Science.gov

Sample records for midgut ph regulation

  1. Determination of pH in regions of the midguts of acaridid mites.

    PubMed

    Erban, Tomas; Hubert, Jan

    2010-01-01

    The pH of the guts of mites strongly affects their digestive processes. This study was carried out to determine the pH in the guts of 12 species of stored product and house dust mites. Eighteen pH indicators were chosen and offered to the mites in the feeding biotest. Based on the color changes of the indicators, the gut contents of acaridid mites were determined to be within a pH range of 4 to neutral. The gut contents showed a gradient in pH from the anterior to the posterior part. The anterior midgut (ventriculus and caeca) of most species had a pH ranging from 4.5 to 5, or slightly more alkaline for most of the species, while the middle midgut (intercolon/colon) had a pH of 5 to 6. Finally, the pH of the posterior midgut (postcolon) was between 5.5 and 7. Except for Dermatophagoides spp., no remarkable differences in the pH of the gut were observed among the tested species. Dermatophagoides spp. had a more acidic anterior midgut (a pH of 4 to 5) and colon (a pH of 5) with postcolon (a pH of below 6). The results characterizing in vivo conditions in the mite gut offer useful information to study the activity of mite digestive enzymes including their inhibitors and gut microflora.

  2. Avoidance of antinutritive plant defense: Role of midgut pH in Colorado potato beetle.

    PubMed

    Felton, G W; Workman, J; Duffey, S S

    1992-04-01

    The fate of the tomato foliar phenolic, chlorogenic acid, in the digestive systems of Colorado potato beetleLeptinotarsa decemlineata (Coleoptera: Chrysomelidae) andHelicoverpa tea (Lepidoptera: Noctuidae) is compared. In larvalH. zea and other lepidopteran species previously examined, approximately 35-50% of the ingested chlorogenic acid was oxidized in the digestive system by foliar phenolic oxidases (i.e., polyphenol oxidase and peroxidase) from the tomato plant. The oxidized form of chlorogenic acid, chlorogenoquinone, is a potent alkylator of dietary protein and can exert a strong antinutritive effect upon larvae through chemical degradation of essential amino acids. In contrast, inL. decemlineata less than 4% of the ingested dose of chlorogenic acid was bound to protein. In vitro experiments to determine the influence of pH on covalent binding of chlorogenic acid to protein showed that 30-45% less chlorogenic acid bound to protein at pHs representative of the beetle midgut (pH 5.5-6.5) than at a pH representing the lepidopteran midgut (pH 8.5). At an acidic pH, considerably more of the alkylatable functional groups of amino acids (-NH2, -SH) are in the nonreactive, protonated state. Hence, polyphenol oxidases are unlikely to have significant antinutritive effects against the Colorado potato beetle and may not be a useful biochemical source of resistance against this insect. The influence of feeding by larval Colorado potato beetle on foliar polyphenol oxidase activity in tomato foliage and its possible significance to interspecific competition is also considered.

  3. Mod(mdg4) participates in hormonally regulated midgut programmed cell death during metamorphosis.

    PubMed

    Cai, Mei-Juan; Liu, Wen; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2012-12-01

    The insect midgut undergoes programmed cell death (PCD) during metamorphosis, but the molecular basis for this phenomenon has not been demonstrated. We report a mod(mdg4) protein [designated as mod(mdg4)1A] that is involved in hormonally regulated insect midgut PCD, from the lepidopteran Helicoverpa armigera. Mod(mdg4)1A is localized in the larval midgut and is highly expressed during metamorphosis. Knockdown of mod(mdg4)1a by feeding dsRNA to the larvae suppressed midgut PCD and delayed metamorphosis. The mechanism is that mod(mdg4)1a knockdown decreased the transcript levels of genes involved in PCD and metamorphosis, but increased the transcript level of inhibitor of apoptosis survivin. The transcript level of mod(mdg4)1a is independently upregulated by 20-hydroxyecdysone (20E) or juvenile hormone (JH) analog methoprene. Overlapped 20E and methoprene counteractively regulate the transcript level of mod(mdg4)1a. 20E upregulates the mod(mdg4)1a transcript level not through its nuclear receptor EcRB1. Methoprene upregulates the mod(mdg4)1a transcript level through the juvenile hormone candidate receptor Met. These findings indicate that mod(mdg4)1a participates in midgut PCD and metamorphosis by regulating the transcript levels of a network of genes via different pathways under 20E and JH regulation.

  4. Regulation of chitin synthesis in the larval midgut of Manduca sexta.

    PubMed

    Zimoch, L; Hogenkamp, D G; Kramer, K J; Muthukrishnan, S; Merzendorfer, H

    2005-06-01

    In insects, chitin is not only synthesized by ectodermal cells that form chitinous cuticles, but also by endodermal cells of the midgut that secrete a chitinous peritrophic matrix. Using anti-chitin synthase (CHS) antibodies, we previously demonstrated that in the midgut of Manduca sexta, CHS is expressed by two cell types, tracheal cells forming a basal tracheal network and columnar cells forming the apical brush border [Zimoch and Merzendorfer, 2002, Cell Tissue Res. 308, 287-297]. Now, we show that two different genes, MsCHS1 and MsCHS2, encode CHSs of midgut tracheae and columnar cells, respectively. To investigate MsCHS2 expression and activity in the course of the larval development, we monitored chitin synthesis, enzyme levels as well as mRNA amounts. All of the tested parameters were significantly reduced during molting and in the wandering stage when compared to the values obtained from intermolt feeding larvae. By contrast, MsCHS1 appeared to be inversely regulated because its mRNA was detectable only during the molt at the time when tracheal growth occurs at the basal site of the midgut. To further examine midgut chitin synthesis, we measured enzyme activity in crude midgut extracts and different membrane fractions. When we analysed trypsin-mediated proteolytic activation, a phenomenon previously reported for insect and fungal systems, we recognized that midgut chitin synthesis was only activated in crude extracts, but not in the 12,000 g membrane fraction. However, proteolytic activation by trypsin in the 12,000 g membrane fraction could be reconstituted by re-adding a soluble fraction, indicating that limited proteolysis affects an unknown soluble factor, a process that in turn activates chitin synthesis.

  5. The physiology of the midgut of Lutzomyia longipalpis (Lutz and Neiva 1912): pH in different physiological conditions and mechanisms involved in its control.

    PubMed

    Santos, Vânia C; Araujo, Ricardo N; Machado, Luciane A D; Pereira, Marcos H; Gontijo, Nelder F

    2008-09-01

    Nutrient digestion and absorption after blood feeding are important events for Lutzomyia longipalpis, which uses these nutrients to produce eggs. In this context, the pH inside the digestive tract is an important physiological feature as it can markedly influence the digestive process as well as interfere with Leishmania development in infected phlebotomines. It was described previously that unfed females have an acidic midgut (pH 6). In this study, the pH inside the midgut of blood-fed females was measured. The abdominal midgut (AM) pH varied from 8.15+/-0.31 in the first 10 h post-blood meal to 7.7+/-0.17 after 24 h. While the AM was alkaline during blood digestion, the pH in the thoracic midgut (TM) remained acidic (5.5-6.0). In agreement with these findings, the enzyme alpha-glucosidase, which has an optimum pH of 5.8, is mainly encountered in the acidic TM. The capacity of unfed females to maintain the acidic intestinal pH was also evaluated. Our results showed the presence of an efficient mechanism that maintains the pH almost constant at about 6 in the midgut, but not in the crop. This mechanism is promptly interrupted in the AM by blood ingestion. RT-PCR results indicated the presence of carbonic anhydrase in the midgut cells, which apparently is required to maintain the pH at 6 in the midgut of unfed females. Investigations on the phenomenon of alkalization observed after blood ingestion indicated that two mechanisms are involved: in addition to the alkalization promoted by CO2 volatilization there is a minor contribution from a second mechanism not yet characterized. Some inferences concerning Leishmania development and pH in the digestive tube are presented.

  6. Silencing of Anopheles stephensi Heme Peroxidase HPX15 Activates Diverse Immune Pathways to Regulate the Growth of Midgut Bacteria

    PubMed Central

    Kajla, Mithilesh; Choudhury, Tania P.; Kakani, Parik; Gupta, Kuldeep; Dhawan, Rini; Gupta, Lalita; Kumar, Sanjeev

    2016-01-01

    Anopheles mosquito midgut harbors a diverse group of endogenous bacteria that grow extensively after the blood feeding and help in food digestion and nutrition in many ways. Although, the growth of endogenous bacteria is regulated by various factors, however, the robust antibacterial immune reactions are generally suppressed in this body compartment by a heme peroxidase HPX15 crosslinked mucins barrier. This barrier is formed on the luminal side of the midgut and blocks the direct interactions and recognition of bacteria or their elicitors by the immune reactive midgut epithelium. We hypothesized that in the absence of HPX15, an increased load of exogenous bacteria will enormously induce the mosquito midgut immunity and this situation in turn, can easily regulate mosquito-pathogen interactions. In this study, we found that the blood feeding induced AsHPX15 gene in Anopheles stephensi midgut and promoted the growth of endogenous as well as exogenous fed bacteria. In addition, the mosquito midgut also efficiently regulated the number of these bacteria through the induction of classical Toll and Imd immune pathways. In case of AsHPX15 silenced midguts, the growth of midgut bacteria was largely reduced through the induction of nitric oxide synthase (NOS) gene, a downstream effector molecule of the JAK/STAT pathway. Interestingly, no significant induction of the classical immune pathways was observed in these midguts. Importantly, the NOS is a well known negative regulator of Plasmodium development, thus, we proposed that the induction of diverged immune pathways in the absence of HPX15 mediated midgut barrier might be one of the strategies to manipulate the vectorial capacity of Anopheles mosquito. PMID:27630620

  7. Ecdysone-Induced Receptor Tyrosine Phosphatase PTP52F Regulates Drosophila Midgut Histolysis by Enhancement of Autophagy and Apoptosis

    PubMed Central

    Santhanam, Abirami; Peng, Wen-Hsin; Yu, Ya-Ting; Sang, Tzu-Kang

    2014-01-01

    The rapid removal of larval midgut is a critical developmental process directed by molting hormone ecdysone during Drosophila metamorphosis. To date, it remains unclear how the stepwise events can link the onset of ecdysone signaling to the destruction of larval midgut. This study investigated whether ecdysone-induced expression of receptor protein tyrosine phosphatase PTP52F regulates this process. The mutation of the Ptp52F gene caused significant delay in larval midgut degradation. Transitional endoplasmic reticulum ATPase (TER94), a regulator of ubiquitin proteasome system, was identified as a substrate and downstream effector of PTP52F in the ecdysone signaling. The inducible expression of PTP52F at the puparium formation stage resulted in dephosphorylation of TER94 on its Y800 residue, ensuring the rapid degradation of ubiquitylated proteins. One of the proteins targeted by dephosphorylated TER94 was found to be Drosophila inhibitor of apoptosis 1 (DIAP1), which was rapidly proteolyzed in cells with significant expression of PTP52F. Importantly, the reduced level of DIAP1 in response to inducible PTP52F was essential not only for the onset of apoptosis but also for the initiation of autophagy. This study demonstrates a novel function of PTP52F in regulating ecdysone-directed metamorphosis via enhancement of autophagic and apoptotic cell death in doomed Drosophila midguts. PMID:24550005

  8. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus.

    PubMed

    Crava, Cristina M; Jakubowska, Agata K; Escriche, Baltasar; Herrero, Salvador; Bel, Yolanda

    2015-01-01

    Antimicrobial peptides (AMPs) and lysozymes are the main effectors of the insect immune system, and they are involved in both local and systemic responses. Among local responses, midgut immune reaction plays an important role in fighting pathogens that reach the insect body through the oral route, as do many microorganisms used in pest control. Under this point of view, understanding how insects defend themselves locally during the first phases of infections caused by food-borne pathogens is important to further improve microbial control strategies. In the present study, we analyzed the transcriptional response of AMPs and lysozymes in the midgut of Spodoptera exigua (Lepidoptera: Noctuidae), a polyphagous pest that is commonly controlled by products based on Bacillus thuringiensis (Bt) or baculovirus. First, we comprehensively characterized the transcripts encoding AMPs and lysozymes expressed in S. exigua larval midgut, identifying 35 transcripts that represent the S. exigua arsenal against microbial infection. Secondly, we analyzed their expression in the midgut after ingestion of sub-lethal doses of two different pore-forming B. thuringiensis toxins, Cry1Ca and Vip3Aa, and the S. exigua nucleopolyhedrovirus (SeMNPV). We observed that both Bt toxins triggered a similar, wide and in some cases high transcriptional activation of genes encoding AMPs and lysozymes, which was not reflected in the activation of the classical systemic immune-marker phenoloxidase in hemolymph. Baculovirus ingestion resulted in the opposed reaction: Almost all transcripts coding for AMPs and lysozymes were down-regulated or not induced 96 hours post infection. Our results shed light on midgut response to different virulence factors or pathogens used nowadays as microbial control agents and point out the importance of the midgut immune response contribution to the larval immunity.

  9. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus

    PubMed Central

    Crava, Cristina M.; Jakubowska, Agata K.; Escriche, Baltasar; Herrero, Salvador; Bel, Yolanda

    2015-01-01

    Antimicrobial peptides (AMPs) and lysozymes are the main effectors of the insect immune system, and they are involved in both local and systemic responses. Among local responses, midgut immune reaction plays an important role in fighting pathogens that reach the insect body through the oral route, as do many microorganisms used in pest control. Under this point of view, understanding how insects defend themselves locally during the first phases of infections caused by food-borne pathogens is important to further improve microbial control strategies. In the present study, we analyzed the transcriptional response of AMPs and lysozymes in the midgut of Spodoptera exigua (Lepidoptera: Noctuidae), a polyphagous pest that is commonly controlled by products based on Bacillus thuringiensis (Bt) or baculovirus. First, we comprehensively characterized the transcripts encoding AMPs and lysozymes expressed in S. exigua larval midgut, identifying 35 transcripts that represent the S. exigua arsenal against microbial infection. Secondly, we analyzed their expression in the midgut after ingestion of sub-lethal doses of two different pore-forming B. thuringiensis toxins, Cry1Ca and Vip3Aa, and the S. exigua nucleopolyhedrovirus (SeMNPV). We observed that both Bt toxins triggered a similar, wide and in some cases high transcriptional activation of genes encoding AMPs and lysozymes, which was not reflected in the activation of the classical systemic immune-marker phenoloxidase in hemolymph. Baculovirus ingestion resulted in the opposed reaction: Almost all transcripts coding for AMPs and lysozymes were down-regulated or not induced 96 hours post infection. Our results shed light on midgut response to different virulence factors or pathogens used nowadays as microbial control agents and point out the importance of the midgut immune response contribution to the larval immunity. PMID:25993013

  10. Dynamics and regulation of glycolysis-tricarboxylic acid metabolism in the midgut of Spodoptera litura during metamorphosis.

    PubMed

    Hu, D; Luo, W; Fan, L F; Liu, F L; Gu, J; Deng, H M; Zhang, C; Huang, L H; Feng, Q L

    2016-04-01

    Significant changes usually take place in the internal metabolism of insects during metamorphosis. The glycolysis-tricarboxylic acid (glycolysis-TCA) pathway is important for energy metabolism. To elucidate its dynamics, the mRNA levels of genes involved in this pathway were examined in the midgut of Spodoptera litura during metamorphosis, and the pyruvate content was quantified. The expression patterns of these genes in response to starvation were examined, and the interaction between protein phosphatase 1 (PP1) and phosphofructokinase (PFK) was studied. The results revealed that the expression or activities of most glycolytic enzymes was down-regulated in prepupae and then recovered in some degree in pupae, and all TCA-related genes were remarkably suppressed in both the prepupae and pupae. Pyruvate was enriched in the pupal midgut. Taken together, these results suggest that insects decrease both glycolysis and TCA in prepupae to save energy and then up-regulate glycolysis but down-regulate TCA in pupae to increase the supply of intermediates for construction of new organs. The expression of all these genes were down-regulated by starvation, indicating that non-feeding during metamorphosis may be a regulator of glycolysis-TCA pathway in the midgut. Importantly, interaction between PP1 and PFK was identified and is suggested to be involved in the regulation of glycolysis.

  11. Ubx dynamically regulates Dpp signaling by repressing Dad expression during copper cell regeneration in the adult Drosophila midgut.

    PubMed

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2016-11-15

    The gastrointestinal (GI) tract of metazoans is lined by a series of regionally distinct epithelia. To maintain structure and function of the GI tract, regionally diversified differentiation of somatic stem cell (SC) lineages is critical. The adult Drosophila midgut provides an accessible model to study SC regulation and specification in a regionally defined manner. SCs of the posterior midgut (PM) have been studied extensively, but the control of SCs in the middle midgut (MM) is less well understood. The MM contains a stomach-like copper cell region (CCR) that is regenerated by gastric stem cells (GSSCs) and contains acid-secreting copper cells (CCs). Bmp-like Decapentaplegic (Dpp) signaling determines the identity of GSSCs, and is required for CC regeneration, yet the precise control of Dpp signaling activity in this lineage remains to be fully established. Here, we show that Dad, a negative feedback regulator of Dpp signaling, is dynamically regulated in the GSSC lineage to allow CC differentiation. Dad is highly expressed in GSSCs and their first daughter cells, the gastroblasts (GBs), but has to be repressed in differentiating CCs to allow Dpp-mediated differentiation into CCs. We find that the Hox gene ultrabithorax (Ubx) is required for this regulation. Loss of Ubx prevents Dad repression in the CCR, resulting in defective CC regeneration. Our study highlights the need for dynamic control of Dpp signaling activity in the differentiation of the GSSC lineage and identifies Ubx as a critical regulator of this process.

  12. Cadmium Accumulation and Pathological Alterations in the Midgut Gland of Terrestrial Snail Helix pomatia L. from a Zinc Smelter Area: Role of Soil pH.

    PubMed

    Włostowski, Tadeusz; Kozłowski, Paweł; Łaszkiewicz-Tiszczenko, Barbara; Oleńska, Ewa

    2016-04-01

    The purpose of this study was to determine whether cadmium (Cd) accumulation and toxicity in the midgut gland of Helix pomatia snails living in a Cd-contaminated area were related to soil pH. Toxic responses in the midgut gland (i.e., increased vacuolization and lipid peroxidation) occurred in H. pomatia snails exhibiting the highest Cd levels in the gland (265-274 µg/g dry wt) and living on acidic soil (pH 5.3-5.5), while no toxicity was observed in snails accumulating less Cd (90 µg/g) and ranging on neutral soil (pH 7.0), despite the fact that total soil Cd was similar in the two cases. The accumulation of Cd in the gland was directly related to the water extractable Cd in soil, which in turn correlated inversely with soil pH, indicating that this factor had a significant effect on tissue Cd. It appeared further that the occurrence of Cd toxicity was associated with low levels of metallothionein in the gland of snails ranging on acidic soil.

  13. Roles and regulation of autophagy and apoptosis in the remodelling of the lepidopteran midgut epithelium during metamorphosis

    PubMed Central

    Romanelli, Davide; Casartelli, Morena; Cappellozza, Silvia; de Eguileor, Magda; Tettamanti, Gianluca

    2016-01-01

    We previously showed that autophagy and apoptosis occur in the removal of the lepidopteran larval midgut during metamorphosis. However, their roles in this context and the molecular pathways underlying their activation and regulation were only hypothesized. The results of the present study better clarify the timing of the activation of these two processes: autophagic and apoptotic genes are transcribed at the beginning of metamorphosis, but apoptosis intervenes after autophagy. To investigate the mechanisms that promote the activation of autophagy and apoptosis, we designed a set of experiments based on injections of 20-hydroxyecdysone (20E). Our data demonstrate that autophagy is induced at the end of the last larval stage by the 20E commitment peak, while the onset of apoptosis occurs concomitantly with the 20E metamorphic peak. By impairing autophagic flux, the midgut epithelium degenerated faster, and higher caspase activity was observed compared to controls, whereas inhibiting caspase activation caused a severe delay in epithelial degeneration. Our data demonstrate that autophagy plays a pro-survival function in the silkworm midgut during metamorphosis, while apoptosis is the major process that drives the demise of the epithelium. The evidence collected in this study seems to exclude the occurrence of autophagic cell death in this setting. PMID:27609527

  14. Roles and regulation of autophagy and apoptosis in the remodelling of the lepidopteran midgut epithelium during metamorphosis.

    PubMed

    Romanelli, Davide; Casartelli, Morena; Cappellozza, Silvia; de Eguileor, Magda; Tettamanti, Gianluca

    2016-09-09

    We previously showed that autophagy and apoptosis occur in the removal of the lepidopteran larval midgut during metamorphosis. However, their roles in this context and the molecular pathways underlying their activation and regulation were only hypothesized. The results of the present study better clarify the timing of the activation of these two processes: autophagic and apoptotic genes are transcribed at the beginning of metamorphosis, but apoptosis intervenes after autophagy. To investigate the mechanisms that promote the activation of autophagy and apoptosis, we designed a set of experiments based on injections of 20-hydroxyecdysone (20E). Our data demonstrate that autophagy is induced at the end of the last larval stage by the 20E commitment peak, while the onset of apoptosis occurs concomitantly with the 20E metamorphic peak. By impairing autophagic flux, the midgut epithelium degenerated faster, and higher caspase activity was observed compared to controls, whereas inhibiting caspase activation caused a severe delay in epithelial degeneration. Our data demonstrate that autophagy plays a pro-survival function in the silkworm midgut during metamorphosis, while apoptosis is the major process that drives the demise of the epithelium. The evidence collected in this study seems to exclude the occurrence of autophagic cell death in this setting.

  15. Hs3st-A and Hs3st-B regulate intestinal homeostasis in Drosophila adult midgut.

    PubMed

    Guo, Yueqin; Li, Zhouhua; Lin, Xinhua

    2014-11-01

    Intrinsic and extrinsic signals as well as the extracellular matrix (ECM) tightly regulate stem cells for tissue homeostasis and regenerative capacity. Little is known about the regulation of tissue homeostasis by the ECM. Heparan sulfate proteoglycans (HSPGs), important components of the ECM, are involved in a variety of biological events. Two heparin sulfate 3-O sulfotransferase (Hs3st) genes, Hs3st-A and Hs3st-B, encode the modification enzymes in heparan sulfate (HS) biosynthesis. Here we demonstrate that Hs3st-A and Hs3st-B are required for adult midgut homeostasis. Depletion of Hs3st-A in enterocytes (ECs) results in increased intestinal stem cell (ISC) proliferation and tissue homeostasis loss. Moreover, increased ISC proliferation is also observed in Hs3st-B null mutant alone, or in combination with Hs3st-A RNAi. Hs3st-A depletion-induced ISC proliferation is effectively suppressed by simultaneous inhibition of the EGFR signaling pathway, suggesting that tissue homeostasis loss in Hs3st-A-deficient intestines is due to increased EGFR signaling. Furthermore, we find that Hs3st-A-depleted ECs are unhealthy and prone to death, while ectopic expression of the antiapoptotic p35 is able to greatly suppress tissue homeostasis loss in these intestines. Together, our data suggest that Drosophila Hs3st-A and Hs3st-B are involved in the regulation of ISC proliferation and midgut homeostasis maintenance.

  16. Brn1/2/4, the predicted midgut regulator of the endo16 gene of the sea urchin embryo.

    PubMed

    Yuh, Chiou-Hwa; Dorman, Elizabeth R; Davidson, Eric H

    2005-05-15

    A specific prediction of our detailed cis-regulatory analysis of the Strongylocentrotus purpuratus (Sp) endo16 gene was that the later expression of this gene would be driven by a midgut-specific transcriptional regulator. We have now identified this factor and determined some of its functions. The cDNA sequence reveals it to be a POU domain factor related closely to the mammalian factors Brain-1, -2, and -4. The factor was termed SpBrn1/2/4 (henceforth Brn1/2/4). Quantitative measurements of transcript prevalence show that the gene is first activated in the 20-h blastula, but there remain only about 100 molecules of brn1/2/4 mRNA per embryo (only a few per endoderm cell) until an abrupt 10-fold increase occurs as gastrulation begins. Measured in the same embryos, the late rise in prevalence of endo16 transcripts follows that of brn1/2/4 transcripts. As predicted by the endo16 model, brn1/2/4 expression is confined perfectly to the midgut, coincident with the domain of endo16 expression. The kinetics of accumulation of these transcripts indicates that the switch into the late phase of endo16 expression occurs when the brn1/2/4 transcript level nears its plateau (2000 molecules mRNA per embryo), after which each endo16 gene produces about 1 mRNA every 2 min (about 380 molecules mRNA per min in the whole embryo). Arrest of Brn1/2/4 translation by MASO treatment blocks the late phase of endo16 expression and specifically abolishes expression of cis-regulatory Module B of endo16, while not affecting Module A, also as predicted. The brn1/2/4 gene lies downstream of the regulatory genes executing post-gastrular specification of the midgut, as shown by further gene expression perturbation experiments which provide an initial glimpse of the underlying network architecture.

  17. Genomic Regions Required for Morphogenesis of the Drosophila Embryonic Midgut

    PubMed Central

    Bilder, D.; Scott, M. P.

    1995-01-01

    The Drosophila midgut is an excellent system for studying the cell migration, cell-cell communication, and morphogenetic events that occur in organ formation. Genes representative of regulatory gene families common to all animals, including homeotic, TGFβ, and Wnt genes, play roles in midgut development. To find additional regulators of midgut morphogenesis, we screened a set of genomic deficiencies for midgut phenotypes. Fifteen genomic intervals necessary for proper midgut morphogenesis were identified; three contain genes already known to act in the midgut. Three other genomic regions are required for formation of the endoderm or visceral mesoderm components of the midgut. Nine regions are required for proper formation of the midgut constrictions. The E75 ecdysone-induced gene, which encodes a nuclear receptor superfamily member, is the relevant gene in one region and is essential for proper formation of midgut constrictions. E75 acts downstream of the previously known constriction regulators or in parallel. Temporal hormonal control may therefore work in conjunction with spatial regulation by the homeotic genes in midgut development. Another genomic region is required to activate transcription of the homeotic genes Antp and Scr specifically in visceral mesoderm. The genomic regions identified by this screen provide a map to novel midgut development regulators. PMID:8582615

  18. Amino acids trigger down-regulation of superoxide via TORC pathway in the midgut of Rhodnius prolixus

    PubMed Central

    Gandara, Ana Caroline P.; Oliveira, José Henrique M.; Nunes, Rodrigo D.; Goncalves, Renata L.S.; Dias, Felipe A.; Hecht, Fabio; Fernandes, Denise C.; Genta, Fernando A.; Laurindo, Francisco R.M.; Oliveira, Marcus F.; Oliveira, Pedro L.

    2016-01-01

    Sensing incoming nutrients is an important and critical event for intestinal cells to sustain life of the whole organism. The TORC is a major protein complex involved in monitoring the nutritional status and is activated by elevated amino acid concentrations. An important feature of haematophagy is that huge amounts of blood are ingested in a single meal, which results in the release of large quantities of amino acids, together with the haemoglobin prosthetic group, haem, which decomposes hydroperoxides and propagates oxygen-derived free radicals. Our previous studies demonstrated that reactive oxygen species (ROS) levels were diminished in the mitochondria and midgut of the Dengue fever mosquito, Aedes aegypti, immediately after a blood meal. We proposed that this mechanism serves to avoid oxidative damage that would otherwise be induced by haem following a blood meal. Studies also performed in mosquitoes have shown that blood or amino acids controls protein synthesis through TORC activation. It was already proposed, in different models, a link between ROS and TOR, however, little is known about TOR signalling in insect midgut nor about the involvement of ROS in this pathway. Here, we studied the effect of a blood meal on ROS production in the midgut of Rhodnius prolixus. We observed that blood meal amino acids decreased ROS levels in the R. prolixus midgut immediately after feeding, via lowering mitochondrial superoxide production and involving the amino acid-sensing TORC pathway. PMID:26945025

  19. Injury-stimulated and self-restrained BMP signaling dynamically regulates stem cell pool size during Drosophila midgut regeneration.

    PubMed

    Tian, Aiguo; Wang, Bing; Jiang, Jin

    2017-03-13

    Many adult organs rely on resident stem cells to maintain homeostasis. Upon injury, stem cells increase proliferation, followed by lineage differentiation to replenish damaged cells. Whether stem cells also change division mode to transiently increase their population size as part of a regenerative program and, if so, what the underlying mechanism is have remained largely unexplored. Here we show that injury stimulates the production of two bone morphogenetic protein (BMP) ligands, Dpp and Gbb, which drive an expansion of intestinal stem cells (ISCs) by promoting their symmetric self-renewing division in Drosophila adult midgut. We find that BMP production in enterocytes is inhibited by BMP signaling itself, and that BMP autoinhibition is required for resetting ISC pool size to the homeostatic level after tissue repair. Our study suggests that dynamic BMP signaling controls ISC population size during midgut regeneration and reveals mechanisms that precisely control stem cell number in response to tissue needs.

  20. The Role of pH Regulation in Cancer Progression.

    PubMed

    McIntyre, Alan; Harris, Adrian L

    Frequently observed phenotypes of tumours include high metabolic activity, hypoxia and poor perfusion; these act to produce an acidic microenvironment. Cellular function depends on pH homoeostasis, and thus, tumours become dependent on pH regulatory mechanisms. Many of the proteins involved in pH regulation are highly expressed in tumours, and their expression is often of prognostic significance. The more acidic tumour microenvironment also has important implications with regard to chemotherapeutic and radiotherapeutic interventions. In addition, we review pH-sensing mechanisms, the role of pH regulation in tumour phenotype and the use of pH regulatory mechanisms as therapeutic targets.

  1. Implications for the functions of the four known midgut differentiation factors: An immunohistologic study of Heliothis virescens midgut.

    PubMed

    Loeb, Marcia J; Coronel, Nicholas; Natsukawa, Dai; Takeda, Makio

    2004-05-01

    Antibodies to the peptides that induce differentiation of midgut larval stem cells, the midgut differentiating factors MDF-2, MDF-3, and MDF-4, bind to columnar cells in midgut cultures and in intact midgut of Heliothis virescens, in manners similar to the binding of anti- MDF-1 to those tissues. Antibodies to MDF-2 and MDF-3 also stained droplets in the midgut lumen, suggesting that columnar cells may also release MDF-2- and MDF-3-like cytokines to the lumen. Antibody to MDF-4 exhibited similar staining patterns but also recognized stem and differentiating cells, the presumed targets of peptides that regulate stem cell differentiation. Antibody to MDF-4 also bound to one type of endocrine cell in midgut cultures and in sections of midgut, as well as to the endocrine secretion released both to the midgut lumen and the hemolymph. Antibodies to the MDFs 1, 2, and 3, incubated with cultures of midgut cells, did not appear to prevent differentiation of the stem cells in the cultures but affected viability of mature cells, reflected in increased apoptosis and doubling of the number of differentiating cells compared to controls. Only antibody to MDF-4 induced temporary necrosis and inhibition of population recovery, indicating that MDF4 may be the true differentiation factor. The other MDFs may have additional functions beyond regulation of midgut stem cell differentiation in vivo.

  2. [Regulation effects of tourmaline on seawater pH value].

    PubMed

    Xia, Meisheng; Zhang, Hongmei; Hu, Caihong; Xu, Zirong

    2005-10-01

    In this paper, chemical analysis, X-ray diffraction and atomic force microscopy were employed to examine the characteristics of tourmaline produced in east Inner Mongolia Autonomous Region, and batch experiments were conducted to study its regulation effects on seawater pH value. The factors affecting the regulation, such as the dosage of tourmaline and the salinity and initial pH value of seawater, were also studied. The results showed that tourmaline could regulate the seawater pH value from its initial 3 and 10 to 7.1 and 8.9, respectively, and the regulation effect was greater in the seawater with lower salinity, e.g., after 120 minutes treatment, the initial pH value (5.0) of the seawater with a salinity of 5, 10, 15, 20 and 35 was increased by 3.24, 3.16, 3.06, 2.99 and 2.85 unit, respectively. Tourmaline had little effect on seawater conductivity. This study would provide an experimental base for the application of tourmaline in aquaculture.

  3. Regulation of Vacuolar pH in Citrus limon

    SciTech Connect

    Lincoln Taiz

    2005-06-22

    The primary objective of this grant was to characterize the vacuolar V-ATPase of lemon fruits. Lemon fruit vacuoles have an internal pH of about 2.5. Since a typical plant vacuole has a luminal pH of around 5.5, the lemon fruit V-APTase must have special properties which allow it to acidify the lumen to such a low pH: (1) it might have a different structure; (2) it might have a different H{sup +}/ATP stoichiometry; and (3) it might be regulated differently. During the course of the investigations (which began in 1996) they characterized these aspects of the V-ATPases of both lemon fruits and lime fruits. They examined lime fruits because of the availability of both acidic limes with a low vacuolar pH and sweet limes, which have a much higher vacuolar pH. The existence of two types of lime fruits allowed a comparison of the V-ATPases of the two varieties. In this report they are including two publications from 1996 and 1997 as background for the later publications. A review article with Heven Sze on V-ATPase nomenclature was also generated during the funding period. In addition to the studies on citrus fruit vacuoles, they also initiated studies in two new areas: polar auxin transport and the regulation of stomatal opening by UV-B irradiation. These studies were intended to serve as a basis of future separate grants, but the proposals they submitted on these topics were not funded.

  4. Mitochondrial nitric oxide synthase regulates mitochondrial matrix pH.

    PubMed

    Ghafourifar, P; Richter, C

    1999-01-01

    Nitric oxide (nitrogen monoxide, NO) exerts a wide profile of its biological activities via regulation of respiration and respiration-dependent functions. The presence of nitric oxide synthase (NOS) in mitochondria (mtNOS) was recently reported by us (Ghafourifar and Richter, FEBS Lett. 418, 291-296, 1997) and others (Giulivi et al., J. Biol. Chem. 273, 11038-11043, 1998). Here we report that NO, provided by an NO donor as well as by mtNOS stimulation, regulates mitochondrial matrix pH, transmembrane potential and Ca2+ buffering capacity. Exogenously-added NO causes a dose-dependent matrix acidification. Also mtNOS stimulation, induced by loading mitochondria with Ca2+, causes mitochondrial matrix acidification and a drop in mitochondrial transmembrane potential. Inhibition of mtNOS's basal activity causes mitochondrial matrix alkalinization and provides a resistance to the sudden drop of mitochondrial transmembrane potential induced by mitochondrial Ca2+ uptake. We conclude that mtNOS plays a critical role in regulating mitochondrial delta(pH).

  5. Ventilatory regulation of arterial H(+) (pH) during exercise.

    PubMed

    Wasserman, Karlman; Cox, Timothy A; Sietsema, Kathy E

    2014-01-01

    We hypothesized that exercise ventilation and arterial H(+) ([H(+)]a) are mutually interactive, [H(+)]a stimulating V(E) and V(E) regulating [H(+)]a increase. Fifty-five patients were studied, 10 normal and 45 with cardio-respiratory disorders. Each patient underwent cardiopulmonary exercise testing with simultaneous serial arterial blood gas and pH measurements. Subsequently, they were classified into one of 7 clinical groups: (1) normal, (2) exercise-induced hypoxemia (PaO2<50mmHg), (3) exercise-induced myocardial ischemia, (4) heart failure, (5) COPD, (6) interstitial lung disease, and (7) pulmonary vasculopathy. The average resting pHa was 7.42 or 7.43 for each group. At anaerobic (lactic acidosis) threshold (AT), [H(+)]a increased due to PaCO2 increase (+2mmHg), primarily. At peak exercise, [H(+)]a increased further due to arterial HCO3(-) decrease. In summary, [H(+)]a appears to be closely regulated at rest to AT and further to peak exercise by CO2 elimination from the venous return. No evidence was observed for over-ventilation of CO2, causing the arterial blood to become more alkaline during exercise in the patient groups studied.

  6. Regulation of neuronal connexin-36 channels by pH.

    PubMed

    González-Nieto, Daniel; Gómez-Hernández, Juan M; Larrosa, Belén; Gutiérrez, Cristina; Muñoz, María D; Fasciani, Ilaria; O'Brien, John; Zappalà, Agata; Cicirata, Federico; Barrio, Luis C

    2008-11-04

    Neurotransmission through electrical synapses plays an important role in the spike synchrony among neurons and oscillation of neuronal networks. Indeed, electrical transmission has been implicated in the hypersynchronous electrical activity of epilepsy. We have investigated the influence of intracellular pH on the strength of electrical coupling mediated by connexin36 (Cx36), the principal gap junction protein in the electrical synapses of vertebrates. In striking contrast to other connexin isoforms, the activity of Cx36 channels decreases following alkalosis rather than acidosis when it is expressed in Xenopus oocytes and N2A cells. This uncoupling of Cx36 channels upon alkalinization occurred in the vertebrate orthologues analyzed (human, mouse, chicken, perch, and skate). While intracellular acidification caused a mild or moderate increase in the junctional conductance of virtually all these channels, the coupling of the skate Cx35 channel was partially blocked by acidosis. The mutational analysis suggests that the Cx36 channels may contain two gating mechanisms operating with opposing sensitivity to pH. One gate, the dominant mechanism, closes for alkalosis and it probably involves an interaction between the C- and N-terminal domains, while a secondary acid sensing gate only causes minor, albeit saturating, changes in coupling following acidosis and alkalosis. Thus, we conclude that neuronal Cx36 channels undergo unique regulation by pH(i) since their activity is inhibited by alkalosis rather than acidosis. These data provide a novel basis to define the relevance and consequences of the pH-dependent modulation of Cx36 synapses under physiological and pathological conditions.

  7. Midgut morphological changes and autophagy during metamorphosis in sand flies.

    PubMed

    Malta, Juliana; Heerman, Matthew; Weng, Ju Lin; Fernandes, Kenner M; Martins, Gustavo Ferreira; Ramalho-Ortigão, Marcelo

    2017-03-11

    During metamorphosis, holometabolous insects undergo significant remodeling of their midgut and become able to cope with changes in dietary requirements between larval and adult stages. At this stage, insects must be able to manage and recycle available food resources in order to develop fully into adults, especially when no nutrients are acquired from the environment. Autophagy has been previously suggested to play a crucial role during metamorphosis of the mosquito. Here, we investigate the overall morphological changes of the midgut of the sand fly during metamorphosis and assess the expression profiles of the autophagy-related genes ATG1, ATG6, and ATG8, which are associated with various steps of the autophagic process. Morphological changes in the midgut start during the fourth larval instar, with epithelial degeneration followed by remodeling via the differentiation of regenerative cells in pre-pupal and pupal stages. The changes in the midgut epithelium are paired with the up-regulation of ATG1, ATG6 and ATG8 during the larva-adult transition. Vein, a putative epidermal growth factor involved in regulating epithelial midgut regeneration, is also up-regulated. Autophagy has further been confirmed in sand flies via the presence of autophagosomes residing within the cytoplasmic compartment of the pupal stages. An understanding of the underlying mechanisms of this process should aid the future management of this neglected tropical vector.

  8. Regulation of Intracellular pH in Lungs and Other Tissues During Hypercapnia

    DTIC Science & Technology

    1978-03-10

    was observed in terms of "percent pH regula- sumed to equal venous Pco 2. tion." As shown in Fig. 1, the pH of kidney, lung, and Intracellular pH was...buffering. The value, "percent pH 80 Z70regulation" (19), calculated as (Alog HCO3/log Pco 2) - x 100 is also used to quantitate pH regulation. This...42: 2080-2093, 1964. 6. FENN, W. 0. Carbon dioxide and intracellular homeostasis . 19. SCHAEFER, K. E., M. HASSON, AND H. NIEMOELLER. Effect of Ann. NY

  9. Regulation of spblimp1/krox1a, an alternatively transcribed isoform expressed in midgut and hindgut of the sea urchin gastrula.

    PubMed

    Livi, Carolina B; Davidson, Eric H

    2007-01-01

    The sea urchin regulatory gene Spblimp1/krox produces alternatively transcribed and spliced isoforms, 1a and 1b, which have different temporal and spatial patterns of expression. Here we describe a cis-regulatory module that controls the expression of the 1a splice form in the midgut and hindgut at the beginning of gastrulation. Conserved sequence patches revealed by a comparison of the blimp1/krox locus in Strongylocentrotus purpuratus and Lytechinus variegatus genomes were tested by gene transfer, in association with GFP or CAT reporter genes. An expression construct containing a conserved sequence patch immediately 5' of exon 1a included the transcription initiation site for blimp1/krox1a. This construct displays specific mid and hindgut expression, indicating that these are the locations of endogenous blimp1/krox1a transcription during the gastrula stage. Its sequence contains binding sites for Brn1/2/4, Otx, and Blimp1/Krox itself, as predicted in a prior regulatory network analysis.

  10. Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability

    PubMed Central

    Mohd-Zaki, Zuhaida; Bastidas-Oyanedel, Juan R.; Lu, Yang; Hoelzle, Robert; Pratt, Steven; Slater, Fran R.; Batstone, Damien J.

    2016-01-01

    Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations. PMID:27681895

  11. Role of cathepsins D in the midgut of Dysdercus peruvianus.

    PubMed

    Pimentel, André C; Fuzita, Felipe J; Palmisano, Giuseppe; Ferreira, Clélia; Terra, Walter R

    2017-02-01

    Hemipteran ancestors probably lost their digestive serine peptidases on adapting to a plant sap diet. On returning to protein ingestion, these insects start using cathepsin (lysosomal) peptidases as digestive enzymes, from which the less known is cathepsin D. Nine of the ten cathepsin D transcribing genes found in Dysdercus peruvianus midgut are expressed exclusively in this tissue and only DpCatD10 is also expressed in other tissues. The main action of cathepsins D is in the first (V1) (from three, V1-3) midgut regions, where 40% of the total proteolytic activity was assigned to aspartic peptidases with an optimum pH of 3.5. The most expressed cathepsins D were identified in the midgut luminal contents by proteomics. The data indicate that D. peruvianus have kept a lysosomal gene expressed in all tissues and evolved another set of genes with a digestive function restricted to midgut. Digestive cathepsins D apparently complement the action of digestive cathepsin L and they are arguably responsible for the hydrolysis of cysteine peptidase inhibitors known to be present in the cotton seeds eaten by the insect, before they meet cathepsin L.

  12. A regulatory network controls nephrocan expression and midgut patterning

    PubMed Central

    Hou, Juan; Wei, Wei; Saund, Ranajeet S.; Xiang, Ping; Cunningham, Thomas J.; Yi, Yuyin; Alder, Olivia; Lu, Daphne Y. D.; Savory, Joanne G. A.; Krentz, Nicole A. J.; Montpetit, Rachel; Cullum, Rebecca; Hofs, Nicole; Lohnes, David; Humphries, R. Keith; Yamanaka, Yojiro; Duester, Gregg; Saijoh, Yukio; Hoodless, Pamela A.

    2014-01-01

    Although many regulatory networks involved in defining definitive endoderm have been identified, the mechanisms through which these networks interact to pattern the endoderm are less well understood. To explore the mechanisms involved in midgut patterning, we dissected the transcriptional regulatory elements of nephrocan (Nepn), the earliest known midgut specific gene in mice. We observed that Nepn expression is dramatically reduced in Sox17−/− and Raldh2−/− embryos compared with wild-type embryos. We further show that Nepn is directly regulated by Sox17 and the retinoic acid (RA) receptor via two enhancer elements located upstream of the gene. Moreover, Nepn expression is modulated by Activin signaling, with high levels inhibiting and low levels enhancing RA-dependent expression. In Foxh1−/− embryos in which Nodal signaling is reduced, the Nepn expression domain is expanded into the anterior gut region, confirming that Nodal signaling can modulate its expression in vivo. Together, Sox17 is required for Nepn expression in the definitive endoderm, while RA signaling restricts expression to the midgut region. A balance of Nodal/Activin signaling regulates the anterior boundary of the midgut expression domain. PMID:25209250

  13. Learning to Write a Research Article: Ph.D. Students' Transitions toward Disciplinary Writing Regulation

    ERIC Educational Resources Information Center

    Castello, Montserrat; Inesta, Anna; Corcelles, Mariona

    2013-01-01

    This paper presents a study designed from a socially situated and activity theory perspective aimed at gaining a deeper understanding of how Ph.D. students regulate their academic writing activity. Writing regulation is a complex activity of a highly situated and social nature, involving cyclical thought-action-emotion dynamics and the…

  14. Molecular Basis of pH and Ca2+ Regulation of Aquaporin Water Permeability

    PubMed Central

    Németh-Cahalan, Karin L.; Kalman, Katalin; Hall, James E.

    2004-01-01

    Aquaporins facilitate the diffusion of water across cell membranes. We previously showed that acid pH or low Ca2+ increase the water permeability of bovine AQP0 expressed in Xenopus oocytes. We now show that external histidines in loops A and C mediate the pH dependence. Furthermore, the position of histidines in different members of the aquaporin family can “tune” the pH sensitivity toward alkaline or acid pH ranges. In bovine AQP0, replacement of His40 in loop A by Cys, while keeping His122 in loop C, shifted the pH sensitivity from acid to alkaline. In the killifish AQP0 homologue, MIPfun, with His at position 39 in loop A, alkaline rather than acid pH increased water permeability. Moving His39 to His40 in MIPfun, to mimic bovine AQP0 loop A, shifted the pH sensitivity back to the acid range. pH regulation was also found in two other members of the aquaporin family. Alkaline pH increased the water permeability of AQP4 that contains His at position 129 in loop C. Acid and alkaline pH sensitivity was induced in AQP1 by adding histidines 48 (in loop A) and 130 (in loop C). We conclude that external histidines in loops A and C that span the outer vestibule contribute to pH sensitivity. In addition, we show that when AQP0 (bovine or killifish) and a crippled calmodulin mutant were coexpressed, Ca2+ sensitivity was lost but pH sensitivity was maintained. These results demonstrate that Ca2+ and pH modulation are separable and arise from processes on opposite sides of the membrane. PMID:15078916

  15. pCO(2) and pH regulation of cerebral blood flow.

    PubMed

    Yoon, Seonghun; Zuccarello, Mario; Rapoport, Robert M

    2012-01-01

    CO(2) serves as one of the fundamental regulators of cerebral blood flow (CBF). It is widely considered that this regulation occurs through pCO(2)-driven changes in pH of the cerebral spinal fluid (CSF), with elevated and lowered pH causing direct relaxation and contraction of the smooth muscle, respectively. However, some findings also suggest that pCO(2) acts independently of and/or in conjunction with altered pH. This action may be due to a direct effect of CSF pCO(2) on the smooth muscle as well as on the endothelium, nerves, and astrocytes. Findings may also point to an action of arterial pCO(2) on the endothelium to regulate smooth muscle contractility. Thus, the effects of pH and pCO(2) may be influenced by the absence/presence of different cell types in the various experimental preparations. Results may also be influenced by experimental parameters including myogenic tone as well as solutions containing significantly altered HCO(3) (-) concentrations, i.e., solutions routinely employed to differentiate the effects of pH from pCO(2). In sum, it appears that pCO(2), independently and in conjunction with pH, may regulate CBF.

  16. An aposymbiotic primary coral polyp counteracts acidification by active pH regulation

    NASA Astrophysics Data System (ADS)

    Ohno, Yoshikazu; Iguchi, Akira; Shinzato, Chuya; Inoue, Mayuri; Suzuki, Atsushi; Sakai, Kazuhiko; Nakamura, Takashi

    2017-01-01

    Corals build their skeletons using extracellular calcifying fluid located in the tissue–skeleton interface. However, the mechanism by which corals control the transport of calcium and other ions from seawater and the mechanism of constant alkalization of calcifying fluid are largely unknown. To address these questions, we performed direct pH imaging at calcification sites (subcalicoblastic medium, SCM) to visualize active pH upregulation in live aposymbiotic primary coral polyps treated with HCl-acidified seawater. Active alkalization was observed in all individuals using vital staining method while the movement of HPTS and Alexa Fluor to SCM suggests that certain ions such as H+ could diffuse via a paracellular pathway to SCM. Among them, we discovered acid-induced oscillations in the pH of SCM (pHSCM), observed in 24% of polyps examined. In addition, we discovered acid-induced pH up-regulation waves in 21% of polyps examined, which propagated among SCMs after exposure to acidified seawater. Our results showed that corals can regulate pHSCM more dynamically than was previously believed. These observations will have important implications for determining how corals regulate pHSCM during calcification. We propose that corals can sense ambient seawater pH via their innate pH-sensitive systems and regulate pHSCM using several unknown pH-regulating ion transporters that coordinate with multicellular signaling occurring in coral tissue.

  17. An aposymbiotic primary coral polyp counteracts acidification by active pH regulation.

    PubMed

    Ohno, Yoshikazu; Iguchi, Akira; Shinzato, Chuya; Inoue, Mayuri; Suzuki, Atsushi; Sakai, Kazuhiko; Nakamura, Takashi

    2017-01-18

    Corals build their skeletons using extracellular calcifying fluid located in the tissue-skeleton interface. However, the mechanism by which corals control the transport of calcium and other ions from seawater and the mechanism of constant alkalization of calcifying fluid are largely unknown. To address these questions, we performed direct pH imaging at calcification sites (subcalicoblastic medium, SCM) to visualize active pH upregulation in live aposymbiotic primary coral polyps treated with HCl-acidified seawater. Active alkalization was observed in all individuals using vital staining method while the movement of HPTS and Alexa Fluor to SCM suggests that certain ions such as H(+) could diffuse via a paracellular pathway to SCM. Among them, we discovered acid-induced oscillations in the pH of SCM (pHSCM), observed in 24% of polyps examined. In addition, we discovered acid-induced pH up-regulation waves in 21% of polyps examined, which propagated among SCMs after exposure to acidified seawater. Our results showed that corals can regulate pHSCM more dynamically than was previously believed. These observations will have important implications for determining how corals regulate pHSCM during calcification. We propose that corals can sense ambient seawater pH via their innate pH-sensitive systems and regulate pHSCM using several unknown pH-regulating ion transporters that coordinate with multicellular signaling occurring in coral tissue.

  18. An aposymbiotic primary coral polyp counteracts acidification by active pH regulation

    PubMed Central

    Ohno, Yoshikazu; Iguchi, Akira; Shinzato, Chuya; Inoue, Mayuri; Suzuki, Atsushi; Sakai, Kazuhiko; Nakamura, Takashi

    2017-01-01

    Corals build their skeletons using extracellular calcifying fluid located in the tissue–skeleton interface. However, the mechanism by which corals control the transport of calcium and other ions from seawater and the mechanism of constant alkalization of calcifying fluid are largely unknown. To address these questions, we performed direct pH imaging at calcification sites (subcalicoblastic medium, SCM) to visualize active pH upregulation in live aposymbiotic primary coral polyps treated with HCl-acidified seawater. Active alkalization was observed in all individuals using vital staining method while the movement of HPTS and Alexa Fluor to SCM suggests that certain ions such as H+ could diffuse via a paracellular pathway to SCM. Among them, we discovered acid-induced oscillations in the pH of SCM (pHSCM), observed in 24% of polyps examined. In addition, we discovered acid-induced pH up-regulation waves in 21% of polyps examined, which propagated among SCMs after exposure to acidified seawater. Our results showed that corals can regulate pHSCM more dynamically than was previously believed. These observations will have important implications for determining how corals regulate pHSCM during calcification. We propose that corals can sense ambient seawater pH via their innate pH-sensitive systems and regulate pHSCM using several unknown pH-regulating ion transporters that coordinate with multicellular signaling occurring in coral tissue. PMID:28098180

  19. pH sensing via bicarbonate-regulated “soluble” adenylyl cyclase (sAC)

    PubMed Central

    Rahman, Nawreen; Buck, Jochen; Levin, Lonny R.

    2013-01-01

    Soluble adenylyl cyclase (sAC) is a source of the second messenger cyclic adenosine 3′, 5′ monophosphate (cAMP). sAC is directly regulated by bicarbonate (HCO−3) ions. In living cells, HCO−3 ions are in nearly instantaneous equilibrium with carbon dioxide (CO2) and pH due to the ubiquitous presence of carbonic anhydrases. Numerous biological processes are regulated by CO2, HCO−3, and/or pH, and in a number of these, sAC has been shown to function as a physiological CO2/HCO3/pH sensor. In this review, we detail the known pH sensing functions of sAC, and we discuss two highly-studied, pH-dependent pathways in which sAC might play a role. PMID:24324443

  20. Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed on different diets.

    PubMed

    Pinto-Tomás, Adrián A; Sittenfeld, Ana; Uribe-Lorío, Lorena; Chavarría, Felipe; Mora, Marielos; Janzen, Daniel H; Goodman, Robert M; Simon, Holly M

    2011-10-01

    As primary consumers of foliage, caterpillars play essential roles in shaping the trophic structure of tropical forests. The caterpillar midgut is specialized in plant tissue processing; its pH is exceptionally alkaline and contains high concentrations of toxic compounds derived from the ingested plant material (secondary compounds or allelochemicals) and from the insect itself. The midgut, therefore, represents an extreme environment for microbial life. Isolates from different bacterial taxa have been recovered from caterpillar midguts, but little is known about the impact of these microorganisms on caterpillar biology. Our long-term goals are to identify midgut symbionts and to investigate their functions. As a first step, different diet formulations were evaluated for rearing two species of tropical saturniid caterpillars. Using the polymerase chain reaction (PCR) with primers hybridizing broadly to sequences from the bacterial domain, 16S rRNA gene libraries were constructed with midgut DNA extracted from caterpillars reared on different diets. Amplified rDNA restriction analysis indicated that bacterial sequences recovered from the midguts of caterpillars fed on foliage were more diverse than those from caterpillars fed on artificial diet. Sequences related to Methylobacterium sp., Bradyrhizobium sp., and Propionibacterium sp. were detected in all caterpillar libraries regardless of diet, but were not detected in a library constructed from the diet itself. Furthermore, libraries constructed with DNA recovered from surface-sterilized eggs indicated potential for vertical transmission of midgut symbionts. Taken together, these results suggest that microorganisms associated with the tropical caterpillar midgut may engage in symbiotic interactions with these ecologically important insects.

  1. Intestinal stem cells in the adult Drosophila midgut

    SciTech Connect

    Jiang, Huaqi; Edgar, Bruce A.

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  2. Interfering with pH regulation in tumours as a therapeutic strategy.

    PubMed

    Neri, Dario; Supuran, Claudiu T

    2011-09-16

    The high metabolic rate of tumours often leads to acidosis and hypoxia in poorly perfused regions. Tumour cells have thus evolved the ability to function in a more acidic environment than normal cells. Key pH regulators in tumour cells include: isoforms 2, 9 and 12 of carbonic anhydrase, isoforms of anion exchangers, Na+/HCO3- co-transporters, Na+/H+ exchangers, monocarboxylate transporters and the vacuolar ATPase. Both small molecules and antibodies targeting these pH regulators are currently at various stages of clinical development. These antitumour mechanisms are not exploited by the classical cancer drugs and therefore represent a new anticancer drug discovery strategy.

  3. Targeting pH regulating proteins for cancer therapy-Progress and limitations.

    PubMed

    Parks, Scott K; Pouysségur, Jacques

    2017-01-27

    Tumour acidity induced by metabolic alterations and incomplete vascularisation sets cancer cells apart from normal cellular physiology. This distinguishing tumour characteristic has been an area of intense study, as cellular pH (pHi) disturbances disrupt protein function and therefore multiple cellular processes. Tumour cells effectively utilise pHi regulating machinery present in normal cells with enhancements provided by additional oncogenic or hypoxia induced protein modifications. This overall improvement of pH regulation enables maintenance of an alkaline pHi in the continued presence of external acidification (pHe). Considerable experimentation has revealed targets that successfully disrupt tumour pHi regulation in efforts to develop novel means to weaken or kill tumour cells. However, redundancy in these pH-regulating proteins, which include Na(+)/H(+) exchangers (NHEs), carbonic anhydrases (CAs), Na(+)/HCO3(-) co-transporters (NBCs) and monocarboxylate transporters (MCTs) has prevented effective disruption of tumour pHi when individual protein targeting is performed. Here we synthesise recent advances in understanding both normoxic and hypoxic pH regulating mechanisms in tumour cells with an ultimate focus on the disruption of tumour growth, survival and metastasis. Interactions between tumour acidity and other cell types are also proving to be important in understanding therapeutic applications such as immune therapy. Promising therapeutic developments regarding pH manipulation along with current limitations are highlighted to provide a framework for future research directives.

  4. Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut.

    PubMed

    Elpidina, E N; Vinokurov, K S; Gromenko, V A; Rudenskaya, Y A; Dunaevsky, Y E; Zhuzhikov, D P

    2001-12-01

    Compartmentalization of proteinases, amylases, and pH in the midgut of Nauphoeta cinerea Oliv. (Blattoptera:Blaberidae) was studied in order to understand the organization of protein and starch digestion. Total proteolytic activity measured with azocasein was maximal at pH 11.5 both in anterior (AM) and posterior (PM) halves of the midgut, but the bulk of activity (67%) was found in PM. Total AM and PM preparations were fractionated on a Sephadex G-50 column and further analysed by means of activity electrophoresis and specific inhibitors and activators. The major activity in PM was classified as an unusual SH-dependent proteinase with M(r) 24,000 and pH optimum with synthetic substrate BApNA at 10.0. The enzyme was 43-fold activated in the presence of 1 mM DTT, insensitive to synthetic inhibitors of serine (PMSF, TLCK, TPCK) and cysteine (IAA, E-64) proteinases, strongly inhibited by STI, and displayed four active bands on zymograms. In PM, activities of trypsin-like, chymotrypsin-like, subtilisin-like, and cysteine proteinases were observed. Aspartic and metalloproteinases were not detected. In AM, activity of unusual SH-dependent proteinase also dominated and activity of chymotrypsin-like proteinase was observed, but their levels were much lower than in PM. Distribution of amylase activity, exhibiting an optimum at pH 6.0, was quite the opposite. The major part of it (67%) was located in AM. Treatment of amylase preparation with proteinases from AM and PM reduced amylase activity twofold. pH of the midgut contents was 6.0-7.2 in AM, 6.4-7.6 in the first and 8.8-9.3 in the second halves of PM. Thus, pH in AM is in good agreement with the optimal pH of amylase, located in this compartment, but the activity of proteinases, including the ability to degrade amylase, in such an environment is low. Active proteolysis takes place in the second half of PM, where pH of the gut is close to the optimal pH of proteinases.

  5. Effects of local pH on the formation and regulation of cristae morphologies

    NASA Astrophysics Data System (ADS)

    Song, Dong Hoon; Park, Jonghyun; Philbert, Martin A.; Sastry, Ann Marie; Lu, Wei

    2014-08-01

    Cristae, folded subcompartments of the inner mitochondrial membrane (IMM), have complex and dynamic morphologies. Since cristae are the major site of adenosine triphosphate synthesis, morphological changes of cristae have been studied in relation to functional states of mitochondria. In this sense, investigating the functional and structural significance of cristae may be critical for understanding progressive mitochondrial dysfunction. However, the detailed mechanisms of the formation and regulation of these cristae structures have not been fully elucidated. Among the hypotheses concerning the regulation of cristae morphologies, we exclusively investigate the effects of the local pH gradient on the cristae morphologies by using a numerical model. An area-difference induced curvature of the membrane is modeled as a function of local pH. This curvature is then applied to the finite element model of a closed lipid bilayer in order to find the energetically favorable membrane configuration. From this study, we substantiate the hypothesis that a tubular crista structure can be formed and regulated by the local pH gradient. Through the simulations with various initial conditions, we further demonstrate that the diameter of a crista is mainly determined by the local pH gradient, and the energetically favorable direction of crista growth is perpendicular to the longitudinal axis of a mitochondrion. Finally, the simulation results at the mitochondrial scale suggest that the cristae membrane may have a lower local pH value and/or a higher cardiolipin composition than the other parts of the IMM.

  6. Preferential intracellular pH regulation represents a general pattern of pH homeostasis during acid-base disturbances in the armoured catfish, Pterygoplichthys pardalis.

    PubMed

    Harter, T S; Shartau, R B; Baker, D W; Jackson, D C; Val, A L; Brauner, C J

    2014-08-01

    Preferential intracellular pH (pHi) regulation, where pHi is tightly regulated in the face of a blood acidosis, has been observed in a few species of fish, but only during elevated blood PCO2. To determine whether preferential pHi regulation may represent a general pattern for acid-base regulation during other pH disturbances we challenged the armoured catfish, Pterygoplichthys pardalis, with anoxia and exhaustive exercise, to induce a metabolic acidosis, and bicarbonate injections to induce a metabolic alkalosis. Fish were terminally sampled 2-3 h following the respective treatments and extracellular blood pH, pHi of red blood cells (RBC), brain, heart, liver and white muscle, and plasma lactate and total CO2 were measured. All treatments resulted in significant changes in extracellular pH and RBC pHi that likely cover a large portion of the pH tolerance limits of this species (pH 7.15-7.86). In all tissues other than RBC, pHi remained tightly regulated and did not differ significantly from control values, with the exception of a decrease in white muscle pHi after anoxia and an increase in liver pHi following a metabolic alkalosis. Thus preferential pHi regulation appears to be a general pattern for acid-base homeostasis in the armoured catfish and may be a common response in Amazonian fishes.

  7. Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridis.

    PubMed

    Laurent, Julien; Venn, Alexander; Tambutté, Éric; Ganot, Philippe; Allemand, Denis; Tambutté, Sylvie

    2014-02-01

    The regulation of intracellular pH (pHi) is a fundamental aspect of cell physiology that has received little attention in studies of the phylum Cnidaria, which includes ecologically important sea anemones and reef-building corals. Like all organisms, cnidarians must maintain pH homeostasis to counterbalance reductions in pHi, which can arise because of changes in either intrinsic or extrinsic parameters. Corals and sea anemones face natural daily changes in internal fluids, where the extracellular pH can range from 8.9 during the day to 7.4 at night. Furthermore, cnidarians are likely to experience future CO₂-driven declines in seawater pH, a process known as ocean acidification. Here, we carried out the first mechanistic investigation to determine how cnidarian pHi regulation responds to decreases in extracellular and intracellular pH. Using the anemone Anemonia viridis, we employed confocal live cell imaging and a pH-sensitive dye to track the dynamics of pHi after intracellular acidosis induced by acute exposure to decreases in seawater pH and NH₄Cl prepulses. The investigation was conducted on cells that contained intracellular symbiotic algae (Symbiodinium sp.) and on symbiont-free endoderm cells. Experiments using inhibitors and Na⁺-free seawater indicate a potential role of Na⁺/H⁺ plasma membrane exchangers (NHEs) in mediating pHi recovery following intracellular acidosis in both cell types. We also measured the buffering capacity of cells, and obtained values between 20.8 and 43.8 mM per pH unit, which are comparable to those in other invertebrates. Our findings provide the first steps towards a better understanding of acid-base regulation in these basal metazoans, for which information on cell physiology is extremely limited.

  8. Molecular Components of the Neurospora crassa pH Signaling Pathway and Their Regulation by pH and the PAC-3 Transcription Factor

    PubMed Central

    Virgilio, Stela; Cupertino, Fernanda Barbosa; Bernardes, Natália Elisa; Freitas, Fernanda Zanolli; Takeda, Agnes Alessandra Sekijima; Fontes, Marcos Roberto de Mattos; Bertolini, Maria Célia

    2016-01-01

    Environmental pH induces a stress response triggering a signaling pathway whose components have been identified and characterized in several fungi. Neurospora crassa shares all six components of the Aspergillus nidulans pH signaling pathway, and we investigate here their regulation during an alkaline pH stress response. We show that the N. crassa pal mutant strains, with the exception of Δpal-9, which is the A. nidulans palI homolog, exhibit low conidiation and are unable to grow at alkaline pH. Moreover, they accumulate the pigment melanin, most likely via regulation of the tyrosinase gene by the pH signaling components. The PAC-3 transcription factor binds to the tyrosinase promoter and negatively regulates its gene expression. PAC-3 also binds to all pal gene promoters, regulating their expression at normal growth pH and/or alkaline pH, which indicates a feedback regulation of PAC-3 in the pal gene expression. In addition, PAC-3 binds to the pac-3 promoter only at alkaline pH, most likely influencing the pac-3 expression at this pH suggesting that the activation of PAC-3 in N. crassa results from proteolytic processing and gene expression regulation by the pH signaling components. In N. crassa, PAC-3 is proteolytically processed in a single cleavage step predominately at alkaline pH; however, low levels of the processed protein can be observed at normal growth pH. We also demonstrate that PAC-3 preferentially localizes in the nucleus at alkaline pH stress and that the translocation may require the N. crassa importin-α since the PAC-3 nuclear localization signal (NLS) has a strong in vitro affinity with importin-α. The data presented here show that the pH signaling pathway in N. crassa shares all the components with the A. nidulans and S. cerevisiae pathways; however, it exhibits some properties not previously described in either organism. PMID:27557053

  9. Molecular Components of the Neurospora crassa pH Signaling Pathway and Their Regulation by pH and the PAC-3 Transcription Factor.

    PubMed

    Virgilio, Stela; Cupertino, Fernanda Barbosa; Bernardes, Natália Elisa; Freitas, Fernanda Zanolli; Takeda, Agnes Alessandra Sekijima; Fontes, Marcos Roberto de Mattos; Bertolini, Maria Célia

    2016-01-01

    Environmental pH induces a stress response triggering a signaling pathway whose components have been identified and characterized in several fungi. Neurospora crassa shares all six components of the Aspergillus nidulans pH signaling pathway, and we investigate here their regulation during an alkaline pH stress response. We show that the N. crassa pal mutant strains, with the exception of Δpal-9, which is the A. nidulans palI homolog, exhibit low conidiation and are unable to grow at alkaline pH. Moreover, they accumulate the pigment melanin, most likely via regulation of the tyrosinase gene by the pH signaling components. The PAC-3 transcription factor binds to the tyrosinase promoter and negatively regulates its gene expression. PAC-3 also binds to all pal gene promoters, regulating their expression at normal growth pH and/or alkaline pH, which indicates a feedback regulation of PAC-3 in the pal gene expression. In addition, PAC-3 binds to the pac-3 promoter only at alkaline pH, most likely influencing the pac-3 expression at this pH suggesting that the activation of PAC-3 in N. crassa results from proteolytic processing and gene expression regulation by the pH signaling components. In N. crassa, PAC-3 is proteolytically processed in a single cleavage step predominately at alkaline pH; however, low levels of the processed protein can be observed at normal growth pH. We also demonstrate that PAC-3 preferentially localizes in the nucleus at alkaline pH stress and that the translocation may require the N. crassa importin-α since the PAC-3 nuclear localization signal (NLS) has a strong in vitro affinity with importin-α. The data presented here show that the pH signaling pathway in N. crassa shares all the components with the A. nidulans and S. cerevisiae pathways; however, it exhibits some properties not previously described in either organism.

  10. Anopheles Midgut Epithelium Evades Human Complement Activity by Capturing Factor H from the Blood Meal

    PubMed Central

    Khattab, Ayman; Barroso, Marta; Miettinen, Tiera; Meri, Seppo

    2015-01-01

    Hematophagous vectors strictly require ingesting blood from their hosts to complete their life cycles. Exposure of the alimentary canal of these vectors to the host immune effectors necessitates efficient counteractive measures by hematophagous vectors. The Anopheles mosquito transmitting the malaria parasite is an example of hematophagous vectors that within seconds can ingest human blood double its weight. The innate immune defense mechanisms, like the complement system, in the human blood should thereby immediately react against foreign cells in the mosquito midgut. A prerequisite for complement activation is that the target cells lack complement regulators on their surfaces. In this work, we analyzed whether human complement is active in the mosquito midgut, and how the mosquito midgut cells protect themselves against complement attack. We found that complement remained active for a considerable time and was able to kill microbes within the mosquito midgut. However, the Anopheles mosquito midgut cells were not injured. These cells were found to protect themselves by capturing factor H, the main soluble inhibitor of the alternative complement pathway. Factor H inhibited complement on the midgut cells by promoting inactivation of C3b to iC3b and preventing the activity of the alternative pathway amplification C3 convertase enzyme. An interference of the FH regulatory activity by monoclonal antibodies, carried to the midgut via blood, resulted in increased mosquito mortality and reduced fecundity. By using a ligand blotting assay, a putative mosquito midgut FH receptor could be detected. Thereby, we have identified a novel mechanism whereby mosquitoes can tolerate human blood. PMID:25679788

  11. Regulating Emotions and Aiming for a Ph.D.: Excerpts from "Anthropology Matters"

    ERIC Educational Resources Information Center

    Hovland, Ingie

    2012-01-01

    In this article I will present a range of experiences of graduate socialisation that have been discussed in past articles in the journal "Anthropology Matters". These are the experiences of social anthropology Ph.D. students in the United Kingdom. The overarching theme for the article is "regulating emotions", and the excerpts…

  12. Regulating Glucose and pH, and Monitoring Oxygen in a Bioreactor

    NASA Technical Reports Server (NTRS)

    Anderson, Melody M.; Pellis, Neat R.; Jeevarajan, Antony S.; Taylor, Thomas D.; Xu, Yuanhang; Gao, Frank

    2006-01-01

    A system that automatically regulates the concentration of glucose or pH in a liquid culture medium that is circulated through a rotating-wall perfused bioreactor is described. Another system monitors the concentration of oxygen in the culture medium.

  13. Oxygen and pH regulation of protein synthesis in mitochondria from Artemia franciscana embryos.

    PubMed Central

    Kwast, K E; Hand, S C

    1996-01-01

    To identify factors responsible for the down-regulation of mitochondrial biosynthetic processes during anoxia in encysted Artemia franciscana embryos, the effects of oxygen limitation and pH on protein synthesis were investigated in isolated mitochondria. At the optimal pH of 7.5, exposure of mitochondria to anoxia decreases the protein synthesis rate by 79%. Rates were suppressed by a further 10% at pH 6.8, the intracellular pH (pHi) measured under anoxia in vivo. Matrix pH, measured under identical conditions, was 8.43 +/- 0.01 at an extra-mitochondrial pH of 7.9 (mean +/- S.E.M., n = 3), 8.05 +/- 0.01 at pH 7.5, and 7.10 +/- 0.01 at pH 6.8. The matrix pH did not vary (P > or = 0.20) as a function of oxygen availability during the 1 h assays. Intramitochondrial purine nucleotides varied little as a function of pH. In contrast, after 1 h of protein synthesis under anoxia, ATP levels decreased by up to 40%, whereas AMP, ADP and GDP concentrations increased, and GTP and GMP concentrations remained relatively constant. The addition of 1 mM ATP at the onset of anoxia maintained the ATP/ADP ratio at the aerobic value, but did not stabilized the GTP/GDP ratio or rescue rates of protein synthesis. Thus, at present, we cannot eliminate the possibility that the decrease in the GTP/GDP ratio during anoxia may contribute to the suppression of protein synthesis. The effect of anoxia was reversible; the rate of protein synthesis upon reoxygenation after a 30 min bout of anoxia was comparable (P = 0.14) with the pre-anoxic rate (193 +/- 17 and 174 +/- 6 pmol of leucine per mg of protein respectively, mean +/- S.E.M., n = 3). The array of mitochondrial translation products did not differ qualitatively as a function of either oxygen availability or pH. Finally, similar pH profiles for protein synthesis were obtained with either [3H]leucine or [3H]histidine (known to use different transporters). Consequently, it is improbable that the pH-sensitivity of protein synthesis can be

  14. Propeptides of eukaryotic proteases encode histidines to exploit organelle pH for regulation.

    PubMed

    Elferich, Johannes; Williamson, Danielle M; Krishnamoorthy, Bala; Shinde, Ujwal

    2013-08-01

    Eukaryotic cells maintain strict control over protein secretion, in part by using the pH gradient maintained within their secretory pathway. How eukaryotic proteins evolved from prokaryotic orthologs to exploit the pH gradient for biological functions remains a fundamental question in cell biology. Our laboratory previously demonstrated that protein domains located within precursor proteins, propeptides, encode histidine-driven pH sensors to regulate organelle-specific activation of the eukaryotic proteases furin and proprotein convertase-1/3. Similar findings have been reported in other unrelated protease families. By analyzing >10,000 unique proteases within evolutionarily unrelated families, we show that eukaryotic propeptides are enriched in histidines compared with prokaryotic orthologs. On this basis, we hypothesize that eukaryotic proteins evolved to enrich histidines within their propeptides to exploit the tightly controlled pH gradient of the secretory pathway, thereby regulating activation within specific organelles. Enrichment of histidines in propeptides may therefore be used to predict the presence of pH sensors in other proteases or even protease substrates.

  15. On enzymatic pH oscillations in CSTR with outlet regulator

    NASA Astrophysics Data System (ADS)

    Ohmori, Takao; Yu, Weifang; Yamamoto, Takuji; Endo, Akira; Nakaiwa, Masaru; Amemiya, Takashi; Yamaguchi, Tomohiko

    2005-05-01

    The possibility of enzymatic pH oscillations is investigated for a CSTR with an outlet regulator. A linear stability analysis shows that no oscillation is possible in a CSTR without the regulator, using a proton-producing pH-dependent enzymatic reaction. However, self-sustained oscillations are found to occur in a CSTR, where the discharge of substrate is regulated at the outlet. The regions of oscillations in the parameter space are determined using a hydrolysis of N-α-benzoyl- L-arginine ethyl ester with papain. It is found that the region is quite large only when the substrate concentration in the outflow is kept at zero.

  16. Anopheles Midgut FREP1 Mediates Plasmodium Invasion*

    PubMed Central

    Zhang, Genwei; Niu, Guodong; Franca, Caio M.; Dong, Yuemei; Wang, Xiaohong; Butler, Noah S.; Dimopoulos, George; Li, Jun

    2015-01-01

    Malaria transmission depends on sexual stage Plasmodium parasites successfully invading Anopheline mosquito midguts following a blood meal. However, the molecular mechanisms of Plasmodium invasion of mosquito midguts have not been fully elucidated. Previously, we showed that genetic polymorphisms in the fibrinogen-related protein 1 (FREP1) gene are significantly associated with Plasmodium falciparum infection in Anopheles gambiae, and FREP1 is important for Plasmodium berghei infection of mosquitoes. Here we identify that the FREP1 protein is secreted from the mosquito midgut epithelium and integrated as tetramers into the peritrophic matrix, a chitinous matrix formed inside the midgut lumen after a blood meal feeding. Moreover, we show that the FREP1 can directly bind Plasmodia sexual stage gametocytes and ookinetes. Notably, ablating FREP1 expression or targeting FREP1 with antibodies significantly decreases P. falciparum infection in mosquito midguts. Our data support that the mosquito-expressed FREP1 mediates mosquito midgut invasion by multiple species of Plasmodium parasites via anchoring ookinetes to the peritrophic matrix and enabling parasites to penetrate the peritrophic matrix and the epithelium. Thus, targeting FREP1 can limit malaria transmission. PMID:25991725

  17. Membrane-Associated Transporter Protein (MATP) Regulates Melanosomal pH and Influences Tyrosinase Activity

    PubMed Central

    Bin, Bum-Ho; Bhin, Jinhyuk; Yang, Seung Ha; Shin, Misun; Nam, Yeon-Ju; Choi, Dong-Hwa; Shin, Dong Wook; Lee, Ai-Young; Hwang, Daehee; Cho, Eun-Gyung; Lee, Tae Ryong

    2015-01-01

    The SLC45A2 gene encodes a Membrane-Associated Transporter Protein (MATP). Mutations of this gene cause oculocutaneous albinism type 4 (OCA4). However, the molecular mechanism of its action in melanogenesis has not been elucidated. Here, we discuss the role of MATP in melanin production. The SLC45A2 gene is highly enriched in human melanocytes and melanoma cell lines, and its protein, MATP, is located in melanosomes. The knockdown of MATP using siRNAs reduced melanin content and tyrosinase activity without any morphological change in melanosomes or the expression of melanogenesis-related proteins. Interestingly, the knockdown of MATP significantly lowered the melanosomal pH, as verified through DAMP analysis, suggesting that MATP regulates melanosomal pH and therefore affects tyrosinase activity. Finally, we found that the reduction of tyrosinase activity associated with the knockdown of MATP was readily recovered by copper treatment in the in vitro L-DOPA oxidase activity assay of tyrosinase. Considering that copper is an important element for tyrosinase activity and that its binding to tyrosinase depends on melanosomal pH, MATP may play an important role in regulating tyrosinase activity via controlling melanosomal pH. PMID:26057890

  18. Histochemical analysis of the goblet cell matrix in the larval midgut of Manduca sexta

    SciTech Connect

    Schultz, T.W.; Lozano, G.; Cajina-Quezada, M.

    1981-01-01

    Experimental analyses were made to histochemically determine the composition of the goblet cell matrix material in the larval midgut of the tobacco hornworm, Manduca sexta. Techniques employed following fixation in Carnoy fluid were the periodic acid-Schiff reaction and the alcian blue stain at pH 1.0 and pH 2.5 and following methylation and subsequent saponification. The cumulative evidence suggests that the plug material is an acid mucosubstance.

