequal educational outcomes between White and non-White students, there are few signs of progress for people of color seeking entry into a STEM career trajectory. Starting from high school, the number of students who persist to complete a STEM bachelor's degree and obtaining a job in science or engineering continues to indicate that people of color are underrepresented. I suggest that research must consider the role of race and racism in the education of youth of color. Especially in science education, there is very little work addressing how racism may present barriers that impede progress for students along the STEM trajectory. This study is informed by critical race theory (CRT) that posits racism is endemic in society. White privilege enables the dominant group to maintain inequitable advantages that marginalizes populations of color. CRT also puts forth that counter narratives of the marginalized groups is essential to challenge the institutionalized forms of oppression. Using CRT and youth participatory action research (YPAR), this investigation re-imagines youth as capable of transforming their own social and political condition through research and action. This project asked youth of color to interrogate their own experiences as science learners, engage in research on structural inequities of STEM trajectories, plan strategic moves to challenge power structures, and take action for social justice. The youth started by exploring the concept of race and instances where racism was found in public spaces and in their personal experiences. They examined their experiences in science as a student more generally and then for racism. Then, the focus turned to conducting research with peers, observing science classrooms in another school, and using online information to compare schools. The youth planned strategic action against the racism they found in the analysis of the data that included conference presentations, using social media to communicate with peers, and teaching a science unit for middle grades peers using lessons that incorporated engaging teaching practices lacking in their student experiences. YPAR resulted in counternarratives that exposed youth encounters with systemic racism and their efforts to positively change STEM trajectories for themselves and their peers. Through YPAR, youth gained research tools and skills to critically examine the world and expose racism. While schools are purported to be places of equal opportunity for all students to learn and find success, the youth showed that institutionalized racism in schools created barriers to STEM aspirations. By planning and teaching a food and nutrition unit, the youth took aim at the institutionalized racism by taking on the role of teacher and expert while improving the science learning opportunities for their middle grades peers and themselves. In addition, planning the unit enabled the youth to conduct all of the activities before teaching the unit. Thus, the youth supplemented their own science learning. YPAR provided an empowering opportunity to challenge racism along their STEM trajectories and fight for social justice.
Stem Cell-Based Therapies for Polyglutamine Diseases.
Mendonça, Liliana S; Onofre, Isabel; Miranda, Catarina Oliveira; Perfeito, Rita; Nóbrega, Clévio; de Almeida, Luís Pereira
2018-01-01
Polyglutamine (polyQ) diseases are a family of neurodegenerative disorders with very heterogeneous clinical presentations, although with common features such as progressive neuronal death. Thus, at the time of diagnosis patients might present an extensive and irreversible neuronal death demanding cell replacement or support provided by cell-based therapies. For this purpose stem cells, which include diverse populations ranging from embryonic stem cells (ESCs), to fetal stem cells, mesenchymal stromal cells (MSCs) or induced pluripotent stem cells (iPSCs) have remarkable potential to promote extensive brain regeneration and recovery in neurodegenerative disorders. This regenerative potential has been demonstrated in exciting pre and clinical assays. However, despite these promising results, several drawbacks are hampering their successful clinical implementation. Problems related to ethical issues, quality control of the cells used and the lack of reliable models for the efficacy assessment of human stem cells. In this chapter the main advantages and disadvantages of the available sources of stem cells as well as their efficacy and potential to improve disease outcomes are discussed.
[Effect of different organic fertilizers on bioavailability of soil Cd and Zn].
Xie, Yun-he; Ji, Xiong-hui; Wu, Jia-mei; Huang, Juan; Guan, Di; Zhu, Jian
2015-03-01
The active effect of soil Cd and Zn and their interaction was studied in typical paddy field in south China by monitoring the contents of Cd and Zn in soil and rice in rice fields applied with pig manure, chicken manure or rice straw for 4 years continuously. The results showed that applying pig manure, chicken manure or rice straw had no significant impact on the soil total Cd content, soil available Cd content and soil Cd activity, but tended to increase the soil total Cd content and increased the soil total Zn content, soil available Zn content and Zn activity significantly. Applications of pig manure, chicken manure and rice straw all reduced the Cd content of brown rice, in order of pig manure > chicken manure > rice straw. The Cd contents of brown rice, stem and leaf in the treatment applied with pig manure were lower than in the control by 37.5%, 44.0% and 36.4%, respectively; the Cd contents of brown rice, stem and leaf in the treatment applied with chicken manure were lower than in the control by 22.5%, 33.8%, and 22.7%, respectively; the Cd content of brown rice in the treatment applied with rice straw was lower than in the control by 7.5% but its contents in stem and leaf increased by 8.2% and 22.7% , respectively. The reduction in the brown rice Cd content was mainly due to the reduction of Cd enrichment from soil to brown rice after application of pig or chicken manure, but mainly due to the reduction of Cd transportation from stem to brown rice after straw application. Applications of pig manure, chicken manure and rice straw increased Zn contents in rice stem by 53.4%, 53.4% and 13.9%, respectively, but all had no significant effect on brown rice and leaf' s Zn contents. Zn and Cd had the significant antagonistic effects in the soil and rice stem. The increase of Zn content in soil and rice stem inhibited the adsorption and accumulation of Cd in the brown rice, stem and leaf significantly, and with the increase of the proportion of Zn/Cd, the competitive absorption between Cd and Zn by rice was the main control factor affecting the Cd absorption by rice than their competitive adsorption by soil.
Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii.
Tian, Shengke; Lu, Lingli; Labavitch, John; Yang, Xiaoe; He, Zhenli; Hu, Hening; Sarangi, Ritimukta; Newville, Matt; Commisso, Joel; Brown, Patrick
2011-12-01
Spatial imaging of cadmium (Cd) in the hyperaccumulator Sedum alfredii was investigated in vivo by laser ablation inductively coupled plasma mass spectrometry and x-ray microfluorescence imaging. Preferential Cd accumulation in the pith and cortex was observed in stems of the Cd hyperaccumulating ecotype (HE), whereas Cd was restricted to the vascular bundles in its contrasting nonhyperaccumulating ecotype. Cd concentrations of up to 15,000 μg g(-1) were measured in the pith cells, which was many fold higher than the concentrations in the stem epidermis and vascular bundles in the HE plants. In the leaves of the HE, Cd was mainly localized to the mesophyll and vascular cells rather than the epidermis. The distribution pattern of Cd in both stems and leaves of the HE was very similar to calcium but not zinc, irrespective of Cd exposure levels. Extended x-ray absorption fine structure spectroscopy analysis showed that Cd in the stems and leaves of the HE was mainly associated with oxygen ligands, and a larger proportion (about 70% in leaves and 47% in stems) of Cd was bound with malic acid, which was the major organic acid in the shoots of the plants. These results indicate that a majority of Cd in HE accumulates in the parenchyma cells, especially in stems, and is likely associated with calcium pathways and bound with organic acid (malate), which is indicative of a critical role of vacuolar sequestration of Cd in the HE S. alfredii.
Sahpazidou, Despina; Geromichalos, George D; Stagos, Dimitrios; Apostolou, Anna; Haroutounian, Serkos A; Tsatsakis, Aristidis M; Tzanakakis, George N; Hayes, A Wallace; Kouretas, Dimitrios
2014-10-15
A major part of the wineries' wastes is composed of grape stems which are discarded mainly in open fields and cause environmental problems due mainly to their high polyphenolic content. The grape stem extracts' use as a source of high added value polyphenols presents great interest because this combines a profitable venture with environmental protection close to wine-producing zones. In the present study, at first, the Total Polyphenolic Content (TPC) and the polyphenolic composition of grape stem extracts from four different Greek Vitis vinifera varieties were determined by HPLC methods. Afterwards, the grape stem extracts were examined for their ability to inhibit growth of colon (HT29), breast (MCF-7 and MDA-MB-23), renal (786-0 and Caki-1) and thyroid (K1) cancer cells. The cancer cells were exposed to the extracts for 72 h and the effects on cell growth were evaluated using the SRB assay. The results indicated that all extracts inhibited cell proliferation, with IC₅₀ values of 121-230 μg/ml (MCF-7), 121-184 μg/ml (MDA-MD-23), 175-309 μg/ml (HT29), 159-314 μg/ml (K1), 180-225 μg/ml (786-0) and 134->400 μg/ml (Caki-1). This is the first study presenting the inhibitory activity of grape stem extracts against growth of colon, breast, renal and thyroid cancer cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Frati, Paola; Pacchiarotti, Arianna; D'Errico, Stefano
2014-01-01
To evaluate the Italian physicians' knowledge/information level about the therapeutic potential of stem cells, the research choice between embryonic and cordonal stem cells, and the preference between autologous and heterologous storage of cordonal stem cells, we performed a national survey. The questionnaire—distributed to 3361 physicians—involved physicians of different religious orientations and of different medical specialities. Most of the physicians involved (67%) were Catholics, and the majority were gynaecologists and paediatricians (43%) who are mainly in charge to inform future mothers about the possibility of cordonal stem cells conservation. The majority of the physicians interviewed do not have specific knowledge about stem cells (59%), most of them having only generic information (92%). The largest part of physicians prefer to use umbilical cord blood cells rather than embryonic stem cells. Nevertheless, a large percentage of physicians were in favour of embryo research, especially when embryos are supernumerary (44% versus 34%). Eighty-seven % of the physicians interviewed proved to have a general knowledge about stem cells and believe in their therapeutic potential. They prefer research on cordonal stem cells rather than on embryo stem cells. Although they are in favour of heterologous stem cells donation, they still prefer cryopreservation for personal use. PMID:24877099
Teachers' Perception of African American Middle School Girls' Interest in Mathematics and Science
NASA Astrophysics Data System (ADS)
Best, Bonnie M.
