Sample records for midnight temperature maximum

  1. Semidiurnal tidal activity of the middle atmosphere at mid-latitudes derived from O2 atmospheric and OH(6-2) airglow SATI observations

    NASA Astrophysics Data System (ADS)

    López-González, M. J.; Rodríguez, E.; García-Comas, M.; López-Puertas, M.; Olivares, I.; Ruiz-Bueno, J. A.; Shepherd, M. G.; Shepherd, G. G.; Sargoytchev, S.

    2017-11-01

    In this paper, we investigate the tidal activity in the mesosphere and lower thermosphere region at 370N using OH Meinel and O2 atmospheric airglow observations from 1998 to 2015. The observations were taken with a Spectral Airglow Temperature Imager (SATI) installed at Sierra Nevada Observatory (SNO) (37.060N, 3.380W) at 2900 m height. From these observations a seasonal dependence of the amplitudes of the semidiurnal tide is inferred. The maximum tidal amplitude occurs in winter and the minimum in summer. The vertically averaged rotational temperatures and vertically integrated volume emission rate (rotational temperatures and intensities here in after), from the O2 atmospheric band measurements and the rotational temperature derived from OH Meinel band measurements reach the maximum amplitude about 1-4 h after midnight during almost all the year except in August-September where the maximum is found 2-4 h earlier. The amplitude of the tide in the OH intensity reaches the minimum near midnight in midwinter, then it is progressively delayed until 4:00 LT in August-September, and from there on it moves again forward towards midnight. The mean Krassovsky numbers for OH and O2 emissions are 5.9 ±1.8 and 5.6 ±1.0, respectively, with negative Krassovsky phases for almost all the year, indicating an upward energy transport. The mean vertical wavelengths for the vertical tidal propagation derived from OH and O2 emissions are 35 ±20 km and 33 ±18 km, respectively. The vertical wavelengths together with the phase shift in the temperature derived from both airglow emissions indicate that these airglow emission layers are separated by 7 ±3 km, on average.

  2. Storm-Time Meridional Wind Perturbations in the Equatorial Thermosphere

    NASA Astrophysics Data System (ADS)

    Haaser, R. A.; Davidson, R.; Heelis, R. A.; Earle, G. D.; Venkatraman, S.; Klenzing, J.

    2013-12-01

    We present observations from the Coupled Ion Neutral Dynamics Investigation (CINDI) of storm-time modifications to the neutral atmosphere at equatorial latitudes near the magnetic equator at 400 km altitude during the active period near solar maximum in 2011 and 2012. Perturbations in the neutral temperature on the dayside and the nightside are consistent with observed increases in the neutral density in accord with hydrostatic equilibrium. In the evening and midnight sectors these modifications are additionally accompanied by perturbations in the meridional neutral wind, which are the focus of the work. The observations are made in the southern hemisphere near the magnetic equator, usually dominated by energy inputs from the southern polar regions that produce south to north (northward) wind perturbations to accompany perturbations in the neutral density and temperature. In one exceptional case when observations are made near midnight and the north magnetic pole rotates through the midnight sector, north to south (southward) meridional wind perturbations are observed.

  3. On the Relative Importance of Convection and Temperature on the Behavior of the Ionosphere in North American during January 6-12, 1997

    NASA Technical Reports Server (NTRS)

    Richards, P. G.; Buonsanto, M. J.; Reinisch, B. W.; Holt, J.; Fennelly, J. A.; Scali, J. L.; Comfort, R. H.; Germany, G. A.; Spann, J.; Brittnacher, M.

    1999-01-01

    Measurements from a network of digisondes and an incoherent scatter radar In Eastern North American For January 6-12, 1997 have been compared with the Field Line Interhemispheric Plasma (FLIP) model which now includes the effects of electric field convective. With the exception of Bermuda, the model reproduces the daytime electron density very well most of the time. As is typical behavior for winter solar minimum on magnetically undisturbed nights, the measurements at Millstone Hill show high electron temperatures before midnight followed by a rapid decay, which is accompanied by a pronounced density enhancement in the early morning hours. The FLIP model reproduces the nighttime density enhancement well, provided the model is constrained to follow the topside electron temperature and the flux tube is full. Similar density enhancements are seen at Goose Bay, Wallops Island and Bermuda. However, the peak height variation and auroral images indicate the density enhancements at Goose Bay are most likely due to particle precipitation. Contrary to previously published work we find that the nighttime density variation at Millstone Hill is driven by the temperature behavior and not the other way around. Thus, in both the data and model, the overall nighttime density is lowered and the enhancement does not occur if the temperature remains high all night. Our calculations show that convections of plasma from higher magnetic latitudes does not cause the observed density maximum but it may enhance the density maximum if over-full flux tubes are convected over the station. On the other had, convection of flux tubes with high temperatures and depleted densities may prevent the density maximum from occurring. Despite the success in modeling the nighttime density enhancements, there remain two unresolved problems. First, the measured density decays much faster than the modeled density near sunset at Millstone Hill and Goose Bay though not at lower latitude stations. Second, we cannot fully explain the large temperatures before midnight nor the sudden decay near midnight.

  4. Midnight Temperature Maximum (MTM) in Whole Atmosphere Model (WAM) Simulations

    DTIC Science & Technology

    2016-04-14

    naturally strongly dissipative medium, eliminating the need for ‘‘ sponge layers’’ and extra numerical dissipation often imposed in upper layers to...stabilize atmospheric model codes. WAM employs no ‘‘ sponge layers’’ and remains stable using a substantially reduced numerical Rayleigh friction coeffi

  5. Effects of the midnight temperature maximum observed in the thermosphere-ionosphere over the northeast of Brazil

    NASA Astrophysics Data System (ADS)

    Figueiredo, Cosme Alexandre O. B.; Buriti, Ricardo A.; Paulino, Igo; Meriwether, John W.; Makela, Jonathan J.; Batista, Inez S.; Barros, Diego; Medeiros, Amauri F.

    2017-08-01

    The midnight temperature maximum (MTM) has been observed in the lower thermosphere by two Fabry-Pérot interferometers (FPIs) at São João do Cariri (7.4° S, 36.5° W) and Cajazeiras (6.9° S, 38.6° W) during 2011, when the solar activity was moderate and the solar flux was between 90 and 155 SFU (1 SFU = 10-22 W m-2 Hz-1). The MTM is studied in detail using measurements of neutral temperature, wind and airglow relative intensity of OI630.0 nm (referred to as OI6300), and ionospheric parameters, such as virtual height (h'F), the peak height of the F2 region (hmF2), and critical frequency of the F region (foF2), which were measured by a Digisonde instrument (DPS) at Eusébio (3.9° S, 38.4° W; geomagnetic coordinates 7.31° S, 32.40° E for 2011). The MTM peak was observed mostly along the year, except in May, June, and August. The amplitudes of the MTM varied from 64 ± 46 K in April up to 144 ± 48 K in October. The monthly temperature average showed a phase shift in the MTM peak around 0.25 h in September to 2.5 h in December before midnight. On the other hand, in February, March, and April the MTM peak occurred around midnight. International Reference Ionosphere 2012 (IRI-2012) model was compared to the neutral temperature observations and the IRI-2012 model failed in reproducing the MTM peaks. The zonal component of neutral wind flowed eastward the whole night; regardless of the month and the magnitude of the zonal wind, it was typically within the range of 50 to 150 m s-1 during the early evening. The meridional component of the neutral wind changed its direction over the months: from November to February, the meridional wind in the early evening flowed equatorward with a magnitude between 25 and 100 m s-1; in contrast, during the winter months, the meridional wind flowed to the pole within the range of 0 to -50 m s-1. Our results indicate that the reversal (changes in equator to poleward flow) or abatement of the meridional winds is an important factor in the MTM generation. From February to April and from September to December, the h'F and the hmF2 showed an increase around 18:00-20:00 LT within a range between 300 and 550 km and reached a minimal height of about 200-300 km close to midnight; then the layer rose again by about 40 km or, sometimes, remained at constant height. Furthermore, during the winter months, the h'F and hmF2 showed a different behavior; the signature of the pre-reversal enhancement did not appear as in other months and the heights did not exceed 260 and 350 km. Our observation indicated that the midnight collapse of the F region was a consequence of the MTM in the meridional wind that was reflected in the height of the F region. Lastly, the behavior of the OI6300 showed, from February to April and from September to December, an increase in intensity around midnight or 1 h before, which was associated with the MTM, whereas, from May to August, the relative intensity was more intense in the early evening and decayed during the night.

  6. Midnight latitude-altitude distribution of 630 nm airglow in the Asian sector measured with FORMOSAT-2/ISUAL

    NASA Astrophysics Data System (ADS)

    Adachi, Toru; Yamaoka, Masashi; Yamamoto, Mamoru; Otsuka, Yuichi; Liu, Huixin; Hsiao, Chun-Chieh; Chen, Alfred B.; Hsu, Rue-Ron

    2010-09-01

    The Imager for Sprites and Upper Atmospheric Lightning (ISUAL) payload on board the FORMOSAT-2 satellite carried out the first limb imaging observation of 630 nm airglow for the purpose of studying physical processes in the F region ionosphere. For a total of 14 nights in 2006-2008, ISUAL scanned the midnight latitude-altitude distribution of 630 nm airglow in the Asian sector. On two nights of relatively active conditions (ΣKp = 26, 30+) we found several bright airglow regions, which were highly variable each night in terms of luminosity and location. In relatively quiet conditions (ΣKp = 4-20) near May/June we found two bright regions which were stably located in the midlatitude region of 40°S-10°S (50°S-20°S magnetic latitude (MLAT)) and in the equatorial region of 0°-10°N (10°S-0° MLAT). On one of the quiet nights, FORMOSAT-3/COSMIC and CHAMP simultaneously measured the plasma density in the same region where ISUAL observed airglow. The plasma density data generally show good agreement, suggesting that plasma enhancements were the primary source of these two bright airglow regions. From detailed comparison with past studies we explain that the airglow in the equatorial region was due to the midnight brightness wave produced in association with the midnight temperature maximum, while that in the midlatitude region was due to the typical plasma distribution usually formed in the midnight sector. The fact that the equatorial airglow was much brighter than the midlatitude airglow and was observed on most nights during the campaign period strongly suggests the importance of further studies on the MTM/MBW phenomenology, which is not well reproduced in the current general circulation model.

  7. Vertical rise velocity of equatorial plasma bubbles estimated from Equatorial Atmosphere Radar (EAR) observations and HIRB model simulations

    NASA Astrophysics Data System (ADS)

    Tulasi Ram, S.; Ajith, K. K.; Yokoyama, T.; Yamamoto, M.; Niranjan, K.