  19. Appendiceal mucocoele with midgut malrotation

    PubMed Central

    Hassall, J; Williams, GL; McKain, ES

    2016-01-01

    Introduction Malrotation of the midgut and appendiceal mucocoele are both extremely rare pathological conditions in adults. To our knowledge, there are only two reported cases in the English literature with a combination of both conditions. Case History A 65-year-old man presented with a 10-day history of upper abdominal pain associated with abdominal bloating and weight loss. He was otherwise fit and healthy with no significant past medical history. On examination, his abdomen was soft with tenderness and palpable fullness over the left upper quadrant. The initial blood test, chest x-ray and abdominal x-ray demonstrated no significant abnormality. Computed tomography showed a 17cm x 8cm x 6cm elongated cystic mass with possible malrotation of the intestines. Histopathology showed a low grade mucinous tumour of the appendix. At 12 months following surgery, there was no evidence of recurrence or postoperative complications and the patient was discharged from the care of the colorectal team. Conclusions We report a patient with a combination of two rare conditions. This case illustrates how a combination of pathologies can present a challenge to the unwary general surgeon. PMID:27269433

  20. Regulation of gas exchange and haemolymph pH in the cockroach Nauphoeta cinerea.

    PubMed

    Matthews, Philip G D; White, Craig R

    2011-09-15

    Ventilatory control of internal CO(2) plays an important role in regulating extracellular acid-base balance in terrestrial animals. While this phenomenon is well understood among vertebrates, the role that respiration plays in the acid-base balance of insects is in need of much further study. To measure changes in insect haemolymph pH, we implanted micro pH optodes into the haemocoel of cockroaches (Nauphoeta cinerea). They were then exposed to normoxic, hypoxic, hyperoxic and hypercapnic atmospheres while their haemolymph pH, VCO(2) and abdominal ventilation frequency were measured simultaneously. Intratracheal O(2) levels were also measured in separate experiments. It was found that cockroaches breathing continuously control their ventilation to defend a haemolymph pH of 7.3, except under conditions where hypoxia (<10% O(2)) induces hyperventilation, or where ambient hypercapnia is in excess of haemolymph (>1% CO(2)). In contrast, intratracheal O(2) levels fluctuated widely, but on average remained above 15% in normoxic (21% O(2)) atmospheres. Decapitation caused the cockroaches to display discontinuous gas exchange cycles (DGCs). The alternating periods of ventilation and apnoea during DGCs caused haemolymph pH to fluctuate by 0.11 units. Exposure to hypoxia caused haemolymph pH to increase and initiated brief bouts of spiracular opening prior to the active ventilation phase. The spontaneous occurrence of DGCs in decapitated cockroaches indicates that central pattern generators in the thoracic and abdominal ganglia generate the periodic gas exchange pattern in the absence of control from the cephalic ganglion. This pattern continues to maintain gas exchange, but with less precision.

  1. Evaluation the anaerobic hydrolysis acidification stage of kitchen waste by pH regulation.

    PubMed

    Wang, Yaya; Zang, Bing; Li, Guoxue; Liu, Yu

    2016-07-01

    This study analyzed the composition and characteristic of kitchen waste (KW) from closed cleaning station of Chaoyang District, Beijing. It was featured by high vegetables and peels contents. This study investigated effect of pH regulation and uncontrolled pH (CK) on the lab-scale anaerobic hydrolysis acidification stage of KW. The optimal adjusting mode by NaOH (including dosage and frequency) was evaluated according to indexes of pH, VFAs, NH4(+)-N, TS, VS, TS/VS, TS and VS removal rate. The treatment 4 as first two days adjusting per 16h and then one time per day at pH 7 was chosen as the optimal mode with high VFAs content(47.31g/L), TS and VS removal rate (42.95% and 54.01%, respectively), low adjusting frequency, fewer dosage and practical operability. Thus, adjusting mode of treatment 4 could be considered using in anaerobic hydrolysis acidification stage on engineering.

  2. Role of metal oxide nanostructures in extracellular pH regulations

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, Aleksandr S.

    2016-08-01

    A research area of great promise is the cancer treatment by regulating microenvironmental parameters of tumor cells using MgO and AlOOH. Magnesium hydroxide and aluminum oxyhydroxide (boehmite) are in the form of nanoplates and nanosheets. The morphology, structure, phases and electrokinetic properties of synthesized samples are analyzed using complex physical and chemical methods. We study how the pH of the culture medium—different when in contact with synthesized nanoplates—affects the viability of tumor cells. It is shown that MgO is more efficient in decreasing the tumor cell viability than AlOOH. In the case of magnesium hydroxide, the pH of the culture medium increases to 10.1; in the case of boehmite, to 7.7.

  3. Prey digestion in the midgut of the predatory bug Podisus nigrispinus (Hemiptera: Pentatomidae).

    PubMed

    Fialho, Maria C Q; Moreira, Nathalia R; Zanuncio, José C; Ribeiro, Alberto F; Terra, Walter R; Serrão, José E

    2012-06-01

    Pre-oral digestion is described as the liquefaction of the solid tissues of the prey by secretions of the predator. It is uncertain if pre-oral digestion means pre-oral dispersion of food or true digestion in the sense of the stepwise bond breaking of food polymers to release monomers to be absorbed. Collagenase is the only salivary proteinase, which activity is significant (10%) in relation to Podisus nigrispinus midgut activities. This suggests that pre-oral digestion in P. nigrispinus consists in prey tissue dispersion. This was confirmed by the finding of prey muscles fibers inside P. nigrispinus midguts. Soluble midgut hydrolases from P. nigrispinus were partially purified by ion-exchange chromatography, followed by gel filtration. Two cathepsin L-like proteinases (CAL1 and CAL2) were isolated with the properties: CAL1 (14.7 kDa, pH optimum (pHo) 5.5, km with carbobenzoxy-Phe-Arg-methylcoumarin, Z-FR-MCA, 32 μM); CAL2 (17 kDa, pHo 5.5, km 11 μM Z-FR-MCA). Only a single molecular species was found for the other enzymes with the following properties are: amylase (43 kDa, pHo 5.5, km 0.1% starch), aminopeptidase (125 kDa, pHo 5.5, km 0.11 mM l-Leucine-p-nitroanilide), α-glucosidase (90 kDa, pHo 5.0, km 5mM with p-nitrophenyl α-d-glucoside). CAL molecular masses are probably underestimated due to interaction with the column. Taking into account the distribution of hydrolases along P. nigrispinus midguts, carbohydrate digestion takes place mainly at the anterior midgut, whereas protein digestion occurs mostly in middle and posterior midgut, as previously described in seed- sucker and blood-feeder hemipterans.

  4. Increased centrosome amplification in aged stem cells of the Drosophila midgut

    SciTech Connect

    Park, Joung-Sun; Pyo, Jung-Hoon; Na, Hyun-Jin; Jeon, Ho-Jun; Kim, Young-Shin; Arking, Robert; Yoo, Mi-Ae

    2014-07-25

    Highlights: • Increased centrosome amplification in ISCs of aged Drosophila midguts. • Increased centrosome amplification in ISCs of oxidative stressed Drosophila midguts. • Increased centrosome amplification in ISCs by overexpression of PVR, EGFR, and AKT. • Supernumerary centrosomes can be responsible for abnormal ISC polyploid cells. • Supernumerary centrosomes can be a useful marker for aging stem cells. - Abstract: Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo.

  5. pH and monovalent cations regulate cytosolic free Ca(2+) in E. coli.

    PubMed

    Naseem, Riffat; Holland, I Barry; Jacq, Annick; Wann, Kenneth T; Campbell, Anthony K

    2008-06-01

    The results here show for the first time that pH and monovalent cations can regulate cytosolic free Ca(2+) in E. coli through Ca(2+) influx and efflux, monitored using aequorin. At pH 7.5 the resting cytosolic free Ca(2+) was 0.2-0.5 microM. In the presence of external Ca(2+) (1 mM) at alkaline pH this rose to 4 microM, being reduced to 0.9 microM at acid pH. Removal of external Ca(2+) caused an immediate decrease in cytosolic free Ca(2+) at 50-100 nM s(-1). Efflux rates were the same at pH 5.5, 7.5 and 9.5. Thus, ChaA, a putative Ca(2+)/H(+)exchanger, appeared not to be a major Ca(2+)-efflux pathway. In the absence of added Na(+), but with 1 mM external Ca(2+), cytosolic free Ca(2+) rose to approximately 10 microM. The addition of Na(+)(half maximum 60 mM) largely blocked this increase and immediately stimulated Ca(2+) efflux. However, this effect was not specific, since K(+) also stimulated efflux. In contrast, an increase in osmotic pressure by addition of sucrose did not significantly stimulate Ca(2+) efflux. The results were consistent with H(+) and monovalent cations competing with Ca(2+) for a non-selective ion influx channel. Ca(2+) entry and efflux in chaA and yrbG knockouts were not significantly different from wild type, confirming that neither ChaA nor YrbG appear to play a major role in regulating cytosolic Ca(2+) in Escherichia coli. The number of Ca(2+) ions calculated to move per cell per second ranged from <1 to 100, depending on conditions. Yet a single eukaryote Ca(2+) channel, conductance 100 pS, should conduct >6 million ions per second. This raises fundamental questions about the nature and regulation of Ca(2+) transport in bacteria, and other small living systems such as mitochondria, requiring a new mathematical approach to describe such ion movements. The results have important significance in the adaptation of E. coli to different ionic environments such as the gut, fresh water and in sea water near sewage effluents.

  6. Intestinal obstruction from midgut volvulus after laparoscopic appendectomy.

    PubMed

    Cuadra, S A; Khalife, M E; Char, D J; Wax, M R; Halpern, D

    2002-01-01

    We present the case of a 30-year-old man who developed a small bowel obstruction from an acute midgut volvulus 8 days after undergoing a laparoscopic appendectomy. There was no evidence of congenital malrotation or midgut volvulus on the initial computed tomography (CT) scan or at laparoscopy. Subsequently, a midgut volvulus developed in the absence of congenital malrotation.

  7. TPC2 controls pigmentation by regulating melanosome pH and size

    PubMed Central

    Ambrosio, Andrea L.; Boyle, Judith A.; Aradi, Al E.; Christian, Keith A.; Di Pietro, Santiago M.

    2016-01-01

    Melanin is responsible for pigmentation of skin and hair and is synthesized in a specialized organelle, the melanosome, in melanocytes. A genome-wide association study revealed that the two pore segment channel 2 (TPCN2) gene is strongly linked to pigmentation variations. TPCN2 encodes the two-pore channel 2 (TPC2) protein, a cation channel. Nevertheless, how TPC2 regulates pigmentation remains unknown. Here, we show that TPC2 is expressed in melanocytes and localizes to the melanosome-limiting membrane and, to a lesser extent, to endolysosomal compartments by confocal fluorescence and immunogold electron microscopy. Immunomagnetic isolation of TPC2-containing organelles confirmed its coresidence with melanosomal markers. TPCN2 knockout by means of clustered regularly interspaced short palindromic repeat/CRISPR-associated 9 gene editing elicited a dramatic increase in pigment content in MNT-1 melanocytic cells. This effect was rescued by transient expression of TPC2-GFP. Consistently, siRNA-mediated knockdown of TPC2 also caused a substantial increase in melanin content in both MNT-1 cells and primary human melanocytes. Using a newly developed genetically encoded pH sensor targeted to melanosomes, we determined that the melanosome lumen in TPC2-KO MNT-1 cells and primary melanocytes subjected to TPC2 knockdown is less acidic than in control cells. Fluorescence and electron microscopy analysis revealed that TPC2-KO MNT-1 cells have significantly larger melanosomes than control cells, but the number of organelles is unchanged. TPC2 likely regulates melanosomes pH and size by mediating Ca2+ release from the organelle, which is decreased in TPC2-KO MNT-1 cells, as determined with the Ca2+ sensor tyrosinase-GCaMP6. Thus, our data show that TPC2 regulates pigmentation through two fundamental determinants of melanosome function: pH and size. PMID:27140606

  8. TPC2 controls pigmentation by regulating melanosome pH and size.

    PubMed

    Ambrosio, Andrea L; Boyle, Judith A; Aradi, Al E; Christian, Keith A; Di Pietro, Santiago M

    2016-05-17

    Melanin is responsible for pigmentation of skin and hair and is synthesized in a specialized organelle, the melanosome, in melanocytes. A genome-wide association study revealed that the two pore segment channel 2 (TPCN2) gene is strongly linked to pigmentation variations. TPCN2 encodes the two-pore channel 2 (TPC2) protein, a cation channel. Nevertheless, how TPC2 regulates pigmentation remains unknown. Here, we show that TPC2 is expressed in melanocytes and localizes to the melanosome-limiting membrane and, to a lesser extent, to endolysosomal compartments by confocal fluorescence and immunogold electron microscopy. Immunomagnetic isolation of TPC2-containing organelles confirmed its coresidence with melanosomal markers. TPCN2 knockout by means of clustered regularly interspaced short palindromic repeat/CRISPR-associated 9 gene editing elicited a dramatic increase in pigment content in MNT-1 melanocytic cells. This effect was rescued by transient expression of TPC2-GFP. Consistently, siRNA-mediated knockdown of TPC2 also caused a substantial increase in melanin content in both MNT-1 cells and primary human melanocytes. Using a newly developed genetically encoded pH sensor targeted to melanosomes, we determined that the melanosome lumen in TPC2-KO MNT-1 cells and primary melanocytes subjected to TPC2 knockdown is less acidic than in control cells. Fluorescence and electron microscopy analysis revealed that TPC2-KO MNT-1 cells have significantly larger melanosomes than control cells, but the number of organelles is unchanged. TPC2 likely regulates melanosomes pH and size by mediating Ca(2+) release from the organelle, which is decreased in TPC2-KO MNT-1 cells, as determined with the Ca(2+) sensor tyrosinase-GCaMP6. Thus, our data show that TPC2 regulates pigmentation through two fundamental determinants of melanosome function: pH and size.

  9. Plasticity of Listeriolysin O Pores and its Regulation by pH and Unique Histidine

    PubMed Central

    Podobnik, Marjetka; Marchioretto, Marta; Zanetti, Manuela; Bavdek, Andrej; Kisovec, Matic; Cajnko, Miša Mojca; Lunelli, Lorenzo; Serra, Mauro Dalla; Anderluh, Gregor

    2015-01-01

    Pore formation of cellular membranes is an ancient mechanism of bacterial pathogenesis that allows efficient damaging of target cells. Several mechanisms have been described, however, relatively little is known about the assembly and properties of pores. Listeriolysin O (LLO) is a pH-regulated cholesterol-dependent cytolysin from the intracellular pathogen Listeria monocytogenes, which forms transmembrane β-barrel pores. Here we report that the assembly of LLO pores is rapid and efficient irrespective of pH. While pore diameters at the membrane surface are comparable at either pH 5.5 or 7.4, the distribution of pore conductances is significantly pH-dependent. This is directed by the unique residue H311, which is also important for the conformational stability of the LLO monomer and the rate of pore formation. The functional pores exhibit variations in height profiles and can reconfigure significantly by merging to other full pores or arcs. Our results indicate significant plasticity of large β-barrel pores, controlled by environmental cues like pH. PMID:25854672

  10. Regulation of tumor pH and the role of carbonic anhydrase 9.

    PubMed

    Swietach, Pawel; Vaughan-Jones, Richard D; Harris, Adrian L

    2007-06-01

    The high metabolic rate required for tumor growth often leads to hypoxia in poorly-perfused regions. Hypoxia activates a complex gene expression program, mediated by hypoxia inducible factor 1 (HIF1alpha). One of the consequences of HIF1alpha activation is up-regulation of glycolysis and hence the production of lactic acid. In addition to the lactic acid-output, intracellular titration of acid with bicarbonate and the engagement of the pentose phosphate shunt release CO(2) from cells. Expression of the enzyme carbonic anhydrase 9 on the tumor cell surface catalyses the extracellular trapping of acid by hydrating cell-generated CO(2) into [see text] and H(+). These mechanisms contribute towards an acidic extracellular milieu favoring tumor growth, invasion and development. The lactic acid released by tumor cells is further metabolized by the tumor stroma. Low extracellular pH may adversely affect the intracellular milieu, possibly triggering apoptosis. Therefore, primary and secondary active transporters operate in the tumor cell membrane to protect the cytosol from acidosis. We review mechanisms regulating tumor intracellular and extracellular pH, with a focus on carbonic anhydrase 9. We also review recent evidence that may suggest a role for CA9 in coordinating pH(i) among cells of large, unvascularized cell-clusters.

  11. Voltage dependence and pH regulation of human polycystin-2-mediated cation channel activity.

    PubMed

    Gonzalez-Perrett, Silvia; Batelli, Marisa; Kim, Keetae; Essafi, Makram; Timpanaro, Gustavo; Moltabetti, Nicolas; Reisin, Ignacio L; Arnaout, M Amin; Cantiello, Horacio F

    2002-07-12

    Polycystin-2, the product of the human PKD2 gene, whose mutations cause autosomal dominant polycystic kidney disease, is a large conductance, Ca(2+)-permeable non-selective cation channel. Polycystin-2 is functionally expressed in the apical membrane of the human syncytiotrophoblast, where it may play a role in the control of fetal electrolyte homeostasis. Little is known, however, about the mechanisms that regulate polycystin-2 channel function. In this study, the role of pH in the regulation of polycystin-2 was assessed by ion channel reconstitution of both apical membranes of human syncytiotrophoblast and the purified FLAG-tagged protein from in vitro transcribed/translated material. A kinetic analysis of single channel currents, including dwell time histograms, confirmed two open and two close states for spontaneous channel behavior and a strong voltage dependence of the open probability of the channel (P(o)). A reduction of cis pH (pH(cis)) decreased P(o) and shifted the voltage dependence of channel function but had no effect on the single channel conductance. An increase in pH(cis), in contrast, increased NP(o) (channel number times P(o)). Elimination of the H(+) chemical gradient did not reverse the low pH(cis) inhibition of polycystin-2. Similar findings confirmed the pH effect on the in vitro translated, FLAG-tagged purified polycystin-2. The data indicate the presence of an H(+) ion regulatory site in the channel protein, which is accessible from the cytoplasmic side of the protein. This protonation site controls polycystin-2 cation-selective channel activity.

  12. Structural basis of dual Ca(2+)/pH regulation of the endolysosomal TRPML1 channel.

    PubMed

    Li, Minghui; Zhang, Wei K; Benvin, Nicole M; Zhou, Xiaoyuan; Su, Deyuan; Li, Huan; Wang, Shu; Michailidis, Ioannis E; Tong, Liang; Li, Xueming; Yang, Jian

    2017-01-23

    The activities of organellar ion channels are often regulated by Ca(2+) and H(+), which are present in high concentrations in many organelles. Here we report a structural element critical for dual Ca(2+)/pH regulation of TRPML1, a Ca(2+)-release channel crucial for endolysosomal function. TRPML1 mutations cause mucolipidosis type IV (MLIV), a severe lysosomal storage disorder characterized by neurodegeneration, mental retardation and blindness. We obtained crystal structures of the 213-residue luminal domain of human TRPML1 containing three missense MLIV-causing mutations. This domain forms a tetramer with a highly electronegative central pore formed by a novel luminal pore loop. Cysteine cross-linking and cryo-EM analyses confirmed that this architecture occurs in the full-length channel. Structure-function studies demonstrated that Ca(2+) and H(+) interact with the luminal pore and exert physiologically important regulation. The MLIV-causing mutations disrupt the luminal-domain structure and cause TRPML1 mislocalization. Our study reveals the structural underpinnings of TRPML1's regulation, assembly and pathogenesis.

  13. Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut.

    PubMed

    Agrawal, Sinu; Kelkenberg, Marco; Begum, Khurshida; Steinfeld, Lea; Williams, Clay E; Kramer, Karl J; Beeman, Richard W; Park, Yoonseong; Muthukrishnan, Subbaratnam; Merzendorfer, Hans

    2014-06-01

    The peritrophic matrix (PM) in the midgut of insects consists primarily of chitin and proteins and is thought to support digestion and provide protection from abrasive food particles and enteric pathogens. We examined the physiological roles of 11 putative peritrophic matrix protein (PMP) genes of the red flour beetle, Tribolium castaneum (TcPMPs). TcPMP genes are differentially expressed along the length of the midgut epithelium of feeding larvae. RNAi of individual PMP genes revealed no abnormal developmental phenotypes for 9 of the 11 TcPMPs. However, RNAi for two PMP genes, TcPMP3 and TcPMP5-B, resulted in depletion of the fat body, growth arrest, molting defects and mortality. In situ permeability assays after oral administration of different-sized FITC-dextran beads demonstrated that the exclusion size of the larval peritrophic matrix (PM) decreases progressively from >2 MDa to <4 kDa from the anterior to the most posterior regions of the midgut. In the median midguts of control larvae, 2 MDa dextrans were completely retained within the PM lumen, whereas after RNAi for TcPMP3 and TcPMP5-B, these dextrans penetrated the epithelium of the median midgut, indicating loss of structural integrity and barrier function of the larval PM. In contrast, RNAi for TcPMP5-B, but not RNAi for TcPMP3, resulted in breakdown of impermeability to 4 and 40 kDa dextrans in the PM of the posterior midgut. These results suggest that specific PMPs are involved in the regulation of PM permeability, and that a gradient of barrier function is essential for survival and fat body maintenance.

  14. Trpac1, a pH response transcription regulator, is involved in cellulase gene expression in Trichoderma reesei.

    PubMed

    He, Ronglin; Ma, Lijuan; Li, Chen; Jia, Wendi; Li, Demao; Zhang, Dongyuan; Chen, Shulin

    2014-12-01

    Fungi grow over a relatively wide pH range and adapt to extracellular pH through a genetic regulatory system mediated by a key component PacC, which is a pH transcription regulator. The cellulase production of the filamentous fungi Trichoderma reesei is sensitive to ambient pH. To investigate the connection between cellulase expression regulation and ambient pH, an ortholog of Aspergillus nidulans pacC, Trpac1, was identified and functionally characterized using a target gene deletion strategy. Deleting Trpac1 dramatically increased the cellulase production and the transcription levels of the major cellulase genes at neutral pH, which suggested Trpac1 is involved in the regulation of cellulase production. It was further observed that the expression levels of transcription factors xyr1 and ace2 also increased in the ΔTrpac1 mutant at neutral pH. In addition, the ΔTrpac1 mutant exhibited conidiation defects under neutral and alkaline pH. These results implied that Trpac1 in involved in growth and development process and cellulase gene expression in T. reesei.

  15. Brain-midgut short neuropeptide F mechanism that inhibits digestive activity of the American cockroach, Periplaneta americana upon starvation.

    PubMed

    Mikani, Azam; Wang, Qiu-Shi; Takeda, Makio

    2012-03-01

    Immunohistochemical reactivity against short neuropeptide F (sNPF) was observed in the brain-corpus cardiacum and midgut paraneurons of the American cockroach, Periplaneta americana. Four weeks of starvation increased the number of sNPF-ir cells in the midgut epithelium but the refeeding decreased the number in 3h. Dramatic rises in sNPF contents in the midgut epithelium and hemolymph of roaches starved for 4 weeks were confirmed by ELISA. Starvation for 4 weeks reduced α-amylase, protease and lipase activities in the midgut of P. americana but refeeding restored these to high levels. Co-incubation of dissected midgut with sNPF at physiological concentrations inhibited α-amylase, protease and lipase activities. sNPF injection into the hemocoel led to a decrease in α-amylase, protease and lipase activities, whereas PBS injection had no effects. The injection of d-(+)-trehalose and l-proline into the hemocoel of decapitated adult male cockroaches that had been starved for 4 weeks had no effect on these digestive enzymes. However, injection into the hemocoel of head-intact starved cockroaches stimulated digestive activity. Injection of d-(+)-trehalose and l-proline into the lumen of decapitated cockroaches that had been starved for 4 weeks increased enzymes activities and suppressed sNPF in the midgut. Our data indicate that sNPF from the midgut paraneurons suppresses α-amylase, protease and lipase activities during starvation. Injection of d-(+)-trehalose/l-proline into the hemocoel of head-intact starved cockroach decreased the hemolymph sNPF content, which suggests that sNPF could be one of the brain factors, demonstrating brain-midgut interplay in the regulation of digestive activities and possibly nutrition-associated behavioral modifications.

  16. Crz1p regulates pH homeostasis in Candida glabrata by altering membrane lipid composition.

    PubMed

    Yan, Dongni; Lin, Xiaobao; Qi, Yanli; Liu, Hui; Chen, Xiulai; Liu, Liming; Chen, Jian

    2016-09-23

    The asexual facultative aerobic haploid yeast Candida glabrata is widely used in the industrial production of various organic acids. To elucidate the physiological function of the transcription factor CgCrz1p and its role in tolerance to acid stress we deleted or overexpressed the corresponding gene CgCRZ1 Deletion of CgCRZ1 resulted in a 60% decrease in dry cell weight (DCW) and a 50% drop in cell viability compared to the wild type at pH 2.0. Expression of lipid metabolism-associated genes was also significantly down-regulated. Consequently, the proportion of C18:1 fatty acids, ratio of unsaturated to saturated fatty acids, and ergosterol content decreased by 30%, 46%, and 30%, respectively. Additionally, membrane integrity, fluidity, and H(+)-ATPase activity were reduced by 45%, 9%, and 50%, respectively. In contrast, overexpression of CgCrz1p increased C18:1 and ergosterol content by 16% and 40%, respectively. Overexpression also enhanced membrane integrity, fluidity, and H(+)-ATPase activity by 31%, 6%, and 20%, respectively. Moreover, in the absence of pH buffering, DCW and pyruvate titer increased by 48% and 60%, respectively, compared to the wild type. Together, these results suggest that CgCrz1p regulates tolerance to acidic conditions by altering membrane lipid composition in C. glabrata IMPORTANCE: The present study provides an insight into the metabolism of Candida glabrata under acidic conditions, such as those encountered during industrial production of organic acids. We found that overexpression of the transcription factor CgCrz1p improved viability, biomass, and pyruvate yields at low pH. Analysis of plasma membrane lipid composition indicated that CgCrz1p might play an important role in its integrity and fluidity, and enhanced the pumping of protons in acidic environments. We propose that altering the structure of the cell membrane may provide a successful strategy for increasing C glabrata productivity at low pH.

  17. Carbon Cycling and pH regulation on the Scotian Shelf, NW Atlantic

    NASA Astrophysics Data System (ADS)

    Thomas, Helmuth

    2015-04-01

    This presentation intends to describe the biogeochemical context for ocean acidification studies on the Scotian Shelf. The seasonality of the dominant processes, regulating surface ocean CO2 conditions, including pH, will be assessed as well as cross-shelf transports of CO2, acidity and nutrient, the latter ones exerting the "subsurface control" of CO2 air-sea fluxes and surface pH. Methods summary: The seasonal variability of inorganic carbon in the surface waters of the Scotian Shelf region of the Canadian northwestern Atlantic Ocean was assessed using hourly measurements of the partial pressure of CO2 (pCO2), and hydrographic variables obtained by an autonomous moored instrument (44.3°N and 63.3°W). These measurements were complemented by seasonal shipboard sampling of dissolved inorganic carbon (DIC), total alkalinity (TA), and pCO2, at the mooring site, and over the larger spatial scale. The Scotian Shelf is a 700 km long section of the continental shelf off Nova Scotia. Bounded by the Laurentian Channel to the northeast, and by the Northeast Channel and the Gulf of Maine to the southwest, it varies in width from 120 to 240 km covering roughly 120,000 km2 with an average depth of 90 m . Convective mixin in winter time and coastal upwelling and the associated favorable wind conditions on the Scotian Shelf have long been recognized. Strong winds of speeds greater than 10 m s-1, blowing to the northeast, and persisting for several days force relatively cold, saline, water toward the surface, displacing the warmer, fresher water offshore. Upwelling events have frequently been observed in the region in winter, and modeling studies have reproduced these observed events. Furthermore, these events may play a role in initiating and sustaining the spring phytoplankton bloom by displacing nutrient-depleted surface water and bring nutrient-rich waters up to the surface. Biological processes were found to be the dominant control on mixed-layer DIC, with the delivery of

  18. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    PubMed Central

    Sigle, Leah Theresa; Ramalho-Ortigão, Marcelo

    2013-01-01

    Sandflies (Diptera: Psychodidae) are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2). Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells) that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania. PMID:24037187

  19. Electrochemical biosensor with pH regulation of CNTs/HRP multilayer for phenols.

    PubMed

    Yang, Shaoming; Huang, Aihua; Jiang, Dan; Wei, Zhipeng; Zheng, Longzhen

    2011-01-01

    An amperometric horseradish peroxidase (HRP) biosensor based on multilayer films containing carbon nanotubes (CNTs) and HRP was developed. With the pH regulation of the dispersion solution of CNTs, the sensitivity of the HRP multilayer film biosensor is tunable by the control of the dissociation of CNTs. The successful formation of multilayers was confirmed by UV-visible spectroscopy. The features of multilayers were characterized by SEM and electrochemical impedance spectrum (EIS). The performance of the HRP biosensor is reported for the amperometric detection of phenols. The biosensor presented a linear response for catechol from 9.1 × 10(-8) - 6.45 × 10(-5) mol/L, with a sensitivity of 0.00554 A · L/mol and a detection limit of 8.5 × 10(-8) mol/L. The study can provide a feasible simple approach for developing a new sensitivity tunable method for CNTs-based biosensors.

  20. Bacterial Infection and Immune Responses in Lutzomyia longipalpis Sand Fly Larvae Midgut

    PubMed Central

    Heerman, Matthew; Weng, Ju-Lin; Hurwitz, Ivy; Durvasula, Ravi; Ramalho-Ortigao, Marcelo

    2015-01-01

    The midgut microbial community in insect vectors of disease is crucial for an effective immune response against infection with various human and animal pathogens. Depending on the aspects of their development, insects can acquire microbes present in soil, water, and plants. Sand flies are major vectors of leishmaniasis, and shown to harbor a wide variety of Gram-negative and Gram-positive bacteria. Sand fly larval stages acquire microorganisms from the soil, and the abundance and distribution of these microorganisms may vary depending on the sand fly species or the breeding site. Here, we assess the distribution of two bacteria commonly found within the gut of sand flies, Pantoea agglomerans and Bacillus subtilis. We demonstrate that these bacteria are able to differentially infect the larval digestive tract, and regulate the immune response in sand fly larvae. Moreover, bacterial distribution, and likely the ability to colonize the gut, is driven, at least in part, by a gradient of pH present in the gut. PMID:26154607

  1. Deletion of pH Regulator pac-3 Affects Cellulase and Xylanase Activity during Sugarcane Bagasse Degradation by Neurospora crassa

    PubMed Central

    Campos Antoniêto, Amanda Cristina; Ramos Pedersoli, Wellington; dos Santos Castro, Lílian; da Silva Santos, Rodrigo; Cruz, Aline Helena da Silva; Nogueira, Karoline Maria Vieira; Silva-Rocha, Rafael; Rossi, Antonio

    2017-01-01

    Microorganisms play a vital role in bioethanol production whose usage as fuel energy is increasing worldwide. The filamentous fungus Neurospora crassa synthesize and secrete the major enzymes involved in plant cell wall deconstruction. The production of cellulases and hemicellulases is known to be affected by the environmental pH; however, the regulatory mechanisms of this process are still poorly understood. In this study, we investigated the role of the pH regulator PAC-3 in N. crassa during their growth on sugarcane bagasse at different pH conditions. Our data indicate that secretion of cellulolytic enzymes is reduced in the mutant Δpac-3 at alkaline pH, whereas xylanases are positively regulated by PAC-3 in acidic (pH 5.0), neutral (pH 7.0), and alkaline (pH 10.0) medium. Gene expression profiles, evaluated by real-time qPCR, revealed that genes encoding cellulases and hemicellulases are also subject to PAC-3 control. Moreover, deletion of pac-3 affects the expression of transcription factor-encoding genes. Together, the results suggest that the regulation of holocellulase genes by PAC-3 can occur as directly as in indirect manner. Our study helps improve the understanding of holocellulolytic performance in response to PAC-3 and should thereby contribute to the better use of N. crassa in the biotechnology industry. PMID:28107376

  2. Deletion of pH Regulator pac-3 Affects Cellulase and Xylanase Activity during Sugarcane Bagasse Degradation by Neurospora crassa.

    PubMed

    Campos Antoniêto, Amanda Cristina; Ramos Pedersoli, Wellington; Dos Santos Castro, Lílian; da Silva Santos, Rodrigo; Cruz, Aline Helena da Silva; Nogueira, Karoline Maria Vieira; Silva-Rocha, Rafael; Rossi, Antonio; Silva, Roberto Nascimento

    2017-01-01

    Microorganisms play a vital role in bioethanol production whose usage as fuel energy is increasing worldwide. The filamentous fungus Neurospora crassa synthesize and secrete the major enzymes involved in plant cell wall deconstruction. The production of cellulases and hemicellulases is known to be affected by the environmental pH; however, the regulatory mechanisms of this process are still poorly understood. In this study, we investigated the role of the pH regulator PAC-3 in N. crassa during their growth on sugarcane bagasse at different pH conditions. Our data indicate that secretion of cellulolytic enzymes is reduced in the mutant Δpac-3 at alkaline pH, whereas xylanases are positively regulated by PAC-3 in acidic (pH 5.0), neutral (pH 7.0), and alkaline (pH 10.0) medium. Gene expression profiles, evaluated by real-time qPCR, revealed that genes encoding cellulases and hemicellulases are also subject to PAC-3 control. Moreover, deletion of pac-3 affects the expression of transcription factor-encoding genes. Together, the results suggest that the regulation of holocellulase genes by PAC-3 can occur as directly as in indirect manner. Our study helps improve the understanding of holocellulolytic performance in response to PAC-3 and should thereby contribute to the better use of N. crassa in the biotechnology industry.

  3. Regulation of intracellular pH in rat lactotrophs: involvement of anionic exchangers.

    PubMed

    Garcia, L; Boué-Grabot, E; Garret, M; Sartor, P

    1997-10-01

    Regulation of the intracellular pH (pHi) of normal rat lactotrophs was studied. As this cell type, cultured with 10% FCS, can achieve a relatively alkaline pHi (7.3-7.5), we investigated the presence of a mechanism based on Cl-/HCO3- exchange. Using the pHi-sensitive probe SNARF-1 (seminaphtorodafluor) in its permeant form, SNARF-1/AM, we studied pHi recovery after acidic loading in individual cells with a microspectrofluorometric approach. We showed the involvement of anionic exchange in lactotroph cell pHi regulation. Acute CO2-bicarbonate cell acidic loading combined with external Cl- depletion induces the activation of a Cl-/HCO3- exchange. This exchange is 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid sensitive and corresponds to the type 3 anionic exchanger (AE3). However, after nigericin acidification, Na+/H+ exchange can also participate in recovery. In addition, incubation experiments strongly suggest that a 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-insensitive anionic exchanger (type 2 anionic exchanger or AE2) is present in rat lactotrophs. The presence and involvement of carbonic anhydrase in pHi regulation have been demonstrated. Finally, using Northern blot and reverse transcription-PCR techniques, messenger RNAs for both AE2 and AE3 were identified in anterior pituitary cell extracts. We concluded that in normal rat lactotrophs, pHi regulation is achieved by a complex system in which Cl-/HCO3- exchange has a pivotal role.

  4. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    PubMed

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general.

  5. SLC26A Gene Family Participate in pH Regulation during Enamel Maturation

    PubMed Central

    Yin, Kaifeng; Lei, Yuejuan; Wen, Xin; Lacruz, Rodrigo S.; Soleimani, Manoocher; Kurtz, Ira; Snead, Malcolm L.; White, Shane N.; Paine, Michael L.

    2015-01-01

    The bicarbonate transport activities of Slc26a1, Slc26a6 and Slc26a7 are essential to physiological processes in multiple organs. Although mutations of Slc26a1, Slc26a6 and Slc26a7 have not been linked to any human diseases, disruption of Slc26a1, Slc26a6 or Slc26a7 expression in animals causes severe dysregulation of acid-base balance and disorder of anion homeostasis. Amelogenesis, especially the enamel formation during maturation stage, requires complex pH regulation mechanisms based on ion transport. The disruption of stage-specific ion transporters frequently results in enamel pathosis in animals. Here we present evidence that Slc26a1, Slc26a6 and Slc26a7 are highly expressed in rodent incisor ameloblasts during maturation-stage tooth development. In maturation-stage ameloblasts, Slc26a1, Slc26a6 and Slc26a7 show a similar cellular distribution as the cystic fibrosis transmembrane conductance regulator (Cftr) to the apical region of cytoplasmic membrane, and the distribution of Slc26a7 is also seen in the cytoplasmic/subapical region, presumably on the lysosomal membrane. We have also examined Slc26a1 and Slc26a7 null mice, and although no overt abnormal enamel phenotypes were observed in Slc26a1-/- or Slc26a7-/- animals, absence of Slc26a1 or Slc26a7 results in up-regulation of Cftr, Ca2, Slc4a4, Slc4a9 and Slc26a9, all of which are involved in pH homeostasis, indicating that this might be a compensatory mechanism used by ameloblasts cells in the absence of Slc26 genes. Together, our data show that Slc26a1, Slc26a6 and Slc26a7 are novel participants in the extracellular transport of bicarbonate during enamel maturation, and that their functional roles may be achieved by forming interaction units with Cftr. PMID:26671068

  6. pH Regulation of Pectate Lyase Secretion Modulates the Attack of Colletotrichum gloeosporioides on Avocado Fruits†

    PubMed Central

    Yakoby, Nir; Kobiler, Ilana; Dinoor, Amos; Prusky, Dov

    2000-01-01

    Growth of Colletotrichum gloeosporioides in pectolytic enzyme-inducing medium (PEIM) increased the pH of the medium from 3.8 to 6.5. Pectate lyase (PL) secretion was detected when the pH reached 5.8, and the level of secretion increased up to pH 6.5. PL gene (pel) transcript production began at pH 5.0 and increased up to pH 5.7. PL secretion was never detected when the pH of the inducing medium was lower than 5.8 or when C. gloeosporioides hyphae were transferred from PL-secreting conditions at pH 6.5 to pH 3.8. This behavior differed from that of polygalacturonase (PG), where pg transcripts and protein secretion were detected at pH 5.0 and continued up to 5.7. Under in vivo conditions, the pH of unripe pericarp of freshly harvested avocado (Persea americana cv. Fuerte) fruits, resistant to C. gloeosporioides attack, was 5.2, whereas in ripe fruits, when decay symptoms were expressed, the pericarp pH had increased to 6.3. Two avocado cultivars, Ardit and Ettinger, which are resistant to C. gloeosporioides attack, had pericarp pHs of less than 5.5, which did not increase during ripening. The present results suggest that host pH regulates the secretion of PL and may affect C. gloeosporioides pathogenicity. The mechanism found in avocado may have equivalents in other postharvest pathosystems and suggests new approaches for breeding against and controlling postharvest diseases. PMID:10698767

  7. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium

    PubMed Central

    Walker, Nancy M.; Liu, Jinghua; Stein, Sydney R.; Stefanski, Casey D.; Strubberg, Ashlee M.

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl− and HCO3− efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3−)-loading proteins and upregulation of the basolateral membrane HCO3−-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl−/HCO3− exchange with maximized gradients, it also had increased intracellular Cl− concentration relative to wild-type. Pharmacological reduction of intracellular Cl− concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl− and HCO3− efflux, which impairs pHi regulation by Ae2. Retention of Cl− and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. PMID:26542396

  8. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium.

    PubMed

    Walker, Nancy M; Liu, Jinghua; Stein, Sydney R; Stefanski, Casey D; Strubberg, Ashlee M; Clarke, Lane L

    2016-01-15

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine.

  9. The Mechanism by Which a Propeptide-encoded pH Sensor Regulates Spatiotemporal Activation of Furin*

    PubMed Central

    Williamson, Danielle M.; Elferich, Johannes; Ramakrishnan, Parvathy; Thomas, Gary; Shinde, Ujwal

    2013-01-01

    The proprotein convertase furin requires the pH gradient of the secretory pathway to regulate its multistep, compartment-specific autocatalytic activation. Although His-69 within the furin prodomain serves as the pH sensor that detects transport of the propeptide-enzyme complex to the trans-Golgi network, where it promotes cleavage and release of the inhibitory propeptide, a mechanistic understanding of how His-69 protonation mediates furin activation remains unclear. Here we employ biophysical, biochemical, and computational approaches to elucidate the mechanism underlying the pH-dependent activation of furin. Structural analyses and binding experiments comparing the wild-type furin propeptide with a nonprotonatable His-69 → Leu mutant that blocks furin activation in vivo revealed protonation of His-69 reduces both the thermodynamic stability of the propeptide as well as its affinity for furin at pH 6.0. Structural modeling combined with mathematical modeling and molecular dynamic simulations suggested that His-69 does not directly contribute to the propeptide-enzyme interface but, rather, triggers movement of a loop region in the propeptide that modulates access to the cleavage site and, thus, allows for the tight pH regulation of furin activation. Our work establishes a mechanism by which His-69 functions as a pH sensor that regulates compartment-specific furin activation and provides insights into how other convertases and proteases may regulate their precise spatiotemporal activation. PMID:23653353

  10. Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells

    PubMed Central

    Ramphul, Urvashi N.; Garver, Lindsey S.; Molina-Cruz, Alvaro; Canepa, Gaspar E.; Barillas-Mury, Carolina

    2015-01-01

    The malaria parasite, Plasmodium, must survive and develop in the mosquito vector to be successfully transmitted to a new host. The Plasmodium falciparum Pfs47 gene is critical for malaria transmission. Parasites that express Pfs47 (NF54 WT) evade mosquito immunity and survive, whereas Pfs47 knockouts (KO) are efficiently eliminated by the complement-like system. Two alternative approaches were used to investigate the mechanism of action of Pfs47 on immune evasion. First, we examined whether Pfs47 affected signal transduction pathways mediating mosquito immune responses, and show that the Jun-N-terminal kinase (JNK) pathway is a key mediator of Anopheles gambiae antiplasmodial responses to P. falciparum infection and that Pfs47 disrupts JNK signaling. Second, we used microarrays to compare the global transcriptional responses of A. gambiae midguts to infection with WT and KO parasites. The presence of Pfs47 results in broad and profound changes in gene expression in response to infection that are already evident 12 h postfeeding, but become most prominent at 26 h postfeeding, the time when ookinetes invade the mosquito midgut. Silencing of 15 differentially expressed candidate genes identified caspase-S2 as a key effector of Plasmodium elimination in parasites lacking Pfs47. We provide experimental evidence that JNK pathway regulates activation of caspases in Plasmodium-invaded midgut cells, and that caspase activation is required to trigger midgut epithelial nitration. Pfs47 alters the cell death pathway of invaded midgut cells by disrupting JNK signaling and prevents the activation of several caspases, resulting in an ineffective nitration response that makes the parasite undetectable by the mosquito complement-like system. PMID:25552553

  11. Epithelial pH and ion transport regulation by proton pumps and exchangers.

    PubMed

    Harvey, B J; Ehrenfeld, J

    1988-01-01

    This study reports on the interaction between transepithelial Na+ transport and H+ secretory and intracellular pH (pHi) regulating mechanisms in the model 'tight' epithelium of frog skin. We have used 22Na isotope fluxes and fixed end-point titration to measure undirectional Na+ fluxes, net Na absorption (J(net)Na) and proton secretion (J(net)H), and electrophysiological techniques (double-barrelled ion-sensitive microelectrodes and cell membrane current--voltage relations) to determine intracellular activities of Na+, Cl- and H+ and the conductance of apical membranes to Na+ (gNa) and of basolateral membranes to K+ (gK). In dilute mucosal solutions or in the absence of a permeant anion (Cl-) or counter-current (open-circuit conditions) to accompany Na+ uptake, the J(net)Na is electrically coupled to J(net)H via an electrogenic apical H+-ATPase (located in mitochondria-rich cells). Both fluxes proceed via mitochondria-rich cells and are inhibited by blockers of carbonic anhydrase and H+-ATPase and stimulated by aldosterone and acid load. In high NaCl-containing mucosal solutions or in short-circuit conditions, the J(net)Na becomes uncoupled from J(net)H and proceeds mainly via the principal cells in the epithelium, in which pHi is regulated by basolateral Na+/H+ and Cl-/HCO3- exchangers. Under these conditions, J(net)Na, gNa and gK vary directly and in parallel with pHi, when pHi is changed by permeable weak acids or bases. There is also co-variance between gNa and pHi accompanying spontaneous variations in J(net)Na and when Na+ transport is stimulated by aldosterone or inhibited with ouabain. We conclude that the level of intracellular H+, modulated by H+ pump and Na+/H+ and Cl-/HCO3- exchangers provides an intrinsic regulation of epithelial Na+ transport.

  12. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH.

    PubMed

    Aschenbach, J R; Penner, G B; Stumpff, F; Gäbel, G

    2011-04-01

    , SCFA absorption also accelerates urea transport into the rumen, which via ammonium recycling, may remove protons from rumen to the blood. Ammonium absorption into the blood is also stimulated by luminal SCFA. It is suggested that the interacting transport processes for SCFA, urea, and ammonia represent evolutionary adaptations of ruminants to actively coordinate energy fermentation, protein assimilation, and pH regulation in the rumen.

  13. iTRAQ-based quantitative proteomic analysis of midgut in silkworm infected with Bombyx mori cytoplasmic polyhedrosis virus.

    PubMed

    Gao, Kun; Deng, Xiang-Yuan; Shang, Meng-Ke; Qin, Guang-Xing; Hou, Cheng-Xiang; Guo, Xi-Jie

    2017-01-30

    Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) specifically infects the epithelial cells in the midgut of silkworm and causes them to death, which negatively affects the sericulture industry. In order to determine the midgut response at the protein levels to the virus infection, differential proteomes of the silkworm midgut responsive to BmCPV infection were identified with isobaric tags for relative and absolute quantitation (iTRAQ) labeling followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). 193, 408, 189 differentially expressed proteins (DEPs) were reliably quantified by iTRAQ analysis in the midgut of BmCPV-infected and control larvae at 24, 48, 72h post infection (hpi) respectively. KEGG enrichment analysis showed that Oxidative phosphorylation, amyotrophic lateral sclerosis, Toll-like receptor signaling pathway, steroid hormone biosynthesis were the significant pathways (Q value≤0.05) both at 24 and 48hpi. qRT-PCR was used to further verify gene transcription of 30 DEPs from iTRAQ, showing that the regulations of 24 genes at the transcript level were consistent with those at the proteomic level. Moreover, the cluster analysis of the three time groups showed that there were seven co-regulated DEPs including BGIBMGA002620-PA, which was a putative p62/sequestosome-1 protein in silkworm. It was upregulated at both the mRNA level and the proteomic level and may play an important role in regulating the autophagy and apoptosis (especially apoptosis) induced by BmCPV infection. This was the first report using an iTRAQ approach to analyze proteomes of the silkworm midgut against BmCPV infection, which contributes to understanding the defense mechanisms of silkworm midgut to virus infection.

  14. Hindsight/RREB-1 functions in both the specification and differentiation of stem cells in the adult midgut of Drosophila

    PubMed Central

    Baechler, Brittany L.; McKnight, Cameron; Pruchnicki, Porsha C.; Biro, Nicole A.; Reed, Bruce H.

    2016-01-01

    ABSTRACT The adult Drosophila midgut is established during the larval/pupal transition from undifferentiated cells known as adult midgut precursors (AMPs). Four fundamental cell types are found in the adult midgut epithelium: undifferentiated intestinal stem cells (ISCs) and their committed daughter cells, enteroblasts (EBs), plus enterocytes (ECs) and enteroendocrine cells (EEs). Using the Drosophila posterior midgut as a model, we have studied the function of the transcription factor Hindsight (Hnt)/RREB-1 and its relationship to the Notch and Egfr signaling pathways. We show that hnt is required for EC differentiation in the context of ISC-to-EC differentiation, but not in the context of AMP-to-EC differentiation. In addition, we show that hnt is required for the establishment of viable or functional ISCs. Overall, our studies introduce hnt as a key factor in the regulation of both the developing and the mature adult midgut. We suggest that the nature of these contextual differences can be explained through the interaction of hnt with multiple signaling pathways. PMID:26658272

  15. Midgut malrotation causing intermittent intestinal obstruction in a young adult.

    PubMed

    Bektasoglu, Huseyin Kazim; Idiz, Ufuk Oguz; Hasbahceci, Mustafa; Yardimci, Erkan; Firat, Yurdakul Deniz; Karatepe, Oguzhan; Muslumanoglu, Mahmut

    2014-01-01

    Midgut malrotation is a congenital anomaly of intestinal rotation and fixation that is generally seen in neonatal population. Adult cases are rarely reported. Early diagnosis is crucial to avoid life threatening complications. Here, we present an adulthood case of midgut volvulus as a rare cause of acute abdomen.

  16. Laparoscopic Ileocolic Resection for Crohn's Disease Associated With Midgut Malrotation

    PubMed Central

    Biancone, Livia; Tema, Giorgia; Porokhnavets, Kristina; Tesauro, Manfredi; Gaspari, Achille L.; Sica, Giuseppe S.

    2014-01-01

    Midgut malrotation is an anomaly of fetal intestinal rotation. Its incidence in adults is rare. A case of midgut malrotation in a 51-year-old man with complicated Crohn's disease of the terminal ileum is presented. Symptoms, diagnosis, and treatment are reviewed. Preoperative workup led to correct surgical planning that ultimately allowed a successful laparoscopic resection. PMID:25419109

  17. Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses.

    PubMed

    Obara, Marta; Szeliga, Monika; Albrecht, Jan

    2008-05-01

    The maintenance of pH homeostasis in the CNS is of key importance for proper execution and regulation of neurotransmission, and deviations from this homeostasis are a crucial factor in the mechanism underlying a spectrum of pathological conditions. The first few sections of the review are devoted to the brain operating under normal conditions. The article commences with an overview of how extrinsic factors modelling the brain at work: neurotransmitters, depolarising stimuli (potassium and voltage changes) and cyclic nucleotides as major signal transducing vehicles affect pH in the CNS. Further, consequences of pH alterations on the major aspects of CNS function and metabolism are outlined. Next, the major cellular events involved in the transport, sequestration, metabolic production and buffering of protons that are common to all the mammalian cells, including the CNS cells. Since CNS function reflects tight interaction between astrocytes and neurons, the pH regulatory events pertinent to either cell type are discussed: overwhelming evidence implicates astrocytes as a key player in pH homeostasis in the brain. The different classes of membrane proteins involved in proton shuttling are listed and their mechanisms of action are given. These include: the Na+/H+ exchanger, different classes of bicarbonate transporters acting in a sodium-dependent- or -independent mode, monocarboxylic acid transporters and the vacuolar-type proton ATPase. A separate section is devoted to carbonic anhydrase, which is represented by multiple isoenzymes capable of pH buffering both in the cell interior and in the extracellular space. Next, impairment of pH regulation and compensatory responses occurring in brain affected by different pathologies: hypoxia/ischemia, epilepsy, hyperammonemic encephalopathies, cerebral tumours and HIV will be described. The review is limited to facts and plausible hypotheses pertaining to phenomena directly involved in pH regulation: changes in pH that

  18. Regulation of arsenic mobility on basaltic glass surfaces by speciation and pH.

    PubMed

    Sigfusson, Bergur; Meharg, Andrew A; Gislason, Sigurdur R

    2008-12-01

    The importance of geothermal energy as a source for electricity generation and district heating has increased over recent decades. Arsenic can be a significant constituent of the geothermal fluids pumped to the surface during power generation. Dissolved As exists in different oxidation states, mainly as As(III) and As(V), and the charge of individual species varies with pH. Basaltic glass is one of the most important rock types in many high-temperature geothermal fields. Static batch and dynamic column experiments were combined to generate and validate sorption coefficients for As(III) and As(V) in contact with basaltic glass at pH 3-10. Validation was carried out by two empirical kinetic models and a surface complexation model (SCM). The SCM provided a better fit to the experimental column data than kinetic models at high pH values. However, in certain circumstances, an adequate estimation of As transport in the column could not be attained without incorporation of kinetic reactions. The varying mobility with pH was due to the combined effects of the variable charge of the basaltic glass with the pH point of zero charge at 6.8 and the individual As species as pH shifted, respectively. The mobility of As(III) decreased with increasing pH. The opposite was true for As(V), being nearly immobile at pH 3 to being highly mobile at pH 10. Incorporation of appropriate sorption constants, based on the measured pH and Eh of geothermal fluids, into regional groundwater-flow models should allow prediction of the As(III) and As(V) transport from geothermal systems to adjacent drinking water sources and ecosystems.

  19. NHE1 is the sodium-hydrogen exchanger active in acute intracellular pH regulation in preimplantation mouse embryos.

    PubMed

    Siyanov, Violetta; Baltz, Jay M

    2013-06-01

    Sodium-hydrogen exchangers (NHE) of the Slc9 gene family are the major regulators of intracellular pH against acidosis in mammalian cells. Of five plasma membrane NHE isoforms, mouse oocytes and preimplantation embryos express mRNAs encoding NHE1 (SLC9A1), NHE3 (SLC9A3), and NHE4 (SLC9A4), with higher mRNA levels for each in oocytes through one-cell stage embryos and lower levels after the two-cell stage. NHE2 (SLC9A2) and NHE5 (SLC9A5) are not expressed. Measurements of intracellular pH during recovery from induced acidosis indicated that recovery occurred via NHE activity at all preimplantation stages assessed (one-cell, two-cell, eight-cell and morula). Recovery from acidosis at each stage was entirely inhibited by cariporide, which is very highly selective for NHE1. In contrast, the moderately NHE3-selective inhibitor S3226 did not preferentially block recovery, nor did adding S3226 increase inhibition over cariporide alone, indicating that NHE3 did not play a role. There was no indication of NHE4 activity. Another regulator of intracellular pH against acidosis, the sodium-dependent bicarbonate/chloride exchanger (NDBCE; SLC4A8), had low or absent activity in two-cell embryos. Thus, NHE1 appears to be the only significant regulator of intracellular pH in preimplantation mouse embryos. Culturing embryos from the one-cell or two-cell stages in acidotic medium inhibited their development. Unexpectedly, inhibition of NHE1 with cariporide, NDBCE with DIDS, or both together did not affect embryo development to the blastocyst stage more substantially under conditions of chronic acidosis than at normal pH. Preimplantation mouse embryos thus appear to have limited capacity to resist chronic acidosis using intracellular pH regulatory mechanisms.

  20. Regulation of Drosophila mesoderm migration by phosphoinositides and the PH domain of the Rho GTP exchange factor Pebble.

    PubMed

    Murray, Michael J; Ng, Michelle M; Fraval, Hamilton; Tan, Julie; Liu, Wenjie; Smallhorn, Masha; Brill, Julie A; Field, Seth J; Saint, Robert

    2012-12-01

    The Drosophila RhoGEF Pebble (Pbl) is required for cytokinesis and migration of mesodermal cells. In a screen for genes that could suppress migration defects in pbl mutants we identified the phosphatidylinositol phosphate (PtdInsP) regulator pi5k59B. Genetic interaction tests with other PtdInsP regulators suggested that PtdIns(4,5)P2 levels are important for mesoderm migration when Pbl is depleted. Consistent with this, the leading front of migrating mesodermal cells was enriched for PtdIns(4,5)P2. Given that Pbl contains a Pleckstrin Homology (PH) domain, a known PtdInsP-binding motif, we examined PtdInsP-binding of Pbl and the importance of the PH domain for Pbl function. In vitro lipid blot assays showed that Pbl binds promiscuously to PtdInsPs, with binding strength associated with the degree of phosphorylation. Pbl was also able to bind lipid vesicles containing PtdIns(4,5)P2 but binding was strongly reduced upon deletion of the PH domain. Similarly, in vivo, loss of the PH domain prevented localisation of Pbl to the cell cortex and severely affected several aspects of early mesoderm development, including flattening of the invaginated tube onto the ectoderm, extension of protrusions, and dorsal migration to form a monolayer. Pbl lacking the PH domain could still localise to the cytokinetic furrow, however, and cytokinesis failure was reduced in pbl(ΔPH) mutants. Taken together, our results support a model in which interaction of the PH-domain of Pbl with PtdIns(4,5)P2 helps localise it to the plasma membrane which is important for mesoderm migration.

  1. The midgut of the silkmoth Bombyx mori is able to recycle molecules derived from degeneration of the larval midgut epithelium.

    PubMed

    Franzetti, Eleonora; Romanelli, Davide; Caccia, Silvia; Cappellozza, Silvia; Congiu, Terenzio; Rajagopalan, Muthukumaran; Grimaldi, Annalisa; de Eguileor, Magda; Casartelli, Morena; Tettamanti, Gianluca

    2015-08-01

    The midgut represents the middle part of the alimentary canal and is responsible for nutrient digestion and absorption in insect larva. Despite the growing interest in this organ for different purposes, such as studies on morphogenesis and differentiation, stem cell biology, cell death processes and transport mechanisms, basic information on midgut development is still lacking for a large proportion of insect species. Undoubtedly, this lack of data could hinder the full exploitation of practical applications that involve midgut as their primary target. This may represent in particular a significant problem for Lepidoptera, an insect order that includes some of the most important species of high economic importance. With the aim of overcoming this fragmentation of knowledge, we performed a detailed morphofunctional analysis of the midgut of the silkworm, Bombyx mori, a representative model among Lepidoptera, during its development from the larval up to the adult stage, focusing attention on stem cells. Our data demonstrate stem cell proliferation and differentiation, not only in the larval midgut but also in the pupal and adult midgut epithelium. Moreover, we present evidence for a complex trophic relationship between the dying larval epithelium and the new adult one, which is established during metamorphosis. This study, besides representing the first morphological and functional characterization of the changes that occur in the midgut of a lepidopteron during the transition from the larva to the moth, provides a detailed analysis of the midgut of the adult insect, a stage that has been neglected up to now.

  2. Role of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation

    PubMed Central

    Chang, Jung-Chin; Oude-Elferink, Ronald P. J.

    2014-01-01

    The evolutionarily conserved soluble adenylyl cyclase (sAC, adcy10) was recently identified as a unique source of cAMP in the cytoplasm and the nucleus. Its activity is regulated by bicarbonate and fine-tuned by calcium. As such, and in conjunction with carbonic anhydrase (CA), sAC constitutes an HCO−3/CO−2/pH sensor. In both alpha-intercalated cells of the collecting duct and the clear cells of the epididymis, sAC is expressed at significant level and involved in pH homeostasis via apical recruitment of vacuolar H+-ATPase (VHA) in a PKA-dependent manner. In addition to maintenance of pH homeostasis, sAC is also involved in metabolic regulation such as coupling of Krebs cycle to oxidative phosphorylation via bicarbonate/CO2 sensing. Additionally, sAC also regulates CFTR channel and plays an important role in regulation of barrier function and apoptosis. These observations suggest that sAC, via bicarbonate-sensing, plays an important role in maintaining homeostatic status of cells against fluctuations in their microenvironment. PMID:24575049

  3. Overcoming Hypoxia-Mediated Tumor Progression: Combinatorial Approaches Targeting pH Regulation, Angiogenesis and Immune Dysfunction

    PubMed Central

    McDonald, Paul C.; Chafe, Shawn C.; Dedhar, Shoukat

    2016-01-01

    Hypoxia is an important contributor to the heterogeneity of the microenvironment of solid tumors and is a significant environmental stressor that drives adaptations which are essential for the survival and metastatic capabilities of tumor cells. Critical adaptive mechanisms include altered metabolism, pH regulation, epithelial-mesenchymal transition, angiogenesis, migration/invasion, diminished response to immune cells and resistance to chemotherapy and radiation therapy. In particular, pH regulation by hypoxic tumor cells, through the modulation of cell surface molecules such as extracellular carbonic anhydrases (CAIX and CAXII) and monocarboxylate transporters (MCT-1 and MCT-4) functions to increase cancer cell survival and enhance cell invasion while also contributing to immune evasion. Indeed, CAIX is a vital regulator of hypoxia mediated tumor progression, and targeted inhibition of its function results in reduced tumor growth, metastasis, and cancer stem cell function. However, the integrated contributions of the repertoire of hypoxia-induced effectors of pH regulation for tumor survival and invasion remain to be fully explored and exploited as therapeutic avenues. For example, the clinical use of anti-angiogenic agents has identified a conundrum whereby this treatment increases hypoxia and cancer stem cell components of tumors, and accelerates metastasis. Furthermore, hypoxia results in the infiltration of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Treg) and Tumor Associated Macrophages (TAMs), and also stimulates the expression of PD-L1 on tumor cells, which collectively suppress T-cell mediated tumor cell killing. Therefore, combinatorial targeting of angiogenesis, the immune system and pH regulation in the context of hypoxia may lead to more effective strategies for curbing tumor progression and therapeutic resistance, thereby increasing therapeutic efficacy and leading to more effective strategies for the treatment of patients with

  4. Soil pH regulates the abundance and diversity of Group 1.1c Crenarchaeota.

    PubMed

    Lehtovirta, Laura E; Prosser, James I; Nicol, Graeme W

    2009-12-01

    Archaeal communities in many acidic forest soil systems are dominated by a distinct crenarchaeal lineage Group 1.1c. In addition, they are found consistently in other acidic soils including grassland pasture, moorland and alpine soils. To determine whether soil pH is a major factor in determining their presence and abundance, Group 1.1c community size and composition were investigated across a pH gradient from 4.5 to 7.5 that has been maintained for > 40 years. The abundances of Group 1.1c Crenarchaeota, total Crenarchaeota and total bacteria were assessed by quantitative PCR (qPCR) targeting 16S rRNA genes and the diversity of Group 1.1c crenarchaeal community was investigated by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. The abundance of Group 1.1c Crenarchaeota declined as the pH increased, whereas total Crenarchaeota and Bacteria showed no clear trend. Community diversity of Group 1.1c Crenarchaeota was also influenced with different DGGE bands dominating at different pH. Group 1.1c Crenarchaeota were also quantified in 13 other soils representing a range of habitats, soil types and pH. These results exhibited the same trend as that shown across the pH gradient with Group 1.1c Crenarchaeota representing a greater proportion of total Crenarchaeota in the most acidic soils.

  5. Non-ionic diffusion and carrier-mediated transport drive extracellullar pH regulation of mouse colonic crypts.

    PubMed Central

    Chu, S; Montrose, M H

    1996-01-01

    1. Extracellular pH (pHo) regulation within mouse colonic crypt lumens is stimulated by transepithelial gradients of short-chain fatty acids (SCFAs). Current work assesses underlying mechanisms contributing to pHo regulation. 2. Crypt luminal alkalinization was saturable by apical SCFA (substrate concentration activating half-maximal transport (KT) of isobutyrate = 45 mM). However, saturation was consistent with either carrier-mediated SCFA flux or non-ionic diffusion, because the non-ionized form was titrated by luminal alkalinization. Direct acidification of apical perfusates increased the magnitude of SCFA-induced luminal alkalinization, roughly in the same proportion to the increased concentration of non-ionized SCFA in the crypt lumen. 3. Transepithelial gradients of an alternative weak acid (CO2) produce pHo changes similar to SCFA. In contrast, a weak base (NH3) changes pHo with reverse dependence on the orientation of the transepithelial gradient compared with SCFA. Results implicate non-ionic diffusion in pHo regulation, and suggest that pHo changes may underly SCFA-stimulated bicarbonate secretion and ammonium absorption. 4. SCFA metabolism plays a minor role in extracellular pH regulation. An avidly metabolized SCFA (N-butyrate) augments crypt luminal alkalinization only slightly (0.08 pH units) versus a poorly metabolized SCFA (isobutyrate). 5. Apical addition of 1 mM 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) partially inhibits luminal alkalinization caused by apical SCFA. DIDS has no effect on luminal alkalinization caused by transepithelial CO2 gradients. Probenecid (1 mM), alpha-cyano-4-hydroxycinnamic acid (4 mM) or basolateral DIDS (1 mM) do not affect pHo regulation. Results suggest that DIDS-sensitive, SCFA-dependent transport in the colonocyte apical membrane contributes to pHo regulation. Images Figure 7 PMID:8865074

  6. Chitin is a component of the Rhodnius prolixus midgut.

    PubMed

    Alvarenga, Evelyn S L; Mansur, Juliana F; Justi, Silvia A; Figueira-Mansur, Janaina; Dos Santos, Vivian M; Lopez, Sheila G; Masuda, Hatisaburo; Lara, Flavio A; Melo, Ana C A; Moreira, Monica F

    2016-02-01

    Chitin is an essential component of the peritrophic matrix (PM), which is a structure that lines the insect's gut and protects against mechanical damage and pathogens. Rhodnius prolixus (Hemiptera: Reduviidae) does not have a PM, but it has an analogous structure, the perimicrovillar membrane (PMM); chitin has not been described in this structure. Here, we show that chitin is present in the R. prolixus midgut using several techniques. The FTIR spectrum of the KOH-resistant putative chitin-material extracted from the midgut bolus showed peaks characteristic of the chitin molecule at 3500, 1675 and 1085 cm(1). Both the midgut bolus material and the standard chitin NMR spectra showed a peak at 1.88 ppm, which is certainly due to methyl protons in the acetamide a group. The percentages of radioactive N-acetylglucosamine (CPM) incorporated were 2 and 4% for the entire intestine and bolus, respectively. The KOH-resistant putative chitin-material was also extracted and purified from the N-acetylglucosamine radioactive bolus, and the radioactivity was estimated through liquid scintillation. The intestinal CHS cDNA translated sequence was the same as previously described for the R. prolixus cuticle and ovaries. Phenotypic alterations were observed in the midgut of females with a silenced CHS gene after a blood meal, such as retarded blood meal digestion; the presence of fresh blood that remained red nine days after the blood meal; and reduced trachea and hemozoin content compared with the control. Wheat germ agglutinin (a specific probe that detects chitin) labeling proximal to the intestine (crop and midgut) was much lower in females with a silenced CHS gene, especially in the midgut region, where almost no fluorescence signal was detected compared with the control groups. Midguts from females with a CHS gene silenced by dsRNA-CHS and control midguts pre-treated with chitinase showed that the chitin-derived fluorescence signal decreased in the region around the epithelium

  7. Update on management of midgut neuroendocrine tumors

    PubMed Central

    Mehrvarz Sarshekeh, Amir; Halperin, Daniel M; Dasari, Arvind

    2016-01-01

    Midgut neuroendocrine tumors are typically indolent but can be fatal when advanced. They can also cause significant morbidity due to the characteristic carcinoid syndrome. Somatostatin analogs continue to be the mainstay of treatment given their antiproliferative properties, as well as inhibitory effects on hormones that cause carcinoid syndrome. There have been several recent advances in the systemic therapy of these tumors including consolidation of somatostatin analogs as the cornerstone of therapy, completion of pivotal trials with mTOR inhibitors, and the establishment of novel approaches including peptide receptor radionuclide therapy and oral inhibitors of peripheral tryptophan hydroxylase in tumor and symptom control, respectively. In this review article, the recent advances are summarized and an updated approach to management is proposed. PMID:27347369

  8. Dynamin GTPase Regulation is Altered by PH Domain Mutations Found in Centronuclear Myopathy Patients

    SciTech Connect

    Kenniston, J.; Lemmon, M

    2010-01-01

    The large GTPase dynamin has an important membrane scission function in receptor-mediated endocytosis and other cellular processes. Self-assembly on phosphoinositide-containing membranes stimulates dynamin GTPase activity, which is crucial for its function. Although the pleckstrin-homology (PH) domain is known to mediate phosphoinositide binding by dynamin, it remains unclear how this promotes activation. Here, we describe studies of dynamin PH domain mutations found in centronuclear myopathy (CNM) that increase dynamin's GTPase activity without altering phosphoinositide binding. CNM mutations in the PH domain C-terminal {alpha}-helix appear to cause conformational changes in dynamin that alter control of the GTP hydrolysis cycle. These mutations either 'sensitize' dynamin to lipid stimulation or elevate basal GTPase rates by promoting self-assembly and thus rendering dynamin no longer lipid responsive. We also describe a low-resolution structure of dimeric dynamin from small-angle X-ray scattering that reveals conformational changes induced by CNM mutations, and defines requirements for domain rearrangement upon dynamin self-assembly at membrane surfaces. Our data suggest that changes in the PH domain may couple lipid binding to dynamin GTPase activation at sites of vesicle invagination.

  9. Tissue-specific PhBPBT expression is differentially regulated in response to endogenous ethylene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene is a gaseous plant hormone involved in many physiological processes including senescence, fruit ripening, and defense. Here we show the effects of pollination and wound-induced ethylene signals on transcript accumulation of benzoyl CoA:benzyl alcohol/phenylethanol benzoyltransferase (PhBPBT...

  10. FGF control of E-cadherin targeting in the Drosophila midgut impacts on primordial germ cell motility.

    PubMed

    Parés, Guillem; Ricardo, Sara

    2016-01-15

    Embryo formation requires tight regulation and coordination of adhesion in multiple cell types. By undertaking imaging, three-dimensional (3D) reconstructions and genetic analysis during posterior midgut morphogenesis in Drosophila, we find a new requirement for the conserved fibroblast growth factor (FGF) signaling pathway in the maintenance of epithelial cell adhesion through FGF modulation of zygotic E-cadherin. During Drosophila gastrulation, primordial germ cells (PGCs) are transported with the posterior midgut while it undergoes dynamic cell shape changes. In embryos mutant for the FGF signaling pathway components Branchless and Breathless, zygotic E-cadherin is not targeted to adherens junctions, causing midgut pocket collapse, which impacts on PGC movement. We find that the ventral midline also requires FGF signaling to maintain cell-cell adhesion. We show that FGF signaling regulates the distribution of zygotic E-cadherin during early embryonic development to maintain cell-cell adhesion in the posterior midgut and the ventral midline, a role that is likely crucial in other tissues undergoing active cell shape changes with higher adhesive needs.

  11. Requirement of matrix metalloproteinase-1 for intestinal homeostasis in the adult Drosophila midgut

    SciTech Connect

    Lee, Shin-Hae; Park, Joung-Sun; Kim, Young-Shin; Chung, Hae-Young; Yoo, Mi-Ae

    2012-03-10

    Stem cells are tightly regulated by both intrinsic and extrinsic signals as well as the extracellular matrix (ECM) for tissue homeostasis and regenerative capacity. Matrix metalloproteinases (MMPs), proteolytic enzymes, modulate the turnover of numerous substrates, including cytokine precursors, growth factors, and ECM molecules. However, the roles of MMPs in the regulation of adult stem cells are poorly understood. In the present study, we utilize the Drosophila midgut, which is an excellent model system for studying stem cell biology, to show that Mmp1 is involved in the regulation of intestinal stem cells (ISCs). The results showed that Mmp1 is expressed in the adult midgut and that its expression increases with age and with exposure to oxidative stress. Mmp1 knockdown or Timp-overexpressing flies and flies heterozygous for a viable, hypomorphic Mmp1 allele increased ISC proliferation in the gut, as shown by staining with an anti-phospho-histone H3 antibody and BrdU incorporation assays. Reduced Mmp1 levels induced intestinal hyperplasia, and the Mmp1depletion-induced ISC proliferation was rescued by the suppression of the EGFR signaling pathway, suggesting that Mmp1 regulates ISC proliferation through the EGFR signaling pathway. Furthermore, adult gut-specific knockdown and whole-animal heterozygotes of Mmp1 increased additively sensitivity to paraquat-induced oxidative stress and shortened lifespan. Our data suggest that Drosophila Mmp1 is involved in the regulation of ISC proliferation for maintenance of gut homeostasis. -- Highlights: Black-Right-Pointing-Pointer Mmp1 is expressed in the adult midgut. Black-Right-Pointing-Pointer Mmp1 is involved in the regulation of ISC proliferation activity. Black-Right-Pointing-Pointer Mmp1-related ISC proliferation is associated with EGFR signaling. Black-Right-Pointing-Pointer Mmp1 in the gut is required for the intestinal homeostasis and longevity.

  12. Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants.

    PubMed

    Kotkar, Hemlata M; Sarate, Priya J; Tamhane, Vaijayanti A; Gupta, Vidya S; Giri, Ashok P

    2009-08-01

    Midgut digestive amylases and proteinases of Helicoverpa armigera, a polyphagous and devastating insect pest of economic importance have been studied. We also identified the potential of a sorghum amylase inhibitor against H. armigera midgut amylase. Amylase activities were detected in all the larval instars, pupae, moths and eggs; early instars had lower amylase levels which steadily increased up to the sixth larval instar. Qualitative and quantitative differences in midgut amylases of H. armigera upon feeding on natural and artificial diets were evident. Natural diets were categorized as one or more members of legumes, vegetables, flowers and cereals belonging to different plant families. Amylase activity and isoform patterns varied depending on host plant and/or artificial diet. Artificial diet-fed H. armigera larvae had comparatively high amylase activity and several unique amylase isoforms. Correlation of amylase and proteinase activities of H. armigera with the protein and carbohydrate content of various diets suggested that H. armigera regulates the levels of these digestive enzymes in response to macromolecular composition of the diet. These adjustments in the digestive enzymes of H. armigera may be to obtain better nourishment from the diet and avoid toxicity due to nutritional imbalance. H. armigera, a generalist feeder experiences a great degree of nutritional heterogeneity in its diet. An investigation of the differences in enzyme levels in response to macronutrient balance and imbalance highlight their importance in insect nutrition.

  13. Toxoneuron nigriceps parasitization delays midgut replacement in fifth-instar Heliothis virescens larvae.

    PubMed

    Tettamanti, Gianluca; Grimaldi, Annalisa; Pennacchio, Francesco; de Eguileor, Magda

    2008-05-01

    We have analyzed the effects of Toxoneuron nigriceps parasitization on the midgut development of its host Heliothis virescens. In parasitized H. virescens larvae, the midgut epithelium undergoes a complete replacement, which is qualitatively not different to that observed in synchronous unparasitized larvae, with similar temporal profiles of cell death and metabolic activity. However, the whole gut replacement process is significantly delayed in parasitized larvae, with complete differentiation of the new gut epithelium being observed 4 days later than in unparasitized controls. The administration of juvenile hormone before commitment and of 20-hydroxyecdysone (20E) after commitment delays and fosters, respectively, the replacement process of the midgut epithelium; moreover, the injection of 20E into developmentally arrested and 20E-deficient host last-instar larvae parasitized by T. nigriceps immediately triggers regular gut development. These hormone-based experiments suggest that endocrine alterations in the larval host, induced by T. nigriceps parasitism, are responsible for the temporal alterations in the gut replacement process. The role of this parasitoid-induced developmental change in the host regulation process is discussed.

  14. Mechanisms of larval midgut damage following exposure to phoxim and repair of phoxim-induced damage by cerium in Bombyx mori.

    PubMed

    Yu, Xiaohong; Sun, Qingqing; Li, Bing; Xie, Yi; Zhao, Xiaoyang; Hong, Jie; Sheng, Lei; Sang, Xuezi; Gui, Suxin; Wang, Ling; Shen, Weide; Hong, Fashui

    2015-04-01

    Bombyx mori is an important economic animal for silk production. However, it is liable to be infected by organophosphorus pesticide that can contaminate its food and growing environment. It has been known that organophosphorus pesticide including phoxim exposure may damage the digestive systems, produce oxidative stress and neurotoxicity in silkworm B. mori, whereas cerium treatment has been demonstrated to relieve phoxim-induced toxicity in B. mori. However, very little is known about the molecular mechanisms of midgut injury due to phoxim exposure and B. mori protection after cerium pretreatment. The aim of this study was to evaluate the midgut damage and its molecular mechanisms, and the protective role of cerium in B. mori following exposure to phoxim. The results showed that phoxim exposure led to severe midgut damages and oxidative stress; whereas cerium relieved midgut damage and oxidative stress caused by phoxim in B. mori. Furthermore, digital gene expression suggested that phoxim exposure led to significant up-regulation of 94 genes and down-regulation of 52 genes. Of these genes, 52 genes were related with digestion and absorption, specifically, the significant alterations of esterase, lysozyme, amylase 48, and lipase expressions. Cerium pretreatment resulted in up-regulation of 116 genes, and down-regulation of 29 genes, importantly, esterase 48, lipase, lysozyme, and α-amylase were up-regulated. Treatment with Phoxim + CeCl3 resulted in 66 genes up-regulation and 39 genes down-regulation; specifically, levels of esterase 48, lipase, lysozyme, and α-amylase expression in the midgut of silkworms were significantly increased. Therefore, esterase 48, lipase, lysozyme, and α-amylase may be potential biomarkers of midgut toxicity caused by phoxim exposure. These findings may expand the application of rare earths in sericulture.

