Sample records for midplane designs based

  1. Embedded optical interconnect technology in data storage systems

    NASA Astrophysics Data System (ADS)

    Pitwon, Richard C. A.; Hopkins, Ken; Milward, Dave; Muggeridge, Malcolm

    2010-05-01

    As both data storage interconnect speeds increase and form factors in hard disk drive technologies continue to shrink, the density of printed channels on the storage array midplane goes up. The dominant interconnect protocol on storage array midplanes is expected to increase to 12 Gb/s by 2012 thereby exacerbating the performance bottleneck in future digital data storage systems. The design challenges inherent to modern data storage systems are discussed and an embedded optical infrastructure proposed to mitigate this bottleneck. The proposed solution is based on the deployment of an electro-optical printed circuit board and active interconnect technology. The connection architecture adopted would allow for electronic line cards with active optical edge connectors to be plugged into and unplugged from a passive electro-optical midplane with embedded polymeric waveguides. A demonstration platform has been developed to assess the viability of embedded electro-optical midplane technology in dense data storage systems and successfully demonstrated at 10.3 Gb/s. Active connectors incorporate optical transceiver interfaces operating at 850 nm and are connected in an in-plane coupling configuration to the embedded waveguides in the midplane. In addition a novel method of passively aligning and assembling passive optical devices to embedded polymer waveguide arrays has also been demonstrated.

  2. Toroidal plasma response based ELM control coil design for EU DEMO

    NASA Astrophysics Data System (ADS)

    Zhou, Lina; Liu, Yueqiang; Wenninger, Ronald; Liu, Yue; Wang, Shuo; Yang, Xu

    2018-07-01

    Magnetic coil design study is carried out, for the purpose of mitigating or suppressing the edge localized modes (ELMs) in a EU DEMO reference scenario. The coil design, including both the coil geometry and the coil current requirement, is based on criteria derived from the linear, full toroidal plasma response computed by the MARS-F code (Liu et al 2000 Phys. Plasma 7 3681). With a single midplane row of coils, a coil size covering about 30°–50° poloidal angle of the torus is found to be optimal for ELM control using the n  >  2 resonant magnetic perturbation (RMP) field (n is the toroidal mode number). For off-midplane coils, the coils’ poloidal location, as well as the relative toroidal phase (coil phasing) between the upper and lower rows of coils, also sensitively affects the ELM control according to the specified criteria. Assuming that the optimal coil phasing can always be straightforwardly implemented, following a simple analytic model derived from toroidal computations, it is better to place the two off-midplane rows of coils near the midplane, in order to maximize the resonant field amplitude and to have larger effects on ELMs. With the same coil current, the ex-vessel coils can be made as effective as the in-vessel coils, at the expense of increasing the ex-vessel coils’ size. This is however possible only for low-n (n  =  1–3) RMP fields. With these low-n fields, and assuming 300 kAt maximal coil current, the computed plasma displacement near the X-point can meet the 10 mm level, which we use as the conservative indicator for achieving ELM mitigation in EU DEMO. The risk of partial control coil failure in EU DEMO is also assessed based on toroidal modeling, indicating that the large n  =  1 sideband due to coil failure may need to be corrected, if the nominal n  >  1 coil configurations are used for ELM control in EU DEMO.

  3. Calculation of midplane dose for total body irradiation from entrance and exit dose MOSFET measurements.

    PubMed

    Satory, P R

    2012-03-01

    This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient.

  4. Demonstration of fully enabled data center subsystem with embedded optical interconnect

    NASA Astrophysics Data System (ADS)

    Pitwon, Richard; Worrall, Alex; Stevens, Paul; Miller, Allen; Wang, Kai; Schmidtke, Katharine

    2014-03-01

    The evolution of data storage communication protocols and corresponding in-system bandwidth densities is set to impose prohibitive cost and performance constraints on future data storage system designs, fuelling proposals for hybrid electronic and optical architectures in data centers. The migration of optical interconnect into the system enclosure itself can substantially mitigate the communications bottlenecks resulting from both the increase in data rate and internal interconnect link lengths. In order to assess the viability of embedding optical links within prevailing data storage architectures, we present the design and assembly of a fully operational data storage array platform, in which all internal high speed links have been implemented optically. This required the deployment of mid-board optical transceivers, an electro-optical midplane and proprietary pluggable optical connectors for storage devices. We present the design of a high density optical layout to accommodate the midplane interconnect requirements of a data storage enclosure with support for 24 Small Form Factor (SFF) solid state or rotating disk drives and the design of a proprietary optical connector and interface cards, enabling standard drives to be plugged into an electro-optical midplane. Crucially, we have also modified the platform to accommodate longer optical interconnect lengths up to 50 meters in order to investigate future datacenter architectures based on disaggregation of modular subsystems. The optically enabled data storage system has been fully validated for both 6 Gb/s and 12 Gb/s SAS data traffic conveyed along internal optical links.

  5. High-field neutral beam injection for improving the Q of a gas dynamic trap-based fusion neutron source

    NASA Astrophysics Data System (ADS)

    Zeng, Qiusun; Chen, Dehong; Wang, Minghuang

    2017-12-01

    In order to improve the fusion energy gain (Q) of a gas dynamic trap (GDT)-based fusion neutron source, a method in which the neutral beam is obliquely injected at a higher magnetic field position rather than at the mid-plane of the GDT is proposed. This method is beneficial for confining a higher density of fast ions at the turning point in the zone with a higher magnetic field, as well as obtaining a higher mirror ratio by reducing the mid-plane field rather than increasing the mirror field. In this situation, collision scattering loss of fast ions with higher density will occur and change the confinement time, power balance and particle balance. Using an updated calculation model with high-field neutral beam injection for a GDT-based fusion neutron source conceptual design, we got four optimal design schemes for a GDT-based fusion neutron source in which Q was improved to two- to three-fold compared with a conventional design scheme and considering the limitation for avoiding plasma instabilities, especially the fire-hose instability. The distribution of fast ions could be optimized by building a proper magnetic field configuration with enough space for neutron shielding and by multi-beam neutral particle injection at different axial points.

  6. Consistent evaluation of an ultrasound-guided surgical navigation system by utilizing an active validation platform

    NASA Astrophysics Data System (ADS)

    Kim, Younsu; Kim, Sungmin; Boctor, Emad M.

    2017-03-01

    An ultrasound image-guided needle tracking systems have been widely used due to their cost-effectiveness and nonionizing radiation properties. Various surgical navigation systems have been developed by utilizing state-of-the-art sensor technologies. However, ultrasound transmission beam thickness causes unfair initial evaluation conditions due to inconsistent placement of the target with respect to the ultrasound probe. This inconsistency also brings high uncertainty and results in large standard deviations for each measurement when we compare accuracy with and without the guidance. To resolve this problem, we designed a complete evaluation platform by utilizing our mid-plane detection and time of flight measurement systems. The evaluating system uses a PZT element target and an ultrasound transmitting needle. In this paper, we evaluated an optical tracker-based surgical ultrasound-guided navigation system whereby the optical tracker tracks marker frames attached on the ultrasound probe and the needle. We performed ten needle trials of guidance experiment with a mid-plane adjustment algorithm and with a B-mode segmentation method. With the midplane adjustment, the result showed a mean error of 1.62+/-0.72mm. The mean error increased to 3.58+/-2.07mm without the mid-plane adjustment. Our evaluation system can reduce the effect of the beam-thickness problem, and measure ultrasound image-guided technologies consistently with a minimal standard deviation. Using our novel evaluation system, ultrasound image-guided technologies can be compared under equal initial conditions. Therefore, the error can be evaluated more accurately, and the system provides better analysis on the error sources such as ultrasound beam thickness.

  7. A simplified technique for delivering total body irradiation (TBI) with improved dose homogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao Rui; Bernard, Damian; Turian, Julius

    2012-04-15

    Purpose: Total body irradiation (TBI) with megavoltage photon beams has been accepted as an important component of management for a number of hematologic malignancies, generally as part of bone marrow conditioning regimens. The purpose of this paper is to present and discuss the authors' TBI technique, which both simplifies the treatment process and improves the treatment quality. Methods: An AP/PA TBI treatment technique to produce uniform dose distributions using sequential collimator reductions during each fraction was implemented, and a sample calculation worksheet is presented. Using this methodology, the dosimetric characteristics of both 6 and 18 MV photon beams, including lungmore » dose under cerrobend blocks was investigated. A method of estimating midplane lung doses based on measured entrance and exit doses was proposed, and the estimated results were compared with measurements. Results: Whole body midplane dose uniformity of {+-}10% was achieved with no more than two collimator-based beam modulations. The proposed model predicted midplane lung doses 5% to 10% higher than the measured doses for 6 and 18 MV beams. The estimated total midplane doses were within {+-}5% of the prescribed midplane dose on average except for the lungs where the doses were 6% to 10% lower than the prescribed dose on average. Conclusions: The proposed TBI technique can achieve dose uniformity within {+-}10%. This technique is easy to implement and does not require complicated dosimetry and/or compensators.« less

  8. Near midplane scintillator-based fast ion loss detector on DIII-D.

    PubMed

    Chen, X; Fisher, R K; Pace, D C; García-Muñoz, M; Chavez, J A; Heidbrink, W W; Van Zeeland, M A

    2012-10-01

    A new scintillator-based fast-ion loss detector (FILD) installed near the outer midplane of the plasma has been commissioned on DIII-D. This detector successfully measures coherent fast ion losses produced by fast-ion driven instabilities (≤500 kHz). Combined with the first FILD at ∼45° below the outer midplane [R. K. Fisher, et al., Rev. Sci. Instrum. 81, 10D307 (2010)], the two-detector system measures poloidal variation of losses. The phase space sensitivity of the new detector (gyroradius r(L) ∼ [1.5-8] cm and pitch angle α ∼ [35°-85°]) is calibrated using neutral beam first orbit loss measurements. Since fast ion losses are localized poloidally, having two FILDs at different poloidal locations allows for the study of losses over a wider range of plasma shapes and types of loss orbits.

  9. Automatic segmentation of brain hemispheres by midplane detection in class images

    NASA Astrophysics Data System (ADS)

    Wagenknecht, Gudrun; Kaiser, Hans-Juergen; Sabri, Osama; Buell, Udalrich

    2000-06-01

    Segmentation of brain hemispheres is necessary to study left- right differences in structure and function. For extraction of a 3D individual region-of-interest atlas of the human brain, detection of the midplane is the sine qua non as it provides the reference plane for determining other anatomical objects. Extraction of the sagittal midplane is done in two main steps. First, a 2D filter is used to give a first approximation of the midplane position. To model symmetry properties of the midplane neighborhood, the different filter columns contain class-dependent weights for cerebrospinal fluid, gray and white matter. The filter can be rotated in a range of angles. In a user-defined range of planes, the global maximum of the filter response is searched for and the resulting position is utilized to restrict the search in the remaining planes. In a second step, midplane extraction is refined by searching for the optimal path of the midplane within the filter mask at optimum position. Symmetry properties are modeled analogous to the first step with class-dependent weights of the filter columns. The extraction of the midplane gives accurate and reliable results in simulated data sets and patient studies even if asymmetric artifacts are simulated.

  10. Mode calculations in unstable resonators with flowing saturable gain. 1:hermite-gaussian expansion.

    PubMed

    Siegman, A E; Sziklas, E A

    1974-12-01

    We present a procedure for calculating the three-dimensional mode pattern, the output beam characteristics, and the power output of an oscillating high-power laser taking into account a nonuniform, transversely flowing, saturable gain medium; index inhomogeneities inside the laser resonator; and arbitrary mirror distortion and misalignment. The laser is divided into a number of axial segments. The saturated gain-and-index variation. across each short segment is lumped into a complex gain profile across the midplane of that segment. The circulating optical wave within the resonator is propagated from midplane to midplane in free-space fashion and is multiplied by the lumped complex gain profile upon passing through each midplane. After each complete round trip of the optical wave inside the resonator, the saturated gain profiles are recalculated based upon the circulating fields in the cavity. The procedure when applied to typical unstable-resonator flowing-gain lasers shows convergence to a single distorted steady-state mode of oscillation. Typical near-field and far-field results are presented. Several empirical rules of thumb for finite truncated Hermite-Gaussian expansions, including an approximate sampling theorem, have been developed as part of the calculations.

  11. A deep search for H2D+ in protoplanetary disks. Perspectives for ALMA

    NASA Astrophysics Data System (ADS)

    Chapillon, E.; Parise, B.; Guilloteau, S.; Du, F.

    2011-09-01

    Context. The structure in density and temperature of protoplanetary disks surrounding low-mass stars is not well known yet. The protoplanetary disks' midplane are expected to be very cold and thus depleted in molecules in gas phase, especially CO. Recent observations of molecules at very low apparent temperatures (~6 K) challenge this current picture of the protoplanetary disk structures. Aims: We aim at constraining the physical conditions and, in particular, the gas-phase CO abundance in the midplane of protoplanetary disks. Methods: The light molecule H2D+ is a tracer of cold and CO-depleted environment. It is therefore a good candidate for exploring the disks midplanes. We performed a deep search for H2D+ in the two well-known disks surrounding TW Hya and DM Tau using the APEX and JCMT telescopes. The analysis of the observations was done with DISKFIT, a radiative transfer code dedicated to disks. In addition, we used a chemical model describing deuterium chemistry to infer the implications of our observations on the level of CO depletion and on the ionization rate in the disk midplane. Results: The ortho-H2D+ (11,0-11,1) line at 372 GHz was not detected. Although our limit is three times better than previous observations, comparison with the chemical modeling indicates that it is still insufficient for putting useful constraints on the CO abundance in the disk midplane. Conclusions: Even with ALMA, the detection of H2D+ may not be straightforward, and H2D+ may not be sensitive enough to trace the protoplanetary disks midplane. Based on observations carried out with the Atacama Pathfinder Experiment and the James Clerk Maxwell Telescope. APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. The JCMT is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the Netherlands Organisation for Scientific Research, and the National Research Council of Canada.

  12. ON HYDRODYNAMIC MOTIONS IN DEAD ZONES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oishi, Jeffrey S.; Mac Low, Mordecai-Mark, E-mail: jsoishi@astro.berkeley.ed, E-mail: mordecai@amnh.or

    We investigate fluid motions near the midplane of vertically stratified accretion disks with highly resistive midplanes. In such disks, the magnetorotational instability drives turbulence in thin layers surrounding a resistive, stable dead zone. The turbulent layers in turn drive motions in the dead zone. We examine the properties of these motions using three-dimensional, stratified, local, shearing-box, non-ideal, magnetohydrodynamical simulations. Although the turbulence in the active zones provides a source of vorticity to the midplane, no evidence for coherent vortices is found in our simulations. It appears that this is because of strong vertical oscillations in the dead zone. By analyzingmore » time series of azimuthally averaged flow quantities, we identify an axisymmetric wave mode particular to models with dead zones. This mode is reduced in amplitude, but not suppressed entirely, by changing the equation of state from isothermal to ideal. These waves are too low frequency to affect sedimentation of dust to the midplane, but may have significance for the gravitational stability of the resulting midplane dust layers.« less

  13. Electron heating in the exhaust of magnetic reconnection with negligible guide field

    NASA Astrophysics Data System (ADS)

    Wang, Shan; Chen, Li-Jen; Bessho, Naoki; Kistler, Lynn M.; Shuster, Jason R.; Guo, Ruilong

    2016-03-01

    Electron heating in the magnetic reconnection exhaust is investigated with particle-in-cell simulations, space observations, and theoretical analysis. Spatial variations of the electron temperature (Te) and associated velocity distribution functions (VDFs) are examined and understood in terms of particle energization and randomization processes that vary with exhaust locations. Inside the electron diffusion region (EDR), the electron temperature parallel to the magnetic field (Te∥) exhibits a local minimum and the perpendicular temperature (Te⊥) shows a maximum at the current sheet midplane. In the intermediate exhaust downstream from the EDR and far from the magnetic field pileup region, Te⊥/Te∥ is close to unity and Te is approximately uniform, but the VDFs are structured: close to the midplane, VDFs are quasi-isotropic, whereas farther away from the midplane, VDFs exhibit field-aligned beams directed toward the midplane. In the far exhaust, Te generally increases toward the midplane and the pileup region, and the corresponding VDFs show counter-streaming beams. A distinct population with low v∥ and high v⊥ is prominent in the VDFs around the midplane. Test particle results show that the magnetic curvature near the midplane produces pitch angle scattering to generate quasi-isotropic distributions in the intermediate exhaust. In the far exhaust, electrons with initial high v∥ (v⊥) are accelerated mainly through curvature (gradient-B) drift opposite to the electric field, without significant pitch angle scattering. The VDF structures predicted by simulations are observed in magnetotail reconnection measurements, indicating that the energization mechanisms captured in the reported simulations are applicable to magnetotail reconnection with negligible guide field.

  14. Calibration of a mosfet detection system for 6-MV in vivo dosimetry.

    PubMed

    Scalchi, P; Francescon, P

    1998-03-01

    Metal oxide semiconductor field-effect transistor (MOSFET) detectors were calibrated to perform in vivo dosimetry during 6-MV treatments, both in normal setup and total body irradiation (TBI) conditions. MOSFET water-equivalent depth, dependence of the calibration factors (CFs) on the field sizes, MOSFET orientation, bias supply, accumulated dose, incidence angle, temperature, and spoiler-skin distance in TBI setup were investigated. MOSFET reproducibility was verified. The correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was studied. MOSFET midplane dosimetry in TBI setup was compared with thermoluminescent dosimetry in an anthropomorphic phantom. By using ionization chamber measurements, the TBI midplane dosimetry was also verified in the presence of cork as a lung substitute. The water-equivalent depth of the MOSFET is about 0.8 mm or 1.8 mm, depending on which sensor side faces the beam. The field size also affects this quantity; Monte Carlo simulations allow driving this behavior by changes in the contaminating electron mean energy. The CFs vary linearly as a function of the square field side, for fields ranging from 5 x 5 to 30 x 30 cm2. In TBI setup, varying the spoiler-skin distance between 5 mm and 10 cm affects the CFs within 5%. The MOSFET reproducibility is about 3% (2 SD) for the doses normally delivered to the patients. The effect of the accumulated dose on the sensor response is negligible. For beam incidence ranging from 0 degrees to 90 degrees, the MOSFET response varies within 7%. No monotonic correlation between the sensor response and the temperature is apparent. Good correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was found (the correlation coefficient is about 1). The MOSFET midplane dosimetry relevant to the anthropomorphic phantom irradiation is in agreement with TLD dosimetry within 5%. Ionization chamber and MOSFET midplane dosimetry in inhomogeneous phantoms are in agreement within 2%. MOSFET characteristics are suitable for the in vivo dosimetry relevant to 6-MV treatments, both in normal and TBI setup. The TBI midplane dosimetry using MOSFETs is valid also in the presence of the lung, which is the most critical organ, and allows verifying that calculation of the lung attenuator thicknesses based only on the density is not correct. Our MOSFET dosimetry system can be used also to determine the surface dose by using the water-equivalent depth and extrapolation methods. This procedure depends on the field size used.

  15. The Mid-plane of the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Cambioni, Saverio; Malhotra, Renu

    2018-03-01

    We measure the mid-plane of the main asteroid belt by using the observational data of a nearly complete and unbiased sample of asteroids and find that it has inclination \\bar{I}=0\\buildrel{\\circ}\\over{.} 93+/- 0\\buildrel{\\circ}\\over{.} 04 and longitude of ascending node \\bar{{{Ω }}}=87\\buildrel{\\circ}\\over{.} 6+/- 2\\buildrel{\\circ}\\over{.} 6 (in J2000 ecliptic-equinox coordinate system). This plane differs significantly from previously published measurements, and it is also distinctly different than the solar system’s invariable plane as well as Jupiter’s orbit plane. The mid-plane of the asteroid belt is theoretically expected to be a slightly warped sheet whose local normal is controlled by the gravity of the major planets. Specifically, its inclination and longitude of ascending node varies with semimajor axis and time (on secular timescales) and is defined by the forced solution of secular perturbation theory; the ν 16 nodal secular resonance is predicted to cause a significant warp of the mid-plane in the inner asteroid belt. We test the secular theory by measuring the current location of the asteroids’ mid-plane in finer semimajor axis bins. We find that the measured mid-plane in the middle and outer asteroid belt is consistent, within the 3σ confidence level, with the prediction of secular perturbation theory, but a notable discrepancy is present in the inner asteroid belt near ∼2 au.

  16. Optimizing LHCD launcher using poloidal steering on Alcator C-Mod and ADX

    NASA Astrophysics Data System (ADS)

    Bonoli, P.; Labombard, B.; Parker, R.; Shiraiwa, S.; Wallace, G.; Wukitch, S.; Leccacorvi, R.; Vieira, R.; Alcator C-Mod Team

    2014-10-01

    The poloidal location of the lower hybrid current drive (LHCD) launcher has a strong influence on the trajectory and absorption of the LH wave (poloidal steering). The physics design of an additional off-midplane launcher (LH3) for Alcator C-Mod exploits this characteristic. By shifting the launcher from the mid-plane by 25cm, it is predicted to realize strong (>80%) single pass absorption localized at about r/a = 0.7 in conjunction with the mid-plane (LH2) antenna. While LH3 is a proposal to overcome the LH density limit and to provide a unique opportunity to validate LHCD simulation codes under reactor-like conditions, poloidal steering can be used more extensively by launching waves from the high field side (HFS). On ADX, the LHCD launcher is proposed to be located on the HFS. Better accessibility due to higher magnetic field allows for using lower N//, which results in higher current drive efficiency. Also a more quiescent edge plasma may reduce the effect of N// shifts due to scattering from density fluctuations. LHCD simulations for target plasmas expected on ADX, optimization of poloidal steering, and RF simulation of high field side launcher will be presented. This work supported by USDoE awards DE-FC02-99ER54512 and DE-AC02-09CH11466.

  17. Molecular abundances and C/O ratios in chemically evolving planet-forming disk midplanes

    NASA Astrophysics Data System (ADS)

    Eistrup, Christian; Walsh, Catherine; van Dishoeck, Ewine F.

    2018-05-01

    Context. Exoplanet atmospheres are thought be built up from accretion of gas as well as pebbles and planetesimals in the midplanes of planet-forming disks. The chemical composition of this material is usually assumed to be unchanged during the disk lifetime. However, chemistry can alter the relative abundances of molecules in this planet-building material. Aims: We aim to assess the impact of disk chemistry during the era of planet formation. This is done by investigating the chemical changes to volatile gases and ices in a protoplanetary disk midplane out to 30 AU for up to 7 Myr, considering a variety of different conditions, including a physical midplane structure that is evolving in time, and also considering two disks with different masses. Methods: An extensive kinetic chemistry gas-grain reaction network was utilised to evolve the abundances of chemical species over time. Two disk midplane ionisation levels (low and high) were explored, as well as two different makeups of the initial abundances ("inheritance" or "reset"). Results: Given a high level of ionisation, chemical evolution in protoplanetary disk midplanes becomes significant after a few times 105 yr, and is still ongoing by 7 Myr between the H2O and the O2 icelines. Inside the H2O iceline, and in the outer, colder regions of the disk midplane outside the O2 iceline, the relative abundances of the species reach (close to) steady state by 7 Myr. Importantly, the changes in the abundances of the major elemental carbon and oxygen-bearing molecules imply that the traditional "stepfunction" for the C/O ratios in gas and ice in the disk midplane (as defined by sharp changes at icelines of H2O, CO2 and CO) evolves over time, and cannot be assumed fixed, with the C/O ratio in the gas even becoming smaller than the C/O ratio in the ice. In addition, at lower temperatures (<29 K), gaseous CO colliding with the grains gets converted into CO2 and other more complex ices, lowering the CO gas abundance between the O2 and CO thermal icelines. This effect can mimic a CO iceline at a higher temperature than suggested by its binding energy. Conclusions: Chemistry in the disk midplane is ionisation-driven, and evolves over time. This affects which molecules go into forming planets and their atmospheres. In order to reliably predict the atmospheric compositions of forming planets, as well as to relate observed atmospheric C/O ratios of exoplanets to where and how the atmospheres have formed in a disk midplane, chemical evolution needs to be considered and implemented into planet formation models.

  18. Multiple Paths of Deuterium Fractionation in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Aikawa, Yuri; Furuya, Kenji; Hincelin, Ugo; Herbst, Eric

    2018-03-01

    We investigate deuterium chemistry coupled with the nuclear spin-state chemistry of H2 and {{{H}}}3+ in protoplanetary disks. Multiple paths of deuterium fractionation are found; exchange reactions with D atoms, such as HCO+ + D, are effective in addition to those with HD. In a disk model with grain sizes appropriate for dark clouds, the freeze-out of molecules is severe in the outer midplane, while the disk surface is shielded from UV radiation. Gaseous molecules, including DCO+, thus become abundant at the disk surface, which tends to make their column density distribution relatively flat. If the dust grains have grown to millimeter size, the freeze-out rate of neutral species is reduced and the abundances of gaseous molecules, including DCO+ and N2D+, are enhanced in the cold midplane. Turbulent diffusion transports D atoms and radicals at the disk surface to the midplane, and stable ice species in the midplane to the disk surface. The effects of turbulence on chemistry are thus multifold; while DCO+ and N2D+ abundances increase or decrease depending on the regions, HCN and DCN in the gas and ice are greatly reduced at the innermost radii, compared to the model without turbulence. When cosmic rays penetrate the disk, the ortho-to-para ratio (OPR) of H2 is found to be thermal in the disk, except in the cold (≲10 K) midplane. We also analyze the OPR of {{{H}}}3+ and H2D+, as well as the main reactions of H2D+, DCO+, and N2D+, in order to analytically derive their abundances in the cold midplane.

  19. CHEMICAL IMAGING OF THE CO SNOW LINE IN THE HD 163296 DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Chunhua; Öberg, Karin I.; Andrews, Sean M.

    2015-11-10

    The condensation fronts (snow lines) of H{sub 2}O, CO, and other abundant volatiles in the midplane of a protoplanetary disk affect several aspects of planet formation. Locating the CO snow line, where the CO gas column density is expected to drop substantially, based solely on CO emission profiles, is challenging. This has prompted an exploration of chemical signatures of CO freeze-out. We present ALMA Cycle 1 observations of the N{sub 2}H{sup +} J = 3−2 and DCO{sup +} J = 4−3 emission lines toward the disk around the Herbig Ae star HD 163296 at ∼0.″5 (60 AU) resolution, and evaluatemore » their utility as tracers of the CO snow line location. The N{sub 2}H{sup +} emission is distributed in a ring with an inner radius at 90 AU, corresponding to a midplane temperature of 25 K. This result is consistent with a new analysis of optically thin C{sup 18}O data, which implies a sharp drop in CO abundance at 90 AU. Thus N{sub 2}H{sup +} appears to be a robust tracer of the midplane CO snow line. The DCO{sup +} emission also has a ring morphology, but neither the inner nor the outer radius coincide with the CO snow line location of 90 AU, indicative of a complex relationship between DCO{sup +} emission and CO freeze-out in the disk midplane. Compared to TW Hya, CO freezes out at a higher temperature in the disk around HD 163296 (25 versus 17 K in the TW Hya disk), perhaps due to different ice compositions. This highlights the importance of actually measuring the CO snow line location, rather than assuming a constant CO freeze-out temperature for all disks.« less

  20. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, Henry W.; Hand Jr, Samuel W.; Ksayian, Haig

    1986-02-04

    For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

  1. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, Henry W.; Hand, Jr, Samuel W.; Ksayian, Haig

    1986-01-01

    For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

  2. Migratory Patterns of American Shad (Alosa Sapidissima) Revealed by Natural Geochemical Tags in Otoliths

    DTIC Science & Technology

    2007-02-01

    cyanoacrylic glue. Mounted otoliths were ground to the midplane using fine-grained lapping film. Ground otoliths were examined for oxytetracycline marks...were mounted and ground to the midplane with fine-grained lapping film. Ground otoliths were examined for oxytetracycline marks under a UV light source

  3. Electrostatic potential map modelling with COSY Infinity

    NASA Astrophysics Data System (ADS)

    Maloney, J. A.; Baartman, R.; Planche, T.; Saminathan, S.

    2016-06-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY's existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  4. TRANSITION DISK CHEMISTRY AND FUTURE PROSPECTS WITH ALMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleeves, L. Ilsedore; Bergin, Edwin A.; Bethell, Thomas J.

    2011-12-10

    We explore the chemical structure of a disk that contains a large central gap of R {approx} 45 AU, as is commonly seen in transitional disk systems. In our chemical model of a disk with a cleared inner void, the midplane becomes revealed to the central star so that it is directly irradiated. The midplane material at the truncation radius is permissive to reprocessed optical heating radiation, but opaque to the photodissociating ultraviolet, creating an environment abundant in gas-phase molecules. Thus the disk midplane, which would otherwise for a full disk be dominated by near complete heavy element freeze-out, shouldmore » become observable in molecular emission. If this prediction is correct this has exciting prospects for observations with the Atacama Large Millimeter/Submillimeter Array, as the inner transition region should thus be readily detected and resolved, especially using high-J rotational transitions excited in the high density midplane gas. Therefore, such observations will potentially provide us with a direct probe of the physics and chemistry at this actively evolving interface.« less

  5. LIFTING THE DUSTY VEIL WITH NEAR- AND MID-INFRARED PHOTOMETRY. III. TWO-DIMENSIONAL EXTINCTION MAPS OF THE GALACTIC MIDPLANE USING THE RAYLEIGH-JEANS COLOR EXCESS METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nidever, David L.; Zasowski, Gail; Majewski, Steven R., E-mail: dln5q@virginia.edu, E-mail: gz2n@virginia.edu, E-mail: srm4n@virginia.edu

    We provide new, high-resolution A(K{sub s} ) extinction maps of the heavily reddened Galactic midplane based on the Rayleigh-Jeans Color Excess ({sup R}JCE{sup )} method. RJCE determines star-by-star reddening based on a combination of near- and mid-infrared photometry. The new RJCE-generated maps have 2' Multiplication-Sign 2' pixels and span some of the most severely extinguished regions of the Galaxy-those covered with Spitzer/IRAC imaging by the GLIMPSE-I, -II, -3D, and Vela-Carina surveys, from 256 Degree-Sign < l < 65 Degree-Sign and, in general, for |b| {<=} 1 Degree-Sign -1.{sup 0}5 (extending up to |b| {<=} 4 Degree-Sign in the bulge). Usingmore » RJCE extinction measurements, we generate dereddened color-magnitude diagrams and, in turn, create maps based on main sequence, red clump, and red giant star tracers, each probing different distances and thereby providing coarse three-dimensional information on the relative placement of dust cloud structures. The maps generated from red giant stars, which reach to {approx}18-20 kpc, probe beyond most of the Milky Way extinction in most directions and provide close to a 'total Galactic extinction' map-at minimum they provide high angular resolution maps of lower limits on A(K{sub s} ). Because these maps are generated directly from measurements of reddening by the very dust being mapped, rather than inferred on the basis of some less direct means, they are likely the most accurate to date for charting in detail the highly patchy differential extinction in the Galactic midplane. We provide downloadable FITS files and an IDL tool for retrieving extinction values for any line of sight within our mapped regions.« less

  6. Photoionization of High-altitude Gas in a Supernova-driven Turbulent Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Wood, Kenneth; Hill, Alex S.; Joung, M. Ryan; Mac Low, Mordecai-Mark; Benjamin, Robert A.; Haffner, L. Matthew; Reynolds, R. J.; Madsen, G. J.

    2010-10-01

    We investigate models for the photoionization of the widespread diffuse ionized gas (DIG) in galaxies. In particular, we address the long standing question of the penetration of Lyman continuum photons from sources close to the galactic midplane to large heights in the galactic halo. We find that recent hydrodynamical simulations of a supernova-driven interstellar medium (ISM) have low-density paths and voids that allow for ionizing photons from midplane OB stars to reach and ionize gas many kiloparsecs above the midplane. We find that ionizing fluxes throughout our simulation grids are larger than predicted by one-dimensional slab models, thus allowing for photoionization by O stars of low altitude neutral clouds in the Galaxy that are also detected in Hα. In previous studies of such clouds, the photoionization scenario had been rejected and the Hα had been attributed to enhanced cosmic ray ionization or scattered light from midplane H II regions. We do find that the emission measure distributions in our simulations are wider than those derived from Hα observations in the Milky Way. In addition, the horizontally averaged height dependence of the gas density in the hydrodynamical models is lower than inferred in the Galaxy. These discrepancies are likely due to the absence of magnetic fields in the hydrodynamic simulations and we discuss how magnetohydrodynamic effects may reconcile models and observations. Nevertheless, we anticipate that the inclusion of magnetic fields in the dynamical simulations will not alter our primary finding that midplane OB stars are capable of producing high-altitude DIG in a realistic three-dimensional ISM.

  7. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, H.W.; Hand, S.W. Jr.; Ksayian, H.

    1985-05-31

    This invention contemplates an armor shield/plasma limiter positioned upon the inner wall of a toroidal vacuum chamber within which is magnetically confined an energetic plasma in a tokamak nuclear fusion reactor. The armor shield/plasma limiter is thus of a general semi-toroidal shape and is comprised of a plurality of adjacent graphite plates positioned immediately adjacent to each other so as to form a continuous ring upon and around the toroidal chamber's inner wall and the reactor's midplane coil. Each plate has a generally semi-circular outer circumference and a recessed inner portion and is comprised of upper and lower half sections positioned immediately adjacent to one another along the midplane of the plate. With the upper and lower half sections thus joined, a channel or duct is provided within the midplane of the plate in which a magnetic flux loop is positioned. The magnetic flux loop is thus positioned immediately adjacent to the fusing toroidal plasma and serves as a diagnostic sensor with the armor shield/plasma limiter minimizing the amount of power from the energetic plasma as well as from the neutral particle beams heating the plasma incident upon the flux loop.

  8. Zombie Vortex Instability: Effects of Non-uniform Stratification & Thermal Cooling

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph; Pei, Suyang; Marcus, Phil; Jiang, Chung-Hsiang

    2015-11-01

    The Zombie Vortex Instability (ZVI) is a nonlinear instability in rotating, stratified, shear flows, such as in protoplanetary disks (PPD) of gas and dust orbiting new stars. The instability mechanism is the excitation of baroclinic critical layers, leading to vorticity amplification and nonlinear evolution into anticyclonic vortices and cyclonic sheets. ZVI is most robust when the Coriolis frequency, shear rate, and Brunt-Väisälä (BV) frequency are of the same order. Previously, we investigated ZVI with uniform stratification and without thermal cooling. Here, we explore the role of non-uniform stratification as would be found in PPDs in which the BV frequency is zero in the disk midplane, and increases away from the midplane. We find that ZVI is vigorous 1-3 pressure scale heights away from the midplane, but the non-isotropic turbulence generated by ZVI can penetrate into the midplane. We also explore the effect of thermal cooling and find that ZVI is still robust for cooling times as short as 5 orbital periods. ZVI may play important roles in transporting angular momentum in PPDs, and in trapping dust grains, which may trigger gravitational clumping into planetesimals.

  9. Two-point modeling of SOL losses of HHFW power in NSTX

    NASA Astrophysics Data System (ADS)

    Kish, Ayden; Perkins, Rory; Ahn, Joon-Wook; Diallo, Ahmed; Gray, Travis; Hosea, Joel; Jaworski, Michael; Kramer, Gerrit; Leblanc, Benoit; Sabbagh, Steve

    2017-10-01

    High-harmonic fast-wave (HHFW) heating is a heating and current-drive scheme on the National Spherical Torus eXperiment (NSTX) complimentary to neutral beam injection. Previous experiments suggest that a significant fraction, up to 50%, of the HHFW power is promptly lost to the scrape-off layer (SOL). Research indicates that the lost power reaches the divertor via wave propagation and is converted to a heat flux at the divertor through RF rectification rather than heating the SOL plasma at the midplane. This counter-intuitive hypothesis is investigated using a simplified two-point model, relating plasma parameters at the divertor to those at the midplane. Taking measurements at the divertor region of NSTX as input, this two-point model is used to predict midplane parameters, using the predicted heat flux as an indicator of power input to the SOL. These predictions are compared to measurements at the midplane to evaluate the extent to which they are consistent with experiment. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  10. SDSS IV MaNGA: Deep observations of extra-planar, diffuse ionized gas around late-type galaxies from stacked IFU spectra

    NASA Astrophysics Data System (ADS)

    Jones, A.; Kauffmann, G.; D'Souza, R.; Bizyaev, D.; Law, D.; Haffner, L.; Bahé, Y.; Andrews, B.; Bershady, M.; Brownstein, J.; Bundy, K.; Cherinka, B.; Diamond-Stanic, A.; Drory, N.; Riffel, R. A.; Sánchez, S. F.; Thomas, D.; Wake, D.; Yan, R.; Zhang, K.

    2017-03-01

    We have conducted a study of extra-planar diffuse ionized gas using the first year data from the MaNGA IFU survey. We have stacked spectra from 49 edge-on, late-type galaxies as a function of distance from the midplane of the galaxy. With this technique we can detect the bright emission lines Hα, Hβ, [O II]λλ3726, 3729, [O III]λ5007, [N II]λλ6549, 6584, and [S II]λλ6717, 6731 out to about 4 kpc above the midplane. With 16 galaxies we can extend this analysis out to about 9 kpc, I.e. a distance of 2Re, vertically from the midplane. In the halo, the surface brightnesses of the [O II] and Hα emission lines are comparable, unlike in the disk where Hα dominates. When we split the sample by specific star-formation rate, concentration index, and stellar mass, each subsample's emission line surface brightness profiles and ratios differ, indicating that extra-planar gas properties can vary. The emission line surface brightnesses of the gas around high specific star-formation rate galaxies are higher at all distances, and the line ratios are closer to ratios characteristic of H II regions compared with low specific star-formation rate galaxies. The less concentrated and lower stellar mass samples exhibit line ratios that are more like H II regions at larger distances than their more concentrated and higher stellar mass counterparts. The largest difference between different subsamples occurs when the galaxies are split by stellar mass. We additionally infer that gas far from the midplane in more massive galaxies has the highest temperatures and steepest radial temperature gradients based on their [N II]/Hα and [O II]/Hα ratios between the disk and the halo. SDSS IV.

  11. Segmented saddle-shaped passive stabilization conductors for toroidal plasmas

    DOEpatents

    Leuer, James A.

    1990-05-01

    A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented.

  12. Spiral density waves in a young protoplanetary disk.

    PubMed

    Pérez, Laura M; Carpenter, John M; Andrews, Sean M; Ricci, Luca; Isella, Andrea; Linz, Hendrik; Sargent, Anneila I; Wilner, David J; Henning, Thomas; Deller, Adam T; Chandler, Claire J; Dullemond, Cornelis P; Lazio, Joseph; Menten, Karl M; Corder, Stuartt A; Storm, Shaye; Testi, Leonardo; Tazzari, Marco; Kwon, Woojin; Calvet, Nuria; Greaves, Jane S; Harris, Robert J; Mundy, Lee G

    2016-09-30

    Gravitational forces are expected to excite spiral density waves in protoplanetary disks, disks of gas and dust orbiting young stars. However, previous observations that showed spiral structure were not able to probe disk midplanes, where most of the mass is concentrated and where planet formation takes place. Using the Atacama Large Millimeter/submillimeter Array, we detected a pair of trailing symmetric spiral arms in the protoplanetary disk surrounding the young star Elias 2-27. The arms extend to the disk outer regions and can be traced down to the midplane. These millimeter-wave observations also reveal an emission gap closer to the star than the spiral arms. We argue that the observed spirals trace shocks of spiral density waves in the midplane of this young disk. Copyright © 2016, American Association for the Advancement of Science.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philippov, Alexander A.; Rafikov, Roman R., E-mail: sashaph@princeton.edu

    Radial transport of particles, elements and fluid driven by internal stresses in three-dimensional (3D) astrophysical accretion disks is an important phenomenon, potentially relevant for the outward dust transport in protoplanetary disks, origin of the refractory particles in comets, isotopic equilibration in the Earth–Moon system, etc. To gain better insight into these processes, we explore the dependence of meridional circulation in 3D disks with shear viscosity on their thermal stratification, and demonstrate a strong effect of the latter on the radial flow. Previous locally isothermal studies have normally found a pattern of the radial outflow near the midplane, switching to inflowmore » higher up. Here we show, both analytically and numerically, that a flow that is inward at all altitudes is possible in disks with entropy and temperature steeply increasing with height. Such thermodynamic conditions may be typical in the optically thin, viscously heated accretion disks. Disks in which these conditions do not hold should feature radial outflow near the midplane, as long as their internal stress is provided by the shear viscosity. Our results can also be used for designing hydrodynamical disk simulations with a prescribed pattern of the meridional circulation.« less

  14. Probing midplane CO abundance and gas temperature with DCO+ in the protoplanetary disk around HD 169142

    NASA Astrophysics Data System (ADS)

    Carney, M. T.; Fedele, D.; Hogerheijde, M. R.; Favre, C.; Walsh, C.; Bruderer, S.; Miotello, A.; Murillo, N. M.; Klaassen, P. D.; Henning, Th.; van Dishoeck, E. F.

    2018-06-01

    Context. Physical and chemical processes in protoplanetary disks affect the disk structure and the midplane environment within which planets form. The simple deuterated molecular cation DCO+ has been proposed to act as a tracer of the disk midplane conditions. Aims: This work aims to understand which midplane conditions are probed by the DCO+ emission in the disk around the Herbig Ae star HD 169142. We explore the sensitivity of the DCO+ formation pathways to gas temperature and CO abundance. Methods: The DCO+ J = 3-2 transition was observed with Atacama Large Millimeter/submillimeter Array at a spatial resolution of 0.3'' (35 AU at 117 pc). We modeled the DCO+ emission in HD 169142 with a physical disk structure adapted from the literature, and employed a simple deuterium chemical network to investigate the formation of DCO+ through the cold deuterium fractionation pathway via H2D+. Parameterized models are used to modify the gas temperature and CO abundance structure of the disk midplane to test their effect on DCO+ production. Contributions from the warm deuterium fractionation pathway via CH2D+ are approximated using a constant abundance in the intermediate disk layers. Results: The DCO+ line is detected in the HD 169142 disk with a total integrated line flux of 730 ± 73 mJy km s-1. The radial intensity profile reveals a warm, inner component of the DCO+ emission at radii ≲30 AU and a broad, ring-like structure from 50-230 AU with a peak at 100 AU just beyond the edge of the millimeter grain distribution. Parameterized models show that alterations to the midplane gas temperature and CO abundance are both needed to recover the observed DCO+ radial intensity profile. The alterations are relative to the fiducial physical structure of the literature model constrained by dust and CO observations. The best-fit model contains a shadowed, cold midplane in the region z/r < 0.1 with an 8 K decrease in Tgas and a factor of five CO depletion just beyond the millimeter grains (r = 83 AU), and a 2 K decrease in Tgas for r > 120 AU. The warm deuterium fractionation pathway is implemented as a constant DCO+ abundance of 2.0 × 10-12 between 30-70 K and contributes >85% to the DCO+ emission at r < 83 AU in the best-fit model. Conclusions: The DCO+ emission probes a reservoir of cold material in the HD 169142 outer disk that is not probed by the millimeter continuum, the spectral energy distribution, nor the emission from the 12 CO, 13 CO, or C18O J = 2-1 lines. The DCO+ emission is a sensitive probe of gas temperature and CO abundance near the disk midplane and provides information about the outer disk beyond the millimeter continuum distribution that is largely absent in abundant gaseous tracers such as CO isotopologues. The reduced datacubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A106

  15. COMMAND: A FORTRAN program for simplified composite analysis and design. [computerized design of multilayered composite panels

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.

    1976-01-01

    A FORTRAN program is presented for preliminary analysis and design of multilayered composite panels subjected to inplane loads. All plys are of the same material. The composite is assumed symmetric about the midplane, but need not be balanced. Failure criterion includes limit ply strains and lower bounds on composite inplane stiffnesses. Multiple load conditions are considered. The required input data is defined and examples are provided to aid the use in making the program operational. Average panel design times are two seconds on an IBM 360/67 computer. Results are compared with published literature. A complete FORTRAN listing of program COMAND is provided. In addition, the optimization program CONMIN is required for design.

  16. Efficient rolling texture predictions and texture-sensitive properties of α-uranium foils

    DOE PAGES

    Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.; ...

    2017-01-01

    Here, finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favorsmore » one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a final recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of the thermal expansion and elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.« less

  17. Efficient rolling texture predictions and texture-sensitive properties of α-uranium foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.

    Here, finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favorsmore » one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a final recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of the thermal expansion and elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.« less

  18. Efficient rolling texture predictions and texture-sensitive thermomechanical properties of α-uranium foils

    NASA Astrophysics Data System (ADS)

    Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.; Knezevic, Marko; Garlea, Elena; Agnew, Sean R.

    2017-11-01

    Finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold straight-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favors one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold straight-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of thermal expansion and the elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.

  19. Segmented saddle-shaped passive stabilization conductors for toroidal plasmas

    DOEpatents

    Leuer, J.A.

    1990-05-01

    A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented. 5 figs.

  20. Design of a real-time two-color interferometer for MAST Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Gorman, T., E-mail: thomas.ogorman@ccfe.ac.uk; Naylor, G.; Scannell, R.

    2014-11-15

    A single chord two-color CO{sub 2}/HeNe (10.6/0.633 μm) heterodyne laser interferometer has been designed to measure the line integral electron density along the mid-plane of the MAST Upgrade tokamak, with a typical error of 1 × 10{sup 18} m{sup −3} (∼2° phase error) at 4 MHz temporal resolution. To ensure this diagnostic system can be restored from any failures without stopping MAST Upgrade operations, it has been located outside of the machine area. The final design and initial testing of this system, including details of the optics, vibration isolation, and a novel phase detection scheme are discussed in this paper.

  1. Improvements to the ion Doppler spectrometer diagnostic on the HIT-SI experiments.

    PubMed

    Hossack, Aaron; Chandra, Rian; Everson, Chris; Jarboe, Tom

    2018-03-01

    An ion Doppler spectrometer diagnostic system measuring impurity ion temperature and velocity on the HIT-SI and HIT-SI3 spheromak devices has been improved with higher spatiotemporal resolution and lower error than previously described devices. Hardware and software improvements to the established technique have resulted in a record of 6.9 μs temporal and ≤2.8 cm spatial resolution in the midplane of each device. These allow Ciii and Oii flow, displacement, and temperature profiles to be observed simultaneously. With 72 fused-silica fiber channels in two independent bundles, and an f/8.5 Czerny-Turner spectrometer coupled to a video camera, frame rates of up to ten times the imposed magnetic perturbation frequency of 14.5 kHz were achieved in HIT-SI, viewing the upper half of the midplane. In HIT-SI3, frame rates of up to eight times the perturbation frequency were achieved viewing both halves of the midplane. Biorthogonal decomposition is used as a novel filtering tool, reducing uncertainty in ion temperature from ≲13 to ≲5 eV (with an instrument temperature of 8-16 eV) and uncertainty in velocity from ≲2 to ≲1 km/s. Doppler shift and broadening are calculated via the Levenberg-Marquardt algorithm, after which the errors in velocity and temperature are uniquely specified. Axisymmetric temperature profiles on HIT-SI3 for Ciii peaked near the inboard current separatrix at ≈40 eV are observed. Axisymmetric plasma displacement profiles have been measured on HIT-SI3, peaking at ≈6 cm at the outboard separatrix. Both profiles agree with the upper half of the midplane observable by HIT-SI. With its complete midplane view, HIT-SI3 has unambiguously extracted axisymmetric, toroidal current dependent rotation of up to 3 km/s. Analysis of the temporal phase of the displacement uncovers a coherent structure, locked to the applied perturbation. Previously described diagnostic systems could not achieve such results.

  2. Improvements to the ion Doppler spectrometer diagnostic on the HIT-SI experiments

    NASA Astrophysics Data System (ADS)

    Hossack, Aaron; Chandra, Rian; Everson, Chris; Jarboe, Tom

    2018-03-01

    An ion Doppler spectrometer diagnostic system measuring impurity ion temperature and velocity on the HIT-SI and HIT-SI3 spheromak devices has been improved with higher spatiotemporal resolution and lower error than previously described devices. Hardware and software improvements to the established technique have resulted in a record of 6.9 μs temporal and ≤2.8 cm spatial resolution in the midplane of each device. These allow Ciii and Oii flow, displacement, and temperature profiles to be observed simultaneously. With 72 fused-silica fiber channels in two independent bundles, and an f/8.5 Czerny-Turner spectrometer coupled to a video camera, frame rates of up to ten times the imposed magnetic perturbation frequency of 14.5 kHz were achieved in HIT-SI, viewing the upper half of the midplane. In HIT-SI3, frame rates of up to eight times the perturbation frequency were achieved viewing both halves of the midplane. Biorthogonal decomposition is used as a novel filtering tool, reducing uncertainty in ion temperature from ≲13 to ≲5 eV (with an instrument temperature of 8-16 eV) and uncertainty in velocity from ≲2 to ≲1 km/s. Doppler shift and broadening are calculated via the Levenberg-Marquardt algorithm, after which the errors in velocity and temperature are uniquely specified. Axisymmetric temperature profiles on HIT-SI3 for Ciii peaked near the inboard current separatrix at ≈40 eV are observed. Axisymmetric plasma displacement profiles have been measured on HIT-SI3, peaking at ≈6 cm at the outboard separatrix. Both profiles agree with the upper half of the midplane observable by HIT-SI. With its complete midplane view, HIT-SI3 has unambiguously extracted axisymmetric, toroidal current dependent rotation of up to 3 km/s. Analysis of the temporal phase of the displacement uncovers a coherent structure, locked to the applied perturbation. Previously described diagnostic systems could not achieve such results.

  3. Improvements to the Ion Doppler Spectrometer Diagnostic on the HIT-SI Experiments

    DOE PAGES

    Hossack, Aaron; Chandra, Rian; Everson, Christopher; ...

    2018-03-09

    An Ion Doppler Spectrometer diagnostic system measuring impurity ion temperature and velocity on the HIT-SI and HIT-SI3 spheromak devices has been improved with higher spatiotemporal resolution and lower error than previously described devices. Hardware and software improvements to the established technique have resulted in a record 6.9 µs temporal and <=2.8 cm spatial resolution in the midplane of each device. These allow C III and O II flow, displacement, and temperature profiles to be simultaneously observed. With 72 fused-silica fiber channels in two independent bundles, and an f/8.5 Czerny-Turner spectrometer coupled to video camera, frame-rates of up to ten timesmore » the imposed magnetic perturbation frequency of 14.5 kHz were achieved in HIT-SI, viewing the upper 1/2 of the midplane. In HIT-SI3 frame-rates of up to eight times the perturbation frequency were achieved viewing both halves of the midplane. Biorthogonal Decomposition is used as a novel filtering tool, reducing uncertainty in ion temperature from <=13 to <=5 eV (with an instrument temperature of 8-16 eV), and uncertainty in velocity from <=2 to <=1 km/s. Doppler shift and broadening is calculated via the Levenberg-Marquart algorithm, after which errors in velocity and temperature are uniquely specified. Axisymmetric temperature profiles on HIT-SI3 for C III peaked near the inboard current separatrix at approximately 40 eV are observed. Axisymmetric plasma displacement profiles have been measured on HIT-SI3, peaking at approximately 6 cm at the outboard separatrix. Both profiles agree with the upper half of the midplane observable by HIT-SI. With its complete midplane view, HIT-SI3 has unambiguously extracted axisymmetric, toroidal current dependent rotation of up to 3 km/s. Analysis of the temporal phase of the displacement uncovers a coherent structure, locked to the applied perturbation. Previously described diagnostic systems could not achieve such results.« less

  4. Improvements to the Ion Doppler Spectrometer Diagnostic on the HIT-SI Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossack, Aaron; Chandra, Rian; Everson, Christopher

    An Ion Doppler Spectrometer diagnostic system measuring impurity ion temperature and velocity on the HIT-SI and HIT-SI3 spheromak devices has been improved with higher spatiotemporal resolution and lower error than previously described devices. Hardware and software improvements to the established technique have resulted in a record 6.9 µs temporal and <=2.8 cm spatial resolution in the midplane of each device. These allow C III and O II flow, displacement, and temperature profiles to be simultaneously observed. With 72 fused-silica fiber channels in two independent bundles, and an f/8.5 Czerny-Turner spectrometer coupled to video camera, frame-rates of up to ten timesmore » the imposed magnetic perturbation frequency of 14.5 kHz were achieved in HIT-SI, viewing the upper 1/2 of the midplane. In HIT-SI3 frame-rates of up to eight times the perturbation frequency were achieved viewing both halves of the midplane. Biorthogonal Decomposition is used as a novel filtering tool, reducing uncertainty in ion temperature from <=13 to <=5 eV (with an instrument temperature of 8-16 eV), and uncertainty in velocity from <=2 to <=1 km/s. Doppler shift and broadening is calculated via the Levenberg-Marquart algorithm, after which errors in velocity and temperature are uniquely specified. Axisymmetric temperature profiles on HIT-SI3 for C III peaked near the inboard current separatrix at approximately 40 eV are observed. Axisymmetric plasma displacement profiles have been measured on HIT-SI3, peaking at approximately 6 cm at the outboard separatrix. Both profiles agree with the upper half of the midplane observable by HIT-SI. With its complete midplane view, HIT-SI3 has unambiguously extracted axisymmetric, toroidal current dependent rotation of up to 3 km/s. Analysis of the temporal phase of the displacement uncovers a coherent structure, locked to the applied perturbation. Previously described diagnostic systems could not achieve such results.« less

  5. Non-solenoidal Plasma Startup in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Sontag, Aaron

    2008-11-01

    Non-solenoidal (NS) startup will simplify the design of future tokamaks by eliminating need for a central solenoid and is required for an ST based CTF. In Pegasus, washer-stack current sources (plasma guns) are used to initiate NS discharges via point-source DC helicity injection. Current injected parallel to the helical vacuum field can relax into a tokamak-like configuration with toroidally-averaged closed flux and tokamak-like confinement. This requires no modification of the vacuum vessel and is scalable to fusion grade systems with proper geometry. Guns in the divertor region create discharges with Ip up to 50 kA, 3 times the vacuum windup. Nonlinear 3D simulation with NIMROD shows excitation of a line-tied kink, producing poloidal flux amplification. Evidence of flux amplification includes: reversal of edge poloidal magnetic flux; Ip increase over vacuum geometric windup; plasma position subject to radial force balance; and persistence of Ip after gun shut-off. Equilibria show high edge current (li = 0.2) and elevated q (qmin> 6), allowing access to high IN (IN> 12). Guns at the outboard midplane produce Ip up to 7 times the vacuum windup with large n=1 activity when edge q passes through rational surfaces. Line averaged density up to 2x10^19 m-3 after relaxation shows an increase in particle confinement over non-relaxed cases. Maximum Ip is determined by helicity and radial force balance, tokamak stability, and Taylor relaxation. Coupling midplane gun discharges to other CD is straightforward due to Ip decay times >3 ms. Poloidal field induction has been used to create NS discharges up to 80 kA and gun plasmas with Ip of 60 kA have been ramped to over 100 kA by including OH drive. Present research is aimed at understanding the physics of this technique in order to form NS targets in excess of 200 kA and design NS startup systems for larger devices.

  6. Magnetic configuration flexibility of snowflake divertor for HL-2M [Analysis of snowflake divertor configurations for HL-2M

    DOE PAGES

    Zheng, G. Y.; Xu, X. Q.; Ryutov, D. D.; ...

    2014-07-09

    HL-2M (Li, 2013 [1]) is a tokamak device that is under construction. Based on the magnetic coils design of HL-2M, four kinds of divertor configurations are calculated by CORSICA code (Pearlstein et al., 2001 [2]) with the same main plasma parameters, which are standard divertor, exact snowflake divertor, snowflake-plus divertor and snowflake-minus divertor configurations. The potential properties of these divertors are analyzed and presented in this paper: low poloidal field area around X-point, connection length from outside mid-plane to the primary X-point, target plate design and magnetic field shear. The results show that the snowflake configurations not only can reducemore » the heat load at divertor target plates, but also may improve the magneto-hydrodynamic stability by stronger magnetic shear at the edge. Furthermore, a new divertor configuration, named “tripod divertor”, is designed by adjusting the positions of the two X-points according to plasma parameters and magnetic coils current of HL-2M.« less

  7. Optical Properties of Blow-Off Particulates.

    DTIC Science & Technology

    1984-02-29

    examination of the SEM data in Sec- tion 3, for the particulates vary greatly in size, structure and melting points . Table 4. Refractive indices of minerals...of the balance. With no dc field applied the particle oscillates about a point below the midplane of the balance. When a dc field is applied to offset...electric field near the null point (midplane) of the balance is given by V dc Edc,z x- (11) where C is a geometrical constant which takes into account the

  8. Conceptual Design of the ITER ECE Diagnostic - An Update

    NASA Astrophysics Data System (ADS)

    Austin, M. E.; Pandya, H. K. B.; Beno, J.; Bryant, A. D.; Danani, S.; Ellis, R. F.; Feder, R.; Hubbard, A. E.; Kumar, S.; Ouroua, A.; Phillips, P. E.; Rowan, W. L.

    2012-09-01

    The ITER ECE diagnostic has recently been through a conceptual design review for the entire system including front end optics, transmission line, and back-end instruments. The basic design of two viewing lines, each with a single ellipsoidal mirror focussing into the plasma near the midplane of the typical operating scenarios is agreed upon. The location and design of the hot calibration source and the design of the shutter that directs its radiation to the transmission line are issues that need further investigation. In light of recent measurements and discussion, the design of the broadband transmission line is being revisited and new options contemplated. For the instruments, current systems for millimeter wave radiometers and broad-band spectrometers will be adequate for ITER, but the option for employing new state-of-the-art techniques will be left open.

  9. Effect of Backing Plate Thermal Property on Friction Stir Welding of 25-mm-Thick AA6061

    NASA Astrophysics Data System (ADS)

    Upadhyay, Piyush; Reynolds, Anthony

    2014-04-01

    By using backing plates made out of materials with widely varying thermal diffusivity this work seeks to elucidate the effects of the root side thermal boundary condition on weld process variables and resulting joint properties. Welds were made in 25.4-mm-thick AA6061 using ceramic, titanium, steel, and aluminum as backing plate (BP) material. Welds were also made using a "composite backing plate" consisting of longitudinal narrow strip of low diffusivity material at the center and two side plates of high diffusivity aluminum. Stir zone temperature during the welding was measured using two thermocouples spot welded at the core of the probe: one at the midplane height and another near the tip of the probe corresponding to the root of the weld. Steady state midplane probe temperatures for all the BPs used were found to be very similar. Near root peak temperature, however, varied significantly among weld made with different BPs all other things being equal. Whereas the near root and midplane temperature were the same in the case of ceramic backing plate, the root peak temperature was 318 K (45 °C) less than the midplane temperature in the case of aluminum BP. The trends of nugget hardness and grain size in through thickness direction were in agreement with the measured probe temperatures. Hardness and tensile test results show that the use of composite BP results in stronger joint compared to monolithic steel BP.

  10. Magnetic Field Transport in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Jafari, Amir; Vishniac, Ethan T.

    2018-02-01

    The leading models for launching astrophysical jets rely on strong poloidal magnetic fields threading the central parts of their host accretion disks. Numerical simulations of magneto-rotationally turbulent disks suggest that such fields are actually advected from the environment by the accreting matter rather than generated by internal dynamos. This is puzzling from a theoretical point of view, since the reconnection of the radial field across the midplane should cause an outward drift on timescales much shorter than the accretion time. We suggest that a combination of effects are responsible for reducing the radial field near the midplane, causing efficient inward advection of the poloidal field. Magnetic buoyancy in subsonic turbulence pushes the field lines away from the midplane, decreasing the large-scale radial field in the main body of the disk. In magneto-rotationally driven turbulence, magnetic buoyancy dominates over the effects of turbulent pumping, which works against it, and turbulent diamagnetism, which works with it, in determining the vertical drift of the magnetic field. Balancing buoyancy with diffusion implies that the bending angle of the large-scale poloidal field can be very large near the surface, as required for outflows, but vanishes near the midplane, which impedes turbulent reconnection and outward diffusion. This effect becomes less efficient as the poloidal flux increases. This suggests that accretion disks are less likely to form jets if they have a modest ratio of outer to inner radii or if the ambient field is very weak. The former effect is probably responsible for the scarcity of jets in cataclysmic variable systems.

  11. Infrared Extinction and Stellar Populations in the Milky Way Midplane

    NASA Astrophysics Data System (ADS)

    Zasowski, Gail; Majewski, S. R.; Benjamin, R. A.; Nidever, D. L.; Skrutskie, M. F.; Indebetouw, R.; Patterson, R. J.; Meade, M. R.; Whitney, B. A.; Babler, B.; Churchwell, E.; Watson, C.

    2012-01-01

    The primary laboratory for developing and testing models of galaxy formation, structure, and evolution is our own Milky Way, the closest large galaxy and the only one in which we can resolve large numbers of individual stars. The recent availability of extensive stellar surveys, particularly infrared ones, has enabled precise, contiguous measurement of large-scale Galactic properties, a major improvement over inferences based on selected, but scattered, sightlines. However, our ability to fully exploit the Milky Way as a galactic laboratory is severely hampered by the fact that its midplane and central bulge -- where most of the Galactic stellar mass lies -- is heavily obscured by interstellar dust. Therefore, proper consideration of the interstellar extinction is crucial. This thesis describes a new extinction-correction method (the RJCE method) that measures the foreground extinction towards each star and, in many cases, enables recovery of its intrinsic stellar type. We have demonstrated the RJCE Method's validity and used it to produce new, reliable extinction maps of the heavily-reddened Galactic midplane. Taking advantage of the recovered stellar type information, we have generated maps probing the extinction at different heliocentric distances, thus yielding information on the elusive three-dimensional distribution of the interstellar dust. We also performed a study of the interstellar extinction law itself which revealed variations previously undetected in the diffuse ISM and established constraints on models of ISM grain formation and evolution. Furthermore, we undertook a study of large-scale stellar structure in the inner Galaxy -- the bar(s), bulge(s), and inner spiral arms. We used observed and extinction-corrected infrared photometry to map the coherent stellar features in these heavily-obscured parts of the Galaxy, placing constraints on models of the central stellar mass distribution.

  12. Compatibility of separatrix density scaling for divertor detachment with H-mode pedestal operation in DIII-D

    NASA Astrophysics Data System (ADS)

    Leonard, A. W.; McLean, A. G.; Makowski, M. A.; Stangeby, P. C.

    2017-08-01

    The midplane separatrix density is characterized in response to variations in upstream parallel heat flux density and central density through deuterium gas injection. The midplane density is determined from a high spatial resolution Thomson scattering diagnostic at the midplane with power balance analysis to determine the separatrix location. The heat flux density is varied by scans of three parameters, auxiliary heating, toroidal field with fixed plasma current, and plasma current with fixed safety factor, q 95. The separatrix density just before divertor detachment onset is found to scale consistent with the two-point model when radiative dissipation is taken into account. The ratio of separatrix to pedestal density, n e,sep/n e,ped varies from  ⩽30% to  ⩾60% over the dataset, helping to resolve the conflicting scaling of core plasma density limit and divertor detachment onset. The scaling of the separatrix density at detachment onset is combined with H-mode power threshold scaling to obtain a scaling ratio of minimum n e,sep/n e,ped expected in future devices.

  13. Three dimensional finite-element analysis of finite-thickness fracture specimens

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1977-01-01

    The stress-intensity factors for most of the commonly used fracture specimens (center-crack tension, single and double edge-crack tension, and compact), those that have a through-the-thickness crack, were calculated using a three dimensional finite-element elastic stress analysis. Three-dimensional singularity elements were used around the crack front. The stress intensity factors along the crack front were evaluated by using a force method, developed herein, that requires no prior assumption of either plane stress or plane strain. The calculated stress-intensity factors from the present analysis were compared with those from the literature whenever possible and were generally found to be in good agreement. The stress-intensity factors at the midplane for all specimens analyzed were within 3 percent of the two dimensional plane strain values. The stress intensity factors at the specimen surfaces were considerably lower than at the midplanes. For the center-crack tension specimens with large thickness to crack-length ratios, the stress-intensity factor reached a maximum near the surface of the specimen. In all other specimens considered the maximum stress intensity occurred at the midplane.

  14. DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with sizemore » of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.« less

  15. Modeling the effect of dynamic surfaces on membrane penetration

    NASA Astrophysics Data System (ADS)

    van Lehn, Reid; Alexander-Katz, Alfredo

    2011-03-01

    The development of nanoscale materials for targeted drug delivery is an important current pursuit in materials science. One task of drug carriers is to release therapeutic agents within cells by bypassing the cell membrane to maximize the effectiveness of their payload and minimize bodily exposure. In this work, we use coarse-grained simulations to study nanoparticles (NPs) grafted with hydrophobic and hydrophilic ligands that rearrange in response to the amphiphilic lipid bilayer. We demonstrate that this dynamic surface permits the NP to spontaneously penetrate to the bilayer midplane when the surface ligands are near an order-disorder transition. We believe that this work will lead to the design of new drug carriers capable of non-specifically accessing cell interiors based solely on their dynamic surface properties. Our work is motivated by existing nanoscale systems such as micelles, or NPs grafted with highly mobile ligands or polymer brushes.

  16. Outward transport of high-temperature materials around the midplane of the solar nebula.

    PubMed

    Ciesla, Fred J

    2007-10-26

    The Stardust samples collected from Comet 81P/Wild 2 indicate that large-scale mixing occurred in the solar nebula, carrying materials from the hot inner regions to cooler environments far from the Sun. Similar transport has been inferred from telescopic observations of protoplanetary disks around young stars. Models for protoplanetary disks, however, have difficulty explaining the observed levels of transport. Here I report the results of a new two-dimensional model that shows that outward transport of high-temperature materials in protoplanetary disks is a natural outcome of disk formation and evolution. This outward transport occurs around the midplane of the disk.

  17. The Influence of Positioning of the Nellix Endovascular Aneurysm Sealing System on Suprarenal and Renal Flow: An In Vitro Study.

    PubMed

    Boersen, Johannes T; Groot Jebbink, Erik; Van de Velde, Lennart; Versluis, Michel; Lajoinie, Guillaume; Slump, Cornelius H; de Vries, Jean-Paul P M; Reijnen, Michel M P J

    2017-10-01

    To examine the influence of device positioning and infrarenal neck diameter on flow patterns in the Nellix endovascular aneurysm sealing (EVAS) system. The transition of the aortic flow lumen into two 10-mm-diameter stents after EVAS creates a mismatched area. Flow recirculation may affect local wall shear stress (WSS) profiles and residence time associated with atherosclerosis and thrombosis. To examine these issues, 7 abdominal aortic aneurysm flow phantoms were created, including 3 unstented controls and 3 stented models with infrarenal neck diameters of 24, 28, and 32 mm. Stents were positioned within the instructions for use (IFU). Another 28-mm model was created to evaluate lower positioning of the stents outside the IFU (28-mm LP). Flow was visualized using optical particle imaging velocimetry (PIV) and quantified by time-averaged WSS (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT) in the aorta at the anteroposterior (AP) midplane, lateral midplane, and renal artery AP midplane levels. Flow in the aorta AP midplane was similar in all models. Vortices were observed in the stented models in the lateral midplane near the anterior and posterior walls. In the 32-mm IFU and 28-mm LP models, a steady state of vortices appeared, with varying location during a cycle. In all models, a low TAWSS (<10 -2 Pa) was observed at the anterior wall of the aorta with peak OSI of 0.5 and peak RRT of 10 4 Pa -1 . This region was more proximally located in the stented models. The 24- and 28-mm IFU models showed flow with a higher velocity at the renal artery inflow compared to controls. TAWSS in the renal artery was lower near the orifice in all models, with the largest area in the 24-mm IFU model. OSI and RRT in the renal artery were near zero for all models. EVAS enhances vorticity proximal to the seal zone, especially with lower positioning of the device and in larger neck diameters. Endobags just below the renal artery affect the flow profile in a minor area of this artery in 24- and 28-mm necks, while lower stent positioning does not influence the renal artery flow profile.

  18. 3D Fiber Orientation Simulation for Plastic Injection Molding

    NASA Astrophysics Data System (ADS)

    Lin, Baojiu; Jin, Xiaoshi; Zheng, Rong; Costa, Franco S.; Fan, Zhiliang

    2004-06-01

    Glass fiber reinforced polymer is widely used in the products made using injection molding processing. The distribution of fiber orientation inside plastic parts has direct effects on quality of molded parts. Using computer simulation to predict fiber orientation distribution is one of most efficient ways to assist engineers to do warpage analysis and to find a good design solution to produce high quality plastic parts. Fiber orientation simulation software based on 2-1/2D (midplane /Dual domain mesh) techniques has been used in industry for a decade. However, the 2-1/2D technique is based on the planar Hele-Shaw approximation and it is not suitable when the geometry has complex three-dimensional features which cannot be well approximated by 2D shells. Recently, a full 3D simulation software for fiber orientation has been developed and integrated into Moldflow Plastics Insight 3D simulation software. The theory for this new 3D fiber orientation calculation module is described in this paper. Several examples are also presented to show the benefit in using 3D fiber orientation simulation.