    2017-06-01

    The vertical rise velocity (Vr) and maximum altitude (Hm) of equatorial plasma bubbles (EPBs) were estimated using the two-dimensional fan sector maps of 47 MHz Equatorial Atmosphere Radar (EAR), Kototabang, during May 2010 to April 2013. A total of 86 EPBs were observed out of which 68 were postsunset EPBs and remaining 18 EPBs were observed around midnight hours. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller ( 26-128 m/s) compared to those observed in postsunset hours ( 45-265 m/s). Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The three-dimensional numerical high-resolution bubble (HIRB) model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model. The smaller vertical rise velocities (Vr) and lower maximum altitudes (Hm) of EPBs during midnight hours are discussed in terms of weak polarization electric fields within the bubble due to weaker background electric fields and reduced background ion density levels.Plain Language SummaryEquatorial plasma bubbles are plasma density irregularities in the ionosphere. The radio waves passing through these irregular density structures undergo severe degradation/scintillation that could cause severe disruption of satellite-based communication and augmentation systems such as GPS navigation. These bubbles develop at geomagnetic equator, grow vertically, and elongate along the field lines to latitudes away from the equator. The knowledge on bubble rise velocities and their maximum attainable altitudes improves the accuracy of scintillation forecasting at latitudes away from the equator and helps in mitigating the errors in satellite-based augmentation systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA233797','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA233797"><span>The Effect of the Ionosphere on Radiowave Signals and Systems Performance Based on Ionospheric Effects Symposium Held on 1-3 May 1990</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1990-05-03</p> <p>winter and a minimum in summer ; in contrast, at sunspot maximum the seasonal peaks tend to occur around the equinoxes and the minima in summer . ’riis is...more clearly seen in Figures 4(b) ahnd 4(c). Note that around sunspot maximum the summer noon value may be less than the summer midnight value. (3) The...seasonal variation of the midnight values show summer peaks and winter minima with high values near the peaks of the sunspot cycles and low values</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850051361&hterms=environnement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Denvironnement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850051361&hterms=environnement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Denvironnement"><span>Universal time dependence of nighttime F region densities at high latitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>De La Beaujardiere, O.; Wickwar, V. B.; Caudal, G.; Holt, J. M.; Craven, J. D.; Frank, L. A.; Brace, L. H.</p> <p>1985-01-01</p> <p>Coincident auroral-zone experiments using three incoherent-scatter radars at widely spaced longitudes are reported. The observational results demonstrate that, during the night, the F layer electron density is strongly dependent on the longitude of the observing site. Ionization patches were observed in the nighttime F region from the Chatanika and EISCAT radars, while densities observed from the Millstone radar were substantially smaller. The electron density within these maxima is larger at EISCAT than at Chatanika. When observed in the midnight sector auroral zone, these densities had a peak density at a high altitude of 360-475 km. The density was maximum when EISCAT was in the midnight sector and minimum when Millstone was in the midnight sector. A minimum in insolation in the auroral zone occurs at the UT when Millstone is in the midnight sector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AnGeo..36..541M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AnGeo..36..541M"><span>New results on the mid-latitude midnight temperature maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mesquita, Rafael L. A.; Meriwether, John W.; Makela, Jonathan J.; Fisher, Daniel J.; Harding, Brian J.; Sanders, Samuel C.; Tesema, Fasil; Ridley, Aaron J.</p> <p>2018-04-01</p> <p>Fabry-Perot interferometer (FPI) measurements of thermospheric temperatures and winds show the detection and successful determination of the latitudinal distribution of the midnight temperature maximum (MTM) in the continental mid-eastern United States. These results were obtained through the operation of the five FPI observatories in the North American Thermosphere Ionosphere Observing Network (NATION) located at the Pisgah Astronomic Research Institute (PAR) (35.2° N, 82.8° W), Virginia Tech (VTI) (37.2° N, 80.4° W), Eastern Kentucky University (EKU) (37.8° N, 84.3° W), Urbana-Champaign (UAO) (40.2° N, 88.2° W), and Ann Arbor (ANN) (42.3° N, 83.8° W). A new approach for analyzing the MTM phenomenon is developed, which features the combination of a method of harmonic thermal background removal followed by a 2-D inversion algorithm to generate sequential 2-D temperature residual maps at 30 min intervals. The simultaneous study of the temperature data from these FPI stations represents a novel analysis of the MTM and its large-scale latitudinal and longitudinal structure. The major finding in examining these maps is the frequent detection of a secondary MTM peak occurring during the early evening hours, nearly 4.5 h prior to the timing of the primary MTM peak that generally appears after midnight. The analysis of these observations shows a strong night-to-night variability for this double-peaked MTM structure. A statistical study of the behavior of the MTM events was carried out to determine the extent of this variability with regard to the seasonal and latitudinal dependence. The results show the presence of the MTM peak(s) in 106 out of the 472 determinable nights (when the MTM presence, or lack thereof, can be determined with certainty in the data set) selected for analysis (22 %) out of the total of 846 nights available. The MTM feature is seen to appear slightly more often during the summer (27 %), followed by fall (22 %), winter (20 %), and spring (18 %). Also seen is a northwestward propagation of the MTM signature with a latitude-dependent amplitude. This behavior suggests either a latitudinal dependence of thermosphere tidal dissipation or a night-to-night variation of the composition of the higher-order tidal modes that contribute to the production of the MTM peak at mid-latitudes. Also presented in this paper is the perturbation on the divergence of the wind fields, which is associated with the passage of each MTM peak analyzed with the 2-D interpolation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17810506','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17810506"><span>Preliminary infrared radiometry of the night side of mercury from mariner 10.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chase, S C; Miner, E D; Morrison, D; Münch, G; Neugebauer, G; Schroeder, M</p> <p>1974-07-12</p> <p>The infrared radiometer on Mariner 10 measured the thermal emission from the planet with a spatial resolution element as small as 40 kilometers in a broad wavelength band centered at 45 micrometers. The minimum brightness temperature (near local midnight) in these near-equatorial scans was 100 degrees K. Along the track observed, the temperature declined steadily from local sunset to near midnight, behaving as would be expected for a homogeneous, porous material with a thermal inertia of 0.0017 cal cm(-2) sec(-(1/2)) degrees K(-1), a value only slightly larger than that of the moon. From near midnight to dawn, however, the temperature fluctuated over a range of about 10 degrees K, implying the presence of regions having thermal inertia as high as 0.003 cal cm(-2) sec-(1/2) degrees K(-1).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JGR...10624777S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JGR...10624777S"><span>Equatorial temperature anomaly during solar minimum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suhasini, R.; Raghavarao, R.; Mayr, H. G.; Hoegy, W. R.; Wharton, L. E.</p> <p>2001-11-01</p> <p>We show evidence for the occurrence of the equatorial temperature anomaly (ETA) during solar minimum by analyzing the temperature and total ion density data from the Neutral Atmosphere Temperature Experiment (NATE) and the Cylindrical Electrostatic Probe (CEP), respectively, on board the Atmospheric Explorer-E satellite. The chosen data refer to a height of ~254 km in the African and Asian longitude sector (340.1°E-200°E) during a summer season in the Southern Hemisphere. As during the solar maximum period, the spatial characteristics of the ETA are similar to those of the equatorial ionization anomaly (EIA). A minimum in the gas temperature is collocated with the minimum in the ion density at the dip equator, and a temperature maximum on the south side of the equator is collocated with the density maximum of the EIA. The daytime behavior of ETA formation is about the same as that of EIA as both of them are clearly present at around 1300 and 1400 local solar time (LST) only. At 1400 LST the difference between the temperatures at the crest and the trough (ETA strength) reaches a maximum value of about 100°K which is ~14% of the temperature at the trough. Like the EIA, the ETA also suddenly disappears after 1400 LST. Thus the EIA appears to be a prerequisite for the ETA formation. During the premidnight time (2200 LST), however, while the EIA is nonexistent, the temperature distribution forms a pattern opposite to that at 1400 LST in the daytime. It shows a maximum around the dip equator and a broad minimum at the daytime crest region where the postsunset cooling also is faster and occurs earlier than at the dip equator. This nighttime maximum appears to be related to the signature of the midnight temperature maximum (MTM). Mass Spectrometer Incoherent Scatter (MSIS) model temperatures, in general, are higher than the observed average temperatures for the summer season and in particular for the region around the dip equator around noon hours.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760003522','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760003522"><span>Global exospheric temperatures and densities under active solar conditions. [measured by OGO-6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wydra, B. J.</p> <p>1975-01-01</p> <p>Temperatures measured by the OGO-6 satellite using the 6300 A airglow spectrum are compared with temperatures derived from total densities and N2 densities. It is shown that while the variation of the total densities with latitude and magnetic activity agree well with values used for CIRA (1972), the temperature behavior is very different. While the temperatures derived from the N2 density were in much better agreement there were several important differences which radically affect the pressure gradients. The variation of temperature with magnetic activity indicated a seasonal and local time effect and also a latitude and delay time variation different from previous density derived temperatures. A new magnetic index is proposed that is better correlated with the observed temperatures. The temperature variations at high latitudes were examined for three levels of magnetic activity for both solstices and equinox conditions. A temperature maximum in the pre-midnight sector and a minimum in the noon sector were noted and seasonal and geomagnetic time and latitude effects discussed. Neutral temperature, density, pressure and boundary oxygen variations for the great storm of March 8, 1970 are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JASTP..66.1093L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JASTP..66.1093L"><span>Modeling the behavior of ionosphere above Millstone Hill during the September 21-27, 1998 storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lei, Jiuhou; Liu, Libo; Wan, Weixing; Zhang, Shun-Rong</p> <p>2004-08-01</p> <p>A theoretical ionospheric model is employed to investigate the ionospheric behavior as observed by the incoherent-scatter radar (ISR) at Millstone Hill during the September 21-27, 1998 storm. The observed NmF2 presented a significant negative phase on September 25, and a G condition (hmF2<200km) was also observed. The model results based on the standard input parameters (climatological model values) are in good agreement with the observed electron densities under quiet conditions, but there are large discrepancies during disturbed periods. The exospheric temperature Tex, neutral winds, atomic oxygen density [O] and molecular nitrogen density [N2], and solar flux are inferred from the ISR ion temperature profiles and from the electron density profiles. Our calculated results show that the maximum Tex is higher than 1700K, and an averaged decrease in [O] is a factor of 2.2 and an increase in [N2] at 300km is about 1.8 times for the disturbed day, September 25, relative to the quiet day level. Therefore, the large change of [N2]/[O] ratio gives a good explanation for the negative phase at Millstone Hill during this storm. Furthermore, at the disturbed nighttime the observations show a strong NmF2 decrease, accompanied by a significant hmF2 increase after the sudden storm commencement (SSC). Simulations are carried out based on the inferred Tex. It is found that the uplift of F2 layer during the period from sunset to post-midnight is mainly associated with the large equatorward winds, and a second rise in hmF2 after midnight results from the depleted Ne in the bottom-side of F2 layer due to the increased recombination, while the ``midnight collapse'' of hmF2 is attributed to the large-scale traveling atmospheric disturbances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..263...44O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..263...44O"><span>Ground-based observations of Saturn's auroral ionosphere over three days: Trends in H3+ temperature, density and emission with Saturn local time and planetary period oscillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Donoghue, James; Melin, Henrik; Stallard, Tom S.; Provan, G.; Moore, Luke; Badman, Sarah V.; Cowley, Stan W. H.; Baines, Kevin H.; Miller, Steve; Blake, James S. D.</p> <p>2016-01-01</p> <p>On 19-21 April 2013, the ground-based 10-m W.M. Keck II telescope was used to simultaneously measure H3+ emissions from four regions of Saturn's auroral ionosphere: (1) the northern noon region of the main auroral oval; (2) the northern midnight main oval; (3) the northern polar cap and (4) the southern noon main oval. The H3+ emission from these regions was captured in the form of high resolution spectral images as the planet rotated. The results herein contain twenty-three H3+ temperatures, column densities and total emissions located in the aforementioned regions - ninety-two data points in total, spread over timescales of both hours and days. Thermospheric temperatures in the spring-time northern main oval are found to be cooler than their autumn-time southern counterparts by tens of K, consistent with the hypothesis that the total thermospheric heating rate is inversely proportional to magnetic field strength. The main oval H3+ density and emission is lower at northern midnight than it is at noon, in agreement with a nearby peak in the electron influx in the post-dawn sector and a minimum flux at midnight. Finally, when arranging the northern main oval H3+ parameters as a function of the oscillation period seen in Saturn's magnetic field - the planetary period oscillation (PPO) phase - we see a large peak in H3+ density and emission at ∼115° northern phase, with a full-width at half-maximum (FWHM) of ∼44°. This seems to indicate that the influx of electrons associated with the PPO phase at 90° is responsible at least in part for the behavior of all H3+ parameters. A combination of the H3+ production and loss timescales and the ±10° uncertainty in the location of a given PPO phase are likely, at least in part, to be responsible for the observed peaks in H3+ density and emission occurring at a later time than the peak precipitation expected at 90° PPO phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AnGeo..35..333T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AnGeo..35..333T"><span>New results on equatorial thermospheric winds and temperatures from Ethiopia, Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tesema, Fasil; Mesquita, Rafael; Meriwether, John; Damtie, Baylie; Nigussie, Melessew; Makela, Jonathan; Fisher, Daniel; Harding, Brian; Yizengaw, Endawoke; Sanders, Samuel</p> <p>2017-03-01</p> <p>Measurements of equatorial thermospheric winds, temperatures, and 630 nm relative intensities were obtained using an imaging Fabry-Perot interferometer (FPI), which was recently deployed at Bahir Dar University in Ethiopia (11.6° N, 37.4° E, 3.7° N magnetic). The results obtained in this study cover 6 months (53 nights of useable data) between November 2015 and April 2016. The monthly-averaged values, which include local winter and equinox seasons, show the magnitude of the maximum monthly-averaged zonal wind is typically within the range of 70 to 90 ms-1 and is eastward between 19:00 and 21:00 LT. Compared to prior studies of the equatorial thermospheric wind for this local time period, the magnitude is considerably weaker as compared to the maximum zonal wind speed observed in the Peruvian sector but comparable to Brazilian FPI results. During the early evening, the meridional wind speeds are 30 to 50 ms-1 poleward during the winter months and 10 to 25 ms-1 equatorward in the equinox months. The direction of the poleward wind during the winter months is believed to be mainly caused by the existence of the interhemispheric wind flow from the summer to winter hemispheres. An equatorial wind surge is observed later in the evening and is shifted to later local times during the winter months and to earlier local times during the equinox months. Significant night-to-night variations are also observed in the maximum speed of both zonal and meridional winds. The temperature observations show the midnight temperature maximum (MTM) to be generally present between 00:30 and 02:00 LT. The amplitude of the MTM was ˜ 110 K in January 2016 with values smaller than this in the other months. The local time difference between the appearance of the MTM and a pre-midnight equatorial wind was generally 60 to 180 min. A meridional wind reversal was also observed after the appearance of the MTM (after 02:00 LT). Climatological models, HWM14 and MSIS-00, were compared to the observations and the HWM14 model generally predicted the zonal wind observations well with the exception of higher model values by 25 ms-1 in the winter months. The HWM14 model meridional wind showed generally good agreement with the observations. Finally, the MSIS-00 model overestimated the temperature by 50 to 75 K during the early evening hours of local winter months. Otherwise, the agreement was generally good, although, in line with prior studies, the model failed to reproduce the MTM peak for any of the 6 months compared with the FPI data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol3/pdf/CFR-2013-title33-vol3-sec208-26.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol3/pdf/CFR-2013-title33-vol3-sec208-26.pdf"><span>33 CFR 208.26 - Altus Dam and Reservoir, North Fork Red River, Okla.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... level above elevation 1559, the reservoir will be operated to obtain maximum overall benefits which may..., releases will be increased in order to provide maximum overall benefits and prevent the reservoir level...; and precipitation in inches. A reading at 8 a.m., noon, 4 p.m., and midnight, shall be shown for each...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol3/pdf/CFR-2012-title33-vol3-sec208-26.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol3/pdf/CFR-2012-title33-vol3-sec208-26.pdf"><span>33 CFR 208.26 - Altus Dam and Reservoir, North Fork Red River, Okla.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... level above elevation 1559, the reservoir will be operated to obtain maximum overall benefits which may..., releases will be increased in order to provide maximum overall benefits and prevent the reservoir level...; and precipitation in inches. A reading at 8 a.m., noon, 4 p.m., and midnight, shall be shown for each...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol3/pdf/CFR-2014-title33-vol3-sec208-26.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol3/pdf/CFR-2014-title33-vol3-sec208-26.pdf"><span>33 CFR 208.26 - Altus Dam and Reservoir, North Fork Red River, Okla.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... level above elevation 1559, the reservoir will be operated to obtain maximum overall benefits which may..., releases will be increased in order to provide maximum overall benefits and prevent the reservoir level...; and precipitation in inches. A reading at 8 a.m., noon, 4 p.m., and midnight, shall be shown for each...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770021721','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770021721"><span>Densities and temperatures in the polar thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gardner, L. J.</p> <p>1977-01-01</p> <p>The atomic oxygen density at 120 km, the 630 nm airglow temperature, the helium density at 300 km and the molecular nitrogen density near 400 km were examined as functions of geomagnetic latitude, geomagnetic time, season and magnetic activity level. The long-term averages of these quantities were examined so as to provide a baseline of these thermospheric parameters from which future studies may be made for comparison. The hours around magnetic noon are characterized by low temperatures, high 0 and He densities, and median nitrogen densities. The pre-midnight hours exhibit high temperatures, high He density, low nitrogen density and median 0 densities. The post-midnight sector shows low 0 and He densities, median temperatures and high nitrogen densities. These results are compared to recent models and observations and are discussed with respect to their causes due to divergence of the wind field and energy deposition in the thermosphere.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li class="active"><span>1</span></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_1 --> <div id="page_2" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="21"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.771a2033H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.771a2033H"><span>Sky brightness and twilight measurements at Jogyakarta city, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herdiwijaya, Dhani</p> <p>2016-11-01</p> <p>The sky brightness measurements were performed using a portable photometer. A pocket-sized and low-cost photometer has 20 degree area measurement, and spectral ranges between 320-720 nm with output directly in magnitudes per arc second square (mass) unit. The sky brightness with 3 seconds temporal resolutions was recorded at Jogyakarta city (110° 25’ E; 70° 52’ S; elevation 100 m) within 136 days in years from 2014 to 2016. The darkest night could reach 22.61 mpass only in several seconds, with mean value 18.8±0.7 mpass and temperature variation 23.1±1.2 C. The difference of mean sky brightness between before and after midnight was about -0.76 mpass or 2.0 times brighter. Moreover, the sky brightness and temperature fluctuations were more stable in after midnight than in before midnight. It is suggested that city light pollution affects those variations, and subsequently duration of twilight. By comparing twilight brightness for several places, we also suggest a 17° solar dip or about 66 minutes before sunrise for new time of Fajr prayer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFMSA53A1153F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFMSA53A1153F"><span>Observing Equatorial Thermospheric Winds and Temperatures with a New Mapping Technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Faivre, M. W.; Meriwether, J. W.; Sherwood, P.; Veliz, O.</p> <p>2005-12-01</p> <p>Application of the Fabry-Perot interferometer (FPI) at Arequipa, Peru (16.4S, 71.4 W) to measure the Doppler shifts and Doppler broadenings in the equatorial O(1D) 630-nm nightglow has resulted in numerous detections of a large-scale thermospheric phenomenon called the Midnight Temperature Maximum (MTM). A recent detector upgrade with a CCD camera has improved the accuracy of these measurements by a factor of 5. Temperature increases of 50 to 150K have been measured during nights in April and July, 2005, with error bars less than 10K after averaging in all directions. Moreover, the meridional wind measurements show evidence for a flow reversal from equatorward to poleward near local midnight for such events. A new observing strategy based upon the pioneering work of Burnside et al.[1981] maps the equatorial wind and temperature fields by observing in eight equally-spaced azimuth directions, each with a zenith angle of 60 degrees. Analysis of the data obtained with this technique gives the mean wind velocities in the meridional and zonal directions as well as the horizontal gradients of the wind field for these directions. Significant horizontal wind gradients are found for the meridional direction but not for the zonal direction. The zonal wind blows eastward throughout the night with a maximum speed of ~150 m/s near the middle of the night and then decreases towards zero just before dawn. In general, the fastest poleward meridional wind is observed near mid-evening. By the end of the night, the meridional flow tends to be more equatorward at speeds of about 50 m/s. Using the assumption that local time and longitude are equivalent over a period of 30 minutes, a map of the horizontal wind field vector field is constructed over a range of 12 degrees latitude centered at 16.5 S. Comparison between MTM nights and quiet nights (no MTM) revealed significant differences in the horizontal wind fields. Using the method of Fourier decomposition of the line-of-sight winds, the vertical wind can be retrieved from the horizontal flow divergence with a much-improved sensitivity than that represented by direct zenith measurements. The value of the vertical wind speed ranges from -5 to 5 m/s. Some nights seem to present gravity wave activity with periodic fluctuations of 1-2 hours visible in the vertical winds as well as in the temperature series.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM51E2551S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM51E2551S"><span>Investigation of Co-rotation Lag in Saturn's Dayside Magnetosphere and Comparison with the Nightside</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, E. J.; Dougherty, M. K.</p> <p>2016-12-01</p> <p>Two previous studies of co-rotation lag concentrated on 13 identical high-inclination Cassini orbits. In the first, measurements of the magnetospheric field azimuthal component, Bϕ, were restricted to the southern hemisphere, near midnight, from the equator and perikron to maximum latitude 70°. Comparison with the prevailing model of the magnetosphere-ionosphere interaction yielded conclusions that the ionospheric conductivity, Σp, was independent of ionospheric co-latitude, θi, and the ratio of magnetospheric to planetary field angular velocities, ω/Ωs, equaled, 1- exp(-Bθi), an unexpected exponential dependence on a single parameter. Both model parameters exhibited significant temporal variations from orbit to orbit leading to variations in the ionospheric profiles of Pedersen current, Ip. The second 13 orbit study of Bϕ extended to the north hemisphere where lagging fields alternated with leading and co-rotating fields. It was concluded that the difference was actually a local- time dependence with lagging -fields- only occurring after midnight and the mixed rotations before midnight. Again, Σp was independent of θi and ω/Ωs = 1- exp(-Bθi). Both studies raised the questions: How general is the exponential dependence of 1-ω/Ωs? Is it restricted to midnight or hold as well in the dayside magnetosphere? What is the cause of this dependence that differs from the model? The analysis of Bϕ has been extended to four nearly-identical north-south orbits near noon. The results and conclusions of this third study will be reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.P21E..08O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.P21E..08O"><span>Ground-based observations of Saturn's H3+ aurora and ring rain from Keck in 2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Donoghue, J.; Melin, H.; Stallard, T.; Provan, G.; Moore, L.; Badman, S. V.; Baines, K. H.; Miller, S.; Cowley, S. W. H.</p> <p>2014-12-01</p> <p>The ground-based 10-metre Keck telescope was used to probe Saturn's H3+ ionosphere in 2013. The slit on the high resolution near infrared spectrometer (NIRSPEC; (R~25,000) was aligned pole-to-pole along Saturn's rotational axis at local noon. This is also aligned (within uncertainties) to the effectively dipolar magnetic field. Four polar/auroral regions of Saturn's ionosphere were measured simultaneously as the planet rotated: 1) the northern noon main auroral oval; 2) the northern midnight main oval; 3) the northern polar cap and 4) the southern main oval at noon. The results here contain twenty-three H3+ temperatures, column densities and total emissions located at the above regions spread over timescales of both hours and days. The main findings of this study are that ionospheric temperatures in the northern main oval are cooler than their southern counterparts by tens of K; supportive of the hypothesis that the total thermospheric heating rate (Joule heating and ion drag) is inversely proportional to magnetic field strength. The main oval H3+ density and emission is lower at northern midnight than at noon, and this is in agreement with an electron influx peaking at 08:00 Saturn local time and having a minimum at midnight. When ordering the northern main oval parameters of H3+ as a function of the oscillation period seen in Saturn's magnetic field - the planetary period oscillation (PPO) phase - we see a large peak in H3+ density and emission at ˜110° phase, with a full-width at half-maximum (FWHM) of ˜40°. This seems to indicate that the influx of electrons associated with the PPO phase at 90° is responsible at least in part for the behavior of all H3+ parameters. In addition to the auroral/polar data we also present the latest results from observations of Saturn's mid-to-low latitude H3+ emission. This emission is thought to be modulated by charged water product influx which flows into the planet along magnetic field lines from Saturn's rings, i.e. ring rain. Figure: H3+ Q(1,0) parameters as a functon of northern PPO phase. The x- and y-axes show the PPO phase angle versus the H3+ parameters in each of the four panels: a) Q(1,0) line intensity, b) temperature, c) column density and d) total emission. The blue, green and red correspond to the 19th, 20th and 21st of April, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EP%26S...69..168N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EP%26S...69..168N"><span>PCA and vTEC climatology at midnight over mid-latitude regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Natali, M. P.; Meza, A.</p> <p>2017-12-01</p> <p>The effect of the thermospheric vertical neutral wind on vertical total electron content (vTEC) variations including longitudinal anomaly, remaining winter anomaly, mid-latitude summer night anomaly, and semiannual anomaly is studied at mid-latitude regions around zero magnetic declination at midnight during high solar activity. By using the principal component analysis (PCA) numerical technique, this work studies the spatial and temporal variations of the ionosphere at midnight over mid-latitude regions during 2000-2002. PCA is applied to a time series of global vTEC maps produced by the International Global Navigation Satellite System (GNSS) Service. Four regions were studied in particular, each located at mid-latitude and approximately centered at zero magnetic declination, with two in the northern hemisphere and two in southern hemisphere, and all are located near and far from geomagnetic poles in each case. This technique provides an effective method to analyze the main ionospheric variabilities at mid-latitudes. PCA is also applied to the vTEC computed using the International Reference Ionosphere (IRI) 2012 model, to analyze the capability of this model to represent ionospheric variabilities at mid-latitude. Also, the Horizontal Wind Model 2007 (HWM07) is used to improve our climatology interpretation, by analyzing the relationship between vTEC and thermospheric wind, both quantitatively and qualitatively. At midnight, the behavior of mean vTEC values strongly responds to vertical wind variation, experiencing a decrease of about 10-15% with the action of the positive vertical component of the field-aligned neutral wind lasting for 2 h in all regions except for Oceania. Notable results include: a significant increase toward higher latitudes during summer in the South America and Asia regions, associated with the mid-latitude summer night anomaly, and an increase toward higher latitudes in winter in the North America and Oceania regions, highlighting the remnant effect of the winter anomaly. Finally, the longitudinal variations of east-west differences, named longitudinal anomaly, show maximum values in March for North America, in December for South America and Oceania, and are not shown for Asia. Our results show that at mid-latitudes regions, the IRI model represents midnight ionospheric mean values with a similar spatial distribution, but the values are always lower than those obtained by GNSS. The differences between IRI and GNSS results include: the longitudinal anomaly is characterized by a stronger semiannual variation in both North America and South America, with a maximum in the equinoxes, while for the Asian region, the behavior is almost constant throughout the years, and finally, there is an absence of the winter anomaly remnant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA12A..06Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA12A..06Y"><span>Vertical Rise Velocity of Equatorial Plasma Bubbles Estimated from Equatorial Atmosphere Radar Observations and High-Resolution Bubble Model Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yokoyama, T.; Ajith, K. K.; Yamamoto, M.; Niranjan, K.</p> <p>2017-12-01</p> <p>Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPBs from a space weather point of view. The development of EPBs is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPBs which shows very turbulent internal structures such as bifurcation and pinching. As EPBs have field-aligned structures, the latitude range that is affected by EPBs depends on the apex altitude of EPBs over the dip equator. However, it was not easy to observe the apex altitude and vertical rise velocity of EPBs. Equatorial Atmosphere Radar (EAR) in Indonesia is capable of steering radar beams quickly so that the growth phase of EPBs can be captured clearly. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller compared to those observed in postsunset hours. Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The HIRB model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol1/pdf/CFR-2014-title36-vol1-sec71-4.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol1/pdf/CFR-2014-title36-vol1-sec71-4.pdf"><span>36 CFR 71.4 - Posting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... midnight blue) enclosed within a circle (colored white with a midnight blue border) framed by a rounded triangle (colored gold with a midnight blue border). (A) The color midnight blue shall be Pantone Matching...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol1/pdf/CFR-2012-title36-vol1-sec71-4.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol1/pdf/CFR-2012-title36-vol1-sec71-4.pdf"><span>36 CFR 71.4 - Posting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... midnight blue) enclosed within a circle (colored white with a midnight blue border) framed by a rounded triangle (colored gold with a midnight blue border). (A) The color midnight blue shall be Pantone Matching...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol1/pdf/CFR-2013-title36-vol1-sec71-4.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol1/pdf/CFR-2013-title36-vol1-sec71-4.pdf"><span>36 CFR 71.4 - Posting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... midnight blue) enclosed within a circle (colored white with a midnight blue border) framed by a rounded triangle (colored gold with a midnight blue border). (A) The color midnight blue shall be Pantone Matching...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AdSpR..43.1957M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AdSpR..43.1957M"><span>Occurrence and zonal drifts of small-scale ionospheric irregularities over an equatorial station during solar maximum - Magnetic quiet and disturbed conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muella, M. T. A. H.; de Paula, E. R.; Kantor, I. J.; Rezende, L. F. C.; Smorigo, P. F.</p> <p>2009-06-01</p> <p>A statistical study of L-band amplitude scintillations and zonal drift velocity of Fresnel-scale ionospheric irregularities is presented. Ground-based global positioning system (GPS) data acquired at the equatorial station of São Luís (2.33°S, 44.21°W, dip latitude 1.3°S), Brazil, during the solar maximum period from March 2001 to February 2002 are used in the analysis. The variation of scintillations and irregularity drift velocities with local time, season and magnetic activity are reported. The results reveal that for the near overhead ionosphere (satellite elevation angle >45°) a broad maximum in the occurrence of scintillation is seen from October to February. In general, weak scintillations (S 4 < 0.4) dominated (>90%) during equinox (March-April; September-October) and December solstice (November-February) quiet time conditions and, many of the scintillations, occurred during pre-midnight hours. The mean zonal velocities of the irregularities are seen to be ˜30 m s -1 larger near December solstice, while during the equinoctial period the velocities decay faster and the scintillations tend to cease earlier. On geomagnetically disturbed nights, scintillation activity seems to be strongly affected by the prompt penetration of magnetospheric electric fields and disturbance dynamo effects. On disturbed days, during the equinox and December solstice seasons, the scintillations tend to be suppressed in the pre-midnight hours, whereas during June solstice months (May-August) the effect is opposite. In the post-midnight period, the mostly marked increase in the scintillation occurrence is observed during the equinox months. The results show that during disturbed conditions only one type of storm (when the main phase maximum takes place during the daytime hours) agrees with the Aarons' description, that is the suppression of L-band scintillations in the first recovery phase night. The results also reveal that the storm-time irregularity drifts become more spread in velocity and occasionally may present westward drift. The present work is important to evaluate the behavior of the ionospheric irregularities at equatorial latitudes under geomagnetically quiet and disturbed conditions, which is one of the most relevant themes in the space weather studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1239064','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1239064"><span>Postmidnight depletion of the high-energy tail of the quiet plasmasphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sarno-Smith, Lois K.; Liemohn, Michael W.; Katus, Roxanne M.</p> <p></p> <p>The Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument measures the high energy tail of the thermal plasmasphere allowing study of topside ionosphere and inner magnetosphere coupling. We statistically analyze a 22 month period of HOPE data, looking at quiet times with a Kp index of less than 3. We investigate the high energy range of the plasmasphere, which consists of ions at energies between 1-10 eV and contains approximately 5% of total plasmaspheric density. Both the fluxes and partial plasma densities over this energy range show H + is depleted the most in the post-midnight sector (1-4 MLT),more » followed by O + and then He +. The relative depletion of each species across the post-midnight sector is not ordered by mass, which reveals ionospheric influence. We compare our results with keV energy electron data from HOPE and the Van Allen Probes Electric Fields and Waves (EFW) instrument spacecraft potential to rule out spacecraft charging. Our conclusion is that the post-midnight ion disappearance is due to diurnal ionospheric temperature variation and charge exchange processes« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1239064-postmidnight-depletion-high-energy-tail-quiet-plasmasphere','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1239064-postmidnight-depletion-high-energy-tail-quiet-plasmasphere"><span>Postmidnight depletion of the high-energy tail of the quiet plasmasphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sarno-Smith, Lois K.; Liemohn, Michael W.; Katus, Roxanne M.; ...</p> <p>2015-03-06</p> <p>The Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument measures the high energy tail of the thermal plasmasphere allowing study of topside ionosphere and inner magnetosphere coupling. We statistically analyze a 22 month period of HOPE data, looking at quiet times with a Kp index of less than 3. We investigate the high energy range of the plasmasphere, which consists of ions at energies between 1-10 eV and contains approximately 5% of total plasmaspheric density. Both the fluxes and partial plasma densities over this energy range show H + is depleted the most in the post-midnight sector (1-4 MLT),more » followed by O + and then He +. The relative depletion of each species across the post-midnight sector is not ordered by mass, which reveals ionospheric influence. We compare our results with keV energy electron data from HOPE and the Van Allen Probes Electric Fields and Waves (EFW) instrument spacecraft potential to rule out spacecraft charging. Our conclusion is that the post-midnight ion disappearance is due to diurnal ionospheric temperature variation and charge exchange processes« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-07-03/pdf/2012-16277.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-07-03/pdf/2012-16277.pdf"><span>77 FR 39571 - Frank Sherman, FSCS Corporation, TMS West Coast, Inc.,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-07-03</p> <p>..., CUSA K-TCS, LLC, and Midnight Sun Tours, Inc. AGENCY: Surface Transportation Board, DOT. ACTION: Notice... K-TCS, LLC; and Midnight Sun Tours, Inc. (Midnight Sun) (collectively, Coach America Subsidiaries...) the assets of Coach-Miami and Midnight Sun would be purchased by either FSCS or Cabana and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950039560&hterms=PV+solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DPV%2Bsolar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950039560&hterms=PV+solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DPV%2Bsolar"><span>Ion measurements during Pioneer Venus reentry: Implications for solar cycle variation of ion composition and dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grebowsky, J. M.; Hartle, R. E.; Kar, J.; Cloutier, P. A.; Taylor, H. A., Jr.; Brace, L. H.</p> <p>1993-01-01</p> <p>During the final, low solar activity phase of the Pioneer Venus (PV) mission, the Orbiter Ion Mass Spectrometer (OIMS) measurements found all ion species, in the midnight-dusk sector, reduced in concentration relative to that observed at solar maximum. Molecular ion species comprised a greater part of the total ion concentration as O(+) and H(+) had the greatest depletions. The nightside ionospheric states were strikingly similar to the isolated solar maximum 'disappearing' ionospheres. Both are very dynamic states characterized by a rapidly drifting plasma and 30-100 eV superthermal O(+) ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28789728','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28789728"><span>Circadian feeding patterns of 12-month-old infants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wee, Poh Hui; Loy, See Ling; Toh, Jia Ying; Tham, Elaine Kwang Hsia; Cheung, Yin Bun; Godfrey, Keith M; Gluckman, Peter D; Saw, Seang Mei; Chong, Yap-Seng; Lek, Ngee; Chan, Jerry Kok Yen; Goh, Daniel Yam Thiam; Chong, Mary Foong-Fong; Yap, Fabian</p> <p>2017-06-01</p> <p>Early life nutrition and feeding practices are important modifiable determinants of subsequent obesity, yet little is known about the circadian feeding pattern of 12-month-old infants. We aimed to describe the 24-h feeding patterns of 12-month-old infants and examine their associations with maternal and infant characteristics. Mothers from a prospective birth cohort study (n 431) reported dietary intakes of their 12-month-old infants and respective feeding times using 24-h dietary recall. Based on their feeding times, infants were classified into post-midnight (00.00-05.59 hours) and pre-midnight (06.00-23.59 hours) feeders. Mean daily energy intake was 3234 (sd 950) kJ (773 (sd 227) kcal), comprising 51·8 (sd 7·8) % carbohydrate, 33·9 (sd 7·2) % fat and 14·4 (sd 3·2) % protein. Mean hourly energy intake and proportion of infants fed were lower during post-midnight than pre-midnight hours. There were 251 (58·2 %) pre-midnight and 180 (41·8 %) post-midnight feeders. Post-midnight feeders consumed higher daily energy, carbohydrate, fat and protein intakes than pre-midnight feeders (all P<0·001). The difference in energy intake originated from energy content consumed during the post-midnight period. Majority (n 173) of post-midnight feeders consumed formula milk during the post-midnight period. Using multivariate logistic regression with confounder adjustment, exclusively breast-feeding during the first 6 months of life was negatively associated with post-midnight feeding at 12 months (adjusted OR 0·31; 95 % CI 0·11, 0·82). This study provides new insights into the circadian pattern of energy intake during infancy. Our findings indicated that the timing of feeding at 12 months was associated with daily energy and macronutrient intakes, and feeding mode during early infancy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA12A..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA12A..03S"><span>Recent observations of traveling ionospheric disturbances and plasma bubbles using Optical Mesosphere Thermosphere Imagers in Asian and African sectors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shiokawa, K.; Otsuka, Y.; Tsuchiya, S.; Moral, A. C.; Okoh, D.</p> <p>2017-12-01</p> <p>We review recent observational results of medium-scale traveling ionospheric disturbances (MSTIDs) and equatorial plasma bubbles obtained by using airglow imagers and Fabry-Perot interferometers of the Optical Mesosphere Thermosphere Imagers (OMTIs) at Asian and African sectors. The OMTIs contains 20 airglow imagers and 5 Fabry-Perot interferometers (FPIs) at Canada, USA (Alaska), Russia, Finland, Norway, Iceland, Japan, Thailand, Indonesia, Australia, and Nigeria (http://stdb2.isee.nagoya-u.ac.jp/omti/). The 3-dimentional Fast Fourier Transformation of airglow images makes it possible to analyze 16-year airglow images obtained at Shigaraki (34.8N) and Rikubetsu (43.5N), Japan, to obtain phase velocity spectra of gravity waves and MSTIDs. The MSTIDs spectra show clear southwestward preference of propagation and minor northeastward propagation over Japan. We also found clear negative correlation between MSTID power and solar F10.7 flux, indicating that MSTIDs becomes more active during solar quiet time. This fact suggest the control of ionospheric Perkins and E-F coupling instabilities by solar activities. Three TIDs in airglow images over Indonesia, including midnight brightness waves (MBWs), were compared with CHAMP-satellite overpass to investigate neutral density variations in the thermosphere associated with the TIDs. We found clear correspondence in variations between the airglow intensities and neutral densities, suggesting that the observed TIDs over the equatorial region is caused by gravity waves. We also compare average thermospheric temperatures measured by the four FPIs for 3-4 years with the MSIS90E and GAIA models. The comparison shows that GAIA generally shows better fitting than the MSIS90E, but at the equatorial stations, GAIA tends to fail to reproduce the FPI temperature, probably due to ambiguity of location of the midnight temperature maximum. We also made statistics of plasma bubble occurrence using airglow imager and GNSS receiver at Abuja (9.0N), Nigeria near the geomagnetic equator based on 1.6 year observations. The bubble occurrence is high at equinoxes. There are 33 % of events for which bubble detection by airglow image and GNSS ROTI is different. We discuss possible cause of these differences in the presentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..149a2024T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..149a2024T"><span>Characteristics of the oceanic MCC, continental MCC, and coastal MCC over the Indonesian maritime continent</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trismidianto</p> <p>2018-05-01</p> <p>This study explains the comparison of mesoscale convective complexes (MCC) characteristics in the oceans, land and in the coast over Indonesian maritime continent (IMC). MCCs were identified and tracked during 15-years (2001-2015) over IMC by infrared satellite imagery using an algorithm that combines criteria of cloud coverage, eccentricity, and cloud lifetime. Infrared satellite imagery was obtained from Himawari generation satellite data. This study showed most of the continental MCC found near the mountains and the high elevation areas. The frequency of MCC occurrences was larger over the land than over the ocean. The oceanic MCCs, which lasted for more than 12 hours, were longer-lived than the continental MCCs. The MCCs with small size most frequently occurred in the continent, in contrast, the MCC with the medium and large size were most concentrated over the ocean. Generally, the continental and coastal MCC initiation occurs in the late afternoon and reach maximum size around midnight before decaying the next morning. In contrast, the oceanic MCC dominantly develops in midnight, and reach maximum size in the morning and then MCC decayed and dissipated from noon until afternoon. The evolution of MCC development in the ocean, land, and in the coast has almost the same stages and ways.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AdSpR..60.1657T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AdSpR..60.1657T"><span>Climatology of ionospheric scintillation over the Vietnam low-latitude region for the period 2006-2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tran, Thi Lan; Le, Huy Minh; Amory-Mazaudier, C.; Fleury, R.</p> <p>2017-10-01</p> <p>This paper presents the characteristics of the occurrence of ionospheric scintillations at low-latitude, over Vietnam, by using continuous data of three GSV4004 receivers located at PHUT/Hanoï (105.9°E, 21.0°N; magnetic latitude 14.4°N), HUES/Hue (107.6°E, 16.5°N; magnetic latitude 9.5°N) and HOCM/Ho Chi Minh city (106.6°E, 10.8°N; magnetic latitude 3.3°N) for the period 2006-2014. The results show that the scintillation activity is maximum during equinox months for all the years and depends on solar activity as expected. The correlations between the monthly percentage scintillation occurrence and the F10.7 flux are of 0.40, 0.52 and 0.67 for PHUT, HUES and HOCM respectively. The distribution of scintillation occurrences is dominant in the pre-midnight sector and around the northern crest of the equatorial ionization anomaly (EIA), from the 15°N to 20°N geographic latitude with a maximum at 16°N. The results obtained from the directional analysis show higher distributions of scintillations in the southern sky of PHUT and in the northern sky of HUES and HOCM, and in the elevation angles smaller than 40°. The correlation between ROTI and S4 is low and rather good at PHUT (under EIA) than HOCM (near equator). We found better correlation in the post-midnight hours and less correlation in the pre-midnight hours for all stations. When all satellites are considered during the period of 2009-2011, the range of variation of the ration between ROTI and S4 is from 1 to 7 for PHUT, from 0.3 to 6 for HUES and from 0.7 to 6 for HOCM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61.1901P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61.1901P"><span>Multi-year behaviour of the midnight OH∗ temperature according to observations at Zvenigorod over 2000-2016</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perminov, V. I.; Semenov, A. I.; Pertsev, N. N.; Medvedeva, I. V.; Dalin, P. A.; Sukhodoev, V. A.</p> <p>2018-04-01</p> <p>Using spectral measurements of the hydroxyl airglow at the Zvenigorod station (56° N, 37° E), Moscow region, over 2000-2016, we obtained the long-term set of data comprising 1822 midnight values of the OH∗ temperature in the mesopause region. These data revealed a 17-year series of its mean annual values, as well as amplitudes and phases of the first two harmonics of its annual variation. The obtained parameters were analyzed to determine statistically relevant characteristics of their long-term variations. As a result, we found that the long-term behaviour of the mean annual OH∗ temperature features a small negative linear trend (-0.07 ± 0.03 K/year) over the addressed period. Besides, its dependence on solar activity is shown to be 4.1 ± 0.5 K/100 SFU. Regarding the long-term behaviour of the mean annual OH∗ temperature, we revealed the existence of two oscillations with 3-year (the amplitude being 1.3 ± 0.2 K) and 4.1-year (the amplitude being 0.6 ± 0.2 K) periods. We obtained empirical relations describing year-to-year variations in the amplitudes and phases of the annual and semi-annual harmonics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27474007','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27474007"><span>Daily rhythms of physiological parameters in the dromedary camel under natural and laboratory conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Al-Haidary, Ahmed A; Abdoun, Khalid A; Samara, Emad M; Okab, Aly B; Sani, Mamane; Refinetti, Roberto</p> <p>2016-08-01</p> <p>Camels are well adapted to hot arid environments and can contribute significantly to the economy of developing countries in arid regions of the world. Full understanding of the physiology of camels requires understanding of the internal temporal order of the body, as reflected in daily or circadian rhythms. In the current study, we investigated the daily rhythmicity of 20 physiological variables in camels exposed to natural oscillations of ambient temperature in a desert environment and compared the daily temporal courses of the variables. We also studied the rhythm of core body temperature under experimental conditions with constant ambient temperature in the presence and absence of a light-dark cycle. The obtained results indicated that different physiological variables exhibit different degrees of daily rhythmicity and reach their daily peaks at different times of the day, starting with plasma cholesterol, which peaks 24min after midnight, and ending with plasma calcium, which peaks 3h before midnight. Furthermore, the rhythm of core body temperature persisted in the absence of environmental rhythmicity, thus confirming its endogenous nature. The observed delay in the acrophase of core body temperature rhythm under constant conditions suggests that the circadian period is longer than 24h. Further studies with more refined experimental manipulation of different variables are needed to fully elucidate the causal network of circadian rhythms in dromedary camels. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/2899477','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/2899477"><span>Metabolism and evaporative heat loss in the dik-dik antelope (Rhynchotragus kirki).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kamau, J M</p> <p>1988-01-01</p> <p>1. Under controlled conditions, the rate of oxygen consumption (VO2) respiratory frequency, evaporative water loss, heat balance, rectal (Trec) and surface temperatures were determined in the dik-dik antelopes at ambient temperatures (Ta) ranging from 1 to 44 degrees C. 2. The thermal neutral zone was found to be between 24 and 35 degrees C. 3. Respiratory frequency ranged between 27 and 630 breaths/min. 4. At a Ta of 44 degrees C, 95% of the heat produced by the dik-dik was lost via respiratory evaporation. Despite an increase in Trec, cutaneous evaporation did not increase. 5. During panting, VO2 increased in accordance with the expected Q10 effect, contrary to earlier findings. 6. Measurements of circadian rhythm [LD 12:12 (7-19) CT26 degrees C] in VO2 showed that the minimum VO2 (0.42 ml O2/g/hr) occurred at midnight while the maximum (0.78 ml O2/g/hr) occurred at midday. The 24 hr mean VO2 was 0.61 ml O2/g/hr. 7. These measurements suggest that in nature, determinants other than light may be responsible for triggering the variations observed in VO2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1224024-ideas-work-midnight-audit','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1224024-ideas-work-midnight-audit"><span>Ideas That Work! The Midnight Audit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Parker, Steven A.</p> <p></p> <p>The midnight audit provides valuable insight toward identifying opportunities to reduce energy consumption—insight that can be easily overlooked during the normal (daytime) energy auditing process. The purpose of the midnight audit is to observe after-hour operation with the mindset of seeking ways to further minimize energy consumption during the unoccupied mode and minimize energy waste by reducing unnecessary operation. The midnight audit should be used to verify that equipment is off when it is supposed to be, or operating in set-back mode when applicable. Even a facility that operates 2 shifts per day, 5 days per week experiences fewer annualmore » hours in occupied mode than it does during unoccupied mode. Minimizing energy loads during unoccupied hours can save significant energy, which is why the midnight audit is an Idea That Works.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-07-26/pdf/2013-17942.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-07-26/pdf/2013-17942.pdf"><span>78 FR 45288 - Frank Sherman, Evergreen Trails, Inc., Cabana Coaches, LLC, TMS West Coast, Inc. and FSCS...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-07-26</p> <p>.... (Coach America),\\2\\ specifically, those of Midnight Sun Tours, Inc. (Midnight Sun) and American Coach... Sun into Cabana; Evergreen would receive the right to purchase and consolidate the assets of all of... would be more efficient and cost effective to consolidate the assets of Midnight Sun and ACL Miami into...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29494702','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29494702"><span>Comprehensive transcriptome analysis and flavonoid profiling of Ginkgo leaves reveals flavonoid content alterations in day-night cycles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ni, Jun; Dong, Lixiang; Jiang, Zhifang; Yang, Xiuli; Chen, Ziying; Wu, Yuhuan; Xu, Maojun</p> <p>2018-01-01</p> <p>Ginkgo leaves are raw materials for flavonoid extraction. Thus, the timing of their harvest is important to optimize the extraction efficiency, which benefits the pharmaceutical industry. In this research, we compared the transcriptomes of Ginkgo leaves harvested at midday and midnight. The differentially expressed genes with the highest probabilities in each step of flavonoid biosynthesis were down-regulated at midnight. Furthermore, real-time PCR corroborated the transcriptome results, indicating the decrease in flavonoid biosynthesis at midnight. The flavonoid profiles of Ginkgo leaves harvested at midday and midnight were compared, and the total flavonoid content decreased at midnight. A detailed analysis of individual flavonoids showed that most of their contents were decreased by various degrees. Our results indicated that circadian rhythms affected the flavonoid contents in Ginkgo leaves, which provides valuable information for optimizing their harvesting times to benefit the pharmaceutical industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170008846','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170008846"><span>Utilizing the Precessing Orbit of TRMM to Produce Hourly Corrections of Geostationary Infrared Imager Data with the VIRS Sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scarino, Benjamin; Doelling, David R.; Haney, Conor; Bedka, Kristopher; Minnis, Patrick; Gopalan, Arun; Bhatt, Rajendra</p> <p>2017-01-01</p> <p>Accurate characterization of the Earth's radiant energy is critical for many climate monitoring and weather forecasting applications. For example, groups at the NASA Langley Research Center rely on stable visible- and infrared-channel calibrations in order to understand the temporal/spatial distribution of hazardous storms, as determined from an automated overshooting convective top detection algorithm. Therefore, in order to facilitate reliable, climate-quality retrievals, it is important that consistent calibration coefficients across satellite platforms are made available to the remote sensing community, and that calibration anomalies are recognized and mitigated. One such anomaly is the infrared imager brightness temperature (BT) drift that occurs for some Geostationary Earth Orbit satellite (GEOsat) instruments near local midnight. Currently the Global Space-Based Inter-Calibration System (GSICS) community uses the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) sensor as a common reference to uniformly calibrate GEOsat IR imagers. However, the combination of IASI, which has a 21:30 local equator crossing time (LECT), and hyperspectral Atmospheric Infrared Sounder (AIRS; 01:30 LECT) observations are unable to completely resolve the GEOsat midnight BT bias. The precessing orbit of the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS), however, allows sampling of all local hours every 46 days. Thus, VIRS has the capability to quantify the BT midnight effect observed in concurrent GEOsat imagers. First, the VIRS IR measurements are evaluated for long-term temporal stability between 2002 and 2012 by inter-calibrating with Aqua-MODIS. Second, the VIRS IR measurements are assessed for diurnal stability by inter-calibrating with Meteosat-9 (Met-9), a spin-stabilized GEOsat imager that does not manifest any diurnal dependency. In this case, the Met-9 IR imager is first adjusted with the official GSICS calibration coefficients. Then VIRS is used as a diurnal calibration reference transfer to produce hourly corrections of GEOsat IR imager BT. For the 9 three-axis stabilized GEO imagers concurrent with VIRS, the midnight effect increased the BT on average by 0.5 K (11 microns) and 0.4 K (12 microns), with a peak at approx.01:00 local time. As expected, the spin-stabilized GEOsats revealed a smaller diurnal temperature cycle (mostly < 0.2 K) with inconsistent peak hours.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10403E..0HS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10403E..0HS"><span>Utilizing the precessing orbit of TRMM to produce hourly corrections of geostationary infrared imager data with the VIRS sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scarino, Benjamin; Doelling, David R.; Haney, Conor; Bedka, Kristopher; Minnis, Patrick; Gopalan, Arun; Bhatt, Rajendra</p> <p>2017-08-01</p> <p>Accurate characterization of the Earth's radiant energy is critical for many climate monitoring and weather forecasting applications. For example, groups at the NASA Langley Research Center rely on stable visible- and infraredchannel calibrations in order to understand the temporal/spatial distribution of hazardous storms, as determined from an automated overshooting convective top detection algorithm. Therefore, in order to facilitate reliable, climate-quality retrievals, it is important that consistent calibration coefficients across satellite platforms are made available to the remote sensing community, and that calibration anomalies are recognized and mitigated. One such anomaly is the infrared imager brightness temperature (BT) drift that occurs for some Geostationary Earth Orbit satellite (GEOsat) instruments near local midnight. Currently the Global Space-Based Inter-Calibration System (GSICS) community uses the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) sensor as a common reference to uniformly calibrate GEOsat IR imagers. However, the combination of IASI, which has a 21:30 local equator crossing time (LECT), and hyperspectral Atmospheric Infrared Sounder (AIRS; 01:30 LECT) observations are unable to completely resolve the GEOsat midnight BT bias. The precessing orbit of the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS), however, allows sampling of all local hours every 46 days. Thus, VIRS has the capability to quantify the BT midnight effect observed in concurrent GEOsat imagers. First, the VIRS IR measurements are evaluated for long-term temporal stability between 2002 and 2012 by inter-calibrating with Aqua-MODIS. Second, the VIRS IR measurements are assessed for diurnal stability by inter-calibrating with Meteosat-9 (Met-9), a spin-stabilized GEOsat imager that does not manifest any diurnal dependency. In this case, the Met-9 IR imager is first adjusted with the official GSICS calibration coefficients. Then VIRS is used as a diurnal calibration reference transfer to produce hourly corrections of GEOsat IR imager BT. For the 9 three-axis stabilized GEO imagers concurrent with VIRS, the midnight effect increased the BT on average by 0.5 K (11 μm) and 0.4 K (12 μm), with a peak at 01:00 local time. As expected, the spin-stabilized GEOsats revealed a smaller diurnal temperature cycle (mostly < 0.2 K) with inconsistent peak hours.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984bsse.symp...81S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984bsse.symp...81S"><span>25 years of satellite beacon studies in Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sinno, K.</p> <p></p> <p>The occurrence of ionospheric scintillation exhibits behavior similar to both that of TEC fluctuations and night time ionospheric spread-F. The scintillations are also noted to vary in the same fashion diurnally and seasonally, having a principal maximum at about midnight during the summer. These characteristics also apply to the 1.7 GHz scintillation detected by the ETS-II and GMS satellites. Attention is presently given to the scintillation's frequency dependence, the development of severe scintillation events, and the enhancement of midlatitude scintillation due to field-aligned irregularities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1242419','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1242419"><span>Merging high resolution geophysical and geochemical surveys to reduce exploration risk at glass buttes, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Walsh, Patrick; Fercho, Steven; Perkin, Doug</p> <p>2015-06-01</p> <p>The engineering and studies phase of the Glass Buttes project was aimed at reducing risk during the early stages of geothermal project development. The project’s inclusion of high resolution geophysical and geochemical surveys allowed Ormat to evaluate the value of these surveys both independently and in combination to quantify the most valuable course of action for exploration in an area where structure, permeability, and temperature are the most pressing questions. The sizes of the thermal anomalies at Glass Buttes are unusually large. Over the course of Phase I Ormat acquired high resolution LIDAR data to accurately map fault manifestations atmore » the surface and collected detailed gravity and aeromagnetic surveys to map subsurface structural features. In addition, Ormat collected airborne hyperspectral data to assist with mapping the rock petrology and mineral alteration assemblages along Glass Buttes faults and magnetotelluric (MT) survey to try to better constrain the structures at depth. Direct and indirect identification of alteration assemblages reveal not only the geochemical character and temperature of the causative hydrothermal fluids but can also constrain areas of upflow along specific fault segments. All five datasets were merged along with subsurface lithologies and temperatures to predict the most likely locations for high permeability and hot fluids. The Glass Buttes temperature anomalies include 2 areas, totaling 60 km2 (23 mi2) of measured temperature gradients over 165° C/km (10° F/100ft). The Midnight Point temperature anomaly includes the Strat-1 well with 90°C (194 °F) at 603 m (1981 ft) with a 164 °C/km (10°F/100ft) temperature gradient at bottom hole and the GB-18 well with 71°C (160 °F) at 396 m (1300 ft) with a 182°C/km (11°F/100ft) gradient. The primary area of alteration and elevated temperature occurs near major fault intersections associated with Brothers Fault Zone and Basin and Range systems. Evidence for faulting is observed in each data set as follows. Field observations include fault plane orientations, complicated fault intersections, and hydrothermal alteration apparently pre-dating basalt flows. Geophysical anomalies include large, linear gradients in gravity and aeromagnetic data with magnetic lows possibly associated with alteration. Resistivity low anomalies also appear to have offsets associated with faulting. Hyperspectral and XRF identified alteration and individual volcanic flow units, respectively. When incorporated into a 3D geologic model, the fault intersections near the highest proven temperature and geophysical anomalies provide the first priority targets at Midnight Point. Ormat geologists selected the Midnight Point 52-33 drilling target based on a combination of pre-existing drilling data, geologic field work, geophysical interpretation, and geochemical analysis. Deep temperatures of well 52-33 was lower than anticipated. Temperature gradients in the well mirrored those found in historical drilling, but they decreased below 1500 ft and were isothermal below 2000 ft.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AnGeo..36..809P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AnGeo..36..809P"><span>An investigation of the ionospheric F region near the EIA crest in India using OI 777.4 and 630.0 nm nightglow observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parihar, Navin; Radicella, Sandro Maria; Nava, Bruno; Migoya-Orue, Yenca Olivia; Tiwari, Prabhakar; Singh, Rajesh</p> <p>2018-05-01</p> <p>Simultaneous observations of OI 777.4 and OI 630.0 nm nightglow emissions were carried at a low-latitude station, Allahabad (25.5° N, 81.9° E; geomag. lat. ˜ 16.30° N), located near the crest of the Appleton anomaly in India during September-December 2009. This report attempts to study the F region of ionosphere using airglow-derived parameters. Using an empirical approach put forward by Makela et al. (2001), firstly, we propose a novel technique to calibrate OI 777.4 and 630.0 nm emission intensities using Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa Satellite Mission 3 (COSMIC/FORMOSAT-3) electron density profiles. Next, the electron density maximum (Nm) and its height (hmF2) of the F layer have been derived from the information of two calibrated intensities. Nocturnal variation of Nm showed the signatures of the retreat of the equatorial ionization anomaly (EIA) and the midnight temperature maximum (MTM) phenomenon that are usually observed in the equatorial and low-latitude ionosphere. Signatures of gravity waves with time periods in the range of 0.7-3.0 h were also seen in Nm and hmF2 variations. Sample Nm and hmF2 maps have also been generated to show the usefulness of this technique in studying ionospheric processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.1064G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.1064G"><span>Generation of traveling atmospheric disturbances during pulsating geomagnetic storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gardner, Larry; Schunk, Robert</p> <p></p> <p>Traveling Atmospheric Disturbances (TADs) are effective in transporting momentum and en-ergy deposited at high latitudes to the mid and low latitude regions of the thermosphere. They also act to transport momentum and energy from the lower thermosphere into the upper ther-mosphere. Previously, model studies have been conducted to determine the characteristics of isolated, single-pulse TADs, but the generation of multiple TADs excited during pulsating storms have not been considered before. Here, a high-resolution global thermosphere-ionosphere model was used to study the basic characteristic of multiple TADs excited during pulsating storms, including idealized weak and strong pulsating storms, and an approximation of the May 4, 1998 pulsating storm. For all three pulsating storm simulations, multiple TADs were excited that propagated away form the auroral oval both toward the poles and toward the equator at all longitudes, with the maximum amplitudes between midnight and dawn. The TAD amplitudes were a maximum near the poles, diminished towards the equator and were larger on the nightside than on the dayside. The TADs propagated at a slight upward angle to the horizontal, with the result that the lower boundary of the TADs increased with decreas-ing latitude. The TADs crossed the equator and propagated to mid-latitudes in the opposite hemisphere, where wave interference occurred for the strong pulsating storm cases. The TAD wavelengths vary from 2500-3000 km and the phase speeds from 800-1000 m/s. The maximum TAD perturbations are 20% for the mass density 14% for the neutral temperature and 100 m/s for the winds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRA..115.8314G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRA..115.8314G"><span>Generation of traveling atmospheric disturbances during pulsating geomagnetic storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gardner, L. C.; Schunk, R. W.</p> <p>2010-08-01</p> <p>Traveling atmospheric disturbances (TADs) are effective in transporting momentum and energy deposited at high latitudes to the midlatitude and low-latitude regions of the thermosphere. They also act to transport momentum and energy from the lower thermosphere into the upper thermosphere. Previously, model studies have been conducted to determine the characteristics of isolated, single-pulse TADs, but the generation of multiple TADs excited during pulsating storms have not been considered before. Here a high-resolution global thermosphere-ionosphere model was used to study the basic characteristics of multiple TADs excited during pulsating storms, including idealized weak and strong pulsating storms, and an approximation of the 4 May 1998 pulsating storm. For all three pulsating storm simulations, multiple TADs that propagated away from the auroral oval toward both the poles and the equator at all longitudes, with the maximum amplitudes between midnight and dawn, were excited. The TAD amplitudes were at maximum near the poles and diminished toward the equator and were larger on the nightside than on the dayside. The TADs propagated at a slightly upward angle to the horizontal, with the result that the lower boundary of the TADs increased with decreasing latitude. The TADs crossed the equator and propagated to midlatitudes in the opposite hemisphere, where wave interference occurred for the strong pulsating storm cases. The TAD wavelengths vary from 2500 to 3000 km and the phase speeds vary from 800 to 1000 m/s. The maximum TAD perturbations are 20% for the mass density, 14% for the neutral temperature, and 100 m/s for the winds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AdSpR..52.1798M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AdSpR..52.1798M"><span>The variability and IRI2007-predictability of hmF2 over South Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mbambo, M. C.; McKinnell, Lee-Anne; Habarulema, J. B.</p> <p>2013-11-01</p> <p>This paper presents an investigation into the variability and predictability of the maximum height of the ionospheric F2 layer, hmF2 over the South African region. Data from three South African stations, namely Madimbo (22.4°S, 26.5°E, dip angle: -61.47°), Grahamstown (33.3°S, 26.5°E, dip angle: -64.08°) and Louisvale (28.5°S, 21.2°E, dip angle: -65.44°) were used in this study. The results indicate that hmF2 shows a larger variability around midnight than during the daytime for all seasons. Monthly median hmF2 values were used in all cases and were compared with predictions from the IRI-2007 model, using the URSI (Union Radio-Scientifique Internationale) coefficient option. The analysis covers the diurnal and seasonal hourly hmF2 values for the selected months and time sectors e.g. January, July, April and October for 2003 and 2005. The time ranges between (03h00-23h00 UT; LT = UT + 2h) representing the local sunrise, midday, sunset and midnight hours. The time covers sunrise, midday, sunrise, and midnight hours (03-06h00 UT, 07-11h00 UT, sunrise 16-18h00 UT and 22-23h00 UT; LT = UT + 2h). The dependence of the results on solar activity levels was also investigated. The IRI-2007 predictions follow fairly well the diurnal and seasonal variation patterns of the observed hmF2 values at all the stations. However, the IRI-2007 model overestimates and underestimates the hmF2 value during different months for all the solar activity periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAMES..10..381L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAMES..10..381L"><span>Development and Validation of the Whole Atmosphere Community Climate Model With Thermosphere and Ionosphere Extension (WACCM-X 2.0)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Han-Li; Bardeen, Charles G.; Foster, Benjamin T.; Lauritzen, Peter; Liu, Jing; Lu, Gang; Marsh, Daniel R.; Maute, Astrid; McInerney, Joseph M.; Pedatella, Nicholas M.; Qian, Liying; Richmond, Arthur D.; Roble, Raymond G.; Solomon, Stanley C.; Vitt, Francis M.; Wang, Wenbin</p> <p>2018-02-01</p> <p>Key developments have been made to the NCAR Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X). Among them, the most important are the self-consistent solution of global electrodynamics, and transport of O+ in the F-region. Other ionosphere developments include time-dependent solution of electron/ion temperatures, metastable O+ chemistry, and high-cadence solar EUV capability. Additional developments of the thermospheric components are improvements to the momentum and energy equation solvers to account for variable mean molecular mass and specific heat, a new divergence damping scheme, and cooling by O(3P) fine structure. Simulations using this new version of WACCM-X (2.0) have been carried out for solar maximum and minimum conditions. Thermospheric composition, density, and temperatures are in general agreement with measurements and empirical models, including the equatorial mass density anomaly and the midnight density maximum. The amplitudes and seasonal variations of atmospheric tides in the mesosphere and lower thermosphere are in good agreement with observations. Although global mean thermospheric densities are comparable with observations of the annual variation, they lack a clear semiannual variation. In the ionosphere, the low-latitude E × B drifts agree well with observations in their magnitudes, local time dependence, seasonal, and solar activity variations. The prereversal enhancement in the equatorial region, which is associated with ionospheric irregularities, displays patterns of longitudinal and seasonal variation that are similar to observations. Ionospheric density from the model simulations reproduces the equatorial ionosphere anomaly structures and is in general agreement with observations. The model simulations also capture important ionospheric features during storms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.7504D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.7504D"><span>Coordinated observations of postmidnight irregularities and thermospheric neutral winds and temperatures at low latitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dao, Tam; Otsuka, Yuichi; Shiokawa, Kazuo; Nishioka, Michi; Yamamoto, Mamoru; Buhari, Suhaila M.; Abdullah, Mardina; Husin, Asnawi</p> <p>2017-07-01</p> <p>We investigated a postmidnight field-aligned irregularity (FAI) event observed with the Equatorial Atmosphere Radar at Kototabang (0.2°S, 100.3°E, dip latitude 10.4°S) in Indonesia on the night of 9 July 2010 using a comprehensive data set of both neutral and plasma parameters. We examined the rate of total electron content change index (ROTI) obtained from GPS receivers in Southeast Asia, airglow images detected by an all-sky imager, and thermospheric neutral winds and temperatures obtained by a Fabry-Perot interferometer at Kototabang. Altitudes of the F layer (h'F) observed by ionosondes at Kototabang, Chiang Mai, and Chumphon were also surveyed. We found that the postmidnight FAIs occurred within plasma bubbles and coincided with kilometer-scale plasma density irregularities. We also observed an enhancement of the magnetically equatorward thermospheric neutral wind at the same time as the increase of h'F at low-latitude stations, but h'F at a station near the magnetic equator remained invariant. Simultaneously, a magnetically equatorward gradient of thermospheric temperature was identified at Kototabang. The convergence of equatorward neutral winds from the Northern and Southern Hemispheres could be associated with a midnight temperature maximum occurring around the magnetic equator. Equatorward neutral winds can uplift the F layer at low latitudes and increase the growth rate of Rayleigh-Taylor instabilities, causing more rapid extension of plasma bubbles. The equatorward winds in both hemispheres also intensify the eastward Pedersen current, so a large polarization electric field generated in the plasma bubble might play an important role in the generation of postmidnight FAIs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61.1761S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61.1761S"><span>On the occurrence and strength of multi-frequency multi-GNSS Ionospheric Scintillations in Indian sector during declining phase of solar cycle 24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Srinivasu, V. K. D.; Dashora, N.; Prasad, D. S. V. V. D.; Niranjan, K.; Gopi Krishna, S.</p> <p>2018-04-01</p> <p>This study presents unique perspectives of occurrence and strength of low latitude ionospheric scintillations on multiple signals of Global Navigation Satellite System (GNSS) and its frequency dependence using continuous observation records of 780 nights. A robust comparative analysis is performed using scintillation index, S4 and its variation during pre-midnight and post-midnight duration from a GNSS receiver located at Waltair (17.7°N, 83.3°E), India, covering period from July 2014 to August 2016. The results, generally exhibit the impact of declining phase of solar cycle 24 on occurrence and strength of scintillations, which, however, is evidently different over different frequencies transmitted from different GNSS systems. A deeper quantitative analysis uniquely reveals that apart from the solar cycle and seasonal effects, the number of visible satellites of a selected GNSS markedly affect the occurrence and also the strength. Processing scheme of adopting 6 hourly time windows of pre-midnight and post-midnight brought a novel result that the strength and occurrence of strong scintillations decrease with declining solar activity during pre-midnight hours but remarkably increase for moderate and weak scintillations during post-midnight. The physical processes that dominate the post-midnight equatorial ionosphere are invoked to explain such variations that are special during declining solar activity. Finally, inter-GNSS signal analysis in terms of the effect of strong, moderate and weak scintillations is presented with due consideration of number of satellite passes affected and frequency dependence of mean S4. The quantitative results of this study emphasize for the first time effect of low latitude scintillation on GNSS signals in Indian zone under changing background solar and seasonal conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61.1628S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61.1628S"><span>Post-midnight equatorial irregularity distributions and vertical drift velocity variations during solstices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, S.