  15. Rewiring global regulator cAMP receptor protein (CRP) to improve E. coli tolerance towards low pH.

    PubMed

    Basak, Souvik; Geng, Hefang; Jiang, Rongrong

    2014-03-10

    Bioprocesses such as production of organic acids or acid hydrolysis of bioresources during biofuel production often suffer limitations due to microbial sensitivity under acidic conditions. Approaches for improving the acid tolerance of these microbes have mainly focused on using metabolic engineering tools. Here, we tried to improve strain acidic tolerance from its transcription level, i.e. we adopted error-prone PCR method to engineer global regulator cAMP receptor protein (CRP) of Escherichia coli to improve its performance at low pH. The best mutant AcM1 was identified from random mutagenesis libraries based on its growth performance. AcM1 almost doubled (0.113h(-1)) the growth rate of the control (0.062h(-1)) at pH 4.24. It also demonstrated better thermotolerance than the control at 48°C, whose growth was completely inhibited at this temperature. Quantitative real time reverse transcription PCR results revealed a stress response overlap among low pH stress-, oxidative stress- and osmotic stress-related genes. The chief enzyme responsible for cell acid tolerance, glutamate decarboxylase, demonstrated over twofold activity in AcM1 compared to the control. Differential binding properties of AcM1 mutant CRP with Class-I, II, and III CRP-dependent promoters suggested that modifications to native CRP may lead to transcription profile changes. Hence, we believe that transcriptional engineering of global regulator CRP can provide a new strain engineering alternative for E. coli.

  16. Role of Sodium Bicarbonate Cotransporters in Intracellular pH Regulation and Their Regulatory Mechanisms in Human Submandibular Glands.

    PubMed

    Namkoong, Eun; Shin, Yong-Hwan; Bae, Jun-Seok; Choi, Seulki; Kim, Minkyoung; Kim, Nahyun; Hwang, Sung-Min; Park, Kyungpyo

    2015-01-01

    Sodium bicarbonate cotransporters (NBCs) are involved in the pH regulation of salivary glands. However, the roles and regulatory mechanisms among different NBC isotypes have not been rigorously evaluated. We investigated the roles of two different types of NBCs, electroneutral (NBCn1) and electrogenic NBC (NBCe1), with respect to pH regulation and regulatory mechanisms using human submandibular glands (hSMGs) and HSG cells. Intracellular pH (pHi) was measured and the pHi recovery rate from cell acidification induced by an NH4Cl pulse was recorded. Subcellular localization and protein phosphorylation were determined using immunohistochemistry and co-immunoprecipitation techniques. We determined that NBCn1 is expressed on the basolateral side of acinar cells and the apical side of duct cells, while NBCe1 is exclusively expressed on the apical membrane of duct cells. The pHi recovery rate in hSMG acinar cells, which only express NBCn1, was not affected by pre-incubation with 5 μM PP2, an Src tyrosine kinase inhibitor. However, in HSG cells, which express both NBCe1 and NBCn1, the pHi recovery rate was inhibited by PP2. The apparent difference in regulatory mechanisms for NBCn1 and NBCe1 was evaluated by artificial overexpression of NBCn1 or NBCe1 in HSG cells, which revealed that the pHi recovery rate was only inhibited by PP2 in cells overexpressing NBCe1. Furthermore, only NBCe1 was significantly phosphorylated and translocated by NH4Cl, which was inhibited by PP2. Our results suggest that both NBCn1 and NBCe1 play a role in pHi regulation in hSMG acinar cells, and also that Src kinase does not regulate the activity of NBCn1.

  17. Sodium-dependent pH regulation in active sea urchin sperm.

    PubMed

    Bibring, T; Baxandall, J; Harter, C C

    1984-02-01

    Extracellular sodium ion is required for activation of motility and respiration in sea urchin sperm when semen is diluted in seawater. We have investigated the role of sodium ion in maintenance of sperm activity. Active sperm lose activity on transfer to sodium-free artificial seawater and can be reactivated with external Na+. Reactivation occurs in the range of Na+ concentration required for initial activation; ammonium can substitute for sodium in reactivation. Sperm withdrawn from sodium and sperm prior to activation share a characteristic morphology with straight or gently bent flagella. Activation of sperm by amines in the absence of Na+ is unstable. It is followed by a steady respiratory decline which is temporarily reversed by addition of more amine and stably reversed by addition of Na+. Measurements of intracellular pH indicate that the internal pH rises during amine activation. Internal reacidification occurs during the period of respiratory decline, and Na+ again elevates internal pH. Treatment with cyanide abolishes the reacidification, indicating that it depends on respiration. We conclude that the sodium requirement persists in active sperm; respiration-dependent production of H+ must be balanced by sodium-dependent H+ removal to maintain activity.

  18. pH Dependence of the Stress Regulator DksA

    PubMed Central

    Furman, Ran; Danhart, Eric M.; NandyMazumdar, Monali; Yuan, Chunhua; Foster, Mark P.; Artsimovitch, Irina

    2015-01-01

    DksA controls transcription of genes associated with diverse stress responses, such as amino acid and carbon starvation, oxidative stress, and iron starvation. DksA binds within the secondary channel of RNA polymerase, extending its long coiled-coil domain towards the active site. The cellular expression of DksA remains constant due to a negative feedback autoregulation, raising the question of whether DksA activity is directly modulated during stress. Here, we show that Escherichia coli DksA is essential for survival in acidic conditions and that, while its cellular levels do not change significantly, DksA activity and binding to RNA polymerase are increased at lower pH, with a concomitant decrease in its stability. NMR data reveal pH-dependent structural changes centered at the interface of the N and C-terminal regions of DksA. Consistently, we show that a partial deletion of the N-terminal region and substitutions of a histidine 39 residue at the domain interface abolish pH sensitivity in vitro. Together, these data suggest that DksA responds to changes in pH by shifting between alternate conformations, in which competing interactions between the N- and C-terminal regions modify the protein activity. PMID:25799498

  19. pH dependence of the stress regulator DksA.

    PubMed

    Furman, Ran; Danhart, Eric M; NandyMazumdar, Monali; Yuan, Chunhua; Foster, Mark P; Artsimovitch, Irina

    2015-01-01

    DksA controls transcription of genes associated with diverse stress responses, such as amino acid and carbon starvation, oxidative stress, and iron starvation. DksA binds within the secondary channel of RNA polymerase, extending its long coiled-coil domain towards the active site. The cellular expression of DksA remains constant due to a negative feedback autoregulation, raising the question of whether DksA activity is directly modulated during stress. Here, we show that Escherichia coli DksA is essential for survival in acidic conditions and that, while its cellular levels do not change significantly, DksA activity and binding to RNA polymerase are increased at lower pH, with a concomitant decrease in its stability. NMR data reveal pH-dependent structural changes centered at the interface of the N and C-terminal regions of DksA. Consistently, we show that a partial deletion of the N-terminal region and substitutions of a histidine 39 residue at the domain interface abolish pH sensitivity in vitro. Together, these data suggest that DksA responds to changes in pH by shifting between alternate conformations, in which competing interactions between the N- and C-terminal regions modify the protein activity.

  20. Regulation of intracellular pH values in higher plant cells. Carbon-13 and phosphorus-31 nuclear magnetic resonance studies.

    PubMed

    Gout, E; Bligny, R; Douce, R

    1992-07-15

    The regulation of the cytoplasmic and vacuolar pH values (pHc and pHv) in sycamore (Acer pseudoplatanus L.) cells was analyzed using 31P and 13C nuclear magnetic resonance spectroscopy. Suspension-cultured cells were compressed in the NMR tube and perfused with the help of an original arrangement enabling a tight control of the pH (external pH, pHe) of the carefully oxygenated circulating nutrient medium. Intracellular pH values were measured from the chemical shifts of: CH2-linked carboxyl groups of citric acid below pH 5.7; orthophosphate between pH 5.7 and 8.0; 13C-enriched bicarbonate over pH 8.0. pHc and pHv were independent of pHe over the range 4.5-7.5. In contrast intracellular pH values decreased rapidly below pHe 4.5 and increased progressively at pHe over 7.5. There was an acceleration in the rate of O2 consumption accompanied with a decrease in cytoplasmic ATP concentration as pHe decreased. When the rate of O2 consumption was approaching the uncoupled O2 uptake rate, a loss of pHc control was observed. It is concluded that as pHe decreased, the plasma membrane ATPase consumed more and more ATP to reject the invading H+ ions in order to maintain pHc at a constant value. Below pHe 4.5 the efficiency of the H+ pump to react to back leakage of H+ ions became insufficient, leading to an acidification of pHc and to an alkalinization of pHe. On the other hand, over pHe 7.5 a passive influx of OH- ions was observed, and pHc increased proportionally to the increase of pHe. Simultaneously appreciable amounts of organic acids (malate and citrate) were synthesized by cells during the course of the alkalinization of the cytoplasmic compartment. The synthesis of organic acids which partially counteract the alkalinization of the cytoplasmic compartment may result from a marked activation of the cytoplasmic phosphoenolpyruvate carboxylase induced by an increase in cytoplasmic bicarbonate concentration. The fluctuations of pHv followed a similar course to that of p

  1. The development of malaria parasites in the mosquito midgut

    PubMed Central

    Bennink, Sandra; Kiesow, Meike J.

    2016-01-01

    Summary The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take‐up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co‐adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote‐to‐ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage. PMID:27111866

  2. Carbon and nitrogen dynamics across a bedrock-regulated subarctic pH gradient

    NASA Astrophysics Data System (ADS)

    Tomczyk, N.; Heim, E. W.; Sadowsky, J.; Remiszewski, K.; Varner, R. K.; Bryce, J. G.; Frey, S. D.

    2014-12-01

    Bedrock geochemistry has been shown to influence landscape evolution due to nutrient limitation on primary production. There may also be less direct interactions between bedrock-derived chemicals and ecosystem function. Effects of calcium (Ca) and pH on soil carbon (C) and nitrogen (N) cycling have been shown in acid impacted forests o f North America. Understanding intrinsic factors that affect C and nutrient dynamics in subarctic ecosystems has implications for how these ecosystems will respond to a changing climate. How the soil microbial community allocates enzymes to acquire resources from the environment can indicate whether a system is nutrient or energy limited. This study examined whether bedrock geochemistry exerts pressure on nutrient cycles in the overlying soils. In thin, weakly developed soils, bedrock is the primary mineral material and is a source of vital nutrients. Nitrogen (N) and C are not derived from bedrock, but their cycling is still affected by reactions with geologically-derived chemicals. Our study sites near Abisko, Sweden (~68°N) were selected adjacent to five distinct bedrock outcrops (quartzite, slate, carbonate, and two different metasedimenty units). All sites were at a similar elevation (~700 m a.s.l.) and had similar vegetation (subarctic heath). Nutrient concentrations in bedrock and soils were measured in addition to soil microbial biomass and extracellular enzyme activity. We found a statistically significant correlation between soil Ca concentrations and soil pH (r = 0.88, p < 0.01). There were also significant relationships between soil pH and the ratio of C-acquiring to N-acquiring enzyme activity (r = -0.89, p < 0.01), soil pH and soil C-to-N ratio (r = -0.76, p < 0.01), and the ratio of C-acquiring to N-acquiring enzyme activity and soil C-to-N ratio (r = 0.78, p < 0.01). These results suggest that soil Ca concentrations influence C and N cycling dynamics in these soils through their effect on soil pH.

  3. pH regulation in anoxic rice coleoptiles at pH 3.5: biochemical pHstats and net H+ influx in the absence and presence of NO3−

    PubMed Central

    Greenway, Hank; Kulichikhin, Konstantin Y.; Cawthray, Gregory R.; Colmer, Timothy D.

    2012-01-01

    During anoxia, cytoplasmic pH regulation is crucial. Mechanisms of pH regulation were studied in the coleoptile of rice exposed to anoxia and pH 3.5, resulting in H+ influx. Germinating rice seedlings survived a combination of anoxia and exposure to pH 3.5 for at least 4 d, although development was retarded and net K+ efflux was continuous. Further experiments used excised coleoptile tips (7–10 mm) in anoxia at pH 6.5 or 3.5, either without or with 0.2 mM NO3−, which distinguished two processes involved in pH regulation. Net H+ influx (μmol g−1 fresh weight h−1) for coleoptiles with NO3− was ∼1.55 over the first 24 h, being about twice that in the absence of NO3−, but then decreased to 0.5–0.9 as net NO3− uptake declined from ∼1.3 to 0.5, indicating reduced uptake via H+–NO3− symports. NO3− reduction presumably functioned as a biochemical pHstat. A second biochemical pHstat consisted of malate and succinate, and their concentrations decreased substantially with time after exposure to pH 3.5. In anoxic coleoptiles, K+ balancing the organic anions was effluxed to the medium as organic anions declined, and this efflux rate was independent of NO3− supply. Thus, biochemical pHstats and reduced net H+ influx across the plasma membrane are important features contributing to pH regulation in anoxia-tolerant rice coleoptiles at pH 3.5. PMID:22174442

  4. Tyramine biosynthesis in Enterococcus durans is transcriptionally regulated by the extracellular pH and tyrosine concentration.

    PubMed

    Linares, Daniel M; Fernández, María; Martín, M Cruz; Alvarez, Miguel A

    2009-11-01

    The microbial decarboxylation of some amino acids leads to the undesirable presence of biogenic amines in foods. One of the most abundant and frequent biogenic amines found in fermented foods is tyramine, which is produced by the decarboxylation of tyrosine. In the present work, transcriptional analysis of tyramine biosynthesis in Enterococcus durans IPLA655, a strain isolated from cheese, was studied. The gene coding for the tyrosine decarboxylase (tdcA) and that coding for the tyrosine-tyramine antiporter (tyrP) form an operon transcribed from the promoter P(tdcA), the expression of which is regulated by the extracellular pH and tyrosine concentration. Quantification of gene expression during the log phase of growth showed high concentrations of tyrosine and acidic pH conditions to induce tdcA-tyrP polycistronic messenger transcription.

  5. pH regulates ammonia-oxidizing bacteria and archaea in paddy soils in Southern China.

    PubMed

    Li, Hu; Weng, Bo-Sen; Huang, Fu-Yi; Su, Jian-Qiang; Yang, Xiao-Ru

    2015-07-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrogen cycling. However, the effects of environmental factors on the activity, abundance, and diversity of AOA and AOB and the relative contributions of these two groups to nitrification in paddy soils are not well explained. In this study, potential nitrification activity (PNA), abundance, and diversity of amoA genes from 12 paddy soils in Southern China were determined by potential nitrification assay, quantitative PCR, and cloning. The results showed that PNA was highly variable between paddy soils, ranging from 4.05 ± 0.21 to 9.81 ± 1.09 mg NOx-N kg(-1) dry soil day(-1), and no significant correlation with soil parameters was found. The abundance of AOA was predominant over AOB, indicating that AOA may be the major members in aerobic ammonia oxidation in these paddy soils. Community compositions of AOA and AOB were highly variable among samples, but the variations were best explained by pH. AOA sequences were affiliated to the Nitrosopumilus cluster and Nitrososphaera cluster, and AOB were classified into the lineages of Nitrosospira and Nitrosomonas, with Nitrosospira being predominant over Nitrosomonas, accounting for 83.6 % of the AOB community. Moreover, the majority of Nitrosomonas was determined in neutral soils. Canonical correspondence analysis (CCA) analysis further demonstrated that AOA and AOB community structures were significantly affected by pH, soil total organic carbon, total nitrogen, and C/N ratio, suggesting that these factors exert strong effects on the distribution of AOB and AOA in paddy soils in Southern China. In conclusion, our results imply that soil pH was a key explanatory variable for both AOA and AOB community structure and nitrification activity.

  6. Local pH domains regulate NHE3-mediated Na+ reabsorption in the renal proximal tubule

    PubMed Central

    Burford, James L.; McDonough, Alicia A.; Holstein-Rathlou, Niels-Henrik; Peti-Peterdi, Janos

    2014-01-01

    The proximal tubule Na+/H+ exchanger 3 (NHE3), located in the apical dense microvilli (brush border), plays a major role in the reabsorption of NaCl and water in the renal proximal tubule. In response to a rise in blood pressure NHE3 redistributes in the plane of the plasma membrane to the base of the brush border, where NHE3 activity is reduced. This NHE3 redistribution is assumed to provoke pressure natriuresis; however, it is unclear how NHE3 redistribution per se reduces NHE3 activity. To investigate if the distribution of NHE3 in the brush border can change the reabsorption rate, we constructed a spatiotemporal mathematical model of NHE3-mediated Na+ reabsorption across a proximal tubule cell and compared the model results with in vivo experiments in rats. The model predicts that when NHE3 is localized exclusively at the base of the brush border, it creates local pH microdomains that reduce NHE3 activity by >30%. We tested the model's prediction experimentally: the rat kidney cortex was loaded with the pH-sensitive fluorescent dye BCECF, and cells of the proximal tubule were imaged in vivo using confocal fluorescence microscopy before and after an increase of blood pressure by ∼50 mmHg. The experimental results supported the model by demonstrating that a rise of blood pressure induces the development of pH microdomains near the bottom of the brush border. These local changes in pH reduce NHE3 activity, which may explain the pressure natriuresis response to NHE3 redistribution. PMID:25298526

  7. Perfused Gills Reveal Fundamental Principles of pH Regulation and Ammonia Homeostasis in the Cephalopod Octopus vulgaris.

    PubMed

    Hu, Marian Y; Sung, Po-Hsuan; Guh, Ying-Jey; Lee, Jay-Ron; Hwang, Pung-Pung; Weihrauch, Dirk; Tseng, Yung-Che

    2017-01-01

    In contrast to terrestrial animals most aquatic species can be characterized by relatively higher blood [Formula: see text] concentrations despite its potential toxicity to the central nervous system. Although many aquatic species excrete [Formula: see text] via specialized epithelia little information is available regarding the mechanistic basis for NH3/[Formula: see text] homeostasis in molluscs. Using perfused gills of Octopus vulgaris we studied acid-base regulation and ammonia excretion pathways in this cephalopod species. The octopus gill is capable of regulating ammonia (NH3/[Formula: see text]) homeostasis by the accumulation of ammonia at low blood levels (<260 μM) and secretion at blood ammonia concentrations exceeding in vivo levels of 300 μM. [Formula: see text] transport is sensitive to the adenylyl cyclase inhibitor KH7 indicating that this process is mediated through cAMP-dependent pathways. The perfused octopus gill has substantial pH regulatory abilities during an acidosis, accompanied by an increased secretion of [Formula: see text]. Immunohistochemical and qPCR analyses revealed tissue specific expression and localization of Na(+)/K(+)-ATPase, V-type H(+)-ATPase, Na(+)/H(+)-exchanger 3, and Rhesus protein in the gill. Using the octopus gill as a molluscan model, our results highlight the coupling of acid-base regulation and nitrogen excretion, which may represent a conserved pH regulatory mechanism across many marine taxa.

  8. A Biophysical Model for Integration of Electrical, Osmotic, and pH Regulation in the Human Bronchial Epithelium

    PubMed Central

    Falkenberg, Cibele V.; Jakobsson, Eric

    2010-01-01

    Abstract A dynamical biophysical model for the functioning of an epithelium is presented. This model integrates the electrical and osmotic behaviors of the epithelium, taking into account intracellular conditions. The specific tissue modeled is the human bronchial epithelium, which is of particular interest, as it is the location of the most common lethal symptoms of cystic fibrosis. The model is implemented in a modular form to facilitate future application of the code to other epithelial tissue by inputting different transporters, channels, and geometric parameters. The model includes pH regulation as an integral component of overall regulation of epithelial function, through the interdependence of pH, bicarbonate concentration, and current. The procedures for specification, the validation of the model, and parametric studies are presented using available experimental data of cultured human bronchial epithelium. Parametric studies are performed to elucidate a), the contribution of basolateral chloride channels to the short-circuit current functional form, and b), the role that regulation of basolateral potassium conductance plays in epithelial function. PMID:20409466

  9. Perfused Gills Reveal Fundamental Principles of pH Regulation and Ammonia Homeostasis in the Cephalopod Octopus vulgaris

    PubMed Central

    Hu, Marian Y.; Sung, Po-Hsuan; Guh, Ying-Jey; Lee, Jay-Ron; Hwang, Pung-Pung; Weihrauch, Dirk

    2017-01-01

    In contrast to terrestrial animals most aquatic species can be characterized by relatively higher blood NH4+ concentrations despite its potential toxicity to the central nervous system. Although many aquatic species excrete NH4+ via specialized epithelia little information is available regarding the mechanistic basis for NH3/NH4+ homeostasis in molluscs. Using perfused gills of Octopus vulgaris we studied acid-base regulation and ammonia excretion pathways in this cephalopod species. The octopus gill is capable of regulating ammonia (NH3/NH4+) homeostasis by the accumulation of ammonia at low blood levels (<260 μM) and secretion at blood ammonia concentrations exceeding in vivo levels of 300 μM. NH4+ transport is sensitive to the adenylyl cyclase inhibitor KH7 indicating that this process is mediated through cAMP-dependent pathways. The perfused octopus gill has substantial pH regulatory abilities during an acidosis, accompanied by an increased secretion of NH4+. Immunohistochemical and qPCR analyses revealed tissue specific expression and localization of Na+/K+-ATPase, V-type H+-ATPase, Na+/H+-exchanger 3, and Rhesus protein in the gill. Using the octopus gill as a molluscan model, our results highlight the coupling of acid-base regulation and nitrogen excretion, which may represent a conserved pH regulatory mechanism across many marine taxa. PMID:28373845

  10. Dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito, Aedes albopictus

    PubMed Central

    Hanley, Kathryn A.; Sundararajan, Anitha; Devitt, Nicholas P.; Schilkey, Faye D.; Hansen, Immo A.

    2017-01-01

    Background The Asian tiger mosquito, Aedes albopictus is currently an important vector for dengue, chikungunya and Zika virus, and its role in transmission of arthropod-borne viruses (arboviruses) may increase in the future due to its ability to colonize temperate regions. In contrast to Aedes aegypti, the dominant vector of dengue, chikungunya and Zika virus, genetic responses of Ae. albopictus upon infection with an arbovirus are not well characterized. Here we present a study of the changes in transcript expression in Ae. albopictus exposed to dengue virus serotype 2 via feeding on an artificial bloodmeal. Methodology/Principal findings We isolated midguts and midgut-free carcasses of Ae. albopictus fed on bloodmeals containing dengue virus as well as controls fed on virus-free control meals at day 1 and day 5 post-feeding. We confirmed infection of midguts from mosquitoes sampled on day 5 post-feeding via RT-PCR. RNAseq analysis revealed dynamic modulation of the expression of several putative immunity and dengue virus-responsive genes, some of whose expression was verified by qRT-PCR. For example, a serine protease gene was up-regulated in the midgut at 1 day post infection, which may potentially enhance mosquito susceptibility to dengue infection, while 14 leucine-rich repeat genes, previously shown to be involved in mosquito antiviral defenses, were down-regulated in the carcass at 5 days post infection. The number of significantly modulated genes decreased over time in midguts and increased in carcasses. Conclusion/Significance Dengue virus exposure results in the modulation of genes in a time- and site-specific manner. Previous literature on the interaction between mosquitoes and mosquito-borne pathogens suggests that most of the changes that occurred in Ae. albopictus exposed to DENV would favor virus infection. Many genes identified in this study warrant further characterization to understand their role in viral manipulation of and antiviral response of

  11. Co-regulation of root hair tip growth by ROP GTPases and nitrogen source modulated pH fluctuations.

    PubMed

    Bloch, Daria; Monshausen, Gabriele; Gilroy, Simon; Yalovsky, Shaul

    2011-03-01

    Growth of plant cells involves tight regulation of the cytoskeleton and vesicle trafficking by processes including the action of the ROP small G proteins together with pH-modulated cell wall modifications. Yet, little is known on how these systems are coordinated. In a paper recently published in Plant Cell and Environment we show that ROPs/RACs function synergistically with NH4NO3-modulated pH fluctuations to regulate root hair growth. Root hairs expand exclusively at their apical end in a strictly polarized manner by a process known as tip growth. The highly polarized secretion at the apex is maintained by a complex network of factors including the spatial organization of the actin cytoskeleton, tip-focused ion gradients and by small G proteins. Expression of constitutively active ROP mutants disrupts polar growth, inducing the formation of swollen root hairs. Root hairs are also known to elongate in an oscillating manner, which is correlated with oscillatory H(+) fluxes at the tip. Our analysis shows that root hair elongation in wild type plants and swelling in transgenic plants expressing a constitutively active ROP11 (rop11(CA)) is sensitive to the presence of NH4(+) at concentrations higher than 1 mM and on NO3(-). The NH4(+) and NO3(-) ions did not affect the localization of ROP in the membrane but modulated pH fluctuations at the root hair tip. Actin organization and reactive oxygen species distribution were abnormal in rop11CA root hairs but were similar to wild type root hairs when seedlings were grown on medium lacking NH4(+) and / or NO3(-). These observations suggest that the nitrogen source-modulated pH fluctuations may function synergistically with ROP regulated signaling during root hair tip growth. Interestingly, under certain growth conditions, expression of rop11 (CA) suppressed ammonium toxicity, similar to auxin resistant mutants. In this Addendum article we discuss these findings and their implications.

  12. Escherichia coli Response to Uranyl Exposure at Low pH and Associated Protein Regulations

    PubMed Central

    Khemiri, Arbia; Carrière, Marie; Bremond, Nicolas; Ben Mlouka, Mohamed Amine; Coquet, Laurent; Llorens, Isabelle; Chapon, Virginie; Jouenne, Thierry; Cosette, Pascal; Berthomieu, Catherine

    2014-01-01

    Better understanding of uranyl toxicity in bacteria is necessary to optimize strains for bioremediation purposes or for using bacteria as biodetectors for bioavailable uranyl. In this study, after different steps of optimization, Escherichia colicells were exposed to uranyl at low pH to minimize uranyl precipitation and to increase its bioavailability. Bacteria were adapted to mid acidic pH before exposure to 50 or 80 µM uranyl acetate for two hours at pH≈3. To evaluate the impact of uranium, growth in these conditions were compared and the same rates of cells survival were observed in control and uranyl exposed cultures. Additionally, this impact was analyzedby two-dimensional differential gel electrophoresis proteomics to discover protein actors specifically present or accumulated in contact with uranium.Exposure to uranium resulted in differential accumulation of proteins associated with oxidative stress and in the accumulation of the NADH/quinone oxidoreductase WrbA. This FMN dependent protein performs obligate two-electron reduction of quinones, and may be involved in cells response to oxidative stress. Interestingly, this WrbA protein presents similarities with the chromate reductase from E. coli, which was shown to reduce uranyl in vitro. PMID:24587082

  13. Escherichia coli response to uranyl exposure at low pH and associated protein regulations.

    PubMed

    Khemiri, Arbia; Carrière, Marie; Bremond, Nicolas; Ben Mlouka, Mohamed Amine; Coquet, Laurent; Llorens, Isabelle; Chapon, Virginie; Jouenne, Thierry; Cosette, Pascal; Berthomieu, Catherine

    2014-01-01

    Better understanding of uranyl toxicity in bacteria is necessary to optimize strains for bioremediation purposes or for using bacteria as biodetectors for bioavailable uranyl. In this study, after different steps of optimization, Escherichia coli cells were exposed to uranyl at low pH to minimize uranyl precipitation and to increase its bioavailability. Bacteria were adapted to mid acidic pH before exposure to 50 or 80 µM uranyl acetate for two hours at pH≈3. To evaluate the impact of uranium, growth in these conditions were compared and the same rates of cells survival were observed in control and uranyl exposed cultures. Additionally, this impact was analyzed by two-dimensional differential gel electrophoresis proteomics to discover protein actors specifically present or accumulated in contact with uranium.Exposure to uranium resulted in differential accumulation of proteins associated with oxidative stress and in the accumulation of the NADH/quinone oxidoreductase WrbA. This FMN dependent protein performs obligate two-electron reduction of quinones, and may be involved in cells response to oxidative stress. Interestingly, this WrbA protein presents similarities with the chromate reductase from E. coli, which was shown to reduce uranyl in vitro.

  14. Phosducin-like protein regulates G-protein betagamma folding by interaction with tailless complex polypeptide-1alpha: dephosphorylation or splicing of PhLP turns the switch toward regulation of Gbetagamma folding.

    PubMed

    Humrich, Jan; Bermel, Christina; Bünemann, Moritz; Härmark, Linda; Frost, Robert; Quitterer, Ursula; Lohse, Martin J

    2005-05-20

    Phosducin-like protein (PhLP) exists in two splice variants PhLP(LONG) (PhLP(L)) and PhLP(SHORT) (PhLP(S)). Whereas PhLP(L) directly inhibits Gbetagamma-stimulated signaling, the G betagamma-inhibitory mechanism of PhLP(S) is not understood. We report here that inhibition of Gbetagamma signaling in intact HEK cells by PhLP(S) was independent of direct Gbetagamma binding; however, PhLP(S) caused down-regulation of Gbeta and Ggamma proteins. The down-regulation was partially suppressed by lactacystine, indicating the involvement of proteasomal degradation. N-terminal fusion of Gbeta or Ggamma with a dye-labeling protein resulted in their stabilization against down-regulation by PhLP(S) but did not lead to a functional rescue. Moreover, in the presence of PhLP(S), stabilized Ggamma subunits did not coprecipitate with stabilized Gbeta subunits, suggesting that PhLP(S) might interfere with Gbetagamma folding. PhLP(S) and several truncated mutants of PhLP(S) interacted with the subunit tailless complex polypeptide-1alpha (TCP-1alpha) of the CCT chaperonin complex, which is involved in protein folding. Knock-down of TCP-1alpha in HEK cells by small interfering RNA also led to down-regulation of Gbetagamma. We therefore conclude that the strong inhibitory action of PhLP(S) on Gbetagamma signaling is the result of a previously unrecognized mechanism of Gbetagamma-regulation, inhibition of Gbetagamma-folding by interference with TCP-1alpha.

  15. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process.

  16. pH Regulation of ammonia secretion by Colletotrichum gloeosporioides and its effect on appressorium formation and pathogenicity.

    PubMed

    Miyara, Itay; Shafran, Hadas; Davidzon, Maayan; Sherman, Amir; Prusky, Dov

    2010-03-01

    Host-tissue alkalinization via ammonia accumulation is key to Colletotrichum spp. colonization. Using macroarrays carrying C. gloeosporioides cDNAs, we monitored gene expression during the alkalinization process. A set of genes involved in synthesis and catabolism of ammonia accumulation were identified. Expression of NAD(+)-specific glutamate dehydrogenase (GDH2, encoding ammonia synthesis) and the ammonia exporter AMET were induced at pH 4.0 to 4.5. Conversely, ammonia uptake and transcript activation of the ammonia and glutamate importers (MEP and GLT, respectively) and glutamine synthase (GS1) were higher at pH 6.0 to 7.0. Accumulated ammonia in the wild-type mycelium decreased during ambient alkalinization, concurrent with increased GS1 expression. Deltapac1 mutants of C. gloeosporioides, which are sensitive to alkaline pH changes, showed upregulation of the acid-expressed GDH2 and downregulation of the alkaline-expressed GS1, resulting in 60% higher ammonia accumulation inside the mycelium. Deltagdh2 strains of C. gloeosporioides, impaired in ammonia production, showed 85% inhibition in appressorium formation followed by reduced colonization on avocado fruit (Persea americana cv. Fuerte) pericarp, while exogenic ammonia addition restored appressoria formation. Thus the modulation of genes involved in ammonia metabolism and catabolism by C. gloeosporioides is ambient pH-dependent. Aside from its contribution to necrotrophic stages, ammonia accumulation by germinating spores regulates appressorium formation and determines the initiation of biotrophic stages of avocado-fruit colonization by Colletotrichum spp.

  17. Proton/l-Glutamate Symport and the Regulation of Intracellular pH in Isolated Mesophyll Cells 1

    PubMed Central

    Snedden, Wayne A.; Chung, Induk; Pauls, Randy H.; Bown, Alan W.

    1992-01-01

    Addition of l-[U-14C]glutamate to a suspension of mechanically isolated asparagus (Asparagus sprengeri Regel) mesophyll cells results in (a) alkalinization of the medium, (b) uptake of l-[U-14C]glutamate, and (c) efflux of [14C]4-aminobutyrate, a product of glutamate decarboxylation. All three phenomena were eliminated by treatment with 1 millimolar aminooxyacetate. In vitro glutamate decarboxylase (GAD) assays showed that (a) 2 millimolar aminooxyacetate eliminated enzyme activity, (b) activity was pyridoxal phosphate-dependent, and (c) activity exhibited a sharp pH optimum at 6.0 that decreased to 20% of optimal activity at pH 5.0 and 7.0. Addition of 1.5 millimolar sodium butyrate or sodium acetate to cell suspensions caused immediate alkalinization of the medium followed by a resumption of acidification of the medium at a rate approximately double the initial rate. The data indicate that (a) continued H+/l-glutamate contransport is dependent upon GAD activity, (b) the pH-dependent properties of GAD are consistent with a role in a metabolic pH-stat, and (c) the regulation of intracellular pH during H+/l-Glu symport may involve both H+ consumption during 4-aminobutyrate production and ATP-driven H+ efflux. PMID:16668938

  18. Regulation of the voltage-insensitive step of HERG activation by extracellular pH.

    PubMed

    Zhou, Qinlian; Bett, Glenna C L

    2010-06-01

    Human ether-à-go-go-related gene (HERG, Kv11.1, KCNH2) voltage-gated K(+) channels dominate cardiac action potential repolarization. In addition, HERG channels play a role in neuronal and smooth cell excitability as well as cancer pathology. Extracellular pH (pH(o)) is modified during myocardial ischemia, inflammation, and respiratory alkalosis, so understanding the response of HERG channels to changes in pH is of clinical significance. The relationship between pH(o) and HERG channel gating appears complex. Acidification has previously been reported to speed, slow, or have no effect on activation. We therefore undertook comprehensive analysis of the effect of pH(o) on HERG channel activation. HERG channels have unique and complex activation gating characteristics with both voltage-sensitive and voltage-insensitive steps in the activation pathway. Acidosis decreased the activation rate, suppressed peak current, and altered the sigmoidicity of gating near threshold potentials. At positive voltages, where the voltage-insensitive transition is rate limiting, pH(o) modified the voltage-insensitive step with a pK(a) similar to that of histidine. Hill coefficient analysis was incompatible with a coefficient of 1 but was well described by a Hill coefficient of 4. We derived a pH(o)-sensitive term for a five-state Markov model of HERG channel gating. This model demonstrates the mechanism of pH(o) sensitivity in HERG channel activation. Our experimental data and mathematical model demonstrate that the pH(o) sensitivity of HERG channel activation is dominated by the pH(o) sensitivity of the voltage-insensitive step, in a fashion that is compatible with the presence of at least one proton-binding site on each subunit of the channel tetramer.

  19. Vacuolar CAX1 and CAX3 influence auxin transport in guard cells via regulation of apoplastic pH.

    PubMed

    Cho, Daeshik; Villiers, Florent; Kroniewicz, Laetitia; Lee, Sangmee; Seo, You Jin; Hirschi, Kendal D; Leonhardt, Nathalie; Kwak, June M

    2012-11-01

    CATION EXCHANGERs CAX1 and CAX3 are vacuolar ion transporters involved in ion homeostasis in plants. Widely expressed in the plant, they mediate calcium transport from the cytosol to the vacuole lumen using the proton gradient across the tonoplast. Here, we report an unexpected role of CAX1 and CAX3 in regulating apoplastic pH and describe how they contribute to auxin transport using the guard cell's response as readout of hormone signaling and cross talk. We show that indole-3-acetic acid (IAA) inhibition of abscisic acid (ABA)-induced stomatal closure is impaired in cax1, cax3, and cax1/cax3. These mutants exhibited constitutive hypopolarization of the plasma membrane, and time-course analyses of membrane potential revealed that IAA-induced hyperpolarization of the plasma membrane is also altered in these mutants. Both ethylene and 1-naphthalene acetic acid inhibited ABA-triggered stomatal closure in cax1, cax3, and cax1/cax3, suggesting that auxin signaling cascades were functional and that a defect in IAA transport caused the phenotype of the cax mutants. Consistent with this finding, chemical inhibition of AUX1 in wild-type plants phenocopied the cax mutants. We also found that cax1/cax3 mutants have a higher apoplastic pH than the wild type, further supporting the hypothesis that there is a defect in IAA import in the cax mutants. Accordingly, we were able to fully restore IAA inhibition of ABA-induced stomatal closure in cax1, cax3, and cax1/cax3 when stomatal movement assays were carried out at a lower extracellular pH. Our results suggest a network linking the vacuolar cation exchangers to apoplastic pH maintenance that plays a crucial role in cellular processes.

  20. Iron and pH Homeostasis Intersect at the Level of Fur Regulation in the Gastric Pathogen Helicobacter pylori†

    PubMed Central

    Gancz, Hanan; Censini, Stefano; Merrell, D. Scott

    2006-01-01

    Helicobacter pylori persistently colonizes the stomach of the majority of the world's population and is a tremendous medical burden due to its causal role in diverse gastric maladies. Since the stomach is a constantly changing environment, successful colonization of H. pylori within this niche requires regulation of bacterial gene expression to cope with the environmental fluctuations. In H. pylori, the ferric uptake regulator (Fur) has been shown to play an intricate role in adaptation of the bacterium to two conditions known to oscillate within the gastric mucosa: iron limitation and low pH. To extend our knowledge of the process of regulation and adaptation in H. pylori, we show that Fur is required for efficient colonization of the Mongolian gerbil: the mutant strain exhibits a 100-fold increase in the 50% infectious dose, as well as a 100-fold defect in competitive colonization, when coinfected with wild-type bacteria. Furthermore, we used DNA microarrays to identify genes whose expression was altered in a Fur-deficient strain. We show that the Fur regulon of H. pylori consists of approximately 30 genes, most of which have been previously annotated as acid stress associated. Finally, we investigate the role of Fur in acid-responsive modulation of gene expression and show that a large number of genes are aberrantly expressed in the Fur mutant specifically upon acid exposure. This fact likely explains the requirement for this regulator for growth and colonization in the stomach. PMID:16369017

  1. Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut

    PubMed Central

    Ghosh, Anil K.; Coppens, Isabelle; Gårdsvoll, Henrik; Ploug, Michael; Jacobs-Lorena, Marcelo

    2011-01-01

    Ookinete invasion of the mosquito midgut is an essential step for the development of the malaria parasite in the mosquito. Invasion involves recognition between a presumed mosquito midgut receptor and an ookinete ligand. Here, we show that enolase lines the ookinete surface. An antienolase antibody inhibits oocyst development of both Plasmodium berghei and Plasmodium falciparum, suggesting that enolase may act as an invasion ligand. Importantly, we demonstrate that surface enolase captures plasminogen from the mammalian blood meal via its lysine motif (DKSLVK) and that this interaction is essential for midgut invasion, because plasminogen depletion leads to a strong inhibition of oocyst formation. Although addition of recombinant WT plasminogen to depleted serum rescues oocyst formation, recombinant inactive plasminogen does not, thus emphasizing the importance of plasmin proteolytic activity for ookinete invasion. The results support the hypothesis that enolase on the surface of Plasmodium ookinetes plays a dual role in midgut invasion: by acting as a ligand that interacts with the midgut epithelium and, further, by capturing plasminogen, whose conversion to active plasmin promotes the invasion process. PMID:21949403

  2. Intracellular pH regulation in unstimulated Calliphora salivary glands is Na+ dependent and requires V-ATPase activity.

    PubMed

    Schewe, Bettina; Blenau, Wolfgang; Walz, Bernd

    2012-04-15

    Salivary gland cells of the blowfly Calliphora vicina have a vacuolar-type H(+)-ATPase (V-ATPase) that lies in their apical membrane and energizes the secretion of a KCl-rich primary saliva upon stimulation with serotonin (5-hydroxytryptamine). Whether and to what extent V-ATPase contributes to intracellular pH (pH(i)) regulation in unstimulated gland cells is unknown. We used the fluorescent dye BCECF to study intracellular pH(i) regulation microfluorometrically and show that: (1) under resting conditions, the application of Na(+)-free physiological saline induces an intracellular alkalinization attributable to the inhibition of the activity of a Na(+)-dependent glutamate transporter; (2) the maintenance of resting pH(i) is Na(+), Cl(-), concanamycin A and DIDS sensitive; (3) recovery from an intracellular acid load is Na(+) sensitive and requires V-ATPase activity; (4) the Na(+)/H(+) antiporter is not involved in pH(i) recovery after a NH(4)Cl prepulse; and (5) at least one Na(+)-dependent transporter and the V-ATPase maintain recovery from an intracellular acid load. Thus, under resting conditions, the V-ATPase and at least one Na(+)-dependent transporter maintain normal pH(i) values of pH 7.5. We have also detected the presence of a Na(+)-dependent glutamate transporter, which seems to act as an acid loader. Despite this not being a common pH(i)-regulating transporter, its activity affects steady-state pH(i) in C. vicina salivary gland cells.

  3. PIP Water Transport and Its pH Dependence Are Regulated by Tetramer Stoichiometry

    PubMed Central

    Jozefkowicz, Cintia; Sigaut, Lorena; Scochera, Florencia; Soto, Gabriela; Ayub, Nicolás; Pietrasanta, Lía Isabel; Amodeo, Gabriela; González Flecha, F. Luis; Alleva, Karina

    2016-01-01

    Many plasma membrane channels form oligomeric assemblies, and heterooligomerization has been described as a distinctive feature of some protein families. In the particular case of plant plasma membrane aquaporins (PIPs), PIP1 and PIP2 monomers interact to form heterotetramers. However, the biological properties of the different heterotetrameric configurations formed by PIP1 and PIP2 subunits have not been addressed yet. Upon coexpression of tandem PIP2-PIP1 dimers in Xenopus oocytes, we can address, for the first time to our knowledge, the functional properties of single heterotetrameric species having 2:2 stoichiometry. We have also coexpressed PIP2-PIP1 dimers with PIP1 and PIP2 monomers to experimentally investigate the localization and biological activity of each tetrameric assembly. Our results show that PIP2-PIP1 heterotetramers can assemble with 3:1, 1:3, or 2:2 stoichiometry, depending on PIP1 and PIP2 relative expression in the cell. All PIP2-PIP1 heterotetrameric species localize at the plasma membrane and present the same water transport capacity. Furthermore, the contribution of any heterotetrameric assembly to the total water transport through the plasma membrane doubles the contribution of PIP2 homotetramers. Our results also indicate that plasma membrane water transport can be modulated by the coexistence of different tetrameric species and by intracellular pH. Moreover, all the tetrameric species present similar cooperativity behavior for proton sensing. These findings throw light on the functional properties of PIP tetramers, showing that they have flexible stoichiometry dependent on the quantity of PIP1 and PIP2 molecules available. This represents, to our knowledge, a novel regulatory mechanism to adjust water transport across the plasma membrane. PMID:27028641

  4. PIP Water Transport and Its pH Dependence Are Regulated by Tetramer Stoichiometry.

    PubMed

    Jozefkowicz, Cintia; Sigaut, Lorena; Scochera, Florencia; Soto, Gabriela; Ayub, Nicolás; Pietrasanta, Lía Isabel; Amodeo, Gabriela; González Flecha, F Luis; Alleva, Karina

    2016-03-29

    Many plasma membrane channels form oligomeric assemblies, and heterooligomerization has been described as a distinctive feature of some protein families. In the particular case of plant plasma membrane aquaporins (PIPs), PIP1 and PIP2 monomers interact to form heterotetramers. However, the biological properties of the different heterotetrameric configurations formed by PIP1 and PIP2 subunits have not been addressed yet. Upon coexpression of tandem PIP2-PIP1 dimers in Xenopus oocytes, we can address, for the first time to our knowledge, the functional properties of single heterotetrameric species having 2:2 stoichiometry. We have also coexpressed PIP2-PIP1 dimers with PIP1 and PIP2 monomers to experimentally investigate the localization and biological activity of each tetrameric assembly. Our results show that PIP2-PIP1 heterotetramers can assemble with 3:1, 1:3, or 2:2 stoichiometry, depending on PIP1 and PIP2 relative expression in the cell. All PIP2-PIP1 heterotetrameric species localize at the plasma membrane and present the same water transport capacity. Furthermore, the contribution of any heterotetrameric assembly to the total water transport through the plasma membrane doubles the contribution of PIP2 homotetramers. Our results also indicate that plasma membrane water transport can be modulated by the coexistence of different tetrameric species and by intracellular pH. Moreover, all the tetrameric species present similar cooperativity behavior for proton sensing. These findings throw light on the functional properties of PIP tetramers, showing that they have flexible stoichiometry dependent on the quantity of PIP1 and PIP2 molecules available. This represents, to our knowledge, a novel regulatory mechanism to adjust water transport across the plasma membrane.

  5. Tigutcystatin, a cysteine protease inhibitor from Triatoma infestans midgut expressed in response to Trypanosoma cruzi

    SciTech Connect

    Buarque, Diego S.; Spindola, Leticia M.N.; Martins, Rafael M.; Braz, Gloria R.C.; Tanaka, Aparecida S.

    2011-09-23

    Highlights: {yields} Tigutcystatin inhibits Trypanosoma cruzi cysteine proteases with high specificity. {yields} Tigutcystatin expression is up-regulated in response to T. cruzi infection. {yields} It is the first cysteine proteases inhibitor characterized from a triatomine insect. -- Abstract: The insect Triatoma infestans is a vector of Trypanosoma cruzi, the etiological agent of Chagas disease. A cDNA library was constructed from T. infestans anterior midgut, and 244 clones were sequenced. Among the EST sequences, an open reading frame (ORF) with homology to a cystatin type 2 precursor was identified. Then, a 288-bp cDNA fragment encoding mature cystatin (lacking signal peptide) named Tigutcystatin was cloned fused to a N-terminal His tag in pET-14b vector, and the protein expressed in Escherichia coli strain Rosetta gami. Tigutcystatin purified and cleaved by thrombin to remove His tag presented molecular mass of 11 kDa and 10,137 Da by SDS-PAGE and MALDI-TOF mass spectrometry, respectively. Purified Tigutcystatin was shown to be a tight inhibitor towards cruzain, a T. cruzi cathepsin L-like enzyme (K{sub i} = 3.29 nM) and human cathepsin L (K{sub i} = 3.78 nM). Tissue specific expression analysis showed that Tigutcystatin was mostly expressed in anterior midgut, although amplification in small intestine was also detected by semi quantitative RT-PCR. qReal time PCR confirmed that Tigutcystatin mRNA is significantly up-regulated in anterior midgut when T. infestans is infected with T. cruzi. Together, these results indicate that Tigutcystatin may be involved in modulation of T. cruzi in intestinal tract by inhibiting parasite cysteine proteases, which represent the virulence factors of this protozoan.

  6. Laminin and the malaria parasite's journey through the mosquito midgut.

    PubMed

    Arrighi, Romanico B G; Lycett, Gareth; Mahairaki, Vassiliki; Siden-Kiamos, Inga; Louis, Christos

    2005-07-01

    During the invasion of the mosquito midgut epithelium, Plasmodium ookinetes come to rest on the basal lamina, where they transform into the sporozoite-producing oocysts. Laminin, one of the basal lamina's major components, has previously been shown to bind several surface proteins of Plasmodium ookinetes. Here, using the recently developed RNAi technique in mosquitoes, we used a specific dsRNA construct targeted against the LANB2 gene (laminin gamma1) of Anopheles gambiae to reduce its mRNA levels, leading to a substantial reduction in the number of successfully developed oocysts in the mosquito midgut. Moreover, this molecular relationship is corroborated by the intimate association of developing P. berghei parasites and laminin in the gut, as observed using confocal microscopy. Our data support the notion of laminin playing a functional role in the development of the malaria parasite within the mosquito midgut.

  7. LeftyA sensitive cytosolic pH regulation and glycolytic flux in Ishikawa human endometrial cancer cells

    SciTech Connect

    Salker, Madhuri S.; Zhou, Yuetao; Singh, Yogesh; Brosens, Jan; Lang, Florian

    2015-05-08

    Objective: LeftyA, a powerful regulator of stemness, embryonic differentiation, and reprogramming of cancer cells, counteracts cell proliferation and tumor growth. Key properties of tumor cells include enhanced glycolytic flux, which is highly sensitive to cytosolic pH and thus requires export of H{sup +} and lactate. H{sup +} extrusion is in part accomplished by Na{sup +}/H{sup +} exchangers, such as NHE1. An effect of LeftyA on transport processes has, however, never been reported. The present study thus explored whether LeftyA modifies regulation of cytosolic pH (pHi) in Ishikawa cells, a well differentiated endometrial carcinoma cell model. Methods: NHE1 transcript levels were determined by qRT-PCR, NHE1 protein abundance quantified by Western blotting, pH{sub i} estimated utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na{sup +}/H{sup +} exchanger activity from Na{sup +} dependent realkalinization after an ammonium pulse, and lactate concentration in the supernatant utilizing an enzymatic assay and subsequent colorimetry. Results: A 2 h treatment with LeftyA (8 ng/ml) significantly decreased NHE1 transcript levels (by 99.6%), NHE1 protein abundance (by 71%), Na{sup +}/H{sup +} exchanger activity (by 55%), pHi (from 7.22 ± 0.02 to 7.05 ± 0.02), and lactate release (by 41%). Conclusions: LeftyA markedly down-regulates NHE1 expression, Na{sup +}/H{sup +} exchanger activity, pHi, and lactate release in Ishikawa cells. Those effects presumably contribute to cellular reprogramming and growth inhibition. - Highlights: • LeftyA, an inhibitor of tumor growth, reduces Na{sup +}/H{sup +}-exchanger activity by 55%. • LeftyA decreases NHE1 transcripts by 99.6% and NHE1 protein by 71%. • LeftyA decreases cytosolic pH from 7.22 ± 0.02 to 7.05 ± 0.02. • Cytosolic acidification by Lefty A decreases glycolysis by 41%. • Cytosolic acidification by Lefty A compromises energy production of tumor cells.

  8. Metabolic regulation of neutrophil spreading, membrane tubulovesicular extensions (cytonemes) formation and intracellular pH upon adhesion to fibronectin.

    PubMed

    Galkina, Svetlana I; Sud'ina, Galina F; Klein, Thomas

    2006-08-01

    Circulating leukocytes have a round cell shape and roll along vessel walls. However, metabolic disorders can lead them to adhere to the endothelium and spread (flatten). We studied the metabolic regulation of adhesion, spreading and intracellular pH (pHi) of neutrophils (polymorphonuclear leukocytes) upon adhesion to fibronectin-coated substrata. Resting neutrophils adhered and spread on fibronectin. An increase in pHi accompanied neutrophil spreading. Inhibition of oxidative phosphorylation or inhibition of P- and F-type ATPases affected neither neutrophil spreading nor pHi. Inhibition of glucose metabolism or V-ATPase impaired neutrophil spreading, blocked the increase in the pHi and induced extrusion of membrane tubulovesicular extensions (cytonemes), anchoring cells to substrata. Omission of extracellular Na(+) and inhibition of chloride channels caused a similar effect. We propose that these tubulovesicular extensions represent protrusions of exocytotic trafficking, supplying the plasma membrane of neutrophils with ion exchange mechanisms and additional membrane for spreading. Glucose metabolism and V-type ATPase could affect fusion of exocytotic trafficking with the plasma membrane, thus controlling neutrophil adhesive state and pHi. Cl(-) efflux through chloride channels and Na(+) influx seem to be involved in the regulation of the V-ATPase by carrying out charge compensation for the proton-pumping activity and through V-ATPase in regulation of neutrophil spreading and pHi.

  9. Metabolic regulation of neutrophil spreading, membrane tubulovesicular extensions (cytonemes) formation and intracellular pH upon adhesion to fibronectin

    SciTech Connect

    Galkina, Svetlana I. . E-mail: galkina@genebee.msu.su; Sud'ina, Galina F.; Klein, Thomas

    2006-08-01

    Circulating leukocytes have a round cell shape and roll along vessel walls. However, metabolic disorders can lead them to adhere to the endothelium and spread (flatten). We studied the metabolic regulation of adhesion, spreading and intracellular pH (pHi) of neutrophils (polymorphonuclear leukocytes) upon adhesion to fibronectin-coated substrata. Resting neutrophils adhered and spread on fibronectin. An increase in pHi accompanied neutrophil spreading. Inhibition of oxidative phosphorylation or inhibition of P- and F-type ATPases affected neither neutrophil spreading nor pHi. Inhibition of glucose metabolism or V-ATPase impaired neutrophil spreading, blocked the increase in the pHi and induced extrusion of membrane tubulovesicular extensions (cytonemes), anchoring cells to substrata. Omission of extracellular Na{sup +} and inhibition of chloride channels caused a similar effect. We propose that these tubulovesicular extensions represent protrusions of exocytotic trafficking, supplying the plasma membrane of neutrophils with ion exchange mechanisms and additional membrane for spreading. Glucose metabolism and V-type ATPase could affect fusion of exocytotic trafficking with the plasma membrane, thus controlling neutrophil adhesive state and pHi. Cl{sup -} efflux through chloride channels and Na{sup +} influx seem to be involved in the regulation of the V-ATPase by carrying out charge compensation for the proton-pumping activity and through V-ATPase in regulation of neutrophil spreading and pHi.

  10. Transport mechanism and pH regulation of the Na+/H+ antiporter NhaA from Escherichia coli: an electrophysiological study.

    PubMed

    Mager, Thomas; Rimon, Abraham; Padan, Etana; Fendler, Klaus

    2011-07-01

    Using an electrophysiological assay the activity of NhaA was tested in a wide pH range from pH 5.0 to 9.5. Forward and reverse transport directions were investigated at zero membrane potential using preparations with inside-out and right side-out-oriented transporters with Na(+) or H(+) gradients as the driving force. Under symmetrical pH conditions with a Na(+) gradient for activation, both the wt and the pH-shifted G338S variant exhibit highly symmetrical transport activity with bell-shaped pH dependences, but the optimal pH was shifted 1.8 pH units to the acidic range in the variant. In both strains the pH dependence was associated with a systematic increase of the K(m) for Na(+) at acidic pH. Under symmetrical Na(+) concentration with a pH gradient for NhaA activation, an unexpected novel characteristic of the antiporter was revealed; rather than being down-regulated, it remained active even at pH as low as 5. These data allowed a transport mechanism to advance based on competing Na(+) and H(+) binding to a common transport site and a kinetic model to develop quantitatively explaining the experimental results. In support of these results, both alkaline pH and Na(+) induced the conformational change of NhaA associated with NhaA cation translocation as demonstrated here by trypsin digestion. Furthermore, Na(+) translocation was found to be associated with the displacement of a negative charge. In conclusion, the electrophysiological assay allows the revelation of the mechanism of NhaA antiport and sheds new light on the concept of NhaA pH regulation.

  11. The volume-regulated anion channel (LRRC8) in nodose neurons is sensitive to acidic pH

    PubMed Central

    Wang, Runping; Lu, Yongjun; Gunasekar, Susheel; Zhang, Yanhui; Benson, Christopher J.; Chapleau, Mark W.; Sah, Rajan; Abboud, François M.

    2017-01-01

    The leucine rich repeat containing protein 8A (LRRC8A), or SWELL1, is an essential component of the volume-regulated anion channel (VRAC) that is activated by cell swelling and ionic strength. We report here for the first time to our knowledge its expression in a primary cell culture of nodose ganglia neurons and its localization in the soma, neurites, and neuronal membrane. We show that this neuronal VRAC/SWELL1 senses low external pH (pHo) in addition to hypoosmolarity. A robust sustained chloride current is seen in 77% of isolated nodose neurons following brief exposures to extracellular acid pH. Its activation involves proton efflux, intracellular alkalinity, and an increase in NOX-derived H2O2. The molecular identity of both the hypoosmolarity-induced and acid pHo–conditioned VRAC as LRRC8A (SWELL1) was confirmed by Cre-flox–mediated KO, shRNA-mediated knockdown, and CRISPR/Cas9-mediated LRRC8A deletion in HEK cells and in primary nodose neuronal cultures. Activation of VRAC by low pHo reduces neuronal injury during simulated ischemia and N-methyl-D-aspartate–induced (NMDA-induced) apoptosis. These results identify the VRAC (LRRC8A) as a dual sensor of hypoosmolarity and low pHo in vagal afferent neurons and define the mechanisms of its activation and its neuroprotective potential. PMID:28289711

  12. The volume-regulated anion channel (LRRC8) in nodose neurons is sensitive to acidic pH.

    PubMed

    Wang, Runping; Lu, Yongjun; Gunasekar, Susheel; Zhang, Yanhui; Benson, Christopher J; Chapleau, Mark W; Sah, Rajan; Abboud, François M

    2017-03-09

    The leucine rich repeat containing protein 8A (LRRC8A), or SWELL1, is an essential component of the volume-regulated anion channel (VRAC) that is activated by cell swelling and ionic strength. We report here for the first time to our knowledge its expression in a primary cell culture of nodose ganglia neurons and its localization in the soma, neurites, and neuronal membrane. We show that this neuronal VRAC/SWELL1 senses low external pH (pHo) in addition to hypoosmolarity. A robust sustained chloride current is seen in 77% of isolated nodose neurons following brief exposures to extracellular acid pH. Its activation involves proton efflux, intracellular alkalinity, and an increase in NOX-derived H2O2. The molecular identity of both the hypoosmolarity-induced and acid pHo-conditioned VRAC as LRRC8A (SWELL1) was confirmed by Cre-flox-mediated KO, shRNA-mediated knockdown, and CRISPR/Cas9-mediated LRRC8A deletion in HEK cells and in primary nodose neuronal cultures. Activation of VRAC by low pHo reduces neuronal injury during simulated ischemia and N-methyl-D-aspartate-induced (NMDA-induced) apoptosis. These results identify the VRAC (LRRC8A) as a dual sensor of hypoosmolarity and low pHo in vagal afferent neurons and define the mechanisms of its activation and its neuroprotective potential.

  13. A chymotrypsin-like proteinase from the midgut of Tenebrio molitor larvae.

    PubMed

    Elpidina, E N; Tsybina, T A; Dunaevsky, Y E; Belozersky, M A; Zhuzhikov, D P; Oppert, B

    2005-08-01

    A chymotrypsin-like proteinase was isolated from the posterior midgut of larvae of the yellow mealworm, Tenebrio molitor, by ion-exchange and gel filtration chromatography. The enzyme, TmC1, was purified to homogeneity as determined by SDS-PAGE and postelectrophoretic activity detection. TmC1 had a molecular mass of 23.0 kDa, pI of 8.4, a pH optimum of 9.5, and the optimal temperature for activity was 51 degrees C. The proteinase displayed high stability at temperatures below 43 degrees C and in the pH range 6.5-11.2, which is inclusive of the pH of the posterior and middle midgut. The enzyme hydrolyzed long chymotrypsin peptide substrates SucAAPFpNA, SucAAPLpNA and GlpAALpNA and did not hydrolyze short chymotrypsin substrates. Kinetic parameters of the enzymatic reaction demonstrated that the best substrate was SucAAPFpNA, with k(cat app) 36.5 s(-1) and K(m) 1.59 mM. However, the enzyme had a lower K(m) for SucAAPLpNA, 0.5 mM. Phenylmethylsulfonyl fluoride (PMSF) was an effective inhibitor of TmC1, and the proteinase was not inhibited by either tosyl-l-phenylalanine chloromethyl ketone (TPCK) or N(alpha)-tosyl-l-lysine chloromethyl ketone (TLCK). However, the activity of TmC1 was reduced with sulfhydryl reagents. Several plant and insect proteinaceous proteinase inhibitors were active against the purified enzyme, the most effective being Kunitz soybean trypsin inhibitor (STI). The N-terminal sequence of the enzyme was IISGSAASKGQFPWQ, which was up to 67% similar to other insect chymotrypsin-like proteinases and 47% similar to mammalian chymotrypsin A. The amino acid composition of TmC1 differed significantly from previously isolated T. molitor enzymes.

  14. Sharply Tuned pH Response of Genetic Competence Regulation in Streptococcus mutans: a Microfluidic Study of the Environmental Sensitivity of comX

    PubMed Central

    Son, Minjun; Ghoreishi, Delaram; Ahn, Sang-Joon; Burne, Robert A.

    2015-01-01

    Genetic competence in Streptococcus mutans is a transient state that is regulated in response to multiple environmental inputs. These include extracellular pH and the concentrations of two secreted peptides, designated CSP (competence-stimulating peptide) and XIP (comX-inducing peptide). The role of environmental cues in regulating competence can be difficult to disentangle from the effects of the organism's physiological state and its chemical modification of its environment. We used microfluidics to control the extracellular environment and study the activation of the key competence gene comX. We find that the comX promoter (PcomX) responds to XIP or CSP only when the extracellular pH lies within a narrow window, about 1 pH unit wide, near pH 7. Within this pH range, CSP elicits a strong PcomX response from a subpopulation of cells, whereas outside this range the proportion of cells expressing comX declines sharply. Likewise, PcomX is most sensitive to XIP only within a narrow pH window. While previous work suggested that comX may become refractory to CSP or XIP stimulus as cells exit early exponential phase, our microfluidic data show that extracellular pH dominates in determining sensitivity to XIP and CSP. The data are most consistent with an effect of pH on the ComR/ComS system, which has direct control over transcription of comX in S. mutans. PMID:26070670

  15. Mitochondria in the midgut epithelial cells of sugarcane borer parasitized by Cotesia flavipes (Cameron, 1891).

    PubMed

    Pinheiro, D O; Silva, M D; Gregório, E A

    2010-02-01

    The sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae) has been controlled by Cotesia flavipes (Hymenoptera: Braconidae); however, very little is known about the effect of the parasitism in the host organs, including the midgut. This work aims to verify mitochondrial alteration in the different midgut epithelial cells of D. saccharalis parasitized by C. flavipes. Midgut fragments (anterior and posterior region) of both non-parasitized and parasitized larvae were processed for transmission electron microscopy. The mitochondria of midgut epithelial cell in the parasitized larvae exhibit morphological alteration, represented by matrix rarefaction and vacuolisation. These mitochondrial alterations are more pronounced in the anterior midgut region during the parasitism process, mainly in the columnar cell.

  16. Adult midgut malrotation presented with acute bowel obstruction and ischemia

    PubMed Central

    Zengin, Akile; Uçar, Bercis İmge; Düzgün, Şükrü Aydın; Bayhan, Zülfü; Zeren, Sezgin; Yaylak, Faik; Şanal, Bekir; Bayhan, Nilüfer Araz

    2016-01-01

    Introduction Intestinal malrotation refers to the partial or complete failure of rotation of midgut around the superior mesenteric vessels in embryonic life. Arrested midgut rotation results due to narrow-based mesentery and increases the risk of twisting midgut and subsequent obstruction and necrosis. Presentation of case 40 years old female patient admitted to emergency service with acute abdomen and computerized tomography scan showed dilated large and small intestine segments with air-fluid levels and twisted mesentery around superior mesenteric artery and vein indicating “whirpool sign”. Discussion Malrotation in adults is a rare cause of midgut volvulus as though it should be considered in differential diagnosis in patients presented with acute abdomen and intestinal ischemia. Even though clinical symptoms are obscure, adult patients usually present with vomiting and recurrent abdominal pain due to chronic partial obstruction. Contrast enhanced radiograph has been shown to be the most accurate method. Typical radiological signs are corkscrew sign, which is caused by the dilatation of various duodenal segments at different levels and the relocation of duodenojejunal junction due to jejunum folding. As malrotation commonly causes intestinal obstruction, patients deserve an elective laparotomy. Conclusion Malrotation should be considered in differential diagnosis in patients presented with acute abdomen and intestinal ischemia. Surgical intervention should be prompt to limit morbidity and mortality. PMID:27015011

  17. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism

    PubMed Central

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Pennacchio, Francesco

    2016-01-01

    Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host. PMID:27506800

  18. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism.

    PubMed

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Ercolini, Danilo; Pennacchio, Francesco

    2016-08-23

    Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host.

  19. Aarskog's syndrome with Hirschsprung's disease, midgut malrotation, and dental anomalies.

    PubMed Central

    Hassinger, D D; Mulvihill, J J; Chandler, J B

    1980-01-01

    A 23-year-old man with Aarskog's syndrome had Hirschspring's disease, midgut malrotation, a renal cyst, a cartilaginous projection of the pinna, geographic tongue, and dental anomalies. The family history, negative for these features, including several malignancies. Any or all of these features could be considered part of Aarskog's syndrome and may represent anomalies of neural crest development. Images PMID:7401138

  20. Mamestra configurata nucleopolyhedrovirus-A transcriptome from infected host midgut.

    PubMed

    Donly, B Cameron; Theilmann, David A; Hegedus, Dwayne D; Baldwin, Douglas; Erlandson, Martin A

    2014-02-01

    Infection of an insect by a baculovirus occurs in two distinct phases, an initial infection of host midgut by occlusion-derived virions (ODVs) and subsequent systemic infection of other tissues by budded virions (BV). A vast majority of investigations of the infection process have been restricted to cell culture studies using BV that emulate the systemic phase of infection. This is one of the first studies to investigate baculovirus gene expression in ODV infected midgut cells. We have focused on the critical first phase of in vivo infection by Mamestra configurata nucleopolyhedrovirus-A in M. configurata larvae, using qPCR and RNAseq mass sequencing to measure virus gene expression in midgut cells. The earliest genes detected by each method had significant overlap, including known early genes as well as genes unique to MacoNPV-A and genes of unknown function. The RNAseq data also revealed a large range of expression levels across all ORFs, which could not be measured using qPCR. This dataset provides a first whole genome transcriptomic analysis of viral genes required for virus infection in vivo and will provide the basis for functionally analyzing specific genes that may be critical elements in baculovirus midgut infectivity and host range.

  1. Circadian Regulation of the PhCCD1 Carotenoid Cleavage Dioxygenase Controls Emission of β-Ionone, a Fragrance Volatile of Petunia Flowers1

    PubMed Central

    Simkin, Andrew J.; Underwood, Beverly A.; Auldridge, Michele; Loucas, Holly M.; Shibuya, Kenichi; Schmelz, Eric; Clark, David G.; Klee, Harry J.

    2004-01-01

    Carotenoids are thought to be the precursors of terpenoid volatile compounds that contribute to flavor and aroma. One such volatile, β-ionone, is important to fragrance in many flowers, including petunia (Petunia hybrida). However, little is known about the factors regulating its synthesis in vivo. The petunia genome contains a gene encoding a 9,10(9′,10′) carotenoid cleavage dioxygenase, PhCCD1. The PhCCD1 is 94% identical to LeCCD1A, an enzyme responsible for formation of β-ionone in tomato (Lycopersicon esculentum; Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ [2004] Plant J [in press]). Reduction of PhCCD1 transcript levels in transgenic plants led to a 58% to 76% decrease in β-ionone synthesis in the corollas of selected petunia lines, indicating a significant role for this enzyme in volatile synthesis. Quantitative reverse transcription-PCR analysis revealed that PhCCD1 is highly expressed in corollas and leaves, where it constitutes approximately 0.04% and 0.02% of total RNA, respectively. PhCCD1 is light-inducible and exhibits a circadian rhythm in both leaves and flowers. β-Ionone emission by flowers occurred principally during daylight hours, paralleling PhCCD1 expression in corollas. The results indicate that PhCCD1 activity and β-ionone emission are likely regulated at the level of transcript. PMID:15516502

  2. Midgut Microbial Community of Culex quinquefasciatus Mosquito Populations from India

    PubMed Central

    Chandel, Kshitij; Mendki, Murlidhar J.; Parikh, Rasesh Y.; Kulkarni, Girish; Tikar, Sachin N.; Sukumaran, Devanathan; Prakash, Shri; Parashar, Brahma D.; Shouche, Yogesh S.; Veer, Vijay

    2013-01-01

    The mosquito Culex quinquefasciatus is a ubiquitous species that serves as a major vector for west nile virus and lymphatic filariasis. Ingestion of bloodmeal by females triggers a series of physiological processes in the midgut and also exposes them to infection by these pathogens. The bacteria normally harbored in the midgut are known to influence physiology and can also alter the response to various pathogens. The midgut bacteria in female Cx. quinquefasciatus mosquitoes collected over a large geographical area from India was studied. Examination of 16S ribosomal DNA amplicons from culturable microflora revealed the presence of 83 bacterial species belonging to 31 bacterial genera. All of these species belong to three phyla i.e. Proteobacteria, Firmicutes and Actinobacteria. Phylum Proteobacteria was the most dominant phylum (37 species), followed by Firmicutes (33 species) and Actinobacteria (13 species). Phylum Proteobacteria, was dominated by members of γ-proteobacteria class. The genus Staphylococcus was the largest genus represented by 11 species whereas Enterobacter was the most prevalent genus and recovered from all the field stations except Leh. Highest bacterial prevalence was observed from Bhuj (22 species) followed by Nagrota (18 species), Masimpur (18 species) and Hathigarh (16 species). Whereas, least species were observed from Leh (8 species). It has been observed that individual mosquito harbor extremely diverse gut bacteria and have very small overlap bacterial taxa in their gut. This variation in midgut microbiota may be one of the factors responsible for variation in disease transmission rates or vector competence within mosquito population. The present data strongly encourage further investigations to verify the potential role of the detected bacteria in mosquito for the transmission of lymphatic filariasis and west nile virus. To the best of our knowledge this is the first study on midgut microbiota of wild Cx. quinquefasciatus from over a

  3. Alkalinization in the Isolated and Perfused Anterior Midgut of the Larval Mosquito, Aedes aegypti

    PubMed Central

    Onken, Horst; Moffett, Stacia B.; Moffett, David F.

    2008-01-01

    In the present study, isolated midguts of larval Aedes aegypti L. (Diptera: Culicidae) were mounted on perfusion pipettes and bathed in high buffer mosquito saline. With low buffer perfusion saline, containing m-cresol purple, transepithelial voltage was monitored and luminal alkalinization became visible through color changes of m-cresol purple after perfusion stop. Lumen negative voltage and alkalinization depended on metabolic energy and were stimulated in the presence of serotonin (0.2 µmol l-1). In some experiments a pH microelectrode in the lumen recorded pH values up to 10 within minutes after perfusion stop. The V-ATPase inhibitor concanamycin (50 µmol l-1) on the hemolymph side almost abolished Vte and inhibited luminal alkalinization. The carbonic anhydrase inhibitor, methazolamide (50 µmol l-1), on either the luminal or hemolymph-side, or the inhibitor of anion transport, DIDS (1 mmol l-1) on the luminal side, had no effect on Vte or alkalinization. Cl- substitution in the lumen or on both sides of the tissue affected Vte, but the color change of m-cresol purple was unchanged from control conditions. Hemolymph-side Na+ substitution or addition of the Na+/H+ exchange inhibitor, amiloride (200 µmol l-1), reduced Vte and luminal alkalinization. Luminal amiloride (200 µmol l-1) was without effects on Vte or alkalinization. High K+ (60 mmol l-1) in the lumen reduced Vte without affecting alkalinization. These results indicate that strong luminal alkalinization in isolated and perfused anterior midgut of larval A. aegypti depends on basolateral V-ATPase, but is apparently independent of carbonic anhydrase, apical Cl-/HCO3- exchange or apical K+/2H+ antiport. PMID:20307229

  4. The N-terminal domain of the V-ATPase subunit 'a' is regulated by pH in vitro and in vivo.

    PubMed

    Dechant, Reinhard; Peter, Matthias

    2011-01-01

    Regulation of the activity of vacuolar ATPase (V-ATPase) is a well known, yet poorly understood phenomenon, which might underlie the contribution of V-ATPases in various cellular signaling processes.(1) In yeast, V-ATPase is regulated by glucose and contributes to activation of cAMP-dependent protein kinase A (PKA). We have recently shown that, in vivo, glucose regulates V-ATPase through cytosolic pH, suggesting that V-ATPase contains a pH sensitive subunit, which regulates assembly of the holo-complex.(2) Here, we present the purification and biochemical characterization of the N-terminal domain of subunit 'a', Vph1N, which has been suggested to act as a pH sensor in mammalian cells.(3) Interestingly, our studies demonstrate pH-dependent oligomerization of this domain in vivo and in vitro. Moreover, we identify a membrane proximal region that is required for the pH-dependent oligomerization, and suggest a speculative model for the regulation of the V-ATPase holo-complex by pH.

  5. Damage-Induced Cell Regeneration in the Midgut of Aedes albopictus Mosquitoes

    PubMed Central

    Janeh, Maria; Osman, Dani; Kambris, Zakaria

    2017-01-01

    Mosquito-transmitted diseases cause over one million deaths every year. A better characterization of the vector’s physiology and immunity should provide valuable knowledge for the elaboration of control strategies. Mosquitoes depend on their innate immunity to defend themselves against pathogens. These pathogens are acquired mainly through the oral route, which places the insects’ gut at the front line of the battle. Indeed, the epithelium of the mosquito gut plays important roles against invading pathogens acting as a physical barrier, activating local defenses and triggering the systemic immune response. Therefore, the gut is constantly confronted to stress and often suffers cellular damage. In this study, we show that dividing cells exist in the digestive tract of adult A. albopictus and that these cells proliferate in the midgut after bacterial or chemical damage. An increased transcription of signaling molecules that regulate the EGFR and JAK/STAT pathways was also observed, suggesting a possible involvement of these pathways in the regeneration of damaged guts. This work provides evidence for the presence of regenerative cells in the mosquito guts, and paves the way towards a molecular and cellular characterization of the processes required to maintain mosquito’s midgut homeostasis in both normal and infectious conditions. PMID:28300181

  6. Role of a Novel PH-Kinase Domain Interface in PKB/Akt Regulation: Structural Mechanism for Allosteric Inhibition

    PubMed Central

    Parker, Peter J; Larijani, Banafshé

    2009-01-01

    Protein kinase B (PKB/Akt) belongs to the AGC superfamily of related serine/threonine protein kinases. It is a key regulator downstream of various growth factors and hormones and is involved in malignant transformation and chemo-resistance. Full-length PKB protein has not been crystallised, thus studying the molecular mechanisms that are involved in its regulation in relation to its structure have not been simple. Recently, the dynamics between the inactive and active conformer at the molecular level have been described. The maintenance of PKB's inactive state via the interaction of the PH and kinase domains prevents its activation loop to be phosphorylated by its upstream activator, phosphoinositide-dependent protein kinase-1 (PDK1). By using a multidisciplinary approach including molecular modelling, classical biochemical assays, and Förster resonance energy transfer (FRET)/two-photon fluorescence lifetime imaging microscopy (FLIM), a detailed model depicting the interaction between the different domains of PKB in its inactive conformation was demonstrated. These findings in turn clarified the molecular mechanism of PKB inhibition by AKT inhibitor VIII (a specific allosteric inhibitor) and illustrated at the molecular level its selectivity towards different PKB isoforms. Furthermore, these findings allude to the possible function of the C-terminus in sustaining the inactive conformer of PKB. This study presents essential insights into the quaternary structure of PKB in its inactive conformation. An understanding of PKB structure in relation to its function is critical for elucidating its mode of activation and discovering how to modulate its activity. The molecular mechanism of inhibition of PKB activation by the specific drug AKT inhibitor VIII has critical implications for determining the mechanism of inhibition of other allosteric inhibitors and for opening up opportunities for the design of new generations of modulator drugs. PMID:19166270

  7. Effects of pH regulators used as additives on the bioavailability of ibuprofen from hard gelatin capsules.

    PubMed

    Hannula, A M; Marvola, M; Rajamaeki, M; Ojantakanen, S

    1991-01-01

    In our previous study the reasons for fast absorption of ibuprofen from sodium bicarbonate based hard gelatin capsules stayed unclear. These were not investigated using pH regulators (aluminium hydroxide, calcium carbonate, tartaric acid) with different chemical and physical properties. Ibuprofen absorption was much slower with aluminium hydroxide capsules (MRT 5.3, Tmax 3.1 h, Cmax 25.6 mg l-1, lag time 37.5 min) than with sodium bicarbonate capsules of the previous study (MRT 2.6 h, tmax 0.4 h, Cmax 51.4 mg l-1), lag time 0 min). The corresponding values for calcium carbonate and tartaric acid capsules were: MRT 3.7 h and 3.9 h, Tmax 1.7 h and 2.0 h, Cmax 32.2 mg l-1 and 30.8 mg l-1 and lag time 3.1 min and 7.6 min. No differences were noted in the AUC values. A rank order correlation existed between dissolution parameters and the in vivo parameters reflecting the rate of bioavailability. It was concluded that the rapid absorption of ibuprofen from capsules containing sodium carbonate is due to enhanced in vivo disintegration of the capsule, enhanced in vivo dissolution of the drug and enhanced gastric emptying rate.

  8. Differential proteomic analysis of midguts from Nosema ceranae-infected honeybees reveals manipulation of key host functions.

    PubMed

    Vidau, Cyril; Panek, Johan; Texier, Catherine; Biron, David G; Belzunces, Luc P; Le Gall, Morgane; Broussard, Cédric; Delbac, Frédéric; El Alaoui, Hicham

    2014-09-01

    Many invasive pathogens effectively bypass the insect defenses to ensure the completion of their life cycle. Among those, an invasive microsporidian species, Nosema ceranae, can cause nosemosis in honeybees. N. ceranae was first described in the Asian honeybee Apis cerana and is suspected to be involved in Western honeybee (Apis mellifera) declines worldwide. The midgut of honeybees is the first barrier against N. ceranae attacks. To bring proteomics data on honeybee/N. ceranae crosstalk and more precisely to decipher the worker honeybee midgut response after an oral inoculation of N. ceranae (10days post-infection), we used 2D-DIGE (2-Dimensional Differential In-Gel Electrophoresis) combined with mass spectrometry. Forty-five protein spots produced by the infected worker honeybee group were shown to be differentially expressed when compared to the uninfected group; 14 were subsequently identified by mass spectrometry. N. ceranae mainly caused a modulation of proteins involved in three key host biological functions: (i) energy production, (ii) innate immunity (reactive oxygen stress) and (iii) protein regulation. The modulation of these host biological functions suggests that N. ceranae creates a zone of "metabolic habitat modification" in the honeybee midgut favoring its development by enhancing availability of nutrients and reducing the worker honeybee defense.