  19. Material migration studies with an ITER first wall panel proxy on EAST

    NASA Astrophysics Data System (ADS)

    Ding, R.; Pitts, R. A.; Borodin, D.; Carpentier, S.; Ding, F.; Gong, X. Z.; Guo, H. Y.; Kirschner, A.; Kocan, M.; Li, J. G.; Luo, G.-N.; Mao, H. M.; Qian, J. P.; Stangeby, P. C.; Wampler, W. R.; Wang, H. Q.; Wang, W. Z.

    2015-02-01

    The ITER beryllium (Be) first wall (FW) panels are shaped to protect leading edges between neighbouring panels arising from assembly tolerances. This departure from a perfectly cylindrical surface automatically leads to magnetically shadowed regions where eroded Be can be re-deposited, together with co-deposition of tritium fuel. To provide a benchmark for a series of erosion/re-deposition simulation studies performed for the ITER FW panels, dedicated experiments have been performed on the EAST tokamak using a specially designed, instrumented test limiter acting as a proxy for the FW panel geometry. Carbon coated molybdenum plates forming the limiter front surface were exposed to the outer midplane boundary plasma of helium discharges using the new Material and Plasma Evaluation System (MAPES). Net erosion and deposition patterns are estimated using ion beam analysis to measure the carbon layer thickness variation across the surface after exposure. The highest erosion of about 0.8 µm is found near the midplane, where the surface is closest to the plasma separatrix. No net deposition above the measurement detection limit was found on the proxy wall element, even in shadowed regions. The measured 2D surface erosion distribution has been modelled with the 3D Monte Carlo code ERO, using the local plasma parameter measurements together with a diffusive transport assumption. Excellent agreement between the experimentally observed net erosion and the modelled erosion profile has been obtained.

  20. Design, Fabrication, and Testing of SMA Enabled Adaptive Chevrons for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Buehrle, Ralph D.; Cano, Roberto J.; Fleming, Gary A.

    2004-01-01

    This study presents the status and results from an effort to design, fabricate, and test an adaptive jet engine chevron concept based upon embedding shape memory alloy (SMA) actuators in a composite laminate, termed a SMA hybrid composite (SMAHC). The approach for fabricating the adaptive SMAHC chevrons involves embedding prestrained Nitinol actuators on one side of the mid-plane of the composite laminate such that thermal excitation generates a thermal moment and deflects the structure. A glass-epoxy pre-preg/Nitinol ribbon material system and a vacuum hot press consolidation approach are employed. A versatile test system for control and measurement of the chevron deflection performance is described. Projection moire interferometry (PMI) is used for global deformation measurement and infrared (IR) thermography is used for 2-D temperature measurement and feedback control. A recently commercialized constitutive model for SMA and SMAHC materials is used in the finite element code ABAQUS to perform nonlinear static analysis of the chevron prototypes. Excellent agreement is achieved between the predicted and measured chevron deflection performance, thereby validating the design tool. Although the performance results presented in this paper fall short of the requirement, the concept is proven and an approach for achieving the performance objectives is evident.

  1. Observation of Intralaminar Cracking in the Edge Crack Torsion Specimen

    NASA Technical Reports Server (NTRS)

    Czabaj, Michael W.; Ratcliffe, James G.; Davidson, Barry D.

    2013-01-01

    The edge crack torsion (ECT) test is evaluated to determine its suitability for measuring fracture toughness associated with mode III delamination growth onset. A series of ECT specimens with preimplanted inserts with different lengths is tested and examined using nondestructive and destructive techniques. Ultrasonic inspection of all tested specimens reveals that delamination growth occurs at one interface ply beneath the intended midplane interface. Sectioning and optical microscopy suggest that the observed delamination growth results from coalescence of angled intralaminar matrix cracks that form and extend across the midplane plies. The relative orientation of these cracks is approximately 45 deg with respect to the midplane, suggesting their formation is caused by resolved principal tensile stresses arising due to the global mode-III shear loading. Examination of ECT specimens tested to loads below the level corresponding to delamination growth onset reveals that initiation of intralaminar cracking approximately coincides with the onset of nonlinearity in the specimen's force-displacement response. The existence of intralaminar cracking prior to delamination growth onset and the resulting delamination extension at an unintended interface render the ECT test, in its current form, unsuitable for characterization of mode III delamination growth onset. The broader implications of the mechanisms observed in this study are also discussed with respect to the current understanding of shear-driven delamination in tape-laminate composites.

  2. Engineering Evaluation of International Low Impact Docking System Latch Hooks

    NASA Technical Reports Server (NTRS)

    Martinez, J.; Patin, R.; Figert, J.

    2013-01-01

    The international Low Impact Docking System (iLIDS) provides a structural arrangement that allows for visiting vehicles to dock with the International Space Station (ISS) (Fig 1). The iLIDS docking units are mechanically joined together by a series of active and passive latch hooks. In order to preserve docking capability at the existing Russian docking interfaces, the iLIDS latch hooks are required to conform to the existing Russian design. The latch hooks are classified as being fail-safe. Since the latch hooks are fail-safe, the hooks are not fracture critical and a fatigue based service life assessment will satisfy the structural integrity requirements. Constant amplitude fatigue testing to failure on four sets of active/passive iLIDS latch hooks was performed at load magnitudes of 10, 11, and 12 kips. Failure analysis of the hook fatigue failures identified multi-site fatigue initiation that was effectively centered about the hook mid-plane (consistent with the 3D model results). The fatigue crack initiation distribution implies that the fatigue damage accumulation effectively results in a very low aspect ratio surface crack (which can be simulated as thru-thickness crack). Fatigue damage progression resulted in numerous close proximity fatigue crack initiation sites. It was not possible to determine if fatigue crack coalescence occurs during cyclic loading or as result of the fast fracture response. The presence of multiple fatigue crack initiation sites on different planes will result in the formation of ratchet marks as the cracks coalesce. Once the stable fatigue crack becomes unstable and the fast fracture advances across the remaining ligament and the plane stress condition at a free-surface will result in failure along a 45 deg. shear plane (slant fracture) and the resulting inclined edge is called a shear lip. The hook thickness on the plane of fatigue crack initiation is 0.787". The distance between the shear lips on this plane was on the order of 0.48" and it was effectively centered about the mid-plane of the section. The numerous ratchet marks between the shear lips on the fracture initiation plane are indicative of multiple fatigue initiation sites within this region. The distribution of the fatigue damage about the centerline of the hook is consistent with the analytical results that demonstrate peak stress/strain response at the mid-plane that decreases in the direction of the hook outer surfaces. Scanning electron microscope images of the failed sections detected fatigue crack striations in close proximity to the free surface of the hook radius. These findings were documented at three locations on the fracture surface : 1) adjacent to the left shear lip, 2) adjacent to the right shear lip, and 3) near the centerline of the section. The features of the titanium fracture surface did not allow for a determination of a critical crack size via identification of the region where the fatigue crack propagation became unstable. The fracture based service life projections where benchmarked with strain-life analyses. The strainrange response in the hook radius was defined via the correlated finite element models and the modified method of universal slopes was incorporated to define the strain-life equation for the titanium alloy. The strain-life assessment confirmed that the fracture based projections were reasonable for the loading range of interest. Based upon the analysis and component level fatigue test data a preliminary service life capability for the iLIDS active and passive hooks of 2 lifetimes is projected (includes a scatter factor of 4).

  3. The Westerbork SINGS survey. III. Global magnetic field topology

    NASA Astrophysics Data System (ADS)

    Braun, R.; Heald, G.; Beck, R.

    2010-05-01

    A sample of large northern Spitzer Infrared Nearby Galaxies Survey (SINGS) galaxies was observed with the Westerbork Synthesis Radio Telescope (WSRT) at 1300-1760 MHz. In Paper II of this series, we described sensitive observations of the linearly polarized radio continuum emission in this WSRT-SINGS galaxy sample. Large-scale magnetic field structures of two basic types are found: (a) disk fields with a spiral topology in all detected targets; and (b) circumnuclear, bipolar outflow fields in a subset. Here we explore the systematic patterns of azimuthal modulation of both the Faraday depth and the polarized intensity and their variation with galaxy inclination. A self-consistent and fully general model for both the locations of net polarized emissivity at 1-2 GHz frequencies and the global magnetic field topology of nearby galaxies emerges. Net polarized emissivity is concentrated into two zones located above and below the galaxy mid-plane, with the back-side zone suffering substantial depolarization (by a factor of 4-5) relative to the front-side zone in its propagation through the turbulent mid-plane. The field topology which characterizes the thick-disk emission zone, is in all cases an axisymmetric spiral with a quadrupole dependence on height above the mid-plane. The front-side emission is affected by only mild dispersion (10's of rad m-2) from the thermal plasma in the galaxy halo, while the back-side emission is affected by additional strong dispersion (100's of rad m-2) from an axi-symmetric spiral field in the galaxy mid-plane. The field topology in the upper halo of galaxies is a mixture of two distinct types: a simple extension of the axisymmetric spiral quadrupole field of the thick disk and a radially directed dipole field. The dipole component might be a manifestation of (1) a circumnuclear, bipolar outflow; (2) an in situ generated dipole field; or (3) evidence of a non-stationary global halo.

  4. Hall Effect–Mediated Magnetic Flux Transport in Protoplanetary Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xue-Ning; Stone, James M.

    2017-02-10

    The global evolution of protoplanetary disks (PPDs) has recently been shown to be largely controlled by the amount of poloidal magnetic flux threading the disk. The amount of magnetic flux must also coevolve with the disk, as a result of magnetic flux transport, a process that is poorly understood. In weakly ionized gas as in PPDs, magnetic flux is largely frozen in the electron fluid, except when resistivity is large. When the disk is largely laminar, we show that the relative drift between the electrons and ions (the Hall drift), and the ions and neutral fluids (ambipolar drift) can playmore » a dominant role on the transport of magnetic flux. Using two-dimensional simulations that incorporate the Hall effect and ambipolar diffusion (AD) with prescribed diffusivities, we show that when large-scale poloidal field is aligned with disk rotation, the Hall effect rapidly drags magnetic flux inward at the midplane region, while it slowly pushes flux outward above/below the midplane. This leads to a highly radially elongated field configuration as a global manifestation of the Hall-shear instability. This field configuration further promotes rapid outward flux transport by AD at the midplane, leading to instability saturation. In quasi-steady state, magnetic flux is transported outward at approximately the same rate at all heights, and the rate is comparable to the Hall-free case. For anti-aligned field polarity, the Hall effect consistently transports magnetic flux outward, leading to a largely vertical field configuration in the midplane region. The field lines in the upper layer first bend radially inward and then outward to launch a disk wind. Overall, the net rate of outward flux transport is about twice as fast as that of the aligned case. In addition, the rate of flux transport increases with increasing disk magnetization. The absolute rate of transport is sensitive to disk microphysics, which remains to be explored in future studies.« less

  5. THE VVV SURVEY REVEALS CLASSICAL CEPHEIDS TRACING A YOUNG AND THIN STELLAR DISK ACROSS THE GALAXY’S BULGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dékány, I.; Minniti, D.; Majaess, D.

    2015-10-20

    Solid insight into the physics of the inner Milky Way is key to understanding our Galaxy’s evolution, but extreme dust obscuration has historically hindered efforts to map the area along the Galactic mid-plane. New comprehensive near-infrared time-series photometry from the VVV Survey has revealed 35 classical Cepheids, tracing a previously unobserved component of the inner Galaxy, namely a ubiquitous inner thin disk of young stars along the Galactic mid-plane, traversing across the bulge. The discovered period (age) spread of these classical Cepheids implies a continuous supply of newly formed stars in the central region of the Galaxy over the lastmore » 100 million years.« less

  6. Large-scale thermal events in the solar nebula: evidence from Fe,Ni metal grains in primitive meteorites

    PubMed

    Meibom; Desch; Krot; Cuzzi; Petaev; Wilson; Keil

    2000-05-05

    Chemical zoning patterns in some iron, nickel metal grains from CH carbonaceous chondrites imply formation at temperatures from 1370 to 1270 kelvin by condensation from a solar nebular gas cooling at a rate of approximately 0.2 kelvin per hour. This cooling rate requires a large-scale thermal event in the nebula, in contrast to the localized, transient heating events inferred for chondrule formation. In our model, mass accretion through the protoplanetary disk caused large-scale evaporation of precursor dust near its midplane inside of a few astronomical units. Gas convectively moved from the midplane to cooler regions above it, and the metal grains condensed in these parcels of rising gas.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasper, Markus; Apai, Dániel; Wagner, Kevin

    Using Very Large Telescope/SPHERE near-infrared dual-band imaging and integral field spectroscopy, we discovered an edge-on debris disk around the 17 Myr old A-type member of the Scorpius–Centaurus OB association HD 110058. The edge-on disk can be traced to about 0.″6 or 65 AU projected separation. In its northern and southern wings, the disk shows at all wavelengths two prominent, bright, and symmetrically placed knots at 0.″3 or 32 AU from the star. We interpret these knots as a ring of planetesimals whose collisions may produce most of the dust observed in the disk. We find no evidence for a bowmore » in the disk, but we identify a pair of symmetric, hooklike features in both wings. Based on similar features in the Beta Pictoris disk, we propose that this wing-tilt asymmetry traces either an outer planetesimal belt that is inclined with respect to the disk midplane or radiation-pressure-driven dust blown out from a yet unseen inner belt that is inclined with respect to the disk midplane. The misaligned inner or outer disk may be a result of interaction with a yet unseen planet. Overall, the disk geometry resembles the nearby disk around Beta Pictoris, albeit seen at smaller radial scales.« less

  8. Material migration studies with an ITER first wall panel proxy on EAST

    DOE PAGES

    Ding, R.; Pitts, R. A.; Borodin, D.; ...

    2015-01-23

    The ITER beryllium (Be) first wall (FW) panels are shaped to protect leading edges between neighbouring panels arising from assembly tolerances. This departure from a perfectly cylindrical surface automatically leads to magnetically shadowed regions where eroded Be can be re-deposited, together with co-deposition of tritium fuel. To provide a benchmark for a series of erosion/re-deposition simulation studies performed for the ITER FW panels, dedicated experiments have been performed on the EAST tokamak using a specially designed, instrumented test limiter acting as a proxy for the FW panel geometry. Carbon coated molybdenum plates forming the limiter front surface were exposed tomore » the outer midplane boundary plasma of helium discharges using the new Material and Plasma Evaluation System (MAPES). Net erosion and deposition patterns are estimated using ion beam analysis to measure the carbon layer thickness variation across the surface after exposure. The highest erosion of about 0.8 µm is found near the midplane, where the surface is closest to the plasma separatrix. No net deposition above the measurement detection limit was found on the proxy wall element, even in shadowed regions. The measured 2D surface erosion distribution has been modelled with the 3D Monte Carlo code ERO, using the local plasma parameter measurements together with a diffusive transport assumption. In conclusion, excellent agreement between the experimentally observed net erosion and the modelled erosion profile has been obtained.« less

  9. Reduced model simulations of the scrape-off-layer heat-flux width and comparison with experiment

    DOE PAGES

    Myra, J. R.; Russell, D. A.; D’Ippolito, D. A.; ...

    2011-01-01

    Reduced model simulations of turbulence in the edge and scrape-off-layer (SOL) region of a spherical torus or tokamak plasma are employed to address the physics of the scrape-off-layer heat flux width. The simulation model is an electrostatic two-dimensional fluid turbulence model, applied in the plane perpendicular to the magnetic field at the outboard midplane of the torus. The model contains curvature-driven-interchange modes, sheath losses, and both perpendicular turbulent diffusive and convective (blob) transport. These transport processes compete with classical parallel transport to set the SOL width. Midplane SOL profiles of density, temperature and parallel heat flux are obtained from themore » simulation and compared with experimental results from the National Spherical Torus Experiment (NSTX) to study the scaling of the heat flux width with power and plasma current. It is concluded that midplane turbulence is the main contributor to the SOL heat flux width for the low power H-mode discharges studied, while additional physics is required to explain the plasma current scaling of the SOL heat flux width observed experimentally in higher power discharges. Intermittent separatrix spanning convective cells are found to be the main mechanism that sets the near-SOL width in the simulations. The roles of sheared flows and blob trapping vs. emission are discussed.« less

  10. Turbulent Simulations of Divertor Detachment Based On BOUT + + Framework

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xueqiao; Xia, Tianyang; Ye, Minyou

    2015-11-01

    China Fusion Engineering Testing Reactor is under conceptual design, acting as a bridge between ITER and DEMO. The detached divertor operation offers great promise for a reduction of heat flux onto divertor target plates for acceptable erosion. Therefore, a density scan is performed via an increase of D2 gas puffing rates in the range of 0 . 0 ~ 5 . 0 ×1023s-1 by using the B2-Eirene/SOLPS 5.0 code package to study the heat flux control and impurity screening property. As the density increases, it shows a gradually change of the divertor operation status, from low-recycling regime to high-recycling regime and finally to detachment. Significant radiation loss inside the confined plasma in the divertor region during detachment leads to strong parallel density and temperature gradients. Based on the SOLPS simulations, BOUT + + simulations will be presented to investigate the stability and turbulent transport under divertor plasma detachment, particularly the strong parallel gradient driven instabilities and enhanced plasma turbulence to spread heat flux over larger surface areas. The correlation between outer mid-plane and divertor turbulence and the related transport will be analyzed. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675075.

  11. Commissioning and experimental validation of SST-1 plasma facing components

    NASA Astrophysics Data System (ADS)

    Paravastu, Yuvakiran; Raval, Dilip; Khan, Ziauddin; Patel, Hitesh; Biswas, Prabal; Parekh, Tejas; George, Siju; Santra, Prosenjit; Ramesh, Gattu; ArunPrakash, A.; Thankey, Prashant; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; Jaiswal, Snehal; Chauhan, Pradeep; Pradhan, Subrata

    2017-04-01

    Plasma facing components of SST-1 are designed to withstand an input heat load of 1.0 MW/m2. They protect vacuum vessel, auxiliary heating source i.e. RF antennas, NBI and other in-vessel diagnostic from the plasma particles and high radiative heat loads. PFC’s are positioned symmetric to mid-plane to accommodate with circular, single and double null configuration. Graphite is used as plasma facing material, back made of copper alloy and SS cooling/baking tubes are brazed on copper alloy back plates for efficient heat removal of incident heat flux. Benchmarking of PFC assembly was first carried out in prototype vacuum vessel of SST-1 to develop understanding and methodology of co-ordinate measurements. Based on such hands-on-experience, the final assembly of PFC’s in vacuum vessel of SST-1 was carried out. Initially, PFC’s are to be baked at 250 °C for wall conditioning followed with cooling for heat removal of incident heat flux during long pulse plasma operation. For this purpose, the supply and return headers are designed and installed inside the vacuum vessel in such a way that it will cater water as well as hot nitrogen gas depending up on the cycle. This paper will discuss the successful installation of PFC’s and its plasma operation respecting all design criteria.

  12. Midplane Ices in the Embedded Phase

    NASA Astrophysics Data System (ADS)

    Drozdovskaya, Maria; Walsh, Catherine; van Dishoeck, Ewine

    2015-08-01

    Icy grains in the midplanes of the youngest protoplanetary disks are the building blocks of protoplanets and protocometary bodies. Our Solar System shows significant chemical diversity. The chemical content is thought to be either inherited from the initial prestellar cloud, out of which our Solar System formed, or formed in-situ during the subsequent evolution of the protoplanetary disk. In this poster, the chemical analysis of midplanes in the context of globally evolving and collapsing star-forming systems will be presented. Previous studies compared various solid species relative to water ice in comets and towards young protostars [e.g., 1, 2, 3]. It remains unclear whether the overlap in abundances is just a coincidence or whether the origins of cometary ices are that of a prestellar cloud. For this work, an axisymmentric 2D semi-analytic collapse model [4], wavelength-dependent radiative transfer calculations with RADMC3D [5] and a comprehensive gas-grain chemical network [6] are used to pin down ice abundances in a midplane. The methanol content of protoplanetary disks will be presented [7], but also that of other main ice components, such as water, carbon monoxide and carbon dioxide [8]. Our models can be used to probe the validity of theories on the origin of chemical complexity and also to access the degree of processing upon inheritance into the forming disk.[1] Öberg K. I., Boogert A. C. A., Pontoppidan K. M., van den Broek S., van Dishoeck E. F., Bottinelli S., Blake G. A., Evans, II N. J., 2011, ApJ, 740, 109[2] Mumma M. J., Charnley S. B., 2011, ARA&A, 49, 471[3] Bockelée-Morvan D. et al., 2000, A&A, 353, 1101[4] Visser R., van Dishoeck E. F., Doty S. D., Dullemond C. P., 2009, A&A, 495, 881[5] Dullemond C. P., Dominik C., 2004, A&A, 417, 159[6] Walsh C., Millar T. J., Nomura H., Herbst E., Widicus Weaver S., Aikawa Y., Laas J. C., Vasyunin A. I., 2014, A&A, 563, A33[7] Drozdovskaya M. N., Walsh C., Visser R., Harsono D., van Dishoeck E. F., 2014, MNRAS, 445, 913[8] Drozdovskaya et al., in prep.

  13. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  14. Effects of disc mid-plane evolution on CO snowline location

    NASA Astrophysics Data System (ADS)

    Panić, O.; Min, M.

    2017-05-01

    Temperature changes in the planet forming disc mid-planes carry important physico-chemical consequences, such as the effect on the locations of the condensation fronts of molecules - the snowlines. Snowlines impose major chemical gradients and possibly foster grain growth. The aim of this paper is to understand how disc mid-plane temperature changes with gas and dust evolution, and identify trends that may influence planet formation or allow to constrain disc evolution observationally. We calculate disc temperature, hydrostatic equilibrium and dust settling in a mutually consistent way from a grid of disc models at different stages of gas loss, grain growth and hole opening. We find that the CO snowline location depends very strongly on disc properties. The CO snowline location migrates closer to the star for increasing degrees of gas dispersal and dust growth. Around a typical A-type star, the snowline can be anywhere between several tens and a few hundred au, depending on the disc properties such as gas mass and grain size. In fact, gas loss is as efficient as dust evolution in settling discs, and flat discs may be gas-poor counterparts of flared discs. Our results, in the context of different pre-main-sequence evolution of the luminosity in low- and intermediate-mass stars suggest very different thermal (and hence chemical) histories in these two types of discs. Discs of T Tauri stars settle and cool down, while discs of Herbig Ae stars may remain rather warm throughout the pre-main sequence.

  15. The ionizing effect of low-energy cosmic rays from a class II object on its protoplanetary disc

    NASA Astrophysics Data System (ADS)

    Rodgers-Lee, D.; Taylor, A. M.; Ray, T. P.; Downes, T. P.

    2017-11-01

    We investigate the ionizing effect of low-energy cosmic rays (CRs) from a young star on its protoplanetary disc (PPD). We consider specifically the effect of ∼3 GeV protons injected at the inner edge of the PPD. An increase in the ionization fraction as a result of these CRs could allow the magnetorotational instability to operate in otherwise magnetically dead regions of the disc. For the typical values assumed we find an ionization rate of ζCR ∼ 10-17 s-1 at 1 au. The transport equation is solved by treating the propagation of the CRs as diffusive. We find for increasing diffusion coefficients the CRs penetrate further in the PPD, while varying the mass density profile of the disc is found to have little effect. We investigate the effect of an energy spectrum of CRs. The influence of a disc wind is examined by including an advective term. For advective wind speeds between 1 and 100 km s-1 diffusion dominates at all radii considered here (out to 10 au) for reasonable diffusion coefficients. Overall, we find that low-energy CRs can significantly ionize the mid-plane of PPDs out to ∼1 au. By increasing the luminosity or energy of the CRs, within plausible limits, their radial influence could increase to ∼2 au at the mid-plane but it remains challenging to significantly ionize the mid-plane further out.

  16. Preliminary design of a tangentially viewing imaging bolometer for NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, B. J., E-mail: peterson@LHD.nifs.ac.jp; Mukai, K.; SOKENDAI

    2016-11-15

    The infrared imaging video bolometer (IRVB) measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 × 480 (1280 × 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm × 9 cm × 2 μm Pt foil. The foil is divided into 40 × 40 (64 × 64) IRVB channels. This gives a spatial resolution of 3.4 (2.2) cm on the machine mid-plane. The noise equivalent power density of the IRVB is given as 113 (46) μW/cm{sup 2} for a timemore » resolution of 33 (20) ms. Synthetic images derived from Scrape Off Layer Plasma Simulation data using the IRVB geometry show peak signal levels ranging from ∼0.8 to ∼80 (∼0.36 to ∼26) mW/cm{sup 2}.« less

  17. Preliminary design of a tangentially viewing imaging bolometer for NSTX-U

    DOE PAGES

    Peterson, B. J.; Sano, R.; Reinke, M. L.; ...

    2016-08-03

    The InfraRed imaging Video Bolometer measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 x 480 (1280 x 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm x 9 cm x 2 μm Pt foil. The foil is divided into 40 x 40 (64 x 64) IRVB channels. This gives a spatial resolution of 3.4 (2.2) cm on the machine mid-plane. The noise equivalent power density of the IRVB is given as 113 (46) μW/cm 2 for a time resolutionmore » of 33 (20) ms. Synthetic images derived from SOLPS data using the IRVB geometry show peak signal levels ranging from ~0.8 - ~80 (~0.36 - ~26) mW/cm 2.« less

  18. Compact "diode-based" multi-energy soft x-ray diagnostic for NSTX.

    PubMed

    Tritz, K; Clayton, D J; Stutman, D; Finkenthal, M

    2012-10-01

    A novel and compact, diode-based, multi-energy soft x-ray (ME-SXR) diagnostic has been developed for the National Spherical Tokamak Experiment. The new edge ME-SXR system tested on NSTX consists of a set of vertically stacked diode arrays, each viewing the plasma tangentially through independent pinholes and filters providing an overlapping view of the plasma midplane which allows simultaneous SXR measurements with coarse sub-sampling of the x-ray spectrum. Using computed x-ray spectral emission data, combinations of filters can provide fast (>10 kHz) measurements of changes in the electron temperature and density profiles providing a method to "fill-in" the gaps of the multi-point Thomson scattering system.

  19. PIV measurements in a compact return diffuser under multi-conditions

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Lu, W. G.; Shi, W. D.

    2013-12-01

    Due to the complex three-dimensional geometries of impellers and diffusers, their design is a delicate and difficult task. Slight change could lead to significant changes in hydraulic performance and internal flow structure. Conversely, the grasp of the pump's internal flow pattern could benefit from pump design improvement. The internal flow fields in a compact return diffuser have been investigated experimentally under multi-conditions. A special Particle Image Velocimetry (PIV) test rig is designed, and the two-dimensional PIV measurements are successfully conducted in the diffuser mid-plane to capture the complex flow patterns. The analysis of the obtained results has been focused on the flow structure in diffuser, especially under part-load conditions. The vortex and recirculation flow patterns in diffuser are captured and analysed accordingly. Strong flow separation and back flow appeared at the part-load flow rates. Under the design and over-load conditions, the flow fields in diffuser are uniform, and the flow separation and back flow appear at the part-load flow rates, strong back flow is captured at one diffuser passage under 0.2Qdes.

  20. 3D shape analysis of the brain's third ventricle using a midplane encoded symmetric template model

    PubMed Central

    Kim, Jaeil; Valdés Hernández, Maria del C.; Royle, Natalie A.; Maniega, Susana Muñoz; Aribisala, Benjamin S.; Gow, Alan J.; Bastin, Mark E.; Deary, Ian J.; Wardlaw, Joanna M.; Park, Jinah

    2016-01-01

    Background Structural changes of the brain's third ventricle have been acknowledged as an indicative measure of the brain atrophy progression in neurodegenerative and endocrinal diseases. To investigate the ventricular enlargement in relation to the atrophy of the surrounding structures, shape analysis is a promising approach. However, there are hurdles in modeling the third ventricle shape. First, it has topological variations across individuals due to the inter-thalamic adhesion. In addition, as an interhemispheric structure, it needs to be aligned to the midsagittal plane to assess its asymmetric and regional deformation. Method To address these issues, we propose a model-based shape assessment. Our template model of the third ventricle consists of a midplane and a symmetric mesh of generic shape. By mapping the template's midplane to the individuals’ brain midsagittal plane, we align the symmetric mesh on the midline of the brain before quantifying the third ventricle shape. To build the vertex-wise correspondence between the individual third ventricle and the template mesh, we employ a minimal-distortion surface deformation framework. In addition, to account for topological variations, we implement geometric constraints guiding the template mesh to have zero width where the inter-thalamic adhesion passes through, preventing vertices crossing between left and right walls of the third ventricle. The individual shapes are compared using a vertex-wise deformity from the symmetric template. Results Experiments on imaging and demographic data from a study of aging showed that our model was sensitive in assessing morphological differences between individuals in relation to brain volume (i.e. proxy for general brain atrophy), gender and the fluid intelligence at age 72. It also revealed that the proposed method can detect the regional and asymmetrical deformation unlike the conventional measures: volume (median 1.95 ml, IQR 0.96 ml) and width of the third ventricle. Similarity measures between binary masks and the shape model showed that the latter reconstructed shape details with high accuracy (Dice coefficient ≥0.9, mean distance 0.5 mm and Hausdorff distance 2.7 mm). Conclusions We have demonstrated that our approach is suitable to morphometrical analyses of the third ventricle, providing high accuracy and inter-subject consistency in the shape quantification. This shape modeling method with geometric constraints based on anatomical landmarks could be extended to other brain structures which require a consistent measurement basis in the morphometry. PMID:27084320

  1. Dead Zone Accretion Flows in Protostellar Disks

    NASA Technical Reports Server (NTRS)

    Turner, Neal; Sano, T.

    2008-01-01

    Planets form inside protostellar disks in a dead zone where the electrical resistivity of the gas is too high for magnetic forces to drive turbulence. We show that much of the dead zone nevertheless is active and flows toward the star while smooth, large-scale magnetic fields transfer the orbital angular momentum radially outward. Stellar X-ray and radionuclide ionization sustain a weak coupling of the dead zone gas to the magnetic fields, despite the rapid recombination of free charges on dust grains. Net radial magnetic fields are generated in the magnetorotational turbulence in the electrically conducting top and bottom surface layers of the disk, and reach the midplane by ohmic diffusion. A toroidal component to the fields is produced near the midplane by the orbital shear. The process is similar to the magnetization of the solar tachocline. The result is a laminar, magnetically driven accretion flow in the region where the planets form.

  2. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of the NASA Lewis Bumpy Torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power-law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of the potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied include the type of gas, the polarity of the midplane electrode rings (and hence the direction of the radial electric field), the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  3. DOUBLE code simulations of emissivities of fast neutrals for different plasma observation view-lines of neutral particle analyzers on the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Mitosinkova, K.; Tomes, M.; Stockel, J.; Varju, J.; Stano, M.

    2018-03-01

    Neutral particle analyzers (NPA) measure line-integrated energy spectra of fast neutral atoms escaping the tokamak plasma, which are a product of charge-exchange (CX) collisions of plasma ions with background neutrals. They can observe variations in the ion temperature T i of non-thermal fast ions created by additional plasma heating. However, the plasma column which a fast atom has to pass through must be sufficiently short in comparison with the fast atom’s mean-free-path. Tokamak COMPASS is currently equipped with one NPA installed at a tangential mid-plane port. This orientation is optimal for observing non-thermal fast ions. However, in this configuration the signal at energies useful for T i derivation is lost in noise due to the too long fast atoms’ trajectories. Thus, a second NPA is planned to be connected for the purpose of measuring T i. We analyzed different possible view-lines (perpendicular mid-plane, tangential mid-plane, and top view) for the second NPA using the DOUBLE Monte-Carlo code and compared the results with the performance of the present NPA with tangential orientation. The DOUBLE code provides fast-atoms’ emissivity functions along the NPA view-line. The position of the median of these emissivity functions is related to the location from where the measured signal originates. Further, we compared the difference between the real central T i used as a DOUBLE code input and the T iCX derived from the exponential decay of simulated energy spectra. The advantages and disadvantages of each NPA location are discussed.

  4. Interaction of Particles and Turbulence in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Dacles-Mariani, Jennifer S.; Dobrovolskis, A. R.; Cuzzi, J. N.; DeVincenzi, Donald L. (Technical Monitor)

    1996-01-01

    The most widely accepted theories for the formation of the Solar system claim that small solid particles continue to settle into a thin layer at the midplane of the Solar nebula until it becomes gravitationally unstable and collapses directly into km-sized planetesimals. This scenario has been challenged on at least two grounds: (1) due to turbulence, the particles may not settle into a thin layer, and (2) a thin layer may not be unstable. The Solar nebula contains at least three sources of turbulence: radial shear, vertical shear, and thermal convection. The first of these is small and probably negligible, while the last is poorly understood. However, the second contribution is likely to be substantial. The particle-rich layer rotates at nearly the Keplerian speed, but the surrounding gaseous nebula rotates slower because it is partly supported by pressure. The resulting shear generates a turbulent boundary layer which stirs the particles away from the midplane, and forestalls gravitational instability. Our previous work used a 'zero-equation' (Prandtl) model to predict the intensity of shear-generated turbulence, and enabled us to demonstrate numerically that settling of particles to the midplane is self-limiting. However, we neglected the possibility that mass loading by particles might damp the turbulence. To explore this, we have developed a more sophisticated 'one-equation' model which incorporates local generation, transport, and dissipation of turbulence, as well as explicit damping of turbulence by particles. We also include a background level of global turbulence to represent other sources. Our results indicate that damping flattens the distribution of particles somewhat, but that background turbulence thickens the particle layer.

  5. Energetic ion loss detector on the Alcator C-Mod tokamak.

    PubMed

    Pace, D C; Granetz, R S; Vieira, R; Bader, A; Bosco, J; Darrow, D S; Fiore, C; Irby, J; Parker, R R; Parkin, W; Reinke, M L; Terry, J L; Wolfe, S M; Wukitch, S J; Zweben, S J

    2012-07-01

    A scintillator-based energetic ion loss detector has been successfully commissioned on the Alcator C-Mod tokamak. This probe is located just below the outer midplane, where it captures ions of energies up to 2 MeV resulting from ion cyclotron resonance heating. After passing through a collimating aperture, ions impact different regions of the scintillator according to their gyroradius (energy) and pitch angle. The probe geometry and installation location are determined based on modeling of expected lost ions. The resulting probe is compact and resembles a standard plasma facing tile. Four separate fiber optic cables view different regions of the scintillator to provide phase space resolution. Evolving loss levels are measured during ion cyclotron resonance heating, including variation dependent upon individual antennae.

  6. A Radial Age Gradient in the Geometrically Thick Disk of the Milky Way

    NASA Astrophysics Data System (ADS)

    Martig, Marie; Minchev, Ivan; Ness, Melissa; Fouesneau, Morgan; Rix, Hans-Walter

    2016-11-01

    In the Milky Way, the thick disk can be defined using individual stellar abundances, kinematics, or age, or geometrically, as stars high above the midplane. In nearby galaxies, where only a geometric definition can be used, thick disks appear to have large radial scale lengths, and their red colors suggest that they are uniformly old. The Milky Way’s geometrically thick disk is also radially extended, but it is far from chemically uniform: α-enhanced stars are confined within the inner Galaxy. In simulated galaxies, where old stars are centrally concentrated, geometrically thick disks are radially extended, too. Younger stellar populations flare in the simulated disks’ outer regions, bringing those stars high above the midplane. The resulting geometrically thick disks therefore show a radial age gradient, from old in their central regions to younger in their outskirts. Based on our age estimates for a large sample of giant stars in the APOGEE survey, we can now test this scenario for the Milky Way. We find that the geometrically defined thick disk in the Milky Way has indeed a strong radial age gradient: the median age for red clump stars goes from ∼9 Gyr in the inner disk to 5 Gyr in the outer disk. We propose that at least some nearby galaxies could also have thick disks that are not uniformly old, and that geometrically thick disks might be complex structures resulting from different formation mechanisms in their inner and outer parts.

  7. Dark matter as a trigger for periodic comet impacts.

    PubMed

    Randall, Lisa; Reece, Matthew

    2014-04-25

    Although statistical evidence is not overwhelming, possible support for an approximately 35×106  yr periodicity in the crater record on Earth could indicate a nonrandom underlying enhancement of meteorite impacts at regular intervals. A proposed explanation in terms of tidal effects on Oort cloud comet perturbations as the Solar System passes through the galactic midplane is hampered by lack of an underlying cause for sufficiently enhanced gravitational effects over a sufficiently short time interval and by the time frame between such possible enhancements. We show that a smooth dark disk in the galactic midplane would address both these issues and create a periodic enhancement of the sort that has potentially been observed. Such a disk is motivated by a novel dark matter component with dissipative cooling that we considered in earlier work. We show how to evaluate the statistical evidence for periodicity by input of appropriate measured priors from the galactic model, justifying or ruling out periodic cratering with more confidence than by evaluating the data without an underlying model. We find that, marginalizing over astrophysical uncertainties, the likelihood ratio for such a model relative to one with a constant cratering rate is 3.0, which moderately favors the dark disk model. Our analysis furthermore yields a posterior distribution that, based on current crater data, singles out a dark matter disk surface density of approximately 10M⊙/pc2. The geological record thereby motivates a particular model of dark matter that will be probed in the near future.

  8. THE MILKY WAY PROJECT: LEVERAGING CITIZEN SCIENCE AND MACHINE LEARNING TO DETECT INTERSTELLAR BUBBLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaumont, Christopher N.; Williams, Jonathan P.; Goodman, Alyssa A.

    We present Brut, an algorithm to identify bubbles in infrared images of the Galactic midplane. Brut is based on the Random Forest algorithm, and uses bubbles identified by >35,000 citizen scientists from the Milky Way Project to discover the identifying characteristics of bubbles in images from the Spitzer Space Telescope. We demonstrate that Brut's ability to identify bubbles is comparable to expert astronomers. We use Brut to re-assess the bubbles in the Milky Way Project catalog, and find that 10%-30% of the objects in this catalog are non-bubble interlopers. Relative to these interlopers, high-reliability bubbles are more confined to themore » mid-plane, and display a stronger excess of young stellar objects along and within bubble rims. Furthermore, Brut is able to discover bubbles missed by previous searches—particularly bubbles near bright sources which have low contrast relative to their surroundings. Brut demonstrates the synergies that exist between citizen scientists, professional scientists, and machine learning techniques. In cases where ''untrained' citizens can identify patterns that machines cannot detect without training, machine learning algorithms like Brut can use the output of citizen science projects as input training sets, offering tremendous opportunities to speed the pace of scientific discovery. A hybrid model of machine learning combined with crowdsourced training data from citizen scientists can not only classify large quantities of data, but also address the weakness of each approach if deployed alone.« less

  9. Supernovae driven turbulence in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Gent, Frederick A.

    2012-11-01

    I model the multi-phase interstellar medium (ISM) randomly heated and shocked by supernovae (SN), with gravity, differential rotation and other parameters we understand to be typical of the solar neighbourhood. The simulations are in a 3D domain extending horizontally 1x1 kpc^2 and vertically 2 kpc, symmetric about the galactic mid-plane. They routinely span gas number densities 10^{-5}-10^2 cm^{-3}, temperatures 10-10^8 K, speeds up to 10^3 km s^{-1} and Mach number up to 25. Radiative cooling is applied from two widely adopted parameterizations, and compared directly to assess the sensitivity of the results to cooling. There is strong evidence to describe the ISM as comprising well defined cold, warm and hot regions, typified by T 10^2 ; 10^4 and 10^6 K, which are statistically close to thermal and total pressure equilibrium. This result is not sensitive to the choice of parameters considered here. The distribution of the gas density within each can be robustly modelled as lognormal. Appropriate distinction is required between the properties of the gases in the supernova active mid-plane and the more homogeneous phases outside this region. The connection between the fractional volume of a phase and its various proxies is clarified. An exact relation is then derived between the fractional volume and the filling factors defined in terms of the volume and probabilistic averages. These results are discussed in both observational and computational contexts. The correlation scale of the random flows is calculated from the velocity autocorrelation function; it is of order 100 pc and tends to grow with distance from the mid-plane. The origin and structure of the magnetic fields in the ISM is also investigated in nonideal MHD simulations. A seed magnetic field, with volume average of roughly 4 nG, grows exponentially to reach a statistically steady state within 1.6 Gyr. Following Germano (1992), volume averaging is applied with a Gaussian kernel to separate magnetic field into a mean field and fluctuations. Such averaging does not satisfy all Reynolds rules, yet allows a formulation of mean-field theory. The mean field thus obtained varies in both space and time. Growth rates differ for the mean-field and fluctuating field and there is clear scale separation between the two elements, whose integral scales are about 0.7 kpc and 0.3 kpc, respectively. Analysis of the dependence of the dynamo on rotation, shear and SN rate is used to clarify its mean and fluctuating contributions. The resulting magnetic field is quadrupolar, symmetric about the mid-plane, with strong positive azimuthal and weak negative radial orientation. Contrary to conventional wisdom, the mean field strength increases away from the mid-plane, peaking outside the SN active region at |z| < 300 pc. The strength of the field is strongly dependent on density, and in particular the mean field is mainly organised in the warm gas, locally very strong in the cold gas, but almost absent in the hot gas. The field in the hot gas is weak and dominated by fluctuations.

  10. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.

    PubMed

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  11. The effect of tail stretching on the ionospheric accessibility of relativistic electron beam experiments

    NASA Astrophysics Data System (ADS)

    Willard, J.; Johnson, J.; Sanchez, E. R.; Kaganovich, I.; Greklek-McKeon, M.; Powis, T.

    2017-12-01

    New accelerator technologies have made it possible to install a lightweight electron beam accelerator onto small to medium satellites. Electron beams fired along the geomagnetic field would be able to carry energy flux into the ionosphere if they were fired into the loss cone, making these particles observable from the ground. Such an experiment would provide a way to accurately map field lines. One of the important challenges to utilizing this concept is understanding accessibility of these electrons to the ionosphere. While relativistic electron beams are generally more stable than lower energy beams, they are more sensitive to the effects of field-line curvature, which can significantly modify the loss cone [Porazik et al., 2014] making accessibility to the ionosphere sensitive to the launch angle with respect to the magnetic field. We examine the loss cone for 1 MeV electrons in a realistic magnetospheric geometry considering, in particular, the role of field-line stretching. To map the loss cone, we consider conservation of the first adiabatic invariant to second order in ρ/L using the asymptotic series derived by Gardner [Phys Fluids, 1966], which is valid on the midnight meridian. We investigate the loss cones for different magnetic field models controlled by a stretching parameter over the entire midnight meridian. We found that, because tail stretching increases field line curvature near the midplane but decreases curvature elsewhere, accessibility to the ionosphere is increased by tail stretching in regions above and below the midplane, although accessibility of particles passing through the midplane is reduced. This result implies that satellites armed with electron beam accelerators may be able to visibly affect the atmosphere from distances greater than previously anticipated.

  12. A coagulation-fragmentation model for the turbulent growth and destruction of preplanetesimals

    NASA Astrophysics Data System (ADS)

    Johansen, A.; Brauer, F.; Dullemond, C.; Klahr, H.; Henning, T.

    2008-08-01

    To treat the problem of growing protoplanetary disc solids across the meter barrier, we consider a very simplified two-component coagulation-fragmentation model that consists of macroscopic boulders and smaller dust grains, the latter being the result of catastrophic collisions between the boulders. Boulders in turn increase their radii by sweeping up the dust fragments. An analytical solution of the dynamical equations predicts that growth by coagulation-fragmentation can be efficient and allow agglomeration of 10-m-sized objects within the time-scale of the radial drift. These results are supported by computer simulations of the motion of boulders and fragments in 3-D time-dependent magnetorotational turbulence. However allowing the fragments to diffuse freely out of the sedimentary layer of boulders drastically reduces the density of both boulders and fragments in the mid-plane, and thus also the growth of the boulder radius. The reason is that the turbulent diffusion time-scale is so much shorter than the collisional time-scale that dust fragments leak out of the mid-plane layer before they can be swept up by the boulders there. Our conclusion that coagulation-fragmentation is not an efficient way to grow across the meter barrier in fully turbulent protoplanetary discs confirms recent results by Brauer, Dullemond, & Henning who solved the coagulation equation in a parameterised turbulence model with collisional fragmentation, cratering, radial drift, and a range of particle sizes. We find that a relatively small population of boulders in a sedimentary mid-plane layer can populate the entire vertical extent of the disc with small grains and that these grains are not first generation dust, but have been through several agglomeration-destruction cycles during the simulations.

  13. Modeling Self-subtraction in Angular Differential Imaging: Application to the HD 32297 Debris Disk

    NASA Astrophysics Data System (ADS)

    Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.; Kalas, Paul

    2014-01-01

    We present a new technique for forward-modeling self-subtraction of spatially extended emission in observations processed with angular differential imaging (ADI) algorithms. High-contrast direct imaging of circumstellar disks is limited by quasi-static speckle noise, and ADI is commonly used to suppress those speckles. However, the application of ADI can result in self-subtraction of the disk signal due to the disk's finite spatial extent. This signal attenuation varies with radial separation and biases measurements of the disk's surface brightness, thereby compromising inferences regarding the physical processes responsible for the dust distribution. To compensate for this attenuation, we forward model the disk structure and compute the form of the self-subtraction function at each separation. As a proof of concept, we apply our method to 1.6 and 2.2 μm Keck adaptive optics NIRC2 scattered-light observations of the HD 32297 debris disk reduced using a variant of the "locally optimized combination of images" algorithm. We are able to recover disk surface brightness that was otherwise lost to self-subtraction and produce simplified models of the brightness distribution as it appears with and without self-subtraction. From the latter models, we extract radial profiles for the disk's brightness, width, midplane position, and color that are unbiased by self-subtraction. Our analysis of these measurements indicates a break in the brightness profile power law at r ≈ 110 AU and a disk width that increases with separation from the star. We also verify disk curvature that displaces the midplane by up to 30 AU toward the northwest relative to a straight fiducial midplane.

  14. Local Burn-Up Effects in the NBSR Fuel Element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown N. R.; Hanson A.; Diamond, D.

    2013-01-31

    This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peakingmore » relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.« less

  15. Scanning retarding field analyzer for plasma profile measurements in the boundary of the Alcator C-Mod tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, D.; LaBombard, B.; Ochoukov, R.

    2013-03-15

    A new Retarding Field Analyzer (RFA) head has been created for the outer-midplane scanning probe system on the Alcator C-Mod tokamak. The new probe head contains back-to-back retarding field analyzers aligned with the local magnetic field. One faces 'upstream' into the field-aligned plasma flow and the other faces 'downstream' away from the flow. The RFA was created primarily to benchmark ion temperature measurements of an ion sensitive probe; it may also be used to interrogate electrons. However, its construction is robust enough to be used to measure ion and electron temperatures up to the last-closed flux surface in C-Mod. Amore » RFA probe of identical design has been attached to the side of a limiter to explore direct changes to the boundary plasma due to lower hybrid heating and current drive. Design of the high heat flux (>100 MW/m{sup 2}) handling probe and initial results are presented.« less

  16. Screening of high temperature adhesives for large area bonding

    NASA Technical Reports Server (NTRS)

    Stenersen, A. A.; Wykes, D. H.

    1980-01-01

    High temperature-resistant adhesive systems were screened for processability, mechanical and physical properties, operational capability at 589 K (600 F), and the ability to produce large area bonds of high quality in fabricating Space Shuttle components. The adhesives consisted primarily of polyimide systems, including FM34B-18, NR-150B2 (DuPont), PMR-15, LARC-13, LARC-160, Thermid 600, and AI-1130L (AMOCA). The processing studies included preparation of polyimide resins, fabrication of film adhesives, development of lay-up and cure procedures, fabrication of honeycomb sandwich panels, and fabrication of mid-plane bonded panels in joints up to 30.5 cm (12 in.) wide. The screening program included tests for tack and drape properties, reticulation and filleting characteristics, ability to produce void-free or low porosity bonds in mid-plane bonded panels, out-time stability, lap shear strength, climbing drum peel strength, and glass transition temperature (Tg). This paper describes the processing methods developed and the test results.

  17. A positive-definite form of bounce-averaged quasilinear velocity diffusion for the parallel inhomogeneity in a tokamak

    NASA Astrophysics Data System (ADS)

    Lee, Jungpyo; Smithe, David; Wright, John; Bonoli, Paul

    2018-02-01

    In this paper, the analytical form of the quasilinear diffusion coefficients is modified from the Kennel-Engelmann diffusion coefficients to guarantee the positive definiteness of its bounce average in a toroidal geometry. By evaluating the parallel inhomogeneity of plasmas and magnetic fields in the trajectory integral, we can ensure the positive definiteness and help illuminate some non-resonant toroidal effects in the quasilinear diffusion. When the correlation length of the plasma-wave interaction is comparable to the magnetic field variation length, the variation becomes important and the parabolic variation at the outer-midplane, the inner-midplane, and trapping tips can be evaluated by Airy functions. The new form allows the coefficients to include both resonant and non-resonant contributions, and the correlations between the consecutive resonances and in many poloidal periods. The positive-definite form is implemented in a wave code TORIC and we present an example for ITER using this form.

  18. Comparison of the numerical modelling and experimental measurements of DIII-D separatrix displacements during H-modes with resonant magnetic perturbations

    DOE PAGES

    Orlov, Dmitry M.; Moyer, Richard A.; Evans, Todd E.; ...

    2014-08-15

    Numerical modeling of the plasma boundary position and its displacement due to external magnetic perturbations in DIII-D low-collisionality H-mode discharges is presented. The results of the vacuum model are compared to the experimental measurements for boundary displacements including Thomson scattering electron temperature T e, charge exchange recombination spectroscopy, beam emission spectroscopy, soft x-ray, and divertor Langmuir probe measurements. Magnetically perturbed discharges with toroidal mode number n=2 and n=3 are studied. It is shown that the vacuum model predictions agree well with the measurements above and below the midplane, and disagree at the outer midplane in discharges where significant kink amplificationmore » is present. Lastly, the role of the plasma response is studied using the two-fluid MHD code M3D-C 1, and the results are compared to the vacuum model showing that the plasma response model underestimates the boundary displacements.« less

  19. Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high performance NSTX H-mode discharges.

    DOE PAGES

    Maingi, R.; Osborne, T. H.; Bell, M. G.; ...

    2014-11-04

    In this paper, the effects of a pre-discharge lithium evaporation variation on highly shaped discharges in the National Spherical Torus Experiment (NSTX) are documented. Lithium wall conditioning (‘dose’) was routinely applied onto graphite plasma facing components between discharges in NSTX, partly to reduce recycling. Reduced D α emission from the lower and upper divertor and center stack was observed, as well as reduced midplane neutral pressure; the magnitude of reduction increased with the pre-discharge lithium dose. Improved energy confinement, both raw τ E and H-factor normalized to scalings, with increasing lithium dose was also observed. At the highest doses, wemore » also observed elimination of edge-localized modes. The midplane edge plasma profiles were dramatically altered, comparable to lithium dose scans at lower shaping, where the strike point was farther from the lithium deposition centroid. As a result, this indicates that the benefits of lithium conditioning should apply to the highly shaped plasmas planned in NSTX-U.« less

  20. Ionization Chemistry and Role of Grains on Non-ideal MHD Effects in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Bai, Xue-Ning; Oberg, Karin I.

    2015-01-01

    Ionization in protoplanetary disks (PPDs) is one of the key elements for understanding disk chemistry. It also determines the coupling between gas and magnetic fields hence strongly affect PPD gas dynamics. We study the ionization chemistry in the presence of grains in the midplane region of PPDs and its impact on gas conductivity reflected in non-ideal MHD effects including Ohmic resistivity, Hall effect and ambipolar diffusion. We first develop a reduced chemical reaction network from the UMIST database. The reduced network contains much smaller number of species and reactions while yields reliable estimates of the disk ionization level compared with the full network. We further show that grains are likely the dominant charge carrier in the midplane regions of the inner disk, which significantly affects the gas conductivity. In particular, ambipolar diffusion is strongly reduced and the Hall coefficient changes sign in the presence of strong magnetic field. The latter provides a natural mechanism to the saturation of the Hall-shear instability.

  1. Few Skewed Results from IOTA Interferometer YSO Disk Survey

    NASA Astrophysics Data System (ADS)

    Monnier, J. D.; Millan-Gabet, R.; Berger, J.-P.; Pedretti, E.; Traub, W.; Schloerb, F. P.

    2005-12-01

    The 3-telescope IOTA interferometer is capable of measuring closure phases for dozens of Herbig Ae/Be stars in the near-infrared. The closure phase unambiguously identifies deviations from centro-symmetry (i.e., skew) in the brightness distribution, at the scale of 4 milliarcseconds (sub-AU physical scales) for our work. Indeed, hot dust emission from the inner circumstellar accretion disk is expected to be skewed for (generic) flared disks viewed at intermediate inclination angles, as has been observed for LkHa 101. Surprisingly, we find very little evidence for skewed disk emission in our IOTA3 sample, setting strong constraints on the geometry of the inner disk. In particular, we rule out the currently-popular model of a VERTICAL hot inner wall of dust at the sublimation radius. Instead, our data is more consistent with a curved inner wall that bends away from the midplane as might be expected from the pressure-dependence of dust sublimation or limited absorption of stellar luminosity in the disk midplane by gas.

  2. Dust settling in magnetorotationally driven turbulent discs - I. Numerical methods and evidence for a vigorous streaming instability

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Tilley, David A.; Rettig, Terrence; Brittain, Sean D.

    2009-07-01

    In this paper, we have used the RIEMANN code for computational astrophysics to study the interaction of a realistic distribution of dust grains with gas at specific radial locations in a vertically stratified protostellar accretion disc. The disc was modelled to have the density and temperature of a minimum mass solar nebula, and shearing box simulations at radii of 0.3 and 10 au are reported here. The disc was driven to a fully developed turbulence via the magnetorotational instability (MRI). The simulations span three gas scaleheights about the disc's midplane. We find that the inclusion of standard dust-to-gas ratios does not have any significant effect on the MRI even when the dust sediments to the midplane of the accretion disc. The density distribution of the dust of all sizes reached a Gaussian profile within two scaleheights of the disc's midplane. The vertical scaleheights of these Gaussian profiles are shown to be proportional to the reciprocal of the square root of the dust radius when large spherical dust grains are considered. This result is consistent with theoretical expectation. The largest two families of dust in one of our simulations show a strong tendency to settle to the midplane of the accretion disc. The large dust tends to organize itself into elongated clumps of high density. The dynamics of these clumps is shown to be consistent with a streaming instability. The streaming instability is seen to be very vigorous and persistent once it forms. Each stream of high-density dust displays a reduced rms velocity dispersion. The velocity directions within the streams are also aligned relative to the mean shear, providing further evidence that we are witnessing a streaming instability. The densest clumpings of large dust are shown to form where the streams intersect. We have also shown that the mean free path and collision time for dust that participates in the streaming instability are reduced by almost two orders of magnitude relative to the average mean free paths and collision times. The rms velocities between the grains also need to fall below a minimum threshold in order for the grains to stick and we show that a small amount of the large dust in our 10 au simulation should have a propensity for grain coalescence. The results of our simulations are likely to be useful for those who model spectral energy distributions of protostellar discs and also for those who model dust coagulation and growth.

  3. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal

    DOE PAGES

    Grierson, B. A.; Burrell, K. H.; Chrystal, C.; ...

    2016-09-12

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. Furthermore, the unique combination of experimentally measuredmore » main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.« less

  4. Penetration of filamentary structures in the x-point region of spherical tokamaks

    NASA Astrophysics Data System (ADS)

    Baver, D. A.; Myra, J. R.; Scotti, F.; Zweben, S. J.; Militello, F.; Walkden, N.

    2017-10-01

    ArbiTER is a flexible eigenvalue code designed for plasma physics applications. It is used here to gain insight into the spatial dependence of filamentary structures in the scrape-off layer of spherical tokamaks. In particular, observations on MAST reveal the presence of a quiescent x-point region. Observations in NSTX similarly reveal a reduction in divertor fluctuations near the separatrix and a loss of midplane correlation. We will report on the penetration of filamentary structures into the vicinity of the x-point, as well as growth rate trends, for a variety of profiles and toroidal mode numbers. This will determine whether linear properties of these structures can explain experimental observations. Work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-02ER54678.

  5. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 Fourth Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Fifield, Leonard S.; Mathur, Raj N.

    2014-09-30

    During the last quarter of FY 2014, the following technical progress has been made toward project milestones: 1) Autodesk, Inc. (Autodesk) has implemented a new fiber length distribution (FLD) model based on an unbreakable length assumption with Reduced Order Modeling (ROM) by the Proper Orthogonal Decomposition (POD) approach in the mid-plane, dual-domain and 3D solvers. 2) Autodesk improved the ASMI 3D solver for fiber orientation prediction using the anisotropic rotary diffusion (ARD) – reduced strain closure (RSC) model. 3) Autodesk received consultant services from Prof. C.L. Tucker at the University of Illinois on numerical simulation of fiber orientation and fibermore » length. 4) PlastiComp, Inc. (PlastiComp) suggested to Purdue University a procedure for fiber separation using an inert-gas atmosphere in the burn-off furnace. 5) Purdue University (Purdue) hosted a face-to-face project review meeting at Purdue University on August 6-7, 2014. 6) Purdue conducted fiber orientation measurements for 3 PlastiComp plaques: fast-fill 30wt% LCF/PP edged-gated, slow-fill 50wt% LCF/PP edge-gated, and slow-fill 50wt% LCF/PP center-gated plaques, and delivered the orientation data for these plaques at the selected locations (named A, B, and C) to PNNL. 7) PNNL conducted ASMI mid-plane analyses for the above PlastiComp plaques and compared the predicted fiber orientations with the measured data provided by Purdue at Locations A, B, and C on these plaques. 8) PNNL planned the project review meeting (August 6-7, 2014) with Purdue. 9) PNNL performed ASMI analyses for the Toyota complex parts with and without ribs, having different wall thicknesses, and using the PlastiComp 50wt% LCF/PP, 50wt% LCF/PA66, 30wt% LCF/PP, and 30wt% LCF/PA66 materials to provide guidance for tool design and modifications needed for molding these parts. 10) Magna Exteriors and Interiors Corp. (Magna) molded plaques from the 50% LCF/PP and 50% LCF/PA66 materials received from Plasticomp in order to extract machine purgings (purge materials) from Magna’s 200-Ton Injection Molding machine targeted to mold the complex part. 11) Toyota and Magna discussed with PNNL tool modification for molding the complex part.« less

  6. Analytical investigation of the hygrothermal effects and parametric study of the Edge Crack Torsion (ECT) mode 3 test lay-ups

    NASA Technical Reports Server (NTRS)

    Li, Jian; Obrien, T. Kevin

    1995-01-01

    A shear deformation theory including residual thermal and moisture effects is developed for the analysis of either symmetric or unsymmetric laminates with mid-plane edge delamination under torsion loading. The theory is based on an assumed displacement field which includes shear deformation. The governing equations and boundary conditions are obtained from the principle of virtual work. The analysis of the (90/(+/- 45)(n)/(-/+ 45)(n)/90)(s) ECT mode 3 test lay-up indicates that there are no hygrothermal effects on the mode 3 strain energy release rate because the laminate, and both sublaminates above and below the delamination, are symmetric lay-ups. A further parametric study reveals that some other lay-ups can have negligible hygrothermal effects even when the sublaminates above and below the delamination are not symmetric about their own mid-planes. However, these lay-ups may suffer from distortion after the curing process. Another Interesting set of lay-ups investigated is a class of antisymmetric laminates with (+/-(theta/(theta -90)(2)/theta))(n) lay-ups. It is observed that when n takes on even numbers (2 and 4), both hygrothermal and mode 1 effects can be neglected. From this point of view, these lay-ups provide a way to determine the mode 3 toughness between two dissimilar layers. However, when n takes on odd numbers (1 and 3), both hygrothermal and mode 1 effects may be strong in these lay-ups. In particular, when theta equals 45 deg, the lay-ups are free from both hygrothermal and mode 1 effects irrespective of n.

  7. Analysis of the hygrothermal effects and parametric study of the edge crack torsion (ECT) mode 3 test layups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; O`Brien, T.K.

    1997-12-31

    A shear deformation theory including residual thermal and moisture effects is developed for the analysis of either symmetric or asymmetric laminates with midplane edge delamination under torsional loading. The theory is based on an assumed displacement field that includes shear deformation. The governing equations and boundary conditions are obtained from the principle of virtual work. The analysis of the [90/({+-}45){sub n}/({+-}45){sub n}/90]{sub s} edge crack torsion (ECT) Mode 3 test layup indicates that thee are no hygrothermal effects on the Mode 3 strain energy release rate because the laminate, and both sublaminates above and below the delamination, are symmetric layups.more » A further parametric study reveals that some other layups can have negligible hygrothermal effects even when the sublaminates above and below the delamination are not symmetric about their own midplanes. However, these layups may suffer from distortion after the curing process. Another interesting set of layups investigated is a class of antisymmetric laminates with [{+-}({theta}/{theta} {minus} 90){sub 2}/{theta}]{sub n} layups. It is observed that when n takes on even numbers (2 and 4), both hygrothermal and Mode 1 effects can be neglected. From this point of view, these layups provide a way to determine the Mode 3 toughness between two dissimilar layers. However, when n takes on odd numbers (1 and 3), both hygrothermal and Mode 1 effects may be strong in these layups. In particular, when {theta} equals 45{degree}, the layups are free from both hygrothermal and Mode 1 effects irrespective of n.« less

  8. Non-axisymmetric line-driven disc winds - I. Disc perturbations

    NASA Astrophysics Data System (ADS)

    Dyda, Sergei; Proga, Daniel

    2018-04-01

    We study mass outflows driven from accretion discs by radiation pressure due to spectral lines. To investigate non-axisymmetric effects, we use the ATHENA++ code and develop a new module to account for radiation pressure driving. In 2D, our new simulations are consistent with previous 2D axisymmetric solutions by Proga et al., who used the ZEUS 2D code. Specifically, we find that the disc winds are time dependent, characterized by a dense stream confined to ˜45° relative to the disc mid-plane and bounded on the polar side by a less dense, fast stream. In 3D, we introduce a vertical, ϕ-dependent, subsonic velocity perturbation in the disc mid-plane. The perturbation does not change the overall character of the solution but global outflow properties such as the mass, momentum, and kinetic energy fluxes are altered by up to 100 per cent. Non-axisymmetric density structures develop and persist mainly at the base of the wind. They are relatively small, and their densities can be a few times higher than the azimuthal average. The structure of the non-axisymmetric and axisymmetric solutions differ also in other ways. Perhaps most importantly from the observational point of view are the differences in the so-called clumping factors, that serve as a proxy for emissivity due to two body processes. In particular, the spatially averaged clumping factor over the entire fast stream, while it is of a comparable value in both solutions, it varies about 10 times faster in the non-axisymmetric case.

  9. Physically Based Failure Criteria for Transverse Matrix Cracking

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.

    2003-01-01

    A criterion for matrix failure of laminated composite plies in transverse tension and in-plane shear is developed by examining the mechanics of transverse matrix crack growth. Matrix cracks are assumed to initiate from manufacturing defects and can propagate within planes parallel to the fiber direction and normal to the ply mid-plane. Fracture mechanics models of cracks in unidirectional laminates, embedded plies and outer plies are developed to determine the onset and direction of propagation for unstable crack growth. The models for each ply configuration relate ply thickness and ply toughness to the corresponding in-situ ply strength. Calculated results for several materials are shown to correlate well with experimental results.

  10. On extended analytic theory of 2D ballooning modes in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Abdoul, Peshwaz; Dickinson, David; Roach, Colin; Wilson, Howard

    2016-10-01

    We have extended the leading order ballooning theory which typically yields more unstable isolated mode (IM) that usually sit on the outboard mid-plane, to higher order where less unstable general mode (GM) sits at a different poloidal location. Our analytic theory has revealed that any poloidal shift of the mode with respect to the outboard mid-plane - arising from the effect of profile variations, for example - is always accompanied by an asymmetry of the radial eigenmode structure. Hence, GMs have radial asymmetry. Our theory can have important consequences, especially for calculations that invoke quasilinear theory to model intrinsic rotation arising from Reynolds stress. This is very important in ITER for which external torques are small. In such theories it is the radial asymmetry in the global GM mode which can generate a Reynolds stress that could in principle contribute to the poloidal flow during the low to high (L-H) mode transition in tokamaks. I am also an associate member at the York Plasma Institute, University of York and teaching at the Physics Department, University of Sulaimani, Kurdistan Region, Iraq.

  11. The Blue Needle: A Highly Asymmetric Debris Disk Surrounding HD 15115

    NASA Astrophysics Data System (ADS)

    Kalas, P.; Graham, J. R.; Fitzgerald, M.

    2007-06-01

    Using the ACS coronagraph aboard the Hubble Space Telescope in the optical, and Keck adaptive optics in the near- infrared, we discovered an edge-on dust disk surrounding the F2V star HD 15115. HD 15115 is the most asymmetric debris disk imaged to date, with an eastward pointing midplane detected to ~315 AU radius, and a westward pointing midplane detected to >550 AU radius. The blue optical to near-infrared scattered light color relative to the star may indicate dust scattering properties similar to the AU Mic debris disk. The existence of a large debris disk surrounding HD 15115 is consistent with its proposed membership in the Beta Pic moving group, and the extreme asymmetry presents significant theoretical challenges. We hypothesize that the extreme asymmetries may be caused by dynamical perturbations from HIP 12545, another Beta Pic Moving Group member east of HD 15115, that shares a common proper motion vector, heliocentric distance, Galactic space velocity, and age. HD 15115 is a prime candidate for exoplanet detection via radial velocity and transit techniques.

  12. Delamination growth analysis in quasi-isotropic laminates under loads simulating low-velocity impact

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Elber, W.

    1984-01-01

    A geometrically nonlinear finite-element analysis has been developed to calculate the strain energy released by delaminating plates during impact loading. Only the first mode of deformation, which is equivalent to static deflection, was treated. Both the impact loading and delamination in the plate were assumed to be axisymmetric. The strain energy release rate in peeling, GI, and shear sliding, GII, modes were calculated using the fracture mechanics crack closure technique. Energy release rates for various delamination sizes and locations and for various plate configurations and materials were compared. The analysis indicated that shear sliding was the primary mode of delamination growth. The analysis also indicated that the midplane (maximum transverse shear stress plane) delamination was more critical and would grow first before any other delamination of the same size near the midplane region. The delamination growth rate was higher (neutrally stable) for a low toughness (brittle) matrix and slower (stable) for high toughness matrix. The energy release rate in the peeling mode, GI, for a near-surface delamination can be as high as 0.5GII, and can contribute significantly to the delamination growth.

  13. PSR J1740+1000: A Young Pulsar Well Out of the Galactic Plane

    NASA Technical Reports Server (NTRS)

    McLaughlin, M. A.; Arzoumanian, Z.; Cordes, J. M.; Backer, D. C.; Lommen, A. N.; Lorimer, D. R.; Zepka, A. F.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We discuss PSR J1740 + 1000, one of five pulsars recently discovered in a search of 470 deg at 430 MHz during the upgrade of the 305 m Arecibo Telescope. The period P = 154 ms and period derivative P = 2.1 x 10(exp -14) s s(exp -1) imply a spin-down age tau(sub s) = P/2P = 114 kyr that is smaller than 95% of all known pulsars. The youth and proximity of this pulsar make it a good candidate for detection at X-ray and gamma-ray energies. Its high Galactic latitude (b = 20.4 deg) suggests a very high velocity if the pulsar was born in the midplane of the Galaxy and if its kinematic age equals its spin-down age. Interstellar scintillations, however, suggest a much lower velocity. We discuss possible explanations for this discrepancy, taking into account (1) possible birth sites away from the midplane; (2) contributions from the unmeasured radial velocity; (3) a kinematic age different from the spin-down age; and (4) biasing of the scintillation velocity by enhanced scattering from the North Polar Spur.

  14. Structure of protoplanetary discs with magnetically driven winds

    NASA Astrophysics Data System (ADS)

    Khajenabi, Fazeleh; Shadmehri, Mohsen; Pessah, Martin E.; Martin, Rebecca G.

    2018-04-01

    We present a new set of analytical solutions to model the steady-state structure of a protoplanetary disc with a magnetically driven wind. Our model implements a parametrization of the stresses involved and the wind launching mechanism in terms of the plasma parameter at the disc midplane, as suggested by the results of recent, local magnetohydrodynamical simulations. When wind mass-loss is accounted for, we find that its rate significantly reduces the disc surface density, particularly in the inner disc region. We also find that models that include wind mass-loss lead to thinner dust layers. As an astrophysical application of our models, we address the case of HL Tau, whose disc exhibits a high accretion rate and efficient dust settling at its midplane. These two observational features are not easy to reconcile with conventional accretion disc theory, where the level of turbulence needed to explain the high accretion rate would prevent a thin dust layer. Our disc model that incorporates both mass-loss and angular momentum removal by a wind is able to account for HL Tau observational constraints concerning its high accretion rate and dust layer thinness.