-Y.; Liu, C. H.; Chao, C.-K.</p> <p>2018-04-01</p> <p>Longitudinal distributions of post-midnight equatorial ionospheric irregularity occurrences observed by ROCSAT-1 (1st satellite of the Republic of China) during moderate to high solar activity years in two solstices are studied with respect to the vertical drift velocity and density variations. The post-midnight irregularity distributions are found to be similar to the well-documented pre-midnight ones, but are different from some published distributions taken during solar minimum years. Even though the post-midnight ionosphere is sinking in general, longitudes of frequent positive vertical drift and high density seems to coincide with the longitudes of high irregularity occurrences. Large scatters found in the vertical drift velocity and density around the dip equator in different ROCSAT-1 orbits indicate the existence of large and frequent variations in the vertical drift velocity and density that seem to be able to provide sufficient perturbations for the Rayleigh-Taylor (RT) instability to cause the irregularity occurrences. The need of seeding agents such as gravity waves from atmospheric convective clouds to initiate the Rayleigh-Taylor instability may not be necessary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26310060','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26310060"><span>CMS proposes to OK one-midnight inpatient stays.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p></p> <p>2015-09-01</p> <p>The Centers for Medicare & Medicaid Services (CMS) has proposed that stays shorter than two midnights be reimbursed as inpatient stays if the documentation in the medical record supports it. CMS made the proposal in the Outpatient Prospective Payment System proposed rule for 2016 and left the policy unchanged for stays of two midnights or longer. CMS also announced that the two Beneficiary and Family Centered Care Quality Improvement Organizations (QIOs), Livanta and KEPRO, will take over the responsibility of Probe and Educate and will review cases for medical necessity when patient stays are one midnight or less, referring hospitals with high denial rates to the Recovery Auditors. Case managers should continue to assist physicians in determining patient status and to make sure that the documentation is complete, accurate, and specifies the severity of illness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol1/pdf/CFR-2011-title36-vol1-sec71-4.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol1/pdf/CFR-2011-title36-vol1-sec71-4.pdf"><span>36 CFR 71.4 - Posting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... constructed of enameled steel, coated aluminum, silk screen reflective materials attached to wood or metal, or... midnight blue) enclosed within a circle (colored white with a midnight blue border) framed by a rounded...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title36-vol1/pdf/CFR-2010-title36-vol1-sec71-4.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title36-vol1/pdf/CFR-2010-title36-vol1-sec71-4.pdf"><span>36 CFR 71.4 - Posting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... constructed of enameled steel, coated aluminum, silk screen reflective materials attached to wood or metal, or... midnight blue) enclosed within a circle (colored white with a midnight blue border) framed by a rounded...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol6/pdf/CFR-2010-title40-vol6-sec60-331.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol6/pdf/CFR-2010-title40-vol6-sec60-331.pdf"><span>40 CFR 60.331 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... means an atmospheric suspension of highly reflective ice crystals. (g) ISO standard day conditions means...:00 midnight and the following midnight during which any fuel is combusted at any time in the unit. It...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol7/pdf/CFR-2013-title40-vol7-sec60-331.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol7/pdf/CFR-2013-title40-vol7-sec60-331.pdf"><span>40 CFR 60.331 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... means an atmospheric suspension of highly reflective ice crystals. (g) ISO standard day conditions means...:00 midnight and the following midnight during which any fuel is combusted at any time in the unit. It...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol6/pdf/CFR-2011-title40-vol6-sec60-331.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol6/pdf/CFR-2011-title40-vol6-sec60-331.pdf"><span>40 CFR 60.331 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... means an atmospheric suspension of highly reflective ice crystals. (g) ISO standard day conditions means...:00 midnight and the following midnight during which any fuel is combusted at any time in the unit. It...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol7/pdf/CFR-2014-title40-vol7-sec60-331.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol7/pdf/CFR-2014-title40-vol7-sec60-331.pdf"><span>40 CFR 60.331 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... means an atmospheric suspension of highly reflective ice crystals. (g) ISO standard day conditions means...:00 midnight and the following midnight during which any fuel is combusted at any time in the unit. It...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol7/pdf/CFR-2012-title40-vol7-sec60-331.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol7/pdf/CFR-2012-title40-vol7-sec60-331.pdf"><span>40 CFR 60.331 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... means an atmospheric suspension of highly reflective ice crystals. (g) ISO standard day conditions means...:00 midnight and the following midnight during which any fuel is combusted at any time in the unit. It...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-02-11/pdf/2011-2912.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-02-11/pdf/2011-2912.pdf"><span>76 FR 7854 - Patient Safety Organizations: Voluntary Delisting From Lumetra PSO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-02-11</p> <p>... at 12 Midnight ET (2400) on December 7, 2010. ADDRESSES: Both directories can be accessed... component entity of Lumetra Healthcare Solutions, was delisted effective at 12 Midnight ET (2400) on...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.7110C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.7110C"><span>Midnight flash model of energetic neutral atom periodicities at Saturn</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carbary, J. F.; Mitchell, D. G.</p> <p>2017-07-01</p> <p>The Ion Neutral Camera on the Cassini spacecraft made images of energetic H atoms (25-55 keV) over a 3 day span in 2017. The images were projected onto the equatorial plane of Saturn, and a keogram was made by interpolating the projections in local time at 9 RS (1 RS = 60268 km). The keogram intensities show strong periodicities near the 10.79 h period of Saturn's energetic particles and exhibit a slope commensurate with corotation at that period. These periodic fluxes intensify near midnight but are weaker near noon. A "midnight flash" model can explain this behavior in terms of a searchlight rotating at 10.79 h that intensifies in the midnight sector. The model can also describe similar activity in Saturn's kilometric radiation and magnetic fields, although the "flash" must be shifted to the dawn-to-noon sector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-12-03/pdf/2010-30263.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-12-03/pdf/2010-30263.pdf"><span>75 FR 75471 - Patient Safety Organizations: Voluntary Delisting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-12-03</p> <p>.... The delisting was effective at 12 Midnight ET (2400) on October 13, 2010. ADDRESSES: Both directories... Midnight ET (2400) on October 13, 2010. More information on PSOs can be obtained through AHRQ's PSO Web...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-04-27/pdf/2012-10013.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-04-27/pdf/2012-10013.pdf"><span>77 FR 25179 - Patient Safety Organizations: Expired Listing for Medkinetics, LLC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-04-27</p> <p>... 12 Midnight ET (2400) on January 6, 2012. ADDRESSES: Both directories can be accessed electronically... PSOs. Accordingly, Medkinetics, LLC, PSO number P0036, was delisted effective at 12 Midnight ET (2400...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-09-17/pdf/2010-23077.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-09-17/pdf/2010-23077.pdf"><span>75 FR 57048 - Patient Safety Organizations: Voluntary Delisting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-09-17</p> <p>... ongoing and reviewed weekly by AHRQ. The delisting was effective at 12 Midnight ET (2400) on May 25, 2010... organization, Project Patient Care, Inc. Accordingly, CQPS was delisted effective 12 Midnight ET (2400) on May...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-10-15/pdf/2010-25771.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-10-15/pdf/2010-25771.pdf"><span>75 FR 63498 - Patient Safety Organizations: Voluntary Delisting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-10-15</p> <p>... ongoing and reviewed weekly by AHRQ. The delisting was effective at 12 Midnight ET(2400) on September 21... Midnight ET (2400) on September 21, 2010. More information on PSOs can be obtained through AHRQ's PSO Web...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-02-11/pdf/2011-2914.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-02-11/pdf/2011-2914.pdf"><span>76 FR 7853 - Patient Safety Organizations: Voluntary Delisting From HealthDataPSO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-02-11</p> <p>... reviewed weekly by AHRQ. The delisting was effective at 12 Midnight ET (2400) on December 7, 2010... CCD Healthsystems and Medical Error Management, LLC, was delisted effective at 12 Midnight ET (2400...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-09-29/pdf/2011-25027.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-09-29/pdf/2011-25027.pdf"><span>76 FR 60494 - Patient Safety Organizations: Voluntary Relinquishment From HPI-PSO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-09-29</p> <p>... at 12 midnight ET (2400) on August 31, 2011. ADDRESSES: Both directories can be accessed... midnight ET (2400) on August 31, 2011. More information on PSOs can be obtained through AHRQ's PSO Web site...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-09-20/pdf/2010-23078.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-09-20/pdf/2010-23078.pdf"><span>75 FR 57281 - Patient Safety Organizations: Voluntary delisting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-09-20</p> <p>... ongoing and reviewed weekly by AHRQ. The delisting was effective at 12 Midnight ET (2400) on April 1, 2010... Florida Patient Safety Corporation was delisted effective at 12 Midnight ET (2400) on April 1, 2010. More...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-03-20/pdf/2013-06215.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-03-20/pdf/2013-06215.pdf"><span>78 FR 17212 - Patient Safety Organizations: Voluntary Relinquishment From QAISys, Inc.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-03-20</p> <p>... Midnight ET (2400) on January 31, 2013. ADDRESSES: Both directories can be accessed electronically at the... at 12:00 Midnight ET (2400) on January 31, 2013. More information on PSOs can be obtained through...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-12-03/pdf/2010-30266.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-12-03/pdf/2010-30266.pdf"><span>75 FR 75473 - Patient Safety Organizations: Voluntary Delisting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-12-03</p> <p>... reviewed weekly by AHRQ. The delisting was effective at 12 Midnight ET (2400) on October 13, 2010... effective at 12:00 Midnight ET (2400) on October 13, 2010. More information on PSOs can be obtained through...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-12-03/pdf/2010-30265.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-12-03/pdf/2010-30265.pdf"><span>75 FR 75472 - Patient Safety Organizations: Voluntary Delisting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-12-03</p> <p>... ongoing and reviewed weekly by AHRQ. The delisting was effective at 12 Midnight ET (2400) on October 13... Midnight ET (2400) on October 13, 2010. More information on PSOs can be obtained through AHRQ's PSO Web...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-12-03/pdf/2010-30267.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-12-03/pdf/2010-30267.pdf"><span>75 FR 75472 - Patient Safety Organizations: Voluntary Delisting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-12-03</p> <p>... ongoing and reviewed weekly by AHRQ. The delisting was effective at 12 Midnight ET (2400) on October 13... Component of Helmet Fire, Inc) was delisted effective at 12 Midnight ET (2400) on October 13, 2010. More...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20005566','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20005566"><span>Sleep patterns and impulse control among Japanese junior high school students.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abe, Takeru; Hagihara, Akihito; Nobutomo, Koichi</p> <p>2010-10-01</p> <p>Adolescents with decreased impulse control exhibit behavioral problems. Lifestyles are related to impulse control. However, the relations of sleep patterns and impulse control among adolescents are unknown. Thus we examined how sleep patterns were associated with impulse control among Japanese junior high school students. Surveys were completed by a nationwide sample of 1934 students. A significant association between decreased impulse control and bedtimes after midnight was revealed. Specific lifestyle factors related to bedtimes after midnight were older age, greater numbers of hours spent watching television, lack of participation in an extracurricular activity, greater use of convenience stores, and increased attendance at cram schools. This study revealed that going to sleep after midnight was significantly related to decreased impulse control among adolescents. Data about specific lifestyle factors related to going to sleep after midnight should be useful in preventing those behaviors demonstrated by school children that derive from decreased impulse control.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61.1744D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61.1744D"><span>L-band nighttime scintillations at the northern edge of the EIA along 95°E during the ascending half of the solar cycle 24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dutta, Barsha; Kalita, Bitap Raj; Bhuyan, Pradip Kumar</p> <p>2018-04-01</p> <p>The characteristics of nighttime ionospheric scintillations measured at the L-band frequency of 1.575 GHz over Dibrugarh (27.5°N, 95°E, MLAT ∼ 17°N, 43° dip) during the ascending half of the solar cycle 24 from 2010 to 2014 have been investigated and the results are presented in this paper. The measurement location is within or outside the zone of influence of the equatorial ionization anomaly depending on solar and geomagnetic activity. Maximum scintillation is observed in the equinoxes irrespective of solar activity with clear asymmetry between March and September. The occurrence frequency in the solstices shifts from minimum in the June solstice in low solar activity to a minimum in the December solstice in high solar activity years. A significant positive correlation of occurrence of scintillations in the June solstice with solar activity has been observed. However, earlier reports from the Indian zone (∼75°E) indicate negative or no correlation of scintillation in June solstice with solar activity. Scintillations activity/occurrence in solstices indicates a clear positive correlation with Es recorded simultaneously by a collocated Ionosonde. In equinoxes, maximum scintillations occur in the pre-midnight hours while in solstices the occurrence frequency peaks just after sunset. The incidence of strong scintillations (S4 ≥ 0.4) increases with increase in solar activity. Strong (S4 ≥ 0.4) ionospheric scintillations accompanied by TEC depletions in the pre-midnight period is attributed to equatorial irregularities whereas the dusk period scintillations are related to the sporadic-E activity. Present results thus indicate that the current location at the northern edge of the EIA behaves as low as well as mid-latitude location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996AdSpR..18..361A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996AdSpR..18..361A"><span>The midnight density maximum in the S. Marco V and the S. Marco III equatorial density data sets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arduini, C.; Laneve, G.; Ponzi, U.</p> <p></p> <p>In a previous paper we showed some systematic deviations of the S. Marco V drag balance equatorial density data with respect to the MSIS86 model. We interpreted these deviations as due, at least in part, to the presence of a variable ``Midnight Density Maximum'' (MDM). In the data, there was in fact evidence of some altitude and seasonal variation of this pattern. In the present paper we consider, besides the S. Marco V data base (density measured during 1988), the S. Marco III data base, collected in 1971 almost in the same seasonal period and altitude range, with an instrument very similar to that of the S. Marco V. The use of both data sets is allowing a rather detailed description of the phenomenon as seen by the DBI instrument, for what concerns both the ``seasonal'' and altitude variations. In addition also some longitude effects are evidenced, for instance, by the MITS and QUITO data subsets of S. Marco III, taken respectively around 40 deg and 280 deg East longitude. Notice in addition that S. M. III data refer to the year 1971 (descending part of solar cycle 20) while SMV was launched in 1988 (ascending part of solar cycle 22); the comparison is thus allowing to evidence the persistence of the phenomenon and of its main characteristics. The observed data are consistent ``at large'' for both S. Marco III and V, while the differences in the details are providing hints on the mechanisms of the thermospheric dynamics (tidal theory and neutral-charged interactions). The paper presents the above said features together with a discussion on the characteristics of the two data bases and on their possible relevance for modeling the considered MDM feature.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/6812337','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/6812337"><span>Pituitary response to a dopamine antagonist at different times of the day in normal women.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pérez-López, F R; González-Moreno, C M; Abós, M D; Andonegui, J A; Corvo, R H</p> <p>1982-08-01</p> <p>In order to determine whether or not pituitary responsiveness to the dopaminergic antagonist clebopride changes during the nyctohemeral cycle, 10 healthy women with regular cycles were given 1 mg of clebopride orally at 09.00 h and 24.00 h with at least a 5 day interval between each test. In addition, 5 of the women were given a placebo instead of clebopride at midnight to evaluate the spontaneous hormonal changes. During the 24.00 h test the women had significantly higher (P less than 0.05) mean TSH basal levels. Serum prolactin (Prl) increased significantly (P less than 0.001) after clebopride administration while these changes did not occur when placebo was used instead of clebopride at midnight. The Prl response to clebopride was qualitatively similar at 09.00 h and at 24.00 h. Clebopride given at midnight induced a significant increase (P less than 0.05) in serum TSH while this change did not occur when the drug was given at 09.00 h or when placebo was given at midnight. The administration of clebopride resulted in no discernible alternations in serum LH, FSH or GH in either the 09.00 h or the 24.00 h tests. Thus, Prl responses to clebopride were similar in the morning and at midnight, TSH significantly increased after clebopride at midnight whereas this did not occur when the drug was given in the morning, and no significant changes were induced in LH, FSH or GH at the times studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-04-27/pdf/2012-10012.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-04-27/pdf/2012-10012.pdf"><span>77 FR 25179 - Patient Safety Organizations: Voluntary Relinquishment From Surgical Safety Institute</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-04-27</p> <p>... reviewed weekly by AHRQ. The delisting was effective at 12 Midnight ET (2400) on February 21, 2012..., PSO number P0056, was delisted effective at 12:00 Midnight ET (2400) on February 21, 2012. More...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-02-11/pdf/2011-2917.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-02-11/pdf/2011-2917.pdf"><span>76 FR 7853 - Patient Safety Organizations: Voluntary Delisting From Oregon Patient Safety Commission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-02-11</p> <p>... at 12 Midnight ET (2400) on November 22, 2010. ADDRESSES: Both directories can be accessed... effective at 12 Midnight ET (2400) on November 22, 2010. More information on PSOs can be obtained through...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-01-31/pdf/2013-01909.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-01-31/pdf/2013-01909.pdf"><span>78 FR 6820 - Patient Safety Organizations: Voluntary Relinquishment From Ryder Trauma Center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-01-31</p> <p>... at 12:00 Midnight ET (2400) on November 20, 2012. ADDRESSES: Both directories can be accessed... Midnight ET (2400) on November 20, 2012. More information on PSOs can be obtained through AHRQ's PSO Web...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-02-24/pdf/2012-4265.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-02-24/pdf/2012-4265.pdf"><span>77 FR 11120 - Patient Safety Organizations: Voluntary Relinquishment From UAB Health System Patient Safety...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-02-24</p> <p>... at 12:00 Midnight ET (2400) on January 13, 2012. ADDRESSES: Both directories can be accessed...:00 Midnight ET (2400) on January 13, 2012. More information on PSOs can be obtained through AHRQ's...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-11-26/pdf/2013-28284.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-11-26/pdf/2013-28284.pdf"><span>78 FR 70560 - Patient Safety Organizations: Voluntary Relinquishment From GE-PSO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-11-26</p> <p>... ongoing and reviewed weekly by AHRQ. The delisting was effective at 12:00 Midnight ET (2400) on September...:00 Midnight ET (2400) on September 30, 2013. GE-PSO has patient safety work product (PSWP) in its...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-12-01/pdf/2011-30798.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-12-01/pdf/2011-30798.pdf"><span>76 FR 74788 - Patient Safety Organizations: Voluntary Relinquishment From HealthWatch, Inc.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-12-01</p> <p>... reviewed weekly by AHRQ. The delisting was effective at 12 Midnight ET (2400) on November 1, 2011... effective at 12 Midnight ET (2400) on November 1, 2011. More information on PSOs can be obtained through...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-06-27/pdf/2012-15612.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-06-27/pdf/2012-15612.pdf"><span>77 FR 38294 - Patient Safety Organizations: Delisting for Cause for Medical Informatics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-06-27</p> <p>... 12:00 Midnight ET (2400) on June 1, 2012. ADDRESSES: Both directories can be accessed electronically..., PSO number P0086, a component entity of Medical Informatics, LLC, effective at 12:00 Midnight ET (2400...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-09-21/pdf/2010-23445.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-09-21/pdf/2010-23445.pdf"><span>75 FR 57477 - Patient Safety Organizations: Voluntary Delisting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-09-21</p> <p>... ongoing and reviewed weekly by AHRQ. The delisting was effective at 12 Midnight ET (2400) on July 6, 2010... Research PSO was delisted effective at 12 Midnight ET (2400) on July 6, 2010. More information on PSOs can...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-09-29/pdf/2011-25028.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-09-29/pdf/2011-25028.pdf"><span>76 FR 60495 - Patient Safety Organizations: Voluntary Relinquishment From Illinois PSO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-09-29</p> <p>... ongoing and reviewed weekly by AHRQ. The delisting was effective at 12 Midnight ET (2400) on July 20, 2011.... Accordingly, the Illinois PSO was delisted effective at 12 Midnight ET (2400) on July 20, 2011. More...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JGR...106.1771S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JGR...106.1771S"><span>Radar studies of midlatitude ionospheric plasma drifts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scherliess, L.; Fejer, B. G.; Holt, J.; Goncharenko, L.; Amory-Mazaudier, C.; Buonsanto, M. J.</p> <p>2001-02-01</p> <p>We use incoherent scatter radar measurements from Millstone Hill and Saint Santin to study the midlatitude F region electrodynamic plasma drifts during geomagnetically quiet and active periods. We present initially a local time, season, and solar flux dependent analytical model of the quiet time zonal and meridional <bold>E</bold>×<bold>B</bold> drifts over these stations. We discuss, for the first time, the Saint Santin drift patterns during solar maximum. We have used these quiet time models to extract the geomagnetic perturbation drifts which were modeled as a function of the time history of the auroral electrojet indices. Our results illustrate the evolution of the disturbance drifts driven by the combined effects of prompt penetration and longer lasting perturbation electric fields. The meridional electrodynamic disturbance drifts have largest amplitudes in the midnight-noon sector. The zonal drifts are predominantly westward, with largest amplitudes in the dusk-midnight sector and, following a decrease in the high-latitude convection, they decay more slowly than the meridional drifts. The prompt penetration and steady state zonal disturbance drifts derived from radar measurements are in good agreement with results obtained from both the ion drift meter data on board the Dynamics Explorer 2 (DE 2) satellite and from the Rice Convection Model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM43E..01D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM43E..01D"><span>Energetic electron acceleration and injection during dipolarization events in Mercury's magnetotail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Baker, D. N.; Lawrence, D. J.</p> <p>2017-12-01</p> <p>MESSENGER frequently observed bursts of energetic electrons (>10 keV to 300 keV) within Mercury's miniature terrestrial-like magnetosphere. These bursts are observed most often in the post-midnight sector near the magnetic equator, suggestive of the acceleration and injection of electrons from the magnetotail and their eastward drift about the planet. We use the Gamma-Ray Spectrometer's high-time resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetospheric dynamics in Mercury's magnetotail. We find that these electron injections were observed most frequently in association with magnetic field dipolarization. Between March 2013 and April 2015, we identified 2976 magnetotail electron events of which 538 were coincident with the leading edge of a dipolarization event. These dipolarization fronts were detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. We find electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarization events, reaching energies 160 keV and contributing to nightside precipitation. Dipolarization events, and subsequently, the electron acceleration associated with them, display a strong dawn-dusk asymmetry, suggestive of a post-midnight maximum in magnetotail reconnection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810050980&hterms=attention+span&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dattention%2Bspan','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810050980&hterms=attention+span&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dattention%2Bspan"><span>Winter nighttime ion temperatures and energetic electrons from OGO 6 plasma measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sanatani, S.; Breig, E. L.</p> <p>1981-01-01</p> <p>In the reported investigation, ion temperature and suprathermal electron flux data were acquired with the retarding potential analyzer on board the OGO 6 satellite when it was in solar eclipse. Attention is given to measurements in the 400- to 800-km height interval between midnight and predawn in the northern winter nonpolar ionosphere. Statistical analysis of data recorded during a 1 month time span permits a decoupling of horizontal and altitude effects. A distinct longitudinal variation is observed for ion temperature above 500 km, with a significant relative enhancement over the western North Atlantic. Altitude distributions of ion temperature are compatible with Millstone Hill profiles within the common region of this enhancement. Large fluxes of energetic electrons are observed and extend to much lower geomagnetic latitudes in the same longitude sector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.131.1157Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.131.1157Z"><span>Modification of the degree-day formula for diurnal meltwater generation and refreezing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Žaknić-Ćatović, Ana; Howard, Ken W. F.; Ćatović, Zlatko</p> <p>2018-02-01</p> <p>The standard degree-day, temperature-index approach to calculating snowmelt generation and refreezing (the SDD method) is convenient and popularly used but seriously miscalculates the volumes of water that change phase on days when temperatures fluctuate either side of the freezing point. Additionally, the SDD method does not provide any estimate of the duration of daily melting and refreezing events. A modified version of the standard formula is introduced (the MDD method) that overcomes such problems by removing dependence on a single temperature index (the average daily temperature estimated over a 24-h period beginning at midnight) and instead transfers reliance onto daily air temperature extremes (maximum and minimum temperatures) at known times of occurrence. In this way, the modified formula retains the simplicity of the standard approach while targeting those segments of the diurnal air temperature curve that directly relate to periods of melting and freezing. Newly introduced temperature and time degree-day parameters allow the duration of melting and refreezing events to be estimated. The MDD method was evaluated for two sites in the snow-belt region of Canada where the availability of hourly records of daily temperature allowed the required MDD input parameters to be calculated reliably and thus used for comparative purposes. During testing, the MDD input parameters were obtained from daily temperature extremes and their times of occurrence, using two alternative approaches to synthetic air temperature curve generation, one linear, the other trigonometric. Very good agreement was obtained in both cases and confirms the value of the MDD approach. However, there is no significant benefit to be gained by using air temperature approximating functions more complicated than the linear method for supplementing the missing continuous air temperature measurements. Finally, the MDD approach is not seen as a replacement for the regular SDD method, so much as tool that can be applied when the SDD methodology is likely to become unreliable. This is best achieved by using a hybrid SDD-MDD algorithm that invokes the MDD approach only when the necessary conditions arise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-03-20/pdf/2013-06216.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-03-20/pdf/2013-06216.pdf"><span>78 FR 17212 - Patient Safety Organizations: Voluntary Relinquishment From Universal Safety Solution PSO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-03-20</p> <p>... delisting was effective at 12:00 Midnight ET (2400) on February 1, 2013. ADDRESSES: Both directories can be... at 12:00 Midnight ET (2400) on February 1, 2013. More information on PSOs can be obtained through...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-09-29/pdf/2011-25026.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-09-29/pdf/2011-25026.pdf"><span>76 FR 60495 - Patient Safety Organizations: Voluntary Relinquishment From the Patient Safety Group</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-09-29</p> <p>... ongoing and reviewed weekly by AHRQ. The delisting was effective at 12 Midnight ET (2400) on September 7.... Accordingly, The Patient Safety Group was delisted effective at 12 Midnight ET (2400) on September 7, 2011...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-11-17/pdf/2011-29523.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-11-17/pdf/2011-29523.pdf"><span>76 FR 71345 - Patient Safety Organizations: Voluntary Relinquishment From Child Health Patient Safety...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-11-17</p> <p>... at 12:00 Midnight E.T. (2400) on October 11, 2011. ADDRESSES: Both directories can be accessed... delisted effective at 12:00 Midnight E.T. (2400) on October 11, 2011. The Child Health Patient Safety...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-02-11/pdf/2011-2913.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-02-11/pdf/2011-2913.pdf"><span>76 FR 7854 - Patient Safety Organizations: Voluntary Delisting From Quality Excellence, Inc./PSO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-02-11</p> <p>... ongoing and reviewed weekly by AHRQ. The delisting was effective at 12 Midnight ET (2400) on December 7... component entity of Arkansas Foundation for Medical Care, was delisted effective at 12 Midnight ET (2400) on...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-02-21/pdf/2013-03909.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-02-21/pdf/2013-03909.pdf"><span>78 FR 12065 - Patient Safety Organizations: Delisting for Cause for Independent Data Safety Monitoring, Inc.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-02-21</p> <p>... 12:00 Midnight ET (2400) on January 15, 2013. ADDRESSES: Both directories can be accessed..., effective at 12:00 Midnight ET (2400) on January 15, 2013. More information on PSOs can be obtained through...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-11-17/pdf/2011-29666.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-11-17/pdf/2011-29666.pdf"><span>76 FR 71345 - Patient Safety Organizations: Voluntary Relinquishment From Emergency Medicine Patient Safety...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-11-17</p> <p>... at 12:00 Midnight E.T. (2400) on October 11, 2011. ADDRESSES: Both directories can be accessed... effective at 12:00 Midnight E.T. (2400) on October 11, 2011. More information on PSOs can be obtained...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-02-11/pdf/2011-2910.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-02-11/pdf/2011-2910.pdf"><span>76 FR 7855 - Patient Safety Organizations: Voluntary Delisting From Community Medical Foundation for Patient...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-02-11</p> <p>... ongoing and reviewed weekly by AHRQ. The delisting was effective at 12 Midnight ET (2400) on December 22... effective at 12 Midnight ET (2400) on December 22, 2010. More information on PSOs can be obtained through...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-11-17/pdf/2011-29667.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-11-17/pdf/2011-29667.pdf"><span>76 FR 71346 - Patient Safety Organizations: Voluntary Relinquishment From Peminic Inc. dba The Peminic-Greeley PSO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-11-17</p> <p>... at 12:00 Midnight E.T. (2400) on September 13, 2011. ADDRESSES: Both directories can be accessed.... Accordingly, the Peminic, Inc. dba The Peminic Greeley PSO was delisted effective at 12:00 Midnight ET (2400...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-09-25/pdf/2013-23300.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-09-25/pdf/2013-23300.pdf"><span>78 FR 59036 - Patient Safety Organizations: Voluntary Relinquishment From Cogent Patient Safety Organization, Inc.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-09-25</p> <p>... delisting was effective at 12:00 Midnight ET (2400) on September 4, 2013. ADDRESSES: Both directories can be.... was delisted effective at 12:00 Midnight ET (2400) on September 4, 2013. More information on PSOs can...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-11-26/pdf/2013-28283.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-11-26/pdf/2013-28283.pdf"><span>78 FR 70560 - Patient Safety Organizations: Voluntary Relinquishment From Morgridge Institute for Research PSO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-11-26</p> <p>... delisting was effective at 12:00 Midnight ET (2400) on November 6, 2013. ADDRESSES: Both directories can be... Research PSO, Inc. was delisted effective at 12:00 Midnight ET (2400) on November 6, 2013. More information...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-02-17/pdf/2011-3390.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-02-17/pdf/2011-3390.pdf"><span>76 FR 9350 - Patient Safety Organizations: Voluntary Delisting From Rocky Mountain Patient Safety Organization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-02-17</p> <p>... ongoing and reviewed weekly by AHRQ. The delisting was effective at 12 Midnight ET (2400) on January 19... at 12 Midnight ET (2400) on January 19, 2011. More information on PSOs can be obtained through AHRQ's...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM54A..03F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM54A..03F"><span>The Extent to Which Dayside Reconnection Drives Field-Aligned Currents During Substorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forsyth, C.; Shortt, M. W.; Coxon, J.; Rae, J.; Freeman, M. P.; Kalmoni, N. M. E.; Jackman, C. M.; Anderson, B. J.</p> <p>2016-12-01</p> <p>Field-aligned currents, also known as Birkeland currents, are the agents by which energy and momentum is transferred to the ionosphere from the magnetosphere and solar wind. In order to understand this coupling, it is necessary to analyze the variations in these current systems with respect to the main energy sources of the solar wind and substorms. In this study, we perform a superposed epoch analysis of field-aligned currents determined by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) project with respect to substorm expansion phase onsets identified using the Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE) technique. We examine the total upward and downward currents separately in the noon, dusk, dawn and midnight sectors. Our results show that the dusk and dawn currents have up to a 66% linear correlated with the dayside reconnection rate estimated from solar wind measurements, whereas the noon and midnight currents are not. The noon currents show little or no variation throughout the substorm cycle. The midnight currents follows the dusk currents up to 20 min before onset, after which the midnight current increases more rapidly and exponentially. At substorm onset, the exponential growth rate increases. While the midnight field-aligned currents grow exponentially after substorm onset, the auroral indices vary with a 1/6th power law. Overall, our results show that the growth and decay rates of the Region 1 and 2 current systems, which are strongest at dawn and dusk, are directly driven by the solar wind, whereas the growth and decay rates of the substorm current system, which are dominant at midnight, act independently of the upstream driver.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5846640-thermospheric-response-october-sar-arc-aurora-observed-from-fritz-peak-colorado-calgary-alberta-during-dynamics-explorer-de-noaa-satellite-overflights','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5846640-thermospheric-response-october-sar-arc-aurora-observed-from-fritz-peak-colorado-calgary-alberta-during-dynamics-explorer-de-noaa-satellite-overflights"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hernandez, G.; Meriwether, J.W.; Tepley, C.A.</p> <p></p> <p>Thermospheric winds and temperatures were observed from Fritz Peak, Colorado and Calgary, Alberta during the 23 October 1981 Stable Auroral Red Arc (SAR-arc) and aurora event. Ground-based photometer observations during the SAR-arc event allowed the position, 630.0 nm emission rate, and width of the SAR-arc over Fritz Peak to be monitored throughout the night. Data from the DE-2 satellite overflight near 0400UT allowed the structure of the SAR-arc near Fritz Peak and the aurora in Canada to be determined. The measurements made from Fritz Peak Observatory during the early evening hours showed a thermospheric response to heating within the SAR-arcmore » with meridional winds flowing away from the region of maximum heating at velocities less than 50 m s/sup -1/. Later during the night the meridional winds measured over Fritz Peak shifted equatorward. The neutral gas temperature decreased from about 1700/sup 0/K in the early evening to about 1200/sup 0/K before sunrise. The wind measurements made from Calgary indicated a more complex flow pattern. During the early evening hours the winds were directed poleward, increasing in velocity with latitude from about 50 to 300 m s/sup -1/. Near local midnight the winds reversed to equatorward and also became irregular in the vicinity of the station. The winds in the vicinity of Calgary are under the influence of intense particle precipitation and enhanced ion drag associated with magnetospheric convection that give rise to considerable variability.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC21H1191A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC21H1191A"><span>Severe Hailstorm in Pre-monsoon: A case study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aryal, D.</p> <p>2016-12-01</p> <p>During the pre-monsoon months in Nepal, severe thunder and hailstorms cause significant property and agricultural damage in addition to loss of life. A severe hailstorm that took place in Nepal during the pre-monsoon month of May is investigated in this study. The storm occurred close to midnight on May 3, 2001 at Thori, 215m asl, a small village on the border with India. Giant 1kg hailstones destroyed 800 dwellings, most of the villagers' livestock (over 500 oxen and goats) and 200 hectare of crops. The primary data sources for this investigation included Infrared Satellite images, which illustrated the sequences of convective activity, and original archived ESRL India and China upper air data, which were used for synoptic and mesoscale analyses. The Thori hailstorm had its origins in a topographically induced lee-side convergence area in the deserts of Pakistan on May 2, 2001, from where it propagated eastwards into India and evolved into an eastwards travelling Mesoscale Convective System (MCS) reaching Thori near midnight on May 3. Atmospheric instability over the Gangetic Plains, fuelled by a very active surface heat low, cold temperatures and dynamic lifting mechanisms aloft, created a synoptic and mesoscale environment capable of generating a dangerous thunderstorm. Thori is known for frequent, severe hailstorms, owing to moisture convergence caused by the nature of its surroundings; an abnormally ample supply of moisture resulted in giant 1kg hailstones near midnight on May 3. This study calculated (Convective Available Potential Energy) CAPE values exceeding 8000J/kg for hailstorm resulting in intense updraft speeds capable of sustaining giant hail growth. This study attempts to isolate the specific and unique characteristics of the hailstorm that not only might explain their severity, but also suggest forecasting techniques for future forecasting in Nepal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003BoLMe.107..673S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003BoLMe.107..673S"><span>Using a Convection Model to Predict Altitudes of White Stork Migration Over Central Israel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shamoun-Baranes, Judy; Liechti, Olivier; Yom-Tov, Yoram; Leshem, Yossi</p> <p></p> <p>Soaring migrants such as storks, pelicans and large birds of prey rely on thermal convection during migration. The convection model ALPTHERM was designed to predict the onset, strength, duration and depth of thermal convection for varying topographies for glider pilots, based on atmospheric conditions at midnight. We tested ALPTHERM predictions as configured for two topographies of central Israel, the Coastal Plains and the Judean and Samarian Mountains in order to predict altitudes of migrating white storks (Ciconia ciconia). Migrating flocks of white storks were tracked with a motorized glider, to measure maximum altitudes of migration during spring 2000. A significant positive correlation was found between the maximum daily altitudes of migration measured and the predicted upper boundary of thermal convection for the Coastal Plains and Samarian Mountains. Thirty-minute predictions for the Coastal Plains and Samarian Mountains correlated positively with measured maximum migration altitudes per thermal. ALPTHERM forecasts can be used to alter flight altitudes in both civil and especially military aviation and reduce the hazard of serious aircraft collisions with soaring migrants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006cosp...36..163K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006cosp...36..163K"><span>Comparison of the EIA, EETA and ETWA, received in the model GSM TIP, at the self-consistent approach and with use of the model MSIS-90</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klimenko, M. V.; Klimenko, V. V.; Bryukhanov, V. V.</p> <p></p> <p>On the basis of the Global Self-consistent model of the thermosphere ionosphere and protonosphere GSM TIP developed in WD IZMIRAN the calculations for the quiet geomagnetic conditions of the equinox in the minimum of solar activity are carried out In the calculations the new block of the computation of electric fields in the ionosphere briefly described in COSPAR2006-A-00108 was used Two variants of calculations are executed with the account only the dynamo field generated by the thermosphere winds - completely self-consistent and with use of the model MSIS-90 for the calculation of the composition and temperature of the neutral atmosphere The results of the calculations are compared among themselves The global distributions of the foF2 the latitude behavior of the N e and T e on the near-midnight meridian at two height levels 233 and 626 km the latitude-altitude sections on the near-midnight meridian of the T e and time developments on UT of zonal component of the thermosphere wind and ion temperature at height sim 300 km and foF2 and h m F2 for three longitudinal chains of stations - Brazil Pacific and Indian in a vicinity of geomagnetic equator COSPAR2006-A-00109 calculated in two variants are submitted It is shown that at the self-consistent approach the maxima of the crests of the equatorial ionization anomaly EIA in the foF2 are shifted concerning calculated with the MSIS aside later evening hours The equatorial electron temperature anomaly EETA is formed in both variants of calculations However at the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-06-25/pdf/2013-15050.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-06-25/pdf/2013-15050.pdf"><span>78 FR 38099 - Notice of Funds Availability Inviting Applications for the Rural Veterans Coordination; Amendment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-06-25</p> <p>... who are transitioning from military service to civilian life in rural or underserved communities. To... accordance with this NOFA no later than midnight eastern standard time on September 19, 2013. Applications.... In the interest of fairness to all competing applicants, this deadline of no later than midnight...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860049554&hterms=earth+magnetic+field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dearth%2Bmagnetic%2Bfield','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860049554&hterms=earth+magnetic+field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dearth%2Bmagnetic%2Bfield"><span>The magnetic field of the equatorial magnetotail from 10 to 40 earth radii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fairfield, D. H.</p> <p>1986-01-01</p> <p>A statistical study of IMP 6, 7, and 8 magnetotail magnetic field measurements near the equatorial plane reveals new information about various aspects of magnetospheric structure. More magnetic flux crosses the equatorial plane on the dawn and dusk flanks of the tail than near midnight, but no evidence is found for a dependence on the interplanetary magnetic field sector polarity. Field magnitudes within 3 earth radii of the equatorial plane near dawn are more than twice as large as those near dusk for Xsm = -20 to -10 earth radii. The frequency of occurrence of southward fields is greatest near midnight, and such fields are seen almost twice as often for Xsm = -20 to -10 earth radii as for Xsm beyond -20 earth radii. This latter result supports the idea that the midnight region of the tail between 10 and 20 is a special location where neutral lines are particularly apt to form. Such a neutral line will approach nearest the earth in the midnight and premidnight region, where substorms are thought to have their onset.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/3625570','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/3625570"><span>Daily changes of structure, function and rhodopsin content in the compound eye of the crab Hemigrapsus sanguineus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arikawa, K; Kawamata, K; Suzuki, T; Eguchi, E</p> <p>1987-08-01</p> <p>The compound eye of the crab hemigrapsus sanguineus undergoes daily changes in morphology as determined by light and electron microscopy, both in the quantity of chromophore substances studied by HPLC and in visual sensitivity as shown by electrophysiological techniques. 1. At a temperature of 20 degrees C, the rhabdom occupation ratio (ROR) of an ommatidial retinula was 11.6% (maximum) at midnight, 8.0 times larger than the minimum value at midday (1.4%). 2. Observations by freeze-fracture revealed that the densities of intra-membranous particles (9-11 nm in diameter) of rhabdomeric membrane were ca. 2000/microns 2 and ca. 3000/microns 2 for night and daytime compound eyes, respectively. 3. Screening pigment granules migrated longitudinally and aggregated at night, but dispersed during the day. Reflecting pigment granules migrate transversally in the proximal half of the reticula layer i.e. cytoplasmic extensions containing reflecting pigment granules squeeze between neighbouring retinula cells causing optical isolation (Fig. 4). Thus the screening pigment granules within the retinula cells show longitudinal migration and radial movement so that the daytime rhabdoms are closely surrounded by the pigment granules. 4. At 20 degrees C, the total amount of chromophore of the visual pigment (11-cis and all-trans-retinal) was 1.4 times larger at night than during the day i.e. 46.6 pmol/eye at midnight and 33.2 pmol/eye at midday. Calculations of the total surface area of rhabdomeric membrane, total number of intra-membranous particles in rhabdomeric membrane and the total number of chromophore molecules in a compound eye, indicate that a considerable amount of chromophore-protein complex exists outside the rhabdom during the day. 5. The change in rhabdom size and quantity of chromophore were highly dependent on temperature. At 10 degrees C both rhabdom size and amount of chromophore stayed close to daytime levels throughout the 24 hours. 6. The intracellularly determined relative sensitivity of the dark adapted night eye to a point source of light was about twice as high as the dark-adapted day eye. Most of the increase in the sensitivity is attributed primarily to the effect of reflecting pigment migration around the basement membrane and, secondarily, to the changes in the amount and properties of the photoreceptive membrane. The results form the basis of a detailed discussion as to how an apposition eye can function possibly as a night-eye.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007979','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007979"><span>Large-Scale Aspects and Temporal Evolution of Pulsating Aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jones, S. L.; Lessard, M. R.; Rychert, K.; Spanswick, E.; Donovan, E.</p> <p>2010-01-01</p> <p>Pulsating aurora is a common phenomenon generally believed to occur mainly in the aftermath of a, substorm, where dim long-period pulsating patches appear. The study determines the temporal and spatial evolution of pulsating events using two THEN IIIS ASI stations, at Gillam (66.18 mlat, 332.78 mlon, magnetic midnight at 0634 UT) and Fort Smith, (67.38 mlat, 306.64 mlon, magnetic midnight at, 0806 UT) along roughly the same invariant latitude. Parameters have been calculated from a database of 74 pulsating aurora events from 119 days of good optical data within the period from September 2007 through March 2008 as identified with the Gillam camera. It is shown that the source region of pulsating aurora drifts or expands eastward, away from magnetic midnight, for pre-midnight onsets and that the spatial evolution is more complicated for post midnight onsets, which has implications for the source mechanism. The most probable duration of a pulsating aurora event is roughly 1.5 hours while the distribution of possible event durations includes many long (several hours) events. This may suggest that pulsating aurora is not strictly a substorm recovery phase phenomenon but rather a persistent, long-lived phenomenon that may be temporarily disrupted by auroral substorms. Observations from the Gillam station show that in fact, pulsating aurora is quite common with the occurrence rate increasing to around 60% for morning hours, with 6910 of pulsating aurora onsets occurring after substorm breakup.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750027738&hterms=1601&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2526%25231601','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750027738&hterms=1601&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2526%25231601"><span>Energetic electrons in the midlatitude nighttime E-region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, L. G.; Geller, M. A.; Voss, H. D.</p> <p>1974-01-01</p> <p>An analysis of electron density profiles in the upper E region near midnight at Wallops Island is shown to indicate that the ionization rate is very strongly correlated with geomagnetic activity. This suggests that energetic electrons are the principal source of ionization at midlatitudes in the upper E region near midnight, even under rather quiet geomagnetic conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=post+AND+colonial&pg=3&id=EJ847723','ERIC'); return false;" href="https://eric.ed.gov/?q=post+AND+colonial&pg=3&id=EJ847723"><span>The Value of Post-Colonial Literature for Education Processes: Salman Rushdie's "Midnight's Children"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Schrottner, Barbara Theresia</p> <p>2009-01-01</p> <p>The author Salman Rushdie's post-colonial essay, "Midnight's Children," highlights a different perspective on the problems created by the colonial power where place and displacement are central themes and migration is a painful but emancipating process; both are expressed through the life of the writer, Salman Rushdie. The primary aim of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.4507L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.4507L"><span>Modulation of the atmospheric quasi-biweekly oscillation on the diurnal variation of the occurrence frequency of the Tibetan Plateau vortices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Lun; Zhang, Renhe; Wen, Min</p> <p>2018-06-01</p> <p>In this study, modulation of the atmospheric quasi-biweekly oscillation (QBWO) on diurnal variation of the occurrence frequency of Tibetan Plateau vortices (TPVs) during May-August of 2000-2009 was investigated. The diurnal variations of the occurrence frequency of the TPVs (OFTPVs) and the related dynamic and thermodynamic features in the positive and negative phases of QBWO were compared. In both the positive and negative phases, the OFTPVs reaches the maximum from evening to midnight (18-00 LT, LT indicates the local time), and minimum from early morning to noon (06-12 LT). At 18 LT, there is strongest convergence at 500 hPa and ascending motion, as well as the most abundant net water vapor budget over the Tibetan Plateau, which is in favor of the precipitation and the related condensation latent heat release, corresponding to the maximum of OFTPVs in 18-00 LT. On the contrary, in the early morning at 06 LT, the conditions are most unfavorable for genesis of TPVs in 06-12 LT. QBWO leads to stronger convergence at 500 hPa, ascending motion as well as more massive water vapor in the positive phases than those in the negative phases, resulting in larger numbers of TPVs occur in all of the four periods of a day (00-06 LT, 06-12 LT, 12-18 LT, and 18-00 LT) in the former. The TPVs generating from the early morning to noon (06-12 LT) are weaker and more sensitive and fragile to the disadvantageous background, while the TPVs occurring from evening to midnight (18-00 LT) are stronger and seem to be well tolerated, leading to more remarkable contrast between the OFTPVs in the negative and positive phases in 06-12 LT than in 18-00 LT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol2/pdf/CFR-2012-title40-vol2-part50-appT.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol2/pdf/CFR-2012-title40-vol2-part50-appT.pdf"><span>40 CFR Appendix T to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Sulfur (Sulfur...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>...-hour SO2 concentration values measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values are the metrics (i.e., statistics) that are compared to the NAAQS levels to determine compliance, calculated as specified in section 5 of this appendix. The design value...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol2/pdf/CFR-2014-title40-vol2-part50-appT.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol2/pdf/CFR-2014-title40-vol2-part50-appT.pdf"><span>40 CFR Appendix T to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Sulfur (Sulfur...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>...-hour SO2 concentration values measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values are the metrics (i.e., statistics) that are compared to the NAAQS levels to determine compliance, calculated as specified in section 5 of this appendix. The design value...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol2/pdf/CFR-2011-title40-vol2-part50-appT.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol2/pdf/CFR-2011-title40-vol2-part50-appT.pdf"><span>40 CFR Appendix T to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Sulfur (Sulfur...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>...-hour SO2 concentration values measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values are the metrics (i.e., statistics) that are compared to the NAAQS levels to determine compliance, calculated as specified in section 5 of this appendix. The design value...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol2/pdf/CFR-2013-title40-vol2-part50-appT.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol2/pdf/CFR-2013-title40-vol2-part50-appT.pdf"><span>40 CFR Appendix T to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Sulfur (Sulfur...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>...-hour SO2 concentration values measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values are the metrics (i.e., statistics) that are compared to the NAAQS levels to determine compliance, calculated as specified in section 5 of this appendix. The design value...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol2/pdf/CFR-2010-title40-vol2-part50-appT.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol2/pdf/CFR-2010-title40-vol2-part50-appT.pdf"><span>40 CFR Appendix T to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Sulfur (Sulfur...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>...-hour SO2 concentration values measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values are the metrics (i.e., statistics) that are compared to the NAAQS levels to determine compliance, calculated as specified in section 5 of this appendix. The design value...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol2/pdf/CFR-2012-title40-vol2-part50-appN.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol2/pdf/CFR-2012-title40-vol2-part50-appN.pdf"><span>40 CFR Appendix N to Part 50 - Interpretation of the National Ambient Air Quality Standards for PM2.5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... midnight to midnight (local standard time) that are used in NAAQS computations. Designated monitors are... accordance with part 58 of this chapter. Design values are the metrics (i.e., statistics) that are compared... (referred to as the “annual standard design value”). If spatial averaging has been approved by EPA for a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-05-13/pdf/2010-11139.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-05-13/pdf/2010-11139.pdf"><span>75 FR 26898 - Determination of Attainment for PM-10; Fort Hall PM-10 Nonattainment Area, Idaho</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-05-13</p> <p>... 2009. \\9\\ FRMs are manual samplers that pull air through a filter for 24 hours (midnight to midnight... of the filter and the volume of air drawn through it. In 2008, an additional filter-based PM-10... Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing under the Clean Air Act (CAA) to determine...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-09-24/pdf/2013-23097.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-09-24/pdf/2013-23097.pdf"><span>78 FR 58611 - Notice of Funds Availability Inviting Applications for the Rural Veterans Coordination; Amendment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-09-24</p> <p>... will assist veterans and their families who are transitioning from military service to civilian life in...: Applications must be received in accordance with this NOFA no later than midnight eastern standard time on... no later than midnight September 19, 2013, is firm as to date and hour, and VA will not consider any...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035743','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035743"><span>Mapping hurricane rita inland storm tide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Berenbrock, C.; Mason, R.R.; Blanchard, S.F.</p> <p>2009-01-01</p> <p>Flood-inundation data are most useful for decision makers when presented in the context of maps of affected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-h intervals from midnight (00:00 hours) through noon (12:00 hours) on 24 September 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared with the extent of flood inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks. ?? 2009 Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70156891','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70156891"><span>Mapping Hurricane Rita inland storm tide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Berenbrock, Charles; Mason, Jr., Robert R.; Blanchard, Stephen F.; Simonovic, Slobodan P.</p> <p>2009-01-01</p> <p>Flood-inundation data are most useful for decision makers when presented in the context of maps of effected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems (GIS) provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-hour intervals from midnight (0000 hour) through noon (1200 hour) on September 24, 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared to the extent of flood-inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol2/pdf/CFR-2010-title40-vol2-part50-appS.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol2/pdf/CFR-2010-title40-vol2-part50-appS.pdf"><span>40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values..., calculated as specified in section 5 of this appendix. The design values for the primary NAAQS are: (1) The annual mean value for a monitoring site for one year (referred to as the “annual primary standard design...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol2/pdf/CFR-2014-title40-vol2-part50-appS.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol2/pdf/CFR-2014-title40-vol2-part50-appS.pdf"><span>40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values..., calculated as specified in section 5 of this appendix. The design values for the primary NAAQS are: (1) The annual mean value for a monitoring site for one year (referred to as the “annual primary standard design...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol2/pdf/CFR-2012-title40-vol2-part50-appS.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol2/pdf/CFR-2012-title40-vol2-part50-appS.pdf"><span>40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values..., calculated as specified in section 5 of this appendix. The design values for the primary NAAQS are: (1) The annual mean value for a monitoring site for one year (referred to as the “annual primary standard design...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol2/pdf/CFR-2011-title40-vol2-part50-appS.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol2/pdf/CFR-2011-title40-vol2-part50-appS.pdf"><span>40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values..., calculated as specified in section 5 of this appendix. The design values for the primary NAAQS are: (1) The annual mean value for a monitoring site for one year (referred to as the “annual primary standard design...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol2/pdf/CFR-2014-title40-vol2-part50-appN.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol2/pdf/CFR-2014-title40-vol2-part50-appN.pdf"><span>40 CFR Appendix N to Part 50 - Interpretation of the National Ambient Air Quality Standards for PM2.5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... series of daily values represents the 98th percentile for that year. Creditable samples include daily... measured (or averaged from hourly measurements in AQS) from midnight to midnight (local standard time) from... design value (DV) or a 24-hour PM2.5 NAAQS DV to determine if those metrics, which are judged to be based...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol2/pdf/CFR-2013-title40-vol2-part50-appS.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol2/pdf/CFR-2013-title40-vol2-part50-appS.pdf"><span>40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values..., calculated as specified in section 5 of this appendix. The design values for the primary NAAQS are: (1) The annual mean value for a monitoring site for one year (referred to as the “annual primary standard design...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61.1850R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61.1850R"><span>Characteristics of nighttime E-region over Arecibo: Dependence on solar flux and geomagnetic variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raizada, Shikha; Brum, Christiano G. M.; Mathews, John D.; Gonzalez, Cristina; Franco, Efmi</p> <p>2018-04-01</p> <p>Electron concentration (Ne) inferred from Incoherent Scatter Radar (ISR) measurements has been used to determine the influence of solar flux and geomagnetic activity in the ionospheric E-region over Arecibo Observatory (AO). The approach is based on the determination of column integrated Ne, referred to as E-region total electron content (ErTEC) between 80 and 150 km altitude regions. The results discussed in this work are for the AO nighttime period. The study reveals higher ErTEC values during the low solar flux periods for all the seasons except for summer period. It is found that the E-region column abundance is higher in equinox periods than in the winter for low solar activity conditions. The column integrated Ne during the post-sunset/pre-sunrise periods always exceeds the midnight minima, independent of season or solar activity. This behavior has been attributed to the variations in the coupling processes from the F-region. The response of ErTEC to the geomagnetic variability is also examined for different solar flux conditions and seasons. During high solar flux periods, changes in Kp cause an ErTEC increase in summer and equinox, while producing a negative storm-like effect during the winter. Variations in ErTEC due to geomagnetic activity during low solar flux periods produce maximum variability in the E-region during equinox periods, while resulting in an increase/decrease in ErTEC before local midnight during the winter/summer periods, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1018263','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1018263"><span>An Observational and Modelling Study of Auroral Upwelling in the Thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-05-05</p> <p>linear warming up and cooling down before and after. The heating is centred on magnetic midday for Svalbard (0900 UT) and magnetic midnight for Kiruna...or nightside magnetic reconnection, respectively. The experiments and model simulations show that the manifestation of heating in the density changes...periods around magnetic midnight (2100UT) near new moon in February 2015. Results related to this study have been presented at the following</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24118360','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24118360"><span>Comparison of nurse staffing based on changes in unit-level workload associated with patient churn.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hughes, Ronda G; Bobay, Kathleen L; Jolly, Nicholas A; Suby, Chrysmarie</p> <p>2015-04-01</p> <p>This analysis compares the staffing implications of three measures of nurse staffing requirements: midnight census, turnover adjustment based on length of stay, and volume of admissions, discharges and transfers. Midnight census is commonly used to determine registered nurse staffing. Unit-level workload increases with patient churn, the movement of patients in and out of the nursing unit. Failure to account for patient churn in staffing allocation impacts nurse workload and may result in adverse patient outcomes. Secondary data analysis of unit-level data from 32 hospitals, where nursing units are grouped into three unit-type categories: intensive care, intermediate care, and medical surgical. Midnight census alone did not account adequately for registered nurse workload intensity associated with patient churn. On average, units were staffed with a mixture of registered nurses and other nursing staff not always to budgeted levels. Adjusting for patient churn increases nurse staffing across all units and shifts. Use of the discharges and transfers adjustment to midnight census may be useful in adjusting RN staffing on a shift basis to account for patient churn. Nurse managers should understand the implications to nurse workload of various methods of calculating registered nurse staff requirements. © 2013 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23047078','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23047078"><span>Associations of long-term shift work with waking salivary cortisol concentration and patterns among police officers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fekedulegn, Desta; Burchfiel, Cecil M; Violanti, John M; Hartley, Tara A; Charles, Luenda E; Andrew, Michael E; Miller, Diane B</p> <p>2012-01-01</p> <p>The objective of this study was to evaluate whether long-term shift work is associated with both the total hormonal secretion after awakening and the pattern of the cortisol levels during the first hour following awakening, among 65 randomly selected police officers who represent a high stress occupation. Dominant shift (Day, Afternoon, or Midnight) was ascertained using daily payroll records of each participant's work activities during the 6-8 yrs prior to saliva sampling. Four salivary samples were collected at 15 min intervals upon first awakening. After accounting for potential confounders, salivary cortisol concentrations averaged across all four time points and total area under the curve differed significantly across shift with midnight shift workers showing suppressed awakening cortisol response relative to the afternoon and day shift. The percent of hours worked on midnight shift was inversely correlated with total awakening cortisol output. In contrast, the pattern of cortisol secretion during the first hour following waking appeared not to be affected as no significant interaction effect was found between time since awakening and shift work. The results show that long-term midnight shift work is associated with decreased absolute mean level and total volume of cortisol released over the waking period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4685453','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4685453"><span>Associations of Long-term Shift Work with Waking Salivary Cortisol Concentration and Patterns among Police Officers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>FEKEDULEGN, Desta; BURCHFIEL, Cecil M.; VIOLANTI, John M.; HARTLEY, Tara A.; CHARLES, Luenda E.; ANDREW, Michael E.; MILLER, Diane B.</p> <p>2015-01-01</p> <p>The objective of this study was to evaluate whether long-term shift work is associated with both the total hormonal secretion after awakening and the pattern of the cortisol levels during the first hour following awakening, among 65 randomly selected police officers who represent a high stress occupation. Dominant shift (Day, Afternoon, or Midnight) was ascertained using daily payroll records of each participant’s work activities during the 6–8 yrs prior to saliva sampling. Four salivary samples were collected at 15 min intervals upon first awakening. After accounting for potential confounders, salivary cortisol concentrations averaged across all four time points and total area under the curve differed significantly across shift with midnight shift workers showing suppressed awakening cortisol response relative to the afternoon and day shift. The percent of hours worked on midnight shift was inversely correlated with total awakening cortisol output. In contrast, the pattern of cortisol secretion during the first hour following waking appeared not to be affected as no significant interaction effect was found between time since awakening and shift work. The results show that long-term midnight shift work is associated with decreased absolute mean level and total volume of cortisol released over the waking period. PMID:23047078</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.4192Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.4192Z"><span>Equatorial Ionospheric Disturbance Field-Aligned Plasma Drifts Observed by C/NOFS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Ruilong; Liu, Libo; Balan, N.; Le, Huijun; Chen, Yiding; Zhao, Biqiang</p> <p>2018-05-01</p> <p>Using C/NOFS satellite observations, this paper studies the disturbance field-aligned plasma drifts in the equatorial topside ionosphere during eight geomagnetic storms in 2011-2015. During all six storms occurred in the solstices, the disturbance field-aligned plasma drift is from winter to summer hemisphere especially in the morning-midnight local time sector and the disturbance is stronger in June solstice. The two storms occurred at equinoxes have very little effect on the field-aligned plasma drift. Using the plasma temperature data from DMSP satellites and Global Positioning System-total electron content, it is suggested that the plasma density gradient seems likely to cause the disturbance winter-to-summer plasma drift while the role of plasma temperature gradient is opposite to the observed plasma drift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMSA43A1609A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMSA43A1609A"><span>TOWARDS OPERATIONAL FORECASTING OF LOWER ATMOSPHERE EFFECTS ON THE UPPER ATMOSPHERE AND IONOSPHERE: INTEGRATED DYNAMICS IN EARTH’S ATMOSPHERE (IDEA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akmaev, R. A.; Fuller-Rowell, T. J.; Wu, F.; Wang, H.; Juang, H.; Moorthi, S.; Iredell, M.</p> <p>2009-12-01</p> <p>The upper atmosphere and ionosphere exhibit variability and phenomena that have been associated with planetary and tidal waves originating in the lower atmosphere. To study and be able to predict the effects of these global-scale dynamical perturbations on the coupled thermosphere-ionosphere-electrodynamics system a new coupled model is being developed under the IDEA project. To efficiently cross the infamous R2O “death valley”, from the outset the IDEA project leverages the natural synergy between NOAA’s National Weather Service’s (NWS) Space Weather Prediction and Environmental Modeling Centers and a NOAA-University of Colorado cooperative institute (CIRES). IDEA interactively couples a Whole Atmosphere Model (WAM) with ionosphere-plasmasphere and electrodynamics models. WAM is a 150-layer general circulation model (GCM) based on NWS’s operational weather prediction Global Forecast System (GFS) extended from its nominal top altitude of 62 km to over 600 km. It incorporates relevant physical processes including those responsible for the generation of tidal and planetary waves in the troposphere and stratosphere. Long-term simulations reveal realistic seasonal variability of tidal waves with a substantial contribution from non-migrating tidal modes, recently implicated in the observed morphology of the ionosphere. Such phenomena as the thermospheric Midnight Temperature Maximum (MTM), previously associated with the tides, are also realistically simulated for the first time.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRI..115...48R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRI..115...48R"><span>Migration and diving behavior of Centrophorus squamosus in the NE Atlantic. Combining electronic tagging and Argo hydrography to infer deep ocean trajectories</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodríguez-Cabello, Cristina; González-Pola, Cesar; Sánchez, Francisco</p> <p>2016-09-01</p> <p>A total of nine leafscale gulper sharks Centrophorus squamosus (Bonnaterre, 1788), were tagged with pop-up, satellite, archival, transmitting tags (PSAT) in the Marine Protected Area (MPA) of El Cachucho (Le Danois Bank) located in waters to the north of Spain, (NE Atlantic). Tags provided data on time, pressure and temperature that were used to examine movement patterns and diving behavior. Data collected from Argo floats in the study area have been used to devise a simple geolocation algorithm to infer the probable routes followed by this species. Tag release points revealed that C. squamosus moved both to the west (Galician waters) and to the north (Porcupine Bank) from the tagging area, suggesting well defined preferred pathways. The inferred trajectories indicated that sharks alternate periods constrained to specific geographical regions with quick and prompt movements covering large distances. Two sharks made conspicuous diurnal vertical migrations being at shallower depths around midnight and at maximum depths at midday, while other sharks did not make vertical migrations. Vertical movements were done smoothly and independently of the fish swimming long-distances or resting in the area. Overall results confirm that this species is highly migratory, supporting speeds of 20 nautical miles.day-1 and well capable to swim and make vertical migrations well above the abyssal plain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022628','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022628"><span>A diurnal animation of thermal images from a day-night pair</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Watson, K.</p> <p>2000-01-01</p> <p>Interpretation of thermal images is often complicated because the physical property information is contained in both the spatial and temporal variations of the data and thermal models are necessary to extract and display this information. A linearized radiative transfer solution to the surface flux has been used to derive a function that is invariant with respect to thermal inertia. This relationship makes it possible to predict the temperature variation at any time in the diurnal cycle using only two distinct measurements (e.g., noon and midnight). An animation can then be constructed from a pair of day-night images to view both the spatial and temporal temperature changes throughout the diurnal cycle. A more complete solution for the invariant function, using the method of Laplace transforms and based on the linearized solution, was introduced. These results indicate that the linear model does not provide a sufficiently accurate estimate. Using standard conditions (latitude 30??, solar declination 0??, acquisition times at noon and midnight), this new relationship was used to predict temperature throughout the diurnal cycle to an rms error of 0.2??C, which is close to the system noise of most thermal scanners. The method was further extended to include the primary effects of topographic slope with similar accuracy. The temperature was computed at 48 equally spaced times in the diurnal cycle with this algorithm using a co-registered day and night TIMS (Thermal Infrared Multispectral Scanner) data pair (330 pixels, 450 lilies) acquired of the Carlin, Nevada, area and a co-registered DEM (Digital Elevation Model). (Any reader can view the results by downloading the animation file from an identified tip site). The results illustrate the power of animation to display subtle temporal and spatial temperature changes, which can provide clues to structural controls and material property differences. This 'visual change' approach could significantly increase the use of thermal data for environmental, hazard, and resource studies. Published by Elsevier Science Inc., 2000.A linearized radiative transfer solution of determining the surface flux is proposed to predict the temperature variation at any time in the diurnal cycle using only two distinct measurements. An animation is constructed from a pair of day-night images to view the spatial and temporal temperature changes throughout the diurnal cycle. The results illustrate the effectiveness of animation to display subtle temporal and spatial temperature changes, which can provide clues to structural controls and material property differences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61.2585M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61.2585M"><span>Solar activity variations of equatorial spread F occurrence and sustenance during different seasons over Indian longitudes: Empirical model and causative mechanisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Madhav Haridas, M. K.; Manju, G.; Arunamani, T.