Research into African American female underrepresentation in science, technology, engineering, and mathematics (STEM) fields has become an area of interest due to the fact that a majority of African American middle school females do not possess the high levels of mathematics and science knowledge because of social and cultural barriers both inside and outside school that challenge their academic success. The purpose of this qualitative interpretative phenomenological study was to explore teachers' shared, lived experiences of teaching mathematics and science to African American middle school girls. Delgado and Stefancic's critical race theory, Pratt-Clarke's critical race feminism, and Baker-Miller's relational-cultural theory were used to guide this study. Research questions focused on the perceptions and experiences of teachers' lived experiences teaching mathematics and science to African American middle school females. Criterion, purposive, and maximum variation sampling techniques were used to recruit 10 teachers who have 3 or more years' experience teaching African American middle school girls. Semistructured face-to-face interviews were the primary data collection source. First cycle and second cycle coding methods were used to support the analysis of this study. Findings suggest that there is a connection between a positive student-teacher relationship and academic success. The results of this study contribute to positive social change by providing empirical evidence policymakers and teachers can use to improve the mathematics and science instruction and practices that are needed to meet the needs of African American middle school females and reduce the underrepresentation and underachievement of African American females in mathematics and science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesnikowska, A.D.
1989-01-01
Eleven species-level assemblages of stems, frond members and fertile foliage of anatomically preserved Marattiales are proposed, based on specimens in coal balls from 16 coals in the Desmoinesian and Missourian (Westphalian D and Stephanian) of the Illinois, Forest City and Arkoma Basins. Four new combinations, Psaronius calicifolius (Millay) Lesnikowska, and Psaronius gnomus (Lesnikowska Millay) Lesnikowska, Psaronius illinoensis (Eqart) Lesnikowska, and Psaronius minor (Hoskins) Lesnikowska are made to accommodate well documented assemblages and seven are treated informally. The taxonomy of the fertile foliage is revised as follows: Scolecopteris dispora Lesnikowska sp. nov. is described from an Iowa coal and Scolecopteris parkerensismore » Lesnikowska sp. nov. from the Parker Coal of Indiana. Scolecopteris fragilis is made a synonym of S. mamayi, and S. revoluta, and S. saharaensis synonyms of S. minor. The type and Middle Pennsylvanian specimens of Scolecopteris parvifolia belong in S. minor but the Upper Pennsylvanian specimens are S. illinoensis. Only one species occurs in both the Middle and the Upper Pennsylvanian; the extinction event near the Middle/Upper Pennsylvanian boundary extended to coal-swamp Marattiales as well as tree lycopods. The Upper Pennsylvanian tree ferns are interpreted as derived from clastic-swamp species that recolonized the coal-swamp habitat after this extinction. Upper Pennsylvanian tree ferns were significantly larger than Middle Pennsylvanian ones and were characterized by a massive root mantle whereas as least one Middle Pennsylvanian species lacked a root mantle and had a scrambling habit. Biomass allocation to reproduction was significantly greater in the Middle Pennsylvanian species.« less
Advances in translational inner ear stem cell research.