  15. Toroidal ripple transport of beam ions in the mega-ampere spherical tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClements, K. G.; Hole, M. J.

    The transport of injected beam ions due to toroidal magnetic field ripple in the mega-ampere spherical tokamak (MAST) is quantified using a full orbit particle tracking code, with collisional slowing-down and pitch-angle scattering by electrons and bulk ions taken into account. It is shown that the level of ripple losses is generally rather low, although it depends sensitively on the major radius of the outer midplane plasma edge; for typical values of this parameter in MAST plasmas, the reduction in beam heating power due specifically to ripple transport is less than 1%, and the ripple contribution to beam ion diffusivitymore » is of the order of 0.1 m{sup 2} s{sup -1} or less. It is concluded that ripple effects make only a small contribution to anomalous transport rates that have been invoked to account for measured neutron rates and plasma stored energies in some MAST discharges. Delayed (non-prompt) losses are shown to occur close to the outer midplane, suggesting that banana-drift diffusion is the most likely cause of the ripple-induced losses.« less

  16. Dust modeling of the combined ALMA and SPHERE datasets of HD 163296. Is HD 163296 really a Meeus group II disk?

    NASA Astrophysics Data System (ADS)

    Muro-Arena, G. A.; Dominik, C.; Waters, L. B. F. M.; Min, M.; Klarmann, L.; Ginski, C.; Isella, A.; Benisty, M.; Pohl, A.; Garufi, A.; Hagelberg, J.; Langlois, M.; Menard, F.; Pinte, C.; Sezestre, E.; van der Plas, G.; Villenave, M.; Delboulbé, A.; Magnard, Y.; Möller-Nilsson, O.; Pragt, J.; Rabou, P.; Roelfsema, R.

    2018-06-01

    Context. Multiwavelength observations are indispensable in studying disk geometry and dust evolution processes in protoplanetary disks. Aims: We aim to construct a three-dimensional model of HD 163296 that is capable of reproducing simultaneously new observations of the disk surface in scattered light with the SPHERE instrument and thermal emission continuum observations of the disk midplane with ALMA. We want to determine why the spectral energy distribution of HD 163296 is intermediary between the otherwise well-separated group I and group II Herbig stars. Methods: The disk was modeled using the Monte Carlo radiative transfer code MCMax3D. The radial dust surface density profile was modeled after the ALMA observations, while the polarized scattered light observations were used to constrain the inclination of the inner disk component and turbulence and grain growth in the outer disk. Results: While three rings are observed in the disk midplane in millimeter thermal emission at 80, 124, and 200 AU, only the innermost of these is observed in polarized scattered light, indicating a lack of small dust grains on the surface of the outer disk. We provide two models that are capable of explaining this difference. The first model uses increased settling in the outer disk as a mechanism to bring the small dust grains on the surface of the disk closer to the midplane and into the shadow cast by the first ring. The second model uses depletion of the smallest dust grains in the outer disk as a mechanism for decreasing the optical depth at optical and near-infrared wavelengths. In the region outside the fragmentation-dominated regime, such depletion is expected from state-of-the-art dust evolution models. We studied the effect of creating an artificial inner cavity in our models, and conclude that HD 163296 might be a precursor to typical group I sources.

  17. Progress towards the Advanced Cryogenic Gas Stopper at NSCL

    NASA Astrophysics Data System (ADS)

    Lund, Kasey; Bollen, Georg; Villiari, Antonio; Lawton, Don; Morrissey, Dave; Otterson, Jack; Ringle, Ryan; Schwarz, Stefan; Sumithrarachchi, Chandana; Yurkon, John; Advanced Cryogenic Gas Stopper Design Team

    2016-09-01

    Beam stopping is the key to performing experiments with low-energy beams of rare isotopes produced by projectile fragmentation. Linear gas stoppers filled with helium have become reliable tools to accomplish this task. Further developments are underway to maximize efficiency and beam rate capability in order to increase scientific reach. Improvements include increasing extraction efficiency, lowering decay losses due to slow transport time, reducing molecular combination of the isotope of interest with background impurity gases, and minimizing space charge effects. The ACGS under construction at NSCL is designed to increase performance by overcoming some of the more common issues. The use of a 4-phase RF wire carpet to generate an electrical traveling wave speeds up the ion transport times. Cryogenic cooling of the helium gas chamber reduces molecular ion information. A geometry that puts the RF carpet in the mid-plane of the gas stopper alleviates space charge effects. Prototype testing of important ACGS components has been completed, specifically ion transport tests of the newly designed RF wire carpets. Transport efficiencies up to 95% were demonstrated as well as transport speeds up to 100 m/s. RC104100.7301.

  18. Characterization of an ultra-stable optical cavity developed in the industry for space applications

    NASA Astrophysics Data System (ADS)

    Argence, Berengere; Bize, S.; Lemonde, P.; Santarelli, G.; Prevost, E.; Le Goff, R.; Lévèque, T.

    2017-11-01

    We report the main characteristics and performances of the first - to our knowledge - prototype of an ultra-stable cavity designed and produced by industry with the aim of space missions. The cavity is a 100 mm long cylinder rigidly held at its midplane by an engineered mechanical interface providing an efficient decoupling from thermal and vibration perturbations. The spacer is made from Ultra-Low Expansion (ULE) glass and mirrors substrate from fused silica to reduce the thermal noise limit to 4x10-16. Finite element modeling was performed in order to minimize thermal and vibration sensitivities while getting a high fundamental resonance frequency. The system was designed to be transportable, acceleration tolerant (up to several g) and temperature range compliant [-33°C +73°C]. The axial vibration sensitivity was evaluated at 4x10-11 /(ms-2), while the transverse one is < 1x10-11 /(ms-2). The fractional frequency instability is < 1x10-15 from 0.1 to few seconds and reaches 5-6x10-16 at 1s.

  19. Investigating Delamination Migration in Composite Tape Laminates

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.; DeCarvalho, Nelson V.

    2014-01-01

    A modification to a recently developed test specimen designed to investigate migration of a delamination between neighboring ply interfaces in tape laminates is presented. The specimen is a cross-ply laminated beam consisting of 40 plies with a polytetrafluoroethylene insert spanning part way along its length. The insert is located between a lower 0-degree ply (specimen length direction) and a stack of four 90-degree plies (specimen width direction). The modification involved a stacking sequence that promotes stable delamination growth prior to migration, and included a relocation of the insert from the specimen midplane to the interface between plies 14 and 15. Specimens were clamped at both ends onto a rigid baseplate and loaded on their upper surface via a piano hinge assembly, resulting in a predominantly flexural loading condition. Tests were conducted with the load-application point positioned at various locations along a specimen's span. This position affected the sequence of damage events during a test.

  20. Experimental analysis on viscoelasticity-induced migration of RBCs using digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2016-11-01

    Migration of particles in viscoelastic fluids has recently received large attention, because the generated elastic forces in viscoelastic fluids give rise to a simple focusing pattern over a wide range of flow rates. In this study, the vertical focusing and alignment of rigid spherical particles, normal and hardened RBCs in a viscoelastic fluid were experimentally investigated by employing a digital in-line holographic microscopy (DIHM). By the elastic forces, the three different particles are pushed away from the walls and concentrated in the midplane of the rectangular microchannel. Furthermore, most of both RBCs maintain face-on orientation in the microchannel. The effects of deformability of RBC on the viscoelasticity-induced migration and orientation in the channel were also examined. In contrary to non-deformable particles, normal RBCs are dispersed as flow rate increases. In the region near side wall of the microchannel, normal RBCs have edge-on orientation with a large angle of inclination, compared to hardened RBCs. These findings have a strong potential in the design of microfluidic devices for deformability-based separation of cells in viscoelastic fluid flows and label-free diagnoses of certain hematological diseases. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2008-0061991).

  1. Searching for the birthplaces of open clusters with ages of several billion years

    NASA Astrophysics Data System (ADS)

    Acharova, I. A.; Shevtsova, E. S.

    2016-01-01

    We discuss the possibility of finding the birthplaces of open clusters (OC) with ages of several billion years. The proposed method is based on the comparison of the results of the chemical evolution modeling of the Galactic disk with the parameters of the cluster. Five OCs older than 7 Gyr are known: NGC6791, BH176, Collinder 261, Berkeley 17, and Berkeley 39. The oxygen and iron abundances in NGC6791 and the oxygen abundance in BH176 are twice the solar level, the heavy-element abundances in other clusters are close to the corresponding solar values. According to chemical evolution models, at the time of the formation of the objects considered the regions where the oxygen and iron abundances reached the corresponding levels extended out to 5 kpc from the Galactic center.At present time theOCs considered are located several kpc from the Galactic center. Some of these clusters are located extremely high, about 1 kpc above the disk midplane, i.e., they have been subject to some mechanism that has carried them into orbits uncharacteristic of this type of objects. It follows from a comparison with the results of chemical evolution that younger clusters with ages of 4-5 Gyr, e.g., NGC1193,M67, and others, may have formed in a broad range of Galactocentric distances. Their large heights above the disk midplane is sufficient to suggest that these clusters have moved away from their likely birthplaces. Clusters are carried far away from the Galactic disk until the present time: about 40 clusters with ages from 0 to 2 Gyr are observed at heights ranging from 300 to 750 pc.

  2. On Shocks Driven by High-mass Planets in Radiatively Inefficient Disks. II. Three-dimensional Global Disk Simulations

    NASA Astrophysics Data System (ADS)

    Lyra, Wladimir; Richert, Alexander J. W.; Boley, Aaron; Turner, Neal; Mac Low, Mordecai-Mark; Okuzumi, Satoshi; Flock, Mario

    2016-02-01

    Recent high-resolution, near-infrared images of protoplanetary disks have shown that these disks often present spiral features. Spiral arms are among the structures predicted by models of disk-planet interaction and thus it is tempting to suspect that planetary perturbers are responsible for these signatures. However, such interpretation is not free of problems. The observed spirals have large pitch angles, and in at least one case (HD 100546) it appears effectively unpolarized, implying thermal emission of the order of 1000 K (465 ± 40 K at closer inspection). We have recently shown in two-dimensional models that shock dissipation in the supersonic wake of high-mass planets can lead to significant heating if the disk is sufficiently adiabatic. Here we extend this analysis to three dimensions in thermodynamically evolving disks. We use the Pencil Code in spherical coordinates for our models, with a prescription for thermal cooling based on the optical depth of the local vertical gas column. We use a 5MJ planet, and show that shocks in the region around the planet where the Lindblad resonances occur heat the gas to substantially higher temperatures than the ambient gas. The gas is accelerated vertically away from the midplane to form shock bores, and the gas falling back toward the midplane breaks up into a turbulent surf. This turbulence, although localized, has high α values, reaching 0.05 in the inner Lindblad resonance, and 0.1 in the outer one. We find evidence that the disk regions heated up by the shocks become superadiabatic, generating convection far from the planet’s orbit.

  3. Investigation of a CER[NP]- and [AP]-Based Stratum Corneum Modeling Membrane System: Using Specifically Deuterated CER Together with a Neutron Diffraction Approach.

    PubMed

    Schmitt, Thomas; Lange, Stefan; Dobner, Bodo; Sonnenberger, Stefan; Hauß, Thomas; Neubert, Reinhard H H

    2018-01-30

    Neutron diffraction was used as a tool to investigate the lamellar as well as molecular nanostructure of ceramide-[NP]/ceramide-[AP]/cholesterol/lignoceric acid model systems with a nativelike 2:1 ratio and a 1:2 ratio to study the influence of the ceramide-[AP]. By using mixtures together with cholesterol and free fatty acids as well as a humidity and temperature chamber while measuring, natural conditions were simulated as closely as possible. Despite its simplicity, the system simulated the native stratum corneum lipid matrix fairly closely, showing a similar lamellar thickness with a repeat distance of 5.45 ± 0.1 nm and a similar arrangement with overlapping long C24 chains. Furthermore, despite the very minor chemical difference between ceramide-[NP] and ceramide-[AP], which is only a single OH group, it was possible to demonstrate substantial differences between the structural influence of the two ceramides. Ceramide-[AP] could be concluded to be arranged in such a way that its C24 chain in both ratios is somehow shorter than that of ceramide-[NP], not overlapping as much with the opposite lamellar leaflet. Furthermore, in the unnatural 1:2 ratio, the higher ceramide-[AP] content causes an increased tilt of the ceramide acyl chains. This leads to even less overlapping within the lamellar midplane, whereas the repeat distance stays the same as for the ceramide-[NP]-rich system. In this nativelike 2:1 ratio, the chains are arranged mostly straight, and the long C24 chains show a broad overlapping region in the lamellar midplane.

  4. Fabrication and Analysis of 150-mm-Aperture Nb 3Sn MQXF Coils

    DOE PAGES

    Holik, E. F.; Ambrosio, G.; Anerella, M.; ...

    2016-01-12

    The U.S. LHC Accelerator Research Program (LARP) and CERN are combining efforts for the HiLumi-LHC upgrade to design and fabricate 150-mm-aperture, interaction region quadrupoles with a nominal gradient of 130 T/m using Nb 3Sn. To successfully produce the necessary long MQXF triplets, the HiLumi-LHC collaboration is systematically reducing risk and design modification by heavily relying upon the experience gained from the successful 120-mm-aperture LARP HQ program. First generation MQXF short (MQXFS) coils were predominately a scaling up of the HQ quadrupole design allowing comparable cable expansion during Nb 3Sn formation heat treatment and increased insulation fraction for electrical robustness. Amore » total of 13 first generation MQXFS coils were fabricated between LARP and CERN. Systematic differences in coil size, coil alignment symmetry, and coil length contraction during heat treatment are observed and likely due to slight variances in tooling and insulation/cable systems. Analysis of coil cross sections indicate that field-shaping wedges and adjacent coil turns are systematically displaced from the nominal location and the cable is expanding less than nominally designed. Lastly, a second generation MQXF coil design seeks to correct the expansion and displacement discrepancies by increasing insulation and adding adjustable shims at the coil pole and midplanes to correct allowed magnetic field harmonics.« less

  5. Tokamak startup using point-source dc helicity injection.

    PubMed

    Battaglia, D J; Bongard, M W; Fonck, R J; Redd, A J; Sontag, A C

    2009-06-05

    Startup of a 0.1 MA tokamak plasma is demonstrated on the ultralow aspect ratio Pegasus Toroidal Experiment using three localized, high-current density sources mounted near the outboard midplane. The injected open field current relaxes via helicity-conserving magnetic turbulence into a tokamaklike magnetic topology where the maximum sustained plasma current is determined by helicity balance and the requirements for magnetic relaxation.

  6. Neutron monitoring and electrode calorimetry experiments in the HIP-1 Hot Ion Plasma

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Layman, R. W.

    1977-01-01

    Results are presented for two diagnostic procedures on HIP-1: neutron diagnostics to determine where neutrons originated within the plasma discharge chamber and electrode calorimetry to measure the steady-state power absorbed by the two anodes and cathodes. Results are also reported for a hot-ion plasma formed with a continuous-cathode rod, one that spans the full length of the test section, in place of the two hollow cathodes. The outboard neutron source strength increased relative to that at the midplane when (1) the cathode tips were moved farther outboard, (2) the anode diameters were increased, and (3) one of the anodes was removed. The distribution of neutron sources within the plasma discharge chamber was insensitive to the division of current between the two cathodes. For the continuous cathode, increasing the discharge current increased the midplane neutron source strength relative to the outboard source strength. Each cathode absorbed from 12 to 15 percent of the input power regardless of the division of current between the cathodes. The anodes absorbed from 20 to 40 percent of the input power. The division of power absorption between the anodes varied with plasma operating conditions and electrode placement.

  7. Effective solidity in vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Leftwich, Megan C.

    2016-11-01

    The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.

  8. Develop, demonstrate, and verify large area composite structural bonding with polyimide adhesives. [adhesively bonding graphite-polyimide structures

    NASA Technical Reports Server (NTRS)

    Bhombal, B. D.; Wykes, D. H.; Hong, K. C.; Stenersen, A. A.

    1982-01-01

    The technology required to produce graphite-polyimide structural components with operational capability at 598 K (600 F) is considered. A series of polyimide adhesives was screened for mechanical and physical properties and processibility in fabricating large midplane bonded panels and honeycomb sandwich panels in an effort to fabricate a structural test component of the space shuttle aft body flap. From 41 formulations, LaRC-13, FM34B-18, and a modified LaRC-13 adhesive were selected for further evaluation. The LaRC-13 adhesive was rated as the best of the three adhesives in terms of availability, cost, processibility, properties, and ability to produce void fee large area (12" x 12") midplane bonds. Surface treatments and primers for the adhesives were evaluated and processes were developed for the fabrication of honeycomb sandwich panels of very good quality which was evidenced by rupture in the honeycomb core rather than in the facesheet bands on flatwise tensile strength testing. The fabrication of the adhesively bonded honeycomb sandwich cover panels, ribs, and leading edge covers of Celion graphite/LARC-160 polyimide laminates is described.

  9. Comparison of Inboard-Outboard Pedestal Temperature Measurements in JET Using ECE Diagnostics

    NASA Astrophysics Data System (ADS)

    Barrera, L.; de la Luna, E.; Figini, L.

    2008-03-01

    Despite considerable effort, both theoretically and experimentally, a complete physical model to describe the particle and energy losses during ELMs is far from complete. On the experimental front, improved description of the spatial structure (poloidal asymmetry, radial distribution) and the dynamics of the ELM crash is a key requirement to answer some of the basic outstanding questions concerning the physics of ELMs. A significant number of diagnostics is now capable of fast measurements of the pedestal profile during an ELM, however, there is a lack of data from the inboard midplane, so assumptions of poloidal symmetry on the flux surfaces have often to be made. The aim of this work is to explore the capabilities of the electron cyclotron emission (ECE) diagnostics to provide simultaneous measurements of the edge temperature for both inboard and outboard plasma midplane. Access to the inboard region of the plasma is achieved in JET by using 1 harmonic/O-mode polarization, as it is not affected by harmonic overlap with the 2nd harmonic. This paper focuses on the validation of the inboard ECE data and the identification of the limitations of the measurements and the data analysis.

  10. Delamination growth analysis in quasi-isotropic laminates under loads simulating low-velocity impact

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Elber, W.

    1984-01-01

    A geometrically nonlinear finite-element analysis was developed to calculate the strain energy released by delamination plates during impact loading. Only the first mode of deformation, which is equivalent to static deflection, was treated. Both the impact loading and delamination in the plate were assumed to be axisymmetric. The strain energy release rate in peeling, G sub I, and shear sliding, G sub II, modes were calculated using the fracture mechanics crack closure technique. Energy release rates for various delamination sizes and locations and for various plate configurations and materials were compared. The analysis indicated that shear sliding (G sub II) was the primary mode of delamination growth. The analysis also indicated that the midplane (maximum transverse shear stress plane) delamination was more critical and would grow before any other delamination of the same size near the midplane region. The delamination growth rate was higher (neutrally stable) for a low toughness (brittle) matrix and slower (stable) for high toughness matrix. The energy release rate in the peeling mode, G sub I, for a near-surface delamination can be as high as 0.5G sub II and can contribute significantly to the delamination growth.

  11. Zombie Turbulence and More in Stratified Couette Flow

    NASA Astrophysics Data System (ADS)

    Marcus, Philip; Barranco, Joe; Pei, Suyang; Jiang, Chung-Hsiang

    2016-11-01

    Zombie turbulence occurs in rotating, shearing vertically-stratified flows such as stratified Couette flows. The turbulence is triggered by a neutrally-stable eigenmode with a critical layer receptive to finite-amplitude perturbations. Once excited, the critical layer becomes a vortex layer pair that rolls up into discrete vortices. Those vortices excite new critical layers, and the process repeats ad infinitum. When the vortex amplitudes become sufficiently large, the flow becomes turbulent. Although possessing a mid-range energy spectrum with E (k) k - 5 / 3 , the turbulence is non-Kolmogorov, highly anisotropic, and with large turbulent, but coherent, structures that retain the length scales of the spacing between the critical layers. The motivation for this study is protoplanetary disks (PPDs) where new stars form. In the PPD the Brunt-Vaisala frequency N increases as a function of distance from the midplane where it is zero. We cannot trigger the initial finite amplitude instability where N is small (close to the midplane). However, computations in PPDs and Couette flows show that zombie turbulence forms where N is large, and then a new type of turbulence, that is neither zombie nor Kolmogorov turbulence, fills in the remainder of the domain even where N = 0 .

  12. Design of tangential multi-energy soft x-ray camera for NSTX-U

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, Luis F.; Maddox, J.; Pablant, N.; Hill, K.; Bitter, M.; Stratton, B.; Efthimion, Phillip

    2016-10-01

    For tokamaks and future facilities to operate safely in a high-pressure long-pulse discharge, it is imperative to address key issues associated with impurity sources, core transport and high-Z impurity accumulation. Multi-energy SXR imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (Te, nZ and ΔZeff). A new tangential multi-energy soft x-ray pin-hole camera is being design to sample the continuum- and line-emission from low-, medium- and high-Z impurities. This new x-ray diagnostic will be installed on an equatorial midplane port of NSTX-U tokamak and will measure the radial structure of the photon emissivity with a radial resolution below 1 cm at a 500 Hz frame rate and a photon-energy resolution of 500 eV. The layout and response expected of the new system will be shown for different plasma conditions and impurity concentrations. The effect of toroidal rotation driving poloidal asymmetries in the core radiation is also addressed. This effort is designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate a non-inductive operation at reduced collisionality, long energy-confinement-times and a transition to a divertor solution with metal walls.

  13. Lattice design and beam dynamics studies of the high energy beam transport line in the RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jin, Hyunchang; Jang, Ji-Ho; Jang, Hyojae; Jeon, Dong-O.

    2015-12-01

    In RAON heavy ion accelerator, beams generated by superconducting electron cyclotron resonance ion source (ECR-IS) or Isotope Separation On-Line (ISOL) system are accelerated by lower energy superconducting linac and high energy superconducting linac. The accelerated beams are used in the high energy experimental hall which includes bio-medical and muon-SR facilities, after passing through the high energy beam transport lines. At the targets of those two facilities, the stable and small beams meeting the requirements rigorously are required in the transverse plane. Therefore the beams must be safely sent to the targets and simultaneously satisfy the two requirements, the achromatic condition and the mid-plane symmetric condition, of the targets. For this reason, the lattice design of the high energy beam transport lines in which the long deflecting sections are included is considered as a significant issue in the RAON accelerator. In this paper, we will describe the calculated beam optics satisfying the conditions and present the result of particle tracking simulations with the designed lattice of the high energy beam transport lines in the RAON accelerator. Also, the orbit distortion caused by the machine imperfections and the orbit correction with correctors will be discussed.

  14. Dynamic analysis of rotor flex-structure based on nonlinear anisotropic shell models

    NASA Astrophysics Data System (ADS)

    Bauchau, Olivier A.; Chiang, Wuying

    1991-05-01

    In this paper an anisotropic shallow shell model is developed that accommodates transverse shearing deformations and arbitrarily large displacements and rotations, but strains are assumed to remain small. Two kinematic models are developed, the first using two DOF to locate the direction of the normal to the shell's midplane, the second using three. The latter model allows for an automatic compatibility of the shell model with beam models. The shell model is validated by comparing its predictions with several benchmark problems. In actual helicopter rotor blade problems, the shell model of the flex structure is shown to give very different results shown compared to beam models. The lead-lag and torsion modes in particular are strongly affected, whereas flapping modes seem to be less affected.

  15. Converged photonic data storage and switch platform for exascale disaggregated data centers

    NASA Astrophysics Data System (ADS)

    Pitwon, R.; Wang, K.; Worrall, A.

    2017-02-01

    We report on a converged optically enabled Ethernet storage, switch and compute platform, which could support future disaggregated data center architectures. The platform includes optically enabled Ethernet switch controllers, an advanced electro-optical midplane and optically interchangeable generic end node devices. We demonstrate system level performance using optically enabled Ethernet disk drives and micro-servers across optical links of varied lengths.

  16. SU-E-T-118: Dose Verification for Accuboost Applicators Using TLD, Ion Chamber and Gafchromic Film Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chisela, W; Yao, R; Dorbu, G

    Purpose: To verify dose delivered with HDR Accuboost applicators using TLD, ion chamber and Gafchromic film measurements and to examine applicator leakage. Methods: A microSelectron HDR unit was used to deliver a dose of 50cGy to the mid-plane of a 62mm thick solid water phantom using dwell times from Monte Carlo pre-calculated nomograms for a 60mm, 70mm Round and 60mm Skin-Dose Optimized (SDO) applicators respectively. GafChromic EBT3+ film was embedded in the phantom midplane horizontally to measure dose distribution. Absolute dose was also measured with TLDs and an ADCL calibrated parallel-plate ion chamber placed in the film plane at fieldmore » center for each applicator. The film was calibrated using 6MV x-ray beam. TLDs were calibrated in a Cs-137 source at UW-Madison calibration laboratory. Radiation leakage through the tungsten alloy shell was measured with a film wrapped around outside surface of a 60mm Round applicator. Results: Measured maximum doses at field center are consistently lower than predicated by 5.8% for TLD, 8.8% for ion chamber, and 2.6% for EBT3+ film on average, with measurement uncertainties of 2.2%, 0.3%, and 2.9% for TLD, chamber, film respectively. The total standard uncertainties for ion chamber and Gafchromic film measurement are 4.9% and 4.6% respectively[1]. The area defined by the applicator aperture was covered by 80% of maximum dose for 62mm compression thickness. When 100cGy is delivered to mid-plane with a 60mm Round applicator, surface dose ranges from 60cGy to a maximum of 145cGy, which occurs at source entrance to the applicator. Conclusion: Measured doses by all three techniques are consistently lower than predicted in our measurements. For a compression thickness of 62 mm, the field size defined by the applicator is only covered by 80% of prescribed dose. Radiation leakage of up to 145cGy was found at the source entrance of applicators.« less

  17. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY 2015 First Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Fifield, Leonard S.; Kijewski, Seth A.

    2015-01-29

    During the first quarter of FY 2015, the following technical progress has been made toward project milestones: 1) Autodesk delivered a new research version of ASMI to PNNL. This version includes the improved 3D fiber orientation solver, and the reduced order model (ROM) for fiber length distribution using the proper orthogonal decomposition (POD) implemented in the mid-plane, dual-domain and 3D solvers. 2) Autodesk coordinated a conference paper with PNNL reporting ASMI mid-plane fiber orientation predictions compared with the measured data for two PlastiComp plaques. This paper was accepted for presentation at the 2015 Society for Plastics Engineers (SPE) ANTEC conference.more » 3) The University of Illinois (Prof. Tucker) assisted team members from Purdue with fiber orientation measurement techniques, including interpretation of off-axis cross sections. 4) The University of Illinois assisted Autodesk team members with software implementation of the POD approach for fiber length modeling, and with fiber orientation modeling. 5) The University of Illinois co-authored in the SPE ANTEC paper, participated with the team in discussions of plaque data and model results, and participated in the definition of go/no-go experiments and data. 6) Purdue University (Purdue) conducted fiber orientation measurements for 3 PlastiComp plaques: fast-fill 30wt% LCF/PP center-gated, fast-fill 50wt% LCF/PA66 edge-gated and fast-fill 50wt% LCF/PA66 center-gated plaques, and delivered the fiber orientation data for these plaques at the selected locations (named A, B, and C) to PNNL. However, the data for the fast-fill 50wt% LCF/PA66 edge-gated plaque exhibited unusual variations and could not be used for the model validation. Purdue will re-measure fiber orientation for this plaque. 7) Based on discussions with the University of Illinois Purdue explained the ambiguity in the measurements of the fiber orientation components. 8) PNNL discussed with team members to establish a go/no-go decision plan for the project and submitted the established plan to DOE. 9) PNNL performed ASMI mid-plane analyses for the fast-fill center-gated 30wt% LCF/PP and 50wt% LCF/PA66 plaques and compared the predicted fiber orientations with the measured data provided by Purdue at Locations A, B, and C on these plaques. 10) Based on discussions with the University of Illinois and Autodesk, PNNL proposed a procedure to adjust fiber orientation data for Location A of the center-gated plaques so that the data can be expressed and interpreted in the flow/cross-flow direction coordinate system. 11) PNNL tested the new ASMI version received from Autodesk, examined and discussed 3D fiber orientation predictions for PlastiComp plaques. 12) PlastiComp, Inc. (PlastiComp), Toyota Research Institute North America (Toyota) and Magna Exteriors and Interiors Corp. (Magna) participated in discussions with team members on the go/no-go plan and the issues related to fiber length measurements. Toyota continued the discussion with Magna on tool modification for molding the complex part in order to achieve the target fiber length in the part.« less

  18. Design upgrades to the DIII-D gamma ray imager

    NASA Astrophysics Data System (ADS)

    Lvovskiy, A.; Cooper, C. M.; Eidietis, N. W.; Pace, D.; Paz-Soldan, C.

    2016-10-01

    Generation of runaway electrons (RE) in tokamak disruptions can cause damage of plasma facing components. RE studies are necessary in order to provide a reliable mechanism of RE mitigation. For that task a gamma ray imager (GRI) has been developed for DIII-D. It measures the bremsstrahlung emission by RE providing information on RE energy spectrum and RE distribution across a poloidal cross-section. The GRI consists of a lead pinhole camera illuminating a 2D array of 30 BGO detectors placed in the DIII-D mid-plane. First results showed the successful measurements of RE energy spectra in the range 1 - 60 MeV with time resolution 100 μs. They have been obtained in the low-flux quiescent RE regime via pulse-high analysis. The measurements in the high gamma flux post-disruption RE regime showed strong signal saturation. Here we present GRI design upgrades towards signal attenuation and better detector shielding including Monte-Carlo Neutral Particle modeling of GRI irradiation, as well as improved calibration techniques and options to improve electronic noise rejection. Work supported by US DOE under DE-AC05-06OR23100 and DE-FC02-04ER54698.

  19. Buckling analysis of Big Dee Vacuum Vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lightner, S.; Gallix, R.

    1983-12-01

    A simplified three-dimensional shell buckling analysis of the GA Technologies Inc., Big Dee Vacuum Vessel (V/V) was performed using the finite element program TRICO. A coarse-mesh linear elastic model, which accommodated the support boundary conditions, was used to determine the buckling mode shape under a uniform external pressure. Using this buckling mode shape, refined models were used to calculate the linear buckling load (P/sub crit/) more accurately. Several different designs of the Big Dee V/V were considered in this analysis. The supports for the V/V were equally-spaced radial pins at the outer diameter of the mid-plane. For all the casesmore » considered, the buckling mode was axisymmetric in the toroidal direction. Therefore, it was possible to use only a small angular sector of a toric shell for the refined analysis. P/sub crit/ for the Big Dee is about 60 atm for a uniform external pressure. Also investigated in this analysis were the effects of geometrical imperfections and non-uniform pressure distributions.« less

  20. A Multiwavelength Exploration of the Grand Design Spiral M83: Diffuse X-ray Emission

    NASA Astrophysics Data System (ADS)

    Kuntz, K. D.; Long, K. S.; Blair, W. P.; Plucinsky, P. P.; Soria, R.; Winkler, P. F.

    2013-01-01

    We have obtained a series of deep X-ray images of the nearby galaxy M83, with a total exposure 729 ksec with the Chandra ACIS-S array. Since the bulk of the X-ray emitting disk falls within the BI chip, these observations allow a detailed study of the soft diffuse emission in the disk. Most of the diffuse emission is related to star-formation regions and must be powered by supernovae and stellar winds, though the amount of emission due to identifiable SNR is only a few percent. The relation between the spectral shape and surface brightness that was seen in M101 suggests that the properties of the X-ray emission in spiral disks are shaped by the local hot gas production rate (traced by the local star-formation rate) or the disk mid-plane pressure, but it is unclear which physical mechanism dominates. To illuminate this problem, we will compare M83 with the previous Chandra studies of M101 and M33.

  1. Magnetohydrodynamic (MHD) Magnet Modeling

    DTIC Science & Technology

    1979-06-01

    Relationship /4 to Structural Teeth and Cold Bore Tube 56 Force Cý.mponents on Saddlc Winding 84 57 Quarter Section of Magnet nesign at Midplane 85 58...Graphite/Epoxy Filament Wound 184 A-2 Concept B - Boron /Aluminum Structure 186 A-3 Concept i - Graphite/Epoxy Structure 187 A-4 Initial Stress Analysis...Wound A-15 MHD Magnet Modeling Manufacturing Sequence 205 Concept B - Boron /Aluminum Structure A-16 MHD Magnet Modeling Manufacturing Sequence 206

  2. Nonlinear dynamic model for magnetically-tunable Galfenol vibration absorbers

    NASA Astrophysics Data System (ADS)

    Scheidler, Justin J.; Dapino, Marcelo J.

    2013-03-01

    This paper presents a single degree of freedom model for the nonlinear vibration of a metal-matrix composite manufactured by ultrasonic additive manufacturing that contains seamlessly embedded magnetostrictive Galfenol alloys (FeGa). The model is valid under arbitrary stress and magnetic field. Changes in the composite's natural frequency are quantified to assess its performance as a semi-active vibration absorber. The effects of Galfenol volume fraction and location within the composite on natural frequency are quantified. The bandwidth over which the composite's natural frequency can be tuned with a bias magnetic field is studied for varying displacement excitation amplitudes. The natural frequency is tunable for all excitation amplitudes considered, but the maximum tunability occurs below an excitation amplitude threshold of 1 × 10-6 m for the composite geometry considered. Natural frequency shifts between 6% and 50% are found as the Galfenol volume fraction varies from 25% to 100% when Galfenol is located at the composite neutral axis. At a modest 25% Galfenol by volume, the model shows that up to 15% shifts in composite resonance are possible through magnetic bias field modulation if Galfenol is embedded away from the composite midplane. As the Galfenol volume fraction and distance between Galfenol and composite midplane are increased, linear and quadratic increases in tunability result, respectively.

  3. Photoionized Mixing Layer Models of the Diffuse Ionized Gas

    NASA Astrophysics Data System (ADS)

    Binette, Luc; Flores-Fajardo, Nahiely; Raga, Alejandro C.; Drissen, Laurent; Morisset, Christophe

    2009-04-01

    It is generally believed that O stars, confined near the galactic midplane, are somehow able to photoionize a significant fraction of what is termed the "diffuse ionized gas" (DIG) of spiral galaxies, which can extend up to 1-2 kpc above the galactic midplane. The heating of the DIG remains poorly understood, however, as simple photoionization models do not reproduce the observed line ratio correlations well or the DIG temperature. We present turbulent mixing layer (TML) models in which warm photoionized condensations are immersed in a hot supersonic wind. Turbulent dissipation and mixing generate an intermediate region where the gas is accelerated, heated, and mixed. The emission spectrum of such layers is compared with observations of Rand of the DIG in the edge-on spiral NGC 891. We generate two sequence of models that fit the line ratio correlations between [S II]/Hα, [O I]/Hα, [N II]/[S II], and [O III]/Hβ reasonably well. In one sequence of models, the hot wind velocity increases, while in the other, the ionization parameter and layer opacity increase. Despite the success of the mixing layer models, the overall efficiency in reprocessing the stellar UV is much too low, much less than 1%, which compels us to reject the TML model in its present form.

  4. ON THE STAR FORMATION LAW FOR SPIRAL AND IRREGULAR GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmegreen, Bruce G., E-mail: bge@us.ibm.com

    2015-12-01

    A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, theremore » is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.« less

  5. Insights into the Streaming Instability in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Youdin, Andrew N.; Lin, Min-Kai; Li, Rixin

    2017-10-01

    The streaming instability is a leading mechanism to concentrate particles in protoplanetary disks, thereby triggering planetesimal formation. I will present recent analytical and numerical work on the origin of the streaming instability and its robustness. Our recent analytic work examines the origin of, and relationship between, a variety of drag-induced instabilities, including the streaming instability as well as secular gravitational instabilities, a drag instability driven by self-gravity. We show that drag instabilities are powered by a specific phase relationship between gas pressure and particle concentrations, which power the instability via pressure work. This mechanism is analogous to pulsating instabilities in stars. This mechanism differs qualitatively from other leading particle concentration mechanisms in pressure bumps and vortices. Our recent numerical work investigates the numerical robustness of non-linear particle clumping by the streaming instability, especially with regard to the location and boundary condition of vertical boundaries. We find that particle clumping is robust to these choices in boxes that are not too short. However, hydrodynamic activity away from the particle-dominated midplane is significantly affected by vertical boundary conditions. This activity affects the observationally significant lofting of small dust grains. We thus emphasize the need for larger scale simulations which connect disk surface layers, including outflowing winds, to the planet-forming midplane.

  6. Turbulence imaging and applications using beam emission spectroscopy on DIII-D (invited)

    NASA Astrophysics Data System (ADS)

    McKee, G. R.; Fenzi, C.; Fonck, R. J.; Jakubowski, M.

    2003-03-01

    Two-dimensional measurements of density fluctuations are obtained in the radial and poloidal plane of the DIII-D tokamak with the Beam Emission Spectroscopy (BES) diagnostic system. The goals are to visualize the spatial structure and time evolution of turbulent eddies, as well as to obtain the 2D statistical properties of turbulence. The measurements are obtained with an array of localized BES spatial channels configured to image a midplane region of the plasma. 32 channels have been deployed, each with a spatial resolution of about 1 cm in the radial and poloidal directions, thus providing measurements of turbulence in the wave number range 0

  7. Morphometry of the ear in Down's syndrome subjects. A three-dimensional computerized assessment.

    PubMed

    Sforza, C; Dellavia, C; Tartaglia, G M; Ferrario, V F

    2005-07-01

    The three-dimensional coordinates of 13 soft-tissue landmarks on the ears were obtained by a computerized digitizer in 28 subjects with Down's syndrome aged 12-45 years, and in 449 sex, age and ethnic group matched controls. From the landmarks, left and right linear distances (ear width and length), ratios (ear width-to-ear length), areas (ear area), angles (angle of the auricle versus the facial midplane) and the three-dimensional symmetry index were calculated. For both males and females, all linear dimensions and areas were significantly (Analysis of Variance, P < 0.001) larger in the reference subjects than in the subjects with Down's syndrome. All values significantly increased as a function of age (P < 0.05); the increment was larger in the reference subjects than in the subjects with Down's syndrome. On both sides of the face, the subjects with Down's syndrome had larger ear width-to-ear length ratios, and larger angles of the auricle versus the facial midplane than the reference subjects. The three-dimensional symmetry index was significantly larger in the reference subjects and in the older persons. In conclusion, ear dimensions, position and shape significantly differed in subjects with Down's syndrome when compared to sex, age and ethnic group matched controls. Some of the differences were sex and age related.

  8. Understanding tungsten divertor sourcing and SOL transport using multiple poloidally-localized sources in DIII-D ELM-y H-mode discharges

    NASA Astrophysics Data System (ADS)

    Unterberg, Ea; Donovan, D.; Barton, J.; Wampler, Wr; Abrams, T.; Thomas, Dm; Petrie, T.; Guo, Hy; Stangeby, Pg; Elder, Jd; Rudakov, D.; Grierson, B.; Victor, B.

    2017-10-01

    Experiments using metal inserts with novel isotopically-enriched tungsten coatings at the outer divertor strike point (OSP) have provided unique insight into the ELM-induced sourcing, main-SOL transport, and core accumulation control mechanisms of W for a range of operating conditions. This experimental approach has used a multi-head, dual-facing collector probe (CP) at the outboard midplane, as well as W-I and core W spectroscopy. Using the CP system, the total amount of W deposited relative to source measurements shows a clear dependence on ELM size, ELM frequency, and strike point location, with large ELMs depositing significantly more W on the CP from the far-SOL source. Additionally, high spatial ( 1mm) and ELM resolved spectroscopic measurements of W sourcing indicate shifts in the peak erosion rate. Furthermore, high performance discharges with rapid ELMs show core W concentrations of few 10-5, and the CP deposition profile indicates W is predominantly transported to the midplane from the OSP rather than from the far-SOL region. The low central W concentration is shown to be due to flattening of the main plasma density profile, presumably by on-axis electron cyclotron heating. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698.

  9. Vertical Position and Current Profile Measurements by Faraday-effect Polarimetry On EAST tokamak

    NASA Astrophysics Data System (ADS)

    Ding, Weixing; Liu, H. Q.; Jie, Y. X.; Brower, D. L.; Qian, J. P.; Zou, Z. Y.; Lian, H.; Wang, S. X.; Luo, Z. P.; Xiao, B. J.; Ucla Team; Asipp Team

    2017-10-01

    A primary goal for ITER and prospective fusion power reactors is to achieve controlled long-pulse/steady-state burning plasmas. For elongated divertor plasmas, both the vertical position and current profile have to be precisely controlled to optimize performance and prevent disruptions. An eleven-channel laser-based POlarimeter-INTerferometer (POINT) system has been developed for measuring the internal magnetic field in the EAST tokamak and can be used to obtain the plasma current profile and vertical position. Current profiles are determined from equilibrium reconstruction including internal magnetic field measurements as internal constraints. Horizontally-viewing chords at/near the mid-plane allow us to determine plasma vertical position non-inductively with subcentimeter spatial resolution and time response up to 1 s. The polarimeter-based position measurement, which does not require equilibrium reconstruction, is benchmarked against conventional flux loop measurements and can be exploited for feedback control. Work supported by US DOE through Grants No. DE-FG02-01ER54615 and No. DC-SC0010469.

  10. The effect of interlaminar graphene nano-sheets reinforced e-glass fiber/ epoxy on low velocity impact response of a composite plate

    NASA Astrophysics Data System (ADS)

    Al-Maharma, A. Y.; Sendur, P.

    2018-05-01

    In this study, we compare the inter-laminar effect of graphene nano-sheets (GNSs) and CNTs on the single and multiple dynamic impact response of E-glass fiber reinforced epoxy composite (GFEP). In the comparisons, raw GFEP composite is used as baseline for quantifying the improvement on the dynamic impact response. For that purpose, finite element based models are developed for GNSs on GFEP, graphene coating on glass fibers, inter-laminar composite of CNTs reinforced polyester at 7.5 vol%, and combinations of all these reinforcements. Comparisons are made on three metrics: (i) total deformation, (ii) the contact force, and (iii) internal energy of the composite plate. The improvement on axial modulus (E1) of GFEP reinforced with one layer of GNS (0.5 wt%) without polyester at lamination sequence of [0]8 is 29.4%, which is very close to the improvement of 31% on storage modulus for multi-layer graphene with 0.5 wt% reinforced E-glass/epoxy composite at room temperature. Using three GNSs (1.5 wt%) reinforced polyester composite as interlaminar layer results in an improvement of 57.1% on E1 of GFEP composite. The simulation results reveal that the interlaminar three GNSs/polyester composite at mid-plane of GFEP laminated composite can significantly improve the dynamic impact resistance of GFEP structure compared to the other aforementioned structural reinforcements. Reinforcing GFEP composite with three layers of GNSs/polyester composite at mid-plane results in an average of 35% improvement on the dynamic impact resistance for healthy and damaged composite plate under low velocity impacts of single and multiple steel projectiles. This model can find application in various areas including structural health monitoring, fire retardant composite, and manufacturing of high strength and lightweight mechanical parts such as gas tank, aircraft wings and wind turbine blades.

  11. Lattice Boltzmann simulation of shear-induced particle migration in plane Couette-Poiseuille flow: Local ordering of suspension

    NASA Astrophysics Data System (ADS)

    Chun, Byoungjin; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun

    2017-12-01

    The shear-induced migration of concentrated non-Brownian monodisperse suspensions in combined plane Couette-Poiseuille (C-P) flows is studied using a lattice Boltzmann simulation. The simulations are mainly performed for a particle volume fraction of ϕbulk = 0.4 and H/a = 44.3, 23.3, where H and a denote the channel height and radius of suspended particles, respectively. The simulation method is validated in two simple flows, plane Poiseuille and plane Couette flows. In the Poiseuille flow, particles migrate to the mid-plane of the channel where the local concentration is close to the limit of random-close-packing, and a random structure is also observed at the plane. In the Couette flow, the particle distribution remains in the initial uniform distribution. In the combined C-P flows, the behaviors of migration are categorized into three groups, namely, Poiseuille-dominant, Couette-dominant, and intermediate regimes, based on the value of a characteristic force, G, where G denotes the relative magnitude of the body force (P) against the wall-driving force (C). With respect to the Poiseuille-dominant regime, the location of the maximum concentration is shifted from the mid-plane to the lower wall moving in the same direction as the external body force, when G decreases. With respect to the Couette-dominant regime, the behavior is similar to that of a simple shear flow with the exception that a slightly higher concentration of particles is observed near the lower wall. However, with respect to the intermediate value of G, several layers of highly ordered particles are unexpectedly observed near the lower wall where the plane of maximum concentration is located. The locally ordered structure is mainly due to the lateral migration of particles and wall confinement. The suspended particles migrate toward a vanishingly small shear rate at the wall, and they are consequently layered into highly ordered two-dimensional structures at the high local volume fraction.

  12. Thomson scattering diagnostic system design for the Compact Toroidal Hybrid experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traverso, P. J., E-mail: pjt0002@auburn.edu; Maurer, D. A.; Ennis, D. A.

    2014-11-15

    A new Thomson scattering system using standard commercially available components has been designed for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH). The beam, generated by a frequency doubled Continuum PL DLS 2 J Nd:YAG laser, is passed vertically through an entrance Brewster window and an aperturing baffle system to minimize the stray laser light that could enter the collection optics. The beam line has been designed with an 8 m propagation distance to the mid-plane of the CTH device with the beam diameter kept less than 3 mm inside the plasma volume. The beam exits the vacuum systemmore » through another Brewster window and enters a beam dump, again to minimize the stray light in the vacuum chamber. Light collection, spectral processing, and signal detection are accomplished with an f/#∼ 1 aspheric lens, a commercially available Holospec f/1.8 spectrometer, and an Andor iStar DH740-18U-C3 image intensified camera. Spectral rejection of stray laser light, if needed, can be performed with the use of an optional interference filter at the spectrometer input. The system has been developed for initial single point measurements of plasmas with core electron temperatures of approximately 20–300 eV and densities of 5 × 10{sup 18} to 5 × 10{sup 19} m{sup −3} dependent upon operational scenario.« less

  13. Modelling of three dimensional equilibrium and stability of MAST plasmas with magnetic perturbations using VMEC and COBRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, C. J., E-mail: christopher.ham@ccfe.ac.uk; Chapman, I. T.; Kirk, A.

    2014-10-15

    It is known that magnetic perturbations can mitigate edge localized modes (ELMs) in experiments, for example, MAST [Kirk et al., Nucl. Fusion 53, 043007 (2013)]. One hypothesis is that the magnetic perturbations cause a three dimensional corrugation of the plasma and this corrugated plasma has different stability properties to peeling-ballooning modes compared to an axisymmetric plasma. It has been shown in an up-down symmetric plasma that magnetic perturbations in tokamaks will break the usual axisymmetry of the plasma causing three dimensional displacements [Chapman et al., Plasma Phys. Controlled Fusion 54, 105013 (2012)]. We produce a free boundary three-dimensional equilibrium ofmore » a lower single null MAST relevant plasma using VMEC [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)]. The safety factor and pressure profiles used for the modelling are similar to those deduced from axisymmetric analysis of experimental data with ELMs. We focus on the effect of applying n = 3 and n = 6 magnetic perturbations using the resonant magnetic perturbation (RMP) coils. A midplane displacement of over ±1 cm is seen when the full current is applied. The current in the coils is scanned and a linear relationship between coil current and midplane displacement is found. The pressure gradient in real space in different toroidal locations is shown to change when RMPs are applied. This effect should be taken into account when diagnosing plasmas with RMPs applied. The helical Pfirsch-Schlüter currents which arise as a result of the assumption of nested flux surfaces are estimated for this equilibrium. The effect of this non-axisymmetric equilibrium on infinite n ballooning stability is investigated using COBRA [Sanchez et al., J. Comput. Phys. 161, 576–588 (2000)]. The infinite n ballooning stability is analysed for two reasons; it may give an indication of the effect of non-axisymmetry on finite n peeling-ballooning modes, responsible for ELMs; and infinite n ballooning modes are correlated to kinetic ballooning modes which are thought to limit the pressure gradient of the pedestal [Snyder et al., Phys. Plasmas 16, 056118 (2009)]. The ballooning mode growth rate gains a variation in toroidal angle. The equilibria with midplane displacements due to RMP coils have a higher ballooning mode growth rate than the axisymmetric case and the possible implications are discussed.« less

  14. Symmetry-breaking Hopf bifurcations to 1-, 2-, and 3-tori in small-aspect-ratio counterrotating Taylor-Couette flow.

    PubMed

    Altmeyer, S; Do, Y; Marques, F; Lopez, J M

    2012-10-01

    The nonlinear dynamics of Taylor-Couette flow in a small-aspect-ratio wide-gap annulus in the counterrotating regime is investigated by solving the full three-dimensional Navier-Stokes equations. The system is invariant under arbitrary rotations about the axis, reflection about the annulus midplane, and time translations. A systematic investigation is presented both in terms of the flow physics elucidated from the numerical simulations and from a dynamical system perspective provided by equivariant normal form theory. The dynamics are primarily associated with the behavior of the jet of angular momentum that emerges from the inner cylinder boundary layer at about the midplane. The sequence of bifurcations as the differential rotation is increased consists of an axisymmetric Hopf bifurcation breaking the reflection symmetry of the basic state leading to an axisymmetric limit cycle with a half-period-flip spatiotemporal symmetry. This undergoes a Hopf bifurcation breaking axisymmetry, leading to quasiperiodic solutions evolving on a 2-torus that is setwise symmetric. These undergo a further Hopf bifurcation, introducing a third incommensurate frequency leading to a 3-torus that is also setwise symmetric. On the 3-torus, as the differential rotation is further increased, a saddle-node-invariant-circle bifurcation takes place, destroying the 3-torus and leaving a pair of symmetrically related 2-tori states on which all symmetries of the system have been broken.

  15. Gap opening after merger events of 3-Earth-mass protoplanets

    NASA Astrophysics Data System (ADS)

    Broz, Miroslav; Chrenko, Ondrej

    2017-10-01

    While several-Earth-mass protoplanets can gain non-negligible eccentricities due to their interactions with the gaseous disk and ongoing pebble accretion (so called hot trail effect; see the contribution of Chrenko et al. 2017 for details), there is a opened pathway for giant-planet core formation by means of close encounters and eventual merging. As soon as a massive (~13 M_E) merger is formed, it seems necessary to account for one additional term in the set of hydrodynamic equations, namely the gas accretion, which may affect subsequent orbital evolution, and eventually change Type-I migration to Type-II. Using similar approximations as Crida and Bitsch (2017), we prolong our previous simulations towards the onset of gap opening.At the same time, we try to address the observability of these events, e.g. by ALMA in its full configuration. Because the disk is still mostly optically thick in the vertical direction (tau =~ 100), it is necessary to properly model the disk atmosphere. In the midplane, the mean-free path of gas molecules is small enough to assure a sufficient thermal contact and equilibrium between the gas and dust. This is no more true far from the midplane and one has to use a non-equilibrium model (e.g. Radmc-3d code) for the description of dust grain temperatures, resulting synthetic image, or emergent spectrum.

  16. Deposition Profile Analysis from DIII-D Metal Rings Campaign Outer-Midplane Collector Probe Diagnostic and Utilization of Enriched Isotopic Tungsten Tracer Particles

    NASA Astrophysics Data System (ADS)

    Donovan, D. C.; Duran, J.; Zamperini, S.; Lee, S.; Unterberg, E. A.; Wampler, W. R.; Rudakov, D. L.; Elder, D.; Stangeby, P. C.; Abrams, T.

    2017-10-01

    The DIII-D Metal Rings Campaign used isotopically-enriched, W-coated divertor tiles coupled with dual-facing midplane collector probes (CPs) in the far Scrape-off Layer (SOL). Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) results are presented characterizing the isotopic ratios of deposited W on the CPs and which give quantitative information on the transport of W from specific poloidal locations within the lower outer divertor region having different isotopically-marked tiles. Rutherford Backscattering Spectrometry (RBS) of these CPs has provided areal densities of elemental W content. These resultant W deposition profiles were compared with DIVIMP modelling of the far-SOL to better understand impurity transport in the edge plasma. CPs were exposed for 37 distinct operating configurations (L-mode/H-mode, forward/reverse Bt, strikepoint position). Radial decay lengths (RDL) between 5 and 50 mm were observed with consistently narrower RDL and higher peak W content on the side of the probes connected along field lines to the inner divertor, indicating a concentration of W in the upstream plasma. Correlations are discussed between peak W content, RDL, and isotopic profiles on the CPs over a wide range of conditions. Work supported by US DOE under DE-AC05-00OR22725, DE-FG02-07ER54917, DE-FC02-04ER54698, DE-NA0003525.

  17. The early evolution of the inner solar system: a meteoritic perspective.

    PubMed

    O'D Alexander, C M; Boss, A P; Carlson, R W

    2001-07-06

    Formation of the solar system may have been triggered by a stellar wind. From then on, the solar system would have followed a conventional evolutionary path, including the formation of a disk and bipolar jets. The now extinct short-lived radionuclides beryllium-10 and, possibly, manganese-53 that were present in meteorites probably resulted from energetic particle irradiation within the solar system. Calcium-aluminum-rich inclusions (the oldest known solar system solids) and chondrules could have been produced by the bipolar jets, but it is more likely that they formed during localized events in the asteroid belt. The chondritic meteorites formed within the temperature range (100 to 400 kelvin) inferred for the midplane of classical T Tauri disks at 2 to 3 astronomical units from their central stars. However, these meteorites may retain a chemical memory of earlier times when midplane temperatures were much higher. Dissipation of the solar nebula occurred within a few million years of solar system formation, whereas differentiation of asteroidal-sized bodies occurred within 5 to 15 million years. The terrestrial planets took approximately 100 million years to form. Consequently, they would have accreted already differentiated bodies, and their final assembly was not completed until after the solar nebula had dispersed. This implies that water-bearing asteroids and/or icy planetesimals that formed near Jupiter are the likely sources of Earth's water.

  18. Midplane neutral density profiles in the National Spherical Torus Experiment

    DOE PAGES

    Stotler, D. P.; Scotti, F.; Bell, R. E.; ...

    2015-08-13

    Atomic and molecular density data in the outer midplane of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] are inferred from tangential camera data via a forward modeling procedure using the DEGAS 2 Monte Carlo neutral transport code. The observed Balmer-β light emission data from 17 shots during the 2010 NSTX campaign display no obvious trends with discharge parameters such as the divertor Balmer-α emission level or edge deuterium ion density. Simulations of 12 time slices in 7 of these discharges produce molecular densities near the vacuum vessel wall of 2–8 × 10 17 m –3 and atomic densitiesmore » ranging from 1 to 7 ×10 16 m –3; neither has a clear correlation with other parameters. Validation of the technique, begun in an earlier publication, is continued with an assessment of the sensitivity of the simulated camera image and neutral densities to uncertainties in the data input to the model. The simulated camera image is sensitive to the plasma profiles and virtually nothing else. The neutral densities at the vessel wall depend most strongly on the spatial distribution of the source; simulations with a localized neutral source yield densities within a factor of two of the baseline, uniform source, case. Furthermore, the uncertainties in the neutral densities associated with other model inputs and assumptions are ≤ 50%.« less

  19. EVIDENCE OF FAST PEBBLE GROWTH NEAR CONDENSATION FRONTS IN THE HL TAU PROTOPLANETARY DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ke; Blake, Geoffrey A.; Bergin, Edwin A., E-mail: kzhang@astro.caltech.edu

    2015-06-10

    Water and simple organic molecular ices dominate the mass of solid materials available for planetesimal and planet formation beyond the water snow line. Here we analyze ALMA long baseline 2.9, 1.3 and 0.87 mm continuum images of the young star HL Tau, and suggest that the emission dips observed are due to rapid pebble growth around the condensation fronts of abundant volatile species. Specifically, we show that the prominent innermost dip at 13 AU is spatially resolved in the 0.87 mm image, and its center radius is coincident with the expected mid-plane condensation front of water ice. In addition, twomore » other prominent dips, at distances of 32 and 63 AU, cover the mid-plane condensation fronts of pure ammonia or ammonia hydrates and clathrate hydrates (especially with CO and N{sub 2}) formed from amorphous water ice. The spectral index map of HL Tau between 1.3 and 0.87 mm shows that the flux ratios inside the dips are statistically larger than those of nearby regions in the disk. This variation can be explained by a model with two dust populations, where most of the solid mass resides in a component that has grown to decimeter size scales inside the dips. Such growth is in accord with recent numerical simulations of volatile condensation, dust coagulation, and settling.« less

  20. Drag Reduction CFD Simulations and Flow Visualization of Light Vehicle-Trailer Systems

    NASA Astrophysics Data System (ADS)

    Sigurdson, Lorenz; Boyer, Henry; Lange, Carlos F.

    2016-11-01

    Experiments and CFD were performed to study the effect a deflector had on the flow and drag force associated with a 2010 F-150 truck and cargo trailer Light Vehicle-Trailer System (LVTS). Image Correlation Velocimetry (ICV) on smokewire streaklines measured the velocity field on the model mid-plane. CFD estimated the drag reduction as 13% at a Re of 14,900 with a moving ground-plane, and 17% without. Experiments suggested that the low Re does not diminish the full-scale relevance of the drag reduction results. One low Re effect was the presence of a separation bubble on the hood of the tow vehicle whose size reduced with an increase in Re. Three other characteristic flow patterns were identified: separation off the lead vehicle cab, stagnation of the free-stream on the trailer face for the no-deflector case, and subsequent separation at the trailer front corner. Comparisons of the ICV and CFD results with no deflector indicated good agreement in the direction of the velocity vectors, and the smoke streaklines and CFD streamlines also agreed well. However, for the deflector case, the CFD found an entirely different topological solution absent in the experiment. A pair of vertically-oriented mid-plane vortices were wrapped around the front of the trailer. Support from the Canadian Natural Sciences and Engineering Research Council Grant 41747 is gratefully acknowledged.

  1. A Modified Edge Crack Torsion Test for Measurement of Mode III Fracture Toughness of Laminated Tape Composites

    NASA Technical Reports Server (NTRS)

    Czabaj, Michael W.; Davidson, Barry D.; Ratcliffe, James G.

    2016-01-01

    Modifications to the edge crack torsion (ECT) test are studied to improve the reliability of this test for measuring the mode-III fracture toughness, G (sub IIIc), of laminated tape fiber-reinforced polymeric (FRP) composites. First, the data reduction methods currently used in the ECT test are evaluated and deficiencies in their accuracy are discussed. An alternative data reduction technique, which uses a polynomial form to represent ECT specimen compliance solution, is evaluated and compared to FEA (finite element analysis) results. Second, seven batches of ECT specimens are tested, each batch containing specimens with a preimplanted midplane edge delamination and midplane plies with orientations of plus theta divided by minus theta, with theta ranging from 0 degrees to 90 degrees in 15-degree increments. Tests on these specimens show that intralaminar cracking occurs in specimens from all batches except for which theta = 15 degrees and 30 degrees. Tests on specimens of these two batches are shown to result in mode-III delamination growth at the intended ply interface. The findings from this study are encouraging steps towards the use of the ECT test as a standardized method for measuring G (sub IIIc), although further modification to the data reduction method is required to make it suitable for use as part of a standardized test method.

  2. Numerical simulation of an experimental analogue of a planetary magnetosphere

    NASA Astrophysics Data System (ADS)

    Liao, Andy Sha; Li, Shule; Hartigan, Patrick; Graham, Peter; Fiksel, Gennady; Frank, Adam; Foster, John; Kuranz, Carolyn

    2015-12-01

    Recent improvements to the Omega Laser Facility's magneto-inertial fusion electrical discharge system (MIFEDS) have made it possible to generate strong enough magnetic fields in the laboratory to begin to address the physics of magnetized astrophysical flows. Here, we adapt the MHD code AstroBEAR to create 2D numerical models of an experimental analogue of a planetary magnetosphere. We track the secular evolution of the magnetosphere analogue and we show that the magnetospheric components such as the magnetopause, magnetosheath, and bow shock, should all be observable in experimental optical band thermal bremsstrahlung emissivity maps, assuming equilibrium charge state distributions of the plasma. When the magnetosphere analogue nears the steady state, the mid-plane altitude of the magnetopause from the wire surface scales as the one-half power of the ratio of the magnetic pressure at the surface of the free wire to the ram pressure of an unobstructed wind; the mid-plane thickness of the magnetosheath is directly related to the radius of the magnetopause. This behavior conforms to Chapman and Ferraro's theory of planetary magnetospheres. Although the radial dependence of the magnetic field strength differs between the case of a current-carrying wire and a typical planetary object, the major morphological features that develop when a supersonic flow passes either system are identical. Hence, this experimental concept is an attractive one for studying the dynamics of planetary magnetospheres in a controlled environment.

  3. A High Power Helicon Antenna Design for DIII-D

    DOE PAGES

    Nagy, A.; deGrassie, J.; Moeller, C.; ...

    2017-08-02

    A new antenna design for driving current in high beta tokamaks using electromagnetic waves, called Helicons, will be experimentally tested for the first time at power approaching 1 megawatt (MW) in the DIII-D Tokamak. This method is expected to be more efficient than current drive using electron cyclotron waves or neutral beam injection, and may be well suited to reactor-like configurations. A low power (100 watt (W)) 476 megahertz (MHz) “comb-line” antenna, consisting of 12 inductively coupled electrostatically shielded, modular resonators, was tested in DIII-D and showed strong coupling to the plasma without disturbing its characteristics or introducing metal impurities.more » The high power antenna consists of 30 modules affixed to back-plates and mounted on the outer wall of the vacuum vessel above the mid-plane. The antenna design follows a similar low power antenna design modified to minimize RF loss. Heat removal is provided by water cooling and a novel heat conducting path using pyrolytic graphite sheet. The CuCrZr antenna modules are designed to handle high eddy current forces. The modules use molybdenum Faraday shields that have the plasma side coated with boron carbide to enhance thermal resistance and minimize high Z impurities. A RF strip-line feed routes the RF power from coaxial vacuum feed-throughs to the antenna. Multipactor analysis of the antenna, strip line, and feedthrough will be performed. A 1.2 MW, 476 MHz klystron system, provided by the Stanford Linear Accelerator (SLAC) will provide RF power to the new antenna. Lastly, a description of the design of the high power antenna, the RF strip-line feeds, and the vessel installation will be presented.« less

  4. A High Power Helicon Antenna Design for DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagy, A.; deGrassie, J.; Moeller, C.

    A new antenna design for driving current in high beta tokamaks using electromagnetic waves, called Helicons, will be experimentally tested for the first time at power approaching 1 megawatt (MW) in the DIII-D Tokamak. This method is expected to be more efficient than current drive using electron cyclotron waves or neutral beam injection, and may be well suited to reactor-like configurations. A low power (100 watt (W)) 476 megahertz (MHz) “comb-line” antenna, consisting of 12 inductively coupled electrostatically shielded, modular resonators, was tested in DIII-D and showed strong coupling to the plasma without disturbing its characteristics or introducing metal impurities.more » The high power antenna consists of 30 modules affixed to back-plates and mounted on the outer wall of the vacuum vessel above the mid-plane. The antenna design follows a similar low power antenna design modified to minimize RF loss. Heat removal is provided by water cooling and a novel heat conducting path using pyrolytic graphite sheet. The CuCrZr antenna modules are designed to handle high eddy current forces. The modules use molybdenum Faraday shields that have the plasma side coated with boron carbide to enhance thermal resistance and minimize high Z impurities. A RF strip-line feed routes the RF power from coaxial vacuum feed-throughs to the antenna. Multipactor analysis of the antenna, strip line, and feedthrough will be performed. A 1.2 MW, 476 MHz klystron system, provided by the Stanford Linear Accelerator (SLAC) will provide RF power to the new antenna. Lastly, a description of the design of the high power antenna, the RF strip-line feeds, and the vessel installation will be presented.« less

  5. Feasibility of a motional Stark effect system on the TCV tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegrist, M.R.; Hawkes, N.; Weisen, H.

    This paper presents a feasibility study for a motional Stark effect (MSE) [F. M. Levinton et al., Phys. Rev. Lett. 63, 2060 (1989)] diagnostic on the TCV tokamak. A numerical simulation code has been used to identify the optimal port arrangement and geometrical layout. It predicts the expected measurement accuracy for a range of typical plasma scenarios. With the existing neutral beam injector (NBI) and a detection system based on current day technology, it should be possible to determine the safety factor with an accuracy of the order of 5%. A vertically injected beam through the plasma center would allowmore » one to measure plasmas which are centered above the midplane, a common occurrence in connection with electron cyclotron resonance heating and electron cyclotron current drive experiments. In this case a new and ideally more powerful NBI would be required.« less

  6. Effect of anode ring arrangement on the spectroscopic characteristics of the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1974-01-01

    The modified Penning discharge in the NASA Lewis Bumpy Torus is normally produced by an anode ring at high voltage in each of the 12 magnetic mirror midplanes. For this investigation, the plasma was run with 12, 6, 3, and 1 anode rings. When 3 anode rings were used, the spectroscopically determined relative electron density and mean ion residence time increased by factors of 10 and 5, respectively, in one mode of operation. The discharge is observed to uniformly fill all bumps around the torus regardless of the anode arrangement and number. A plasma density on axis of 100 billion per cu cm is estimated for the 3-anode case in one mode of operation based on an observed discharge current to ion loss rate correlation and a measured mean ion residence time of .5 msec.

  7. Effect of anode ring arrangement on the spectroscopic characteristics of the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1974-01-01

    The modified Penning discharge in the NASA Lewis Bumpy Torus is normally produced by an anode ring at high voltage in each of the 12 magnetic mirror midplanes. For this investigation, the plasma was run with 12, 6, 3, and 1 anode rings. When 3 anode rings were used, the spectroscopically determined relative electron density and mean ion residence time increase by factors of 10 and 5, respectively, in one mode of operation. The discharge is observed to uniformly fill all bumps around the torus regardless of the anode arrangement and number. A plasma density on axis of 10 to the 11th power cm/3 is estimated for the 3 anode case in one mode of operation based on an observed discharge current to ion loss rate correlation and a measured mean ion residence time of .5 msec.

  8. The versatile GBT astronomical spectrometer (VEGAS): Current status and future plans

    NASA Astrophysics Data System (ADS)

    Prestage, Richard M.; Bloss, Marty; Brandt, Joe; Chen, Hong; Creager, Ray; Demorest, Paul; Ford, John; Jones, Glenn; Kepley, Amanda; Kobelski, Adam; Marganian, Paul; Mello, Melinda; McMahon, David; McCullough, Randy; Ray, Jason; Roshi, D. Anish; Werthimer, Dan; Whitehead, Mark

    2015-07-01

    The VEGAS multi-beam spectrometer (VEGAS) was built for the Green Bank Telescope (GBT) through a partnership between the National Radio Astronomy Observatory (NRAO) and the University of California at Berkeley. VEGAS is based on a Field Programmable Gate Array (FPGA) frontend and a heterogeneous computing backend comprised of Graphical Processing Units (GPUs) and CPUs. This system provides processing power to analyze up to 8 dual-polarization or 16 single-polarization inputs at bandwidths of up to 1.25 GHz per input. VEGAS was released for "shared-risk" observing in March 2014 and it became the default GBT spectral line backend in August 2014. Some of the early VEGAS observations include the Radio Ammonia Mid-Plane Survey, mapping of HCN/HCO+ in nearby galaxies, and a variety of radio-recombination line and pulsar projects. We will present some of the latest VEGAS science highlights.

  9. The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction

    PubMed Central

    Anderson, Eric J; Falls, Thomas D; Sorkin, Adam M; Tate, Melissa L Knothe

    2006-01-01

    Background In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level. Methods To evaluate how well actual flow chambers meet their target stresses (set for 1 and 10 dyn/cm2 for this study) at a cellular level, computational models were developed to calculate flow velocity components and imparted shear stresses for a given pressure gradient. Computational predictions were validated with micro-particle image velocimetry (μPIV) experiments. Results Based on these computational and experimental studies, as few as 66% of cells seeded along the midplane of commonly implemented flow/perfusion chambers are subjected to stresses within ±10% of the target stress. In addition, flow velocities and shear stresses imparted through fluid drag vary as a function of location within each chamber. Hence, not only a limited number of cells are exposed to target stress levels within each chamber, but also neighboring cells may experience different flow regimes. Finally, flow regimes are highly dependent on flow chamber geometry, resulting in significant variation in magnitudes and spatial distributions of stress between chambers. Conclusion The results of this study challenge the basic premise of in vitro mechanotransduction studies, i.e. that a controlled flow regime is applied to impart a defined mechanical stimulus to cells. These results also underscore the fact that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable. PMID:16672051

  10. Overview of the recent DiMES and MiMES experiments in DIII-D

    NASA Astrophysics Data System (ADS)

    Rudakov, D. L.; Wong, C. P. C.; Litnovsky, A.; Wampler, W. R.; Boedo, J. A.; Brooks, N. H.; Fenstermacher, M. E.; Groth, M.; Hollmann, E. M.; Jacob, W.; Krasheninnikov, S. I.; Krieger, K.; Lasnier, C. J.; Leonard, A. W.; McLean, A. G.; Marot, M.; Moyer, R. A.; Petrie, T. W.; Philipps, V.; Smirnov, R. D.; Stangeby, P. C.; Watkins, J. G.; West, W. P.; Yu, J. H.