</p> <p>2018-05-01</p> <p>A comprehensive analysis using nearly two decades of ionosonde data is carried out on the seasonal and solar cycle variations of Equatorial Spread F (ESF) irregularities over magnetic equatorial location Trivandrum (8.5°N, 77°E). The corresponding Rayleigh Taylor (RT) instability growth rates (γ) are also estimated. A seasonal pattern of ESF occurrence and the corresponding γ is established for low solar (LSA), medium solar (MSA) and high solar (HSA) activity periods. For LSA, it is seen that the γ maximizes during post sunset time with comparable magnitudes for autumnal equinox (AE), vernal equinox (VE) and winter solstice (WS), while for summer solstice (SS) it maximizes in the post-midnight period. Concurrent responses are seen in the ESF occurrence pattern. For MSA, γ maximizes during post-sunset for VE followed by WS and AE while SS maximises during post-midnight period. The ESF occurrence for MSA is highest for VE (80%), followed by AE (70%), WS (60%) and SS (50%). In case of HSA, maximum γ occurs for VE followed by AE, WS and SS. The concurrent ESF occurrence maximizes for VE and AE (90%), WS and SS at 70%. The solar cycle variation of γ is examined. γ shows a linear variation with F10.7 cm flux. Further, ESF percentage occurrence and duration show an exponential and linear variation respectively with γ. An empirical model on the solar activity dependence of ESF occurrence and sustenance time over Indian longitudes is arrived at using the database spanning two solar cycles for the first time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA263158','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA263158"><span>Auroral-E Observations: The First Year’s Data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1993-02-01</p> <p>incidence-sound- ing (VIS) ionograms. One group, generally called auroral-E, includes nighttime E (par- ticle E) of the k type and E of the r type (Esr...toward solar minimum. Auroral-E tended to occur in clusters or "swarms" during periods of increased geo- magnetic activity. Figures 15a, 15b, and 15c show...midnight and several hours after local midnight. In the hours between 2200 and 0300 local time, when the K index is sufficiently high to place the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA629678','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA629678"><span>Shallow Scattering Layer (SSL): Emergence Behaviors of Coastal Macrofauna</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2003-09-30</p> <p>group ascent and descent speeds were slower than those found in a deeper water column in Puget Sound by Kringel et al. ( 2003) despite the order...instruments separated by 50 m show high coherence, but they were collected at the same water depth. Our initial data record for West Sound , Orcas Island...West Sound , Orcas Island, Washington Volume backscattering strength at 265 kHz (dB) H ei g h t ab o v e T A P S ( m ) 0 0 10 20 midnight midnight</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050155580&hterms=1074&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2526%25231074','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050155580&hterms=1074&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2526%25231074"><span>Temperature and moisture conditions for life in the extreme arid region of the Atacama desert: four years of observations including the El Nino of 1997-1998</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McKay, Christopher P.; Friedmann, E. Imre; Gomez-Silva, Benito; Caceres-Villanueva, Luis; Andersen, Dale T.; Landheim, Ragnhild</p> <p>2003-01-01</p> <p>The Atacama along the Pacific Coast of Chile and Peru is one of the driest and possibly oldest deserts in the world. It represents an extreme habitat for life on Earth and is an analog for life in dry conditions on Mars. We report on four years (September 1994-October 1998) of climate and moisture data from the extreme arid region of the Atacama. Our data are focused on understanding moisture sources and their role in creating suitable environments for photosynthetic microorganisms in the desert surface. The average air temperature was 16.5 degrees C and 16.6 degrees C in 1995 and 1996, respectively. The maximum air temperature recorded was 37.9 degrees C, and the minimum was -5.7 degrees C. Annual average sunlight was 336 and 335 W m(-2) in 1995 and 1996, respectively. Winds averaged a few meters per second, with strong fohn winds coming from the west exceeding 12 m s(-1). During our 4 years of observation there was only one significant rain event of 2.3 mm, which occurred near midnight local time. We suggest that this event was a rainout of a heavy fog. It is of interest that the strong El Nino of 1997-1998 brought heavy rainfall to the deserts of Peru, but did not bring significant rain to the central Atacama in Chile. Dew occurred at our station frequently following high nighttime relative humidity, but is not a significant source of moisture in the soil or under stones. Groundwater also does not contribute to surface moisture. Only the one rain event of 2.3 mm resulted in liquid water in the soil and beneath stones for a total of only 65-85 h over 4 years. The paucity of liquid water under stones is consistent with the apparent absence of hypolithic (under-stone) cyanobacteria, the only known primary producers in such extreme deserts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870025395&hterms=oceans+behavior&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Doceans%2Bbehavior','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870025395&hterms=oceans+behavior&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Doceans%2Bbehavior"><span>Some characteristic differences in the earth's radiation budget over land and ocean derived from the Nimbus-7 ERB experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kyle, H. L.; Vasanth, K. L.</p> <p>1986-01-01</p> <p>Broad spectral band data derived from the Nimbus-7 Earth Radiation Budget experiment are analyzed for the top-of-the-atmosphere noon vs. midnight variations in the exitant longwave flux density, spectral variations in the regional albedos, and differences in land and ocean net radiation budgets. The data were studied for a year (June 1979 to May 1980) on a global scale and for five selected study areas. The annual global total, near-UV visible, and near-IR albedo values, obtained were 30.2, 34.6, and 25.9, respectively, with marked differences in behavior between oceanic and continental regions. Over the continents, clouds and snow sharply decreased the near-IR albedo. The over-the-continent noon-emitted flux density averages were 15-25 W/sq m larger than the midnight values, with large regional and seasonal variations. Over the oceans, the average noon and midnight outgoing longwave-flux densities were nearly identical, with regional aqnd seasonal differences of several watts per square meter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013RaSc...48..513S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013RaSc...48..513S"><span>Day-to-day variability of foEs in the equatorial ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Somoye, E. O.; Akala, A. O.; Adeniji-Adele, R. A.; Onori, E. O.; Ogwala, A.; Karimu, A. O.</p> <p>2013-09-01</p> <p>seasonal, and solar cycle effects of the variability (VR) of the critical frequency of sporadic E layer (foEsq) are investigated at Ibadan (7.4°N, 3.9°E, 6°S dip) in the African sector during high solar activity (HSA) year of 1958 (Rz = 181), moderate solar activity (MSA) year of 1973 (Rz = 30), and low solar activity (LSA) year of 1965 (Rz = 17). The diurnal variation of foEsq VR is characterized by post-midnight (32%-78%) and pre-midnight (20%-84%) peaks during high solar activity (HSA), the only epoch of the three showing these peaks and a diurnal trend. While the daytime foEsq VRs of the three epochs show no seasonal trend, pre-midnight and post-midnight, the foEsq VRs during HSA and LSA show seasonal trends. Similarity is observed in the curve of reciprocal of percentage occurrence of Esq and that of foEsq VR, indicating inverse variation of percentage occurrence and foEsq VR. Longitudinal influence is observed in the diurnal variation of HSA and MSA July foEsq VR of Ibadan (7.4°N, 3.9°E, 6°S dip) in the African sector, which is in the neighborhood of the Greenwich Meridian (GM); Singapore (1.3°N, 108.3°E, 17.6°S dip) in the Asian sector, east of GM; and Huancayo (12°S, 284.7°E, 1.90 dip) in the American sector, west of GM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSA23A4051F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSA23A4051F"><span>Geomagnetically conjugate observations of ionospheric and thermospheric variations accompanied with a midnight brightness wave at low latitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fukushima, D.; Shiokawa, K.; Otsuka, Y.; Kubota, M.; Yokoyama, T.; Nishioka, M.; Komonjinda, S.; Yatini, C. Y.</p> <p>2014-12-01</p> <p>A midnight brightness wave (MBW) is the phenomenon that the OI (630-nm) airglow enhancement propagates poleward once at local midnight. In this study, we first conducted geomagnetically conjugate observations of 630nm airglow for an MBW at conjugate stations. An airglow enhancement which is considered to be an MBW was observed in the 630-nm airglow images at Kototabang, Indonesia (geomagnetic latitude (MLAT): 10.0S) at around local midnight from 1540 to 1730 UT (from 2240 to 2430 LT) on 7 February 2011. This MBW was propagating south-southwestward, which is geomagnetically poleward, with a velocity of 290 m/s. However, similar wave was not observed in the 630-nm airglow images at Chiang Mai, Thailand (MLAT: 8.9N), which is close to being conjugate point of Kototabang. This result indicates that the MBW does not have geomagnetic conjugacy. We simultaneously observed thermospheric neutral winds observed by a co-located Fabry-Perot interferometer at Kototabang. The observed meridional winds turned from northward (geomagnetically equatorward) to southward (geomagnetically poleward) just before the MBW was observed. The bottomside ionospheric heights observed by ionosondes rapidly decreased at Kototabang and slightly increased at Chiang Mai simultaneously with the MBW passage. In the presentation, we discuss the MBW generation by the observed poleward neutral winds at Kototabang, and the cause of the coinciding small height increase at Chiang Mai by the polarization electric field inside the observed MBW at Kototabang.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.1578L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.1578L"><span>Post-midnight enhancements in low latitude F layer electron density: observations and simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Libo; Le, Huijun; Chen, Yiding; Zhang, Yanyan; Wan, Weixing; Ning, Baiqi</p> <p>2014-05-01</p> <p>Observations from a Lowell DPS-4D ionosonde operated at Sanya (18.3º N, 109.6º E), a low latitude station in China, have been analysed to study the nighttime behavior of ionospheric F layer. Post-midnight enhancement events are frequently occurred in the year of 2012. Common features in these cases illustrate that, accompanying nighttime rises in peak electron density of F2-layer (NmF2), the height of F2-layer goes downward significantly and the ionogram-derived electron density height profiles become sharpener. Enhancement in electron density develops earlier and reaches peaks earlier at higher altitudes than at lower altitudes. Downward plasma drift detected under such events reveals the essential role of the westward electric field in forming the post-midnight enhancements in electron density of ionospheric F-layer at such low latitudes. The important role of westward electric field in formation of nighttime enhancement is supported by the simulated results from a model. Work has been published in Liu et al., A case study of post-midnight enhancement in F-layer electron density over Sanya of China, J. Geophys. Res. Space Physics, 2013, 118, 4640-4648, DOI:10.1002/jgra.50422. Acknowledgements: Ionosonde data are provided from BNOSE of IGGCAS. This research was supported by the projects of Chinese Academy of Sciences (KZZD-EW-01-3), National Key Basic Research Program of China (2012CB825604), and National Natural Science Foundation of China (41231065).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EPSC....8..772I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EPSC....8..772I"><span>Solar Cycle variations in Earth's open flux content measured by the SuperDARN radar network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Imber, S. M.; Milan, S. E.; Lester, M.</p> <p>2013-09-01</p> <p>We present a long term study, from 1996 - 2012, of the latitude of the Heppner-Maynard Boundary (HMB) determined using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection and is here used as a proxy for the amount of open flux in the polar cap. The mean HMB latitude (measured at midnight) is found to be at 64 degrees during the entire period, with secondary peaks at lower latitudes during the solar maximum of 2003, and at higher latitudes during the recent extreme solar minimum of 2008-2011. We associate these large scale statistical variations in open flux content with solar cycle variations in the solar wind parameters leading to changes in the intensity of the coupling between the solar wind and the magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850036140&hterms=Ankara&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DAnkara','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850036140&hterms=Ankara&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DAnkara"><span>The middle and high latitude winter ionosphere at the Ariel 4 satellite altitude</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tulunay, Y. K.; Grebowsky, J. M.</p> <p>1983-01-01</p> <p>The electron (0+) density variations over the northern and southern winter high latitude ionosphere are comprehensively analyzed using the technique of Brinton et al. (1978). Two-hour Magnetic Local Time (MLT) arithmetic means of electron densities are studied in terms of invariant magnetic latitude and in terms of magnetic activity as classified by the three-hour planetary magnetic activity index. It is found that the southern hemisphere densities are significantly lower than those in the northern hemisphere. Further, the maximum electron densities observed in the northern hemisphere are located in a MLT range symmetrical about the 14-02 MLT meridian, whereas in the southern hemisphere the maxima are observed about the noon midnight magnetic meridian. A deep localized ionization hole on the nightside of the polar cap is not observed although the polar cavity is apparent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018InJPh.tmp....4P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018InJPh.tmp....4P"><span>Growth of L-band scintillation at anomaly crest station in association with strong TEC gradient: A study covering wide solar activity period</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pathak, K.; Devi, M.; Barbara, A. K.; Zahan, Y.</p> <p>2018-01-01</p> <p>The paper aims at to study the sources associated with growth of L band scintillation over Guwahati, an Appleton anomaly region. Starting with the analysis of diurnal and seasonal characteristic features of scintillation from a minimum sunspot number (Rz) of 10 to a maximum of 140, the paper shows that scintillations are more likely to develop during high solar activity period. It also highlights the explosive increase in occurrence of scintillation from post sunset to pre midnight hours in vernal equinoctial months when the background TEC is 50% more than on a normal day, accompanied by enhanced TEC decay rate. The role of equatorial anomaly effects through EXB drift processes are brought into discussion as possible sources on the growth of small scale irregularities leading to such scintillations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018InJPh..92..819P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018InJPh..92..819P"><span>Growth of L-band scintillation at anomaly crest station in association with strong TEC gradient: A study covering wide solar activity period</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pathak, K.; Devi, M.; Barbara, A. K.; Zahan, Y.</p> <p>2018-07-01</p> <p>The paper aims at to study the sources associated with growth of L band scintillation over Guwahati, an Appleton anomaly region. Starting with the analysis of diurnal and seasonal characteristic features of scintillation from a minimum sunspot number (Rz) of 10 to a maximum of 140, the paper shows that scintillations are more likely to develop during high solar activity period. It also highlights the explosive increase in occurrence of scintillation from post sunset to pre midnight hours in vernal equinoctial months when the background TEC is 50% more than on a normal day, accompanied by enhanced TEC decay rate. The role of equatorial anomaly effects through EXB drift processes are brought into discussion as possible sources on the growth of small scale irregularities leading to such scintillations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810602G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810602G"><span>Annual and latitudinal variations of surface fluxes and meteorological variables at Arctic terrestrial sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grachev, Andrey; Uttal, Taneil; Persson, Ola; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina</p> <p>2016-04-01</p> <p>This study analyzes and discusses seasonal and latitudinal variations of surface fluxes (turbulent, radiative, and soil ground heat) and other ancillary surface/snow/permafrost data based on in-situ measurements made at two long-term research observatories near the coast of the Arctic Ocean located in Canada and Russia. The hourly averaged data collected at Eureka (Canadian territory of Nunavut) and Tiksi (East Siberia) located at two quite different latitudes (80.0 N and 71.6 N respectively) are analyzed in details to describe the seasons in the Arctic. Although Eureka and Tiksi are located at the different continents and at the different latitudes, the annual course of the surface meteorology and the surface fluxes are qualitatively very similar. The air and soil temperatures display the familiar strong seasonal trend with maximum of measured temperatures in mid-summer and minimum during winter. According to our data, variation in incoming short-wave solar radiation led the seasonal pattern of the air and soil temperatures, and the turbulent fluxes. During the dark Polar nights, air and ground temperatures are strongly controlled by long-wave radiation associated generally with cloud cover. Due to the fact that in average the higher latitudes receive less solar radiation than lower latitudes, a length of the convective atmospheric boundary layer (warm season) is shorter and middle-summer amplitude of the turbulent fluxes is generally less in Eureka than in Tiksi. However, since solar elevation angle at local midnight in the middle of Arctic summer is higher for Eureka as compared to Tiksi, stable stratification and upward turbulent flux for carbon dioxide is generally did not observed at Eureka site during summer seasons. It was found a high correlation between the turbulent fluxes of sensible and latent heat, carbon dioxide and the net solar radiation. A comprehensive evaluation of energy balance closure problem is performed based on the multi-year data sets collected at the Arctic terrestrial sites. The work is supported by the NOAA Climate Program Office, the U.S. National Science Foundation (NSF) with award ARC 11-07428, and by the U.S. Civilian Research & Development Foundation (CRDF) with award RUG1-2976-ST-10.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRA..117.7310H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRA..117.7310H"><span>Insights into the nature of northwest-to-southeast aligned ionospheric wavefronts from contemporaneous Very Large Array and ionosonde observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Helmboldt, J. F.</p> <p>2012-07-01</p> <p>The results of contemporaneous summer nighttime observations of midlatitude medium scale traveling ionospheric disturbances (MSTIDs) with the Very Large Array (VLA) in New Mexico and nearby ionosondes in Texas and Colorado are presented. Using 132, 20-minute observations, several instances of MSTIDs were detected, all having wavefronts aligned northwest to southeast and mostly propagating toward the southwest, consistent with previous studies of MSTIDs. However, some were also found to move toward the northeast. It was found that both classes of MSTIDs were only found when sporadic-E (Es) layers of moderate peak density (1.5​ < ​ foEs​ < ​3 MHz) were present. Limited fbEs data from one ionosonde suggests that there was a significant amount of structure within the Es layers during observations when foEs > ​3 MHz that was not present when 1.5​ < foEs < ​3 MHz. No MSTIDs were observed either before midnight or when the F-region height was increasing at a relatively high rate, even when these Es layers were observed. Combining this result with AE indices which were relatively high at the time (an average of about 300 nT and maximum of nearly 700 nT), it is inferred that both the lack of MSTIDs and the increase in F-region height are due to substorm-induced electric fields. The northeastward-directed MSTIDs were strongest post-midnight during times when the F-region was observed to be collapsing relatively quickly. This implies that these two occurrences are related and likely both caused by rare shifts in F-region neutral wind direction from southwest to northwest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19709304','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19709304"><span>Strong, weak, and missing links in a microbial community of the N.W. Mediterranean Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bettarel, Y; Dolan, J R; Hornak, K; Lemée, R; Masin, M; Pedrotti, M-L; Rochelle-Newall, E; Simek, K; Sime-Ngando, T</p> <p>2002-12-01</p> <p>Planktonic microbial communities often appear stable over periods of days and thus tight links are assumed to exist between different functional groups (i.e. producers and consumers). We examined these links by characterizing short-term temporal correspondences in the concentrations and activities of microbial groups sampled from 1 m depth, at a coastal site of the N.W. Mediterranean Sea, in September 2001 every 3 h for 3 days. We estimated the abundance and activity rates of the autotrophic prokaryote Synechococcus, heterotrophic bacteria, viruses, heterotrophic nanoflagellates, as well as dissolved organic carbon concentrations. We found that Synechococcus, heterotrophic bacteria, and viruses displayed distinct patterns. Synechococcus abundance was greatest at midnight and lowest at 21:00 and showed the common pattern of an early evening maximum in dividing cells. In contrast, viral concentrations were minimal at midnight and maximal at 18:00. Viral infection of heterotrophic bacteria was rare (0.5-2.5%) and appeared to peak at 03:00. Heterotrophic bacteria, as % eubacteria-positive cells, peaked at midday, appearing loosely related to relative changes in dissolved organic carbon concentration. Bacterial production as assessed by leucine incorporation showed no consistent temporal pattern but could be related to shifts in the grazing rates of heterotrophic nanoflagellates and viral infection rates. Estimates of virus-induced mortality of heterotrophic bacteria, based on infection frequencies, were only about 10% of cell production. Overall, the dynamics of viruses appeared more closely related to Synechococcus than to heterotrophic bacteria. Thus, we found weak links between dissolved organic carbon concentration, or grazing, and bacterial activity, a possibly strong link between Synechococcus and viruses, and a missing link between light and viruses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AnGeo..31.1109A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AnGeo..31.1109A"><span>Profiles of electron temperature and Bz along Earth's magnetotail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Artemyev, A. V.; Petrukovich, A. A.; Nakamura, R.; Zelenyi, L. M.</p> <p>2013-06-01</p> <p>We study the electron temperature distribution and the structure of the current sheet along the magnetotail using simultaneous observations from THEMIS spacecraft. We perform a statistical study of 40 crossings of the current sheet when the three spacecraft THB, THC, and THD were distributed along the tail in the vicinity of midnight with coordinates XB \\in [-30 RE, -20 RE], XC \\in [-20 RE, -15 RE], and XD ~ -10 RE. We obtain profiles of the average electron temperature \\mlab Te\\mrab and the average magnetic field \\mlab Bz\\mrab along the tail. Electron temperature and \\mlab Bz\\mrab increase towards the Earth with almost the same rates (i.e., ratio \\mlab Te\\mrab/\\mlab Bz\\mrab ≈ 2 keV/7 nT is approximately constant along the tail). We also use statistics of 102 crossings of the current sheet from THB and THC to estimate dependence of Te and Bz distributions on geomagnetic activity. The ratio \\mlab Te \\mrab/\\mlab Bz\\mrab depends on geomagnetic activity only slightly. Additionally we demonstrate that anisotropy of the electron temperature \\mlab T∥/T⊥\\mrab ≈ 1.1 is almost constant along the tail for X \\in [-30 RE, -10 RE].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870027671&hterms=chemiluminescence&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dchemiluminescence','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870027671&hterms=chemiluminescence&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dchemiluminescence"><span>Near-midnight observations of nitric oxide delta- and gamma-band chemiluminescence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tennyson, P. D.; Feldman, P. D.; Hartig, G. F.; Henry, R. C.</p> <p>1986-01-01</p> <p>Chemiluminescent nightglow emission of the nitric oxide delta and gamma bands was measured from a sounding rocket launched on April 27, 1981, near local midnight. The integrated band emission rates for this near zenith observation above 205 km were less than 10 Rayleighs. The solar zenith angle was 127 deg. The branching ratio from the C2Pi state to the A2Sigma(+) state of NO was determined from comparison of the total emission rate of the delta band system to that of the gamma band system and found to be 0.30 + or - 0.06. The branching ratios within each of the band systems were found to be consistent with previous theoretical and experimental determinations. The vertical atomic nitrogen distribution, derived with the use of a model atmosphere, was found to have a peak density of 2.0 x 10 to the 7th atoms/cu cm at an altitude of 205 km. The analysis of these data indicate the presence of residual NO emission above 270 km at local midnight on the order of 1 Rayleigh of total band emission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JApA...39...36S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JApA...39...36S"><span>Effect of geomagnetic storms on VHF scintillations observed at low latitude</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, S. B.; Patel, Kalpana; Singh, A. K.</p> <p>2018-06-01</p> <p>A geomagnetic storm affects the dynamics and composition of the ionosphere and also offers an excellent opportunity to study the plasma dynamics. In the present study, we have used the VHF scintillations data recorded at low latitude Indian station Varanasi (Geomag. latitude = 14^{°}55^' }N, long. = 154^{°}E) which is radiated at 250 MHz from geostationary satellite UFO-02 during the period 2011-2012 to investigate the effects of geomagnetic storms on VHF scintillation. Various geomagnetic and solar indices such as Dst index, Kp index, IMF Bz and solar wind velocity (Vx) are used to describe the geomagnetic field variation observed during geomagnetic storm periods. These indices are very helpful to find out the proper investigation and possible interrelation between geomagnetic storms and observed VHF scintillation. The pre-midnight scintillation is sometimes observed when the main phase of geomagnetic storm corresponds to the pre-midnight period. It is observed that for geomagnetic storms for which the recovery phase starts post-midnight, the probability of occurrence of irregularities is enhanced during this time and extends to early morning hours.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820003851','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820003851"><span>Some analysis on the diurnal variation of rainfall over the Atlantic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gill, T.; Perng, S.; Hughes, A.</p> <p>1981-01-01</p> <p>Data collected from the GARP Atlantic Tropical Experiment (GATE) was examined. The data were collected from 10,000 grid points arranged as a 100 x 100 array; each grid covered a 4 square km area. The amount of rainfall was measured every 15 minutes during the experiment periods using c-band radars. Two types of analyses were performed on the data: analysis of diurnal variation was done on each of grid points based on the rainfall averages at noon and at midnight, and time series analysis on selected grid points based on the hourly averages of rainfall. Since there are no known distribution model which best describes the rainfall amount, nonparametric methods were used to examine the diurnal variation. Kolmogorov-Smirnov test was used to test if the rainfalls at noon and at midnight have the same statistical distribution. Wilcoxon signed-rank test was used to test if the noon rainfall is heavier than, equal to, or lighter than the midnight rainfall. These tests were done on each of the 10,000 grid points at which the data are available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AdSpR..45.1311A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AdSpR..45.1311A"><span>Variability of foF2 in the African equatorial ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akala, A. O.; Oyeyemi, E. O.; Somoye, E. O.; Adeloye, A. B.; Adewale, A. O.</p> <p>2010-06-01</p> <p>This paper presents the impact of diurnal, seasonal and solar activity effects on the variability of ionospheric foF2 in the African equatorial latitude. Three African ionospheric stations; Dakar (14.8°N, 17.4°W, dip: 11.4°N), Ouagadougou (12.4°N, 1.5°W, dip: 2.8°N) and Djibouti (11.5°N, 42.8°E, dip: 7.2°N) were considered for the investigation. The overall aim is to provide African inputs that will be of assistance at improving existing forecasting models. The diurnal analysis revealed that the ionospheric critical frequency (foF2) is more susceptible to variability during the night-time than the day-time, with two peaks in the range; 18-38% during post-sunset hours and 35-55% during post-midnight hours. The seasonal and solar activity analyses showed a post-sunset September Equinox maximum and June Solstice maximum of foF2 variability in all the stations for all seasons. At all the stations, foF2 variability was high for low solar activity year. Overall, we concluded that equatorial foF2 variability increases with decreasing solar activity during night-time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE13A2231A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE13A2231A"><span>Severe Hailstorm in Nepal: A case study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aryal, D.</p> <p>2017-12-01</p> <p>During the pre-monsoon months (March-May) in Nepal, severe thunder and hailstorms cause significant property and agricultural damage in addition to loss of life from lightening. Forecasting thunderstorm severity remains a challenge even in wealthy, developed countries that have modern meteorological data gathering infrastructure, such as Doppler Radar. This study attempts to isolate the specific and unique characteristics of a hailstorm that not only might explain its severity, but also suggest forecasting techniquees for future forecasting in Nepal. The primary data sources for this investigation included Infrared Satellite images, which illustrated the sequences of convective activity, and original archived ESRL India and China upper air data, which was used for synoptic and mesoscale analyses. On May 3, 2001 between the hours of 1100pm and midnight, a severe thunderstorm accompanied by hail stones estimated at 1kg, devastated the village of Thori (Southern border to India). 800 thatched houses were destroyed, over 500 farm animals were killed and more than 200 hectares of crops lost. Many inhabitants were injured, but luckily only one death. Thori hailstorm had its origins in a topographically induced lee-side convergence area in the deserts of Pakistan on May 2, 2001, from where it propagated eastwards into India and evolved into an eastward travelling Mesoscale Convective System reaching Thori near midnight on May 3. Atmospheric instability over the Gangetic Plains, fuelled by a very active surface heat low, cold temperatures and dynamic lifting mechanisms aloft, created a synoptic and mesoscale environment capable of generating a dangerous thunderstorm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770048153&hterms=wasser&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dwasser','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770048153&hterms=wasser&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dwasser"><span>UV stellar occultation measurements of nighttime equatorial ozone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Riegler, G. R.; Liu, S. C.; Wasser, B.; Atreya, S. K.; Donahue, T. M.; Drake, J. F.</p> <p>1977-01-01</p> <p>The ultraviolet spectrometer-telescope on Copernicus was used for stellar occultation measurements of atmospheric ozone. Two sets of observations of the target star Beta-Cen were carried out on 26 July 1975 and 13-14 June 1976 at wavelengths from 2550 A to 3100 A. After unfolding of the data, ozone density profiles near the equator within 3 hours of local midnight were obtained at altitudes from 47 to 114 km. A secondary maximum at 97 km has been observed in both sets of data. The ozone density between 47 and 75 km is a factor of 2 to 3 times as large as current models predict. At the lower boundary, about half the ozone destruction should be caused by NOx and ClOx. Above 55 km, virtually all loss is due to HOx. These results suggest an overestimate of HOx and ClOx loss processes or a serious underestimate of the Ox production rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..511M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..511M"><span>Simultaneous Observations of Lower Band Chorus Emissions at the Equator and Microburst Precipitating Electrons in the Ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mozer, F. S.; Agapitov, O. V.; Blake, J. B.; Vasko, I. Y.</p> <p>2018-01-01</p> <p>On 11 December 2016 at 00:12:30 UT, Van Allen Probe-B, at the equator and near midnight, and AC6-B, in the ionosphere, were on magnetic field lines whose 100 km altitude foot points were separated by 600 km. Van Allen Probe-B observed a 30 s burst of lower band chorus waves (with maximum amplitudes >1 nT) at the same time that AC6-B observed intense microburst electrons in the loss cone. One second averaged variations of the chorus intensity and the microburst electron flux were well correlated. The low-altitude electron flux expected from quasi-linear diffusion of the equatorial electrons by the equatorial chorus is in excellent agreement with the observed, 1 s averaged, low-altitude electron flux. However, the large-amplitude, <0.5 s duration, low-altitude electron pulses require nonlinear processes for their explanation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760016374','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760016374"><span>Characteristics of magnetospheric radio noise spectra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Herman, J. R.</p> <p>1976-01-01</p> <p>Magnetospheric radio noise spectra (30 kHz to 10 MHz) taken by IMP-6 and RAE-2 exhibit time-varying characteristics which are related to spacecraft position and magnetospheric processes. In the mid-frequency range (100-1,000 kHz) intense noise peaks rise by a factor of 100 or more above background; 80% of the peak frequencies are within the band 125 kHz to 600 kHz, and the peak occurs most often (18% of the time) at 280 kHz. This intense mid-frequency noise has been detected at radial distances from 1.3 Re to 60 Re on all sides of the Earth during magnetically quiet as well as disturbed periods. Maximum occurrence of the mid-frequency noise is in the evening to midnight hours where splash-type energetic particle precipitation takes place. ""Magnetospheric lightning'' can be invoked to explain the spectral shape of the observed spectra.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24682900','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24682900"><span>Sleep-wake and melatonin pattern in craniopharyngioma patients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pickering, Line; Jennum, Poul; Gammeltoft, Steen; Poulsgaard, Lars; Feldt-Rasmussen, Ulla; Klose, Marianne</p> <p>2014-06-01</p> <p>To assess the influence of craniopharyngioma or consequent surgery on melatonin secretion, and the association with fatigue, sleepiness, sleep pattern and sleep quality. Cross-sectional study. A total of 15 craniopharyngioma patients were individually matched to healthy controls. In this study, 24-h salivary melatonin and cortisol were measured. Sleep-wake patterns were characterised by actigraphy and sleep diaries recorded for 2 weeks. Sleepiness, fatigue, sleep quality and general health were assessed by Multidimensional Fatigue Inventory, Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale and Short-Form 36. Patients had increased mental fatigue, daytime dysfunction, sleep latency and lower general health (all, P≤0.05), and they tended to have increased daytime sleepiness, general fatigue and impaired sleep quality compared with controls. The degree of hypothalamic injury was associated with an increased BMI and lower mental health (P=0.01). High BMI was associated with increased daytime sleepiness, daytime dysfunction, mental fatigue and lower mental health (all, P≤0.01). Low midnight melatonin was associated with reduced sleep time and efficiency (P≤0.03) and a tendency for increased sleepiness, impaired sleep quality and physical health. Midnight melatonin remained independently related to sleep time after adjustment for cortisol. Three different patterns of melatonin profiles were observed; normal (n=6), absent midnight peak (n=6) and phase-shifted peak (n=2). Only patients with absent midnight peak had impaired sleep quality, increased daytime sleepiness and general and mental fatigue. Craniopharyngioma patients present with changes in circadian pattern and daytime symptoms, which may be due to the influence of the craniopharyngioma or its treatment on the hypothalamic circadian and sleep regulatory nuclei. © 2014 European Society of Endocrinology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..121.8600S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..121.8600S"><span>The causes of the hardest electron precipitation events seen with SAMPEX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, David M.; Casavant, Eric P.; Comess, Max D.; Liang, Xinqing; Bowers, Gregory S.; Selesnick, Richard S.; Clausen, Lasse B. N.; Millan, Robyn M.; Sample, John G.</p> <p>2016-09-01</p> <p>We studied the geomagnetic, plasmaspheric, and solar wind context of relativistic electron precipitation (REP) events seen with the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), Proton Electron Telescope (PET) to derive an exponential folding energy E0 for each event. Events with E0< 400 keV peak near midnight, and with increasing E0, the peak magnetic local time (MLT) moves earlier but never peaks as early as the MLT distribution of electromagnetic ion cyclotron (EMIC) waves in the outer belt, and a distinct component near midnight remains. Events with E0>750 keV near dusk (1400 < MLT < 2000) show correlations with solar wind dynamic pressure and proton density, AE index, negative Dst index, and an extended plasmasphere, all supporting an EMIC wave interpretation. Events with 500 keV <E0< 600 keV near midnight (MLT 2200-0200) do not show these correlations. Comparing these two samples to all events with E0>500 keV ("hard REP"), we estimate that roughly 45% of the whole population has the distributions of geomagnetic and solar wind parameters associated with EMIC waves, while 55% does not. We hypothesize that the latter events may be caused by current sheet scattering (CSS), which can be mistaken for EMIC wave scattering in that both simultaneously precipitate MeV electrons and keV protons. Since a large number of MeV electrons are lost in the near-midnight hard REP events, and in the large number of E0< 400 keV events that show no dusk-like peak at all, we conclude that CSS should be studied further as a possibly important loss channel for MeV electrons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012Icar..219..194Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012Icar..219..194Z"><span>First microwave map of the Moon with Chang'E-1 data: The role of local time in global imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, Y. C.; Tsang, K. T.; Chan, K. L.; Zou, Y. L.; Zhang, F.; Ouyang, Z. Y.</p> <p>2012-05-01</p> <p>Among recent lunar orbiters, only the Chinese Chang'E-1 (CE-1) was equipped with a passive microwave radiometer (MRM) to measure the natural microwave emission from the lunar surface. The microwave emission, characterized by a frequency-dependent brightness temperature (TB), is related to the physical temperature and dielectric properties of the lunar surface. By measuring the brightness temperature at different frequencies, detailed thermal behavior and properties of the lunar surface can be retrieved. Using CE-1's microwave data, we present here a set of microwave maps of the Moon constructed through a rescaling of TB to noontime or midnight. The adopted processing technique helps to reduce the effect of mixing up the temporal and spatial variations introduced by the satellite's localized measurements which cover different locations of the globe at different lunar local times. The resulting maps show fine structures unseen in previous microwave maps that disregarded the local time effect. We discussed the new features revealed and their possible connections with the lunar geology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Ge%26Ae..58..127P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Ge%26Ae..58..127P"><span>Spectral Structure of Temperature Variations in the Midlatitude Mesopause Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perminov, V. I.; Semenov, A. I.; Medvedeva, I. V.; Pertsev, N. N.; Sukhodoev, V. A.</p> <p>2018-01-01</p> <p>Long-term series of midnight temperature in the mesopause region have been obtained from spectral observations of hydroxyl airglow emission (OH(6-2) λ840 nm band) at the Tory station (52° N, 103° E) in 2008-2016 and Zvenigorod (56° N, 37° E) station in 2000-2016. On their basis, the Lomb-Scargle spectra of the variations in the period range from 12 days to 11 years have been determined. Estimates of the amplitudes of statistically significant temperature fluctuations are made. The dominant oscillations are the first and second harmonics of the annual variation, the amplitudes of which are 23-24 K and 4-7 K, respectively. The remaining variations, the number of which was 16 for the Tory and 22 for Zvenigorod stations, have small amplitudes (0.5-3 K). Oscillations with combinational frequencies, which arise from modulation of the annual variation harmonics, are observed in a structure of the variation spectra in addition to interannual oscillations (periods from 2 to 11 years) and harmonics of the annual variation (up to its tenth harmonic).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750043316&hterms=inflation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dinflation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750043316&hterms=inflation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dinflation"><span>Quiet time inflation of the inner magnetosphere in the afternoon and evening quadrants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, Y. C.; Cahill, L. J., Jr.</p> <p>1975-01-01</p> <p>The quiet-time depression of the magnetic field magnitude in the equatorial inner magnetosphere was studied for the interval Nov. 1971-June 1972. For periods when Kp was less than 2 and Dst was between +10 and -20 gamma, an inflated field region near the magnetic equator was found between noon and midnight. The inflation was greatest at the lowest altitude studied (L = 3) and appeared to be somewhat greater near midnight (-40 gamma) than near noon (-20 gamma). Protons of energy above 100 keV observed on the same satellite appeared to be sufficient to produce the quiet-time inflation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA00431.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA00431.html"><span>Hurricane Ivan as Observed by NASA Spaceborne Atmospheric Infrared Sounder AIRS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2004-09-15</p> <p>Hurricane Ivan is the most powerful hurricane to hit the Caribbean in 10 years. On September 7 and 8 it damaged 90 percent of the homes in Grenada and killed at least 16 people as it swept over Grenada, Barbados and the other islands in the area. By Thursday morning on September 9, Ivan's sustained winds reached 160 mph making it a rare category 5 hurricane on the Saffir-Simpson scale. By Monday September 13, Ivan is blamed for 67 deaths and skirts western Cuba with winds clocked at 156 mph. The National Hurricane Center predicted the eye of Ivan will make landfall across Mobile Bay in Alabama late Wednesday or early Thursday. These images of Hurricane Ivan were acquired by the AIRS infrared, microwave, and visible sensors on September 15 at 1:30 pm local time as the storm moves in to Alabama. Ivan at category 4 strength is about 150 miles south of Mobile, Alabama and is moving north at 14 mph. Maximum sustained winds are reported to be at 135 mph and extend 105 miles from the center, while tropical storm-force winds extend 290 miles from the center. Ivan pounded the Gulf coast all day Wednesday, and is expected to make landfall between midnight and 3am in Mobile Bay, Alabama. This image shows how the storm looks through an AIRS Infrared window channel, and reveals a very large eye - about 75 km (50 miles) across. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red. http://photojournal.jpl.nasa.gov/catalog/PIA00431</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AnGeo..36..473H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AnGeo..36..473H"><span>Simultaneous 6300 Å airglow and radar observations of ionospheric irregularities and dynamics at the geomagnetic equator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hickey, Dustin A.; Martinis, Carlos R.; Mendillo, Michael; Baumgardner, Jeffrey; Wroten, Joei; Milla, Marco</p> <p>2018-03-01</p> <p>In March 2014 an all-sky imager (ASI) was installed at the Jicamarca Radio Observatory (11.95° S, 76.87° W; 0.3° S MLAT). We present results of equatorial spread F (ESF) characteristics observed at Jicamarca and at low latitudes. Optical 6300 and 7774 Å airglow observations from the Jicamarca ASI are compared with other collocated instruments and with ASIs at El Leoncito, Argentina (31.8° S, 69.3° W; 19.8° S MLAT), and Villa de Leyva, Colombia (5.6° N, 73.52° W; 16.4° N MLAT). We use Jicamarca radar data, in incoherent and coherent modes, to obtain plasma parameters and detect echoes from irregularities. We find that ESF depletions tend to appear in groups with a group-to-group separation around 400-500 km and within-group separation around 50-100 km. We combine data from the three ASIs to investigate the conditions at Jicamarca that could lead to the development of high-altitude, or topside, plumes. We compare zonal winds, obtained from a Fabry-Pérot interferometer, with plasma drifts inferred from the zonal motion of plasma depletions. In addition to the ESF studies we also investigate the midnight temperature maximum and its effects at higher latitudes, visible as a brightness wave at El Leoncito. The ASI at Jicamarca along with collocated and low-latitude instruments provide a clear two-dimensional view of spatial and temporal evolution of ionospheric phenomena at equatorial and low latitudes that helps to explain the dynamics and evolution of equatorial ionospheric/thermospheric processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM21A2553K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM21A2553K"><span>Observation of relativistic electron loss induced by EMIC waves in the outer radiation belt: Arase and PWING induction magnetometer array collaboration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kurita, S.; Yoshizumi, M.; Kazuo, S.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Teramoto, M.; Shinohara, I.</p> <p>2017-12-01</p> <p>EMIC waves are generated by temperature anisotropy of energetic ions near the magnetic equator and satellite observations show that the waves tend to be observed on the dusk side and noon side magnetosphere. EMIC waves can propagate from the magnetosphere to the ground and they are observed by ground-based magnetometers as Pc1 pulsation. It has been pointed out that EMIC waves can resonate with relativistic electrons through anomalous cyclotron resonance, and cause strong pitch angle scattering of radiation belt electrons. It has been considered that precipitation loss of relativistic electrons by pitch angle scattering induced by EMIC waves is an important loss mechanism of radiation belt electrons. We report on the observation of relativistic electron loss observed by the Arase satellite on the dawn side magnetosphere during a geomagnetic disturbance, which is likely to be related to an EMIC wave activity. During the event, the EMIC wave activity in conjunction with the relativistic electron loss is identified from observation by the ground-based induction magnetometer array deployed by the PWING project. The magnetometer array observation reveals that EMIC waves are distributed in the wide magnetic local time range from the dusk to midnight sector. It is suggested that drifting relativistic electrons are scattered into the loss cone by the EMIC waves on the dusk to midnight sector before they arrive at the Arase satellite located on the dawn side. We will discuss the impact of loss caused by EMIC wave-induced precipitation loss on the overall flux variation of radiation belt electrons during the geomagnetic disturbance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Icar..236...48C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Icar..236...48C"><span>Sporadic increases in lunar atmospheric helium detected by LAMP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cook, Jason C.; Alan Stern, S.</p> <p>2014-07-01</p> <p>We report on a multi-year dataset of daily averaged observations of He in the lunar atmosphere by the LAMP UV spectrograph on NASA’s Lunar Reconnaissance Orbiter (LRO). We examine data obtained from the start of the LRO orbital tour in September 2009 to March 2013. We find that the maximum He number density occurs about two hours after local midnight, which is consistent with earlier measurements by the Apollo ALSEP LACE mass spectrometer. However, our measured maximum He density is 2-3 times lower than that of LACE. We also observed several instances where the surface He number density rapidly increased to higher than normal values and then declined for several days. We term these events “He flares”. We examined several plausible causes of these events, and found two plausible mechanisms that could be responsible for generating them. One is that the He may be generated by strong, coincident bursts of α particles in the solar wind. To do so, we compare our observations with solar wind α particle observations by ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun). Another plausible cause we discuss is that the He in the flares may be released from the Moon itself via moonquakes. Determining which is actually the cause requires further work and new measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990110677&hterms=ccc&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dccc','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990110677&hterms=ccc&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dccc"><span>Effects of Convection Electric Fields on Modeled Plasmaspheric Densities and ccc Temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comfort, Richard H.; Richards, Phil G.; Liao, Jin-Hua; Craven, Paul D.</p> <p>1998-01-01</p> <p>This paper examines the effects of convection electric fields on plasmaspheric H+, O+, He+, and N+ densities and electron and ion temperatures. These effects are studied with the aid of the Field Line Interhemispheric Plasma (FLIP) model, which has recently been extended to include the effects of ExB drifts. The FLIP model solves the continuity and momentum equations for the major ion species as well as the energy equations for ions and electrons along entire drifting flux tubes from 100 km altitude in the northern hemisphere to 100 km altitude in the southern hemisphere. Electron heating in the ionosphere and plasmasphere is provided by the solution of two-stream equations for photoelectrons. The dawn-dusk electric field imposed by the solar wind causes changes in plasmaspheric density and temperature as the plasma drifts onto flux tubes having different volumes. In an idealized convection model, outward drifts in the afternoon cause decreases in the plasmasphere density and temperature while inward drifts in the evening cause increases in plasmasphere density and temperature. In this paper we examine the effects of convection electric fields on the rate of refilling of flux tubes and investigate the hypothesis that convection electric fields are responsible for the unusually high evening electron temperatures and the post-midnight density maxima often observed in the winter ionosphere above Millstone Hill.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AdSpR..58.1739O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AdSpR..58.1739O"><span>Ionospheric scintillation observations over Kenyan region - Preliminary results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olwendo, O. J.; Xiao, Yu; Ming, Ou</p> <p>2016-11-01</p> <p>Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMAE43A0245S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMAE43A0245S"><span>Monochromatic imaging observation of sprites with the Reimei satellite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sakanoi, T.; Adachi, T.; Sato, M.; Yamazaki, A.; Asamura, K.; Hirahara, M.</p> <p>2012-12-01</p> <p>The sprite emission is characterized by vertically extending fine structures (called as streamer, halo, etc.) in the approximate altitude range from 40 to 90 km. Satellite observation is useful to investigate the global distributions of sprite since an optical instrument on a satellite can measure the sprite in the wide range without atmospheric absorption. However, the sprite has been measured mainly by ground-based instruments, and there is no monochromatic imaging data from space. The multi-spectral camera (MAC) on Reimei was originally designed to measure auroral emissions in the polar region taking the monochromatic images at wavelengths of 428 nm, 558 nm, and 670 nm. Since March 2008, MAC has been operated in the mid- and low-latitudes viewing the limb direction with an exposure time of 957 ms to measure the monochromatic image of sprite emission. The spatial resolution at a tangential point is approximately 4 km. According to the noon-midnight sun-synchronous orbit of Reimei at an altitude of 640 km, the observation is made around the midnight sector. So far, we found seven sprits events in N2 1P (670 nm) images, and on six events the simultaneous observations between N2+ 1N (428nm) and N2 1P were performed. The electron temperature and electric field associated with a sprite can be estimated from the intensity ratio between emission of N2+ 1N and that of N2 1P. However, we did not obtain the N2+ 1N emission intensity due to the low sensitivity of 428 nm channel of MAC. Therefore, the N2+ 1N intensities of sprites are estimated to be less than the noise level (26 - 54 R), while the measured N2 1P intensities of sprites are 2.9 - 3.6 kR. Using these data, we estimated the upper limit of electron temperature and electric field associated with sprites. The altitude of sprite emission was accurately determined with the satellite attitude data and the field-of-view direction of MAC. On the 2008 Sep.2 case, we obtained sprite events at 26.6 GLAT and 107.6 GELON, and determined its height range from 47 to 81 km. In this presentation, we report the estimation of temperatures and electric fields associated with the sprite events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JASTP.128...33L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JASTP.128...33L"><span>Effects of sporadic E-layer characteristics on spread-F generation in the nighttime ionosphere near a northern equatorial anomaly crest during solar minimum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, C. C.; Chen, W. S.</p> <p>2015-06-01</p> <p>This study is to know how the characteristics of sporadic E-layer (Es-layer) affect the generation of spread-F in the nighttime ionosphere near the crest of equatorial ionization anomaly during solar minimum. The data of Es-layer parameters and spread-F are obtained from the Chungli ionograms of 1996. The Es-layer parameters include foEs (critical frequency of Es-layer), fbEs (blanketing frequency of Es-layer), and Δf (≡foEs-fbEs). Results show that the nighttime variations of foEs and fbEs medians (Δf medians) are different from (similar to) that of the occurrence probabilities of spread-F. Because the total number of Es-layer events is greater than that of spread-F events, the comparison between the medians of Es-layer parameters and the occurrence probabilities of spread-F might have a shortfall. Further, we categorize the Es-layer and spread-F events into each frequency interval of Es-layer parameters. For the occurrence probabilities of spread-F versus foEs, an increasing trend is found in post-midnight of all three seasons. The increasing trend also exists in pre-midnight of the J-months and in post-midnight of all seasons, for the occurrence probabilities of spread-F versus Δf. These demonstrate that the spread-F occurrence increases with increasing foEs and/or Δf. Moreover, the increasing trends indicate that polarization electric fields generated in Es-layer assist to produce spread-F, through the electrodynamical coupling of Es-layer and F-region. Regarding the occurrence probabilities of spread-F versus fbEs, the significant trend only appears in post-midnight of the E-months. This implies that fbEs might not be a major factor for the spread-F formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28188811','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28188811"><span>Day/night changes in serum S100B protein concentrations in acute paranoid schizophrenia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Morera-Fumero, Armando L; Díaz-Mesa, Estefanía; Abreu-Gonzalez, Pedro; Fernandez-Lopez, Lourdes; Cejas-Mendez, Maria Del Rosario</p> <p>2017-04-03</p> <p>There are day/night and seasonal changes in biological markers such as melatonin and cortisol. Controversial changes in serum S100B protein levels have been described in schizophrenia. We aim studying whether serum S100B levels present day/night variations in schizophrenia patients and whether S100B levels are related to psychopathology. Sixty-five paranoid schizophrenic inpatients participated in the study. Psychopathology was assessed with the Positive and Negative Syndrome Scale (PANSS) at admission and discharge. Blood was drawn at 12:00 (midday) and 00:00 (midnight) hours at admission and discharge. Sixty-five healthy subjects matched by age, gender and season acted as control group. At admission and discharge patients had significantly higher serum S100B concentrations at midday and midnight than healthy subjects. At admission, patients showed a day/night variation of S100B levels, with higher S100B levels at 12:00 than at 00:00h (143.7±26.3pg/ml vs. 96.9±16.6pg/ml). This day/night difference was not present in the control group. Midday and midnight S100B at admission decreased when compared to S100B at discharge (midday, 143.7±26.3 vs. 83.0±12, midnight 96.9±16.6 vs. 68.6±14.5). There was a positive correlation between the PANSS positive subscale and S100B concentrations at admission. This correlation was not present at discharge. acute paranoid schizophrenia inpatients present a day/night change of S100B serum levels at admission that disappears at discharge. The correlation between serum S100B concentrations and the PANSS positive scores at admission as well as the decrease of S100B at discharge may be interpreted as an acute biological response to the clinical state of the patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800008142','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800008142"><span>A spectral filter for ESMR's sidelobe errors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chesters, D.</p> <p>1979-01-01</p> <p>Fourier analysis was used to remove periodic errors from a series of NIMBUS-5 electronically scanned microwave radiometer brightness temperatures. The observations were all taken from the midnight orbits over fixed sites in the Australian grasslands. The angular dependence of the data indicates calibration errors consisted of broad sidelobes and some miscalibration as a function of beam position. Even though an angular recalibration curve cannot be derived from the available data, the systematic errors can be removed with a spectral filter. The 7 day cycle in the drift of the orbit of NIMBUS-5, coupled to the look-angle biases, produces an error pattern with peaks in its power spectrum at the weekly harmonics. About plus or minus 4 K of error is removed by simply blocking the variations near two- and three-cycles-per-week.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5325081','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5325081"><span>Circadian Regulation of Benzo[a]Pyrene Metabolism and DNA Adduct Formation in Breast Cells and the Mouse Mammary Gland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Schmitt, Emily E.; Barhoumi, Rola; Metz, Richard P.</p> <p>2017-01-01</p> <p>The circadian clock plays a role in many biologic processes, yet very little is known about its role in metabolism of drugs and carcinogens. The purpose of this study was to define the impact of circadian rhythms on benzo-a-pyrene (BaP) metabolism in the mouse mammary gland and develop a circadian in vitro model for investigating changes in BaP metabolism resulting from cross-talk between the molecular clock and aryl hydrocarbon receptor. Female 129sv mice (12 weeks old) received a single gavage dose of 50 mg/kg BaP at either noon or midnight, and mammary tissues were isolated 4 or 24 hours later. BaP-induced Cyp1a1 and Cyp1b1 mRNA levels were higher 4 hours after dosing at noon than at 4 hours after dosing at midnight, and this corresponded with parallel changes in Per gene expression. In our in vitro model, we dosed MCF10A mammary cells at different times after serum shock to study how time of day shifts drug metabolism in cells. Analysis of CYP1A1 and CYP1B1 gene expression showed the maximum enzyme-induced metabolism response 12 and 20 hours after shock, as determined by ethoxyresorufin-O-deethylase activity, metabolism of BaP, and formation of DNA-BaP adducts. The pattern of PER-, BMAL-, and aryl hydrocarbon receptor–induced P450 gene expression and BaP metabolism was similar to BaP-induced Cyp1A1 and Cyp1B1 and molecular clock gene expression in mouse mammary glands. These studies indicate time-of-day exposure influences BaP metabolism in mouse mammary glands and describe an in vitro model that can be used to investigate the circadian influence on the metabolism of carcinogens. PMID:28007926</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28007926','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28007926"><span>Circadian Regulation of Benzo[a]Pyrene Metabolism and DNA Adduct Formation in Breast Cells and the Mouse Mammary Gland.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schmitt, Emily E; Barhoumi, Rola; Metz, Richard P; Porter, Weston W</p> <p>2017-03-01</p> <p>The circadian clock plays a role in many biologic processes, yet very little is known about its role in metabolism of drugs and carcinogens. The purpose of this study was to define the impact of circadian rhythms on benzo-a-pyrene (BaP) metabolism in the mouse mammary gland and develop a circadian in vitro model for investigating changes in BaP metabolism resulting from cross-talk between the molecular clock and aryl hydrocarbon receptor. Female 129sv mice (12 weeks old) received a single gavage dose of 50 mg/kg BaP at either noon or midnight, and mammary tissues were isolated 4 or 24 hours later. BaP-induced Cyp1a1 and Cyp1b1 mRNA levels were higher 4 hours after dosing at noon than at 4 hours after dosing at midnight, and this corresponded with parallel changes in Per gene expression. In our in vitro model, we dosed MCF10A mammary cells at different times after serum shock to study how time of day shifts drug metabolism in cells. Analysis of CYP1A1 and CYP1B1 gene expression showed the maximum enzyme-induced metabolism response 12 and 20 hours after shock, as determined by ethoxyresorufin-O-deethylase activity, metabolism of BaP, and formation of DNA-BaP adducts. The pattern of PER-, BMAL-, and aryl hydrocarbon receptor-induced P450 gene expression and BaP metabolism was similar to BaP-induced Cyp1A1 and Cyp1B1 and molecular clock gene expression in mouse mammary glands. These studies indicate time-of-day exposure influences BaP metabolism in mouse mammary glands and describe an in vitro model that can be used to investigate the circadian influence on the metabolism of carcinogens. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1892p0007M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1892p0007M"><span>Subjective sensation on sleep, fatigue, and thermal comfort in winter shelter-analogue settings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maeda, Kazuki; Mochizuki, Yosuke; Tsuzuki, Kazuyo; Nabeshima, Yuki</p> <p>2017-10-01</p> <p>We aimed to examine sleep in shelter-analogue settings in winter to determine the subjective sensation and environmental conditions in evacuation shelters. Twelve young healthy students took part in the sleep study of two nights for seven hours from Midnight to 7 AM in the gymnasium. One night the subject used a pair of futons and on the other the subject used the emergency supplies of four blankets and a set of portable partitions. During the night, air temperature, humidity and air velocity were measured in the area around the sleeping subjects. Sleep parameters measured by actigraphy, skin temperature, microclimate temperature, rectal temperature, and the heart rates of the subjects were continuously measured and recorded during the sleeping period. The subjects completed questionnaires regarding their thermal comfort and subjective sleep before and after the sleep. The subjects felt more coldness on their head and peripheral parts of the body using the emergency blankets than the futon during the sleep. Moreover, fatigue was felt more on the lower back and lower extremities from using emergency blankets than the futon after sleep. However, the sleep efficiency index and subjective sleep evaluation by OSA questionnaire did not reveal any good correlationship. The emergency supplies should be examined for their suitability to provide comfortable and healthy sleep in the shelter-analogue settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AdSpR..52..591A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AdSpR..52..591A"><span>Response of the EIA ionosphere to the 7-8 May 2005 geomagnetic storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aggarwal, Malini; Joshi, H. P.; Iyer, K. N.; Kwak, Y. S.</p> <p>2013-08-01</p> <p>In this paper, response of low latitude ionosphere to a moderate geomagnetic storm of 7-8 May 2005 (SSC: 1920 UT on 7 May with Sym-H minimum, ∼-112 nT around 1600 UT on 8 May) has been investigated using the GPS measurements from a near EIA crest region, Rajkot (Geog. 22.29°N, 70.74°E, Geomag.14°), India. We found a decrease in total electron content (TEC) in 12 h after the onset of the storm, an increase during and after 6 h of Sym-H deep minimum with a decrease below its usual-day level on the second day during the recovery phase of the storm. On 8 May, an increase of TEC is observed after sunset and during post-midnight hours (maximum up to 170%) with the formation of ionospheric plasma bubbles followed by a nearly simultaneous onset of scintillations at L-band frequencies following the time of rapid decrease in Sym-H index (-30 nT/h around 1300 UT).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010GeoRL..3722104C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010GeoRL..3722104C"><span>Modeling of kinetic, ionospheric and auroral contributions to the 557.7-nm nightglow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campbell, L.; Brunger, M. J.</p> <p>2010-11-01</p> <p>Emission of 557.7-nm radiation from the Earth's upper atmosphere is produced by kinetic, ionospheric and auroral excitation of oxygen atoms. The mechanisms and hence the relative contributions of these three sources are not fully understood. A ground-based mid-latitude recording of the 557.7-nm emissions over the previous solar cycle facilitates a comparison of measurements with theoretical predictions. In this paper the predicted kinetic and ionospheric contributions are simulated and compared with the observations. Semi-quantitative agreement is found between the kinetic contribution and the observations, particularly in the presence of annual, semi-annual and solar cycle variations. An observed enhancement in the emissions in the years following solar maximum is not predicted by the kinetic model. However, correlation analysis reveals a component in the observed values that is related to the auroral hemispheric power. When this extra component is included, a better fit to the pre-midnight observations over the full solar cycle is found.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780029855&hterms=twilight&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dtwilight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780029855&hterms=twilight&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dtwilight"><span>Twilight ozone measurement by solar occultation from AE 5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Guenther, B.; Heath, D.; Dasgupta, R.</p> <p>1977-01-01</p> <p>The BUV on AE 5 was used for a solar occultation measurement of atmospheric ozone. An observation was carried out during the morning twilight near 5 deg N, December 17, 1976, at the fixed wavelength of 255.5 nm, and a profile between 49 and 82 km was obtained. The number densities determined by this measurement were 3.7 x 10 to the 10th cu cm at 50 km, 5.1 x 10 to the 9th at 60 km, 3.9 x 10 to the 8th at 70 km, and 3.0 x 10 to the 7th at 80 km. No evidence of a high altitude secondary maximum was found. These concentrations are between a factor of 4 and 20 smaller than those midnight results reported from a Copernicus measurement, and similar to the values from the Krueger-Minzer Mid-latitude Model above 55 km. These values may be as much as a factor of 2 less than the Krueger-Minzer model below 50.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740010913','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740010913"><span>Energetic electrons in the midlatitude nighttime E region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, L. G.; Geller, M. A.; Voss, H. D.</p> <p>1973-01-01</p> <p>Nike Apache 14.439 was launched from Wallops Island at 0003 EST on 1 November 1972, a very disturbed night (K sub P = 8). A Geiger counter in the payload detected electrons ( keV) with a maximum flux of 1086 + or -261/sq cm/sec/ster. The height-averaged ionization rate in the upper E region is calculated from the measured electron density profile and has a value of 35 1/cu/cm/sec. The ionization rate can be reconciled with the observed flux of electrons ( 70 2 keV) if the spectrum ( keV) is of the form J ( E) = J sub O exp(-E/E sub O) with E sub O equal to 8.3 keV. The ionization rate on this and other nights is found to be strongly dependent on geomagnetic activity. It is suggested that energetic electrons are the principal source of ionization at midlatitudes in the upper E region near midnight, even under rather quiet geomagnetic conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27032172','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27032172"><span>Hospitals push back against reimbursement cuts due to Two-Midnight rule.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p></p> <p>2016-04-01</p> <p>The American Hospital Association (AHA) and other hospitals are suing CMS, challenging the 0.2% cut in Medicare reimbursement that CMS instituted to compensate for the financial effect of the Two-Midnight rule. CMS' actuaries reported that inpatient claims are likely to increase under the rule, resulting in $220 million additional reimbursement for hospitals. Hospitals disagree and a study commissioned by the AHA concluded that the CMS study was based on data not available to the public and that data from the Medicare Provider and Analysis Review (MedPAR) would lead to a different conclusion. The AHA suit asks CMS to rescind the cut, restore the base rate for Medicare payments to its previous level, and reimburse hospitals retroactively for the reductions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995JATP...57..177K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995JATP...57..177K"><span>Double structure of ionospheric conductivity in the midnight auroral oval during a substorm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kotikov, A. L.; Shishkina, E. M.; Troshichev, O. A.; Sergienko, T. I.</p> <p>1995-02-01</p> <p>Measurements of precipitating particles on board Defense Meteorological Satellite Program (DMSP) F7 spacecraft are used to analyze the distribution of ionospheric conductance in the midnight auroral zone during substorms. The distribution is compared with the meridional profile of ionospheric currents calculated from magnetic data from the Kara meridional chain. Two regions of high Hall conductance are found; one of them is the traditional auroral zone, at latitudes 64-68 deg, and the other is a narrow band at latitudes 70-73 deg. The position of high conductance zones is in agreement with the location of the intense westward currents. The accelerated particle population is typical of electrons E(sub e) greater than 5 keV in the high conductance region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8300V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8300V"><span>Intraday evaporation and heat fluxes variation at air-water interface of extremely shallow lakes in Chilean Andean Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vergara, Jaime; de la Fuente, Alberto</p> <p>2016-04-01</p> <p>Salars are landscapes formed by evapo-concentration of salts that usually have extremely shallow terminal lagoons (de la Fuente & Niño, 2010). They are located in the altiplanic region of the Andes Mountains of Chile, Argentina, Bolivia and Peru, and they sustain highly vulnerable and isolated ecosystems in the Andean Desert. These ecosystems are sustained by benthic primary production, which is directly linked to mass, heat and momentum transfer between the water column and the atmosphere (de la Fuente, 2014). Despite the importance of these transport processes across the air-water interface, there are few studies describing their intraday variation and how they are influenced by the stability of the atmospheric boundary layer in the altiplano. The main objective of this work is to analyze the intraday vertical transport variation of water vapor, temperature and momentum between the atmosphere and a shallow water body on Salar del Huasco located in northern Chile (20°19'40"S, 68°51'25"W). To achieve this goal, we measured atmospheric and water variables in a campaign realized on late October 2015, using high frequency meteorological instruments (a sonic anemometer with an incorporated infrared gas analyzer, and a standard meteorological station) and water sensors. From these data, we characterize the intraday variation of water vapor, temperature and momentum fluxes, we quantify the influence of the atmospheric boundary layer stability on them, and we estimate transfer coefficients associated to latent heat, sensible heat, hydrodynamic drag and vertical transport of water vapor. As first results, we found that latent and sensible heat fluxes are highly influenced by wind speed rather buoyancy, and we can identify four intraday intervals with different thermo-hydrodynamic features: (1) cooling under stable condition with wind speed near 0 from midnight until sunrise; (2) free convection with nearly no wind speed under unstable condition from sunrise until midday; (3) forced convection with high wind speed (near 15 m/s) and unstable condition close to neutral condition from noon to sunset; and (4) cooling under unstable conditions with significant wind speed, from sunset until midnight.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhD...50F5105C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhD...50F5105C"><span>Degradation in perovskite solar cells stored under different environmental conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chauhan, Abhishek K.; Kumar, Pankaj</p> <p>2017-08-01</p> <p>Investigations carried out on the degradation of perovskite solar cells (PSCs) stored in different open air environmental conditions are reported here. The solar cells were stored in the open in the dark inside the laboratory (relative humidity 47  ±  5%, temperature 23  ±  4 °C), under compact fluorescent lamp (CFL) illumination (irradiance 10 mW cm2, relative humidity 47  ±  5%, temperature 23  ±  4 °C) and under natural sunlight outside the laboratory. In the outdoor storage situation the surrounding conditions varied from time to time and the environmental conditions during the day (irradiance 100 mW/cm2, relative humidity ~18%, temperature ~45 °C at noon) were entirely different from those at night (irradiance 0 mW/cm2, relative humidity ~66%, temperature ~16 °C at midnight). The photovoltaic parameters were measured from time to time inside the laboratory as per the International Summit on Organic Photovoltaic Stability (ISOS) protocols. All the photovoltaic parameters, such as short circuit current density (J sc), open circuit voltage (V oc), fill factor (FF) and power conversion efficiency (PCE), of the solar cells stored outdoors decayed more rapidly than those stored under CFL or in the dark. The solar cells stored in the dark exhibited maximum stability. While the encapsulated solar cells stored outdoors were completely dead after about 560 h, the solar cells stored under CFL illumination retained  >60% of their initial efficiency even after 1100 h. However, the solar cells stored in the dark and tested up to ~1100 h did not show any degradation in PCE but on the contrary exhibited slight improvement, and this improvement was mainly because of improvement in their V oc. Rapid degradation in the open air outside the laboratory under direct sunlight compared with the dark and CFL storage has been attributed to high temperature during the day, high humidity at night, high solar illumination intensity and the presence of ultra-violet and infra-red radiation in incident solar light. Under CFL storage the top Ag electrode decomposed and reacted with the active layer. The decomposition and reaction of Ag electrode was accelerated in the outdoor conditions under direct sunlight. These results suggest that Ag is a good electrode material for efficient PSCs but is not good for their long term stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35..413P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35..413P"><span>Semi-annual Sq-variation in solar activity cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pogrebnoy, V.; Malosiev, T.</p> <p></p> <p>The peculiarities of semi-annual variation in solar activity cycle have been studied. The data from observatories having long observational series and located in different latitude zones were used. The following observatories were selected: Huancayo (magnetic equator), from 1922 to 1959; Apia (low latitudes), from 1912 to 1961; Moscow (middle latitudes), from 1947 to 1965. Based on the hourly values of H-components, the average monthly diurnal amplitudes (a difference between midday and midnight values), according to five international quiet days, were computed. Obtained results were compared with R (relative sunspot numbers) in the ranges of 0-30R, 40-100R, and 140-190R. It was shown, that the amplitude of semi-annual variation increases with R, from minimum to maximum values, on average by 45%. At equatorial Huancayo observatory, the semi-annual Sq(H)-variation appears especially clearly: its maximums take place at periods of equinoxes (March-April, September-October), and minimums -- at periods of solstices (June-July, December-January). At low (Apia observatory) and middle (Moscow observatory) latitudes, the character of semi-annual variation is somewhat different: it appears during the periods of equinoxes, but considerably less than at equator. Besides, with the growth of R, semi-annual variation appears against a background of annual variation, in the form of second peaks (maximum in June). At observatories located in low and middle latitudes, second peaks become more appreciable with an increase of R (March-April and September-October). During the periods of low solar activity, they are insignificant. This work has been carried out with the support from International Scientific and Technology Center (Project #KR-214).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CSR...140...60V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CSR...140...60V"><span>The benthoneuston of the Black Sea: Composition and environmental factors influencing its nocturnal dynamic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vereshchaka, Alexander L.; Anokhina, Ludmila L.</p> <p>2017-05-01</p> <p>Plankton fauna nocturnally migrating from the sea-floor or near-bottom layer to the uppermost surface layer (benthoneuston) links benthic, benthopelagic, pelagic, and neustonic realms. We conducted five intervals of sampling (every 1-2 h during five nights) synchronously in the neustal (surface to 10-cm depth layer) and in the water column below to examine which taxa concentrate in the neustal, and under which circumstances they do so. We tested the following environmental factors: sea-floor biotope type, temperature, time after sunset, time to midnight, moon phase, and moon altitude. Of the 77 taxa recorded, about half (41) were found in the neustal. Among these, less than half (16) of the taxa showed a quantified attraction (by L-index) to the neustal and may be called the true benthoneuston. In contrast to the benthopelagic zone, where the contribution of the characteristic benthopelagic fauna exceeded 50%, the neustal was not dominated by a specific benthoneuston fauna. Nocturnal dynamics of the benthoneuston was mainly controlled by the proximity of the twilight time, then by the sea-floor biotope type and time to midnight. Neustonic taxa were more affected by moon illumination (moon phase and moon altitude) than those in the water column below. The benthoneuston in the studied area was represented by either juveniles or reproducing adults. This component of plankton communities is thus temporary and seasonal, at least in the temperate Black Sea. In the "high" summer-autumn season, contribution of benthoneuston to the coastal plankton communities is significant, whilst in winter this contribution may be negligible. The next step in the understanding of the role of benthoneuston should be associated with tropical areas where seasonal changes in reproduction are less distinctive and this group may represent an important permanent component of coastal communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017FNL....1650037K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017FNL....1650037K"><span>Circadian Rhythm of Ambient Noise Off the Southeast Coast of India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kannan, R.; Latha, G.; Prashanthi Devi, M.</p> <p></p> <p>An ambient noise system consisting of a vertical linear hydrophone array was deployed in the shallow waters off Chennai, southeast coast of India from 1 August to 16 September 2013 to record ambient ocean noise of frequencies up to 10kHz. Biological sounds, which are broadband, short duration signals resulting from Terapon theraps, a native species, are a prominent feature of the ocean soundscape. Terapon activity peaks at 8pm and 11pm, and its presence is not observed after 12 midnight in both the months. In the other period, the ambient noise fluctuation is due to wind and vessel traffic. Hence, the present study focuses on the description of the ambient noise fluctuation over two 12h periods, i.e., 12 midnight-12 noon considered as period I, and 12 noon-12 midnight as period II in order to show the circadian rhythm of ambient noise. In this study area, Terapon vocalization reached 25dB above the ambient noise level and it dominates the short-term spectra records in the 0.4-4kHz range. All Terapon signals had daily patterns of sound production with highest levels of activity after dusk during the study period. The result shows that the circadian rhythm of ambient noise is mainly of biological sound generated by Terapon and it is reported first time in the shallow waters off the southeast coast of India.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM44B..