  9. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan

    PubMed Central

    Nunes, Rodrigo Dutra; Ventura-Martins, Guilherme; Moretti, Débora Monteiro; Medeiros-Castro, Priscilla; Rocha-Santos, Carlucio; Daumas-Filho, Carlos Renato de Oliveira; Bittencourt-Cunha, Paula Rego Barros; Martins-Cardoso, Karina; Cudischevitch, Cecília Oliveira; Menna-Barreto, Rubem Figueiredo Sadok; Oliveira, José Henrique Maia; Gusmão, Desiely Silva; Alves Lemos, Francisco José; Alviano, Daniela Sales; Oliveira, Pedro Lagerblad; Lowenberger, Carl; Majerowicz, David; Oliveira, Ricardo Melo; Mesquita, Rafael Dias; Atella, Georgia Correa

    2016-01-01

    Background Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols. Results Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK). AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus. Conclusion The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses. PMID:27732590

  10. Starvation suppresses cell proliferation that rebounds after refeeding in the midgut of the American cockroach, Periplaneta americana.

    PubMed

    Park, Moon Soo; Takeda, Makio

    2008-02-01

    Starvation affects behavior, development, metabolism, reproduction, and longevity in almost all animals including insects. In the American cockroach, Periplaneta americana, we investigated the effect of starvation on organ size and cell proliferation activity of the midgut, over a period of one month, using anti-bromodeoxyuridine (BrdU), and anti-phospho-histone H3 antibodies. Under starvation conditions, the midgut became clear and fragile while its length and diameter were reduced. Both the rate of BrdU-uptake in the nucleus and the mitotic activity shown by anti-phospho-histone H3 antibody decreased under long starvation up to half that of the continuously fed control. Refeeding restored BrdU-uptake and mitosis that overshot the fed control. When casein, starch, or cooking oil was fed as representative nutrient sources to the starved cockroaches, all restored BrdU-uptake, but non-nutrient, talc, did not. This study supports the hypothesis that P. americana has a homeostatic mechanism to regulate the cell population of the midgut epithelium according to changes in the nutritional environment.

  11. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH.

    PubMed Central

    Tilburn, J; Sarkar, S; Widdick, D A; Espeso, E A; Orejas, M; Mungroo, J; Peñalva, M A; Arst, H N

    1995-01-01

    The pH regulation of gene expression in Aspergillus nidulans is mediated by pacC, whose 678 residue-derived protein contains three putative Cys2His2 zinc fingers. Ten pacCc mutations mimicking growth at alkaline pH remove between 100 and 214 C-terminal residues, including a highly acidic region containing an acidic glutamine repeat. Nine pacC+/- mutations mimicking acidic growth conditions remove between 299 and 505 C-terminal residues. Deletion of the entire pacC coding region mimics acidity but leads additionally to poor growth and conidiation. A PacC fusion protein binds DNA with the core consensus GCCARG. At alkaline ambient pH, PacC activates transcription of alkaline-expressed genes (including pacC itself) and represses transcription of acid-expressed genes. pacCc mutations obviate the need for pH signal transduction. Images PMID:7882981

  12. Intracellular pH (pHin) and cytosolic calcium ([Ca2+]cyt) regulation via ATPases: studies in cell populations, single cells, and subcellular compartments

    NASA Astrophysics Data System (ADS)

    Rojas, Jose D.; Sanka, Shankar C.; Gyorke, Sandor; Wesson, Donald E.; Minta, Akwasi; Martinez-Zaguilan, Raul

    1999-07-01

    Changes in pHin and (Ca2+)cyt are important in the signal transduction mechanisms leading to many physiological responses including cell growth, motility, secretion/exocytosis, etc. The concentrations of these ions are regulated via primary and secondary ion transporting mechanisms. In diabetes, specific pH and Ca2+ regulatory mechanism might be altered. To study these ions, we employ fluorescence spectroscopy, and cell imagin spectroscopy/confocal microscopy. pH and Ca2+ indicators are loaded in the cytosol with acetoxymethyl ester forms of dyes, and in endosomal/lysosomal (E/L) compartments by overnight incubation of cells with dextran- conjugated ion fluorescent probes. We focus on specific pH and Ca2+ regulatory systems: plasmalemmal vacuolar- type H+-ATPases (pm V-ATPases) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPases (SERCA). As experimental models, we employ vascular smooth muscle (VSM) and microvascular endothelial cells. We have chosen these cells because they are important in blood flow regulation and in angiogenesis. These processes are altered in diabetes. In many cell types, ion transport processes are dependent on metabolism of glucose for maximal activity. Our main findings are: (a) glycolysis coupling the activity of SERCA is required for cytosolic Ca2+ homeostasis in both VSM and microvascular endothelial cells; (b) E/L compartments are important for pH and Ca2+ regulation via H+-ATPases and SERCA, respectively; and (c) pm-V- ATPases are important for pHin regulation in microvascular endothelial cells.

  13. A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in regulating multiple biological processes in plants. However, there are few reports about the function of bHLHs in flower senescence. In this study, a bHLH TF, PhFBH4, was found to be dramatically upregulated during...

  14. Activation of AMP-activated protein kinase regulates hippocampal neuronal pH by recruiting Na(+)/H(+) exchanger NHE5 to the cell surface.

    PubMed

    Jinadasa, Tushare; Szabó, Elöd Z; Numat, Masayuki; Orlowski, John

    2014-07-25

    Strict regulation of intra- and extracellular pH is an important determinant of nervous system function as many voltage-, ligand-, and H(+)-gated cationic channels are exquisitely sensitive to transient fluctuations in pH elicited by neural activity and pathophysiologic events such as hypoxia-ischemia and seizures. Multiple Na(+)/H(+) exchangers (NHEs) are implicated in maintenance of neural pH homeostasis. However, aside from the ubiquitous NHE1 isoform, their relative contributions are poorly understood. NHE5 is of particular interest as it is preferentially expressed in brain relative to other tissues. In hippocampal neurons, NHE5 regulates steady-state cytoplasmic pH, but intriguingly the bulk of the transporter is stored in intracellular vesicles. Here, we show that NHE5 is a direct target for phosphorylation by the AMP-activated protein kinase (AMPK), a key sensor and regulator of cellular energy homeostasis in response to metabolic stresses. In NHE5-transfected non-neuronal cells, activation of AMPK by the AMP mimetic AICAR or by antimycin A, which blocks aerobic respiration and causes acidification, increased cell surface accumulation and activity of NHE5, and elevated intracellular pH. These effects were effectively blocked by the AMPK antagonist compound C, the NHE inhibitor HOE694, and mutation of a predicted AMPK recognition motif in the NHE5 C terminus. This regulatory pathway was also functional in primary hippocampal neurons, where AMPK activation of NHE5 protected the cells from sustained antimycin A-induced acidification. These data reveal a unique role for AMPK and NHE5 in regulating the pH homeostasis of hippocampal neurons during metabolic stress.

  15. Activation of AMP-activated Protein Kinase Regulates Hippocampal Neuronal pH by Recruiting Na+/H+ Exchanger NHE5 to the Cell Surface*

    PubMed Central

    Jinadasa, Tushare; Szabó, Elöd Z.; Numata, Masayuki; Orlowski, John

    2014-01-01

    Strict regulation of intra- and extracellular pH is an important determinant of nervous system function as many voltage-, ligand-, and H+-gated cationic channels are exquisitely sensitive to transient fluctuations in pH elicited by neural activity and pathophysiologic events such as hypoxia-ischemia and seizures. Multiple Na+/H+ exchangers (NHEs) are implicated in maintenance of neural pH homeostasis. However, aside from the ubiquitous NHE1 isoform, their relative contributions are poorly understood. NHE5 is of particular interest as it is preferentially expressed in brain relative to other tissues. In hippocampal neurons, NHE5 regulates steady-state cytoplasmic pH, but intriguingly the bulk of the transporter is stored in intracellular vesicles. Here, we show that NHE5 is a direct target for phosphorylation by the AMP-activated protein kinase (AMPK), a key sensor and regulator of cellular energy homeostasis in response to metabolic stresses. In NHE5-transfected non-neuronal cells, activation of AMPK by the AMP mimetic AICAR or by antimycin A, which blocks aerobic respiration and causes acidification, increased cell surface accumulation and activity of NHE5, and elevated intracellular pH. These effects were effectively blocked by the AMPK antagonist compound C, the NHE inhibitor HOE694, and mutation of a predicted AMPK recognition motif in the NHE5 C terminus. This regulatory pathway was also functional in primary hippocampal neurons, where AMPK activation of NHE5 protected the cells from sustained antimycin A-induced acidification. These data reveal a unique role for AMPK and NHE5 in regulating the pH homeostasis of hippocampal neurons during metabolic stress. PMID:24936055

  16. Heme crystallization in the midgut of triatomine insects.

    PubMed

    Oliveira, Marcus F; Gandara, Ana Caroline P; Braga, Cláudia M S; Silva, José R; Mury, Flavia B; Dansa-Petretski, Marílvia; Menezes, Diego; Vannier-Santos, Marcos A; Oliveira, Pedro L

    2007-01-01

    Hemozoin (Hz) is a heme crystal produced by several blood-feeding organisms in order to detoxify free heme released upon hemoglobin (Hb) digestion. Here we show that heme crystallization also occurs in three species of triatomine insects. Ultraviolet-visible and infrared light absorption spectra of insoluble pigments isolated from the midgut of three triatomine species Triatoma infestans, Dipetalogaster maximus and Panstrongylus megistus indicated that all produce Hz. Morphological analysis of T. infestans and D. maximus midguts revealed the close association of Hz crystals to perimicrovillar membranes and also as multicrystalline assemblies, forming nearly spherical structures. Heme crystallization was promoted by isolated perimicrovillar membranes from all three species of triatomine bugs in vitro in heat-sensitive reactions. In conclusion, the data presented here indicate that Hz formation is an ancestral adaptation of Triatominae to a blood-sucking habit and that the presence of perimicrovillar membranes plays a central role in this process.

  17. Internal pH regulation facilitates in situ long-term acclimation of massive corals to end-of-century carbon dioxide conditions

    NASA Astrophysics Data System (ADS)

    Wall, M.; Fietzke, J.; Schmidt, G. M.; Fink, A.; Hofmann, L. C.; de Beer, D.; Fabricius, K. E.

    2016-08-01

    The resilience of tropical corals to ocean acidification depends on their ability to regulate the pH within their calcifying fluid (pHcf). Recent work suggests pHcf homeostasis under short-term exposure to pCO2 conditions predicted for 2100, but it is still unclear if pHcf homeostasis can be maintained throughout a corals lifetime. At CO2 seeps in Papua New Guinea, massive Porites corals have grown along a natural seawater pH gradient for decades. This natural gradient, ranging from pH 8.1–7.4, provides an ideal platform to determine corals’ pHcf (using boron isotopes). Porites maintained a similar pHcf (~8.24) at both a control (pH 8.1) and seep-influenced site (pH 7.9). Internal pHcf was slightly reduced (8.12) at seawater pH 7.6, and decreased to 7.94 at a site with a seawater pH of 7.4. A growth response model based on pHcf mirrors the observed distribution patterns of this species in the field. We suggest Porites has the capacity to acclimate after long-time exposure to end-of-century reduced seawater pH conditions and that strong control over pHcf represents a key mechanism to persist in future oceans. Only beyond end-of-century pCO2 conditions do they face their current physiological limit of pH homeostasis and pHcf begins to decrease.

  18. Internal pH regulation facilitates in situ long-term acclimation of massive corals to end-of-century carbon dioxide conditions

    PubMed Central

    Wall, M.; Fietzke, J.; Schmidt, G. M.; Fink, A; Hofmann, L. C.; de Beer, D.; Fabricius, K. E.

    2016-01-01

    The resilience of tropical corals to ocean acidification depends on their ability to regulate the pH within their calcifying fluid (pHcf). Recent work suggests pHcf homeostasis under short-term exposure to pCO2 conditions predicted for 2100, but it is still unclear if pHcf homeostasis can be maintained throughout a corals lifetime. At CO2 seeps in Papua New Guinea, massive Porites corals have grown along a natural seawater pH gradient for decades. This natural gradient, ranging from pH 8.1–7.4, provides an ideal platform to determine corals’ pHcf (using boron isotopes). Porites maintained a similar pHcf (~8.24) at both a control (pH 8.1) and seep-influenced site (pH 7.9). Internal pHcf was slightly reduced (8.12) at seawater pH 7.6, and decreased to 7.94 at a site with a seawater pH of 7.4. A growth response model based on pHcf mirrors the observed distribution patterns of this species in the field. We suggest Porites has the capacity to acclimate after long-time exposure to end-of-century reduced seawater pH conditions and that strong control over pHcf represents a key mechanism to persist in future oceans. Only beyond end-of-century pCO2 conditions do they face their current physiological limit of pH homeostasis and pHcf begins to decrease. PMID:27477963

  19. Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors.

    PubMed

    Sedlakova, Olga; Svastova, Eliska; Takacova, Martina; Kopacek, Juraj; Pastorek, Jaromir; Pastorekova, Silvia

    2014-01-08

    Acidic tissue microenvironment contributes to tumor progression via multiple effects including the activation of angiogenic factors and proteases, reduced cell-cell adhesion, increased migration and invasion, etc. In addition, intratumoral acidosis can influence the uptake of anticancer drugs and modulate the response of tumors to conventional therapy. Acidification of the tumor microenvironment often develops due to hypoxia-triggered oncogenic metabolism, which leads to the extensive production of lactate, protons, and carbon dioxide. In order to avoid intracellular accumulation of the acidic metabolic products, which is incompatible with the survival and proliferation, tumor cells activate molecular machinery that regulates pH by driving transmembrane inside-out and outside-in ion fluxes. Carbonic anhydrase IX (CA IX) is a hypoxia-induced catalytic component of the bicarbonate import arm of this machinery. Through its catalytic activity, CA IX directly participates in many acidosis-induced features of tumor phenotype as demonstrated by manipulating its expression and/or by in vitro mutagenesis. CA IX can function as a survival factor protecting tumor cells from hypoxia and acidosis, as a pro-migratory factor facilitating cell movement and invasion, as a signaling molecule transducing extracellular signals to intracellular pathways (including major signaling and metabolic cascades) and converting intracellular signals to extracellular effects on adhesion, proteolysis, and other processes. These functional implications of CA IX in cancer are supported by numerous clinical studies demonstrating the association of CA IX with various clinical correlates and markers of aggressive tumor behavior. Although our understanding of the many faces of CA IX is still incomplete, existing knowledge supports the view that CA IX is a biologically and clinically relevant molecule, exploitable in anticancer strategies aimed at targeting adaptive responses to hypoxia and/or acidosis.

  20. Intracellular pH regulates basolateral K+ and Cl- conductances in colonic epithelial cells by modulating Ca2+ activation

    PubMed Central

    1991-01-01

    The role of intracellular pH as a modulator of basolateral K+ and Cl- conductances in epithelial cells was studied using digitonin- permeabilized colonic cell layers so that cytosolic pH could be clamped at specific values, while basolateral K+ and Cl- conductances were activated by stepwise increases in intracellular free Ca2+. Increasing the intracellular pH from 6.6 to 8.0 enhanced the sensitivity of both ionic conductances to intracellular Ca2+, but changing extracellular pH had no effect. Maximal K+ and Cl- currents activated by Ca2+ were not affected by changes in intracellular pH, suggesting that protons do not alter the conduction properties of the channels. Hill analysis of the Ca2+ activation process revealed that raising the cytosolic pH from 6.6 to 8.0 reduced the K1/2 for Ca2+ activation. In the absence of Ca2+, changes in intracellular pH did not have a significant effect on the basolateral K+ and Cl- conductances. These results are consistent with the notion that changes in cytosolic pH can modulate basolateral conductances by modifying the action of calcium, perhaps by acting at or near the activation site to provide a mechanism of variable "gain control." PMID:1719125

  1. Expression of a sugar clade gustatory receptor, BmGr6, in the oral sensory organs, midgut, and central nervous system of larvae of the silkworm Bombyx mori.

    PubMed

    Mang, Dingze; Shu, Min; Endo, Haruka; Yoshizawa, Yasutaka; Nagata, Shinji; Kikuta, Shingo; Sato, Ryoichi

    2016-03-01

    Insects taste nonvolatile chemicals through gustatory receptors (Grs) and make choices for feeding, mating, and oviposition. To date, genome projects have identified 69 Gr genes in the silkworm, Bombyx mori; however, the expression sites of these Grs remain to be explored. In this study, we used reverse transcription (RT)-PCR to investigate expression of the B. mori Gr-6 (BmGr6) gene, a member of the putative sugar clade gene family in various tissues. BmGr6 is expressed in the midgut, central nervous system (CNS), and oral sensory organs. Moreover, immunohistochemistry using an anti-BmGr6 antiserum demonstrated that BmGr6 is expressed in cells by oral sensory organs, midgut and nervous system. Furthermore, double-immunohistochemistry indicated that BmGr6 is expressed in midgut enteroendocrine cells, also in CNS neurosecretory cells. In particular, a portion of BmGr6-expressing cells, in both midgut and CNS, secretes FMRFamide-related peptides (FaRPs). These results suggest that BmGr6 functions not only as a taste receptor, but also as a chemical sensor such as for the regulation of gut movement, physiological conditions, and feeding behavior of larvae.

  2. Brain-midgut cross-talk and autocrine metabolastat via the sNPF/CCAP negative feed-back loop in the American cockroach, Periplaneta americana.

    PubMed

    Mikani, Azam; Watari, Yasuhiko; Takeda, Makio

    2015-12-01

    Immunohistochemical reactivities against short neuropeptide F (sNPF-ir) and crustacean cardioactive peptide (CCAP-ir) were detected in both the brain-subesophageal ganglion (Br-SOG) and midgut epithelial cells of the male American cockroach, Periplaneta americana. Four weeks of starvation increased the number of sNPF-ir cells and decreased the CCAP-ir cells in the Br-SOG, whereas refeeding reversed these effects. The contents of sNPF in the Br-SOG, midgut and hemolymph titer decreased in response to an injection of CCAP into the hemocoel of normally fed male cockroaches, while CCAP titers/contents decreased in response to an injection of sNPF. The results of a double-labeling experiment demonstrated that sNPF-ir co-existed in CCAP-ir cells in the pars intercerebralis (PI), dorsolateral region of protocerebrum (DL), deutocerebrum (De) and SOG. sNPF-ir and CCAP-ir were also colocalized in the midgut. sNPF and CCAP are neuropeptides and midgut factors that interact with each other. Since the two peptides are known to be secreted by identical cells that affect each other, this constitutes autocrine negative feedback regulation for a quick response to food accessibility/inaccessibility. These peptides not only constitute the switch in the digestive mechanism but also couple digestive adaptation with behavior. A CCAP injection suppressed locomotor activity when cockroaches were starved, whereas sNPF activated it when they were fed.

  3. Differential expression of chemosensory-protein genes in midguts in response to diet of Spodoptera litura.

    PubMed

    Yi, Xin; Qi, Jiangwei; Zhou, Xiaofan; Hu, Mei Ying; Zhong, Guo Hua

    2017-03-22

    While it has been well characterized that chemosensory receptors in guts of mammals have great influence on food preference, much remains elusive in insects. Insect chemosensory proteins (CSPs) are soluble proteins that could deliver chemicals to olfactory and gustatory receptors. Recent studies have identified a number of CSPs expressed in midgut in Lepidoptera insects, which started to reveal their roles in chemical recognition and stimulating appetite in midgut. In this study, we examined expression patterns in midgut of 21 Spodoptera litura CSPs (SlitCSPs) characterized from a previously reported transcriptome, and three CSPs were identified to be expressed highly in midgut. The orthologous relationships between midgut expressed CSPs in S. litura and those in Bombyx mori and Plutella xylostella also suggest a conserved pattern of CSP expression in midgut. We further demonstrated that the expression of midgut-CSPs may change in response to different host plants, and SlitCSPs could bind typical chemicals from host plant in vitro. Overall, our results suggested midgut expressed SlitCSPs may have functional roles, likely contributing to specialization and adaption to different ecosystems. Better knowledge of this critical component of the chemsensation signaling pathways in midguts may improve our understanding of food preference processes in a new perspective.

  4. Debra-mediated Ci degradation controls tissue homeostasis in Drosophila adult midgut.

    PubMed

    Li, Zhouhua; Guo, Yueqin; Han, Lili; Zhang, Yan; Shi, Lai; Huang, Xudong; Lin, Xinhua

    2014-02-11

    Adult tissue homeostasis is maintained by resident stem cells and their progeny. However, the underlying mechanisms that control tissue homeostasis are not fully understood. Here, we demonstrate that Debra-mediated Ci degradation is important for intestinal stem cell (ISC) proliferation in Drosophila adult midgut. Debra inhibition leads to increased ISC activity and tissue homeostasis loss, phenocopying defects observed in aging flies. These defects can be suppressed by depleting Ci, suggesting that increased Hedgehog (Hh) signaling contributes to ISC proliferation and tissue homeostasis loss. Consistently, Hh signaling activation causes the same defects, whereas depletion of Hh signaling suppresses these defects. Furthermore, the Hh ligand from multiple sources is involved in ISC proliferation and tissue homeostasis. Finally, we show that the JNK pathway acts downstream of Hh signaling to regulate ISC proliferation. Together, our results provide insights into the mechanisms of stem cell proliferation and tissue homeostasis control.

  5. The tyrosyl-tRNA synthetase like gene located in the tyramine biosynthesis cluster of Enterococcus durans is transcriptionally regulated by tyrosine concentration and extracellular pH

    PubMed Central

    2012-01-01

    Background The tyramine producer Enterococcus durans IPLA655 contains all the necessary genes for tyramine biosynthesis, grouped in the TDC cluster. This cluster includes tyrS, an aminoacyl-tRNA synthetase like gene. Results This work shows that tyrS was maximally transcribed in absence of tyrosine at acidic pH, showing a greater than 10-fold induction in mRNA levels over levels occurring in presence of tyrosine. Mapping of the tyrS transcriptional start site revealed an unusually long untranslated leader region of 322 bp, which displays the typical features of the T box transcriptional attenuation mechanism. The tyrosine concentration regulation of tyrS was found to be mediated by a transcription antitermination system, whereas the specific induction at acidic pH was regulated at transcription initiation level. Conclusions The expression of the tyrS gene present in the TDC cluster of E. durans is transcriptionally regulated by tyrosine concentration and extracelular pH. The regulation is mediated by both an antitermination system and the promoter itself. PMID:22333391

  6. A Hypothetical Model of Crossing Bombyx mori Nucleopolyhedrovirus through Its Host Midgut Physical Barrier

    PubMed Central

    Cheng, Yang; Wang, Xue-Yang; Hu, Hao; Killiny, Nabil; Xu, Jia-Ping

    2014-01-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) is a primary pathogen of silkworm (B. mori) that causes severe economic losses each year. However, the molecular mechanisms of silkworm-BmNPV interactions, especially the silkworm proteins that can interact with the virus, are still largely unknown. In this study, the total and membrane proteins of silkworm midguts were displayed using one- and two-dimensional electrophoresis. A virus overlay assay was used to detect B. mori proteins that specifically bind to BmNPV particles. Twelve proteins were located and identified using mass spectrometry, and the different expression of the corresponding genes in BmNPV susceptible and resistant silkworm strains also indicated their involvement in BmNPV infection. The 12 proteins are grouped based on their potential roles in viral infection, for example, endocytosis, intracellular transportation, and host responses. Based on these results, we hypothesize the following: I) vacuolar ATP synthase catalytic subunit A and subunit B may be implicated in the process of the membrane fusion of virus and the release of the nucleocapsid into cytoplasm; II) actin, enolase and phosphoglycerate kinase are cytoskeleton associated proteins and may play an important role in BmNPV intracellular transportation; III) mitochondrial prohibitin complex protein 2, ganglioside-induced differentiation-associated protein, calreticulin, regucalcin-like isoform X1 and 60 kDa heat shock protein are involved in cell apoptosis regulation during BmNPV infection in larvae midguts; IV) ribosomal P0 may be associated with BmNPV infection by regulating gene expression of BmNPV; V) arginine kinase has a role in the antiviral activities against BmNPV. Our work should prove informative by providing multiple protein targets and a novel direction to investigate the molecular mechanisms of the interactions between silkworms and BmNPV. PMID:25502928

  7. Transcriptome Analysis of the Midgut of the Chinese Oak Silkworm Antheraea pernyi Infected with Antheraea pernyi Nucleopolyhedrovirus

    PubMed Central

    Sun, Ying; Liu, Wei; He, Ying-Zi; Wang, Feng-Cheng; Jiang, Yi-Ren; Qin, Li

    2016-01-01

    The Antheraea pernyi nucleopolyhedrovirus (ApNPV) is an exclusive pathogen of A. pernyi. The intense interactions between ApNPV and A. pernyi cause a series of physiological and pathological changes to A. pernyi. However, no detailed report exists regarding the molecular mechanisms underlying the interactions between ApNPV and A. pernyi. In this study, four cDNA libraries of the A. pernyi midgut, including two ApNPV-infected groups and two control groups, were constructed for transcriptomic analysis to provide new clues regarding the molecular mechanisms that underlie these interactions. The transcriptome of the A. pernyi midgut was de novo assembled using the Trinity platform because of the lack of a genome resource for A. pernyi. Compared with the controls, a total of 5,172 differentially expressed genes (DEGs) were identified, including 2,183 up-regulated and 2,989 down-regulated candidates, of which 2,965 and 911 DEGs were classified into different GO categories and KEGG pathways, respectively. The DEGs involved in A. pernyi innate immunity were classified into several categories, including heat-shock proteins, apoptosis-related proteins, serpins, serine proteases and cytochrome P450s. Our results suggested that these genes were related to the immune response of the A. pernyi midgut to ApNPV infection via their essential roles in regulating a variety of physiological processes. Our results may serve as a basis for future research not only on the molecular mechanisms of ApNPV invasion but also on the anti-ApNPV mechanism of A. pernyi. PMID:27820844

  8. Sugar digestion in mosquitoes: identification and characterization of three midgut alpha-glucosidases of the neo-tropical malaria vector Anopheles aquasalis (Diptera: Culicidae).

    PubMed

    Souza-Neto, Jayme A; Machado, Fábio P; Lima, José B; Valle, Denise; Ribolla, Paulo E M

    2007-08-01

    Dietary carbohydrates provide an important source of energy for flight, and contribute to longevity and fecundity of mosquitoes. The most common sugar mosquitoes ingest is sucrose, and digestion of this substance is carried out mainly by alpha-glucosidases. In the current work, we tested the efficiency of sucrose on Anopheles aquasalis female diet. The best longevity (days) was reached when sugar was available in the diet, whereas most only blood fed females were dead 6 days after emergence. Three alpha-glucosidase isoforms were detected in the adult female midgut, named alphaGlu1, alphaGlu2 and alphaGlu3. These are acidic alpha-glucosidases with optima pH around pH 5.5. alphaGlu1 and alphaGlu2 are present in both secreted and membrane-bound forms, whereas alpha-Glu3 only in anchored to membranes. The alpha-glucosidase activity is concentrated mainly in the posterior midgut (70%), both in non-fed or 10% sucrose fed females. The single form of these alpha-glucosidases seemed to be approximately 70 kDa polypeptides, although alphaGlu2 is presented in >or=600 kDa self-aggregates. Km values of alphaGlu1, alphaGlu2 and alphaGlu3 differed significantly from each other, supporting the statement that three alpha-glucosidases are produced in the female midgut. Together, all data suggest that sugar is an essential component of A. aquasalis female diet. In addition, alpha-glucosidases are synthesized in the same place where sucrose is digested and absorbed, the midgut.

  9. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils.

    PubMed

    Liang, Cuiyue; Piñeros, Miguel A; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V; Liao, Hong

    2013-03-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function.

  10. The antidiuretic neurohormone RhoprCAPA-2 downregulates fluid transport across the anterior midgut in the blood-feeding insect Rhodnius prolixus.

    PubMed

    Ianowski, Juan P; Paluzzi, Jean-Paul; Te Brugge, Victoria A; Orchard, Ian

    2010-03-01

    Osmotic balance in insects is regulated by the excretory system, consisting of Malpighian tubules and the gut under the control of diuretic and antidiuretic factors. Terrestrial insects must conserve water, and antidiuresis is the norm, only interrupted by brief diuretic periods. Surprisingly, little is known about antidiuresis in insects. Two antidiuretic strategies have been described. The first antidiuretic mechanism involves the reabsorption of fluid from the primary urine in the hindgut. More recently, a second antidiuretic strategy was reported, consisting of inhibition of primary urine formation by the Malpighian tubules. Recently, we isolated, characterized, and cloned the gene encoding for the antidiuretic neurohormone (the neuropeptide RhoprCAPA-2) acting on the Malpighian tubules of Rhodnius prolixus. Here we describe a third, novel mechanism central to the antidiuretic strategy of R. prolixus, the inhibition of ion and fluid transport across the anterior midgut by RhoprCAPA-2. Our results show that RhoprCAPA-2 (1 micromol/l) reduces serotonin-stimulated fluid transport from 83 +/- 11 to 12 +/- 12 nl/min and equivalent short-circuit current from 20 +/- 4 to 5 +/- 0.7 microA/cm(2) in diuretic hormone-stimulated anterior midgut. RhoprCAPA-2 appears to function independently of intracellular cGMP or Ca(2+) in the midgut. Thus, the antidiuretic neurohormone RhoprCAPA-2 has multiple target tissues, and we hypothesize that RhoprCAPA-2 functions to coordinate the transport activity of the anterior midgut and Malpighian tubules so that the rate of fluid transport into the haemolymph by the anterior midgut matches the transport rate of Malpighian tubules to maintain the volume and ion composition of haemolymph.

  11. pH might play a role in regulating the function of paired amphipathic helices domains of human Sin3B by altering structure and thermodynamic stability.

    PubMed

    Hasan, Tauheed; Ali, Mashook; Saluja, Daman; Singh, Laishram Rajendrakumar

    2015-04-01

    Human Sin3B (hSin3B), a transcription regulator, is a scaffold protein that binds to different transcription factors and regulates transcription. It consists of six conserved domains that include four paired amphipathic helices (PAH 1-4), histone deacetylase interaction domain (HID), and highly conserved region (HCR). Interestingly, the PAH domains of hSin3B are significantly homologous to each other, yet each one interacts with a specific set of unique transcription factors. Though various partners interacting with hSin3B PAH domains have been characterized, there is no structural information available on the individual PAH domains of hSin3B. Here we characterize the structure and stability of different PAH domains of hSin3B at both nuclear and physiological pH values by using different optical probes. We found that the native state structure and stability of different PAH domains are different at nuclear pH where hSin3B performs its biological function. We also found that PAH2 and PAH3 behave differently at both nuclear and physiological pH in terms of native state structure and thermodynamic stability, while the structural identity of PAH1 remains unaltered at both pH values. The study indicates that the structural heterogeneity of different PAH domains might be responsible for having a unique set of interacting transcription factors.

  12. The Ca2+-Regulation of the Mitochondrial External NADPH Dehydrogenase in Plants Is Controlled by Cytosolic pH.

    PubMed

    Hao, Meng-Shu; Jensen, Anna M; Boquist, Ann-Sofie; Liu, Yun-Jun; Rasmusson, Allan G

    2015-01-01

    NADPH is a key reductant carrier that maintains internal redox and antioxidant status, and that links biosynthetic, catabolic and signalling pathways. Plants have a mitochondrial external NADPH oxidation pathway, which depends on Ca2+ and pH in vitro, but concentrations of Ca2+ needed are not known. We have determined the K0.5(Ca2+) of the external NADPH dehydrogenase from Solanum tuberosum mitochondria and membranes of E. coli expressing Arabidopsis thaliana NDB1 over the physiological pH range using O2 and decylubiquinone as electron acceptors. The K0.5(Ca2+) of NADPH oxidation was generally higher than for NADH oxidation, and unlike the latter, it depended on pH. At pH 7.5, K0.5(Ca2+) for NADPH oxidation was high (≈100 μM), yet 20-fold lower K0.5(Ca2+) values were determined at pH 6.8. Lower K0.5(Ca2+) values were observed with decylubiquinone than with O2 as terminal electron acceptor. NADPH oxidation responded to changes in Ca2+ concentrations more rapidly than NADH oxidation did. Thus, cytosolic acidification is an important activator of external NADPH oxidation, by decreasing the Ca2+-requirements for NDB1. The results are discussed in relation to the present knowledge on how whole cell NADPH redox homeostasis is affected in plants modified for the NDB1 gene.

  13. The Ca2+-Regulation of the Mitochondrial External NADPH Dehydrogenase in Plants Is Controlled by Cytosolic pH

    PubMed Central

    Hao, Meng-Shu; Jensen, Anna M.; Boquist, Ann-Sofie; Liu, Yun-Jun; Rasmusson, Allan G.

    2015-01-01

    NADPH is a key reductant carrier that maintains internal redox and antioxidant status, and that links biosynthetic, catabolic and signalling pathways. Plants have a mitochondrial external NADPH oxidation pathway, which depends on Ca2+ and pH in vitro, but concentrations of Ca2+ needed are not known. We have determined the K0.5(Ca2+) of the external NADPH dehydrogenase from Solanum tuberosum mitochondria and membranes of E. coli expressing Arabidopsis thaliana NDB1 over the physiological pH range using O2 and decylubiquinone as electron acceptors. The K0.5(Ca2+) of NADPH oxidation was generally higher than for NADH oxidation, and unlike the latter, it depended on pH. At pH 7.5, K0.5(Ca2+) for NADPH oxidation was high (≈100 μM), yet 20-fold lower K0.5(Ca2+) values were determined at pH 6.8. Lower K0.5(Ca2+) values were observed with decylubiquinone than with O2 as terminal electron acceptor. NADPH oxidation responded to changes in Ca2+ concentrations more rapidly than NADH oxidation did. Thus, cytosolic acidification is an important activator of external NADPH oxidation, by decreasing the Ca2+-requirements for NDB1. The results are discussed in relation to the present knowledge on how whole cell NADPH redox homeostasis is affected in plants modified for the NDB1 gene. PMID:26413894

  14. Regulation of Renal Citrate Metabolism by Bicarbonate Ion and pH: Observations in Tissue Slices and Mitochondria*

    PubMed Central

    Simpson, David P.

    1967-01-01

    The effect of acid-base balance on the oxidation and utilization of citrate and other organic acids has been studied in tissue slices and isolated kidney mitochondria. The results show that: 1) With bicarbonate-buffered media, citrate oxidation and utilization are inhibited in slices of renal cortex and in kidney mitochondria when [HCO3-] and pH are increased within the physiologic range (pH 7.0 to 7.8; 10 to 60 μmoles HCO3- per ml). When phosphate or Tris buffers are used, no comparable effect on citrate oxidation occurs when pH is varied. 2) This effect is not demonstrable in heart or liver slices when a physiologic buffer is used. 3) α-Ketoglutarate utilization is inhibited in slices of renal cortex under similar conditions. Pyruvate and L-malate utilization are not inhibited in slices or mitochondria. 4) Citrate content in slices of renal cortex incubated with a high [HCO3-] is considerably greater than the concentration found with a low [HCO3-] in the medium. This effect is not duplicated by pH change in a nonbicarbonate buffer system. In mitochondria citrate content is also increased markedly at high bicarbonate concentrations. 5) The kinetic characteristics of the inhibition of citrate oxidation are those of a competitive type of inhibition. 6) When pH was varied with a constant [HCO3-] in the media, citrate oxidation was inhibited by increasing pH in slices of renal cortex but not in mitochondria. On the other hand, when [HCO3-] was increased without change in pH, no decrease in citrate oxidation occurred in slices, but a marked inhibitory effect was found when mitochondria were used. From a comparison of these results with those previously obtained in intact animal experiments, we conclude that the inhibition of citrate oxidation caused by increasing pH and [HCO3-] in slices of renal cortex and kidney mitochondria is an in vitro representation of the inhibition of citrate reabsorption in the nephron that occurs in metabolic alkalosis. Thus, citrate

  15. Hsp70 and small Hsps are the major heat shock protein members involved in midgut metamorphosis in the common cutworm, Spodoptera litura.

    PubMed

    Gu, J; Huang, L-X; Shen, Y; Huang, L-H; Feng, Q-L

    2012-10-01

    Heat shock proteins (Hsps) are important chaperones, which are involved in various signal pathways and regulate lots of physiological processes. Early research suggested that some Hsps are involved in insect development. However, few studies have been carried out to explore the roles of Hsps, especially in larval-pupal metamorphosis. In the present study, 49 Hsp unigenes were identified in the Spodoptera litura transcriptome and their mRNA expression profiles during midgut metamorphosis were examined using a tag-based digital gene expression system. The genes with the most different levels of expression were then cloned and their expression patterns in midguts from sixth instar larvae to pupae were analysed using real time quantitative PCR. The responses of these genes to juvenile hormone (JH) and 20-hydroxyecdysone (20E) were also studied. The results showed that the mRNA levels of 22 Hsp unigenes changed significantly during midgut metamorphosis. Amongst these 22 unigenes, hsp70, hsp20.4 and hsp20.8 were the most up-regulated members, and hsp15.9, hsp19.3 and hsp22.0 were the most down-regulated ones. Further studies showed that hsp70, hsp20.4 and hsp20.8 were remarkably up-regulated by JH. In addition, 20E slightly increased the mRNA levels of both hsp20.4 and hsp20.8. However, hsp15.9, hsp19.3 and hsp22.0 did not respond to either JH or 20E. These results indicate that Hsp70 and small Hsps (sHsps) are probably the major players in midgut metamorphosis in S. litura. The current findings provide valuable insights into the roles of the Hsp superfamily in insect metamorphosis.

  16. Transcriptional Signatures in Response to Wheat Germ Agglutinin and Starvation in Drosophila melanogaster Larval Midgut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One function of plant lectins such as wheat germ agglutinin (WGA) is to serve as defenses against herbivorous insects. The midgut is one critical site affected by dietary lectins. We observed marked cellular, structural, and gene expression changes in the midguts of Drosophila melanogaster third-i...

  17. Regulation of intracellular pH in the smooth muscle of guinea-pig ureter: Na+ dependence.

    PubMed Central

    Aickin, C C

    1994-01-01

    1. Mechanisms involved in the regulation of intracellular pH (pHi) in smooth muscle cells of guinea-pig ureter have been investigated using double-barrelled pH-sensitive microelectrodes in isolated strips of tissue. 2. Removal of CO2-HCO3- from the superfusing solution caused a fall in the steady-state pHi except in a few cells which had been excised from the animal for many hours (usually > 24 h). The pHi value was 7.22 +/- 0.09 (n = 89; mean +/- S.D. of an observation) in solution buffered with 5% CO2-21 mM HCO3-, compared with 6.92 +/- 0.24 (n = 67) in the nominal absence of CO2-HCO3-. Recovery from experimentally induced acidosis was faster in the presence, rather than nominal absence, of CO2-HCO3- (mean half-times of 2.7 +/- 0.7 min, n = 41, and 4.6 +/- 1.3 min, n = 12, respectively). These results suggest the presence of both HCO(3-)-dependent and -independent mechanisms for the effective extrusion of acid equivalents. 3. Recovery from acidosis was dependent on external Na+ (Na+o) in both the presence and nominal absence of CO2-HCO3-, with an apparent half-maximal activation at approximately 4 and 20 mM Na+o, respectively. Removal of Na+o in the steady state caused a fall in pHi which proceeded at a faster rate in the presence rather than in the nominal absence of CO2-HCO3-. 4. Amiloride (100 microM-1 mM) reversibly inhibited the recovery from acidosis and caused a fall in the steady-state pHi when applied in the nominal absence of CO2-HCO3-, but had no measurable effect on either the recovery from acidosis or steady-state pHi in the presence of CO2-HCO3-. These results suggest that Na(+)-H+ exchange was responsible for extrusion of acid equivalents in the nominal absence of CO2 and HCO3-, but that it played little part under more physiological conditions. 5. Although Na(+)-H+ exchange appeared to be activated below a pHi of about 7.2, it was incapable of maintaining a 'normal' pHi in the nominal absence of CO2-HCO3- in freshly excised cells, where values

  18. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells

    PubMed Central

    Lara, Flavio Alves; Pohl, Paula C.; Gandara, Ana Caroline; Ferreira, Jessica da Silva; Nascimento-Silva, Maria Clara; Bechara, Gervásio Henrique; Sorgine, Marcos H. F.; Almeida, Igor C.; Vaz, Itabajara da Silva; Oliveira, Pedro L.

    2015-01-01

    In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus) microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA), a well-known inhibitor of ATP binding cassette (ABC) transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may represent a new

  19. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells.

    PubMed

    Lara, Flavio Alves; Pohl, Paula C; Gandara, Ana Caroline; Ferreira, Jessica da Silva; Nascimento-Silva, Maria Clara; Bechara, Gervásio Henrique; Sorgine, Marcos H F; Almeida, Igor C; Vaz, Itabajara da Silva; Oliveira, Pedro L

    2015-01-01

    In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus) microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA), a well-known inhibitor of ATP binding cassette (ABC) transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may represent a new

  20. Carbon, nitrogen and pH regulate the production and activity of a polygalacturonase isozyme produced by Penicillium expansum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of carbon, nitrogen and pH on polygalacturonase activity produced by Penicillium expansum were investigated. P. expansum mycelial growth was greatest on lyophilized fruit tissue and the highest PG activity occurred in apple pectin medium. Nitrogen source influenced PG activity and was ...

  1. Ligninolytic peroxidase gene expression by Pleurotus ostreatus: differential regulation in lignocellulose medium and effect of temperature and pH.

    PubMed

    Fernández-Fueyo, Elena; Castanera, Raul; Ruiz-Dueñas, Francisco J; López-Lucendo, María F; Ramírez, Lucía; Pisabarro, Antonio G; Martínez, Angel T

    2014-11-01

    Pleurotus ostreatus is an important edible mushroom and a model lignin degrading organism, whose genome contains nine genes of ligninolytic peroxidases, characteristic of white-rot fungi. These genes encode six manganese peroxidase (MnP) and three versatile peroxidase (VP) isoenzymes. Using liquid chromatography coupled to tandem mass spectrometry, secretion of four of these peroxidase isoenzymes (VP1, VP2, MnP2 and MnP6) was confirmed when P. ostreatus grows in a lignocellulose medium at 25°C (three more isoenzymes were identified by only one unique peptide). Then, the effect of environmental parameters on the expression of the above nine genes was studied by reverse transcription-quantitative PCR by changing the incubation temperature and medium pH of P. ostreatus cultures pre-grown under the above conditions (using specific primers and two reference genes for result normalization). The cultures maintained at 25°C (without pH adjustment) provided the highest levels of peroxidase transcripts and the highest total activity on Mn(2+) (a substrate of both MnP and VP) and Reactive Black 5 (a VP specific substrate). The global analysis of the expression patterns divides peroxidase genes into three main groups according to the level of expression at optimal conditions (vp1/mnp3>vp2/vp3/mnp1/mnp2/mnp6>mnp4/mnp5). Decreasing or increasing the incubation temperature (to 10°C or 37°C) and adjusting the culture pH to acidic or alkaline conditions (pH 3 and 8) generally led to downregulation of most of the peroxidase genes (and decrease of the enzymatic activity), as shown when the transcription levels were referred to those found in the cultures maintained at the initial conditions. Temperature modification produced less dramatic effects than pH modification, with most genes being downregulated during the whole 10°C treatment, while many of them were alternatively upregulated (often 6h after the thermal shock) and downregulated (12h) at 37°C. Interestingly, mnp4 and

  2. Modulation of Phagosomal pH by Candida albicans Promotes Hyphal Morphogenesis and Requires Stp2p, a Regulator of Amino Acid Transport

    PubMed Central

    Vylkova, Slavena; Lorenz, Michael C.

    2014-01-01

    Candida albicans, the most important fungal pathogen of humans, has a unique interaction with macrophages in which phagocytosis induces a switch from the yeast to hyphal form, allowing it to escape by rupturing the immune cell. While a variety of factors induce this switch in vitro, including neutral pH, it is not clear what triggers morphogenesis within the macrophage where the acidic environment should inhibit this transition. In vitro, C. albicans grown in similar conditions in which amino acids are the primary carbon source generate large quantities of ammonia to raise the extracellular pH and induce the hyphal switch. We show here that C. albicans cells neutralize the macrophage phagosome and that neutral pH is a key inducer of germination in phagocytosed cells by using a mutant lacking STP2, a transcription factor that regulates the expression of multiple amino acid permeases, that is completely deficient in alkalinization in vitro. Phagocytosed stp2Δ mutant cells showed significant reduction in hypha formation and escaped from macrophages less readily compared to wild type cells; as a result stp2Δ mutant cells were killed at a higher rate and caused less damage to RAW264.7 macrophages. Stp2p-regulated import leads to alkalinization of the phagosome, since the majority of the wild type cells fail to co-localize with acidophilic dyes, whereas the stp2Δ mutant cells were located in acidic phagosomes. Furthermore, stp2Δ mutant cells were able to form hyphae and escape from neutral phagosomes, indicating that the survival defect in these cells was pH dependent. Finally, these defects are reflected in an attenuation of virulence in a mouse model of disseminated candidiasis. Altogether our results suggest that C. albicans utilizes amino acids to promote neutralization of the phagosomal pH, hyphal morphogenesis, and escape from macrophages. PMID:24626429

  3. Lactate and glucose concomitant consumption as a self-regulated pH detoxification mechanism in HEK293 cell cultures.

    PubMed

    Liste-Calleja, Leticia; Lecina, Martí; Lopez-Repullo, Jonatan; Albiol, Joan; Solà, Carles; Cairó, Jordi Joan

    2015-12-01

    One of the most important limitations of mammalian cell-based processes is the secretion and accumulation of lactate as a by-product of their metabolism. Among the cell lines commonly used in industrial bioprocesses, HEK293 has been gaining importance over the last years. Up recently, HEK293 cells were known to consume lactate in late stages of cell culture usually when glucose and/or glutamine were depleted from media. Remarkably, in both scenarios, no significant cell growth was reported. However, we have observed a different metabolic behavior regarding lactate production and consumption in HEK293 cultures. HEK293 cells were able to co-metabolize glucose and lactate simultaneously, even in exponentially growing cell cultures. Our deep study of the effects of environmental conditions on lactate metabolism revealed that pH was the key to trigger the metabolic shift from lactate production to lactate and glucose concomitant consumption. Remarkably, this shift could be triggered at will when pH was set at 6.8. Even more interesting was the fact that lowering pH to 6.6 and supplementing media with exogenous lactate resulted in co-consumption of glucose and lactate from the beginning of cell culture, without affecting cell growth or protein productivity. On the contrary, cell growth was clearly hampered at this low pH if extracellular lactate was lacking. From our results, we hypothesize that HEK293 cells metabolize extracellular lactate as a strategy for pH detoxification, by means of co-transporting extracellular protons together with lactate into the cytosol. This novel hypothesis for unraveling lactate metabolism in HEK293 cells could open a door to re-direct genetic engineering strategies in order to obtain more efficient cell lines and also to further develop animal cell technology applications.

  4. Regulation of ion transport by pH and [HCO3-] in isolated gills of the crab Neohelice (Chasmagnathus) granulata.

    PubMed

    Tresguerres, Martin; Parks, Scott K; Sabatini, Sebastian E; Goss, Greg G; Luquet, Carlos M

    2008-03-01

    Posterior isolated gills of Neohelice (Chasmagnathus) granulatus were symmetrically perfused with hemolymph-like saline of varying [HCO3-] and pH. Elevating [HCO3-] in the saline from 2.5 to 12.5 mmol/l (pH 7.75 in both cases) induced a significant increase in the transepithelial potential difference (Vte), a measure of ion transport. The elevation in [HCO3-] also induced a switch from acid secretion (-43.7 +/- 22.5 microequiv.kg(-1).h(-1)) in controls to base secretion (84.7 +/- 14.4 microequiv.kg(-1).h(-1)). The HCO3(-)-induced Vte increase was inhibited by basolateral acetazolamide (200 micromol/l), amiloride (1 mmol/l), and ouabain (5 mmol/l) but not by bafilomycin (100 nmol/l). The Vte response to HCO3(-) did not take place in Cl(-)-free conditions; however, it was unaffected by apical SITS (2 mmol/l) or DIDS (1 mmol/l). A decrease in pH from 7.75 to 7.45 pH units in the perfusate also induced a significant increase in Vte, which was matched by a net increase in acid secretion of 67.8 +/- 18.4 microequiv kg(-1) h(-1). This stimulation was sensitive to basolateral acetazolamide, bafilomycin, DIDS, and Na+-free conditions, but it still took place in Cl(-)-free saline. Therefore, the cellular response to low pH is different from the HCO3(-)-stimulated response. We also report V-H+-ATPase- and Na+-K+-ATPase-like immunoreactivity in gill sections for the first time in this crab. Our results suggest that carbonic anhydrase (CA), basolateral Na+/H+ exchangers and Na+-K+-ATPase and apical anion exchangers participate in the HCO3(-)-stimulated response, while CA, apical V-H+-ATPase and basolateral HCO3(-)-dependent cotransporters mediate the response to low pH.

  5. Brugia malayi microfilariae transport alphaviruses across the mosquito midgut.

    PubMed

    Vaughan, Jefferson A; Turell, Michael J

    2017-01-01

    Concurrent ingestion of microfilariae (MF) and arboviruses by mosquitoes can enhance mosquito transmission of virus compared to when virus is ingested alone. Within hours of being ingested, MF penetrate the mosquito midgut and introduce virus into mosquito hemocoel, creating a disseminated viral infection much sooner than normal. How virus is actually introduced is not known. In this report, we present experimental evidence that suggests that certain alphaviruses may adhere or otherwise associate with sheathed Brugia malayi MF in the blood of a dually-infected host and that the virus is carried into the mosquito hemocoel by the MF during their penetration of the mosquito midgut. The mechanism of MF enhancement may be more complex than simple leakage of viremic blood into the hemocoel during MF penetration. The affinity of arboviruses to adhere to or otherwise associate with MF may depend on the specific combination of the virus and MF involved in a dual host infection. This in turn may determine the relative importance that MF enhancement has within an arbovirus transmission system.

  6. Brugia malayi microfilariae transport alphaviruses across the mosquito midgut

    PubMed Central

    Turell, Michael J.

    2017-01-01

    Concurrent ingestion of microfilariae (MF) and arboviruses by mosquitoes can enhance mosquito transmission of virus compared to when virus is ingested alone. Within hours of being ingested, MF penetrate the mosquito midgut and introduce virus into mosquito hemocoel, creating a disseminated viral infection much sooner than normal. How virus is actually introduced is not known. In this report, we present experimental evidence that suggests that certain alphaviruses may adhere or otherwise associate with sheathed Brugia malayi MF in the blood of a dually-infected host and that the virus is carried into the mosquito hemocoel by the MF during their penetration of the mosquito midgut. The mechanism of MF enhancement may be more complex than simple leakage of viremic blood into the hemocoel during MF penetration. The affinity of arboviruses to adhere to or otherwise associate with MF may depend on the specific combination of the virus and MF involved in a dual host infection. This in turn may determine the relative importance that MF enhancement has within an arbovirus transmission system. PMID:28222120

  7. A vacuolar-type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut

    SciTech Connect

    Wieczorek, H.; Weerth, S.; Schindlbeck, M.; Klein, U.

    1989-07-05

    Mg-ATP dependent electrogenic proton transport, monitored with fluorescent acridine orange, 9-aminoacridine, and oxonol V, was investigated in a fraction enriched with potassium transporting goblet cell apical membranes of Manduca sexta larval midgut. Proton transport and the ATPase activity from the goblet cell apical membrane exhibited similar substrate specificity and inhibitor sensitivity. ATP and GTP were far better substrates than UTP, CTP, ADP, and AMP. Azide and vanadate did not inhibit proton transport, whereas 100 microM N,N'-dicyclohexylcarbodiimide and 30 microM N-ethylmaleimide were inhibitors. The pH gradient generated by ATP and limiting its hydrolysis was 2-3 pH units. Unlike the ATPase activity, proton transport was not stimulated by KCl. In the presence of 20 mM KCl, a proton gradient could not be developed or was dissipated. Monovalent cations counteracted the proton gradient in an order of efficacy like that for stimulation of the membrane-bound ATPase activity: K+ = Rb+ much greater than Li+ greater than Na+ greater than choline (chloride salts). Like proton transport, the generation of an ATP dependent and azide- and vanadate-insensitive membrane potential (vesicle interior positive) was prevented largely by 100 microM N,N'-dicyclohexylcarbodiimide and 30 microM N-ethylmaleimide. Unlike proton transport, the membrane potential was not affected by 20 mM KCl. In the presence of 150 mM choline chloride, the generation of a membrane potential was suppressed, whereas the pH gradient increased 40%, indicating an anion conductance in the vesicle membrane. Altogether, the results led to the following new hypothesis of electrogenic potassium transport in the lepidopteran midgut. A vacuolar-type electrogenic ATPase pumps protons across the apical membrane of the goblet cell, thus energizing electroneutral proton/potassium antiport. The result is a net active and electrogenic potassium flux.

  8. Role of H(+)-pyrophosphatase activity in the regulation of intracellular pH in a scuticociliate parasite of turbot: Physiological effects.

    PubMed

    Mallo, Natalia; Lamas, Jesús; de Felipe, Ana-Paula; Sueiro, Rosa-Ana; Fontenla, Francisco; Leiro, José-Manuel

    2016-10-01

    The scuticociliatosis is a very serious disease that affects the cultured turbot, and whose causal agent is the anphizoic and marine euryhaline ciliate Philasterides dicentrarchi. Several protozoans possess acidic organelles that contain high concentrations of pyrophosphate (PPi), Ca(2+) and other elements with essential roles in vesicular trafficking, pH homeostasis and osmoregulation. P. dicentrarchi possesses a pyrophosphatase (H(+)-PPase) that pumps H(+) through the membranes of vacuolar and alveolar sacs. These compartments share common features with the acidocalcisomes described in other parasitic protozoa (e.g. acid content and Ca(2+) storage). We evaluated the effects of Ca(2+) and ATP on H (+)-PPase activity in this ciliate and analyzed their role in maintaining intracellular pH homeostasis and osmoregulation, by the addition of PPi and inorganic molecules that affect osmolarity. Addition of PPi led to acidification of the intracellular compartments, while the addition of ATP, CaCl2 and bisphosphonates analogous of PPi and Ca(2+) metabolism regulators led to alkalinization and a decrease in H(+)-PPase expression in trophozoites. Addition of NaCl led to proton release, intracellular Ca(2+) accumulation and downregulation of H(+)-PPase expression. We conclude that the regulation of the acidification of intracellular compartments may be essential for maintaining the intracellular pH homeostasis necessary for survival of ciliates and their adaptation to salt stress, which they will presumably face during the endoparasitic phase, in which the salinity levels are lower than in their natural environment.

  9. Malaria parasites co-opt human factor H to prevent complement-mediated lysis in the mosquito midgut.

    PubMed

    Simon, Nina; Lasonder, Edwin; Scheuermayer, Matthias; Kuehn, Andrea; Tews, Sabrina; Fischer, Rainer; Zipfel, Peter F; Skerka, Christine; Pradel, Gabriele

    2013-01-16

    Human complement is a first line defense against infection in which circulating proteins initiate an enzyme cascade on the microbial surface that leads to phagocytosis and lysis. Various pathogens evade complement recognition by binding to regulator proteins that protect host cells from complement activation. We show that emerging gametes of the malaria parasite Plasmodium falciparum bind the host complement regulator factor H (FH) following transmission to the mosquito to protect from complement-mediated lysis by the blood meal. Human complement is active in the mosquito midgut for approximately 1 hr postfeeding. During this period, the gamete surface protein PfGAP50 binds to FH and uses surface-bound FH to inactivate the complement protein C3b. Loss of FH-mediated protection, either through neutralization of FH or blockade of PfGAP50, significantly impairs gametogenesis and inhibits parasite transmission to the mosquito. Thus, Plasmodium co-opts the protective host protein FH to evade complement-mediated lysis within the mosquito midgut.

  10. Dual regulation of the native ClC-K2 chloride channel in the distal nephron by voltage and pH

    PubMed Central

    Pinelli, Laurent; Nissant, Antoine; Edwards, Aurélie; Paulais, Marc

    2016-01-01

    ClC-K2, a member of the ClC family of Cl− channels and transporters, forms the major basolateral Cl− conductance in distal nephron epithelial cells and therefore plays a central role in renal Cl− absorption. However, its regulation remains largely unknown because of the fact that recombinant ClC-K2 has not yet been studied at the single-channel level. In the present study, we investigate the effects of voltage, pH, Cl−, and Ca2+ on native ClC-K2 in the basolateral membrane of intercalated cells from the mouse connecting tubule. The ∼10-pS channel shows a steep voltage dependence such that channel activity increases with membrane depolarization. Intracellular pH (pHi) and extracellular pH (pHo) differentially modulate the voltage dependence curve: alkaline pHi flattens the curve by causing an increase in activity at negative voltages, whereas alkaline pHo shifts the curve toward negative voltages. In addition, pHi, pHo, and extracellular Ca2+ strongly increase activity, mainly because of an increase in the number of active channels with a comparatively minor effect on channel open probability. Furthermore, voltage alters both the number of active channels and their open probability, whereas intracellular Cl− has little influence. We propose that changes in the number of active channels correspond to them entering or leaving an inactivated state, whereas modulation of open probability corresponds to common gating by these channels. We suggest that pH, through the combined effects of pHi and pHo on ClC-K2, might be a key regulator of NaCl absorption and Cl−/HCO3− exchange in type B intercalated cells. PMID:27574292

  11. Dual regulation of the native ClC-K2 chloride channel in the distal nephron by voltage and pH.

    PubMed

    Pinelli, Laurent; Nissant, Antoine; Edwards, Aurélie; Lourdel, Stéphane; Teulon, Jacques; Paulais, Marc

    2016-09-01

    ClC-K2, a member of the ClC family of Cl(-) channels and transporters, forms the major basolateral Cl(-) conductance in distal nephron epithelial cells and therefore plays a central role in renal Cl(-) absorption. However, its regulation remains largely unknown because of the fact that recombinant ClC-K2 has not yet been studied at the single-channel level. In the present study, we investigate the effects of voltage, pH, Cl(-), and Ca(2+) on native ClC-K2 in the basolateral membrane of intercalated cells from the mouse connecting tubule. The ∼10-pS channel shows a steep voltage dependence such that channel activity increases with membrane depolarization. Intracellular pH (pHi) and extracellular pH (pHo) differentially modulate the voltage dependence curve: alkaline pHi flattens the curve by causing an increase in activity at negative voltages, whereas alkaline pHo shifts the curve toward negative voltages. In addition, pHi, pHo, and extracellular Ca(2+) strongly increase activity, mainly because of an increase in the number of active channels with a comparatively minor effect on channel open probability. Furthermore, voltage alters both the number of active channels and their open probability, whereas intracellular Cl(-) has little influence. We propose that changes in the number of active channels correspond to them entering or leaving an inactivated state, whereas modulation of open probability corresponds to common gating by these channels. We suggest that pH, through the combined effects of pHi and pHo on ClC-K2, might be a key regulator of NaCl absorption and Cl(-)/HCO3 (-) exchange in type B intercalated cells.

  12. Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi.

    PubMed

    Bi, Fangcheng; Barad, Shiri; Ment, Dana; Luria, Neta; Dubey, Amit; Casado, Virginia; Glam, Nofar; Mínguez, Jose Diaz; Espeso, Eduardo A; Fluhr, Robert; Prusky, Dov

    2016-10-01

    Fruit pathogens can contribute to the acidification or alkalinization of the host environment. This capability has been used to divide fungal pathogens into acidifying and/or alkalinizing classes. Here, we show that diverse classes of fungal pathogens-Colletotrichum gloeosporioides, Penicillium expansum, Aspergillus nidulans and Fusarium oxysporum-secrete small pH-affecting molecules. These molecules modify the environmental pH, which dictates acidic or alkaline colonizing strategies, and induce the expression of PACC-dependent genes. We show that, in many organisms, acidification is induced under carbon excess, i.e. 175 mm sucrose (the most abundant sugar in fruits). In contrast, alkalinization occurs under conditions of carbon deprivation, i.e. less than 15 mm sucrose. The carbon source is metabolized by glucose oxidase (gox2) to gluconic acid, contributing to medium acidification, whereas catalysed deamination of non-preferred carbon sources, such as the amino acid glutamate, by glutamate dehydrogenase 2 (gdh2), results in the secretion of ammonia. Functional analyses of Δgdh2 mutants showed reduced alkalinization and pathogenicity during growth under carbon deprivation, but not in high-carbon medium or on fruit rich in sugar, whereas analysis of Δgox2 mutants showed reduced acidification and pathogencity under conditions of excess carbon. The induction pattern of gdh2 was negatively correlated with the expression of the zinc finger global carbon catabolite repressor creA. The present results indicate that differential pH modulation by fruit fungal pathogens is a host-dependent mechanism, affected by host sugar content, that modulates environmental pH to enhance fruit colonization.

  13. Local pH domains regulate NHE3-mediated Na⁺ reabsorption in the renal proximal tubule.

    PubMed

    Brasen, Jens Christian; Burford, James L; McDonough, Alicia A; Holstein-Rathlou, Niels-Henrik; Peti-Peterdi, Janos

    2014-12-01

    The proximal tubule Na(+)/H(+) exchanger 3 (NHE3), located in the apical dense microvilli (brush border), plays a major role in the reabsorption of NaCl and water in the renal proximal tubule. In response to a rise in blood pressure NHE3 redistributes in the plane of the plasma membrane to the base of the brush border, where NHE3 activity is reduced. This NHE3 redistribution is assumed to provoke pressure natriuresis; however, it is unclear how NHE3 redistribution per se reduces NHE3 activity. To investigate if the distribution of NHE3 in the brush border can change the reabsorption rate, we constructed a spatiotemporal mathematical model of NHE3-mediated Na(+) reabsorption across a proximal tubule cell and compared the model results with in vivo experiments in rats. The model predicts that when NHE3 is localized exclusively at the base of the brush border, it creates local pH microdomains that reduce NHE3 activity by >30%. We tested the model's prediction experimentally: the rat kidney cortex was loaded with the pH-sensitive fluorescent dye BCECF, and cells of the proximal tubule were imaged in vivo using confocal fluorescence microscopy before and after an increase of blood pressure by ∼50 mmHg. The experimental results supported the model by demonstrating that a rise of blood pressure induces the development of pH microdomains near the bottom of the brush border. These local changes in pH reduce NHE3 activity, which may explain the pressure natriuresis response to NHE3 redistribution.

  14. Ultrastructural changes of the midgut epithelium in Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada: Eutardigrada) during oogenesis.

    PubMed

    Rost-Roszkowska, Magdalena M; Poprawa, Izabela; Wójtowicz, Maria; Kaczmarek, Lukasz

    2011-04-01

    The midgut epithelium of Isohypsibius granulifer granulifer (Eutardigrada) is composed of columnar digestive cells. At its anterior end, a group of cells with cytoplasm which differs from the cytoplasm of digestive cells is present. Probably, those cells respond to crescent-like cells (midgut regenerative cells) described for some tardigrade species. Their mitotic divisions have not been observed. We analyzed the ultrastructure of midgut digestive cells in relation to five different stages of oogenesis (previtellogenesis, beginning of the vitellogenesis, vitellogenesis--early choriogenesis, vitellogenesis--middle choriogenesis, late choriogenesis). In the midgut epithelium cells, the gradual accumulation of glycogen granules, lipid droplets and structures of varying electron density occurs. During vitellogenesis and choriogenesis, in the cytoplasm of midgut cells we observed the increasing number of organelles which are responsible for the intensive synthesis of lipids, proteins and saccharides such as cisterns of endoplasmic reticulum and Golgi complexes. At the end of oogenesis, autophagy also intensifies in midgut epithelial cells, which is probably caused by the great amount of reserve material. Midgut epithelium of analyzed species takes part in the yolk precursor synthesis.

  15. Anopheles stephensi Heme Peroxidase HPX15 Suppresses Midgut Immunity to Support Plasmodium Development

    PubMed Central

    Kajla, Mithilesh; Kakani, Parik; Choudhury, Tania Pal; Kumar, Vikas; Gupta, Kuldeep; Dhawan, Rini; Gupta, Lalita; Kumar, Sanjeev

    2017-01-01

    The heme peroxidase HPX15 is an evolutionary conserved anopheline lineage-specific gene. Previously, we found that this gene is present in the genome of 19 worldwide distributed different species of Anopheles mosquito and its orthologs are absent in other mosquitoes, insects, or human. In addition, 65–99% amino acid identity among these 19 orthologs permitted us to hypothesize that the functional aspects of this gene might be also conserved in different anophelines. In this study, we found that Anopheles stephensi AsHPX15 gene is mainly expressed in the midgut and highly induced after uninfected or Plasmodium berghei-infected blood feeding. RNA interference-mediated silencing of midgut AsHPX15 gene drastically reduced the number of developing P. berghei oocysts. An antiplasmodial gene nitric oxide synthase was induced 13-fold in silenced midguts when compared to the unsilenced controls. Interestingly, the induction of antiplasmodial immunity in AsHPX15-silenced midguts is in absolute agreement with Anopheles gambiae. In A. gambiae, AgHPX15 catalyzes the formation of a dityrosine network at luminal side of the midgut that suppresses the activation of mosquito immunity against the bolus bacteria. Thus, a low-immunity zone created by this mechanism indirectly supports Plasmodium development inside the midgut lumen. These indistinguishable functional behaviors and conserved homology indicates that HPX15 might be a potent target to manipulate the antiplasmodial immunity of the anopheline midgut, and it will open new frontiers in the field of malaria control. PMID:28352267

  16. Temporal and spatial expression of caudal-type homeobox proteins in the midgut of human embryos

    PubMed Central

    Tang, Xiao-Bing; Zhang, Jin; Wang, Wei-Lin; Yuan, Zheng-Wei; Bai, Yu-Zuo

    2015-01-01

    Background: This study aimed to determine the spatiotemporal expression of caudal-type homeobox genes (CDX1, CDX2 and CDX4) during development of the midgut in human embryos and to explore the possible roles of CDX genes during the morphogenesis of human midgut. Human embryos (n=28) were sectioned serially and sagittally and CDX1, CDX2 and CDX4 proteins were detected on the midline from the 5th to 9th weeks of gestation by immunohistochemical staining. Results: CDX1, CDX2 and CDX4 proteins were weakly expressed in epithelium and mesenchyme of the midgut in the 6th and 7th weeks of gestation and reached estimated optimal level on the 8th and 9th weeks of gestation. In the 9th week of gestation, immunoreactivities specific to CDX1, CDX2 and CDX4 were restricted in epithelium of the midgut. Conclusions: CDX1, CDX2 and CDX4 proteins began to express in human midgut in the 6th week of gestation. From the 6th to 9th week of gastation, the expression of CDX1, CDX2 and CDX4 proteins gradually increase and exhibited overlapping expression patterns, suggesting that CDX genes may be involved in early development of the epithelium of human midgut. Cross-regulatory interactions may exist among CDX genes with respect to human midgut development. PMID:26884902

  17. cAMP/protein kinase A activates cystic fibrosis transmembrane conductance regulator for ATP release from rat skeletal muscle during low pH or contractions.

    PubMed

    Tu, Jie; Lu, Lin; Cai, Weisong; Ballard, Heather J

    2012-01-01

    We have shown that cystic fibrosis transmembrane conductance regulator (CFTR) is involved in ATP release from skeletal muscle at low pH. These experiments investigate the signal transduction mechanism linking pH depression to CFTR activation and ATP release, and evaluate whether CFTR is involved in ATP release from contracting muscle. Lactic acid treatment elevated interstitial ATP of buffer-perfused muscle and extracellular ATP of L6 myocytes: this ATP release was abolished by the non-specific CFTR inhibitor, glibenclamide, or the specific CFTR inhibitor, CFTR(inh)-172, suggesting that CFTR was involved, and by inhibition of lactic acid entry to cells, indicating that intracellular pH depression was required. Muscle contractions significantly elevated interstitial ATP, but CFTR(inh)-172 abolished the increase. The cAMP/PKA pathway was involved in the signal transduction pathway for CFTR-regulated ATP release from muscle: forskolin increased CFTR phosphorylation and stimulated ATP release from muscle or myocytes; lactic acid increased intracellular cAMP, pCREB and PKA activity, whereas IBMX enhanced ATP release from myocytes. Inhibition of PKA with KT5720 abolished lactic-acid- or contraction-induced ATP release from muscle. Inhibition of either the Na(+)/H(+)-exchanger (NHE) with amiloride or the Na(+)/Ca(2+)-exchanger (NCX) with SN6 or KB-R7943 abolished lactic-acid- or contraction-induced release of ATP from muscle, suggesting that these exchange proteins may be involved in the activation of CFTR. Our data suggest that CFTR-regulated release contributes to ATP release from contracting muscle in vivo, and that cAMP and PKA are involved in the activation of CFTR during muscle contractions or acidosis; NHE and NCX may be involved in the signal transduction pathway.

  18. Target-Based Screen Against a Periplasmic Serine Protease That Regulates Intrabacterial pH Homeostasis in Mycobacterium tuberculosis

    PubMed Central

    2015-01-01

    Mycobacterium tuberculosis (Mtb) maintains its intrabacterial pH (pHIB) near neutrality in the acidic environment of phagosomes within activated macrophages. A previously reported genetic screen revealed that Mtb loses this ability when the mycobacterial acid resistance protease (marP) gene is disrupted. In the present study, a high throughput screen (HTS) of compounds against the protease domain of MarP identified benzoxazinones as inhibitors of MarP. A potent benzoxazinone, BO43 (6-chloro-2-(2′-methylphenyl)-4H-1,3-benzoxazin-4-one), acylated MarP and lowered Mtb’s pHIB and survival during incubation at pH 4.5. BO43 had similar effects on MarP-deficient Mtb, suggesting the existence of additional target(s). Reaction of an alkynyl-benzoxazinone, BO43T, with Mycobacterium bovis variant bacille Calmette-Guérin (BCG) followed by click chemistry with azido-biotin identified both the MarP homologue and the high temperature requirement A1 (HtrA1) homologue, an essential protein. Thus, the chemical probe identified through a target-based screen not only reacted with its intended target in the intact cells but also implicated an additional enzyme that had eluded a genetic screen biased against essential genes. PMID:25457457

  19. Vcx1 and ESCRT components regulate intracellular pH homeostasis in the response of yeast cells to calcium stress.

    PubMed

    Papouskova, Klara; Jiang, Linghuo; Sychrova, Hana

    2015-03-01

    Endosomal sorting complexes required for transport (ESCRTs) are involved in the formation of multivesicular bodies and sorting of targeted proteins to the yeast vacuole. The deletion of seven genes encoding components of the ESCRT machinery render Saccharomyces cerevisiae cells sensitive to high extracellular CaCl2 concentrations as well as to low pH in media. In this work, we focused on intracellular pH (pHin) homeostasis of these mutants. None of the studied ESCRT mutants exhibited an altered pHin level compared to the wild type under standard growth conditions. Nevertheless, 60 min of CaCl2 treatment resulted in a more significant drop in pHin levels in these mutants than in the wild type, suggesting that pHin homeostasis is affected in ESCRT mutants upon the addition of calcium. Similarly, CaCl2 treatment caused a bigger pHin decrease in cells lacking the vacuolar Ca(2+)/H(+) antiporter Vcx1 which indicates a role for this protein in the maintenance of proper pHin homeostasis when cells need to cope with a high CaCl2 concentration in media. Importantly, ESCRT gene deletions in the vcx1Δ strain did not result in an increase in the CaCl2-invoked drop in the pHin levels of cells, which demonstrates a genetic interaction between VCX1 and studied ESCRT genes.

  20. Ionic Specificity in pH Regulated Charged Interfaces: Fe[superscript 3+]versus La[superscript 3+

    SciTech Connect

    Wang, Wenjie; Park, Rebecca Y.; Meyer, David H.; Travesset, Alex; Vaknin, David

    2012-03-26

    We determine the distribution of two trivalent ions Fe{sup 3+} and La{sup 3+} next to two different amphiphilic charged interfaces as ions or complexes, consisting of the phosphate lipid dihexadecyl phosphate (DHDP) and the fatty acid arachidic acid (AA). These amphiphiles provide a wide range of pK{sub a} values, from 2.1 (DHDP) to 5.1 (AA), thus allowing manipulation of the surface charge over extremely low pH (pH {approx}1 or larger), and the two ions provide two limiting cases of specificity for the amphiphiles. We find that La{sup 3+} distribution is mostly sensitive to the surface charge, whereas the Fe{sup 3+} binding depends on its character in the solution and is highly specific, as indicated by the crucial role played by iron complexes (Fe(OH){sub 3} or Fe(OH){sup 2+}) forming covalent bonds even for an uncharged interface. The implications of the results to other ions and/or amphiphilic interfaces are also discussed.

  1. Antioxidant defenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen.

    PubMed

    Barbehenn, R V; Bumgarner, S L; Roosen, E F; Martin, M M

    2001-04-01

    This study demonstrates that an ascorbate-recycling system in the midgut lumen can act as an effective antioxidant defense in caterpillars that feed on prooxidant-rich foods. In tannin-sensitive larvae of the forest tent caterpillar, Malacosoma disstria (Lasiocampidae), ingested tannic acid is oxidized in the midgut lumen, generating significant quantities of peroxides, including hydrogen peroxide, which readily diffuses across cell membranes and is a powerful cytotoxin. By contrast, in the tannin-tolerant larvae of the white-marked tussock moth, Orgyia leucostigma (Lymantriidae), tannic acid oxidation and the generation of peroxides are suppressed. The superior defense of O. leucostigma against oxidative stress imposed by the oxidation of ingested polyphenols can be explained by the presence of higher concentrations of ascorbate and glutathione in the midgut lumen. In O. leucostigma at least 50% of the ingested ascorbate present in the anterior midgut is still present in the posterior midgut, whereas in M. disstria, only 10% of the ascorbate is present in the posterior half of the midgut. We propose that the maintenance of higher levels of ascorbate in the midgut lumen of O. leucostigma than in M. disstria is explained by the secretion of glutathione into the midgut lumen by O. leucostigma, thereby forming a complete ascorbate-recycling system. The concentration of glutathione in the midgut lumen of O. leucostigma is 3.5-fold higher than in M. disstria and more than double the concentration in the diet. Our results emphasize the importance of a defensive strategy in herbivorous insects based on the maintenance of conditions in the gut lumen that reduce or eliminate the potential prooxidant behavior of ingested phenols.

  2. Purification and Characterization of Midgut α-Amylase in a Predatory Bug, Andralus spinidens

    PubMed Central

    Sorkhabi-Abdolmaleki, Sahar; Zibaee, Arash; Hoda, Hassan; Fazeli-Dinan, Mahmoud

    2014-01-01

    α-Amylases are widespread enzymes that catalyze endohydrolysis of long α-1,4-glucan chains such as starch and glycogen. The highest amylolytic activity was found in 5th instar nymphs and midgut of the predatory bug, Andrallus spinidens F. (Hemiptera: Pentatomidae). The α-amylase was purified following a three-step procedure. The purified α-amylase had a specific activity of 13.46 U/mg protein, recovery of 4.21, purification fold of 13.87, and molecular weight of 21.3 kDa. The enzyme had optimal pH and temperature of 7 and 45°C, respectively. Na+, Mn+, Mg2+, and Zn2+ significantly decreased activity of the purified α-amylase, but some concentrations of K+, Ca2+, and Cu2+ had the opposite effect. EDTA, EGTA, and DTC significantly decreased enzymatic activity, showing the presence of metal ions in the catalytic site of the enzyme. Kinetic parameters of the purified α-amylase showed a Km of 3.71% in starch and 4.96% for glycogen, suggesting that the enzyme had a higher affinity for starch. PMID:25373212

  3. Utility of the CT Scan in Diagnosing Midgut Volvulus in Patients with Chronic Abdominal Pain

    PubMed Central

    Morshedi, Mehdi; Baradaran Jamili, Mohammad; Shafizadeh Barmi, Fatemeh

    2017-01-01

    Symptomatic intestinal malrotation first presenting in the adults is rare. Midgut volvulus is the most common complication of malrotation in the adults. Because of more differential diagnosis, Computed Tomography (CT) scan can play an important role in the evaluation of patients with this abnormality. The whirl pattern around the superior mesenteric artery found on CT scan in patients with midgut volvulus is pathognomonic and diagnostic. We describe a case of intestinal malrotation complicated by midgut volvulus in an adult patient. The preoperative CT findings were pathognomonic. PMID:28182093

  4. Calcium tartrate crystals in the midgut of the grape leafhopper.

    PubMed

    Böll, S; Schmitt, T; Burschka, C; Schreier, P; Schwappach, P; Herrmann, J V

    2005-12-01

    Calcium tartrate crystals were observed in the midgut of grape leafhoppers. This unique compound was found for the first time in insects. The size of the crystals varied strongly between and within individuals with a mean length of 153 +/- 87 microm and a mean width of 71 +/- 46 microm. In addition, the number of crystals per individual showed a broad variation and ranged from 1 to 150 crystals/individual. The occurrence of calcium tartrate crystals as well as the number of crystals per individual followed the same seasonal pattern as seasonal vine leaf concentrations of tartaric acid found in a previous study, indicating that calcium tartrate is formed to neutralize the tartaric acid in the gut system. It further implies that the grape leafhopper, rather than being a pure phloem sucker, employs a mixed feeding strategy to satisfy its demands for calcium uptake.