    2009-12-01

    Divertor and midplane material evaluation systems (DiMES and MiMES) in the DIII-D tokamak are used to address a variety of plasma-material interaction (PMI) issues relevant to ITER. Among the topics studied are carbon erosion and re-deposition, hydrogenic retention in the gaps between plasma-facing components (PFCs), deterioration of diagnostic mirrors from carbon deposition and techniques to mitigate that deposition, and dynamics and transport of dust. An overview of the recent experimental results is presented.

  11. Transactions of the Army Conference on Applied Mathematics and Computing (2nd) Held at Washington, DC on 22-25 May 1984

    DTIC Science & Technology

    1985-02-01

    0 Here Q denotes the midplane of the plate ?assumed to be a Lipschitzian) with a smooth boundary ", and H (Q) and H (Q) are the Hilbert spaces of...using a reproducing kernel Hilbert space approach, Weinert [8,9] et al, developed a structural correspondence between spline interpolation and linear...597 A Mesh Moving Technique for Time Dependent Partial Differential Equations in Two Space Dimensions David C. Arney and Joseph

  12. Reduction of the Oort limit and the dark matter contribution to it

    NASA Technical Reports Server (NTRS)

    Boulares, A.

    1989-01-01

    The contribution of all nondark matter to gravitational acceleration 300-500 kpc off the galactic plane is shown to be increased by more than 20 percent when actual observations of the gas distribution are included in the calculations. The requirements for a dark-matter component are thus reduced by about 40 percent with no change in the estimated midplane density of the observed matter. The present theory involved a reduction of the Oort limit itself by about 20 percent.

  13. A fast switch, combiner and narrow-band filter for high-power millimetre wave beams

    NASA Astrophysics Data System (ADS)

    Kasparek, W.; Petelin, M. I.; Shchegolkov, D. Yu; Erckmann, V.; Plaum, B.; Bruschi, A.; ECRH Groups at IPP Greifswald; Karlsruhe, FZK; Stuttgart, IPF

    2008-05-01

    A fast directional switch (FADIS) is described, which allows controlled switching of high-power microwaves between two outputs. A possible application could be synchronous stabilization of neoclassical tearing modes (NTMs). Generally, the device can be used to share the installed EC power between different types of launchers or different applications (e.g. in ITER, midplane/upper launcher). The switching is performed electronically without moving parts by a small frequency-shift keying of the gyrotron (some tens of megahertz), and a narrow-band diplexer. The device can be operated as a beam combiner also, which offers attractive transmission perspectives in multi-megawatt ECRH systems. In addition, these diplexers are useful for plasma diagnostic systems employing high-power sources due to their filter characteristics. The principle and the design of a four-port quasi-optical resonator diplexer is presented. Low-power measurements of switching contrast, mode purity and efficiency show good agreement with theory. Preliminary frequency modulation characteristics of gyrotrons are shown, and first results from high-power switching experiments using the ECRH system for W7-X are presented.

  14. Power Supply Changes for NSTX Resistive Wall Mode Coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, S S.

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physics Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. Prior to 2004, the NSTX power system was feeding twelve (12) circuits in the machine. In 2004 the Resistive Wall Mode (RWM) Coils were installed on the machine to correct error fields. There are six of these coils installed around the machine in the mid-plane. Since these coils needmore » fast and accurate controls, a Switching Power Amplifier (SPA) with three sub-units was procured, installed and commissioned along with other power loop components. Two RWM Coils were connected in series and fed from one SPA sub-unit. After the initial RWM campaign, operational requirements evolved such that each of the RWM coils now requires separate power and control. Hence a second SPA with three sub-units has been procured and installed. The second unit is of improved design and has the controls and power components completely isolated. The existing thyristor rectifier is used as DC Link to both of the Switching Power Amplifiers. The controls for the RWM are integrated into the overall computer control of the DC Power systems for NSTX. This paper describes the design changes in the RWM Power system for NSTX.« less

  15. Initial results from the NASA Lewis Bumpy Torus experiment. [of steady-state ion heating method based on modified Penning discharge

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Richardson, R. W.; Gerdin, G. A.

    1973-01-01

    Initial results were obtained from low power operation of the NASA Lewis Bumpy Torus experiment, in which a steady-state ion heating method based on the modified Penning discharge is applied in a bumpy torus confinement geometry. The magnet facility consists of 12 superconducting coils, each 19 cm i.d. and capable of 3.0 T, equally spaced in a toroidal array 1.52 m in major diameter. A 18 cm i.d. anode ring is located at each of the 12 midplanes and is maintained at high positive potentials by a dc power supply. Initial observations indicate electron temperatures from 10 to 150 eV, and ion kinetic temperatures from 200 eV to 1200 eV. Two modes of operation were observed, which depend on background pressure, and have different radial density profiles. Steady state neutron production was observed. The ion heating process in the bumpy torus appears to parallel closely the mechanism observed when the modified Penning discharge was operated in a simple magnetic mirror field.

  16. Hydrocarbon Emission Rings in Protoplanetary Disks Induced by Dust Evolution

    NASA Astrophysics Data System (ADS)

    Bergin, Edwin A.; Du, Fujun; Cleeves, L. Ilsedore; Blake, G. A.; Schwarz, K.; Visser, R.; Zhang, K.

    2016-11-01

    We report observations of resolved C2H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C3H2 emission ring with an identical spatial distribution to C2H in the TW Hya disk. This suggests that these are hydrocarbon rings (I.e., not limited to C2H). Using a detailed thermo-chemical model we show that reproducing the emission from C2H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.

  17. A species' Odyssey: evolution of obstetrical mechanics from Australopithecus Lucy to nowadays.

    PubMed

    Chene, G; Tardieu, A-S; Trombert, B; Amouzougan, A; Lamblin, G; Mellier, G; Coppens, Y

    2014-10-01

    Study of obstetrical mechanics of Australopithecus Lucy, Homo neanderthalensis and Homo erectus relative to modern Homo sapiens and the Catarrhines. The material comprised a total of 360 pelves: 3 fossil pelves reconstructed using casts (Australopithecus afarensis Lucy or AL 288-1, Homo erectus KNM-WT 15000, H. neanderthalensis or Kebara 2), 305 female modern adult pelves and 52 female Catarrhine pelves (29 gorillas, 18 chimpanzees, 5 orang-utans). All these pelves were reconstructed in order to carry out 11 pelvimetric measurements. Each measurement was carried out twice and by two different operators. The pelvis of Lucy was platypelloid at each pelvic plane. The pelvic inlet of H. neanderthalensis was anteroposteriorly oval whereas the midplane and the outlet were transversely oval. The pelvis of H. erectus was globally round. In modern women, the inlet was transversely oval. The pelvic midplane and outlet were anteroposteriorly oval. In the great apes, the shape of all three pelvic planes was anteroposteriorly oval. The discriminating value of the various pelvimetry measurements place Australopithecus Lucy, H. neanderthalensis Kebara 2, and H. erectus KNM-WT 15000 close to modern humans and less similar to the great apes. Obstetrical mechanics evolved from dystocic delivery with a transverse orientation in Australopithecus to delivery with a modern human-like rotational birth and an increase in the anteroposterior diameters in H. erectus, H. neanderthalensis and modern H. sapiens. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Electron Temperature Evolution During Local Helicity Injection on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Rodriguez Sanchez, C.

    2016-10-01

    Understanding the electron temperature (Te) evolution during local helicity injection (LHI) is critical for scaling up this non-solenoidal startup technique to MA-class devices. The first comprehensive Te measurements during LHI reveal centrally-peaked profiles with Te > 100 eV for plasma current Ip > 120 kA, toroidal field 0.15 T, and electron density ne 1019 m-3. Te rises and is sustained from just after magnetic relaxation through the plasma decoupling from edge-localized injectors. Results are presented for two injector edge locations: outboard midplane and inboard divertor. Outboard midplane injection couples LHI with inductive drive from poloidal field ramps and radial compression during inward plasma growth. Comparisons of Te at different LHI-to-inductive drive ratios show some profile flattening for higher LHI drive fraction. The latter, constant-shape discharges were necessarily lower performance, with Ip 50 kA and reduced Te , max. Inboard divertor injection achieves higher Ip using minimal inductive drive and thus isolates effects of LHI drive on Te. Initial results in this configuration show Te rising rapidly at the injector location as the discharge grows, settling to a roughly flat profile 100 eV. Thus far, both scenarios provide relatively stable discharges with moderate ne and high-Te, suitable for coupling to auxiliary current drive. Detailed studies of confinement dynamics and discharge optimization are planned for the near future. Work supported by US DOE Grant DE-FG02-96ER54375.

  19. TURBULENCE, TRANSPORT, AND WAVES IN OHMIC DEAD ZONES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gole, Daniel; Simon, Jacob B.; Armitage, Philip J.

    We use local numerical simulations to study a vertically stratified accretion disk with a resistive mid-plane that damps magnetohydrodynamic (MHD) turbulence. This is an idealized model for the dead zones that may be present at some radii in protoplanetary and dwarf novae disks. We vary the relative thickness of the dead and active zones to quantify how forced fluid motions in the dead zone change. We find that the residual Reynolds stress near the mid-plane decreases with increasing dead zone thickness, becoming negligible in cases where the active to dead mass ratio is less than a few percent. This impliesmore » that purely Ohmic dead zones would be vulnerable to episodic accretion outbursts via the mechanism of Martin and Lubow. We show that even thick dead zones support a large amount of kinetic energy, but this energy is largely in fluid motions that are inefficient at angular momentum transport. Confirming results from Oishi and Mac Low, the perturbed velocity field in the dead zone is dominated by an oscillatory, vertically extended circulation pattern with a low frequency compared to the orbital frequency. This disturbance has the properties predicted for the lowest order r mode in a hydrodynamic disk. We suggest that in a global disk similar excitations would lead to propagating waves, whose properties would vary with the thickness of the dead zone and the nature of the perturbations (isothermal or adiabatic). Flows with similar amplitudes would buckle settled particle layers and could reduce the efficiency of pebble accretion.« less

  20. Outer midplane scrape-off layer profiles and turbulence in simulations of Alcator C-Mod inner-wall limited discharges

    DOE PAGES

    Halpern, Federico D.; LaBombard, Brian; Terry, James L.; ...

    2017-06-27

    A region of steep plasma gradients, the so-called ”narrow-feature”, has been found in the near scrape-off layer (SOL) of inner-wall limited (IWL) discharges. Dedicated IWL discharges were carried out in Alcator C-Mod [E.S. Marmar et al., Nucl. Fusion 55, (2015)] to study this phenomenon, allowing detailed observations of the plasma profiles and fluctuations. Langmuir probe (LP) measurements show a clear two decay length n e and T e profile structure at the outer midplane. The Gas-Puff Imaging (GPI) diagnostic shows large turbulent fluctuations across the last closed flux-surface, hence supporting the hypothesis that turbulent phenomena play a role in settingmore » the profile steepness. We have carried out the flux-driven non-linear turbulence simulations of two C-Mod discharges which allows a three-way comparison between LP, GPI, and simulation data. Observations and simulations correlate the steep gradient region characterizing the narrow feature with sheared poloidal flows and a deviation of the plasma potential from its floating value. Furthermore, the E x B shear rate exceeds the linear ballooning growth rate, indicating that the narrow feature could result from the effects of sheared flows, although causality could not be established. The fluctuation level in the narrow feature remains of order unity across the entire SOL, indicating that the transport reduction in the near-SOL cannot result from a simple quench rule.« less

  1. Outer midplane scrape-off layer profiles and turbulence in simulations of Alcator C-Mod inner-wall limited discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halpern, Federico D.; LaBombard, Brian; Terry, James L.

    A region of steep plasma gradients, the so-called ”narrow-feature”, has been found in the near scrape-off layer (SOL) of inner-wall limited (IWL) discharges. Dedicated IWL discharges were carried out in Alcator C-Mod [E.S. Marmar et al., Nucl. Fusion 55, (2015)] to study this phenomenon, allowing detailed observations of the plasma profiles and fluctuations. Langmuir probe (LP) measurements show a clear two decay length n e and T e profile structure at the outer midplane. The Gas-Puff Imaging (GPI) diagnostic shows large turbulent fluctuations across the last closed flux-surface, hence supporting the hypothesis that turbulent phenomena play a role in settingmore » the profile steepness. We have carried out the flux-driven non-linear turbulence simulations of two C-Mod discharges which allows a three-way comparison between LP, GPI, and simulation data. Observations and simulations correlate the steep gradient region characterizing the narrow feature with sheared poloidal flows and a deviation of the plasma potential from its floating value. Furthermore, the E x B shear rate exceeds the linear ballooning growth rate, indicating that the narrow feature could result from the effects of sheared flows, although causality could not be established. The fluctuation level in the narrow feature remains of order unity across the entire SOL, indicating that the transport reduction in the near-SOL cannot result from a simple quench rule.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergin, Edwin A.; Du, Fujun; Schwarz, K.

    We report observations of resolved C{sub 2}H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C{sub 3}H{sub 2} emission ring with an identical spatial distribution to C{sub 2}H in the TW Hya disk. This suggests that these are hydrocarbon rings (i.e., not limited to C{sub 2}H). Using a detailed thermo-chemical model we show that reproducing the emission frommore » C{sub 2}H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.« less

  3. Low dose elective brain irradiation in small cell carcinoma of the lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiler, D.D.; Kane, R.C.; Bernath, A.M.

    Elective brain irradiation (EBI) in a dosage of 3000 rad (midplane) in 2 weeks (nominal standard dose (NSD) = 1314 ret) has proven highly effective in preventing initial brain relapse in small cell lung carcinoma. However, the optimal radiation dose for EBI is unknown. 55 patients (31 with regional disease, 24 with extensive disease) without brain metastases were treated with a 4 drug chemotherapy program, (lomustine (CCNU), methotrexate, cyclophosphamide, vincristine) plus radiotherapy (R.T.), 3000 rad in 2 weeks to the primary chest lesion and were randomized to EBI or a control group. The EBI consisted of 2400 rad whole brain,more » midplane, in 8 fractions, 10 days (NSD = 1130 ret) given at the same time as the R.T. to the primary (3 weeks post-initial chemotherapy). Though all 54 evaluable patients received CCNU 50 mg/M/sup 2/q. 6 weeks, there were 5 initial brain relapses among 31 control patients (16%) vs none in the 23 EBI patients. The time at risk for recurrence was similar in the two groups, i.e. 31 weeks median in the EBI and 32 weeks in the no-EBI patients. Brain relapses occurred in 2/17 with limited disease and 3/14 with extensive disease. It appears that 2400 rad in 8 fractions is as effective for EBI as larger doses. Toxicity was limited to alopecia. Survival was not significantly affected by EBI, though there is a suggestion of improvement in the regional group.« less

  4. Transient, polarity-dependent dielectric response in a twisted nematic liquid crystal under very low frequency excitation.

    PubMed

    Krishnamurthy, K S

    2015-09-01

    The electric Freedericksz transition is a second-order quadratic effect, which, in a planarly aligned nematic liquid crystal layer, manifests above a threshold field as a homogeneous symmetric distortion with maximum director-tilt in the midplane. We find that, upon excitation by a low frequency (<0.2Hz) square-wave field, the instability becomes spatially and temporally varying. This is demonstrated using calamitic liquid crystals, initially in the 90°-twisted planar configuration. The distortion occurs close to the negative electrode following each polarity switch and, for low-voltage amplitudes, decays completely in time. We use the elastically favorable geometry of Brochard-Leger walls to establish the location of maximum distortion. Thus, at successive polarity changes, the direction of extension of both annular and open walls switches between the alignment directions at the two substrates. For high voltages, this direction is largely along the midplane director, while remaining marginally oscillatory. These results are broadly understood by taking into account the time-varying and inhomogeneous field conditions that prevail soon after the polarity reverses. Polarity dependence of the instability is traced to the formation of intrinsic double layers that lead to an asymmetry in field distribution in the presence of an external bias. Momentary field elevation near the negative electrode following a voltage sign reversal leads to locally enhanced dielectric and gradient flexoelectric torques, which accounts for the surface-like phenomenon observed at low voltages. These spatiotemporal effects, also found earlier for other instabilities, are generic in nature.

  5. Water Solubility in the Proto-Lunar Disk

    NASA Astrophysics Data System (ADS)

    Hauri, E. H.; Nakajima, M.

    2016-12-01

    The giant impact model is the scenario most widely accepted for the origin of the Moon, yet no satisfactory version of this model exists to explain the Earth-like H2O content of primitive lunar magmas. Here we investigate the likelihood that H2O from the Earth was transferred to the Moon in the aftermath of the giant impact. Nearly all variants of the giant impact model produce an energetic impact-generated debris disk that eventually coalesces to form the Moon [1]. Here we investigate the behavior of H2O in disks of Bulk Silicate Earth (BSE) composition produced by three impact scenarios; (a) the standard model of a Mars-sized impactor striking the proto-Earth [2]; (b) impact into a fast-spinning Earth [3]; and (c) impact of two sub-earths each being half the mass of the current Earth [4]. All of these models have been shown to be sufficiently energetic that, at maximum entropy and hydrostatic equilibrium following the impact, most of the mass of the proto-lunar disk consists of silicate melt and vapor, with vapor mass fractions ranging from 20-100% and mid-plane temperatures of 3500-6000K [1]. From these models, we calculate the 2D axisymmetric pressure structure of the disk, and calculate the solubility of H2O in liquid droplets that condense from the vapor atmosphere. Assuming a high bulk Earth H2O content of 1000 ppm, at the Roche radius and close to the disk midplane where pressures are highest (1 to 1000 bars), the mass fraction of all H-bearing species in the vapor is calculated to be ≤0.001, and the maximum H2O solubility in silicate melt is predicted to be <50 ppm because most of the water is dissociated at these high temperatures, in agreement with [5]. As the disk cools past the condensation of silicate vapor, the remaining vapor is dominated by Na and similarly volatile elements, with H2O a minor component of the vapor phase from 2500-1000K. The calculated vapor pressures are low at the midplane with strong vertical gradients, and thus calculated H2O solubility ranges widely, from <10 to 100s of ppm. The water content of forming moonlets is thus sensitive to the disk temperature where the moonlets form as the disk cools. [1] Nakajima & Stevenson (2014) Icarus 233:259-267. [2] Canup (2008) Icarus 196:518-538. [3] Cuk & Stewart (2012) Science 338:1047-1052. [4] Canup (2012) Science 338:1052-1055. [5] Pahlevan (2016) EPSL 445:104-113.

  6. Design and simulation of control algorithms for stored energy and plasma current in non-inductive scenarios on NSTX-U

    NASA Astrophysics Data System (ADS)

    Boyer, Mark; Andre, Robert; Gates, David; Gerhardt, Stefan; Menard, Jonathan; Poli, Francesca

    2015-11-01

    One of the major goals of NSTX-U is to demonstrate non-inductive operation. To facilitate this and other program goals, the center stack has been upgraded and a second neutral beam line has been added with three sources aimed more tangentially to provide higher current drive efficiency and the ability to shape the current drive profile. While non-inductive start-up and ramp-up scenarios are being developed, initial non-inductive studies will likely rely on clamping the Ohmic coil current after the plasma current has been established inductively. In this work the ability to maintain control of stored energy and plasma current once the Ohmic coil has been clamped is explored. The six neutral beam sources and the mid-plane outer gap of the plasma are considered as actuators. System identification is done using TRANSP simulations in which the actuators are modulated around a reference shot. The resulting reduced model is used to design an optimal control law with anti-windup and a recently developed framework for closed loop simulations in TRANSP is used to test the control. Limitations due to actuator saturation are assessed and robustness to beam modulation, changes in the plasma density and confinement, and changes in density and temperature profile shapes are studied. Supported by US DOE contract DE-AC02-09CH11466.

  7. Method for hygromechanical characterization of graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Yaniv, Gershon; Peimanidis, Gus; Daniel, Isaac M.

    1987-01-01

    An experimental method is described for measuring hygroscopic swelling strains and mechanical strains of moisture-conditioned composite specimens. The method consists of embedding encapsulated strain gages in the midplane of the composite laminate; thus it does not interfere with normal moisture diffusion. It is particularly suited for measuring moisture swelling coefficients and for mechanical testing of moisture-conditioned specimens at high strain rates. Results obtained by the embedded gage method were shown to be more reliable and reproducible than those obtained by surface gages, dial gages, or extensometers.

  8. Characteristics of the NASA Lewis bumpy torus plasma generated with high positive or negative applied potentials

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Gerdin, G. A.

    1976-01-01

    The toroidal ring of plasma contained in the NASA Lewis bumpy-torus superconducting magnet facility may be biased to positive or negative potentials approaching 50 kilovolts by applying direct-current voltages of the respective polarity to 12 or fewer of the midplane electrode rings. The electric fields which are responsible for heating the ions by E/B drift then point radially outward or inward. The low-frequency fluctuations below the ion cyclotron frequency appeared to be dominated by rotating spokes.

  9. Nonlinear vibration of an axially loaded beam carrying rigid bodies

    NASA Astrophysics Data System (ADS)

    Barry, O.

    2016-12-01

    This paper investigates the nonlinear vibration due to mid-plane stretching of an axially loaded simply supported beam carrying multiple rigid masses. Explicit expressions and closed form solutions of both linear and nonlinear analysis of the present vibration problem are presented for the first time. The validity of the analytical model is demonstrated using finite element analysis and via comparison with the result in the literature. Parametric studies are conducted to examine how the nonlinear frequency and frequency response curve are affected by tension, rotational inertia, and number of intermediate rigid bodies.

  10. Simulation Study of Stress and Deformation Behaviour of Debonded Laminated Structure

    NASA Astrophysics Data System (ADS)

    Hirwani, C. K.; Mittal, H.; Panda, S. K.; Mahapatra, S. S.; Mandal, S. K.; De, A. K.

    2017-02-01

    The bending strength and deformation characteristics of the debonded laminated plate under the uniformly distributed loading (UDL) have been investigated in this research article. For the simulation study, an internally damaged laminated plate structure model has been developed in ANSYS based on the first-order shear deformable kinematic theory via ANSYS parametric design language (APDL) code. The internal debonding within the laminated structure is incorporated using two sub-laminate approach. Further, the convergence (different mesh densities), as well as the validity (comparing the responses with published results) of the present simulation model, have been performed by solving the deflection responses under the influence of transversely loaded layered structure. Also, to show the coherence of the simulation analysis the results are compared with the experimental bending results of the homemade Glass/Epoxy composite with artificial delamination. For the experimental analysis, Glass/Epoxy laminated composite seeded with delamination at the central mid-plane of the laminate is fabricated using an open mould hand lay-up composites fabrication technique. For the computational purpose, the necessary material properties of fabricated composite plate evaluated experimentally via uniaxial tensile test (Universal Testing Machine INSTRON-1195). Further, the bending (three-point bend test) test is conducted with the help of Universal Testing Machine INSTRON-5967. Finally, the effect different geometrical and material parameters (thickness ratio, modular ratio, constraint conditions) and magnitude of the loading on the static deflection and stress behaviour of the delaminated composite plate are investigated thoroughly by solving different kinds of numerical illustrations and discussed in detail.

  11. Development and trial manufacturing of 1/2-scale partial mock-up of blanket box structure for fusion experimental reactor

    NASA Astrophysics Data System (ADS)

    Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi

    1994-07-01

    Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding.

  12. An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning

    PubMed Central

    Odell, Garrett M.; Foe, Victoria E.

    2008-01-01

    From experiments by Foe and von Dassow (Foe, V.E., and G. von Dassow. 2008. J. Cell Biol. 183:457–470) and others, we infer a molecular mechanism for positioning the cleavage furrow during cytokinesis. Computer simulations reveal how this mechanism depends on quantitative motor-behavior details and explore how robustly this mechanism succeeds across a range of cell sizes. The mechanism involves the MKLP1 (kinesin-6) component of centralspindlin binding to and walking along microtubules to stimulate cortical contractility where the centralspindlin complex concentrates. The majority of astral microtubules are dynamically unstable. They bind most MKLP1 and suppress cortical Rho/myosin II activation because the tips of unstable microtubules usually depolymerize before MKLP1s reach the cortex. A subset of astral microtubules stabilizes during anaphase, becoming effective rails along which MKLP1 can actually reach the cortex. Because stabilized microtubules aim statistically at the equatorial spindle midplane, that is where centralspindlin accumulates to stimulate furrow formation. PMID:18955556

  13. An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning.

    PubMed

    Odell, Garrett M; Foe, Victoria E

    2008-11-03

    From experiments by Foe and von Dassow (Foe, V.E., and G. von Dassow. 2008. J. Cell Biol. 183:457-470) and others, we infer a molecular mechanism for positioning the cleavage furrow during cytokinesis. Computer simulations reveal how this mechanism depends on quantitative motor-behavior details and explore how robustly this mechanism succeeds across a range of cell sizes. The mechanism involves the MKLP1 (kinesin-6) component of centralspindlin binding to and walking along microtubules to stimulate cortical contractility where the centralspindlin complex concentrates. The majority of astral microtubules are dynamically unstable. They bind most MKLP1 and suppress cortical Rho/myosin II activation because the tips of unstable microtubules usually depolymerize before MKLP1s reach the cortex. A subset of astral microtubules stabilizes during anaphase, becoming effective rails along which MKLP1 can actually reach the cortex. Because stabilized microtubules aim statistically at the equatorial spindle midplane, that is where centralspindlin accumulates to stimulate furrow formation.

  14. Practicality of magnetic compression for plasma density control

    DOE PAGES

    Gueroult, Renaud; Fisch, Nathaniel J.

    2016-03-16

    Here, plasma densification through magnetic compression has been suggested for time-resolved control of the wave properties in plasma-based accelerators [P. F. Schmit and N. J. Fisch, Phys. Rev. Lett. 109, 255003 (2012)]. Using particle in cell simulations with real mass ratio, the practicality of large magnetic compression on timescales shorter than the ion gyro-period is investigated. For compression times shorter than the transit time of a compressional Alfven wave across the plasma slab, results show the formation of two counter-propagating shock waves, leading to a highly non-uniform plasma density profile. Furthermore, the plasma slab displays large hydromagnetic like oscillations aftermore » the driving field has reached steady state. Peak compression is obtained when the two shocks collide in the mid-plane. At this instant, very large plasma heating is observed, and the plasmaβ is estimated to be about 1. Although these results point out a densification mechanism quite different and more complex than initially envisioned, these features still might be advantageous in particle accelerators.« less

  15. Finite element analysis of the end notched flexure specimen for measuring Mode II fracture toughness

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Pipes, R. B.

    1986-01-01

    The paper presents a finite element analysis of the end-notched flexure (ENF) test specimen for Mode II interlaminar fracture testing of composite materials. Virtual crack closure and compliance techniques employed to calculate strain energy release rates from linear elastic two-dimensional analysis indicate that the ENF specimen is a pure Mode II fracture test within the constraints of small deflection theory. Furthermore, the ENF fracture specimen is shown to be relatively insensitive to process-induced cracks, offset from the laminate midplane. Frictional effects are investigated by including the contact problem in the finite element model. A parametric study investigating the influence of delamination length, span, thickness, and material properties assessed the accuracy of beam theory expressions for compliance and strain energy release rate, GII. Finite element results indicate that data reduction schemes based upon beam theory underestimate GII by approximately 20-40 percent for typical unidirectional graphite fiber composite test specimen geometries. Consequently, an improved data reduction scheme is proposed.

  16. ELM Triggering with the New PPPL Lithium Granular Injector

    NASA Astrophysics Data System (ADS)

    Mansfield, D. K.; Roquemore, A. L.; Maingi, R.; Hu, J. S.; Liang, Y.; Sun, Z.; Zhang, L.; Zou, G.

    2012-10-01

    A Li granular injector based on a high-speed rotating impeller has been developed at PPPL. The injector is capable of injecting spherical particles with diameters up to 1.3 mm and velocities of up to 100 m/s and has several possible applications. Primarily, the injector was developed as a tool to induce ELMs for ELM pacing experiments in plasmas operating in the H-mode. It can also operate as a real-time wall conditioning tool or as a method to resupply Li during a discharge to devices where Li is applied to the PFC's prior to a discharge. The injector is also capable of horizontally injecting small dust particles of any variety for plasma-dust transport studies. The first injector has recently been successfully installed on the EAST tokamak in Hefei, China where ELMs were induced with near 100% efficiency when 0.7mm spheres were injected at ˜ 40m/s into the midplane SOL. The injector will be described and supporting data for ELM triggering will be presented.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jason J.; Graham, James R.; Pueyo, Laurent

    We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1'' (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side atmore » similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1'' when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ~50 mas between 0farcs4 and 1farcs2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ~4 MJup planets at 4 AU. Lastly, we detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.« less

  18. The Chemistry of Multiply Deuterated Molecules in Protoplanetary Disks: I. The Outer Disk

    NASA Technical Reports Server (NTRS)

    Willacy, K.

    2007-01-01

    We present new models of the deuterium chemistry in protoplanetary disks, including, for the first time, multiply deuterated species. We use these models to explore whether observations in combination with models can give us clues as to which desorption processes occur in disks.We find, in common with other authors, that photodesorption can allow strongly bound molecules such as HDO to exist in the gas phase in a layer above the midplane. Models including this process give the best agreement with the observations. In the midplane, cosmic-ray heating can desorb weakly bound molecules such as CO and N2. We find the observations suggest that N2 is gaseous in this region, but that CO must be retained on the grains to account for the observed DCO+/HCO+. This could be achieved by CO having a higher binding energy than N2 (as may be the case when these molecules are accreted onto water ice) or by a smaller cosmic-ray desorption rate for CO than assumed here, as suggested by recent theoretical work. For gaseous molecules the calculated deuteration can be greatly changed by chemical processing in the disk from the input molecular cloud values. On the grains singly deuterated species tend to retain the D/H ratio set in the molecular cloud, whereas multiply deuterated species are more affected by the disk chemistry. Consequently, the D/H ratios observed in comets may be partly set in the parent cloud and partly in the disk, depending on the molecule.

  19. Generalised ballooning theory of two-dimensional tokamak modes

    NASA Astrophysics Data System (ADS)

    Abdoul, P. A.; Dickinson, D.; Roach, C. M.; Wilson, H. R.

    2018-02-01

    In this work, using solutions from a local gyrokinetic flux-tube code combined with higher order ballooning theory, a new analytical approach is developed to reconstruct the global linear mode structure with associated global mode frequency. In addition to the isolated mode (IM), which usually peaks on the outboard mid-plane, the higher order ballooning theory has also captured other types of less unstable global modes: (a) the weakly asymmetric ballooning theory (WABT) predicts a mixed mode (MM) that undergoes a small poloidal shift away from the outboard mid-plane, (b) a relatively more stable general mode (GM) balloons on the top (or bottom) of the tokamak plasma. In this paper, an analytic approach is developed to combine these disconnected analytical limits into a single generalised ballooning theory. This is used to investigate how an IM behaves under the effect of sheared toroidal flow. For small values of flow an IM initially converts into a MM where the results of WABT are recaptured, and eventually, as the flow increases, the mode asymptotically becomes a GM on the top (or bottom) of the plasma. This may be an ingredient in models for understanding why in some experimental scenarios, instead of large edge localised modes (ELMs), small ELMs are observed. Finally, our theory can have other important consequences, especially for calculations involving Reynolds stress driven intrinsic rotation through the radial asymmetry in the global mode structures. Understanding the intrinsic rotation is significant because external torque in a plasma the size of ITER is expected to be relatively low.

  20. Synthesis of Molecular Oxygen via Irradiation of Ice Grains in the Protosolar Nebula

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Ronnet, T.; Lunine, J. I.; Maggiolo, R.; Wurz, P.; Danger, G.; Bouquet, A.

    2018-05-01

    Molecular oxygen has been detected in the coma of comet 67P/Churyumov–Gerasimenko with a mean abundance of 3.80 ± 0.85% by the ROSINA mass spectrometer on board the Rosetta spacecraft. To account for the presence of this species in comet 67P/Churyumov–Gerasimenko, it has been shown that the radiolysis of ice grain precursors of comets is a viable mechanism in low-density environments, such as molecular clouds. Here, we investigate the alternative possibility that the icy grains present in the midplane of the protosolar nebula were irradiated during their vertical transport between the midplane and the upper layers over a large number of cycles, as a result of turbulent mixing. Consequently, these grains spent a non-negligible fraction of their lifetime in the disk’s upper regions, where the irradiation by cosmic rays was strong. To do so, we used a coupled disk-transport-irradiation model to calculate the time evolution of the molecular oxygen abundance radiolytically produced in ice grains. Our computations show that, even if a significant fraction of the icy particles has followed a back and forth cycle toward the upper layers of the disk over tens of millions of years, a timespan far exceeding the formation timescale of comet 67P/Churyumov–Gerasimenko, the amount of produced molecular oxygen is at least two orders of magnitude lower than the Rosetta observations. We conclude that the most likely scenario remains the formation of molecular oxygen in low-density environments, such as the presolar cloud, prior to the genesis of the protosolar nebula.

  1. Gemini Planet Imager observations of the AU Microscopii debris disk: Asymmetries within one arcsecond

    DOE PAGES

    Wang, Jason J.; Graham, James R.; Pueyo, Laurent; ...

    2015-09-23

    We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1'' (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side atmore » similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1'' when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ~50 mas between 0farcs4 and 1farcs2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ~4 MJup planets at 4 AU. Lastly, we detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jason J.; Graham, James R.; De Rosa, Robert J.

    We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1″ (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side atmore » similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1″ when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ∼50 mas between 0.″4 and 1.″2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ∼4 M{sub Jup} planets at 4 AU. We detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.« less

  3. The Evolution of CO in Protoplanetary Disks During Planet Formation

    NASA Astrophysics Data System (ADS)

    Schwarz, Kamber; Bergin, Edwin

    2018-01-01

    CO has long been used as a tracer of gas mass. However, recent observations have revealed a low CO to dust mass ratio in numerous protoplanetary disks. In at least some of these systems it is the CO, rather than the total gas mass, which is missing. During my PhD I have used models of protoplanetary disk chemistry as well as millimeter observations to explore the causes and extent of CO depletion in disks. My ALMA observations of CO isotopologues in the TW Hya protoplanetary disk revealed that CO is under-abundant in that system by nearly two orders of magnitude, failing to return to ISM abundances even inside the midplane CO snow line. I have also explored the physical conditions needed to remove carbon from gas phase CO via chemically process using a large grid of chemical models. My analysis reveals that in the warm molecular layer, a wide range of physical conditions can result in an order of magnitude reduction of CO in the outer disk. In the inner disk, ionization, such as from cosmic rays, is needed for chemical reprocessing to occur. However, it is very difficult for chemical processes alone to result in two orders of magnitude of depletion, such as is seen in TW Hya and inferred for other disks. In the midplane, where planets form, it is even more difficult to remove carbon from CO without invoking cosmic rays. My work shows that while CO is missing from the gas in protoplanetary disks, chemistry is unlikely to be the sole cause.

  4. Orbital alignment of circumbinary planets that form in misaligned circumbinary discs: the case of Kepler-413b

    NASA Astrophysics Data System (ADS)

    Pierens, A.; Nelson, R. P.

    2018-06-01

    Although most of the circumbinary planets detected by the Kepler spacecraft are on orbits that are closely aligned with the binary orbital plane, the systems Kepler-413 and Kepler-453 exhibit small misalignments of ˜2.5°. One possibility is that these planets formed in a circumbinary disc whose midplane was inclined relative to the binary orbital plane. Such a configuration is expected to lead to a warped and twisted disc, and our aim is to examine the inclination evolution of planets embedded in these discs. We employed 3D hydrodynamical simulations that examine the disc response to the presence of a modestly inclined binary with parameters that match the Kepler-413 system, as a function of disc parameters and binary inclinations. The discs all develop slowly varying warps, and generally display very small amounts of twist. Very slow solid body precession occurs because a large outer disc radius is adopted. Simulations of planets embedded in these discs resulted in the planet aligning with the binary orbit plane for disc masses close to the minimum mass solar nebular, such that nodal precession of the planet was controlled by the binary. For higher disc masses, the planet maintains near coplanarity with the local disc midplane. Our results suggest that circumbinary planets born in tilted circumbinary discs should align with the binary orbit plane as the disc ages and loses mass, even if the circumbinary disc remains misaligned from the binary orbit. This result has important implications for understanding the origins of the known circumbinary planets.

  5. Role of fiber-stitching in eliminating transverse fracture in cross-ply ceramic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, T.J.; Hutchinson, J.W.

    1995-12-31

    A theoretical study of the feasibility of using fiber stitching to prevent transverse matrix cracking in cross-ply ceramic composites is first reported. The prototype problem solved is a curved composite beam subject to pure bending (the C-specimen), which develops a transverse tensile stress Go acting across its circumferential mid-plane. This transverse stress is cause for concern if the beam is unstitched since there is no mechanism to arrest a matrix crack once one becomes critical. Fiber stitches normal to this plane are introduced to bridge a circumferential matrix crack lying along the mid-plane of the specimen. Results are presented formore » the energy release rate of this matrix crack as a function of a nondimensional parameter characterizing the density and fiber sliding stress of the fiber stitches. A parameter is identified which assures the applicability of the classical ACK (Aveston, Cooper and Kelly) limit for a steady-state matrix crack subject to {sigma}{sub 0}. The results obtained can be used to choose the level of stitching such that transverse matrix cracking will be excluded. The second problem we address is thermal delamination in a cross-ply ceramic composite plate due to high temperature gradients applied in the thickness direction. It is shown that a preexistent crack with a size of the order of the plate thickness will propagate unstably when a moderately large through-thickness temperature gradient is enforced. The possibility of using cross-fiber stitches to suppress thermal delamination cracking is discussed.« less

  6. Three dimensional boundary displacement due to stable ideal kink modes excited by external n = 2 magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Willensdorfer, M.; Strumberger, E.; Suttrop, W.; Dunne, M.; Fischer, R.; Birkenmeier, G.; Brida, D.; Cavedon, M.; Denk, S. S.; Igochine, V.; Giannone, L.; Kirk, A.; Kirschner, J.; Medvedeva, A.; Odstrčil, T.; Ryan, D. A.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-11-01

    In low-collisionality (ν\\star) scenarios exhibiting mitigation of edge localized mode (ELMs), stable ideal kink modes at the edge are excited by externally applied magnetic perturbation (MP)-fields. In ASDEX Upgrade these modes can cause three-dimensional (3D) boundary displacements up to the centimeter range. These displacements have been measured using toroidally localized high resolution diagnostics and rigidly rotating n=2 MP-fields with various applied poloidal mode spectra. These measurements are compared to non-linear 3D ideal magnetohydrodynamics (MHD) equilibria calculated by VMEC. Comprehensive comparisons have been conducted, which consider for instance plasma movements due to the position control system, attenuation due to internal conductors and changes in the edge pressure profiles. VMEC accurately reproduces the amplitude of the displacement and its dependencies on the applied poloidal mode spectra. Quantitative agreement is found around the low field side (LFS) midplane. The response at the plasma top is qualitatively compared. The measured and predicted displacements at the plasma top maximize when the applied spectra is optimized for ELM-mitigation. The predictions from the vacuum modeling generally fails to describe the displacement at the LFS midplane as well as at the plasma top. When the applied mode spectra is set to maximize the displacement, VMEC and the measurements clearly surpass the predictions from the vacuum modeling by a factor of four. Minor disagreements between VMEC and the measurements are discussed. This study underlines the importance of the stable ideal kink modes at the edge for the 3D boundary displacement in scenarios relevant for ELM-mitigation.

  7. Harvesting the decay energy of 26Al to drive lightning discharge in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Johansen, Anders; Okuzumi, Satoshi

    2018-01-01

    Chondrules in primitive meteorites likely formed by recrystallisation of dust aggregates that were flash-heated to nearly complete melting. Chondrules may represent the building blocks of rocky planetesimals and protoplanets in the inner regions of protoplanetary discs, but the source of ubiquitous thermal processing of their dust aggregate precursors remains elusive. Here we demonstrate that escape of positrons released in the decay of the short-lived radionuclide 26Al leads to a large-scale charging of dense pebble structures, resulting in neutralisation by lightning discharge and flash-heating of dust and pebbles. This charging mechanism is similar to a nuclear battery where a radioactive source charges a capacitor. We show that the nuclear battery effect operates in circumplanetesimal pebble discs. The extremely high pebble densities in such discs are consistent with conditions during chondrule heating inferred from the high abundance of sodium within chondrules. The sedimented mid-plane layer of the protoplanetary disc may also be prone to charging by the emission of positrons, if the mass density of small dust there is at least an order of magnitude above the gas density. Our results imply that the decay energy of 26Al can be harvested to drive intense lightning activity in protoplanetary discs. The total energy stored in positron emission is comparable to the energy needed to melt all solids in the protoplanetary disc. The efficiency of transferring the positron energy to the electric field nevertheless depends on the relatively unknown distribution and scale-dependence of pebble density gradients in circumplanetesimal pebble discs and in the protoplanetary disc mid-plane layer.

  8. Nongyrotropic electron orbits in collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Zenitani, S.

    2016-12-01

    In order to study inner workings of magnetic reconnection, NASA has recently launched Magnetospheric MultiScale (MMS) spacecraft. It is expected to observe electron velocity distribution functions (VDFs) at high resolution in magnetotail reconnection sites in 2017. Since VDFs are outcomes of many particle orbits, it is important to understand the relation between electron orbits and VDFs. In this work, we study electron orbits and associated VDFs in the electron current layer in magnetic reconnection, by using a two-dimensional particle-in-cell (PIC) simulation. By analyzing millions of electron orbits, we discover several new orbits: (1) Figure-eight-shaped regular orbits inside the super-Alfvenic electron jet, (2) noncrossing Speiser orbits that do not cross the midplane, (3) noncrossing regular orbits on the jet flanks, and (4) nongyrotropic electrons in the downstream of the jet termination region. Properties of these orbits are organized by a theory on particle orbits (Buchner & Zelenyi 1989 JGR). The noncrossing orbits are mediated by the polarization electric field (Hall electric field E_z) near the midplane. These orbits can be understood as electrostatic extensions of the conventional theory. Properties of the super-Alfvenic electron jet are attributed to the traditional Speiser-orbit electrons. On the other hand, the noncrossing electrons are the majority in number density in the jet flanks. This raise a serious question to our present understanding of physics of collisionless magnetic reconnection, which only assumes crossing populations. We will also discuss spatial distribution of energetic electrons and observational signatures of noncrossing electrons. Reference: Zenitani & Nagai (2016), submitted to Phys. Plasmas.

  9. Characterization of Al-Cu-Mg-Ag Alloy RX226-T8 Plate

    NASA Technical Reports Server (NTRS)

    Lach, Cynthia L.; Domack, Marcia S.

    2003-01-01

    Aluminum-copper-magnesium-silver (Al-Cu-Mg-Ag) alloys that were developed for thermal stability also offer attractive ambient temperature strength-toughness combinations, and therefore, can be considered for a broad range of airframe structural applications. The current study evaluated Al-Cu-Mg-Ag alloy RX226-T8 in plate gages and compared performance with sheet gage alloys of similar composition. Uniaxial tensile properties, plane strain initiation fracture toughness, and plane stress tearing resistance of RX226-T8 were examined at ambient temperature as a function of orientation and thickness location in the plate. Properties were measured near the surface and at the mid-plane of the plate. Tensile strengths were essentially isotropic, with variations in yield and ultimate tensile strengths of less than 2% as a function of orientation and through-thickness location. However, ductility varied by more than 15% with orientation. Fracture toughness was generally higher at the mid-plane and greater for the L-T orientation, although the differences were small near the surface of the plate. Metallurgical analysis indicated that the microstructure was primarily recrystallized with weak texture and was uniform through the plate with the exception of a fine-grained layer near the surface of the plate. Scanning electron microscope analysis revealed Al-Cu-Mg second phase particles which varied in composition and were primarily located on grain boundaries parallel to the rolling direction. Fractography of toughness specimens for both plate locations and orientations revealed that fracture occurred predominantly by transgranular microvoid coalescence. Introduction High-strength, low-density Al-Cu-Mg-Ag alloys were initially developed to replace conventional 2000 (Al-Cu-Mg) and 7000 (Al-Zn-Cu-Mg) series aluminum alloys for aircraft structural applications [1]. During the High Speed Civil Transport (HSCT) program, improvements in thermal stability were demonstrated for candidate aircraft wing and fuselage skin materials through the addition of silver to Al-Cu-Mg alloys based on Al 2519 chemistry [2]. Thermal stability of the resulting Al-Cu-Mg-Ag alloys, C415-T8 and C416-T8, was due to co-precipitation of the thermally stable . (AlCu) and ' (Al2Cu) strengthening phases [1-4]. The strength and toughness behavior was investigated for these alloys produced as 0.090-inch thick rolled sheet in the T8 condition and after various thermal exposures. The mechanical properties were shown to be competitive with conventional aircraft alloys, 2519-T8 and 2618-T8 [2]. During the Integral Airframe Structure (IAS) program, advanced aluminum alloys were examined for use in an integrally stiffened airframe structure where the skin and stiffeners would be machined from plate and extruded frames would be mechanically attached (see Figure 1) [5]. Advantages of integrally stiffened structure include reduced part count, and reduced assembly times compared to conventional built-up airframe structure. The near-surface properties of a thick plate are of significance for a machined integrally stiffened airframe structure since this represents the skin location. Properties measured at the mid-plane of the plate are more representative of the stiffener web. RX226 was developed to exploit strength-toughness improvements and thermal stability benefits of Al-Cu-Mg-Ag alloys in plate gages. This study evaluated the microstructure and properties of three gages of plate produced in the T8 condition.

  10. Probe manipulators for Wendelstein 7-X and their interaction with the magnetic topology

    NASA Astrophysics Data System (ADS)

    M, RACK; D, HÖSCHEN; D, REITER; B, UNTERBERG; J, W. COENEN; S, BREZINSEK; O, NEUBAUER; S, BOZHENKOV; G, CZYMEK; Y, LIANG; M, HUBENY; Ch, LINSMEIER; the Wendelstein 7-X Team

    2018-05-01

    Probe manipulators are a versatile addition to typical plasma edge diagnostics. Equipped with material samples they allow for detailed investigation of plasma–wall interaction processes, such as material erosion, deposition or impurity transport pathways. When combined with electrical probes, a study of scrape-off layer and plasma edge density, temperature and flow profiles as well as magnetic topologies is possible. A mid-plane manipulator is already in operation on Wendelstein 7-X. A system in the divertor region is currently under development. In the present paper we discuss the critical issue of heat and power loads, power redistribution and experimental access to the complex magnetic topology of Wendelstein 7-X. All the aforementioned aspects are of relevance for the design and operation of a probe manipulator in a device like Wendelstein 7-X. A focus is put on the topological region that is accessible for the different coil current configurations at Wendelstein 7-X and the power load on the manipulator with respect to the resulting different magnetic configurations. Qualitative analysis of power loads on plasma-facing components is performed using a numerical tracer particle diffusion tool provided via the Wendelstein 7-X Webservices.

  11. Theory of Passive Polymer Translocation Through Amphiphilic Membranes

    NASA Astrophysics Data System (ADS)

    Werner, Marco; Bathmann, Jasper; Baulin, Vladimir; Sommer, Jens-Uwe; ITN-SNAL''Smart Nano-ObjectsAlteration of Lipid-Bilayers''Team

    We propose a theoretical framework for examining the translocation of flexible polymers through amphiphilic membranes: A generic model for monomer-membrane interactions is formulated and the Edwards equation is employed for calculating the free energy landscape of a polymer in a membrane environment. By the example of homopolymers it is demonstrated that polymer adsorption and the symmetry of conformations with respect to the membrane's mid-plane trigger passive polymer translocation in a narrow window of polymer hydrophobicity. We demonstrate that globular conformations can be taken into account by means of a screening of the external potential, which leads to excellent agreement of predicted translocation times with dynamic lattice Monte Carlo (MC) simulations. The work opens a theoretical road-map on how to design translocating flexible polymers by referring to universal phenomena only: adsorption and conformational symmetry. As confirmed by MC simulations on amphiphilic polymers, promising candidates of translocating polymers in practice are short-block amphiphilic copolymers, which in the limit of small block sizes resemble homopolymers on a coarse grained level. We gratefully thank the European Union's funding of the Initial Training Network SNAL (Grant agreement no. 608184) under the 7th Framework Programme.

  12. Nonlocal postbuckling analysis of graphene sheets with initial imperfection based on first order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Soleimani, Ahmad; Naei, Mohammad Hasan; Mashhadi, Mahmoud Mosavi

    In this paper, the first order shear deformation theory (FSDT) is used to investigate the postbuckling behavior of orthotropic single-layered graphene sheet (SLGS) under in-plane loadings. Nonlocal elasticity theory and von-Karman nonlinear model in combination with the isogeometric analysis (IGA) have been applied to study the postbuckling characteristics of SLGSs. In contrast to the classical model, the nonlocal continuum model developed in this work considers the size-effects on the postbuckling characteristics of SLGSs. FSDT takes into account effects of shear deformations through-the-thickness of plate. Geometric imperfection which is defined as a very small transverse displacement of the mid-plane is applied on undeformed nanoplate to create initial deviation in graphene sheet from being perfectly flat. Nonlinear governing equations of motion for SLGS are derived from the principle of virtual work and a variational formulation. At the end, the results are presented as the postbuckling equilibrium paths of SLGS. The influence of various parameters such as edge length, nonlocal parameter, compression ratio, boundary conditions and aspect ratio on the postbuckling path is investigated. The results of this work show the high accuracy of nonlocal FSDT-based analysis for postbuckling behavior of graphene sheets.

  13. Magnetorotational instability in protoplanetary discs: the effect of dust grains

    NASA Astrophysics Data System (ADS)

    Salmeron, Raquel; Wardle, Mark

    2008-08-01

    We investigate the linear growth and vertical structure of the magnetorotational instability (MRI) in weakly ionized, stratified protoplanetary discs. The magnetic field is initially vertical and dust grains are assumed to be well mixed with the gas over the entire vertical dimension of the disc. For simplicity, all the grains are assumed to have the same radius (a = 0.1,1 or 3μm) and constitute a constant fraction (1 per cent) of the total mass of the gas. Solutions are obtained at representative radial locations (R = 5 and 10 au) from the central protostar for a minimum-mass solar nebula model and different choices of the initial magnetic field strength, configuration of the diffusivity tensor and grain sizes. We find that when no grain are present, or they are >~1μm in radius, the mid-plane of the disc remains magnetically coupled for field strengths up to a few gauss at both radii. In contrast, when a population of small grains (a = 0.1μm) is mixed with the gas, the section of the disc within two tidal scaleheights from the mid-plane is magnetically inactive and only magnetic fields weaker than ~50 mG can effectively couple to the fluid. At 5 au, Ohmic diffusion dominates for z/H <~ 1 when the field is relatively weak (B <~ a few milligauss), irrespective of the properties of the grain population. Conversely, at 10 au this diffusion term is unimportant in all the scenarios studied here. High above the mid-plane (z/H >~ 5), ambipolar diffusion is severe and prevents the field from coupling to the gas for all B. Hall diffusion is dominant for a wide range of field strengths at both radii when dust grains are present. The growth rate, wavenumber and range of magnetic field strengths for which MRI-unstable modes exist are all drastically diminished when dust grains are present, particularly when they are small (a ~ 0.1μm). In fact, MRI perturbations grow at 5 au (10 au) for B <~ 160 mG (130 mG) when 3μm grains are mixed with the gas. This upper limit on the field strength is reduced to only ~16 mG (10 mG) when the grain size is reduced to 0.1μm. In contrast, when the grains are assumed to have settled, MRI-unstable modes are found for B <~ 800 mG at 5 au and 250 mG at 10 au. Similarly, as the typical size of the dust grains diminishes, the vertical extent of the dead zone increases, as expected. For 0.1μm grains, the disc is magnetically inactive within two scaleheights of the mid-plane at both radii, but perturbations grow over the entire section of the disc for grain sizes of 1μm or larger. When dust grains are mixed with the gas, perturbations that incorporate Hall diffusion grow faster, and are active over a more extended cross-section of the disc, than those obtained under the ambipolar diffusion approximation. Note that the stabilizing effect of small dust grains (e.g. a = 0.1μm) is not strong enough to completely suppress the perturbations. We find, in fact, that even in this scenario, the magnetic field is able to couple to the gas and shear over a range of fluid conditions. Despite the low-magnetic coupling, MRI modes grow for a range of magnetic field strengths and Hall diffusion largely determines the properties of the perturbations in the inner regions of the disc.

  14. Identificación de objetos extensos en el VVV

    NASA Astrophysics Data System (ADS)

    Baravalle, L.; Alonso, M. V.; Nilo Castellón, J. L.; Minniti, D.

    2017-10-01

    The Vista Variables en la Via Lactea (VVV) is an ESO public survey in the near infrared of the bulge and southern mid-plane of the Milky Way. The main goal of the VVV is the study of the stellar population and variable stars but it can also be useful for extragalactic investigations behind the Galaxy. Using the VVV images and the combination of SExtractor + PSFEx, we have obtained astrometric and photometric data of two peripheric regions of the Galactic disk. Our goal is to identify and characterise the extragalactic sources. In this work we show our detection algorithm and adopted methodology.

  15. The onset of planet formation in brown dwarf disks.

    PubMed

    Apai, Dániel; Pascucci, Ilaria; Bouwman, Jeroen; Natta, Antonella; Henning, Thomas; Dullemond, Cornelis P

    2005-11-04

    The onset of planet formation in protoplanetary disks is marked by the growth and crystallization of sub-micrometer-sized dust grains accompanied by dust settling toward the disk mid-plane. Here, we present infrared spectra of disks around brown dwarfs and brown dwarf candidates. We show that all three processes occur in such cool disks in a way similar or identical to that in disks around low- and intermediate-mass stars. These results indicate that the onset of planet formation extends to disks around brown dwarfs, suggesting that planet formation is a robust process occurring in most young circumstellar disks.

  16. Analysis of a Multi-Machine Database on Divertor Heat Fluxes

    NASA Astrophysics Data System (ADS)

    Makowski, M. A.

    2011-10-01

    A coordinated effort to measure divertor heat flux characteristics in fully attached, similarly shaped H-mode plasmas on C-Mod, DIII-D and NSTX was carried out in 2010 in order to construct a predictive scaling relation applicable to next step devices including ITER, FNSF, and DEMO. Few published scaling laws are available and those that have been published were obtained under widely varying conditions and divertor geometries, leading to conflicting predictions for this critically important quantity. This study was designed to overcome these deficiencies. Corresponding plasma parameters were systematically varied in each tokamak, resulting in a combined data set in which Ip varies by a factor 3, Bt varies by a factor of 14.5, and major radius varies by a factor of 2.6. The derived scaling relation consistently predicts narrower heat flux widths than relations currently in use. Analysis of the combined data set reveals that the primary dependence of the parallel heat flux width is robustly inverse with Ip. All three tokamaks independently demonstrate this dependence. The midplane SOL profiles in DIII-D are also found to steepen with higher Ip, similar to the divertor heat flux profiles. Weaker dependencies on the toroidal field and normalized Greenwald density, fGW, are also found, but vary across devices and with the measure of the heat flux width used, either FWHM or integral width. In the combined data set, the strongest size scaling is with minor radius resulting in an approximately linear dependence on a /Ip . This suggests a scaling correlated with the inverse of the poloidal field, as would be expected for critical gradient or drift-based transport. Supported by the US DOE under DE-AC52-07NA27344 and DE-FC02-04ER54698.

  17. Characterization of the Edge Crack Torsion (ECT) Test for Mode III Fracture Toughness Measurement of Laminated Composites

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.

    2004-01-01

    The edge crack torsion (ECT) test is designed to initiate mode III delamination growth in composite laminates. An ECT specimen is a rectangular laminate, containing an edge delamination at the laminate mid-plane. Torsion load is applied to the specimens, resulting in relative transverse shear sliding of the delaminated faces. The test data reduction schemes are intended to yield initiation values of critical mode III strain energy release rate, G(sub IIIc), that are constant with delamination length. The test has undergone several design changes during its development. The objective of this paper was to determine the suitability of the current ECT test design as a mode III fracture test. To this end, ECT tests were conducted on specimens manufactured from IM7/8552 and specimens made from S2/8552 tape laminates. Several specimens, each with different delamination lengths are tested. Detailed, three-dimensional finite element analyses of the specimens were performed. The analysis results were used to calculate the distribution of mode I, mode II, and mode III strain energy release rate along the delamination front. The results indicated that mode III-dominated delamination growth would be initiated from the specimen center. However, in specimens of both material types, the measured values of G(sub IIIc) exhibited significant dependence on delamination length. Furthermore, there was a large amount of scatter in the data. Load-displacement response of the specimens exhibited significant deviation from linearity before specimen failure. X-radiographs of a sample of specimens revealed that damage was initiated in the specimens prior to failure. Further inspection of the failure surfaces is required to identify the damage and determine that mode III delamination is initiated in the specimens.

  18. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Y. L.; Xie, J. L., E-mail: jlxie@ustc.edu.cn; Yu, C. X.

    2016-11-15

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This “4th generation” MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven bymore » fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy “general optics structure” has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.« less

  19. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    NASA Astrophysics Data System (ADS)

    Zhu, Y. L.; Xie, J. L.; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C.; Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X.; Tobias, B. J.

    2016-11-01

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This "4th generation" MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy "general optics structure" has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.

  20. Nuclear characteristics of a fissioning uranium plasma test reactor with light-water cooling

    NASA Technical Reports Server (NTRS)

    Whitmarsh, C. L., Jr.

    1973-01-01

    An analytical study was performed to determine a design configuration for a cavity test reactor. Test section criteria were that an average flux of 10 to the 15th power neutrons/sq cm/sec (E less than or equal to 0.12 eV) be supplied to a 61-cm-diameter spherical cavity at 200-atm pressure. Design objectives were to minimize required driver power, to use existing fuel-element technology, and to obtain fuel-element life of 10 to 100 full-power hours. Parameter calculations were made on moderator region size and material, driver fuel arrangement, control system, and structure in order to determine a feasible configuration. Although not optimized, a configuration was selected which would meet design criteria. The driver fuel region was a cylindrical annular region, one element thick, of 33 MTR-type H2O-cooled elements (Al-U fuel plate configuration), each 101 cm long. The region between the spherical test cavity and the cylindrical driver fuel region was Be (10 vol. % H2O coolant) with a midplane dimension of 8 cm. Exterior to the driver fuel, the 25-cm-thick cylindrical and axial reflectors were also Be with 10 vol. % H2O coolant. The entire reactor was contained in a 10-cm-thick steel pressure vessel, and the 200-atm cavity pressure was equalized throughout the driver reactor. Fuel-element life was 50 hr at the required driver power of 200 MW. Reactor control would be achieved with rotating poison drums located in the cylindrical reflector region. A control range of about 18 percent delta k/k was required for reactor operation.

  1. Candidate Water Vapor Lines to Locate the H2O Snowline through High-dispersion Spectroscopic Observations. III. Submillimeter H2 16O and H2 18O Lines

    NASA Astrophysics Data System (ADS)

    Notsu, Shota; Nomura, Hideko; Walsh, Catherine; Honda, Mitsuhiko; Hirota, Tomoya; Akiyama, Eiji; Millar, T. J.

    2018-03-01

    In this paper, we extend the results presented in our former papers on using ortho-{{{H}}}2{}16{{O}} line profiles to constrain the location of the H2O snowline in T Tauri and Herbig Ae disks, to include submillimeter para-{{{H}}}2{}16{{O}} and ortho- and para-{{{H}}}2{}18{{O}} lines. Since the number densities of the ortho- and para-{{{H}}}2{}18{{O}} molecules are about 560 times smaller than their 16O analogs, they trace deeper into the disk than the ortho-{{{H}}}2{}16{{O}} lines (down to z = 0, i.e., the midplane). Thus these {{{H}}}2{}18{{O}} lines are potentially better probes of the position of the H2O snowline at the disk midplane, depending on the dust optical depth. The values of the Einstein A coefficients of submillimeter candidate water lines tend to be lower (typically <10‑4 s‑1) than infrared candidate water lines. Thus in the submillimeter candidate water line cases, the local intensity from the outer optically thin region in the disk is around 104 times smaller than that in the infrared candidate water line cases. Therefore, in the submillimeter lines, especially {{{H}}}2{}18{{O}} and para-{{{H}}}2{}16{{O}} lines with relatively lower upper state energies (∼a few 100 K) can also locate the position of the H2O snowline. We also investigate the possibility of future observations with ALMA to identify the position of the water snowline. There are several candidate water lines that trace the hot water gas inside the H2O snowline in ALMA Bands 5–10.

  2. Planetesimal formation during protoplanetary disk buildup

    NASA Astrophysics Data System (ADS)

    Drążkowska, J.; Dullemond, C. P.

    2018-06-01

    Context. Models of dust coagulation and subsequent planetesimal formation are usually computed on the backdrop of an already fully formed protoplanetary disk model. At the same time, observational studies suggest that planetesimal formation should start early, possibly even before the protoplanetary disk is fully formed. Aims: In this paper we investigate under which conditions planetesimals already form during the disk buildup stage, in which gas and dust fall onto the disk from its parent molecular cloud. Methods: We couple our earlier planetesimal formation model at the water snow line to a simple model of disk formation and evolution. Results: We find that under most conditions planetesimals only form after the buildup stage, when the disk becomes less massive and less hot. However, there are parameters for which planetesimals already form during the disk buildup. This occurs when the viscosity driving the disk evolution is intermediate (αv 10-3-10-2) while the turbulent mixing of the dust is reduced compared to that (αt ≲ 10-4), and with the assumption that the water vapor is vertically well-mixed with the gas. Such a αt ≪ αv scenario could be expected for layered accretion, where the gas flow is mostly driven by the active surface layers, while the midplane layers, where most of the dust resides, are quiescent. Conclusions: In the standard picture where protoplanetary disk accretion is driven by global turbulence, we find that no planetesimals form during the disk buildup stage. Planetesimal formation during the buildup stage is only possible in scenarios in which pebbles reside in a quiescent midplane while the gas and water vapor are diffused at a higher rate.

  3. Monte Carlo Neutrino Transport through Remnant Disks from Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Richers, Sherwood; Kasen, Daniel; O'Connor, Evan; Fernández, Rodrigo; Ott, Christian D.

    2015-11-01

    We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. We apply this method to snapshots from two-dimensional simulations of accretion disks left behind by binary neutron star mergers, varying the input physics and comparing to the results obtained with a leakage scheme for the cases of a central black hole and a central hypermassive neutron star. Neutrinos are guided away from the densest regions of the disk and escape preferentially around 45° from the equatorial plane. Neutrino heating is strengthened by MC transport a few scale heights above the disk midplane near the innermost stable circular orbit, potentially leading to a stronger neutrino-driven wind. Neutrino cooling in the dense midplane of the disk is stronger when using MC transport, leading to a globally higher cooling rate by a factor of a few and a larger leptonization rate by an order of magnitude. We calculate neutrino pair annihilation rates and estimate that an energy of 2.8 × 1046 erg is deposited within 45° of the symmetry axis over 300 ms when a central BH is present. Similarly, 1.9 × 1048 erg is deposited over 3 s when an HMNS sits at the center, but neither estimate is likely to be sufficient to drive a gamma-ray burst jet.

  4. H I Kinematics along the Minor Axis of M82

    NASA Astrophysics Data System (ADS)

    Martini, Paul; Leroy, Adam K.; Mangum, Jeffrey G.; Bolatto, Alberto; Keating, Katie M.; Sandstrom, Karin; Walter, Fabian

    2018-03-01

    M82 is one of the best-studied starburst galaxies in the local universe, and is consequently a benchmark for studying star formation feedback at both low and high redshift. We present new VLA H I observations that reveal the cold gas kinematics along the minor axis in unprecedented detail. This includes the detection of H I up to 10 kpc along the minor axis toward the south and beyond 5 kpc to the north. A surprising aspect of these observations is that the line-of-sight H I velocity decreases substantially from about 120 to 50 {km} {{{s}}}-1 from 1.5 to 10 kpc off the midplane. The velocity profile is not consistent with the H I gas cooling from the hot wind. We demonstrate that the velocity decrease is substantially greater than the deceleration expected from gravitational forces alone. If the H I consists of a continuous population of cold clouds, some additional drag force must be present, and the magnitude of the drag force places a joint constraint on the ratio of the ambient medium to the typical cloud size and density. We also show that the H I kinematics are inconsistent with a simple conical outflow centered on the nucleus, but instead require the more widespread launch of the H I over the ∼1 kpc extent of the starburst region. Regardless of the launch mechanism for the H I gas, the observed velocity decrease along the minor axis is sufficiently great that the H I may not escape the halo of M82. The inferred H I outflow rate at 10 kpc off the midplane is much less than 1 {M}ȯ yr‑1.

  5. Global hydromagnetic simulations of a planet embedded in a dead zone: Gap opening, gas accretion, and formation of a protoplanetary jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gressel, O.; Nelson, R. P.; Turner, N. J.

    We present global hydrodynamic (HD) and magnetohydrodynamic (MHD) simulations with mesh refinement of accreting planets embedded in protoplanetary disks (PPDs). The magnetized disk includes Ohmic resistivity that depends on the overlying mass column, leading to turbulent surface layers and a dead zone near the midplane. The main results are: (1) the accretion flow in the Hill sphere is intrinsically three-dimensional for HD and MHD models. Net inflow toward the planet is dominated by high-latitude flows. A circumplanetary disk (CPD) forms. Its midplane flows outward in a pattern whose details differ between models. (2) The opening of a gap magnetically couplesmore » and ignites the dead zone near the planet, leading to stochastic accretion, a quasi-turbulent flow in the Hill sphere, and a CPD whose structure displays high levels of variability. (3) Advection of magnetized gas onto the rotating CPD generates helical fields that launch magnetocentrifugally driven outflows. During one specific epoch, a highly collimated, one-sided jet is observed. (4) The CPD's surface density is ∼30 g cm{sup −2}, small enough for significant ionization and turbulence to develop. (5) The accretion rate onto the planet in the MHD simulation reaches a steady value 8 × 10{sup –3} M {sub ⊕} yr{sup –1} and is similar in the viscous HD runs. Our results suggest that gas accretion onto a forming giant planet within a magnetized PPD with a dead zone allows rapid growth from Saturnian to Jovian masses. As well as being relevant for giant planet formation, these results have important implications for the formation of regular satellites around gas giant planets.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follette, Katherine B.; Close, Laird; Tamura, Motohide

    We present the first near infrared (NIR) spatially resolved images of the circumstellar transitional disk around SR21. These images were obtained with the Subaru HiCIAO camera, adaptive optics, and the polarized differential imaging technique. We resolve the disk in scattered light at H-band for stellocentric 0.''1 {<=} r {<=} 0.''6 (12 {approx}< r {approx}< 75 AU). We compare our results with previously published spatially resolved 880 {mu}m continuum Submillimeter Array images that show an inner r {approx}< 36 AU cavity in SR21. Radiative transfer models reveal that the large disk depletion factor invoked to explain SR21's sub-mm cavity cannot bemore » 'universal' for all grain sizes. Even significantly more moderate depletions ({delta} = 0.1, 0.01 relative to an undepleted disk) than those that reproduce the sub-mm cavity ({delta} {approx} 10{sup -6}) are inconsistent with our H-band images when they are assumed to carry over to small grains, suggesting that surface grains scattering in the NIR either survive or are generated by whatever mechanism is clearing the disk midplane. In fact, the radial polarized intensity profile of our H-band observations is smooth and steeply inwardly-increasing (r {sup -3}), with no evidence of a break at the 36 AU sub-mm cavity wall. We hypothesize that this profile is dominated by an optically thin disk envelope or atmosphere component. We also discuss the compatibility of our data with the previously postulated existence of a sub-stellar companion to SR21 at r {approx} 10-20 AU, and find that we can neither exclude nor verify this scenario. This study demonstrates the power of multiwavelength imaging of transitional disks to inform modeling efforts, including the debate over precisely what physical mechanism is responsible for clearing these disks of their large midplane grains.« less

  7. The Pairing of Accreting Massive Black Holes in Multiphase Circumnuclear Disks: the Interplay Between Radiative Cooling, Star Formation, and Feedback Processes

    NASA Astrophysics Data System (ADS)

    Souza Lima, Rafael; Mayer, Lucio; Capelo, Pedro R.; Bellovary, Jillian M.