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM44B..06K"><span>Mass loss at Saturn: The contribution of plasmoids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kivelson, M.; Jia, X.; Jackman, C. M.</p> <p>2017-12-01</p> <p>Jia and Kivelson (2012) showed that an MHD simulation of Saturn's magnetosphere including rotating field-aligned currents generates a plasmoid on each rotation period. For southern summer conditions, plasmoids form through reconnection in the tail near midnight at a rotation phase for which the core magnetic field perturbation points towards the planet in the LT sector of the release. After release, they move northward and outward in the post midnight sector. Mass loss is found to be dominated by plasmoid release, and to compare closely to the mass source rate; much of the outward mass flux is found in the 0300-0900 LT sector. However, studies of plasmoid signatures in Cassini magnetometer data conclude that releases do not occur each rotation period and infer mass loss rates far smaller than Saturn's mass source rate (Jackman et al., 2014). Studies based on plasma data also infer loss rates smaller than the source rate from Enceladus (Thomsen, 2013). The simulation suggests that plasmoid occurrence frequency depends strongly on local time and latitude. Indeed, in regions near the equator and near midnight, where plasmoids are present in the simulation, the occurrence frequency of plasmoid releases inferred from magnetometer data is higher than elsewhere (Jackman et al., 2016; Smith et al., 2016), with occurrence probability peaking at the phase predicted by the simulation. We consider how the observational limitations should be modified to establish mass loss rates and plasmoid occurrence frequency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA44A..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA44A..06K"><span>Climatology of Neutral vertical winds in the midlatitude thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kerr, R.; Kapali, S.; Riccobono, J.; Migliozzi, M. A.; Noto, J.; Brum, C. G. M.; Garcia, R.</p> <p>2017-12-01</p> <p>More than one thousand measurements of neutral vertical winds, relative to an assumed average of 0 m/s during a nighttime period, have been made at Arecibo Observatory and the Millstone Hill Optical Facility since 2012, using imaging Fabry-Perot interferometers. These instruments, tuned to the 630 nm OI emission, are carefully calibrated for instrumental frequency drift using frequency stabilized lasers, allowing isolation of Doppler motion in the zenith with 1-2 m/s accuracy. As one example of the results, relative vertical winds at Arecibo during quiet geomagnetic conditions near winter solstice 2016, range ±70 m/s and have a one standard deviation statistical variability of ±34 m/s. This compares with a ±53 m/s deviation from the average meridional wind, and a ±56 m/s deviation from the average zonal wind measured during the same period. Vertical neutral wind velocities for all periods range from roughly 30% - 60% of the horizontal velocity domain at Arecibo. At Millstone Hill, the vertical velocities relative to horizontal velocities are similar, but slightly smaller. The midnight temperature maximum at Arecibo is usually correlated with a surge in the upward wind, and vertical wind excursions of more than 80 m/s are common during magnetic storms at both sites. Until this compilation of vertical wind climatology, vertical motions of the neutral atmosphere outside of the auroral zone have generally been assumed to be very small compared to horizontal transport. In fact, excursions from small vertical velocities in the mid-latitude thermosphere near the F2 ionospheric peak are common, and are not isolated events associated with unsettled geomagnetic conditions or other special dynamic conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JGRA..111.9317C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JGRA..111.9317C"><span>Role of electronic excited N2 in vibrational excitation of the N2 ground state at high latitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campbell, L.; Cartwright, D. C.; Brunger, M. J.; Teubner, P. J. O.</p> <p>2006-09-01</p> <p>Vibrationally excited N2 is important in determining the ionospheric electron density and has also been proposed to play a role in the production of NO in disturbed atmospheres. We report here predictions of the absolute vibrational distributions in the ground electronic state of N2 produced by electron impact excitation, at noon and midnight under quiet geomagnetic conditions and disturbed conditions corresponding to the aurora IBCII+ and IBCIII+ at 60°N latitude and 0° longitude, at altitudes between 130 and 350 km. These predictions were obtained from a model which includes thermal excitation and direct electron impact excitation of the vibrational levels of the N2 ground state and its excited electronic states; radiative cascade from all excited electronic states to all vibrational levels of the ground electronic state; quenching by O, O2, and N2; molecular and ambipolar diffusion; and the dominant chemical reactions. Results from this study show that for both aurora and daytime electron environments: (1) cascade from the higher electronic states of N2 determines the population of the higher vibrational levels in the N2 ground state and (2) the effective ground state vibrational temperature for levels greater than 4 in N2 is predicted to be in the range 4000-13000 K for altitudes greater than 200 km. Correspondingly, the associated enhancement factor for the O+ reaction with vibrationally excited N2 to produce NO+ is predicted to increase with increasing altitude (up to a maximum at a height which increases with auroral strength) for both aurora and daytime environments and to increase with increasing auroral strength. The contribution of the cascade from the excited electronic states was evaluated and found to be relatively minor compared to the direct excitation process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1068648-validation-noah-simulated-soil-temperature-north-american-land-data-assimilation-system-phase','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1068648-validation-noah-simulated-soil-temperature-north-american-land-data-assimilation-system-phase"><span>Validation of Noah-simulated Soil Temperature in the North American Land Data Assimilation System Phase 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xia, Youlong; Ek, Michael; Sheffield, Justin</p> <p>2013-02-25</p> <p>Soil temperature can exhibit considerable memory from weather and climate signals and is among the most important initial conditions in numerical weather and climate models. Consequently, a more accurate long-term land surface soil temperature dataset is needed to improve weather and climate simulation and prediction, and is also important for the simulation of agricultural crop yield and ecological processes. The North-American Land Data Assimilation (NLDAS) Phase 2 (NLDAS-2) has generated 31-years (1979-2009) of simulated hourly soil temperature data with a spatial resolution of 1/8o. This dataset has not been comprehensively evaluated to date. Thus, the ultimate purpose of the presentmore » work is to assess Noah-simulated soil temperature for different soil depths and timescales. We used long-term (1979-2001) observed monthly mean soil temperatures from 137 cooperative stations over the United States to evaluate simulated soil temperature for three soil layers (0-10 cm, 10-40 cm, 40-100 cm) for annual and monthly timescales. We used short-term (1997-1999) observed soil temperature from 72 Oklahoma Mesonet stations to validate simulated soil temperatures for three soil layers and for daily and hourly timescales. The results showed that the Noah land surface model (Noah LSM) generally matches observed soil temperature well for different soil layers and timescales. At greater depths, the simulation skill (anomaly correlation) decreased for all time scales. The monthly mean diurnal cycle difference between simulated and observed soil temperature revealed large midnight biases in the cold season due to small downward longwave radiation and issues related to model parameters.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/2212450','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/2212450"><span>Absence of nocturnal fall in blood pressure in elderly persons with Alzheimer-type dementia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Otsuka, A; Mikami, H; Katahira, K; Nakamoto, Y; Minamitani, K; Imaoka, M; Nishide, M; Ogihara, T</p> <p>1990-09-01</p> <p>Circadian changes of the blood pressure and heart rate in elderly normotensive bedridden patients with severe dementia of the Alzheimer type (group D) were compared with those in elderly normotensive bedridden patients without dementia (group R), normotensive subjects with normal daily activity (group N), and hypertensive patients with normal daily activity (group H). In groups R, N, and H, the blood pressure increased in the afternoon and decreased at midnight; in group D, however, although it increased in the afternoon, it did not decrease at night. The circadian changes of the heart rate were similar in all four groups, showing maxima in the afternoon and minima at midnight. Thus, a specific alteration was found in the circadian rhythm of the blood pressure in patients with Alzheimer-type dementia.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869586','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869586"><span>Temperature initiated passive cooling system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Forsberg, Charles W.</p> <p>1994-01-01</p> <p>A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EPJWC.11905017D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EPJWC.11905017D"><span>Water Vapour Mixing Ratio Measurements in Potenza in the Frame of the International Network for the Detection of Atmospheric Composition Change - NDACC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>De Rosa, Benedetto; Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Mancini, Ignazio</p> <p>2016-06-01</p> <p>In November 2012 the University of BASILicata Raman Lidar system (BASIL) was approved to enter the International Network for the Detection of Atmospheric Composition Change (NDACC). This network includes more than 70 high-quality, remote-sensing research stations for observing and understanding the physical and chemical state of the upper troposphere and stratosphere and for assessing the impact of stratosphere changes on the underlying troposphere and on global climate. As part of this network, more than thirty groundbased Lidars deployed worldwide are routinely operated to monitor atmospheric ozone, temperature, aerosols, water vapour, and polar stratospheric clouds. In the frame of NDACC, BASIL performs measurements on a routine basis each Thursday, typically from local noon to midnight, covering a large portion of the daily cycle. Measurements from BASIL are included in the NDACC database both in terms of water vapour mixing ratio and temperature. This paper illustrates some measurement examples from BASIL, with a specific focus on water vapour measurements, with the goal to try and characterize the system performances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Icar..232..232H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Icar..232..232H"><span>Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haus, R.; Kappel, D.; Arnold, G.</p> <p>2014-04-01</p> <p>Thermal structure and cloud features in the atmosphere of Venus are investigated using spectroscopic nightside measurements recorded by the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) aboard ESA’s Venus Express mission in the moderate resolution infrared mapping channel (M-IR, 1-5 μm). New methodical approaches and retrieval results for the northern hemisphere have been recently described by Haus et al. (Haus, R., Kappel, D., Arnold, G. [2013]. Planet. Space Sci. 89, 77-101. http://dx.doi.org/10.1016/j.pss.2013.09.020). Now, southern hemisphere maps of mesospheric temperature and cloud parameter fields are presented that cover variations with altitude, latitude, local time, and mission time. Measurements from the entire usable data archive are utilized comprising radiation spectra recorded during eight Venus solar days between April 2006 and October 2008. Zonal averages of retrieved temperature altitude profiles in both hemispheres are very similar and give evidence of global N-S axial symmetry of atmospheric temperature structure. Cold collar and warmer polar vortex regions exhibit the strongest temperature variability with standard deviations up to 8.5 K at 75°S and 63 km altitude compared with about 1.0 K at low and mid latitudes above 75 km. The mesospheric temperature field strongly depends on local time. At altitudes above about 75 km, the atmosphere is warmer in the second half of night, while the dawn side at lower altitudes is usually colder than the dusk side by about 8 K. Local minimum temperature of 220 K occurs at 03:00 h local time at 65 km and 60°S. Temperature standard deviation at polar latitudes is particularly large near midnight. Temperature variability with solar longitude is forced by solar thermal tides with a dominating diurnal component. The influence of observed cloud parameter changes on retrieved mesospheric zonal average temperature structure is moderate and does not exceed 2-3 K at altitudes between 60 and 75 km. The mesospheric thermal structure was essentially stable with Julian date between 2006 and 2008. Global N-S axial symmetry is also observed in cloud structures. Cloud top altitude at 1 μm slowly decreases from 71 km at the equator to 70 km at 45-50° and rapidly drops poleward of 50°. It reaches 61 km over both poles. Average particle size in the vertical cloud column increases from mid latitudes toward the poles and also toward the equator resulting in minimum and maximum zonal average cloud opacities of about 32 and 42 and a planetary average of 36.5 at 1 μm. Zonal averages of cloud features are similar at different solar days, but variations with local time are very complex and inseparably associated with the superrotation of the clouds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA197404','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA197404"><span>Adverse Climatic Conditions and Impact on Construction Scheduling and Cost</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-01-01</p> <p>ABBREVIATIONS ABS MAX MAX TEMP ...... Absolute maximum maximum temperature ABS MIN MIN TEMP ...... Absolute minimum minimum temperature BTU...o Degrees Farenheit MEAN MAX TEMP o.................... Mean maximum temperature MEAN MIN TEMP...temperatures available, a determination had to be made as to whether forecasts were based on absolute , mean, or statistically derived temperatures</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6990679','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6990679"><span>Temperature initiated passive cooling system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Forsberg, C.W.</p> <p>1994-11-01</p> <p>A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.congress.gov/bill/112th-congress/senate-bill/2368?q=%7B%22search%22%3A%5B%22corporate+AND+security%22%5D%7D&r=78','CONGRESS-112'); return false;" href="https://www.congress.gov/bill/112th-congress/senate-bill/2368?q=%7B%22search%22%3A%5B%22corporate+AND+security%22%5D%7D&r=78"><span>Midnight Rule Relief Act of 2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://thomas.loc.gov/home/LegislativeData.php?&n=BSS&c=112">THOMAS, 112th Congress</a></p> <p>Sen. Johnson, Ron [R-WI</p> <p>2012-04-25</p> <p>Senate - 04/25/2012 Read twice and referred to the Committee on Homeland Security and Governmental Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23013913','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23013913"><span>Long work hours and adiposity among police officers in a US northeast city.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gu, Ja K; Charles, Luenda E; Burchfiel, Cecil M; Fekedulegn, Desta; Sarkisian, Khachatur; Andrew, Michael E; Ma, Claudia; Violanti, John M</p> <p>2012-11-01</p> <p>To investigate the associations between long work hours and adiposity measures in police officers. Participants included 408 officers from the Buffalo Cardio-Metabolic Occupational Police Stress study who were examined between 2004 and 2009. Total work hours were abstracted from payroll records and questionnaires. Analysis of variance and covariance models were used. Among male officers who worked the midnight shift, mean values of waist circumference and body mass index increased with longer work hours after adjustment for age, physical activity, energy intake, sleep duration, smoking status, police rank, activities after work (eg, child/family care, sports), and household income. Adiposity measures were not associated with work hours among women on any shift. Working longer hours was significantly associated with larger waist circumferences and higher body mass index among male police officers working the midnight shift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999AnGeo..17.1369F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999AnGeo..17.1369F"><span>A multipoint study of a substorm occurring on 7 December, 1992, and its theoretical implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fox, N. J.; Cowley, S. W. H.; Davda, V. N.; Enno, G.; Friis-Christensen, E.; Greenwald, R. A.; Hairston, M. R.; Lester, M.; Lockwood, M.; Lühr, H.; Milling, D. K.; Murphree, J. S.; Pinnock, M.; Reeves, G. D.</p> <p>1999-11-01</p> <p>On 7 December 1992, a moderate substorm was observed by a variety of satellites and ground-based instruments. Ionospheric flows were monitored near dusk by the Goose Bay HF radar and near midnight by the EISCAT radar. The observed flows are compared here with magnetometer observations by the IMAGE array in Scandinavia and the two Greenland chains, the auroral distribution observed by Freja and the substorm cycle observations by the SABRE radar, the SAMNET magnetometer array and LANL geosynchronous satellites. Data from Galileo Earth-encounter II are used to estimate the IMF Bz component. The data presented show that the substorm onset electrojet at midnight was confined to closed field lines equatorward of the pre-existing convection reversal boundaries observed in the dusk and midnight regions. No evidence of substantial closure of open flux was detected following this substorm onset. Indeed the convection reversal boundary on the duskside continued to expand equatorward after onset due to the continued presence of strong southward IMF, such that growth and expansion phase features were simultaneously present. Clear indications of closure of open flux were not observed until a subsequent substorm intensification 25 min after the initial onset. After this time, the substorm auroral bulge in the nightside hours propagated well poleward of the pre-existing convection reversal boundary, and strong flow perturbations were observed by the Goose Bay radar, indicative of flows driven by reconnection in the tail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA33B..05H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA33B..05H"><span>Equatorial ionospheric response to the 2015 St. Patrick's Day magnetic storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, C.; Wilson, G. R.; Hairston, M. R.; Zhang, Y.; Wang, W.; Liu, J.</p> <p>2016-12-01</p> <p>The geomagnetic storm on 17 March 2015 was the strongest storm during solar cycle 24 and caused significant disturbances in the global ionosphere. We present measurements of the Defense Meteorological Satellite Program satellites and identify the dynamic response of the equatorial ionosphere to the storm. Large penetration and disturbance dynamo electric fields are detected in both the dusk and the dawn sectors, and the characteristics of the electric fields are dramatically different in the two local time sectors. Penetration electric field is strong in the evening sector, but disturbance dynamo electric field is dominant in the dawn sector. The dynamo process is first observed in the post-midnight sector 4 hours after the beginning of the storm main phase and lasts for 31 hours, covering the major part of the storm main phase and the initial 20 hours of the recovery phase. The dynamo vertical ion drift is upward (up to 200 m/s) in the post-midnight sector and downward (up to 80 m/s) in the early morning sector. The dynamo zonal ion drift is westward at these locations and reaches 100 m/s. The dynamo process causes large enhancements of the oxygen ion concentration, and the variations of the oxygen ion concentration are well correlated with the vertical ion drift. The observations suggest that disturbance dynamo becomes dominant in the post-midnight equatorial ionosphere even during the storm main phase when disturbance neutral winds arrive there. The results provide new insight into storm-time equatorial ionospheric dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ECSS...86..125T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ECSS...86..125T"><span>Complex vertical migration of larvae of the ghost shrimp, Nihonotrypaea harmandi, in inner shelf waters of western Kyushu, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tamaki, Akio; Mandal, Sumit; Agata, Yoshihiro; Aoki, Ikumi; Suzuki, Toshikazu; Kanehara, Hisao; Aoshima, Takashi; Fukuda, Yasushi; Tsukamoto, Hideshi; Yanagi, Tetsuo</p> <p>2010-01-01</p> <p>The position of meroplanktonic larvae in the water column with depth-dependent current velocities determines horizontal transport trajectories. For those larvae occurring in inner shelf waters, little is known about how combined diel and tidally-synchronized vertical migration patterns shift ontogenetically. The vertical migration of larvae of Nihonotrypaea harmandi (Decapoda: Thalassinidea: Callianassidae) was investigated in mesotidal, inner shelf waters of western Kyushu, Japan in July-August 2006. The larval sampling at seven depth layers down to 60 m was conducted every 3 h for 36 h in a 68.5-m deep area 10 km off a major coastal adult habitat. Within a 61-65-m deep area 5-7.5 km off the adult habitat, water temperature, salinity, chlorophyll a concentration, and photon flux density were measured, and water currents there were characterized from harmonic analysis of current meter data collected in 2008. The water column was stratified, with pycnocline, chlorophyll a concentration maximum, and 2% of photon flux density at 2 m, recorded at around 22-24 m. The stratified residual currents were detected in their north component, directed offshore and onshore in the upper and lower mixed layers, respectively. More than 87% of larvae occurred between 20 m and 60 m, producing a net onshore transport of approximately 1.3 km d -1. At the sunset flooding tide, all zoeal-stage larvae ascended, which could further promote retention (1.4-km potential onshore transport in 3 h). The actual onshore transport of larvae was detected by observing their occurrence pattern in a shallow embayment area with the adult habitat for 24 h in October 1994. However, ontogenetic differences in the vertical migration pattern in inner shelf waters were also apparent, with the maximum mean positions of zoeae deepening with increasing stages. Zoeae I and II performed a reverse diel migration, with their minimum and maximum depths being reached around noon and midnight, respectively. Zoeae IV and V descended continuously. Zoeae III had behaviors that were intermediate to those of the earlier- and later-stage zoeae. Postlarvae underwent a normal diel migration (nocturnal ascent) regardless of tides, with the deepest position (below 60 m and/or on the bottom) during the day. These findings give a new perspective towards how complex vertical migration patterns in meroplanktonic larvae enable their retention in inner shelf waters before the final entry of postlarvae into their natal populations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.3998Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.3998Y"><span>Low-Latitude Ionospheric Density Irregularities and Associated Scintillations Investigated by Combining COSMIC RO and Ground-Based Global Positioning System Observations Over a Solar Active Period</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Zhe; Liu, Zhizhao</p> <p>2018-05-01</p> <p>This study for the first time presents a locally integrated analysis of occurrences of ionospheric E and F region irregularities/scintillations in southeast China, by employing radio occultation (RO) profile data retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites and observations from a ground-based Global Navigation Satellite System receiver over a solar active period from 2014 to 2015. Their occurrences in both nighttime and daytime were examined by using both amplitude scintillation index (S4) and the rate of change of total electron content index. It is found that (1) F region irregularities occurred predominantly during 20-03 local time (LT) and exhibited maximum (minimum) during equinoxes (solstices) and equinoctial (solstice) asymmetry. Their geographic mapping reveals the maximum occurrence in the westward tilted structure of equatorial plasma bubbles. In addition, the altitude-time variations indicate that their occurrences at higher altitudes were prevailing at 20-22 LT. (2) The E region irregularities were found prominently during 15-00 LT at altitudes of 90-110 km with an even geographic distribution. Their occurrences with maximum in summer (May-August) were distinctly detected by RO observations but insignificantly by ground-based observations. (3) By examining simultaneous observations of E and F region irregularities, it is found that they appeared absent during 21-00 LT and predominant after midnight. This could be related to the weakening/disruption of sporadic E (Es) layers during the development of equatorial plasma bubbles. A sign of coupling of E and F regions during nighttime is likely revealed from RO profile data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1049376','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1049376"><span>Evaluation of Ultra High Pressure (UHP) Firefighting in a Room-and-Contents Fire</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-03-15</p> <p>Burn Room and Hangar Temperature Prior to Ignition ............................................... 18 Figure 12. Effect of Temperature on Normalized...Figure 20. Maximum Average Temperature and Heat Flux ......................................................... 22 Figure 21. Effect of Maximum Average...Aspirated Ceiling Temperature .................................... 23 Figure 22. Effect of Maximum Average Floor Heat Flux on Extinguishment Quantity</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title42-vol3/pdf/CFR-2013-title42-vol3-sec416-166.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title42-vol3/pdf/CFR-2013-title42-vol3-sec416-166.pdf"><span>42 CFR 416.166 - Covered surgical procedures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... published in the Federal Register and/or via the Internet on the CMS Web site that are separately paid under... typically be expected to require active medical monitoring and care at midnight following the procedure. (c...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26075803','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26075803"><span>Risk factors affecting the severity of traffic accidents at Shanghai river-crossing tunnel.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lu, Jian John; Xing, Yingying; Wang, Chen; Cai, Xiaonan</p> <p>2016-01-01</p> <p>With increasing traffic volume and urban development, increasing numbers of underground tunnels have been constructed to relieve conflict between strained land and heavy traffic. However, as more long tunnels are constructed, tunnel traffic safety is becoming increasingly serious. Thus, it is necessary to acquire their implications and impacts. This study examined 4,539 traffic accidents that have occurred in 14 Shanghai river-crossing tunnels for the period 2011-2012 and analyze the correlation between potential factors and accident injury severity. An ordered logit model was developed to examine the correlation between potential factors and accident injury severity. Results show that increased injury severity is associated with male drivers, drivers aged 65 years or older, accident time from midnight to dawn, weekends, wet road surface, goods vehicles, 3 or more vehicles, 4 or more lanes, middle speed limits (50-79 km/h), zone 3, extra-long tunnels (over 3,000 m), and maximum longitudinal gradient. This article aims to provide useful information for engineers to develop interventions and countermeasures to improve tunnel safety in China.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.132.1153L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.132.1153L"><span>Towards bridging the gap between climate change projections and maize producers in South Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Landman, Willem A.; Engelbrecht, Francois; Hewitson, Bruce; Malherbe, Johan; van der Merwe, Jacobus</p> <p>2018-05-01</p> <p>Multi-decadal regional projections of future climate change are introduced into a linear statistical model in order to produce an ensemble of austral mid-summer maximum temperature simulations for southern Africa. The statistical model uses atmospheric thickness fields from a high-resolution (0.5° × 0.5°) reanalysis-forced simulation as predictors in order to develop a linear recalibration model which represents the relationship between atmospheric thickness fields and gridded maximum temperatures across the region. The regional climate model, the conformal-cubic atmospheric model (CCAM), projects maximum temperatures increases over southern Africa to be in the order of 4 °C under low mitigation towards the end of the century or even higher. The statistical recalibration model is able to replicate these increasing temperatures, and the atmospheric thickness-maximum temperature relationship is shown to be stable under future climate conditions. Since dry land crop yields are not explicitly simulated by climate models but are sensitive to maximum temperature extremes, the effect of projected maximum temperature change on dry land crops of the Witbank maize production district of South Africa, assuming other factors remain unchanged, is then assessed by employing a statistical approach similar to the one used for maximum temperature projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817062Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817062Y"><span>Statistical downscaling of CMIP5 outputs for projecting future maximum and minimum temperature over the Haihe River Bain, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, Tiezhu; Shen, Zhenyao; Heng, Lee; Dercon, Gerd</p> <p>2016-04-01</p> <p>Future climate change information is important to formulate adaptation and mitigation strategies for climate change. In this study, a statistical downscaling model (SDSM) was established using both NCEP reanalysis data and ground observations (daily maximum and minimum temperature) during the period 1971-2010, and then calibrated model was applied to generate the future maximum and minimum temperature projections using predictors from the two CMIP5 models (MPI-ESM-LR and CNRM-CM5) under two Representative Concentration Pathway (RCP2.6 and RCP8.5) during the period 2011-2100 for the Haihe River Basin, China. Compared to the baseline period, future change in annual and seasonal maximum and minimum temperature was computed after bias correction. The spatial distribution and trend change of annual maximum and minimum temperature were also analyzed using ensemble projections. The results shows that: (1)The downscaling model had a good applicability on reproducing daily and monthly mean maximum and minimum temperature over the whole basin. (2) Bias was observed when using historical predictors from CMIP5 models and the performance of CNRM-CM5 was a little worse than that of MPI-ESM-LR. (3) The change in annual mean maximum and minimum temperature under the two scenarios in 2020s, 2050s and 2070s will increase and magnitude of maximum temperature will be higher than minimum temperature. (4) The increase in temperature in the mountains and along the coastline is remarkably high than the other parts of the studies basin. (5) For annual maximum and minimum temperature, the significant upward trend will be obtained under RCP 8.5 scenario and the magnitude will be 0.37 and 0.39 ℃ per decade, respectively; the increase in magnitude under RCP 2.6 scenario will be upward in 2020s and then decrease in 2050s and 2070s, and the magnitude will be 0.01 and 0.01℃ per decade, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title25-vol1/pdf/CFR-2010-title25-vol1-sec61-7.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title25-vol1/pdf/CFR-2010-title25-vol1-sec61-7.pdf"><span>25 CFR 61.7 - Filing of application forms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-04-01</p> <p>... than midnight on the deadline specified. Where there is no postmark date showing on the envelope or the... Superintendent, will be denied for failure to file in time. (b) Application forms filed by personal delivery must...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/21485','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/21485"><span>The effects of napping on night shift performance : final report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2000-02-01</p> <p>This study represents a collaborative effort between the Federal Aviation Administrations Civil Aeromedical Institute and the US Army Aeromedical Research Laboratory to investigate the effects of napping on the midnight shift as a potential counte...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=drug+AND+dance&pg=2&id=EJ183107','ERIC'); return false;" href="https://eric.ed.gov/?q=drug+AND+dance&pg=2&id=EJ183107"><span>"Midnight Dance"--An Animation Fantasy Film</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Morse, Deanna</p> <p>1978-01-01</p> <p>Provides an account of an animation film project that was conducted in a public alternative school for teenage drug abusers. Demonstrates how students can plan and shoot a film with a minimum of teacher involvement or direction. (RL)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-01-23/pdf/2012-1200.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-01-23/pdf/2012-1200.pdf"><span>77 FR 3226 - Notice of Public Meetings of the Committee on Rulemaking of the Administrative Conference of the...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-01-23</p> <p>...;and investigations, committee meetings, agency decisions and rulings, #0;delegations of authority... draft report on the Midnight Rules Project. The report, prepared by Professor Jack Beermann (Boston...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-07-03/pdf/2013-15732.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-07-03/pdf/2013-15732.pdf"><span>78 FR 40146 - Patient Safety Organizations: Voluntary Relinquishment From Northern Metropolitan Patient Safety...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-07-03</p> <p>.... The delisting was effective at 12:00 Midnight ET (2400) on May 29, 2013. ADDRESSES: Both directories... (2400) on May 29, 2013. Northern Metropolitan Patient Safety Institute has patient safety work product...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5126218-morphology-auroral-zone-radio-wave-scintillation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5126218-morphology-auroral-zone-radio-wave-scintillation"><span>Morphology of auroral zone radio wave scintillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rino, C.L.; Matthews, S.J.</p> <p>1980-08-01</p> <p>This paper describes the morphology of midnight sector and morning sector auroral zone scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effectmore » due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral zone scintillation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20715318','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20715318"><span>Sex and the city in decline: Midnight Cowboy (1969) and Klute (1971).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Corkin, Stanley</p> <p>2010-01-01</p> <p>This essay looks at two popular and influential films of the late 1960s and early 1970s, which were both shot in New York City: Midnight Cowboy (1969) and Klute (1971). It places them in film history, New York City history, and U.S. urban history more generally, finding that they offer an update on earlier century narratives of the connections between urban areas and deviant sexuality. In this modern version, it is not just a moral tale but also an economic one, where, because of the historical decline of the U.S. city and of New York in particular, sex work becomes a plausible, if unsettling means of support. These films find both narrative and spatial terms for advancing the contemporary antiurban narrative, envisioning New York as an impinging vertical space and seeing possible redemption only in the protagonists leaving the city.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4653812','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4653812"><span>Long Work Hours and Adiposity Among Police Officers in a US Northeast City</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gu, Ja K.; Charles, Luenda E.; Burchfiel, Cecil M.; Fekedulegn, Desta; Sarkisian, Khachatur; Andrew, Michael E.; Ma, Claudia; Violanti, John M.</p> <p>2015-01-01</p> <p>Objective To investigate the associations between long work hours and adiposity measures in police officers. Methods Participants included 408 officers from the Buffalo Cardio-Metabolic Occupational Police Stress study who were examined between 2004 and 2009. Total work hours were abstracted from payroll records and questionnaires. Analysis of variance and covariance models were used. Results Among male officers who worked the midnight shift, mean values of waist circumference and body mass index increased with longer work hours after adjustment for age, physical activity, energy intake, sleep duration, smoking status, police rank, activities after work (eg, child/family care, sports), and household income. Adiposity measures were not associated with work hours among women on any shift. Conclusion Working longer hours was significantly associated with larger waist circumferences and higher body mass index among male police officers working the midnight shift. PMID:23013913</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-ECN-2409.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-ECN-2409.html"><span>ECN-2409</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1970-06-17</p> <p>Not every moment of a test pilot's day is serious business. In a moment of levity, NASA pilots Bill Dana (left) and John A. Manke try to drag Air Force test pilot Peter Hoag away from the HL-10 lifting body while Air Force Major Jerauld R. Gentry helps from the cockpit. These four men were the principal pilots for the HL-10 program. This was not the only prank involving the HL-10 and its pilots. Once "Captain Midnight" (Gentry) and the "Midnight Skulkers" sneaked into the NASA hangar and put "U.S. Air Force" on the aircraft using stick-on letters. Later, while Gentry was making a lifting-body flight, his 1954 Ford was "borrowed" from the parking lot, painted with yellow-green zinc-chromate primer, and decorated with large stick-on flowers about one foot in diameter. After Gentry returned from the flight, he was surprised to see what had happened to his car.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989BoLMe..49...23Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989BoLMe..49...23Y"><span>On the impact of cloudiness on the characteristics of nocturnal downslope flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ye, Z. J.; Segal, M.; Garratt, J. R.; Pielke, R. A.</p> <p>1989-10-01</p> <p>The effects of cloud cover amount and the height of cloud base on nighttime thermally induced downslope flow were investigated using analytical and numerical model approaches. The conclusions obtained with the analytical and the numerical model evaluations agreed. It was concluded that, (i) as cloud cover increases and/or the height of cloud base decreases, the depth and the intensity of nighttime thermally-induced downslope flows may decrease by a factor reaching one sixth and one tenth, respectively, in the case of overcast low cloud; (ii) when skies suddenly cloud over around midnight, the development of the downslope flow is altered in different ways: a reduction in intensity; or a cessation of further development, depending on the fraction of cloud coverage, and (iii) with a sudden clearing of overcast low cloud around midnight, the depth and the intensity of the downslope flow increases significantly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750016137','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750016137"><span>Electron precipitation in the post midnight sector of the auroral zones. [on the Explorer 40 satellite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frank, L. A.; Saflekos, N. A.; Ackerson, K. L.</p> <p>1975-01-01</p> <p>Comprehensive measurements of the angular distributions and energy spectra of electron intensities with electrostatic analyzer arrays on board the low-altitude satellite Injun 5 are reported. These are for the post-midnight sector of the auroral zones during the high-intensity events accompanying magnetic substorms. Precipitation features on closed terrestrial field lines well equatorward of the trapping boundary for energetic electrons with E greater than 45 keV were examined. No evidences of maxima in the differential energy spectra or of strongly field-aligned currents which are indicative of quasi-static electric fields aligned parallel to the geomagnetic field were found. Precipitation of low-energy electron intensities fluctuated on time scales greater than 2 seconds as viewed at the satellite position. This precipitation was characterized by isotropy for all pitch angles outside the atmospheric backscatter cone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61.1726A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61.1726A"><span>Variation of hmF2 and NmF2 deduced from DPS-4 over Multan (Pakistan) and their comparisons with IRI-2012 & IRI-2016 during the deep solar minimum between cycles 23 & 24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ameen, Muhammad Ayyaz; Khursheed, Haqqa; Jabbar, Mehak Abdul; Ali, Muneeza Salman; Chishtie, Farrukh</p> <p>2018-04-01</p> <p>We report the results of ionospheric measurements from DPS-4 installed at Multan (Geog coord. 30.18°N, 71.48°E, dip 47.4°). The variations in F2-layer maximum electron density NmF2 and its peak height hmF2 are studied during the deep solar minimum between cycles 23 & 24 i.e 2008-2009 with comparisons conducted with the International Reference Ionosphere (IRI) versions 2012 & 2016. We find that the hmF2 observations peak around the pre-sunrise and sunrise hours depending on the month. Seasonally, the daytime variation of NmF2 is higher in the Equinox and Summer, while daytime hmF2 are slightly higher in the Equinox and Winter. High values of hmF2 around midnight are caused by an increase of upward drifts produced by meridional winds. The ionosphere over Multan, which lies at the verge of low and mid latitude, is affected by both E × B drifts and thermospheric winds as evident from mid-night peaks and near-sunrise dips in hmF2. The results of the comparison of the observed NmF2 and hmF2 for the year 2008-2009 with the IRI-2012 (both NmF2 and hmF2) and IRI-2016 (only hmF2) estimates indicate that for NmF2, IRI-2012 with Consultative Committee International Radio (CCIR) option produces values in better agreement with observed data. Whereas, for hmF2, IRI-2016 with both International Union of Radio Science (URSI) and CCIR SHU-2015 options, predicts well for nighttime hours throughout the year. However, the IRI-2012 with CCIR option produces better agreement with data during daytime hours. Furthermore, IRI-2012 with CCIR option gives better results during Equinox months, whereas, IRI-2016 with both URSI and CCIR SHU-2015 options predict well for Winter and Summer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982PhDT.........5Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982PhDT.........5Y"><span>Parallel Electric Field on Auroral Magnetic Field Lines.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yeh, Huey-Ching Betty</p> <p>1982-03-01</p> <p>The interaction of Birkeland (magnetic-field-aligned) current carriers and the Earth's magnetic field results in electrostatic potential drops along magnetic field lines. The statistical distributions of the field-aligned potential difference (phi)(,(PARLL)) were determined from the energy spectra of electron inverted "V" events observed at ionospheric altitude for different conditions of geomagnetic activity as indicated by the AE index. Data of 1270 electron inverted "V"'s were obtained from Low-Energy Electron measurements of the Atmosphere Explorer-C and -D Satellite (despun mode) in the interval January 1974-April 1976. In general, (phi)(,(PARLL)) is largest in the dusk to pre-midnight sector, smaller in the post-midnight to dawn sector, and smallest in the near noon sector during quiet and disturbed geomagnetic conditions; there is a steady dusk-dawn-noon asymmetry of the global (phi)(,(PARLL)) distribution. As the geomagnetic activity level increases, the (phi)(,(PARLL)) pattern expands to lower invariant latitudes, and the magnitude of (phi)(,(PARLL)) in the 13-24 magnetic local time sector increases significantly. The spatial structure and intensity variation of the global (phi)(,(PARLL)) distribution are statistically more variable, and the magnitudes of (phi)(,(PARLL)) have smaller correlation with the AE-index, in the post-midnight to dawn sector. A strong correlation is found to exist between upward Birkeland current systems and global parallel potential drops, and between auroral electron precipitation patterns and parallel potential drops, regarding their mophology, their intensity and their dependence of geomagnetic activity. An analysis of the fine-scale simultaneous current-voltage relationship for upward Birkeland currents in Region 1 shows that typical field-aligned potential drops are consistent with model predictions based on linear acceleration of the charge carriers through an electrostatic potential drop along convergent magnetic field lines to maintain current continuity. In a steady state, this model of simple electrostatic acceleration without anomalous resistivity also predicts observable relations between global parallel currents and parallel potential drops and between global energy deposition and parallel potential drops. The temperature, density, and species of the unaccelerated charge carriers are the relevant parameters of the model. The dusk-dawn -noon asymmetry of the global (phi)(,(PARLL)) distribution can be explained by the above steady-state (phi)(,(PARLL)) process if we associate the source regions of upward Birkeland current carriers in Region 1, Region 2, and the cusp region with the plasma sheet boundary layer, the near-Earth plasma sheet, and the magnetosheath, respectively. The results of this study provide observational information on the global distribution of parallel potential drops and the prevailing process of generating and maintaining potential gradients (parallel electric fields) along auroral magnetic field lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24856334','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24856334"><span>Determining health personnel's application trends of new guidelines for preoperative fasting: findings from a survey.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Karadağ, Mevlüde; Pekin İşeri, Ozge</p> <p>2014-06-01</p> <p>For over a century, the discontinuation of oral food intake preoperatively after midnight has been routinely applied. Although routine fasting during the night before elective surgery has been abandoned by many modern centers, preoperative fasting after midnight continues as a routine practice. The purpose of this study was to determine trends in health personnel's application of new guidelines for preoperative fasting. The research sample of this descriptive study consisted of 73 nurses and physicians who were working in the surgical clinics during the time when the study was conducted and who agreed to participate in the study. The data of the study were collected using a questionnaire designed by the researchers. Of the health personnel included in the study group, 43.8% routinely kept adult patients fasting after midnight, 34.2% discontinued solid food intake 8 hours preoperatively, 5.5% discontinued solid food intake 6 hours preoperatively, and 34.2% discontinued the intake of clear and particulate liquids 4 to 8 hours preoperatively. Compliance of the American Society of Anesthesiologists' "2-4-6-8 rule" by health staff was very low. This study was carried out in a hospital and based on the statements of health staff. Therefore, the findings of the study are suggestive in nature and cannot be generalized. We recommend that the study should be conducted with larger sample groups and that actual preoperative fasting periods of the patients should be determined. Copyright © 2014 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASTP.169..130L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASTP.169..130L"><span>Effects of sporadic E-layer characteristics on spread-F generation in the nighttime midlatitude ionosphere: A climatological study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, C. C.; Chen, W. S.</p> <p>2018-04-01</p> <p>The aim of this study is to examine the effects of Es-layer characteristics on spread-F generation in the nighttime midlatitude ionosphere. The Es-layer parameters and spread-F appearance of the 23rd solar cycle (1996-2008) are recorded by the Kokubunji ionosonde. The Es-layer parameters are foEs (critical frequency of Es-layer), fbEs (blanketing frequency of Es-layer), and Δf (≡foEs-fbEs). In order to completely explore the effects, the pre-midnight and post-midnight data are classified by seasons, solar activities, and geomagnetic conditions. Results show that the spread-F occurs more frequently in post-midnight and in summer. And, the occurrence probabilities of spread-F are greater, when the solar activity is lower. For the occurrence probabilities of spread-F versus foEs and Δf under geomagnetic quiet-conditions, the trend is increasing, when the associated probabilities are significant. These indicate that the spread-F occurrence increases with increasing foEs and/or Δf. Further, the increasing trends demonstrate that polarization electric fields generated in Es-layer would be helpful to generate spread-F, through the electrodynamical coupling of Es-layer and F-region. Moreover, this electrodynamical coupling is efficient not only under quiet-conditions but under disturbed-conditions, since the significant increasing trend can also be found under disturbed-conditions. Regarding the occurrence probabilities of spread-F versus fbEs, the evident trends are not in the majority. This implies that fbEs might not be a major factor for the spread-F formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22518756-strong-solar-wind-dynamic-pressure-pulses-interplanetary-sources-impacts-geosynchronous-magnetic-fields','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22518756-strong-solar-wind-dynamic-pressure-pulses-interplanetary-sources-impacts-geosynchronous-magnetic-fields"><span>STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zuo, Pingbing; Feng, Xueshang; Wang, Yi</p> <p></p> <p>In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs atmore » different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MAP...tmp..283N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MAP...tmp..283N"><span>Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981-2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.</p> <p>2018-04-01</p> <p>The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.132..145T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.132..145T"><span>Estimating missing daily temperature extremes in Jaffna, Sri Lanka</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thevakaran, A.; Sonnadara, D. U. J.</p> <p>2018-04-01</p> <p>The accuracy of reconstructing missing daily temperature extremes in the Jaffna climatological station, situated in the northern part of the dry zone of Sri Lanka, is presented. The adopted method utilizes standard departures of daily maximum and minimum temperature values at four neighbouring stations, Mannar, Anuradhapura, Puttalam and Trincomalee to estimate the standard departures of daily maximum and minimum temperatures at the target station, Jaffna. The daily maximum and minimum temperatures from 1966 to 1980 (15 years) were used to test the validity of the method. The accuracy of the estimation is higher for daily maximum temperature compared to daily minimum temperature. About 95% of the estimated daily maximum temperatures are within ±1.5 °C of the observed values. For daily minimum temperature, the percentage is about 92. By calculating the standard deviation of the difference in estimated and observed values, we have shown that the error in estimating the daily maximum and minimum temperatures is ±0.7 and ±0.9 °C, respectively. To obtain the best accuracy when estimating the missing daily temperature extremes, it is important to include Mannar which is the nearest station to the target station, Jaffna. We conclude from the analysis that the method can be applied successfully to reconstruct the missing daily temperature extremes in Jaffna where no data is available due to frequent disruptions caused by civil unrests and hostilities in the region during the period, 1984 to 2000.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol12/pdf/CFR-2012-title40-vol12-part63-subpartOOO-app4.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol12/pdf/CFR-2012-title40-vol12-part63-subpartOOO-app4.pdf"><span>40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or pressure; and maximum...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950029559&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dconvection%2Bcurrents','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950029559&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dconvection%2Bcurrents"><span>By-controlled convection and field-aligned currents near midnight auroral oval for northward interplanetary magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Taguchi, S.; Sugiura, M.; Iyemori, T.; Winningham, J. D.; Slavin, J. A.</p> <p>1994-01-01</p> <p>Using the Dynamics Explorer (DE) 2 magnetic and electric field and plasma data, B(sub y)- controlled convection and field-aligned currents in the midnight sector for northward interplanetary magnetic field (IMF) are examined. The results of an analysis of the electric field data show that when IMF is stable and when its magnitude is large, a coherent B(sub y)-controlled convection exists near the midnight auroral oval in the ionosphere having adequate conductivities. When B(sub y) is negative, the convection consists of a westward (eastward) plasma flow at the lower latitudes and an eastward (westward) plasma flow at the higher latitudes in the midnight sector in the northern (southern) ionosphere. When B(sub y) is positive, the flow directions are reversed. The distribution of the field-aligned currents associated with the B(sub y)-controlled convection, in most cases, shows a three-sheet structure. In accordance with the convection the directions of the three sheets are dependent on the sign of B(sub y). The location of disappearance of the precipitating intense electrons having energies of a few keV is close to the convection reversal surface. However, the more detailed relationship between the electron precipitation boundary and the convection reversal surface depends on the case. In some cases the precipitating electrons extend beyond the convection reversal surface, and in others the poleward boundary terminates at a latitude lower than the reversal surface. Previous studies suggest that the poleward boundary of the electrons having energies of a few keV is not necessarily coincident with an open/closed bounary. Thus the open/closed boundary may be at a latitude higher than the poleward boundary of the electron precipitation, or it may be at a latitude lower than the poleward boundary of the electron precipitation. We discuss relationships between the open/closed boundary and the convection reversal surface. When as a possible choice we adopt a view that the open/closed boundary agrees with the convection reversal surface, we can explain qualitatively the configuration of the B(sub y)-controlled convection on the open and close field line regions by proposing a mapping modified in accordance with IMF B(sub y).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSA23D2364Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSA23D2364Y"><span>Thermospheric neutral wind profile in moonlit midnight by Lithium release experiments in Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamamoto, M. Y.; Watanabe, S.; Abe, T.; Kakinami, Y.; Habu, H.; Yamamoto, M.</p> <p>2015-12-01</p> <p>Neutral wind profiles were observed in lower thermosphere at about between 90 km and 130 km altitude by using resonance scattering light of moonlit Lithium (Li) vapor released from sounding rockets in midnight (with almost full-moon condition) in 2013 in Japan. As a target of the Daytime Dynamo campaign, Li release experiment was operated at Wallops Flight Facility (WFF) of NASA, U.S.A. in July, 2013 (Pfaff et al., 2015, this meeting), while the same kind of rocket-ground observation campaign in midnight was carried out by using S-520-27/S-310-42 sounding rockets in Uchinoura Space Center (USC) of JAXA, Kagoshima, Japan, also in July 2013.Since imaging signal-to-noise (S/N) condition of the experiment was so severe, we conducted to apply airborne observation for imaging the faint moonlit Li tracers so as to reduce the illuminating intensity of the background skies as an order of magnitude. Two independent methods for calculating the wind profile were applied to the Lithium emission image sequences successfully obtained by the airborne imaging by special Li imagers aboard the airplanes in order to derive precise information of Li tracers motion under the condition of single observation site on a moving aircraft along its flight path at about 12 km altitude in lower stratosphere. Slight attitude-feedback motion of the aircraft's 3-axes attitude changes (rolling, yawing and pitching) was considered for obtaining precise coordinates on each snapshot. Another approach is giving a simple mathematic function for wind profile to resolve the shape displacement of the imaged Li tracers. As a result, a wind profile in moonlit thermosphere was calculated in a range up to about 150 m/s with some fluctuated parts possibly disturbed by wind shears. In the same experiment, another sounding rocket S-310-42 with a TMA canister was also launched from USC/JAXA at about 1 hour before the rocket with carrying the Lithium canisters, thus, we can derive the other 2 profiles determined by the TMA chemical releases in up-leg and down-leg of the flight for the comparison. In this paper, we will report the obtained results of the moonlit Lithium emission intensities as well as method of wind profile calculations and final result of the comparison between the TMA and moonlit Lithium chemical releases in midnight lower thermosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol1/pdf/CFR-2012-title14-vol1-sec29-1521.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol1/pdf/CFR-2012-title14-vol1-sec29-1521.pdf"><span>14 CFR 29.1521 - Powerplant limitations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title14-vol1/pdf/CFR-2013-title14-vol1-sec29-1521.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title14-vol1/pdf/CFR-2013-title14-vol1-sec29-1521.pdf"><span>14 CFR 29.1521 - Powerplant limitations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title14-vol1/pdf/CFR-2014-title14-vol1-sec29-1521.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title14-vol1/pdf/CFR-2014-title14-vol1-sec29-1521.pdf"><span>14 CFR 29.1521 - Powerplant limitations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec29-1521.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec29-1521.pdf"><span>14 CFR 29.1521 - Powerplant limitations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec29-1521.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec29-1521.pdf"><span>14 CFR 29.1521 - Powerplant limitations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140003180','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140003180"><span>On the Trend of the Annual Mean, Maximum, and Minimum Temperature and the Diurnal Temperature Range in the Armagh Observatory, Northern Ireland, Dataset, 1844 -2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.</p> <p>2013-01-01</p> <p>Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020030207','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020030207"><span>Satellite and Skin Layer Effects on the Accuracy of Sea Surface Temperature Measurements from the GOES Satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wick, Gary A.; Bates, John J.; Scott, Donna J.</p> <p>2000-01-01</p> <p>The latest Geostationary Operational Environmental Satellites (GOES) have facilitated significant improvements in our ability to measure sea surface temperature (SST) from geostationary satellites. Nonetheless, difficulties associated with sensor calibration and oceanic near-surface temperature gradients affect the accuracy of the measurements and our ability to estimate and interpret the diurnal cycle of the bulk SST. Overall, measurements of SST from the GOES Imagers on the GOES 8-10 satellites are shown to have very small bias (less than 0.02 K) and rms differences of between 0.6 and 0.9 K relative to buoy observations. Separate consideration of individual measurement times, however, demonstrates systematic bias variations of over 0.6 K with measurement hour. These bias variations significantly affect both the amplitude and shape of estimates of the diurnal SST cycle. Modeled estimates of the temperature difference across the oceanic cool skin and diurnal thermocline show that bias variations up to 0.3 K can result from variability in the near-surface layer. Oceanic near-surface layer and known "satellite midnight" calibration effects, however, explain only a portion of the observed bias variations, suggesting other possible calibration concerns. Methods of explicitly incorporating skin layer and diurnal thermocline effects in satellite bulk SST measurements were explored in an effort to further improve the measurement accuracy. While the approaches contain more complete physics, they do not yet significantly improve the accuracy of bulk SST measurements due to remaining uncertainties in the temperature difference across the near-surface layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-07-20/pdf/2012-17532.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-07-20/pdf/2012-17532.pdf"><span>77 FR 42737 - Patient Safety Organizations: Delisting for Cause for The Steward Group PSO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-07-20</p> <p>... 12:00 Midnight ET (2400) on June 19, 2012. ADDRESSES: Both directories can be accessed electronically... ET (2400) on June 19, 2012. More information on PSOs can be obtained through AHRQ's PSO Web site at...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-07-20/pdf/2012-17531.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-07-20/pdf/2012-17531.pdf"><span>77 FR 42738 - Patient Safety Organizations: Voluntary Relinquishment From the Coalition for Quality and Patient...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-07-20</p> <p>... (2400) on May 24, 2012. ADDRESSES: Both directories can be accessed electronically at the following HHS... Patient Safety of Chicagoland (CQPS PSO) was delisted effective at 12:00 Midnight ET (2400) on May 24...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmEn.184..262C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmEn.184..262C"><span>Daily behavior of urban Fluorescing Aerosol Particles in northwest Spain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calvo, A. I.; Baumgardner, D.; Castro, A.; Fernández-González, D.; Vega-Maray, A. M.; Valencia-Barrera, R. M.; Oduber, F.; Blanco-Alegre, C.; Fraile, R.</p> <p>2018-07-01</p> <p>Measurements of ambient aerosol particles at the University of León, León, Spain, were made in May and June 2015 with a Wideband Integrated Bioaerosol Spectrometer (WIBS). The WIBS detects Fluorescing Aerosol Particles (FAP) in the size range from 0.5 to 20 μm. These measurements were complemented with an analysis of pollen concentrations assessed with optical microscopy of samples captured with a volumetric Hirst spore trap. The total particle, FAP and pollen concentrations show clear, daily cycles. Whereas the total particle concentrations maximize at 0800 and 2200 UTC, the FAP concentrations have peaks at midnight and 0800 UTC while the pollen has a broad peak between 1200 and 2000 UTC. The FAP larger than 2 μm represent 15-35% of the total particle population in this size range, maximizing at midnight UTC. Similar to what has been found by investigators at other locations, there is a strong positive correlation of the WIBS measured FAP with relative humidity; however, the pollen concentration is positively correlated with the temperature and anti-correlated with the relative humidity. Back trajectory analysis indicates that the largest FAP to total particle fractions are found in air masses arriving from the northeast with the second largest coming from the southwest. Given the location of the university in relation to the city and forested areas, this implies that the higher concentration FAP are coming from rural, probably natural, sources; however, more local, anthropogenic sources cannot be ruled out as a secondary source. The majority of the FAP that are identified from microscopy are fungal spores (Cladosporium, Aspergillus, Alternaria, Oidium) and pollen grains (mainly Poaceae, Quercus, Plantago, Rumex and Urticaceae). A comparison of the fluorescence fingerprints between laboratory generated FAP and the ambient particles showed some similarities; however, a significant fraction of the FAP are those whose fluorescence patterns do not match any of those that have been previously classified in the laboratory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880010923','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880010923"><span>Exhaust-Gas Pressure and Temperature Survey of F404-GE-400 Turbofan Engine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walton, James T.; Burcham, Frank W., Jr.</p> <p>1986-01-01</p> <p>An exhaust-gas pressure and temperature survey of the General Electric F404-GE-400 turbofan engine was conducted in the altitude test facility of the NASA Lewis Propulsion System Laboratory. Traversals by a survey rake were made across the exhaust-nozzle exit to measure the pitot pressure and total temperature. Tests were performed at Mach 0.87 and a 24,000-ft altitude and at Mach 0.30 and a 30,000-ft altitude with various power settings from intermediate to maximum afterburning. Data yielded smooth pressure and temperature profiles with maximum jet temperatures approximately 1.4 in. inside the nozzle edge and maximum jet temperatures from 1 to 3 in. inside the edge. A low-pressure region located exactly at engine center was noted. The maximum temperature encountered was 3800 R.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5690C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5690C"><span>Investigating the vertical dimension of Singapore's urban heat island through quadcopter platforms: an pilot study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chow, Winston; Ho, Dawn</p> <p>2016-04-01</p> <p>In numerous cities, measurements of urban warmth in most urban heat island (UHI) studies are generally constrained towards surface or near-surface (<2 m above surface level) levels across horizontal variations in land use and land cover. However, there has been hitherto limited attention towards the measurement of vertical temperature profiles extending from the urban surface, urban canopy layer through to the urban boundary layer. Knowledge of these profiles, through (a.) how they vary over different local urban morphologies, and (b.) develop with respect to synoptic meteorological conditions, are important towards several aspects of UHI research; these include validating modelling urban canopy lapse rate profiles or estimating the growth of urban plumes. In this novel study, we utilised temperature sensor-loggers attached onto remote controlled aerial quadcopter platforms to measure urban temperature profiles up to 100 m above ground level in Singapore, which is a rapidly urbanizing major tropical metropolis. Three different land use/land cover categories were sampled; a high-rise residential estate, a university campus, and an urban park/green-space. Sorties were flown repeatedly at four different times - sunrise, noon, sunset and midnight. Initial results indicate significant variations in intra-site stability and inversion development between the urban canopy and boundary layers. These profiles are also temporally dynamic, depending on the time of day and larger-scale weather conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19910145','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19910145"><span>Effects of radiofrequency probe application on irrigation fluid temperature in the wrist joint.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sotereanos, Dean G; Darlis, Nickolaos A; Kokkalis, Zinon T; Zanaros, George; Altman, Gregory T; Miller, Mark Carl</p> <p>2009-12-01</p> <p>Radiofrequency (RF) probes used in wrist arthroscopy may raise joint fluid temperature, increasing the risk of capsular and ligamentous damage. The purposes of the current study were to measure joint fluid temperature during wrist arthroscopy with the use of RF probes, and to determine whether using an outlet portal will reduce the maximum temperature. We performed wrist arthroscopy on 8 cadaveric arms. Ablation and coagulation cycles using RF probe were performed at documented locations within the joint. This was done for 60-second intervals on both the radial and ulnar side of the wrist, to mimic clinical practice. We used 4 fiberoptic phosphorescent probes to measure temperature (radial, ulnar, inflow-tube, and outflow-tube probes) and measured joint fluid temperature with and without outflow. There was a significant difference between wrists with and without outflow when examining maximum ablation temperatures (p < .002). All specimens showed higher maximum and average ablation temperatures without outflow. Maximum joint temperatures, greater than 60 degrees C, were observed in only no-outflow conditions. In performing RF ablation during wrist arthroscopy, the use of an outlet portal reduces the joint fluid temperature. Without an outlet portal, maximum temperatures can exceed desirable levels when using ablation; such temperatures have the potential to damage adjacent tissues. It is useful to maintain adequate outflow when using the radiofrequency probes during wrist arthroscopy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol5/pdf/CFR-2011-title49-vol5-sec395-8.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol5/pdf/CFR-2011-title49-vol5-sec395-8.pdf"><span>49 CFR 395.8 - Driver's record of duty status.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... time (e.g. midnight, 9:00 a.m., noon, 3:00 p.m.); (7) Main office address; (8) Remarks; (9) Name of co....m. the driver resumed the trip and made a delivery in Philadelphia, Pennsylvania, between 3 p.m. and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol5/pdf/CFR-2010-title49-vol5-sec395-8.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol5/pdf/CFR-2010-title49-vol5-sec395-8.pdf"><span>49 CFR 395.8 - Driver's record of duty status.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... time (e.g. midnight, 9:00 a.m., noon, 3:00 p.m.); (7) Main office address; (8) Remarks; (9) Name of co....m. the driver resumed the trip and made a delivery in Philadelphia, Pennsylvania, between 3 p.m. and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/25244','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/25244"><span>Soil and air temperatures for different habitats in Mount Rainier National Park.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Sarah E. Greene; Mark Klopsch</p> <p>1985-01-01</p> <p>This paper reports air and soil temperature data from 10 sites in Mount Rainier National Park in Washington State for 2- to 5-year periods. Data provided are monthly summaries for day and night mean air temperatures, mean minimum and maximum air temperatures, absolute minimum and maximum air temperatures, range of air temperatures, mean soil temperature, and absolute...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760034465&hterms=Krieger&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DKrieger','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760034465&hterms=Krieger&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DKrieger"><span>The coronal structure of active regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Landini, M.; Monsignori Fossi, B. C.; Krieger, A.; Vaiana, G. S.</p> <p>1975-01-01</p> <p>A four-parameter model, which assumes a Gaussian dependence of both temperature and pressure on distance from center, is used to fit the compact part of coronal active regions as observed in X-ray photographs from a rocket experiment. The four parameters are the maximum temperature, the maximum pressure, the width of the pressure distribution, and the width of the temperature distribution. The maximum temperature ranges from 2.2 to 2.8 million K, and the maximum density from 2 to 9 by 10 to the 9th power per cu cm. The range of the pressure-distribution width is from 2 to 4 by 10 to the 9th power cm and that of the temperature-distribution width from 2 to 7.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EP%26S...69..112F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EP%26S...69..112F"><span>Geomagnetically conjugate observations of ionospheric and thermospheric variations accompanied by a midnight brightness wave at low latitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fukushima, D.; Shiokawa, K.; Otsuka, Y.; Kubota, M.; Yokoyama, T.; Nishioka, M.; Komonjinda, S.; Yatini, C. Y.</p> <p>2017-08-01</p> <p>We conducted geomagnetically conjugate observations of 630-nm airglow for a midnight brightness wave (MBW) at Kototabang, Indonesia [geomagnetic latitude (MLAT): 10.0°S], and Chiang Mai, Thailand (MLAT: 8.9°N), which are geomagnetically conjugate points at low latitudes. An airglow enhancement that was considered to be an MBW was observed in OI (630-nm) airglow images at Kototabang around local midnight from 2240 to 2430 LT on February 7, 2011. This MBW propagated south-southwestward, which is geomagnetically poleward, at a velocity of 290 m/s. However, a similar wave was not observed in the 630-nm airglow images at Chiang Mai. This is the first evidence of an MBW that does not have geomagnetic conjugacy, which also implies generation of MBW only in one side of the hemisphere from the equator. We simultaneously observed thermospheric neutral winds observed by a co-located Fabry-Perot interferometer at Kototabang. The observed meridional winds turned from northward (geomagnetically equatorward) to southward (geomagnetically poleward) just before the wave was observed. This indicates that the observed MBW was generated by the poleward winds which push ionospheric plasma down along geomagnetic field lines, thereby increasing the 630-nm airglow intensity. The bottomside ionospheric heights observed by ionosondes rapidly decreased at Kototabang and slightly increased at Chiang Mai. We suggest that the polarization electric field inside the observed MBW is projected to the northern hemisphere, causing the small height increase observed at Chiang Mai. This implies that electromagnetic coupling between hemispheres can occur even though the original disturbance is caused purely by the neutral wind.[Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6390S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6390S"><span>Dayside and nightside magnetic field responses at 780 km altitude to dayside reconnection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Snekvik, Kristian; Østgaard, Nikolai; Tenfjord, Paul; Petter Reistad, Jone; Magnus Laundal, Karl; Milan, Stephen E.; Haaland, Stein E.</p> <p>2017-04-01</p> <p>During southward IMF, dayside reconnection will drive the Dungey cycle in the Earth's magnetosphere, which is manifested as a two cell convection pattern in the ionosphere. We address the response of the ionospheric convection to changes in the dayside reconnection rate. Previous studies have reported two apparently contradicting results. The first is that the ionospheric convection responds within one minute both near noon and near midnight. The second is that the response is 10-20 minutes delayed near midnight compared to near noon. To test these apparently contradicting scenarios, we have performed a statistical investigation of the response by examining the magnetic field perturbations at 780 km altitude due to dayside reconnection. The AMPERE data products derived from the Iridium constellation provide global maps of the disturbance magnetic field. The time development of the convection is modelled as the sum of an accelerating force and a decelerating force. Furthermore, the accelerating force is parametrised as a linear sum of past reconnection rates, while the decelerating force is proportional to the convection itself. This results in an asymptotic model which gradually reaches a steady-state value. By fitting the data to the model, we confirm previous reports of an almost immediate response both near noon and near midnight combined with a 10-20 minutes reconfiguration time of the two cell convection pattern. The e-folding time of the asymptotic model was found to be about 40 minutes. We present a new explanation of the response and reconfiguration times based on how MHD waves propagate in the magnetospheric lobes when newly reconnected open flux tubes are added to the lobes, and the magnetopause flaring angle increases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995AtmRe..37..147D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995AtmRe..37..147D"><span>Changes in minimum and maximum temperatures at the Pic du Midi in relation with humidity and cloudiness, 1882-1984</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dessens, J.; Bücher, A.</p> <p></p> <p>In an attempt to contribute to the investigation on a global climate change, a historical series of minimum and maximum temperature data at the Pic du Midi, a mountain observatory at 2862 m a.s.l. in the French Pyrenees, is updated after correction of a systematic deviation due to a relocation of the station in 1971. These data, which now cover the 1882-1984 period, are examined in parallel with humidity and cloud cover data for the same period. From the beginning to the end of this period, observations show that the mean night-time temperature has increased by 2.39° C/100 yr while the mean daytime temperature has decreased by 0.50° C/100 yr. In consequence, the mean annual diurnal temperature range has dropped by 36%/100 yr. The maximum seasonal decrease is 46%/100 yr in spring. Season-to-season and year-to-year inter-relationships between minimum temperature, maximum temperature, relative humidity and cloud cover suggest that the decrease in maximum temperature is related to a concomitant increase of 15%/100 yr in both relative humidity and cloud cover.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/26373','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/26373"><span>Increases in maximum stream temperatures after slash burning in a small experimental watershed.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Al Levno; Jack Rothacher</p> <p>1969-01-01</p> <p>The first year after slash was burned on a 237-acre clearcut watershed in the Cascade Range of Oregon, average maximum water temperatures increased 13°, 14°, and 12°F, during June, July, and August. A maximum stream temperature of 75°F. persisted for 3 hours on a day in July.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29772830','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29772830"><span>Determination of the Maximum Temperature in a Non-Uniform Hot Zone by Line-of-Site Absorption Spectroscopy with a Single Diode Laser.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liger, Vladimir V; Mironenko, Vladimir R; Kuritsyn, Yurii A; Bolshov, Mikhail A</p> <p>2018-05-17</p> <p>A new algorithm for the estimation of the maximum temperature in a non-uniform hot zone by a sensor based on absorption spectrometry with a diode laser is developed. The algorithm is based on the fitting of the absorption spectrum with a test molecule in a non-uniform zone by linear combination of two single temperature spectra simulated using spectroscopic databases. The proposed algorithm allows one to better estimate the maximum temperature of a non-uniform zone and can be useful if only the maximum temperature rather than a precise temperature profile is of primary interest. The efficiency and specificity of the algorithm are demonstrated in numerical experiments and experimentally proven using an optical cell with two sections. Temperatures and water vapor concentrations could be independently regulated in both sections. The best fitting was found using a correlation technique. A distributed feedback (DFB) diode laser in the spectral range around 1.343 µm was used in the experiments. Because of the significant differences between the temperature dependences of the experimental and theoretical absorption spectra in the temperature range 300⁻1200 K, a database was constructed using experimentally detected single temperature spectra. Using the developed algorithm the maximum temperature in the two-section cell was estimated with accuracy better than 30 K.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007890','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007890"><span>Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina</p> <p>2010-01-01</p> <p>Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4698711','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4698711"><span>Body Temperature Monitoring Using Subcutaneously Implanted Thermo-loggers from Holstein Steers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lee, Y.; Bok, J. D.; Lee, H. J.; Lee, H. G.; Kim, D.; Lee, I.; Kang, S. K.; Choi, Y. J.</p> <p>2016-01-01</p> <p>Body temperature (BT) monitoring in cattle could be used to early detect fever from infectious disease or physiological events. Various ways to measure BT have been applied at different locations on cattle including rectum, reticulum, milk, subcutis and ear canal. In other to evaluate the temperature stability and reliability of subcutaneous temperature (ST) in highly fluctuating field conditions for continuous BT monitoring, long term ST profiles were collected and analyzed from cattle in autumn/winter and summer season by surgically implanted thermo-logger devices. Purposes of this study were to assess ST in the field condition as a reference BT and to determine any location effect of implantation on ST profile. In results, ST profile in cattle showed a clear circadian rhythm with daily lowest at 05:00 to 07:00 AM and highest around midnight and rather stable temperature readings (mean±standard deviation [SD], 37.1°C to 37.36°C±0.91°C to 1.02°C). STs are 1.39°C to 1.65°C lower than the rectal temperature and sometimes showed an irregular temperature drop below the normal physiologic one: 19.4% or 36.4% of 54,192 readings were below 36.5°C or 37°C, respectively. Thus, for BT monitoring purposes in a fever-alarming-system, a correction algorithm is necessary to remove the influences of ambient temperature and animal resting behavior especially in winter time. One way to do this is simply discard outlier readings below 36.5°C or 37°C resulting in a much improved mean±SD of 37.6°C±0.64°C or 37.8°C±0.55°C, respectively. For location the upper scapula region seems the most reliable and convenient site for implantation of a thermo-sensor tag in terms of relatively low influence by ambient temperature and easy insertion compared to lower scapula or lateral neck. PMID:26732455</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/9315','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/9315"><span>Investigation of Wind Conditions During Early Morning Hours at Los Angeles International Airport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1977-10-01</p> <p>Los Angeles International Airport (LAX) uses a unique runway utilization pattern to minimize noise pollution between midnight and 0600. During these hours, all approaches are conducted to the east, and all takeoffs are conducted to the west. The low-...