  5. Characterization of a Digestive α-Amylase in the Midgut of Pieris brassicae L. (Lepidoptera: Pieridae)

    PubMed Central

    Sharifloo, Ali; Zibaee, Arash; Sendi, Jalal J.; Jahroumi, Khalil Talebi

    2016-01-01

    The current study deals with a digestive α-amylase in the larvae of Pieris brassicae L. through purification, enzymatic characterization, gene expression, and in vivo effect of a specific inhibitor, Acarbose. Although α-amylase activity was the highest in the whole gut homogenate of larvae but compartmentalization of amylolytic activity showed an equal activity in posterior midgut (PM) and anterior midgut (AM). A three step purification using ammonium sulfate, Sepharyl G-100 and DEAE-Cellulose Fast flow revealed an enzyme with a specific activity of 5.18 U/mg, recovery of 13.20, purification fold of 19.25 and molecular weight of 88 kDa. The purified α-amylase had the highest activity at optimal pH and temperature of 8 and 35°C. Also, the enzyme had Vmax values of 4.64 and 3.02 U/mg protein and Km values of 1.37 and 1.74% using starch and glycogen as substrates, respectively. Different concentrations of acarbose, ethylenediamine tetraacetic acid, and ethylene glycol-bis (β-aminoethylether) N, N, N′, N′-tetraacetic acid significantly decreased activity of the purified α-amylase. The 4th instar larvae of P. brassicae were fed on the treated leaves of Raphanus sativus L. with 0.22 mM of Acarbose to find in vivo effects on nutritional indices, α-amylase activity, and gene expression. The significant differences were only found in conversion efficiency of digested food, relative growth rate, and metabolic cost of control and fed larvae on Acarbose. Also, amylolytic activity significantly decreased in the treated larvae by both biochemical and native-PAGE experiments. Results of RT-PCR revealed a gene with 621 bp length responsible for α-amylase expression that had 75% identity with Papilio xuthus and P. polytes. Finally, qRT-PCR revealed higher expression of α-amylase in control larvae compared to acarbose-fed ones. PMID:27014094

  6. Midgut proteases of the cardamom shoot and capsule borer Conogethes punctiferalis (Lepidoptera: Pyralidae) and their interaction with aprotinin.

    PubMed

    Josephrajkumar, A; Chakrabarty, R; Thomas, G

    2006-02-01

    Protease inhibitors cause mortality in a range of insects, and transgenic plants expressing protease inhibitors have been protected against pest attack, particularly internal feeders that are not amenable to control by conventional means. A study of luminal proteases in Conogethes punctiferalis Guenée was performed to identify potential targets for proteinaceous biopesticides, such as protease inhibitors. The midgut protease profile of the gut lumen from C. punctiferalis was studied to determine the conditions for optimal protein hydrolysis. Optimum conditions for peptidase activity were found to be in 50 mm Tris-HCl, pH 10 containing 20 mm CaCl2; incubation for 30 min at 40 degrees C. Four synthetic substrates, i.e. benzoyl-arg-p-nitroanilide, benzoyl-tyr-p-nitroanilide, succinyl-ala-ala-pro-leu-p-nitroanilide (SAAPLpNA) and leu-p-nitroanilide were hydrolysed by C. punctiferalis gut proteases in Tris-HCl buffer pH 10. Trypsin and elastase-like chymotrypsin were the prominent digestive proteases, and age-related modulation of midgut proteases existed for trypsin, chymotrypsin, elastase-like chymotrypsin and leucine aminopeptidase. Serine protease inhibitors such as aprotinin, soybean trypsin inhibitor and phenylmethanesulfonyl fluoride inhibited peptidase activity. Some metal ions such as Ca(2+), Mg(2+), Pb(2+) and Co(2+) enhanced BApNA-ase activity whereas others like Mn(2+), Zn(2+), Cu(2+), Fe(2+) and Hg(2+) were inhibitory at 6 mm concentration. Trypsin and elastase-like chymotrypsin were significantly inhibited by 94% and 29%, respectively, by aprotinin (150 nm) under in vitro conditions. A possible incorporation of protease inhibitors into transgenic plants is discussed.

  7. The role of carbonic anhydrase 9 in regulating extracellular and intracellular ph in three-dimensional tumor cell growths.

    PubMed

    Swietach, Pawel; Patiar, Shalini; Supuran, Claudiu T; Harris, Adrian L; Vaughan-Jones, Richard D

    2009-07-24

    We have studied the role of carbonic anhydrase 9 (CA9), a cancer-associated extracellular isoform of the enzyme carbonic anhydrase in multicellular spheroid growths (radius of approximately 300 microm) of human colon carcinoma HCT116 cells. Spheroids were transfected with CA9 (or empty vector) and imaged confocally (using fluorescent dyes) for both intracellular pH (pH(i)) and pH in the restricted extracellular spaces (pH(e)). With no CA9 expression, spheroids developed very low pH(i) (approximately 6.3) and reduced pH(e) (approximately 6.9) at their core, associated with a diminishing gradient of acidity extending out to the periphery. With CA9 expression, core intracellular acidity was less prominent (pH(i) = approximately 6.6), whereas extracellular acidity was enhanced (pH(e) = approximately 6.6), so that radial pH(i) gradients were smaller and radial pH(e) gradients were larger. These effects were reversed by eliminating CA9 activity with membrane-impermeant CA inhibitors. The observation that CA9 activity reversibly reduces pH(e) indicates the enzyme is facilitating CO(2) excretion from cells (by converting vented CO(2) to extracellular H(+)), rather than facilitating membrane H(+) transport (such as H(+) associated with metabolically generated lactic acid). This latter process requires titration of exported H(+) ions with extracellular HCO(3)(-), which would reduce rather than increase extracellular acidity. In a multicellular structure, the net effect of CA9 on pH(e) will depend on the cellular CO(2)/lactic acid emission ratio (set by local oxygenation and membrane HCO(3)(-) uptake). Our results suggest that CO(2)-producing tumors may express CA9 to facilitate CO(2) excretion, thus raising pH(i) and reducing pH(e), which promotes tumor proliferation and survival. The results suggest a possible basis for attenuating tumor development through inhibiting CA9 activity.

  8. An Na(+)-independent short-chain fatty acid transporter contributes to intracellular pH regulation in murine colonocytes

    PubMed Central

    1995-01-01

    Short-chain fatty acids (SCFAs) are the major anions in the colonic lumen. Experiments studied how intracellular pH (pHi) of isolated colonocytes was affected by exposure to SCFAs normally found in the colon. Isolated crypt fragments were loaded with SNARF-1 (a fluorescent dye with pH-sensitive excitation and emission spectra) and studied in a digital imaging microscope. Intracellular pH was measured in individual colonocytes as the ratio of fluorescence intensity in response to alternating excitation wavelengths (575/505 nm). After exposure to 65 mM acetate, propionate, n-butyrate, or iso-butyrate in isosmotic Na(+)- free media (substituted with tetramethylammonia), all colonocytes acidified rapidly and then > 90% demonstrated a pHi alkalinization (Na(+)-independent pHi recovery). Upon subsequent removal of the SCFA, pHi alkalinized beyond the starting pHi (a pHi overshoot). Using propionate as a test SCFA, experiments demonstrate that the acidification and pHi overshoot are explained by transmembrane influx and efflux of nonionized SCFA, respectively. The basis for the pHi overshoot is shown to be accumulation of propionate during pHi alkalinization. The Na(+)-independent pHi recovery (a) demonstrates saturable propionate activation kinetics; (b) demonstrates substrate specificity for unmodified aliphatic carbon chains; (c) occurs after exposure to SCFAs of widely different metabolic activity, (d) is electroneutral; and (e) is not inhibited by changes in the K+ gradient, Cl- gradient or addition of the anion transport inhibitors DIDS (1 mM), SITS (1 mM), alpha-cyano-4-hydroxycinnamate (4 mM), or probenicid (1 mM). Results suggest that most mouse colonocytes have a previously unreported SCFA transporter which mediates Na(+)-independent pHi recovery. PMID:7658194

  9. Regulation of nitrogen uptake and assimilation: Effects of nitrogen source, root-zone pH, and aerial CO2 concentration on growth and productivity of soybeans

    NASA Technical Reports Server (NTRS)

    Raper, C. D.; Tolley-Henry, L.

    1989-01-01

    An important feature of controlled-environment crop production systems such as those to be used for life support of crews during space exploration is the efficient utilization of nitrogen supplies. Making decisions about the best sources of these supplies requires research into the relationship between nitrogen source and the physiological processes which regulate vegetative and reproductive plant growth. Work done in four areas within this research objective is reported: (1) experiments on the effects of root-zone pH on preferential utilization of NO3(-) versus NH4(+) nitrogen; (2) investigation of processes at the whole-plant level that regulate nitrogen uptake; (3) studies of the effects of atmospheric CO2 and NO3(-) supply on the growth of soybeans; and (4) examination of the role of NO3(-) uptake in enhancement of root respiration.

  10. Vacuolar CAX1 and CAX3 Influence Auxin Transport in Guard Cells via Regulation of Apoplastic pH1[W][OA

    PubMed Central

    Cho, Daeshik; Villiers, Florent; Kroniewicz, Laetitia; Lee, Sangmee; Seo, You Jin; Hirschi, Kendal D.; Leonhardt, Nathalie; Kwak, June M.

    2012-01-01

    CATION EXCHANGERs CAX1 and CAX3 are vacuolar ion transporters involved in ion homeostasis in plants. Widely expressed in the plant, they mediate calcium transport from the cytosol to the vacuole lumen using the proton gradient across the tonoplast. Here, we report an unexpected role of CAX1 and CAX3 in regulating apoplastic pH and describe how they contribute to auxin transport using the guard cell’s response as readout of hormone signaling and cross talk. We show that indole-3-acetic acid (IAA) inhibition of abscisic acid (ABA)-induced stomatal closure is impaired in cax1, cax3, and cax1/cax3. These mutants exhibited constitutive hypopolarization of the plasma membrane, and time-course analyses of membrane potential revealed that IAA-induced hyperpolarization of the plasma membrane is also altered in these mutants. Both ethylene and 1-naphthalene acetic acid inhibited ABA-triggered stomatal closure in cax1, cax3, and cax1/cax3, suggesting that auxin signaling cascades were functional and that a defect in IAA transport caused the phenotype of the cax mutants. Consistent with this finding, chemical inhibition of AUX1 in wild-type plants phenocopied the cax mutants. We also found that cax1/cax3 mutants have a higher apoplastic pH than the wild type, further supporting the hypothesis that there is a defect in IAA import in the cax mutants. Accordingly, we were able to fully restore IAA inhibition of ABA-induced stomatal closure in cax1, cax3, and cax1/cax3 when stomatal movement assays were carried out at a lower extracellular pH. Our results suggest a network linking the vacuolar cation exchangers to apoplastic pH maintenance that plays a crucial role in cellular processes. PMID:22932758

  11. Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations.

    PubMed

    Alleva, Karina; Niemietz, Christa M; Sutka, Moira; Maurel, Christophe; Parisi, Mario; Tyerman, Stephen D; Amodeo, Gabriela

    2006-01-01

    Plasma membrane vesicles isolated by two-phase partitioning from the storage root of Beta vulgaris show atypically high water permeability that is equivalent only to those reported for active aquaporins in tonoplast or animal red cells (Pf=542 microm s(-1)). The values were determined from the shrinking kinetics measured by stopped-flow light scattering. This high Pf was only partially inhibited by mercury (HgCl2) but showed low activation energy (Ea) consistent with water permeation through water channels. To study short-term regulation of water transport that could be the result of channel gating, the effects of pH, divalent cations, and protection against dephosphorylation were tested. The high Pf observed at pH 8.3 was dramatically reduced by medium acidification. Moreover, intra-vesicular acidification (corresponding to the cytoplasmic face of the membrane) shut down the aquaporins. De-phosphorylation was discounted as a regulatory mechanism in this preparation. On the other hand, among divalent cations, only calcium showed a clear effect on aquaporin activity, with two distinct ranges of sensitivity to free Ca2+ concentration (pCa 8 and pCa 4). Since the normal cytoplasmic free Ca2+ sits between these ranges it allows for the possibility of changes in Ca2+ to finely up- or down-regulate water channel activity. The calcium effect is predominantly on the cytoplasmic face, and inhibition corresponds to an increase in the activation energy for water transport. In conclusion, these findings establish both cytoplasmic pH and Ca2+ as important regulatory factors involved in aquaporin gating.

  12. Intracellular pH and its regulation in isolated type I carotid body cells of the neonatal rat.

    PubMed Central

    Buckler, K J; Vaughan-Jones, R D; Peers, C; Nye, P C

    1991-01-01

    1. The dual-emission pH-sensitive fluoroprobe carboxy-SNARF-1 (carboxy-seminaptharhodofluor) was used to measure pHi in type I cells enzymically dispersed from the neonatal rat carotid body. 2. Steady-state pHi in cells bathed in a HEPES-buffered Tyrode solution (pH 7.4) was found to be remarkably alkaline (pHi = 7.77) whereas cells bathed in a CO2-HCO3(-)-buffered Tyrode solution (pH 7.4) had a more 'normal' pHi (pHi = 7.28). These observations were further substantiated by using an independent nullpoint test method to determine pHi. 3. Intracellular intrinsic buffering (beta, determined by acidifying the cell using an NH4Cl pre-pulse) was in the range 7-20 mM per pH unit and appeared to be dependent upon pHi with beta increasing as pHi decreased. 4. In cells bathed in a HEPES-buffered Tyrode solution, pHi recovery from an induced intracellular acid load (10 mM-NH4Cl pre-pulse) was inhibited by the Na(+)-H+ exchange inhibitor ethyl isopropyl amiloride (EIPA; 150 microM) or substitution of Nao+ with N-methyl-D-glucamine (NMG). Both EIPA and Nao+ removal also caused a rapid intracellular acidification, which in the case of Nao+ removal, was readily reversible. The rate of this acidification was similar for both Nao+ removal and EIPA addition. 5. Transferring cells from a HEPES-buffered Tyrode solution to one buffered with 5% CO2-HCO3- resulted in an intracellular acidification which was partially, or wholly, sustained. The rate of acidification upon transfer to CO2-HCO3- was considerably slowed by the membrane permeant carbonic anhydrase inhibitor, acetazolamide, thus indicating the presence of the enzyme in these cells. 6. In CO2-HCO3(-)-buffered Tyrode solution, pHi recovery from an intracellular acidosis (NH4+ pre-pulse) was only partially inhibited by EIPA or amiloride whereas Nao+ removal completely inhibited the recovery. The stilbene DIDS (4,4-diisothiocyanatostilbenedisulphonic acid, 200 microM) also partially inhibited pHi recovery following an induced

  13. Degeneration and cell regeneration in the midgut of Podisus nigrispinus (Heteroptera: Pentatomidae) during post-embryonic development.

    PubMed

    Teixeira, Aparecida das Dores; Fialho, Maria do Carmo Queiroz; Zanuncio, José Cola; Ramalho, Francisco de Souza; Serrão, José Eduardo

    2013-05-01

    Cell death, proliferation, and differentiation in some developmental stages of insects have been studied in the midgut of ametabolous, which undergo only continuous growth, and holometabolous, which undergo complete metamorphosis. However, in hemimetabolous insects, evolutionarily intermediate between ametabolous and holometabolous, midgut reorganization during the post-embryonic development has been poorly studied. The present study evaluates the post-embryonic development of the midgut of a hemimetabolous insect, Podisus nigrispinus, to test the hypothesis that these insects have programmed cell death and proliferation followed by differentiation of regenerative cells during midgut growth from nymphs to adult. The morphometrical data showed a 6-fold increase in midgut length from the first instar nymph to the adult, which did not result from an increase in the size of the midgut cells, suggesting that the growth of the midgut occurs by an increase in cell number. Cell death was rarely found in the midgut, whereas proliferation of regenerative cells occurred quite frequently. The growth of the midgut of P. nigrispinus appears to result from the proliferation of regenerative cells present in the epithelium; unlike ametabolous and holometabolous insects, the midgut of P. nigrispinus does not undergo extensive remodeling, as shown by the low frequency of digestive cell death.

  14. The fine structural morphology of the midgut of adult Drosophila: A morphometric analysis.

    PubMed

    Gartner, L P

    1985-01-01

    The midgut of one day old Drosophilia was examined morphometrically at the electron microscopic level. Results suggest that parenchymal cells, with the exception of basal cells, possess identical functions. Drosophilia midgut cells are smaller than those of other insects studied, and the surface densities of the rER was less, indicating that its protein synthetic activity is also less than that of other insects.

  15. The midgut epithelium of aquatic arthropods: a critical target organ in environmental toxicology.

    PubMed Central

    Beaty, Barry J; Mackie, Ryan S; Mattingly, Kimberly S; Carlson, Jonathan O; Rayms-Keller, Alfredo

    2002-01-01

    The midgut epithelium of aquatic arthropods is emerging as an important and toxicologically relevant organ system for monitoring environmental pollution. The peritrophic matrix of aquatic arthropods, which is secreted by the midgut epithelium cells, is perturbed by copper or cadmium. Molecular biological studies have identified and characterized two midgut genes induced by heavy metals in the midgut epithelium. Many other metal-responsive genes (MRGs) await characterization. One of the MRGs codes for an intestinal mucin, which is critical for protecting the midgut from toxins and pathogens. Another codes for a tubulin gene, which is critical for structure and function of the midgut epithelial cells. Perturbation of expression of either gene could condition aquatic arthropod survivorship. Induction of these MRGs is a more sensitive and rapid indicator of heavy-metal pollution than biological assays. Characterization of genes induced by pollutants could provide mechanistic understanding of fundamental cellular responses to pollutants and insight into determinants of aquatic arthropod population genetic structure and survivorship in nature. PMID:12634118

  16. Midgut of the non-hematophagous mosquito Toxorhynchites theobaldi (Diptera, Culicidae).

    PubMed

    Godoy, Raquel S M; Fernandes, Kenner M; Martins, Gustavo F

    2015-10-30

    In most mosquito species, the females require a blood-feeding for complete egg development. However, in Toxorhynchites mosquitoes, the eggs develop without blood-feeding, and both females and males exclusively feed on sugary diets. The midgut is a well-understood organ in blood-feeding mosquitoes, but little is known about it in non-blood-feeding ones. In the present study, the detailed morphology of the midgut of Toxorhynchites theobaldi were investigated using histochemical and ultrastructural methods. The midgut of female and male T. theobaldi adults consists of a long, slender anterior midgut (AMG), and a short, dilated posterior midgut (PMG). The AMG is subdivided into AMG1 (short, with folds) and AMG2 (long, without folds). Nerve branches and enteroendocrine cells are present in AMG and PMG, respectively. Compared with the PMG of blood-feeding female mosquitoes, the PMG of T. theobaldi is smaller; however, in both mosquitoes, PMG seems be the main region of food digestion and absorption, and protein secretion. The epithelial folds present in the AMG of T. theobaldi have not been reported in other mosquitoes; however, the midgut muscle organization and endocrine control of the digestion process are conserved in both T. theobaldi and blood-feeding mosquitoes.

  17. Serratia odorifera a Midgut Inhabitant of Aedes aegypti Mosquito Enhances Its Susceptibility to Dengue-2 Virus

    PubMed Central

    Apte-Deshpande, Anjali; Paingankar, Mandar; Gokhale, Mangesh D.; Deobagkar, Dileep N.

    2012-01-01

    Mosquito midgut plays a crucial role in its vector susceptibility and pathogen interaction. Identification of the sustainable microflora of the midgut environment can therefore help in evaluating its contribution in mosquito-pathogen interaction and in turn vector competence. To understand the bacterial diversity in the midgut of Aedes aegypti mosquitoes, we conducted a screening study of the gut microbes of these mosquitoes which were either collected from fields or reared in the laboratory “culture-dependent” approach. This work demonstrated that the microbial flora of larvae and adult Ae. aegypti midgut is complex and is dominated by Gram negative proteobacteria. Serratia odorifera was found to be stably associated in the midguts of field collected and laboratory reared larvae and adult females. The potential influence of this sustainable gut microbe on DENV-2 susceptibility of this vector was evaluated by co-feeding S. odorifera with DENV-2 to adult Ae. aegypti females (free of gut flora). The observations revealed that the viral susceptibility of these Aedes females enhanced significantly as compared to solely dengue-2 fed and another gut inhabitant, Microbacterium oxydans co-fed females. Based on the results of this study we proposed that the enhancement in the DENV-2 susceptibility of Ae. aegypti females was due to blocking of prohibitin molecule present on the midgut surface of these females by the polypeptide of gut inhabitant S. odorifera. PMID:22848375

  18. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus

    PubMed Central

    Li-Byarlay, Hongmei; Pittendrigh, Barry R.; Murdock, Larry L.

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant–insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology. PMID:27594789

  19. Midgut of the non-hematophagous mosquito Toxorhynchites theobaldi (Diptera, Culicidae)

    PubMed Central

    Godoy, Raquel S. M.; Fernandes, Kenner M.; Martins, Gustavo F.

    2015-01-01

    In most mosquito species, the females require a blood-feeding for complete egg development. However, in Toxorhynchites mosquitoes, the eggs develop without blood-feeding, and both females and males exclusively feed on sugary diets. The midgut is a well-understood organ in blood-feeding mosquitoes, but little is known about it in non-blood-feeding ones. In the present study, the detailed morphology of the midgut of Toxorhynchites theobaldi were investigated using histochemical and ultrastructural methods. The midgut of female and male T. theobaldi adults consists of a long, slender anterior midgut (AMG), and a short, dilated posterior midgut (PMG). The AMG is subdivided into AMG1 (short, with folds) and AMG2 (long, without folds). Nerve branches and enteroendocrine cells are present in AMG and PMG, respectively. Compared with the PMG of blood-feeding female mosquitoes, the PMG of T. theobaldi is smaller; however, in both mosquitoes, PMG seems be the main region of food digestion and absorption, and protein secretion. The epithelial folds present in the AMG of T. theobaldi have not been reported in other mosquitoes; however, the midgut muscle organization and endocrine control of the digestion process are conserved in both T. theobaldi and blood-feeding mosquitoes. PMID:26514271

  20. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus.

    PubMed

    Li-Byarlay, Hongmei; Pittendrigh, Barry R; Murdock, Larry L

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant-insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology.

  1. Small Interfering RNA Pathway Modulates Initial Viral Infection in Midgut Epithelium of Insect after Ingestion of Virus

    PubMed Central

    Lan, Hanhong; Chen, Hongyan; Liu, Yuyan; Jiang, Chaoyang; Mao, Qianzhuo; Jia, Dongsheng; Chen, Qian

    2015-01-01

    ABSTRACT Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 109 copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. IMPORTANCE Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the

  2. Adjustments of molecular key components of branchial ion and pH regulation in Atlantic cod (Gadus morhua) in response to ocean acidification and warming.

    PubMed

    Michael, Katharina; Kreiss, Cornelia M; Hu, Marian Y; Koschnick, Nils; Bickmeyer, Ulf; Dupont, Sam; Pörtner, Hans-O; Lucassen, Magnus

    2016-03-01

    Marine teleost fish sustain compensation of extracellular pH after exposure to hypercapnia by means of efficient ion and acid-base regulation. Elevated rates of ion and acid-base regulation under hypercapnia may be stimulated further by elevated temperature. Here, we characterized the regulation of transepithelial ion transporters (NKCC1, NBC1, SLC26A6, NHE1 and 2) and ATPases (Na(+)/K(+) ATPase and V-type H(+) ATPase) in gills of Atlantic cod (Gadus morhua) after 4 weeks of exposure to ambient and future PCO2 levels (550 μatm, 1200 μatm, 2200 μatm) at optimum (10 °C) and summer maximum temperature (18 °C), respectively. Gene expression of most branchial ion transporters revealed temperature- and dose-dependent responses to elevated PCO2. Transcriptional regulation resulted in stable protein expression at 10 °C, whereas expression of most transport proteins increased at medium PCO2 and 18 °C. mRNA and protein expression of distinct ion transport proteins were closely co-regulated, substantiating cellular functional relationships. Na(+)/K(+) ATPase capacities were PCO2 independent, but increased with acclimation temperature, whereas H(+) ATPase capacities were thermally compensated but decreased at medium PCO2 and 10 °C. When functional capacities of branchial ATPases were compared with mitochondrial F1Fo ATP-synthase strong correlations of F1Fo ATP-synthase and ATPase capacities generally indicate close coordination of branchial aerobic ATP demand and supply. Our data indicate physiological plasticity in the gills of cod to adjust to a warming, acidifying ocean within limits. In light of the interacting and non-linear, dose-dependent effects of both climate factors the role of these mechanisms in shaping resilience under climate change remains to be explored.

  3. Intracellular pH regulation by Na⁺/H⁺ exchanger-1 (NHE1) is required for growth factor-induced mammary branching morphogenesis.

    PubMed

    Jenkins, Edmund C; Debnath, Shawon; Gundry, Stephen; Gundry, Sajini; Uyar, Umit; Fata, Jimmie E

    2012-05-01

    Regulation of intracellular pH (pHi) and protection against cytosolic acidification is primarily a function of the ubiquitous plasma membrane Na+/H+exchanger-1 (NHE1), which uses a highly conserved process to transfer cytosolic hydrogen ions (H+) across plasma membranes in exchange for extracellular sodium ions (Na+). Growth factors, which are essential regulators of morphogenesis, have also been found to be key activators of NHE1 exchanger activity; however, the crosstalk between both has not been fully evaluated during organ development. Here we report that mammary branching morphogenesis induced by transforming growth factor-alpha (TGFα) requires PI3K-dependent NHE1-activation and subsequent pHi alkalization. Inhibiting NHE1 activity after TGFα stimulation with 10 μM of the NHE1-specific inhibitor N-Methyl-N-isobutyl Amiloride (MIA) dramatically disrupted branching morphogenesis, induced extensive proliferation, ectopic expression of the epithelial hyper-proliferative marker Keratin-6 and sustained activation of MAPK. Together these findings indicate a novel developmental signaling cascade involving TGFα>PI3K>NHE1>pHi alkalization, which leads to a permissible environment for MAPK negative feedback inhibition and thus regulated mammary branching morphogenesis.

  4. Different rate-limiting activities of intracellular pH regulators for HCO3(-) secretion stimulated by forskolin and carbachol in rat parotid intralobular ducts.

    PubMed

    Ueno, Kaori; Hirono, Chikara; Kitagawa, Michinori; Shiba, Yoshiki; Sugita, Makoto

    2016-11-01

    Intracellular pH (pHi) regulation fundamentally participates in maintaining HCO3(-) release from HCO3(-)-secreting epithelia. We used parotid intralobular ducts loaded with BCECF to investigate the contributions of a carbonic anhydrase (CA), anion channels and a Na(+)-H(+) exchanger (NHE) to pHi regulation for HCO3(-) secretion by cAMP and Ca(2+) signals. Resting pHi was dispersed between 7.4 and 7.9. Forskolin consistently decreased pHi showing the dominance of pHi-lowering activities, but carbachol gathered pHi around 7.6. CA inhibition suppressed the forskolin-induced decrease in pHi, while it allowed carbachol to consistently increase pHi by revealing that carbachol prominently activated NHE via Ca(2+)-calmodulin. Under NHE inhibition, forskolin and carbachol induced the remarkable decreases in pHi, which were slowed predominantly by CA inhibition and by CA or anion channel inhibition, respectively. Our results suggest that forskolin and carbachol primarily activate the pHi-lowering CA and pHi-raising NHE, respectively, to regulate pHi for HCO3(-) secretion.

  5. Vitamin K2-enhanced liver regeneration is associated with oval cell expansion and up-regulation of matrilin-2 expression in 2-AAF/PH rat model.

    PubMed

    Lin, M; Sun, P; Zhang, G; Xu, X; Liu, G; Miao, H; Yang, Y; Xu, H; Zhang, L; Wu, P; Li, M

    2014-03-01

    Normal liver has a great potential of regenerative capacity after partial hepatectomy. In clinic, however, most patients receiving partial hepatectomy are usually suffering from chronic liver diseases with severely damaged hepatocyte population. Under these conditions, activation of hepatic progenitor cell (oval cell in rodents) population might be considered as an alternative mean to enhance liver functional recovery. Vitamin K2 has been shown to promote liver functional recovery in patients with liver cirrhosis. In this study, we explored the possibility of vitamin K2 treatment in activating hepatic oval cell for liver regeneration with the classic 2-acetamido-fluorene/partial hepatectomy (2-AAF/PH) model in Sprague-Dawley rats. In 2-AAF/PH animals, vitamin K2 treatment induced a dose-dependent increase of liver regeneration as assessed by the weight ratio of remnant liver versus whole body and by measuring serum albumin level. In parallel, a drastic expansion of oval cell population as assessed by anti-OV6 and anti-CK19 immunostaining was noticed in the periportal zone of the remnant liver. Since matrilin-2 was linked to oval cell proliferation and liver regeneration after partial hepatectomy, we assessed its expression at both the mRNA and protein levels. The results revealed a significant increase after vitamin K2 treatment in parallel with the expansion of oval cell population. Consistently, knocking down matrilin-2 expression in vivo largely reduced vitamin K2-induced liver regeneration and oval cell proliferation in 2-AAF/PH animals. In conclusion, these data suggest that vitamin K2 treatment enhances liver regeneration after partial hepatectomy, which is associated with oval cell expansion and matrilin-2 up-regulation.

  6. Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites

    PubMed Central

    Dong, Yuemei; Manfredini, Fabio; Dimopoulos, George

    2009-01-01

    Malaria-transmitting mosquitoes are continuously exposed to microbes, including their midgut microbiota. This naturally acquired microbial flora can modulate the mosquito's vectorial capacity by inhibiting the development of Plasmodium and other human pathogens through an unknown mechanism. We have undertaken a comprehensive functional genomic approach to elucidate the molecular interplay between the bacterial co-infection and the development of the human malaria parasite Plasmodium falciparum in its natural vector Anopheles gambiae. Global transcription profiling of septic and aseptic mosquitoes identified a significant subset of immune genes that were mostly up-regulated by the mosquito's microbial flora, including several anti-Plasmodium factors. Microbe-free aseptic mosquitoes displayed an increased susceptibility to Plasmodium infection while co-feeding mosquitoes with bacteria and P. falciparum gametocytes resulted in lower than normal infection levels. Infection analyses suggest the bacteria-mediated anti-Plasmodium effect is mediated by the mosquitoes' antimicrobial immune responses, plausibly through activation of basal immunity. We show that the microbiota can modulate the anti-Plasmodium effects of some immune genes. In sum, the microbiota plays an essential role in modulating the mosquito's capacity to sustain Plasmodium infection. PMID:19424427

  7. Regulation of SpeB in Streptococcus pyogenes by pH and NaCl: a Model for In Vivo Gene Expression†

    PubMed Central

    Loughman, Jennifer A.; Caparon, Michael

    2006-01-01

    For a pathogen such as Streptococcus pyogenes, ecological success is determined by its ability to sense the environment and mount an appropriate adaptive transcriptional response. Thus, determining conditions for analyses of gene expression in vitro that are representative of the in vivo environment is critical for understanding the contributions of transcriptional response pathways to pathogenesis. In this study, we determined that the gene encoding the SpeB cysteine protease is up-regulated over the course of infection in a murine soft-tissue model. Conditions were identified, including growth phase, acidic pH, and an NaCl concentration of <0.1 M, that were required for expression of speB in vitro. Analysis of global expression profiles in response to these conditions in vitro identified a set of coregulated genes whose expression patterns showed a significant correlation with that of speB when examined during infection of murine soft tissues. This analysis revealed that a culture medium that promotes high levels of SpeB expression in vitro produced an expression profile that showed significant correlation to the profile observed in vivo. Taken together, these studies establish culture conditions that mimic in vivo expression patterns; that growth phase, pH, and NaCl may mimic relevant cues sensed by S. pyogenes during infection; and that identification of other environmental cues that alter expression of speB in vitro may provide insight into the signals that direct global patterns of gene expression in vivo. PMID:16385029

  8. Midgut Barrier Imparts Selective Resistance to Filarial Worm Infection in Culex pipiens pipiens

    PubMed Central

    Michalski, Michelle L.; Erickson, Sara M.; Bartholomay, Lyric C.; Christensen, Bruce M.

    2010-01-01

    Mosquitoes in the Culex pipiens complex thrive in temperate and tropical regions worldwide, and serve as efficient vectors of Bancroftian lymphatic filariasis (LF) caused by Wuchereria bancrofti in Asia, Africa, the West Indies, South America, and Micronesia. However, members of this mosquito complex do not act as natural vectors for Brugian LF caused by Brugia malayi, or for the cat parasite B. pahangi, despite their presence in South Asia where these parasites are endemic. Previous work with the Iowa strain of Culex pipiens pipiens demonstrates that it is equally susceptible to W. bancrofti as is the natural Cx. p. pipiens vector in the Nile Delta, however it is refractory to infection with Brugia spp. Here we report that the infectivity barrier for Brugia spp. in Cx. p. pipiens is the mosquito midgut, which inflicts internal and lethal damage to ingested microfilariae. Following per os Brugia exposures, the prevalence of infection is significantly lower in Cx. p. pipiens compared to susceptible mosquito controls, and differs between parasite species with <50% and <5% of Cx. p. pipiens becoming infected with B. pahangi and B. malayi, respectively. When Brugia spp. mf were inoculated intrathoracically to bypass the midgut, larvae developed equally well as in controls, indicating that, beyond the midgut, Cx. p. pipiens is physiologically compatible with Brugia spp. Mf isolated from Cx. p. pipiens midguts exhibited compromised motility, and unlike mf derived from blood or isolated from the midguts of Ae. aegypti, failed to develop when inoculated intrathoracically into susceptible mosquitoes. Together these data strongly support the role of the midgut as the primary infection barrier for Brugia spp. in Cx. p. pipiens. Examination of parasites recovered from the Cx. p. pipiens midgut by vital staining, and those exsheathed with papain, suggest that the damage inflicted by the midgut is subcuticular and disrupts internal tissues. Microscopic studies of these worms

  9. Regulation of the Na+/K+-ATPase Ena1 Expression by Calcineurin/Crz1 under High pH Stress: A Quantitative Study.

    PubMed

    Petrezsélyová, Silvia; López-Malo, María; Canadell, David; Roque, Alicia; Serra-Cardona, Albert; Marqués, M Carmen; Vilaprinyó, Ester; Alves, Rui; Yenush, Lynne; Ariño, Joaquín

    2016-01-01

    Regulated expression of the Ena1 Na+-ATPase is a crucial event for adaptation to high salt and/or alkaline pH stress in the budding yeast Saccharomyces cerevisiae. ENA1 expression is under the control of diverse signaling pathways, including that mediated by the calcium-regulatable protein phosphatase calcineurin and its downstream transcription factor Crz1. We present here a quantitative study of the expression of Ena1 in response to alkalinization of the environment and we analyze the contribution of Crz1 to this response. Experimental data and mathematical models substantiate the existence of two stress-responsive Crz1-binding sites in the ENA1 promoter and estimate that the contribution of Crz1 to the early response of the ENA1 promoter is about 60%. The models suggest the existence of a second input with similar kinetics, which would be likely mediated by high pH-induced activation of the Snf1 kinase.

  10. The regulation of exogenous NAD(P)H oxidation in spinach (Spinacia oleracea) leaf mitochondria by pH and cations.

    PubMed Central

    Edman, K; Ericson, I; Møller, I M

    1985-01-01

    Essentially chlorophyll-free mitochondria were isolated from green leaves of spinach (Spinacia oleracea L. cv. Viking II). Uncoupled oxidation of exogenous NADPH (1 mM) to oxygen had an optimum at pH 6.0, and activity was relatively low at pH 7.0, even in the presence of 1 mM-CaCl2. There was a proportional increase in the apparent Km for NADPH with decreasing H+ concentrations, suggesting that NADPH protonated on the 2'-phosphate group was the true substrate. Exogenous NADH was oxidized by oxygen with an optimum at pH 6.9. Under low-cation conditions, EGTA or EDTA (both 1 mM) had no effect on the Vmax. of NADH oxidation, although the removal of bivalent cations from the membrane surface by the chelators could be observed by use of 9-aminoacridine fluorescence. In contrast, under high-cation conditions, chelators lowered the Vmax. by about 50%, probably due to a better approach of the negatively charged chelators to the negative membrane surface than under low-cation conditions. In a low-cation medium, the Vmax. of NADH oxidation was increased by about 50% by the addition of cations. This was caused by a lowering of the size of the negative surface potential through charge screening. In contrast with other cations, La3+ inhibited NADH oxidation, possibly through binding to lipids essential for NADH oxidation. The apparent Km for NADH varied 6-fold in response to changes in the size of the surface potential, suggesting that the approach of the negatively charged NADH to the active site is hampered by the negative surface potential. The results demonstrate that the spinach leaf cell can regulate the mitochondrial NAD(P)H oxidation through several mechanisms: the pH; the cation concentration in general; and the concentration of Ca2+ in particular. The results also emphasize the importance of electrostatic considerations when investigating the kinetic behaviour of membrane-bound enzymes. PMID:3937519

  11. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    SciTech Connect

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa; Yang, Jun-Mo; Kang, Jong-Sun; Hahn, Myong-Joon

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer APPL1 regulates the protein level of EGFR in response to EGF stimulation. Black-Right-Pointing-Pointer Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. Black-Right-Pointing-Pointer Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  12. Dual role of CO2/HCO3(-) buffer in the regulation of intracellular pH of three-dimensional tumor growths.

    PubMed

    Hulikova, Alzbeta; Vaughan-Jones, Richard D; Swietach, Pawel

    2011-04-22

    Intracellular pH (pH(i)), a major modulator of cell function, is regulated by acid/base transport across membranes. Excess intracellular H(+) ions (e.g. produced by respiration) are extruded by transporters such as Na(+)/H(+) exchange, or neutralized by HCO(3)(-) taken up by carriers such as Na(+)-HCO(3)(-) cotransport. Using fluorescence pH(i) imaging, we show that cancer-derived cell lines (colorectal HCT116 and HT29, breast MDA-MB-468, pancreatic MiaPaca2, and cervical HeLa) extrude acid by H(+) efflux and HCO(3)(-) influx, largely sensitive to dimethylamiloride and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS), respectively. The magnitude of HCO(3)(-) influx was comparable among the cell lines and may represent a constitutive element of tumor pH(i) regulation. In contrast, H(+) efflux varied considerably (MDA-MB-468 > HCT116 > HT29 > MiaPaca2 > HeLa). When HCO(3)(-) flux was pharmacologically inhibited, acid extrusion in multicellular HT29 and HCT116 spheroids (∼10,000 cells) was highly non-uniform and produced low pH(i) at the core. With depth, acid extrusion became relatively more DIDS-sensitive because the low extracellular pH at the spheroid core inhibits H(+) flux more than HCO(3)(-) flux. HCO(3)(-) flux inhibition also decelerated HCT116 spheroid growth. In the absence of CO(2)/HCO(3)(-), acid extrusion by H(+) flux in HCT116 and MDA-MB-468 spheroids became highly non-uniform and inadequate at the core. This is because H(+) transporters require extracellular mobile pH buffers, such as CO(2)/HCO(3)(-), to overcome low H(+) ion mobility and chaperone H(+) ions away from cells. CO(2)/HCO(3)(-) exerts a dual effect: as substrate for membrane-bound HCO(3)(-) transporters and as a mobile buffer for facilitating extracellular diffusion of H(+) ions extruded from cells. These processes can be augmented by carbonic anhydrase activity. We conclude that CO(2)/HCO(3)(-) is important for maintaining uniformly alkaline pH(i) in small, non-vascularized tumor

  13. Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis mellifera L.) larvae : Morphological alterations in the midgut of A. mellifera.

    PubMed

    da Silva Cruz, Aline; da Silva-Zacarin, Elaine C M; Bueno, Odair C; Malaspina, Osmar

    2010-04-01

    Morphological alterations, by means of histological and ultrastructural analysis, have been used to determine the effects of boric acid and fipronil on midgut tissues of honeybee worker, Apis mellifera L. larvae. In order to observe possible morphological alterations in the midgut, two groups of bioassays were performed. In the first one, the larvae were chronically treated with different concentrations of boric acid added to the food (1.0, 2.5 and 7.5 mg/g). In the second group, the larvae were fed with diets containing different concentrations of fipronil (0.1 and 1 microg/g) and compared with control groups without these chemical compounds. In the first bioassay, the larvae were collected on day 3 and in the second bioassay on day 4, when the mortality rate obtained in the toxicological bioassay was not very high. The larval midguts were removed and processed for morphological analyses using a light and transmission electron microscopy. We observed cytoplasmic vacuolizations, with the absence of autophagic vacuoles, and chromatinic compacting in most of the cells in the groups treated with pesticides. The morphological alterations were far greater in the larvae treated with boric acid than in the larvae treated with fipronil. Our data suggest that the midgut cell death observed was in response to boric acid and fipronil action. This study significantly improves the understanding of the toxicological effect of these insecticides from the ecotoxicological perspective.

  14. Characterization of a midgut-specific chitin synthase gene (LmCHS2) responsible for biosynthesis of chitin of peritrophic matrix in Locusta migratoria.

    PubMed

    Liu, Xiaojian; Zhang, Huanhuan; Li, Sheng; Zhu, Kun Yan; Ma, Enbo; Zhang, Jianzhen

    2012-12-01

    Chitin, an essential component of peritrophic matrix (PM), is produced by a series of biochemical reactions. Chitin synthase plays a crucial role in chitin polymerization in chitin biosynthetic pathway. In this study, we identified and characterized a full-length cDNA of chitin synthase 2 gene (LmCHS2) from Locusta migratoria. The cDNA contains an open reading frame of 4569 nucleotides that encode 1523 amino acid residues, and 76- and 373-nucleotides for 5'- and 3'-noncoding regions, respectively. Analysis of LmCHS2 transcript in different tissues of the locust by using real-time quantitative PCR indicated that LmCHS2 was exclusively expressed in midgut and gastric caeca (a part of the midgut). The highest expression was found in the anterior midgut with a decline of the transcript level from the anterior to posterior regions. During growth and development of locusts, there was only a slight expression in eggs, but the expression gradually increased from nymphs to adults. In situ hybridization further revealed that LmCHS2 transcript mainly presented in the apical regions of brush border forming columnar cells of gastric caeca. LmCHS2 dsRNA was injected to fifth-instar nymphs to further explore biological functions of LmCHS2. Significantly down-regulated transcript of LmCHS2 resulted in a cessation of feeding and a high mortality of the insect. However, no visible abnormal morphological change of locusts was observed until insects molted to adults. After dissection, we found that the average length of midguts from the LmCHS2 dsRNA-injected locusts was shorter than that of the control insects that were injected with dsGFP. Furthermore, microsection of midguts showed that the PM of the LmCHS2 dsRNA-injected nymphs was amorphous and thin as compared with the controls. Our results demonstrate that LmCHS2 is responsible for the biosynthesis of chitin associated with PM and plays an essential role in locust growth and development.

  15. Microprofiles of oxygen, redox potential, and pH, and microbial fermentation products in the highly alkaline gut of the saprophagous larva of Penthetria holosericea (Diptera: Bibionidae).

    PubMed

    Šustr, Vladimír; Stingl, Ulrich; Brune, Andreas

    2014-08-01

    The saprophagous larvae of bibionid flies harbor bacteria in their alkaline intestinal tracts, but little is known about the contribution of the gut microbiota to the digestion of their recalcitrant diet. In this study, we measured oxygen and hydrogen partial pressure, redox potential and pH in the midgut, gastric caeca and hindgut of larvae of the bibionid fly Penthetria holosericea with Clark-type O2 and H2 microsensors, platinum redox microelectrodes, and LIX-type pH microelectrodes. The center of the midgut lumen was anoxic, whereas gastric caeca and hindgut were hypoxic. However, redox potential profiles indicated oxidizing conditions throughout the gut, with lowest values in the midgut (+20 to +60mV). Hydrogen production was not detected. The midgut was extremely alkaline (pH around 11), whereas hindgut and gastric caeca were neutral to slightly alkaline. While HPLC analysis showed high concentrations of glucose in the midgut (15mM) and gastric caeca (27mM), the concentrations of microbial fermentation products such as lactate (2-4mM), acetate (<1mM) and succinate (<0.5mM) were low in all gut regions, suggesting that the contribution of microorganisms to the digestive process, particularly in the alkaline midgut, is only of minor importance. We conclude that the digestive strategy of the saprophytic larva of P. holosericea, which feeds selectively on decomposed leaves and its own microbe-rich faeces, differs fundamentally from those of detritivorous and humivorous insects, which host a highly active, fermentative microbiota in their alkaline midgut or hindgut compartments.

  16. Prorenin Receptor Homologue VHA-20 is Critical for Intestinal pH Regulation, Ion and Water Management and Larval Development in C. elegans.

    PubMed

    Zima, V; Šebková, K; Šimečková, K; Dvořák, T; Saudek, V; Kostrouchová, M

    2015-01-01

    The prorenin receptor (ATP6AP2) is a multifunctional transmembrane protein; it is a constituent of proton-translocating V-ATPase, a non-proteolytic activator of renin and an adaptor in the Wnt/β-catenin pathway. Here, we studied vha-20, one of the two prorenin receptor homologues that are identified by sequence similarity in the C. elegans genome. We show that vha-20 (R03E1.2) is prominently expressed in the intestine, in the excretory cell and in amphid neurons, tissues critical for regulation of ion and water management. The expression of vha-20 in the intestine is dependent on NHR-31, a nuclear receptor related to HNF4. VHA-20 is indispensable for normal larval development, acidification of the intestine, and is required for nutrient uptake. Inhibition of vha-20 by RNAi leads to complex deterioration of water and pH gradients at the level of the whole organism including distention of pseudocoelome cavity. This suggests new roles of prorenin receptor in the regulation of body ion and water management and in acidification of intestinal lumen in nematodes.

  17. The sensitivity and significance analysis of parameters in the model of pH regulation on lactic acid production by Lactobacillus bulgaricus

    PubMed Central

    2014-01-01

    Background The excessive production of lactic acid by L. bulgaricus during yogurt storage is a phenomenon we are always tried to prevent. The methods used in industry either control the post-acidification inefficiently or kill the probiotics in yogurt. Genetic methods of changing the activity of one enzyme related to lactic acid metabolism make the bacteria short of energy to growth, although they are efficient ways in controlling lactic acid production. Results A model of pH-induced promoter regulation on the production of lactic acid by L. bulgaricus was built. The modelled lactic acid metabolism without pH-induced promoter regulation fitted well with wild type L. bulgaricus (R2LAC = 0.943, R2LA = 0.942). Both the local sensitivity analysis and Sobol sensitivity analysis indicated parameters Tmax, GR, KLR, S, V0, V1 and dLR were sensitive. In order to guide the future biology experiments, three adjustable parameters, KLR, V0 and V1, were chosen for further simulations. V0 had little effect on lactic acid production if the pH-induced promoter could be well induced when pH decreased to its threshold. KLR and V1 both exhibited great influence on the producing of lactic acid. Conclusions The proposed method of introducing a pH-induced promoter to regulate a repressor gene could restrain the synthesis of lactic acid if an appropriate strength of promoter and/or an appropriate strength of ribosome binding sequence (RBS) in lacR gene has been designed. PMID:25434877

  18. Effects of Periplocoside P from Periploca sepium on the Midgut Transmembrane Potential of Mythimna separata Larvae

    PubMed Central

    Wang, YingYing; Qi, Zhijun; Qi, Meng; Hu, Zhaonong; Wu, Wenjun

    2016-01-01

    Periplocoside P (PSP) isolated from the root bark of Periploca sepium contains a pregnane glycoside skeleton and possesses high insecticidal properties. Preliminary studies indicated that PSP disrupts epithelial functions in the midgut of lepidopteran larvae. In the present study, we examined the effects of PSP on the apical and basolateral membrane voltages, Va and Vbl, respectively, of cells from (1) midguts isolated from the larvae of the oriental armyworm Mythimna separata that were in vitro incubated with toxins and (2) midguts isolated from M. separata larvae force-fed with PSP. We compared the effects of PSP with the effects of the Bacillus thuringiensis toxin Cry1Ab and inactive periplocoside E (PSE) on the midgut epithelial cells. The results showed that Va rapidly decreased in the presence of PSP in a time- and dose-dependent manner, similar to the effects of Cry1Ab. By contrast, PSE did not affect the Va and Vbl. Additionally, PSP did not influence the Vbl. Given these results, we speculate that PSP may modulate transport mechanisms at the apical membrane of the midgut epithelial cells by inhibiting the V-type H+ ATPase. PMID:27833169

  19. Exploring the midgut proteome of partially fed female cattle tick (Rhipicephalus (Boophilus) microplus).

    PubMed

    Kongsuwan, Kritaya; Josh, Peter; Zhu, Ying; Pearson, Roger; Gough, Joanne; Colgrave, Michelle L

    2010-02-01

    The continued development of effective anti-tick vaccines remains the most promising prospect for the control of the cattle tick, Rhipicephalus (Boophilus) microplus. A vaccine based on midgut proteins could interfere with successful tick feeding and additionally interfere with midgut developmental stages of Babesia parasites, providing opportunities for the control of both the tick and the pathogens it transmits. Midgut proteins from partially fed adult female cattle ticks were analysed using a combination of 2-DE and gel-free LC-MS/MS. Analysis of the urea-soluble protein fraction resulted in the confident identification of 105 gut proteins, while the PBS-soluble fraction yielded an additional 37 R. microplus proteins. The results show an abundance of proteins involved in mitochondrial ATP synthesis, electron transport chain, protein synthesis, chaperone, antioxidant and protein folding and transport activities in midgut tissues of adult female ticks. Among the novel products identified were clathrin-adaptor protein, which is involved in the assembly of clathrin-coated vesicles, and membrane-associated trafficking proteins such as syntaxin 6 and surfeit 4. The observations allow the formulation of hypotheses regarding midgut physiology and will serve as a basis for future vaccine development and tick-host interaction research.

  20. Alterations in the Helicoverpa armigera midgut digestive physiology after ingestion of pigeon pea inducible leucine aminopeptidase.

    PubMed

    Lomate, Purushottam R; Jadhav, Bhakti R; Giri, Ashok P; Hivrale, Vandana K

    2013-01-01

    Jasmonate inducible plant leucine aminopeptidase (LAP) is proposed to serve as direct defense in the insect midgut. However, exact functions of inducible plant LAPs in the insect midgut remain to be estimated. In the present investigation, we report the direct defensive role of pigeon pea inducible LAP in the midgut of Helicoverpa armigera (Lepidoptera: Noctuidae) and responses of midgut soluble aminopeptidases and serine proteinases upon LAP ingestion. Larval growth and survival was significantly reduced on the diets supplemented with pigeon pea LAP. Aminopeptidase activities in larvae remain unaltered in presence or absence of inducible LAP in the diet. On the contrary, serine proteinase activities were significantly decreased in the larvae reared on pigeon pea LAP containing diet as compared to larvae fed on diet without LAP. Our data suggest that pigeon pea inducible LAP is responsible for the degradation of midgut serine proteinases upon ingestion. Reduction in the aminopeptidase activity with LpNA in the H. armigera larvae was compensated with an induction of aminopeptidase activity with ApNA. Our findings could be helpful to further dissect the roles of plant inducible LAPs in the direct plant defense against herbivory.

  1. Investigation of the midgut structure and ultrastructure in Cimex lectularius and Cimex pipistrelli (Hemiptera: Cimicidae).

    PubMed

    Rost-Roszkowska, M M; Vilimova, J; Włodarczyk, A; Sonakowska, L; Kamińska, K; Kaszuba, F; Marchewka, A; Sadílek, D

    2017-02-01

    Cimicidae are temporary ectoparasites, which means that they cannot obtain food continuously. Both Cimex species examined here, Cimex lectularius (Linnaeus 1758) and Cimex pipistrelli (Jenyns 1839), can feed on a non-natal host, C. lectularius from humans on bats, C. pipistrelli on humans, but never naturally. The midgut of C. lectularius and C. pipistrelli is composed of three distinct regions-the anterior midgut (AMG), which has a sack-like shape, the long tube-shaped middle midgut (MMG), and the posterior midgut (PMG). The different ultrastructures of the AMG, MMG, and PMG in both of the species examined suggest that these regions must fulfill different functions in the digestive system. Ultrastructural analysis showed that the AMG fulfills the role of storing food and synthesizing and secreting enzymes, while the MMG is the main organ for the synthesis of enzymes, secretion, and the storage of the reserve material. Additionally, both regions, the AMG and MMG, are involved in water absorption in the digestive system of both Cimex species. The PMG is the part of the midgut in which spherites accumulate. The results of our studies confirm the suggestion of former authors that the structure of the digestive tract of insects is not attributed solely to diet but to the basic adaptation of an ancestor.

  2. Two-Stage pH Control Strategy Based on the pH Preference of Acetoin Reductase Regulates Acetoin and 2,3-Butanediol Distribution in Bacillus subtilis

    PubMed Central

    Rao, Zhiming; Yang, Taowei; Xu, Zhenghong; Yang, Shangtian; Li, Huazhong

    2014-01-01

    Acetoin reductase/2,3-butanediol dehydrogenase (AR/BDH), which catalyzes the interconversion between acetoin and 2,3-butanediol, plays an important role in distribution of the products pools. This work characterized the Bacillus subtilis AR/BDH for the first time. The enzyme showed very different pH preferences of pH 6.5 for reduction and pH 8.5 for oxidation. Based on these above results, a two-stage pH control strategy was optimized for acetoin production, in which the pH was controlled at 6.5 for quickly converting glucose to acetoin and 2,3-butanediol, and then 8.0 for reversely transforming 2,3-butanediol to acetoin. By over-expression of AR/BDH in the wild-type B. subtilis JNA 3-10 and applying fed-batch fermentation based on the two-stage pH control strategy, acetoin yield of B. subtilis was improved to a new record of 73.6 g/l, with the productivity of 0.77 g/(l·h). The molar yield of acetoin was improved from 57.5% to 83.5% and the ratio of acetoin/2,3-butanediol was switched from 2.7∶1 to 18.0∶1. PMID:24608678

  3. Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers.

    PubMed

    Yuan, Huihua; Li, Biyun; Liang, Kai; Lou, Xiangxin; Zhang, Yanzhong

    2014-08-18

    Temperature- and pH-responsive polymers have been widely investigated as smart drug release systems. However, dual-sensitive polymers in the form of nanofibers, which is advantageous in achieving rapid transfer of stimulus to the smart polymeric structures for regulating drug release behavior, have rarely been explored. In this study, chitosan-graft-poly(N-isopropylacrylamide) (CTS-g-PNIPAAm) copolymer was synthesized by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxy succinimide (NHS) as grafting agents to graft carboxyl-terminated PNIPAAm (PNIPAAm-COOH) chains onto the CTS biomacromolecules, and then CTS-g-PNIPAAm with or without bovine serum albumin (BSA) was fabricated into nanofibers through electrospinning using poly(ethylene oxide) (PEO, 10 wt%) as a fiber-forming facilitating additive. The BSA laden CTS-g-PNIPAAm/PEO hydrogel nanofibers were tested to determine their drug release profiles by varying pH and temperature. Finally, cytotoxicity of the CTS-g-PNIPAAm/PEO hydrogel nanofibers was evaluated by assaying the L929 cell proliferation using the MTT method. It was found that the synthesized CTS-g-PNIPAAm possessed a temperature-induced phase transition and lower critical solution temperature (LCST) at 32° C in aqueous solutions. The rate of BSA release could be well modulated by altering the environmental pH and temperature of the hydrogel nanofibers. The CTS-g-PNIPAAm/PEO hydrogel nanofibers supported L929 cell growth, indicative of appropriate cytocompatibility. Our current work could pave the way towards developing multi-stimuli responsive nanofibrous smart materials for potential applications in the fields of drug delivery and tissue engineering.

  4. Expression of human papilloma virus type 16 E5 protein in amelanotic melanoma cells regulates endo-cellular pH and restores tyrosinase activity

    PubMed Central

    Di Domenico, Fabio; Foppoli, Cesira; Blarzino, Carla; Perluigi, Marzia; Paolini, Francesca; Morici, Salvatrice; Coccia, Raffaella; Cini, Chiara; De Marco, Federico

    2009-01-01

    Background Melanin synthesis, the elective trait of melanocytes, is regulated by tyrosinase activity. In tyrosinase-positive amelanotic melanomas this rate limiting enzyme is inactive because of acidic endo-melanosomal pH. The E5 oncogene of the Human Papillomavirus Type 16 is a small transmembrane protein with a weak transforming activity and a role during the early steps of viral infections. E5 has been shown to interact with 16 kDa subunit C of the trans-membrane Vacuolar ATPase proton pump ultimately resulting in its functional suppressions. However, the cellular effects of such an interaction are still under debate. With this work we intended to explore whether the HPV16 E5 oncoprotein does indeed interact with the vacuolar ATPase proton pump once expressed in intact human cells and whether this interaction has functional consequences on cell metabolism and phenotype. Methods The expression of the HPV16-E5 oncoproteins was induced in two Tyrosinase-positive amelanotic melanomas (the cell lines FRM and M14) by a retroviral expression construct. Modulation of the intracellular pH was measured with Acridine orange and fluorescence microscopy. Expression of tyrosinase and its activity was followed by RT-PCR, Western Blot and enzyme assay. The anchorage-independence growth and the metabolic activity of E5 expressing cells were also monitored. Results We provide evidence that in the E5 expressing cells interaction between E5 and V-ATPase determines an increase of endo-cellular pH. The cellular alkalinisation in turn leads to the post-translational activation of tyrosinase, melanin synthesis and phenotype modulation. These effects are associated with an increased activation of tyrosine analogue anti-blastic drugs. Conclusion Once expressed within intact human cells the HPV16-E5 oncoprotein does actually interact with the vacuolar V-ATPase proton pump and this interaction induces a number of functional effects. In amelanotic melanomas these effects can modulate the

  5. An unexpected cause of small bowel obstruction in an adult patient: midgut volvulus

    PubMed Central

    Söker, Gökhan; Yılmaz, Cengiz; Karateke, Faruk; Gülek, Bozkurt

    2014-01-01

    The most important complication of intestinal malrotation is midgut volvulus because it may lead to intestinal ischaemia and necrosis. A 29-year-old male patient was admitted to the emergency department with abdominal pain. Ultrasonography (US), colour Doppler ultrasonography (CDUS), CT and barium studies were carried out. On US and CDUS, twisting of intestinal segments around the superior mesenteric artery (SMA) and superior mesenteric vein (SMV) and alteration of the SMA–SMV relationship were detected. CT demonstrated that the small intestine was making a rotation around the SMA and SMV, which amounted to more than 360°. The upper gastrointestinal barium series revealed a corkscrew appearance of the duodenum and proximal jejunum, which is a pathognomonic finding of midgut volvulus. Prior knowledge of characteristic imaging findings of midgut volvulus is essential in order to reach proper diagnosis and establish proper treatment before the development of intestinal ischaemia and necrosis. PMID:24811563

  6. Regulation of the Edwardsiella ictaluri Type III Secretion System by pH and Phosphate Concentration through EsrA, EsrB, and EsrC ▿

    PubMed Central

    Rogge, Matthew L.; Thune, Ronald L.

    2011-01-01

    A recently described Edwardsiella ictaluri type III secretion system (T3SS) with functional similarity to the Salmonella pathogenicity island 2 T3SS is required for replication in channel catfish head-kidney-derived macrophages (HKDM) and virulence in channel catfish. Quantitative PCR and Western blotting identified low pH and phosphate limitation as conducive to expression of the E. ictaluri T3SS, growth conditions that mimic the phagosomal environment. Mutagenesis studies demonstrated that expression is under the control of the EsrAB two-component regulatory system. EsrB also induces upregulation of the AraC-type regulatory protein EsrC, which enhances expression of the EscB/EseG chaperone/effector operon in concert with EsrB and induces expression of the pEI1-encoded effector, EseH. EsrC also induces expression of a putative type VI secretion system translocon protein, EvpC, which is secreted under the same low-pH conditions as the T3SS translocon proteins. The pEI2-encoded effector, EseI, was upregulated under low-pH and low-phosphate conditions but not in an EsrB- or EsrC-dependent manner. Mutations of EsrA and EsrB both resulted in loss of the ability to replicate in HKDM and full attenuation in the channel catfish host. Mutation of EsrC did not affect intracellular replication but did result in attenuation in catfish. Although EsrB is the primary transcriptional regulator for E. ictaluri genes within the T3SS pathogenicity island, EsrC regulates expression of the plasmid-carried effector eseH and appears to mediate coordinated expression of the T6SS with the T3SS. PMID:21551284

  7. Relative contribution of ruminal buffering systems to pH regulation in feedlot cattle fed either low- or high-forage diets.

    PubMed

    Chibisa, G E; Beauchemin, K A; Penner, G B

    2016-07-01

    The relative contribution of ruminal short-chain fatty acid (SCFA) absorption and salivary buffering to pH regulation could potentially change under different dietary conditions. Therefore, the objective of this study was to investigate the effects of altering the ruminal supply of rapidly fermentable carbohydrate (CHO) on absorptive function and salivation in beef cattle. Eight heifers (mean BW±SD=410±14 kg) were randomly allocated to two treatments in a crossover design with 37-day periods. Dietary treatments were barley silage at 30% low forage (LF) or 70% high forage (HF) of dietary dry matter (DM), with the remainder of the diet consisting of barley grain (65% or 25% on a DM basis) and a constant level (5%) of supplement. The LF and HF diets contained 45.3% and 30.9% starch, and 4.1% and 14.0% physically effective fiber (DM basis), respectively. Ruminal pH was continuously measured from day 17 to day 23, whereas ruminal fluid was collected on day 23 to determine SCFA concentration. Ruminal liquid passage rate was determined on day 23 using Cr-ethylenediaminetetraacetic acid. Eating or resting salivation was measured by collecting masticate (days 28 and 29) or saliva samples (days 30 and 31) at the cardia, respectively. On days 30 and 31, the temporarily isolated and washed reticulo-rumen technique was used to measure total, and Cl--competitive (an indirect measure of protein-mediated transport) absorption of acetate, propionate and butyrate. As a result of the higher dietary starch content and DM intake, the ruminal supply of rapidly fermentable CHO, total ruminal SCFA concentration (118 v. 95 mM; P<0.001) and osmolality (330 v. 306 mOsm/kg; P=0.018) were greater in cattle fed LF compared with HF. In addition, feeding LF resulted in a longer duration (2.50 v. 0.09 h/day; P=0.02) and a larger area (0.44 v. 0.01 (pH×h)/day; P=0.050) that pH was below 5.5. There was no diet effect on total and Cl--competitive absorption (mmol/h and %/h) of acetate, propionate

  8. Functional morphology of the midgut of a sandfly as compared to other hematophagous nematocera.

    PubMed

    Rudin, W; Hecker, H

    1982-01-01

    The midgut epithelium of female Lutzomyia longipalpis was investigated by means of electron microscopic morphometry before and during blood digestion. Ultrastructure and cytological changes of the stomach cells upon blood feeding were generally similar to the ones described for Phlebotomus longipes (Gemetchu, 1974) and for mosquitoes (Hecker, 1977). In addition, the quantitative composition of the cells resembled the one of mosquitoes in many respects. Despite some morphological differences in the functional gut cytology, it can be admitted that, in general, digestive processes may run similarly in the midguts of sandflies and mosquitoes.

  9. Detection of heparin in the salivary gland and midgut of Aedes togoi.

    PubMed

    Ha, Young-Ran; Oh, So-Ra; Seo, Eun-Seok; Kim, Bo-Heum; Lee, Dong-Kyu; Lee, Sang-Joon

    2014-04-01

    Mosquitoes secrete saliva that contains biological substances, including anticoagulants that counteract a host's hemostatic response and prevent blood clotting during blood feeding. This study aimed to detect heparin, an anticoagulant in Aedes togoi using an immunohistochemical detection method, in the salivary canal, salivary gland, and midgut of male and female mosquitoes. Comparisons showed that female mosquitoes contained higher concentrations of heparin than male mosquitoes. On average, the level of heparin was higher in blood-fed female mosquitoes than in non-blood-fed female mosquitoes. Heparin concentrations were higher in the midgut than in the salivary gland. This indicates presence of heparin in tissues of A. togoi.

  10. Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product

    SciTech Connect

    Cotter, P.A.; Gunsalus, R.P. ); Chepuri, V.; Gennis, R.B. )

    1990-11-01

    The aerobic respiratory chain of Escherichia coli contains two terminal oxidases that catalyze the oxidation of ubiquinol-8 and the reduction of oxygen to water. They are the cytochrome o oxidase complex encoded by cyoABCDE and the cytochrome d oxidase complex encoded by cydAB. To determine how these genes are regulated in response to a variety of environmental stimuli, including oxygen, we examined their expression by using lacZ protein fusions in wild-type and fnr mutant strains of E. coli. Based on the pattern of anaerobic cydAB expression observed, we propose the existence of a second, as yet unidentified, regulatory element that must function either to activate cydAB expression as oxygen becomes limiting or to repress cydAB expression aerobically. Whereas cytochrome o oxidase encoded by cyoABCDE appears to be produced only under oxygen-rich growth conditions, in keeping with its biochemical properties, cytochrome d oxidase is expressed moderately aerobically and is elevated yet further when oxygen becomes limiting so that the organism can cope better under oxygen starvation conditions. We also examined cyoABCDE and cydAB expression in response to growth on alternative carbon compounds and to changes in the culture medium pH and osmolarity.

  11. Regulation of the Na+/K+-ATPase Ena1 Expression by Calcineurin/Crz1 under High pH Stress: A Quantitative Study

    PubMed Central

    Petrezsélyová, Silvia; López-Malo, María; Canadell, David; Roque, Alicia; Serra-Cardona, Albert; Marqués, M. Carmen; Vilaprinyó, Ester; Alves, Rui; Yenush, Lynne

    2016-01-01

    Regulated expression of the Ena1 Na+-ATPase is a crucial event for adaptation to high salt and/or alkaline pH stress in the budding yeast Saccharomyces cerevisiae. ENA1 expression is under the control of diverse signaling pathways, including that mediated by the calcium-regulatable protein phosphatase calcineurin and its downstream transcription factor Crz1. We present here a quantitative study of the expression of Ena1 in response to alkalinization of the environment and we analyze the contribution of Crz1 to this response. Experimental data and mathematical models substantiate the existence of two stress-responsive Crz1-binding sites in the ENA1 promoter and estimate that the contribution of Crz1 to the early response of the ENA1 promoter is about 60%. The models suggest the existence of a second input with similar kinetics, which would be likely mediated by high pH-induced activation of the Snf1 kinase. PMID:27362362

  12. Overexpression of the cystic fibrosis transmembrane conductance regulator in NIH 3T3 cells lowers membrane potential and intracellular pH and confers a multidrug resistance phenotype.

    PubMed Central

    Wei, L Y; Stutts, M J; Hoffman, M M; Roepe, P D

    1995-01-01

    Because of the similarities between the cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance (MDR) proteins, recent observations of decreased plasma membrane electrical potential (delta psi) in cells overexpressing either MDR protein or the CFTR, and the effects of delta psi on passive diffusion of chemotherapeutic drugs, we have analyzed chemotherapeutic drug resistance for NIH 3T3 cells overexpressing different levels of functional CFTR. Three separate clones not previously exposed to chemotherapeutic drugs exhibit resistance to doxorubicin, vincristine, and colchicine that is similar to MDR transfectants not previously exposed to chemotherapeutic drugs. Two other clones expressing lower levels of CFTR are less resistant. As shown previously these clones exhibit decreased plasma membrane delta psi similar to MDR transfectants, but four of five exhibit mildly acidified intracellular pH in contrast to MDR transfectants, which are in general alkaline. Thus the MDR protein and CFTR-mediated MDR phenotypes are distinctly different. Selection of two separate CFTR clones on either doxorubicin or vincristine substantially increases the observed MDR and leads to increased CFTR (but not measurable MDR or MRP) mRNA expression. CFTR overexpressors also exhibit a decreased rate of 3H -vinblastine uptake. These data reveal a new and previously unrecognized consequence of CFTR expression, and are consistent with the hypothesis that membrane depolarization is an important determinant of tumor cell MDR. Images FIGURE 1 FIGURE 3 FIGURE 6 PMID:8519988

  13. MdSOS2L1 forms a complex with MdMYB1 to control vacuolar pH by transcriptionally regulating MdVHA-B1 in apples.

    PubMed

    Sun, Cui-Hui; Zhang, Quan-Yan; Sun, Mei-Hong; Hu, Da-Gang

    2016-01-01

    Vacuolar pH is important and involves in many different physiological processes in plants. A recent paper published in Plant Physiology reveals that MdMYB1 regulates vacuolar pH by directly transcriptionally regulating proton pump genes and malate transporters genes, such as V-ATPase subunit gene MdVHA-B1. Here, we found that MdSOS2L1 in vitro did not directly interact with MdMYB1, however, in vivo formed a complex with MdMYB1 in the nucleus to regulate MdVHA-B1-mediated vacuolar acidification. This finding shed light on the role of MdSOS2L1 in transcriptionally regulating MdVHA-B1 in addition to its post-modified function in apples.

  14. MdSOS2L1 forms a complex with MdMYB1 to control vacuolar pH by transcriptionally regulating MdVHA-B1 in apples

    PubMed Central

    Sun, Cui-Hui; Zhang, Quan-Yan; Sun, Mei-Hong; Hu, Da-Gang

    2016-01-01

    ABSTRACT Vacuolar pH is important and involves in many different physiological processes in plants. A recent paper published in Plant Physiology reveals that MdMYB1 regulates vacuolar pH by directly transcriptionally regulating proton pump genes and malate transporters genes, such as V-ATPase subunit gene MdVHA-B1. Here, we found that MdSOS2L1 in vitro did not directly interact with MdMYB1, however, in vivo formed a complex with MdMYB1 in the nucleus to regulate MdVHA-B1-mediated vacuolar acidification. This finding shed light on the role of MdSOS2L1 in transcriptionally regulating MdVHA-B1 in addition to its post-modified function in apples. PMID:26910596

  15. Synergistic mitotoxicity of chloromethanes and fullerene C60 nanoaggregates in Daphnia magna midgut epithelial cells.

    PubMed

    Seke, Mariana; Markelic, Milica; Morina, Arian; Jovic, Danica; Korac, Aleksandra; Milicic, Dragana; Djordjevic, Aleksandar

    2016-12-03

    Adsorption of non-polar compounds by suspended fullerene nanoaggregates (nC60) may enhance their toxicity and affect the fate, transformation, and transport of non-polar compounds in the environment. The potential of stable fullerene nanoaggregates as contaminant carriers in aqueous systems and the influence of chloromethanes (trichloromethane and dichloromethane) were studied on the midgut epithelial cells of Daphnia magna by light and electron microscopy. The size and shape of fullerene nanoaggregates were observed and measured using dynamic light scattering, transmission electron microscopy, and low vacuum scanning electron microscopy. The nC60 in suspension appeared as a bulk of aggregates of irregular shape with a surface consisting of small clumps 20-30 nm in diameter. The presence of nC60 aggregates was confirmed in midgut lumen and epithelial cells of D. magna. After in vivo acute exposure to chloromethane, light and electron microscopy revealed an extensive cytoplasmic vacuolization with disruption and loss of specific structures of D. magna midgut epithelium (mitochondria, endoplasmic reticulum, microvilli, peritrophic membrane) and increased appearance of necrotic cells. The degree of observed changes depended on the type of treatment: trichloromethane (TCM) induced the most notable changes, whereas fullerene nanoaggregates alone had no negative effects. Transmission electron microscopy also indicated increased lysosomal degradation and severe peroxidative damages of enterocyte mitochondria following combined exposure to chloromethane and fullerene nanoaggregates. In conclusion, the adsorption of chloromethane by fullerene nanoaggregates enhances their toxicity and induces peroxidative mitochondrial damage in midgut enterocytes.

  16. RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks

    PubMed Central

    Perner, Jan; Provazník, Jan; Schrenková, Jana; Urbanová, Veronika; Ribeiro, José M. C.; Kopáček, Petr

    2016-01-01

    Adult females of the genus Ixodes imbibe blood meals exceeding about 100 times their own weight within 7‒9 days. During this period, ticks internalise components of host blood by endocytic digest cells that line the tick midgut epithelium. Using RNA-seq, we aimed to characterise the midgut transcriptome composition in adult Ixodes ricinus females during early and late phase of engorgement. To address specific adaptations to the haemoglobin-rich diet, we compared the midgut transcriptomes of genetically homogenous female siblings fed either bovine blood or haemoglobin-depleted serum. We noted that tick gut transcriptomes are subject to substantial temporal-dependent expression changes between day 3 and day 8 of feeding. In contrast, the number of transcripts significantly affected by the presence or absence of host red blood cells was low. Transcripts relevant to the processes associated with blood-meal digestion were analysed and involvement of selected encoded proteins in the tick midgut physiology discussed. A total of 7215 novel sequences from I. ricinus were deposited in public databases as an additional outcome of this study. Our results broaden the current knowledge of tick digestive system and may lead to the discovery of potential molecular targets for efficient tick control. PMID:27824139

  17. Midgut transcriptome profiling of Anoplophora glabripennis, a lignocellulose degrading Cerambycid beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Wood-feeding insects often work in collaboration with microbial symbionts to degrade lignin biopolymers and release glucose and other fermentable sugars from recalcitrant plant cell wall carbohydrates, including cellulose and hemicellulose. Here, we present the midgut transcriptome of la...

  18. Localization of two post-proline cleaving peptidases in the midgut of Tenebrio molitor larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two soluble post-proline cleaving peptidase activities, PPCP1 and PPCP2, were demonstrated in the midgut of Tenebrio molitor larvae with the substrate benzyloxycarbonyl-L-alanyl-L-proline p-nitroanilide. Both activities were serine peptidases. PPCP1 was active in acidic buffers, with maximum activit...

  19. Midgut epithelium in molting silkworm: A fine balance among cell growth, differentiation, and survival.

    PubMed

    Franzetti, Eleonora; Casartelli, Morena; D'Antona, Paola; Montali, Aurora; Romanelli, Davide; Cappellozza, Silvia; Caccia, Silvia; Grimaldi, Annalisa; de Eguileor, Magda; Tettamanti, Gianluca

    2016-07-01

    The midgut of insects has attracted great attention as a system for studying intestinal stem cells (ISCs) as well as cell death-related processes, such as apoptosis and autophagy. Among insects, Lepidoptera represent a good model to analyze these cells and processes. In particular, larva-larva molting is an interesting developmental phase since the larva must deal with nutrient starvation and its organs are subjected to rearrangements due to proliferation and differentiation events. Several studies have analyzed ISCs in vitro and characterized key factors involved in their division and differentiation during molt. However, in vivo studies performed during larva-larva transition on these cells, and on the whole midgut epithelium, are fragmentary. In the present study, we analyzed the larval midgut epithelium of the silkworm, Bombyx mori, during larva-larva molting, focusing our attention on ISCs. Moreover, we investigated the metabolic changes that occur in the epithelium and evaluated the intervention of autophagy. Our data on ISCs proliferation and differentiation, autophagy activation, and metabolic and functional activities of the midgut cells shed light on the complexity of this organ during the molting phase.