    2017-03-01

    We study the orbital decay of a pair of massive black holes (BHs) with masses 5× {10}5 and 107 {M}⊙ , using hydrodynamical simulations of circumnuclear disks (CNDs) with the alternating presence of sub-grid physics, such as radiative cooling, star formation, supernova feedback, BH accretion, and BH feedback. In the absence of such processes, the orbit of the secondary BH decays over timescales of ˜ 10 {Myr} to the center of the CND, where the primary BH resides. When strong dissipation operates in CNDs, fragmentation into massive objects the size of giant molecular clouds with densities in the range 104-107 amu cm-3 occurs, causing stochastic torques and hits that can eject the secondary BH from the midplane. Outside the plane, the low-density medium provides only weak drag, and the BH return is governed by inefficient dynamical friction. In rare cases, clump-BH interactions can lead to a faster decay. Feedback processes lead to outflows, but do not significantly change the overall density of the CND midplane. However, with a spherically distributed BH feedback, a hot bubble is generated behind the secondary, which almost shuts off dynamical friction. We dub this phenomenon “wake evacuation.” It leads to delays in the decay, possibly of ˜ 0.3 {Gyr}. We discuss the non-trivial implications on the discovery space of the eLISA telescope. Our results suggest that the largest uncertainty in predicting BH merger rates lies in the potentially wide variety of galaxy host systems, with different degrees of gas dissipation and heating, yielding decay timescales from ˜ 10 to ˜ 300 {Myr}.

  8. Spectro-astrometry Of H2O And OH In A Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Brown, Logan R.; Gibb, E. L.; Troutman, M. R.

    2012-05-01

    To understand how life originated on Earth, we must investigate how the necessary water and other prebiotic molecules were distributed through the protoplanetary disk from which the solar system formed. To infer this, we study analogs to the early solar system, T Tauri stars, which are surrounded by circumstellar disks. These disks generally have masses on the order of tens of Jupiter masses and extend outward to about 100 AU. These disks have a flared geometry. Of particular interest here is the chemistry of these objects. Disks have three main chemical regions: the cold midplane, warm molecular layer, and hot ionized region (Walsh et. al. 2010). The cold midplane is a cold, dense region where molecules freeze onto dust grains. In the warm molecular layer above that, molecular synthesis is stimulated by increasing temperatures and the evaporation of molecules from dust grains. Above that, stellar and cosmic radiation dissociates and ionizes molecules into constituent radicals, atoms, and ions in the hot ionized disk atmosphere. Spitzer Space Telescope observations found a rich water emission spectrum toward T Tauri star AA Tau (Salyk et al. 2008). How this water is distributed through a protoplanetary disk is of particular interest. This can be determined using a technique called spectro-astrometry that measures the spatial dependence of a spectral feature. We present high-resolution, near-infrared spectroscopic data from the T Tauri star DR Tau, obtained on 16 -18 February 2011 using NIRSPEC at the Keck II telescope. We detected both water and OH in emission and report our spectro-astrometric signals and the derived spatial extent of the gas emission in the disk. Supported by NSF 0908230. Salyk, C. et al. 2008, ApJ, 676, 49 Walsh, C., Miller, T. J., & Nomura, H. 2010 ApJ, 722, 1607

  9. Bipolar H II regions produced by cloud-cloud collisions

    NASA Astrophysics Data System (ADS)

    Whitworth, Anthony; Lomax, Oliver; Balfour, Scott; Mège, Pierre; Zavagno, Annie; Deharveng, Lise

    2018-05-01

    We suggest that bipolar H II regions may be the aftermath of collisions between clouds. Such a collision will produce a shock-compressed layer, and a star cluster can then condense out of the dense gas near the center of the layer. If the clouds are sufficiently massive, the star cluster is likely to contain at least one massive star, which emits ionizing radiation, and excites an H II region, which then expands, sweeping up the surrounding neutral gas. Once most of the matter in the clouds has accreted onto the layer, expansion of the H II region meets little resistance in directions perpendicular to the midplane of the layer, and so it expands rapidly to produce two lobes of ionized gas, one on each side of the layer. Conversely, in directions parallel to the midplane of the layer, expansion of the H II region stalls due to the ram pressure of the gas that continues to fall towards the star cluster from the outer parts of the layer; a ring of dense neutral gas builds up around the waist of the bipolar H II region, and may spawn a second generation of star formation. We present a dimensionless model for the flow of ionized gas in a bipolar H II region created according to the above scenario, and predict the characteristics of the resulting free-free continuum and recombination-line emission. This dimensionless model can be scaled to the physical parameters of any particular system. Our intention is that these predictions will be useful in testing the scenario outlined above, and thereby providing indirect support for the role of cloud-cloud collisions in triggering star formation.

  10. Evaluation of the Edge Crack Torsion (ECT) Test for Mode 3 Interlaminar Fracture Toughness of Laminated Composites

    NASA Technical Reports Server (NTRS)

    Li, Jian; Lee, Edward W.; OBrien, T. Kevin; Lee, Shaw Ming

    1996-01-01

    An analytical and experimental investigation was carried out on G40-800/R6376 graphite epoxy laminates to evaluate the Edge Crack Torsion (ECT) test as a candidate for a standard Mode 3 interlaminar fracture toughness test for laminated composites. The ECT test consists of a (90/(+/- 45)(sub 3)/(+/- 45)(sub 3)/90))(sub s) laminate with a delamination introduced by a non-adhesive film at the mid-plane along one edge and loaded in a special fixture to create torsion along the length of the laminate. Dye penetrate enhanced X-radiograph of failed specimens revealed that the delamination initiated at the middle of the specimen length and propagated in a self similar manner along the laminate mid-plane. A three-dimensional finite element analysis was performed that indicated that a pure Mode 3 delamination exists at the middle of specimen length away from both ends. At the ends near the loading point a small Mode 2 component exists. However, the magnitude of this Mode 2 strain energy release rate at the loading point is small compared to the magnitude of Mode 3 component in the mid-section of the specimen. Hence, the ECT test yielded the desired Mode 3 delamination. The Mode 3 fracture toughness was obtained from a compliance calibration method and was in good agreement with the finite element results. Mode 2 End-Notched Flexure (ENF) tests and Mode 1 Double Cantilever Beam (DCB) tests were also performed for the same composite material. The Mode 1 fracture toughness was much smaller than both the Mode 2 and Mode 3 fracture toughness. The Mode 2 fracture toughness was found to be 75% of the Mode 3 fracture toughness.

  11. Supernova-regulated ISM. V. Space and Time Correlations

    NASA Astrophysics Data System (ADS)

    Hollins, J. F.; Sarson, G. R.; Shukurov, A.; Fletcher, A.; Gent, F. A.

    2017-11-01

    We apply correlation analysis to random fields in numerical simulations of the supernova-driven interstellar medium (ISM) with the magnetic field produced by dynamo action. We solve the magnetohydrodynamic (MHD) equations in a shearing Cartesian box representing a local region of the ISM, subject to thermal and kinetic energy injection by supernova explosions, and parameterized, optically thin radiative cooling. We consider the cold, warm, and hot phases of the ISM separately; the analysis mostly considers the warm gas, which occupies the bulk of the domain. Various physical variables have different correlation lengths in the warm phase: 40,50, and 60 {pc} for the random magnetic field, density, and velocity, respectively, in the midplane. The correlation time of the random velocity is comparable to the eddy turnover time, about {10}7 {year}, although it may be shorter in regions with a higher star formation rate. The random magnetic field is anisotropic, with the standard deviations of its components {b}x/{b}y/{b}z having approximate ratios 0.5/0.6/0.6 in the midplane. The anisotropy is attributed to the global velocity shear from galactic differential rotation and locally inhomogeneous outflow to the galactic halo. The correlation length of Faraday depth along the z axis, 120 {pc}, is greater than for electron density, 60{--}90 {pc}, and the vertical magnetic field, 60 {pc}. Such comparisons may be sensitive to the orientation of the line of sight. Uncertainties of the structure functions of synchrotron intensity rapidly increase with the scale. This feature is hidden in a power spectrum analysis, which can undermine the usefulness of power spectra for detailed studies of interstellar turbulence.

  12. Turbulence in the TW Hya Disk

    NASA Astrophysics Data System (ADS)

    Flaherty, Kevin M.; Hughes, A. Meredith; Teague, Richard; Simon, Jacob B.; Andrews, Sean M.; Wilner, David J.

    2018-04-01

    Turbulence is a fundamental parameter in models of grain growth during the early stages of planet formation. As such, observational constraints on its magnitude are crucial. Here we self-consistently analyze ALMA CO(2–1), SMA CO(3–2), and SMA CO(6–5) observations of the disk around TW Hya and find an upper limit on the turbulent broadening of <0.08c s (α < 0.007 for α defined only within 2–3 pressure scale heights above the midplane), lower than the tentative detection previously found from an analysis of the CO(2–1) data. We examine in detail the challenges of image plane fitting versus directly fitting the visibilities, while also considering the role of the vertical temperature gradient, systematic uncertainty in the amplitude calibration, and assumptions about the CO abundance, as potential sources of the discrepancy in the turbulence measurements. These tests result in variations of the turbulence limit between <0.04c s and <0.13c s , consistently lower than the 0.2–0.4c s found previously. Having ruled out numerous factors, we restrict the source of the discrepancy to our assumed coupling between temperature and density through hydrostatic equilibrium in the presence of a vertical temperature gradient and/or the confinement of CO to a thin molecular layer above the midplane, although further work is needed to quantify the influence of these prescriptions. Assumptions about hydrostatic equilibrium and the CO distribution are physically motivated, and may have a small influence on measuring the kinematics of the gas, but they become important when constraining small effects such as the strength of the turbulence within a protoplanetary disk.

  13. The Abundance of Molecular Hydrogen and Its Correlation with Midplane Pressure in Galaxies: Non-equilibrium, Turbulent, Chemical Models

    NASA Astrophysics Data System (ADS)

    Mac Low, Mordecai-Mark; Glover, Simon C. O.

    2012-02-01

    Observations of spiral galaxies show a strong linear correlation between the ratio of molecular to atomic hydrogen surface density R mol and midplane pressure. To explain this, we simulate three-dimensional, magnetized turbulence, including simplified treatments of non-equilibrium chemistry and the propagation of dissociating radiation, to follow the formation of H2 from cold atomic gas. The formation timescale for H2 is sufficiently long that equilibrium is not reached within the 20-30 Myr lifetimes of molecular clouds. The equilibrium balance between radiative dissociation and H2 formation on dust grains fails to predict the time-dependent molecular fractions we find. A simple, time-dependent model of H2 formation can reproduce the gross behavior, although turbulent density perturbations increase molecular fractions by a factor of few above it. In contradiction to equilibrium models, radiative dissociation of molecules plays little role in our model for diffuse radiation fields with strengths less than 10 times that of the solar neighborhood, because of the effective self-shielding of H2. The observed correlation of R mol with pressure corresponds to a correlation with local gas density if the effective temperature in the cold neutral medium of galactic disks is roughly constant. We indeed find such a correlation of R mol with density. If we examine the value of R mol in our local models after a free-fall time at their average density, as expected for models of molecular cloud formation by large-scale gravitational instability, our models reproduce the observed correlation over more than an order-of-magnitude range in density.

  14. On the metallicity gradients of the Galactic disk as revealed by LSS-GAC red clump stars

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Liu, Xiao-Wei; Zhang, Hua-Wei; Yuan, Hai-Bo; Xiang, Mao-Sheng; Chen, Bing-Qiu; Ren, Juan-Juan; Sun, Ning-Chen; Wang, Chun; Zhang, Yong; Hou, Yong-Hui; Wang, Yue-Fei; Yang, Ming

    2015-08-01

    Using a sample of over 70 000 red clump (RC) stars with 5%-10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC), we study the radial and vertical gradients of the Galactic disk(s) mainly in the anti-center direction, covering a significant volume of the disk in the range of projected Galactocentric radius 7 ≤ RGC ≤ 14 kpc and height from the Galactic midplane 0 ≤ |Z| ≤ 3 kpc. Our analysis shows that both the radial and vertical metallicity gradients are negative across much of the volume of the disk that is probed, and they exhibit significant spatial variations. Near the solar circle (7 ≤ RGC ≤ 115 kpc), the radial gradient has a moderately steep, negative slope of -0.08 dex kpc-1 near the midplane (|Z| < 0.1 kpc), and the slope flattens with increasing |Z|. In the outer disk (11.5 < RGC ≤ 14 kpc), the radial gradients have an essentially constant, much less steep slope of -0.01 dex kpc-1 at all heights above the plane, suggesting that the outer disk may have experienced an evolutionary path different from that of the inner disk. The vertical gradients are found to flatten largely with increasing RGC. However, the vertical gradient of the lower disk (0 ≤ |Z| ≤ 1 kpc) is found to flatten with RGC quicker than that of the upper disk (1 < |Z| ≤ 3 kpc). Our results should provide strong constraints on the theory of disk formation and evolution, as well as the underlying physical processes that shape the disk (e.g. gas flows, radial migration, and internal and external perturbations).

  15. Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case

    NASA Astrophysics Data System (ADS)

    Béthune, William; Lesur, Geoffroy; Ferreira, Jonathan

    2017-04-01

    Context. The planet-forming region of protoplanetary disks is cold, dense, and therefore weakly ionized. For this reason, magnetohydrodynamic (MHD) turbulence is thought to be mostly absent, and another mechanism has to be found to explain gas accretion. It has been proposed that magnetized winds, launched from the ionized disk surface, could drive accretion in the presence of a large-scale magnetic field. Aims: The efficiency and the impact of these surface winds on the disk structure is still highly uncertain. We present the first global simulations of a weakly ionized disk that exhibits large-scale magnetized winds. We also study the impact of self-organization, which was previously demonstrated only in non-stratified models. Methods: We perform numerical simulations of stratified disks with the PLUTO code. We compute the ionization fraction dynamically, and account for all three non-ideal MHD effects: ohmic and ambipolar diffusions, and the Hall drift. Simplified heating and cooling due to non-thermal radiation is also taken into account in the disk atmosphere. Results: We find that disks can be accreting or not, depending on the configuration of the large-scale magnetic field. Magnetothermal winds, driven both by magnetic acceleration and heating of the atmosphere, are obtained in the accreting case. In some cases, these winds are asymmetric, ejecting predominantly on one side of the disk. The wind mass loss rate depends primarily on the average ratio of magnetic to thermal pressure in the disk midplane. The non-accreting case is characterized by a meridional circulation, with accretion layers at the disk surface and decretion in the midplane. Finally, we observe self-organization, resulting in axisymmetric rings of density and associated pressure "bumps". The underlying mechanism and its impact on observable structures are discussed.

  16. Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers.

    PubMed

    Li, Lin; Benson, Craig H; Lawson, Elizabeth M

    2006-02-01

    A study was conducted to assess key factors to include when modeling porosity reductions caused by mineral fouling in permeable reactive barriers (PRBs) containing granular zero valent iron. The public domain codes MODFLOW and RT3D were used and a geochemical algorithm was developed for RT3D to simulate geochemical reactions occurring in PRBs. Results of simulations conducted with the model show that the largest porosity reductions occur between the entrance and mid-plane of the PRB as a result of precipitation of carbonate minerals and that smaller porosity reductions occur between the mid-plane and exit face due to precipitation of ferrous hydroxide. These findings are consistent with field and laboratory observations, as well as modeling predictions made by others. Parametric studies were conducted to identify the most important variables to include in a model evaluating porosity reduction. These studies showed that three minerals (CaCO3, FeCO3, and Fe(OH)2 (am)) account for more than 99% of the porosity reductions that were predicted. The porosity reduction is sensitive to influent concentrations of HCO3-, Ca2+, CO3(2-), and dissolved oxygen, the anaerobic iron corrosion rate, and the rates of CaCO3 and FeCO3 formation. The predictions also show that porosity reductions in PRBs can be spatially variable and mineral forming ions penetrate deeper into the PRB as a result of flow heterogeneities, which reflects the balance between the rate of mass transport and geochemical reaction rates. Level of aquifer heterogeneity and the contrast in hydraulic conductivity between the aquifer and PRB are the most important hydraulic variables affecting porosity reduction. Spatial continuity of aquifer hydraulic conductivity is less significant.

  17. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field

    DOE PAGES

    Lomperski, Stephen; Gerardi, Craig; Pointer, William David

    2015-03-04

    In this paper, we introduce the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70°C discharging from 136 mm hexagonal channels into a 1 × 1 × 1.7 m tank at atmospheric pressure. A 40 m-long, Φ155 µm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points overmore » a 0.76 × 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. In conclusion, sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both.« less

  18. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomperski, Stephen; Gerardi, Craig; Pointer, William David

    In this paper, we introduce the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70°C discharging from 136 mm hexagonal channels into a 1 × 1 × 1.7 m tank at atmospheric pressure. A 40 m-long, Φ155 µm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points overmore » a 0.76 × 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. In conclusion, sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both.« less

  19. The Astronomical Zoo in MIPSGAL I and II

    NASA Astrophysics Data System (ADS)

    Kuchar, Thomas A.; Mizuno, D.; Shenoy, S.; Paladini, R.; Kraemer, K.; Price, S.; Marleau, F.; Padgett, D.; Indebetouw, R.; Ingalls, J.; Ali, B.; Berriman, B.; Boulanger, F.; Cutri, R.; Latter, W.; Miville-Deschenes, M.; Molinari, S.; Rebull, L.; Testi, L.; Shipman, R.; Martin, P.; Carey, S.; Noriega-Crespo, A.

    2006-12-01

    The view of the Galactic Plane at 24 µm is breathtaking. A great part of this beauty arises from the complexity of the Interstellar Medium shaped by endless energetic events driven by HII regions, supernova explosions, Wolf-Rayets, Luminous Blue Variables, and evolved and new born massive stars. A sample of these objects is presented in this poster, gathered from the Multiband Imaging Photometer for Spitzer (MIPS) Survey of the Galactic Plane I and II (MIPSGAL; see Carey et al. 2006, this meeting). The global color properties of these objects are derived by combining the data at 24 and 70um with that from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), and following similar schemes as those used in the Spitzer Surveys of the Magellanic Clouds (Bolatto et al. 2006, astroph-0608561; Meixner et al. 2006, astroph-0606356). This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA in part through an award issued by JPL/Caltech.

  20. Thomson scattering density calibration by Rayleigh and rotational Raman scattering on NSTX.

    PubMed

    LeBlanc, B P

    2008-10-01

    The multipoint Thomson scattering diagnostic measures the profiles of the electron temperature T(e)(R) and density n(e)(R) on the horizontal midplane of NSTX. Normal operation makes use of Rayleigh scattering in nitrogen or argon to derive the density profile. While the Rayleigh scattering n(e)(R) calibration has been validated by comparison to other density measurements and through its correlation with plasma phenomena, it does require dedicated detectors at the laser wavelength in this filter polychromator based diagnostic. The presence of dust and/or stray laser light precludes routine use of these dedicated spectral channels for Thomson scattering measurement. Hence it is of interest to investigate the use of Raman scattering in nitrogen for the purpose of density calibration since it could free up detection equipment, which could then be used for the instrumentation of additional radial channels. In this paper the viewing optics "geometrical factor" profiles obtained from Rayleigh and Raman scattering are compared. While both techniques agree nominally, residual effects on the order of 10% remain and will be discussed.

  1. No-insulation multi-width winding technique for high temperature superconducting magnet.

    PubMed

    Hahn, Seungyong; Kim, Youngjae; Keun Park, Dong; Kim, Kwangmin; Voccio, John P; Bascuñán, Juan; Iwasa, Yukikazu

    2013-10-21

    We present a No-Insulation ( NI ) Multi-Width ( MW ) winding technique for an HTS (high temperature superconductor) magnet consisting of double-pancake (DP) coils. The NI enables an HTS magnet self-protecting and the MW minimizes the detrimental anisotropy in current-carrying capacity of HTS tape by assigning tapes of multiple widths to DP coils within a stack, widest tape to the top and bottom sections and the narrowest in the midplane section. This paper presents fabrication and test results of an NI-MW HTS magnet and demonstrates the unique features of the NI-MW technique: self-protecting and enhanced field performance, unattainable with the conventional technique.

  2. Plasma detachment in divertor tokamaks

    NASA Astrophysics Data System (ADS)

    Leonard, A. W.

    2018-04-01

    Observations of divertor plasma detachment in tokamaks are reviewed. Plasma detachment is characterized in terms of transport and dissipation of power, momentum and particle flux along the open field lines from the midplane to the divertor. Asymmetries in detachment onset and other characteristics between the inboard and outboard divertor plasmas is found to be primarily driven by plasma E× B drifts. The effect of divertor plate geometry and magnetic configuration on divertor detachment is summarized. Control of divertor detachment has progressed with a development of a number of diagnostics to characterize the detached state in real-time. Finally the compatibility of detached divertor operation with high performance core plasmas is examined.

  3. Zodiacal emission. III - Dust near the asteroid belt

    NASA Technical Reports Server (NTRS)

    Reach, William T.

    1992-01-01

    Properties of the zodiacal dust bands are derived from fits to Infrared Astronomical Satellite profiles of the ecliptic. Three observations lead to the conclusion that the dust-band material is spread over a range of heliocentric distances between the asteroid belt and the sun: parallax, color temperature, and wavelength dependence of the band latitudes. The orientations of the midplanes of the bands are found to be typical of asteroids. A model of 'migrating bands', wherein dust is produced near the asteroid belt and spirals into the sun under the influence of Poynting-Robertson drag, is used to explain the range of heliocentric distances of dust-band material.

  4. The diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Cox, Donald P.

    1990-01-01

    The last 20 years of the efforts to understand the diffuse ISM are reviewed, with recent changes of fundamental aspects being highlighted. Attention is given to the interstellar pressure and its components, the weight of the ISM, the midplane pressure contributions, and pressure contributions at 1 kpc. What velocity dispersions, cosmic ray pressure, and magnetic field pressure that can be expected for a gas in a high magnetic field environment is addressed. The intercloud medium is described, with reference to the work of Cox and Slavin (1989). Various caveats are discussed and a number of areas for future investigation are identified. Steps that could be taken toward a successful phase segregation model are discussed.

  5. Hydraulic/Shock Jumps in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Boley, A. C.; Durisen, R. H.

    2006-04-01

    In this paper, we describe the nonlinear outcome of spiral shocks in protoplanetary disks. Spiral shocks, for most protoplanetary disk conditions, create a loss of vertical force balance in the postshock region and result in rapid expansion of the gas perpendicular to the disk midplane. This expansion has characteristics similar to hydraulic jumps, which occur in incompressible fluids. We present a theory to describe the behavior of these hybrids between shocks and hydraulic jumps (shock bores) and then compare the theory to three-dimensional hydrodynamics simulations. We discuss the fully three-dimensional shock structures that shock bores produce and discuss possible consequences for disk mixing, turbulence, and evolution of solids.

  6. Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory. I - Stress and displacement

    NASA Technical Reports Server (NTRS)

    Librescu, L.; Khdeir, A. A.

    1988-01-01

    A simple theory for bending of composite anisotropic plates that are laminated symmetrically about their mid-plane is presented. This theory incorporates transverse shear deformation and transverse normal stress as well as the higher-order effects and fulfills the static conditions on the external boundary planes. Further on, by using Levy-type solutions considered in conjunction with the state space concept, the state of stress and displacement of rectangular plates for a variety of edge conditions is determined and the results are compared to their first-order shear deformation and classical counterparts, obtained by using the same state-space technique.

  7. Improved Density Control in the Pegasus Toroidal Experiment using Internal Fueling

    NASA Astrophysics Data System (ADS)

    Thome, K. E.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Redd, A. J.; Winz, G. R.

    2012-10-01

    Routine density control up to and exceeding the Greenwald limit is critical to key Pegasus operational scenarios, including non-solenoidal startup plasmas created using single-point helicity injection and high β Ohmic plasmas. Confinement scalings suggest it is possible to achieve very high β plasmas in Pegasus by lowering the toroidal field and increasing ne/ng. In the past, Pegasus achieved β ˜ 20% in high recycling Ohmic plasmas without running into any operational boundaries.footnotetext Garstka, G.D. et al., Phys. Plasmas 10, 1705 (2003) However, recent Ohmic experiments have demonstrated that Pegasus currently operates in an extremely low-recycling regime with R < 0.8 and Zeff ˜ 1 using improved vacuum conditioning techniques, such as Ti gettering and cryogenic pumping. Hence, it is difficult to achieve ne/ng> 0.3 with these improved wall conditions. Presently, gas is injected using low-field side (LFS) modified PV-10 valves. To attain high ne/ng operation and coincidentally separate core plasma and local current source fueling two new gas fueling capabilities are under development. A centerstack capillary injection system has been commissioned and is undergoing initial tests. A LFS movable midplane needle gas injection system is currently under design and will reach r/a ˜ 0.25. Initial results from both systems will be presented.

  8. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images

    NASA Astrophysics Data System (ADS)

    Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.

    2014-09-01

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  9. No-insulation multi-width winding technique for high temperature superconducting magnet

    PubMed Central

    Hahn, Seungyong; Kim, Youngjae; Keun Park, Dong; Kim, Kwangmin; Voccio, John P.; Bascuñán, Juan; Iwasa, Yukikazu

    2013-01-01

    We present a No-Insulation (NI) Multi-Width (MW) winding technique for an HTS (high temperature superconductor) magnet consisting of double-pancake (DP) coils. The NI enables an HTS magnet self-protecting and the MW minimizes the detrimental anisotropy in current-carrying capacity of HTS tape by assigning tapes of multiple widths to DP coils within a stack, widest tape to the top and bottom sections and the narrowest in the midplane section. This paper presents fabrication and test results of an NI-MW HTS magnet and demonstrates the unique features of the NI-MW technique: self-protecting and enhanced field performance, unattainable with the conventional technique. PMID:24255549

  10. CRITICAL EXPERIMENT WITH BORAX-V. Internal Superheater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plumlee, K.E.; Baird, Q.L.; Stanford, G.S.

    1963-11-01

    A critical experiment was performed with 12 BORAX-V superheater subassemblies in a central voidable region plus 1228 to 1525 UO/sub 2/ fuel pins (3 wt% enriched) in a peripheral region. Removing water (28% of superheater volume) at room temperature decreased reactivity by 2.2%. The midplane (two- dimensional) peak-to-average power distribution in the voided superheater was approximately 1.24, mostly attributable to flux depressions within insulated fuel boxes. Cadmium ratios are also reported. The experiment was initiated to supplement computational information which might have affected plans for loading the superheater zone into the BORAX-V reactor. No changes were indicated by the experiment.more » (auth)« less

  11. Plasma detachment in divertor tokamaks

    DOE PAGES

    Leonard, A. W.

    2018-02-07

    In this study, observations of divertor plasma detachment in tokamaks are reviewed. Plasma detachment is characterized in terms of transport and dissipation of power, momentum and particle flux along the open field lines from the midplane to the divertor. Asymmetries in detachment onset and other characteristics between the inboard and outboard divertor plasmas is found to be primarily driven by plasmamore » $$\\vec{E}$$ x $$\\vec{B}$$ drifts. The effect of divertor plate geometry and magnetic configuration on divertor detachment is summarized. Control of divertor detachment has progressed with a development of a number of diagnostics to characterize the detached state in real-time. Finally the compatibility of detached divertor operation with high performance core plasmas is examined.« less

  12. Flow structures in the wake of heaving and pitching foils

    NASA Astrophysics Data System (ADS)

    Najdzin, Derek; Pardo, Enrique; Leftwich, Megan C.; Bardet, Philippe M.

    2012-11-01

    A 10-bar mechanism drives a cambering hydrofoil in an oscillatory heaving and pitching motion that replicates the flapping motion of a dolphin tail. The mechanism sits on a force-balance with six strain gages that together measure the forces and moments experienced by the fin during an oscillation. Planar Laser-Induced Fluorescence is used to image the flow structures created downstream of the cambering fin for a range of Reynolds and Strouhal numbers. The images are taken in the mid-plane, parallel to the bottom of the water tunnel. These results are compared to a rigid foil at matching conditions to investigate the role of camber changes during the flapping cycle.

  13. Plasma detachment in divertor tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, A. W.

    In this study, observations of divertor plasma detachment in tokamaks are reviewed. Plasma detachment is characterized in terms of transport and dissipation of power, momentum and particle flux along the open field lines from the midplane to the divertor. Asymmetries in detachment onset and other characteristics between the inboard and outboard divertor plasmas is found to be primarily driven by plasmamore » $$\\vec{E}$$ x $$\\vec{B}$$ drifts. The effect of divertor plate geometry and magnetic configuration on divertor detachment is summarized. Control of divertor detachment has progressed with a development of a number of diagnostics to characterize the detached state in real-time. Finally the compatibility of detached divertor operation with high performance core plasmas is examined.« less

  14. Gravitational Instability of Small Particles in Stratified Dusty Disks

    NASA Astrophysics Data System (ADS)

    Shi, J.; Chiang, E.

    2012-12-01

    Self-gravity is an attractive means of forming the building blocks of planets, a.k.a. the first-generation planetesimals. For ensembles of dust particles to aggregate into self-gravitating, bound structures, they must first collect into regions of extraordinarily high density in circumstellar gas disks. We have modified the ATHENA code to simulate dusty, compressible, self-gravitating flows in a 3D shearing box configuration, working in the limit that dust particles are small enough to be perfectly entrained in gas. We have used our code to determine the critical density thresholds required for disk gas to undergo gravitational collapse. In the strict limit that the stopping times of particles in gas are infinitesimally small, our numerical simulations and analytic calculations reveal that the critical density threshold for gravitational collapse is orders of magnitude above what has been commonly assumed. We discuss how finite but still short stopping times under realistic conditions can lower the threshold to a level that may be attainable. Nonlinear development of gravitational instability in a stratified dusty disk. Shown are volume renderings of dust density for the bottom half of a disk at t=0, 6, 8, and 9 Omega^{-1}. The initial disk first develops shearing density waves. These waves then steep and form long extending filament along the azimuth. These filaments eventually break and form very dense dust clumps. The time evolution of the maximum dust density within the simulation box. Run std32 stands for a standard run which has averaged Toomre's Q=0.5. Qgtrsim 1.0 for the rest runs in the plot (Z1 has twice metallicity than the standard; Q1 has twice Q_g, the Toomre's Q for the gas disk alone; M1 has twice the dust-to-gas ratio than the standard at the midplane; R1 is constructed so that the midplane density exceeds the Roche criterion however the Toomre's Q is above unity.)

  15. Polarimetry and Flux Distribution in the Debris Disk Around HD 32297

    NASA Technical Reports Server (NTRS)

    Asensio-Torres, R.; Janson, M.; Hashimoto, J.; Thalmann, C.; Currie, T.; Buenzli,; Kudo, T.; Kuzuhara, M.; Kusakabe, N.; Akiyama, E.; hide

    2016-01-01

    We present high-contrast angular differential imaging (ADI) observations of the debris disk around HD32297 in H-band, as well as the first polarimetric images for this system in polarized differential imaging (PDI) mode with Subaru/HICIAO. In ADI, we detect the nearly edge-on disk at > or = 5(sigma) levels from approx. 0.45" to approx.1.7" (50-192AU) from the star and recover the spine deviation from the midplane already found in previous works. We also find for the first time imaging and surface brightness (SB) indications for the presence of a gapped structure on both sides of the disk at distances of approx. 0.75" (NE side) and approx. 0.65" (SW side). Global forward-modeling work delivers a best-fit model disk and well-fitting parameter intervals that essentially match previous results, with high-forward scattering grains and a ring located at 110AU. However, this single ring model cannot account for the gapped structure seen in our SB profiles. We create simple double ring models and achieve a satisfactory fit with two rings located at 60 and 95AU, respectively, low-forward scattering grains and very sharp inner slopes. In polarized light we retrieve the disk extending from approx. 0.25-1.6", although the central region is quite noisy and high S/N are only found in the range approx. 0.75-1.2". The disk is polarized in the azimuthal direction, as expected, and the departure from the midplane is also clearly observed. Evidence for a gapped scenario is not found in the PDI data. We obtain a linear polarization degree of the grains that increases from approx. 10% at 0.55" to approx. 25% at 1.6". The maximum is found at scattering angles of 90, either from the main components of the disk or from dust grains blown out to larger radii.

  16. Warm H2O and OH Disk Emission in V1331 Cyg

    NASA Astrophysics Data System (ADS)

    Doppmann, Greg W.; Najita, Joan R.; Carr, John S.; Graham, James R.

    2011-09-01

    We present high-resolution (R = 24, 000) L-band spectra of the young intermediate-mass star V1331 Cyg obtained with NIRSPEC on the Keck II telescope. The spectra show strong, rich emission from water and OH that likely arises from the warm surface region of the circumstellar disk. We explore the use of the new BT2 water line list in fitting the spectra, and we find that it does a much better job than the well-known HITRAN water line list in the observed wavelength range and for the warm temperatures probed by our data. By comparing the observed spectra with synthetic disk emission models, we find that the water and OH emission lines have similar widths (FWHM ~= 18 km s-1). If the line widths are set by disk rotation, the OH and water emission lines probe a similar range of disk radii in this source. The water and OH emission are consistent with thermal emission for both components at a temperature ~1500 K. The column densities of the emitting water and OH are large, ~1021 cm-2 and ~1020 cm-2, respectively. Such a high column density of water is more than adequate to shield the disk midplane from external UV irradiation in the event of complete dust settling out of the disk atmosphere, enabling chemical synthesis to continue in the midplane despite a harsh external UV environment. The large OH-to-water ratio is similar to expectations for UV irradiated disks, although the large OH column density is less easily accounted for. Data presented herein were obtained at the W. M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency's scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  17. The bones of the Milky Way

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, Alyssa A.; Beaumont, Christopher N.; Alves, João

    2014-12-10

    The very long and thin infrared dark cloud 'Nessie' is even longer than had been previously claimed, and an analysis of its Galactic location suggests that it lies directly in the Milky Way's mid-plane, tracing out a highly elongated bone-like feature within the prominent Scutum-Centaurus spiral arm. Re-analysis of mid-infrared imagery from the Spitzer Space Telescope shows that this infrared dark cloud (IRDC) is at least two and possibly as many as five times longer than had originally been claimed by Nessie's discoverers; its aspect ratio is therefore at least 300:1 and possibly as large as 800:1. A careful accountingmore » for both the Sun's offset from the Galactic plane (∼25 pc) and the Galactic center's offset from the (l{sup II} , b{sup II} ) = (0, 0) position shows that the latitude of the true Galactic mid-plane at the 3.1 kpc distance to the Scutum-Centaurus Arm is not b = 0, but instead closer to b = –0.4, which is the latitude of Nessie to within a few parsecs. An analysis of the radial velocities of low-density (CO) and high-density (NH{sub 3}) gas associated with the Nessie dust feature suggests that Nessie runs along the Scutum-Centaurus Arm in position-position-velocity space, which means it likely forms a dense 'spine' of the arm in real space as well. The Scutum-Centaurus Arm is the closest major spiral arm to the Sun toward the inner Galaxy, and, at the longitude of Nessie, it is almost perpendicular to our line of sight, making Nessie the easiest feature to see as a shadow elongated along the Galactic plane from our location. Future high-resolution dust mapping and molecular line observations of the harder-to-find Galactic 'bones' should allow us to exploit the Sun's position above the plane to gain a (very foreshortened) view 'from above' the Milky Way's structure.« less

  18. Natural convection in a cubical cavity with a coaxial heated cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aithal, S. M.

    High-resolution three-dimensional simulations were conducted to investigate the velocity and temperature fields in a cold cubical cavity due to natural convection induced by a centrally placed hot cylinder. Unsteady, incompressible Navier-Stokes equations were solved by using a spectral- element method for Rayleigh numbers ranging from 103 to 109. The effect of spanwise thermal boundary conditions, aspect ratio (radius of the cylinder to the side of the cavity), and spanwise temperature distribution of the inner cylinder on the velocity and thermal fields were investigated for each Rayleigh number. Results from two-dimensional calculations were compared with three-dimensional simulations. The 3D results indicatemore » a complex flow structure in the vicinity of the spanwise walls. The results also show that the imposed thermal wall boundary condition impacts the flow and temperature fields strongly near the spanwise walls. The variation of the local Nusselt number on the cylinder surface and enclosure walls at various spanwise locations was also investigated. The local Nusselt number on the cylinder surface and enclosure walls at the cavity mid-plane (Z = 0) is close to 2D simulations for 103 ≤ Ra ≤ 108. Simulations also show a variation in the local Nusselt number, on both the cylinder surface and the enclosure walls, in the spanwise direction, for all Rayleigh numbers studied in this work. The results also indicate that if the enclosure walls are insulated in the spanwise direction (as opposed to a constant temperature), the peak Nusselt number on the enclosure surface occurs near the spanwise walls and is about 20% higher than the peak Nusselt number at the cavity mid-plane. The temporal characteristics of 3D flows are also different from 2D results for Ra > 108. These results suggest that 3D simulations would be more appropriate for flows with Ra > 108.« less

  19. Mapping H-band Scattered Light Emission in the Mysterious SR21Transitional Disk

    NASA Technical Reports Server (NTRS)

    Follette, Katherine B.; Motohide, Tamura; Hashimoto, Jun; Whitney, Barbara; Grady, Carol; Close, Laird; Andrews, Sean M.; Kwon, Jungmi; Wisniewski, John; Brandt, Timothy D.; hide

    2013-01-01

    We present the first near infrared (NIR) spatially resolved images of the circumstellar transitional disk around SR21. These images were obtained with the Subaru HiCIAO camera, adaptive optics, and the polarized differential imaging technique. We resolve the disk in scattered light at H-band for stellocentric 0.1 < or approx. r < or approx. 0.6 (12 < or approx. r < or approx. 75AU). We compare our results with previously published spatially resolved 880 micron continuum Submillimeter Array images that show an inner r < or approx. 36AU cavity in SR21. Radiative transfer models reveal that the large disk depletion factor invoked to explain SR21's sub-mm cavity cannot be "universal" for all grain sizes. Even significantly more moderate depletions (delta = 0.1, 0.01 relative to an undepleted disk) than those that reproduce the sub-mm cavity (delta approx. 10(exp -6) are inconsistent with our H-band images when they are assumed to carry over to small grains, suggesting that surface grains scattering in the NIR either survive or are generated by whatever mechanism is clearing the disk midplane. In fact, the radial polarized intensity profile of our H-band observations is smooth and steeply inwardly-increasing (r(sup -3), with no evidence of a break at the 36AU sub-mm cavity wall. We hypothesize that this profile is dominated by an optically thin disk envelope or atmosphere component.We also discuss the compatibility of our data with the previously postulated existence of a sub-stellar companion to SR21 at r approx. 10-20AU, and find that we can neither exclude nor verify this scenario. This study demonstrates the power of multiwavelength imaging of transitional disks to inform modeling efforts, including the debate over precisely what physical mechanism is responsible for clearing these disks of their large midplane grains.

  20. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Dan

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averagingmore » procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.« less

  1. A model of habitability within the Milky Way galaxy.

    PubMed

    Gowanlock, M G; Patton, D R; McConnell, S M

    2011-11-01

    We present a model of the galactic habitable zone (GHZ), described in terms of the spatial and temporal dimensions of the Galaxy that may favor the development of complex life. The Milky Way galaxy was modeled using a computational approach by populating stars and their planetary systems on an individual basis by employing Monte Carlo methods. We began with well-established properties of the disk of the Milky Way, such as the stellar number density distribution, the initial mass function, the star formation history, and the metallicity gradient as a function of radial position and time. We varied some of these properties and created four models to test the sensitivity of our assumptions. To assess habitability on the galactic scale, we modeled supernova rates, planet formation, and the time required for complex life to evolve. Our study has improved on other literature on the GHZ by populating stars on an individual basis and modeling Type II supernova (SNII) and Type Ia supernova (SNIa) sterilizations by selecting their progenitors from within this preexisting stellar population. Furthermore, we considered habitability on tidally locked and non-tidally locked planets separately and studied habitability as a function of height above and below the galactic midplane. In the model that most accurately reproduces the properties of the Galaxy, the results indicate that an individual SNIa is ∼5.6× more lethal than an individual SNII on average. In addition, we predict that ∼1.2% of all stars host a planet that may have been capable of supporting complex life at some point in the history of the Galaxy. Of those stars with a habitable planet, ∼75% of planets are predicted to be in a tidally locked configuration with their host star. The majority of these planets that may support complex life are found toward the inner Galaxy, distributed within, and significantly above and below, the galactic midplane.

  2. Divertor, scrape-off layer and pedestal particle dynamics in the ELM cycle on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Laggner, F. M.; Keerl, S.; Gnilsen, J.; Wolfrum, E.; Bernert, M.; Carralero, D.; Guimarais, L.; Nikolaeva, V.; Potzel, S.; Cavedon, M.; Mink, F.; Dunne, M. G.; Birkenmeier, G.; Fischer, R.; Viezzer, E.; Willensdorfer, M.; Wischmeier, M.; Aumayr, F.; the EUROfusion MST1 Team; the ASDEX Upgrade Team

    2018-02-01

    In addition to the relaxation of the pedestal, edge localised modes (ELMs) introduce changes to the divertor and scrape-off layer (SOL) conditions. Their impact on the inter-ELM pedestal recovery is investigated, with emphasis on the electron density (n e) evolution. The typical ELM cycle occurring in an exemplary ASDEX Upgrade discharge interval at moderate applied gas puff and heating power is characterised, utilising several divertor, SOL and pedestal diagnostics. In the studied discharge interval the inner divertor target is detached before the ELM crash, while the outer target is attached. The particles and power expelled by the ELM crash lead to a re-attachment of the inner target plasma. After the ELM crash, the outer divertor target moves into a high recycling regime with large n e in front of the plate, which is accompanied by high main chamber neutral fluxes. On similar timescales, the inner target fully detaches and the high field side high density region (HFSHD) is formed reaching up to the high field side midplane. This state evolves again to the pre-ELM state, when the main chamber neutral fluxes are reduced later in the ELM cycle. Neither the timescale of the appearance of the HFSHD nor the increase of the main chamber neutral fluxes fit the timescale of the n e pedestal, which is faster. It is found that during the n e pedestal recovery, the magnetic activity at the low field side midplane is strongly reduced indicating a lower level of fluctuations. A rough estimation of the particle flux across the pedestal suggests that the particle flux is reduced in this period. In conclusion, the evolution of the n e pedestal is determined by a combination of neutral fluxes, HFSHD and reduced particle flux across the pedestal. A reduced particle flux explains the fast, experimentally observed re-establishment of the n e pedestal best, whereas neutrals and HFSHD impact on the evolution of the SOL and separatrix conditions.

  3. Structure and organization of nanosized-inclusion-containing bilayer membranes

    NASA Astrophysics Data System (ADS)

    Ren, Chun-Lai; Ma, Yu-Qiang

    2009-07-01

    Based on a considerable amount of experimental evidence for lateral organization of lipid membranes which share astonishingly similar features in the presence of different inclusions, we use a hybrid self-consistent field theory (SCFT)/density-functional theory (DFT) approach to deal with bilayer membranes embedded by nanosized inclusions and explain experimental findings. Here, the hydrophobic inclusions are simple models of hydrophobic drugs or other nanoparticles for biomedical applications. It is found that lipid/inclusion-rich domains are formed at moderate inclusion concentrations and disappear with the increase in the concentration of inclusions. At high inclusion content, chaining of inclusions occurs due to the effective depletion attraction between inclusions mediated by lipids. Meanwhile, the increase in the concentration of inclusions can also cause thickening of the membrane and the distribution of inclusions undergoes a layering transition from one-layer structure located in the bilayer midplane to two-layer structure arranged into the two leaflets of a bilayer. Our theoretical predictions address the complex interactions between membranes and inclusions suggesting a unifying mechanism which reflects the competition between the conformational entropy of lipids favoring the formation of lipid- and inclusion-rich domains in lipids and the steric repulsion of inclusions leading to the uniform dispersion.

  4. Preliminary results report: Conasauga near-surface heater experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumhansl, J.L.

    From November 1977 to August 1978, two near-surface heater experiments were operated in two somewhat different stratigraphic sequences within the Conasauga formation which consist predominantly of shale. Specific phenomena investigated were the thermal and mechanical responses of the formation to an applied heat load, as well as the mineralogical changes induced by heating. Objective was to provide a minimal integrated field and laboratory study that would supply a data base which could be used in planning more expensive and complex vault-type experiments in other localities. The experiments were operated with heater power levels of between 6 and 8 kW formore » heater mid-plane temperatures of 385/sup 0/C. The temperature fields within the shale were measured and analysis is in progress. Steady state conditions were achieved within 90 days. Conduction appears to be the principal mechanism of heat transport through the formation. Limited mechanical response measurements consisting of vertical displacement and stress data indicate general agreement with predictions. Posttest data, collection of which await experiment shutdown and cooling of the formation, include the mineralogy of posttest cores, posttest transmissivity measurements and corrosion data on metallurgical samples.« less

  5. The fine nebula dust component: A key to chondrule formation by lightning

    NASA Technical Reports Server (NTRS)

    Wasson, J. T.; Rasmussen, K. L.

    1994-01-01

    Our assessment indicates that chondrule formation by lightning is indeed possible in the solar nebula. Previously the overriding objection to the lightning process of chondrule formation has been that low nebula pressures prevented the buildup of large potential differences. The breakdown potential is controlled by the mean free live distance of an electron. We calculate the mean free live distance in pure H2 gas at 2 AU to be approximately 500 m. A fine dust load constituting 4 wt% of the dust in the dusty midplane region leads to a reduced mean free live distance of only 7 m. Very conservatively we estimate the breakdown potential to be at least 10, 1.8, and 0.7 V/cm at 1, 2, and 3 AU respectively. We set the radius of the lightning bolt equal to the kinetic mean free path of the gas. Our calculations based on electron drift velocities in a fully ionized H2 gas show that first strike durations are 0.96, 3.4, and 7.0 ms at 1, 2, and 3 AU respectively, in much better accordance with the meteoritic evidence than previous estimates of 10-100 s.

  6. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    PubMed

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  7. Gaussian curvature elasticity determined from global shape transformations and local stress distributions: a comparative study using the MARTINI model.

    PubMed

    Hu, Mingyang; de Jong, Djurre H; Marrink, Siewert J; Deserno, Markus

    2013-01-01

    We calculate the Gaussian curvature modulus kappa of a systematically coarse-grained (CG) one-component lipid membrane by applying the method recently proposed by Hu et al. [Biophys. J., 2012, 102, 1403] to the MARTINI representation of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). We find the value kappa/kappa = -1.04 +/- 0.03 for the elastic ratio between the Gaussian and the mean curvature modulus and deduce kappa(m)/kappa(m) = -0.98 +/- 0.09 for the monolayer elastic ratio, where the latter is based on plausible assumptions for the distance z0 of the monolayer neutral surface from the bilayer midplane and the spontaneous lipid curvature K(0m). By also analyzing the lateral stress profile sigma0(z) of our system, two other lipid types and pertinent data from the literature, we show that determining K(0m) and kappa through the first and second moment of sigma0(z) gives rise to physically implausible values for these observables. This discrepancy, which we previously observed for a much simpler CG model, suggests that the moment conditions derived from simple continuum assumptions miss the effect of physically important correlations in the lipid bilayer.

  8. Applications of machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Morello, Giuseppe; Morris, P. W.; Van Dyk, S. D.; Marston, A. P.; Mauerhan, J. C.

    2018-01-01

    We have investigated and applied machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet (WR) candidates. Objects taken from the Spitzer Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIMPSE) catalogue of the infrared objects in the Galactic plane can be classified into different stellar populations based on the colours inferred from their broad-band photometric magnitudes [J, H and Ks from 2 Micron All Sky Survey (2MASS), and the four Spitzer/IRAC bands]. The algorithms tested in this pilot study are variants of the k-nearest neighbours approach, which is ideal for exploratory studies of classification problems where interrelations between variables and classes are complicated. The aims of this study are (1) to provide an automated tool to select reliable WR candidates and potentially other classes of objects, (2) to measure the efficiency of infrared colour selection at performing these tasks and (3) to lay the groundwork for statistically inferring the total number of WR stars in our Galaxy. We report the performance results obtained over a set of known objects and selected candidates for which we have carried out follow-up spectroscopic observations, and confirm the discovery of four new WR stars.

  9. Toughening and healing of continuous fibre reinforced composites with bis-maleimide based pre-pregs

    NASA Astrophysics Data System (ADS)

    Kostopoulos, V.; Kotrotsos, A.; Tsantzalis, S.; Tsokanas, P.; Christopoulos, A. C.; Loutas, T.

    2016-08-01

    Unidirectional (UD) pre-pregs containing self-healing materials based on Diels-Alder reaction bis-maleimide (BMI) polymers were successfully incorporated on the mid-plane of UD carbon fibre reinforced polymers. The fracture toughness of these composites and the introduced healing capability were measured under mode I loading. The interlaminar fracture toughness was enhanced considerably, since the maximum load (P max) of the modified composite increased approximately 1.5 times and the mode I fracture energy (G IC) displayed a significant increase of almost 3.5 times when compared to the reference composites. Furthermore the modified composites displayed a healing efficiency (HE) value of about 30% for P max and 20% for G IC after the first healing, appearing to be an almost stable behaviour after the third healing cycle. The HE displayed a decrease of 20% and 15% for P max and G IC values, respectively, after the fifth healing cycle. During the tests, the monitored acoustic emission (AE) activity of the samples showed that there is no significant difference due to the presence of BMI polymer in terms of AE hits. Moreover, optical microscopy not only showed that the epoxy matrix at the interface is partly infiltrated by the BMI polymer, but it also revealed the presence of pulled out fibres at the fractured surface, indicating ductile behaviour.

  10. Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Traverso, Peter; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.

    2016-10-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two- color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YaG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. The beam line propagates 8 m to the CTH device mid-plane with the beam diameter < 3 mm inside the plasma volume. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and focused onto a custom fiber bundle. The fiber is then re-bundled and routed to a Holospec f/1.8 spectrograph to collect the red-shifted scattered light from 535-565 nm. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Work supported by USDOE Grant DE-FG02-00ER54610.

  11. Development of a high power Helicon system for DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tooker, Joseph F.; Nagy, Alexander; deGrassie, John

    A mechanism for driving current off-axis in high beta tokamaks using fast electromagnetic waves, called Helicons, will be experimentally tested in the DIII-D tokamak. This method is calculated to be more efficient than current drive using electron cyclotron waves or neutral beam injection, and it may be well suited to reactor-like configurations. A low power (100 W) 476 MHz “combline” antenna, consisting of 12 inductively coupled, electrostatically shielded, modular resonators, was recently installed in DIII-D. Initial operation showed that the plasma operating conditions were achieved under which helicon waves can be launched. Plasma operations also showed that the location ofmore » the antenna has not reduced the performance of, or introduced excessive impurities into, the discharges produced in DIII-D. The development of a high power (1 MW) Helicon system is underway. This antenna consists of 30 modules mounted on the inside of the outer wall of the vacuum vessel slightly above the midplane. Carbon tiles around the antenna protect the antenna from thermal plasma streaming along field lines. A 1.2 MW, 476 MHz klystron system will be transferred from the Stanford Linear Accelerator to DIII-D to provide the RF input power to the antenna. Lastly, a description of the design and fabrication of high power antenna and the RF feeds, the klystron and RF distribution systems, and their installation will be presented.« less

  12. Development of a high power Helicon system for DIII-D

    DOE PAGES

    Tooker, Joseph F.; Nagy, Alexander; deGrassie, John; ...

    2017-03-29

    A mechanism for driving current off-axis in high beta tokamaks using fast electromagnetic waves, called Helicons, will be experimentally tested in the DIII-D tokamak. This method is calculated to be more efficient than current drive using electron cyclotron waves or neutral beam injection, and it may be well suited to reactor-like configurations. A low power (100 W) 476 MHz “combline” antenna, consisting of 12 inductively coupled, electrostatically shielded, modular resonators, was recently installed in DIII-D. Initial operation showed that the plasma operating conditions were achieved under which helicon waves can be launched. Plasma operations also showed that the location ofmore » the antenna has not reduced the performance of, or introduced excessive impurities into, the discharges produced in DIII-D. The development of a high power (1 MW) Helicon system is underway. This antenna consists of 30 modules mounted on the inside of the outer wall of the vacuum vessel slightly above the midplane. Carbon tiles around the antenna protect the antenna from thermal plasma streaming along field lines. A 1.2 MW, 476 MHz klystron system will be transferred from the Stanford Linear Accelerator to DIII-D to provide the RF input power to the antenna. Lastly, a description of the design and fabrication of high power antenna and the RF feeds, the klystron and RF distribution systems, and their installation will be presented.« less

  13. Development and clinical application of a length-adjustable water phantom for total body irradiation.

    PubMed

    Chen, Zhi-Wei; Yao, Sheng-Yu; Zhang, Tie-Ning; Zhu, Zhen-Hua; Hu, Zhe-Kai; Lu, Xun

    2012-08-01

    A new type of water phantom which would be specialised for the absorbed dose measurement in total body irradiation (TBI) treatment is developed. Ten millimetres of thick Plexiglas plates were arranged to form a square cube with 300 mm of edge length. An appropriate sleeve-type piston was installed on the side wall, and a tabular Plexiglas piston was positioned inside the sleeve. By pushing and pulling the piston, the length of the self-made water phantom could be varied to meet the required patients' physical sizes. To compare the international standard water phantom with the length-adjustable and the Plexiglas phantoms, absorbed dose for 6-MV X ray was measured by an ionisation chamber at different depths in three kinds of phantoms. In 70 cases with TBI, midplane doses were metered using the length-adjustable and the Plexiglas phantoms for simulating human dimensions, and dose validation was synchronously carried out. There were no significant statistical differences, p > 0.05, through statistical processing of data from the international standard water phantom and the self-designed one. There were significant statistical differences, p < 0.05, between the two sets of data from the standard and the Plexiglas one. In addition, the absolute difference had a positive correlation with the varied depth of the detector in the Plexiglas phantom. Comparing the data of clinical treatment, the differences were all <1 % among the prescription doses and the validation data collected from the self-design water phantom. However, the differences collected from the Plexiglas phantom were increasing gradually from +0.77 to +2.30 % along with increasing body width. Obviously, the difference had a positive correlation with the body width. The results proved that the new length-adjustable water phantom is more accurate for simulating human dimensions than Plexiglas phantom.

  14. Longitudinal Fracture Analysis of a Two-Dimensional Functionally Graded Beam

    NASA Astrophysics Data System (ADS)

    Rizov, V.

    2017-11-01

    Longitudinal fracture in a two-dimensional functionally graded beam is analyzed. The modulus of elasticity varies continuously in the beam cross-section. The beam is clamped in its right-hand end. The external loading consists of one longitudinal force applied at the free end of the lower crack arm. The longitudinal crack is located in the beam mid-plane. The fracture is studied in terms of the strain energy release rate. The solution derived is used to elucidate the effects of material gradients along the height as well as along the width of the beam cross-section on the fracture behaviour. The results obtained indicate that the fracture in two-dimensional functionally graded beams can be regulated efficiently by employing appropriate material gradients.

  15. Small angle slot divertor concept for long pulse advanced tokamaks

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Sang, C. F.; Stangeby, P. C.; Lao, L. L.; Taylor, T. S.; Thomas, D. M.

    2017-04-01

    SOLPS-EIRENE edge code analysis shows that a gas-tight slot divertor geometry with a small-angle (glancing-incidence) target, named the small angle slot (SAS) divertor, can achieve cold, dissipative/detached divertor conditions at relatively low values of plasma density at the outside midplane separatrix. SAS exhibits the following key features: (1) strong enhancement of the buildup of neutral density in a localized region near the plasma strike point on the divertor target; (2) spreading of the cooling front across the divertor target with the slot gradually flaring out from the strike point, thus effectively reducing both heat flux and erosion on the entire divertor target surface. Such a divertor may potentially provide a power and particle handling solution for long pulse advanced tokamaks.

  16. Two-Scale Ion Meandering Caused by the Polarization Electric Field During Asymmetric Reconnection

    NASA Technical Reports Server (NTRS)

    Wang, Shan; Chen, Li-Jen; Hesse, Michael; Bessho, Naoki; Gershman, Daniel J.; Dorelli, John; Giles, Barbara L.; Torbert, Roy B.; Pollock, Craig J.; Strangeway, Robert; hide

    2016-01-01

    Ion velocity distribution functions (VDFs) from a particle-in-cell simulation of asymmetric reconnection are investigated to reveal a two-scale structure of the ion diffusion region (IDR). Ions bouncing in the inner IDR are trapped mainly by the electric field normal to the current sheet (N direction), while those reaching the outer IDR are turned back mainly by the magnetic force. The resulting inner layer VDFs have counter-streaming populations along N with decreasing counter-streaming speeds away from the midplane while maintaining the out-of-plane speed, and the outer layer VDFs exhibit crescent shapes toward the out-of-plane direction. Observations of the above VDF features and the normal electric fields provide evidence for the two-scale meandering motion.

  17. Interactions of toroidally coupled tearing modes in the KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Kim, Gnan; Yun, Gunsu S.; Woo, Minho; Park, Hyeon K.; KSTAR Team2, the

    2018-03-01

    The evolutions of toroidally coupled radially-distant and radially-adjacent tearing modes are visualized in 2D in detail on the Korea superconducting tokamak for advanced research. The coupled tearing modes are in-phase on the out-board mid-plane and become destabilized or compete with each other depending on their spatial separation. When two coupled tearing modes are far apart, both are increasingly destabilized. On the other hand, when they become close to each other, one becomes stabilized while the other becomes destabilized. In such cases, an additional tearing mode is often formed on outer rational flux surface and the three tearing modes compete. The competitions suggest that spatial overlap (merging) of coupled magnetic islands is difficult.

  18. Chemistry in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Semenov, D. A.

    2012-01-01

    In this lecture I discuss recent progress in the understanding of the chemical evolution of protoplanetary disks that resemble our Solar system during the first ten million years. At the verge of planet formation, strong variations of temperature, density, and radiation intensities in these disks lead to a layered chemical structure. In hot, dilute and heavily irradiated atmosphere only simple radicals, atoms, and atomic ions can survive, formed and destroyed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex (organic) species are synthesized.

  19. Two-scale ion meandering caused by the polarization electric field during asymmetric reconnection

    NASA Astrophysics Data System (ADS)

    Wang, Shan; Chen, Li-Jen; Hesse, Michael; Bessho, Naoki; Gershman, Daniel J.; Dorelli, John; Giles, Barbara; Torbert, Roy B.; Pollock, Craig J.; Strangeway, Robert; Ergun, Robert E.; Burch, James L.; Avanov, Levon; Lavraud, Benoit; Moore, Thomas E.; Saito, Yoshifumi

    2016-08-01

    Ion velocity distribution functions (VDFs) from a particle-in-cell simulation of asymmetric reconnection are investigated to reveal a two-scale structure of the ion diffusion region (IDR). Ions bouncing in the inner IDR are trapped mainly by the electric field normal to the current sheet (N direction), while those reaching the outer IDR are turned back mainly by the magnetic force. The resulting inner layer VDFs have counter-streaming populations along N with decreasing counter-streaming speeds away from the midplane while maintaining the out-of-plane speed, and the outer layer VDFs exhibit crescent shapes toward the out-of-plane direction. Observations of the above VDF features and the normal electric fields provide evidence for the two-scale meandering motion.

  20. Limits on plasma anisotropy in a tail-like magnetic field

    NASA Technical Reports Server (NTRS)

    Hill, T. W.; Voigt, G.-H.

    1992-01-01

    The condition of magnetohydrostatic equilibrium implies tight constraints on the degree of anisotropy that is supportable in a magnetotail field geometry. If the plasma pressure tensor is assumed to be gyrotropic at the tail midplane (z = 0), then equilibrium requires that it also be nearly isotropic there, with P-perpendicular sub 0/P-parallel sub 0 in the range 1 +/- delta square, where delta of about 0.1 is the ratio of the normal field component at the symmetry plane to the field strength in the tail lobe. The upper and the lower limits are essentially equivalent, respectively, to the marginal mirror and firehose stability conditions evaluated at z = 0, which have been invoked previously to limit the degree of anisotropy in the plasma sheet.

  1. Last Improvements of the CALMOS Calorimeter Dedicated to Thermal Neutron Flux and Nuclear Heating Measurements inside the OSIRIS Reactor

    NASA Astrophysics Data System (ADS)

    Carcreff, H.; Salmon, L.; Lepeltier, V.; Guyot, J. M.; Bouard, E.

    2018-01-01

    Nuclear heating inside an MTR reactor needs to be known in order to design and to run irradiation experiments which have to fulfill target temperature constraints. To improve the nuclear heating knowledge, an innovative calorimetric system CALMOS has been studied, manufactured and tested for the 70MWth OSIRIS reactor operated by CEA. This device is based on a mobile calorimetric probe which can be inserted in any in-core experimental location and can be moved axially from the bottom of the core to 1000 mm above the core mid-plane. Obtained results and advantages brought by the first CALMOS-1 equipment have been already presented. However, some difficulties appeared with this first version. A thermal limitation in cells did not allow to monitor nuclear heating up to the 70 MW nominal power, and some significant discrepancies were observed at high heating rates between results deduced from the calibration and those obtained by the "zero method". Taking this feedback into account, the new CALMOS-2 calorimeter has been designed both for extending the heating range up to 13W.g-1 and for improving the "zero method" measurement thanks to the implementation of a 4-wires technique. In addition, the new calorimeter has been designed as a real operational measurement system, well suited to characterize and to follow the radiation field evolution throughout the reactor cycle. To meet this requirement, a programmable system associated with a specific software allows automatic complete cell mobility in the core, the data acquisition and the measurements processing. This paper presents the analysis of results collected during the 2015 comprehensive measurement campaign. The 4-wires technique was tested up to around a 4 W.g-1 heating level and allowed to quantify discrepancies between "zero" and calibration methods. Thermal neutron flux and nuclear heating measurements from CALMOS-1 and CALMOS-2 are compared. Thermal neutron flux distributions, obtained with the Self-Power Neutron Detector suited to the CALMOS-2 calorimetric probe, are compared with those obtained with current devices. This campaign allowed to highlight advantages brought by the human machine interface automation, which deeply refined the profiles definition. Finally, the decay of the reactor residual power after shutdown could be performed after shutdown, demonstrating the ability of such type of calorimeter to follow the heating level whatever the thermohydraulic conditions, forced or natural convection regimes.

  2. Integral measurements of neutron and gamma-ray leakage fluxes from the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muckenthaler, F.J.

    This report presents integral measurements of neutron and gamma-ray leakage fluxes from a critical mockup of the Hiroshima bomb Little Boy at Los Alamos National Laobratory with detector systems developed by Oak Ridge National Laboratory. Bonner ball detectors were used to map the neutron fluxes in the horizontal midplane at various distances from the mockup and for selected polar angles, keeping the source-detector separation constant. Gamma-ray energy deposition measurements were made with thermoluminescent detectors at several locations on the iron shell of the source mockup. The measurements were performed as part of a larger progam to provide benchmark data formore » testing the methods used to calculate the radiation released from the Little Boy bomb over Hiroshima. 3 references, 10 figures.« less

  3. Effect of the Edge Radial Electric Field on Neutral Particle Measurements

    NASA Astrophysics Data System (ADS)

    Guldi, C.; Heidbrink, W. W.; Beitzel, T. A.; Burrell, K. H.

    2000-10-01

    Neutral particle measurements in ASDEX were originally interpreted as evidence that the edge radial electric field Er changes gradually at the L-H transition.(W. Herrmann et al.), Phys. Rev. Lett. 75 (1995) 4401. We have relocated an analyzer to an orientation similar to the ASDEX analyzer: at the outer midplane viewing perpendicular ions midway between toroidal field coils. The electric field is measured by charge-exchange recombination and motional stark effect diagnostics. The passive charge exchange signal from the relocated analyzer is usually undetectable but, in discharges with large E_r, the flux of 5 keV neutrals can resemble ASDEX signals. The combined effects of ripple trapping and E_r× B_φ drifts(J.A. Heikkinen et al.), Plasma Phys. Contr. Fusion 40 (1998) 679. may explain the results.

  4. Polarization Science with the ngVLA: magnetic fields and dust properties in cores, disks and on larger scales

    NASA Astrophysics Data System (ADS)

    Matthews, Brenda; Hull, Chat

    2018-01-01

    Polarization capabilities of the ngVLA will enable exploration of a wide range of phenomena including: (1) magnetic fields in protostellar cores and protoplanetary disks via polarized emission from magnetically aligned dust grains and spectral lines, including in regions optically thick at ALMA wavelengths; (2) polarization from dust scattering in disks, (3) spectral-line polarization from the Zeeman and Goldreich-Kylafis effects, and (4) magnetic fields in protostellar jets and OB-star-forming cores via synchrotron emission.We will discuss each of these science drivers in turn, with a particular emphasis on why the ngVLA provides a unique means of probing dust properties in the midplane of protoplanetary disks and hence the building blocks of planets in the innermost regions of disks.

  5. Biasing, acquisition, and interpretation of a dense Langmuir probe array in NSTX.

    PubMed

    Jaworski, M A; Kallman, J; Kaita, R; Kugel, H; LeBlanc, B; Marsala, R; Ruzic, D N

    2010-10-01

    A dense array of 99 Langmuir probes has been installed in the lower divertor region of the National Spherical Torus Experiment (NSTX). This array is instrumented with a system of electronics that allows flexibility in the choice of probes to bias as well as the type of measurement (including standard swept, single probe, triple probe, and operation as passive floating potential and scrape-off-layer SOL current monitors). The use of flush-mounted probes requires careful interpretation. The time dependent nature of the SOL makes swept-probe traces difficult to interpret. To overcome these challenges, the single- and triple-Langmuir probe signals are used in complementary fashion to determine the temperature and density at the probe location. A comparison to midplane measurements is made.

  6. Theory based scaling of edge turbulence and implications for the scrape-off layer width

    NASA Astrophysics Data System (ADS)

    Myra, J. R.; Russell, D. A.; Zweben, S. J.

    2016-11-01

    Turbulence and plasma parameter data from the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40, 557 (2000)] is examined and interpreted based on various theoretical estimates. In particular, quantities of interest for assessing the role of turbulent transport on the midplane scrape-off layer heat flux width are assessed. Because most turbulence quantities exhibit large scatter and little scaling within a given operation mode, this paper focuses on length and time scales and dimensionless parameters between operational modes including Ohmic, low (L), and high (H) modes using a large NSTX edge turbulence database [Zweben et al., Nucl. Fusion 55, 093035 (2015)]. These are compared with theoretical estimates for drift and interchange rates, profile modification saturation levels, a resistive ballooning condition, and dimensionless parameters characterizing L and H mode conditions. It is argued that the underlying instability physics governing edge turbulence in different operational modes is, in fact, similar, and is consistent with curvature-driven drift ballooning. Saturation physics, however, is dependent on the operational mode. Five dimensionless parameters for drift-interchange turbulence are obtained and employed to assess the importance of turbulence in setting the scrape-off layer heat flux width λq and its scaling. An explicit proportionality of the width λq to the safety factor and major radius (qR) is obtained under these conditions. Quantitative estimates and reduced model numerical simulations suggest that the turbulence mechanism is not negligible in determining λq in NSTX, at least for high plasma current discharges.

  7. Theory based scaling of edge turbulence and implications for the scrape-off layer width

    DOE PAGES

    Myra, J. R.; Russell, D. A.; Zweben, S. J.

    2016-11-01

    Turbulence and plasma parameter data from the National Spherical Torus Experiment (NSTX) is examined and interpreted based on various theoretical estimates. In particular, quantities of interest for assessing the role of turbulent transport on the midplane scrape-off layer heat flux width are assessed. Because most turbulence quantities exhibit large scatter and little scaling within a given operation mode, this paper focuses on length and time scales and dimensionless parameters between operational modes including Ohmic, low (L), and high (H) modes using a large NSTX edge turbulence database. These are compared with theoretical estimates for drift and interchange rates, profile modificationmore » saturation levels, a resistive ballooning condition, and dimensionless parameters characterizing L and H mode conditions. It is argued that the underlying instability physics governing edge turbulence in different operational modes is, in fact, similar, and is consistent with curvature-driven drift ballooning. Saturation physics, however, is dependent on the operational mode. Five dimensionless parameters for drift-interchange turbulence are obtained and employed to assess the importance of turbulence in setting the scrape-off layer heat flux width λ q and its scaling. An explicit proportionality of the width λ q to the safety factor and major radius (qR) is obtained under these conditions. Lastly, quantitative estimates and reduced model numerical simulations suggest that the turbulence mechanism is not negligible in determining λ q in NSTX, at least for high plasma current discharges.« less

  8. The evolved circumbinary disk of AC Herculis: a radiative transfer, interferometric, and mineralogical study

    NASA Astrophysics Data System (ADS)

    Hillen, M.; de Vries, B. L.; Menu, J.; Van Winckel, H.; Min, M.; Mulders, G. D.