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-02-17/pdf/2011-3376.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-02-17/pdf/2011-3376.pdf"><span>76 FR 9351 - Patient Safety Organizations: Voluntary Delisting From West Virginia Center for Patient Safety</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-02-17</p> <p>... ongoing and reviewed weekly by AHRQ. The delisting was effective at 12 Midnight ET (2400) on January 20... (2400) on January 20, 2011. More information on PSOs can be obtained through AHRQ's PSO Web site at http...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-06-04/pdf/2012-13307.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-06-04/pdf/2012-13307.pdf"><span>77 FR 32975 - Patient Safety Organizations: Expired Listing for The American Cancer Biorepository, Inc. d/b/a...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-06-04</p> <p>... by AHRQ. The delisting was effective at 12 Midnight ET (2400) on April 21, 2012. ADDRESSES: Both... ET (2400) on April 21, 2012. More information on PSOs can be obtained through AHRQ's PSO Web site at...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=310967','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=310967"><span>Afternoon ascospore release in Claviceps purpurea optimizes perennial ryegrass infection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>In Kentucky bluegrass, Claviceps purpurea, the causal agent of ergot, typically releases ascospores during the early morning hours, between about midnight and 10:00 a.m., corresponding to time of flowering, when the unfertilized ovaries are most susceptible for infection. During aeromycology studies...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Flight+AND+planning&id=EJ984700','ERIC'); return false;" href="https://eric.ed.gov/?q=Flight+AND+planning&id=EJ984700"><span>On the Road</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Collins, Mary Ellen</p> <p>2012-01-01</p> <p>Veteran development officers say the experience of visiting and traveling to different places or countries often feels like an endless cycle of getting lost, missing flights, and eating midnight dinners from hotel vending machines. Despite ongoing travel challenges, experienced road warriors have learned how to maximize their effectiveness,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8887216','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8887216"><span>Genetic differences among Anopheles vestitipennis subpopulations collected using different methods in Chiapas state, southern México.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arredondo-Jiménez, J I; Gimnig, J; Rodríguez, M H; Washino, R K</p> <p>1996-09-01</p> <p>Biting activity and population genetic studies of the malaria vector Anopheles vestitipennis were conducted in southern México. Three subpopulations were collected from 2 villages; 2 subpopulations were from the same village, one on human bait and one with an animal-baited trap; the third was collected from a cattle corral in the 2nd village (280 km away SSE). The anthropophilic subpopulation had steady activity with 61% of bites occurring before midnight, significantly different from those of the 2 zoophilic subpopulations, which had 78-82% of bites before midnight and 2 biting peaks, one at 1900-2100 h and the other at 0400-0500 h. Isozyme analysis (13 enzymes) of these subpopulations indicated that differences between the 2 sympatric subpopulations (D = 0.07), collected using 2 different methods, were greater than that between the 2 allopatric ones (D = 0.03). These studies suggest the existence of 2 genetically different subpopulations of An. vestitipennis with specific host preferences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983IPCRS.130..452G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983IPCRS.130..452G"><span>Analysis of HF interference with application to digital communications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gott, G. F.; Dutta, S.; Doany, P.</p> <p>1983-08-01</p> <p>Recent observations of HF spectral occupancy and the design of devices to overcome the effects of interference on digital communications are reported. Spectral occupancy was determined at a resolution bandwidth of 100 Hz in 50-kHz bands, corresponding to the optimum working frequency over 1000 km, at noon, midnight, dawn, and dusk; and the data are analyzed in terms of congestion and voice-band availability. The implications for DPSK, frequency-exchange FSK, and frequency-diversity FSK data-transmission systems are discussed. The findings were used in the design of three improved diversity combiners (Dutta, 1977), which were tested over a 140-km range and found to reduce interference-related losses. Even better results are predicted for a sixth-order diversity modem with a sophisticated hopping scheme, now under development. Preliminary congestion spectra for the entire HF band, obtained with a calibrated active vertical antenna at noon and midnight of the summer and winter solstices in 1980, are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...858..123H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...858..123H"><span>Interplanetary Shocks Inducing Magnetospheric Supersubstorms (SML < ‑2500 nT): Unusual Auroral Morphologies and Energy Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hajra, Rajkumar; Tsurutani, Bruce T.</p> <p>2018-05-01</p> <p>We present case studies of two interplanetary shock-induced supersubstorms (SSSs) with extremely high intensities (peak SML ‑4418 and ‑2668 nT) and long durations (∼1.7 and ∼3.1 hr). The events occurred on 2005 January 21 and 2010 April 5, respectively. It is shown that these SSSs have a different auroral evolution than a nominal Akasofu-type substorm. The auroras associated with the SSSs did not have the standard midnight onset and following expansion. Instead, at the time of the SML index peak, the midnight sector was generally devoid of intense auroras, while the most intense auroras were located in the premidnight and postmidnight magnetic local times. Precursor energy input through magnetic reconnection was insufficient to balance the large ionospheric energy dissipation during the SSSs. It is argued that besides the release of stored magnetotail energy during the SSSs, these were powered by additional direct driving through both dayside magnetic reconnection and solar wind ram energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850059791&hterms=FAC&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DFAC','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850059791&hterms=FAC&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DFAC"><span>ISEE-1 and 2 observations of field-aligned currents in the distant midnight magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Elphic, R. C.; Kelly, T. J.; Russell, C. T.</p> <p>1985-01-01</p> <p>Magnetic field measurements obtained in the nightside magnetosphere by the co-orbiting ISEE-1 and 2 spacecraft have been examined for signatures of field-aligned currents (FAC). Such currents are found on the boundary of the plasma sheet both when the plasma sheet is expanding and when it is thinning. Evidence is often found for the existence of waves on the plasma sheet boundary, leading to multiple crossings of the FAC sheet. At times the boundary layer FAC sheet orientation is nearly parallel to the X-Z GSM plane, suggesting 'protrusions' of plasma sheet into the lobes. The boundary layer current polarity is, as expected, into the ionosphere in the midnight to dawn local time sector, and outward near dusk. Current sheet thicknesses and velocities are essentially independent of plasma sheet expansion or thinning, having typical values of 1500 km and 20-40 km/s respectively. Characteristic boundary layer current densities are about 10 nanoamps per square meter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMSA23B1485R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMSA23B1485R"><span>Substorm-related thermospheric density and wind disturbances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ritter, P.; Luhr, H.; Doornbos, E. N.</p> <p>2009-12-01</p> <p>The input of energy and momentum from the magnetosphere is most efficiently coupled into the high latitude ionosphere-thermosphere. The phenomenon we are focusing on here is the magnetospheric substorm. This paper presents substorm related observations of the thermosphere derived from the CHAMP satellite. With its sensitive accelerometer the satellite can measure the air density and zonal winds. Based on a large number of substorm events the average high and low latitude thermosphere response to substorm onsets was deduced. During magnetic substorms the thermospheric density is enhanced first at high latitudes. Then the disturbance travels at sonic speed to lower latitudes, and 3-4 hours later the bulge reaches the equator on the night side. Under the influence of the Coriolis force the traveling atmospheric disturbance (TAD) is deflected westward. In accordance with present-day atmospheric models the disturbance zonal wind velocities during substorms are close to zero near the equator before midnight and attain moderate westward velocities after midnight. In general, the wind system is only weakly perturbed by substorms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23617450','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23617450"><span>A cross-cultural experience at midnight.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Niimura, Junko</p> <p>2013-04-01</p> <p>This essay is a story about a cultural interaction between a Japanese mother and a Chinese young mother whose baby was premature. When I was staying in a hospital in Japan to deliver my second son, I shared a room with this mother. She delivered her baby very early-at 25 weeks of pregnancy. Her baby received extensive medical treatment in the neonatal intensive care unit. However, this Chinese young mother appeared bewildered about the communication from the Japanese hospital staff because Japanese hospital's communication about the medical care of premature infants was very different from China. One day at midnight, she spoke with me about having deep uneasiness about the situation and having many unanswered questions. After this cultural experience, I began to think more deeply about cultural differences in terms of health and illness and the influence of universal health insurance on the lives of the families of premature infants. I also recognized that the value of life is not calculated in the same fashion globally. © 2013 Wiley Publishing Asia Pty Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912258T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912258T"><span>Analysis of temperature trends in Northern Serbia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tosic, Ivana; Gavrilov, Milivoj; Unkašević, Miroslava; Marković, Slobodan; Petrović, Predrag</p> <p>2017-04-01</p> <p>An analysis of air temperature trends in Northern Serbia for the annual and seasonal time series is performed for two periods: 1949-2013 and 1979-2013. Three data sets of surface air temperatures: monthly mean temperatures, monthly maximum temperatures, and monthly minimum temperatures are analyzed at 9 stations that have altitudes varying between 75 m and 102 m. Monthly mean temperatures are obtained as the average of the daily mean temperatures, while monthly maximum (minimum) temperatures are the maximum (minimum) values of daily temperatures in corresponding month. Positive trends were found in 29 out of 30 time series, and the negative trend was found only in winter during the period 1979-2013. Applying the Mann-Kendall test, significant positive trends were found in 15 series; 7 in the period 1949-2013 and 8 in the period 1979-2013; and no significant trend was found in 15 series. Significant positive trends are dominated during the year, spring, and summer, where it was found in 14 out of 18 cases. Significant positive trends were found 7, 5, and 3 times in mean, maximum and minimum temperatures, respectively. It was found that the positive temperature trends are dominant in Northern Serbia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033254','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033254"><span>A basin-scale approach to estimating stream temperatures of tributaries to the lower Klamath River, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Flint, L.E.; Flint, A.L.</p> <p>2008-01-01</p> <p>Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AtmEn..70..490S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AtmEn..70..490S"><span>Sources and transport of black carbon at the California-Mexico border</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shores, Christopher A.; Klapmeyer, Michael E.; Quadros, Marina E.; Marr, Linsey C.</p> <p>2013-05-01</p> <p>At international border areas that suffer from poor air quality, assessment of pollutant sources and transport across the border is important for designing effective air quality management strategies. As part of the Cal-Mex 2010 field campaign at the US-Mexico border in San Diego and Tijuana, we measured black carbon (BC) concentrations at three locations in Mexico and one in the United States. The measurements were intended to support the following objectives: to characterize the spatial and temporal variability in BC, to estimate the BC emission inventory, to identify potential source areas of BC emissions, and to assess the cross-border transport of BC. Concentrations at Parque Morelos, the campaign's supersite, averaged 2.2 μg m-3 and reached a maximum value of 55.9 μg m-3 (1-min average). Sharp, regularly occurring peaks around midnight were suggestive of clandestine industrial activity. BC concentrations were more than two times higher, on average, in Tijuana compared to San Diego. BC and carbon monoxide (CO) were strongly correlated at the three sites in Mexico. The ΔBC/ΔCO ratio of 5.6 ± 0.5 μg m-3 ppm-1 in Tijuana, or 4.7 ± 0.5 μg m-3 ppm-1 when adjusted for seasonal temperature effects to represent an annual average, was comparable to that in other urban areas. Tijuana's emissions of BC were estimated to be 230-890 metric tons per year, 6-23% of those estimated for San Diego. Large uncertainties in this estimate stem mainly from uncertainties in the CO emission inventory, and the lower end of the estimate is more likely to be accurate. Patterns in concentrations and winds suggest that BC in Tijuana was usually of local origin. Under typical summertime conditions such as those observed during the study, transport from Tijuana into the US was common, crossing the border in a northeasterly direction, sometimes as far east as Imperial County at the eastern edge of California.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70180753','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70180753"><span>Rates of consumption of juvenile salmonids and alternative pray fish by northern squawfish, walleyes, smallmouth bass, and channel catfish in John Day Reservoir, Columbia River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Vigg, Steven; Poe, Thomas P.; Prendergast , Linda A.; Hansel, Hal C.</p> <p>1991-01-01</p> <p>Adult northern squawfish Ptychocheilus oregonensis, walleyes Stizostedion vitreum, smallmouth bass Micropterus dolomieu, and channel catfish Ictalurus punctatus were sampled from four regions of John Day Reservoir from April to August 1983–1986 to quantify their consumption of 13 species of prey fish, particularly seaward-migrating juvenile Pacific salmon and steelhead (Oncorhynchus spp.). Consumption rates were estimated from field data on stomach contents and digestion rate relations determined in previous investigations. For each predator, consumption rates varied by reservoir area, month, time of day, and predator size or age. The greatest daily consumption of salmonids by northern squawfish and channel catfish (0.7 and 0.5 prey/predator) occurred in the upper end of the reservoir below McNary Dam. Greatest daily predation by walleyes (0.2 prey/predator) and smallmouth bass (0.04) occurred in the middle and lower reservoir. Consumption rates of all predators were highest in July, concurrent with maximum temperature and abundance of juvenile salmonids. Feeding by the predators tended to peak after dawn (0600–1200 hours) and near midnight (2000–2400). Northern squawfish below McNary Dam exhibited this pattern, but fed mainly in the morning hours down-reservoir. The daily ration of total prey fish was highest for northern squawfish over 451 mm fork length (> 13.2 mg/g predator), for walleyes 201–250 mm (42.5 mg/g), for smallmouth bass 176–200 mm (30.4 mg/g), and for channel catfish 401–450 mm (17.1 mg/g). Averaged over all predator sizes and sampling months (April–August), the total daily ration (fish plus other prey) of smallmouth bass (28.7 mg/ g) was about twice that of channel catfish (12.6), northern squawfish (14.1), and walleyes (14.2). However, northern squawfish was clearly the major predator on juvenile salmonids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3899210','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3899210"><span>Haul-Out Behaviour of the World's Northernmost Population of Harbour Seals (Phoca vitulina) throughout the Year</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hamilton, Charmain D.; Lydersen, Christian; Ims, Rolf A.; Kovacs, Kit M.</p> <p>2014-01-01</p> <p>The harbour seal population in Svalbard occurs at the northernmost limit of the species' range. It experiences environmental extremes far beyond the norm for this species, including an extended period of polar night and extensive sea ice cover. In 2009 and 2010, 60 harbour seals (30 pups + 30 immature/mature seals) from this population were equipped with Satellite-Relay Data Loggers (SRDLs) to study their haul-out behaviour, with a special focus on the winter period. Using a combination of Generalized Additive Mixed Models and Cox Proportional Hazard models, the influences of sex, maturity, temporal, spatial and environmental factors on haul-out behaviour were explored. All of the seals continued to haul out even through the coldest periods during the polar night, though clear seasonality in the time spent hauled out daily was displayed by both immature and mature seals. Time spent hauled out daily decreased from ∼5.2 hrs in September to ∼1.2 hrs in February in these age groups, while pups displayed less seasonality (∼2.4 hrs/day throughout most of the year). The average at-sea period also exhibited seasonality, increasing to a maximum of ∼1.6 days in February (monthly maxima for individual animals ranged from 7 to 19 days). The seals showed a strong preference to haul out at low tide when hauling out on land but not when using sea ice as a haul-out platform. A diel rhythm in haul-out behaviour was present during the months with day–night cycling and midnight sun but not during the polar night. Haul-out behaviour was impacted to a greater extent by air pressure, through its effect on wind speed, than by absolute temperature values. The extreme environment in Svalbard likely causes some physiological challenges that might impact survival rates negatively, particularly among pups. Climate warming is likely to have positive effects on Svalbard's harbour seal population. PMID:24465867</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMSM23A0468E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMSM23A0468E"><span>A Search for Signatures of Ion Acoustic Shoulders in the SERSIO sounding rocket data set</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ellis, A. T.; Lessard, M. R.; Kintner, P. M.; Lynch, K. A.; Klatt, E.; Oksavik, K.</p> <p>2004-12-01</p> <p>Although first predicted in the early 1960's, enhanced Ion Acoustic Shoulders have only been observed by incoherent scatter radars since the late 1980's. The signature of an IAS is seen as a positive and negative frequency shift about the center radar frequency. These features occur at altitudes of 150 to over 600 km, peaking at 500 km, with spatial extent (perpendicular to the magnetic field) the order of 10 km. The occurrence distribution shows a maximum in the pre-midnight region, with a secondary peak on the dayside (Rietveld et al 1995). Observations of strong (1000 mA/m2), localized currents by EISCAT have led to theories based on current-driven instabilities as the source of these waves (Forme, 1993; St.-Maurice et al., 1996). The SERSIO (Svalbard EISCAT Rocket Study of Ion Outflows) sounding rocket mission was launched into CME-driven dayside aurora on the 22nd of January 2004 at 0857 UT (0436 MLT) from Ny-Alesund (78o 55' 11" N, 11o 56' 60" E) and reached an apogee of 782 km. During the flight, the EISCAT incoherent scatter radar network supported the mission by monitoring altitude profiles of electron and ion density, velocity and temperature. From Longyearbyen, located approximately 50 km south east of Ny-Alesund and near the trajectory of SERSIO, the 32m ESR dish was tracking the ionospheric footprint of the payload while the 42 m dish was making local field-aligned measurements. The data from these radars clearly indicated the presence of enhanced ion acoustic shoulders, suggesting that SERSIO flew through a 'field' of Ion Acoustic Shoulders. In fact, the plasma wave environment observed by SERSIO was composed of traditional VLF hiss and Broad Band ELF hiss with wavelengths less than the order of 6m. Here we present the result of our search for Ion Acoustic Shoulders in the SERSIO data set.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4596575','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4596575"><span>Thermal Modelling Analysis of Spiral Wound Supercapacitor under Constant-Current Cycling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Kai; Li, Liwei; Yin, Huaixian; Zhang, Tiezhu; Wan, Wubo</p> <p>2015-01-01</p> <p>A three-dimensional modelling approach is used to study the effects of operating and ambient conditions on the thermal behaviour of the spiral wound supercapacitor. The transient temperature distribution during cycling is obtained by using the finite element method with an implicit predictor-multicorrector algorithm. At the constant current of 2A, the results show that the maximum temperature appears in core area. After 5 cycles, the maximum temperature is 34.5°C, while in steady state, it’s up to 42.5°C. This paper further studies the relationship between the maximum temperature and charge-discharge current. The maximum temperature will be more than 60°C after 5 cycles at the current of 4A, and cooling measurements should be taken at that time. It can provide thoughts on inner temperature field distribution and structure design of the spiral wound supercapacitor in working process. PMID:26444687</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMEP...27.2373G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMEP...27.2373G"><span>Effects of Pouring Temperature and Electromagnetic Stirring on Porosity and Mechanical Properties of A357 Aluminum Alloy Rheo-Diecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, An; Zhao, Junwen; Xu, Chao; Li, Hu; Han, Jing; Zhang, Xu</p> <p>2018-05-01</p> <p>Semisolid slurry of A357 aluminum alloy was prepared using a temperature-controllable electromagnetic stirrer and rheo-diecast at different temperatures. The effects of pouring temperature and electromagnetic stirring (EMS) on the porosity in rheo-diecast samples, as well as the relation between porosity and mechanical properties, were investigated. The results show that pouring temperature and EMS had minor influences on rheo-diecast microstructure but marked influence on the porosity. With decreasing slurry pouring temperature, the porosity decreased first and then increased, whereas the maximum pore ratio (ratio of shape factor to diameter of the largest pore) increased first and then decreased. The maximum pore ratio determines the level of tensile strength and elongation, and higher mechanical properties can be obtained with smaller and rounder pores in samples. The mechanical properties of the rheo-diecast samples increased linearly with increasing maximum pore ratio. The maximum pore ratio was 1.43 µm-1, and the minimum porosity level was 0.37% under EMS condition for the rheo-diecast samples obtained at a pouring temperature of 608 °C. With this porosity condition, the maximum tensile strength and elongation were achieved at 274 MPa and 4.9%, respectively. It was also revealed that EMS improves mechanical properties by reduction in porosity and an increase in maximum pore ratio.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-05-25/pdf/2012-12787.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-05-25/pdf/2012-12787.pdf"><span>77 FR 31290 - Notice of Public Meeting of the Assembly of the Administrative Conference of the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-05-25</p> <p>... last revised in 1995. For instance, despite OMB guidance on the application of the PRA to social media... Affairs at OMB are all encouraged to play a role in achieving this goal. (2) The recommendation ``Midnight...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1019378','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1019378"><span>Becoming Curt Lemay: The Formative Experiences of an Air Force Icon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-06-01</p> <p>Turbulent Life of General Curtis LeMay some 20 years after LeMay‟s autobiographical piece. Laced with an apologetic undertone, Iron Eagle is insufficiently...to radio her position around midnight. The three B- 59 “ Memories of Gen. LeMay,” San Antonio</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title43-vol2/pdf/CFR-2012-title43-vol2-sec3823-2.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title43-vol2/pdf/CFR-2012-title43-vol2-sec3823-2.pdf"><span>43 CFR 3823.2 - Mineral locations within National Forest Wilderness.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... MINING LAWS Prospecting, Mineral Locations, and Mineral Patents Within National Forest Wilderness § 3823.2 Mineral locations within National Forest Wilderness. (a) Until midnight, December 31, 1983, the... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Mineral locations within National Forest...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title43-vol2/pdf/CFR-2014-title43-vol2-sec3823-2.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title43-vol2/pdf/CFR-2014-title43-vol2-sec3823-2.pdf"><span>43 CFR 3823.2 - Mineral locations within National Forest Wilderness.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... MINING LAWS Prospecting, Mineral Locations, and Mineral Patents Within National Forest Wilderness § 3823.2 Mineral locations within National Forest Wilderness. (a) Until midnight, December 31, 1983, the... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Mineral locations within National Forest...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title43-vol2/pdf/CFR-2013-title43-vol2-sec3823-2.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title43-vol2/pdf/CFR-2013-title43-vol2-sec3823-2.pdf"><span>43 CFR 3823.2 - Mineral locations within National Forest Wilderness.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... MINING LAWS Prospecting, Mineral Locations, and Mineral Patents Within National Forest Wilderness § 3823.2 Mineral locations within National Forest Wilderness. (a) Until midnight, December 31, 1983, the... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Mineral locations within National Forest...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title43-vol2/pdf/CFR-2011-title43-vol2-sec3823-2.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title43-vol2/pdf/CFR-2011-title43-vol2-sec3823-2.pdf"><span>43 CFR 3823.2 - Mineral locations within National Forest Wilderness.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... MINING LAWS Prospecting, Mineral Locations, and Mineral Patents Within National Forest Wilderness § 3823.2 Mineral locations within National Forest Wilderness. (a) Until midnight, December 31, 1983, the... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Mineral locations within National Forest...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-210_CloseEncountersJupiter.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-210_CloseEncountersJupiter.html"><span>ScienceCast 210: Close Encounters with Jupiter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-03-04</p> <p>On March 8th, 2016 Earth and Jupiter will have a close encounter. The giant planet will be "up all night," soaring almost overhead at midnight and not setting until sunrise on March 9th. In July, the Juno mission will give us an even closer look.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss036e028913.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss036e028913.html"><span>sunset</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-08-04</p> <p>ISS036-E-028913 (4 Aug. 2013) --- A sunset over the Aleutian Islands, with noctilucent clouds, is featured in this image photographed by an Expedition 36 crew member on the International Space Station. The crew member took this panoramic view looking north from the Aleutian Islands when the space station was flying east at ?the top of the orbit,? the northernmost latitude reached by the orbital complex (51.6 degrees north). If the sun had been higher, the string of Aleutian Islands would have been visible in the foreground. Here the islands are on the dark side of the day-night line. From their vantage point at 222 kilometers altitude on this day, crew members were able to see as far north as the Arctic Ocean and the midnight sun. This image was taken just 20 minutes after local midnight in early August 2013. The midnight sun makes the red, diamond-shaped teardrop reflection (lower center)?perhaps a reflection within the camera lens, or from the window frame, or some item inside the ISS. Long blue-white stringers can be seen in the atmosphere above the midnight sun. These are known as noctilucent clouds (night-shining clouds). Some crew members say these wispy, rippling, iridescent clouds are the most beautiful phenomena they see from orbit. Noctilucents are thin so that they are best seen after sunset when the viewer is on the night side of the day-night line, but while these high clouds are still lit by the sun. Crews are trained in this somewhat complicated geometry?of clouds being lit from beneath, with the spacecraft in sunlight though the ground directly beneath is in darkness. Noctilucent clouds are also known as polar mesospheric clouds (PMCs) as they appear in the summer hemisphere over polar latitudes. Some data suggest that they are becoming brighter, and appearing at lower latitudes, perhaps as an effect of global warming. A comparison of noctilucent cloud formation from 2012 and 2013 has been compiled using data from NASA?s Aeronomy of Ice in the Mesosphere (AIM) shows an earlier start and an increase in the area covered by these clouds in 2013. Polar mesospheric clouds are interesting to scientists because they form much higher in the atmosphere (75-90 kilometers) compared with altitudes of normal rainclouds that form in the lowest, densest ?weather-layer? below approximately 15 kilometers. The weather layer, or troposphere, is most distinct in this image as a thin orange line along the left horizon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASTP.167..107S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASTP.167..107S"><span>Longitudinal and seasonal variations of O(1D) nightglow emission maxima at southern midlatitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shepherd, Marianna G.</p> <p>2018-01-01</p> <p>The Wind Imaging Interferometer (WINDII) experiment on the Upper Atmosphere Research Satellite (UARS) offers a global view of the O(1D) airglow emission rates and neutral winds over the entire altitude range from 190 to 300 km, and provides a unique means for drawing a self-consistent picture of the state of the nighttime upper thermosphere at southern mid-latitudes and by proxy-the ionosphere. The focus of the current study is an investigation of the global seasonal, local time, altitude and longitudinal variability of O(1D) nightglow at southern mid-latitudes (20°S-40°S) employing multi-year observations of O(1D) airglow VERs and neutral winds over the same altitude range and by the same instrument. The results reported here are from four austral seasons, two summers (December solstice, 1992-1993 and 1994-1995), and two equinoxes (March and September 1992). A clear midnight O(1D) VER enhancement is observed at high solar activity during austral summer solstice and equinox (DJF, 1992-1993, and SON, 1992) and at low solar activity during summer (DJF, 1994-1995). The midnight VER enhancement was followed by a wave 4 signature developing after local midnight during all seasons considered particularly during high solar activity summer solstice and spring equinox. The analysis also revealed a complex global O(1D) nightglow VER field, which independently of season exhibited vast regions of very low O(1D) VER (1-4 photons cm-3s-1) in the pre-midnight period at 200°E-300°E longitude throughout the entire latitude range of 5°S-40°S. Particularly noticeable was a region of very low VERs observed poleward of 25°S throughout the local night independent of local time and seasons, over the longitude range from 340°E to 100°E-120°E, which was co-located with the midlatitude ionospheric trough. Another persistent signature observed was an enhancement at 100°E-200°E, at latitudes south of 25°S-30°S, which corresponds to a wave 1 or is a part of a wave 2 signature, likely the result of transport of plasma associated with the Weddell Sea Anomaly. The most prominent result revealed by the study is the role of the wave 4 and wave 1 in the coupling of the lower atmosphere and the thermosphere/ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.9505I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.9505I"><span>SuperDARN observations of an unusually contracted ionospheric convection pattern during the recent deep solar minimum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Imber, S. M.; Milan, S. E.; Lester, M.</p> <p>2012-04-01</p> <p>We present a long term study, from 1995 - 2011, of the latitude of the Heppner-Maynard Boundary (HMB) determined using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection. We find that the average latitude of the HMB at midnight is 61° magnetic latitude during the solar maximum of 2003, but it moves significantly poleward during solar minimum, averaging 64° latitude during 1996, and 68° during 2010. This poleward motion is observed despite the increasing number of low latitude radars built in recent years as part of the StormDARN network, and so is not an artefact of data coverage. We believe that the recent extreme solar minimum lead to an average HMB location that was further poleward than previous solar cycles. We also calculated the open-closed field line boundary (OCB) from auroral images during the years 2000-2002 and find that on average the HMB is located equatorward of the OCB by ~6°. We suggest that the HMB may be a useful proxy for the OCB when global auroral images are not available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860007325','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860007325"><span>Global auroral responses to magnetospheric compressions by shocks in the solar wind: Two case studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Craven, J. D.; Frank, L. A.; Russell, C. T.; Smith, E. J.; Lepping, R. P.</p> <p>1985-01-01</p> <p>The global auroral responses to shocks in the solar wind at Earth were studied. The z-component of the interplanetary magnetic field, Bz, is negative ahead and behind the first shock and positive for the second case. A sudden-commencement geomagnetic storm develops in each case, with maximum D sub st 190 nT. An immediate auroral response is detected at all longitudes around the auroral oval, in which auroral luminosities increase by a factor of 2 to 3 with the first samples after each sudden commencement. The time delay in obtaining the first sample varies with local time from approx. 1 to 18 mins. No other significant variations in the aurora are associated with the immediate response. Beginning approx. 30 mins after each sudden commencement, the aurora becomes active and displays significant variations in its luminosity and spatial distribution. For Bz 0 an intense substorm develops. A sun-aligned transpolar arc forms when Bz 0, appearing first at local midnight as a polar arc and then lengthening sunward from the auroral oval across the polar cap to noon at an average speed of approx. 1 km/sec.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA11054&hterms=phoenix+lights&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dphoenix%2Blights','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA11054&hterms=phoenix+lights&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dphoenix%2Blights"><span>Ice Cold Sunrise on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2008-01-01</p> <p><p/> From the location of NASA's Phoenix Mars Lander, above the Martian arctic circle, the sun does not set during the peak of the Martian summer. <p/> This period of maximum solar energy is past on Sol 86, the 86th Martian day after the Phoenix landing, the sun fully set behind a slight rise to the north for about half an hour. <p/> This red-filter image taken by the lander's Surface Stereo Imager, shows the sun rising on the morning of sol 90, Aug. 25, 2008, the last day of the Phoenix nominal mission. <p/> The image was taken at 51 minutes past midnight local solar time during the slow sunrise that followed a 75 minute 'night.' The skylight in the image is light scattered off atmospheric dust particles and ice crystals. <p/> The setting sun does not mean the end of the mission. In late July, the Phoenix Mission was extended through September, rather than the 90-sol duration originally planned as the prime mission. <p/> The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21514044','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21514044"><span>Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D</p> <p>2011-06-15</p> <p>The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10425E..0IE','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10425E..0IE"><span>The upper atmosphere layer height changes as a precursor of the Padang earthquake on 30 September 2009</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ednofri, Ednofri; Wu, Falin; Ahmed, Wasiu Akande; Zhao, Yan</p> <p>2017-09-01</p> <p>This research investigated the potential of the upper atmosphere layer height changes as precursor of the Padang Earthquake on 30 September 2009. We analyzed the occurrence of atmospheric gravity wave (AGW) in all-sky imager (ASI) images and h'F in ionosonde mounted on Kototabang (0.2°S, 100.3°E, -10.4° magnetic latitude) Indonesia from seven days before and after the earthquake and found that there was an unusual evening in h'F variation on 24 and 29 September 2009. A positive h'F deviation on 24 and 29 September 2009 are with a maximum value of 42 and 31.5. For both these dates, the maximum h'F value reached 234 km and 261 km at 00:30 LT and 20:30 LT with the median value of 192 km and 229.5 km, respectively. The increase in h'F on 24 September 2009 before the midnight was caused by encouragement from AGW observed at a wavelength of OH bands ( 86 km) that happened a few minutes earlier. While the increase in h'F on 29 September 2009, suspected to be caused by the emergence of the AGW, though it cannot be proven because ASI does not operate due to rainy weather over Kototabang. For Dst index during the month of September 2009, there is nothing worth under -50 nT, this means a change of altitude h'F six and one days before the earthquake is not caused by the influence of magnetic storm but caused by AGW resulting from the epicenter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005IJCli..25.1301G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005IJCli..25.1301G"><span>Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Griffiths, G. M.; Chambers, L. E.; Haylock, M. R.; Manton, M. J.; Nicholls, N.; Baek, H.-J.; Choi, Y.; della-Marta, P. M.; Gosai, A.; Iga, N.; Lata, R.; Laurent, V.; Maitrepierre, L.; Nakamigawa, H.; Ouprasitwong, N.; Solofa, D.; Tahani, L.; Thuy, D. T.; Tibig, L.; Trewin, B.; Vediapan, K.; Zhai, P.</p> <p>2005-08-01</p> <p>Trends (1961-2003) in daily maximum and minimum temperatures, extremes and variance were found to be spatially coherent across the Asia-Pacific region. The majority of stations exhibited significant trends: increases in mean maximum and mean minimum temperature, decreases in cold nights and cool days, and increases in warm nights. No station showed a significant increase in cold days or cold nights, but a few sites showed significant decreases in hot days and warm nights. Significant decreases were observed in both maximum and minimum temperature standard deviation in China, Korea and some stations in Japan (probably reflecting urbanization effects), but also for some Thailand and coastal Australian sites. The South Pacific convergence zone (SPCZ) region between Fiji and the Solomon Islands showed a significant increase in maximum temperature variability.Correlations between mean temperature and the frequency of extreme temperatures were strongest in the tropical Pacific Ocean from French Polynesia to Papua New Guinea, Malaysia, the Philippines, Thailand and southern Japan. Correlations were weaker at continental or higher latitude locations, which may partly reflect urbanization.For non-urban stations, the dominant distribution change for both maximum and minimum temperature involved a change in the mean, impacting on one or both extremes, with no change in standard deviation. This occurred from French Polynesia to Papua New Guinea (except for maximum temperature changes near the SPCZ), in Malaysia, the Philippines, and several outlying Japanese islands. For urbanized stations the dominant change was a change in the mean and variance, impacting on one or both extremes. This result was particularly evident for minimum temperature.The results presented here, for non-urban tropical and maritime locations in the Asia-Pacific region, support the hypothesis that changes in mean temperature may be used to predict changes in extreme temperatures. At urbanized or higher latitude locations, changes in variance should be incorporated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/2983','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/2983"><span>Influence of stream characteristics and grazing intensity on stream temperatures in eastern Oregon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>S.B. Maloney; A.R. Tiedemann; D.A. Higgins; T.M. Quigley; D.B. Marx</p> <p>1999-01-01</p> <p>Stream temperatures were measured during summer months, 1978 to 1984, at 12 forested watersheds near John Day, Oregon, to determine temperature characteristics and assess effects of three range management strategies of increasing intensity. Maximum temperatures in streams of the 12 watersheds ranged from 12.5 to 27.8 oC. Maximum stream temperatures on four watersheds...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.245B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.245B"><span>Ion Acceleration at Earth, Saturn and Jupiter and its Global Impact on Magnetospheric Structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brandt, Pontus</p> <p>2016-07-01</p> <p>The ion plasma pressures at Earth, Saturn and Jupiter are significant players in the electrodynamic force-balance that governs the structure and dynamics of these magnetospheres. There are many similarities between the physical mechanisms that are thought to heat the ion plasma to temperatures that even exceed those of the solar corona. In this presentation we compare the ion acceleration mechanisms at the three planetary magnetospheres and discuss their global impacts on magnetopsheric structure. At Earth, bursty-bulk flows, or "bubbles", have been shown to accelerate protons and O+ to high energies by the earthward moving magnetic dipolarization fronts. O+ ions display a more non-adiabatic energization in response to these fronts than protons do as they are energized and transported in to the ring-current region where they reach energies of several 100's keV. We present both in-situ measurements from the NASA Van Allen Probes Mission and global Energetic Neutral (ENA) images from the High-Energy Neutral Atom (HENA) Camera on board the IMAGE Mission, that illustrate these processes. The global impact on the magnetospheric structure is explored by comparing the empirical magnetic field model TS07d for given driving conditions with global plasma pressure distributions derived from the HENA images. At Saturn, quasi-periodic energization events, or large-scale injections, occur beyond about 9 RS around the post-midnight sector, clearly shown by the Ion and Neutral Atom Camera (INCA) on board the Cassini mission. In contrast to Earth, the corotational drift dominates even the energetic ion distributions. The large-scale injections display similar dipolarization front features can be found and there are indications that like at Earth the O+ responds more non-adiabatically than protons do. However, at Saturn there are also differences in that there appears to be energization events deep in the inner magnetosphere (6-9 RS) preferentially occurring in the pre-midnight sector that seem to be related to centrifugal interchange. We will show how the plasma pressure resulting from the large-scale injections perturb the magnetic field and give rise the periodic oscillations as measured by Cassini. At Jupiter, quasi-periodic, large-scale injections also occur in the post-midnight sector, but at much larger distances. Analysis of Galileo measurements have shown that there are also features with similarities to the effects of planetward moving dipolarization fronts, and that the protons, O+ and S+ have different spectral signatures. Although the magnetodisc structure is partly a result of centrifugal forces exerted by the cold plasma, the anisotropies of the hot plasma have been found to account for a very significant part of the force-balance responsible for the disc structure. We will briefly also discuss our science planning and development of the plasma, energetic particle and ENA instrumentation on board the ESA Jupiter Icy moon Explorer and how we plan to address these intriguing science topics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec23-1521.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec23-1521.pdf"><span>14 CFR 23.1521 - Powerplant limitations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title14-vol1/pdf/CFR-2013-title14-vol1-sec23-1521.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title14-vol1/pdf/CFR-2013-title14-vol1-sec23-1521.pdf"><span>14 CFR 23.1521 - Powerplant limitations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol1/pdf/CFR-2012-title14-vol1-sec23-1521.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol1/pdf/CFR-2012-title14-vol1-sec23-1521.pdf"><span>14 CFR 23.1521 - Powerplant limitations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec23-1521.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec23-1521.pdf"><span>14 CFR 23.1521 - Powerplant limitations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title14-vol1/pdf/CFR-2014-title14-vol1-sec23-1521.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title14-vol1/pdf/CFR-2014-title14-vol1-sec23-1521.pdf"><span>14 CFR 23.1521 - Powerplant limitations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18371098','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18371098"><span>Temperature changes in dental implants following exposure to hot substances in an ex vivo model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Feuerstein, Osnat; Zeichner, Kobi; Imbari, Chen; Ormianer, Zeev; Samet, Nachum; Weiss, Ervin I</p> <p>2008-06-01</p> <p>The habitual consumption of extremely hot foods and beverages may affect implant treatment modality. Our objectives were to: (i) establish the maximum temperature produced intra-orally while consuming very hot substances and (ii) use these values in an ex vivo model to assess the temperature changes along the implant-bone interface. Temperatures were measured using thermocouples linked to a computer. The thermocouple electrodes were attached to the tooth-gum interface of the interproximal areas in 14 volunteers during consumption of extremely hot foods and beverages. The in vivo measured temperature values obtained were used in an ex vivo model of a bovine mandible block with an implant and with an assembled abutment. Temperatures were measured by thermocouple electrodes attached to five locations, three of them along the implant-bone interface. During consumption of a hot beverage, a maximum temperature of up to 76.3 degrees C was recorded, and a calculated extreme intra-oral temperature of 61.4 degrees C was established. The ex vivo model showed a high correlation between the temperature measured at the abutment and that measured at the abutment-implant interface and inside the implant, reaching maximum temperatures close to 60 degrees C. At the mid-implant-bone and apical implant-bone interfaces, the maximum temperatures measured were 43.3 and 42 degrees C, respectively. The maximum temperatures measured at the implant-bone interfaces reached the temperature threshold of transient changes in bone (42 degrees C). The results of this study support the notion that intra-oral temperatures, developed during the consumption of very hot substances, may be capable of damaging peri-implant tissues.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAP...123d4103D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAP...123d4103D"><span>Non-trivial behavior of the low temperature maximum of dielectric constant and location of the end critical point in Na0.5Bi0.5TiO3-0.06BaTiO3 lead free relaxor ferroelectrics crystals detected by acoustic emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dul'kin, Evgeniy; Tiagunova, Jenia; Mojaev, Evgeny; Roth, Michael</p> <p>2018-01-01</p> <p>[001] lead free relaxor ferroelectrics crystals of Na0.5Bi0.5TiO3-0.06BaTiO3 were studied by means of dielectric and acoustic emission methods in the temperature range of 25-240 °C and under a dc bias electric field up to 0.4 kV/cm. A temperature maximum of the dielectric constant was found near 170 °C, as well as the acoustic emission bursts pointed out to both the depolarization temperature near 120 °C and the temperature, corresponding to the maximum of dielectric constant, near 170 °C. While the depolarization temperature increased linearly, the temperature of the dielectric constant maximum was shown to exhibit a V-shape behavior under an electric field: it initially decreases, reaches a sharp minimum at some small threshold electric field of 0.15 kV/cm, and then starts to increase similar to the Curie temperature of the normal ferroelectrics, as the field enhances. Acoustic emission bursts, accompanying the depolarization temperature, weakened with the enhancing field, whereas the ones accompanying the temperature of the dielectric constant maximum exhibited two maxima: near 0.1 kV/cm and near 0.3 kV/cm. The meaning of these two acoustic emission maxima is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA561432','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA561432"><span>Funding Ammunition Ports</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-01-01</p> <p>a pure version of either approach, but MOTSU has a greater relative emphasis on working capital funding than MOTCO does. Figure 1.1 depicts how...midnight on September 30, the government’s coach turns into a pumpkin . That is the moment—at the end of the fiscal year—at which every agency, with a few</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title47-vol1/pdf/CFR-2010-title47-vol1-sec1-4.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title47-vol1/pdf/CFR-2010-title47-vol1-sec1-4.pdf"><span>47 CFR 1.4 - Computation of time.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... release date. Example 3: The Chief, Mass Media Bureau, adopts an order on Thursday, April 2, 1987. The... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE General Rules of Practice and... Licensing System (ULS) pursuant to § 1.939(b) must be received before midnight on the filing date. Media...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-12-21/pdf/2011-32578.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-12-21/pdf/2011-32578.pdf"><span>76 FR 79192 - Patient Safety Organizations: Voluntary Relinquishment From HSMS Patient Safety Organization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-12-21</p> <p>... HSMS Patient Safety Organization was delisted effective at 12:00 Midnight ET (2400) on December 6, 2011... Organizations: Voluntary Relinquishment From HSMS Patient Safety Organization AGENCY: Agency for Healthcare... voluntary relinquishment from the HSMS Patient Safety Organization of its status as a Patient Safety...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-EC91-348-4.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-EC91-348-4.html"><span>Pegasus Engine Ignites after Drop from B-52 Mothership</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1991-07-17</p> <p>Against the midnight blue of a high-altitude sky, Orbital Sciences’ Pegasus winged rocket booster ignites after being dropped from NASA’s B-52 mothership on a July 1991 flight. A NASA chase plane for the flight is also visible above the rocket and below the B-52.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4966.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4966."><span>Cepheus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(abbrev. Cep, gen. Cephei; area 588 sq. deg.) A northern constellation which lies between Draco and Cassiopeia, and culminates at midnight in late August. It is named after King Cepheus, husband of Queen Cassiopeia and father of Andromeda in Greek mythology. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4976.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4976."><span>Crater Constellation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Cup; abbrev. Crt, gen. Crateris; area 282 sq. deg.) A southern constellation which lies to the south-west of Virgo, and culminates at midnight in mid-March. It represents the cup of the god Apollo in Greek mythology (see Corvus). Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-01-19/pdf/2011-952.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-01-19/pdf/2011-952.pdf"><span>76 FR 3175 - Proposed Extension of Existing Information Collection; Hoist Operators' Physical Fitness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-01-19</p> <p>... Extension of Existing Information Collection; Hoist Operators' Physical Fitness AGENCY: Mine Safety and... fitness. DATES: All comments must be received by midnight Eastern Standard Time on March 21, 2011... 56.19057 and 57.19057 require the annual examination and certification of hoist operators' fitness by...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol4/pdf/CFR-2010-title49-vol4-sec238-5.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol4/pdf/CFR-2010-title49-vol4-sec238-5.pdf"><span>49 CFR 238.5 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... next midnight on a given date. Class I brake test means a complete passenger train brake system test... ensure that the air brake system is 100 percent effective. Class IA brake test means a test and... response to train line commands. Class II brake test means a test and inspection (as further specified in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015929','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015929"><span>Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barker, C.E.; Goldstein, R.H.</p> <p>1990-01-01</p> <p>The hypothesis that aqueous fluid inclusions in calcite can be used to establish maximum temperature (Tpeak) is tested. Fluid inclusion Th, mean random vitrinite reflectance (Rm), and present-day Tpeak from 46 diverse geologic systems that have been at Tpeak from 104 to 106 yr have been compiled. Present Tpeak ranged from 65 to 345??C, Th modes and means ranged from 59 to 350??C, and Rm data ranged from 0.4% to 4.6%, spanning the temperature and thermal maturity range associated with burial diagenesis, hydrothermal alteration, and low-grade metamorphism. Plots of Th and Tpeak data for systems thought to be currently at maximum temperature demonstrate close agreement between Th and present Tpeak in sedimentary basins. The relation suggests that Th of aqueous fluid inclusions in calcite may be a useful measure of maximum temperature. This study also compared Th to mean random vitrinite reflectance (Rm). Th correlates well with Rm and results in a curve similar to Rm vs. Tpeak calibrations determined by other workers. Strong correlation between Tpeak and Rm in these systems suggests that maximum temperature is the major control on thermal maturation. -after Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/47965','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/47965"><span>Modeling maximum daily temperature using a varying coefficient regression model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith</p> <p>2014-01-01</p> <p>Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25424724','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25424724"><span>A method for safety testing of radiofrequency/microwave-emitting devices using MRI.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alon, Leeor; Cho, Gene Y; Yang, Xing; Sodickson, Daniel K; Deniz, Cem M</p> <p>2015-11-01</p> <p>Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non-MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83°C and 12.4 W/kg, respectively, for simulations and 1.73°C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15°C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7°C and 0.54 W/kg, respectively. Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. © 2014 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4442746','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4442746"><span>A Method for Safety Testing of Radiofrequency/Microwave-Emitting Devices Using MRI</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Alon, Leeor; Cho, Gene Y.; Yang, Xing; Sodickson, Daniel K.; Deniz, Cem M.</p> <p>2015-01-01</p> <p>Purpose Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Methods Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non–MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. Results The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83° C and 12.4 W/kg, respectively, for simulations and 1.73° C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15° C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7° C and 0.54 W/kg, respectively. Conclusion Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. PMID:25424724</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmRe.198..145V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmRe.198..145V"><span>On the impacts of computing daily temperatures as the average of the daily minimum and maximum temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Villarini, Gabriele; Khouakhi, Abdou; Cunningham, Evan</p> <p>2017-12-01</p> <p>Daily temperature values are generally computed as the average of the daily minimum and maximum observations, which can lead to biases in the estimation of daily averaged values. This study examines the impacts of these biases on the calculation of climatology and trends in temperature extremes at 409 sites in North America with at least 25 years of complete hourly records. Our results show that the calculation of daily temperature based on the average of minimum and maximum daily readings leads to an overestimation of the daily values of 10+ % when focusing on extremes and values above (below) high (low) thresholds. Moreover, the effects of the data processing method on trend estimation are generally small, even though the use of the daily minimum and maximum readings reduces the power of trend detection ( 5-10% fewer trends detected in comparison with the reference data).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PMB....44.2367V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PMB....44.2367V"><span>Calculation of change in brain temperatures due to exposure to a mobile phone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Leeuwen, G. M. J.; Lagendijk, J. J. W.; Van Leersum, B. J. A. M.; Zwamborn, A. P. M.; Hornsleth, S. N.; Kotte, A. N. T. J.</p> <p>1999-10-01</p> <p>In this study we evaluated for a realistic head model the 3D temperature rise induced by a mobile phone. This was done numerically with the consecutive use of an FDTD model to predict the absorbed electromagnetic power distribution, and a thermal model describing bioheat transfer both by conduction and by blood flow. We calculated a maximum rise in brain temperature of 0.11 °C for an antenna with an average emitted power of 0.25 W, the maximum value in common mobile phones, and indefinite exposure. Maximum temperature rise is at the skin. The power distributions were characterized by a maximum averaged SAR over an arbitrarily shaped 10 g volume of approximately 1.6 W kg-1. Although these power distributions are not in compliance with all proposed safety standards, temperature rises are far too small to have lasting effects. We verified our simulations by measuring the skin temperature rise experimentally. Our simulation method can be instrumental in further development of safety standards.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6317991-heat-transfer-fuel-pin-shipping-container-ident','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6317991-heat-transfer-fuel-pin-shipping-container-ident"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ingham, J.G.</p> <p></p> <p>Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33%more » of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800/sup 0/F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080032402&hterms=population+variations&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpopulation%2Bvariations','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080032402&hterms=population+variations&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpopulation%2Bvariations"><span>Radial Variations in the Io Plasma Torus during the Cassini Era</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Delamere, P. A.; Bagenal, F.; Steffl, A.</p> <p>2005-01-01</p> <p>A radial scan through the midnight sector of the Io plasma torus was made by the Cassini Ultraviolet Imaging Spectrograph on 14 January 2001, shortly after closest approach to Jupiter. From these data, Steffl et al. (2004a) derived electron temperature, plasma composition (ion mixing ratios), and electron column density as a function of radius from L = 6 to 0 as well as the total luminosity. We have advanced our homogeneous model of torus physical chemistry (Delamere and Bagenal, 2003) to include latitudinal and radial variations in a manner similar to the two-dimensional model by Schreier et al. (1998). The model variables include: (1) neutral source rate, (2) radial transport coefficient, (3) the hot electron fraction, (4) hot electron temperature, and (5) the neutral O/S ratio. The radial variation of parameters 1-4 are described by simple power laws, making a total of nine parameters. We have explored the sensitivity of the model results to variations in these parameters and compared the best fit with previous Voyager era models (schreier et al., 1998), galileo data (Crary et al., 1998), and Cassini observations (steffl et al., 2004a). We find that radial variations during the Cassini era are consistent with a neutral source rate of 700-1200 kg/s, an integrated transport time from L = 6 to 9 of 100-200 days, and that the core electron temperature is largely determined by a spatially and temporally varying superthermal electron population.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870036170&hterms=glass+transition+temperature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dglass%2Btransition%2Btemperature','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870036170&hterms=glass+transition+temperature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dglass%2Btransition%2Btemperature"><span>On the location of the maximum homogeneous crystal nucleation temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weinberg, Michael C.</p> <p>1986-01-01</p> <p>Detailed considerations are given to the location of the temperature of maximum homogeneous nucleation as predicted by classical nucleation theory. It is shown quite generally that this maximum temperature, T-asterisk, must occur above the Kauzmann temperature and that the T-asterisk is such that T-asterisk is greater than T(m)/3, where T(m) is the melting temperature. Also, it is demonstrated tha T-asterisk may be considered to be approximately dependent upon two parameters: gamma, the ratio of the difference in specific heat between the crystal and liquid divided by the entropy of fusion, and E, a reduced activation energy for viscous flow. The variation of T-asterisk with these parameters is described. The relationship of the relative location of T-asterisk to the glass transition temperature, is discussed too. This discussion is couched within the framework of the strong and fragile liquid notion introduced by Angell (1981) and coworkers. Finally, the question of the ultimate limits to the undercooling of liquid metals is considered and its relationhsip to computations of the maximum nucleation temperature in such systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..GECHT6027W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..GECHT6027W"><span>Developing a diagnostic tool for measuring maximum effective temperature within high pressure electrodeless discharges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Whiting, Michael; Preston, Barry; Mucklejohn, Stuart; Santos, Monica; Lister, Graeme</p> <p>2016-09-01</p> <p>Here we present an investigation into the feasibility of creating a diagnostic tool for obtaining maximum arc temperature measurements within a high pressure electrodeless discharge; utilizing integrating sphere measurements of optically thin lines emitted from mercury atoms within commercially available high pressure mercury lamp arc tubes. The optically thin lines chosen were 577 nm and 1014 nm from a 250 W high pressure mercury lamp operated at various powers. The effective temperature could be calculated by considering the relative intensities of the two optically thin lines and comparison with the theoretical ratio of the temperature dependent power emitted from the lines derived from the atomic spectral data provided by NIST. The calculations gave effective arc temperatures of 5755, 5804 and 5820 K at 200, 225, 250 W respectively. This method was subsequently used as a basis for determining maximum effective arc temperature within microwave-driven electrodeless discharge capsules, with varying mercury content of 6.07, 9.4 and 12.95 mg within 1 × 10-6 m3 giving maximum effective temperatures of 5163, 4768 and 4715 K respectively at 240 W.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMetR..30..927C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMetR..30..927C"><span>Possible combined influences of absorbing aerosols and anomalous atmospheric circulation on summertime diurnal temperature range variation over the middle and lower reaches of the Yangtze River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, Jiaxi; Guan, Zhaoyong; Ma, Fenhua</p> <p>2016-12-01</p> <p>Based on the temperature data from the China Meteorological Administration, NCEP-NCAR reanalysis data, and the TOMS Aerosol Index (AI), we analyze the variations in the summertime diurnal temperature range (DTR) and temperature maxima in the middle and lower reaches of the Yangtze River (MLRYR) in China. The possible relationships between the direct warming effect of the absorbing aerosol and temperature variations are further investigated, although with some uncertainties. It is found that the summertime DTR exhibits a decreasing trend over the most recent 50 years, along with a slight increasing tendency since the 1980s. The trend of the maximum temperature is in agreement with those of the DTR and the absorbing aerosols. To investigate the causes of the large anomalies in the temperature maxima, composite analyses of the circulation anomalies are performed. When anomalous AI and anomalous maximum temperature over the MLRYR have the same sign, an anomalous circulation with a quasi-barotropic structure occurs there. This anomalous circulation is modulated by the Rossby wave energy propagations from the regions northwest of the MLRYR and influences the northwestern Pacific subtropical high over the MLRYR. In combination with aerosols, the anomalous circulation may increase the maximum temperature in this region. Conversely, when the anomalous AI and anomalous maximum temperature in the MLRYR have opposite signs, the anomalous circulation is not equivalently barotropic, which possibly offsets the warming effect of aerosols on the maximum temperature changes in this region. These results are helpful for a better understanding of the DTR changes and the occurrences of temperature extremes in the MLRYR region during boreal summer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol6/pdf/CFR-2010-title40-vol6-sec60-37e.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol6/pdf/CFR-2010-title40-vol6-sec60-37e.pdf"><span>40 CFR 60.37e - Compliance, performance testing, and monitoring guidelines.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... requirements: (1) Establish maximum charge rate and minimum secondary chamber temperature as site-specific... above the maximum charge rate or below the minimum secondary chamber temperature measured as 3-hour... below the minimum secondary chamber temperature shall constitute a violation of the established...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730020984','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730020984"><span>Preliminary analysis of hot spot factors in an advanced reactor for space electric power systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lustig, P. H.; Holms, A. G.; Davison, H. W.</p> <p>1973-01-01</p> <p>The maximum fuel pin temperature for nominal operation in an advanced power reactor is 1370 K. Because of possible nitrogen embrittlement of the clad, the fuel temperature was limited to 1622 K. Assuming simultaneous occurrence of the most adverse conditions a deterministic analysis gave a maximum fuel temperature of 1610 K. A statistical analysis, using a synthesized estimate of the standard deviation for the highest fuel pin temperature, showed probabilities of 0.015 of that pin exceeding the temperature limit by the distribution free Chebyshev inequality and virtually nil assuming a normal distribution. The latter assumption gives a 1463 K maximum temperature at 3 standard deviations, the usually assumed cutoff. Further, the distribution and standard deviation of the fuel-clad gap are the most significant contributions to the uncertainty in the fuel temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150003233','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150003233"><span>System for Repairing Cracks in Structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Stephen W. (Inventor); Newman, John A. (Inventor); Piascik, Robert S. (Inventor); Glaessgen, Edward H. (Inventor)</p> <p>2014-01-01</p> <p>A first material with a known maximum temperature of operation is coated with a second material on at least one surface of the first material. The coating has a melting temperature that is greater than the maximum temperature of operation of the first material. The coating is heated to its melting temperature until the coating flows into any cracks in the first material's surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JPS...296..305M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JPS...296..305M"><span>Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohammadian, Shahabeddin K.; Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen</p> <p>2015-11-01</p> <p>Effect of embedding aluminum porous metal foam inside the flow channels of an air-cooled Li-ion battery module was studied to improve its thermal management. Four different cases of metal foam insert were examined using three-dimensional transient numerical simulations. The effects of permeability and porosity of the porous medium as well as state of charge were investigated on the standard deviation of the temperature field and maximum temperature inside the battery in all four cases. Compared to the case of no porous insert, embedding aluminum metal foam in the air flow channel significantly improved the thermal management of Li-ion battery cell. The results also indicated that, decreasing the porosity of the porous structure decreases both standard deviation of the temperature field and maximum temperature inside the battery. Moreover, increasing the permeability of the metal foam drops the maximum temperature inside the battery while decreasing this property leads to improving the temperature uniformity. Our results suggested that, among the all studied cases, desirable temperature uniformity and maximum temperature were achieved when two-third and the entire air flow channel is filled with aluminum metal foam, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26636734','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26636734"><span>Temperature Observation Time and Type Influence Estimates of Heat-Related Mortality in Seven U.S. Cities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Davis, Robert E; Hondula, David M; Patel, Anjali P</p> <p>2016-06-01</p> <p>Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat-mortality relationships. We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature-mortality relationships were associated with maximum temperature, although mean temperature results were comparable. There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature-mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum temperatures in most cities we examined, particularly those typically prone to heat-related mortality. Davis RE, Hondula DM, Patel AP. 2016. Temperature observation time and type influence estimates of heat-related mortality in seven U.S. cities. Environ Health Perspect 124:795-804; http://dx.doi.org/10.1289/ehp.1509946.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol11/pdf/CFR-2011-title40-vol11-part63-subpartOOO-app4.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol11/pdf/CFR-2011-title40-vol11-part63-subpartOOO-app4.pdf"><span>40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol12/pdf/CFR-2013-title40-vol12-part63-subpartOOO-app4.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol12/pdf/CFR-2013-title40-vol12-part63-subpartOOO-app4.pdf"><span>40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol12/pdf/CFR-2014-title40-vol12-part63-subpartOOO-app4.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol12/pdf/CFR-2014-title40-vol12-part63-subpartOOO-app4.pdf"><span>40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE5167.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE5167."><span>Monoceros</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Unicorn; abbrev. Mon, gen. Monocerotis; area 482 sq. deg.) An equatorial constellation which lies between Orion and Hydra, and culminates at midnight in early January. It is usually considered to have been introduced by the Dutch theologian and geographer Petrus Plancius, who included it on a celestial globe in 1613, though some authorities regard it as older than this....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title25-vol1/pdf/CFR-2010-title25-vol1-sec39-217.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title25-vol1/pdf/CFR-2010-title25-vol1-sec39-217.pdf"><span>25 CFR 39.217 - How are students counted for the purpose of funding residential services?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-04-01</p> <p>... EDUCATION THE INDIAN SCHOOL EQUALIZATION PROGRAM Administrative Procedures, Student Counts, and... services? For a student to be considered in residence for purposes of this subpart, the school must be able...) Present for both the after school count and the midnight count at least one night during each week...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=blue+AND+light&id=EJ829827','ERIC'); return false;" href="https://eric.ed.gov/?q=blue+AND+light&id=EJ829827"><span>Fading Skies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Sio, Betsy Menson</p> <p>2009-01-01</p> <p>A sky fading from blue to white to red at the horizon, and water darkening from light to midnight blue. Strong diagonals slashing through the image, drawing a viewer's eyes deeper into the picture, and delicate trees poised to convey a sense of beauty. These are the fascinating strengths of the ukiyo-e woodblock prints of Japanese artist Ando…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol4/pdf/CFR-2013-title49-vol4-sec238-5.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol4/pdf/CFR-2013-title49-vol4-sec238-5.pdf"><span>49 CFR 238.5 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... parts at the ends of adjoining vehicles in a train that are designed to engage when subjected to large... designed retarding force on the train. A brake is not effective if its piston travel is in excess of the... next midnight on a given date. Class I brake test means a complete passenger train brake system test...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol4/pdf/CFR-2014-title49-vol4-sec238-5.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol4/pdf/CFR-2014-title49-vol4-sec238-5.pdf"><span>49 CFR 238.5 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... that are designed to engage when subjected to large buff loads to prevent the override of one vehicle... designed retarding force on the train. A brake is not effective if its piston travel is in excess of the... next midnight on a given date. Class I brake test means a complete passenger train brake system test...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE5149.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE5149."><span>Leo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Lion; abbrev. Leo, gen. Leonis; area 947 sq. deg.) A northern zodiacal constellation which lies between Cancer and Virgo, and culminates at midnight in early March. It represents the Nemean lion that, in Greek mythology, Hercules killed as the first of his 12 labors. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED547174.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED547174.pdf"><span>Impact of Government Shutdown on Child Care and Early Education Programs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Center for Law and Social Policy, Inc. (CLASP), 2013</p> <p>2013-01-01</p> <p>Congress did not enact a continuing resolution bill by midnight September 30, 2013, thereby triggering a partial government shutdown effective October 1, 2013. October 1 began the federal fiscal year 2014. Most discretionary programs, those that are subject to the annual Congressional appropriations process, will not receive 2014 funding. Most,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-09-26/pdf/2011-24676.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-09-26/pdf/2011-24676.pdf"><span>76 FR 59375 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Amendments to the Queen Conch and...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-09-26</p> <p>... sectors; revise the composition of the snapper and grouper complexes; prohibit fishing for and possession of three parrotfish species (midnight, blue, rainbow); establish recreational bag limits for snappers... Portal: http://www.regulations.gov . Follow the instructions for submitting comments. Mail: Bill Arnold...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol4/pdf/CFR-2012-title40-vol4-sec52-1628.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol4/pdf/CFR-2012-title40-vol4-sec52-1628.pdf"><span>40 CFR 52.1628 - Interstate pollutant transport and regional haze provisions; what are the FIP requirements for...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... midnight. Air pollution control equipment includes baghouses, particulate or gaseous scrubbers, and any... owner or operator shall submit a plan to the Regional Administrator that identifies the air pollution... shall, to the extent practicable, maintain and operate the unit including associated air pollution...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol4/pdf/CFR-2014-title40-vol4-sec52-1628.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol4/pdf/CFR-2014-title40-vol4-sec52-1628.pdf"><span>40 CFR 52.1628 - Interstate pollutant transport and regional haze provisions; what are the FIP requirements for...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... midnight. Air pollution control equipment includes baghouses, particulate or gaseous scrubbers, and any... owner or operator shall submit a plan to the Regional Administrator that identifies the air pollution... shall, to the extent practicable, maintain and operate the unit including associated air pollution...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol4/pdf/CFR-2013-title40-vol4-sec52-1628.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol4/pdf/CFR-2013-title40-vol4-sec52-1628.pdf"><span>40 CFR 52.1628 - Interstate pollutant transport and regional haze provisions; what are the FIP requirements for...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... midnight. Air pollution control equipment includes baghouses, particulate or gaseous scrubbers, and any... owner or operator shall submit a plan to the Regional Administrator that identifies the air pollution... shall, to the extent practicable, maintain and operate the unit including associated air pollution...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title7-vol2/pdf/CFR-2013-title7-vol2-sec46-43.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title7-vol2/pdf/CFR-2013-title7-vol2-sec46-43.pdf"><span>7 CFR 46.43 - Terms construed.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... be loaded and shipped on a boat scheduled to leave before midnight of the date specified. When used... to determine if the produce shipped complied with the terms of the contract at time of shipment... f.o.b. shipping point, the buyer shall be deemed to have assumed only the lowest all-rail freight...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/3548616','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/3548616"><span>Effect of preoperative antiplatelet drugs on vascular prostacyclin synthesis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Karwande, S V; Weksler, B B; Gay, W A; Subramanian, V A</p> <p>1987-03-01</p> <p>Patients undergoing aortocoronary bypass using autogenous saphenous veins were randomly divided into three comparable groups. Group 1 (n = 10) acted as a control, Group 2 (n = 14) received 80 mg of aspirin at midnight before the operation, and Group 3 (n = 12) received 80 mg of aspirin and 75 mg of dipyridamole at midnight and an additional 75-mg dose of dipyridamole at 6 AM. The purpose was to determine which regimen would maximally inhibit platelet function without depressing vascular prostacyclin synthesis. Serum thromboxane A2, saphenous vein wall and aortic wall prostacyclin, platelet aggregation, and bleeding time were measured in all patients. None was restarted on a regimen of aspirin or dipyridamole postoperatively. Aspirin alone and in combination with dipyridamole significantly inhibited thromboxane A2 and platelet aggregation in all treated patients but spared venous prostacyclin synthesis. Aortic prostacyclin synthesis was partially inhibited in both treated groups. Chest tube drainage was comparable in all three groups. These results indicate that the combination of aspirin and dipyridamole offers no measurable advantage over aspirin alone in the perioperative period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1990/0117/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1990/0117/report.pdf"><span>Precipitation Data for the Mount St. Helens Area, Washington--1981-86</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Uhrich, Mark A.