Warnecke, Athanasia; Mellott, Adam J; Römer, Ariane; Lenarz, Thomas; Staecker, Hinrich
2017-09-01
Stem cell research is expanding our understanding of developmental biology as well as promising the development of new therapies for a range of different diseases. Within hearing research, the use of stem cells has focused mainly on cell replacement. Stem cells however have a broad range of other potential applications that are just beginning to be explored in the ear. Mesenchymal stem cells are an adult derived stem cell population that have been shown to produce growth factors, modulate the immune system and can differentiate into a wide variety of tissue types. Potential advantages of mesenchymal/adult stem cells are that they have no ethical constraints on their use. However, appropriate regulatory oversight seems necessary in order to protect patients from side effects. Disadvantages may be the lack of efficacy in many preclinical studies. But if proven safe and efficacious, they are easily translatable to clinical trials. The current review will focus on the potential application on mesenchymal stem cells for the treatment of inner ear disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Yu, Bi-yun; Zhang, Wen-hui; He, Ting; You, Jian-jian; Li, Gang
2014-12-01
Typical sampling method was conducted to survey the effects of forest gap size on branch architecture, leaf characteristics and their vertical distribution of Quercus variablis seedlings from different size gaps in natural secondary Q. variablis thinning forest, on the south slope of Qinling Mountains. The results showed that gap size significantly affected the diameter, crown area of Q. variablis seedlings. The gap size positively correlated with diameter and negatively correlated with crown area, while it had no significant impact on seedling height, crown length and crown rates. The overall bifurcation ratio, stepwise bifurcation ratio, and ratio of branch diameter followed as large gap > middle gap > small gap > understory. The vertical distribution of first-order branches under different size gaps mainly concentrated at the middle and upper part of trunk, larger diameter first-order branches were mainly distributed at the lower part of trunk, and the angle of first-order branch increased at first and then declined with the increasing seedling height. With the increasing forest gap size, the leaf length, leaf width and average leaf area of seedlings all gradually declined, while the average leaf number per plant and relative total leaf number increased, the leaf length-width ratio kept stable, the relative leaf number was mainly distributed at the middle and upper parts of trunk, the changes of leaf area index was consistent with the change of the relative total number of leaves. There was no significant difference between the diameters of middle gap and large gap seedlings, but the diameter of middle gap seedlings was higher than that of large gap, suggesting the middle gap would benefit the seedlings regeneration and high-quality timber cultivation. To promote the regeneration of Q. variabilis seedlings, and to cultivate high-quality timber, appropriate thinning should be taken to increase the number of middle gaps in the management of Q. variabilis forest.
Space Station Commander Talks to South Carolina Students
2017-10-02
Aboard the International Space Station, Expedition 53 Commander Randy Bresnik of NASA discussed life and work aboard the orbital laboratory during an in-flight educational event Oct. 2 with students at The Citadel STEM Center at the Laing Middle School near Charleston, South Carolina. Bresnik holds a Bachelor of Arts degree in mathematics and an honorary doctorate in aeronautics from The Citadel. He launched to the station in July and will remain on board through mid-December.
2016-11-21
these relationships to function. By comparing the command pathways of cases in Palestine Mandate and the Horn of Africa during the Second World War...suggest a way forward for contemporary operations. Keywords: Second World War, Israel, Ethiopia, Haganah, Palmach, Irgun (IZL), Special Operations...authority to one that stems from pathways of influence. Through the First World War, the British Empire had a tradition of work- ing with indigenous
NASA Astrophysics Data System (ADS)
Tazaz, A.; Wilson, R. M.; Schoen, R.; Blumsack, S.; King, L.; Dyehouse, M.
2013-12-01
'The Integrating STEM Project' engaged 6-8 grade teachers through activities incorporating mathematics, science and technology incorporating both Next Generation Science Standards (NGSS) and Common Core State Standards-Mathematics (CCSS-Math). A group of researchers from Oceanography, Mathematics, and Education set out to provide middle school teachers with a 2 year intensive STEM integration professional development with a focus on environmental topics and to monitor the achievement outcomes in their students. Over the course of 2 years the researchers created challenging professional development sessions to expand teacher knowledge and teachers were tasked to transform the information gained during the professional development sessions for classroom use. One lesson resource kit presented to the teachers, which was directly applicable to the classroom, included Model Eliciting Activities (MEA's) to explore the positive and negative effects land development has on climate and the environment, and how land development impacts storm water management. MEA's were developed to encourage students to create models to solve complex problems and to allow teachers to investigate students thinking. MEA's are a great curriculum technique used in engineering fields to help engage students by providing hands on activities using real world data and problems. We wish to present the Storm Water Management Resource toolkit including the MEA and present the outcomes observed from student engagement in this activity.
Lewin, Justin D; Vinson, Erin L; Stetzer, MacKenzie R; Smith, Michelle K
2016-01-01
At the University of Maine, middle and high school teachers observed more than 250 university science, technology, engineering, and mathematics classes and collected information on the nature of instruction, including how clickers were being used. Comparisons of classes taught with (n = 80) and without (n = 184) clickers show that, while instructional behaviors differ, the use of clickers alone does not significantly impact the time instructors spend lecturing. One possible explanation stems from the observation of three distinct modes of clicker use: peer discussion, in which students had the opportunity to talk with one another during clicker questions; individual thinking, in which no peer discussion was observed; and alternative collaboration, in which students had time for discussion, but it was not paired with clicker questions. Investigation of these modes revealed differences in the range of behaviors, the amount of time instructors lecture, and how challenging the clicker questions were to answer. Because instructors can vary their instructional style from one clicker question to the next, we also explored differences in how individual instructors incorporated peer discussion during clicker questions. These findings provide new insights into the range of clicker implementation at a campus-wide level and how such findings can be used to inform targeted professional development for faculty. © 2016 J. D. Lewin et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).