    2015-06-01

    Context. Many post-asymptotic giant branch (post-AGB) stars in binary systems have an infrared (IR) excess arising from a dusty circumbinary disk. The disk formation, current structure, and further evolution are, however, poorly understood. Aims: We aim to constrain the structure of the circumstellar material around the post-AGB binary and RV Tauri pulsator AC Her. We want to constrain the spatial distribution of the amorphous and of the crystalline dust. Methods: We present very high-quality mid-IR interferometric data that were obtained with the MIDI/VLTI instrument. We analyze the MIDI visibilities and differential phases in combination with the full spectral energy distribution, using the MCMax radiative transfer code, to find a good structure model of AC Her's circumbinary disk. We include a grain size distribution and midplane settling of dust self-consistently in our models. The spatial distribution of crystalline forsterite in the disk is investigated with the mid-IR features, the 69 μm band and the 11.3 μm signatures in the interferometric data. Results: All the data are well fitted by our best model. The inclination and position angle of the disk are precisely determined at i = 50 ± 8° and PA = 305 ± 10°. We firmly establish that the inner disk radius is about an order of magnitude larger than the dust sublimation radius. The best-fit dust grain size distribution shows that significant grain growth has occurred, with a significant amount of mm-sized grains now being settled to the midplane of the disk. A large total dust mass ≥10-3 M⊙ is needed to fit the mm fluxes. By assuming αturb = 0.01, a good fit is obtained with a small grain size power law index of 3.25, combined with a small gas/dust ratio ≤10. The resulting gas mass is compatible with recent estimates employing direct gas diagnostics. The spatial distribution of the forsterite is different from the amorphous dust, as more warm forsterite is needed in the surface layers of the inner disk. Conclusions: The disk in the AC Her system is in a very evolved state, as shown by its small gas/dust ratio and large inner hole. Mid-IR interferometry offers unique constraints, complementary to mid-IR features, for studying the mineralogy in disks. A better uv coverage is needed to constrain in detail the distribution of the crystalline forsterite in the disk of AC Her, but we find strong similarities with the protoplanetary disk HD 100546. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 075.D-0605.

  9. Development of Radiated Power Diagnostics for NSTX-U

    NASA Astrophysics Data System (ADS)

    Reinke, Matthew; van Eden, G. G.; Lovell, Jack; Peterson, Byron; Gray, Travis; Chandra, Rian; Stratton, Brent; Ellis, Robert; NSTX-U Team

    2016-10-01

    New tools to measure radiated power in NSTX-U are under development to support a range of core and boundary physics research. Multiple resistive bolometer pinhole cameras are being built and calibrated to support FY17 operations, all utilizing standard Au-foil sensors from IPT-Albrecht. The radiation in the lower divertor will be measured using two, 8 channel arrays viewing both vertically and radially to enable estimates of the 2D radiation structure. The core radiation will be measured using a 24 channel array viewing tangentially near the midplane, observing the full cross-section from the inner to outer limiter. This enables characterization of the centrifugally-driven in/out radiation asymmetry expected from mid-Z and high-Z impurities in highly rotating NSTX-U plasmas. All sensors utilize novel FPGA-based BOLO8BLF analyzers from D-tAcq Solutions. Resistive bolometer measurements are complemented by an InfraRed Video Bolometer (IRVB) which measures the temperature change of radiation absorber using an IR camera. A prototype IRVB system viewing the lower divertor was installed on NSTX-U for FY16 operations. Initial results from the plasma and benchtop testing are used to demonstrate the relative advantages between IRVB and resistive bolometers. Supported in Part by DE-AC05-00OR22725 & DE-AC02-09CH11466.

  10. Effect of chord-to-diameter ratio on vertical-axis wind turbine wake development

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Araya, Daniel B.; Leftwich, Megan C.

    2017-12-01

    The wake structure of a vertical-axis wind turbine (VAWT) is strongly dependent on the tip-speed ratio, λ, or the tangential speed of the turbine blade relative to the incoming wind speed. The geometry of a turbine can influence λ, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. To investigate this relationship, we present the results of an experiment to characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter ( D), to blade chord ( c), which was chosen to be D/c = 3, 6, and 9. For a fixed freestream Reynolds number based on the blade chord of Re_c = 1.6× 10^3, both two-component particle image velocimetry (PIV) and single-component hot-wire anemometer measurements are taken at the horizontal mid-plane in the wake of each turbine. PIV measurements are ensemble averaged in time and phase averaged with each rotation of the turbine. Hot-wire measurement points are selected to coincide with the edge of the shear layer of each turbine wake, as deduced from the PIV data, which allows for an analysis of the frequency content of the wake due to vortex shedding by the turbine.

  11. Sawtooth mitigation in 3D MHD tokamak modelling with applied magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Veranda, M.; Cappello, S.; Chacón, L.; Escande, D. F.

    2017-01-01

    The effect of magnetic perturbations (MPs) on the sawtoothing dynamics of the internal kink mode in the tokamak is discussed in the framework of nonlinear 3D MHD modelling. Numerical simulations are performed with the pixie3d code (Chacón 2008 Phys. Plasmas 15 056103) based on a D-shaped configuration in toroidal geometry. MPs are applied as produced by two sets of coils distributed along the toroidal direction, one set located above and the other set below the outboard midplane, like in experimental devices such as DIII-D and ASDEX Upgrade. The capability of n  =  1 MPs to affect quasi-periodic sawteeth is shown to depend on the toroidal phase difference Δ φ between the perturbations produced by the two sets of coils. In particular, sawtooth mitigation is obtained for the Δ φ =π phasing, whereas no significant effect is observed for Δ φ =0 . Numerical findings are explained by the interplay between different poloidal harmonics in the spectrum of applied MPs, and appear to be consistent with experiments performed in the DIII-D device. Sawtooth mitigation and stimulation of self-organized helical states by applied MPs have been previously demonstrated in both circular tokamak and reversed-field pinch (RFP) experiments in the RFX-mod device, and in related 3D MHD modelling.

  12. The Shape and Orientation of the Homunculus Nebula

    NASA Astrophysics Data System (ADS)

    Davidson, K.; Gull, T. R.; Ishibashi, K.; Hillier, D. J.

    2000-12-01

    Doppler velocities can be used to trace a cross-section of the bipolar ``Homunculus'' nebula of material ejected from η Car in the giant eruption seen 160 years ago. However, normal ground-based observations have not had sufficient spatial resolution for this task. Data obtained with HST/STIS in March 2000 now provide the first satisfactory results. The configuration's inclination or tilt can be measured reliably, for the first time, by using velocities in the equatorial debris-disk. We find that the angle between bipolar axis and line of sight is close to 41 degrees. Even with excellent data, the bipolar lobe shape is intrinsically difficult to measure. A shape resembling a hot-air balloon fits the data best. Earlier descriptions as ``osculating spheres'' or ``flask-like shapes'' or ``polar caps'' each contain limited elements of truth. The outer or polar parts of each lobe appear to contain more mass than the lobe sides. Our data show interesting structure near the equatorial mid-plane, probably more important than the lobe shapes. In addition to equatorial debris from the great eruption of the 1840's, velocities corresponding to a later ejection time, around 1900, are also present. There are hints of pre-1840 equatorial ejecta too, but these are uncertain. This work is supported by NASA through grant GO-8327 from the STScI.

  13. Coupling of a structural analysis and flow simulation for short-fiber-reinforced polymers: property prediction and transfer of results

    NASA Astrophysics Data System (ADS)

    Kröner, C.; Altenbach, H.; Naumenko, K.

    2009-05-01

    The aim of this paper is to discuss the basic theories of interfaces able to transfer the results of an injection molding analyis of fiber-reinforced polymers, performed by using the commercial computer code Moldflow, to the structural analysis program ABAQUS. The elastic constants of the materials, such as Young's modulus, shear modulus, and Poisson's ratio, which depend on both the fiber content and the degree of fiber orientation, were calculated not by the usual method of "orientation averaging," but with the help of linear functions fitted to experimental data. The calculation and transfer of all needed data, such as material properties, geometry, directions of anisotropy, and so on, is performed by an interface developed. The interface is suit able for midplane elements in Moldflow. It calculates and transfers to ABAQUS all data necessary for the use of shell elements. In addition, a method is described how a nonlinear orthotropic behavior can be modeled starting from the generalized Hooke's law. It is also shown how such a model can be implemented in ABAQUS by means of a material subroutine. The results obtained according to this subroutine are compared with those based on an orthotropic, linear, elastic simulation.

  14. Transfer of line radiation in differentially expanding atmospheres. VI The plane parallel atmosphere with expanding and contracting regions

    NASA Technical Reports Server (NTRS)

    Noerdlinger, P. D.

    1981-01-01

    The non-LTE radiative transfer problem for a two level atom with complete redistribution over a Doppler profile is solved for a plane parallel slab (overlying a radiating photosphere) that has a velocity field which rises symmetrically from zero at either face to a central maximum. Since the velocity gradient reverses, distant layers of the slab become coupled by radiation that jumps intervening layers. The Feautrier method is used, but an iterative variant is also employed as a check in cases where poorly conditioned matrices are encountered. Approximations are developed to explain some of the principal features. It is found that the source function S tends to have two plateaus with values near 2/3 I sub 0 and 1/3 I sub 0, where I sub 0 is the photospheric continuum incident from below; the larger value lies nearer the photosphere. The upper layers sometimes exhibit a rise in S owing to interconnection by radiation to the base. It is noted that the radiation force is largest at the two faces and the midplane. Some line profiles are found to have unusually steep absorptions at rest frequency because of the low excitation in the uppermost, stationary layers.

  15. Advancing Non-Solenoidal Startup on the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Reusch, J. A.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.

    2016-10-01

    The Pegasus experiment utilizes compact, edge-localized current sources (Ainj 2 - 4 cm2, Iinj 10 kA, Vinj 1 kV) for non-solenoidal local helicity injection (LHI) startup. Recent campaigns are comparing two injector geometries that vary the differing relative contributions of DC helicity input and non-solenoidal inductive voltages. A predictive 0-D model that treats the plasma as a resistive element with time-varying inductance and enforces Ip limits from Taylor relaxation was tested with inward growth of the plasma current channel using injectors on the outboard midplane. Strong inductive drive arises from plasma shape evolution and poloidal field (PF) induction. A major unknown in the model is the resistive dissipation, and hence the electron confinement. Te (R) profile measurements in LHI show centrally-peaked Te > 100 eV while the plasma is coupled to the injectors, suggesting LHI confinement is not strongly stochastic. A second campaign utilizes new injectors in the lower divertor region. This geometry trades subtler relaxation field programming and reduced PF induction for higher HI rates. Present efforts are developing relaxation methods at high BT, with relaxation at BT , inj > 0.15 T achieved to date via higher Iinj and PF manipulation. Conceptual design studies of coaxial helicity injection (CHI) and ECH heating systems for Pegasus have been initiated to explore direct comparison of LHI to CHI with and without ECH assist. Supported by US DOE Grants DE-FG02-96ER54375, DE-SC0006928.

  16. Prevention of hypothyroidism related to mantle irradiation for Hodgkin's disease: Preparative phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcial-Vega, V.A.; Order, S.E.; Lastner, G.

    1990-03-01

    To decrease the incidence of hypothyroidism related to mantle irradiation for Hodgkin's disease, we initiated a study designed to protect the thyroid gland using a phantom. A thyroid phantom was filled with technetium-99m. The thyroid phantom was placed inside of its corresponding anterior neck position in a whole body phantom. An anterior scintiscan of the head and neck region demonstrated the radioactivity in the simulated thyroid. A mantle port included a focused block that would shield the thyroid from the anterior port. The phantom was exposed (4 MeV) to 180 cGy (AP-PA) at midplane with lithium fluoride dosimeters in themore » position of the thyroid. The thyroid received an average of 12 cGy from the anterior field and 48 cGy from the posterior field for a total of 60 cGy per treatment or 30% of the prescribed dose. A complete mantle field course of radiation of 4000 cGy would lead to a thyroid dose of 1200 cGy at a daily fractional dose of 60 cGy. We elected not to block the thyroid from the posterior field to prevent shielding and potential underdosage of involved nodal sites. The present study suggests a method of safe and effective thyroid shielding which needs to be tested clinically to determine whether it would reduce the incidence of chemical and clinical hypothyroidism or simply extend the period until occurrence.« less

  17. Progress and achievements of R&D activities for the ITER vacuum vessel

    NASA Astrophysics Data System (ADS)

    Nakahira, M.; Takahashi, H.; Koizumi, K.; Onozuka, M.; Ioki, K.

    2001-04-01

    The Full Scale Sector Model Project, which was initiated in 1995 as one of the Seven Large Projects for ITER R&D, has been continued with the joint effort of the ITER Joint Central Team and the Japanese, Russian Federation and United States Home Teams. The fabrication of a full scale 18° toroidal sector, which is composed of two 9° sectors spliced at the port centre, was successfully completed in September 1997 with a dimensional accuracy of +/-3 mm for the total height and total width. Both sectors were shipped to the test site at the Japan Atomic Energy Research Institute and the integration test of the sectors was begun in October 1997. The integration test involves the adjustment of field joints, automatic narrow gap tungsten inert gas welding of field joints with splice plates and inspection of the joints by ultrasonic testing, as required for the initial assembly of the ITER vacuum vessel. This first demonstration of field joint welding and the performance test of the mechanical characteristics were completed in May 1998, and all the results obtained have satisfied the ITER design. In addition to these tests, integration with the midplane port extension fabricated by the Russian Home Team by using a fully remotized welding and cutting system developed by the US Home Team was completed in March 2000. The article describes the progress, achievements and latest status of the R&D activities for the ITER vacuum vessel.

  18. Experimental detailed power distribution in a fast spectrum thermionic reactor fuel element at the core/BeO reflector interface region

    NASA Technical Reports Server (NTRS)

    Klann, P. G.; Lantz, E.

    1973-01-01

    A zero-power critical assembly was designed, constructed, and operated for the prupose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power conversion system. The critical assembly was modified to simulate a fast spectrum advanced thermionics reactor by: (1) using BeO as a reflector in place of some of the existing molybdenum, (2) substituting Nb-1Zr tubing for some of the existing Ta tubing, and (3) inserting four full-scale mockups of thermionic type fuel elements near the core and BeO reflector boundary. These mockups were surrounded with a buffer zone having the equivalent thermionic core composition. In addition to measuring the critical mass of this thermionic configuration, a detailed power distribution in one of the thermionic element stages in the mixed spectrum region was measured. A power peak to average ratio of two was observed for this fuel stage at the midplane of the core and adjacent to the reflector. Also, the power on the outer surface adjacent to the BeO was slightly more than a factor of two larger than the power on the inside surface of a 5.08 cm (2.0 in.) high annular fuel segment with a 2.52 cm (0.993 in. ) o.d. and a 1.86 cm (0.731 in.) i.d.

  19. DYNAMICS OF SOLIDS IN THE MIDPLANE OF PROTOPLANETARY DISKS: IMPLICATIONS FOR PLANETESIMAL FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai Xuening; Stone, James M., E-mail: xbai@astro.princeton.ed, E-mail: jstone@astro.princeton.ed

    2010-10-20

    We present local two-dimensional and three-dimensional hybrid numerical simulations of particles and gas in the midplane of protoplanetary disks (PPDs) using the Athena code. The particles are coupled to gas aerodynamically, with particle-to-gas feedback included. Magnetorotational turbulence is ignored as an approximation for the dead zone of PPDs, and we ignore particle self-gravity to study the precursor of planetesimal formation. Our simulations include a wide size distribution of particles, ranging from strongly coupled particles with dimensionless stopping time {tau}{sub s} {identical_to} {Omega}t{sub stop} = 10{sup -4} (where {Omega} is the orbital frequency, t{sub stop} is the particle friction time) tomore » marginally coupled ones with {tau}{sub s} = 1, and a wide range of solid abundances. Our main results are as follows. (1) Particles with {tau}{sub s} {approx}> 10{sup -2} actively participate in the streaming instability (SI), generate turbulence, and maintain the height of the particle layer before Kelvin-Helmholtz instability is triggered. (2) Strong particle clumping as a consequence of the SI occurs when a substantial fraction of the solids are large ({tau}{sub s} {approx}> 10{sup -2}) and when height-integrated solid-to-gas mass ratio Z is super-solar. We construct a toy model to offer an explanation. (3) The radial drift velocity is reduced relative to the conventional Nakagawa-Sekiya-Hayashi (NSH) model, especially at high Z. Small particles may drift outward. We derive a generalized NSH equilibrium solution for multiple particle species which fits our results very well. (4) Collision velocity between particles with {tau}{sub s} {approx}> 10{sup -2} is dominated by differential radial drift, and is strongly reduced at larger Z. This is also captured by the multi-species NSH solution. Various implications for planetesimal formation are discussed. In particular, we show that there exist two positive feedback loops with respect to the enrichment of local disk solid abundance and grain growth. All these effects promote planetesimal formation.« less

  20. Sustained Accretion on Gas Giants Surrounded by Low-Turbulence Circumplanetary Disks

    NASA Astrophysics Data System (ADS)

    D'Angelo, Gennaro; Marzari, Francesco

    2015-11-01

    Gas giants more massive than Saturn acquire most of their envelope while surrounded by a circumplanetary disk (CPD), which extends over a fraction of the planet’s Hill radius. Akin to circumstellar disks, CPDs may be subject to MRI-driven turbulence and contain low-turbulence regions, i.e., dead zones. It was suggested that CPDs may inhibit sustained gas accretion, thus limiting planet growth, because gas transport through a CPD may be severely reduced by a dead zone, a consequence at odds with the presence of Jupiter-mass (and larger) planets. We studied how an extended dead zone influences gas accretion on a Jupiter-mass planet, using global 3D hydrodynamics calculations with mesh refinements. The accretion flow from the circumstellar disk to the CPD is resolved locally at the length scale Rj, Jupiter's radius. The gas kinematic viscosity is assumed to be constant and the dead zone around the planet is modeled as a region of much lower viscosity, extending from ~Rj out to ~60Rj and off the mid-plane for a few CPD scale heights. We obtain accretion rates only marginally smaller than those reported by, e.g., D'Angelo et al. (2003), Bate et al. (2003), Bodenheimer et al. (2013), who applied the same constant kinematic viscosity everywhere, including in the CPD. As found by several previous studies (e.g., D’Angelo et al. 2003; Bate et al. 2003; Tanigawa et al. 2012; Ayliffe and Bate 2012; Gressel et al. 2013; Szulágyi et al. 2014), the accretion flow does not proceed through the CPD mid-plane but rather at and above the CPD surface, hence involving MRI-active regions (Turner et al. 2014). We conclude that the presence of a dead zone in a CPD does not inhibit gas accretion on a giant planet. Sustained accretion in the presence of a CPD is consistent not only with the formation of Jupiter but also with observed extrasolar planets more massive than Jupiter. We place these results in the context of the growth and migration of a pair of giant planets locked in the 2:1 mean motion resonance

  1. SU-E-T-92: Achieving Desirable Lung Doses in Total Body Irradiation Based On in Vivo Dosimetry and Custom Tissue Compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, G; Shiu, A; Zhou, S

    Purpose: To achieve desirable lung doses in total body irradiation (TBI) based on in vivo dosimetry and custom tissue compensation. Methods: The 15 MV photon beam of a Varian TrueBeam STx linac was used for TBI. Patients were positioned in the lateral decubitus position for AP/PA treatment delivery. Dose was calculated using the midpoint of the separation distance across the patient’s umbilicus. Patients received 200 cGy twice daily for 3 days. The dose rate at the patient’s midplane was approximately 10 cGy/min. Cerrobend blocks with a 5-HVL thickness were used for the primary lung shielding. A custom styrofoam holder formore » rice-flour filled bags was created based on the lung block cutouts. This was used to provide further lung shielding based on in vivo dose measurements. Lucite plates and rice-flour bags were placed in the head, neck, chest, and lower extremity regions during the treatment to compensate for the beam off-axis output variations. Two patients were included in the study. Patients 1 and 2 received a craniospinal treatment (1080 cGy) and a mediastinum treatment (2520 cGy), respectively, before the TBI. During the TBI nanoDot dosimeters were placed on the patient skin in the forehead, neck, umbilicus, and lung regions for dose monitoring. The doses were readout immediately after the treatment. Based on the readings, fine tuning of the thickness of the rice-flour filled bags was exploited to achieve the desirable lung doses. Results: For both patients the mean lung doses, which took into consideration all treatments, were controlled within 900 +/−10% cGy, as desired. Doses to the forehead, neck, and umbilicus were achieved within +/−10% of the prescribed dose (1200 cGy). Conclusion: A reliable and robust method was developed to achieve desirable lung doses and uniform body dose in TBI based on in vivo dosimetry and custom tissue compensator.« less

  2. Effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli–Euler beam

    PubMed Central

    Thomsen, Jon Juel

    2016-01-01

    The paper deals with analytically predicting the effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli–Euler beam performing bending oscillations. Two cases are considered: (i) large transverse deflections, where nonlinear (true) curvature, nonlinear material and nonlinear inertia owing to longitudinal motions of the beam are taken into account, and (ii) mid-plane stretching nonlinearity. A novel approach is employed, the method of varying amplitudes. As a result, the isolated as well as combined effects of the considered sources of nonlinearities are revealed. It is shown that nonlinear inertia has the most substantial impact on the dispersion relation of a non-uniform beam by removing all frequency band-gaps. Explanations of the revealed effects are suggested, and validated by experiments and numerical simulation. PMID:27118899

  3. Free Vibration Study of Anti-Symmetric Angle-Ply Laminated Plates under Clamped Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Viswanathan, K. K.; Karthik, K.; Sanyasiraju, Y. V. S. S.; Aziz, Z. A.

    2016-11-01

    Two type of numerical approach namely, Radial Basis Function and Spline approximation, used to analyse the free vibration of anti-symmetric angle-ply laminated plates under clamped boundary conditions. The equations of motion are derived using YNS theory under first order shear deformation. By assuming the solution in separable form, coupled differential equations obtained in term of mid-plane displacement and rotational functions. The coupled differential is then approximated using Spline function and radial basis function to obtain the generalize eigenvalue problem and parametric studies are made to investigate the effect of aspect ratio, length-to-thickness ratio, number of layers, fibre orientation and material properties with respect to the frequency parameter. Some results are compared with the existing literature and other new results are given in tables and graphs.

  4. Initial results of the high resolution edge Thomson scattering upgrade at DIII-D.

    PubMed

    Eldon, D; Bray, B D; Deterly, T M; Liu, C; Watkins, M; Groebner, R J; Leonard, A W; Osborne, T H; Snyder, P B; Boivin, R L; Tynan, G R

    2012-10-01

    Validation of models of pedestal structure is an important part of predicting pedestal height and performance in future tokamaks. The Thomson scattering diagnostic at DIII-D has been upgraded in support of validating these models. Spatial and temporal resolution, as well as signal to noise ratio, have all been specifically enhanced in the pedestal region. This region is now diagnosed by 20 view-chords with a spacing of 6 mm and a scattering length of just under 5 mm sampled at a nominal rate of 250 Hz. When mapped to the outboard midplane, this corresponds to ~3 mm spacing. These measurements are being used to test critical gradient models, in which pedestal gradients increase in time until a threshold is reached. This paper will describe the specifications of the upgrade and present initial results of the system.

  5. A method for determining poloidal rotation from poloidal asymmetry in toroidal rotation (invited)

    DOE PAGES

    Chrystal, Chrystal; Burrell, Keith H.; Grierson, Brian A.; ...

    2014-08-08

    A new diagnostic has been developed on DIII-D that determines the impurity poloidal rotation from the poloidal asymmetry in the toroidal angular rotation velocity. This asymmetry is measured with recently added tangential charge exchange viewchords on the high-field side of the tokamak midplane. Measurements are made on co- and counter-current neutral beams, allowing the charge exchange cross section effect to be measured and eliminating the need for atomic physics calculations. The diagnostic implementation on DIII-D restricts the measurement range to the core (r/a < 0.6) where, relative to measurements made with the vertical charge exchange system, the spatial resolution ismore » improved. Furthermore, significant physics results have been obtained with this new diagnostic; for example, poloidal rotation measurements that significantly exceed neoclassical predictions.« less

  6. Hydraulic/Shock-Jumps In Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Boley, A. C.; Durisen, R. H.

    2005-12-01

    Spiral shocks, for most protoplanetary disk conditions, create a loss of vertical force balance in the post-shock region and result in rapid expansion of the gas perpendicular to the disk midplane. This expansion has characteristics similar to hydraulic-jumps, which occur in incompressible fluids. We present a theory to describe the behavior of these hydraulic/shock-jump hybrids (hs-jumps) and then compare the theory to three-dimensional hydrodynamics simulations. We discuss the fully three-dimensional shock structures that hs-jumps produce and discuss possible consequences of hs-jumps for disk mixing, turbulence, and evolution of solids. A. C. B. was supported in part by an Indiana Space Grant Consortium fellowship and a NASA Graduate Student Research Program fellowship; R. H. D. was supported in part by NASA grants NAGS-11964 and NNG05GN11G.

  7. An Investigation of the Ionization Structure of the Carina Spiral Arm with WHAM

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert A.; Krishnarao, Dhanesh; Haffner, L. Matthew

    2018-01-01

    Recent investigations of the Sagittarius-Carina spiral arm with the Wisconsin H-alpha Mapper (Krishnarao et al 2017) show the presence of ionized gas stretching up to three kiloparsecs above and below the Carina section of this spiral arm. This arm segment, which wraps outside the solar circle in the fourth quadrant of the Galactic disk, seems to be unusual when compared to the other Milky Way spiral arms measured with WHAM. We review the status of what is known about the vertical ionization structure of the spiral arms of the Milky Way Galaxy and relate the properties of this spiral arm section to recent investigations of midplane HII regions and star formation in the Milky Way disk. We discuss potential implications of this star formation and ionization for our understanding of Milky Way Galactic structure.

  8. Analysis of the Browns Ferry Unit 3 irradiation experiments. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, G.L.

    1984-11-01

    The results of the analysis of two experiments performed at the Browns Ferry-3 reactor are presented. These calculations utilize state-of-the-art neutron transport techniques and a new neutron cross-section library that has been developed for LWR applications. The calculations agree well with the experimental data obtained in irradiations inside the reactor vessel. For the measurements performed in the reactor cavity, the calculations agree well at the reactor midplane. Accurate determination of the axial distribution of the neutron fluence in the reactor cavity depends on having a concise representation of the axial-void distribution in the core. Detailed data are presented describing themore » procedures used in the generation of the new cross-section library that has been named SAILOR. This library is available from the Radiation-Shielding Information Center.« less

  9. PC software package to confront multimodality images and a stereotactic atlas in neurosurgery

    NASA Astrophysics Data System (ADS)

    Barillot, Christian; Lemoine, Didier; Gibaud, Bernard; Toulemont, P. J.; Scarabin, Jean-Marie

    1990-07-01

    The aim of this application is to interactively transfer information between CT, MRI or DSA data and a 3D stereotactic atlas digitized on a C. Based on a 3D organization of data, this system is devoted to assist a neurosurgeon in surgical planning by numerically cross-assigning information between heterogeneous data (in-vivo or atlas). All these images can be retrieved in digital form from the PACS central archive (SIRENE PACS system). The basic feature of this confrontation is the Talairach's proportional squaring which consists in dividing the 3D cerebral space in independently deformable sub-parts. This 3D model is based on anatomical structures such as the AC-PC line and its two associated vertical lines VAC and VPC. Based on this proportional squaring, the atlas has been digitized in order to get atlas plates along the three orthogonal directions of this geometrical reference (axial, coronal, sagittal). The registration of in-vivo data to the proportional squaring is done by extracting either external framework landmarks or anatomical reference structures (i.e. AC and PC structures on the MRI sagittal mid-plane image). Geometrical transformations and scaling are then recorded for each modality or acquisition according to the proportional squaring. These transformations make for instance possible the transfer of a 3D point of a MRI examination to its 3D location within the proportional squaring and furthermore to its 3D location within another data set (in-vivo or atlas). From that stage, the application gives the choice to the neurosurgeon to select any confrontation between input data (in-vivo images or atlas) and output data (id).

  10. Accurate electrostatic and van der Waals pull-in prediction for fully clamped nano/micro-beams using linear universal graphs of pull-in instability

    NASA Astrophysics Data System (ADS)

    Tahani, Masoud; Askari, Amir R.

    2014-09-01

    In spite of the fact that pull-in instability of electrically actuated nano/micro-beams has been investigated by many researchers to date, no explicit formula has been presented yet which can predict pull-in voltage based on a geometrically non-linear and distributed parameter model. The objective of present paper is to introduce a simple and accurate formula to predict this value for a fully clamped electrostatically actuated nano/micro-beam. To this end, a non-linear Euler-Bernoulli beam model is employed, which accounts for the axial residual stress, geometric non-linearity of mid-plane stretching, distributed electrostatic force and the van der Waals (vdW) attraction. The non-linear boundary value governing equation of equilibrium is non-dimensionalized and solved iteratively through single-term Galerkin based reduced order model (ROM). The solutions are validated thorough direct comparison with experimental and other existing results reported in previous studies. Pull-in instability under electrical and vdW loads are also investigated using universal graphs. Based on the results of these graphs, non-dimensional pull-in and vdW parameters, which are defined in the text, vary linearly versus the other dimensionless parameters of the problem. Using this fact, some linear equations are presented to predict pull-in voltage, the maximum allowable length, the so-called detachment length, and the minimum allowable gap for a nano/micro-system. These linear equations are also reduced to a couple of universal pull-in formulas for systems with small initial gap. The accuracy of the universal pull-in formulas are also validated by comparing its results with available experimental and some previous geometric linear and closed-form findings published in the literature.

  11. Self-diagnosis of damage in fibrous composites using electrical resistance measurements

    NASA Astrophysics Data System (ADS)

    Kang, Ji Ho; Paty, Spandana; Kim, Ran Y.; Tandon, G. P.

    2006-03-01

    The objective of this research was to develop a practical integrated approach using extracted features from electrical resistance measurements and coupled electromechanical models of damage, for in situ damage detection and sensing in carbon fiber reinforced plastic (CFRP) composite structures. To achieve this objective, we introduced specific known damage (in terms of type, size, and location) into CFRP laminates and established quantitative relationships with the electrical resistance measurements. For processing of numerous measurement data, an autonomous data acquisition system was devised. We also established a specimen preparation procedure and a method for electrode setup. Coupon and panel CFRP laminate specimens with several known damage were tested and post-processed with the measurement data. Coupon specimens with various sizes of artificial delaminations obtained by inserting Teflon film were manufactured and the resistance was measured. The measurement results showed that increase of delamination size led to increase of resistance implying that it is possible to sense the existence and size of delamination. Encouraged by the results of coupon specimens, we implemented the measurement system on panel specimens. Three different quasi-isotropic panels were designed and manufactured: a panel with artificial delamination by inserting Teflon film at the midplane, a panel with artificial delamination by inserting Teflon film between the second and third plies from the surface, and an undamaged panel. The first two panels were designed to determine the feasibility of detecting delamination using the developed measurement system. The third panel had no damage at first, and then three different sizes of holes were drilled at a chosen location. Panels were prepared using the established procedures with six electrode connections on each side making a total of twenty-four electrode connections for a panel. All possible pairs of electrodes were scanned and the resistance was measured for each pair. The measurement results showed the possibility of the established measurement system for an in-situ damage detection method for CFRP composite structures.

  12. Experimental validation of Mueller-Stokes theory and investigation of the influence of the Cotton-Mouton effect on polarimetry in a magnetized fusion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Peebles, W. A.; Crocker, N. A.

    Mueller-Stokes theory can be used to calculate the polarization evolution of an electromagnetic (EM) wave as it propagates through a magnetized plasma. Historically, the theory has been used to interpret polarimeter signals from systems operating on fusion plasmas. These interpretations have mostly employed approximations of Mueller-Stokes theory in regimes where either the Faraday rotation (FR) or the Cotton-Mouton (CM) effect is dominant. The current paper presents the first systematic comparison of polarimeter measurements with the predictions of full Mueller-Stokes theory where conditions transition smoothly from a FR-dominant (i.e., weak CM effect) plasma to one where the CM effect plays amore » significant role. A synthetic diagnostic code, based on Mueller-Stokes theory accurately reproduces the trends evident in the experimentally measured polarimeter phase over this entire operating range, thereby validating Mueller-Stokes theory. The synthetic diagnostic code is then used to investigate the influence of the CM effect on polarimetry measurements. As expected, the measurements are well approximated by the FR effect when the CM effect is predicted to be weak. However, the code shows that as the CM effect increases, it can compete with the FR effect in rotating the polarization of the EM-wave. This results in a reduced polarimeter response to the FR effect, just as observed in the experiment. The code also shows if sufficiently large, the CM effect can even reverse the handedness of a wave launched with circular polarization. This helps to understand the surprising experimental observations that the sensitivity to the FR effect can be nearly eliminated at high enough B{sub T} (2.0 T). The results also suggest that the CM effect on the plasma midplane can be exploited to potentially measure magnetic shear in tokamak plasmas. These results establish increased confidence in the use of such a synthetic diagnostic code to guide future polarimetry design and interpret the resultant experimental data.« less

  13. Direct Drive Solar-Powered Arcjet Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt; Martin, Adam

    2015-01-01

    Electric thrusters typically require a power processing unit (PPU) to convert the spacecraft-provided power to the voltage and current that a thruster needs for operation. NASA Marshall Space Flight Center has initiated fundamental studies on whether an arcjet thruster can be operated directly with the power produced by solar arrays without any additional conversion. Elimination of the PPU significantly reduces system-level complexity of the propulsion system, and lowers developmental cost and risk. The proposed work will aim to refine the proof-of-concept presently being assembled and begin to identify and address technical questions related to power conditioning and noise suppression in the system, and heating of the thruster in long-duration operation. The apparatus proposed for investigation has a target power level of 400 to 1,000 W. The proposed direct-drive arcjet is potentially a highly scalable concept, applicable to spacecraft with up to hundreds of kilowatts and beyond. The design of the arcjet built for this effort was based on previous low power (1 kW class) arcjets.1-3 It has a precision machined 99.95% pure tungsten anode that also serves as the nozzle with a 0.040-in- (1-mm-) diameter, 0.040-in-long constrictor region. An additional anode with a 0.020-in- (0.5-mm-) diameter, 0.020-inlong constrictor region was purchased, but has not yet been used. The cathode is a 0.125-in-diameter tungsten welding electrode doped with lanthum-oxygen; its tip was precision ground to a 308deg angle and terminates in a blunt end. The two electrodes are separated by a boron-nitride insulator that also serves as the propellant manifold; it ends in six small holes which introduce the propellant gas in the diverging section of the nozzle, directly adjacent to the cathode. The electrodes and insulator are housed in a stainless-steel outer body, with a Macor insulator at the mid-plane to provide thermal isolation between the front and back halves of the device. The gas seals were made using Grafoil gaskets. Figure 1(a) shows the assembled thruster; figure 1(b) shows the thruster in the vacuum chamber with electrical and propellant connections.

  14. Experimental study of heating scheme effect on the inner divertor power footprint widths in EAST lower single null discharges

    NASA Astrophysics Data System (ADS)

    Deng, G. Z.; Xu, J. C.; Liu, X.; Liu, X. J.; Liu, J. B.; Zhang, H.; Liu, S. C.; Chen, L.; Yan, N.; Feng, W.; Liu, H.; Xia, T. Y.; Zhang, B.; Shao, L. M.; Ming, T. F.; Xu, G. S.; Guo, H. Y.; Xu, X. Q.; Gao, X.; Wang, L.

    2018-04-01

    A comprehensive work of the effects of plasma current and heating schemes on divertor power footprint widths is carried out in the experimental advanced superconducting tokamak (EAST). The divertor power footprint widths, i.e., the scrape-off layer heat flux decay length λ q and the heat spreading S, are crucial physical and engineering parameters for fusion reactors. Strong inverse scaling of λ q and S with plasma current have been demonstrated for both neutral beam (NB) and lower hybrid wave (LHW) heated L-mode and H-mode plasmas at the inner divertor target. For plasmas heated by the combination of the two kinds of auxiliary heating schemes (NB and LHW), the divertor power widths tend to be larger in plasmas with higher ratio of LHW power. Comparison between experimental heat flux profiles at outer mid-plane (OMP) and divertor target for NB heated and LHW heated L-mode plasmas reveals that the magnetic topology changes induced by LHW may be the main reason to the wider divertor power widths in LHW heated discharges. The effect of heating schemes on divertor peak heat flux has also been investigated, and it is found that LHW heated discharges tend to have a lower divertor peak heat flux compared with NB heated discharges under similar input power. All these findings seem to suggest that plasmas with LHW auxiliary heating scheme are better heat exhaust scenarios for fusion reactors and should be the priorities for the design of next-step fusion reactors like China Fusion Engineering Test Reactor.

  15. Asymmetric mass models of disk galaxies. I. Messier 99

    NASA Astrophysics Data System (ADS)

    Chemin, Laurent; Huré, Jean-Marc; Soubiran, Caroline; Zibetti, Stefano; Charlot, Stéphane; Kawata, Daisuke

    2016-04-01

    Mass models of galactic disks traditionally rely on axisymmetric density and rotation curves, paradoxically acting as if their most remarkable asymmetric features, such as lopsidedness or spiral arms, were not important. In this article, we relax the axisymmetry approximation and introduce a methodology that derives 3D gravitational potentials of disk-like objects and robustly estimates the impacts of asymmetries on circular velocities in the disk midplane. Mass distribution models can then be directly fitted to asymmetric line-of-sight velocity fields. Applied to the grand-design spiral M 99, the new strategy shows that circular velocities are highly nonuniform, particularly in the inner disk of the galaxy, as a natural response to the perturbed gravitational potential of luminous matter. A cuspy inner density profile of dark matter is found in M 99, in the usual case where luminous and dark matter share the same center. The impact of the velocity nonuniformity is to make the inner profile less steep, although the density remains cuspy. On another hand, a model where the halo is core dominated and shifted by 2.2-2.5 kpc from the luminous mass center is more appropriate to explain most of the kinematical lopsidedness evidenced in the velocity field of M 99. However, the gravitational potential of luminous baryons is not asymmetric enough to explain the kinematical lopsidedness of the innermost regions, irrespective of the density shape of dark matter. This discrepancy points out the necessity of an additional dynamical process in these regions: possibly a lopsided distribution of dark matter.

  16. The Effect of Curing Temperature on the Fracture Toughness of Fiberglass Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas J.

    The curing reaction in a thermoset polymer matrix composite is often accelerated by the addition of heat in an oven or autoclave. The heat added increases the rate of the polymerization reaction and cross-linking in the material. The cure cycle used (temperature, pressure and time) can therefore alter the final material properties. This research focuses on how the curing temperature (250, 275, 300 °F) affects the yield strength and the mode I interlaminar fracture toughness, GI, of a unidirectional S-2 glass epoxy composite. The test method that was used for the tension test was ASTM D3039 and the test method for the mode I interlaminar fracture toughness, the double cantilever beam (DCB) test, was ASTM D5528. The DCB specimens were fabricated with a non-adhesive insert at the midplane of the composite that serves as the initiatior of the delamination. Opening forces were then applied to the specimen, causing the crack propagation. The results show that increasing the cure temperature by 50 °F increased the tensile strength by 10% (86.54 - 94.73 ksi) and decreased the fracture toughness 20% (506.23 - 381.31 J/m 2). Thus, the curing temperature can cause a trade-off between these two properties, which means that the curing cycle will need to be altered based on the intended use and the required material properties.

  17. Continued Development of Python-Based Thomson Data Analysis and Associated Visualization Tool for NSTX-U

    NASA Astrophysics Data System (ADS)

    Wallace, William; Miller, Jared; Diallo, Ahmed

    2015-11-01

    MultiPoint Thomson Scattering (MPTS) is an established, accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Two Nd:YAG (1064 nm) lasers are fired into the plasma with a effective frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the NSTX-U midplane collect the scattered photons at various radii/scattering angles, and the avalanche photodiode voltages are saved to an MDSplus tree for later analysis. IDL code is then used to determine plasma temperature, pressure, and density from the captured polychromator measurements via Selden formulas. [1] Previous work [2] converted the single-processor IDL code into Python code, and prepared a new architecture for multiprocessing MPTS in parallel. However, that work was not completed to the generation of output data and curve fits that match with the previous IDL. This project refactored the Python code into a object-oriented architecture, and created a software test suite for the new architecture which allowed identification of the code which generated the difference in output. Another effort currently underway is to display the Thomson data in an intuitive, interactive format. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Community College Internship (CCI) program.

  18. Online geometric calibration of cone-beam computed tomography for arbitrary imaging objects.

    PubMed

    Meng, Yuanzheng; Gong, Hui; Yang, Xiaoquan

    2013-02-01

    A novel online method based on the symmetry property of the sum of projections (SOP) is proposed to obtain the geometric parameters in cone-beam computed tomography (CBCT). This method requires no calibration phantom and can be used in circular trajectory CBCT with arbitrary cone angles. An objective function is deduced to illustrate the dependence of the symmetry of SOP on geometric parameters, which will converge to its minimum when the geometric parameters achieve their true values. Thus, by minimizing the objective function, we can obtain the geometric parameters for image reconstruction. To validate this method, numerical phantom studies with different noise levels are simulated. The results show that our method is insensitive to the noise and can determine the skew (in-plane rotation angle of the detector), the roll (rotation angle around the projection of the rotation axis on the detector), and the rotation axis with high accuracy, while the mid-plane and source-to-detector distance will be obtained with slightly lower accuracy. However, our simulation studies validate that the errors of the latter two parameters brought by our method will hardly degrade the quality of reconstructed images. The small animal studies show that our method is able to deal with arbitrary imaging objects. In addition, the results of the reconstructed images in different slices demonstrate that we have achieved comparable image quality in the reconstructions as some offline methods.

  19. Resonant Drag Instabilities in protoplanetary disks: the streaming instability and new, faster-growing instabilities

    NASA Astrophysics Data System (ADS)

    Squire, Jonathan; Hopkins, Philip F.

    2018-04-01

    We identify and study a number of new, rapidly growing instabilities of dust grains in protoplanetary disks, which may be important for planetesimal formation. The study is based on the recognition that dust-gas mixtures are generically unstable to a Resonant Drag Instability (RDI), whenever the gas, absent dust, supports undamped linear modes. We show that the "streaming instability" is an RDI associated with epicyclic oscillations; this provides simple interpretations for its mechanisms and accurate analytic expressions for its growth rates and fastest-growing wavelengths. We extend this analysis to more general dust streaming motions and other waves, including buoyancy and magnetohydrodynamic oscillations, finding various new instabilities. Most importantly, we identify the disk "settling instability," which occurs as dust settles vertically into the midplane of a rotating disk. For small grains, this instability grows many orders of magnitude faster than the standard streaming instability, with a growth rate that is independent of grain size. Growth timescales for realistic dust-to-gas ratios are comparable to the disk orbital period, and the characteristic wavelengths are more than an order of magnitude larger than the streaming instability (allowing the instability to concentrate larger masses). This suggests that in the process of settling, dust will band into rings then filaments or clumps, potentially seeding dust traps, high-metallicity regions that in turn seed the streaming instability, or even overdensities that coagulate or directly collapse to planetesimals.

  20. The effect of feedback-controlled divertor nitrogen seeding on the boundary plasma and power exhaust channel width in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Labombard, B.; Brunner, D.; Kuang, A. Q.; McCarthy, W.; Terry, J. L.

    2017-10-01

    The scrape-off layer (SOL) power channel width, λq, is projected to be 0.5 mm in power reactors, based on multi-machine measurements of divertor target heat fluxes in H-mode at low levels of divertor dissipation. An important question is: does λq change with the level of divertor dissipation? We report results in which feedback controlled nitrogen seeding in the divertor was used to systematically vary divertor dissipation in a series of otherwise identical L-mode plasmas at three plasma currents: 0.55, 0.8 and 1.1 MA. Outer midplane profiles were recorded with a scanning Mirror Langmuir Probe; divertor plasma conditions were monitored with `rail' Langmuir probe and surface thermocouple arrays. Despite an order of magnitude reduction in divertor target heat fluxes (q// 400 MW m-2 to 40 MW m-2) and corresponding change in divertor regime from sheath-limited through high-recycling to near-detached, the upstream electron temperature profile is found to remain unchanged or to become slightly steeper in the near SOL and to drop significantly in the far SOL. Thus heat in the SOL appears to take advantage of this impurity radiation `heat sink' in the divertor by preferentially draining via the narrow (and perhaps an increasingly narrow) λq of the near SOL. Supported by USDoE award DE-FC02-99ER54512.

  1. Two Key Parameters Controlling Particle Clumping Caused by Streaming Instability in the Dead-zone Dust Layer of a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Sekiya, Minoru; Onishi, Isamu K.

    2018-06-01

    The streaming instability and Kelvin–Helmholtz instability are considered the two major sources causing clumping of dust particles and turbulence in the dust layer of a protoplanetary disk as long as we consider the dead zone where the magnetorotational instability does not grow. Extensive numerical simulations have been carried out in order to elucidate the condition for the development of particle clumping caused by the streaming instability. In this paper, a set of two parameters suitable for classifying the numerical results is proposed. One is the Stokes number that has been employed in previous works and the other is the dust particle column density that is nondimensionalized using the gas density in the midplane, Keplerian angular velocity, and difference between the Keplerian and gaseous orbital velocities. The magnitude of dust clumping is a measure of the behavior of the dust layer. Using three-dimensional numerical simulations of dust particles and gas based on Athena code v. 4.2, it is confirmed that the magnitude of dust clumping for two disk models are similar if the corresponding sets of values of the two parameters are identical to each other, even if the values of the metallicity (i.e., the ratio of the columns density of the dust particles to that of the gas) are different.

  2. Leaf hydraulics II: vascularized tissues.

    PubMed

    Rockwell, Fulton E; Holbrook, N Michele; Stroock, Abraham D

    2014-01-07

    Current models of leaf hydration employ an Ohm's law analogy of the leaf as an ideal capacitor, neglecting the resistance to flow between cells, or treat the leaf as a plane sheet with a source of water at fixed potential filling the mid-plane, neglecting the discrete placement of veins as well as their resistance. We develop a model of leaf hydration that considers the average conductance of the vascular network to a representative areole (region bounded by the vascular network), and represent the volume of tissue within the areole as a poroelastic composite of cells and air spaces. Solutions to the 3D flow problem are found by numerical simulation, and these results are then compared to 1D models with exact solutions for a range of leaf geometries, based on a survey of temperate woody plants. We then show that the hydration times given by these solutions are well approximated by a sum of the ideal capacitor and plane sheet times, representing the time for transport through the vasculature and tissue respectively. We then develop scaling factors relating this approximate solution to the 3D model, and examine the dependence of these scaling factors on leaf geometry. Finally, we apply a similar strategy to reduce the dimensions of the steady state problem, in the context of peristomatal transpiration, and consider the relation of transpirational gradients to equilibrium leaf water potential measurements. © 2013 Published by Elsevier Ltd. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Ricardo Maqueda; Dr. Fred M. Levinton

    Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15:more » Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Dongcheol; Peterson, B. J.; Lee, Seung Hun

    The resistive bolometers have been successfully installed in the midplane of L-port in Korea Superconducting Tokamak Advanced Research (KSTAR) device. The spatial and temporal resolutions, 4.5 cm and {approx}1 kHz, respectively, enable us to measure the radial profile of the total radiated power from magnetically confined plasma at a high temperature through radiation and neutral particles. The radiated power was measured at all shots. Even at low plasma current, the bolometer signal was detectable. The electron cyclotron resonance heating (ECH) has been used in tokamak for ECH assisted start-up and plasma control by local heating and current drive. The detectorsmore » of resistive bolometer, near the antenna of ECH, are affected by electron cyclotron wave. The tomographic reconstruction, using the Phillips-Tikhonov regularization method, will be carried out for a major radial profile of the radiation emissivity of the circular cross-section plasma.« less

  5. Galactoseismology and the local density of dark matter

    DOE PAGES

    Banik, Nilanjan; Widrow, Lawrence M.; Dodelson, Scott

    2016-10-08

    Here, we model vertical breathing mode perturbations in the Milky Way's stellar disc and study their effects on estimates of the local dark matter density, surface density, and vertical force. Evidence for these perturbations, which involve compression and expansion of the Galactic disc perpendicular to its midplane, come from the SEGUE, RAVE, and LAMOST surveys. We show that their existence may lead to systematic errors ofmore » $$10\\%$$ or greater in the vertical force $$K_z(z)$$ at $$|z|=1.1\\,{\\rm kpc}$$. These errors translate to $$\\gtrsim 25\\%$$ errors in estimates of the local dark matter density. Using different mono-abundant subpopulations as tracers offers a way out: if the inferences from all tracers in the Gaia era agree, then the dark matter determination will be robust. Disagreement in the inferences from different tracers will signal the breakdown of the unperturbed model and perhaps provide the means for determining the nature of the perturbation.« less

  6. Fast Wave Transmission Measurements on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Reardon, J.; Bonoli, P. T.; Porkolab, M.; Takase, Y.; Wukitch, S. J.

    1997-11-01

    Data are presented from an array of single-turn loop probes newly installed on the inner wall of C-Mod, directly opposite one of the two fast-wave antennas. The 8-loop array extends 32^circ in the toroidal direction at the midplane and can distinguish electromagnetic from electrostatic modes. Data are acquired by 1GHz digitizer, spectrum analyzer, and RF detector circuit. Phase measurements during different heating scenarios show evidence of both standing and travelling waves. The measurement of toroidal mode number N_tor (conserved under the assumption of axisymmetry) is used to guide the toroidal full-wave code TORIC(Brambilla, M., IPP Report 5/66, February 1996). Amplitude measurements show modulation both by Type III ELMs and sawteeth; the observed sawtooth modulation may be interpreted as due to changes in central absorption. The amplitude of tildeB_tor measured at the inner wall is compared to the prediction of TORIC.

  7. ELM induced divertor heat loads on TCV

    NASA Astrophysics Data System (ADS)

    Marki, J.; Pitts, R. A.; Horacek, J.; Tskhakaya, D.; TCV Team

    2009-06-01

    Results are presented for heat loads at the TCV outer divertor target during ELMing H-mode using a fast IR camera. Benefitting from a recent surface cleaning of the entire first wall graphite armour, a comparison of the transient thermal response of freshly cleaned and untreated tile surfaces (coated with thick co-deposited layers) has been performed. The latter routinely exhibit temperature transients exceeding those of the clean ones by a factor ˜3, even if co-deposition throughout the first days of operation following the cleaning process leads to the steady regrowth of thin layers. Filaments are occasionally observed during the ELM heat flux rise phase, showing a spatial structure consistent with energy release at discrete toroidal locations in the outer midplane vicinity and with individual filaments carrying ˜1% of the total ELM energy. The temporal waveform of the ELM heat load is found to be in good agreement with the collisionless free streaming particle model.

  8. [Verification of the dose delivered to the patient by means of TLD, SC, PID. What future?].

    PubMed

    Noël, A

    2003-11-01

    Among the different possibilities to check the accuracy of the treatment delivered, only in vivo dosimetry ensures the precision of the dose delivered to the patient during the treatment. In 1970-1980, Ruden assessed the use of thermoluminescent dosimetry to perform in vivo measurements at Radiumemmet in Stockholm. Straightforward in its principle but demanding in its implementation, thermoluminescent dosimetry has largely been used. Today, thanks to the work of Rikner, the use of semiconductor detectors allows the general implementation of in vivo dosimetry. Tomorrow, we will use electronic portal imaging device to verify the geometrical patient setup and the dose delivery at the same time. Its implementation remains complex and will need the development of algorithms to compute exit dose or midplane dose using portal in vivo dosimetry. First clinical results show that portal imaging is an accurate alternative for conventional in vivo dosimetry using diodes.

  9. High speed movies of turbulence in Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, J.L.; Zweben, S.J.; Bose, B.

    2004-10-01

    A high speed (250 kHz), 300 frame charge coupled device camera has been used to image turbulence in the Alcator C-Mod Tokamak. The camera system is described and some of its important characteristics are measured, including time response and uniformity over the field-of-view. The diagnostic has been used in two applications. One uses gas-puff imaging to illuminate the turbulence in the edge/scrape-off-layer region, where D{sub 2} gas puffs localize the emission in a plane perpendicular to the magnetic field when viewed by the camera system. The dynamics of the underlying turbulence around and outside the separatrix are detected in thismore » manner. In a second diagnostic application, the light from an injected, ablating, high speed Li pellet is observed radially from the outer midplane, and fast poloidal motion of toroidal striations are seen in the Li{sup +} light well inside the separatrix.« less

  10. Fast Ion Effects During Test Blanket Module Simulation Experiments in DIII-D

    NASA Astrophysics Data System (ADS)

    Kramer, G. J.; Budny, R.; Nazikian, R.; Heidbrink, W. W.; Kurki-Suonio, T.; Salmi, A.; Schaffer, M. J.; van Zeeland, M. A.; Shinohara, K.; Snipes, J. A.; Spong, D.

    2010-11-01

    The fast beam-ion confinement in the presence of a scaled mock-up of two Test Blanket Modules (TBM) for ITER was studied in DIII-D. The TBM on DIII-D has four vertically arranged protective carbon tiles with thermocouples placed at the back of each tile. Temperature increases of up to 200^oC were measured for the two tiles closest to the midplane when the TBM fields were present. These measurements agree qualitatively with results from the full orbit-following beam-ion code, SPIRAL, that predict beam-ion losses to be localized on the central two carbon tiles when the TBM fields present. Within the experimental uncertainties no significant change in the fast-ion population was found in the core of these plasmas which is consistent with SPIRAL analysis. These experiments indicate that the TBM fields do not affect the fast-ion confinement in a harmful way which is good news for ITER.

  11. Electrostatic dispersion lenses and ion beam dispersion methods

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Appelhans, Anthony D [Idaho Falls, ID

    2010-12-28

    An EDL includes a case surface and at least one electrode surface. The EDL is configured to receive through the EDL a plurality of ion beams, to generate an electrostatic field between the one electrode surface and either the case surface or another electrode surface, and to increase the separation between the beams using the field. Other than an optional mid-plane intended to contain trajectories of the beams, the electrode surface or surfaces do not exhibit a plane of symmetry through which any beam received through the EDL must pass. In addition or in the alternative, the one electrode surface and either the case surface or the other electrode surface have geometries configured to shape the field to exhibit a less abrupt entrance and/or exit field transition in comparison to another electrostatic field shaped by two nested, one-quarter section, right cylindrical electrode surfaces with a constant gap width.

  12. The Disk and Jet of the Classical T Tauri Star AA Tau

    NASA Technical Reports Server (NTRS)

    Cox, A. W.; Grady, C. A.; Hamel, H.; Hornbeck, Jeremy; Russell, R.; Sitko, M.; Woodgate, B.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photopolarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipolefield. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use the HST/STIS coronagraphic detection of the disk to measure the outer disk radius and inclination, and find that the inner disk is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis. The jet is also poorly collimated near the star. The measured inclination, 71+/-1deg, is above the inclination range suggested for stars with UX Orionis-like variability, indicating that dust grains in the disk have grown and settled toward the disk midplane.

  13. Reliability analysis of dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an

    2008-03-01

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  14. Long-term fuel retention in JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Heinola, K.; Widdowson, A.; Likonen, J.; Alves, E.; Baron-Wiechec, A.; Barradas, N.; Brezinsek, S.; Catarino, N.; Coad, P.; Koivuranta, S.; Krat, S.; Matthews, G. F.; Mayer, M.; Petersson, P.; Contributors, JET

    2016-02-01

    Post-mortem studies with ion beam analysis, thermal desorption, and secondary ion mass spectrometry have been applied for investigating the long-term fuel retention in the JET ITER-like wall components. The retention takes place via implantation and co-deposition, and the highest retention values were found to correlate with the thickness of the deposited impurity layers. From the total amount of retained D fuel over half was detected in the divertor region. The majority of the retained D is on the top surface of the inner divertor, whereas the least retention was measured in the main chamber on the mid-plane of the inner wall limiter. The recessed areas of the inner wall showed significant contribution to the main chamber total retention. Thermal desorption spectroscopy analysis revealed the energetic T from DD reactions being implanted in the divertor. The total T inventory was assessed to be \\gt 0.3 {{mg}}.

  15. Biasing, Acquisition and Interpretation of a Dense Langmuir Probe Array in NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaworski, M. A.; Kallman, J.; Kaita, R.

    2010-09-22

    A dense array of 99 Langmuir probes has been installed in the lower divertor region of the National Spherical Torus Experiments (NSTX). This array is instrumented with a system of elec- tronics that allows flexibility in the choice of probes to bias as well as the type of measurement (including standard swept, single probe, triple probe and operation as passive floating potential and scrape-off-layer (SOL) current monitors). The use of flush-mounted probes requires careful inter- pretation. The time dependent nature of the SOL makes swept-probe traces difficult to interpret. To overcome these challenges, the single- and triple-Langmuir probe signals aremore » used in comple- mentary fashion to determine the temperature and density at the probe location. A comparison to mid-plane measurements is made. Work is supported by DOE contracts DE-AC02-09CHI1466 and DE-PS02-07ER07-29.« less

  16. Ion demagnetization in the magnetopause current layer observed by MMS

    NASA Astrophysics Data System (ADS)

    Wang, Shan; Chen, Li-Jen; Hesse, Michael; Gershman, Daniel J.; Dorelli, John; Giles, Barbara; Torbert, Roy B.; Pollock, Craig J.; Lavraud, Benoit; Strangeway, Robert; Ergun, Robert E.; Burch, Jim; Avanov, Levon; Moore, Thomas E.; Saito, Yoshifumi

    2016-05-01

    We report ion velocity distribution functions (VDFs) observed by Magnetospheric Multiscale Mission (MMS) and present evidence for demagnetized ion Speiser motion during magnetopause reconnection. The demagnetization is observed in the vicinity of the X line, as well as near the current sheet midplane about tens of ion skin depths (di) away from the X line. Close to the X line before the outflow is built up, the VDFs are elongated, and the elongated part of VDFs rotates from the out-of-plane current direction toward the outflow directions downstream from the X line. Farther downstream, demagnetized ions exhibit a characteristic half-ring structure in the VDFs, as a result of the mixture of ions that have experienced different amounts of cyclotron turning around the magnetic field normal to the current sheet. Signatures of acceleration by electric fields are more pronounced in the VDFs near the X line than downstream.

  17. Intermittent turbulence and turbulent structures in LAPD and ET

    NASA Astrophysics Data System (ADS)

    Carter, T. A.; Pace, D. C.; White, A. E.; Gauvreau, J.-L.; Gourdain, P.-A.; Schmitz, L.; Taylor, R. J.

    2006-12-01

    Strongly intermittent turbulence is observed in the shadow of a limiter in the Large Plasma Device (LAPD) and in both the inboard and outboard scrape-off-layer (SOL) in the Electric Tokamak (ET) at UCLA. In LAPD, the amplitude probability distribution function (PDF) of the turbulence is strongly skewed, with density depletion events (or "holes") dominant in the high density region and density enhancement events (or "blobs") dominant in the low density region. Two-dimensional cross-conditional averaging shows that the blobs are detached, outward-propagating filamentary structures with a clear dipolar potential while the holes appear to be part of a more extended turbulent structure. A statistical study of the blobs reveals a typical size of ten times the ion sound gyroradius and a typical velocity of one tenth the sound speed. In ET, intermittent turbulence is observed on both the inboard and outboard midplane.

  18. VizieR Online Data Catalog: Candidate X-ray OB stars in MYStIX regions (Povich+, 2017)

    NASA Astrophysics Data System (ADS)

    Povich, M. S.; Busk, H. A.; Feigelson, E. D.; Townsley, L. K.; Kuhn, M. A.

    2017-10-01

    X-ray point source catalogs for the 18 Massive Young Star-forming Complex Study in Infrared and X-Rays (MYStIX) regions studied here were produced by Kuhn+ (2010, J/ApJ/725/2485 and 2013, J/ApJS/209/27) and Townsley (2014+, J/ApJS/213/1) from archival Chandra Advanced CCD Imaging Camera (ACIS) observations. MYStIX JHKs NIR photometry was obtained from images taken with the United Kingdom Infrared Telescope (UKIRT) Wide-field Camera or from the Two-Micron All-Sky Survey (2MASS). See section 2 for further details. Spitzer MIR photometry at 3.6, 4.5, 5.8, and 8.0um was provided either by the Galactic Legacy Mid-Plane Survey Extraordinaire (GLIMPSE; Benjamin+ 2003PASP..115..953B) or by Kuhn+ (2013, J/ApJS/209/29). (4 data files).

  19. Parametric dependence of ion temperature and electron density in the SUMMA hot-ion plasma using laser light scattering and emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Snyder, A.; Patch, R. W.; Lauver, M. R.

    1980-01-01

    Hot-ion plasma experiments were conducted in the NASA Lewis SUMMA facility. A steady-state modified Penning discharge was formed by applying a radially inward dc electric field of several kilovolts near the magnetic mirror maxima. Results are reported for a hydrogen plasma covering a wide range in midplane magnetic flux densities from 0.5 to 3.37 T. Input power greater than 45 kW was obtained with water-cooled cathodes. Steady-state plasmas with ion kinetic temperatures from 18 to 830 eV were produced and measured spectroscopically. These ion temperatures were correlated with current, voltage, and magnetic flux density as the independent variables. Electron density measurements were made using an unusually sensitive Thomson scattering apparatus. The measured electron densities range from 2.1 x 10 to the 11th to 6.8 x 10 to the 12th per cu cm.

  20. Recent results concerning the stability of viscoelastic shear deformable plates under compressive edge loading

    NASA Technical Reports Server (NTRS)

    Librescu, L.; Chandiramani, N. K.

    1989-01-01

    Some recent results obtained by the authors are summarized concerning the stability of transversely isotropic flat panels whose materials exhibit a viscoelastic behavior and whose edges are subjected to in-plane biaxial compressive loads. Two transversely isotropic type materials, largely used in advanced technology, are considered: (1) the pyrolytic-graphite type, used in the thermal protection of aerospace vehicles, and (2) the type corresponding to unidirectional fiber-reinforced composites. In the former case, the planes of isotropy are parallel at each point to the midplane of the plate. In the latter case, they are normal to the fiber directions. The micromechanical relations developed by Aboudi (1984, 1986, 1987) are considered in conjunction with the correspondence principle of linear viscoelastic theory in order to predict the macroscopic viscoelastic properties of a material composed of uniaxial elastic fibers embedded in a linear viscoelastic matrix.

  1. The equilibrium and stability of the gaseous component of the galaxy, 2

    NASA Technical Reports Server (NTRS)

    Kellman, S. A.

    1971-01-01

    A time-independent, linear, plane and axially-symmetric stability analysis was performed on a self-gravitating, plane-parallel, isothermal layer of nonmagnetic, nonrotating gas. The gas layer was immersed in a plane-stratified field isothermal layer of stars which supply a self-consistent gravitational field. Only the gaseous component was perturbed. Expressions were derived for the perturbed gas potential and perturbed gas density that satisfied both the Poisson and hydrostatic equilibrium equations. The equation governing the size of the perturbations in the mid-plane was found to be analogous to the one-dimensional time-independent Schrodinger equation for a particle bound by a potential well, and with similar boundary conditions. The radius of the neutral state was computed numerically and compared with the Jeans' and Ledoux radius. The inclusion of a rigid stellar component increased the Ledoux radius, though only slightly. Isodensity contours of the neutrual or marginally unstable state were constructed.

  2. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - Second FY 2015 Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Fifield, Leonard S.; Kijewski, Seth A.

    During the second quarter of FY 2015, the following technical progress has been made toward project milestones: 1) Autodesk reviewed 3D fiber orientation distribution (FOD) comparisons and provided support on improving accuracy. 2) Autodesk reviewed fiber length distribution (FLD) data comparisons and provided suggestions, assisted PNNL in FOD and FLD parameter settings optimization, and advised PNNL on appropriate through thickness thermal conductivity for improved frozen layer effect on FOD predictions. Autodesk also participated in project review meetings including preparations and discussions towards passing the go/no-go decision point. 3) Autodesk implemented an improved FOD inlet profile specification method through the partmore » thickness for 3D meshes and provided an updated ASMI research version to PNNL. 4) The University of Illinois (Prof. C.L. Tucker) provided Autodesk with ideas to improve fiber orientation modeling 5) Purdue University re-measured fiber orientation for the fast-fill 50wt% LCF/PA66 edge-gated plaque, and delivered the fiber orientation data for this plaque at the selected locations (named A, B, and C, Figure 1) to PNNL. Purdue also re-measured fiber orientation for locations A on the fast-fill 30wt% LCF/PP and 50wt% LCF/PA66 center-gated plaques, which exhibited anomalous fiber orientation behavior. 6) Purdue University conducted fiber length measurements and delivered the length data to PNNL for the purge materials (slow-fill 30wt% LCF/PP and 30wt% LCF/PA66 purge materials) and PlastiComp plaques selected on the go/no-go list for fiber length model validation (i.e., slow-fill edge-gated 30wt% LCF/PP and 30wt% LCF/PA66 plaques, Locations A, B, and C). 7) PNNL developed a method to recover intact carbon fibers from LCF/PA66 materials. Isolated fibers were shipped to Purdue for length distribution analysis. 8) PNNL completed ASMI mid-plane analyses for all the PlastiComp plaques defined on the go/no-go list for fiber orientation (FO) model validation and compared the predicted fiber orientations with the measured data provided by Purdue at Locations A, B, and C on these plaques. The 15% accuracy criterion based on evaluation of tensile and bending stiffness was used to assess the accuracy in fiber orientation predictions. 9) PNNL completed ASMI mid-plane analyses for all the PlastiComp plaques defined on the go/no-go list for fiber length distribution (FLD) model validation and compared the predicted length distributions with the measured data provided by Purdue at Locations A, B, and C on these plaques. The 15% accuracy criterion based on evaluation of tensile and bending stiffness was used to assess the accuracy in fiber orientation predictions. 10) PNNL tested the new ASMI version received from Autodesk in March 2015, examined and discussed 3D fiber orientation predictions for PlastiComp plaques. 11) PlastiComp, Inc. (PlastiComp), Toyota Research Institute North America (Toyota) and Magna Exteriors and Interiors Corporation (Magna) participated in discussions with team members on the go/no-go plan. Toyota continued the discussion with Magna on tool modification for molding the complex part in order to achieve the target fiber length in the part.« less

  3. Distribution and kinematics of atomic and molecular gas inside the solar circle

    NASA Astrophysics Data System (ADS)

    Marasco, A.; Fraternali, F.; van der Hulst, J. M.; Oosterloo, T.

    2017-11-01

    The detailed distribution and kinematics of the atomic and the CO-bright molecular hydrogen in the disc of the Milky Way inside the solar circle are derived under the assumptions of axisymmetry and pure circular motions. We divide the Galactic disc into a series of rings, and assume that the gas in each ring is described by four parameters: its rotation velocity, velocity dispersion, midplane density and its scale height. We fit these parameters to the Galactic H I and 12CO (J = 1-0) data by producing artificial H I and CO line-profiles and comparing them with the observations. Our approach allows us to fit all parameters to the data simultaneously without assuming a-priori a radial profile for one of the parameters. We present the distribution and kinematics of the H I and H2 in both the approaching (QIV) and the receding (QI) regions of the Galaxy. Our best-fit models reproduces remarkably well the observed H I and CO longitude-velocity diagrams up to a few degrees of distance from the midplane. With the exception of the innermost 2.5 kpc, QI and QIV show very similar kinematics. The rotation curves traced by the H I and H2 follow each other closely, flattening beyond R = 6.5 kpc. Both the H I and the H2 surface densities show a) a deep depression at 0.5 < R < 2.5 kpc, analogous to that shown by some nearby barred galaxies, b) local overdensities that can be interpreted in terms of spiral arms or ring-like features in the disc. The H I (H2) properties are fairly constant in the region outside the depression, with typical velocity dispersion of 8.9 ± 1.1 (4.4 ± 1.2) km s-1, density of 0.43 ± 0.11 (0.42 ± 0.22) cm-3 and HWHM scale height of 202 ± 28 (64 ± 12) pc. We also show that the H I opacity in the LAB data can be accounted for by using an "effective" spin temperature of 150 K: assuming an optically thin regime leads to an underestimate of the H I mass by about 30%.

  4. A Measurement and Analysis of Buildup Region Dose for Open Field Photon Beams (Cobalt-60 through 24 MV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCullough, Edwin C.