</p> <p>1990-01-01</p> <p>This report is a compilation of precipitation data from U.S. Geological Survey telemetered 'Early Flood Warning' sites near Mount St. Helens, Washington, and from telemetered hydrologic data sites in the Toutle River and Muddy River basins for the years 1981-86. It also includes precipitation data for 1981-86 from non-telemetered recording rain gages established near the debris-avalanche blockages of Spirit Lake, Coldwater Lake, and Castle Lake. Daily values (midnight to midnight) are listed by station and calendar year for 32 sites. Hourly data, where available, are presented for the storm that generated the highest peak discharge in the North Fork Toutle River each water year. Instrumentation includes 25 tipping-bucket, and 7 weighing-bucket rain gages all without windshields. The seven sites with weighing-bucket gages were the only U.S. Geological Survey sites at which snowfall was measured. Additional snowfall measurements for the same time period in the Mount St. Helens area were collected by the National Weather Service, the U.s. Soil Conservation Service, and the U.S. Army Corps of Engineers and also are presented in this report.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080008525&hterms=publication&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpublication','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080008525&hterms=publication&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpublication"><span>Combinations of Earth Orientation Measurements: SPACE2005, COMB2005, and POLE2005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gross, Richard S.</p> <p>2006-01-01</p> <p>Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, by very long baseline interferometry, and by the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2005, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to January 7, 2006, at daily intervals and is available in versions whose epochs are given at either midnight or noon. The space-geodetic measurements used to generate SPACE2005 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2005, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to January 7, 2006, at daily intervals and which is also available in versions whose epochs are given at either midnight or noon; and (2) POLE2005, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to December 21, 2005, at 30.4375-day intervals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5006020','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5006020"><span>Response of plasmaspheric configuration to substorms revealed by Chang’e 3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>He, Han; Shen, Chao; Wang, Huaning; Zhang, Xiaoxin; Chen, Bo; Yan, Jun; Zou, Yongliao; Jorgensen, Anders M.; He, Fei; Yan, Yan; Zhu, Xiaoshuai; Huang, Ya; Xu, Ronglan</p> <p>2016-01-01</p> <p>The Moon-based Extreme Ultraviolet Camera (EUVC) of the Chang’e 3 mission provides a global and instantaneous meridian view (side view) of the Earth’s plasmasphere. The plasmasphere is one inner component of the whole magnetosphere, and the configuration of the plasmasphere is sensitive to magnetospheric activity (storms and substorms). However, the response of the plasmaspheric configuration to substorms is only partially understood, and the EUVC observations provide a good opportunity to investigate this issue. By reconstructing the global plasmaspheric configuration based on the EUVC images observed during 20–22 April 2014, we show that in the observing period, the plasmasphere had three bulges which were located at different geomagnetic longitudes. The inferred midnight transit times of the three bulges, using the rotation rate of the Earth, coincide with the expansion phase of three substorms, which implies a causal relationship between the substorms and the formation of the three bulges on the plasmasphere. Instead of leading to plasmaspheric erosion as geomagnetic storms do, substorms initiated on the nightside of the Earth cause local inflation of the plasmasphere in the midnight region. PMID:27576944</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050192322','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050192322"><span>Combinations of Earth Orientation Measurements: SPACE2003, COMB2003, and POLE2003</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gross, Richard S.</p> <p>2004-01-01</p> <p>Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the global positioning system have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2003, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28.0, 1976 to January 31.0, 2004 at daily intervals and is available in versions whose epochs are given at either midnight or noon. The space-geodetic measurements used to generate SPACE2003 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2003, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20.0, 1962 to January 31.0, 2004 at daily intervals and which is also available in versions whose epochs are given at either midnight or noon, and (2) POLE2003, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900 to January 21,2004 at 30.4375-day intervals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060013340','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060013340"><span>Combinations of Earth Orientation Measurements: SPACE2004, COMB2004, and POLE2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gross, Richard R.</p> <p>2005-01-01</p> <p>Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the global positioning system have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2004, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to January 22, 2005, at daily intervals and is available in versions whose epochs are given at either midnight or noon. The space-geodetic measurements used to generate SPACE2004 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2004, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to January 22, 2005, at daily intervals and which is also available in versions whose epochs are given at either midnight or noon, and (2) POLE2004, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to January 20, 2005, at 30.4375-day intervals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950046659&hterms=dropout&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddropout','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950046659&hterms=dropout&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddropout"><span>Structured plasma sheet thinning observed by Galileo and 1984-129</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reeves, G. D.; Belian, R. D.; Fritz, T. A.; Kivelson, M. G.; Mcentire, R. W.; Roelof, E. C.; Wilken, B.; Williams, D. J.</p> <p>1993-01-01</p> <p>On December 8, 1990, the Galileo spacecraft used the Earth for a gravity assist on its way to Jupiter. Its trajectory was such that it crossed geosynchronous orbit at approximately local midnight between 1900 and 2000 UT. At the same time, spacecraft 1984-129 was also located at geosynchronous orbit near local midnight. Several flux dropout events were observed when the two spacecraft were in the near-Earth plasma sheet in the same local time sector. Flux dropout events are associated with plasma sheet thinning in the near-profile of the near-Earth plasma sheet while 1984-129 provided an azimuthal profile. With measurements from these two spacecraft we can distinguish between spatial structures and temporal change. Our observations confirm that the geosynchronous flux dropout events are consistent with plasma sheet thinning which changes the spacecraft's magnetic connection from the trapping region to the more distant plasma sheet. However, for this period, thinning occurred on two spatial and temporal scales. The geosynchronous dropouts were highly localized phenomena of 30 min duration superimposed on a more global reconfiguration of the tail lasting approximately 4 hours.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160009377','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160009377"><span>Combinations of Earth Orientation Measurements: SPACE2014, COMB2014, and POLE2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ratcliff, J. T.; Gross, R. S.</p> <p>2015-01-01</p> <p>Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2013, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to June 30, 2014, at daily intervals and is available in versions with epochs given at either midnight or noon. The space-geodetic measurements used to generate SPACE2013 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2013, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to June 30, 2014, at daily intervals and which are also available in versions with epochs given at either midnight or noon; and (2) POLE2013, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to June 22, 2014, at 30.4375-day intervals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140000670','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140000670"><span>Combinations of Earth Orientation Measurements: SPACE2011, COMB2011, and POLE2011</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ratcliff, J. T.; Gross, R. S.</p> <p>2013-01-01</p> <p>Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2011, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to July 13, 2012, at daily intervals and is available in versions with epochs given at either midnight or noon. The space-geodetic measurements used to generate SPACE2011 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2011, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to July 13, 2012, at daily intervals and which are also available in versions with epochs given at either midnight or noon; and (2) POLE2011, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to June 21, 2012, at 30.4375-day intervals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160001772','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160001772"><span>Combinations of Earth Orientation Measurements: SPACE2013, COMB2013, and POLE2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ratcliff, J. T.; Gross, R. S.</p> <p>2015-01-01</p> <p>Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2013, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to June 30, 2014, at daily intervals and is available in versions with epochs given at either midnight or noon. The space-geodetic measurements used to generate SPACE2013 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2013, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to June 30, 2014, at daily intervals and which are also available in versions with epochs given at either midnight or noon; and (2) POLE2013, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to June 22, 2014, at 30.4375-day intervals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170011607','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170011607"><span>Combinations of Earth Orientation Measurements: SPACE2016, COMB2016, and POLE2016</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ratcliff, J. T.; Gross, R. S.</p> <p>2017-01-01</p> <p>Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2016, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to June 30, 2017, at daily intervals and is available in versions with epochs given at either midnight or noon. The space-geodetic measurements used to generate SPACE2016 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2016, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to June 30, 2017, at daily intervals and which are also available in versions with epochs given at either midnight or noon; and (2) POLE2016, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to June 22, 2017, at 30.4375-day intervals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011392','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011392"><span>Combinations of Earth Orientation Measurements: SPACE2012, COMB2012, and POLE2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ratcliff, J. T.; Gross, R. S.</p> <p>2013-01-01</p> <p>Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2012, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to April 26, 2013, at daily intervals and is available in versions with epochs given at either midnight or noon. The space-geodetic measurements used to generate SPACE2012 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2012, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to April 26, 2013, at daily intervals and which are also available in versions with epochs given at either midnight or noon; and (2) POLE2012, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to May 22, 2013, at 30.4375-day intervals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780067008&hterms=Ankara&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DAnkara','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780067008&hterms=Ankara&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DAnkara"><span>The noon and midnight mid-latitude trough as seen by Ariel 4</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tulunay, Y. K.; Grebowsky, J. M.</p> <p>1978-01-01</p> <p>The electron density data returned by the polar orbiting satellites Ariel 3 and Ariel 4 revealed that the midlatitude trough is one of the distinct large-scale features of the ionosphere at about 550 km. Recent work (e.g., Tulunay and Grebowsky, 1975) on the data included the investigation of the temporal development of the latitudinal position of the midlatitude electron density trough at dawn and dusk during the large magnetic storms of May 1967 and May 1972. Model calculations which assumed that the equatorial convection E-field varies in step with the Kp index reproduced on the average the observed behavior. In the present paper, trough observations made at noon and midnight during the period, 12-21 December 1971 which encompassed a relatively large magnetic storm are discussed. In this context, model calculations have been employed as a guide of average approximations of the actual situation in predicting the plasmapause location. It is also shown that the trough observed on the noon passes is not generally plasmapause-related as the nightside troughs are expected to be.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017STP.....3d..44P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017STP.....3d..44P"><span>Features of the impact of the solar wind diamagnetic structure on Earth's magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parhomov, Vladimir; Borodkova, Natalia; Eselevich, Viktor; Eselevich, Maxim; Dmitriev, Aleksey; Chilikin, Vitaliy</p> <p>2017-12-01</p> <p>At Earth's orbit on June 28, 1999, there was a diamagnetic structure (DS) representing a filament with a uniquely high speed (about 900 km/s). We show that the filament is a part of the specific sporadic solar wind (SW) stream, which is characterized as a small interplanetary transient. We report the results of studies on the interaction between such a fast filament (DS) and Earth's magnetosphere. Around noon hours at daytime cusp latitudes, we recorded a powerful aurora in the UV band (shock aurora), which rapidly spread to the west and east. Ground-based observations of geo-magnetic field variations, auroral absorption, and auroras on the midnight meridian have shown the development of a powerful substorm-like disturbance (SLD) (AE∼1000 nT), whose origin is associated with the impact of the SW diamagnetic structure on the magnetosphere. The geostationary satellite GOES-8, which was in the midnight sector of the outer quasi capture region during SLD, recorded variations of the Bz and Bx geomagnetic components corresponding to the dipolization process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AnGeo..28.1207R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AnGeo..28.1207R"><span>Substorm-related thermospheric density and wind disturbances derived from CHAMP observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ritter, P.; Lühr, H.; Doornbos, E.</p> <p>2010-06-01</p> <p>The input of energy and momentum from the magnetosphere is most efficiently coupled into the high latitude ionosphere-thermosphere. The phenomenon we are focusing on here is the magnetospheric substorm. This paper presents substorm related observations of the thermosphere derived from the CHAMP satellite. With its sensitive accelerometer the satellite can measure the air density and zonal winds. Based on a large number of substorm events the average high and low latitude thermospheric response to substorm onsets was deduced. During magnetic substorms the thermospheric density is enhanced first at high latitudes. Then the disturbance travels at an average speed of 650 m/s to lower latitudes, and 3-4 h later the bulge reaches the equator on the night side. Under the influence of the Coriolis force the travelling atmospheric disturbance (TAD) is deflected westward. In accordance with present-day atmospheric models the disturbance zonal wind velocities during substorms are close to zero near the equator before midnight and attain moderate westward velocities after midnight. In general, the wind system is only weakly perturbed (Δvy<20 m/s) by substorms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ECSS..170..112M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ECSS..170..112M"><span>Fishing and bottom water temperature as drivers of change in maximum shell length in Atlantic surfclams (Spisula solidissima)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Munroe, D. M.; Narváez, D. A.; Hennen, D.; Jacobson, L.; Mann, R.; Hofmann, E. E.; Powell, E. N.; Klinck, J. M.</p> <p>2016-03-01</p> <p>Maximum shell length of Atlantic surfclams (Spisula solidissima) on the Middle Atlantic Bight (MAB) continental shelf, obtained from federal fishery survey data from 1982-present, has decreased by 15-20 mm. Two potential causes of this decreasing trend, fishery removal of large animals and stress due to warming bottom temperatures, were investigated using an individual-based model for post-settlement surfclams and a fifty-year hindcast of bottom water temperatures on the MAB. Simulations showed that fishing and/or warming bottom water temperature can cause decreases in maximum surfclam shell length (body size) equivalent to those observed in the fished stock. Independently, either localized fishing rates of 20% or sustained bottom temperatures that are 2 °C warmer than average conditions generate the observed decrease in maximum shell length. However, these independent conditions represent extremes and are not sustained in the MAB. The combined effects of fishing and warmer temperatures can generate simulated length decreases that are similar to observed decreases. Interannual variability in bottom water temperatures can also generate fluctuations in simulated shell length of up to 20 mm over a period of 10-15 years. If the change in maximum size is not genotypic, simulations also suggest that shell size composition of surfclam populations can recover if conditions change; however, that recovery could take a decade to become evident.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4892923','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4892923"><span>Temperature Observation Time and Type Influence Estimates of Heat-Related Mortality in Seven U.S. Cities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Davis, Robert E.; Hondula, David M.; Patel, Anjali P.</p> <p>2015-01-01</p> <p>Background: Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat–mortality relationships. Objectives: We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Methods: Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. Results: In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature–mortality relationships were associated with maximum temperature, although mean temperature results were comparable. Conclusions: There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature–mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum temperatures in most cities we examined, particularly those typically prone to heat-related mortality. Citation: Davis RE, Hondula DM, Patel AP. 2016. Temperature observation time and type influence estimates of heat-related mortality in seven U.S. cities. Environ Health Perspect 124:795–804; http://dx.doi.org/10.1289/ehp.1509946 PMID:26636734</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29359134','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29359134"><span>Staff Recall Travel Time for ST Elevation Myocardial Infarction Impacted by Traffic Congestion and Distance: A Digitally Integrated Map Software Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cole, Justin; Beare, Richard; Phan, Thanh G; Srikanth, Velandai; MacIsaac, Andrew; Tan, Christianne; Tong, David; Yee, Susan; Ho, Jesslyn; Layland, Jamie</p> <p>2017-01-01</p> <p>Recent evidence suggests hospitals fail to meet guideline specified time to percutaneous coronary intervention (PCI) for a proportion of ST elevation myocardial infarction (STEMI) presentations. Implicit in achieving this time is the rapid assembly of crucial catheter laboratory staff. As a proof-of-concept, we set out to create regional maps that graphically show the impact of traffic congestion and distance to destination on staff recall travel times for STEMI, thereby producing a resource that could be used by staff to improve reperfusion time for STEMI. Travel times for staff recalled to one inner and one outer metropolitan hospital at midnight, 6 p.m., and 7 a.m. were estimated using Google Maps Application Programming Interface. Computer modeling predictions were overlaid on metropolitan maps showing color coded staff recall travel times for STEMI, occurring within non-peak and peak hour traffic congestion times. Inner metropolitan hospital staff recall travel times were more affected by traffic congestion compared with outer metropolitan times, and the latter was more affected by distance. The estimated mean travel times to hospital during peak hour were greater than midnight travel times by 13.4 min to the inner and 6.0 min to the outer metropolitan hospital at 6 p.m. ( p  < 0.001). At 7 a.m., the mean difference was 9.5 min to the inner and 3.6 min to the outer metropolitan hospital ( p  < 0.001). Only 45% of inner metropolitan staff were predicted to arrive within 30 min at 6 p.m. compared with 100% at midnight ( p  < 0.001), and 56% of outer metropolitan staff at 6 p.m. ( p  = 0.021). Our results show that integration of map software with traffic congestion data, distance to destination and travel time can predict optimal residence of staff when on-call for PCI.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012cosp...39.1138M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012cosp...39.1138M"><span>Ion distributions in RC at different energy levels retrieved from TWINS ENA images by voxel CT tech</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, S. Y.; McComas, David; Xu, Liang; Goldstein, Jerry; Yan, Wei-Nan</p> <p>2012-07-01</p> <p>Distributions of energetic ions in the RC regions in different energy levels are retrieved by using 3-D voxel CT inversion method from ENA measurements onboard TWINS constellation during the main phase of a moderate geomagnetic storm. It is assumed that the ion flux distribution in the RC is anisotropic in regard to pitch angle which complies with the adiabatic invariance of the magnetic moment as ion moving in the dipole magnetic mirror field. A semi-empirical model of the RC ion distribution in the magnetic equator is quoted to form the ion flux distribution shape at off-equatorial latitudes by mapping. For the concerned time interval, the two satellites of the TWINS flying in double Molnia orbits were located in nearly the same meridian plane at vantage points widely separated in magnetic local time, and both more than 5 RE geocentric distance from the Earth. The ENA data used in this study are differential fluxes averaged over 12 sweeps (corresponding to an interval of 16 min.) at different energy levels ranging from about 1 to 100 keV. The retrieved ion distributions show that in total the main part of the RC is located in the region with L value larger than 4, tending to increase at larger L. It reveals that there are two distinct dominant energy bands at which the ion fluxes are significantly larger magnitude than at other energy levels, one is at lower level around 2 keV and the other at higher level of 30-100 keV. Furthermore, it is very interesting that the peak fluxes of the RC ions at the two energy bands occurred in different magnetic local time, low energy ions appear preferentially in after midnight, while the higher energy ions mainly distributed around midnight and pre-midnight. This new profile is worthy of further study and needs to be demonstrated by more cases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS21B1977S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS21B1977S"><span>Identification of MJO Signal on Various Elevation Station Rainfall in Southern Papua, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sakya, A. E.; Permana, D.; Makmur, E. E. S.; Handayani, A. S.; Hanggoro, W.; Setyadi, G.</p> <p>2016-12-01</p> <p>The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal variability in tropical rainfall on the large scale, but its signal is often obscured in individual station data, where effects are most directly felt at the local level. The characteristic of the MJO during its propagation through the Maritime Continent has always been a challenge to comprehend despite decades of research attempts in that region. Unique topography over the Maritime Continent is believed to act as one of the vanguard of precipitation triggered by the MJO. Such condition leads to a maximize amplitude of the diurnal cycle of precipitation over land on phase 2 and 5, even before the arrival of the MJO. Papua in Indonesia is one of the wettest regions on Earth and is at the heart of the MJO envelope. Aiming to investigate the effect of topography and coastline distance on MJO in southern Papua, 14 years of rainfall data from 12 stations in PTFI AWS network at various elevations (9 meters to 4400 meters above sea level) have been utilized. The results show a strong MJO modulation in rainfall variability with variance of 30 - 100 days in the region. These results suggest a strong impact of MJO on rainfall at various elevations in southern Papua which confirm the previous studies. The peak rainfall rates were observed at phase 3 at lower elevation and coastline stations and phase 4 at middle and high elevation stations. The study also investigated the relationship between MJO phases and diurnal precipitation cycle at all stations. At low elevation and coastline stations, diurnal rainfall variation is more variable with high rainfall observed at afternoon to midnight and after midnight. This is due to the local effect of land-sea breeze system. While in middle and high elevation stations, rainfall peak was observed at afternoon to midnight. The results show the impact of MJO in diurnal rainfall variation at all stations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSH41F..07Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSH41F..07Z"><span>Strong Solar Wind Dynamic Pressure Pulses during Solar Cycle 23 and Their Impacts on Geosynchronous Magnetic Fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zuo, P.</p> <p>2015-12-01</p> <p>Solar wind dynamic pressure pulse (DPP) structures, across which the dynamic pressure abruptly changes over timescales from a few seconds to several minutes, are often observed in the near-Earth space environment. In this investigation, we first present a statistical study on the properties of strong dynamic pressure pulses in the solar wind during solar cycle 23. It is found that overwhelming majority of DPPs are associated with the solar wind disturbances including the CME-related flows, the corotating interaction regions, as well as the complex ejecta. The annual variations of the averaged occurrence rate of DPPs are roughly in phase with the solar activities. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears no systematic investigations on the response of GMFs to negative DPPs. Here we also study the decompression/compression effects of very strong negative/positive DPPs on GMFs under northward IMFs. In response to the decompression of strong negative DPPs, GMFs on dayside, near the dawn and dusk on nightside are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of events when GOES is located at the midnight sector, GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that on certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here we found that, a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, being stronger at the noon sector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4791317','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4791317"><span>The Efficacy Profile of Rotigotine During the Waking Hours in Patients With Advanced Parkinson's Disease: A Post Hoc Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>LeWitt, Peter A.; Poewe, Werner; Elmer, Lawrence W.; Asgharnejad, Mahnaz; Boroojerdi, Babak; Grieger, Frank; Bauer, Lars</p> <p>2016-01-01</p> <p>Objectives Transdermal delivery of rotigotine maintains stable plasma concentrations for 24 hours. Three phase 3 studies of rotigotine as add-on to levodopa in advanced Parkinson's disease showed a significant reduction in “off” time from baseline to end of maintenance (EoM). However, detailed analyses over the range of a day have not yet been performed. The objective was to examine the time course of the efficacy profile of rotigotine throughout the day. Methods Post hoc analysis of diary data from 3 double-blind, placebo-controlled studies of rotigotine in patients with advanced Parkinson's disease inadequately controlled with levodopa, with average “off” time of ≥2.5 h/d (CLEOPATRA-PD [NCT00244387], 16-week maintenance; PREFER, 24-week maintenance; SP921 [NCT00522379], 12-week maintenance). Patients marked 30-minute intervals as “off,” “on without troublesome dyskinesia,” “on with troublesome dyskinesia,” or “sleep.” Diaries completed on the 3 days before EoM were analyzed. A 2-sample t test was performed for comparison of rotigotine + levodopa versus placebo + levodopa for mean percentage of time per status during four 6-hour periods: 12:00am (midnight) to 6:00am, 6:00am to 12:00pm (noon), noon to 6:00pm, and 6:00pm to midnight. Results Data were available for 967 patients (placebo + levodopa, 260; rotigotine + levodopa, 707). During the 24-hour period at EoM, an advantage in mean percentage time spent “off” and “on without troublesome dyskinesia” was observed with rotigotine + levodopa versus placebo + levodopa during the three 6-hour periods from 6:00am to midnight (P < 0.05; exploratory analysis). Conclusions These exploratory analyses of patients with motor fluctuations suggest that the efficacy of rotigotine transdermal patch, as captured by diary data, in reducing “off” time and increasing “on time without troublesome dyskinesia” may cover the full waking day. PMID:26882318</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26882318','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26882318"><span>The Efficacy Profile of Rotigotine During the Waking Hours in Patients With Advanced Parkinson's Disease: A Post Hoc Analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>LeWitt, Peter A; Poewe, Werner; Elmer, Lawrence W; Asgharnejad, Mahnaz; Boroojerdi, Babak; Grieger, Frank; Bauer, Lars</p> <p>2016-01-01</p> <p>Transdermal delivery of rotigotine maintains stable plasma concentrations for 24 hours. Three phase 3 studies of rotigotine as add-on to levodopa in advanced Parkinson's disease showed a significant reduction in "off" time from baseline to end of maintenance (EoM). However, detailed analyses over the range of a day have not yet been performed. The objective was to examine the time course of the efficacy profile of rotigotine throughout the day. Post hoc analysis of diary data from 3 double-blind, placebo-controlled studies of rotigotine in patients with advanced Parkinson's disease inadequately controlled with levodopa, with average "off" time of ≥2.5 h/d (CLEOPATRA-PD [NCT00244387], 16-week maintenance; PREFER, 24-week maintenance; SP921 [NCT00522379], 12-week maintenance). Patients marked 30-minute intervals as "off," "on without troublesome dyskinesia," "on with troublesome dyskinesia," or "sleep." Diaries completed on the 3 days before EoM were analyzed. A 2-sample t test was performed for comparison of rotigotine + levodopa versus placebo + levodopa for mean percentage of time per status during four 6-hour periods: 12:00AM (midnight) to 6:00AM, 6:00AM to 12:00PM (noon), noon to 6:00PM, and 6:00PM to midnight. Data were available for 967 patients (placebo + levodopa, 260; rotigotine + levodopa, 707). During the 24-hour period at EoM, an advantage in mean percentage time spent "off" and "on without troublesome dyskinesia" was observed with rotigotine + levodopa versus placebo + levodopa during the three 6-hour periods from 6:00AM to midnight (P < 0.05; exploratory analysis). These exploratory analyses of patients with motor fluctuations suggest that the efficacy of rotigotine transdermal patch, as captured by diary data, in reducing "off" time and increasing "on time without troublesome dyskinesia" may cover the full waking day.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmRe.181..257D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmRe.181..257D"><span>Discrepancies between modeled and observed nocturnal isoprene in an urban environment and the possible causes: A case study in Houston</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Diao, Lijun; Choi, Yunsoo; Czader, Beata; Li, Xiangshang; Pan, Shuai; Roy, Anirban; Souri, Amir Hossein; Estes, Mark; Jeon, Wonbae</p> <p>2016-11-01</p> <p>Air quality simulations were conducted using the Community Multiscale Air Quality (CMAQ) model for nocturnal isoprene in September 2013 using the United States Environmental Protection Agency's (EPA's) National Emissions Inventory of 2011 (NEI, 2011). The results were evaluated against measurements collected at eight Texas Commission on Environmental Quality (TCEQ) Automated Gas Chromatographs (AutoGCs) monitoring stations. The comparisons demonstrated two distinctive behaviors: overestimation before midnight (20:00-23:00 p.m. local time) versus underestimation after midnight (00:00-06:00 a.m.). Analyses identify the uncertainties in nitrate radical (NO3) concentration and vertical mixing as the possible minor factors contributing to the underestimation, and the underestimated wind speed as the major factor contributing to the overestimation. Further analysis links isoprene underestimation to the uncertainties in the nocturnal isoprene anthropogenic emissions in the NEI (2011) over industrial areas in Houston. This can be substantiated by the fact that the observed nighttime isoprene concentrations increased when the wind direction veered back from southeast to northeast, placing the stations downwind of industrial facilities. A sensitivity run with adjusted anthropogenic isoprene emissions in the later part of the night (i.e., the emissions were multiplied by the hourly underestimation factors ranging from 3.81 to 14.82) yielded closer isoprene predictions after midnight with slightly improved model mean (0.15 to 0.20 ppb), mean error (- 0.10 to - 0.04 ppb), mean absolute error (0.18 to 0.15 ppb), root mean squared error (RMSE, 0.27 to 0.25 ppb), and index of agreement (IOA, 0.66 to 0.68). The insignificant improvement was likely due to the uncertainties in the location of the high-peaked anthropogenic emissions. The impacts of the nighttime-adjusted isoprene emissions on the isoprene oxidation products, organic nitrate and ozone, were found to be minimal. This study, however, shows that more in-situ surface nighttime measurement data is critical to constrain the underestimated nocturnal isoprene emissions in Houston.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2174927','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2174927"><span>We still need to operate at night!</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Faiz, Omar; Banerjee, Saswata; Tekkis, Paris; Papagrigoriadis, Savvas; Rennie, John; Leather, Andrew</p> <p>2007-01-01</p> <p>Introduction In the past the National Confidential Enquiry into Peri-operative deaths (NCEPOD) have advocated a reduction in non-essential night-time operating in NHS hospitals. In this study a retrospective analysis of the emergency general surgical operative workload at a London Teaching centre was performed. Methods All general surgical and vascular emergency operations recorded prospectively on the theatre database between 1997 and 2004 were included in the study. Operations were categorised according to whether they commenced during the daytime(08:01–18:00 hours), evening(18:01–00:00 hours) or night-time(00:01–08:00 hours). The procedure type and grade of the participating surgical personnel were also recorded. Bivariate correlation was used to analyse changing trends in the emergency workload. Results In total 5,316 emergency operations were performed over the study period. The numbers of daytime, evening and night-time emergency procedures performed were 2,963(55.7%), 1,832(34.5%), and 521(9.8%) respectively. Laparotomies and complex vascular procedures collectively accounted for half of all cases performed after midnight whereas they represented only 30% of the combined daytime and evening emergency workload. Thirty-two percent (n = 166) of all night-time operations were supervised or performed by a consultant surgeon. The annual volume of emergency cases performed increased significantly throughout the study period. Enhanced daytime (r = 0.741, p < 0.01) and evening (r = 0.548, p < 0.01) operating absorbed this increase in workload. There was no significant change in the absolute number of cases performed at night but the proportion of the emergency workload that took place after midnight decreased significantly throughout the study (r = -0.742, p < 0.01). Conclusion A small but consistent volume of complex cases require emergency surgery after midnight. Provision of an emergency general surgical service must incorporate this need. PMID:17973987</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990052760','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990052760"><span>A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ng, Daniel</p> <p>1999-01-01</p> <p>The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4160255','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4160255"><span>May–June Maximum Temperature Reconstruction from Mean Earlywood Density in North Central China and Its Linkages to the Summer Monsoon Activities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, Feng; Yuan, Yujiang</p> <p>2014-01-01</p> <p>Cores of Pinus tabulaformis from Tianshui were subjected to densitometric analysis to obtain mean earlywood density data. Climate response analysis indicates that May–June maximum temperature is the main factor limiting the mean earlywood density (EWD) of Chinese pine trees in the Shimen Mountains. Based on the EWD chronology, we have reconstructed May–June maximum temperature 1666 to 2008 for Tianshui, north central China. The reconstruction explains 40.1% of the actual temperature variance during the common period 1953–2008. The temperature reconstruction is representative of temperature conditions over a large area to the southeast and northwest of the sampling site. Preliminary analysis of links between large-scale climatic variation and the temperature reconstruction shows that there is a relationship between extremes in spring temperature and anomalous atmospheric circulation in the region. It is thus revealed that the mean earlywood density chronology of Pinus tabulaformis has enough potential to reconstruct the temperature variability further into the past. PMID:25207554</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM41D2510C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM41D2510C"><span>Penetration of Large Scale Electric Field to Inner Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, S. H.; Fok, M. C. H.; Sibeck, D. G.; Wygant, J. R.; Spence, H. E.; Larsen, B.; Reeves, G. D.; Funsten, H. O.</p> <p>2015-12-01</p> <p>The direct penetration of large scale global electric field to the inner magnetosphere is a critical element in controlling how the background thermal plasma populates within the radiation belts. These plasma populations provide the source of particles and free energy needed for the generation and growth of various plasma waves that, at critical points of resonances in time and phase space, can scatter or energize radiation belt particles to regulate the flux level of the relativistic electrons in the system. At high geomagnetic activity levels, the distribution of large scale electric fields serves as an important indicator of how prevalence of strong wave-particle interactions extend over local times and radial distances. To understand the complex relationship between the global electric fields and thermal plasmas, particularly due to the ionospheric dynamo and the magnetospheric convection effects, and their relations to the geomagnetic activities, we analyze the electric field and cold plasma measurements from Van Allen Probes over more than two years period and simulate a geomagnetic storm event using Coupled Inner Magnetosphere-Ionosphere Model (CIMI). Our statistical analysis of the measurements from Van Allan Probes and CIMI simulations of the March 17, 2013 storm event indicate that: (1) Global dawn-dusk electric field can penetrate the inner magnetosphere inside the inner belt below L~2. (2) Stronger convections occurred in the dusk and midnight sectors than those in the noon and dawn sectors. (3) Strong convections at multiple locations exist at all activity levels but more complex at higher activity levels. (4) At the high activity levels, strongest convections occur in the midnight sectors at larger distances from the Earth and in the dusk sector at closer distances. (5) Two plasma populations of distinct ion temperature isotropies divided at L-Shell ~2, indicating distinct heating mechanisms between inner and outer radiation belts. (6) CIMI simulations reveal alternating penetration and shielding electric fields during the main phase of the geomagnetic storm, indicating an impulsive nature of the large scale penetrating electric field in regulating the gain and loss of radiation belt particles. We will present the statistical analysis and simulations results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.8961K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.8961K"><span>Visualizing the Invisible and Other Wonders of Saturn' s Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krimigis, Stamatios; Mitchell, Donald; Krupp, Norbert; Hamilton, Douglas; Dandouras, Jannis</p> <p>2014-05-01</p> <p>New measurement capabilities on exploratory missions always make new discoveries and reveal new phenomena, even when earlier planetary encounters had sketched out the broad features of a planet' s environment. And so it is with the Cassini-Huygens intensive study of the Saturn system, even though the reconnaissance of the planet had already taken place first with Pioneer-11 in 1979 and then Voyager-1 and -2 in 1980 and 1981, respectively. Thus, the inclusion in the payload of the Ion and Neutral Camera (INCA) to perform energetic neutral atom (ENA) imaging, plus an instrument that could measure ion charge state (CHEMS) and, in addition, state-of-the-art electron and ion sensors (LEMMS) provided the tools for a plethora of new and unique observations. These include, but are not limited to: (1) explosive large-scale injections appearing beyond 12 RS in the post-midnight sector, propagate inward, are connected to auroral brightening and SKR emissions, and apparently local injections as far in as 6 RS in the pre-midnight through post-midnight sector with a recurrence period around 11h that appear to corotate past noon; (2) periodicities in energetic charged particles in Saturn' s magnetosphere, including "dual" periodicities, their slow variations, periodic tilting of the plasma sheet, , and the possible explanation of these periodicities by a "wavy" magnetodisk model and the existence of the solar wind "driver" periodicity at ~26 days; (3) dominance of water group (W+) and H+ with a healthy dose of H2+ ions in the energetic particle population throughout the middle magnetosphere, plus minor species such as O2+ and 28M+ of unknown origin, all with relative abundances varying with the solar cycle and/or Saturn' s seasons; (4) sudden increases in energetic ion intensity around Saturn, in the vicinity of the moons Dione and Tethys, each lasting for several weeks, in response to interplanetary events caused by solar eruptions.; (5) a uniform electric field of around 0.11-0.18 mV/m within 4.4-7.0 RS oriented roughly from noon to midnight, that explains the persistent radial offsets of satellite electron microsignatures from their expected positions; (6) determination that the ring current pressure in the outer magnetosphere is dominated by superthermal ions heavier than protons; (7) detection of magnetic-field-aligned ion and electron beams (offset several moon radii downstream from Enceladus) with sufficient power to stimulate detectable aurora, and the subsequent discovery of Enceladus-associated aurora in a few per cent of the scans of the moon' s footprint. These and many other observations have revealed fundamental plasma processes operating in Saturn' s magnetosphere such as magnetotail reconnection, centrifugal interchange instability, ion and electron acceleration, convection/diffusion, charge exchange, and magnetosphere/ionosphere coupling, among others.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EPSC....9..244K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EPSC....9..244K"><span>Visualizing the Invisible and Other Wonders of Saturn's Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krupp, N.; Krimigis, S. M.; Mitchell, D. G.; Hamilton, D. C.</p> <p>2014-04-01</p> <p>New measurement capabilities on exploratory missions always make new discoveries and reveal new phenomena, even when earlier planetary encounters had sketched out the broad features of a planet' s environment. And so it is with the Cassini-Huygens intensive study of the Saturn system, even though the reconnaissance of the planet had already taken place first with Pioneer-11 in 1979 and then Voyager-1 and -2 in 1980 and 1981, respectively. Thus, the inclusion in the payload of the Magnetospheric Imaging Instrument MIMI (consisting of the Ion and Neutral Camera (INCA) to perform energetic neutral atom (ENA) imaging, plus an instrument that could measure ion charge state (CHEMS) and, in addition, state-ofthe-art electron and ion sensors (LEMMS) ) provided the tools for a plethora of new and unique observations. These include, but are not limited to:(1) explosive large-scale injections appearing beyond 12 RS in the post-midnight sector, propagate inward, are connected to auroral brightening and SKR emissions, and apparently local injections as far in as 6 RS in the pre-midnight through post-midnight sector with a recurrence period around 11h that appear to corotate past noon; (2) periodicities in energetic charged particles in Saturn's magnetosphere, including "dual" periodicities, their slow variations, periodic tilting of the plasma sheet, and the possible explanation of these periodicities by a "wavy" magnetodisk model and the existence of the solar wind "driver" periodicity at ~26 days; (3) dominance of water group (W+) and H+ with a healthy dose of H2+ ions in the energetic particle population throughout the middle magnetosphere, plus minor species such as O2+ and 28M+ of unknown origin, all with relative abundances varying with the solar cycle and/or Saturn' s seasons; (4) sudden increases in energetic ion intensity around Saturn, in the vicinity of the moons Dione and Tethys, each lasting for several weeks, in response to interplanetary events caused by solar eruptions ; (5) a uniform electric field of around 0.11-0.18 mV/m within 4.4-7.0 RS oriented roughly from noon to midnight, that explains the persistent radial offsets of satellite electron microsignatures from their expected positions; (6) determination that the ring current pressure in the outer magnetosphere is dominated by superthermal ions heavier than protons; (7) detection of magnetic field-aligned ion and electron beams (offset several moon radii downstream from Enceladus) with sufficient power to stimulate detectable aurora, and the subsequent discovery of Enceladus-associated aurora in a few per cent of the scans of the moon' s footprint. These and many other observations have revealed fundamental plasma processes operating in Saturn's magnetosphere such as magnetotail reconnection, centrifugal interchange instability, ion and electron acceleration, convection/diffusion, charge exchange, and magnetosphere/ionosphere coupling, among others.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3324497','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3324497"><span>Estimating Long-Term Survival Temperatures at the Assemblage Level in the Marine Environment: Towards Macrophysiology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Richard, Joëlle; Morley, Simon Anthony; Thorne, Michael A. S.; Peck, Lloyd Samuel</p> <p>2012-01-01</p> <p>Defining ecologically relevant upper temperature limits of species is important in the context of environmental change. The approach used in the present paper estimates the relationship between rates of temperature change and upper temperature limits for survival in order to evaluate the maximum long-term survival temperature (Ts). This new approach integrates both the exposure time and the exposure temperature in the evaluation of temperature limits. Using data previously published for different temperate and Antarctic marine environments, we calculated Ts in each environment, which allowed us to calculate a new index: the Warming Allowance (WA). This index is defined as the maximum environmental temperature increase which an ectotherm in a given environment can tolerate, possibly with a decrease in performance but without endangering survival over seasonal or lifetime time-scales. It is calculated as the difference between maximum long-term survival temperature (Ts) and mean maximum habitat temperature. It provides a measure of how close a species, assemblage or fauna are living to their temperature limits for long-term survival and hence their vulnerability to environmental warming. In contrast to data for terrestrial environments showing that warming tolerance increases with latitude, results here for marine environments show a less clear pattern as the smallest WA value was for the Peru upwelling system. The method applied here, relating upper temperature limits to rate of experimental warming, has potential for wide application in the identification of faunas with little capacity to survive environmental warming. PMID:22509340</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790002499','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790002499"><span>Predicting tropical cyclone intensity using satellite measured equivalent blackbody temperatures of cloud tops. [regression analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gentry, R. C.; Rodgers, E.; Steranka, J.; Shenk, W. E.</p> <p>1978-01-01</p> <p>A regression technique was developed to forecast 24 hour changes of the maximum winds for weak (maximum winds less than or equal to 65 Kt) and strong (maximum winds greater than 65 Kt) tropical cyclones by utilizing satellite measured equivalent blackbody temperatures around the storm alone and together with the changes in maximum winds during the preceding 24 hours and the current maximum winds. Independent testing of these regression equations shows that the mean errors made by the equations are lower than the errors in forecasts made by the peristence techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913164Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913164Z"><span>Traces of influence of the surface topography in the Venus atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zasova, Ludmila; Khatuntsev, Igor; Patsaeva, Marina; Ignatiev, Nikolay; Gorinov, Dmitry</p> <p>2017-04-01</p> <p>We study the traces of influence of the Venus' topography like Ishtar , Beta Regio, Atalanta Planitia in the Venus atmosphere. From the Fourier Spectrometry on Venera-15 (FS-V15) the 3-D temperature and clouds fields in mesosphere were retrieved [Zasova et al, PSS,2007]. It was found that distribution of temperature is described by the Fourier decomposition with 1, 1/2, 1/3, and 1/4days and upper boundary of clouds (1, 1/2 days) harmonics in Solar-fixed coordinates. The amplitudes of the thermal tide harmonics with wavenumbers 1 and 2 reach 10 K. We found that in the Sun- fixed frame of reference, both maxima and minima are shifted from noon and from midnight to westwards, in direction of the superrotation. Comparison the fields of temperature at isobaric levels (from 60 to 95 km), altitude of upper boundary of the upper and middle clouds, the thermal zonal wind with the Magellan topography maps shows that for all cases the high correlation with the images of the structures in Ishtar, Beta Regio, Atalanta Planitia are observed. For example, it was found that temperature field near upper boundary of clouds (at 65 km) in latitude-longitude coordinates shows a good correspondence between topography (Ishtar, Beta Regio and Atalanta Planitia) and temperature perturbations with coefficient of correlation CC>0.9. The temperature and clouds maps in comparison to the map of Magellan topography show that the perturbations are shifted by 30° also in the direction of superrotation. Venera-15 had geometry observations very convenient for thermal tides observation (polar orbit with pericenter near N-pole), the important results was obtained even with spatial coverage not enough. Interpretation of observed phenomena still not clear. Detailed study continues, also in comparison with VMS and VIRTIS observations for the Southern hemisphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413330L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413330L"><span>Daytime dependence of disturbances of ionospheric Es-layers connected to earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liperovskaya, E. V.; Liperovsky, A. V.; Meister, C.-V.; Silina, A. S.</p> <p>2012-04-01</p> <p>In the present work variations of the semi-transparency of the sporadic E-layer of the ionosphere due to seismic activities are studied. The semi-transparency Q is determined by the blanketing frequency fbEs and the characteristic frequency foEs, Q = (foEs - fbEs)/fbEs. At low values of the blanketing frequency fbEs, the critical frequency foEs does not describe the maximum ionisation density of the Es-layer, as the critical frequencies of regular ionospheric layers (e.g. foF2) do, but it describes the occurrence of small-scall (tenths of meters) inhomogeneities of the ionisation density along the vertical in the layer. The maximum ionisation density of the sporadic layer is proportional to the square of fbEs. In the case of vertical ionospheric sounding, the sporadic layer becomes transparent for signals with frequencies larger than fbEs. Investigations showed that about three days before an earthquake an increase of the semi-transparency interval is observed during sunset and sunrise. In the present work, analogous results are found for data of the vertical sounding stations "Tokyo" and "Petropavlovsk-Kamchatsky". Using the method of superposition of epoches, more than 50 earthquakes with magnitudes M > 5, depths h < 40 km, and distances between the station and the epicenter R < 300 km are considered in case of the vertical sounding station "Tokyo". More than 20 earthquakes with such parameters were analysed in case of the station "Petropavlovsk-Kamchatsky". Days with strong geomagnetic activity were excluded from the analysis. According to the station "Petropavlovsk-Kamchatsky" about 1-3 days before earthquakes, an increase of Es-spread is observed a few hours before midnight. This increase is a sign of large-scale inhomogeneities in the sporadic layers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JASTP.165...54P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JASTP.165...54P"><span>Day and nighttime L-Band amplitude scintillations during low solar activity at a low latitude station in the South Pacific region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prasad, Ramendra; Kumar, Sushil</p> <p>2017-12-01</p> <p>A morphological study of GPS L-band amplitude scintillations observed at a low latitude station, Suva (18.1°S, 178.4°E), Fiji, during low solar activity year 2010 of solar cycle 24, has been presented. Out of a total of 480 scintillation events recorded during 2010, 84.4% were weak (0.2 ≤ S4 < 0.3), 14.6% moderate (0.3 ≤ S4 < 0.45) and only 1% strong (0.45 ≤ S4). The amplitude scintillations were most pronounced in the local daytime with January registering the highest occurrence. Seasonal analysis revealed maximum scintillation occurrence during summer as compared to winter and equinox seasons. The daytime scintillation with a maximum in the summer is consistent with localized blanketing sporadic E observations and could also be possibly due to lightning activity around the observing station. Annual percentage occurrence shows that scintillations occurred mostly in the daytime with peak occurrence at around 05:00-09:00 LT. The daytime strong scintillation events were not associated with vTEC depletions and phase scintillations, but the signal to noise ratio during the scintillation events decreased with increase in scintillation index (S4). However, the post-midnight strong amplitude scintillations were associated with vTEC depletions and phase scintillations indicative of large scale irregularities (spread-F). The geomagnetic activity effect showed enhanced occurrence on geomagnetically disturbed days as compared to quite conditions. The geomagnetic storm effect on scintillations for 17 storms of different strengths (Dst ≤ 50 nT) during 2010-2011 showed an increase in the occurrence of post-storm scintillations, on the days following the storm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27467645','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27467645"><span>Preoperative fasting for elective surgery in a regional hospital in Oman.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abdullah Al Maqbali, Mohammed</p> <p>2016-07-28</p> <p>A fasting period before anesthesia is necessary to avoid the aspiration of stomach contents, which can be threatening to the patient's life. Guidelines from professional societies in the USA and UK recommend that healthy patients fast for 6 hours from solid food and 2 hours from liquids. Despite this, many institutions still practice nil-by-mouth after midnight. This can affect the patient's recovery after surgery, and increase the length of stay in hospital. The aim of this study was to assess the duration of fasting before elective surgery on the part of adult patients. A prospective study was conducted to identify the fasting time and complications among surgical patients undergoing elective surgery over a 4-month period. The patients were asked for preoperative fasting times, and the complication. The demographic data were taken from the patients' files. A total of 169 patients were included in the study, 88 male and 81 female. The minimum and maximum fasting hours with regard to food were 7 hours and 19 hours, respectively; all the patients fasted from food for longer than the recommended time. The minimum and maximum fasting hours for fluids were 4 hours and 19 hours, respectively; all the patients fasted from fluid for longer than the recommended time. Most of the patients fasted from food and fluids for more than the time recommended by the American Society of Anaesthesiologists, the Royal College of Nursing, the Association of Anaesthetists of Great Britain and Ireland and the Royal College of Anaesthetists. Excessive fasting could lead to discomfort and possible morbidity in surgical patients. The surgical team needs to collaborate to reduce the fasting time by revising the operative list.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1066040','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1066040"><span>Diurnal Changes in Volume and Specific Tissue Weight of Crassulacean Acid Metabolism Plants 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, Sheng-Shu; Black, Clanton C.</p> <p>1983-01-01</p> <p>The diurnal variations in volume and in specific weight were determined for green stems and leaves of Crassulacen acid metabolism (CAM) plants. Volume changes were measured by a water displacement method. Diurnal variations occurred in the volume of green CAM tissues. Their volume increased early in the light period reaching a maximum about mid-day, then the volume decreased to a minimum near midnight. The maximum volume increase each day was about 2.7% of the total volume. Control leaves of C3 and C4 plants exhibited reverse diurnal volume changes of 0.2 to 0.4%. The hypothesis is presented and supported that green CAM tissues should exhibit a diurnal increase in volume due to the increase of internal gas pressure from CO2 and O2 when their stomata are closed. Conversely, the volume should decrease when the gas pressure is decreased. The second hypothesis presented and supported was that the specific weight (milligrams of dry weight per square centimeter of green surface area) of green CAM tissues should increase at night due to the net fixation of CO2. Green CAM tissues increased their specific weight at night in contrast to control C3 and C4 leaves which decreased their specific weight at night. With Kalanchoë daigremontiana leaves, the calculated increase in specific leaf weight at night based on estimates of carbohydrate available for net CO2 fixation was near 6% and the measured increase in specific leaf weight was 6%. Diurnal measurements of CAM tissue water content were neither coincident nor reciprocal with their diurnal patterns of either volume or specific weight changes. PMID:16662833</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PApGe.tmp.1265S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PApGe.tmp.1265S"><span>Variability of Diurnal Temperature Range During Winter Over Western Himalaya: Range- and Altitude-Wise Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek</p> <p>2018-04-01</p> <p>The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-08-10/pdf/2012-19602.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-08-10/pdf/2012-19602.pdf"><span>77 FR 47787 - Drawbridge Operation Regulation; Atlantic Intracoastal Waterway (AIWW), Newport River, Morehead...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-08-10</p> <p>... opening provided at 12 a.m. (midnight) for vessels providing advance notice before 4 p.m. on the afternoon before the requested opening. Vessel traffic along this part of the Atlantic Intracoastal Waterway... on the amount of vessel openings but on the average number of waterway users, which showed that there...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-10-17/pdf/2012-25540.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-10-17/pdf/2012-25540.pdf"><span>77 FR 63725 - Drawbridge Operation Regulation; Atlantic Intracoastal Waterway (AIWW), Newport River, Morehead...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-10-17</p> <p>... optional opening provided at 12 a.m. (midnight) for vessels providing advance notice before 4 p.m. on the afternoon before the requested opening. Vessel traffic along this part of the Atlantic Intracoastal Waterway... on the amount of vessel openings but on the average number of waterway users, which showed that there...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title5-vol2/pdf/CFR-2011-title5-vol2-sec892-209.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title5-vol2/pdf/CFR-2011-title5-vol2-sec892-209.pdf"><span>5 CFR 892.209 - Can I cancel FEHB coverage at any time?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... consistent with that qualifying life event. If you add an eligible family member, canceling coverage would... first pay period that begins in the next year. (b) Within 60 days after you have a qualifying life event. A cancellation made because of a qualifying life event takes effect at midnight of the last day of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title5-vol2/pdf/CFR-2012-title5-vol2-sec892-209.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title5-vol2/pdf/CFR-2012-title5-vol2-sec892-209.pdf"><span>5 CFR 892.209 - Can I cancel FEHB coverage at any time?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... consistent with that qualifying life event. If you add an eligible family member, canceling coverage would... first pay period that begins in the next year. (b) Within 60 days after you have a qualifying life event. A cancellation made because of a qualifying life event takes effect at midnight of the last day of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title5-vol2/pdf/CFR-2010-title5-vol2-sec892-209.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title5-vol2/pdf/CFR-2010-title5-vol2-sec892-209.pdf"><span>5 CFR 892.209 - Can I cancel FEHB coverage at any time?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... consistent with that qualifying life event. If you add an eligible family member, canceling coverage would... first pay period that begins in the next year. (b) Within 60 days after you have a qualifying life event. A cancellation made because of a qualifying life event takes effect at midnight of the last day of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title5-vol2/pdf/CFR-2014-title5-vol2-sec892-209.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title5-vol2/pdf/CFR-2014-title5-vol2-sec892-209.pdf"><span>5 CFR 892.209 - Can I cancel FEHB coverage at any time?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... consistent with that qualifying life event. If you add an eligible family member, canceling coverage would... first pay period that begins in the next year. (b) Within 60 days after you have a qualifying life event. A cancellation made because of a qualifying life event takes effect at midnight of the last day of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title5-vol2/pdf/CFR-2013-title5-vol2-sec892-209.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title5-vol2/pdf/CFR-2013-title5-vol2-sec892-209.pdf"><span>5 CFR 892.209 - Can I cancel FEHB coverage at any time?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... consistent with that qualifying life event. If you add an eligible family member, canceling coverage would... first pay period that begins in the next year. (b) Within 60 days after you have a qualifying life event. A cancellation made because of a qualifying life event takes effect at midnight of the last day of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE5044.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE5044."><span>Ophiuchus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Serpent-bearer; abbrev. Oph, gen. Ophiuchi; area 948 sq. deg.) An equatorial constellation which lies between Hercules and Scorpius, and culminates at midnight in mid-June. The ecliptic cuts across the southern part of Ophiuchus, but the constellation is not included among the constellations of the zodiac. Ophiuchus is usually said to represent Asclepius, the Greek god of medicine, and is sh...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EP%26S...69..149F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EP%26S...69..149F"><span>Erratum: Correction to: Geomagnetically conjugate observations of ionospheric and thermospheric variations accompanied by a midnight brightness wave at low latitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fukushima, D.; Shiokawa, K.; Otsuka, Y.; Kubota, M.; Yokoyama, T.; Nishioka, M.; Komonjinda, S.; Yatini, C. Y.</p> <p>2017-11-01</p> <p>After publication of this work (Fukushima et al. 2017) some errors were noticed. In Figures 2b, 2c and 2f the letters `N', `N' and `S' appear in the images, respectively. The original article was corrected. The publisher apologises for these errors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE5083.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE5083."><span>Pyxis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Compass; abbrev. Pyx, gen. Pyxidis; area 221 sq. deg.) A southern constellation which lies between Puppis and Antlia, and culminates at midnight in early February. It was introduced as Pyxis Nautica (the Mariner's Compass) by the French astronomer Nicolas L de Lacaille (1713-62), who charted the southern sky in 1751-2, from stars that formed the mast of the ancient constellation of Argo Navi...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title32-vol3/pdf/CFR-2010-title32-vol3-sec534-2.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title32-vol3/pdf/CFR-2010-title32-vol3-sec534-2.pdf"><span>32 CFR 534.2 - Allowable expenses for reporters.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... payment of not to exceed $5 for each day or fraction thereof in attendance at court. Only one such payment is authorized for any 1 day even if the reporter attends two or more courts. For the purpose of this payment, the day ends at midnight and any fraction will be considered a whole day. (c) Hourly pay. A...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE5085.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE5085."><span>Sagitta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Arrow; abbrev. Sge, gen. Sagittae; area 80 sq. deg.) A northern constellation which lies between Vulpecula and Aquila, and culminates at midnight in mid-July. Its origin dates back at least to ancient Greece, where it was identified (by different authorities) with arrows belonging to Eros, Apollo and Hercules in Greek mythology. The brightest stars of Sagitta were cataloged by Ptolemy (c. AD...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE5087.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE5087."><span>Scorpius</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Scorpion; abbrev. Sco., gen. Scorpii; area 497 sq. deg.) A southern zodiacal constellation which lies between Ophiuchus and Ara, and culminates at midnight in early June. Its origin dates back to Sumerian times, when it was called Girtab, `the stinger', but today it is associated with the scorpion that, in Greek mythology, killed Orion the hunter—and the two constellations lie on opposite sid...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE5077.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE5077."><span>Perseus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(abbrev. Per, gen. Persei; area 615 sq. deg.) A northern constellation which lies between Andromeda and Auriga, and culminates at midnight in early November. It is named after the hero in Greek mythology who beheaded the Gorgon Medusa and rescued Andromeda from being sacrificed to the sea monster Cetus. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE5164.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE5164."><span>Lyra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Lyre; abbrev. Lyr, gen. Lyrae; area 286 sq. deg.) A northern constellation which lies between Hercules and Cygnus, and culminates at midnight in early July. It is an ancient constellation pattern, which was associated with an eagle or vulture in the Indian subcontinent and Arab countries, and with the mythical lyre invented by Hermes and given by Apollo to Orpheus in ancient Greece. Its brig...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4965.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4965."><span>Centaurus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Centaur; abbrev. Cen, gen. Centauri; area 1060 sq. deg.) A southern constellation which lies between Vela and Lupus, and surrounds Crux on three sides. It culminates at midnight in early April. Its origin dates back at least to ancient Greece, where it was identified with Chiron in Greek mythology. The brightest stars of Centaurus were cataloged by Ptolemy (c. AD 100-175) in the Almagest....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4985.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4985."><span>Gemini</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Twins; abbrev. Gem, gen. Geminorum; area 514 sq. deg.) A northern zodiacal constellation which lies between Auriga and Canis Minor, and culminates at midnight in early January. It represents Castor and Pollux, the twin sons of Leda, Queen of Sparta, in Greek mythology, whose brotherly love was rewarded by a place among the stars. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4921.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4921."><span>Andromeda</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(abbrev. And, gen. Andromedae; area 722 sq. deg.) A northern constellation that lies between Perseus and Pegasus, and culminates at midnight in early October. It is named after the daughter of King Cepheus and Queen Cassiopeia in Greek mythology, who was rescued by Perseus from being sacrificed to the sea monster Cetus, and is usually shown on early celestial charts as a chained maiden. Its brigh...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4967.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4967."><span>Cetus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Sea Monster or Whale; abbrev. Cet, gen. Ceti; area 1231 sq. deg.) An equatorial constellation which lies between Aquarius and Taurus, and culminates at midnight in October. It is named after the sea monster from which Perseus rescued Andromeda in Greek mythology, though it is sometimes identified as a whale. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest....</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4964.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4964."><span>Cassiopeia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(abbrev. Cas, gen. Cassiopeiae; area 598 sq. deg.) A northern constellation which lies between Cepheus and Andromeda, and culminates at midnight in early October. It is named after Queen Cassiopeia, wife of King Cepheus and mother of Andromeda in Greek mythology, and is usually shown on early celestial charts as a seated figure. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE5045.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE5045."><span>Orion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Hunter; abbrev. Ori, gen. Orionis; area 594 sq. deg.) An equatorial constellation which lies between Taurus and Monoceros, and culminates at midnight in mid-December. Its origin dates back to Sumerian times, when it was identified with the hero Gilgamesh and his fight against the Bull of Heaven (represented by Taurus), but today it is associated with the son of Poseidon, in Greek mythology, ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4978.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4978."><span>Cygnus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Swan; abbrev. Cyg, gen. Cygni; area 804 sq. deg.) A northern constellation which lies between Cepheus and Vulpecula, and culminates at midnight in late July. Its origin is uncertain, though it was known to the ancient Greeks, who identified it with one of the forms assumed by Zeus during his amorous pursuits, or with other mythological swans. Its brightest stars were cataloged by Ptolemy (c....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4962.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4962."><span>Capricornus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Sea Goat; abbrev. Cap, gen. Capricorni; area 414 sq. deg.) A southern zodiacal constellation which lies between Sagittarius and Aquarius, and culminates at midnight in early August. The origin of the unusual constellation figure, which comprises the head and forelimbs of a goat and tail of a fish, dates back to Babylonian times and has also been associated in Greek mythology with Pan, who ha...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE5047.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE5047."><span>Pegasus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Winged Horse; abbrev. Peg, gen. Pegasi; area 1121 sq. deg.) A northern constellation that extends from Cygnus, Lacerta and Andromeda almost to the celestial equator, and culminates at midnight in early September. It is named after the winged horse in Greek mythology that sprang from the body of Medusa, the Gorgon, when she was beheaded by Perseus, and later was tamed by the hero Bellerophon. ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4932.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4932."><span>Cancer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Crab; abbrev. Cnc, genitive Cancri; area 506 sq. deg.) A northern zodiacal constellation which lies between Gemini and Leo, and culminates at midnight in late January. It represents the crab that, in Greek mythology, Hercules crushed underfoot during his fight with the multi-headed Hydra. The name of α Cancri, its brightest star, is Acubens, which comes from the Arabic word meaning `the claw...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol5/pdf/CFR-2014-title49-vol5-sec395-8.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol5/pdf/CFR-2014-title49-vol5-sec395-8.pdf"><span>49 CFR 395.8 - Driver's record of duty status.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... other than a city, town, or village, show one of the following: (1) The highway number and nearest... period starting time (e.g. midnight, 9:00 a.m., noon, 3:00 p.m.); (7) Main office address; (8) Remarks...'s record of duty status. When work is performed for more than one motor carrier during the same 24...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Rein&pg=3&id=ED529972','ERIC'); return false;" href="https://eric.ed.gov/?q=Rein&pg=3&id=ED529972"><span>A Legal Guide to State Pension Reform. Education Sector Policy Briefs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Herriot-Hatfield, Jennie; Monahan, Amy; Rosenberg, Sarah; Tucker, Bill</p> <p>2012-01-01</p> <p>Just 18 minutes before the midnight signing deadline on May 15, 2010, Minnesota state legislators breathed a sigh of relief. Their bipartisan pension reform legislation, which passed both chambers by large margins and aimed to help shore up a potentially failing pension system, had just escaped a veto threat. Under pressure from his Republican…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=sun&pg=3&id=EJ848936','ERIC'); return false;" href="https://eric.ed.gov/?q=sun&pg=3&id=EJ848936"><span>Solar and Lunar Demonstrators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ros, Rosa M.</p> <p>2009-01-01</p> <p>By means of a simple device, made by students themselves, the movements of the Sun and the Moon can be studied at different latitudes. Using this device, it is easy to explain phenomena such as the midnight Sun, zenith pass and why the Moon "smiles". In this article, we show various photos of the Sun's movements, alongside their simulations on the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-02-24/pdf/2011-4105.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-02-24/pdf/2011-4105.pdf"><span>76 FR 10430 - BNSF Railway Company-Temporary Trackage Rights Exemption-Union Pacific Railroad Company</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-02-24</p> <p>.... The trackage rights are temporary in nature and are scheduled to expire at midnight on December 10... days before the exemption becomes effective). An original and 10 copies of all pleadings, referring to..., DC 20423-0001. In addition, a copy of each pleading must be served on Karl Morell, Of Counsel, Ball...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-10-04/pdf/2012-24519.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-10-04/pdf/2012-24519.pdf"><span>77 FR 60742 - BNSF Railway Company-Temporary Trackage Rights Exemption-Union Pacific Railroad Company</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-10-04</p> <p>...' agreement provides that the trackage rights are temporary in nature and are scheduled to expire at midnight... of all pleadings, referring to Docket No. FD 35676, must be filed with the Surface Transportation Board, 395 E Street SW., Washington, DC 20423-0001. In addition, a copy of each pleading must be served...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol10/pdf/CFR-2012-title40-vol10-part63-subpartU-app7.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol10/pdf/CFR-2012-title40-vol10-part63-subpartU-app7.pdf"><span>40 CFR Table 7 to Subpart U of... - Operating Parameters for Which Monitoring Levels Are Required To Be Established for Continuous...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol11/pdf/CFR-2010-title40-vol11-part63-subpartPPP-app7.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol11/pdf/CFR-2010-title40-vol11-part63-subpartPPP-app7.pdf"><span>40 CFR Table 7 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol10/pdf/CFR-2014-title40-vol10-part63-subpartU-app7.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol10/pdf/CFR-2014-title40-vol10-part63-subpartU-app7.pdf"><span>40 CFR Table 7 to Subpart U of... - Operating Parameters for Which Monitoring Levels Are Required To Be Established for Continuous...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol12/pdf/CFR-2012-title40-vol12-part63-subpartPPP-app7.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol12/pdf/CFR-2012-title40-vol12-part63-subpartPPP-app7.pdf"><span>40 CFR Table 7 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol11/pdf/CFR-2011-title40-vol11-part63-subpartPPP-app7.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol11/pdf/CFR-2011-title40-vol11-part63-subpartPPP-app7.pdf"><span>40 CFR Table 7 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol9/pdf/CFR-2010-title40-vol9-part63-subpartU-app7.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol9/pdf/CFR-2010-title40-vol9-part63-subpartU-app7.pdf"><span>40 CFR Table 7 to Subpart U of... - Operating Parameters for Which Monitoring Levels Are Required To Be Established for Continuous...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol9/pdf/CFR-2011-title40-vol9-part63-subpartU-app7.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol9/pdf/CFR-2011-title40-vol9-part63-subpartU-app7.pdf"><span>40 CFR Table 7 to Subpart U of... - Operating Parameters for Which Monitoring Levels Are Required To Be Established for Continuous...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol10/pdf/CFR-2013-title40-vol10-part63-subpartU-app7.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol10/pdf/CFR-2013-title40-vol10-part63-subpartU-app7.pdf"><span>40 CFR Table 7 to Subpart U of... - Operating Parameters for Which Monitoring Levels Are Required To Be Established for Continuous...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol18/pdf/CFR-2011-title40-vol18-sec86-133-96.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol18/pdf/CFR-2011-title40-vol18-sec86-133-96.pdf"><span>40 CFR 86.133-96 - Diurnal emission test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... according to the profile specified in § 86.133 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol19/pdf/CFR-2011-title40-vol19-sec86-1233-96.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol19/pdf/CFR-2011-title40-vol19-sec86-1233-96.pdf"><span>40 CFR 86.1233-96 - Diurnal emission test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... according to the profile specified in § 86.1233 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol19/pdf/CFR-2013-title40-vol19-sec86-133-96.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol19/pdf/CFR-2013-title40-vol19-sec86-133-96.pdf"><span>40 CFR 86.133-96 - Diurnal emission test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... according to the profile specified in § 86.133 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol20/pdf/CFR-2013-title40-vol20-sec86-1233-96.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol20/pdf/CFR-2013-title40-vol20-sec86-1233-96.pdf"><span>40 CFR 86.1233-96 - Diurnal emission test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... according to the profile specified in § 86.1233 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol19/pdf/CFR-2014-title40-vol19-sec86-133-96.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol19/pdf/CFR-2014-title40-vol19-sec86-133-96.pdf"><span>40 CFR 86.133-96 - Diurnal emission test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... according to the profile specified in § 86.133 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol20/pdf/CFR-2012-title40-vol20-sec86-1233-96.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol20/pdf/CFR-2012-title40-vol20-sec86-1233-96.pdf"><span>40 CFR 86.1233-96 - Diurnal emission test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... according to the profile specified in § 86.1233 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol19/pdf/CFR-2012-title40-vol19-sec86-133-96.