  20. Variation in Vector Competence for Dengue Viruses Does Not Depend on Mosquito Midgut Binding Affinity

    PubMed Central

    Cox, Jonathan; Brown, Heidi E.; Rico-Hesse, Rebeca

    2011-01-01

    Background Dengue virus genotypes of Southeast Asian origin have been associated with higher virulence and transmission compared to other genotypes of serotype 2 (DEN-2). We tested the hypothesis that genetic differences in dengue viruses may result in differential binding to the midgut of the primary vector, Aedes aegypti, resulting in increased transmission or vectorial capacity. Methodology/Principal Finding Two strains of each of the four DEN-2 genotypes (Southeast Asian, American, Indian, and West African) were tested to determine their binding affinity for mosquito midguts from two distinct populations (Tapachula, Chiapas, Mexico and McAllen, Texas, USA). Our previous studies demonstrated that Southeast Asian viruses disseminated up to 65-fold more rapidly in Ae. aegypti from Texas and were therefore more likely to be transmitted to humans. Results shown here demonstrate that viruses from all four genotypes bind to midguts at the same rate, in a titer-dependent manner. In addition, we show population differences when comparing binding affinity for DEN-2 between the Tapachula and McAllen mosquito colonies. Conclusions If midgut binding potential is the same for all DEN-2 viruses, then viral replication differences in these tissues and throughout the mosquito can thus probably explain the significant differences in dissemination and vector competence. These conclusions differ from the established paradigms to explain mosquito barriers to infection, dissemination, and transmission. PMID:21610852

  1. Apoptosis and necrosis during the circadian cycle in the centipede midgut.

    PubMed

    Rost-Roszkowska, M M; Chajec, Ł; Vilimova, J; Tajovský, K

    2016-07-01

    Three types of cells have been distinguished in the midgut epithelium of two centipedes, Lithobius forficatus and Scolopendra cingulata: digestive, secretory, and regenerative cells. According to the results of our previous studies, we decided to analyze the relationship between apoptosis and necrosis in their midgut epithelium and circadian rhythms. Ultrastructural analysis showed that these processes proceed in a continuous manner that is independent of the circadian rhythm in L. forficatus, while in S. cingulata necrosis is activated at midnight. Additionally, the description of apoptosis and necrosis showed no differences between males and females of both species analyzed. At the beginning of apoptosis, the cell cytoplasm becomes electron-dense, apparently in response to shrinkage of the cell. Organelles such as the mitochondria, cisterns of endoplasmic reticulum transform and degenerate. Nuclei gradually assume lobular shapes before the apoptotic cell is discharged into the midgut lumen. During necrosis, however, the cytoplasm of the cell becomes electron-lucent, and the number of organelles decreases. While the digestive cells of about 10 % of L. forficatus contain rickettsia-like pathogens, the corresponding cells in S. cingulata are free of rickettsia. As a result, we can state that apoptosis in L. forficatus is presumably responsible for protecting the organism against infections, while in S. cingulata apoptosis is not associated with the elimination of pathogens. Necrosis is attributed to mechanical damage, and the activation of this process coincides with proliferation of the midgut regenerative cells at midnight in S. cingulata.

  2. Barber Pole Sign in CT Angiography, Adult Presentation of Midgut Malrotation: A Case Report

    PubMed Central

    Garcelan-Trigo, Juan Arsenio; Tello-Moreno, Manuel; Rabaza-Espigares, Manuel Jesus; Talavera-Martinez, Ildefonso

    2015-01-01

    Adult midgut volvulus is a challenging diagnosis because of its low incidence and nonspecific symptoms. Diagnostic delay and long-term complaints are frequent in this clinical scenario. We reported a patient referred to our diagnostic imaging unit with intermittent abdominal pain, bloating and episodic vomiting for several years. He underwent barium gastrointestinal transit and abdominal ultrasound, which revealed severe gastric dilatation, food retention and slow transit until a depressed duodenojejunal flexure, with malrotation of the midgut and jejunal loops being located in the right upper quadrant. Computed tomography angiography was performed, showing rotation of the small intestine around the mesentery root, suggestive of midgut malrotation. In addition, an abnormal twisted disposition of superior mesenteric artery with corkscrew appearance was seen, shaping the pole-barber sign which was evident in volume rendering three-dimensional reconstructions. The patient underwent scheduled surgical treatment without any complication and had good outcome after hospital discharge and follow-up. Computed tomography plays an important role in evaluation of adult midgut volvulus. In addition, angiographic reconstructions can help us to assess the anatomic disposition of mesenteric vascular supply. Both of these assessments are useful in preoperative management. PMID:26557278

  3. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana

    PubMed Central

    Gendrin, Mathilde; Pels, Nana Adjoa P.; Yeboah-Manu, Dorothy; Christophides, George K.; Wilson, Michael D.

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings. PMID:27322614

  4. Analysis of differentially expressed genes between fluoride-sensitive and fluoride-endurable individuals in midgut of silkworm, Bombyx mori.

    PubMed

    Qian, Heying; Li, Gang; He, Qingling; Zhang, Huaguang; Xu, Anying

    2016-08-15

    Fluoride tolerance is an economically important trait of silkworm. Near-isogenic lines (NILs) of the dominant endurance to fluoride (Def) gene in Bombyx mori has been constructed before. Here, we analyzed the gene expression profiles of midgut of fluoride-sensitive and fluoride-endurable individuals of Def NILs by using high-throughput Illumina sequencing technology and bioinformatics tools, and identified differentially expressed genes between these individuals. A total of 3,612,399 and 3,567,631 clean tags for the libraries of fluoride-endurable and fluoride-sensitive individuals were obtained, which corresponded to 32,933 and 43,976 distinct clean tags, respectively. Analysis of differentially expressed genes indicates that 241 genes are differentially expressed between the two libraries. Among the 241 genes, 30 are up-regulated and 211 are down-regulated in fluoride-endurable individuals. Pathway enrichment analysis demonstrates that genes related to ribosomes, pancreatic secretion, steroid biosynthesis, glutathione metabolism, steroid biosynthesis, and glycerolipid metabolism are down-regulated in fluoride-endurable individuals. qRT-PCR was conducted to confirm the results of the DGE. The present study analyzed differential expression of related genes and tried to find out whether the crucial genes were related to fluoride detoxification which might elucidate fluoride effect and provide a new way in the fluorosis research.

  5. Intracellular pH regulation in isolated trout gill mitochondrion-rich (MR) cell subtypes: evidence for Na+/H+ activity.

    PubMed

    Parks, Scott K; Tresguerres, Martin; Galvez, Fernando; Goss, Greg G

    2010-02-01

    We have studied intracellular pH (pH(i)) recovery in isolated trout gill mitochondrion-rich (MR) cells following acidification by the NH(4)Cl pre-pulse technique. Within a mixed MR cell population, one cell type displayed Na(+)-independent pH(i) recovery while the other cell type lacked a Na(+)-independent pH(i) recovery. Cells displaying Na(+) independent recovery exhibited a significantly higher buffering capacity compared to cells lacking Na(+)-independent pH(i) recovery. Cells displaying Na(+) independent recovery were identified as PNA(+) (peanut lectin agluttinin binding) MR cells while those unable to recover were identified as PNA(-) (non-peanut lectin agluttinin binding) MR cells. Therefore, recovery from acidification in the absence of Na(+) provides a direct functional marker for PNA(+) and PNA(-) MR cells. Re-addition of Na(+) to acidified cells resulted in a transient pH(i) recovery in both cell types. This event was abolished by amiloride (500 microM) but it was insensitive to phenamil (50 microM). The phorbol ester PMA (1 microM) potentiated the Na(+) induced pH(i) recovery suggesting that activation by PKC is required for continuous Na(+)/H(+) exchanger activity in trout gill MR cells. This study is the first functional description of pH(i) recovery in lectin-identified trout gill MR cells and provides insight into a putative cellular signaling mechanism that may control pH(i) regulation in the gill epithelium.

  6. Characterization of proteinases from the midgut of Rhipicephalus (Boophilus) microplus involved in the generation of antimicrobial peptides

    PubMed Central

    2010-01-01

    Background Hemoglobin is a rich source of biologically active peptides, some of which are potent antimicrobials (hemocidins). A few hemocidins have been purified from the midgut contents of ticks. Nonetheless, how antimicrobials are generated in the tick midgut and their role in immunity is still poorly understood. Here we report, for the first time, the contribution of two midgut proteinases to the generation of hemocidins. Results An aspartic proteinase, designated BmAP, was isolated from the midgut of Rhipicephalus (Boophilus) microplus using three chromatographic steps. Reverse transcription-quantitative polymerase chain reaction revealed that BmAP is restricted to the midgut. The other enzyme is a previously characterized midgut cathepsin L-like cysteine proteinase designated BmCL1. Substrate specificities of native BmAP and recombinant BmCL1 were mapped using a synthetic combinatorial peptide library and bovine hemoglobin. BmCL1 preferred substrates containing non-polar residues at P2 subsite and polar residues at P1, whereas BmAP hydrolysed substrates containing non-polar amino acids at P1 and P1'. Conclusions BmAP and BmCL1 generate hemocidins from hemoglobin alpha and beta chains in vitro. We postulate that hemocidins may be important for the control of tick pathogens and midgut flora. PMID:20663211

  7. Midgut and salivary gland transcriptomes of the arbovirus vector Culicoides sonorensis (Diptera: Ceratopogonidae).

    PubMed

    Campbell, C L; Vandyke, K A; Letchworth, G J; Drolet, B S; Hanekamp, T; Wilson, W C

    2005-04-01

    Numerous Culicoides spp. are important vectors of livestock or human disease pathogens. Transcriptome information from midguts and salivary glands of adult female Culicoides sonorensis provides new insight into vector biology. Of 1719 expressed sequence tags (ESTs) from adult serum-fed female midguts harvested within 5 h of feeding, twenty-eight clusters of serine proteases were derived. Four clusters encode putative iron binding proteins (FER1, FERL, PXDL1, PXDL2), and two clusters encode metalloendopeptidases (MDP6C, MDP6D) that probably function in bloodmeal catabolism. In addition, a diverse variety of housekeeping cDNAs were identified. Selected midgut protease transcripts were analysed by quantitative real-time PCR (q-PCR): TRY1_115 and MDP6C mRNAs were induced in adult female midguts upon feeding, whereas TRY1_156 and CHYM1 were abundant in midguts both before and immediately after feeding. Of 708 salivary gland ESTs analysed, clusters representing two new classes of protein families were identified: a new class of D7 proteins and a new class of Kunitz-type protease inhibitors. Additional cDNAs representing putative immunomodulatory proteins were also identified: 5' nucleotidases, antigen 5-related proteins, a hyaluronidase, a platelet-activating factor acetylhydrolase, mucins and several immune response cDNAs. Analysis by q-PCR showed that all D7 and Kunitz domain transcripts tested were highly enriched in female heads compared with other tissues and were generally absent from males. The mRNAs of two additional protease inhibitors, TFPI1 and TFPI2, were detected in salivary glands of paraffin-embedded females by in situ hybridization.

  8. Midgut Transcriptome of the Cockroach Periplaneta americana and Its Microbiota: Digestion, Detoxification and Oxidative Stress Response

    PubMed Central

    Zhang, Jianhua; Zhang, Yixi; Li, Jingjing; Liu, Meiling; Liu, Zewen

    2016-01-01

    The cockroach, Periplaneta americana, is an obnoxious and notorious pest of the world, with a strong ability to adapt to a variety of complex environments. However, the molecular mechanism of this adaptability is mostly unknown. In this study, the genes and microbiota composition associated with the adaptation mechanism were studied by analyzing the transcriptome and 16S rDNA pyrosequencing of the P. americana midgut, respectively. Midgut transcriptome analysis identified 82,905 unigenes, among which 64 genes putatively involved in digestion (11 genes), detoxification (37 genes) and oxidative stress response (16 genes) were found. Evaluation of gene expression following treatment with cycloxaprid further revealed that the selected genes (CYP6J1, CYP4C1, CYP6K1, Delta GST, alpha-amylase, beta-glucosidase and aminopeptidase) were upregulated at least 2.0-fold at the transcriptional level, and four genes were upregulated more than 10.0-fold. An interesting finding was that three digestive enzymes positively responded to cycloxaprid application. Tissue expression profiles further showed that most of the selected genes were midgut-biased, with the exception of CYP6K1. The midgut microbiota composition was obtained via 16S rDNA pyrosequencing and was found to be mainly dominated by organisms from the Firmicutes phylum, among which Clostridiales, Lactobacillales and Burkholderiales were the main orders which might assist the host in the food digestion or detoxification of noxious compounds. The preponderant species, Clostridium cellulovorans, was previously reported to degrade lignocellulose efficiently in insects. The abundance of genes involved in digestion, detoxification and response to oxidative stress, and the diversity of microbiota in the midgut might provide P. americana high capacity to adapt to complex environments. PMID:27153200

  9. Midgut Transcriptome of the Cockroach Periplaneta americana and Its Microbiota: Digestion, Detoxification and Oxidative Stress Response.

    PubMed

    Zhang, Jianhua; Zhang, Yixi; Li, Jingjing; Liu, Meiling; Liu, Zewen

    2016-01-01

    The cockroach, Periplaneta americana, is an obnoxious and notorious pest of the world, with a strong ability to adapt to a variety of complex environments. However, the molecular mechanism of this adaptability is mostly unknown. In this study, the genes and microbiota composition associated with the adaptation mechanism were studied by analyzing the transcriptome and 16S rDNA pyrosequencing of the P. americana midgut, respectively. Midgut transcriptome analysis identified 82,905 unigenes, among which 64 genes putatively involved in digestion (11 genes), detoxification (37 genes) and oxidative stress response (16 genes) were found. Evaluation of gene expression following treatment with cycloxaprid further revealed that the selected genes (CYP6J1, CYP4C1, CYP6K1, Delta GST, alpha-amylase, beta-glucosidase and aminopeptidase) were upregulated at least 2.0-fold at the transcriptional level, and four genes were upregulated more than 10.0-fold. An interesting finding was that three digestive enzymes positively responded to cycloxaprid application. Tissue expression profiles further showed that most of the selected genes were midgut-biased, with the exception of CYP6K1. The midgut microbiota composition was obtained via 16S rDNA pyrosequencing and was found to be mainly dominated by organisms from the Firmicutes phylum, among which Clostridiales, Lactobacillales and Burkholderiales were the main orders which might assist the host in the food digestion or detoxification of noxious compounds. The preponderant species, Clostridium cellulovorans, was previously reported to degrade lignocellulose efficiently in insects. The abundance of genes involved in digestion, detoxification and response to oxidative stress, and the diversity of microbiota in the midgut might provide P. americana high capacity to adapt to complex environments.

  10. Composition of the Spruce Budworm (Choristoneura fumiferana) Midgut Microbiota as Affected by Rearing Conditions.

    PubMed

    Landry, Mathieu; Comeau, André M; Derome, Nicolas; Cusson, Michel; Levesque, Roger C

    2015-01-01

    The eastern spruce budworm (Choristoneura fumiferana) is one of the most destructive forest insect pests in Canada. Little is known about its intestinal microbiota, which could play a role in digestion, immune protection, communication and/or development. The present study was designed to provide a first characterization of the effects of rearing conditions on the taxonomic diversity and structure of the C. fumiferana midgut microbiota, using a culture-independent approach. Three diets and insect sources were examined: larvae from a laboratory colony reared on a synthetic diet and field-collected larvae reared on balsam fir or black spruce foliage. Bacterial DNA from the larval midguts was extracted to amplify and sequence the V6-V8 region of the 16S rRNA gene, using the Roche 454 GS-FLX technology. Our results showed a dominance of Proteobacteria, mainly Pseudomonas spp., in the spruce budworm midgut, irrespective of treatment group. Taxonomic diversity of the midgut microbiota was greater for larvae reared on synthetic diet than for those collected and reared on host plants, a difference that is likely accounted for by several factors. A greater proportion of bacteria from the phylum Bacteroidetes in insects fed artificial diet constituted the main difference between this group and those reared on foliage; within the phylum Proteobacteria, the presence of the genus Bradyrhizobium was also unique to insects reared on artificial diet. Strikingly, a Bray-Curtis analysis showed important differences in microbial diversity among the treatment groups, pointing to the importance of diet and environment in defining the spruce budworm midgut microbiota.

  11. Composition of the Spruce Budworm (Choristoneura fumiferana) Midgut Microbiota as Affected by Rearing Conditions

    PubMed Central

    Landry, Mathieu; Comeau, André M.; Derome, Nicolas; Cusson, Michel; Levesque, Roger C.

    2015-01-01

    The eastern spruce budworm (Choristoneura fumiferana) is one of the most destructive forest insect pests in Canada. Little is known about its intestinal microbiota, which could play a role in digestion, immune protection, communication and/or development. The present study was designed to provide a first characterization of the effects of rearing conditions on the taxonomic diversity and structure of the C. fumiferana midgut microbiota, using a culture-independent approach. Three diets and insect sources were examined: larvae from a laboratory colony reared on a synthetic diet and field-collected larvae reared on balsam fir or black spruce foliage. Bacterial DNA from the larval midguts was extracted to amplify and sequence the V6-V8 region of the 16S rRNA gene, using the Roche 454 GS-FLX technology. Our results showed a dominance of Proteobacteria, mainly Pseudomonas spp., in the spruce budworm midgut, irrespective of treatment group. Taxonomic diversity of the midgut microbiota was greater for larvae reared on synthetic diet than for those collected and reared on host plants, a difference that is likely accounted for by several factors. A greater proportion of bacteria from the phylum Bacteroidetes in insects fed artificial diet constituted the main difference between this group and those reared on foliage; within the phylum Proteobacteria, the presence of the genus Bradyrhizobium was also unique to insects reared on artificial diet. Strikingly, a Bray-Curtis analysis showed important differences in microbial diversity among the treatment groups, pointing to the importance of diet and environment in defining the spruce budworm midgut microbiota. PMID:26636571

  12. Transporters involved in glucose and water absorption in the Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) anterior midgut.

    PubMed

    Bifano, Thaís D; Alegria, Thiago G P; Terra, Walter R

    2010-09-01

    Little is known about insect intestinal sugar absorption, in spite of the recent findings, and even less has been published regarding water absorption. The aim of this study was to shed light on putative transporters of water and glucose in the insect midgut. Glucose and water absorptions by the anterior ventriculus of Dysdercus peruvianus midgut were determined by feeding the insects with a glucose and a non-absorbable dye solution, followed by periodical dissection of insects and analysis of ventricular contents. Glucose absorption decreases glucose/dye ratios and water absorption increases dye concentrations. Water and glucose transports are activated (water 50%, glucose 33%) by 50 mM K(2)SO(4) and are inhibited (water 46%, glucose 82%) by 0.2 mM phloretin, the inhibitor of the facilitative hexose transporter (GLUT) or are inhibited (water 45%, glucose 35%) by 0.1 mM phlorizin, the inhibitor of the Na(+)-glucose cotransporter (SGLT). The results also showed that the putative SGLT transports about two times more water relative to glucose than the putative GLUT. These results mean that D. peruvianus uses a GLUT-like transporter and an SGLT-like transporter (with K(+) instead of Na(+)) to absorb dietary glucose and water. A cDNA library from D. peruvianus midgut was screened and we found one sequence homologous to GLUT1, named DpGLUT, and another to a sodium/solute symporter, named DpSGLT. Semi-quantitative RT-PCR studies revealed that DpGLUT and DpSGLTs mRNA were expressed in the anterior midgut, where glucose and water are absorbed, but not in fat body, salivary gland and Malpighian tubules. This is the first report showing the involvement of putative GLUT and SGLT in both water and glucose midgut absorption in insects.

  13. Cowpea bruchid midgut transcriptome response to a soybean cystatin--costs and benefits of counter-defence.

    PubMed

    Chi, Y H; Salzman, R A; Balfe, S; Ahn, J-E; Sun, W; Moon, J; Yun, D-J; Lee, S Y; Higgins, T J V; Pittendrigh, B; Murdock, L L; Zhu-Salzman, K

    2009-02-01

    The insect digestive system is the first line of defence protecting cells and tissues of the body from a broad spectrum of toxins and antinutritional factors in its food. To gain insight into the nature and breadth of genes involved in adaptation to dietary challenge, a collection of 20 352 cDNAs was prepared from the midgut tissue of cowpea bruchid larvae (Callosobruchus maculatus) fed on regular diet and diets containing antinutritional compounds. Transcript responses of the larvae to dietary soybean cystatin (scN) were analysed using cDNA microarrays, followed by quantitative real-time PCR (RT-PCR) confirmation with selected genes. The midgut transcript profile of insects fed a sustained sublethal scN dose over the larval life was compared with that of insects treated with an acute high dose of scN for 24 h. A total of 1756 scN-responsive cDNAs was sequenced; these clustered into 967 contigs, of which 653 were singletons. Many contigs (451) did not show homology with known genes, or had homology only with genes of unknown function in a Blast search. The identified differentially regulated sequences encoded proteins presumptively involved in metabolism, structure, development, signalling, defence and stress response. Expression patterns of some scN-responsive genes were consistent in each larval stage, whereas others exhibited developmental stage-specificity. Acute (24 h), high level exposure to dietary scN caused altered expression of a set of genes partially overlapping with the transcript profile seen under chronic lower level exposure. Protein and carbohydrate hydrolases were generally up-regulated by scN whereas structural, defence and stress-related genes were largely down-regulated. These results show that insects actively mobilize genomic resources in the alimentary tract to mitigate the impact of a digestive protease inhibitor. The enhanced or restored digestibility that may result is possibly crucial for insect survival, yet may be bought at the cost of

  14. A trypsin-like proteinase in the midgut of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae): purification, characterization, and host plant inhibitors.

    PubMed

    Ranjbar, Mina; Zibaee, Arash; Sendi, Jalal Jalali

    2014-01-01

    A trypsin-like proteinase was purified and characterized in the midgut of Ectomyelois ceratoniae. A purification process that used Sepharyl G-100 and DEAE-cellulose fast flow chromatographies revealed a proteinase with specific activity of 66.7 μmol/min/mg protein, recovery of 27.04 and purification fold of 23.35. Molecular weight of the purified protein was found to be 35.8 kDa. Optimal pH and temperature were obtained 9 and 20°C for the purified trypsin proteinase, respectively. The purified enzyme was significantly inhibited by PMSF, TLCK, and SBTI as specific inhibitors of trypsins in which TLCK showed the highest inhibitory effect. Trypsin proteinase inhibitors were extracted from four varieties of pomegranate including Brait, Torsh-Sabz, May-Khosh, and Shirin by ion exchange chromatography. It was found that fractions 17-20 of Brait; fractions 18 and 21-26 of Torsh-Sabz; fractions 1-7, 11-17, and 19-21 of May-Khosh and fraction 8 for Shirin showed presence of trypsin inhibitor in these host. Comparison of their inhibitory effects on the purified trypsin proteinase of E. ceratoniae demonstrated that fractions from May-khosh variety had the highest effect on the enzyme among other extracted fractions. Characterization of serine proteinases of insects mainly trypsins is one of the promising methods to decrease population and damages via extracting their inhibitors and providing resistant varieties.

  15. Strategies for regulation of hemolymph pH in acidic and alkaline water by the larval mosquito Aedes aegypti (L.) (Diptera; Culicidae).

    PubMed

    Clark, Thomas M; Vieira, Marcus A L; Huegel, Kara L; Flury, Dawn; Carper, Melissa

    2007-12-01

    The responses of larval Aedes aegypti to media of pH 4, 7 and 11 provide evidence for pH regulatory strategies. Drinking rates in pH 4 media were elevated 3- to 5-fold above those observed in pH 7 or 11. Total body water was elevated during acute exposure to acidic media. During chronic exposure, total body water was decreased and Malpighian tubule mitochondrial luminosity, quantified using Mitotracker Green FM, increased. Malpighian tubule secretion rates and energy demands thus appear to increase dramatically during acid exposure. In alkaline media, drinking rates were quite low. Larvae in pH 11 media excreted net acid (0.12 nequiv H(+) g(-1) h(-1)) and the pH indicators azolitmin and bromothymol blue revealed that the rectal lumen is acidic in vivo at all ambient pH values. The anal papillae (AP) were found to be highly permeant to acid-base equivalents. Ambient pH influenced the length, and the mass-specific length, of the AP in the presence of NaCl (59.9 mmol l(-1)). In contrast, the length and mass-specific length of AP were not influenced by ambient pH in low NaCl conditions. Mitochondrial luminosity was reduced in AP of larvae reared in acidic media, and was not elevated in alkaline media, relative to that of larvae reared in neutral media. These data suggest that the AP may compromise acid-base balance in acidic media, and may also be an important site of trade-offs between H(+) homeostasis and NaCl uptake in dilute, acidic media.

  16. Carbonic Anhydrase Activity Monitored In Vivo by Hyperpolarized 13C-Magnetic Resonance Spectroscopy Demonstrates Its Importance for pH Regulation in Tumors.

    PubMed

    Gallagher, Ferdia A; Sladen, Helen; Kettunen, Mikko I; Serrao, Eva M; Rodrigues, Tiago B; Wright, Alan; Gill, Andrew B; McGuire, Sarah; Booth, Thomas C; Boren, Joan; McIntyre, Alan; Miller, Jodi L; Lee, Shen-Han; Honess, Davina; Day, Sam E; Hu, De-En; Howat, William J; Harris, Adrian L; Brindle, Kevin M

    2015-10-01

    Carbonic anhydrase buffers tissue pH by catalyzing the rapid interconversion of carbon dioxide (CO2) and bicarbonate (HCO3 (-)). We assessed the functional activity of CAIX in two colorectal tumor models, expressing different levels of the enzyme, by measuring the rate of exchange of hyperpolarized (13)C label between bicarbonate (H(13)CO3(-)) and carbon dioxide ((13)CO2), following injection of hyperpolarized H(13)CO3(-), using (13)C-magnetic resonance spectroscopy ((13)C-MRS) magnetization transfer measurements. (31)P-MRS measurements of the chemical shift of the pH probe, 3-aminopropylphosphonate, and (13)C-MRS measurements of the H(13)CO3(-)/(13)CO2 peak intensity ratio showed that CAIX overexpression lowered extracellular pH in these tumors. However, the (13)C measurements overestimated pH due to incomplete equilibration of the hyperpolarized (13)C label between the H(13)CO3(-) and (13)CO2 pools. Paradoxically, tumors overexpressing CAIX showed lower enzyme activity using magnetization transfer measurements, which can be explained by the more acidic extracellular pH in these tumors and the decreased activity of the enzyme at low pH. This explanation was confirmed by administration of bicarbonate in the drinking water, which elevated tumor extracellular pH and restored enzyme activity to control levels. These results suggest that CAIX expression is increased in hypoxia to compensate for the decrease in its activity produced by a low extracellular pH and supports the hypothesis that a major function of CAIX is to lower the extracellular pH.

  17. Carbonic anhydrase activity monitored in vivo by hyperpolarized 13C-magnetic resonance spectroscopy demonstrate its importance for pH regulation in tumors

    PubMed Central

    Gallagher, Ferdia A.; Sladen, Helen; Kettunen, Mikko I.; Serrao, Eva M.; Rodrigues, Tiago B.; Wright, Alan; Gill, Andrew B.; McGuire, Sarah; Booth, Thomas C.; Boren, Joan; McIntyre, Alan; Miller, Jodi L.; Lee, Shen-Han; Honess, Davina; Day, Sam E.; Hu, De-en; Howat, William J.; Harris, Adrian L.; Brindle, Kevin M.

    2015-01-01

    Carbonic anhydrase (CA) buffers tissue pH by catalyzing the rapid interconversion of carbon dioxide (CO2) and bicarbonate (HCO3−). We assessed the functional activity of CAIX in two colorectal tumor models, expressing different levels of the enzyme, by measuring the rate of exchange of hyperpolarized 13C label between bicarbonate (H13CO3−) and carbon dioxide (13CO2), following injection of hyperpolarized H13CO3−, using 13C magnetic resonance spectroscopy (13C-MRS) magnetization transfer measurements. 31P-MRS measurements of the chemical shift of the pH probe, 3-aminopropylphosphonate, and 13C-MRS measurements of the H13CO3−/13CO2 peak intensity ratio showed that CAIX overexpression lowered extracellular pH in these tumors. However, the 13C measurements overestimated pH due to incomplete equilibration of the hyperpolarized 13C label between the H13CO3− and 13CO2 pools. Paradoxically, tumors overexpressing CAIX showed lower enzyme activity using magnetization transfer measurements, which can be explained by the more acidic extracellular pH in these tumors and the decreased activity of the enzyme at low pH. This explanation was confirmed by administration of bicarbonate in the drinking water, which elevates tumor extracellular pH and restored enzyme activity to control levels. These results suggest that CAIX expression is increased in hypoxia to compensate for the decrease in its activity produced by a low extracellular pH, and supports the hypothesis that a major function of CAIX is to lower the extracellular pH. PMID:26249175

  18. The N-Terminal DH-PH Domain of Trio Induces Cell Spreading and Migration by Regulating Lamellipodia Dynamics in a Rac1-Dependent Fashion

    PubMed Central

    van Rijssel, Jos; Hoogenboezem, Mark; Wester, Lynn; Hordijk, Peter L.; Van Buul, Jaap D.

    2012-01-01

    The guanine-nucleotide exchange factor Trio encodes two DH-PH domains that catalyze nucleotide exchange on Rac1, RhoG and RhoA. The N-terminal DH-PH domain is known to activate Rac1 and RhoG, whereas the C-terminal DH-PH domain can activate RhoA. The current study shows that the N-terminal DH-PH domain, upon expression in HeLa cells, activates Rac1 and RhoG independently from each other. In addition, we show that the flanking SH3 domain binds to the proline-rich region of the C-terminus of Rac1, but not of RhoG. However, this SH3 domain is not required for Rac1 or RhoG GDP-GTP exchange. Rescue experiments in Trio-shRNA-expressing cells showed that the N-terminal DH-PH domain of Trio, but not the C-terminal DH-PH domain, restored fibronectin-mediated cell spreading and migration defects that are observed in Trio-silenced cells. Kymograph analysis revealed that the N-terminal DH-PH domain, independent of its SH3 domain, controls the dynamics of lamellipodia. Using siRNA against Rac1 or RhoG, we found that Trio-D1-induced lamellipodia formation required Rac1 but not RhoG expression. Together, we conclude that the GEF Trio is responsible for lamellipodia formation through its N-terminal DH-PH domain in a Rac1-dependent manner during fibronectin-mediated spreading and migration. PMID:22238672

  19. Developmental Expression of Ecdysone-Related Genes Associated With Metamorphic Changes During Midgut Remodeling of Silkworm Bombyx mori (Lepidoptera:Bombycidae).

    PubMed

    Goncu, Ebru; Uranlı, Ramazan; Selek, Gozde; Parlak, Osman

    2016-01-01

    Steroid hormone 20-hydroxyecdysone is known as the systemic regulators of insect cells; however, how to impact the fate and function of mature and stem cells is unclear. For the first time, we report ecdysone regulatory cascades in both mature midgut cell and stem cell fractions related to developmental events by using histological, immunohistochemical, biochemical and gene expression analysis methods. Ecdysone receptor-B1 (EcR-B1) and ultraspiracle 1 (USP-1) mRNAs were detected mainly in mature cells during programmed cell death (PCD). Lowered E75A and probably BR-C Z4 in mature cells appear to provide a signal to the initiation of PCD. E74B, E75B and BR-C Z2 seem to be early response genes which are involved in preparatory phase of cell death. It is likely that βFTZ-F1, E74A and BR-C Z1 are probably associated with execution of death. EcR-A and USP2 mRNAs were found in stem cells during remodeling processes but EcR-B1, USP1 and E74B genes imply an important role during initial phase of metamorphic events in stem cells. BHR3 mRNAs were determined abundantly in stem cells suggesting its primary role in differentiation. All of these results showed the determination the cell fate in Bombyx mori (Linnaeus) midgut depends on type of ecdysone receptor isoforms and ecdysone-related transcription factors.

  20. Developmental Expression of Ecdysone-Related Genes Associated With Metamorphic Changes During Midgut Remodeling of Silkworm Bombyx mori (Lepidoptera:Bombycidae)

    PubMed Central

    Goncu, Ebru; Uranlı, Ramazan; Selek, Gozde; Parlak, Osman

    2016-01-01

    Steroid hormone 20-hydroxyecdysone is known as the systemic regulators of insect cells; however, how to impact the fate and function of mature and stem cells is unclear. For the first time, we report ecdysone regulatory cascades in both mature midgut cell and stem cell fractions related to developmental events by using histological, immunohistochemical, biochemical and gene expression analysis methods. Ecdysone receptor-B1 (EcR-B1) and ultraspiracle 1 (USP-1) mRNAs were detected mainly in mature cells during programmed cell death (PCD). Lowered E75A and probably BR-C Z4 in mature cells appear to provide a signal to the initiation of PCD. E74B, E75B and BR-C Z2 seem to be early response genes which are involved in preparatory phase of cell death. It is likely that βFTZ-F1, E74A and BR-C Z1 are probably associated with execution of death. EcR-A and USP2 mRNAs were found in stem cells during remodeling processes but EcR-B1, USP1 and E74B genes imply an important role during initial phase of metamorphic events in stem cells. BHR3 mRNAs were determined abundantly in stem cells suggesting its primary role in differentiation. All of these results showed the determination the cell fate in Bombyx mori (Linnaeus) midgut depends on type of ecdysone receptor isoforms and ecdysone-related transcription factors. PMID:27620558

  1. [Estimation of the biological age in males of the taiga tick (Ixodes persulcatus: Ixodinae) by fat reserves in the midgut].

    PubMed

    Grigor'eva, L A

    2012-01-01

    Some criteria for the estimation of the biological and calendar age by the fat storage in midgut cells of Ixodes persulcatus males were established on the basis of examination of ticks from the laboratory culture.

  2. D120 and K152 within the PH Domain of T Cell Adapter SKAP55 Regulate Plasma Membrane Targeting of SKAP55 and LFA-1 Affinity Modulation in Human T Lymphocytes.

    PubMed

    Witte, Amelie; Meineke, Bernhard; Sticht, Jana; Philipsen, Lars; Kuropka, Benno; Müller, Andreas J; Freund, Christian; Schraven, Burkhart; Kliche, Stefanie

    2017-04-01

    The β2-integrin lymphocyte function-associated antigen 1 (LFA-1) is needed for the T cell receptor (TCR)-induced activation of LFA-1 to promote T cell adhesion and interaction with antigen-presenting cells (APCs). LFA-1-mediated cell-cell interactions are critical for proper T cell differentiation and proliferation. The Src kinase-associated phosphoprotein of 55 kDa (SKAP55) is a key regulator of TCR-mediated LFA-1 signaling (inside-out/outside-in signaling). To gain an understanding of how SKAP55 controls TCR-mediated LFA-1 activation, we assessed the functional role of its pleckstrin homology (PH) domain. We identified two critical amino acid residues within the PH domain of SKAP55, aspartic acid 120 (D120) and lysine 152 (K152). D120 facilitates the retention of SKAP55 in the cytoplasm of nonstimulated T cells, while K152 promotes SKAP55 membrane recruitment via actin binding upon TCR triggering. Importantly, the K152-dependent interaction of the PH domain with actin promotes the binding of talin to LFA-1, thus facilitating LFA-1 activation. These data suggest that K152 and D120 within the PH domain of SKAP55 regulate plasma membrane targeting and TCR-mediated activation of LFA-1.

  3. Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer.

    PubMed

    Huang, Haining; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Wan, Rui; Yang, Shouye

    2016-10-01

    Although pH value has been widely regarded as an important factor that affects resource recovery of waste sludge, the potential influence of diverse pHs on the distribution of tetracycline resistance genes (TRGs) during sludge anaerobic treatment is largely unknown. Here we reported that in the range of pH 4-10, 0.58-1.18 log unit increase of target TRGs was observed at pH 4, compared with that at pH 7, while 0.70-1.31 log unit further removal were obtained at pH 10. Mechanism study revealed that varied pHs not only altered the community structures of tetracycline resistant bacteria (TRB), but also changed their relative abundances, benefitting the propagation (acidic pHs) or attenuation (alkaline pHs) of TRB. Further investigation indicated that the amount and gene-possessing abilities of key genetic vectors for horizontal TRGs transfer were greatly promoted at acidic pHs but restricted under alkaline conditions.

  4. Intestinal peptides as circulating hormones: release of tachykinin-related peptide from the locust and cockroach midgut.

    PubMed

    Winther, A M; Nässel, D R

    2001-04-01

    Tachykinin-related peptides (TRPs) in the locust Locusta migratoria and the cockroach Leucophaea maderae have stimulatory effects on some muscles that are not innervated by TRP-containing neurons. Thus, these tissues may be affected by circulating TRPs. Here, we have investigated whether the midgut is the source of circulating TRPs. TRP-immunoreactive material in the locust midgut is found only in the endocrine cells of the gut epithelium. In both species of insect, the endocrine cells contain several isoforms of TRPs, as determined by immunocytochemistry and a combination of chromatography (HPLC) and enzyme immunoassay (ELISA). The release of TRPs was investigated by ELISA using isolated midguts of the locust and cockroach. Elevated levels of K(+) in the bathing saline induced the release of TRP from the midgut of both species. To examine the release of TRPs into the circulation in vivo, we measured haemolymph levels of TRPs in fed and starved locusts. The concentration of TRP-immunoreactive material in fed locusts was estimated to be 0.15 nmol l(-1), and this increased approximately fourfold in insects starved for 24 h. In accordance with this observation, the content of TRP-immunoreactive material in the midgut was lower in starved locusts than in fed locusts. Although part of the increased blood concentration of TRPs may be due to reduced blood volume, our data suggest that TRPs are released as hormones from the midgut of the locust and cockroach and that this release may be linked to nutritional status.

  5. Blocking of malaria parasite development in mosquito and fecundity reduction by midgut antibodies in Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Suneja, Amita; Gulia, Monika; Gakhar, S K

    2003-02-01

    Rabbits were immunized three times with extracts of Anopheles stephensi midgut. Immunized rabbits showed a high titer of antibodies when characterized by ELISA. We investigated the effect of anti-mosquito midgut antibodies on mosquito fecundity, longevity, mortality, engorgement, and the development of the malaria parasite in mosquitoes. Fecundity was reduced significantly (38%) and similarly hatchability by about 43.5%. There was no statistically significant effect on mortality, longevity, and engorgement. When the mosquito blood meal contained anti-midgut antibodies, fewer oocysts of Plasmodium vivax developed in the mosquito midgut and the proportion of mosquitoes becoming infected was significantly reduced. We also found that the midgut antibodies inhibit the development and/or translocation of the sporozoites. Antisera raised against midgut of A. stephensi recognized eight polypeptides (110, 92, 70, 45, 38, 29, 15, 13 kDa) by Western blotting. Cross-reactive antigens/epitopes present in other tissues of A. stephensi were also examined both by Western blotting and in vivo ELISA. Together, these observations open an avenue for research toward the development of a vector-based malaria parasite transmission blocking vaccine and/or anti-mosquito vaccine.

  6. Fine-structural changes in the midgut of old Drosophila melanogaster

    NASA Technical Reports Server (NTRS)

    Anton-Erxleben, F.; Miquel, J.; Philpott, D. E.

    1983-01-01

    Senescent fine-structural changes in the midgut of Drosophila melanogaster are investigated. A large number of midgut mitochondria in old flies exhibit nodular cristae and a tubular system located perpendicular to the normal cristae orientation. Anterior intestinal cells show a senescent accumulation of age pigment, either with a surrounding two-unit membrane or without any membrane. The predominant localization of enlarged mitochondria and pigment in the luminal gut region may be related to the polarized metabolism of the intestinal cells. Findings concur with previous observations of dense-body accumulations and support the theory that mitochondria are involved in the aging of fixed post-mitotic cells. Demonstrated by statistical analyses is that mitochondrial size increase is related to mitochondrial variation increase.

  7. Aggregation of Bacillus thuringiensis Cry1A Toxins upon Binding to Target Insect Larval Midgut Vesicles

    PubMed Central

    Aronson, Arthur I.; Geng, Chaoxian; Wu, Lan

    1999-01-01

    During sporulation, Bacillus thuringiensis produces crystalline inclusions comprised of a mixture of δ-endotoxins. Following ingestion by insect larvae, these inclusion proteins are solubilized, and the protoxins are converted to toxins. These bind specifically to receptors on the surfaces of midgut apical cells and are then incorporated into the membrane to form ion channels. The steps required for toxin insertion into the membrane and possible oligomerization to form a channel have been examined. When bound to vesicles from the midguts of Manduca sexta larvae, the Cry1Ac toxin was largely resistant to digestion with protease K. Only about 60 amino acids were removed from the Cry1Ac amino terminus, which included primarily helix α1. Following incubation of the Cry1Ab or Cry1Ac toxins with vesicles, the preparations were solubilized by relatively mild conditions, and the toxin antigens were analyzed by immunoblotting. In both cases, most of the toxin formed a large, antigenic aggregate of ca. 200 kDa. These toxin aggregates did not include the toxin receptor aminopeptidase N, but interactions with other vesicle components were not excluded. No oligomerization occurred when inactive toxins with mutations in amphipathic helices (α5) and known to insert into the membrane were tested. Active toxins with other mutations in this helix did form oligomers. There was one exception; a very active helix α5 mutant toxin bound very well to membranes, but no oligomers were detected. Toxins with mutations in the loop connecting helices α2 and α3, which affected the irreversible binding to vesicles, also did not oligomerize. There was a greater extent of oligomerization of the Cry1Ac toxin with vesicles from the Heliothis virescens midgut than with those from the M. sexta midgut, which correlated with observed differences in toxicity. Tight binding of virtually the entire toxin molecule to the membrane and the subsequent oligomerization are both important steps in toxicity

  8. Cytotoxic effects of neem oil in the midgut of the predator Ceraeochrysa claveri.

    PubMed

    Scudeler, Elton Luiz; Garcia, Ana Silvia Gimenes; Padovani, Carlos Roberto; Pinheiro, Patricia Fernanda Felipe; dos Santos, Daniela Carvalho

    2016-01-01

    Studies of morphological and ultrastructural alterations in target organs have been useful for evaluating the sublethal effects of biopesticides regarded as safe for non-target organisms in ecotoxicological analyses. One of the most widely used biopesticides is neem oil, and its safety and compatibility with natural enemies have been further clarified through bioassays performed to analyze the effects of indirect exposure by the intake of poisoned prey. Thus, this study examined the cellular response of midgut epithelial cells of the adult lacewing, Ceraeochrysa claveri, to neem oil exposure via intake of neem oil-contaminated prey during the larval stage. C. claveri larvae were fed Diatraea saccharalis eggs treated with neem oil at concentrations of 0.5%, 1% and 2% throughout the larval stage. The adult females obtained from these treatments were used at two ages (newly emerged and at the start of oviposition) in morphological and ultrastructural analyses. Neem oil was found to cause pronounced cytotoxic effects in the adult midgut, such as cell dilation, emission of cytoplasmic protrusions, cell lysis, loss of integrity of the cell cortex, dilation of cisternae of the rough endoplasmic reticulum, swollen mitochondria, vesiculated appearance of the Golgi complex and dilated invaginations of the basal labyrinth. Epithelial cells responded to those injuries with various cytoprotective and detoxification mechanisms, including increases in cell proliferation, the number of calcium-containing cytoplasmic granules, and HSP 70 expression, autophagic processes and the development of smooth endoplasmic reticulum, but these mechanisms were insufficient for recovery from all of the cellular damage to the midgut. This study demonstrates that neem oil exposure impairs the midgut by causing sublethal effects that may affect the physiological functions of this organ, indicating the importance of studies of different life stages of this species and similar species to evaluate the

  9. Shifts in the Midgut/Pyloric Microbiota Composition within a Honey Bee Apiary throughout a Season.

    PubMed

    Ludvigsen, Jane; Rangberg, Anbjørg; Avershina, Ekaterina; Sekelja, Monika; Kreibich, Claus; Amdam, Gro; Rudi, Knut

    2015-01-01

    Honey bees (Apis mellifera) are prominent crop pollinators and are, thus, important for effective food production. The honey bee gut microbiota is mainly host specific, with only a few species being shared with other insects. It currently remains unclear how environmental/dietary conditions affect the microbiota within a honey bee population over time. Therefore, the aim of the present study was to characterize the composition of the midgut/pyloric microbiota of a honey bee apiary throughout a season. The rationale for investigating the midgut/pyloric microbiota is its dynamic nature. Monthly sampling of a demographic homogenous population of bees was performed between May and October, with concordant recording of the honey bee diet. Mixed Sanger-and Illumina 16S rRNA gene sequencing in combination with a quantitative PCR analysis were used to determine the bacterial composition. A marked increase in α-diversity was detected between May and June. Furthermore, we found that four distinct phylotypes belonging to the Proteobacteria dominated the microbiota, and these displayed major shifts throughout the season. Gilliamella apicola dominated the composition early on, and Snodgrassella alvi began to dominate when the other bacteria declined to an absolute low in October. In vitro co-culturing revealed that G. apicola suppressed S. alvi. No shift was detected in the composition of the microbiota under stable environment/dietary conditions between November and February. Therefore, environmental/dietary changes may trigger the shifts observed in the honey bee midgut/pyloric microbiota throughout a season.

  10. Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection

    PubMed Central

    Boissière, Anne; Tchioffo, Majoline T.; Bachar, Dipankar; Abate, Luc; Marie, Alexandra; Nsango, Sandrine E.; Shahbazkia, Hamid R.; Awono-Ambene, Parfait H.; Levashina, Elena A.; Christen, Richard; Morlais, Isabelle

    2012-01-01

    The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission. PMID:22693451

  11. Production and characterization of monoclonal antibodies against midgut of ixodid tick, Haemaphysalis longicornis.

    PubMed

    Nakajima, Mie; Kodama, Michi; Yanase, Haruko; Iwanaga, Toshihiko; Mulenga, Albert; Ohashi, Kazuhiko; Onuma, Misao

    2003-08-14

    There are concerted efforts toward development of tick vaccines to replace current chemical control strategies that have serious limitations [Parasitologia 32 (1990) 145; Infectious Disease Clinics of North America (1999) 209-226]. In this study, monoclonal antibodies (mAbs) specific to Haemaphysalis longicornis midgut proteins were produced and characterized. Eight antibody-secreting hybridomas were cloned and the mAbs typed as IgG1, IgG2a and IgG2b. On immunoblots, all mAbs reacted with a midgut protein band of about 76 kDa. All mAbs uniformly immunogold-stained the surface or epithelial layers of H. longicornis midgut and endosomes. Adult ticks (50%) that fed on an ascitic mouse producing the IgGs developed a red coloration and did not oviposit. As such, the 76 kDa protein that reacted with the mAbs could, therefore, be a potential candidate for tick vaccine development.

  12. Multiple Modes of Action of the Squamocin in the Midgut Cells of Aedes aegypti Larvae

    PubMed Central

    de Paula, Sérgio Oliveira; Martins, Gustavo Ferreira; Zanuncio, José Cola

    2016-01-01

    Annonaceous acetogenins are botanical compounds with good potential for use as insecticides. In the vector, Aedes aegypti (L.) (Diptera: Culicidae), squamocin (acetogenin) has been reported to be a larvicide and cytotoxic, but the modes of action of this molecule are still poorly understood. This study evaluated the changes in the cell morphology, and in the expression of genes, for autophagy (Atg1 and Atg8), for membrane ion transporter V-ATPase, and for water channel aquaporin-4 (Aqp4) in the midgut of A. aegypti larvae exposed to squamocin from Annona mucosa Jacq. (Annonaceae). Squamocin showed cytotoxic action with changes in the midgut epithelium and digestive cells of A. aegypti larvae, increase in the expression for autophagy gene Atg1 and Atg8, decrease in the expression of V-ATPase, decrease in the expression of Aqp4 gene in LC20 and inhibition of Apq4 genes in the midgut of this vector in LC50. These multiple modes of action for squamocin are described for the first time in insects, and they are important because different sites of action of squamocin from A. mucosa may reduce the possibility of resistance of A. aegypti to this molecule. PMID:27532504

  13. Discovery of midgut genes for the RNA interference control of corn rootworm

    PubMed Central

    Hu, Xu; Richtman, Nina M.; Zhao, Jian-Zhou; Duncan, Keith E.; Niu, Xiping; Procyk, Lisa A.; Oneal, Meghan A.; Kernodle, Bliss M.; Steimel, Joseph P.; Crane, Virginia C.; Sandahl, Gary; Ritland, Julie L.; Howard, Richard J.; Presnail, James K.; Lu, Albert L.; Wu, Gusui

    2016-01-01

    RNA interference (RNAi) is a promising new technology for corn rootworm control. This paper presents the discovery of new gene targets - dvssj1 and dvssj2, in western corn rootworm (WCR). Dvssj1 and dvssj2 are orthologs of the Drosophila genes snakeskin (ssk) and mesh, respectively. These genes encode membrane proteins associated with smooth septate junctions (SSJ) which are required for intestinal barrier function. Based on bioinformatics analysis, dvssj1 appears to be an arthropod-specific gene. Diet based insect feeding assays using double-stranded RNA (dsRNA) targeting dvssj1 and dvssj2 demonstrate targeted mRNA suppression, larval growth inhibition, and mortality. In RNAi treated WCR, injury to the midgut was manifested by “blebbing” of the midgut epithelium into the gut lumen. Ultrastructural examination of midgut epithelial cells revealed apoptosis and regenerative activities. Transgenic plants expressing dsRNA targeting dvssj1 show insecticidal activity and significant plant protection from WCR damage. The data indicate that dvssj1 and dvssj2 are effective gene targets for the control of WCR using RNAi technology, by apparent suppression of production of their respective smooth septate junction membrane proteins located within the intestinal lining, leading to growth inhibition and mortality. PMID:27464714

  14. Cytotoxic effects of thiamethoxam in the midgut and malpighian tubules of Africanized Apis mellifera (Hymenoptera: Apidae).

    PubMed

    Catae, Aline Fernanda; Roat, Thaisa Cristina; De Oliveira, Regiane Alves; Nocelli, Roberta Cornélio Ferreira; Malaspina, Osmar

    2014-04-01

    Due to its expansion, agriculture has become increasingly dependent on the use of pesticides. However, the indiscriminate use of insecticides has had additional effects on the environment. These products have a broad spectrum of action, and therefore the insecticide affects not only the pests but also non-target insects such as bees, which are important pollinators of agricultural crops and natural environments. Among the most used pesticides, the neonicotinoids are particularly harmful. One of the neonicotinoids of specific concern is thiamethoxam, which is used on a wide variety of crops and is toxic to bees. Thus, this study aimed to analyze the effects of this insecticide in the midgut and Malpighian tubule cells of Africanized Apis mellifera. Newly emerged workers were exposed until 8 days to a diet containing a sublethal dose of thiamethoxam equal to 1/10 of LC₅₀ (0.0428 ng a.i./l L of diet). The bees were dissected and the organs were processed for transmission electron microscopy. The results showed that thiamethoxam is cytotoxic to midgut and Malpighian tubules. In the midgut, the damage was more evident in bees exposed to the insecticide on the first day. On the eighth day, the cells were ultrastructurally intact suggesting a recovery of this organ. The Malpighian tubules showed pronounced alterations on the eighth day of exposure of bees to the insecticide. This study demonstrates that the continuous exposure to a sublethal dose of thiamethoxam can impair organs that are used during the metabolism of the insecticide.

  15. Observations on house fly larvae midgut ultrastructure after Brevibacillus laterosporus ingestion.

    PubMed

    Ruiu, Luca; Satta, Alberto; Floris, Ignazio

    2012-11-01

    The pathological and histopathological course caused by Brevibacillus laterosporus on house fly larvae has been investigated conducting observations on insect behavior and midgut ultrastructure. After dissection and fixation, gut tissues were analyzed under transmission electron microscopy (TEM) in order to compare in vivo-treated and non-treated (control) fly specimens. Treated larvae showed extensively reduced feeding and growth rate, then became sluggish and died within 72 h. A progressive midgut epithelium deterioration was observed in treated larvae, compared to the control. Ultrastructural changes consisted of microvilli disruption, cytoplasm vacuolization and general disorganization, endoplasmic reticulum deformation, mitochondria alteration. Deterioration became progressively more dramatic until the infected cells released their content into the gut lumen. Disruption was associated also with midgut muscular sheath and connective tissue. These ultrastructural changes are similar to those widely described for other entomopathogenic bacteria, such as Bacillus thuringiensis, against different insect species. The rapid disruption of cellular fine structure supports a hypothesis based on an interaction of toxins with the epithelial cell membranes reminiscent of the specific B. thuringiensis δ-endotoxins mechanism of action on other insect targets.

  16. Shifts in the Midgut/Pyloric Microbiota Composition within a Honey Bee Apiary throughout a Season

    PubMed Central

    Ludvigsen, Jane; Rangberg, Anbjørg; Avershina, Ekaterina; Sekelja, Monika; Kreibich, Claus; Amdam, Gro; Rudi, Knut

    2015-01-01

    Honey bees (Apis mellifera) are prominent crop pollinators and are, thus, important for effective food production. The honey bee gut microbiota is mainly host specific, with only a few species being shared with other insects. It currently remains unclear how environmental/dietary conditions affect the microbiota within a honey bee population over time. Therefore, the aim of the present study was to characterize the composition of the midgut/pyloric microbiota of a honey bee apiary throughout a season. The rationale for investigating the midgut/pyloric microbiota is its dynamic nature. Monthly sampling of a demographic homogenous population of bees was performed between May and October, with concordant recording of the honey bee diet. Mixed Sanger-and Illumina 16S rRNA gene sequencing in combination with a quantitative PCR analysis were used to determine the bacterial composition. A marked increase in α-diversity was detected between May and June. Furthermore, we found that four distinct phylotypes belonging to the Proteobacteria dominated the microbiota, and these displayed major shifts throughout the season. Gilliamella apicola dominated the composition early on, and Snodgrassella alvi began to dominate when the other bacteria declined to an absolute low in October. In vitro co-culturing revealed that G. apicola suppressed S. alvi. No shift was detected in the composition of the microbiota under stable environment/dietary conditions between November and February. Therefore, environmental/dietary changes may trigger the shifts observed in the honey bee midgut/pyloric microbiota throughout a season. PMID:26330094

  17. Dynamics of Midgut Microflora and Dengue Virus Impact on Life History Traits in Aedes aegypti

    PubMed Central

    Hill, Casey L.; Sharma, Avinash; Shouche, Yogesh; Severson, David W.

    2014-01-01

    Significant morbidity and potential mortality following dengue virus infection is a re-emerging global health problem. Due to the limited effectiveness of current disease control methods, mosquito biologists have been searching for new methods of controlling dengue transmission. While much effort has concentrated on determining genetic aspects to vector competence, paratransgenetic approaches could also uncover novel vector control strategies. The interactions of mosquito midgut microflora and pathogens may play significant roles in vector biology. However, little work has been done to see how the microbiome influences the host's fitness and ultimately vector competence. Here we investigated the effects of the midgut microbial environment and dengue infection on several fitness characteristics among three strains of the primary dengue virus vector mosquito Aedes aegypti. This included comparisons of dengue infection rates of females with and without their normal midgut flora. According to our findings, few effects on fitness characteristics were evident following microbial clearance or with dengue virus infection. Adult survivorship significantly varied due to strain and in one strain varied due to antibiotic treatment. Fecundity varied in one strain due to microbial clearance by antibiotics but no variation was observed in fertility due to either treatment. We show here that fitness characteristics of Ae. aegypti vary largely between strains, including varying response to microflora presence or absence, but did not vary in response to dengue virus infection. PMID:25193134

  18. Cantharidin Impedes Activity of Glutathione S-Transferase in the Midgut of Helicoverpa armigera Hübner

    PubMed Central

    Khan, Rashid Ahmed; Liu, Ji Yuan; Rashid, Maryam; Wang, Dun; Zhang, Ya Lin

    2013-01-01

    Previous investigations have implicated glutathione S-transferases (GSTs) as one of the major reasons for insecticide resistance. Therefore, effectiveness of new candidate compounds depends on their ability to inhibit GSTs to prevent metabolic detoxification by insects. Cantharidin, a terpenoid compound of insect origin, has been developed as a bio-pesticide in China, and proves highly toxic to a wide range of insects, especially lepidopteran. In the present study, we test cantharidin as a model compound for its toxicity, effects on the mRNA transcription of a model Helicoverpa armigera glutathione S-transferase gene (HaGST) and also for its putative inhibitory effect on the catalytic activity of GSTs, both in vivo and in vitro in Helicoverpa armigera, employing molecular and biochemical methods. Bioassay results showed that cantharidin was highly toxic to H. armigera. Real-time qPCR showed down-regulation of the HaGST at the mRNA transcript ranging from 2.5 to 12.5 folds while biochemical assays showed in vivo inhibition of GSTs in midgut and in vitro inhibition of rHaGST. Binding of cantharidin to HaGST was rationalized by homology and molecular docking simulations using a model GST (1PN9) as a template structure. Molecular docking simulations also confirmed accurate docking of the cantharidin molecule to the active site of HaGST impeding its catalytic activity. PMID:23528854

  19. A Lepidopteran-Specific Gene Family Encoding Valine-Rich Midgut Proteins

    PubMed Central

    Odman-Naresh, Jothini; Duevel, Margret; Muthukrishnan, Subbaratnam; Merzendorfer, Hans

    2013-01-01

    Many lepidopteran larvae are serious agricultural pests due to their feeding activity. Digestion of the plant diet occurs mainly in the midgut and is facilitated by the peritrophic matrix (PM), an extracellular sac-like structure, which lines the midgut epithelium and creates different digestive compartments. The PM is attracting increasing attention to control lepidopteran pests by interfering with this vital function. To identify novel PM components and thus potential targets for insecticides, we performed an immunoscreening with anti-PM antibodies using an expression library representing the larval midgut transcriptome of the tobacco hornworm, Manduca sexta. We identified three cDNAs encoding valine-rich midgut proteins of M. sexta (MsVmps), which appear to be loosely associated with the PM. They are members of a lepidopteran-specific family of nine VMP genes, which are exclusively expressed in larval stages in M. sexta. Most of the MsVMP transcripts are detected in the posterior midgut, with the highest levels observed for MsVMP1. To obtain further insight into Vmp function, we expressed MsVMP1 in insect cells and purified the recombinant protein. Lectin staining and glycosidase treatment indicated that MsVmp1 is highly O-glycosylated. In line with results from qPCR, immunoblots revealed that MsVmp1 amounts are highest in feeding larvae, while MsVmp1 is undetectable in starving and molting larvae. Finally using immunocytochemistry, we demonstrated that MsVmp1 localizes to the cytosol of columnar cells, which secrete MsVmp1 into the ectoperitrophic space in feeding larvae. In starving and molting larvae, MsVmp1 is found in the gut lumen, suggesting that the PM has increased its permeability. The present study demonstrates that lepidopteran species including many agricultural pests have evolved a set of unique proteins that are not found in any other taxon and thus may reflect an important adaptation in the highly specialized lepidopteran digestive tract facing

  20. pH regulation in adult rat carotid body glomus cells. Importance of extracellular pH, sodium, and potassium [published erratum appears in J Gen Physiol 1993 Jan;101(1):following 144

    PubMed Central

    1992-01-01

    The course of intracellular pH (pHi) was followed in superfused (36 degrees C) single glomus (type I) cells of the freshly dissociated adult rat carotid body. The cells had been loaded with the pH-sensitive fluorescent dye 2',7'-(2-carboxyethyl)-5 (and -6)-carboxyfluorescein. The high K(+)-nigericin method was used for calibration. The pHi of the glomus cell at pHo 7.40, without CO2, was 7.23 +/- 0.02 (n = 70); in 5% CO2/25 mM HCO3-, pHi was 7.18 +/- 0.08 (n = 9). The pHi was very sensitive to changes in pHo. Without CO2, delta pHi/delta pHo was 0.85 (pHo 6.20-8.00; 32 cells), while in CO2/HCO3- this ratio was 0.82 irrespective of whether pHo (6.80-7.40; 14 cells) was changed at constant PCO2 or at constant [HCO3-]o. The great pHi sensitivity of the glomus cell to pHo is matched only by that of the human red cell. An active Na+/H+ exchanger (apparent Km = 58 +/- 6 mM) is present in glomus cells: Na+ removal or addition of the amiloride derivative 5- (N,N-hexamethylene)-amiloride induced pHi to fall by as much as 0.9. The membrane of these cells also contains a K+/H+ exchanger. Raising [K+]o from 4.7 to 25, 50, or 140 mM reversibly raised pHi by 0.2, 0.3, and 0.6, respectively. Rb+ had no effect, but in corresponding concentrations of Tl+ alkalinization was much faster than in K+. Reducing [K+]o to 1.5 mM lowered pHi by 0.1. These pHi changes were shown not to be due to changes in membrane voltage, and were even more striking in the absence of Na+. Intrinsic buffering power (amount of strong base required to produce, in the nominal absence of CO2, a small pHi rise) increased from 3 to approximately 21 mM as pHi was lowered, but remained nearly unchanged below pHi 6.60. The fitted expression assumed the presence of one "equivalent" intracellular buffer (pK 6.41, 41 mM). The exceptional pHi sensitivity to pHo suggests that the pHi of the glomus cell is a link in the chemoreceptor's response to external acidity. PMID:1294152

  1. The fine structure of the midgut epithelium in a centipede, Scolopendra cingulata (Chilopoda, Scolopendridae), with the special emphasis on epithelial regeneration.

    PubMed

    Chajec, Lukasz; Sonakowska, Lidia; Rost-Roszkowska, Magdalena M

    2014-01-01

    Scolopendra cingulata has a tube-shaped digestive system that is divided into three distinct regions: fore-, mid- and hindgut. The midgut is lined with a pseudostratified columnar epithelium which is composed of digestive, secretory and regenerative cells. Hemocytes also appear between the digestive cells of the midgut epithelium. The ultrastructure of three types of epithelial cells and hemocytes of the midgut has been described with the special emphasis on the role of regenerative cells in the protection of midgut epithelium. The process of midgut epithelium regeneration proceeds due to the ability of regenerative cells to proliferate and differentiate according to a circadian rhythm. The regenerative cells serve as unipotent stem cells that divide in an asymmetric manner. Additionally, two types of hemocytes have been distinguished among midgut epithelial cells. They enter the midgut epithelium from the body cavity. Because of the fact that numerous microorganisms occur in the cytoplasm of midgut epithelial cells, we discuss the role of hemocytes in elimination of pathogens from the midgut epithelium. The studies were conducted with the use of transmission electron microscope and immunofluorescent methods.

  2. Study on Fungal Flora in the Midgut of the Larva and Adult of the Different Populations of the Malaria Vector Anopheles stephensi

    PubMed Central

    Tajedin, L; Hashemi, J; Abaei, MR; Hosseinpour, L; Rafei, F; Basseri, HR

    2009-01-01

    Background Many microorganisms in midgut of mosquito challenge with their host and also other pathogens present in midgut. The aim of this study was presence of non-pathogens microorganisms like fungal flora which may be crucial on interaction between vectors and pathogens. Methods: Different populations of Anopheles stephensi were reared in insectary and objected to determine fungal flora in their midguts. The midgut paunch of mosquito adults and larvae as well as breading water and larval food samples transferred on Subaru-dextrose agar, in order to detect the environment fungus. Results: Although four fungi, Aspergillus, Rhizopus, Geotrichum and Sacharomyces were found in the food and water, but only Aspiragilus observed in the midgut of larvae. No fungus was found in the midgut of adults. This is the first report on fungal flora in the midgut of the adults and larvae of An. stephensi and possible stadial transmission of fungi from immature stages to adults. Conclusion: The midgut environment of adults is not compatible for survivorship of fungi but the larval midgut may contain few fungi as a host or even pathogen. PMID:22808370

  3. The influence of long-term copper contaminated agricultural soil at different pH levels on microbial communities and springtail transcriptional regulation.

    PubMed

    de Boer, Tjalf E; Taş, Neslihan; Braster, Martin; Temminghoff, Erwin J M; Röling, Wilfred F M; Roelofs, Dick

    2012-01-03

    Copper has long been applied for agricultural practises. Like other metals, copper is highly persistent in the environment and biologically active long after its use has ceased. Here we present a unique study on the long-term effects (27 years) of copper and pH on soil microbial communities and on the springtail Folsomia candida an important representative of the soil macrofauna, in an experiment with a full factorial, random block design. Bacterial communities were mostly affected by pH. These effects were prominent in Acidobacteria, while Actinobacteria and Gammaroteobacteria communities were affected by original and bioavailable copper. Reproduction and survival of the collembolan F. candida was not affected by the studied copper concentrations. However, the transcriptomic responses to copper reflected a mechanism of copper transport and detoxification, while pH exerted effects on nucleotide and protein metabolism and (acute) inflammatory response. We conclude that microbial community structure reflected the history of copper contamination, while gene expression analysis of F. candida is associated with the current level of bioavailable copper. The study is a first step in the development of a molecular strategy aiming at a more comprehensive assessment of various aspects of soil quality and ecotoxicology.

  4. Regulation of pH attenuates toxicity of a byproduct produced by an ethanologenic strain of Sphingomonas sp. A1 during ethanol fermentation from alginate

    PubMed Central

    Fujii, Mari; Yoshida, Shiori; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Marine macroalgae is a promising carbon source that contains alginate and mannitol as major carbohydrates. A bioengineered ethanologenic strain of the bacterium Sphingomonas sp. A1 can produce ethanol from alginate, but not mannitol, whereas the yeast Saccharomyces paradoxus NBRC 0259–3 can produce ethanol from mannitol, but not alginate. Thus, one practical approach for converting both alginate and mannitol into ethanol would involve two-step fermentation, in which the ethanologenic bacterium initially converts alginate into ethanol, and then the yeast produces ethanol from mannitol. In this study, we found that, during fermentation from alginate, the ethanologenic bacterium lost viability and secreted toxic byproducts into the medium. These toxic byproducts inhibited bacterial growth and killed bacterial cells and also inhibited growth of S. paradoxus NBRC 0259–3. We discovered that adjusting the pH of the culture supernatant or the culture medium containing the toxic byproducts to 6.0 attenuated the toxicity toward both bacteria and yeast, and also extended the period of viability of the bacterium. Although continuous adjustment of pH to 6.0 failed to improve the ethanol productivity of this ethanologenic bacterium, this pH adjustment worked very well in the two-step fermentation due to the attenuation of toxicity toward S. paradoxus NBRC 0259–3. These findings provide information critical for establishment of a practical system for ethanol production from brown macroalgae. PMID:24445222

  5. Ménage-à-Trois: The Ratio of Bicarbonate to CO2 and the pH Regulate the Capacity of Neutrophils to Form NETs

    PubMed Central

    Maueröder, Christian; Mahajan, Aparna; Paulus, Susanne; Gößwein, Stefanie; Hahn, Jonas; Kienhöfer, Deborah; Biermann, Mona H.; Tripal, Philipp; Friedrich, Ralf P.; Munoz, Luis E.; Neurath, Markus F.; Becker, Christoph; Schett, Georg Andreas; Herrmann, Martin; Leppkes, Moritz

    2016-01-01

    In this study, we identified and characterized the potential of a high ratio of bicarbonate to CO2 and a moderately alkaline pH to render neutrophils prone to undergo neutrophil extracellular trap (NET) formation. Both experimental settings increased the rate of spontaneous NET release and potentiated the NET-inducing capacity of phorbol esters (phorbol-2-myristate-13-acetate), ionomycin, monosodium urate, and LPS. In contrast, an acidic environment impaired NET formation both spontaneous and induced. Our findings indicate that intracellular alkalinization of neutrophils in response to an alkaline environment leads to an increase of intracellular calcium and neutrophil activation. We further found that the anion channel blocker DIDS strongly reduced NET formation induced by bicarbonate. This finding suggests that the effects observed are due to a molecular program that renders neutrophils susceptible to NET formation. Inflammatory foci may be characterized by an acidic environment. Our data indicate that NET formation is favored by the higher pH at the border regions of inflamed areas. Moreover, our findings highlight the necessity for strict pH control during assays of NET formation. PMID:28018350

  6. Fine structure of the midgut and Malpighian papillae in Campodea (Monocampa) quilisi Silvestri, 1932 (Hexapoda, Diplura) with special reference to the metal composition and physiological significance of midgut intracellular electron-dense granules.

    PubMed

    Pigino, G; Migliorini, M; Paccagnini, E; Bernini, F; Leonzio, C

    2005-06-01

    The fine structure of the midgut and the Malpighian papillae in Campodea (Monocampa) quilisi Silvestri, 1932 (Hexapoda, Diplura) specimens was described. We observed the presence of electron-dense granules (EDGs) in the midgut epithelial cells, similar in genesis, structure and aspect to the type A spherocrystals described in the midgut epithelium of Collembola and Diplopoda. Energy-dispersive X-ray microanalysis was used to detect the chemical composition of the granules and to relate it to the concentrations of some potential toxic heavy metals (Pb, Cu, Zn) in soil and litter. Chemical composition of the granules seems strongly influenced by the presence and bioavailability of heavy metals in the external environment. Specimens from a contaminated abandoned mining and smelting area (Colline Metallifere, southern Tuscany) were able to accumulate Fe, Mn, Zn, Pb and Cu in their midgut EDGs. In addition, we observed that C. (M.) quilisi was able to excrete the metal-containing granules into the external medium by the moulting of the intestinal epithelium. This confirms that the process of ionic retention of midgut cells is particularly significant in animals lacking Malpighian tubules.

  7. Impacts on silkworm larvae midgut proteomics by transgenic Trichoderma strain and analysis of glutathione S-transferase sigma 2 gene essential for anti-stress response of silkworm larvae.

    PubMed

    Li, Yingying; Dou, Kai; Gao, Shigang; Sun, Jianan; Wang, Meng; Fu, Kehe; Yu, Chuanjin; Wu, Qiong; Li, Yaqian; Chen, Jie

    2015-08-03

    Lepidoptera is a large order of insects that have major impacts on humans as agriculture pests. The midgut is considered an important target for insect control. In the present study, 10 up-regulated, 18 down-regulated, and one newly emerged protein were identified in the transgenic Trichoderma-treated midgut proteome. Proteins related to stress response, biosynthetic process, and metabolism process were further characterized through quantitative real-time PCR (qPCR). Of all the identified proteins, the glutathione S-transferase sigma 2 (GSTs2) gene displayed enhanced expression when larvae were fed with Trichoderma wild-type or transgenic strains. Down regulation of GSTs2 expression by RNA interference (RNAi) resulted in inhibition of silkworm growth when larvae were fed with mulberry leaves treated with the transgenic Trichoderma strain. Weight per larva decreased by 18.2%, 11.9%, and 10.7% in the untreated control, ddH2O, and GFP dsRNA groups, respectively, at 24h, while the weight decrease was higher at 42.4%, 28.8% and 32.4% at 72 h after treatment. Expression of glutathione S-transferase omega 2 (GSTo2) was also enhanced when larvae were fed with mulberry leaves treated with the transgenic Trichoderma strain. These results indicated that there was indeed correlation between enhanced expression of GSTs2 and the anti-stress response of silkworm larvae against Trichoderma. This study represents the first attempt at understanding the effects of transgenic organisms on the midgut proteomic changes in silkworm larvae. Our findings could not only broaden the biological control targets of insect at the molecular level, but also provide a theoretical foundation for biological safety evaluation of the transgenic Trichoderma strain.

  8. Dissociation energies of PH and PH+.

    NASA Astrophysics Data System (ADS)

    Reddy, R. R.; Nazeer Ahammed, Y.; Srinivasa Rao, A.; Rao, T. V. R.

    1995-12-01

    Dissociation energies for the ground electronic states of diatomic PH and PH+ are determined by fitting empirical potential functions to the respective RKRV curves using correlation coefficients. The estimated ground state dissociation energies of PH and PH+ are 3.10 and 3.20 eV respectively by the curve fitting procedure using the Lippincott potential function. The computed values are in good agreement with experimental values.

  9. Diversity of Cultivable Midgut Microbiota at Different Stages of the Asian Tiger Mosquito, Aedes albopictus from Tezpur, India.

    PubMed

    Yadav, Kamlesh K; Datta, Sibnarayan; Naglot, Ashok; Bora, Ajitabh; Hmuaka, Vanlal; Bhagyawant, Sameer; Gogoi, Hemanta K; Veer, Vijay; Raju, P Srinivas

    2016-01-01

    Aedes aegypti and Ae. albopictus are among the most important vectors of arboviral diseases, worldwide. Recent studies indicate that diverse midgut microbiota of mosquitoes significantly affect development, digestion, metabolism, and immunity of their hosts. Midgut microbiota has also been suggested to modulate the competency of mosquitoes to transmit arboviruses, malaria parasites etc. Interestingly, the midgut microbial flora is dynamic and the diversity changes with the development of vectors, in addition to other factors such as species, sex, life-stage, feeding behavior and geographical origin. The aim of the present study was to investigate the midgut bacterial diversity among larva, adult male, sugar fed female and blood fed female Ae. albopictus collected from Tezpur, Northeastern India. Based on colony morphological characteristics, we selected 113 cultivable bacterial isolates for 16S rRNA gene sequence based molecular identification. Of the 113 isolates, we could identify 35 bacterial species belonging to 18 distinct genera under four major phyla, namely Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Phyla Proteobacteria and Firmicutes accounted for majority (80%) of the species, while phylum Actinobacteria constituted 17% of the species. Bacteroidetes was the least represented phylum, characterized by a single species- Chryseobacterium rhizoplanae, isolated from blood fed individuals. Dissection of midgut microbiota diversity at different developmental stages of Ae. albopictus will be helpful in better understanding mosquito-borne diseases, and for designing effective strategies to manage mosquito-borne diseases.

  10. Diversity of Cultivable Midgut Microbiota at Different Stages of the Asian Tiger Mosquito, Aedes albopictus from Tezpur, India

    PubMed Central

    Datta, Sibnarayan; Naglot, Ashok; Bora, Ajitabh; Hmuaka, Vanlal; Bhagyawant, Sameer; Gogoi, Hemanta K.; Veer, Vijay; Raju, P. Srinivas

    2016-01-01

    Aedes aegypti and Ae. albopictus are among the most important vectors of arboviral diseases, worldwide. Recent studies indicate that diverse midgut microbiota of mosquitoes significantly affect development, digestion, metabolism, and immunity of their hosts. Midgut microbiota has also been suggested to modulate the competency of mosquitoes to transmit arboviruses, malaria parasites etc. Interestingly, the midgut microbial flora is dynamic and the diversity changes with the development of vectors, in addition to other factors such as species, sex, life-stage, feeding behavior and geographical origin. The aim of the present study was to investigate the midgut bacterial diversity among larva, adult male, sugar fed female and blood fed female Ae. albopictus collected from Tezpur, Northeastern India. Based on colony morphological characteristics, we selected 113 cultivable bacterial isolates for 16S rRNA gene sequence based molecular identification. Of the 113 isolates, we could identify 35 bacterial species belonging to 18 distinct genera under four major phyla, namely Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Phyla Proteobacteria and Firmicutes accounted for majority (80%) of the species, while phylum Actinobacteria constituted 17% of the species. Bacteroidetes was the least represented phylum, characterized by a single species- Chryseobacterium rhizoplanae, isolated from blood fed individuals. Dissection of midgut microbiota diversity at different developmental stages of Ae. albopictus will be helpful in better understanding mosquito-borne diseases, and for designing effective strategies to manage mosquito-borne diseases. PMID:27941985

  11. Midgut-enriched receptor protein tyrosine phosphatase PTP52F is required for Drosophila development during larva-pupa transition.

    PubMed

    Santhanam, Abirami; Liang, Suh-Yuen; Chen, Dong-Yuan; Chen, Guang-Chao; Meng, Tzu-Ching

    2013-01-01

    To date our understanding of Drosophila receptor protein tyrosine phosphatases (R-PTPs) in the regulation of signal transduction is limited. Of the seven R-PTPs identified in flies, six are involved in the axon guidance that occurs during embryogenesis. However, whether and how R-PTPs may control key steps of Drosophila development is not clear. In this study we investigated the potential role of Drosophila R-PTPs in developmental processes outside the neuronal system and beyond the embryogenesis stage. Through systematic data mining of available microarray databases, we found the mRNA level of PTP52F to be highly enriched in the midgut of flies at the larva-pupa transition. This finding was confirmed by gut tissue staining with a specific antibody. The unique spatiotemporal expression of PTP52F suggests that it is possibly involved in regulating metamorphosis during the transformation from larva to pupa. To test this hypothesis, we employed RNA interference to examine the defects of transgenic flies. We found that ablation of endogenous PTP52F led to high lethality characterized by the pharate adult phenotype, occurring due to post pupal eclosion failure. These results show that PTP52F plays an indispensable role during the larva-pupa transition. We also found that PTP52F could be reclassified as a member of the subtype R3 PTPs instead of as an unclassified R-PTP without a human ortholog, as suggested previously. Together, these findings suggest that Drosophila R-PTPs may control metamorphosis and other biological processes beyond our current knowledge.

  12. Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism.

    PubMed

    Wang, Pan; Du, Mingliang; Zhu, Han; Bao, Shiyong; Yang, Tingting; Zou, Meiling

    2015-04-09

    Silica nanotubes (SNTs) with controlled nanotubular structure were synthesized via an electrospinning and calcination process. In this regard, SNTs were found to be ideal adsorbents for Pb(II) removal with a higher adsorption capacity, and surface modification of the SNTs by sym-diphenylcarbazide (SD-SNTs) markedly enhanced the adsorption ability due to the chelating interaction between imino groups and Pb(II). The pH effect, kinetics, isotherms and adsorption mechanism of SNTs and SD-SNTs on Pb(II) adsorption were investigated and discussed detailedly. The adsorption capacity for Pb(II) removal was found to be significantly improved with the decrease of pH value. The Langmuir adsorption model agreed well with the experimental data. As for kinetic study, the adsorption onto SNTs and SD-SNTs could be fitted to pseudo-first-order and pseudo-second-order model, respectively. In addition, the as-prepared SNTs and SD-SNTs also exhibit high adsorption ability for Cd(II) and Co(II). The experimental results demonstrate that the SNTs and SD-SNTs are potential adsorbents and can be used effectively for the treatment of heavy-metal-ions-containing wastewater.