    2015-01-15

    The central axis depth dose in the build-up region (surface to d{sub max}) of single open field photon beams (cobalt-60 through 24 MV) has been measured utilizing parallel plate and extrapolation chamber methodology. These data were used to derive, for a prescription dose of 100 cGy, values of surface dose, the maximum value of dose along the central axis (D{sub max}) and the depth (nearest the surface) at which 90% of the prescription dose occurs (d{sub 90}). For both single and parallel opposed pair (POP) open field configurations, data are presented at field sizes of 5 × 5, 15 ×more » 15 and 25 × 25 cm{sup 2} for prescription depths of 10, 15 and 20 cm (midplane for POP). For the treatment machines, field sizes, and prescription depths studied, it is possible to conclude that: for single open field irradiation, surface dose values (as a percentage of the prescription dose) can be either low (<10%) or comparable to the prescription dose itself; for POP open fields, surface dose values are relatively independent of photon energy and midplane depth, and range between 30% and 70% of prescription dose, being principally dependent on field size; the depth of the initial 90 cGy point for a prescription dose of 100 cGy, d{sub 90}, was larger for POP fields. For either single or POP open field treatments, d{sub 90} was always less than 22 mm, while for 6 MV or less, values of d{sub 90} were less than 4 mm; D{sub max} values can be very large (e.g., above 300 cGy) for certain treatment situations and are reduced significantly for POP treatments; for open field POP treatments, the percent reduction in D{sub max} with each increment in beam energy above 10 MV is reduced over that seen at 10 MV or less and, possibly, this further reduction may be clinically insignificant; for open field POP treatments, changes in surface dose, d{sub 90} and D{sub max} with beam energy above 10 MV do not suggest, with regard to these specific build-up curve parameters, any obvious advantage for treatment with beam energies greater than 10 MV for the specific machines and situations studied.« less

  5. Wind-driving protostellar accretion discs - I. Formulation and parameter constraints

    NASA Astrophysics Data System (ADS)

    Königl, Arieh; Salmeron, Raquel; Wardle, Mark

    2010-01-01

    We study a model of weakly ionized, protostellar accretion discs that are threaded by a large-scale, ordered magnetic field and power a centrifugally driven wind. We consider the limiting case where the wind is the main repository of the excess disc angular momentum and generalize the radially localized disc model of Wardle & Königl, which focused on the ambipolar diffusion regime, to other field diffusivity regimes, notably Hall and Ohm. We present a general formulation of the problem for nearly Keplerian, vertically isothermal discs using both the conductivity-tensor and the multifluid approaches and simplify it to a normalized system of ordinary differential equations in the vertical space coordinate. We determine the relevant parameters of the problem and investigate, using the vertical-hydrostatic-equilibrium approximation and other simplifications, the parameter constraints on physically viable solutions for discs in which the neutral particles are dynamically well coupled to the field already at the mid-plane. When the charged particles constitute a two-component ion-electron plasma, one can identify four distinct sub-regimes in the parameter domain where the Hall diffusivity dominates and three sub-regimes in the Ohm-dominated domain. Two of the Hall sub-regimes can be characterized as being ambipolar diffusion-like and two as being Ohm-like: the properties of one member of the first pair of sub-regimes are identical to those of the ambipolar diffusion regime, whereas one member of the second pair has the same characteristics as one of the Ohm sub-regimes. All the Hall sub-regimes have Brb/|Bφb| (ratio of radial-to-azimuthal magnetic field amplitudes at the disc surface) >1, whereas in two Ohm sub-regimes this ratio is <1. When the two-component plasma consists, instead, of positively and negatively charged grains of equal mass, the entire Hall domain and one of the Ohm sub-regimes with Brb/|Bφb| < 1 disappear. All viable solutions require the mid-plane neutral-ion momentum exchange time to be shorter than the local orbital time. We also infer that vertical magnetic squeezing always dominates over gravitational tidal compression in this model. In a follow-up paper we will present exact solutions that test the results of this analysis in the Hall regime.

  6. The long periodicity phase (LPP) controversy part I: The influence of a natural-like ratio of the CER[EOS] analogue [EOS]-br in a CER[NP]/[AP] based stratum corneum modelling system: A neutron diffraction study.

    PubMed

    Schmitt, Thomas; Lange, Stefan; Sonnenberger, Stefan; Dobner, Bodo; Demé, Bruno; Langner, Andreas; Neubert, Reinhard H H

    2018-06-18

    This study used neutron diffraction to investigate a ceramide-[NP] C24/[AP] C24 /[EOS]-br C30/cholesterol/lignoceric acid (0.6: 0.3: 0.1: 0.7: 1) based stratum corneum modelling system. By adding specifically deuterated ceramides-[NP]-D 3 , [AP]-D 3 , and [EOS]-br-D 3 , detailed information on the lamellar and the nanostructure of the system was obtained. For the short periodicity phase a natural-like lamellar repeat distance of 5.47 ± 0.02 nm was observed, similar to the [NP]/[AP] base system without the [EOS]-br. Unlike in this system the ceramides here were slightly tilted, hinting towards a slightly less natural arrangement. Due to the deuteration it was possible to observe that the long ceramide chains were overlapping in the lamellar mid-plane. This is considered to be an important feature for the natural stratum corneum. Despite the presence of a ceramide [EOS] analogue - able to form a long phase arrangement - no distinct long periodicity phase was formed, despite a slightly higher than natural ω-acyl ceramide ratio of 10 mol%. The deuterated variant of this ceramide determined that the very long ceramide was integrated into the short periodicity phase, spanning multiple layers instead. The - compared to the base system - unchanged repeat distance highlights the stability of this structure. Furthermore, the localisation of the very long ceramide in the short periodicity phase indicates the possibility of a crosslinking effect and thus a multilayer stabilizing role for the ceramide [EOS]. It can be concluded, that additionally to the mere presence of ceramide-[EOS] more complex conditions have to be met in order to form this long phase. This has to be further investigated in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. A New 3D Map of Milky Way Dust

    NASA Astrophysics Data System (ADS)

    Green, Gregory Maurice; Schlafly, Edward; Finkbeiner, Douglas

    2018-01-01

    Interstellar dust is an important foreground for observations across a wide range of wavelengths. Dust grains scatter and absorb UV, optical and near-infrared light. These processes heat dust grains, causing them to radiate in the far-infrared. As a tracer of mass in the interstellar medium, dust correlates strongly with diffuse gamma-ray emission generated by cosmic-ray pion production. Thus, while dust makes up just 1% of the mass of the interstellar medium, it plays an outsize role in our efforts to address questions as diverse as the chemical evolution of the Milky Way galaxy and the existence of primordial B-mode polarizations in the CMB.We present a new 3D map of Milky Way dust, covering three-quarters of the sky (δ > -30°). The map is based on high-quality photometry of more than 800 million stars observed by Pan-STARRS 1, with matched photometry from 2MASS for approximately 200 million stars. We infer the distribution of dust vs. distance along sightlines with a typical angular scale of 6'. Out of the midplane of the Galaxy, our map agrees well with 2D maps based on far-infrared dust emission. After accounting for a 15% difference in scale, we find a mean scatter of approximately 10% between our map and the Planck 2D dust map, out to a depth of 0.8 mag in E(r-z). Our map can be downloaded at http://argonaut.skymaps.info.In order to extend our map, we have surveyed the southern Galactic plane with DECam, which is mounted on the 4m Blanco telescope on Cerro Tololo. The resulting survey, the Dark Energy Camera Plane Survey (DECaPS), is now publicly available. See Edward Schlafly's poster for more information on DECaPS.

  8. Patterns and perspectives in applied fracture mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkle, J.G.

    1994-12-31

    This lecture begins with a overview of applied fracture mechanics pertinent to safety of pressure vessels. It then progresses to a chronological panorama of experimental and analytical results. To be useful and dependable in safety analysis of real structures, new analysis developments must be physically realistic, which means that they must accurately describe physical cause and effect. Consequently, before mathematical modeling can begin, cause and effect must be established from experimental data. This can be difficult and time consuming, but worth the effort. Accordingly, the theme of this paper is that the search for patterns is constant and vital. Thismore » theme is illustrated by the development of small, single-specimen, fracture toughness testing techniques. It is also illustrated by the development, based on two different published large-strain, elastic-plastic, three-dimensional finite-element analyses, of a hypothesis concerning three-dimensional loss of constraint. When a generalization of Irwin`s thickness-normalized plastic-zone parameter, reaches a value close to 2{pi}, the through-thickness contraction strain at the apex of the near-tip logarithmic-spiral slip-line region becomes the dominant negative strain accommodating crack opening. Because slip lines passing from the midplane to the stress-free side surfaces do not have to curve, once these slip lines are established, stresses near the crack tip are only elevated by strain hardening and constraint becomes significantly relaxed. This hypothesis, based on published three-dimensional elastic-plastic analyses, provides a potentially valuable means for gaining additional insight into constraint effects on fracture toughness by considering the roles played by the plastic strains as well as the stresses that develop near a crack tip.« less

  9. Field Modeling, Symplectic Tracking, and Spin Decoherence for EDM and Muon $$g\\textrm{-}2$$ Lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valetov, Eremey Vladimirovich

    2017-01-01

    While the first particle accelerators were electrostatic machines, and several electrostatic storage rings were subsequently commissioned and operated, electrostatic storage rings pose a number of challenges. Unlike motion in the magnetic field, where particle energy remains constant, particle energy generally changes in electrostatic elements. Conservation of energy in an electrostatic element is, in practice, only approximate, and it requires careful and accurate design, manufacturing, installation, and operational use. Electrostatic deflectors require relatively high electrostatic fields, tend to introduce nonlinear aberrations of all orders, and are more challenging to manufacture than homogeneous magnetic dipoles. Accordingly, magnetic storage rings are overwhelmingly prevalent.more » The search for electric dipole moments (EDMs) of fundamental particles is of key importance in the study of C and CP violations and their sources. C and CP violations are part of the Sakharov conditions that explain the matter–antimatter asymmetry in the universe. Determining the source of CP violations would provide valuable empirical insight for beyond-Standard-Model physics. EDMs of fundamental particles have not to this date been experimentally observed. The search for fundamental particle EDMs has narrowed the target search region; however, an EDM signal is yet to be discovered. In 2008, Brookhaven National Laboratory (BNL) had proposed the frozen spin (FS) concept for the search of a deuteron EDM. The FS concept envisions launching deuterons through a storage ring with combined electrostatic and magnetic fields. The electrostatic and magnetic fields are in a proportion that would, without an EDM, freeze the deuteron’s spin along its momentum as the deuteron moves around the lattice. The radial electrostatic field would result in a torque on the spin vector, proportional to a deuteron EDM, rotating the spin vector out of the midplane.« less

  10. A Mixed-Mode (I-II) Fracture Criterion for AS4/8552 Carbon/Epoxy Composite Laminate

    NASA Astrophysics Data System (ADS)

    Karnati, Sidharth Reddy

    A majority of aerospace structures are subjected to bending and stretching loads that introduce peel and shear stresses between the plies of a composite laminate. These two stress components cause a combination of mode I and II fracture modes in the matrix layer of the composite laminate. The most common failure mode in laminated composites is delamination that affects the structural integrity of composite structures. Damage tolerant designs of structures require two types of materials data: mixed-mode (I-II) delamination fracture toughness that predicts failure and delamination growth rate that predicts the life of the structural component. This research focuses determining mixed-mode (I-II) fracture toughness under a combination of mode I and mode II stress states and then a fracture criterion for AS4/8552 composite laminate, which is widely used in general aviation. The AS4/8552 prepreg was supplied by Hexcel Corporation and autoclave fabricated into a 20-ply unidirectional laminate with an artificial delamination by a Fluorinated Ethylene Propylene (FEP) film at the mid-plane. Standard split beam specimens were prepared and tested in double cantilever beam (DCB) and end notched flexure modes to determine mode I (GIC) and II (GIIC) fracture toughnesses, respectively. The DCB specimens were also tested in a modified mixed-mode bending apparatus at GIIm /GT ratios of 0.18, 0.37, 0.57 and 0.78, where GT is total and GIIm is the mode II component of energy release rates. The measured fracture toughness, GC, was found to follow the locus a power law equation. The equation was validated for the present and literature experimental data.

  11. Linear calculations of edge current driven kink modes with BOUT++ code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G. Q., E-mail: ligq@ipp.ac.cn; Xia, T. Y.; Lawrence Livermore National Laboratory, Livermore, California 94550

    This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linearmore » growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.« less

  12. Numerical and analytical modelling of the MHD buoyancy-driven flow in a Bridgman crystal growth configuration

    NASA Astrophysics Data System (ADS)

    Davoust, L.; Moreau, R.; Cowley, M. D.; Tanguy, P. A.; Bertrand, F.

    1997-10-01

    We present analytical and numerical models of magnetohydrodynamic(MHD) buoyancy-driven flow within the liquid pool of a horizontal Bridgman crystal growth furnace, under the influence of a uniform vertical magnetic field B0. A horizontal differentially heated cylinder, whose aspect ratio (radius to length) is small enough for a fully developed regime to be established in the central core, is considered. With Hartmann layers remaining electrically inactive, a modified Rayleigh number RaG, which is the ration of the ordinary Rayleigh number to the square of the Hartmann number, is found to control the MHD reorganisation of the flow. This modified Rayleigh number is a measure of the importance of thermal convection relative to diffusion if velocity is estimated from the balance between the torques of buoyancy and the Laplace force. When RaG is much smaller than unity (quasi-diffusive regime), an analytical modelling of the flow, based on a power series of RaG, demonstrates that this balance requires secondary vortices within vertical mid-planes of the cylinder, both within the core flow and near the end walls. A 3-D numerical calculation of the flow provides evidence of the transition from a convective MHD flow (when RaG is still of the order of unity) to the quasi-diffusive flow, analytically studied. Indeed, this transition takes the form of a rather complex 3-D MHD organisation of the flow which is due to the nonuniformity of the axial temperature gradient along the cylinder.

  13. The hybrid reactor project based on the straight field line mirror concept

    NASA Astrophysics Data System (ADS)

    Ågren, O.; Noack, K.; Moiseenko, V. E.; Hagnestâl, A.; Källne, J.; Anglart, H.

    2012-06-01

    The straight field line mirror (SFLM) concept is aiming towards a steady-state compact fusion neutron source. Besides the possibility for steady state operation for a year or more, the geometry is chosen to avoid high loads on materials and plasma facing components. A comparatively small fusion hybrid device with "semi-poor" plasma confinement (with a low fusion Q factor) may be developed for industrial transmutation and energy production from spent nuclear fuel. This opportunity arises from a large fission to fusion energy multiplication ratio, Qr = Pfis/Pfus>>1. The upper bound on Qr is primarily determined by geometry and reactor safety. For the SFLM, the upper bound is Qr≈150, corresponding to a neutron multiplicity of keff=0.97. Power production in a mirror hybrid is predicted for a substantially lower electron temperature than the requirement Te≈10 keV for a fusion reactor. Power production in the SFLM seems possible with Q≈0.15, which is 10 times lower than typically anticipated for hybrids (and 100 times smaller than required for a fusion reactor). This relaxes plasma confinement demands, and broadens the range for use of plasmas with supra-thermal ions in hybrid reactors. The SFLM concept is based on a mirror machine stabilized by qudrupolar magnetic fields and large expander tanks beyond the confinement region. The purpose of the expander tanks is to distribute axial plasma loss flow over a sufficiently large area so that the receiving plates can withstand the heat. Plasma stability is not relying on a plasma flow into the expander regions. With a suppressed plasma flow into the expander tanks, a possibility arise for higher electron temperature. A brief presentation will be given on basic theory for the SFLM with plasma stability and electron temperature issues, RF heating computations with sloshing ion formation, neutron transport computations with reactor safety margins and material load estimates, magnetic coil designs as well as a discussion on the implications of the geometry for possible diagnostics. Reactor safety issues are addressed and a vertical orientation of the device could assist passive coolant circulation. Specific attention is put to a device with a 25 m long confinement region and 40 cm plasma radius in the mid-plane. In an optimal case (keff = 0.97) with a fusion power of only 10 MW, such a device may be capable of producing a power of 1.5 GWth.

  14. An Investigation into the Aerodynamics Surrounding Vertical-Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.

    The flow surrounding a scaled model vertical-axis wind turbine (VAWT) at realistic operating conditions was studied. The model closely matches geometric and dynamic properties--tip-speed ratio and Reynolds number--of a full-size turbine. The flowfield is measured using particle imaging velocimetry (PIV) in the mid-plane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Ensemble-averaged results revealed an asymmetric wake behind the turbine, regardless of tip-speed ratio, with a larger velocity deficit for a higher tip-speed ratio. For the higher tip-speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04Uinfinity. Phase-averaged vorticity fields--achieved by syncing the PIV system with the rotation of the turbine--show distinct structures form from each turbine blade. There are distinct differences in the structures that are shed into the wake for tip-speed ratios of 0.9, 1.3 and 2.2--switching from two pairs to a single pair of shed vortices--and how they convect into the wake--the middle tip-speed ratio vortices convect downstream inside the wake, while the high tip-speed ratio pair is shed into the shear layer of the wake. The wake structure is found to be much more sensitive to changes in tip-speed ratio than to changes in Reynolds number. The geometry of a turbine can influence tip-speed ratio, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. Next, we characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter (D), to blade chord (c), which was chosen to be D/c = 3, 6, and 9, for a fixed freestream Reynolds number based on the blade chord of Rec =16,000. In addition to two-component PIV and single-component constant temperature anemometer measurements are made at the horizontal mid-plane in the wake of each turbine. Hot-wire measurement locations are selected to coincide with the edge of the shear layer of each turbine wake, as deduced from the PIV data, which allows for an analysis of the frequency content of the wake due to vortex shedding by the turbine. Changing the tip-speed ratio leads to substantial wake variation possibly because changing the tip-speed ratio changes the dynamic solidity. In this work, we achieve a similar change in dynamic solidity by varying the D/c ratio and holding the tip-speed ratio constant. This change leads to very similar characteristic shifts in the wake, such as a greater blockage effect, including averaged flow reversal in the case of high dynamic solidity (D/c = 3). The phase-averaged vortex identification shows that both the blockage effect and the wake structures are similarly affected by a change in dynamic solidity. At lower dynamic solidity, pairs of vortices are shed into the wake directly downstream of the turbine. For all three models, a vortex chain is shed into the shear layer at the edge of the wake where the blade is processing into the freestream.

  15. Analysis of Pull-In Instability of Geometrically Nonlinear Microbeam Using Radial Basis Artificial Neural Network Based on Couple Stress Theory

    PubMed Central

    Heidari, Mohammad; Heidari, Ali; Homaei, Hadi

    2014-01-01

    The static pull-in instability of beam-type microelectromechanical systems (MEMS) is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS. PMID:24860602

  16. Gamma ray imager on the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, D. C., E-mail: pacedc@fusion.gat.com; Taussig, D.; Eidietis, N. W.

    2016-04-15

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1–60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less

  17. Radiative Grain Alignment in Protoplanetary Disks: Implications for Polarimetric Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tazaki, Ryo; Lazarian, Alexandre; Nomura, Hideko, E-mail: rtazaki@kusastro.kyoto-u.ac.jp

    2017-04-10

    We apply the theory of radiative torque (RAT) alignment for studying protoplanetary disks around a T-Tauri star and perform 3D radiative transfer calculations to provide the expected maps of polarized radiation to be compared with observations, such as with ALMA. We revisit the issue of grain alignment for large grains expected in the protoplanetary disks and find that mm-sized grains at the midplane do not align with the magnetic field since the Larmor precession timescale for such large grains becomes longer than the gaseous damping timescale. Hence, for these grains the RAT theory predicts that the alignment axis is determinedmore » by the grain precession with respect to the radiative flux. As a result, we expect that the polarization will be in the azimuthal direction for a face-on disk. It is also shown that if dust grains have superparamagnetic inclusions, magnetic field alignment is possible for (sub-)micron grains at the surface layer of disks, and this can be tested by mid-infrared polarimetric observations.« less

  18. Parametric dependence of ion temperature and relative density in the NASA Lewis SUMMA facility. [superconducting magnetic mirror

    NASA Technical Reports Server (NTRS)

    Snyder, A.; Lauver, M. R.; Patch, R. W.

    1976-01-01

    Further hot-ion plasma experiments were conducted in the SUMMA superconducting magnetic mirror facility. A steady-state ExB plasma was formed by applying a strong radially inward dc electric field between cylindrical anodes and hollow cathodes located near the magnetic mirror maxima. Extending the use of water cooling to the hollow cathodes, in addition to the anodes, resulted in higher maximum power input to the plasma. Steady-state hydrogen plasmas with ion kinetic temperatures as high as 830 eV were produced. Functional relations were obtained empirically among the plasma current, voltage, magnetic flux density, ion temperature, and relative ion density. The functional relations were deduced by use of a multiple correlation analysis. Data were obtained for midplane magnetic fields from 0.5 to 3.37 tesla and input power up to 45 kW. Also, initial absolute electron density measurements are reported from a 90 deg Thomson scattering laser system.

  19. Fast camera imaging of dust in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Yu, J. H.; Rudakov, D. L.; Pigarov, A. Yu.; Smirnov, R. D.; Brooks, N. H.; Muller, S. H.; West, W. P.

    2009-06-01

    Naturally occurring and injected dust particles are observed in the DIII-D tokamak in the outer midplane scrape-off-layer (SOL) using a visible fast-framing camera, and the size of dust particles is estimated using the observed particle lifetime and theoretical ablation rate of a carbon sphere. Using this method, the lower limit of detected dust radius is ˜3 μm and particles with inferred radius as large as ˜1 mm are observed. Dust particle 2D velocities range from approximately 10 to 300 m/s with velocities inversely correlated with dust size. Pre-characterized 2-4 μm diameter diamond dust particles are introduced at the lower divertor in an ELMing H-mode discharge using the divertor materials evaluation system (DiMES), and these particles are found to be at the lower size limit of detection using the camera with resolution of ˜0.2 cm 2 per pixel and exposure time of 330 μs.

  20. HST/WFC3 Imaging and Multi-Wavelength Characterization of Edge-On Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Gould, Carolina; Williams, Hayley; Duchene, Gaspard

    2017-10-01

    In recent years, the imaging detail in resolved protoplanetary disks has vastly improved and created a critical mass of objects to survey and compare properties, leading us to better understandings of system formation. In particular, disks with an edge-on inclination offer an important perspective, not only for the imaging convenience since the disk blocks stellar light, but scientifically an edge-on disk provides an otherwise impossible opportunity to observe vertical dust structure of a protoplanetary system. In this contribution, we compare seven HST-imaged edge-on protoplanetary disks in the Taurus, Chamaeleon and Ophiuchus star-forming regions, making note the variation in morphology (settled vs flared), dust properties revealed by multiwavelength color mapping, brightness variability over years timescales, and the presence in some systems of a blue-colored atmosphere far above the disk midplane. By using a uniform approach for their analysis, together these seven edge-on protoplanetary disk systems can give insights on evolutionary processes and inform future projects that explore this critical stage of planet formation.

  1. The Thick Disk in the Galaxy NGC 4244 from S4G Imaging

    NASA Astrophysics Data System (ADS)

    Comerón, Sébastien; Knapen, Johan H.; Sheth, Kartik; Regan, Michael W.; Hinz, Joannah L.; Gil de Paz, Armando; Menéndez-Delmestre, Karín; Muñoz-Mateos, Juan-Carlos; Seibert, Mark; Kim, Taehyun; Athanassoula, E.; Bosma, Albert; Buta, Ronald J.; Elmegreen, Bruce G.; Ho, Luis C.; Holwerda, Benne W.; Laurikainen, Eija; Salo, Heikki; Schinnerer, Eva

    2011-03-01

    If thick disks are ubiquitous and a natural product of disk galaxy formation and/or evolution processes, all undisturbed galaxies that have evolved during a significant fraction of a Hubble time should have a thick disk. The late-type spiral galaxy NGC 4244 has been reported as the only nearby edge-on galaxy without a confirmed thick disk. Using data from the Spitzer Survey of Stellar Structure in Galaxies (S4G) we have identified signs of two disk components in this galaxy. The asymmetries between the light profiles on both sides of the mid-plane of NGC 4244 can be explained by a combination of the galaxy not being perfectly edge-on and a certain degree of opacity of the thin disk. We argue that the subtlety of the thick disk is a consequence of either a limited secular evolution in NGC 4244, a small fraction of stellar material in the fragments which built the galaxy, or a high amount of gaseous accretion after the formation of the galaxy.

  2. Mitigation of divertor heat flux by high-frequency ELM pacing with non-fuel pellet injection in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bortolon, A.; Maingi, R.; Mansfield, D. K.

    Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs) and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3–5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux. However, in scenarios with high pedestal density (~6 × 10 19 m –3), the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation.more » Furthermore, transient heat-flux deposition correlated with granule injections was observed far from the strike-points. As a result, field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection.« less

  3. Gamma ray imager on the DIII-D tokamak

    DOE PAGES

    Pace, D. C.; Cooper, C. M.; Taussig, D.; ...

    2016-04-13

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1- 60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. In conclusion, first measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less

  4. Electrostatics of lipid bilayer bending.

    PubMed Central

    Chou, T; Jarić, M V; Siggia, E D

    1997-01-01

    The electrostatic contribution to spontaneous membrane curvature is calculated within Poisson-Boltzmann theory under a variety of assumptions and emphasizing parameters in the physiological range. Asymmetrical surface charges can be fixed with respect to bilayer midplane area or with respect to the lipid-water area, but induce curvatures of opposite signs. Unequal screening layers on the two sides of a vesicle (e.g., multivalent cationic proteins on one side and monovalent salt on the other) also induce bending. For reasonable parameters, tubules formed by electrostatically induced bending can have radii in the 50-100-nm range, often seen in many intracellular organelles. Thus membrane associated proteins may induce curvature and subsequent budding, without themselves being intrinsically curved. Furthermore, we derive the previously unexplored effects of respecting the strict conservation of charge within the interior of a vesicle. The electrostatic component of the bending modulus is small under most of our conditions and is left as an experimental parameter. The large parameter space of conditions is surveyed in an array of graphs. Images FIGURE 1 FIGURE 10 PMID:9129807

  5. PHOTOPHORESIS IN A DILUTE, OPTICALLY THICK MEDIUM AND DUST MOTION IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNally, Colin P.; Hubbard, Alexander, E-mail: cmcnally@nbi.dk, E-mail: ahubbard@amnh.org

    2015-11-20

    We derive expressions for the photophoretic force on opaque spherical particles in a dilute gas in the optically thick regime where the radiation field is in local thermal equilibrium. Under those conditions, the radiation field has a simple form, leading to well defined analytical approximations for the photophoretic force that also consider both the internal thermal conduction within the particle, and the effects of heat conduction and radiation to the surrounding gas. We derive these results for homogeneous spherical particles; and for the double layered spheres appropriate for modeling solid grains with porous aggregate mantles. Then, as a specific astrophysicalmore » application of these general physical results, we explore the parameter space relevant to the photophoresis driven drift of dust in protoplanetary disks. We show that highly porous silicate grains have sufficiently low thermal conductivities that photophoretic effects, such as significant relative velocities between particles with differing porosity or levitation above the midplane, are expected to occur.« less

  6. Mitigation of divertor heat flux by high-frequency ELM pacing with non-fuel pellet injection in DIII-D

    DOE PAGES

    Bortolon, A.; Maingi, R.; Mansfield, D. K.; ...

    2017-03-23

    Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs) and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3–5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux. However, in scenarios with high pedestal density (~6 × 10 19 m –3), the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation.more » Furthermore, transient heat-flux deposition correlated with granule injections was observed far from the strike-points. As a result, field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection.« less

  7. Influence of container shape on scaling of turbulent fluctuations in convection

    NASA Astrophysics Data System (ADS)

    Foroozani, Najmeh; Niemela, Joseph J.; Armenio, Vincenzo; Sreenivasan, Katepalli R.

    2014-11-01

    We perform large-eddy simulations of turbulent convection in a cubic enclosure for Rayleigh numbers 1 ×106 <= Ra <= 1 ×1010 and molecular Prandtl number, Pr = 0 . 7 . The simulations were carried out using a second-order-accurate finite-difference method in which subgrid-scale fluxes of momentum and heat were parametrized using a Lagrangian dynamic Smagorinsky model. The scalings of root-mean-square fluctuations of density and velocity in the cell center with Ra differ significantly from those in cylindrical containers, and are in agreement with laboratory observations by, also using a cell with square cross-section. We find that the time-averaged spatial distributions of the local heat flux and temperature fluctuations are inhomogeneous in the horizontal plane, associated with the forced orientation of the mean wind along either one or the other diagonal. Larger values of the steady-state density (temperature) gradients occur at the mid-plane corners of the diagonal opposite to that of the mean wind, due to the presence of strong counter-rotating circulations.

  8. Influence of container shape on scaling of turbulent fluctuations in convection

    NASA Astrophysics Data System (ADS)

    Foroozani, N.; Niemela, J. J.; Armenio, V.; Sreenivasan, K. R.

    2014-12-01

    We perform large-eddy simulations of turbulent convection in a cubic cell for Rayleigh numbers, Ra, between 106 and 1010 and the molecular Prandtl number, Pr=0.7 . The simulations were carried out using a second-order-accurate finite-difference method in which subgrid-scale fluxes of momentum and heat were both parametrized using a Lagrangian and dynamic Smagorinsky model. The scaling of the root-mean-square fluctuations of density (temperature) and velocity measured in the cell center are in excellent agreement with the scaling measured in the laboratory experiments of Daya and Ecke [Phys. Rev. Lett. 87, 184501 (2001), 10.1103/PhysRevLett.87.184501] and differ substantially from that observed in cylindrical cells. We also observe the time-averaged spatial distributions of the local heat flux and density fluctuations, and find that they are strongly inhomogeneous in the horizontal midplane, with the largest density gradients occurring at the corners at the midheight, where hot and cold plumes mix in the form of strong counter-rotating eddies.

  9. Flow measurement behind a pair of vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Hummels, Raymond; Leftwich, Megan C.

    2017-11-01

    The wake from a pair of vertical-axis wind turbines (VAWTs) is measured using particle imaging velocimetry (PIV). The VAWT models are mounted in a low-speed wind tunnel and driven using a motor control system. The rotation of the turbines is synced using a proportional controller that allows the turbine's rotational position to be set relative to each other. The rotation of the turbines is also synced with the PIV system for taking phase averaged results. The VAWTs are tested for both co- and counter-rotating cases over a range of relative phase offsets. Time averaged and phase averaged results are measured at the horizontal mid-plane in the near wake. The time-averaged results compare the bulk wake profiles from the pair of turbines. Phase averaged results look at the vortex interactions in the near wake of the turbines. By changing the phase relation between the turbines we can see the impact of the structure interactions in both the phase and time averaged results.

  10. Velocity field measurements in oblique static divergent vocal fold models

    NASA Astrophysics Data System (ADS)

    Erath, Byron

    2005-11-01

    During normal phonation, the vocal fold cycle is characterized by the glottal opening transitioning from a convergent to a divergent passage and then closing before the cycle is repeated. Under ordinary phonatory conditions, both vocal folds, which form the glottal passage, move in phase with each other, creating a time-varying symmetric opening. However, abnormal pathological conditions, such as unilateral paralysis, and polyps, can result in geometrical asymmetries between the vocal folds throughout the phonatory cycle. This study investigates pulsatile flow fields through 7.5 times life-size vocal fold models with included divergence angles of 5 to 30 degrees, and obliquities between the vocal folds of up to 15 degrees. Flow conditions were scaled to match physiological parameters. Data were taken at the anterior posterior mid-plane using phase-averaged Particle Image Velocimetry (PIV). Viscous flow phenomena including the Coanda effect, flow separation points, and jet "flapping" were investigated. The results are compared to previously reported work of flow through symmetric divergent vocal fold models.

  11. WIND-DRIVEN ACCRETION IN TRANSITIONAL PROTOSTELLAR DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lile; Goodman, Jeremy J.

    Transitional protostellar disks have inner cavities that are heavily depleted in dust and gas, yet most of them show signs of ongoing accretion, often at rates comparable to full disks. We show that recent constraints on the gas surface density in a few well-studied disk cavities suggest that the accretion speed is at least transsonic. We propose that this is the natural result of accretion driven by magnetized winds. Typical physical conditions of the gas inside these cavities are estimated for plausible X-ray and FUV radiation fields. The gas near the midplane is molecular and predominantly neutral, with a dimensionlessmore » ambipolar parameter in the right general range for wind solutions of the type developed by Königl, Wardle, and others. That is to say, the density of ions and electrons is sufficient for moderately good coupling to the magnetic field, but it is not so good that the magnetic flux needs to be dragged inward by the accreting neutrals.« less

  12. Progress with MGI and CHI Research on NSTX-U

    NASA Astrophysics Data System (ADS)

    Raman, R.; Lay, W.-S.; Jarboe, T. R.; Nelson, B. A.; Mueller, D.; Gerhardt, S. P.; Ebrahimi, F.; Jardin, S. C.; Taylor, G.

    2016-10-01

    NSTX-U experiments on Massive Gas Injection (MGI) will offer new insight to the MGI database by studying gas assimilation efficiencies for MGI gas injection from different poloidal locations. In support of this research, two ITER-type MGI valves have been successfully commissioned on NSTX-U. Results from the planned experiment `Comparison of Private Flux Region with Conventional Mid-plane MGI on NSTX-U', will be reported. In support of planned Coaxial Helicity Injection (CHI) research on NSTX-U, a new high-resolution grid has been generated for TSC simulations of CHI. This improves the resolution of the CHI injector region, and better models the closely-spaced divertor coils on NSTX-U. These new simulations support previous analysis that suggests a solenoid-free plasma current initiation capability of more than 400kA on NSTX-U. This work is supported by U.S. DOE Contracts: DE-AC02-09CH11466, DE-FG02-99ER54519 AM08, and DE-SC0006757.

  13. SOL Thermal Instability due to Radial Blob Convection

    NASA Astrophysics Data System (ADS)

    D'Ippolito, D. A.

    2005-10-01

    C-Mod datafootnotetextM. Greenwald, Plasma Phys. Contr. Fusion 44, R27 (2002). suggests a density limit when rapid perpendicular convection dominates SOL heat transport. This is supported by a recent analysisfootnotetextD.A. Russell et al., Phys. Rev. Lett. 93, 265001 (2004). of BOUT code turbulence simulations, which shows that rapid outwards convection of plasma by turbulent blobs is enhanced when the X-point collisionality is large, resulting in a synergistic effect between blob convection and X-point cooling. This work motivates the present analysis of SOL thermal equilibrium and instability including an RX-regime modelfootnotetextJ.R. Myra and D.A. D'Ippolito, Lodestar Report LRC-05-105 (2005). of blob particle and heat transport. Two-point (midplane, X-point) SOL thermal equilibrium and stability models are considered including both two-field (T) and four-field (n,T) treatments. The conditions under which loss of thermal equilibrium or thermal instabilities occur are established, and relations to the C-Mod data are described.

  14. The distribution of ion orbit loss fluxes of ions and energy from the plasma edge across the last closed flux surface into the scrape-off layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey, Weston M.; Schumann, Matthew T.

    A more detailed calculation strategy for the evaluation of ion orbit loss of thermalized plasma ions in the edge of tokamaks is presented. In both this and previous papers, the direct loss of particles from internal flux surfaces is calculated from the conservation of canonical angular momentum, energy, and magnetic moment. The previous result that almost all of the ion energy and particle fluxes crossing the last closed flux surface are in the form of ion orbit fluxes is confirmed, and the new result that the distributions of these fluxes crossing the last closed flux surface into the scrape-off layermore » are very strongly peaked about the outboard midplane is demonstrated. Previous results of a preferential loss of counter current particles leading to a co-current intrinsic rotation peaking just inside of the last closed flux surface are confirmed. Various physical details are discussed.« less

  15. Characteristics of the NASA Lewis bumpy-torus plasma generated with positive applied potentials

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Gerdin, G. A.; Richardson, R. W.

    1976-01-01

    Experimental observations were made during steady-state operation of a bumpy-torus plasma at input powers up to 150 kW in deuterium and helium gas and with positive potentials applied to the midplane electrodes. In this steady-state ion heating method a modified Penning discharge is operated such that the plasma is acted upon by a combination of strong electric and magnetic fields. Experimental investigation of a deuterium plasma revealed electron temperatures from 14 to 140 eV and ion kinetic temperatures from 160 to 1785 eV. At least two distinct modes of operation exist. Experimental data shows that the average ion residence time in the plasma is virtually independent of the magnetic field strength. Data was taken when all 12 anode rings were at high voltage, and in other symmetric configurations in which the toroidal plasma was generated by applying positive potentials to six anode rings, three anode rings, and a single anode ring.

  16. Low Density ITB Studies Using the Upgraded C-Mod Reflectometry System

    NASA Astrophysics Data System (ADS)

    Dominguez, A.; Edlund, E.; Fiore, C. L.; Lin, L.; Marmar, E. S.; Snipes, J. A.; Porkolab, M.; Kramer, G. J.; Rowan, W. L.

    2007-11-01

    The Alcator C-Mod reflectometry system was recently upgraded in two ways: The low frequency channels were changed from amplitude modulation - in which two microwave signals, slightly separated in frequency, are injected into the plasma - to baseband, where a single frequency is used, in order to improve density fluctuation measurements. The second change, a variable frequency channel operating over the range from 122GHz to 140GHz (with corresponding density cutoffs of 1.84-2.43x10^20m-3) has been installed in collaboration with PPPL. Initial results from the upgraded system are presented, including the study of low density Internal Transport Barriers. Using O-mode waves, the reflectometry system is able to radially localize density fluctuations on the low field side along the tokamak midplane. It can, therefore, be used to probe the foot of low density ITBs. The corresponding reflectometry data will be compared to those of other fluctuation diagnostics, including Phase Contrast Imaging and magnetic pick-up coils.

  17. Formation of Circumbinary Planets in a Dead Zone

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca G.; Armitage, Philip J.; Alexander, Richard D.

    2013-08-01

    Circumbinary planets have been observed at orbital radii where binary perturbations may have significant effects on the gas disk structure, on planetesimal velocity dispersion, and on the coupling between turbulence and planetesimals. Here, we note that the impact of all of these effects on planet formation is qualitatively altered if the circumbinary disk structure is layered, with a non-turbulent midplane layer (dead zone) and strongly turbulent surface layers. For close binaries, we find that the dead zone typically extends from a radius close to the inner disk edge up to a radius of around 10-20 AU from the center of mass of the binary. The peak in the surface density occurs within the dead zone, far from the inner disk edge, close to the snow line, and may act as a trap for aerodynamically coupled solids. We suggest that circumbinary planet formation may be easier near this preferential location than for disks around single stars. However, dead zones around wide binaries are less likely, and hence planet formation may be more difficult there.

  18. New insights on the origin of the High Velocity Peaks in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Fernández-Trincado, J. G.; Robin, A. C.; Moreno, E.; Pérez-Villegas, A.; Pichardo, B.

    2017-12-01

    We provide new insight on the origin of the cold high-V_{los} peaks (˜200 kms^{-1}) in the Milky Way bulge discovered in the APOGEE commissioning data (Nidever et al. 2012). Here we show that such kinematic behaviour present in the field regions towards the Galactic bulge is not likely associated with orbits that build the boxy/peanut (B/P) bulge. To this purpose, a new set of test particle simulations of a kinematically cold stellar disk evolved in a 3D steady-state barred Milky Way galactic potential, has been analysed in detail. Especially bar particles trapped into the bar are identified through the orbital Jacobi energy E_{J}, which allows us to identify the building blocks of the B/P feature and investigate their kinematic properties. Finally, we present preliminary results showing that the high-V_{los} features observed towards the Milky Way bulge are a natural consequence of a large-scale midplane particle structure, which is unlikely associated with the Galactic bar.

  19. ANSYS Fluent Modelling of an Underexpanded Supersonic Sootblower Jet Impinging into Recovery Boiler Tube Geometries

    NASA Astrophysics Data System (ADS)

    Doroudi, Shahed

    Sootblowers generate high pressure supersonic steam jets to control fireside deposition on heat transfer tubes of a kraft recovery boiler. Sootblowing is energy expensive, using 3-12% of the mill's total steam production. This motivates research on the dynamics of sootblower jet interaction with tubes and deposits, to optimize their use. A CFD investigation was performed using ANSYS Fluent 15.0 to model three-dimensional steady-state impingement of a Mach 2.5 mildly underexpanded (PR 1.2) air jet onto arrays of cylindrical tubes with and without fins, at various nozzle-to-tube centerline offsets. A free jet and four impingement cases for each of the economizer and generating bank geometries are compared to experimental visualizations. Pressure distributions on impinging surfaces suggest that the fins in the economizer produce a reduced but uniform sootblowing force. Pressure contours along the tubes (in the vertical direction) show a sharp decline one tube diameter away from the jet mid-plane.

  20. From Dust to Planets: Connecting the Dots

    NASA Astrophysics Data System (ADS)

    Weidenschilling, Stuart

    The principal objective is to construct a self-consistent model linking two key early stages of planetary origins: formation of planetesimals by collisional growth of aggregate bodies from grains in the solar nebula, and accretion of those planetesimals into planetary embryos. We will simulate these processes by using a series of numerical codes to model (i) particle settling and coagulation, using the latest and most comprehensive experimental data on collisional outcomes, (ii) detailed vertical structure of a particle layer in the nebular midplane subject to shear-generated turbulence, and possible streaming instability due to transverse particle motions, and (iii) accretion of planetary embryos from planetesimals that have grown large enough to decouple from the gas and experience Keplerian motion dominated by gravitational forces. The proposed work will clarify conditions necessary for planetesimal formation and the effects of turbulence on this process, and will bridge the gap between the dynamical regimes controlled by forces of gas drag and gravity. It will also determine how initial sizes of planetesimals affect the timescales and outcomes of planetary accretion.

  1. Search for the magnetic neutral line in the near-earth plasma sheet 3. An extensive study of magnetic field observations at the lunar distance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lui, A.T.Y.; Meng, C.; Akasofu, S.

    1977-09-01

    In this paper we have extended our search for the magnetic neutral line in the magnetotail to the lunar distance on the basis of the Explorer 35 magnetic field observations from July 1967 to December 1970. The sign of the B/sub z/ component is found to be predominantly positive during satellite crossings of the midplane (or the so-called neutral sheet) during the substorm expansive phase. Thus combining the present and the earlier results, we conclude that there is no supporting evidence for the formation of a neutral line within the lunar distance during the expansive phase of most substorms. Wemore » also discuss in detail a rare event during the geomagnetic storm of February 2-4, 1969 (Dstapprox.-180 ..gamma..). The magnetic field was observed to be pointing nearly 90/sup 0/ southward with a magnitude of 20-32 ..gamma.. for an extended period.« less

  2. Chemical Evolution of a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Semenov, Dmitry A.

    2011-12-01

    In this paper we review recent progress in our understanding of the chemical evolution of protoplanetary disks. Current observational constraints and theoretical modeling on the chemical composition of gas and dust in these systems are presented. Strong variations of temperature, density, high-energy radiation intensities in these disks, both radially and vertically, result in a peculiar disk chemical structure, where a variety of processes are active. In hot, dilute and heavily irradiated atmosphere only the most photostable simple radicals and atoms and atomic ions exist, formed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich ion-molecule and radical-radical chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex polyatomic (organic) species are synthesized. Dynamical processes affect disk chemical composition by enriching it in abundances of complex species produced via slow surface processes, which will become detectable with ALMA.

  3. Modeling Magnetotail Ion Distributions with Global Magnetohydrodynamic and Ion Trajectory Calculations

    NASA Technical Reports Server (NTRS)

    El-Alaoui, M.; Ashour-Abdalla, M.; Raeder, J.; Peroomian, V.; Frank, L. A.; Paterson, W. R.; Bosqued, J. M.

    1998-01-01

    On February 9, 1995, the Comprehensive Plasma Instrumentation (CPI) on the Geotail spacecraft observed a complex, structured ion distribution function near the magnetotail midplane at x approximately -30 R(sub E). On this same day the Wind spacecraft observed a quiet solar wind and an interplanetary magnetic field (IMF) that was northward for more than five hours, and an IMF B(sub y) component with a magnitude comparable to that of the RAF B(sub z) component. In this study, we determined the sources of the ions in this distribution function by following approximately 90,000 ion trajectories backward in time, using the time-dependent electric and magnetic fields obtained from a global MHD simulation. The Wind observations were used as input for the MHD model. The ion distribution function observed by Geotail at 1347 UT was found to consist primarily of particles from the dawn side low latitude boundary layer (LLBL) and from the dusk side LLBL; fewer than 2% of the particles originated in the ionosphere.

  4. Scrape-off layer reflectometer for Alcator C-Mod.

    PubMed

    Hanson, G R; Wilgen, J B; Lau, C; Lin, Y; Wallace, G M; Wukitch, S J

    2008-10-01

    A two-frequency x-mode reflectometer operating from 100 to 146 GHz is deployed on Alcator C-Mod to measure the density profile and fluctuations in the scrape-off layer (SOL) immediately in front of the new J-port ICRF antenna and the new C-port lower hybrid launcher. The reflectometer covers densities from 10(16) to 10(20) m(-3) at 5-5.4 T. To provide the greatest flexibility and capability to deal with density fluctuations approaching 100% peak-to-peak in the SOL, both full-phase and differential-phase measurement capabilities with sweep speeds of approximately 10 micros to >1 ms are implemented. The differential-phase measurement uses a difference frequency of 500 MHz, corresponding to cutoff layer separations ranging from about 0.1 to 1 mm. The reflectometer has six sets of launchers: three on the ICRF antenna and three on the lower hybrid launcher. Both the ICRF antenna and the lower hybrid launcher incorporate reflectometer antennas at their top, bottom, and midplane locations.

  5. Dynamic delamination crack propagation in a graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Grady, J. E.; Sun, C. T.

    1991-01-01

    Dynamic delamination crack propagation in a (90/0) 5s Graphite/Epoxy laminate with an embedded interfacial crack was investigated experimentally using high speed photography. The dynamic motion was produced by impacting the beamlike laminate specimen with a silicon rubber ball. The threshold impact velocities required to initiate dynamic crack propagation in laminates with varying initial crack positions were determined. The crack propagation speeds were estimated from the photographs. Results show that the through the thickness position of the embedded crack can significantly affect the dominant mechanism and the threshold impact velocity for the onset of crack movement. If the initial delamination is placed near the top of bottom surface of the laminate, local buckling of the delaminated plies may cause instability of the crack. If the initial delamination lies on the midplane, local buckling does not occur and the initiation of crack propagation appears to be dominated by Mode II fracture. The crack propagation and arrest observed was seen to be affected by wave motion within the delamination region.

  6. Study of a new cusp field for an 18 GHz ECR ion source

    NASA Astrophysics Data System (ADS)

    Rashid, M. H.; Nakagawa, T.; Goto, A.; Yano, Y.

    2007-08-01

    A feasibility study was performed to generate new sufficient mirror cusp magnetic field (CMF) by using the coils of the existing room temperature traditional 18 GHz electron cyclotron resonance ion source (ECRIS) at RIKEN. The CMF configuration was chosen because it contains plasma superbly and no multipole magnet is needed to make the contained plasma quiescent with no magneto-hydrodynamic (MHD) instability and to make the system cost-effective. The least magnetic field, 13 kG is achieved at the interior wall of the plasma chamber including the point cusps (PC) on the central axis and the ring cusp (RC) on the mid-plane. The mirror ratio calculation and electron simulation were done in the computed CMF. It was found to contain the electrons for longer time than in traditional field. It is proposed that a powerful CMF ECRIS can be constructed, which is capable of producing intense highly charged ion (HCI) beam for light and heavy elements.

  7. Effect of elongation in divertor tokamaks

    NASA Astrophysics Data System (ADS)

    Jones, Morgin; Ali, Halima; Punjabi, Alkesh

    2008-04-01

    Method of maps developed by Punjabi and Boozer [A. Punjabi, A. Verma, and A. Boozer, Phys.Rev. Lett. 69, 3322 (1992)] is used to calculate the effects of elongation on stochastic layer and magnetic footprint in divertor tokamaks. The parameters in the map are chosen such that the poloidal magnetic flux χSEP inside the ideal separatrix, the amplitude δ of magnetic perturbation, and the height H of the ideal separatrix surface are held fixed. The safety factor q for the flux surfaces that are nonchaotic as a function of normalized distance d from the O-point to the X-point is also held approximately constant. Under these conditions, the width W of the ideal separatrix surface in the midplane through the O-point is varied. The relative width w of stochastic layer near the X-point and the area A of magnetic footprint are then calculated. We find that the normalized width w of stochastic layer scales as W-7, and the area A of magnetic footprint on collector plate scales as W-10.

  8. Influence of container shape on scaling of turbulent fluctuations in convection.

    PubMed

    Foroozani, N; Niemela, J J; Armenio, V; Sreenivasan, K R

    2014-12-01

    We perform large-eddy simulations of turbulent convection in a cubic cell for Rayleigh numbers, Ra, between 10(6) and 10(10) and the molecular Prandtl number, Pr=0.7. The simulations were carried out using a second-order-accurate finite-difference method in which subgrid-scale fluxes of momentum and heat were both parametrized using a Lagrangian and dynamic Smagorinsky model. The scaling of the root-mean-square fluctuations of density (temperature) and velocity measured in the cell center are in excellent agreement with the scaling measured in the laboratory experiments of Daya and Ecke [Phys. Rev. Lett. 87, 184501 (2001)] and differ substantially from that observed in cylindrical cells. We also observe the time-averaged spatial distributions of the local heat flux and density fluctuations, and find that they are strongly inhomogeneous in the horizontal midplane, with the largest density gradients occurring at the corners at the midheight, where hot and cold plumes mix in the form of strong counter-rotating eddies.

  9. Measurement of poloidal velocity on the National Spherical Torus Experiment (invited).

    PubMed

    Bell, Ronald E; Feder, Russell

    2010-10-01

    A diagnostic suite has been developed to measure the impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all the quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both the active emission in the plane of the neutral heating beams and the background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent charge exchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. The local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. The radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  10. Pelvic Inlet Shape Is Not as Dimorphic as Previously Suggested.

    PubMed

    Delprete, Hillary

    2017-04-01

    It is well known that there are significant differences in the pelves of males and females due, in part, to differing constraints. The male and female pelves must be suitable for upright posture and locomotion, but the female pelvis must also be suitable for reproduction. These differing requirements lead to differences in the shape and size of various pelvic dimensions. These differences are reflected in the pelvic inlet, midplane, and outlet. Current research has documented dimorphisms in the posterior and anterior spaces in all three of these planes. One measure however, that is calculated from the relationship between the length of the anterior-posterior diameter (APD) and the transverse diameter (TD) of the inlet, is not as dimorphic as previously suggested. This computed value is used to describe four main categories of inlet shape: android, gynecoid, anthropoid, and platypelloid. Current textbooks in anatomy and midwifery describe these forms and identify the typical male inlet shape as android and the typical female inlet shape as gynecoid. In this study, however, using skeletonized pelves of 378 adult individuals from three identified skeletal collections, the most common inlet shape for both males and females was android. In addition, when examining shape as a continuous variable, inlet shape is not sexually dimorphic in two of the three populations examined in this study. Based on the results of this study, the inlet shape for males and females is less dimorphic than previously thought, and we need to discontinue using pelvic categories to describe typical inlet shape. Anat Rec, 300:706-715, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Star Formation and Gas Dynamics in Galactic Disks: Physical Processes and Numerical Models

    NASA Astrophysics Data System (ADS)

    Ostriker, Eve C.

    2011-04-01

    Star formation depends on the available gaseous ``fuel'' as well as galactic environment, with higher specific star formation rates where gas is predominantly molecular and where stellar (and dark matter) densities are higher. The partition of gas into different thermal components must itself depend on the star formation rate, since a steady state distribution requires a balance between heating (largely from stellar UV for the atomic component) and cooling. In this presentation, I discuss a simple thermal and dynamical equilibrium model for the star formation rate in disk galaxies, where the basic inputs are the total surface density of gas and the volume density of stars and dark matter, averaged over ~kpc scales. Galactic environment is important because the vertical gravity of the stars and dark matter compress gas toward the midplane, helping to establish the pressure, and hence the cooling rate. In equilibrium, the star formation rate must evolve until the gas heating rate is high enough to balance this cooling rate and maintain the pressure imposed by the local gravitational field. In addition to discussing the formulation of this equilibrium model, I review the current status of numerical simulations of multiphase disks, focusing on measurements of quantities that characterize the mean properties of the diffuse ISM. Based on simulations, turbulence levels in the diffuse ISM appear relatively insensitive to local disk conditions and energetic driving rates, consistent with observations. It remains to be determined, both from observations and simulations, how mass exchange processes control the ratio of cold-to-warm gas in the atomic ISM.

  12. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheis, M.; Zasowski, G.; Allende Prieto, C.

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmosphericmore » parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.« less

  13. PDS 144: The First Confirmed Herbig Ae-Herbig Ae Wide Binary

    NASA Technical Reports Server (NTRS)

    Hornbeck, J. B.; Grady, C. A.; Perrin, M. D.; Wisniewski, J. P.; Tofflemire, B. M.; Brown, A.; Holtzman, J. A.; Arraki, K.; Hamaguchi, K.; Woodgate, B.; hide

    2012-01-01

    PDS 144 is a pair of Herbig Ae stars that are separated by 5.35" on the sky. It has previously been shown to have an A2Ve Herbig Ae star viewed at 83 deg inclination as its northern member and an A5Ve Herbig Ae star as its southern member. Direct imagery revealed a disk occulting PDS 144 N - the first edge-on disk observed around a Herbig Ae star. The lack of an obvious disk in direct imagery suggested PDS 144 S might be viewed face-on or not physically associated with PDS 144 N. Multi-epoch HST imagery of PDS 144 with a 5 yr baseline demonstrates PDS 144 N & S are comoving and have a common proper motion with TYC 6782-878-1. TYC 6782-878-1 has previously been identified as a member of Upper Sco sub-association A at d = 145 +/- 2 pc with an age of 5 - 10 Myr. Ground-based imagery reveals jets and a string of HH knots extending 13' (possibly further) which are aligned to within 7 deg +/- 6 deg on the sky. By combining proper motion data and the absence of a dark mid-plane with radial velocity data, we measure the inclination of PDS 144 S to be i = 73 deg +/- 7 deg. The radial velocity of the jets from PDS 144 N & S indicates they, and therefore their disks, are misaligned by 25 deg +/- 9 deg.. This degree of misalignment is similar to that seen in T-Tauri wide binaries.

  14. DOUBLE DCO{sup +} RINGS REVEAL CO ICE DESORPTION IN THE OUTER DISK AROUND IM LUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Öberg, Karin I.; Loomis, Ryan; Andrews, Sean M.

    2015-09-10

    In a protoplanetary disk, a combination of thermal and non-thermal desorption processes regulate where volatiles are liberated from icy grain mantles into the gas phase. Non-thermal desorption should result in volatile-enriched gas in disk-regions where complete freeze-out is otherwise expected. We present Atacama Large Millimeter/Submillimeter Array observations of the disk around the young star IM Lup in 1.4 mm continuum, C{sup 18}O 2–1, H{sup 13}CO{sup +} 3–2 and DCO{sup +} 3–2 emission at ∼0.″5 resolution. The images of these dust and gas tracers are clearly resolved. The DCO{sup +} line exhibits a striking pair of concentric rings of emission thatmore » peak at radii of ∼0.″6 and 2″ (∼90 and 300 AU, respectively). Based on disk chemistry model comparison, the inner DCO{sup +} ring is associated with the balance of CO freeze-out and thermal desorption due to a radial decrease in disk temperature. The outer DCO{sup +} ring is explained by non-thermal desorption of CO ice in the low-column-density outer disk, repopulating the disk midplane with cold CO gas. The CO gas then reacts with abundant H{sub 2}D{sup +} to form the observed DCO{sup +} outer ring. These observations demonstrate that spatially resolved DCO{sup +} emission can be used to trace otherwise hidden cold gas reservoirs in the outmost disk regions, opening a new window onto their chemistry and kinematics.« less

  15. Modelling of mitigation of the power divertor loading for the EU DEMO through Ar injection

    NASA Astrophysics Data System (ADS)

    Subba, Fabio; Aho-Mantila, Leena; Coster, David; Maddaluno, Giorgio; Nallo, Giuseppe F.; Sieglin, Bernard; Wenninger, Ronald; Zanino, Roberto

    2018-03-01

    In this paper we present a computational study on the divertor heat load mitigation through impurity injection for the EU DEMO. The study is performed by means of the SOLPS5.1 code. The power crossing the separatrix is considered fixed and corresponding to H-mode operation, whereas the machine operating condition is defined by the outboard mid-plane upstream electron density and the impurity level. The selected impurity for this study is Ar, based on its high radiation efficiency at SOL characteristic temperatures. We consider a conventional vertical target geometry for the EU DEMO and monitor target conditions for different operational points, considering as acceptability criteria the target electron temperature (≤5 eV to provide sufficiently low W sputtering rate) and the peak heat flux (below 5-10 MW m-2 to guarantee safe steady-state cooling conditions). Our simulations suggest that, neglecting the radiated power deposition on the plate, it is possible to satisfy the desired constraints. However, this requires an upstream density of the order of at least 50% of the Greenwald limit and a sufficiently high argon fraction. Furthermore, if the radiated power deposition is taken into account, the peak heat flux on the outer plate could not be reduced below 15 MW m-2 in these simulations. As these simulations do not take into account neutron loading, they strongly indicate that the vertical target divertor solution with a radiative front distributed along the divertor leg has a very marginal operational space in an EU DEMO sized reactor.

  16. Spatial Distribution of Trehalose Dihydrate Crystallization in Tablets by X-ray Diffractometry.

    PubMed

    Thakral, Naveen K; Yamada, Hiroyuki; Stephenson, Gregory A; Suryanarayanan, Raj

    2015-10-05

    Crystallization of trehalose dihydrate (C12H22O11·2H2O) was induced by storing tablets of amorphous anhydrous trehalose (C12H22O11) at 65% RH (RT). Our goal was to evaluate the advantages and limitations of two approaches of profiling spatial distribution of drug crystallization in tablets. The extent of crystallization, as a function of depth, was determined in tablets stored for different time-periods. The first approach was glancing angle X-ray diffractometry, where the penetration depth of X-rays was modulated by the incident angle. Based on the mass attenuation coefficient of the matrix, the depth of X-ray penetration was calculated as a function of incident angle, which in turn enabled us to "calculate" the extent of crystallization to different depths. In the second approach, the tablets were split into halves and the split surfaces were analyzed directly. Starting from the tablet surface and moving toward the midplane, XRD patterns were collected in 36 "regions", in increments of 0.05 mm. The results obtained by the two approaches were, in general, in good agreement. Additionally, the results obtained were validated by determining the "average" crystallization in the entire tablet by using synchrotron radiation in the transmission mode. The glancing angle method could detect crystallization up to ∼650 μm and had a "surface bias". Being a nondestructive technique, this method will permit repeated analyses of the same tablet at different time points, for example, during a stability study. However, split tablet analyses, while a "destructive" technique, provided comprehensive and unbiased depth profiling information.

  17. Data consistency-driven scatter kernel optimization for x-ray cone-beam CT

    NASA Astrophysics Data System (ADS)

    Kim, Changhwan; Park, Miran; Sung, Younghun; Lee, Jaehak; Choi, Jiyoung; Cho, Seungryong

    2015-08-01

    Accurate and efficient scatter correction is essential for acquisition of high-quality x-ray cone-beam CT (CBCT) images for various applications. This study was conducted to demonstrate the feasibility of using the data consistency condition (DCC) as a criterion for scatter kernel optimization in scatter deconvolution methods in CBCT. As in CBCT, data consistency in the mid-plane is primarily challenged by scatter, we utilized data consistency to confirm the degree of scatter correction and to steer the update in iterative kernel optimization. By means of the parallel-beam DCC via fan-parallel rebinning, we iteratively optimized the scatter kernel parameters, using a particle swarm optimization algorithm for its computational efficiency and excellent convergence. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by experimental studies using the ACS head phantom and the pelvic part of the Rando phantom. The results showed that the proposed method can effectively improve the accuracy of deconvolution-based scatter correction. Quantitative assessments of image quality parameters such as contrast and structure similarity (SSIM) revealed that the optimally selected scatter kernel improves the contrast of scatter-free images by up to 99.5%, 94.4%, and 84.4%, and of the SSIM in an XCAT study, an ACS head phantom study, and a pelvis phantom study by up to 96.7%, 90.5%, and 87.8%, respectively. The proposed method can achieve accurate and efficient scatter correction from a single cone-beam scan without need of any auxiliary hardware or additional experimentation.

  18. A GLIMPSE of Star Formation in the Outer Galaxy

    NASA Astrophysics Data System (ADS)

    Winston, Elaine; Hora, Joseph L.; Tolls, Volker

    2018-01-01

    The wealth of infrared data provided by recent infrared missions such as Spitzer, Herschel, and WISE has yet to be fully mined in the study of star formation in the outer galaxy. The nearby galaxy and massive star forming regions towards the galactic center have been extensively studied. However the outer regions of the Milky Way, where the metallicity is intermediate in value between the inner galactic disk and the Magellanic Clouds, has not been systematically studied. We are using Spitzer/IRAC’s GLIMPSE (Galactic Legacy Infrared Mid-plane Survey Extraordinaire) observations of the galactic plane at 3.6, 4.5, 5.8, and 8.0 microns to identify young stellar objects (YSOs) via their disk emission in the mid-infrared. A tiered clustering analysis is then performed: preliminary large scale clustering is identified across the field using a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) technique. Smaller scale sub clustering within these regions is performed using an implementation of the Minimum Spanning Tree (MST) technique. The YSOs are then compared to known objects in the SIMBAD catalogue and their photometry and cluster membership is augmented using available Herschel and WISE photometry. We compare our results to those in the inner galaxy to determine how dynamical processes and environmental factors affect the star formation efficiency. These results will have applications to the study of star formation in other galaxies, where only global properties can be determined. We will present here the results of our initial investigation into star formation in the outer galaxy using the Spitzer/GLIMPSE observations of the SMOG field.

  19. Reduced gas accretion on super-Earths and ice giants

    NASA Astrophysics Data System (ADS)

    Lambrechts, M.; Lega, E.

    2017-10-01

    A large fraction of giant planets have gaseous envelopes that are limited to about 10% of their total mass budget. Such planets are present in the solar system (Uranus, Neptune) and are frequently observed in short periods around other stars (the so-called super-Earths). In contrast to these observations, theoretical calculations based on the evolution of hydrostatic envelopes argue that such low-mass envelopes cannot be maintained around cores exceeding five Earth masses. Instead, under nominal disk conditions, these planets would acquire massive envelopes through runaway gas accretion within the lifetime of the protoplanetary disk. In this work we show that planetary envelopes are not in hydrostatic balance, which slows down envelope growth. A series of 3D global, radiative hydrodynamical simulations reveal a steady-state gas flow, which enters through the poles and exits in the disk midplane. Gas is pushed through the outer envelope in about ten orbital timescales. In regions of the disk that are not significantly dust-depleted, envelope accretion onto cores of about five Earth masses can get stalled as the gas flow enters the deep interior. Accreted solids sublimate deep in the convective interior, but small opacity-providing grains are trapped in the flow and do not settle, which further prevents rapid envelope accretion. The transition to runaway gas accretion can however be reached when cores grow larger than typical super-Earths, beyond 15 Earth masses, and preferably when disk opacities are below κ = 1 cm2/g. These findings offer an explanation for the typical low-mass envelopes around the cores of super-Earths.

  20. A new method for extending solutions to the self-similar relativistic magnetohydrodynamic equations for black hole outflows

    NASA Astrophysics Data System (ADS)

    Ceccobello, C.; Cavecchi, Y.; Heemskerk, M. H. M.; Markoff, S.; Polko, P.; Meier, D.

    2018-02-01

    The paradigm in which magnetic fields play a crucial role in launching/collimating outflows in many astrophysical objects continues to gain support. However, semi-analytical models including the effect of magnetic fields on the dynamics and morphology of jets are still missing due to the intrinsic difficulties in integrating the equations describing a collimated, relativistic flow in the presence of gravity. Only few solutions have been found so far, due to the highly non-linear character of the equations together with the need to blindly search for singularities. These numerical problems prevented a full exploration of the parameter space. We present a new integration scheme to solve r-self-similar, stationary, axisymmetric magnetohydrodynamic (MHD) equations describing collimated, relativistic outflows crossing smoothly all the singular points (Alfvén point and modified slow/fast points). For the first time, we are able to integrate from the disc mid-plane to downstream of the modified fast point. We discuss an ensemble of jet solutions, emphasizing trends and features that can be compared to observables. We present, for the first time with a semi-analytical MHD model, solutions showing counter-rotation of the jet for a substantial fraction of its extent. We find diverse jet configurations with bulk Lorentz factors up to 10 and potential sites for recollimation between 103 and 107 gravitational radii. Such extended coverage of the intervals of quantities, such as magnetic-to-thermal energy ratios at the base or the heights/widths of the recollimation region, makes our solutions suitable for application to many different systems where jets are launched.

  1. Exploring Our Galaxy's Thick Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    What is the structure of the Milky Ways disk, and how did it form? A new study uses giant stars to explore these questions.A View from the InsideSchematic showing an edge-on, not-to-scale view of what we think the Milky Ways structurelookslike. The thick disk is shown in yellow and the thin disk is shown in green. [Gaba p]Spiral galaxies like ours are often observed to have disks consisting of two components: a thin disk that lies close to the galactic midplane, and a thick disk that extends above and below this. Past studies have suggested that the Milky Ways disk hosts the same structure, but our position embedded in the Milky Way makes this difficult to confirm.If we can measure the properties of a broad sample of distant tracer stars and use this to better understand the construction of the Milky Ways disk, then we can start to ask additional questions like, how did the disk components form? Formation pictures for the thick disk generally fall into two categories:Stars in the thick disk formed within the Milky Way either in situ or by migrating to their current locations.Stars in the thick disk formed in satellite galaxies around the Milky Way and then accreted when the satellites were disrupted.Scientists Chengdong Li and Gang Zhao (NAO Chinese Academy of Sciences, University of Chinese Academy of Sciences) have now used observations of giant stars which can be detected out to great distances due to their brightness to trace the properties of the Milky Ways thick disk and address the question of its origin.Best fits for the radial (top) and vertical (bottom) metallicity gradients of the thick-disk stars. [Adapted from Li Zhao 2017]Probing OriginsLi and Zhao used data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) in China to examine a sample of 35,000 giant stars. The authors sorted these stars into different disk components halo, thin disk, and thick disk based on their kinematic properties, and then explored how the orbital and chemical properties of these stars differed in the different components.Li and Zhao found that the scale length for the thick disk is roughly the same as that of the thin disk ( 3 kpc), i.e., both disk components extend out to the same radial distance. The scale height found for the thick disk is 1 kpc, compared to the thin disks few hundred parsecs or so.The metallicity of the thick-disk stars is roughly constant with radius; this could be a consequence of radial migration of the stars within the disk, which blurs any metallicity distribution that might have once been there. The metallicity of the stars decreases with distance above or below the galactic midplane, however a result consistent with formation of the thick disk via heating or radial migration of stars formed within the galaxy.Orbital eccentricity distribution for the thick-disk stars. [Li Zhao 2017]Further supporting these formation scenarios, the orbital eccentricities of the stars in the authors thick-disk sample indicate that they were born in the Milky Way, not accreted from disrupted satellites.The authors acknowledge that the findings in this study may still be influenced by selection effects resulting from our viewpoint within our galaxy. Nonetheless, this is interesting new data to add to our understanding of the structure and origins of the Milky Ways disk.CitationChengdong Li and Gang Zhao 2017 ApJ 850 25. doi:10.3847/1538-4357/aa93f4

  2. Radiative Transfer in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Graziani, L.; Aiello, S.; Belleni-Morante, A.; Cecchi-Pestellini, C.

    2008-09-01

    Abstract Protoplanetary disks are the precursors of planetary systems. All building materials needed to assembly the planetary systems are supplied by these reservoirs, including many organic molecules [1,2]. Thus, the physical and chemical properties in Protoplanetary disks set the boundary conditions for the formation and evolution of planets and other solar system bodies. In standard radiative scenario structure and chemistry of protoplanetary disks depend strongly on the nature of central star around which they formed. The dust temperature is manly set by the stellar luminosity, while the chemistry of the whole disk depends on the UV and X ray fluxes [3,4,6,8]. Therefore, a knowledge as accurate as possible of the radiative transfer (RT) inside disks is a prerequisite for their modelling. Actually, real disks are complex, stratified and inhomogeneous environments requiring a detailed dust mixture modelling and the ability to follow the radiation transfer across radial and vertical gradients. Different energetic processes as the mass accretion processes onto the star surface, the viscous dissipative heating dominating the midplane region, and the flared atmospheres radiation reprocessing, have a significant role in the disk structuring [4,5,8]. During the last 10 years many authors suggested various numerical and analytical techniques to resolve the disk temperature structure providing vertical temperature profiles and disk SED databases [4,6]. In this work we present the results of our semi analytical and numerical model solving the radiative transfer problem in two separate interesting disk regions: 1) Disk atmospheres at large radius, r > 10 AU. 2) Vertical disk structure over 1 < r < 10 AU and 10 < r < 100 AU. A simplified analytical approach based on P-N approximation [7] for a rectified disk surface (suitable for limited range of r) is compared and contrasted with a more accurate Monte Carlo integration [5]. Our code can handle arbitrary dust inhomogeneities, vertical and radial, in terms of mineralogical and density changes. Different dust mixture models from Pollack [9], Gail [10] and Henning [11] are implemented and tested. The code solves the RT in the 4 Stokes radiation field formalism providing an accurate radiation flux description and the polarization configuration for UV and X-Ray stellar fluxes in various disk regions (disk surface, disk midplane etc..). The complete model is developed within the context of a classical TTauri protostar and for different dust compositions and different ranges of star luminosity in UV and X -Ray are. The effects on some prebiotic molecules are estimated. References [1]Ehrenfreund, P. & Charnley, S.B. (2000), Ann.Rev.Astr.Astrophys, 38, 427-483. [2]Markwick, A.J. & Charnley, S.B. (2004). in P. Eherenfreund et alt. (eds) "Astrobiology: Future Perspectives", Kluwer, 33-66. [3] Chiang, E. I. & Goldreich, P. (1997), ApJ, 490, 368 [4] D'Alessio, P., Canto, J., Calvet, N., & Lizano, S. (1998), ApJ, 500, 411. [5] Bjorkman, J. E. & Wood, K. 2001, ApJ, 554, 615. [6] Dullemond C. P. & A.Natta 2003, A&A 405, 597-605. [7] B. Davison & J. B. Sykes: Neutron Transport theory, Oxford Press 1958. [8] D'Alessio P. et al (2007), Chondrites and the Protoplanetary Disk, ASPConference Series,Vol.341. [9] J.B.Pollack et al. (1994), ApJ,421:615-639. [10] H.P.Gail, (2001), A&A, v.378 [11] T.Henning & R.Stognienko.(1996), ApJ, 311.