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol19/pdf/CFR-2012-title40-vol19-sec86-133-96.pdf"><span>40 CFR 86.133-96 - Diurnal emission test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... according to the profile specified in § 86.133 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ThApC.116..211G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ThApC.116..211G"><span>Analysis and modeling of extreme temperatures in several cities in northwestern Mexico under climate change conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>García-Cueto, O. Rafael; Cavazos, M. Tereza; de Grau, Pamela; Santillán-Soto, Néstor</p> <p>2014-04-01</p> <p>The generalized extreme value distribution is applied in this article to model the statistical behavior of the maximum and minimum temperature distribution tails in four cities of Baja California in northwestern Mexico, using data from 1950-2010. The approach used of the maximum of annual time blocks. Temporal trends were included as covariates in the location parameter (μ), which resulted in significant improvements to the proposed models, particularly for the extreme maximum temperature values in the cities of Mexicali, Tijuana, and Tecate, and the extreme minimum temperature values in Mexicali and Ensenada. These models were used to estimate future probabilities over the next 100 years (2015-2110) for different time periods, and they were compared with changes in the extreme (P90th and P10th) percentiles of maximum and minimum temperature scenarios for a set of six general circulation models under low (RCP4.5) and high (RCP8.5) radiative forcings. By the end of the twenty-first century, the scenarios of the changes in extreme maximum summer temperature are of the same order in both the statistical model and the high radiative scenario (increases of 4-5 °C). The low radiative scenario is more conservative (increases of 2-3 °C). The winter scenario shows that minimum temperatures could be less severe; the temperature increases suggested by the probabilistic model are greater than those projected for the end of the century by the set of global models under RCP4.5 and RCP8.5 scenarios. The likely impacts on the region are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ApPhL.103w1913Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ApPhL.103w1913Z"><span>Temperature-dependent mechanical properties of single-layer molybdenum disulphide: Molecular dynamics nanoindentation simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Junhua; Jiang, Jin-Wu; Rabczuk, Timon</p> <p>2013-12-01</p> <p>The temperature-dependent mechanical properties of single-layer molybdenum disulphide (MoS2) are obtained using molecular dynamics (MD) nanoindentation simulations. The Young's moduli, maximum load stress, and maximum loading strain decrease with increasing temperature from 4.2 K to 500 K. The obtained Young's moduli are in good agreement with those using our MD uniaxial tension simulations and the available experimental results. The tendency of maximum loading strain with different temperature is opposite with that of metal materials due to the short range Stillinger-Weber potentials in MoS2. Furthermore, the indenter tip radius and fitting strain effect on the mechanical properties are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1402626-daily-mean-temperature-estimate-us-sufrad-stations-average-maximum-minimum-temperatures','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1402626-daily-mean-temperature-estimate-us-sufrad-stations-average-maximum-minimum-temperatures"><span>Daily mean temperature estimate at the US SUFRAD stations as an average of the maximum and minimum temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Chylek, Petr; Augustine, John A.; Klett, James D.; ...</p> <p>2017-09-30</p> <p>At thousands of stations worldwide, the mean daily surface air temperature is estimated as a mean of the daily maximum (T max) and minimum (T min) temperatures. In this paper, we use the NOAA Surface Radiation Budget Network (SURFRAD) of seven US stations with surface air temperature recorded each minute to assess the accuracy of the mean daily temperature estimate as an average of the daily maximum and minimum temperatures and to investigate how the accuracy of the estimate increases with an increasing number of daily temperature observations. We find the average difference between the estimate based on an averagemore » of the maximum and minimum temperatures and the average of 1440 1-min daily observations to be - 0.05 ± 1.56 °C, based on analyses of a sample of 238 days of temperature observations. Considering determination of the daily mean temperature based on 3, 4, 6, 12, or 24 daily temperature observations, we find that 2, 4, or 6 daily observations do not reduce significantly the uncertainty of the daily mean temperature. The bias reduction in a statistically significant manner (95% confidence level) occurs only with 12 or 24 daily observations. The daily mean temperature determination based on 24 hourly observations reduces the sample daily temperature uncertainty to - 0.01 ± 0.20 °C. Finally, estimating the parameters of population of all SURFRAD observations, the 95% confidence intervals based on 24 hourly measurements is from - 0.025 to 0.004 °C, compared to a confidence interval from - 0.15 to 0.05 °C based on the mean of T max and T min.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037354','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037354"><span>Relationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Howell, P.J.; Dunham, J.B.; Sankovich, P.M.</p> <p>2010-01-01</p> <p>Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7-day average daily maximum (7DADM) temperatures of tagged fish were 16-18 ??C and potentially as high as 21 ??C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18-25 ??C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7-14 ??C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11-18 ??C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species. Published 2009. This article is a US Governmentwork and is in the public domain in the USA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1402626-daily-mean-temperature-estimate-us-sufrad-stations-average-maximum-minimum-temperatures','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1402626-daily-mean-temperature-estimate-us-sufrad-stations-average-maximum-minimum-temperatures"><span>Daily mean temperature estimate at the US SUFRAD stations as an average of the maximum and minimum temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chylek, Petr; Augustine, John A.; Klett, James D.</p> <p></p> <p>At thousands of stations worldwide, the mean daily surface air temperature is estimated as a mean of the daily maximum (T max) and minimum (T min) temperatures. In this paper, we use the NOAA Surface Radiation Budget Network (SURFRAD) of seven US stations with surface air temperature recorded each minute to assess the accuracy of the mean daily temperature estimate as an average of the daily maximum and minimum temperatures and to investigate how the accuracy of the estimate increases with an increasing number of daily temperature observations. We find the average difference between the estimate based on an averagemore » of the maximum and minimum temperatures and the average of 1440 1-min daily observations to be - 0.05 ± 1.56 °C, based on analyses of a sample of 238 days of temperature observations. Considering determination of the daily mean temperature based on 3, 4, 6, 12, or 24 daily temperature observations, we find that 2, 4, or 6 daily observations do not reduce significantly the uncertainty of the daily mean temperature. The bias reduction in a statistically significant manner (95% confidence level) occurs only with 12 or 24 daily observations. The daily mean temperature determination based on 24 hourly observations reduces the sample daily temperature uncertainty to - 0.01 ± 0.20 °C. Finally, estimating the parameters of population of all SURFRAD observations, the 95% confidence intervals based on 24 hourly measurements is from - 0.025 to 0.004 °C, compared to a confidence interval from - 0.15 to 0.05 °C based on the mean of T max and T min.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13c5006S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13c5006S"><span>Mid-depth temperature maximum in an estuarine lake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stepanenko, V. M.; Repina, I. A.; Artamonov, A. Yu; Gorin, S. L.; Lykossov, V. N.; Kulyamin, D. V.</p> <p>2018-03-01</p> <p>The mid-depth temperature maximum (TeM) was measured in an estuarine Bol’shoi Vilyui Lake (Kamchatka peninsula, Russia) in summer 2015. We applied 1D k-ɛ model LAKE to the case, and found it successfully simulating the phenomenon. We argue that the main prerequisite for mid-depth TeM development is a salinity increase below the freshwater mixed layer, sharp enough in order to increase the temperature with depth not to cause convective mixing and double diffusion there. Given that this condition is satisfied, the TeM magnitude is controlled by physical factors which we identified as: radiation absorption below the mixed layer, mixed-layer temperature dynamics, vertical heat conduction and water-sediments heat exchange. In addition to these, we formulate the mechanism of temperature maximum ‘pumping’, resulting from the phase shift between diurnal cycles of mixed-layer depth and temperature maximum magnitude. Based on the LAKE model results we quantify the contribution of the above listed mechanisms and find their individual significance highly sensitive to water turbidity. Relying on physical mechanisms identified we define environmental conditions favouring the summertime TeM development in salinity-stratified lakes as: small-mixed layer depth (roughly, ~< 2 m), transparent water, daytime maximum of wind and cloudless weather. We exemplify the effect of mixed-layer depth on TeM by a set of selected lakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810003967','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810003967"><span>Canadian crop calendars in support of the early warning project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Trenchard, M. H.; Hodges, T. (Principal Investigator)</p> <p>1980-01-01</p> <p>The Canadian crop calendars for LACIE are presented. Long term monthly averages of daily maximum and daily minimum temperatures for subregions of provinces were used to simulate normal daily maximum and minimum temperatures. The Robertson (1968) spring wheat and Williams (1974) spring barley phenology models were run using the simulated daily temperatures and daylengths for appropriate latitudes. Simulated daily temperatures and phenology model outputs for spring wheat and spring barley are given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15617436','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15617436"><span>Effect of temperature and dissolved oxygen on biological nitrification at high ammonia concentrations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weon, S Y; Lee, S I; Koopman, B</p> <p>2004-11-01</p> <p>Effect of temperature and dissolved oxygen concentration on nitrification rate were investigated with enrichment cultures of nitrifying bacteria. Values of specific nitrite oxidation rate in the absence of ammonia were 2.9-12 times higher than maximum specific ammonia oxidation rates at the same temperatures. The presence of high ammonia levels reversed this relationship, causing maximum specific nitrite oxidation rates to fall to 19 to 45% as high as maximum specific ammonia oxidation rates. This result suggests that nitrification at high ammonia levels will invariably result in nitrite accumulation. The K(O2) for nitrite oxidation in the presence of high ammonia levels was higher than the K(O2) for ammonia oxidation when temperature exceeded 18 degrees C, whereas the opposite was true at lower temperatures. These results indicate that low oxygen tensions will exacerbate nitrite accumulation when water temperature is high.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992JApMe..31.1096G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992JApMe..31.1096G"><span>Extreme Maximum Land Surface Temperatures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garratt, J. R.</p> <p>1992-09-01</p> <p>There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JASTP..74...51L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JASTP..74...51L"><span>High historical values of foEs—Reality or artefact?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laštovička, J.; Boška, J.; Burešová, D.; Kouba, D.</p> <p>2012-01-01</p> <p>Very high values of foEs had sometimes been reported in the past. These values, as well as all other ionogram-scaled values, had been derived from ionograms under the assumption of the vertical reflection of ordinary mode of sounding radio waves. In the past it was impossible to check the validity of this assumption. However, modern digisondes determine clearly the oblique or extraordinary mode reflections. To test the assumption of the vertical reflection of ordinary mode for high values of foEs, seven summers (June 2004-August 2010) from a midlatitude station Pruhonice are chosen. All hourly values of foEs≥6.0 MHz are selected from this data set, altogether 282 values. In 90% of cases the “classical” way of evaluation of foEs provides values higher than “true” values from modern digisonde (average difference about 1 MHz). 38% of “classical” foEs are oblique reflections, which however do not occur in direction perpendicular to geomagnetic field. The occurrence of high values of foEs varies very much from year to year between 0 and 130 events per year. As for diurnal variation, a pronounced maximum occurs at ˜10:00LT and 16:00LT (secondary), and a minimum after midnight.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26218013','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26218013"><span>Atmospheric Mercury in the Barnett Shale Area, Texas: Implications for Emissions from Oil and Gas Processing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lan, Xin; Talbot, Robert; Laine, Patrick; Torres, Azucena; Lefer, Barry; Flynn, James</p> <p>2015-09-01</p> <p>Atmospheric mercury emissions in the Barnett Shale area were studied by employing both stationary measurements and mobile laboratory surveys. Stationary measurements near the Engle Mountain Lake showed that the median mixing ratio of total gaseous mercury (THg) was 138 ppqv (140 ± 29 ppqv for mean ± S.D.) during the June 2011 study period. A distinct diurnal variation pattern was observed in which the highest THg levels appeared near midnight, followed by a monotonic decrease until midafternoon. The influence of oil and gas (ONG) emissions was substantial in this area, as inferred from the i-pentane/n-pentane ratio (1.17). However, few THg plumes were captured by our mobile laboratory during a ∼3700 km survey with detailed downwind measurements from 50 ONG facilities. One compressor station and one natural gas condensate processing facility were found to have significant THg emissions, with maximum THg levels of 963 and 392 ppqv, respectively, and the emissions rates were estimated to be 7.9 kg/yr and 0.3 kg/yr, respectively. Our results suggest that the majority of ONG facilities in this area are not significant sources of THg; however, it is highly likely that a small number of these facilities contribute a relatively large amount of emissions in the ONG sector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70095678','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70095678"><span>The magnetic tides of Honolulu</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Love, Jeffrey J.; Rigler, Erin Joshua</p> <p>2013-01-01</p> <p>We review the phenomenon of time-stationary, periodic quiet-time geomagnetic tides. These are generated by the ionospheric and oceanic dynamos, and, to a lesser-extent, by the quiet-time magnetosphere, and they are affected by currents induced in the Earth's electrically conducting interior. We examine historical time series of hourly magnetic-vector measurements made at the Honolulu observatory. We construct high-resolution, frequency-domain Lomb-periodogram and maximum-entropy power spectra that reveal a panorama of stationary harmonics across periods from 0.1 to 10000.0-d, including harmonics that result from amplitude and phase modulation. We identify solar-diurnal tides and their annual and solar-cycle sideband modulations, lunar semi-diurnal tides and their solar-diurnal sidebands, and tides due to precession of lunar eccentricity and nodes. We provide evidence that a method intended for separating the ionospheric and oceanic dynamo signals by midnight subsampling of observatory data time series is prone to frequency-domain aliasing. The tidal signals we summarize in this review can be used to test our fundamental understanding of the dynamics of the quiet-time ionosphere and magnetosphere, induction in the ocean and in the electrically conducting interior of the Earth, and they are useful for defining a quiet-time baseline against which magnetospheric-storm intensity is measured.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM13A2348E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM13A2348E"><span>The Roles of Magnetosphere-Ionosphere Coupling on Ring Current development: Comparison of TWINS Measurements and CIMI Simulations for the 7-10 September 2015 Geomagnetic Storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edmond, J. A.; Hill, S. C.; Xu, H.; Perez, J. D.; Fok, M. C. H.; Goldstein, J.; McComas, D. J.; Valek, P. W.</p> <p>2017-12-01</p> <p>The Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) mission obtained energetic neutral atom (ENA) images during a 4 day storm on 7-10 September 2015. The storm has two separate SYM/H minima, so we divide the storm into four intervals: first main phase, first recovery phase, second main phase, and second recovery phase. Simulations with the Comprehensive Inner Magnetosphere-Ionosphere Model (CIMI) are compared and contrasted with the TWINS observations. We find good agreement in most aspects of the storm. E. G. (1) the location of the ion pressure peaks are most often in the dusk-midnight sector, (2) the pitch angle distributions at the pressure peaks most often display perpendicular anisotropy, and (3) the energy spectra at the pressure peaks have similar maximum energies. There are, however, some exceptions to these general features. We describe and interpret these notable events. We also have examined particle paths determined from the CIMI model simulations to assist in the interpretation of the notable events.In this poster, we focus upon the features of the CIMI simulations with a self-consistent electric field and with the semi-empirical Weimer electric potential in relationship to the TWINS observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950045388&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dconvection%2Bcurrents','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950045388&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dconvection%2Bcurrents"><span>Ground-based studies of ionospheric convection associated with substorm expansion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kamide, Y.; Richmond, A. D.; Emery, B. A.; Hutchins, C. F.; Ahn, B.-H.; De La Beaujardiere, O.; Foster, J. C.; Heelis, R. A.; Kroehl, H. W.; Rich, F. J.</p> <p>1994-01-01</p> <p>The instantaneous patterns of electric fields and currents in the high-latitude ionosphere are deduced by combining satellite and radar measurements of the ionospheric drift velocity, along with ground-based magnetometer observations for October 25, 1981. The period under study was characterized by a relatively stable southward interplanetary magnetic field (IMF), so that the obtained electric field patterns do reflect, in general, the state of sustained and enhanced plasma convection in the magnetosphere. During one of the satellite passes, however, an intense westward electrojet caused by a substorm intruded into the satellite (DE2) and radar (Chatanika, Alaska) field of view in the premidnight sector, providing a unique opportunity to differentiate the enhanced convection and substorm expansion fields. The distributions of the calculated electric potential for the expansion and maximum phases of the substorm show the first clear evidence of the coexistence of two physically different systems in the global convection pattern. The changes in the convection pattern during the substorm indicate that the large-scale potential distributions are indeed of general two-cell patterns representing the southward IMF status, but the night-morning cell has two positive peaks, one in the midnight sector and the other in the late morning hours, corresponding to the substorm expansion and the convection enhancement, respectively.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25346255','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25346255"><span>Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Coast, Onoriode; Murdoch, Alistair J; Ellis, Richard H; Hay, Fiona R; Jagadish, Krishna S V</p> <p>2016-01-01</p> <p>Resilience of rice cropping systems to potential global climate change will partly depend on the temperature tolerance of pollen germination (PG) and tube growth (PTG). Pollen germination of high temperature-susceptible Oryza glaberrima Steud. (cv. CG14) and Oryza sativa L. ssp. indica (cv. IR64) and high temperature-tolerant O. sativa ssp. aus (cv. N22), was assessed on a 5.6-45.4 °C temperature gradient system. Mean maximum PG was 85% at 27 °C with 1488 μm PTG at 25 °C. The hypothesis that in each pollen grain, the minimum temperature requirements (Tn ) and maximum temperature limits (Tx ) for germination operate independently was accepted by comparing multiplicative and subtractive probability models. The maximum temperature limit for PG in 50% of grains (Tx(50) ) was the lowest (29.8 °C) in IR64 compared with CG14 (34.3 °C) and N22 (35.6 °C). Standard deviation (sx ) of Tx was also low in IR64 (2.3 °C) suggesting that the mechanism of IR64's susceptibility to high temperatures may relate to PG. Optimum germination temperatures and thermal times for 1 mm PTG were not linked to tolerating high temperatures at anthesis. However, the parameters Tx(50) and sx in the germination model define new pragmatic criteria for successful and resilient PG, preferable to the more traditional cardinal (maximum and minimum) temperatures. © 2014 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmRe.205...33P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmRe.205...33P"><span>Recurrence quantification analysis of extremes of maximum and minimum temperature patterns for different climate scenarios in the Mesochora catchment in Central-Western Greece</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panagoulia, Dionysia; Vlahogianni, Eleni I.</p> <p>2018-06-01</p> <p>A methodological framework based on nonlinear recurrence analysis is proposed to examine the historical data evolution of extremes of maximum and minimum daily mean areal temperature patterns over time under different climate scenarios. The methodology is based on both historical data and atmospheric General Circulation Model (GCM) produced climate scenarios for the periods 1961-2000 and 2061-2100 which correspond to 1 × CO2 and 2 × CO2 scenarios. Historical data were derived from the actual daily observations coupled with atmospheric circulation patterns (CPs). The dynamics of the temperature was reconstructed in the phase-space from the time series of temperatures. The statistically comparing different temperature patterns were based on some discriminating statistics obtained by the Recurrence Quantification Analysis (RQA). Moreover, the bootstrap method of Schinkel et al. (2009) was adopted to calculate the confidence bounds of RQA parameters based on a structural preserving resampling. The overall methodology was implemented to the mountainous Mesochora catchment in Central-Western Greece. The results reveal substantial similarities between the historical maximum and minimum daily mean areal temperature statistical patterns and their confidence bounds, as well as the maximum and minimum temperature patterns in evolution under the 2 × CO2 scenario. A significant variability and non-stationary behaviour characterizes all climate series analyzed. Fundamental differences are produced from the historical and maximum 1 × CO2 scenarios, the maximum 1 × CO2 and minimum 1 × CO2 scenarios, as well as the confidence bounds for the two CO2 scenarios. The 2 × CO2 scenario reflects the strongest shifts in intensity, duration and frequency in temperature patterns. Such transitions can help the scientists and policy makers to understand the effects of extreme temperature changes on water resources, economic development, and health of ecosystems and hence to proceed to effective proactive management of extreme phenomena. The impacts of the findings on the predictability of the extreme daily mean areal temperature patterns are also commented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23482580','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23482580"><span>Effect of daily environmental temperature on farrowing rate and total born in dam line sows.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bloemhof, S; Mathur, P K; Knol, E F; van der Waaij, E H</p> <p>2013-06-01</p> <p>Heat stress is known to adversely affect reproductive performance of sows. However, it is important to know on which days or periods during the reproduction cycle heat stress has the greatest effects for designing appropriate genetic or management strategies. Therefore, this study was conducted to identify days and periods that have greatest effects on farrowing rate and total born of sows using 5 different measures of heat stress. The data consisted of 22,750 records on 5024 Dutch Yorkshire dam line sows from 16 farms in Spain and Portugal. Heat stress on a given day was measured in terms of maximum temperature, diurnal temperature range and heat load. The heat load was estimated using 3 definitions considering different upper critical temperatures. Identification of days during the reproduction cycle that had maximum effect was based on the Pearson correlation between the heat stress variable and the reproduction trait, estimated for each day during the reproduction cycle. Polynomial functions were fitted to describe the trends of these correlations and the days with greatest negative correlation were considered as days with maximum effect. Correlations were greatest for maximum temperature, followed by those for heat load and diurnal temperature range. Correlations for both farrowing rate and total born were stronger in gilts than in sows. This implies that heat stress has a stronger effect on reproductive performance of gilts than of sows. Heat stress during the third week (21 to 14 d) before first insemination had largest effect on farrowing rate. Heat stress during the period between 7 d before successful insemination until 12 d after that had largest effect on total born. Correlations between temperatures on consecutive days during these periods were extremely high ( > 0.9). Therefore, for farrowing rate the maximum temperature on 21 d before first insemination and for total born the maximum temperature at day of successful insemination can be used as predictive measures of heat stress in commercial sow farms. Additionally, differences between daughter groups of sires were identified in response to high temperatures. This might indicate possibilities for genetic selection on heat tolerance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950029625&hterms=nitrogen+production&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dnitrogen%2Bproduction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950029625&hterms=nitrogen+production&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dnitrogen%2Bproduction"><span>Factors affecting the estimate of primary production from space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Balch, W. M.; Byrne, C. F.</p> <p>1994-01-01</p> <p>Remote sensing of primary production in the euphotic zone has been based mostly on visible-band and water-leaving radiance measured with the coastal zone color scanner. There are some robust, simple relationships for calculating integral production based on surface measurements, but they also require knowledge for photoadaptive parameters such as maximum photosynthesis which currently cannot be obtained from spave. A 17,000-station data set is used to show that space-based estimates of maximum photosynthesis could improve predictions of psi, the water column light utiliztion index, which is an important term in many primary productivity models. Temperature is also examined as a factor for predicting hydrographic structure and primary production. A simple model is used to relate temperature and maximum photosynthesis; the model incorporates (1) the positive relationship between maximum photosynthesis and temperature and (2) the strongly negative relationship between temperature and nitrate in the ocean (which directly affects maximum growth rates via nitrogen limitation). Since these two factors relate to carbon and nitrogen, 'balanced carbon/nitrogen assimilation' was calculated using the Redfield ratio, It is expected that the relationship between maximum balanced carbon assimilation versus temperature is concave-down, with the peak dependent on nitrate uptake kinetics, temperature-nitrate relationships,a nd the carbon chlorophyll ration. These predictions were compared with the sea truth data. The minimum turnover time for nitrate was also calculated using this approach. Lastly, sea surface temperature gradients were used to predict the slope of isotherms (a proxy for the slope of isopycnals in many waters). Sea truth data show that at size scales of several hundred kilometers, surface temperature gradients can provide information on the slope of isotherms in the top 200 m of the water column. This is directly relevant to the supply of nutrients into the surface mixed layer, which is useful for predicting integral biomass and primary production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26960360','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26960360"><span>Modeling and predicting the biofilm formation of Salmonella Virchow with respect to temperature and pH.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ariafar, M Nima; Buzrul, Sencer; Akçelik, Nefise</p> <p>2016-03-01</p> <p>Biofilm formation of Salmonella Virchow was monitored with respect to time at three different temperature (20, 25 and 27.5 °C) and pH (5.2, 5.9 and 6.6) values. As the temperature increased at a constant pH level, biofilm formation decreased while as the pH level increased at a constant temperature, biofilm formation increased. Modified Gompertz equation with high adjusted determination coefficient (Radj(2)) and low mean square error (MSE) values produced reasonable fits for the biofilm formation under all conditions. Parameters of the modified Gompertz equation could be described in terms of temperature and pH by use of a second order polynomial function. In general, as temperature increased maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation decreased; whereas, as pH increased; maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation increased. Two temperature (23 and 26 °C) and pH (5.3 and 6.3) values were used up to 24 h to predict the biofilm formation of S. Virchow. Although the predictions did not perfectly match with the data, reasonable estimates were obtained. In principle, modeling and predicting the biofilm formation of different microorganisms on different surfaces under various conditions could be possible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1357750','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1357750"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Brown, C. S.; Zhang, Hongbin</p> <p></p> <p>Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1357750-uncertainty-quantification-sensitivity-analysis-casl-core-simulator-vera-cs','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1357750-uncertainty-quantification-sensitivity-analysis-casl-core-simulator-vera-cs"><span>Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Brown, C. S.; Zhang, Hongbin</p> <p>2016-05-24</p> <p>Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26674400','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26674400"><span>Effects of EVA gloves on grip strength and fatigue under low temperature and low pressure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tian, Yinsheng; Ding, Li; Liu, Heqing; Li, Yan; Li, Deyu; Wang, Li</p> <p>2016-03-01</p> <p>To study the effects of wearing extravehicular activity (EVA) gloves on grip strength and fatigue in low temperature, low pressure and mixing of two factors (low temperature and low pressure). The maximum grip strength and fatigue tests were performed with 10 healthy male subjects wearing gloves in a variety of simulated environments. The data was analysed using the normalization method. The results showed that wearing gloves significantly affected the maximum grip strength and fatigue. Pressure (29.6, 39.2 kPa) had more influence on the maximum grip compared with control group while low temperatures (-50, -90, -110 °C) had no influence on grip but affected fatigue dramatically. The results also showed that the maximum grip strength and fatigue were influenced significantly in a compound environment. Space environment remarkably reduced strength and endurance of the astronauts. However, the effects brought by the compound environment cannot be understood as the superimposition of low temperature and pressure effects. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JGRD..11022104Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JGRD..11022104Z"><span>Trends in Middle East climate extreme indices from 1950 to 2003</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Xuebin; Aguilar, Enric; Sensoy, Serhat; Melkonyan, Hamlet; Tagiyeva, Umayra; Ahmed, Nader; Kutaladze, Nato; Rahimzadeh, Fatemeh; Taghipour, Afsaneh; Hantosh, T. H.; Albert, Pinhas; Semawi, Mohammed; Karam Ali, Mohammad; Said Al-Shabibi, Mansoor Halal; Al-Oulan, Zaid; Zatari, Taha; Al Dean Khelet, Imad; Hamoud, Saleh; Sagir, Ramazan; Demircan, Mesut; Eken, Mehmet; Adiguzel, Mustafa; Alexander, Lisa; Peterson, Thomas C.; Wallis, Trevor</p> <p>2005-11-01</p> <p>A climate change workshop for the Middle East brought together scientists and data for the region to produce the first area-wide analysis of climate extremes for the region. This paper reports trends in extreme precipitation and temperature indices that were computed during the workshop and additional indices data that became available after the workshop. Trends in these indices were examined for 1950-2003 at 52 stations covering 15 countries, including Armenia, Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq, Israel, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Syria, and Turkey. Results indicate that there have been statistically significant, spatially coherent trends in temperature indices that are related to temperature increases in the region. Significant, increasing trends have been found in the annual maximum of daily maximum and minimum temperature, the annual minimum of daily maximum and minimum temperature, the number of summer nights, and the number of days where daily temperature has exceeded its 90th percentile. Significant negative trends have been found in the number of days when daily temperature is below its 10th percentile and daily temperature range. Trends in precipitation indices, including the number of days with precipitation, the average precipitation intensity, and maximum daily precipitation events, are weak in general and do not show spatial coherence. The workshop attendees have generously made the indices data available for the international research community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSR...107...14V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSR...107...14V"><span>Temperature induced changes in size dependent distributions of two boreal and three Lusitanian flatfish species: A comparative study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Hal, Ralf; van Kooten, Tobias; Rijnsdorp, Adriaan D.</p> <p>2016-01-01</p> <p>Changes in spatial distribution in several fish species have been related to recent increase in global temperature. In the North Sea, both a poleward shift and a shift to deeper water have been observed. Here, we study the underlying mechanism of these shifts in a comparative study of the changes in distribution of two boreal flatfish species (plaice Pleuronectes platessa and dab Limanda limanda) and three Lusitanian flatfish species (sole Solea solea, solenette Buglossidium luteum, and scaldfish Arnoglossus laterna) as recorded in annual bottom trawl surveys carried out in the North Sea in late summer since 1985. The distribution is analysed in relation to the bottom temperature at the time of the survey as well as to the seasonal maximum bottom temperature earlier in the year. It is shown that the boreal species plaice and dab moved to deeper water and maintained the seasonal maximum temperature that they experienced in earlier periods, while the Lusitanian species sole, solenette, and scaldfish experienced an increase in the seasonal maximum temperature that they experienced while maintaining their depth distribution. This overall response varied between length classes, reflecting a preference for higher temperature of the smaller length classes. The results lend support to the hypothesis that the fish displayed a direct response to the maximum temperature that occurred during the growth season before the time of sampling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1241536','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1241536"><span>Coolant and ambient temperature control for chillerless liquid cooled data centers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.</p> <p>2016-02-02</p> <p>Cooling control methods include measuring a temperature of air provided to a plurality of nodes by an air-to-liquid heat exchanger, measuring a temperature of at least one component of the plurality of nodes and finding a maximum component temperature across all such nodes, comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold, and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the plurality of nodes based on the comparisons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3247883','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3247883"><span>Maximum temperatures of 89°C recorded during the mechanical preparation of 35 femoral heads for resurfacing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2011-01-01</p> <p>Background and purpose We noticed that our instruments were often too hot to touch after preparing the femoral head for resurfacing, and questioned whether the heat generated could exceed temperatures known to cause osteonecrosis. Patients and methods Using an infra-red thermal imaging camera, we measured real-time femoral head temperatures during femoral head reaming in 35 patients undergoing resurfacing hip arthroplasty. 7 patients received an ASR, 8 received a Cormet, and 20 received a Birmingham resurfacing arthroplasty. Results The maximum temperature recorded was 89°C. The temperature exceeded 47°C in 28 patients and 70°C in 11. The mean duration of most stages of head preparation was less than 1 min. The mean time exceeded 1 min only on peripheral head reaming of the ASR system. At temperatures lower than 47°C, only 2 femoral heads were exposed long enough to cause osteonecrosis. The highest mean maximum temperatures recorded were 54°C when the proximal femoral head was resected with an oscillating saw and 47°C during peripheral reaming with the crown drill. The modified new Birmingham resurfacing proximal femoral head reamer substantially reduced the maximum temperatures generated. Lavage reduced temperatures to a mean of 18°C. Interpretation 11 patients were subjected to temperatures sufficient to cause osteonecrosis secondary to thermal insult, regardless of the duration of reaming. In 2 cases only, the length of reaming was long enough to induce damage at lower temperatures. Lavage and sharp instruments should reduce the risk of thermal insult during hip resurfacing. PMID:22066558</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016WRR....52.6018D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016WRR....52.6018D"><span>Spatial statistical network models for stream and river temperature in New England, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Detenbeck, Naomi E.; Morrison, Alisa C.; Abele, Ralph W.; Kopp, Darin A.</p> <p>2016-08-01</p> <p>Watershed managers are challenged by the need for predictive temperature models with sufficient accuracy and geographic breadth for practical use. We described thermal regimes of New England rivers and streams based on a reduced set of metrics for the May-September growing season (July or August median temperature, diurnal rate of change, and magnitude and timing of growing season maximum) chosen through principal component analysis of 78 candidate metrics. We then developed and assessed spatial statistical models for each of these metrics, incorporating spatial autocorrelation based on both distance along the flow network and Euclidean distance between points. Calculation of spatial autocorrelation based on travel or retention time in place of network distance yielded tighter-fitting Torgegrams with less scatter but did not improve overall model prediction accuracy. We predicted monthly median July or August stream temperatures as a function of median air temperature, estimated urban heat island effect, shaded solar radiation, main channel slope, watershed storage (percent lake and wetland area), percent coarse-grained surficial deposits, and presence or maximum depth of a lake immediately upstream, with an overall root-mean-square prediction error of 1.4 and 1.5°C, respectively. Growing season maximum water temperature varied as a function of air temperature, local channel slope, shaded August solar radiation, imperviousness, and watershed storage. Predictive models for July or August daily range, maximum daily rate of change, and timing of growing season maximum were statistically significant but explained a much lower proportion of variance than the above models (5-14% of total).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE5086.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE5086."><span>Sagittarius</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Archer; abbrev. Sgr, gen. Sagittarii; area 867 sq. deg.) A southern zodiacal constellation which lies between Ophiuchus and Capricornus, and culminates at midnight in early July. Its origin dates back to Sumerian times, when it was identified with Nergal, a god of war, but today it is associated with Crotus, son of the Greek god Pan and the inventor of archery, and it is shown on early celes...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title41-vol4/pdf/CFR-2010-title41-vol4-sec301-11-102.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title41-vol4/pdf/CFR-2010-title41-vol4-sec301-11-102.pdf"><span>41 CFR 301-11.102 - What is the applicable M&IE rate?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 24 hours or more, and you are traveling to a new TDY site or stopover point at midnight The M&IE rate applicable to the new TDY site or stopover point. Travel is 24 hours or more, and you are returning to your...&IE rate? 301-11.102 Section 301-11.102 Public Contracts and Property Management Federal Travel...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED472106.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED472106.pdf"><span>The Homestead Act of 1862. Teaching with Documents.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>National Archives and Records Administration, Washington, DC.</p> <p></p> <p>On January 1, 1863, Daniel Freeman, a Union Army scout convinced a land office clerk in St. Louis (Missouri) to open the office shortly after midnight so that Freeman could file a land claim. In doing so, Freeman became one of the first to take advantage of the opportunities provided by the Homestead Act, a law signed by President Abraham Lincoln…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE5082.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE5082."><span>Puppis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Poop or Stern; abbrev. Pup, gen. Puppis; area 673 sq. deg.) A southern constellation which lies between Canis Major and Vela, and culminates at midnight in early January. It was introduced by the French astronomer Nicolas L de Lacaille (1713-62), who charted the southern sky in 1751-2, from stars that formed part of the ancient constellation of Argo Navis (the Ship), which had been included ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA338666','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA338666"><span>LDEF - 69 Months in Space. First Post-Retrieval Symposium. Proceeding of a symposium held in Kissimmee, Florida, 2-8 June 1991.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-01-01</p> <p>LIST OF SEED Astilbe x Arendsii, ’Spiraea Mix’ Calceolaria crenatiflora Capsicum annuum , ’Midnight’ Lycopersicon Lycopersicum, Tomato ’Better...8217 Verbena x hybrida, ’Amethyst’ Viola Wittrockiana, Pansy Antirrhinum majas, ’Kolibra Mix’ Capsicum annuum , ’Early Thickset’ Capsicum annuum , ’Sweet</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4981.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4981."><span>Draco</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Dragon; abbrev. Dra, gen. Draconis; area 1083 sq. deg.) A northern constellation which lies between Ursa Major and Cepheus, and encloses Ursa Minor on three sides. The center of the constellation culminates at midnight in May, though part of it is on the meridian from mid-February to late July. Draco represents the dragon Ladon in Greek mythology, which guarded the golden apple tree that was...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4926.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4926."><span>Ara</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Altar; abbrev. Ara, gen. Arae; area 237 sq. deg.) A southern constellation that lies between Scorpius and Apus, and culminates at midnight in early June. It is said to represent the altar upon which in Greek mythology the gods swore allegiance before their battle against the Titans, and that upon which Chiron, the centaur, is about to sacrifice Lupus, the wolf (which was a neighboring conste...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE5092.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE5092."><span>Taurus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Bull; abbrev. Tau, gen. Tauri; area 797 sq. deg.) A northern zodiacal constellation which lies between Aries and Orion, and culminates at midnight in late November. It is one of the oldest constellations, dating back to when the Sun was in that part of the sky at the vernal (spring) equinox, between about 4000 and 1800 BC. Later, in Greek mythology, it was identified with the form assumed by...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE5080.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE5080."><span>Pisces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Fishes; abbrev. Psc, gen. Piscium; area 889 sq. deg.) A northern zodiacal constellation which lies between Pegasus and Cetus, and culminates at midnight in late September. Its origin dates back to Babylonian times and it is said to represent Aphrodite, the goddess of love in Greek mythology, and her son Eros, who jumped into the Euphrates to escape from the multi-headed Typhon and were turned...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE5097.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE5097."><span>Ursa Major</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Great Bear; abbrev. UMa, gen. Ursae Majoris; area 1280 sq. deg.) a northern constellation which lies between Draco and Leo Minor-Leo-Canes Venatici, and culminates at midnight in mid March. Its origin is uncertain, though it was known to the ancient Greeks, who identified it with two mythological figures—Callisto, a mortal who was turned into a bear after having fallen victim to Zeus's passi...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4925.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4925."><span>Aquila</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Eagle; abbrev. Aql, gen. Aquilae; area 652 sq. deg.) An equatorial constellation that lies between Sagitta and Sagittarius, and culminates at midnight in mid-July. Its origin dates back to Babylonian times and it is said to represent the eagle of Zeus in Greek mythology, which carried the thunderbolts that Zeus hurled at his enemies and which snatched up Ganymede to become cup-bearer to the g...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4924.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4924."><span>Aquarius</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Water-bearer; abbrev. Aqr, gen. Aquarii; area 980 sq. deg.) A southern zodiacal constellation that lies between Pegasus and Piscis Austrinus, and culminates at midnight in late August. Its origin dates back to Babylonian times and it is said to represent Ganymede in Greek mythology, who was snatched up by Aquila (the eagle) on Zeus's behest, to become cup-bearer to the gods. Its brightest st...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4974.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4974."><span>Corona Borealis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Northern Crown; abbrev. CrB, gen. Coronae Borealis; area 179 sq. deg.) A northern constellation which lies between Boötes and Hercules, and culminates at midnight in mid-May. It represents the crown that in Greek mythology was made by Hephaestus, god of fire, and worn by Princess Ariadne of Crete. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE5003.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE5003."><span>Hydra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Water-snake; abbrev. Hya, gen. Hydrae; area 1303 sq. deg.) A predominantly southern constellation which winds its way around almost one-third of the sky between Canis Minor and Libra. The center of the constellation culminates at midnight in mid-March, though part of it is on the meridian from late January to early May. It represents, in Greek mythology, either the multi-headed Lernaean Hydr...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4979.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4979."><span>Delphinus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Dolphin; abbrev. Del, gen. Delphini; area 189 sq. deg.) A northern constellation which lies between Pegasus and Aquila, and culminates at midnight in late July. It represents either the messenger that the god Poseidon in Greek mythology sent to fetch the sea nymph Amphitrite to be his bride, or the dolphin that was said to have rescued Arion, a semilegendary poet and musician of Lesbos, who ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4927.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4927."><span>Aries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(the Ram; abbrev. Ari, gen. Arietis; area 441 sq. deg.) A northern zodiacal constellation that lies between Taurus and Pisces, and culminates at midnight in late October. It represents the ram in Greek mythology whose golden fleece was the quest of Jason and the Argonauts. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest. In Ptolemy's day the Sun was in Aries at the v...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE4987.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE4987."><span>Hercules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murdin, P.</p> <p>2000-11-01</p> <p>(abbrev. Her, gen. Herculis; area 1225 sq. deg.) A northern constellation which lies between Draco and Ophiuchus, and culminates at midnight in mid-June. The origin of the constellation figure is uncertain, though its name dates back to ancient Greece, where it was identified with the strong man and hero of Greek mythology. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Alma...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-11-04/pdf/2013-26127.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-11-04/pdf/2013-26127.pdf"><span>78 FR 66071 - Proposed Information Collection; Slope and Shaft Sinking Plans (Pertains to Surface Work Areas of...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-11-04</p> <p>..., 30 CFR 77.1900. DATES: All comments must be postmarked or received by midnight Eastern Standard Time... carry out its duty in protecting the safety and health of miners. Title 30 CFR 77.1900 requires... and Recommendations; Slope and Shaft Sinking Plans, 30 CFR 77.1900. MSHA does not intend to publish...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-04-01/pdf/2011-7720.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-04-01/pdf/2011-7720.pdf"><span>76 FR 18261 - University of Wisconsin; Notice of Issuance of Renewed Facility License No. R-74</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-04-01</p> <p>... of Issuance of Renewed Facility License No. R-74 The U.S. Nuclear Regulatory Commission (NRC, the Commission) has issued renewed Facility License No. R-74, held by the University of Wisconsin (the licensee... to 1.4% [Delta]k/k. The renewed Facility License No. R-74 will expire at midnight 20 years from its...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=mobbing&pg=3&id=EJ894833','ERIC'); return false;" href="https://eric.ed.gov/?q=mobbing&pg=3&id=EJ894833"><span>Enter the iPad (or Not?)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Waters, John K.</p> <p>2010-01-01</p> <p>Few computing devices have sparked the burning gizmo lust ignited by the iPad. Apple's latest entry into the tablet PC market didn't generate much heat when it was first unveiled in January, but by April 3, the day of the official release, feverish customers were mobbing Apple stores. The company claims to have sold 300,000 iPads by midnight on…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=River+AND+Erosion&pg=2&id=EJ278605','ERIC'); return false;" href="https://eric.ed.gov/?q=River+AND+Erosion&pg=2&id=EJ278605"><span>Dinosaur Tracks, Erosion Marks and Midnight Chisel Work (But No Human Footprints) in the Cretaceous Limestone of the Paluxy River Bed, Texas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Milne, David H.; Schafersman, Steven D.</p> <p>1983-01-01</p> <p>Creationists claim that human footprints coexist with those of dinosaurs in Cretaceous limestone exposed in the Paluxy riverbed near Glen Rose, Texas. Analysis of photos shows that the features in question are not human footprints and that creationist documentation/analysis of the prints is riddled with omissions, misrepresentations,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JBAA..113..256P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JBAA..113..256P"><span>The Moon and Mars in August</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paice, P.</p> <p>2003-10-01</p> <p>The naked-eye view of the full Moon and Mars together was captured by Peter Paice, Belfast, on 2003 August 12/13 at midnight UT using an Olympus 730 Ultra Zoom digital camera, with no additional processing applied. In a partly cloudy sky, the secret was to wait until clouds partly occluded the power of the Moon, and Mars was in a clear patch.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-08-20/pdf/2012-20307.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-08-20/pdf/2012-20307.pdf"><span>77 FR 50165 - Escape and Evacuation Plans for Surface Coal Mines, Surface Facilities and Surface Work Areas of...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-08-20</p> <p>.... This program helps to assure that requested data can be provided in the desired format, reporting... package expires on January 31, 2013. DATES: All comments must be postmarked or received by midnight... instructed in the procedures to follow should a fire occur. MSHA has updated the data with respect to the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.131.1323V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.131.1323V"><span>Evaluation of extreme temperature events in northern Spain based on process control charts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Villeta, M.; Valencia, J. L.; Saá, A.; Tarquis, A. M.</p> <p>2018-02-01</p> <p>Extreme climate events have recently attracted the attention of a growing number of researchers because these events impose a large cost on agriculture and associated insurance planning. This study focuses on extreme temperature events and proposes a new method for their evaluation based on statistical process control tools, which are unusual in climate studies. A series of minimum and maximum daily temperatures for 12 geographical areas of a Spanish region between 1931 and 2009 were evaluated by applying statistical process control charts to statistically test whether evidence existed for an increase or a decrease of extreme temperature events. Specification limits were determined for each geographical area and used to define four types of extreme anomalies: lower and upper extremes for the minimum and maximum anomalies. A new binomial Markov extended process that considers the autocorrelation between extreme temperature events was generated for each geographical area and extreme anomaly type to establish the attribute control charts for the annual fraction of extreme days and to monitor the occurrence of annual extreme days. This method was used to assess the significance of changes and trends of extreme temperature events in the analysed region. The results demonstrate the effectiveness of an attribute control chart for evaluating extreme temperature events. For example, the evaluation of extreme maximum temperature events using the proposed statistical process control charts was consistent with the evidence of an increase in maximum temperatures during the last decades of the last century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930081595','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930081595"><span>The Effects of Engine Speed and Mixture Temperature on the Knocking Characteristics of Several Fuels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, Dana W</p> <p>1940-01-01</p> <p>Six 100-octane and two 87-octane aviation engine fuels were tested in a modified C.F.R. variable-compression engine at 1,500, 2,000 and 2,500 rpm. The mixture temperature was raised from 50 to 300 F in approximately 50 degree steps and, at each temperature, the compression ratio was adjusted to give incipient knock as shown by a cathode ray indicator. The results are presented in tabular form. The results are analyzed on the assumption that the conditions which determine whether a given fuel will knock are the maximum values of density and temperature reached by the burning gases. A maximum permissible density factor, proportional to the maximum density of the burning gases just prior to incipient knock, and the temperature of the burning gases at that time were computed for each of the test conditions. Values of the density factors were plotted against the corresponding end-gas temperatures for the three engine speeds and also against engine speed for several and end-gas temperatures. The maximum permissible density factor varied only slightly with engine speed but decreased rapidly with an increase in the end-gas temperature. The effect of changing the mixture temperature was different for fuels of different types. The results emphasize the desirability of determining the anti knock values of fuels over a wide range of engine and intake-air conditions rather that at a single set of conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1048201-regimes-diurnal-variation-summer-rainfall-over-subtropical-east-asia','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1048201-regimes-diurnal-variation-summer-rainfall-over-subtropical-east-asia"><span>Regimes of Diurnal Variation of Summer Rainfall over Subtropical East Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yuan W.; Lin W.; Yu, R.</p> <p>2012-05-01</p> <p>Using hourly rain gauge records and Tropical Rainfall Measuring Mission 3B42 from 1998 to 2006, the authors present an analysis of the diurnal characteristics of summer rainfall over subtropical East Asia. The study shows that there are four different regimes of distinct diurnal variation of rainfall in both the rain gauge and the satellite data. They are located over the Tibetan Plateau with late-afternoon and midnight peaks, in the western China plain with midnight to early-morning peaks, in the eastern China plain with double peaks in late afternoon and early morning, and over the East China Sea with an early-morningmore » peak. No propagation of diurnal phases is found from the land to the ocean across the coastlines. The different diurnal regimes are highly correlated with the inhomogeneous underlying surface, such as the plateau, plain, and ocean, with physical mechanisms consistent with the large-scale 'mountain-valley' and 'land-sea' breezes and convective instability. These diurnal characteristics over subtropical East Asia can be used as diagnostic metrics to evaluate the physical parameterization and hydrological cycle of climate models over East Asia.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA33B..07D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA33B..07D"><span>MENTAT: A New Magnetic Meridional Neutral Wind Model for Earth's Thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dandenault, P. B.</p> <p>2017-12-01</p> <p>We present a new model of thermosphere winds in the F region obtained from variations in the altitude of the peak density of the ionosphere (hmF2). The new Magnetic mEridional NeuTrAl Thermospheric (MENTAT) wind model produces magnetic-meridional neutral winds as a function of year, day of year, solar local time, solar flux, geographic latitude, and geographic longitude. The winds compare well with Fabry-Pérot Interferometer (FPI) wind observations and are shown to provide accurate specifications in regions outside of the observational database such as the midnight collapse of hmF2 at Arecibo, Puerto Rico. The model winds are shown to exhibit the expected seasonal, diurnal, and hourly behavior based on geophysical conditions. The magnetic meridional winds are similar to those from the well-known HWM14 model but there are important differences. For example, Townsville, Australia has a strong midnight collapse similar to that at Arecibo, but winds from HWM14 do not reproduce it. Also, the winds from hmF2 exhibit a moderate solar cycle dependence under certain conditions, whereas, HWM14 has no solar activity dependence. For more information, please visit http://www.mentatwinds.net/.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ems..confE.111G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ems..confE.111G"><span>Operational forecasting of daily temperatures in the Valencia Region. Part I: maximum temperatures in summer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gómez, I.; Estrela, M.</p> <p>2009-09-01</p> <p>Extreme temperature events have a great impact on human society. Knowledge of summer maximum temperatures is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, summer maximum daily temperatures are considered a parameter of interest and concern since persistent heat-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict heat-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily maximum temperatures during summer over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the summer forecast period of 1 June - 30 September, 2007. The results obtained are encouraging and indicate a good agreement between the observed and simulated maximum temperatures. Moreover, the model captures quite well the temperatures in the extreme heat episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730012742','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730012742"><span>Thermal design of composite material high temperature attachments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1972-01-01</p> <p>An evaluation has been made of the thermal aspects of utilizing advanced filamentary composite materials as primary structures on the shuttle vehicle. The technical objectives of this study are to: (1) establish and design concepts for maintaining material temperatures within allowable limits at TPS attachments and or penetrations applicable to the space shuttle; and (2) verify the thermal design analysis by testing selected concepts. Specific composite materials being evaluated are boron epoxy, graphite/epoxy, boron polyimide, and boron aluminum; graphite/polyimide has been added to this list for property data identification and preliminary evaluation of thermal design problems. The TPS standoff to composite structure attachment over-temperature problem is directly related to TPS maximum surface temperature. To provide a thermally comprehensive evaluation of attachment temperature characteristics, maximum surface temperatures of 900 F, 1200 F, 1800 F, 2500 F and 3000 F are considered in this study. This range of surface temperatures and the high and low maximum temperature capability of the selected composite materials will result in a wide range of thermal requirements for composite/TPS standoff attachments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24027444','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24027444"><span>Thermal stability analysis under embankment with asphalt pavement and cement pavement in permafrost regions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Junwei, Zhang; Jinping, Li; Xiaojuan, Quan</p> <p>2013-01-01</p> <p>The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3762145','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3762145"><span>Thermal Stability Analysis under Embankment with Asphalt Pavement and Cement Pavement in Permafrost Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jinping, Li; Xiaojuan, Quan</p> <p>2013-01-01</p> <p>The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results. PMID:24027444</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JCli...12.1524S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JCli...12.1524S"><span>The Effects of Data Gaps on the Calculated Monthly Mean Maximum and Minimum Temperatures in the Continental United States: A Spatial and Temporal Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stooksbury, David E.; Idso, Craig D.; Hubbard, Kenneth G.</p> <p>1999-05-01</p> <p>Gaps in otherwise regularly scheduled observations are often referred to as missing data. This paper explores the spatial and temporal impacts that data gaps in the recorded daily maximum and minimum temperatures have on the calculated monthly mean maximum and minimum temperatures. For this analysis 138 climate stations from the United States Historical Climatology Network Daily Temperature and Precipitation Data set were selected. The selected stations had no missing maximum or minimum temperature values during the period 1951-80. The monthly mean maximum and minimum temperatures were calculated for each station for each month. For each month 1-10 consecutive days of data from each station were randomly removed. This was performed 30 times for each simulated gap period. The spatial and temporal impact of the 1-10-day data gaps were compared. The influence of data gaps is most pronounced in the continental regions during the winter and least pronounced in the southeast during the summer. In the north central plains, 10-day data gaps during January produce a standard deviation value greater than 2°C about the `true' mean. In the southeast, 10-day data gaps in July produce a standard deviation value less than 0.5°C about the mean. The results of this study will be of value in climate variability and climate trend research as well as climate assessment and impact studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol6/pdf/CFR-2010-title40-vol6-sec60-116b.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol6/pdf/CFR-2010-title40-vol6-sec60-116b.pdf"><span>40 CFR 60.116b - Monitoring of operations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... range. (e) Available data on the storage temperature may be used to determine the maximum true vapor...: (i) Available data on the Reid vapor pressure and the maximum expected storage temperature based on... Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090007669&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DG%2526T','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090007669&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DG%2526T"><span>Designing Ground Antennas for Maximum G/T: Cassegrain or Gregorian?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Imbriale, William A.</p> <p>2005-01-01</p> <p>For optimum performance, a ground antenna system must maximize the ratio of received signal to the receiving system noise power, defined as the ratio of antenna gain to system-noise temperature (G/T). The total system noise temperature is the linear combination of the receiver noise temperature (including the feed system losses) and the antenna noise contribution. Hence, for very low noise cryogenic receiver systems, antenna noise-temperature properties are very significant contributors to G/T.It is well known that, for dual reflector systems designed for maximum gain, the gain performance of the antenna system is the same for both Cassegrain and Gregorian configurations. For a12-meter antenna designed to be part of the large array based Deep Space Network, a Cassegrain configuration designed for maximum G/T at X-band was 0.7 dB higher than the equivalent Gregorian configuration. This study demonstrates that, for maximum GIT, the dual shaped Cassegrain design is always better than the Gregorian.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1906o0003A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1906o0003A"><span>Is applicable thermodynamics of negative temperature for living organisms?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Atanasov, Atanas Todorov</p> <p>2017-11-01</p> <p>During organismal development the moment of sexual maturity can be characterizes by nearly maximum basal metabolic rate and body mass. Once the living organism reaches extreme values of the mass and the basal metabolic rate, it reaches near equilibrium thermodynamic steady state physiological level with maximum organismal complexity. Such thermodynamic systems that reach equilibrium steady state level at maximum mass-energy characteristics can be regarded from the prospective of thermodynamics of negative temperature. In these systems the increase of the internal and free energy is accompanied with decrease of the entropy. In our study we show the possibility the living organisms to regard as thermodynamic system with negative temperature</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29468779','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29468779"><span>Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>DeWeber, Jefferson T; Wagner, Tyler</p> <p>2018-06-01</p> <p>Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30-day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species' distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold-water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid-century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our study demonstrates that even relatively small differences in the definitions of climate metrics can result in very different projections and reveal high uncertainty in predicted climate change effects. © 2018 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70196979','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70196979"><span>Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>DeWeber, Jefferson T.; Wagner, Tyler</p> <p>2018-01-01</p> <p>Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30‐day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species’ distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold‐water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid‐century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our study demonstrates that even relatively small differences in the definitions of climate metrics can result in very different projections and reveal high uncertainty in predicted climate change effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol1/pdf/CFR-2012-title14-vol1-sec33-84.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol1/pdf/CFR-2012-title14-vol1-sec33-84.pdf"><span>14 CFR 33.84 - Engine overtorque test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine... turbine entry gas temperature equal to the maximum steady state temperature approved for use during...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JKPS...70..791O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JKPS...70..791O"><span>Temperature and molecular-weight dependences of acoustic behaviors of polystyrene studied using Brillouin spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oh, Soo Han; Lee, Byoung Wan; Ko, Jae-Hyeon; Lee, Hyeonju; Park, Jaehoon; Ko, Young Ho; Kim, Kwang Joo</p> <p>2017-04-01</p> <p>The acoustic properties of three polystyrene polymers with different molecular weights were investigated as a function of temperature by using Brillouin light scattering. The longitudinal sound velocity showed a change in the slope, which depended on the molecular weight, at the glass transition temperature. The absorption coefficient exhibited a maximum above the glass transition temperature, and the maximum temperature became higher as the molecular weight was increased. Comparison with previous acoustic studies on polystyrene indicate that a substantial frequency dispersion caused by strong coupling between the longitudinal acoustic waves and the segmental motions exists in the high-temperature range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1377817','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1377817"><span>Coolant and ambient temperature control for chillerless liquid cooled data centers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.</p> <p>2017-08-29</p> <p>Cooling control methods and systems include measuring a temperature of air provided to one or more nodes by an air-to-liquid heat exchanger; measuring a temperature of at least one component of the one or more nodes and finding a maximum component temperature across all such nodes; comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold; and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the one or more nodes based on the comparisons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4362423','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4362423"><span>The comparison of thermal tissue injuries caused by ultrasonic scalpel and electrocautery use in rabbit tongue tissue</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Beriat, Guclu Kaan; Akmansu, Sefik Halit; Ezerarslan, Hande; Dogan, Cem; Han, Unsal; Saglam, Mehmet; Senel, Oytun Okan; Kocaturk, Sinan</p> <p>2012-01-01</p> <p>The aim of this study compares to the increase in tissue temperature and the thermal histological effects of ultrasonic scalpel, bipolar and unipolar electrosurgery incisions in the tongue tissue of rabbits. This study evaluates the histopathological changes related to thermal change and the maximum temperature values in the peripheral tissue brought about by the incisions carried out by the three methods in a comparative way. To assess thermal tissue damage induced by the three instruments, maximum tissue temperatures were measured during the surgical procedure and tongue tissue samples were examined histopathologically following the surgery. The mean maximum temperature values of the groups were 93.93±2.76 C° for the unipolar electrocautery group, whereas 85.07±5.95 C° for the bipolar electrocautery group, and 108.23±7.64 C° for the ultrasonic scalpel group. There was a statistically significant relationship between the increase in maximum temperature values and the separation among tissue layers, edema, congestion, necrosis, hemorrhage, destruction in blood vessel walls and fibrin accumulation, and between the existence of fibrin thrombus and tissue damage depth (p<0.05). It was concluded that the bipolar electrocautery use gives way to less temperature increase in the tissues and less thermal tissue damage in comparison to the other methods. PMID:22938541</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.132.1217R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.132.1217R"><span>Statistical assessment of changes in extreme maximum temperatures over Saudi Arabia, 1985-2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raggad, Bechir</p> <p>2018-05-01</p> <p>In this study, two statistical approaches were adopted in the analysis of observed maximum temperature data collected from fifteen stations over Saudi Arabia during the period 1985-2014. In the first step, the behavior of extreme temperatures was analyzed and their changes were quantified with respect to the Expert Team on Climate Change Detection Monitoring indices. The results showed a general warming trend over most stations, in maximum temperature-related indices, during the period of analysis. In the second step, stationary and non-stationary extreme-value analyses were conducted for the temperature data. The results revealed that the non-stationary model with increasing linear trend in its location parameter outperforms the other models for two-thirds of the stations. Additionally, the 10-, 50-, and 100-year return levels were found to change with time considerably and that the maximum temperature could start to reappear in the different T-year return period for most stations. This analysis shows the importance of taking account the change over time in the estimation of return levels and therefore justifies the use of the non-stationary generalized extreme value distribution model to describe most of the data. Furthermore, these last findings are in line with the result of significant warming trends found in climate indices analyses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21557124','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21557124"><span>The influence of climate variables on dengue in Singapore.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pinto, Edna; Coelho, Micheline; Oliver, Leuda; Massad, Eduardo</p> <p>2011-12-01</p> <p>In this work we correlated dengue cases with climatic variables for the city of Singapore. This was done through a Poisson Regression Model (PRM) that considers dengue cases as the dependent variable and the climatic variables (rainfall, maximum and minimum temperature and relative humidity) as independent variables. We also used Principal Components Analysis (PCA) to choose the variables that influence in the increase of the number of dengue cases in Singapore, where PC₁ (Principal component 1) is represented by temperature and rainfall and PC₂ (Principal component 2) is represented by relative humidity. We calculated the probability of occurrence of new cases of dengue and the relative risk of occurrence of dengue cases influenced by climatic variable. The months from July to September showed the highest probabilities of the occurrence of new cases of the disease throughout the year. This was based on an analysis of time series of maximum and minimum temperature. An interesting result was that for every 2-10°C of variation of the maximum temperature, there was an average increase of 22.2-184.6% in the number of dengue cases. For the minimum temperature, we observed that for the same variation, there was an average increase of 26.1-230.3% in the number of the dengue cases from April to August. The precipitation and the relative humidity, after analysis of correlation, were discarded in the use of Poisson Regression Model because they did not present good correlation with the dengue cases. Additionally, the relative risk of the occurrence of the cases of the disease under the influence of the variation of temperature was from 1.2-2.8 for maximum temperature and increased from 1.3-3.3 for minimum temperature. Therefore, the variable temperature (maximum and minimum) was the best predictor for the increased number of dengue cases in Singapore.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JEE....66...79F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JEE....66...79F"><span>Maximum Temperature Detection System for Integrated Circuits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frankiewicz, Maciej; Kos, Andrzej</p> <p>2015-03-01</p> <p>The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28407497','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28407497"><span>Temperature effects on gallium arsenide 63Ni betavoltaic cell.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Butera, S; Lioliou, G; Barnett, A M</p> <p>2017-07-01</p> <p>A GaAs 63 Ni radioisotope betavoltaic cell is reported over the temperature range 70°C to -20°C. The temperature effects on the key cell parameters were investigated. The saturation current decreased with decreased temperature; whilst the open circuit voltage, the short circuit current, the maximum power and the internal conversion efficiency values decreased with increased temperature. A maximum output power and an internal conversion efficiency of 1.8pW (corresponding to 0.3μW/Ci) and 7% were observed at -20°C, respectively. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730018608','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730018608"><span>Global characteristics in the diurnal variations of the thermospheric temperature and composition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Hedin, A. E.; Reber, C. A.; Carignan, G. R.</p> <p>1973-01-01</p> <p>Global characteristics in the diurnal components of OGO-6 neutral mass spectrometer measurements near 450 km are discussed qualitatively as well as quantitatively on the basis of a theoretical model. Observations and conclusion are summarized: (1) During equinox the temperature maximum occurs after 1600 LT at the equator and shifts toward 1500 LT at the poles, while the oxygen concentration at 450 km peaks about one hour earlier. (2) There is general agreement between the magnitudes and phases of the diurnal, semidiurnal and terdiuranal temperature components at 450 km from theory as well as OGO-6 and radar backscatter measurements. (3) The maximum in the diurnal variation of He is observed near 1030 LT consistent with theoretical results which further emphasize the importance of dynamics and diffusion. (4) During solstice conditions the diurnal temperature maximum shifts toward later local times, in substantial agreement with radar temperature measurements. (5) the temperature-oxygen density phase difference at 450 km is observed to decrease with latitude from the winter toward the summer hemisphere, where oxygen may even peak after the temperature at high latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24984489','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24984489"><span>[Indoor simulation on dew formation on plant leaves].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gao, Zhi-Yong; Wang, You-Ke; Wei, Xin-Guang; Liu, Shou-Yang; He, Zi-Li; Zhou, Yu-Hong</p> <p>2014-03-01</p> <p>Dew forming on plant leaves through water condensation plays a significant ecological role in arid and semi-arid areas as an ignorable fraction of water resources. In this study, an artificial intelligent climate chamber and an automatic temperature-control system for leaves were implemented to regulate the ambient temperature, the leaf surface temperature and the leaf inclination for dew formation. The impact of leaf inclination, ambient temperature and dew point-leaf temperature depression on the rate and quantity of dew accumulation on leaf surface were analyzed. The results indicated that the accumulation rate and the maximum volume of dew on leaves decreased with increasing the leaf inclination while increased with the increment of dew point-leaf temperature depression, ambient temperature and relative humidity. Under the horizontal configuration, dew accumulated linearly on leaf surface over time until the maximum volume (0.80 mm) was reached. However, dew would fall down after reaching the maximum volume when the leaf inclination existed (45 degrees or 90 degrees), significantly slowing down the accumulative rate, and the zigzag pattern for the dynamic of dew accumulation appeared.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>