  13. Schinus terebinthifolius Leaf Extract Causes Midgut Damage, Interfering with Survival and Development of Aedes aegypti Larvae

    PubMed Central

    Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique

    2015-01-01

    In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3–1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution

  14. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors.

    PubMed

    Strosberg, Jonathan; El-Haddad, Ghassan; Wolin, Edward; Hendifar, Andrew; Yao, James; Chasen, Beth; Mittra, Erik; Kunz, Pamela L; Kulke, Matthew H; Jacene, Heather; Bushnell, David; O'Dorisio, Thomas M; Baum, Richard P; Kulkarni, Harshad R; Caplin, Martyn; Lebtahi, Rachida; Hobday, Timothy; Delpassand, Ebrahim; Van Cutsem, Eric; Benson, Al; Srirajaskanthan, Rajaventhan; Pavel, Marianne; Mora, Jaime; Berlin, Jordan; Grande, Enrique; Reed, Nicholas; Seregni, Ettore; Öberg, Kjell; Lopera Sierra, Maribel; Santoro, Paola; Thevenet, Thomas; Erion, Jack L; Ruszniewski, Philippe; Kwekkeboom, Dik; Krenning, Eric

    2017-01-12

    Background Patients with advanced midgut neuroendocrine tumors who have had disease progression during first-line somatostatin analogue therapy have limited therapeutic options. This randomized, controlled trial evaluated the efficacy and safety of lutetium-177 ((177)Lu)-Dotatate in patients with advanced, progressive, somatostatin-receptor-positive midgut neuroendocrine tumors. Methods We randomly assigned 229 patients who had well-differentiated, metastatic midgut neuroendocrine tumors to receive either (177)Lu-Dotatate (116 patients) at a dose of 7.4 GBq every 8 weeks (four intravenous infusions, plus best supportive care including octreotide long-acting repeatable [LAR] administered intramuscularly at a dose of 30 mg) ((177)Lu-Dotatate group) or octreotide LAR alone (113 patients) administered intramuscularly at a dose of 60 mg every 4 weeks (control group). The primary end point was progression-free survival. Secondary end points included the objective response rate, overall survival, safety, and the side-effect profile. The final analysis of overall survival will be conducted in the future as specified in the protocol; a prespecified interim analysis of overall survival was conducted and is reported here. Results At the data-cutoff date for the primary analysis, the estimated rate of progression-free survival at month 20 was 65.2% (95% confidence interval [CI], 50.0 to 76.8) in the (177)Lu-Dotatate group and 10.8% (95% CI, 3.5 to 23.0) in the control group. The response rate was 18% in the (177)Lu-Dotatate group versus 3% in the control group (P<0.001). In the planned interim analysis of overall survival, 14 deaths occurred in the (177)Lu-Dotatate group and 26 in the control group (P=0.004). Grade 3 or 4 neutropenia, thrombocytopenia, and lymphopenia occurred in 1%, 2%, and 9%, respectively, of patients in the (177)Lu-Dotatate group as compared with no patients in the control group, with no evidence of renal toxic effects during the observed time frame

  15. Protein expression in the midgut of sugar-fed Aedes albopictus females

    PubMed Central

    2012-01-01

    Background Aedes albopictus is a vector for several fatal arboviruses in tropical and sub-tropical regions of the world. The midgut of the mosquito is the first barrier that pathogens must overcome to establish infection and represents one of the main immunologically active sites of the insect. Nevertheless, little is known about the proteins involved in the defense against pathogens, and even in the processing of food, and the detoxification of metabolites. The identification of proteins exclusively expressed in the midgut is the first step in understanding the complex physiology of this tissue and can provide insight into the mechanisms of pathogen-vector interaction. However, identification of the locally expressed proteins presents a challenge because the Ae. albopictus genome has not been sequenced. Methods In this study, two-dimensional electrophoresis (2DE) was combined with liquid chromatography in line with tandem mass spectrometry (LC-MS/MS) and data mining to identify the major proteins in the midgut of sugar-fed Ae. albopictus females. Results Fifty-six proteins were identified by sequence similarity to entries from the Ae. aegypti genome. In addition, two hypothetical proteins were experimentally confirmed. According to the gene ontology analysis, the identified proteins were classified into 16 clusters of biological processes. Use of the STRING database to investigate protein functional associations revealed five functional networks among the identified proteins, including a network for carbohydrate and amino acid metabolism, a group associated with ATP production and a network of proteins that interact during detoxification of toxic free radicals, among others. This analysis allowed the assignment of a potential role for proteins with unknown function based on their functional association with other characterized proteins. Conclusion Our findings represent the first proteome map of the Ae. albopictus midgut and denotes the first steps towards the

  16. Preduodenal portal vein in association with midgut malrotation and duodenal web-triple anomaly?

    PubMed

    Singal, Arbinder Kumar; Ramu, Chithra; Paul, Sarah; Matthai, John

    2009-02-01

    Preduodenal portal vein (PDPV) is a rare anomaly in which the portal vein passes anterior to the duodenum rather than posteriorly. Generally asymptomatic, PDPV may rarely cause duodenal obstruction or may coexist with other anomalies. We report a neonate who presented with duodenal obstruction and was found out to have 3 coexisting anomalies, each of which can lead to duodenal obstruction independently-PDPV, midgut malrotation, and duodenal web. A duodenoduodenostomy and a Ladd procedure were done, and the child recovered uneventfully. The mechanism of obstruction, interesting metabolic aberrations observed, outcome, and relevant literature are presented.

  17. Total management of short gut secondary to midgut volvulus without prolonged total parenteral alimentation.

    PubMed

    Tepas, J J; MacLean, W C; Kolbach, S; Shermeta, D W

    1978-12-01

    Absorption studies in rats have shown that intestinal adaptation after catastrophic injury can be stimulated by early enteral feeding. Using this concept, we have devised a technique of early initiation and advancement of oral feedings that begins with Cho-Free and Polycose and gradually adds sucrose and MCT in increasing proportions. The increasing complexity and caloric density of this diet provide sufficient nutrition to allow weaning from total parenteral alimentation within 2--3 wk. Our preliminary experience in babies with midgut volvulus, necrotizing enterocolitis, and gastroschisis has been successful and uncomplicated. These patients have demonstrated consistent weight gain and have been spared the complications associated with prolonged parenteral alimentation.

  18. Acute exposure of mercury chloride stimulates the tissue regeneration program and reactive oxygen species production in the Drosophila midgut.

    PubMed

    Chen, Zhi; Wu, Xiaochun; Luo, Hongjie; Zhao, Lingling; Ji, Xin; Qiao, Xianfeng; Jin, Yaping; Liu, Wei

    2016-01-01

    We used Drosophila as an animal model to study the digestive tract in response to the exposure of inorganic mercury (HgCl2). We found that after oral administration, mercury was mainly sequestered within the midgut. This resulted in increased cell death, which in turn stimulated the tissue regeneration program, including accelerated proliferation and differentiation of the intestinal stem cells (ISCs). We further demonstrated that these injuries correlate closely with the excessive production of the reactive oxygen species (ROS), as vitamin E, an antioxidant reagent, efficiently suppressed the HgCl2-induced phenotypes of midgut and improved the viability. We propose that the Drosophila midgut could serve as a suitable model to study the treatment of acute hydrargyrism on the digestive systems.

  19. The Arabidopsis Na+/H+ Antiporters NHX1 and NHX2 Control Vacuolar pH and K+ Homeostasis to Regulate Growth, Flower Development, and Reproduction[C][W

    PubMed Central

    Bassil, Elias; Tajima, Hiromi; Liang, Yin-Chih; Ohto, Masa-aki; Ushijima, Koichiro; Nakano, Ryohei; Esumi, Tomoya; Coku, Ardian; Belmonte, Mark; Blumwald, Eduardo

    2011-01-01

    Intracellular Na+/H+ (NHX) antiporters have important roles in cellular pH and Na+, K+ homeostasis. The six Arabidopsis thaliana intracellular NHX members are divided into two groups, endosomal (NHX5 and NHX6) and vacuolar (NHX1 to NHX4). Of the vacuolar members, NHX1 has been characterized functionally, but the remaining members have largely unknown roles. Using reverse genetics, we show that, unlike the single knockouts nhx1 or nhx2, the double knockout nhx1 nhx2 had significantly reduced growth, smaller cells, shorter hypocotyls in etiolated seedlings and abnormal stamens in mature flowers. Filaments of nhx1 nhx2 did not elongate and lacked the ability to dehisce and release pollen, resulting in a near lack of silique formation. Pollen viability and germination was not affected. Quantification of vacuolar pH and intravacuolar K+ concentrations indicated that nhx1 nhx2 vacuoles were more acidic and accumulated only 30% of the wild-type K+ concentration, highlighting the roles of NHX1 and NHX2 in mediating vacuolar K+/H+ exchange. Growth under added Na+, but not K+, partly rescued the flower and growth phenotypes. Our results demonstrate the roles of NHX1 and NHX2 in regulating intravacuolar K+ and pH, which are essential to cell expansion and flower development. PMID:21954467

  20. A midgut lysate of the Riptortus pedestris has antibacterial activity against LPS O-antigen-deficient Burkholderia mutants.

    PubMed

    Jang, Ho Am; Seo, Eun Sil; Seong, Min Young; Lee, Bok Luel

    2017-02-01

    Riptortus pedestris, a common pest in soybean fields, harbors a symbiont Burkholderia in a specialized posterior midgut region of insects. Every generation of second nymphs acquires new Burkholderia cells from the environment. We compared in vitro cultured Burkholderia with newly in vivo colonized Burkholderia in the host midgut using biochemical approaches. The bacterial cell envelope of in vitro cultured and in vivo Burkholderia differed in structure, as in vivo bacteria lacked lipopolysaccharide (LPS) O-antigen. The LPS O-antigen deficient bacteria had a reduced colonization rate in the host midgut compared with that of the wild-type Burkholderia. To determine why LPS O-antigen-deficient bacteria are less able to colonize the host midgut, we examined in vitro survival rates of three LPS O-antigen-deficient Burkholderia mutants and lysates of five different midgut regions. The LPS O-antigen-deficient mutants were highly susceptible when cultured with the lysate of a specific first midgut region (M1), indicating that the M1 lysate contains unidentified substance(s) capable of killing LPS O-antigen-deficient mutants. We identified a 17 kDa protein from the M1 lysate, which was enriched in the active fractions. The N-terminal sequence of the protein was determined to be a soybean Kunitz-type trypsin inhibitor. These data suggest that the 17 kDa protein, which was originated from a main soybean source of the R. pedestris host, has antibacterial activity against the LPS O-antigen deficient (rough-type) Burkholderia.

  1. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae

    PubMed Central

    Fernandez, Luisa E.; Aimanova, Karlygash G.; Gill, Sarjeet S.; Bravo, Alejandra; Soberón, Mario

    2005-01-01

    A 65 kDa GPI (glycosylphosphatidyl-inositol)-anchored ALP (alkaline phosphatase) was characterized as a functional receptor of the Bacillus thuringiensis subsp. israelensis Cry11Aa toxin in Aedes aegypti midgut cells. Two (a 100 kDa and a 65 kDa) GPI-anchored proteins that bound Cry11Aa toxin were preferentially extracted after treatment of BBMV (brush boder membrane vesicles) from Ae. aegypti midgut epithelia with phospholipase C. The 65 kDa protein was further purified by toxin affinity chromatography. The 65 kDa protein showed ALP activity. The peptide-displaying phages (P1.BBMV and P8.BBMV) that bound to the 65 kDa GPI–ALP (GPI-anchored ALP) and competed with the Cry11Aa toxin to bind to BBMV were isolated by selecting BBMV-binding peptide-phages by biopanning. GPI–ALP was shown to be preferentially distributed in Ae. aegypti in the posterior part of the midgut and in the caeca, by using P1.BBMV binding to fixed midgut tissue sections to determine the location of GPI–ALP. Cry11Aa binds to the same regions of the midgut and competed with P1.BBMV and P8.BBMV to bind to BBMV. The importance of this interaction was demonstrated by the in vivo attenuation of Cry11Aa toxicity in the presence of these phages. Our results shows that GPI–ALP is an important receptor molecule involved in Cry11Aa interaction with midgut cells and toxicity to Ae. aegypti larvae. PMID:16255715

  2. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    PubMed

    Fernandes, K M; Gonzaga, W G; Pascini, T V; Miranda, F R; Tomé, H V V; Serrão, J E; Martins, G F

    2015-09-01

    The mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) is a vector for the dengue and yellow fever viruses. As blood digestion occurs in the midgut, this organ constitutes the route of entry of many pathogens. The effects of the insecticide imidacloprid on the survival of St. aegypti were investigated and the sub-lethal effects of the insecticide on midgut development were determined. Third instar larvae were exposed to different concentrations of imidacloprid (0.15, 1.5, 3.0, 6.0 and 15.0 p.p.m.) and survival was monitored every 24 h for 10 days. Midguts from imidacloprid-treated insects at different stages of development were dissected and processed for analyses by transmission electron microscopy, immunofluorescence microscopy and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assays. Imidacloprid concentrations of 3.0 and 15.0 p.p.m. were found to affect midgut development similarly. Digestive cells of the fourth instar larvae (L4) midgut exposed to imidacloprid had more multilamellar bodies, abundantly found in the cell apex, and more electron-lucent vacuoles in the basal region compared with those from untreated insects. Moreover, imidacloprid interfered with the differentiation of regenerative cells, dramatically reducing the number of digestive and endocrine cells and leading to malformation of the midgut epithelium in adults. The data demonstrate that imidacloprid can reduce the survival of mosquitoes and thus indicate its potentially high efficacy in the control of St. aegypti populations.

  3. Restriction of viral dissemination from the midgut determines incompetence of small brown planthopper as a vector of Southern rice black-streaked dwarf virus.

    PubMed

    Jia, Dongsheng; Chen, Hongyan; Mao, Qianzhuo; Liu, Qifei; Wei, Taiyun

    2012-08-01

    Southern rice black-streaked dwarf virus (SRBSDV), a fijivirus, is transmitted by the white-backed planthopper in a persistent-propagative manner. In this study, we found that another planthopper species, the small brown planthopper (SBPH), could acquire SRBSDV but not transmit it. To identify the transmission barrier for SRBSDV in SBPHs, sequential infection by SRBSDV in the organs of SBPHs was studied with immunofluorescence for viral antigens. SRBSDV initially entered the epithelial cells of the midgut, then viroplasms, the sites for viral replication, formed in the midgut of viruliferous SBPHs. Furthermore, SRBSDV spread within the midgut, but failed to disseminate from the midgut into the hemocoel or into the salivary glands. All these results indicated that the inability of SBPH to transmit SRBSDV could be due to the restriction of viral dissemination from the midgut of SBPH, which led to the failure of viral spread to the salivary glands for virus transmission.

  4. Glutathione S-transferase in the midgut tissue of gypsy moth (Lymantria dispar) caterpillars exposed to dietary cadmium.

    PubMed

    Vlahović, Milena; Ilijin, Larisa; Mrdaković, Marija; Todorović, Dajana; Matić, Dragana; Lazarević, Jelica; Mataruga, Vesna Perić

    2016-06-01

    Activity of glutathione S-transferase (GST) in midgut of gypsy moth caterpillars exposed to 10 and 30μg Cd/g dry food was examined. Based on the enzyme reaction through conjugation with glutathione, overall activity remained unaltered after acute and chronic treatment. No-observed-effect-concentration (10μg Cd/g dry food) significantly increased activity only after 3-day recovery following cadmium administration. Almost all comparisons of the indices of phenotypic plasticity revealed statistically significant differences. Despite the facts that GST has important role in xenobiotic biotransformation, our results indicate that this enzyme in insect midgut does not represent the key factor in cadmium detoxification.

  5. Functional photoacoustic microscopy of pH

    NASA Astrophysics Data System (ADS)

    Chatni, M. Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2012-02-01

    pH is a tightly regulated indicator of metabolic activity. In mammalian systems, imbalance of pH regulation may result from or result in serious illness. Even though the regulation system of pH is very robust, tissue pH can be altered in many diseases such as cancer, osteoporosis and diabetes mellitus. Traditional high-resolution optical imaging techniques, such as confocal microscopy, routinely image pH in cells and tissues using pH sensitive fluorescent dyes, which change their fluorescence properties with the surrounding pH. Since strong optical scattering in biological tissue blurs images at greater depths, high-resolution pH imaging is limited to penetration depths of 1mm. Here, we report photoacoustic microscopy (PAM) of commercially available pH-sensitive fluorescent dye in tissue phantoms. Using both opticalresolution photoacoustic microscopy (OR-PAM), and acoustic resolution photoacoustic microscopy (AR-PAM), we explored the possibility of recovering the pH values in tissue phantoms. In this paper, we demonstrate that PAM was capable of recovering pH values up to a depth of 2 mm, greater than possible with other forms of optical microscopy.

  6. Mosquito ingestion of antibodies against mosquito midgut microbiota improves conversion of ookinetes to oocysts for Plasmodium falciparum, but not P. yoelii

    PubMed Central

    Vaughan, Jefferson A.; Pumpuni, Charles B.; Beier, John C.

    2011-01-01

    The mosquito midgut is a site of complex interactions between the mosquito, the malaria parasite and the resident bacterial flora. In laboratory experiments, we observed significant enhancement of Plasmodium falciparum oocyst production when Anopheles gambiae (Diptera: Culicidae) mosquitoes were membrane-fed on infected blood containing gametocytes from in vitro cultures mixed with sera from rabbits immunized with A. gambiae midguts. To identify specific mechanisms, we evaluated whether the immune sera was interfering with the usual limiting activity of gram-negative bacteria in An. gambiae midguts. Enhancement of P. falciparum infection rates occurred at some stage between the ookinete and oocyst stage and was associated with greater numbers of oocysts in mosquitoes fed on immune sera. The same immune sera did not affect the sporogonic development of P. yoelii, a rodent malaria parasite. Not only did antibodies in the immune sera recognize several types of midgut-derived gram-negative bacteria (Pseudomonas spp. and Cedecea spp.), but gentamicin provided in the sugar meal 3 days before an infectious P. falciparum blood meal mixed with immune sera eliminated the enhancing effect. These results suggest that gram-negative bacteria, which normally impair P. falciparum development between the ookinete and oocyst stage, were altered by specific anti-bacterial antibodies produced by immunizing rabbits with non-antibiotic-treated midgut lysates. Because of the differences in developmental kinetics between human and rodent malaria species, the anti-bacterial antibodies had no effect on P. yoelii because their ookinetes leave the midgut much earlier than P. falciparum and so are not influenced as strongly by resident midgut bacteria. While this study highlights the complex interactions occurring between the parasite, mosquito, and midgut microbiota, the ultimate goal is to determine the influence of midgut microbiota on Plasmodium development in anopheline midguts in malaria

  7. Orally administered H-Dmt-Tic-Lys-NH-CH2-Ph (MZ-2), a potent mu/delta-opioid receptor antagonist, regulates obese-related factors in mice.

    PubMed

    Marczak, Ewa D; Jinsmaa, Yunden; Myers, Page H; Blankenship, Terry; Wilson, Ralph; Balboni, Gianfranco; Salvadori, Severo; Lazarus, Lawrence H

    2009-08-15

    Orally active dual mu-/delta-opioid receptor antagonist, H-Dmt-Tic-Lys-NH-CH(2)-Ph (MZ-2) was applied to study body weight gain, fat content, bone mineral density, serum insulin, cholesterol and glucose levels in female ob/ob (B6.V-Lep/J homozygous) and lean wild mice with or without voluntary exercise on wheels for three weeks, and during a two week post-treatment period under the same conditions. MZ-2 (10mg/kg/day, p.o.) exhibited the following actions: (1) reduced body weight gain in sedentary obese mice that persisted beyond the treatment period without effect on lean mice; (2) stimulated voluntary running on exercise wheels of both groups of mice; (3) decreased fat content, enhanced bone mineral density (BMD), and decreased serum insulin and glucose levels in obese mice; and (4) MZ-2 (30 microM) increased BMD in human osteoblast cells (MG-63) comparable to naltrexone, while morphine inhibited mineral nodule formation. Thus, MZ-2 has potential application in the clinical management of obesity, insulin and glucose levels, and the amelioration of osteoporosis.

  8. ALL2, a Homologue of ALL1, Has a Distinct Role in Regulating pH Homeostasis in the Pathogen Cryptococcus neoformans

    PubMed Central

    Jain, Neena; Bouklas, Tejas; Gupta, Anjali; Varshney, Avanish K.; Orner, Erika P.

    2015-01-01

    Cryptococcus neoformans is a facultative intracellular fungal pathogen that has a polysaccharide capsule and causes life-threatening meningoencephalitis. Its capsule, as well as its ability to survive in the acidic environment of the phagolysosome, contributes to the pathogen's resilience in the host environment. Previously, we reported that downregulation of allergen 1 (ALL1) results in the secretion of a shorter, more viscous exopolysaccharide with less branching and structural complexity, as well as altered iron homeostasis. Now, we report on a homologous coregulated gene, allergen 2 (ALL2). ALL2's function was characterized by generating null mutants in C. neoformans. In contrast to ALL1, loss of ALL2 attenuated virulence in the pulmonary infection model. The all2Δ mutant shed a less viscous exopolysaccharide and exhibited higher sensitivity to hydrogen peroxide than the wild type, and as a result, the all2Δ mutant was more resistant to macrophage-mediated killing. Transcriptome analysis further supported the distinct function of these two genes. Unlike ALL1's involvement in iron homeostasis, we now present data on ALL2's unique function in maintaining intracellular pH in low-pH conditions. Thus, our data highlight that C. neoformans, a human-pathogenic basidiomycete, has evolved a unique set of virulence-associated genes that contributes to its resilience in the human niche. PMID:26597983

  9. Transient accumulation of Mg-protoporphyrin IX regulates expression of PhANGs - New evidence for the signaling role of tetrapyrroles in mature Arabidopsis plants.

    PubMed

    Zhang, Zhong-Wei; Yuan, Shu; Feng, Hong; Xu, Fei; Cheng, Jian; Shang, Jing; Zhang, Da-Wei; Lin, Hong-Hui

    2011-05-01

    Genetic and physiological studies have revealed evidence for multiple signaling pathways by which the plastid exerts retrograde control over photosynthesis associated nuclear genes (PhANGs). It has been proposed that the tetrapyrrole pathway intermediate Mg-protoporphyrin IX (Mg-proto IX) acts as the signaling molecule in the pathways and accumulates in the chloroplasts and cytosol of the cell after treatment with the herbicide Norflurazon (NF). However, the role of Mg-Proto IX in plastid signaling has been challenged by two recent reports. In this paper, new evidence is presented supporting Mg-Proto IX as a plastid-signaling molecule in mature Arabidopsis seedlings. Fluorescence HPLC and confocal microscope observation verified that a short-term (<96h) NF treatment resulted in a large accumulation of Mg-Proto IX accompanying with Lhcb repression, whereas the long-term NF treatments caused marked changes of tetrapyrrole pools, while Lhcb expression was continuously repressed. These results may explain the discrepancies among different reports. Reactive oxygen species (ROS) eliminator treatments only partly reversed the NF-induced repression of Lhcb. Therefore, the NF generates both ROS signals and Mg-Proto IX signals. Furthermore, our data suggested that plastid signal transduction through plastid GUN1 protein is independent of tetrapyrrole export from the plastid.

  10. Orally administered H-Dmt-Tic-Lys-NH-CH2-Ph (MZ-2), a potent μ-/δ-opioid receptor antagonist, regulates obese-related factors in mice

    PubMed Central

    Marczak, Ewa D.; Jinsmaa, Yunden; Myers, Page H.; Blankenship, Terry; Wilson, Ralph; Balboni, Gianfranco; Salvadori, Severo; Lazarus, Lawrence H.

    2009-01-01

    Orally active dual μ-/δ-opioid receptor antagonist, H-Dmt-Tic-Lys-NH-CH2-Ph (MZ-2) was applied to study body weight gain, fat content, bone mineral density, serum insulin, cholesterol and glucose levels in female ob/ob (B6.V-Lep/J homozygous) and lean wild mice with or without voluntary exercise on wheels for three weeks, and during a two week post-treatment period under the same conditions. MZ-2 (10 mg/kg/day, p.o.) exhibited the following actions: (1) reduced body weight gain in sedentary obese mice that persisted beyond the treatment period without effect on lean mice; (2) stimulated voluntary running on exercise wheels of both groups of mice; (3) decreased fat content, enhanced bone mineral density (BMD), and decreased serum insulin and glucose levels in obese mice; and (4) MZ-2 (30 μM) increased BMD in human osteoblast cells (MG-63) comparable to naltrexone, while morphine inhibited mineral nodule formation. Thus, MZ-2 has potential application in the clinical management of obesity, insulin and glucose levels, and the amelioration of osteoporosis. PMID:19576206

  11. Dependence of Ethanolic Fermentation, Cytoplasmic pH Regulation, and Viability on the Activity of Alcohol Dehydrogenase in Hypoxic Maize Root Tips 1

    PubMed Central

    Roberts, Justin K. M.; Chang, Keejong; Webster, Cecelia; Callis, Judy; Walbot, Virginia

    1989-01-01

    We examined the role of alcohol dehydrogenase (ADH) in the metabolism and survival of hypoxic maize (Zea mays L.) root tips. The dependence of the rate of ethanolic fermentation, cytoplasmic pH, and viability on the activity of ADH in maize root tips during extreme hypoxia was determined. Maize lines with ADH activities differing over about a 200-fold range were studied. Effects of genetic background were controlled by comparing pairs of F4 progeny of crosses between mutant (low ADH activity) and reference inbred lines. The capacity of hypoxic root tips to perform ethanolic fermentation exhibited a dependence on ADH activity only at activities found in Adh 1 nulls. The ability of maize root tips to withstand prolonged and extreme hypoxia was like-wise independent of ADH activity, except at the lowest activities. Root tips that exhibited lower tolerance of hypoxia had more acidic cytoplasm during extreme hypoxia. We conclude that the activity of ADH in normal maize root tips does not limit the capacity for energy production via fermentation, and does not determine viability under extreme hypoxia. The significance of the induction of ADH activity in plants by hypoxia is discussed. PMID:16666696

  12. Dependence of ethanolic fermentation, cytoplasmic pH regulation, and viability on the activity of alcohol dehydrogenase in hypoxic maize root tips

    SciTech Connect

    Roberts, J.; Chang, Keejong; Webster, C.; Callis, J.; Walbot, V. Stanford Univ., CA )

    1989-04-01

    We examined the role of alcohol dehydrogenase (ADH) in the metabolism and survival of hypoxic maize (Zea mays L.) root tips. The dependence of the rate of ethanolic fermentation, cytoplasmic pH, and viability on the activity of ADH in maize root tips during extreme hypoxia was determined. Maize lines with ADH activities differing over about a 200-fold range were studied. Effects of genetic background were controlled by comparing pairs of F4 progeny of crosses between mutant (low ADH activity) and reference inbred lines. The capacity of hypoxic root tips to perform ethanolic fermentation exhibited a dependence on ADH activity only at activities found in Adh 1 nulls. The ability of maize root tips to withstand prolonged and extreme hypoxia was likewise independent of ADH activity, except at the lowest activities. Root tips that exhibited lower tolerance of hypoxia had more acidic cytoplasm during extreme hypoxia. We conclude that the activity of ADH in normal maize root tips does not limit the capacity for energy production via fermentation, and does not determine viability under extreme hypoxia. The significance of the induction of ADH activity in plants by hypoxia is discussed.

  13. Enhancement of (R)-1,3-butanediol production by engineered Escherichia coli using a bioreactor system with strict regulation of overall oxygen transfer coefficient and pH.

    PubMed

    Kataoka, Naoya; Vangnai, Alisa S; Ueda, Hiromitsu; Tajima, Takahisa; Nakashimada, Yutaka; Kato, Junichi

    2014-01-01

    (R)-1,3-butanediol ((R)-1,3-BD) is an important substrate for the synthesis of industrial chemicals. Despite its large demand, a bioprocess for the efficient production of 1,3-BD from renewable resources has not been developed. We previously reported the construction of recombinant Escherichia coli that could efficiently produce (R)-1,3-BD from glucose. In this study, the fermentation conditions were optimized to further improve 1,3-BD production by the recombinant strain. A batch fermentation was performed with an optimized overall oxygen transfer coefficient (82.3 h(-1)) and pH (5.5); the 1,3-BD concentration reached 98.5 mM after 36 h with high-yield (0.444 mol (mol glucose)(-1)) and a high maximum production rate (3.63 mM h(-1)). In addition, a fed-batch fermentation enabled the recombinant strain to produce 174.8 mM 1,3-BD after 96 h cultivation with a yield of 0.372 mol (mol glucose)(-1), a maximum production rate of 3.90 mM h(-1), and a 98.6% enantiomeric excess (% ee) of (R)-1,3-BD.

  14. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development.

    PubMed

    Gonzalez-Ceron, Lilia; Santillan, Frida; Rodriguez, Mario H; Mendez, Domingo; Hernandez-Avila, Juan E

    2003-05-01

    Bacterial infections were investigated in midguts of insectary and field-collected Anopheles albimanus Weidemann from southern Mexico. Serratia marcescens, Enterobacter cloacae and Enterobacter amnigenus 2, Enterobacter sp., and Serratia sp. were isolated in field samples obtained in 1998, but only Enterobacter sp. was recovered in field samples of 1997 and no bacteria were isolated from insectary specimens. These bacteria were offered along with Plasmodium vivax infected blood to aseptic insectary An. albimanus, and the number of infected mosquitoes as well as the oocyst densities assessed after 7d. Plasmodium vivax infections in mosquitoes co-infected with En. amnigenus 2, En. cloacae, and S. marcensces were 53, 17, and 210 times, respectively, lower than in control mosquitoes, and the mean oocyst density in mosquitoes co-infected with En. cloacae was 2.5 times lower than in controls. Mortality was 13 times higher in S. marcensces-infected mosquitoes compared with controls. The overall midgut bacterial infection in mosquito field populations may influence P. vivax transmission, and could contribute to explain the annual variations in malaria incidence observed in the area.

  15. Modulation of Malaria Infection in Anopheles gambiae Mosquitoes Exposed to Natural Midgut Bacteria

    PubMed Central

    Tchioffo, Majoline T.; Boissière, Anne; Churcher, Thomas S.; Abate, Luc; Gimonneau, Geoffrey; Nsango, Sandrine E.; Awono-Ambéné, Parfait H.; Christen, Richard; Berry, Antoine; Morlais, Isabelle

    2013-01-01

    The development of Plasmodium falciparum within the Anopheles gambiae mosquito relies on complex vector-parasite interactions, however the resident midgut microbiota also plays an important role in mediating parasite infection. In natural conditions, the mosquito microbial flora is diverse, composed of commensal and symbiotic bacteria. We report here the isolation of culturable midgut bacteria from mosquitoes collected in the field in Cameroon and their identification based on the 16S rRNA gene sequencing. We next measured the effect of selected natural bacterial isolates on Plasmodium falciparum infection prevalence and intensity over multiple infectious feedings and found that the bacteria significantly reduced the prevalence and intensity of infection. These results contrast with our previous study where the abundance of Enterobacteriaceae positively correlated with P. falciparum infection (Boissière et al. 2012). The oral infection of bacteria probably led to the disruption of the gut homeostasis and activated immune responses, and this pinpoints the importance of studying microbe-parasite interactions in natural conditions. Our results indicate that the effect of bacterial exposure on P. falciparum infection varies with factors from the parasite and the human host and calls for deeper dissection of these parameters for accurate interpretation of bacterial exposure results in laboratory settings. PMID:24324714

  16. Exosome Secretion by the Parasitic Protozoan Leishmania within the Sand Fly Midgut.

    PubMed

    Atayde, Vanessa Diniz; Aslan, Hamide; Townsend, Shannon; Hassani, Kasra; Kamhawi, Shaden; Olivier, Martin

    2015-11-03

    Despite several studies describing the secretion of exosomes by Leishmania in vitro, observation of their formation and release in vivo has remained a major challenge. Herein, we show that Leishmania constitutively secretes exosomes within the lumen of the sand fly midgut through a mechanism homologous to the mammalian pathway. Through egestion experiments, we demonstrate that Leishmania exosomes are part of the sand fly inoculum and are co-egested with the parasite during the insect's bite, possibly influencing the host infectious process. Indeed, co-inoculation of mice footpads with L. major plus midgut-isolated or in-vitro-isolated L. major exosomes resulted in a significant increase in footpad swelling. Notably, co-injections produced exacerbated lesions through overinduction of inflammatory cytokines, in particular IL-17a. Our data indicate that Leishmania exosomes are an integral part of the parasite's infectious life cycle, and we propose to add these vesicles to the repertoire of virulence factors associated with vector-transmitted infections.

  17. West Nile Virus Infection Alters Midgut Gene Expression in Culex pipiens quinquefasciatus Say (Diptera: Culicidae)

    PubMed Central

    Smartt, Chelsea T.; Richards, Stephanie L.; Anderson, Sheri L.; Erickson, Jennifer S.

    2009-01-01

    Alterations in gene expression in the midgut of female Culex pipiens quinquefasciatus exposed to blood meals containing 6.8 logs plaque-forming units/mL of West Nile virus (WNV) were studied by fluorescent differential display. Twenty-six different cDNAs exhibited reproducible differences after feeding on infected blood. Of these, 21 cDNAs showed an increase in expression, and 5 showed a decrease in expression as a result of WNV presence in the blood meal. GenBank database searches showed that one clone with increased expression, CQ G12A2, shares 94% identity with a leucine-rich repeat-containing protein from Cx. p. quinquefasciatus and 32% identity to Toll-like receptors from Aedes aegypti. We present the first cDNA clone isolated from female Cx. p. quinquefasciatus midgut tissue whose expression changes on exposure to WNV. This cDNA represents a mosquito gene that is an excellent candidate for interacting with WNV in Cx. p. quinquefasciatus and may play a role in disease transmission. PMID:19635880

  18. Exosome secretion by the parasitic protozoan Leishmania within the sand fly midgut

    PubMed Central

    Atayde, Vanessa Diniz; Suau, Hamide Aslan; Townsend, Shannon; Hassani, Kasra; Kamhawi, Shaden; Olivier, Martin

    2015-01-01

    SUMMARY Despite several studies describing the secretion of exosomes by Leishmania in vitro, observation of their formation and release in vivo has remained a major challenge. Herein, we show that Leishmania constitutively secretes exosomes within the lumen of the sand fly midgut through a mechanism homologous to the mammalian pathway. Through egestion experiments, we demonstrate that Leishmania exosomes are part of the sand fly inoculum and are co-egested with the parasite during the insect’s bite possibly influencing the host infectious process. Indeed, co-inoculation of mice footpads with L. major plus midgut-isolated or in vitro-isolated L. major exosomes resulted in a significant increase in footpad swelling. Notably, co-injections produced exacerbated lesions through overinduction of inflammatory cytokines, in particular IL-17a. Our data indicate that Leishmania exosomes are an integral part of the parasite’s infectious life cycle and propose to add these vesicles to the repertoire of virulence factors associated to vector-transmitted infections. PMID:26565909

  19. Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut.

    PubMed

    Rupp, Ingrid; Sologub, Ludmilla; Williamson, Kim C; Scheuermayer, Matthias; Reininger, Luc; Doerig, Christian; Eksi, Saliha; Kombila, Davy U; Frank, Matthias; Pradel, Gabriele

    2011-04-01

    Physical contact is important for the interaction between animal cells, but it can represent a major challenge for protists like malaria parasites. Recently, novel filamentous cell-cell contacts have been identified in different types of eukaryotic cells and termed nanotubes due to their morphological appearance. Nanotubes represent small dynamic membranous extensions that consist of F-actin and are considered an ancient feature evolved by eukaryotic cells to establish contact for communication. We here describe similar tubular structures in the malaria pathogen Plasmodium falciparum, which emerge from the surfaces of the forming gametes upon gametocyte activation in the mosquito midgut. The filaments can exhibit a length of > 100 μm and contain the F-actin isoform actin 2. They actively form within a few minutes after gametocyte activation and persist until the zygote transforms into the ookinete. The filaments originate from the parasite plasma membrane, are close ended and express adhesion proteins on their surfaces that are typically found in gametes, like Pfs230, Pfs48/45 or Pfs25, but not the zygote surface protein Pfs28. We show that these tubular structures represent long-distance cell-to-cell connections between sexual stage parasites and demonstrate that they meet the characteristics of nanotubes. We propose that malaria parasites utilize these adhesive "nanotubes" in order to facilitate intercellular contact between gametes during reproduction in the mosquito midgut.

  20. The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects.

    PubMed

    Yu, C G; Mullins, M A; Warren, G W; Koziel, M G; Estruch, J J

    1997-02-01

    The Vip3A protein is a member of a newly discovered class of vegetative insecticidal proteins with activity against a broad spectrum of lepidopteran insects. Histopathological observations indicate that Vip3A ingestion by susceptible insects such as the black cutworm (Agrotis ipsilon) and fall armyworm (Spodoptera frugiperda) causes gut paralysis at concentrations as low as 4 ng/cm2 of diet and complete lysis of gut epithelium cells resulting in larval death at concentrations above 40 ng/cm2. The European corn borer (Ostrinia nubilalis), a nonsusceptible insect, does not develop any pathology upon ingesting Vip3A. While proteolytic processing of the Vip3A protein by midgut fluids obtained from susceptible and nonsusceptible insects is comparable, in vivo immunolocalization studies show that Vip3a binding is restricted to gut cells of susceptible insects. Therefore, the insect host range for Vip3A seems to be determined by its ability to bind gut cells. These results indicate that midgut epithelium cells of susceptible insects are the primary target for the Vip3A insecticidal protein and that their subsequent lysis is the primary mechanism of lethality. Disruption of gut cells appears to be the strategy adopted by the most effective insecticidal proteins.

  1. Cadmium-binding proteins in midgut gland of freshwater crayfish Procambarus clarkii

    SciTech Connect

    Del Ramo, J.; Pastor, A.; Torreblanca, A.; Medina, J.; Diza-Mayans, J.

    1989-02-01

    Metallothioneins, metal binding proteins, were originally isolated and characterized by Margoshes and Vallee. These proteins have a high affinity for various heavy metals, particularly cadmium and mercury and have extensively been studied in mammals. Metal binding proteins have been observed in a variety of marine invertebrates; however, there is very little information available on metal binding proteins in freshwater invertebrates, and particularly in freshwater crustaceans. Cadmium is an ubiquitous non essential element which possesses high toxicity to aquatic organisms. Cadmium binding proteins observed in invertebrates have similar characteristics to mammalian metallothioneins. In 1978, the American red crayfish appeared in Albufera Lake and the surrounding rice fields (Valencia, Spain). Albufera Lake and the surrounding rice fields waters are subjected to very heavy loads of sewage and toxic industrial residues (including heavy metals) from the many urban and wastewaters in this area. In previous reports the authors studied the toxicity and accumulation of cadmium on Procambarus clarkii of Albufera Lake. This crayfish shows a high resistance to cadmium and a great accumulation rate of this metal in several tissues, including midgut gland. Since Procambarus clarkii shows a high resistance to cadmium, the presence of cadmium binding proteins (Cd-BP) in midgut gland of these crayfish would be expected. This report describes results on the characterization of Cd-BPs obtained from cadmium exposed crayfish Procambarus clarkii, demonstrating their presence in this freshwater crayfish.

  2. Identification of Holotrichia oblita midgut proteins that bind to Cry8-like toxin from Bacillus thuringiensis and assembling of H. oblita midgut tissue transcriptome.

    PubMed

    Jiang, Jian; Huang, Ying; Shu, Changlong; Soberón, Mario; Bravo, Alejandra; Liu, Chunqing; Song, Fuping; Lai, Jinsheng; Zhang, Jie

    2017-04-07

    The Bacillus thuringiensis strain HBF-18 (CGMCC2070), containing two cry genes (cry8-like and cry8Ga), is toxic to Holotrichia oblita larvae. Both Cry8-like and Cry8Ga proteins are active against this insect pest, while Cry8-like is the more toxic protein. To analyze the binding characteristics of Cry8-like and Cry8Ga proteins to brush border membrane vesicles (BBMV) in H. oblita larvae, binding assays were conducted with a fluorescent DyLight488-labeled Cry8-like toxin. Results of binding saturation assays demonstrated that Cry8-like binds specifically to binding sites on BBMV from H. oblita and heterologous competition assays revealed that Cry8Ga shared binding sites with Cry8-like. Furthermore, Cry8-like-binding proteins in midgut from H. oblita larvae were identified by pull-down assays, and by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, the H. oblita midgut transcriptome was assembled by high-throughput RNA sequencing and used for identification of Cry8-like binding proteins. Eight Cry8-like-binding proteins were obtained from pull-down assays conducted with BBMV. The LC-MS/MS data of these proteins successfully matched with the H. oblita transcriptome, and the BLASTX results identified five proteins as serine protease, transferrin-like, ATPase catalytic subunit, and actin. These identified Cry8-like-binding proteins were different with those previously confirmed as receptors for Cry1A proteins in lepidopteran insect species such as aminopeptidase, alkaline phosphatase and cadherin.Importance:Holotrichia oblita is one of main soil-dwelling pests in China. The larvae damage the roots of crops, and resulted in significant yield reduction and economic losses. It is difficult to control principally due to its soil living habits. In recent years, some Cry8 toxins from Bacillus thuringiensis were shown to be active against this pest. The study of the mechanism of action of these Cry8 toxins is needed for their effective use in the control

  3. Hemalin, a thrombin inhibitor isolated from a midgut cDNA library from the hard tick Haemaphysalis longicornis.

    PubMed

    Liao, Min; Zhou, Jinlin; Gong, Haiyan; Boldbaatar, Damdinsuren; Shirafuji, Rika; Battur, Banzragch; Nishikawa, Yoshifumi; Fujisaki, Kozo

    2009-02-01

    A full-length sequence of a thrombin inhibitor (designated as hemalin) from the midgut of parthenogenetic Haemaphysalis longicornis has been identified. Sequence analysis shows that this gene belongs to the Kunitz-type family, containing two Kunitz domains with high homology to boophilin, the thrombin inhibitor from Rhipicephalus (Boophilus) microplus. The recombinant protein expressed in insect cells delayed bovine plasma clotting time and inhibited both thrombin-induced fibrinogen clotting and platelet aggregation. A 20-kDa protein was detected from the midgut lysate with antiserum against recombinant hemalin. The gene is expressed at all stages of the tick except for the egg stage, and hemalin mRNA mainly in the midgut of the female adult tick. Real-time PCR analysis shows that this gene has a distinctly high expression level in the rapid bloodsucking period of the larvae, nymphs, and adults. Disruption of the hemalin gene by RNA interference led to a 2-day extension of the tick blood feeding period, and 27.7% of the RNA-treated ticks did not successfully complete the blood feeding. These findings indicate that the newly identified thrombin inhibitor from the midgut of H. longicornis might play an important role in tick blood feeding.

  4. The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells

    PubMed Central

    Mercado-Curiel, Ricardo F; Esquinca-Avilés, Héctor Armando; Tovar, Rosalinda; Díaz-Badillo, Álvaro; Camacho-Nuez, Minerva; Muñoz, María de Lourdes

    2006-01-01

    Background Dengue viruses (DENV) attach to the host cell surface and subsequently enter the cell by receptor-mediated endocytosis. Several primary and low affinity co-receptors for this flavivirus have been identified. However, the presence of these binding molecules on the cell surface does not necessarily render the cell susceptible to infection. Determination of which of them serve as bona fide receptors for this virus in the vector may be relevant to treating DENV infection and in designing control strategies. Results (1) Overlay protein binding assay showed two proteins with molecular masses of 80 and 67 kDa (R80 and R67). (2) Specific antibodies against these two proteins inhibited cell binding and infection. (3) Both proteins were bound by all four serotypes of dengue virus. (4) R80 and R67 were purified by affinity chromatography from Ae. aegypti mosquito midguts and from Ae albopictus C6/36 cells. (5) In addition, a protein with molecular mass of 57 kDa was purified by affinity chromatography from the midgut extracts. (6) R80 and R67 from radiolabeled surface membrane proteins of C6/36 cells were immunoprecipitated by antibodies against Ae. aegypti midgut. Conclusion Our results strongly suggest that R67 and R80 are receptors for the four serotypes of dengue virus in the midgut cells of Ae. aegypti and in C6/36 Ae. albopictus cells. PMID:17014723

  5. Draft Genome Sequences of Two Strains of Serratia spp. from the Midgut of the Malaria Mosquito Anopheles gambiae

    PubMed Central

    Pei, Dong; Hill-Clemons, Casey; Carissimo, Guillaume; Yu, Wanqin; Vernick, Kenneth D.

    2015-01-01

    Here, we report the annotated draft genome sequences of two strains of Serratia spp., Ag1 and Ag2, isolated from the midgut of two different strains of Anopheles gambiae. The genomes of these two strains are almost identical. PMID:25767231

  6. Effects of periplocoside X on midgut cells and digestive enzymes activity of the soldiers of red imported fire ant.

    PubMed

    Li, Yan; Zeng, Xin-Nian

    2013-07-01

    The pathological effects of ingested periplocoside X, an insecticidal component isolated from the root of Periploca sepium Bunge, on the midgut epithelial cells of the soldiers of red imported fire ant were studied and the symptom was described. The results showed that periplocoside X could induce a severe, time-dependent cytotoxicity in the midgut epithelial cells. An optical microscopy showed that epithelial cells swelled firstly and then lysed. Transmission electron microscopy (TEM) showed that numerous swollen lysosomes were appeared, microvilli were disrupted and sloughed off, and the numbers of the rough endoplasmic reticulum and the mitochondria decreased sharply in earlier stage. Numerous vacuoles were observed in the later stage. Finally, periplocoside X resulted in cell death by cytolysis. Assay of main three digestive enzymes activity indicated that amylase activity was significantly inhibited, but no significant changes were seen for lipase activity and total protease activity. So it is suggested that periplocoside X induced mainly to organic damage of midgut epithelium cells of insect. In all, insect midgut is one of targets for periplocoside X.

  7. Morphological abnormalities and cell death in the Asian citrus psyllid (Diaphorina citri) midgut associated with Candidatus Liberibacter asiaticus

    PubMed Central

    Ghanim, Murad; Fattah-Hosseini, Somayeh; Levy, Amit; Cilia, Michelle

    2016-01-01

    Candidatus Liberibacter asiaticus (CLas) is a phloem-limited, gram-negative, fastidious bacterium that is associated with the development of citrus greening disease, also known as Huanglongbing (HLB). CLas is transmitted by the Asian citrus psyllid (ACP) Diaphorina citri, in a circulative manner. Two major barriers to transmission within the insect are the midgut and the salivary glands. We performed a thorough microscopic analysis within the insect midgut following exposure to CLas-infected citrus trees. We observed changes in nuclear architecture, including pyknosis and karyorrhexis as well as changes to the actin cytoskeleton in CLas-exposed midgut cells. Further analyses showed that the changes are likely due to the activation of programmed cell death as assessed by Annexin V staining and DNA fragmentation assays. These results suggest that exposure to CLas-infected trees induces apoptotic responses in the psyllid midgut that should be further investigated. Understanding the adaptive significance of the apoptotic response has the potential to create new approaches for controlling HLB. PMID:27630042

  8. Live imaging of baculovirus infection of midgut epithelium cells: a functional assay of per os infectivity factors.

    PubMed

    Mu, Jingfang; van Lent, Jan W M; Smagghe, Guy; Wang, Yun; Chen, Xinwen; Vlak, Just M; van Oers, Monique M

    2014-11-01

    The occlusion-derived viruses (ODVs) of baculoviruses are responsible for oral infection of insect hosts, whereas budded viruses (BVs) are responsible for systemic infection within the host. The ODV membrane proteins play crucial roles in mediating virus entry into midgut epithelium cells to initiate infection and are important factors in host-range determination. For Autographa californica multiple nucleopolyhedrovirus (AcMNPV), seven conserved ODV membrane proteins have been shown to be essential for oral infectivity and are called per os infectivity factors (PIFs). Information on the function of the individual PIF proteins in virus entry is limited, partly due to the lack of a good in vitro system for monitoring ODV entry. Here, we constructed a baculovirus with EGFP fused to the nucleocapsid to monitor virus entry into primary midgut epithelium cells ex vivo using confocal fluorescence microscopy. The EGFP-labelled virus showed similar BV virulence and ODV infectivity as WT virus. The ability to bind and enter host cells was then visualized for WT AcMNPV and viruses with mutations in P74 (PIF0), PIF1 or PIF2, showing that P74 is required for ODV binding, whilst PIF1 and PIF2 play important roles in the entry of ODV after binding to midgut cells. This is the first live imaging of ODV entry into midgut cells and complements the genetic and biochemical evidence for the role of PIFs in the oral infection process.

  9. The effects of Bt Cry1Ie toxin on bacterial diversity in the midgut of Apis mellifera ligustica (Hymenoptera: Apidae)

    PubMed Central

    Jia, Hui-Ru; Geng, Li-Li; Li, Yun-He; Wang, Qiang; Diao, Qing-Yun; Zhou, Ting; Dai, Ping-Li

    2016-01-01

    The honey bee has been regarded as a key species in the environmental risk assessment of biotech crops. Here, the potential adverse effects of Cry1Ie toxin on the midgut bacteria of the worker bees (Apis mellifera ligustica) were investigated under laboratory conditions. Newly emerged bees were fed with different concentrations of Cry1Ie toxin syrups (20 ng/mL, 200 ng/mL, and 20 μg/mL), pure sugar syrup, and 48 ppb of imidacloprid syrups, then sampled after 15 and 30 d. We characterized the dominant midgut bacteria and compared the composition and structure of the midgut bacterial community in all samples using the Illumina MiSeq platform targeting the V3–V4 regions of 16S rDNA. No significant differences in the diversity of the midgut bacteria were observed between the five treatments. This work was the first to show the effects of Cry1Ie toxin on honey bees, and our study provided a theoretical basis for the biosafety assessment of transgenic Cry1Ie maize. PMID:27090812

  10. Biochemical and histological biomarkers in the midgut of Apis mellifera from polluted environment at Beheira Governorate, Egypt.

    PubMed

    El-Saad, Ahmed M Abu; Kheirallah, Dalia A; El-Samad, Lamia M

    2017-01-01

    The aim of this study was to analyze the impact of organophosphorus (OP) pollutants on oxidative stress and ultrastructural biomarkers in the midgut of the honeybee Apis mellifera collected from three locations that differ in their extent of spraying load with OP insecticides: a weakly anthropised rural site, Bolin which is considered as a reference site; moderately spraying site, El Kaza; and a strongly anthropised urban site, Tiba with a long history of pesticide use. Results showed that high concentrations of chlorpyrifos, malathion, diazinon, chlorpyrifos-methyl, and pirimiphos-methyl were detected in midgut at locations with extensive pesticide spraying. Reduced glutathione content, superoxide dismutase, catalase, and glutathione peroxidase displayed lowest activities in the heavily sprayed location (Tiba). Lipid peroxidation level in the midgut of honeybees in the sprayed locations was found to be significantly higher compared to the reference values. Meanwhile, various ultrastructural abnormalities were observed in the epithelial cells of midgut of honeybees collected from El Kaza and Tiba, included confluent and disorganized microvilli and destruction of their brush border, the cytoplasm with large vacuoles and alteration of cytoplasmic organelles including the presence of swollen mitochondria with lysis of matrices, disruption of limiting membranes, and disintegration of cristae. The nuclei with indented nuclear envelope and disorganized chromatin were observed. These investigated biomarkers indicated that the surveyed honeybees are being under stressful environmental conditions. So, we suggest using those biomarkers in the assessment of environmental quality using honeybees in future monitoring of ecotoxicological studies.

  11. Identification of Midgut and Salivary Glands as Specific and Distinct Barriers to Efficient Tick-Borne Transmission of Anaplasma marginale▿

    PubMed Central

    Ueti, Massaro W.; Reagan, James O.; Knowles, Donald P.; Scoles, Glen A.; Shkap, Varda; Palmer, Guy H.

    2007-01-01

    Understanding the determinants of efficient tick-borne microbial transmission is needed to better predict the emergence of highly transmissible pathogen strains and disease outbreaks. Although the basic developmental cycle of Anaplasma and Ehrlichia spp. within the tick has been delineated, there are marked differences in the ability of specific strains to be efficiently tick transmitted. Using the highly transmissible St. Maries strain of Anaplasma marginale in Dermacentor andersoni as a positive control and two unrelated nontransmissible strains, we identified distinct barriers to efficient transmission within the tick. The Mississippi strain was unable to establish infection at the level of the midgut epithelium despite successful ingestion of infected blood following acquisition feeding on a bacteremic animal host. This inability to colonize the midgut epithelium prevented subsequent development within the salivary glands and transmission. In contrast, A. marginale subsp. centrale colonized the midgut and then the salivary glands, replicating to a titer indistinguishable from that of the highly transmissible St. Maries strain and at least 100 times greater than that previously associated with successful transmission. Nonetheless, A. marginale subsp. centrale was not transmitted, even when a large number of infected ticks was used for transmission feeding. These results establish that there are at least two specific barriers to efficient tick-borne transmission, the midgut and salivary glands, and highlight the complexity of the pathogen-tick interaction. PMID:17420231

  12. Ookinete destruction within the mosquito midgut lumen explains Anopheles albimanus refractoriness to Plasmodium falciparum (3D7A) oocyst infection.

    PubMed

    Baton, Luke A; Ranford-Cartwright, Lisa C

    2012-01-01

    Previous studies have shown that the central American mosquito vector, Anopheles albimanus, is generally refractory to oocyst infection with allopatric isolates of the human malaria parasite Plasmodium falciparum. However, the reasons for the refractoriness of A. albimanus to infection with such isolates of P. falciparum are unknown. In the current study, we investigated the infectivity of the P. falciparum clone 3D7A to laboratory-reared A. albimanus and another natural vector of human malaria, Anopheles stephensi. Plasmodium falciparum gametocytes grown in vitro were simultaneously fed to both mosquito species and the progress of malaria infection compared. In 22 independent paired experimental feeds, no mature oocysts were observed on the midguts of A. albimanus 10days after bloodfeeding. In contrast, high levels of oocyst infection were found on the midguts of simultaneously fed A. stephensi. Direct immunofluorescence microscopy and light microscopical examination of Giemsa-stained histological sections were used to identify when the P. falciparum clone 3D7A failed to establish mature oocyst infections in A. albimanus. Similar densities of macrogametes/zygotes, and immature retort-form and mature ookinetes were found within the bloodmeals of both mosquito species. However, in A. albimanus, ookinetes were seldom associated with the peritrophic matrix, and were neither observed in the ectoperitrophic space nor the midgut epithelium. In contrast, ookinetes were frequently observed in these midgut compartments in A. stephensi. Additionally, young oocysts were observed on the midguts of A. stephensi but not A. albimanus 2days after bloodfeeding. Vital staining of the immature retort-form and mature ookinetes found within the luminal bloodmeal, demonstrated that a significantly greater proportion of these malaria parasite stages were non-viable in A. albimanus compared with A. stephensi. Overall, our observations indicate that ookinetes of the P. falciparum clone 3D7

  13. Exploring the mialome of ticks: an annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae)

    PubMed Central

    Anderson, Jennifer M; Sonenshine, Daniel E; Valenzuela, Jesus G

    2008-01-01

    Background Ticks are obligate blood feeders. The midgut is the first major region of the body where blood and microbes ingested with the blood meal come in contact with the tick's internal tissues. Little is known about protein expression in the digestive tract of ticks. In this study, for analysis of global gene expression during tick attachment and feeding, we generated and sequenced 1,679 random transcripts (ESTs) from cDNA libraries from the midguts of female ticks at varying stages of feeding. Results Sequence analysis of the 1,679 ESTs resulted in the identification of 835 distinct transcripts, from these, a total of 82 transcripts were identified as proteins putatively directly involved in blood meal digestion, including enzymes involved in oxidative stress reduction/antimicrobial activity/detoxification, peptidase inhibitors, protein digestion (cysteine-, aspartic-, serine-, and metallo-peptidases), cell, protein and lipid binding including mucins and iron/heme metabolism and transport. A lectin-like protein with a high match to lectins in other tick species, allergen-like proteins and surface antigens important in pathogen recognition and/or antimicrobial activity were also found. Furthermore, midguts collected from the 6-day-fed ticks expressed twice as many transcripts involved in bloodmeal processing as midguts from unfed/2-day-fed ticks. Conclusion This tissue-specific transcriptome analysis provides an opportunity to examine the global expression of transcripts in the tick midgut and to compare the gut response to host attachment versus blood feeding and digestion. In contrast to those in salivary glands of other Ixodid ticks, most proteins in the D. variabilis midgut cDNA library were intracellular. Of the total ESTs associated with a function, an unusually large number of transcripts were associated with peptidases, cell, lipid and protein binding, and oxidative stress or detoxification. Presumably, this is consistent with their role in

  14. Fluorescence Localization and Comparative Ultrastructural Study of Periplocoside NW from Periploca sepium Bunge in the Midgut of the Oriental Amyworm, Mythimna separata Walker (Lepidoptera: Noctuidae)

    PubMed Central

    Feng, Mingxing; Zhao, Juan; Zhang, Jiwen; Hu, Zhaonong; Wu, Wenjun

    2014-01-01

    Periplocoside NW (PSNW) is a novel insecticidal compound isolated from the root bark of Periploca sepium Bunge and has potent stomach toxicity against some insect pests. Previous studies showed that the Mythimna separata larva is sensitive to PSNW, but the Agrotis ispilon larva is insensitive. In this study, preliminary target localization on the midgut of M. separata larvae was conducted via a fluorescence labeling technique. A comparative ultrastructural study on the effects of PSNW on the midguts of M. separata and A. ispilon larvae was performed. Symptom observation results showed that typical stomach toxicity was induced by PSNW in M. separata larvae. Fluorescence localization results showed that PSNW binds to the midgut cells of M. separata larvae. Ultrastructure observations showed destruction of the microvilli, organelle, and cytomembrane in the midgut cells of M. separata larvae, whereas no obvious changes were observed in midgut cells of A. ispilon larvae. These results were consistent with the insecticidal activity of PSNW. Therefore, PSNW might act on the midgut tissues of the insects, and one or more binding sites of PSNW may exist in M. separata larvae midgut cell cytomembranes. PMID:24831268

  15. Humoral responses in Rhodnius prolixus: bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut

    PubMed Central

    2014-01-01

    Background The triatomine, Rhodnius prolixus, is a major vector of Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. It has a strictly blood-sucking habit in all life stages, ingesting large amounts of blood from vertebrate hosts from which it can acquire pathogenic microorganisms. In this context, the production of antimicrobial peptides (AMPs) in the midgut of the insect is vital to control possible infection, and to maintain the microbiota already present in the digestive tract. Methods In the present work, we studied the antimicrobial activity of the Rhodnius prolixus midgut in vitro against the Gram-negative and Gram-positive bacteria Escherichia coli and Staphylococcus aureus, respectively. We also analysed the abundance of mRNAs encoding for defensins, prolixicin and lysozymes in the midgut of insects orally infected by these bacteria at 1 and 7 days after feeding. Results Our results showed that the anterior midgut contents contain a higher inducible antibacterial activity than those of the posterior midgut. We observed that the main AMP encoding mRNAs in the anterior midgut, 7 days after a blood meal, were for lysozyme A, B, defensin C and prolixicin while in the posterior midgut lysozyme B and prolixicin transcripts predominated. Conclusion Our findings suggest that R. prolixus modulates AMP gene expression upon ingestion of bacteria with patterns that are distinct and dependent upon the species of bacteria responsible for infection. PMID:24885969

  16. A Kazal-type inhibitor is modulated by Trypanosoma cruzi to control microbiota inside the anterior midgut of Rhodnius prolixus.

    PubMed

    Soares, Tatiane S; Buarque, Diego S; Queiroz, Bruna R; Gomes, Cícera M; Braz, Glória R C; Araújo, Ricardo N; Pereira, Marcos H; Guarneri, Alessandra A; Tanaka, Aparecida S

    2015-05-01

    The triatomine insect, Rhodnius prolixus, is a vector of Trypanosoma cruzi, a protozoan parasite that causes Chagas disease. The parasite must overcome immune response and microbiota to develop inside the midgut of triatomines. In this study, we expressed, purified and characterized a Kazal-type inhibitor from the midgut of R. prolixus, named RpTI, which may be involved in microbiota - T. cruzi interactions. The qPCR showed that the RpTI transcript was primarily expressed in tissues from the intestinal tract and that it was upregulated in the anterior midgut after T. cruzi infection. A 315-bp cDNA fragment encoding the mature protein was cloned into the pPIC9 vector and expressed in Pichia pastoris system. Recombinant RpTI (rRpTI) was purified on a trypsin-Sepharose column and had a molecular mass of 11.5 kDa as determined by SDS-PAGE analysis. This protein inhibited trypsin (Ki = 0.42 nM), whereas serine proteases from the coagulation cascade were not inhibited. Moreover, trypanocidal assays revealed that rRpTI did not interfere in the viability of T. cruzi trypomastigotes. The RpTI transcript was also knocked down by RNA interference prior to infection of R. prolixus with T. cruzi. The amount of T. cruzi in the anterior midgut was significantly lower in RpTI knockdown insects compared to the non-silenced groups. We also verified that the bacterial load is higher in the anterior midgut of silenced and infected R. prolixus compared to non-silenced and infected insects. Our results suggest that T. cruzi infection increases the expression of RpTI to mediate microbiota modulation and is important for parasite immediately after infection with R. prolixus.

  17. Female-specific specialization of a posterior end region of the midgut symbiotic organ in Plautia splendens and allied stinkbugs.

    PubMed

    Hayashi, Toshinari; Hosokawa, Takahiro; Meng, Xian-Ying; Koga, Ryuichi; Fukatsu, Takema

    2015-04-01

    Many stinkbugs (Insecta: Hemiptera: Heteroptera) are associated with bacterial symbionts in a posterior region of the midgut. In these stinkbugs, adult females excrete symbiont-containing materials from the anus for transmission of the beneficial symbionts to their offspring. For ensuring the vertical symbiont transmission, a variety of female-specific elaborate traits at the cellular, morphological, developmental, and behavioral levels have been reported from diverse stinkbugs of the families Plataspidae, Urostylididae, Parastrachiidae, etc. Meanwhile, such elaborate female-specific traits for vertical symbiont transmission have been poorly characterized for the largest and economically important stinkbug family Pentatomidae. Here, we investigated the midgut symbiotic system of a pentatomid stinkbug, Plautia splendens. A specific gammaproteobacterial symbiont was consistently present extracellularly in the cavity of numerous crypts arranged in four rows on the midgut fourth section. The symbiont was smeared on the egg surface upon oviposition by adult females, orally acquired by newborn nymphs, and thereby transmitted vertically to the next generation and important for growth and survival of the host insects. We found that, specifically in adult females, several rows of crypts at the posterior end region of the symbiotic midgut were morphologically differentiated and conspicuously enlarged, often discharging the symbiotic bacteria from the crypt cavity to the main tract of the symbiotic midgut. The female-specific enlarged end crypts were also found in other pentatomid stinkbugs Plautia stali and Carbula crassiventris. These results suggest that the enlarged end crypts represent a female-specific specialized morphological trait for vertical symbiont transmission commonly found among stinkbugs of the family Pentatomidae.

  18. Salinity alters snakeskin and mesh transcript abundance and permeability in midgut and Malpighian tubules of larval mosquito, Aedes aegypti.

    PubMed

    Jonusaite, Sima; Donini, Andrew; Kelly, Scott P

    2017-03-01

    This study examined the distribution and localization of the septate junction (SJ) proteins snakeskin (Ssk) and mesh in osmoregulatory organs of larval mosquito (Aedes aegypti), as well as their response to altered environmental salt levels. Ssk and mesh transcripts and immunoreactivity were detected in tissues of endodermal origin such as the midgut and Malpighian tubules of A. aegypti larvae, but not in ectodermally derived hindgut and anal papillae. Immunolocalization of Ssk and mesh in the midgut and Malpighian tubules indicated that both proteins are concentrated at regions of cell-cell contact between epithelial cells. Transcript abundance of ssk and mesh was higher in the midgut and Malpighian tubules of brackish water (BW, 30% SW) reared A. aegypti larvae when compared with freshwater (FW) reared animals. Therefore, [(3)H]polyethylene glycol (MW 400Da, PEG-400) flux was examined across isolated midgut and Malpighian tubule preparations as a measure of their paracellular permeability. It was found that PEG-400 flux was greater across the midgut of BW versus FW larvae while the Malpighian tubules of BW-reared larvae had reduced PEG-400 permeability in conjunction with increased Cl(-) secretion compared to FW animals. Taken together, data suggest that Ssk and mesh are found in smooth SJs (sSJs) of larval A. aegypti and that their abundance alters in association with changes in epithelial permeability when larvae reside in water of differing salt content. This latter observation suggests that Ssk and mesh play a role in the homeostatic control of salt and water balance in larval A. aegypti.

  19. Bacterial Communities and Midgut Microbiota Associated with Mosquito Populations from Waste Tires in East-Central Illinois.

    PubMed

    Kim, Chang-Hyun; Lampman, Richard L; Muturi, Ephantus J

    2015-01-01

    Mosquito-microbe interactions tend to influence larval nutrition, immunity, and development, as well as fitness and vectorial capacity of adults. Understanding the role of different bacterial species not only improves our knowledge of the physiological and ecological consequences of these interactions, but also provides the basis for developing novel strategies for controlling mosquito-borne diseases. We used culture-dependent and culture-independent techniques to characterize the bacterial composition and abundance in water and midgut samples of larval and adult females of Aedes japonicus (Theobald), Aedes triseriatus (Say), and Culex restuans (Theobald) collected from waste tires at two wooded study sites in Urbana, IL. The phylum-specific real-time quantitative polymerase chain reaction assay revealed a higher proportion of Actinobacteria and a lower proportion of gamma-Proteobacteria and Bacteroidetes in water samples and larval midguts compared to adult female midguts. Only 15 of the 57 bacterial species isolated in this study occurred in both study sites. The number of bacterial species was highest in water samples (28 species from Trelease Woods; 25 species from South Farms), intermediate in larval midguts (13 species from Ae. japonicus; 12 species from Ae. triseriatus; 8 species from Cx. restuans), and lowest in adult female midguts (2 species from Ae. japonicus; 3 species from Ae. triseriatus). These findings suggest that the composition and richness of bacterial communities varies both between habitats and among mosquito species and that the reduction in bacteria diversity during metamorphosis is more evident among bacteria detected using the culture-dependent method.

  20. Female-Specific Specialization of a Posterior End Region of the Midgut Symbiotic Organ in Plautia splendens and Allied Stinkbugs

    PubMed Central

    Hayashi, Toshinari; Hosokawa, Takahiro; Meng, Xian-Ying; Koga, Ryuichi

    2015-01-01

    Many stinkbugs (Insecta: Hemiptera: Heteroptera) are associated with bacterial symbionts in a posterior region of the midgut. In these stinkbugs, adult females excrete symbiont-containing materials from the anus for transmission of the beneficial symbionts to their offspring. For ensuring the vertical symbiont transmission, a variety of female-specific elaborate traits at the cellular, morphological, developmental, and behavioral levels have been reported from diverse stinkbugs of the families Plataspidae, Urostylididae, Parastrachiidae, etc. Meanwhile, such elaborate female-specific traits for vertical symbiont transmission have been poorly characterized for the largest and economically important stinkbug family Pentatomidae. Here, we investigated the midgut symbiotic system of a pentatomid stinkbug, Plautia splendens. A specific gammaproteobacterial symbiont was consistently present extracellularly in the cavity of numerous crypts arranged in four rows on the midgut fourth section. The symbiont was smeared on the egg surface upon oviposition by adult females, orally acquired by newborn nymphs, and thereby transmitted vertically to the next generation and important for growth and survival of the host insects. We found that, specifically in adult females, several rows of crypts at the posterior end region of the symbiotic midgut were morphologically differentiated and conspicuously enlarged, often discharging the symbiotic bacteria from the crypt cavity to the main tract of the symbiotic midgut. The female-specific enlarged end crypts were also found in other pentatomid stinkbugs Plautia stali and Carbula crassiventris. These results suggest that the enlarged end crypts represent a female-specific specialized morphological trait for vertical symbiont transmission commonly found among stinkbugs of the family Pentatomidae. PMID:25636847

  1. Affinity purification and characterization of a biodegradable plastic-degrading enzyme from a yeast isolated from the larval midgut of a stag beetle, Aegus laevicollis.

    PubMed

    Suzuki, Ken; Sakamoto, Hironori; Shinozaki, Yukiko; Tabata, Jun; Watanabe, Takashi; Mochizuki, Atsushi; Koitabashi, Motoo; Fujii, Takeshi; Tsushima, Seiya; Kitamoto, Hiroko K

    2013-09-01

    Two yeast strains, which have the ability to degrade biodegradable plastic films, were isolated from the larval midgut of a stag beetle, Aegus laevicollis. Both of them are most closely related to Cryptococcus magnus and could degrade biodegradable plastic (BP) films made of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA) effectively. A BP-degrading enzyme was purified from the culture broth of one of the isolated strains employing a newly developed affinity purification method based on the binding action of the enzyme to the substrate (emulsified PBSA) and its subsequent degradative action toward the substrate. Partial amino acid sequences of this enzyme suggested that it belongs to the cutinase family, and thus, the enzyme was named CmCut1. It has a molecular mass of 21 kDa and a degradative activity for emulsified PBSA which was significantly enhanced by the simultaneous presence of Ca(2+) or Mg(2+) at a concentration of about 2.5 mM. Its optimal pH was 7.5, and the optimal temperature was 40 °C. It showed a broad substrate specificity for p-nitrophenyl (pNP)-fatty acid esters ranging from pNP-acetate (C2) to pNP-stearate (C18) and films of PBSA, PBS, poly(ε-caprolactone), and poly(lactic acid).

  2. The ultrastructure of the midgut glands in Ligia italica (Isopoda) under different nutritional conditions

    NASA Astrophysics Data System (ADS)

    Štrus, J.; Burkhardt, P.; Storch, V.

    1985-12-01

    After a period of food deprivation, Ligia italica were refed for 2 days with different diets and their midgut glands were examined under the electron microscope with special reference to the large cells. The predominant features are the following: extended glycogen fields after sucrose-diet; numerous lipid droplets and peroxisome-like vesicles after lipid-diet (butter); swollen mitochondria and a great number of pinocytotic vesicles after protein diet (curds); electron dense vesicles and myelin bodies after the uptake of Escherichia coli. In contrast to amphipods, the intertidal isopod L. italica is not able to digest cellulose, as the cell ultrastructure exhibits all features of starved animals, as well as that following feeding with lignin.

  3. Mid-gut ACTH-secreting neuroendocrine tumor unmasked with 18F-dihydroxyphenylalanine-positron emission tomography

    PubMed Central

    Gomez, Fulgencio; Prior, John O; Boubaker, Ariane; Matter, Maurice; Monti, Matteo; Pu, Yan; Pitteloud, Nelly; Portmann, Luc

    2015-01-01

    Summary Ectopic ACTH Cushing's syndrome (EAS) is often caused by neuroendocrine tumors (NETs) of lungs, pancreas, thymus, and other less frequent locations. Localizing the source of ACTH can be challenging. A 64-year-old man presented with rapidly progressing fatigue, muscular weakness, and dyspnea. He was in poor condition and showed facial redness, proximal amyotrophy, and bruises. Laboratory disclosed hypokalemia, metabolic alkalosis, and markedly elevated ACTH and cortisol levels. Pituitary was normal on magnetic resonance imaging (MRI), and bilateral inferior petrosal sinus blood sampling with corticotropin-releasing hormone stimulation showed no significant central-to-periphery gradient of ACTH. Head and neck, thoracic and abdominal computerized tomography (CT), MRI, somatostatin receptor scintigraphy (SSRS), and 18F-deoxyglucose-positron emission tomography (FDG-PET) failed to identify the primary tumor. 18F-dihydroxyphenylalanine (F-DOPA)-PET/CT unveiled a 20-mm nodule in the jejunum and a metastatic lymph node. Segmental jejunum resection showed two adjacent NETs, measuring 2.0 and 0.5 cm with a peritoneal metastasis. The largest tumor expressed ACTH in 30% of cells. Following surgery, after a transient adrenal insufficiency, ACTH and cortisol levels returned to normal values and remain normal over a follow-up of 26 months. Small mid-gut NETs are difficult to localize on CT or MRI, and require metabolic imaging. Owing to low mitotic activity, NETs are generally poor candidates for FDG-PET, whereas SSRS shows poor sensitivity in EAS due to intrinsically low tumor concentration of type-2 somatostatin receptors (SST2) or to receptor down regulation by excess cortisol. However, F-DOPA-PET, which is related to amine precursor uptake by NETs, has been reported to have high positive predictive value for occult EAS despite low sensitivity, and constitutes a useful alternative to more conventional methods of tumor localization. Learning points Uncontrolled high

  4. Interaction between Host Complement and Mosquito-Midgut-Stage Plasmodium berghei

    PubMed Central

    Margos, Gabriele; Navarette, Sandra; Butcher, Geoff; Davies, Alex; Willers, Christine; Sinden, Robert E.; Lachmann, Peter J.

    2001-01-01

    After ingestion by mosquitoes, gametocytes of malaria parasites become activated and form extracellular gametes that are no longer protected by the red blood cell membrane against immune effectors of host blood. We have studied the action of complement on Plasmodium developmental stages in the mosquito blood meal using the rodent malaria parasite Plasmodium berghei and rat complement as a model. We have shown that in the mosquito midgut, rat complement components necessary to initiate the alternative pathway (factor B, factor D, and C3) as well as C5 are present for several hours following ingestion of P. berghei-infected rat blood. In culture, 30 to 50% of mosquito midgut stages of P. berghei survived complement exposure during the first 3 h of development. Subsequently, parasites became increasingly sensitive to complement lysis. To investigate the mechanisms involved in their protection, we tested for C3 deposition on parasite surfaces and whether host CD59 (a potent inhibitor of the complement membrane attack complex present on red blood cells) was taken up by gametes while emerging from the host cell. Between 0.5 and 22 h, 90% of Pbs21-positive parasites were positive for C3. While rat red and white blood cells stained positive for CD59, Pbs21-positive parasites were negative for CD59. In addition, exposure of parasites to rat complement in the presence of anti-rat CD59 antibodies did not increase lysis. These data suggest that parasite or host molecules other than CD59 are responsible for the protection of malaria parasites against complement-mediated lysis. Ongoing research aims to identify these molecules. PMID:11447187

  5. A Lectin from Dioclea violacea Interacts with Midgut Surface of Lutzomyia migonei, Unlike Its Homologues, Cratylia floribunda Lectin and Canavalia gladiata Lectin

    PubMed Central

    Monteiro Tínel, Juliana Montezuma Barbosa; Benevides, Melina Fechine Costa; Frutuoso, Mércia Sindeaux; Rocha, Camila Farias; Arruda, Francisco Vassiliepe Sousa; Vasconcelos, Mayron Alves; Pereira-Junior, Francisco Nascimento; Cajazeiras, João Batista; do Nascimento, Kyria Santiago; Martins, Jorge Luiz; Teixeira, Edson Holanda; Cavada, Benildo Sousa; dos Santos, Ricardo Pires; Lima Pompeu, Margarida Maria

    2014-01-01

    Leishmaniasis is a vector-borne disease transmitted by phlebotomine sand fly. Susceptibility and refractoriness to Leishmania depend on the outcome of multiple interactions that take place within the sand fly gut. Promastigote attachment to sand fly midgut epithelium is essential to avoid being excreted together with the digested blood meal. Promastigote and gut sand fly surface glycans are important ligands in this attachment. The purpose of the present study was to evaluate the interaction of three lectins isolated from leguminous seeds (Diocleinae subtribe), D-glucose and D-mannose-binding, with glycans on Lutzomyia migonei midgut. To study this interaction the lectins were labeled with FITC and a fluorescence assay was performed. The results showed that only Dioclea violacea lectin (DVL) was able to interact with midgut glycans, unlike Cratylia floribunda lectin (CFL) and Canavalia gladiata lectin (CGL). Furthermore, when DVL was blocked with D-mannose the interaction was inhibited. Differences of spatial arrangement of residues and volume of carbohydrate recognition domain (CRD) may be the cause of the fine specificity of DVL for glycans in the surface on Lu. migonei midgut. The findings in this study showed the presence of glycans in the midgut with glucose/mannose residues in its composition and these residues may be important in interaction between Lu. migonei midgut and Leishmania. PMID:25431778

  6. Effect of anti-mosquito midgut antibodies on development of malaria parasite, Plasmodium vivax and fecundity in vector mosquito Anopheles culicifacies (Diptera: culicidae).

    PubMed

    Chugh, Manoj; Adak, T; Sehrawat, Neelam; Gakhar, S K

    2011-04-01

    The effect of anti-mosquito-midgut antibodies on the development of the malaria parasite, P. vivax was studied by feeding the vector mosquito, An. culicifacies with infected blood supplemented with serum from immunized rabbits. In order to get antisera, rabbits were immunized with midgut proteins of three siblings species of Anopheles culicifacies, reported to exhibit differential vectorial capacity. The mosquitoes that ingested anti-midgut antibodies along with infectious parasites had significantly fewer oocysts compared to the control group of mosquitoes. The immunized rabbits generated high titer of antibodies. Their cross reactivity amongst various tissues of the same species and with other sibling species was also determined. Immunogenic polypeptides expressed in the midgut of glucose or blood fed An. culicifacies sibling species were identified by Western blotting. One immunogenic polypeptide of 62 kDa was exclusively present in the midgut of species A. Similarly, three polypeptides of 97, 94 and 58 kDa and one polypeptide of 23 kDa were present exclusively in species B and C respectively. Immunoelectron microscopy revealed the localization of these antigens on baso-lateral membrane and microvilli. The effects of anti-mosquito midgut antibodies on fecundity, longevity, mortality and engorgement of mosquitoes were studied. Fecundity was also reduced significantly. These observations open an avenue for research toward the development of a vector-based malaria parasite transmission-blocking vaccine.

  7. Genotoxic effects of starvation and dimethoate in haemocytes and midgut gland cells of wolf spider Xerolycosa nemoralis (Lycosidae).

    PubMed

    Wilczek, Grażyna; Mędrzak, Monika; Augustyniak, Maria; Wilczek, Piotr; Stalmach, Monika

    2016-06-01

    The aim of this study was to assess the genotoxic effects of starvation and dimethoate (organophosphate insecticide) in female and male wolf spiders Xerolycosa nemoralis (Lycosidae) exposed to the stressors under laboratory conditions. DNA damage was measured in haemocytes and midgut gland cells using the comet assay. In response to the two stressing factors, both cell types showed %TDNA, tail length (TL) and OTM values higher in males than in females. Level of DNA damage in haemocytes was greater than in midgut gland cells. In both sexes, the strongest genotoxicity was recorded at single application of dimethoate. After five-time exposure to the pesticide, genotoxic effects of a single dose were sustained in males and reduced to the control level in females. Starvation stress was well tolerated by the females, in which neither cell type was affected by DNA damage. However, in male haemocytes food deprivation induced severe DNA damage, what suggests suppression of the defence potential at prolonged starvation periods.

  8. Alteration of carbohydrates metabolism and midgut glucose absorption in Gromphadorhina portentosa after subchronic exposure to imidacloprid and fenitrothion.

    PubMed

    Sawczyn, Tomasz; Dolezych, Bogdan; Klosok, Marcin; Augustyniak, Maria; Stygar, Dominika; Buldak, Rafal J; Kukla, Michal; Michalczyk, Katarzyna; Karcz-Socha, Iwona; Zwirska-Korczala, Krystyna

    2012-01-01

    This study was undertaken to test the hypothesis that following exposure to insecticides, changes take place in the metabolism of carbohydrates and absorption in the midgut of insects. The Madagascar hissing cockroach (Gromphadorhina portentosa) was chosen for the experiment as a model organism, due to it being easy to breed and its relatively large alimentary tract, which was important when preparing the microperfusion midgut bioassay. In each group of cockroaches treated with imidacloprid and fenitrothion, absorption of glucose, expressed as the area under the curve (AUC), was elevated compared to the control group. Glucose in the hemolymph of the examined insects was present in a vestigial amount, often below the threshold of determination, so the determinable carbohydrate indices were: hemolymph trehalose concentration and fat body glycogen content. The level of trehalose found in the hemolymph of insects when exposed to fenitrothion, and irrespective of the level of concentration mixed into food, were significantly lower when comparing to the control samples. Imidacloprid acted analogically with one exception at the concentration of 10 mg·kg(-1) dry food where trehalose concentration did not differ from the control values. Coupling with fat body glycogen concentration was less visible and appeared only at the concentrations of 5 and 10 mg imidacloprid·kg(-1) dry food. As described in this study changes in the sugar distribution and midgut glucose absorption indicate that insects cover the increased energy needs induced by insecticides; also at the gastrointestinal tract level. The result indicates that the midgut glucose absorption parameters could be considered as a non-specific biomarker of insecticide toxicity.

  9. Anopheles gambiae collagen IV genes: cloning, phylogeny and midgut expression associated with blood feeding and Plasmodium infection.

    PubMed

    Gare, D C; Piertney, S B; Billingsley, P F

    2003-07-01

    A prerequisite for understanding the role that mosquito midgut extracellular matrix molecules play in malaria parasite development is proper isolation and characterisation of the genes coding for components of the basal lamina. Here we have identified genes coding for alpha1 and alpha2 chains of collagen IV from the major malaria vector, Anopheles gambiae. Conserved sequences in the terminal NC1 domain were used to obtain partial gene sequences of this functional region, and full sequence was isolated from a pupal cDNA library. In a DNA-derived phylogeny, the alpha1 and alpha2 chains cluster with dipteran orthologs, and the alpha2 is ancestral. The expression of collagen alpha1(IV) peaked during the pupal stage of mosquito development, and was expressed continuously in the adult female following a blood meal with a further rise detected in older mosquitoes. Collagen alpha1(IV) is also upregulated when the early oocyst of Plasmodium yoelii was developing within the mosquito midgut and may contribute to a larger wound healing response. A model describing the expression of basal lamina proteins during oocyst development is presented, and we hypothesise that the development of new basal lamina between the oocyst and midgut epithelium is akin to a wound healing process.

  10. The effect of starvation and re-feeding on mitochondrial potential in the midgut of Neocaridina davidi (Crustacea, Malacostraca)

    PubMed Central

    Włodarczyk, Agnieszka; Sonakowska, Lidia; Kamińska, Karolina; Marchewka, Angelika; Wilczek, Grażyna; Wilczek, Piotr; Student, Sebastian; Rost-Roszkowska, Magdalena

    2017-01-01

    The midgut in the freshwater shrimp Neocaridina davidi (previously named N. heteropoda) (Crustacea, Malacostraca) is composed of a tube-shaped intestine and a large hepatopancreas that is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous papers, while here we focused on the ultrastructural changes that occurred in the midgut epithelial cells (D-cells in the intestine, B- and F- cells in the hepatopancreas) after long-term starvation and re-feeding. We used transmission electron microscopy, light and confocal microscopes and flow cytometry to describe all of the changes that occurred due to the stressor with special emphasis on mitochondrial alterations. A quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is a relationship between starvation, re-feeding and the inactivation/activation of mitochondria. The results of our studies showed that in the freshwater shrimp N. davidi that were analyzed, long-term starvation activates the degeneration of epithelial cells at the ultrastructural level and causes an increase of cells with depolarized (non-active) mitochondria. The process of re-feeding leads to the gradual regeneration of the cytoplasm of the midgut epithelial cells; however, these changes were observed at the ultrastructural level. Additionally, re-feeding causes the regeneration of mitochondrial ultrastructure. Therefore, we can state that the increase in the number of cells with polarized mitochondria occurs slowly and does not depend on ultrastructural alterations. PMID:28282457

  11. Phoxim-induced damages of Bombyx mori larval midgut and titanium dioxide nanoparticles protective role under phoxim-induced toxicity.

    PubMed

    Su, Junju; Li, Bing; Cheng, Shen; Zhu, Zhou; Sang, Xuezi; Gui, Suxin; Xie, Yi; Sun, Qingqing; Cheng, Zhe; Cheng, Jie; Hu, Rengping; Shen, Weide; Xia, Qingyou; Zhao, Ping; Hong, Fashui

    2014-12-01

    Phoxim (O,O-diethyl O-(alpha-cyanobenzylideneamino) phosphorothioate) is a powerful organophosphorus pesticide with high potential for Bombyx mori larvae of silkworm exposure. However, it is possible that during the phoxim metabolism, there is generation of reactive oxygen species (ROS) and phoxim may produce oxidative stress and neurotoxicity in an intoxicated silkworm. Titanium dioxide nanoparticles (TiO2 NPs) pretreatment has been demonstrated to increase antioxidant capacity and acetylcholinesterase (AChE) activity in organisms. This study was, therefore, undertaken to determine phoxim-induced oxidative stress and neurotoxicity to determine whether phoxim intoxication alters the antioxidant system and AChE activity in the B. mori larval midgut, and to determine whether TiO2 NPs pretreatment attenuates phoxim-induced toxicity. The findings suggested that phoxim exposure decreased survival of B. mori larvae, increased malondialdehyde (MDA), carbonyl and 8-OHdG levels, and ROS accumulation in the midgut. Furthermore, phoxim significantly decreased the activities of AChE, superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), glutathione-S-transferase (GST), and levels of ascorbic acid (AsA), reduced glutathione (GSH), and thiol in the midgut. TiO2 pretreatment, however, could increase AChE activity, and remove ROS via activating SOD, CAT, APX, GR, and GST, and accelerating AsA-GSH cycle, thus attenuated lipid, protein, and DNA peroxidation and improve B. mori larval survival under phoxim-induced toxicity. Moreover, this experimental system would help nanomaterials to be applied in the sericulture.

  12. Large accumulations of maize streak virus in the filter chamber and midgut cells of the leafhopper vector Cicadulina mbila.

    PubMed

    Ammar, El-Desouky; Gargani, Daniel; Lett, Jean M; Peterschmitt, Michel

    2009-01-01

    Maize streak virus (MSV, Mastrevirus, Geminiviridae) is persistently transmitted by Cicadulina mbila, apparently without propagation in its leafhopper vector. MSV was shown earlier by quantitative PCR to accumulate in the alimentary canal of C. mbila. We examined the alimentary canals of C. mbila leafhoppers that acquired MSV from diseased plants for various acquisition access periods (AAP) by immunofluorescence confocal laser scanning microscopy (iCLSM) and by immunogold labelling transmission electron microscopy (iTEM). Following a 7-day AAP and a 7-day inoculation period (IP) on healthy seedlings, MSV was detected by iCLSM mainly in the filter chamber and anterior midgut. Using iTEM, large accumulations of MSV particles, usually enclosed in membranous vesicles, were detected only in cells of the midgut, inside and outside the filter chamber, following 14- or 30-day AAPs, and also following 7-day AAP and 7-day IP on healthy plants. No virus was detected in the control non-vector species C. chinaï. Coated pits or vesicles, typical of clathrin-mediated endocytosis, were not observed. We discuss an alternative endocytosis pathway and suggest that the MSV accumulations are stored in endosomes in the midgut epithelial cells.

  13. Recognition and binding of the PF2 lectin to α-amylase from Zabrotes subfasciatus (Coleoptera:Bruchidae) larval midgut.

    PubMed

    Lagarda-Diaz, I; Geiser, D; Guzman-Partida, A M; Winzerling, J; Vazquez-Moreno, L

    2014-01-01

    Amylases are an important family of enzymes involved in insect carbohydrate metabolism that are required for the survival of insect larvae. For this reason, enzymes from starch-dependent insects are targets for insecticidal control. PF2 (Olneya tesota) is a lectin that is toxic to Zabrotes subfasciatus (Coleoptera: Bruchidae) larvae. In this study, we evaluated recognition of the PF2 lectin to α-amylases from Z. subfasciatus midgut and the effect of PF2 on α-amylase activity. PF2 caused a decrease of total amylase activity in vitro. Subsequently, several α-amylase isoforms were isolated from insect midgut tissues using ion exchange chromatography. Three enzyme isoforms were verified by an in-gel assay for amylase activity; however, only one isoform was recognized by antiamylase serum and PF2. The identity of this Z. subfasciatus α-amylase was confirmed by liquid chromatography-tandem mass spectrometry. The findings strongly suggest that a glycosylated α-amylase isoform from larval Z. subfasciatus midgut interacts with PF2, which interferes with starch digestion.

  14. Baculoviral mid-gut gland necrosis (BMN) of kuruma shrimp (Penaeus japonicus) larvae in Japanese intensive culture systems

    NASA Astrophysics Data System (ADS)

    Sano, T.; Nishimura, T.; Fukuda, H.; Hayashida, T.; Momoyama, K.

    1984-03-01

    In many shrimp farms in the Kyushu and Chugoku areas of Japan, the so-called mid-gut gland cloudy disease of kuruma shrimp larvae (Penaeus japonicus) has occurred since 1971. The pathological changes associated with this baculoviral mid-gut gland necrosis (BMN) are extensive cellular necrosis, collapse of mid-gut gland cells, nuclear hypertrophy and finally karyorrhexis. Electron microscopic examination revealed the presence of virions and virogenic stages in the affected nuclei. Average length and diameter of the virions detected was 310 and 72 nm, respectively; nucleocapsids were 250 nm in size. Virions enclosing 2 nucleocapsids within a single envelope were rarely found. The spirally arranged capsomeres were at an angle of 37 to 38° to a horizontal line meeting at right angles with the long axis of the virion. Infectivity trials resulted in high mortality of healthy mysis and juveniles (2nd post-larval stage). Juveniles at the 9th post-larval stage showed no mortality, although they could be infected easily by the agent. Hypertrophied nuclei in squashed and stained preparations of the affected gland cells can be considered to be of reliable presumptive diagnostic character, and fluorescent antibody staining can be employed to confirm the diagnosis of BMN.

  15. Isolation and characterization of bacteria from midgut of the rice water weevil (Coleoptera: Curculionidae).

    PubMed

    Lu, Fang; Kang, Xiaoying; Jiang, Cong; Lou, Binggan; Jiang, Mingxing; Way, Michael O

    2013-10-01

    Gut bacteria are known to play important and often essential roles in the biology of insects. Theoretically, they can be genetically manipulated, then reintroduced into insects to negatively modify specific biological features. The weevil superfamily Curculionoidea is one of the most species-rich and successful animal groups on earth, but currently the overall knowledge of the bacterial communities in weevils and their associations with hosts is still limited. In this study, we isolated and characterized the bacteria in the midgut of an invasive weevil, Lissorhoptrus oryzophilus Kuschel, by culturing methods. Female adults of this weevil were collected from four different geographic regions of the United States and mainland China. Sequencing of the bacterial 16S rRNA amplicons demonstrated that the major culturable gut bacteria of rice water weevil are γ-proteobacteria and Bacilli. The gut bacterial composition differs among regions, with many of the bacteria isolated from only a single region while several were detected from more than one region. Overall, the diversity of gut bacteria in rice water weevil is relatively low. The possible origins of certain bacteria are discussed in relation to the weevil, rice plant, and bacteria.

  16. In vitro lipid transfer between lipoproteins and midgut-diverticula in the spider Polybetes pythagoricus.

    PubMed

    Laino, Aldana; Cunningham, Mónica L; Heras, Horacio; Garcia, Fernando

    2011-12-01

    It has been already reported that most hemolymphatic lipids in the spider Polybetes pythagoricus are transported by HDL1 and VHDL lipoproteins. We studied in vitro the lipid transfer among midgut-diverticula (M-diverticula), and either hemolymph or purified lipoproteins as well as between hemolymphatic lipoproteins. M-diverticula and hemolymph were labeled by in vivo (14)C-palmitic acid injection. In vitro incubations were performed between M-diverticula and either hemolymph or isolated lipoproteins. Hemolymph lipid uptake was associated to HDL1 (67%) and VHDL (32%). Release from hemolymph towards M-diverticula showed the opposite trend, VHDL 75% and HDL1 45%. Isolated lipoproteins showed a similar behavior to that observed with whole hemolymph. Lipid transfer between lipoproteins showed that HDL1 transfer more (14)C-lipids to VHDL than vice versa. Only 38% FFA and 18% TAG were transferred from M-diverticula to lipoproteins, while on the contrary 75% and 73% of these lipids, respectively, were taken up from hemolymph. A similar trend was observed regarding lipoprotein phospholipids. This study supports the hypothesis that HDL1 and hemocyanin-containing VHDL are involved in the uptake and release of FFA, phospholipids and triacylglycerols in the spider P. pythagoricus. The data support a directional flow of lipids from HDL1 and VHDL suggesting a mode of lipid transport between lipoproteins and M-diverticula.

  17. Triterpene acids from apple peel inhibit lepidopteran larval midgut lipases and larval growth.

    PubMed

    Christeller, John T; McGhie, Tony K; Poulton, Joanne; Markwick, Ngaire P

    2014-07-01

    Fruit extracts from apple, kiwifruit, feijoa, boysenberry, and blueberry were screened for the presence of lipase inhibitory compounds against lepidopteran larval midgut crude extracts. From 120 extracts, six showed significant inhibition with an extract from the peel of Malus × domestica cv. "Big Red" showing highest levels of inhibition. Because this sample was the only apple peel sample in the initial screen, a survey of peels from seven apple cultivars was undertaken and showed that, despite considerable variation, all had inhibitory activity. Successive solvent fractionation and LC-MS of cv. "Big Red" apple peel extract identified triterpene acids as the most important inhibitory compounds, of which ursolic acid and oleanolic acid were the major components and oxo- and hydroxyl-triterpene acids were minor components. When ursolic acid was incorporated into artificial diet and fed to Epiphyas postvittana Walker (Tortricidae: Lepidoptera) larvae at 0.16% w/v, a significant decrease in larval weight was observed after 21 days. This concentration of ursolic acid is less than half the concentration reported in the skin of some apple cultivars.

  18. Starvation induces apoptosis in the midgut nidi of Periplaneta americana: a histochemical and ultrastructural study.

    PubMed

    Park, Moon Soo; Park, Pyoyun; Takeda, Makio

    2009-03-01

    The effects of starvation on cell death in the midgut of Periplaneta americana were studied histochemically and ultrastructurally. TUNEL assays showed that cell death began to increase in the columnar cells and nidi, the nests of stem cells and newborn cells from 2 weeks of starvation. A significant increase in cell death occurred in the nidi after 4 weeks of starvation. Cockroaches starved for 4 weeks showed active-caspase-3-like immuno-reactivity both in the columnar cells and nidi, whereas control cockroaches that were fed for 4 weeks showed this reactivity only in the apical cytoplasm of columnar cells. Electron microscopy revealed no chromatin condensation in the nucleus of columnar cells of cockroaches, whether fed or starved for 4 weeks. Starved cockroaches exhibited many small vacuoles in the cytoplasm of some columnar cells and "floating" organelles including nuclei in the lumen. A 4-week starvation induced the appearance of cytoplasmic fragmentation and secondary lysosomes in the nidi. Each fragment contained nuclear derivatives with condensed chromatin, i.e. apoptotic bodies. Mitotic cells were found in some, but not all nidi, even within the same starved sample. Fragmentation was not observed in the nidi of control cockroaches. Thus, starvation increases cell death not only in the columnar cells, but also in the nidi. The cell death in the nidi is presumably apoptosis executed by caspase 3.

  19. Rhynchophorus ferrugineus midgut cell line to evaluate insecticidal potency of different plant essential oils.

    PubMed

    Rizwan-ul-Haq, Muhammad; Aljabr, Ahmed Mohammed

    2015-03-01

    Cell cultures can be a potent and strong tool to evaluate the insecticidal efficiency of natural products. Plant essential oils have long been used as the fragrance or curative products around the world which means that they are safer to be used in close proximity of humans and mammals. In this study, a midgut cell line, developed from Rhynchophorus ferrugineus (RPW-1), was used for screening essential oils from nine different plants. Assays revealed that higher cell mortality was observed at 500 ppm which reached to 86, 65, 60, 59, 56, 54, 54, 53, and 53%, whereas lowest cell mortality at 1 ppm remained at 41, 23, 20, 17, 16, 15, 14, 13, and 10%, for Azadirachta indica, Piper nigrum, Mentha spicata, Cammiphora myrrha, Elettaria cardamomum, Zingiber officinale, Curcuma longa, Schinus molle, and Rosmarinus officinalis, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay revealed the percentage of cell growth inhibition was highest at 500 ppm and remained at 48, 45, 42, 37, 34, 29, 24, 22, and 18% against A. indica, P. nigrum, M. spicata, C. myrrha, E. cardamomum, Z. officinale, C. longa, S. molle, and R. officinalis, respectively. Lowest LC50 value (7.98 ppm) was found for A. indica, whereas the highest LC50 (483.11 ppm) was against R. officinalis. Thus, in this study, essential oils of A. indica exhibited the highest levels of toxicity, whereas those from R. officinalis exhibited the lowest levels of toxicity toward RPW-1 cells.

  20. Screening and Molecular Cloning of a Protective Antigen from the Midgut of Haemaphysalis longicornis

    PubMed Central

    Hu, Yonghong; Zhang, Jincheng; Yang, Shujie; Wang, Hui; Zeng, Hua; Zhang, Tiantian

    2013-01-01

    Vaccination is considered a promising alternative for controlling tick infestations. Haemaphysalis longicornis midgut proteins separated by SDS-PAGE and transferred to polyvinylidene difluoride (PVDF) membrane were screened for protective value against bites. The western blot demonstrated the immunogenicity of 92 kDa protein (P92). The analysis of the P92 amino acid sequence by LC-MS/MS indicated that it was a H. longicornis paramyosin (Hl-Pmy). The full lenghth cDNA of Hl-Pmy was obtained by rapid amplification of cDNA ends (RACE) which consisted of 2,783 bp with a 161 bp 3' untranslated region. Sequence alignment of tick paramyosin (Pmy) showed that Hl-Pmy shared a high level of conservation among ticks. Comparison with the protective epitope sequence of other invertebrate Pmy, it was calculated that the protective epitope of Hl-Pmy was a peptide (LEEAEGSSETVVEMNKKRDTE) named LEE, which was close to the N-terminal of Hl-Pmy protein. The secondary structure analysis suggested that LEE had non-helical segments within an α-helical structure. These results provide the basis for developing a vaccine against biting H. longicornis ticks. PMID:23864744

  1. Ookinete-induced midgut peroxidases detonate the time bomb in anopheline mosquitoes.

    PubMed

    Kumar, Sanjeev; Barillas-Mury, Carolina

    2005-07-01

    Previous analysis of the temporal-spatial relationship between ookinete migration and the cellular localization of genes mediating midgut immune defense responses suggested that, in order to survive, parasites must complete invasion before toxic chemicals ("a bomb") are generated by the invaded cell. Recent studies indicate that ookinete invasion induces tyrosine nitration as a two-step reaction, in which NOS induction is followed by a localized increase in peroxidase activity. Peroxidases utilize nitrite and hydrogen peroxide as substrates, and detonate the time bomb by generating reactive nitrogen intermediates, such as nitrogen dioxide, which mediate nitration. There is evidence that peroxidases also mediate antimicrobial responses to bacteria, fungi and parasites in a broad range of biological systems including humans and plants. Defense reactions that generate toxic chemicals are also potentially harmful to the host mounting the response and often results in apoptosis. The two-step nitration pathway is probably an ancient response, as it has also been described in vertebrate leukocytes and probably evolved as a mechanism to circumscribe the toxic products generated during defense responses involving protein nitration.

  2. Vaccinia mature virus fusion regulator A26 protein binds to A16 and G9 proteins of the viral entry fusion complex and dissociates from mature virions at low pH.

    PubMed

    Chang, Shu-Jung; Shih, Ao-Chun; Tang, Yin-Liang; Chang, Wen

    2012-04-01

    Vaccinia mature virus enters cells through either endocytosis or plasma membrane fusion, depending on virus strain and cell type. Our previous results showed that vaccinia virus mature virions containing viral A26 protein enter HeLa cells preferentially through endocytosis, whereas mature virions lacking A26 protein enter through plasma membrane fusion, leading us to propose that A26 acts as an acid-sensitive fusion suppressor for mature virus (S. J. Chang, Y. X. Chang, R. Izmailyan R, Y. L. Tang, and W. Chang, J. Virol. 84:8422-8432, 2010). In the present study, we investigated the fusion suppression mechanism of A26 protein. We found that A26 protein was coimmunoprecipitated with multiple components of the viral entry-fusion complex (EFC) in infected HeLa cells. Transient expression of viral EFC components in HeLa cells revealed that vaccinia virus A26 protein interacted directly with A16 and G9 but not with G3, L5 and H2 proteins of the EFC components. Consistently, a glutathione S-transferase (GST)-A26 fusion protein, but not GST, pulled down A16 and G9 proteins individually in vitro. Together, our results supported the idea that A26 protein binds to A16 and G9 protein at neutral pH contributing to suppression of vaccinia virus-triggered membrane fusion from without. Since vaccinia virus extracellular envelope proteins A56/K2 were recently shown to bind to the A16/G9 subcomplex to suppress virus-induced fusion from within, our results also highlight an evolutionary convergence in which vaccinia viral fusion suppressor proteins regulate membrane fusion by targeting the A16 and G9 components of the viral EFC complex. Finally, we provide evidence that acid (pH 4.7) treatment induced A26 protein and A26-A27 protein complexes of 70 kDa and 90 kDa to dissociate from mature virions, suggesting that the structure of A26 protein is acid sensitive.

  3. Spatial distribution of digestive proteinases in the midgut of the Pacific white shrimp (Litopenaeus vannamei) indicates the existence of endo-ectoperitrophic circulation in Crustacea.

    PubMed

    Alexandre, Daniel; Ozório, Renata A; Derner, Roberto B; Fracalossi, Débora M; Oliveira, Gabriel B; Samuels, Richard I; Terra, Walter R; Silva, Carlos P

    2014-01-01

    The effect of dietary protein concentration on the spatial distribution of digestive proteinases in the shrimp Litopenaeus vannamei indicates the existence of endo-ectoperitrophic enzyme circulation in this species. Samples recovered from the midgut gland tissues, stomach contents, three different portions of the midgut and feces were used for quantitative and qualitative analyses of the composition and distribution of the digestive proteinases. Animals were divided into three different groups: (1) animals (controls) fed with a commercial 35% protein diet, (2) animals fed with a commercial diet supplemented with ovalbumin to a final protein concentration of 60%; (3) animals fed with an 80% protein diet. Quantitative determinations using different substrates and zymograms showed that increasing protein concentration in the diet alters the distribution of proteinases along the digestive tract. Composition of proteinases in the midgut gland, stomach contents, midgut sections and feces were similar, but not identical. Chymotrypsin and trypsin paralogues were identified in all enzyme sources in a concentration gradient along the midgut in the control shrimp, the expected distribution supporting the existence of a recycling mechanism. The occurrence of a peritrophic membrane in other Decapoda suggests that endo-ectoperitrophic circulation of digestive enzymes and nutrients may also occur in other crustaceans and also extends beyond the Insecta.

  4. Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates.

    PubMed

    Chavshin, Ali Reza; Oshaghi, Mohammad Ali; Vatandoost, Hasan; Pourmand, Mohammad Reza; Raeisi, Ahmad; Enayati, Ahmad Ali; Mardani, Nadia; Ghoorchian, Sadigheh

    2012-02-01

    To describe the midgut microbial diversity and to find the candidate bacteria for the genetic manipulation for the generation of paratransgenic Anopheline mosquitoes refractory to transmission of malaria, the microbiota of wild larvae and adult Anopheles stephensi mosquito midgut from southern Iran was studied using a conventional cell-free culture technique and analysis of a 16S ribosomal RNA (rRNA) gene sequence library. Forty species in 12 genera including seven Gram-negative Myroides, Chryseobacterium, Aeromonas, Pseudomonas, Klebsiella, Enterobacter and Shewanella and five Gram-positive Exiguobacterium, Enterococcus, Kocuria, Microbacterium and Rhodococcus bacteria were identified in the microbiota of the larvae midgut. Analysis of the adult midgut microbiota revealed presence of 25 Gram-negative species in five genera including Pseudomonas, Alcaligenes, Bordetella, Myroides and Aeromonas. Pseudomonas and Exiguobacterium with a frequency of 51% and 14% at the larval stage and Pseudomonas and Aeromonas with a frequency of 54% and 20% at the adult stage were the most common midgut symbionts. Pseudomonas, Aeromonas and Myroides genera have been isolated from both larvae and adult stages indicating possible trans-stadial transmission from larva to adult stage. Fast growth in cheap media, Gram negative, and being dominantly found in both larvae and adult stages, and presence in other malaria vectors makes Pseudomonas as a proper candidate for paratransgenesis of An. stephensi and other malaria vectors.

  5. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth.

    PubMed

    Guo, Zhaojiang; Kang, Shi; Chen, Defeng; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhu, Xun; Baxter, Simon W; Zhou, Xuguo; Jurat-Fuentes, Juan Luis; Zhang, Youjun

    2015-04-01

    Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella.

  6. Intracellular pH in sperm physiology.

    PubMed

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L; Darszon, Alberto

    2014-08-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction.

  7. Elizabethkingia anophelis sp. nov., isolated from the midgut of the mosquito Anopheles gambiae.

    PubMed

    Kämpfer, Peter; Matthews, Holly; Glaeser, Stefanie P; Martin, Karin; Lodders, Nicole; Faye, Ingrid

    2011-11-01

    The taxonomic position, growth characteristics and antibiotic resistance properties of a slightly yellow-pigmented bacterial strain, designated R26(T), isolated from the midgut of the mosquito Anopheles gambiae, were studied. The isolate produced rod-shaped cells, which stained Gram-negative. The bacterium had two growth optima at 30-31 °C and 37 °C. Strain R26(T) demonstrated natural antibiotic resistance to ampicillin, chloramphenicol, kanamycin, streptomycin and tetracycline. 16S rRNA gene sequence analysis revealed that the isolate showed 98.6 % sequence similarity to that of Elizabethkingia meningoseptica ATCC 13253(T) and 98.2 % similarity to that of Elizabethkingia miricola GTC 862(T). The major fatty acids of strain R26(T) were iso-C(15 : 0), iso-C(17 : 0) 3-OH and summed feature 4 (iso-C(15 : 0) 2-OH and/or C(16 : 1)ω7c/t). Strain R26(T) contained only menaquinone MK-6 and showed a complex polar lipid profile consisting of diphosphatidylglycerol, phosphatidylinositol, an unknown phospholipid and unknown polar lipids and glycolipids. DNA-DNA hybridization experiments with E. meningoseptica CCUG 214(T) ( = ATCC 13253(T)) and E. miricola KCTC 12492(T) ( = GTC 862(T)) gave relatedness values of 34.5 % (reciprocal 41.5 %) and 35.0 % (reciprocal 25.7 %), respectively. DNA-DNA hybridization results and some differentiating biochemical properties indicate that strain R26(T) represents a novel species, for which the name Elizabethkingia anophelis sp. nov. is proposed. The type strain is R26(T) ( = CCUG 60038(T) = CCM 7804(T)).

  8. AACE/ACE DISEASE STATE CLINICAL REVIEW: DIAGNOSIS AND MANAGEMENT OF MIDGUT CARCINOIDS

    PubMed Central

    Katznelson, Laurence; Vinik, Aaron I.; Wong, Richard; Randolph, Gregory

    2016-01-01

    Objective Neuroendocrine tumors (NETs) are a collection of complex tumors that arise from the diffuse endocrine system, primarily from the digestive tract. Carcinoid tumors most commonly originate from the small intestine. These tumors are either referred to as small intestinal neuroendocrine tumors or midgut carcinoids (MGCs). The purpose of this review article is to survey the diagnostic and therapeutic pathways for patients with MGC and provide an overview of the complex multidisciplinary care involved in improving their quality of life, treatment outcomes, and survival. Methods The current literature regarding the diagnosis and management of MGCs was reviewed. Results Dry flushing and secretory diarrhea are the hallmarks of the clinical syndrome of MGC. Managing MGC requires attention to the overall symptom complex, including the physical effects of the tumor and biomarker levels. The somatostatin analogs (SAs) octreotide and lanreotide are highly efficacious for symptomatic improvement. MGCs require resection to encompass the primary tumor and mesenteric lymph node metastases and should include cholecystectomy if the patient is likely to receive SA therapy. Debulking of liver metastasis by resection in combination with ablative therapies and other liver-directed modalities may help palliate symptoms and hormonal overproduction in carefully selected patients. Quality of life is an important measure of patients’ perception of the burden of their disease and impact of treatment modalities and may be a useful guide in deciding changes in therapy to alter apparent health status. Conclusion MGC is a challenging malignancy that requires the input of a multidisciplinary team to develop the best treatment plan. Consultation with expert centers that specialize in NETs may also be indicated for complex cases. With expert care, patients can be cured or live with the disease and enjoy good quality of life. PMID:25962092

  9. Closed gastroschisis, vanishing midgut and extreme short bowel syndrome: Case report and review of the literature.

    PubMed

    Dennison, F A

    2016-08-01

    Gastroschisis alone has excellent survival rates. Occasionally reported is closed gastroschisis, leading to vanishing small bowel and extreme short bowel syndrome. It is believed that the abdominal wall defect can contract or close in utero, which leads to strangulation of the eviscerated bowel and the rare "vanishing gut syndrome." This has a very poor prognosis with mortality as high as 70%. An 18-year-old primigravid patient's 13 week scan diagnosed a large gastroschisis affecting the fetus. After counselling, she decided to continue with the pregnancy. Between 20 and 22 weeks, the gastroschisis disappeared, and the bowel within the abdomen became markedly dilated. Spontaneous labour occurred at 33 + 3 weeks gestation. There was no abdominal wall defect seen at delivery. Imaging and an exploratory laparotomy demonstrated absence of most of the midgut. Because available options for treatment would be very aggressive and risky, palliative care was thought to be the most feasible and practical option. He died at home on day 29 after birth. Extreme short gut syndrome (less than 25 cm of remaining small bowel) is rare. There are 13 reported cases in the literature from year 2000 to 2013. Treatment is aggressive and involves a bowel lengthening procedure or small bowel transplant. All require total parenteral nutrition and liver failure, and liver transplant is a common complication. Of these cases, 12 were born alive and 7 had aggressive treatment. Only two cases were confirmed to still be alive in infancy. If gastroschisis is seen to be reducing and "disappearing" antenatally, parents should be made aware of this rare complication so that they might be prepared if a poor outcome is anticipated.

  10. Isolating intestinal stem cells from adult Drosophila midguts by FACS to study stem cell behavior during aging.

    PubMed

    Tauc, Helen M; Tasdogan, Alpaslan; Pandur, Petra

    2014-12-16

    Aging tissue is characterized by a continuous decline in functional ability. Adult stem cells are crucial in maintaining tissue homeostasis particularly in tissues that have a high turnover rate such as the intestinal epithelium. However, adult stem cells are also subject to aging processes and the concomitant decline in function. The Drosophila midgut has emerged as an ideal model system to study molecular mechanisms that interfere with the intestinal stem cells' (ISCs) ability to function in tissue homeostasis. Although adult ISCs can be easily identified and isolated from midguts of young flies, it has been a major challenge to study endogenous molecular changes of ISCs during aging. This is due to the lack of a combination of molecular markers suitable to isolate ISCs from aged intestines. Here we propose a method that allows for successful dissociation of midgut tissue into living cells that can subsequently be separated into distinct populations by FACS. By using dissociated cells from the esg-Gal4, UAS-GFP fly line, in which both ISCs and the enteroblast (EB) progenitor cells express GFP, two populations of cells are distinguished based on different GFP intensities. These differences in GFP expression correlate with differences in cell size and granularity and represent enriched populations of ISCs and EBs. Intriguingly, the two GFP-positive cell populations remain distinctly separated during aging, presenting a novel technique for identifying and isolating cell populations enriched for either ISCs or EBs at any time point during aging. The further analysis, for example transcriptome analysis, of these particular cell populations at various time points during aging is now possible and this will facilitate the examination of endogenous molecular changes that occur in these cells during aging.

  11. CONSTRUCTION OF SILKWORM MIDGUT cDNA LIBRARY FOR SCREEN AND SEQUENCE ANALYSIS OF PERITROPHIC MEMBRANE PROTEIN GENES.

    PubMed

    Zhou, Yi-Jun; Xue, Bin; Li, Yang-Yang; Li, Fan-Chi; Ni, Min; Shen, Wei-De; Gu, Zhi-Ya; Li, Bing; Shen, Wei-De; Gu, Zhi-Ya; Li, Bing

    2016-01-01

    Silkworm is an important economic insect and the model species for Lepidoptera. The midgut of silkworm is an important physiological barrier, as its peritrophic membrane (PM) can resist pathogen invasion. In this study, a silkworm midgut cDNA library was constructed in order to identify silkworm PM genes. The capacity of the initial library was 6.92 × 10(6) pfu/ml, along with a recombination rate of 92.14% and a postamplification titer of 4.10 × 10(9) pfu/ml. Three silkworm PM protein genes were obtained by immunoscreening, two of which were chitin-binding protein (CBP) genes and one of which was a chitin deacetylase (CDA) gene as revealed by sequence analysis. Three genes were named BmCBP02, BmCBP13, and BmCDA17, and their ORF sizes are 678, 1,029, and 645 bp, respectively; all of them contain sequences of chitin-binding domains. Phylogenetic analysis indicated that BmCBP02 has the highest consensus with Mamestra configurata CBP at 61.0%; BmCBP13 has the highest consensus with Loxostege sticticalis PM CBP at 53.35%; BmCDA17 has the highest consensus with Helicoverpa armigera CDA5a at 70.83%. Tissue transcriptional analysis revealed that all three genes were specifically expressed in the midgut, and during the developmental process of fifth-instar silkworms, the transcription of all the genes showed an upward trend. This study laid a foundation for further studies on the functions of silkworm PM genes.

  12. Response of the common cutworm Spodoptera litura to lead stress: changes in sex ratio, Pb accumulations, midgut cell ultrastructure.

    PubMed

    Shu, Yinghua; Zhou, Jialiang; Lu, Kai; Li, Keqing; Zhou, Qiang

    2015-11-01

    When cutworm Spodoptera litura larvae were fed on the diets with different lead (Pb) concentrations for one or five generations, changes in growth and food utilization were recorded; Pb accumulations were detected by Atomic Absorption Spectrophotometer; changes in midgut cell ultrastructure were observed by Transmission Electron Microscopy (TEM). The effects of Pb stress on S. litura growth and food utilization differed significantly between insects of the 1st and 5th generation. The male-female rate of 200mgkg(-1) Pb treatment from the 1st generation and 50mgkg(-1) Pb treatment from the 5th generation was significantly higher than control. No significant difference of Pb accumulations was found in larvae, pupae and adults between the 1st and 5th generation. No significant difference of Pb accumulations in corresponding tissues of larvae was found between male and female. Compared to fat body, hemolymph, head, foregut and hindgut, the highest Pb accumulation was found in migut of larvae exposed to 200mgkg(-1) Pb. TEM showed that expanded intercellular spaces were observed in Pb-treated midgut cells. The nuclei were strongly destroyed by Pb stress, evidenced by chromatin condensation and destroyed nuclear envelope. Mitochondria became swollen with some broken cristae after exposure to Pb. Therefore, neither gender nor progeny difference was present in Pb accumulations of S. litura, although effects of Pb stress on S. litura growth and food utilization differed from different generations and genders. Pb accumulations in midgut caused pathological changes in cells ultrastructure, possibly reflected the growth and food utilization of S. litura.

  13. Plant Habitat (PH)

    NASA Technical Reports Server (NTRS)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  14. Effects of α-Terthienyl on the midgut detoxification enzymes of the European corn borer,Ostrinia nubilalis.

    PubMed

    Feng, R; Houseman, J G; Downe, A E; Arnason, J T

    1993-09-01

    The biochemical basis for the tolerance of the European corn borer,Ostrinia nubilalis, to the phototoxinα-terthienyl was investigated by measuring the midgut polysubstrate monooxygenases and glutathioneS-transferase activities.α-Terthienyl administered in the diet to the corn borers increased the level of cytochromeb 5, NADH-cytochromec reductase,O-demethylase, and glutathioneS-transferase activities. The induced detoxification enzyme activities should enable the corn borer to metabolizeα-terthienyl more efficiently and therefore render the corn borer highly tolerant toα-terthienyl.

  15. Molecular mechanism and functional significance of acid generation in the Drosophila midgut

    PubMed Central

    Overend, Gayle; Luo, Yuan; Henderson, Louise; Douglas, Angela E.; Davies, Shireen A.; Dow, Julian A. T.

    2016-01-01

    The gut of Drosophila melanogaster includes a proximal acidic region (~pH 2), however the genome lacks the H+/K+ ATPase characteristic of the mammalian gastric parietal cell, and the molecular mechanisms of acid generation are poorly understood. Here, we show that maintenance of the low pH of the acidic region is dependent on H+ V-ATPase, together with carbonic anhydrase and five further transporters or channels that mediate K+, Cl− and HCO3− transport. Abrogation of the low pH did not influence larval survival under standard laboratory conditions, but was deleterious for insects subjected to high Na+ or K+ load. Insects with elevated pH in the acidic region displayed increased susceptibility to Pseudomonas pathogens and increased abundance of key members of the gut microbiota (Acetobacter and Lactobacillus), suggesting that the acidic region has bacteriostatic or bacteriocidal activity. Conversely, the pH of the acidic region was significantly reduced in germ-free Drosophila, indicative of a role of the gut bacteria in shaping the pH conditions of the gut. These results demonstrate that the acidic gut region protects the insect and gut microbiome from pathological disruption, and shed light on the mechanisms by which low pH can be maintained in the absence of H+, K+ ATPase. PMID:27250760

  16. Binding of Bacillus thuringiensis Cry1 Toxins to the Midgut Brush Border Membrane Vesicles of Chilo suppressalis (Lepidoptera: Pyralidae): Evidence of Shared Binding Sites

    PubMed Central

    Fiuza, L.; Nielsen-Leroux, C.; Goze, E.; Frutos, R.; Charles, J.

    1996-01-01

    Binding and competition among Cry1Aa, Cry1Ac, and Cry1Ba toxins were analyzed quantitatively in vitro by using (sup125)I-labeled activated toxins and brush border membrane vesicles isolated from Chilo suppressalis larval midguts. The three toxins bound specifically to the midgut brush border membrane vesicles. Direct binding experiments showed that Cry1Aa and Cry1Ba recognized a single class of binding sites with different affinities, whereas Cry1Aa recognized two classes of binding sites, one with a high affinity and a low concentration and the other with a lower affinity but higher concentration. Competition experiments showed that toxins Cry1Ac and Cry1Ba shared a binding site in the C. suppressalis midgut membranes and that this site was also the low-affinity binding site for Cry1Aa. PMID:16535306

  17. pH Basics

    ERIC Educational Resources Information Center

    Lunelli, Bruno; Scagnolari, Francesco

    2009-01-01

    The exposition of the pervasive concept of pH, of its foundations and implementation as a meaningful quantitative measurement, in nonspecialist university texts is often not easy to follow because too many of its theoretical and operative underpinnings are neglected. To help the inquiring student we provide a concise introduction to the depth just…

  18. pH optrode

    DOEpatents

    Northrup, M. Allen; Langry, Kevin C.

    1993-01-01

    A process is provided for forming a long-lasting, stable, pH-sensitive dye-acrylamide copolymer useful as a pH-sensitive material for use in an optrode or other device sensitive to pH. An optrode may be made by mechanically attaching the copolymer to a sensing device such as an optical fiber.

  19. Ph.D. shortage

    NASA Astrophysics Data System (ADS)

    The late 1990s will see a shortage of Ph.D. graduates, according to the Association of American Universities, Washington, D.C. AAU's new comprehensive study, “The Ph.D. Shortage: The Federal Role,” reports that competition for new Ph.D.s is already intense and can only intensify because demand is greater than supply in both academic and nonacademic markets.Doctoral education plays an increasingly important role in U.S. research and development programs. Students have a pivotal part in doing research and enriching it with new ideas. The AAU report says that graduate students are “major determinants of the creativity and productivity of U.S. academic research, the source of more than 50% of the nation's basic research.’ The market for doctoral education extends beyond the university. In 1985, about 43% of all Ph.D.s employed in this country were working outside higher education; the demand for doctorate recipients in nonacademic sectors continues to grow.

  20. Proton Transport and pH Control in Fungi.

    PubMed

    Kane, Patricia M

    2016-01-01

    Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPase are coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This review describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi.

  1. Exploring the midgut transcriptome and brush border membrane vesicle proteome of the rice stem borer, Chilo suppressalis (Walker).

    PubMed

    Ma, Weihua; Zhang, Zan; Peng, Chuanhua; Wang, Xiaoping; Li, Fei; Lin, Yongjun

    2012-01-01

    The rice stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), is one of the most detrimental pests affecting rice crops. The use of Bacillus thuringiensis (Bt) toxins has been explored as a means to control this pest, but the potential for C. suppressalis to develop resistance to Bt toxins makes this approach problematic. Few C. suppressalis gene sequences are known, which makes in-depth study of gene function difficult. Herein, we sequenced the midgut transcriptome of the rice stem borer. In total, 37,040 contigs were obtained, with a mean size of 497 bp. As expected, the transcripts of C. suppressalis shared high similarity with arthropod genes. Gene ontology and KEGG analysis were used to classify the gene functions in C. suppressalis. Using the midgut transcriptome data, we conducted a proteome analysis to identify proteins expressed abundantly in the brush border membrane vesicles (BBMV). Of the 100 top abundant proteins that were excised and subjected to mass spectrometry analysis, 74 share high similarity with known proteins. Among these proteins, Western blot analysis showed that Aminopeptidase N and EH domain-containing protein have the binding activities with Bt-toxin Cry1Ac. These data provide invaluable information about the gene sequences of C. suppressalis and the proteins that bind with Cry1Ac.

  2. Fetal Midgut Volvulus with a Cystic Appearance, Accompanying a Sinus Rhythm and an Increased Peak Systolic Velocity without Anemia

    PubMed Central

    Kaba, Metin; Oksuzoglu, Aysegul; Kaba, Gokcen; Timur, Hakan; Akbaba, Eren; Turgut, Kadriye

    2015-01-01

    A midgut volvulus rarely occurs in a fetus; however, when it does, it requires an immediate diagnosis and surgery. Thirty-week pregnant was referred to our clinic with a diagnosis of a fetal abdominal cystic mass and preterm labor. The initial ultrasound examination revealed a female fetus with a 55 × 50 mm cystic mass in the lower abdomen, which was preliminarily diagnosed as an ovarian cyst. There was a sinusoidal rhythm on cardiography. The middle cerebral artery peak systolic velocity was 60.4 cm/sec, compatible with 1.49 MoMs that suggested fetal anemia on Doppler examination. Uterine contractions were observed with tocography and maternal hydration was administered for tocolytic treatment. Despite hydration, uterine contractions continued and the infant was delivered. A newborn ultrasonographic evaluation revealed a 6 cm abdominal cyst, and plain abdominal radiographs revealed distended loops of the small bowel on the left side. Emergency surgery was performed. A midgut volvulus leading to dilatation and necrosis of the small bowel without anatomical causes was observed during laparotomy. The necrotic bowel loop was resected and an end-to-end anastomosis was performed. The newborn died due to multiorgan failure. Obstetricians should be familiar with the appropriate diagnosis and management of a fetal volvulus. PMID:26779358

  3. First insight into the lipid uptake, storage and mobilization in arachnids: role of midgut diverticula and lipoproteins.

    PubMed

    Laino, Aldana; Cunningham, Mónica L; García, Fernando; Heras, Horacio

    2009-12-01

    The importance of midgut diverticula (M-diverticula) and hemolymph lipoproteins in the lipid homeostasis of Polybetes phythagoricus was studied. Radioactivity distribution in tissues and hemolymph was analyzed either after feeding or injecting [1-(14)C]-palmitate. In both experiments, radioactivity was mostly taken up by M-diverticula that synthesized diacylglycerols, triacylglycerols and phospholipids in a ratio close to its lipid class composition. M-diverticula total lipids represent 8.08% (by wt), mostly triacylglycerols (74%) and phosphatidylcholine (13%). Major fatty acids were (in decreasing order of abundance) 18:1n-9, 18:2n-6, 16:0, 16:1n-7, 18:0, 18:3n-3. Spider hemocyanin-containing lipoprotein (VHDL) transported 83% of the circulating label at short incubation times. After 24h, VHDL and HDL-1 (comparable to insect lipophorin) were found to be involved in the lipid uptake and release from M-diverticula, HDL-2 playing a negligible role. Lipoprotein's labelled lipid changed with time, phospholipids becoming the main circulating lipid after 24h. These results indicate that arachnid M-diverticula play a central role in lipid synthesis, storage and movilization, analogous to insect fat body or crustacean midgut gland. The relative contribution of HDL-1 and VHDL to lipid dynamics indicated that, unlike insects, spider VHDL significantly contributes to the lipid exchange between M-diverticula and hemolymph.

  4. Fz2 and Cdc42 Mediate Melanization and Actin Polymerization but Are Dispensable for Plasmodium Killing in the Mosquito Midgut

    PubMed Central

    Zachary, Daniel; Hoffmann, Jules A; Levashina, Elena A

    2006-01-01

    The midgut epithelium of the mosquito malaria vector Anopheles is a hostile environment for Plasmodium, with most parasites succumbing to host defenses. This study addresses morphological and ultrastructural features associated with Plasmodium berghei ookinete invasion in Anopheles gambiae midguts to define the sites and possible mechanisms of parasite killing. We show by transmission electron microscopy and immunofluorescence that the majority of ookinetes are killed in the extracellular space. Dead or dying ookinetes are surrounded by a polymerized actin zone formed within the basal cytoplasm of adjacent host epithelial cells. In refractory strain mosquitoes, we found that formation of this zone is strongly linked to prophenoloxidase activation leading to melanization. Furthermore, we identify two factors controlling both phenomena: the transmembrane receptor frizzled-2 and the guanosine triphosphate–binding protein cell division cycle 42. However, the disruption of actin polymerization and melanization by double-stranded RNA inhibition did not affect ookinete survival. Our results separate the mechanisms of parasite killing from subsequent reactions manifested by actin polymerization and prophenoloxidase activation in the A. gambiae–P. berghei model. These latter processes are reminiscent of wound healing in other organisms, and we propose that they represent a form of wound-healing response directed towards a moribund ookinete, which is perceived as damaged tissue. PMID:17196037

  5. Morphology of the midgut of Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) adult ticks in different feeding stages.

    PubMed

    Remedio, R N; Sampieri, B R; Vendramini, M C R; Souza, N M; Anholeto, L A; Denardo, T A G B; Camargo-Mathias, M I

    2013-01-01

    The intestinal epithelial cells of ticks are fundamental for their full feeding and reproductive success, besides being considered important sites for the development of pathogens. Rhipicephalus sanguineus ticks are known for their great medical and veterinary importance, and for this reason, the knowledge of their intestinal morphology may provide relevant subsidies for the control of these animals, either by direct acaricidal action over these cells or by the production of vaccines. Therefore, this study aimed to describe the midgut morphology of male and female R. sanguineus ticks in different feeding stages, by means of histological analysis. Significant differences were observed between the genders, and such alterations may refer mainly to the distinct demands for nutrients, much higher in females, which need to develop and carry out the egg-laying process. In general, the midgut is coated by a thin muscle layer and presents a pseudostratified epithelium, in which two basic types of cells can be observed, connected to a basal membrane-generative or stem and digestive cells. The latter was classified as follows: residual, deriving from the phase anterior to ecdysis; pinocytic, with vesicles containing liquid or pre-digested components of blood; phagocytic, with entire cells or remnants of nuclear material inside cytoplasmic vesicles; and mature, free in the lumen. Digestion is presumably intracellular and asynchronous and corresponds to a process which starts with the differentiation of generative cells into pinocytic digestive cells, which subsequently start to phagocytize intact blood cells and finally detach from the epithelium, being eliminated with feces.

  6. Forces driven by morphogenesis modulate Twist Expression to determine Anterior Mid-gut Differentiation in Drosophila embryos

    NASA Astrophysics Data System (ADS)

    Farge, Emmanuel

    2008-03-01

    By combining magnetic tweezers to in vivo laser ablation, we locally manipulate Drosophila embryonic tissues with physiologically relevant forces. We demonstrate that high level of Twist expression in the stomodeal primordium is mechanically induced in response to compression by the 60±20 nN force developed during germ-band extension (GBE). We find that this force triggers the junctional release and nuclear translocation of Armadillo involved in Twist mechanical induction in the stomodeum in a Src42A dependent way. Finally, stomodeal-specific RNAi-mediated silencing of Twist during compression impairs the differentiation of midgut cells, as revealed by strong defects in Dve expression and abnormal larval lethality. Thus, mechanical induction of Twist overexpression in stomodeal cells is necessary for subsequent midgut differentiation. In collaboration with Nicolas Desprat, Willy Supatto, and Philippe-Alexandre Pouille, MGDET, UMR168 CNRS, Institut Curie11 rue Pierre et Marie Curie, F-75005, Paris, France; and Emmanuel Beaurepaire, LOB, Ecole Polytechnique, CNRS and INSERM U 696, 91128 Palaiseau, France.

  7. Histopathological effects and determination of the putative receptor of Bacillus thuringiensis Cry1Da toxin in Spodoptera littoralis midgut.

    PubMed

    BenFarhat-Touzri, Dalel; Saadaoui, Marwa; Abdelkefi-Mesrati, Lobna; Saadaoui, Imen; Azzouz, Hichem; Tounsi, Slim

    2013-02-01

    Bacillus thuringiensis subsp. aizawai strain HD133, known by its effectiveness against Spodoptera species, produces many insecticidal proteins including Cry1Ab, Cry1Ca and Cry1Da. In the present study, the insecticidal activity of Cry1Da against Spodoptera littoralis was investigated. It showed toxicity with an LC(50) of 224.4 ng/cm(2) with 95% confidence limits of (178.61-270.19) and an LC(90) of 467.77 ng/cm(2) with 95% confidence limits of (392.89-542.65). The midgut histopathology of Cry1Da fed larvae showed vesicle formation in the apical region, vacuolization and destruction of epithelial cells. Biotinylated-activated Cry1Da toxin bound protein of about 65 kDa on blots of S. littoralis brush border membrane preparations. This putative receptor differs in molecular size from those recognized by Cry1C and Vip3A which are active against this polyphagous insect. This difference in midgut receptors strongly supports the use of Cry1Da as insecticidal agent, particularly in case of Cry and/or Vip-resistance management.

  8. Exploring the Midgut Transcriptome and Brush Border Membrane Vesicle Proteome of the Rice Stem Borer, Chilo suppressalis (Walker)

    PubMed Central

    Peng, Chuanhua; Wang, Xiaoping; Li, Fei; Lin, Yongjun

    2012-01-01

    The rice stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), is one of the most detrimental pests affecting rice crops. The use of Bacillus thuringiensis (Bt) toxins has been explored as a means to control this pest, but the potential for C. suppressalis to develop resistance to Bt toxins makes this approach problematic. Few C. suppressalis gene sequences are known, which makes in-depth study of gene function difficult. Herein, we sequenced the midgut transcriptome of the rice stem borer. In total, 37,040 contigs were obtained, with a mean size of 497 bp. As expected, the transcripts of C. suppressalis shared high similarity with arthropod genes. Gene ontology and KEGG analysis were used to classify the gene functions in C. suppressalis. Using the midgut transcriptome data, we conducted a proteome analysis to identify proteins expressed abundantly in the brush border membrane vesicles (BBMV). Of the 100 top abundant proteins that were excised and subjected to mass spectrometry analysis, 74 share high similarity with known proteins. Among these proteins, Western blot analysis showed that Aminopeptidase N and EH domain-containing protein have the binding activities with Bt-toxin Cry1Ac. These data provide invaluable information about the gene sequences of C. suppressalis and the proteins that bind with Cry1Ac. PMID:22666467

  9. The Glycolytic Enzymes Activity in the Midgut of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) adult and their Seasonal Changes

    PubMed Central

    Guzik, Joanna; Nakonieczny, Mirosław; Tarnawska, Monika; Bereś, Paweł K.; Drzewiecki, Sławomir; Migula, Paweł

    2015-01-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) is an important pest of maize. The diet of the D. virgifera imago is rich in starch and other polysaccharides present in cereals such as maize. Therefore, knowledge about enzymes involved in digestion of such specific food of this pest seems to be important. The paper shows, for the first time, the activities of main glycolytic enzymes in the midgut of D. virgifera imago: endoglycosidases (α-amylase, cellulase, chitinase, licheninase, laminarinase); exoglycosidases (α- and β-glucosidases, α- and β-galactosidases) and disaccharidases (maltase, isomaltase, sucrase, trehalase, lactase, and cellobiase). Activities of α-amylase, α-glucosidase, and maltase were the highest among assayed endoglycosidases, exoglycosidases, and disaccharidases, respectively. This indicates that in the midgut of D. virgifera imago α-amylase, α-glucosidase and maltase are important enzymes in starch hydrolysis and products of its digestion. These results lead to conclusion that inhibition of most active glycolytic enzymes of D. virgifera imago may be another promising method for chemical control of this pest of maize.

  10. A novel Na(+)(K(+))/H(+) antiporter plays an important role in the growth of Acetobacter tropicalis SKU1100 at high temperatures via regulation of cation and pH homeostasis.

    PubMed

    Soemphol, Wichai; Tatsuno, Maki; Okada, Takahiro; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu

    2015-10-10

    A gene encoding a putative Na(+)/H(+) antiporter was previously proposed to be involved in the thermotolerance mechanism of Acetobacter tropicalis SKU 1100. The results of this study show that disruption of this antiporter gene impaired growth at high temperatures with an external pH>6.5. The growth impairment at high temperatures was much more severe in the absence of Na(+) (with only the presence of K(+)); under these conditions, cells failed to grow even at 30°C and neutral to alkaline pH values, suggesting that this protein is also important for K(+) tolerance. Functional analysis with inside-out membrane vesicles from wild type and mutant strains indicated that the antiporter, At-NhaK2 operates as an alkali cation/proton antiporter for ions such as Na(+), K(+), Li(+), and Rb(+) at acidic to neutral pH values (6.5-7.5). The membrane vesicles were also shown to contain a distinct pH-dependent Na(+)(specific)/H(+) antiporter(s) that might function at alkaline pH values. In addition, phylogenetic analysis showed that At-NhaK2 is a novel type of Na(+)/H(+) antiporter belonging to a phylogenetically distinct new clade. These data demonstrate that At-NhaK2 functions as a Na(+)(K(+))/H(+) antiporter and is essential for K(+) and pH homeostasis during the growth of A. tropicalis SKU1100, especially at higher temperatures.

  11. 17-4 PH and 15-5 PH

    NASA Technical Reports Server (NTRS)

    Johnson, Howard T.

    1995-01-01

    17-4 PH and 15-5 PH are extremely useful and versatile precipitation-hardening stainless steels. Armco 17-4 PH is well suited for the magnetic particle inspection requirements of Aerospace Material Specification. Armco 15-5 PH and 17-4 PH are produced in billet, plate, bar, and wire. Also, 15-5 PH is able to meet the stringent mechanical properties required in the aerospace and nuclear industries. Both products are easy to heat treat and machine, making them very useful in many applications.

  12. Draft Genome Sequences of Elizabethkingia anophelis Strains R26T and Ag1 from the Midgut of the Malaria Mosquito Anopheles gambiae.

    PubMed

    Kukutla, Phanidhar; Lindberg, Bo G; Pei, Dong; Rayl, Melanie; Yu, Wanqin; Steritz, Matthew; Faye, Ingrid; Xu, Jiannong

    2013-12-05

    Elizabethkingia anophelis is a species in the family Flavobacteriaceae. It is a dominant resident in the mosquito gut and also a human pathogen. We present the draft genome sequences of two strains of E. anophelis, R26(T) and Ag1, which were isolated from the midgut of the malaria mosquito Anopheles gambiae.

  13. Draft Genome Sequences of Elizabethkingia anophelis Strains R26T and Ag1 from the Midgut of the Malaria Mosquito Anopheles gambiae

    PubMed Central

    Kukutla, Phanidhar; Lindberg, Bo G.; Pei, Dong; Rayl, Melanie; Yu, Wanqin; Steritz, Matthew

    2013-01-01

    Elizabethkingia anophelis is a species in the family Flavobacteriaceae. It is a dominant resident in the mosquito gut and also a human pathogen. We present the draft genome sequences of two strains of E. anophelis, R26T and Ag1, which were isolated from the midgut of the malaria mosquito Anopheles gambiae. PMID:24309745

  14. Cloning eleven midgut trypsin cDNAs and evaluating the interaction of proteinase inhibitors with Cry1Ac against the tobacco budworm Heliothis virescens (F.) (Lepidoptera: Noctuidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Midgut trypsins are associated with Bt protoxin activation and toxin degradation. Proteinase inhibitors have potential insecticidal toxicity against a wide range of insect species. Proactive action to examine trypsin gene profiles and proteinase inhibitors for interaction with Bt toxin is necessary ...

  15. Molecular characterization and RNA interference of three midgut aminopeptidase N isozymes from bacillus thuringiensis-susceptible and -resistant strains of sugarcane borer diatraea saccharalis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminopeptidase N (APN) proteins located at the midgut epithelium of some lepidopterous species have been implicated as receptors for insecticidal proteins from Bacillus thuringiensis. cDNAs of three APN isoforms, DsAPN1, DsAPN2, and DsAPN3, from Cry1Ab-susceptible (Cry1Ab-SS) and -resistant (Cry1Ab-...

  16. Side Effects of Neem Oil on the Midgut Endocrine Cells of the Green Lacewing Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, E L; Santos, D C

    2014-04-01

    We described the ultrastructure of Ceraeochrysa claveri (Navás) midgut endocrine cells in larva, pupa, and adult, and evaluated the side effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree (Azadirachta indica), on these cells. During the larval period, C. claveri were fed (ad libitum) Diatraea saccharalis (F.) eggs treated with neem oil at concentrations of 0.5%, 1%, or 2%. Transmission electron microscopy showed that two subtypes of endocrine cells, namely granular and vesicular, occurred in the midgut epithelium during the three stages of the life cycle. Both cell types did not reach the midgut lumen and were positioned basally in the epithelium. The endocrine cells did not show extensive infoldings of the basal plasma membrane, and there were numerous secretory granules in the basal region of the cytoplasm. In the granular endocrine cells, the granules were completely filled with a dense matrix. In the vesicular endocrine cells, the main secretory products consisted of haloed vesicles. Ultrastructural examination indicated that only the granular endocrine cells exhibited signs of morphologic changes of cell injury present in all life cycle stages after the larvae were chronically exposed to neem oil by ingestion. The major cellular damage consisted of dilatation and vesiculation of the rough endoplasmic reticulum and the development of smooth endoplasmic reticulum and mitochondrial swelling. Our data suggest that cytotoxic effects on midgut endocrine cells can contribute to a generalized disruption of the physiological processes in this organ due to a general alteration of endocrine function.

  17. Effects of neem oil (Azadirachta indica A. Juss) on the replacement of the midgut epithelium in the lacewing Ceraeochrysa claveri during larval-pupal metamorphosis.

    PubMed

    Scudeler, Elton Luiz; Padovani, Carlos Roberto; Santos, Daniela Carvalho Dos

    2014-06-01

    Larvae of the lacewing Ceraeochrysa claveri were fed on eggs of Diatraeasaccharalis treated with neem oil at concentrations of 0.5%, 1% and 2% throughout the larval period. Pupae obtained from treated larvae were used in the study at five days after the completion of cocoon spinning to investigate the effects of neem oil on the replacement of the midgut epithelium during the larval-pupal transition. We observed that the old larval epithelium was shed into the midgut lumen and transformed into the yellow body. Old cells from the yellow body were destroyed by apoptosis and autophagy and were not affected by neem oil. However, neem oil did affect the new pupal epithelium. Cells from treated pupae showed cellular injuries such as a loss of microvilli, cytoplasmic vacuolization, an increase of glycogen stores, deformation of the rough endoplasmic reticulum and dilation of the perinuclear space. Additionally, the neem oil treatment resulted in the release of cytoplasmic protrusions, rupture of the plasma membrane and leakage of cellular debris into the midgut lumen, characteristics of cell death by necrosis. The results indicate that neem oil ingestion affects the replacement of midgut epithelium, causing cytotoxic effects that can alter the organism's physiology due to extensive cellular injuries.

  18. Transcriptional control of the F0F1-ATP synthase operon of Corynebacterium glutamicum: SigmaH factor binds to its promoter and regulates its expression at different pH values.

    PubMed

    Barriuso-Iglesias, Mónica; Barreiro, Carlos; Sola-Landa, Alberto; Martín, Juan F

    2013-03-01

    Corynebacterium glutamicum used in the amino acid fermentation industries is an alkaliphilic microorganism. Its F(0)F(1)-ATPase operon (atpBEFHAGDC) is expressed optimally at pH 9.0 forming a polycistronic (7.5 kb) and a monocistronic (1.2 kb) transcripts both starting upstream of the atpB gene. Expression of this operon is controlled by the SigmaH factor. The sigmaH gene (sigH) was cloned and shown to be co-transcribed with a small gene, cg0877, encoding a putative anti-sigma factor. A mutant deleted in the sigH gene expressed the atpBEFHAGDC operon optimally at pH 7.0 at difference of the wild-type strain (optimal expression at pH 9.0). These results suggested that the SigmaH factor is involved in pH control of expression of the F(0) F(1) ATPase operon. The SigmaH protein was expressed in Escherichia coli fused to the GST (glutathione-S-transferase) and purified to homogeneity by affinity chromatography on a GSTrap HP column. The fused protein was identified by immunodetection with anti-GST antibodies. DNA-binding studies by electrophoretic mobility shift assays showed that the SigH protein binds to a region of the atpB promoter containing the sigmaH recognition sequence (-35)TTGGAT…18nt…GTTA(-10). SigmaH plays an important role in the cascade of control of pH stress in Corynebacterium.

  19. Chitin is a necessary component to maintain the barrier function of the peritrophic matrix in the insect midgut.

    PubMed

    Kelkenberg, Marco; Odman-Naresh, Jothini; Muthukrishnan, Subbaratnam; Merzendorfer, Hans

    2015-01-01

    In most insects, the peritrophic matrix (PM) partitions the midgut into different digestive compartments, and functions as a protective barrier against abrasive particles and microbial infections. In a previous study we demonstrated that certain PM proteins are essential in maintaining the PM's barrier function and establishing a gradient of PM permeability from the anterior to the posterior part of the midgut which facilitates digestion (Agrawal et al., 2014). In this study, we focused on the effects of a reduction in chitin content on PM permeability in larvae of the red flour beetle, Tribolium castaneum. Oral administration of the chitin synthesis inhibitor diflubenzuron (DFB) only partially reduced chitin content of the larval PM even at high concentrations. We observed no nutritional effects, as larval growth was unaffected and neutral lipids were not depleted from the fat body. However, the metamorphic molt was disrupted and the insects died at the pharate pupal stage, presumably due to DFB's effect on cuticle formation. RNAi to knock-down expression of the gene encoding chitin synthase 2 in T. castaneum (TcCHS-2) caused a complete loss of chitin in the PM. Larval growth was significantly reduced, and the fat body was depleted of neutral lipids. In situ PM permeability assays monitoring the distribution of FITC dextrans after DFB exposure or RNAi for TcCHS-2 revealed that PM permeability was increased in both cases. RNAi for TcCHS-2, however, led to a higher permeation of the PM by FITC dextrans than DFB treatment even at high doses. Similar effects were observed when the chitin content was reduced by feeding DFB to adult yellow fever mosquitos, Aedes aegypti. We demonstrate that the presence of chitin is necessary for maintaining the PM's barrier function in insects. It seems that the insecticidal effects of DFB are mediated by the disruption of cuticle synthesis during the metamorphic molt rather than by interfering with larval nutrition. However, as DFB

  20. Characterization of a beta-glycosidase highly active on disaccharides and of a beta-galactosidase from Tenebrio molitor midgut lumen.

    PubMed

    Ferreira, Alexandre H P; Terra, Walter R; Ferreira, Clélia

    2003-02-01

    The midgut of the yellow mealworm, Tenebrio molitor L. (Coleoptera: Tenebrionidae) larvae has four beta-glycosidases. The properties of two of these enzymes (betaGly1 and betaGly2) have been described elsewhere. In this paper, the characterization of the other two glycosidases (betaGly3 and betaGly4) is described. BetaGly3 has one active site, hydrolyzes disaccharides, cellodextrins, synthetic substrates and beta-glucosides produced by plants. The enzyme is inhibited by amygdalin, cellotriose, cellotetraose and cellopentaose in high concentrations, probably due to transglycosylation. betaGly3 hydrolyzes beta 1,4-glycosidic linkages with a catalytic rate independent of the substrate polymerization degree (k(int)) of 11.9 s(-1). Its active site is formed by four subsites, where subsites +1 and -1 bind glucose residues with higher affinity than subsite +2. The main role of betaGly3 seems to be disaccharide hydrolysis. BetaGly4 is a beta-galactosidase, since it has highest activity against beta-galactosides. It can also hydrolyze fucosides, but not glucosides, and has Triton X-100 as a non-essential activator (K(a)=15 microM, pH 4.5). betaGly4 has two active sites that can hydrolyze p-nitrophenyl beta-galactoside (NPbetaGal). The one hydrolyzing NPbetaGal with more efficiency is also active against methylumbellipheryl beta-D-galactoside and lactose. The other active site hydrolyzes NPbetaFucoside and binds NPbetaGal weakly. BetaGly4 hydrolyzes hydrophobic substrates with high catalytical efficiency and is able to bind octyl-beta-thiogalactoside in its active site with high affinity. The betaGly4 physiological role is supposed to be the hydrolysis of galactolipids that are found in membranes from vegetal tissues. As the enzyme has a hydrophobic site where Triton X-100 can bind, it might be activated by membrane lipids, thus becoming fully active only at the surface of cell membranes.

  1. Meet EPA Scientist Dermont Bouchard, Ph.D.

    EPA Pesticide Factsheets

    EPA Scientist Dermont Bouchard, Ph.D., is working to better understand how tiny nanomaterials might be released into the environment. His research helps regulators and other decision-makers lower risks and better protect human health and the environment

  2. Spodoptera frugiperda resistance to oral infection by Autographa californica multiple nucleopolyhedrovirus linked to aberrant occlusion-derived virus binding in the midgut.

    PubMed

    Haas-Stapleton, Eric J; Washburn, Jan O; Volkman, Loy E

    2005-05-01

    Spodoptera frugiperda larvae are highly resistant to oral infection by Autographa californica multiple nucleopolyhedrovirus (AcMNPV) (LD(50), approximately 9200 occlusions), but extremely susceptible to budded virus within the haemocoel (LD(50), <1 p.f.u.). The inability of AcMNPV occlusion-derived virus (ODV) to establish primary infections readily within midgut cells accounts for a major proportion of oral resistance. To determine whether inappropriate binding of AcMNPV ODV to S. frugiperda midgut cells contributes to lack of oral infectivity, the binding and fusion properties of AcMNPV ODV were compared with those of the ODV of a new isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) obtained from a field-collected larva (oral LD(50), 12 occlusions). By using a fluorescence-dequenching assay conducted in vivo, it was found that AcMNPV ODV bound to the midgut epithelia of S. frugiperda larvae at approximately 15 % of the level of SfMNPV ODV, but that, once bound, the efficiencies of fusion for the two ODVs were similar: 60 % for AcMNPV and 53 % for SfMNPV. Whilst the difference in binding efficiencies was significant, it could not account entirely for the observed differences in infectivity. Competition experiments, however, revealed that, in S. frugiperda larvae, SfMNPV ODV bound to a midgut cell receptor that was not bound by AcMNPV ODV, indicating that ODV interaction with a specific receptor(s) was necessary for productive infection of midgut columnar epithelial cells. Fusion in the absence of this ligand-receptor interaction did not result in productive infections.

  3. Changes in midgut endopeptidase activity of Spodoptera frugiperda (Lepidoptera: Noctuidae) are responsible for adaptation to soybean proteinase inhibitors.

    PubMed

    Paulillo, L C; Lopes, A R; Cristofoletti, P T; Parra, J R; Terra, W R; Silva-Filho, M C

    2000-06-01

    The development of transgenic maize plants expressing soybean proteinase inhibitors could reduce the economic damage of one of the major maize pests in Brazil, the fall armyworm, Spodoptera frugiperda (J.E. Smith, 1797). We examined the influence of soybean proteinase inhibitors on digestive enzyme properties and development of S. frugiperda larvae. The inhibition of trypsin and chymotrypsin activities in vitro by soybean proteinase inhibitors suggested that either Kunitz (SBTI) or Bowman-Birk (SBBI) would have a potential antimetabolic effect when ingested by insect larvae. However, chronic ingestion of semipurified soybean inhibitors did not result in a significant reduction of growth and development of fall armyworm. Therefore, digestive serine proteinase activities (trypsin and chymotrypsin) of fall armyworm larvae were characterized. The results suggest that S. frugiperda was able to physiologically adapt to dietary proteinase inhibitors by altering the complement of proteolytic enzymes in the insect midguts.

  4. T-RFLP analysis of bacterial communities in the midguts of Apis mellifera and Apis cerana honey bees in Thailand.

    PubMed

    Disayathanoowat, Terd; Young, John Peter W; Helgason, Thorunn; Chantawannakul, Panuwan

    2012-02-01

    This study investigated bacterial community structures in the midguts of Apis mellifera and Apis cerana in Thailand to understand how bacterial communities develop in Apis species. The bacterial species present in replicate colonies from different locations and life stages were analysed. PCR amplification of bacterial 16S rRNA gene fragments and terminal restriction fragment length polymorphism analyses revealed a total of 16 distinct terminal restriction fragments (T-RFs), 12 of which were shared between A. mellifera and A. cerana populations. The T-RFs were affiliated to Beta- and Gammaproteobacteria, Firmicutes and Actinomycetes. The Gammaproteobacteria were found to be common in all stages of honey bee, but in addition, the Firmicutes group was found to be present in the worker bees. Bacterial community structure showed no difference amongst the replicate colonies, but was affected to some degree by geographical location, life stage and species of honey bees.

  5. Separation of Binding Protein of Celangulin V from the Midgut of Mythimna separata Walker by Affinity Chromatography

    PubMed Central

    Lu, Lina; Qi, Zhijun; Zhang, Jiwen; Wu, Wenjun

    2015-01-01

    Celangulin V, an insecticidal compound isolated from the root bark of Chinese bittersweet, can affect the digestive system of insects. However, the mechanism of how Celangulin V induces a series of symptoms is still unknown. In this study, affinity chromatography was conducted through coupling of Celangulin V-6-aminoacetic acid ester to the CNBr-activated Sepharose 4B. SDS-PAGE was used to analyze the collected fraction eluted by Celangulin V. Eight binding proteins (Zinc finger protein, Thioredoxin peroxidase (TPx), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), SUMO E3 ligase RanBP2, Transmembrane protein 1, Actin, APN and V-ATPase) were obtained and identified by LC/Q-TOF-MS from the midgut of Mythimna separata larvae. The potential of these proteins to serve as target proteins involved in the insecticidal activity of Celangulin V is discussed. PMID:25996604

  6. Proteomic analysis of silkworm midgut cellular proteins interacting with the 5' end of infectious flacherie virus genomic RNA.

    PubMed

    Li, Mingqian; He, Xinyi; Liu, Han; Fu, Zhangwuke; He, Xiangkang; Lu, Xingmeng

    2015-02-01

    The flacherie disease in the silkworm is caused by the infectious flacherie virus (IFV). IFV relies on its 5' region of genomic RNA to recruit host-related factors to implement viral translation and replication. To identify host proteins bound to the 5'-region of IFV RNA and identify proteins important for its function, mass spectrometry was used to identify proteins from silkworm midgut extracts that were obtained using RNA aptamer-labeled 5' region of IFV RNA. We found 325 protein groups (unique peptide≥2) bound to the 5' region of IFV RNA including translation-related factors (16 ribosomal subunits, 3 eukaryotic initiation factor subunits, 1 elongation factor subunit and 6 potential internal ribosome entry site trans-acting factors), cytoskeleton-related proteins, membrane-related proteins, metabolism enzymes, and other proteins. These results can be used to study the translation and replication related factors of IFV interacting with host silkworm and to control flacherie disease in silkworm.

  7. [Measurement of intracellular pH].

    PubMed

    Hanaoka, K; Imai, M; Yoshitomi, K

    1992-09-01

    Since various cellular processes depend on changes in pH, the regulation of intracellular pH (pHi) is important both for the individual cell and for the organism. The mechanisms of the regulation of pHi can be investigated by monitoring pHi. In this report, we discuss the four major techniques available for measuring pHi, which are 1) Distribution of weak acids and bases, 2) pH-sensitive microelectrodes, 3) pH-sensitive dyes, and 4) Nuclear magnetic resonance. Among four techniques, the advantage of the microelectrode approach is that it can monitor membrane potential at the same time and be applied to a single cell. The dye technique is a relative new developing technique, which has lots of advantages. It is easy to use, and is capable of monitoring rapid pHi changes, and being applied to a smaller cell,