  3. VizieR Online Data Catalog: AGN torus models. SED library (Siebenmorgen+, 2015)

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, R.; Heymann, F.; Efstathiou, A.

    2015-08-01

    There are 3600 ASCII tables files in two columns format. The first is the wavelength in microns, the second column is the flux in Jy. SEDs are computed for AGNs at a distance of 50Mpc and a luminosity of 1011L⊙. The file names include the five basic model parameters: a) th: The viewing angle corresponding to bins at 86, 80, 73, 67, 60, 52, 43, 33, and 19 degree measured from the pole (z-axis). thx= th1 ,.., th9 b) R : The inner radius of the dusty torus. R= 300, 514, 772, 1000, 1545 in units: (10^15 cm) c) Vc: The cloud volume filling factor. Vc= 1.5, 7.7, 38.5, 77.7 (%). d) Ac: The optical depth (in V) of the individual clouds. Ac= 0, 4.5, 13.5, 45. e) Ad: The optical depth (in V) of the disk midplane. Ad= 0, 30, 100, 300, 1000. Example: File notation. RxxxxVcxxxAcxxxx_Adxxxx.thx R1545Vc777Ac0135_Ad1000.th9 (2 data files).

  4. Finite size and geometrical non-linear effects during crack pinning by heterogeneities: An analytical and experimental study

    NASA Astrophysics Data System (ADS)

    Vasoya, Manish; Unni, Aparna Beena; Leblond, Jean-Baptiste; Lazarus, Veronique; Ponson, Laurent

    2016-04-01

    Crack pinning by heterogeneities is a central toughening mechanism in the failure of brittle materials. So far, most analytical explorations of the crack front deformation arising from spatial variations of fracture properties have been restricted to weak toughness contrasts using first order approximation and to defects of small dimensions with respect to the sample size. In this work, we investigate the non-linear effects arising from larger toughness contrasts by extending the approximation to the second order, while taking into account the finite sample thickness. Our calculations predict the evolution of a planar crack lying on the mid-plane of a plate as a function of material parameters and loading conditions, especially in the case of a single infinitely elongated obstacle. Peeling experiments are presented which validate the approach and evidence that the second order term broadens its range of validity in terms of toughness contrast values. The work highlights the non-linear response of the crack front to strong defects and the central role played by the thickness of the specimen on the pinning process.

  5. A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, Yu V.; Harvey, R. W.

    The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker–Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit tomore » the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.« less

  6. Injected mass deposition thresholds for lithium granule instigated triggering of edge localized modes on EAST

    NASA Astrophysics Data System (ADS)

    Lunsford, R.; Sun, Z.; Maingi, R.; Hu, J. S.; Mansfield, D.; Xu, W.; Zuo, G. Z.; Diallo, A.; Osborne, T.; Tritz, K.; Canik, J.; Huang, M.; Meng, X. C.; Gong, X. Z.; Wan, B. N.; Li, J. G.; the EAST Team

    2018-03-01

    The ability of an injected lithium granule to promptly trigger an edge localized mode (ELM) has been established in multiple experiments. By horizontally injecting granules ranging in diameter from 200 microns to 1 mm in diameter into the low field side of EAST H-mode discharges we have determined that granules with diameter  >600 microns are successful in triggering ELMs more than 95% of the time. It was also demonstrated that below 600 microns the triggering efficiency decreased roughly with granule size. Granules were radially injected from the outer midplane with velocities ~80 m s-1 into EAST upper single null discharges with an ITER like tungsten monoblock divertor. These granules were individually tracked throughout their injection cycle in order to determine their efficacy at triggering an ELM. For those granules of sufficient size, ELM triggering was a prompt response to granule injection. By simulating the granule injection with an experimentally benchmarked neutral gas shielding (NGS) model, the ablatant mass deposition required to promptly trigger an ELM is calculated and the fractional mass deposition is determined.

  7. Metal flow and temperature in direct extrusion of large-size aluminum billets

    NASA Astrophysics Data System (ADS)

    Valberg, Henry; Costa, André L. M.

    2018-05-01

    FEM-analysis is used to study thermo-mechanical conditions in aluminum rod extrusion for billets with large size corresponding to that used in industrial production. In the analysis, focus is on how the metal flow and the temperature conditions in the extrusion material is affected by the extrusion velocity in terms of the ram speed used in the extrusion process. In the study, metal flow is characterized by the deformations in extrusion subjected to a perfect grid pattern, consisting of orthogonal crossing lines, added into the longitudinal mid-plane of the initial billet. The analysis shows that metal flow in extrusion conducted at a low ram speed of 1 mms-1, is predicted significantly different from that at a high speed of 5 mms-1, or above. As regards the thermal conditions in the extrusion material, they are also predicted significantly different, at the low and the high ram speed level. A likely explanation why metal flow is different at low and high ram speeds may be that flow is altered because of the concurrent change in the temperature field within the billet.

  8. Active MHD Spectroscopy of Alfvén Eigenmodes on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Sears, J.; Snipes, J.; Burke, W.; Parker, R.; Fasoli, A.

    2004-11-01

    Alfvén eigenmode resonances are excited in a variety of plasma conditions in C-Mod with two moderate-n antennas positioned above and below the outboard midplane. Power amplifiers (≈ 3 kW) sweep the driving frequency over the audio range (< 30 kHz) or over a selected ± 50 kHz range from 100 kHz to 1 MHz. Logic circuitry that calculates the center frequency of the Toroidal Alfven Eigenmode gap, f_TAE=v_A/4π qR, in real-time from BT and e measurements is being developed to enable the antennas to track f_TAE. Simultaneous in-vessel phase calibration of the pick-up coils will be used to better identify toroidal mode numbers. Shot-to-shot elongation scans do not show the dependence of damping on edge shear that was seen in results at JET. Inner wall limited plasmas with moderate outer gaps show higher damping rates than diverted plasmas with low outer gaps. Low frequency experiments below 20kHz will also be presented.

  9. Lipid bilayer thickness determines cholesterol's location in model membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquardt, Drew; Heberle, Frederick A.; Greathouse, Denise V.

    Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of differentmore » lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. Finally, these results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.« less

  10. Lithium granule ablation and penetration during ELM pacing experiments at DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunsford, R.; Bortolon, A.; Roquemore, A. L.

    At DIII-D, lithium granules were radially injected into the plasma at the outer midplane to trigger and pace edge localized modes (ELMs). Granules ranging in size from 300 to 1000 microns were horizontally launched into H-mode discharges with velocities near 100 m/s, and granule to granule injection frequencies less than 500 Hz. While the smaller granules were only successful in triggering ELMs approximately 20% of the time, the larger granules regularly demonstrated ELM triggering efficiencies of greater than 80%. A fast visible camera looking along the axis of injection observed the ablation of the lithium granules. We used the durationmore » of ablation as a benchmark for a neutral gas shielding calculation, and approximated the ablation rate and mass deposition location for the various size granules, using measured edge plasma profiles as inputs. In conclusion, this calculation suggests that the low triggering efficiency of the smaller granules is due to the inability of these granules to traverse the steep edge pressure gradient region and reach the top of the pedestal prior to full ablation.« less

  11. A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code

    DOE PAGES

    Petrov, Yu V.; Harvey, R. W.

    2016-09-08

    The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker–Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit tomore » the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.« less

  12. Gas Heating, Chemistry and Photoevaporation in Protostellar Disks

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2004-01-01

    We model the thermal balance, the chemistry, and the radiative transfer in dusty disks orbiting young, low mass stars. These models are motivated by observations of infrared and ultraviolet transitions of H2 from protoplanetary disks, as well as millimeter and submillimeter observations of other molecules such as CO, and infrared continuum observations of the dust. The dust grains are heated primarily by the stellar radiation and the infrared radiation field produced by the dust itself. The gas is heated by collisions with warmer dust grains, X-rays from the region close to the stellar surface, UV pumping of hydrogen molecules, and the grain photoelectric heating mechanism initiated by UV photons from the central star. We treat cases where the gas to dust ratio is high, because the dust has settled to the midplane and coagulated into relatively large objects. We discuss situations in which the infrared emission from H2 can be detected, and how the comparison of the observations with our models can deduce physical parameters such as the mass and the density and temperature distribution of the gas.

  13. Lipid bilayer thickness determines cholesterol's location in model membranes

    DOE PAGES

    Marquardt, Drew; Heberle, Frederick A.; Greathouse, Denise V.; ...

    2016-10-11

    Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of differentmore » lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. Finally, these results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.« less

  14. FORMATION OF CIRCUMBINARY PLANETS IN A DEAD ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Rebecca G.; Armitage, Philip J.; Alexander, Richard D.

    Circumbinary planets have been observed at orbital radii where binary perturbations may have significant effects on the gas disk structure, on planetesimal velocity dispersion, and on the coupling between turbulence and planetesimals. Here, we note that the impact of all of these effects on planet formation is qualitatively altered if the circumbinary disk structure is layered, with a non-turbulent midplane layer (dead zone) and strongly turbulent surface layers. For close binaries, we find that the dead zone typically extends from a radius close to the inner disk edge up to a radius of around 10-20 AU from the center ofmore » mass of the binary. The peak in the surface density occurs within the dead zone, far from the inner disk edge, close to the snow line, and may act as a trap for aerodynamically coupled solids. We suggest that circumbinary planet formation may be easier near this preferential location than for disks around single stars. However, dead zones around wide binaries are less likely, and hence planet formation may be more difficult there.« less

  15. Gap formation by inclined massive planets in locally isothermal three-dimensional discs

    NASA Astrophysics Data System (ADS)

    Chametla, Raúl O.; Sánchez-Salcedo, F. J.; Masset, F. S.; Hidalgo-Gámez, A. M.

    2017-07-01

    We study gap formation in gaseous protoplanetary discs by a Jupiter mass planet. The planet's orbit is circular and inclined relative to the mid-plane of the disc. We use the impulse approximation to estimate the gravitational tidal torque between the planet and the disc, and infer the gap profile. For low-mass discs, we provide a criterion for gap opening when the orbital inclination is ≤30°. Using the fargo3d code, we simulate the disc response to an inclined massive planet. The dependence of the depth and width of the gap obtained in the simulations on the inclination of the planet is broadly consistent with the scaling laws derived in the impulse approximation. Although we mainly focus on planets kept on fixed orbits, the formalism permits to infer the temporal evolution of the gap profile in the cases where the inclination of the planet changes with time. This study may be useful to understand the migration of massive planets on inclined orbit, because the strength of the interaction with the disc depends on whether a gap is opened or not.

  16. Experimental Investigation at Mach Number 3.0 of the Effects of Thermal Stress and Buckling on the Flutter of Four-Bay Aluminum Alloy Panels with Length-Width Ratios of 10

    NASA Technical Reports Server (NTRS)

    Dixon, Sidney C.; Griffith, George E.; Bohon, Herman L.

    1961-01-01

    Skin-stiffener aluminum alloy panels consisting of four bays, each bay having a length-width ratio of 10, were tested at a Mach number of 3.0 at dynamic pressures ranging from 1,500 psf to 5,000 psf and at stagnation temperatures from 300 F to 655 F. The panels were restrained by the supporting structure in such a manner that partial thermal expansion of the skins could occur in both the longitudinal and lateral directions. A boundary faired through the experimental flutter points consisted of a flat-panel portion, a buckled-panel portion, and a transition point at the intersection of the two boundaries. In the region where a panel must be flat when flutter occurs, an increase in panel skin temperature (or midplane compressive stress) makes the panel more susceptible to flutter. In the region where a panel must be buckled when flutter occurs, the flutter trend is reversed. This reversal in trend is attributed to the panel postbuckling behavior.

  17. Solar Nebula Magnetohydrodynamic Dynamos: Kinematic Theory, Dynamical Constraints, and Magnetic Transport of Angular Momentum

    NASA Technical Reports Server (NTRS)

    Stepinski, Tomasz F.; Reyes-Ruiz, Mauricio; Vanhala, Harri A. T.

    1993-01-01

    A hydromagnetic dynamo provides the best mechanism for contemporaneously producing magnetic fields in a turbulent solar nebula. We investigate the solar nebula in the framework of a steady-state accretion disk model and establish the criteria for a viable nebular dynamo. We have found that typically a magnetic gap exists in the nebula, the region where the degree of ionization is too small for the magnetic field to couple to the gas. The location and width of this gap depend on the particular model; the supposition is that gaps cover different parts of the nebula at different evolutionary stages. We have found, from several dynamical constraints, that the generated magnetic field is likely to saturate at a strength equal to equipartition with the kinetic energy of turbulence. Maxwell stress arising from a large-scale magnetic field may significantly influence nebular structure, and Maxwell stress due to small-scale fields can actually dominate other stresses in the inner parts of the nebula. We also argue that the bulk of nebular gas, within the scale height from the midplane, is stable against Balbus-Hawley instability.

  18. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    PubMed

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  19. Black Widow Nebula Hiding in the Dust

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In this Spitzer image, the two opposing bubbles are being formed in opposite directions by the powerful outflows from massive groups of forming stars. The baby stars can be seen as specks of yellow where the two bubbles overlap.

    When individual stars form from molecular clouds of gas and dust they produce intense radiation and very strong particle winds. Both the radiation and the stellar winds blow the dust outward from the star creating a cavity or, bubble.

    In the case of the Black Widow Nebula, astronomers suspect that a large cloud of gas and dust condensed to create multiple clusters of massive star formation. The combined winds from these groups of large stars probably blew out bubbles into the direction of least resistance, forming a double bubble.

    The infrared image was captured by the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) Legacy project. The Spitzer picture is a four-channel false-color composite, showing emission from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8.0 microns (red).

  20. A new gamma ray imaging diagnostic for runaway electron studies at DIII-D

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Pace, D. C.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Hollmann, E. M.; Moyer, R. A.; Risov, V.

    2015-11-01

    A new Gamma Ray Imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at DIII-D. The diagnostic is sensitive to 0.5 - 50 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE dissipation from pellet injection. The GRI consists of a lead ``pinhole camera'' mounted on the midplane with 11x11 counter-current tangential chords 20 cm wide that span the vessel. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE Bremsstrahlung radiation. Detectors operate in current saturation mode at 10 MHz, or the flux is attenuated for Pulse Height Analysis (PHA) capable of discriminating up to ~10k pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. Work supported by the US DOE under DE-AC05-00OR22725, DE-FG02-07ER54917 & DE-FC02-04ER54698.

  1. VVV Survey Search for Habitable Planets around M Dwarfs

    NASA Astrophysics Data System (ADS)

    Minniti, Dante

    2015-08-01

    VISTA Variables in the Vía Láctea (VVV) is a public ESO near- infrared (near-IR) variability survey aimed at scanning the Milky Way Bulge and an adjacent section of the mid-plane. The survey covers an area of 562 sqdeg in the Galactic bulge and the southern disk, containing a billion point sources. In this work we discuss the selection of nearby M-type dwarf stars using multicolor cuts. The ZYJHKs photometry allows an accurate estimation of the spectral types of the M-dwarf candidates. Our procedure is applied for fields located far from the Galactic center where the photometric quality is best. The results of this search covering 15 sqdeg allow us to estimate the total number of M-dwarfs that can be photometrically monitored in the VVV database. In addition, we analyze the light curves of the ~10000 best candidate M-dwarf stars searching for extrasolar planetary transits. In this poster we present the light curves of a hundred good transit candidates, and select those that lie in the HZ around their parent stars.

  2. Numerical Flexural Strength Analysis of Thermally Stressed Delaminated Composite Structure under Sinusoidal Loading

    NASA Astrophysics Data System (ADS)

    Hirwani, C. K.; Biswash, S.; Mehar, K.; Panda, S. K.

    2018-03-01

    In this article, we investigate the thermomechanical deflection characteristics of the debonded composite plate structure using an isoparametric type of higher-order finite element model. The current formulation is derived using higher-order kinematic theory and the displacement variables described as constant along the thickness direction whereas varying nonlinearly for the in-plane directions. The present mid-plane kinematic model mainly obsoletes the use of shear correction factor as in the other lower-order theories. The separation between the adjacent layers is modeled via the sub-laminate technique and the intermittent continuity conditions imposed to avoid the mathematical ill conditions. The governing equation of equilibrium of the damaged plate structure under the combined state of loading are obtained using the variational principle and solved numerically to compute the deflection values. Further, the convergence test has been performed by refining the numbers of elements and validated through comparing the present results with available published values. The usefulness of the proposed formulation has been discussed by solving the different kind of numerical examples including the size, location and position of delamination.

  3. Collisional transport across the magnetic field in drift-fluid models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madsen, J., E-mail: jmad@fysik.dtu.dk; Naulin, V.; Nielsen, A. H.

    2016-03-15

    Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum, and pressures in drift-fluid turbulence models and, thereby, obviates the customary use of artificial diffusion in turbulence simulations. We further derive a computationally efficient, two-dimensional model, which can be time integrated for several turbulence de-correlation timesmore » using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model employs a computational expedient model for collisional transport. Numerical simulations show good agreement between the full and the simplified model for collisional transport.« less

  4. Ion precipitation from the inner plasma sheet due to stochastic diffusion

    NASA Technical Reports Server (NTRS)

    Zelenyi, L.; Galeev, A.; Kennel, C. F.

    1990-01-01

    Plasma sheet ions do not conserve their first adiabatic invariant when the magnetic field is appreciably tail-like. They do conserve a different adiabatic invariant but only to linear, rather than exponential, accuracy in the appropriate small parameter. Thus significant stochastic diffusion can occur for particles crossing the separatrix dividing the segments of orbits on which the particles cross and do not cross the tail midplane. Such ions can escape the plasma sheet and precipitate into the atmosphere. Stochastic scattering is strongest from those field lines where the ion's Larmor period in the normal component of the neutral sheet magnetic field approximately equals its bounce period. By comparing the rates of stochastic ion loss and convection in the tail, it is possible to estimate the location and thickness of the inner edge of the ion plasma sheet created by stochastic ion loss. Ions of different masses precipitate into the atmosphere at slightly different locations. Since wave particle interactions are not needed, this precipitation will always occur and should be particularly evident during quiet geomagnetic conditions, when it is less likely to be masked by other precipitation mechanisms.

  5. Photoionization and heating of a supernova-driven turbulent interstellar medium

    NASA Astrophysics Data System (ADS)

    Barnes, J. E.; Wood, Kenneth; Hill, Alex S.; Haffner, L. M.

    2014-06-01

    The diffuse ionized gas (DIG) in galaxies traces photoionization feedback from massive stars. Through three-dimensional photoionization simulations, we study the propagation of ionizing photons, photoionization heating and the resulting distribution of ionized and neutral gas within snapshots of magnetohydrodynamic simulations of a supernova-driven turbulent interstellar medium. We also investigate the impact of non-photoionization heating on observed optical emission line ratios. Inclusion of a heating term which scales less steeply with electron density than photoionization is required to produce diagnostic emission line ratios similar to those observed with the Wisconsin Hα Mapper. Once such heating terms have been included, we are also able to produce temperatures similar to those inferred from observations of the DIG, with temperatures increasing to above 15 000 K at heights |z| ≳ 1 kpc. We find that ionizing photons travel through low-density regions close to the mid-plane of the simulations, while travelling through diffuse low-density regions at large heights. The majority of photons travel small distances (≲100 pc); however some travel kiloparsecs and ionize the DIG.

  6. Detailed study of spontaneous rotation generation in diverted H-mode plasma using the full-f gyrokinetic code XGC1

    NASA Astrophysics Data System (ADS)

    Seo, Janghoon; Chang, C. S.; Ku, S.; Kwon, J. M.; Yoon, E. S.

    2013-10-01

    The Full-f gyrokinetic code XGC1 is used to study the details of toroidal momentum generation in H-mode plasma. Diverted DIII-D geometry is used, with Monte Carlo neutral particles that are recycled at the limiter wall. Nonlinear Coulomb collisions conserve particle, momentum, and energy. Gyrokinetic ions and adiabatic electrons are used in the present simulation to include the effects from ion gyrokinetic turbulence and neoclassical physics, under self-consistent radial electric field generation. Ion orbit loss physics is automatically included. Simulations show a strong co-Ip flow in the H-mode layer at outside midplane, similarly to the experimental observation from DIII-D and ASDEX-U. The co-Ip flow in the edge propagates inward into core. It is found that the strong co-Ip flow generation is mostly from neoclassical physics. On the other hand, the inward momentum transport is from turbulence physics, consistently with the theory of residual stress from symmetry breaking. Therefore, interaction between the neoclassical and turbulence physics is a key factor in the spontaneous momentum generation.

  7. Volumetric flow around a swimming lamprey

    NASA Astrophysics Data System (ADS)

    Lehn, Andrea M.; Colin, Sean P.; Costello, John H.; Leftwich, Megan C.; Tytell, Eric D.

    2015-11-01

    A primary experimental technique for studying fluid-structure interactions around swimming fish has been planar dimensional particle image velocimetry (PIV). Typically, two components of the velocity vector are measured in a plane, in the case of swimming studies, directly behind the animal. While useful, this approach provides little to no insight about fluid structure interactions above and below the fish. For fish with a small height relative to body length, such as the long and approximately cylindrical lamprey, 3D information is essential to characterize how these fish interact with their fluid environment. This study presents 3D flow structures along the body and in the wake of larval lamprey, P etromyzon m arinus , which are 10-15 cm long. Lamprey swim through a 1000 cm3 field of view in a standard 10 gallon tank illuminated by a green laser. Data are collected using the three component velocimeter V3V system by TSI, Inc. and processed using Insight 4G software. This study expands on previous works that show two pairs of vortices each tail beat in the mid-plane of the lamprey wake. NSF DMS 1062052.

  8. Enhancement of Helium exhaust by resonant magnetic perturbations in DIII-D

    NASA Astrophysics Data System (ADS)

    Hinson, E. T.; Schmitz, O.; Collins, C.; Paz-Soldan, C.; Bykov, I.; Moyer, R. A.; Unterberg, E. A.; Briesemeister, A.; McLean, A. G.; Watkins, J.; Wang, H.

    2017-10-01

    Clear evidence of enhanced He exhaust during RMP ELM suppression has been obtained for the first time in a series of lower single null H-mode discharges with and without RMP in DIII-D. During RMP, reduced midplane He density measurements from CER and faster neutral He decay times after a 100ms He puff provided evidence for faster outward transport. Additionally, during RMP, neutral He pressure in the lower pumping plenum increased, while D2 pressure was similar to the no RMP case. A spectrometer viewing the divertor shelf in the scrape off layer measured consistently increased He-I light during RMP ELM suppression. These two measurements indicate an improved retention of He in the unconfined region, which is important for enhanced He removal. Consequently, the effective helium confinement time, τ*p,He, measured for conditions in this work was reduced by >35% when RMP ELM suppression was obtained. Work supported by US DOE DE-FC02-04ER54698, DE-SC00013911, DE-FG02-07ER54917, DE-AC52-07NA27344, DE-AC05-00OR22725, DE-AC04-94AL85000.

  9. Mechanism of formation of subnanosecond current front in high-voltage pulse open discharge

    NASA Astrophysics Data System (ADS)

    Schweigert, I. V.; Alexandrov, A. L.; Zakrevsky, Dm. E.; Bokhan, P. A.

    2014-11-01

    The mechanism of subnanosecond current front rise observed previously in the experiment in high-voltage pulse open discharge in helium is studied in kinetic particle-in-cell simulations. The Boltzmann equations for electrons, ions, and fast atoms are solved self-consistently with the Poisson equations for the electrical potential. The partial contributions to the secondary electron emission from the ions, fast atoms, photons, and electrons, bombarding the electrode, are calculated. In simulations, as in the experiment, the discharge glows between two symmetrical cathodes and the anode grid in the midplane at P =6 Torr and the applied voltage of 20 kV. The electron avalanche development is considered for two experimental situations during the last stage of breakdown: (i) with constant voltage and (ii) with decreasing voltage. For case (i), the subnanosecond current front rise is set by photons from the collisional excitation transfer reactions. For the case (ii), the energetic electrons swamp the cathode during voltage drop and provide the secondary electron emission for the subnanosecond current rise, observed in the experiment.

  10. Optimized tokamak power exhaust with double radiative feedback in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Kallenbach, A.; Bernert, M.; Eich, T.; Fuchs, J. C.; Giannone, L.; Herrmann, A.; Schweinzer, J.; Treutterer, W.; the ASDEX Upgrade Team

    2012-12-01

    A double radiative feedback technique has been developed on the ASDEX Upgrade tokamak for optimization of power exhaust with a standard vertical target divertor. The main chamber radiation is measured in real time by a subset of three foil bolometer channels and controlled by argon injection in the outer midplane. The target heat flux is in addition controlled by nitrogen injection in the divertor private flux region using either a thermoelectric sensor or the scaled divertor radiation obtained by a bolometer channel in the outer divertor. No negative interference of the two radiation controllers has been observed so far. The combination of main chamber and divertor radiative cooling extends the operational space of a standard divertor configuration towards high values of P/R. Pheat/R = 14 MW m-1 has been achieved so far with nitrogen seeding alone as well as with combined N + Ar injection, with the time-averaged divertor peak heat flux below 5 MW m-2. Good plasma performance can be maintained under these conditions, namely H98(y,2) = 1 and βN = 3.

  11. Polarity-sensitive transient patterned state in a twisted nematic liquid crystal driven by very low frequency fields.

    PubMed

    Krishnamurthy, K S; Kumar, Pramoda; Kumar, M Vijay

    2013-02-01

    We report, for a rodlike nematic liquid crystal with small positive dielectric and conductivity anisotropies, and in the 90°-twisted configuration, low frequency (<2 Hz) square wave electric field generated Carr-Helfrich director modulation appearing transiently over a few seconds at each polarity reversal and vanishing almost completely under steady field conditions. Significantly, the instability is polarity sensitive, with the maximum distortion localized in the vicinity of the negative electrode, rather than in the midplane of the layer. This is revealed by the wave vector alternating in the two halves of the driving cycle between the alignment directions at the two substrates. Besides the Carr-Helfrich mechanism, quadrupolar flexoelectric polarization arising under electric field gradient is strongly indicated as being involved in the development of the transient periodic order. Similar transient instability is also observed in other nematic compounds with varying combinations of dielectric and conductivity anisotropies, showing its general nature. The study also deals with various characteristics of the electro-optic effect that emerge from the temporal variation of optical response for different driving voltages, frequencies, and temperatures.

  12. Comparison of resistive MHD simulations and experimental CHI discharges in NSTX

    NASA Astrophysics Data System (ADS)

    Hooper, E. B.; Sovinec, C. R.; Raman, R.; Fatima, F.

    2013-10-01

    Resistive MHD simulations using NIMROD simulate CHI discharges for NSTX startup plasmas. Quantitative comparison with experiment ensures that the simulation physics includes a minimal physics set needed to extend the simulations to new experiments, e.g. NSTX-U. Important are time-varying vacuum magnetic field, ohmic heating, thermal transport, impurity radiation, and spatially-varying plasma parameters including density. Equilibria are compared with experimental injector currents, voltages and parameters including toroidal current, photographs of emitted light and measurements of midplane temperature profiles, radiation and surface heating. Initial results demonstrate that adjusting impurity radiation and cross-field transport yields temperatures and injected-current channel widths similar to experiment. These determine the plasma resistance, feeding back to the impedance on the injector power supply. Work performed under the auspices of the U.S. Department of Energy under contracts DE-AC52-07NA27344 at LLNL and DE-AC02-09CH11466 at PPPL, and grants DE-FC02-05ER54813 at PSI Center (U. Wisc.) and DOE-FG02-12ER55115 (at Princeton U.).

  13. Lithium granule ablation and penetration during ELM pacing experiments at DIII-D

    DOE PAGES

    Lunsford, R.; Bortolon, A.; Roquemore, A. L.; ...

    2016-05-25

    At DIII-D, lithium granules were radially injected into the plasma at the outer midplane to trigger and pace edge localized modes (ELMs). Granules ranging in size from 300 to 1000 microns were horizontally launched into H-mode discharges with velocities near 100 m/s, and granule to granule injection frequencies less than 500 Hz. While the smaller granules were only successful in triggering ELMs approximately 20% of the time, the larger granules regularly demonstrated ELM triggering efficiencies of greater than 80%. A fast visible camera looking along the axis of injection observed the ablation of the lithium granules. We used the durationmore » of ablation as a benchmark for a neutral gas shielding calculation, and approximated the ablation rate and mass deposition location for the various size granules, using measured edge plasma profiles as inputs. In conclusion, this calculation suggests that the low triggering efficiency of the smaller granules is due to the inability of these granules to traverse the steep edge pressure gradient region and reach the top of the pedestal prior to full ablation.« less

  14. Investigation of runaway electron dissipation in DIII-D using a gamma ray imager

    NASA Astrophysics Data System (ADS)

    Lvovskiy, A.; Paz-Soldan, C.; Eidietis, N.; Pace, D.; Taussig, D.

    2017-10-01

    We report the findings of a novel gamma ray imager (GRI) to study runaway electron (RE) dissipation in the quiescent regime on the DIII-D tokamak. The GRI measures the bremsstrahlung emission by RE providing information on RE energy spectrum and distribution across a poloidal cross-section. It consists of a lead pinhole camera illuminating a matrix of BGO detectors placed in the DIII-D mid-plane. The number of detectors was recently doubled to provide better spatial resolution and additional detector shielding was implemented to reduce un-collimated gamma flux and increase single-to-noise ratio. Under varying loop voltage, toroidal magnetic field and plasma density, a non-monotonic RE distribution function has been revealed as a result of the interplay between electric field, synchrotron radiation and collisional damping. A fraction of the high-energy RE population grows forming a bump at the RE distribution function while synchrotron radiation decreases. A possible destabilizing effect of Parail-Pogutse instability on the RE population will be also discussed. Work supported by the US DOE under DE-FC02-04ER54698.

  15. Demagnetizing correction in fluxmetric measurements of magnetization curves and hysteresis loops of ferromagnetic cylinders

    NASA Astrophysics Data System (ADS)

    Chen, Du-Xing; Pardo, Enric; Zhu, Yong-Hong; Xiang, Li-Xiong; Ding, Jia-Quan

    2018-03-01

    A technique is proposed for demagnetizing correction of the measured magnetization curve and hysteresis loop, i.e., the M∗ (Ha) curve, of a ferromagnetic cylinder into the true M (H) curve of the material, where Ha is the uniform applied field provided by a long solenoid and M∗ is the magnetization measured by a fluxmeter with the measuring coil surrounding the cylinder midplane. Different from ordinary demagnetizing correction by using a fixed demagnetizing factor, an (Ha,M∗) -dependent fluxmetric demagnetizing factor Nf (γ,χd) is used in this technique, where γ is the ratio of cylinder length to diameter, χd is the differential susceptibility on the corrected M (H) curve, and Nf (γ,χd) is approximated by accurately calculated Nf (γ, χ) of paramagnetic cylinders of the same γ and χ =χd . The validity of the technique is studied by comparing results for several samples of different lengths cut from the same cylinder. Such a demagnetizing correction is unambiguous but its success requires very high accuracy in the Nf determination and M∗ (Ha) measurements.

  16. Investigation of Particle Deposition in Internal Cooling Cavities of a Nozzle Guide Vane

    NASA Astrophysics Data System (ADS)

    Casaday, Brian Patrick

    Experimental and computational studies were conducted regarding particle deposition in the internal film cooling cavities of nozzle guide vanes. An experimental facility was fabricated to simulate particle deposition on an impingement liner and upstream surface of a nozzle guide vane wall. The facility supplied particle-laden flow at temperatures up to 1000°F (540°C) to a simplified impingement cooling test section. The heated flow passed through a perforated impingement plate and impacted on a heated flat wall. The particle-laden impingement jets resulted in the buildup of deposit cones associated with individual impingement jets. The deposit growth rate increased with increasing temperature and decreasing impinging velocities. For some low flow rates or high flow temperatures, the deposit cones heights spanned the entire gap between the impingement plate and wall, and grew through the impingement holes. For high flow rates, deposit structures were removed by shear forces from the flow. At low temperatures, deposit formed not only as individual cones, but as ridges located at the mid-planes between impinging jets. A computational model was developed to predict the deposit buildup seen in the experiments. The test section geometry and fluid flow from the experiment were replicated computationally and an Eulerian-Lagrangian particle tracking technique was employed. Several particle sticking models were employed and tested for adequacy. Sticking models that accurately predicted locations and rates in external deposition experiments failed to predict certain structures or rates seen in internal applications. A geometry adaptation technique was employed and the effect on deposition prediction was discussed. A new computational sticking model was developed that predicts deposition rates based on the local wall shear. The growth patterns were compared to experiments under different operating conditions. Of all the sticking models employed, the model based on wall shear, in conjunction with geometry adaptation, proved to be the most accurate in predicting the forms of deposit growth. It was the only model that predicted the changing deposition trends based on flow temperature or Reynolds number, and is recommended for further investigation and application in the modeling of deposition in internal cooling cavities.

  17. High-resolution 25 μm Imaging of the Disks around Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Honda, M.; Maaskant, K.; Okamoto, Y. K.; Kataza, H.; Yamashita, T.; Miyata, T.; Sako, S.; Fujiyoshi, T.; Sakon, I.; Fujiwara, H.; Kamizuka, T.; Mulders, G. D.; Lopez-Rodriguez, E.; Packham, C.; Onaka, T.

    2015-05-01

    We imaged circumstellar disks around 22 Herbig Ae/Be stars at 25 μm using Subaru/COMICS and Gemini/T-ReCS. Our sample consists of an equal number of objects from each of the two categories defined by Meeus et al.; 11 group I (flaring disk) and II (flat disk) sources. We find that group I sources tend to show more extended emission than group II sources. Previous studies have shown that the continuous disk is difficult to resolve with 8 m class telescopes in the Q band due to the strong emission from the unresolved innermost region of the disk. This indicates that the resolved Q-band sources require a hole or gap in the disk material distribution to suppress the contribution from the innermost region of the disk. As many group I sources are resolved at 25 μm, we suggest that many, but not all, group I Herbig Ae/Be disks have a hole or gap and are (pre-)transitional disks. On the other hand, the unresolved nature of many group II sources at 25 μm supports the idea that group II disks have a continuous flat disk geometry. It has been inferred that group I disks may evolve into group II through the settling of dust grains into the mid-plane of the protoplanetary disk. However, considering the growing evidence for the presence of a hole or gap in the disk of group I sources, such an evolutionary scenario is unlikely. The difference between groups I and II may reflect different evolutionary pathways of protoplanetary disks. Based on data collected at the Subaru Telescope, via the time exchange program between Subaru and the Gemini Observatory. The Subaru Telescope is operated by the National Astronomical Observatory of Japan.

  18. Deformable registration of CT and cone-beam CT with local intensity matching.

    PubMed

    Park, Seyoun; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2017-02-07

    Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. In this paper, we propose a method to accurately register CT and CBCT by iteratively matching local CT and CBCT intensities. We correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. The correction-registration steps are repeated in an alternating way until the result image converges. We integrate the intensity matching into three different deformable registration methods, B-spline, demons, and optical flow that are widely used for CT-CBCT registration. All three registration methods were implemented on a graphics processing unit for efficient parallel computation. We tested the proposed methods on twenty five head and neck cancer cases and compared the performance with state-of-the-art registration methods. Normalized cross correlation (NCC), structural similarity index (SSIM), and target registration error (TRE) were computed to evaluate the registration performance. Our method produced overall NCC of 0.96, SSIM of 0.94, and TRE of 2.26 → 2.27 mm, outperforming existing methods by 9%, 12%, and 27%, respectively. Experimental results also show that our method performs consistently and is more accurate than existing algorithms, and also computationally efficient.

  19. Torques on Low-mass Bodies in Retrograde Orbit in Gaseous Disks

    NASA Astrophysics Data System (ADS)

    Sánchez-Salcedo, F. J.; Chametla, Raúl O.; Santillán, A.

    2018-06-01

    We evaluate the torque acting on a gravitational perturber on a retrograde circular orbit in the midplane of a gaseous disk. We assume that the mass of this satellite is so low that it weakly disturbs the disk (type I migration). The perturber may represent the companion of a binary system with a small mass ratio. We compare the results of hydrodynamical simulations with analytic predictions. Our 2D simulations indicate that the torque acting on a perturber with softening radius R soft can be accounted for by a scattering approach if {R}soft}< 0.3H, where H is defined as the ratio between the sound speed and the angular velocity at the orbital radius of the perturber. For R soft > 0.3H, the torque may present large and persistent oscillations, but the resultant time-averaged torque decreases rapidly with increasing R soft/H, in agreement with previous analytical studies. We then focus on the torque acting on small-size perturbers embedded in full 3D disks and argue that the density waves propagating at distances ≲H from the perturber contribute significantly to the torque because they transport angular momentum. We find a good agreement between the torque found in 3D simulations and analytical estimates based on ballistic orbits. We compare the radial migration timescales of prograde versus retrograde perturbers. For a certain range of the perturber’s mass and aspect ratio of the disk, the radial migration timescale in the retrograde case may be appreciably shorter than in the prograde case. We also provide the smoothing length required in 2D simulations in order to account for 3D effects.

  20. Deformable registration of CT and cone-beam CT with local intensity matching

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2017-02-01

    Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. In this paper, we propose a method to accurately register CT and CBCT by iteratively matching local CT and CBCT intensities. We correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. The correction-registration steps are repeated in an alternating way until the result image converges. We integrate the intensity matching into three different deformable registration methods, B-spline, demons, and optical flow that are widely used for CT-CBCT registration. All three registration methods were implemented on a graphics processing unit for efficient parallel computation. We tested the proposed methods on twenty five head and neck cancer cases and compared the performance with state-of-the-art registration methods. Normalized cross correlation (NCC), structural similarity index (SSIM), and target registration error (TRE) were computed to evaluate the registration performance. Our method produced overall NCC of 0.96, SSIM of 0.94, and TRE of 2.26 → 2.27 mm, outperforming existing methods by 9%, 12%, and 27%, respectively. Experimental results also show that our method performs consistently and is more accurate than existing algorithms, and also computationally efficient.

  1. Analytic Expressions for the Inner-rim Structure of Passively Heated Protoplanetary Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, Takahiro; Okuzumi, Satoshi; Flock, Mario, E-mail: t_ueda@geo.titech.ac.jp

    We analytically derive the expressions for the structure of the inner region of protoplanetary disks based on the results from the recent hydrodynamical simulations. The inner part of a disk can be divided into four regions: a dust-free region with a gas temperature in the optically thin limit, an optically thin dust halo, an optically thick condensation front, and the classical, optically thick region, in order from the innermost to the outermost. We derive the dust-to-gas mass ratio profile in the dust halo using the fact that partial dust condensation regulates the temperature relative to the dust evaporation temperature. Beyondmore » the dust halo, there is an optically thick condensation front where all the available silicate gas condenses out. The curvature of the condensation surface is determined by the condition that the surface temperature must be nearly equal to the characteristic temperature ∼1200 K. We derive the midplane temperature in the outer two regions using the two-layer approximation, with the additional heating by the condensation front for the outermost region. As a result, the overall temperature profile is step-like, with steep gradients at the borders between the outer three regions. The borders might act as planet traps where the inward migration of planets due to gravitational interaction with the gas disk stops. The temperature at the border between the two outermost regions coincides with the temperature needed to activate magnetorotational instability, suggesting that the inner edge of the dead zone must lie at this border. The radius of the dead zone inner edge predicted from our solution is ∼2–3 times larger than that expected from the classical optically thick temperature.« less

  2. Spatial distribution of Galactic Wolf-Rayet stars and implications for the global population

    NASA Astrophysics Data System (ADS)

    Rosslowe, C. K.; Crowther, P. A.

    2015-03-01

    We construct revised near-infrared absolute magnitude calibrations for 126 Galactic Wolf-Rayet (WR) stars at known distances, based in part upon recent large-scale spectroscopic surveys. Application to 246 WR stars located in the field permits us to map their Galactic distribution. As anticipated, WR stars generally lie in the thin disc (˜40 pc half-width at half-maximum) between Galactocentric radii 3.5-10 kpc, in accordance with other star formation tracers. We highlight 12 WR stars located at vertical distances of ≥300 pc from the mid-plane. Analysis of the radial variation in WR subtypes exposes a ubiquitously higher NWC/NWN ratio than predicted by stellar evolutionary models accounting for stellar rotation. Models for non-rotating stars or accounting for close binary evolution are more consistent with observations. We consolidate information acquired about the known WR content of the Milky Way to build a simple model of the complete population. We derive observable quantities over a range of wavelengths, allowing us to estimate a total number of 1900 ± 250 Galactic WR stars, implying an average duration of ˜ 0.4 Myr for the WR phase at the current Milky Way star formation rate. Of relevance to future spectroscopic surveys, we use this model WR population to predict follow-up spectroscopy to KS ≃ 17.5 mag will be necessary to identify 95 per cent of Galactic WR stars. We anticipate that ESA's Gaia mission will make few additional WR star discoveries via low-resolution spectroscopy, though will significantly refine existing distance determinations. Appendix A provides a complete inventory of 322 Galactic WR stars discovered since the VIIth catalogue (313 including Annex), including a revised nomenclature scheme.

  3. Radiation pressure in galactic discs: stability, turbulence, and winds in the single-scattering limit

    NASA Astrophysics Data System (ADS)

    Wibking, Benjamin D.; Thompson, Todd A.; Krumholz, Mark R.

    2018-07-01

    The radiation force on dust grains may be dynamically important in driving turbulence and outflows in rapidly star-forming galaxies. Recent studies focus on the highly optically thick limit relevant to the densest ultraluminous galaxies and super star clusters, where reprocessed infrared photons provide the dominant source of electromagnetic momentum. However, even among starburst galaxies, the great majority instead lie in the so-called `single-scattering' limit, where the system is optically thick to the incident starlight, but optically thin to the reradiated infrared. In this paper, we present a stability analysis and multidimensional radiation-hydrodynamic simulations exploring the stability and dynamics of isothermal dusty gas columns in this regime. We describe our algorithm for full angle-dependent radiation transport based on the discontinuous Galerkin finite element method. For a range of near-Eddington fluxes, we show that the medium is unstable, producing convective-like motions in a turbulent atmosphere with a scale height significantly inflated compared to the gas pressure scale height and mass-weighted turbulent energy densities of ˜0.01-0.1 of the mid-plane radiation energy density, corresponding to mass-weighted velocity dispersions of Mach number ˜0.5-2. Extrapolation of our results to optical depths of 103 implies maximum turbulent Mach numbers of ˜20. Comparing our results to galaxy-averaged observations, and subject to the approximations of our calculations, we find that radiation pressure does not contribute significantly to the effective supersonic pressure support in star-forming discs, which in general are substantially sub-Eddington. We further examine the time-averaged vertical density profiles in dynamical equilibrium and comment on implications for radiation-pressure-driven galactic winds.

  4. Analytic Expressions for the Inner-rim Structure of Passively Heated Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Okuzumi, Satoshi; Flock, Mario

    2017-07-01

    We analytically derive the expressions for the structure of the inner region of protoplanetary disks based on the results from the recent hydrodynamical simulations. The inner part of a disk can be divided into four regions: a dust-free region with a gas temperature in the optically thin limit, an optically thin dust halo, an optically thick condensation front, and the classical, optically thick region, in order from the innermost to the outermost. We derive the dust-to-gas mass ratio profile in the dust halo using the fact that partial dust condensation regulates the temperature relative to the dust evaporation temperature. Beyond the dust halo, there is an optically thick condensation front where all the available silicate gas condenses out. The curvature of the condensation surface is determined by the condition that the surface temperature must be nearly equal to the characteristic temperature ˜1200 K. We derive the midplane temperature in the outer two regions using the two-layer approximation, with the additional heating by the condensation front for the outermost region. As a result, the overall temperature profile is step-like, with steep gradients at the borders between the outer three regions. The borders might act as planet traps where the inward migration of planets due to gravitational interaction with the gas disk stops. The temperature at the border between the two outermost regions coincides with the temperature needed to activate magnetorotational instability, suggesting that the inner edge of the dead zone must lie at this border. The radius of the dead zone inner edge predicted from our solution is ˜2-3 times larger than that expected from the classical optically thick temperature.

  5. Radiation pressure in galactic disks: stability, turbulence, and winds in the single-scattering limit

    NASA Astrophysics Data System (ADS)

    Wibking, Benjamin D.; Thompson, Todd A.; Krumholz, Mark R.

    2018-04-01

    The radiation force on dust grains may be dynamically important in driving turbulence and outflows in rapidly star-forming galaxies. Recent studies focus on the highly optically-thick limit relevant to the densest ultra-luminous galaxies and super star clusters, where reprocessed infrared photons provide the dominant source of electromagnetic momentum. However, even among starburst galaxies, the great majority instead lie in the so-called "single-scattering" limit, where the system is optically-thick to the incident starlight, but optically-thin to the re-radiated infrared. In this paper we present a stability analysis and multidimensional radiation-hydrodynamic simulations exploring the stability and dynamics of isothermal dusty gas columns in this regime. We describe our algorithm for full angle-dependent radiation transport based on the discontinuous Galerkin finite element method. For a range of near-Eddington fluxes, we show that the medium is unstable, producing convective-like motions in a turbulent atmosphere with a scale height significantly inflated compared to the gas pressure scale height and mass-weighted turbulent energy densities of ˜0.01 - 0.1 of the midplane radiation energy density, corresponding to mass-weighted velocity dispersions of Mach number ˜0.5 - 2. Extrapolation of our results to optical depths of 103 implies maximum turbulent Mach numbers of ˜20. Comparing our results to galaxy-averaged observations, and subject to the approximations of our calculations, we find that radiation pressure does not contribute significantly to the effective supersonic pressure support in star-forming disks, which in general are substantially sub-Eddington. We further examine the time-averaged vertical density profiles in dynamical equilibrium and comment on implications for radiation-pressure-driven galactic winds.

  6. Understanding of impurity poloidal distribution in the edge pedestal by modelling

    NASA Astrophysics Data System (ADS)

    Rozhansky, V.; Kaveeva, E.; Molchanov, P.; Veselova, I.; Voskoboynikov, S.; Coster, D.; Fable, E.; Puetterich, T.; Viezzer, E.; Kukushkin, A. S.; Kirk, A.; the ASDEX Upgrade Team

    2015-07-01

    Simulation of an H-mode ASDEX Upgrade shot with boron impurity was done with the B2SOLPS5.2 transport code. Simulation results were compared with the unique experimental data available for the chosen shot: radial density, electron and ion temperature profiles in the equatorial midplanes, radial electric field profile, radial profiles of the parallel velocity of impurities at the low-field side (LFS) and high-field side (HFS), radial density profiles of impurity ions at LHS and HFS. Simulation results reproduce all available experimental data simultaneously. In particular strong poloidal HFS-LFS asymmetry of B5+ ions was predicted in accordance with the experiment. The simulated HFS B5+ density inside the edge transport barrier is twice larger than that at LFS. This is consistent with the experimental observations where even larger impurity density asymmetry was observed. A similar effect was predicted in the simulation done for the MAST H-mode. Here the HFS density of He2+ is predicted to be 4 times larger than that at LHS. Such a large predicted asymmetry is connected with a larger ratio of HFS and LFS magnetic fields which is typical for spherical tokamaks. The HFS/LFS asymmetry was not measured in the experiment, however modelling qualitatively reproduces the observed change of sign of He+parallel velocity to the counter-current direction at LFS. The understanding of the asymmetry is based on neoclassical effects in plasma with strong gradients. It is demonstrated that simulation results obtained with account of sources of ionization, realistic geometry and turbulent transport are consistent with the simplified analytical approach. Difference from the standard neoclassical theory is emphasized.

  7. Partitioning Tungsten between Matrix Precursors and Chondrule Precursors through Relative Settling

    NASA Astrophysics Data System (ADS)

    Hubbard, Alexander

    2016-08-01

    Recent studies of chondrites have found a tungsten isotopic anomaly between chondrules and matrix. Given the refractory nature of tungsten, this implies that W was carried into the solar nebula by at least two distinct families of pre-solar grains. The observed chondrule/matrix split requires that the distinct families were kept separate during the dust coagulation process, and that the two families of grain interacted with the chondrule formation mechanism differently. We take the co-existence of different families of solids in the same general orbital region at the chondrule-precursor size as given, and explore the requirements for them to have interacted with the chondrule formation process at significantly different rates. We show that this sorting of families of solids into chondrule- and matrix-destined dust had to have been at least as powerful a sorting mechanism as the relative settling of aerodynamically distinct grains at least two scale heights above the midplane. The requirement that the chondrule formation mechanism was correlated in some fashion with a dust-grain sorting mechanism argues strongly for spatially localized chondrule formation mechanisms such as turbulent dissipation in non-thermally ionized disk surface layers, and argues against volume-filling mechanisms such as planetesimal bow shocks.

  8. Small scale exact coherent structures at large Reynolds numbers in plane Couette flow

    NASA Astrophysics Data System (ADS)

    Eckhardt, Bruno; Zammert, Stefan

    2018-02-01

    The transition to turbulence in plane Couette flow and several other shear flows is connected with saddle node bifurcations in which fully three-dimensional, nonlinear solutions to the Navier-Stokes equation, so-called exact coherent states (ECS), appear. As the Reynolds number increases, the states undergo secondary bifurcations and their time-evolution becomes increasingly more complex. Their spatial complexity, in contrast, remains limited so that these states cannot contribute to the spatial complexity and cascade to smaller scales expected for higher Reynolds numbers. We here present families of scaling ECS that exist on ever smaller scales as the Reynolds number is increased. We focus in particular on two such families for plane Couette flow, one centered near the midplane and the other close to a wall. We discuss their scaling and localization properties and the bifurcation diagrams. All solutions are localized in the wall-normal direction. In the spanwise and downstream direction, they are either periodic or localized as well. The family of scaling ECS localized near a wall is reminiscent of attached eddies, and indicates how self-similar ECS can contribute to the formation of boundary layer profiles.

  9. Numerical exploration of non-axisymmetric divertor closure in the small angle slot (SAS) divertor at DIII-D

    NASA Astrophysics Data System (ADS)

    Frerichs, Heinke; Schmitz, Oliver; Covele, Brent; Guo, Houyang; Hill, David; Feng, Yuhe

    2017-10-01

    In the Small Angle Slot (SAS) divertor in DIII-D, the combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field causes the strike point to vary radially along the divertor slot and even leave it at some toroidal locations. This effect essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade performance of the slot divertor. This effect has been approximated by a finite gap in the divertor baffle. Simulations with EMC3-EIRENE show that a toroidally localized loss of divertor closure can result in non-axisymmetric divertor densities and temperatures. This introduces a density window of 10-15% on top of the nominal threshold separatrix density during which a non-axisymmetric onset of local detachment occurs, initially leaving the gap and up to 60 deg beyond that still attached. Conversely, the impact of such toroidally localized divertor perturbations on the toroidal symmetry of midplane separatrix conditions is small. This work has been funded by the U.S. Department of Energy under Early Career Award Grant DE-SC0013911, and Grant DE-FC02-04ER54698.

  10. The transiting dust clumps in the evolved disc of the Sun-like UXor RZ Psc

    PubMed Central

    Kenworthy, Matthew A.; Pepper, Joshua; Rodriguez, Joseph E.; Siverd, Robert J.; Stassun, Keivan G.; Wyatt, Mark C.

    2017-01-01

    RZ Psc is a young Sun-like star, long associated with the UXor class of variable stars, which is partially or wholly dimmed by dust clumps several times each year. The system has a bright and variable infrared excess, which has been interpreted as evidence that the dimming events are the passage of asteroidal fragments in front of the host star. Here, we present a decade of optical photometry of RZ Psc and take a critical look at the asteroid belt interpretation. We show that the distribution of light curve gradients is non-uniform for deep events, which we interpret as possible evidence for an asteroidal fragment-like clump structure. However, the clumps are very likely seen above a high optical depth midplane, so the disc’s bulk clumpiness is not revealed. While circumstantial evidence suggests an asteroid belt is more plausible than a gas-rich transition disc, the evolutionary status remains uncertain. We suggest that the rarity of Sun-like stars showing disc-related variability may arise because (i) any accretion streams are transparent and/or (ii) turbulence above the inner rim is normally shadowed by a flared outer disc. PMID:28280566

  11. Investigation of internal magnetic structures and comparison with two-fluid equilibrium configurations in the multi-pulsing CHI on HIST

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Hanao, T.; Hirono, H.; Hyobu, T.; Ito, K.; Matsumoto, K.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.; Kanki, T.

    2012-10-01

    Spherical torus (ST) plasmas have been successfully maintained by Muti-pulsing Coaxial Helicity Injection (M-CHI) on HIST. This research object is to clarify relations between plasma characteristics and magnetic flux amplifications, and to compare magnetic field structures measured in the plasma interior to a flowing equilibrium calculation. Two-dimensional magnetic probe array has been newly introduced nearby the gun muzzle. The initial result shows that the diverter configuration with a single X-point can be formed after a bubble burst process of the plasma. The closed magnetic flux is surrounded by the open magnetic field lines intersecting with the gun electrodes. To evaluate the sustained configurations, we use the two-fluid equilibrium code containing generalized Bernoulli and Grad-Shafranov equations which was developed by L.C. Steinhauer. The radial profiles of plasma flow, density and magnetic fields measured on the midplane of the FC are consistent to the calculation. We also found that the poloidal shear flow generation is attributed to ExB drift and ion diamagnetic drift. In addition, we will study temporal behaviors of impurity lines such as OV and OVI during the flux amplification by VUV spectroscopic measurements.

  12. Characterization of edge turbulence in different states of divertor detachment using reflectometry in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Nikolaeva, V.; Guimarais, L.; Manz, P.; Carralero, D.; Manso, M. E.; Stroth, U.; Silva, C.; Conway, G. D.; Seliunin, E.; Vicente, J.; Brida, D.; Aguiam, D.; Santos, J.; Silva, A.; ASDEX Upgrade team; MST1 team

    2018-05-01

    Transport in the scrape-off layer (SOL) depends on the state of divertor detachment. L-mode discharges were analyzed where the state of divertor detachment is varied through a density ramp-up. By means of reflectometry measurements at the low (LFS) and the high field side (HFS), midplane density fluctuations are studied for the first time in ASDEX Upgrade simultaneously at both sides of the tokamak. Radial density fluctuation profiles (δ {n}e/{n}e) increase with radius in both the HFS and the LFS. It is found that in the SOL density fluctuations at the LFS have about a factor of two larger amplitude than at the HFS in agreement with ballooned transport. Density fluctuations at the LFS show a modest variation with increasing background density resulting mainly from a rise of low frequency components. Experimental results are in good agreement with an enhanced convection of filaments at the LFS at the beginning of outer divertor detachment leading to a flatter SOL density profile. In this phase of the discharge, density fluctuations measured at the HFS far-SOL display a strong increase, which may be associated with the presence of faster filaments originated at the LFS.

  13. Observation of astrophysical Weibel instability in counterstreaming laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Fox, W.; Fiksel, G.; Bhattacharjee, A.; Germaschewski, K.; Chang, P.-Y.; Hu, S. X.; Nilson, P. M.

    2013-10-01

    Astrophysical shocks are typically collisionless and require collective electromagnetic fields to couple the upstream and downstream plasmas. The Weibel instability has been proposed to be one of such collective mechanism. Here we present laboratory tests of this process through observations of the Weibel instability generated between two counterstreaming, supersonic plasma flows, generated on the OMEGA EP laser facility by irradiating of a pair of opposing parallel CH targets by UV laser pulses (0.351 μm, 1.8 kJ, 2 ns). The Weibel-generated electromagnetic fields were probed with an ultrafast proton beam, generated with a high-intensity laser pulse (1.053 μm, 800 J, 10 ps) focused to >1018 W/cm2 onto a thin Cu disk. Growth of a striated, transverse instability is observed at the midplane as the two plasmas interpenetrate, which is identified as the Weibel instability through agreement with analytic theory and particle-in-cell simulations. These laboratory observations directly demonstrate the existence of this astrophysical process, and pave the way for further detailed laboratory study of this instability and its consequences for particle energization and shock formation. This work was supported by DOE grant DE-SC0007168.

  14. Implementation of a Lateral TBI protocol in a Mexican Cancer Center

    NASA Astrophysics Data System (ADS)

    Mesa, Francisco; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko; Sosa, Modesto A.

    2008-08-01

    The development of a Lateral Total Body Irradiation protocol to be implemented at a High Specialty Medical Unit in Mexico as preparatory regimen for bone marrow transplant and treatment of several lymphomas is presented. This protocol was developed following AAPM specifications and has been validated for application at a cancer care center in United States. This protocol fundamentally focuses on patient care, avoiding instability and discomfort that may be encountered by other treatment regimes. In vivo dose verification with TLD-100 chips for each anatomical region of interest was utilized. TLD-100 chips were calibrated using a 6 MV photon beam for 10-120 cGy. Experimental results show TLD measurements with an error less than 1%. Standard deviations for calculated and measured doses for seven patients have been obtained. Data gathered for different levels of compensation indicate that a 3% measured tolerance level is acceptable. TLD point-dose measurements have been used to verify the dose beyond partial transmission lung blocks. Dose measurements beyond the lung block showed variation about 50% respects to prescribe dose. Midplane doses to the other anatomical sites were less than 2.5% respect of the prescribed dose.

  15. A Statistical Study of the Southern Fermi Bubble in UV Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Karim, Md. Tanveer; Fox, Andrew; Jenkins, Edward; Bordoloi, Rongmon; Wakker, Bart; Savage, Blair D.; Lockman, Felix; Crawford, Steve; Bland-Hawthorn, Joss; Jorgenson, Regina A.

    2018-01-01

    The Fermi Bubbles are two giant lobes of plasma situated at the center of the Milky Way, extending 55° above and below the Galactic Midplane. Although the Bubbles have been widely studied in multiple wavelengths, few studies have been done in UV absorption. Here we present a statistical study of the Southern Fermi Bubble using 17 QSO sightlines — 6 inside the Bubble, 11 outside — using UV absorption spectra from the Hubble Space Telescope Cosmic Origins Spectrograph (HST/COS). We searched for high-velocity clouds (HVCs) in 11 metal lines from ions of Aluminium, Carbon and Silicon. We detected HVCs in 83% of the sightlines inside the Bubble and 64% outside the Bubble, showing an enhancement in the covering fraction of HVCs in the Southern Bubble region. We also observed a decrease in vLSR of the HVCs as a function of the galactic latitude, consistent with a scenario where the identified HVCs trace the Galactic nuclear outflow, as sightlines closer to the central engine are expected to show a higher velocity. Combined with previous studies, our analysis indicates that the Southern Fermi Bubble is a dynamic environment giving rise to complex absorption features.

  16. Point-source helicity injection for ST plasma startup in Pegasus

    NASA Astrophysics Data System (ADS)

    Redd, A. J.; Battaglia, D. J.; Bongard, M. W.; Fonck, R. J.; Schlossberg, D. J.

    2009-11-01

    Plasma current guns are used as point-source DC helicity injectors for forming non-solenoidal tokamak plasmas in the Pegasus Toroidal Experiment. Discharges driven by this injection scheme have achieved Ip>= 100 kA using Iinj<= 4 kA. They form at the outboard midplane, transition to a tokamak-like equilibrium, and continue to grow inward as Ip increases due to helicity injection and outer- PF induction. The maximum Ip is determined by helicity balance (injection rate vs resistive dissipation) and a Taylor relaxation limit, in which Ip√ITF Iinj/w, where w is the radial thickness of the gun-driven edge. Preliminary experiments tentatively confirm these scalings with ITF, Iinj, and w, increasing confidence in this simple relaxation model. Adding solenoidal inductive drive during helicity injection can push Ip up to, but not beyond, the predicted relaxation limit, demonstrating that this is a hard performance limit. Present experiments are focused on increasing the injection voltage (i.e., helicity injection rate) and reducing w. Near-term goals are to further test scalings predicted by the simple relaxation model and to study in detail the observed bursty n=1 activity correlated with rapid increases in Ip.

  17. Direct Measurement of Impurity Transport in a Field Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Roche, T.; Bolte, N.; Heidbrink, W. W.; McWilliams, R.; Wessel, F.

    2011-10-01

    An optical tomography system has been developed and implemented in the Flux Coil Generated Field Reversed Configuration (FCG-FRC) at Tri Alpha Energy. Sixteen chords view ~ 35 % of the FRC at the mid-plane. The chords are arranged in two identical fans of eight chords each. To measure transport of an impurity species, argon, an FRC is generated using either Nitrogen or Deuterium as the primary species. A puff valve is activated prior to the shot such that the argon begins to bleed in to the vacuum chamber as the FRC is formed. The gas is puffed at the optimal location for tomographic reconstruction. Each chord is collimated to illuminate a fiber optic cable which is fed to an array of photomultiplier tubes which are fitted with neutral density and band pass filters to allow the appropriate amount of light from the emitting, singly ionized, argon at 434 . 8 nm to be measured. Using a preliminary assumption that density of argon is proportional to light intensity gathered data have been used to reconstruct density profiles. These profiles often peak near the field null. The data are being analyzed to determine diffusive and convective transport coefficients.

  18. Effects of Chemistry on Vertical Dust Motion in Early Protoplanetary Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, Yoshinori; Korenaga, Jun

    We propose the possibility of a new phenomenon affecting the settling of dust grains at the terrestrial region in early protoplanetary disks. Sinking dust grains evaporate in a hot inner region during the early stage of disk evolution, and the effects of condensation and evaporation on vertical dust settling can be significant. A 1D dust settling model considering both physical and chemical aspects is presented in this paper. Modeling results show that dust grains evaporate as they descend into the hotter interior and form a condensation front, above which dust-composing major elements, Mg, Si, and Fe, accumulate, creating a largemore » temperature gradient. Repeated evaporation at the front inhibits grain growth, and small grain sizes elevate the opacity away from the midplane. Self-consistent calculations, including radiative heat transfer and condensation theory, suggest that the mid-disk temperature could be high enough for silicates to remain evaporated longer than previous estimates. The formation of a condensation front leads to contrasting settling behaviors between highly refractory elements, such as Al and Ca, and moderately refractory elements, such as Mg, Si, and Fe, suggesting that elemental abundance in planetesimals may not be a simple function of volatility.« less

  19. Symmetric and asymmetric capillary bridges between a rough surface and a parallel surface.

    PubMed

    Wang, Yongxin; Michielsen, Stephen; Lee, Hoon Joo

    2013-09-03

    Although the formation of a capillary bridge between two parallel surfaces has been extensively studied, the majority of research has described only symmetric capillary bridges between two smooth surfaces. In this work, an instrument was built to form a capillary bridge by squeezing a liquid drop on one surface with another surface. An analytical solution that describes the shape of symmetric capillary bridges joining two smooth surfaces has been extended to bridges that are asymmetric about the midplane and to rough surfaces. The solution, given by elliptical integrals of the first and second kind, is consistent with a constant Laplace pressure over the entire surface and has been verified for water, Kaydol, and dodecane drops forming symmetric and asymmetric bridges between parallel smooth surfaces. This solution has been applied to asymmetric capillary bridges between a smooth surface and a rough fabric surface as well as symmetric bridges between two rough surfaces. These solutions have been experimentally verified, and good agreement has been found between predicted and experimental profiles for small drops where the effect of gravity is negligible. Finally, a protocol for determining the profile from the volume and height of the capillary bridge has been developed and experimentally verified.

  20. Accurate Cell Division in Bacteria: How Does a Bacterium Know Where its Middle Is?

    NASA Astrophysics Data System (ADS)

    Howard, Martin; Rutenberg, Andrew

    2004-03-01

    I will discuss the physical principles lying behind the acquisition of accurate positional information in bacteria. A good application of these ideas is to the rod-shaped bacterium E. coli which divides precisely at its cellular midplane. This positioning is controlled by the Min system of proteins. These proteins coherently oscillate from end to end of the bacterium. I will present a reaction-diffusion model that describes the diffusion of the Min proteins, and their binding/unbinding from the cell membrane. The system possesses an instability that spontaneously generates the Min oscillations, which control accurate placement of the midcell division site. I will then discuss the role of fluctuations in protein dynamics, and investigate whether fluctuations set optimal protein concentration levels. Finally I will examine cell division in a different bacteria, B. subtilis. where different physical principles are used to regulate accurate cell division. See: Howard, Rutenberg, de Vet: Dynamic compartmentalization of bacteria: accurate division in E. coli. Phys. Rev. Lett. 87 278102 (2001). Howard, Rutenberg: Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. Phys. Rev. Lett. 90 128102 (2003). Howard: A mechanism for polar protein localization in bacteria. J. Mol. Biol. 335 655-663 (2004).

  1. A New Route to Liposil Formation by an Interfacial Sol-Gel Process Confined by Lipid Bilayer.

    PubMed

    Shen, Shukun; Yang, Lu; Lu, Yaxing; Chen, Jian-Gang; Song, Shaofei; Hu, Daodao; Parikh, Atul

    2015-11-18

    We report a new and simple approach to prepare a class of silica-reinforced liposomes with hybrid core-shell nanostructures. The amphiphilic natural structure of lipids was exploited to sequester hydrophobic molecules, namely precursor TEOS and pyrene, in the hydrophobic midplane of liposomal bilayer assemblies in the aqueous phase. Subsequent interfacial hydrolysis of TEOS at the bilayer/water interface and ensuing condensation within the hydrophobic interstices of the lipid bilayer drives silica formation in situ, producing a novel class of silica-lipid hybrid liposils. Structural characterization by scanning- and transmission electron microscopy confirm that the liposils so generated preserve closed topologies and size-monodipersity of the parent lecithin liposomes, and DSC-TGA and XRD measurements provide evidence for the silica coating. Monitoring fluorescence measurements using embedded pyrene yield detailed information on microenvironment changes, which occur during sol-gel process and shed light on the structural evolution during silica formation. We envisage that liposils formed by this simple, new approach, exploiting the hydrophobic core of the lipid bilayer to spatially localize silica-forming precursors enables preparation of stable liposils exhibiting capacity for cargo encapsulation, bicompatibility, and fluorescence monitoring, more generally opening a window for construction of stable, functional hybrid materials.

  2. The transiting dust clumps in the evolved disc of the Sun-like UXor RZ Psc.

    PubMed

    Kennedy, Grant M; Kenworthy, Matthew A; Pepper, Joshua; Rodriguez, Joseph E; Siverd, Robert J; Stassun, Keivan G; Wyatt, Mark C

    2017-01-01

    RZ Psc is a young Sun-like star, long associated with the UXor class of variable stars, which is partially or wholly dimmed by dust clumps several times each year. The system has a bright and variable infrared excess, which has been interpreted as evidence that the dimming events are the passage of asteroidal fragments in front of the host star. Here, we present a decade of optical photometry of RZ Psc and take a critical look at the asteroid belt interpretation. We show that the distribution of light curve gradients is non-uniform for deep events, which we interpret as possible evidence for an asteroidal fragment-like clump structure. However, the clumps are very likely seen above a high optical depth midplane, so the disc's bulk clumpiness is not revealed. While circumstantial evidence suggests an asteroid belt is more plausible than a gas-rich transition disc, the evolutionary status remains uncertain. We suggest that the rarity of Sun-like stars showing disc-related variability may arise because (i) any accretion streams are transparent and/or (ii) turbulence above the inner rim is normally shadowed by a flared outer disc.

  3. Performance and data analysis aspects of the new DIII-D monostatic profile reflectometer system

    DOE PAGES

    Zeng, Lei; Peebles, William A.; Doyle, Edward J.; ...

    2014-08-07

    A new frequency-modulated (FMCW) profile reflectometer system, featuring a monostatic antenna geometry (using one microwave antenna for both launch and receive), has been installed on the DIII-D tokamak, providing a first experimental test of this measurement approach for profile reflectometry. Significant features of the new system are briefly described in this paper, including the new monostatic arrangement, use of overmoded, broadband transmission waveguide, and dual-polarization combination/demultiplexing. Updated data processing and analysis, and in-service performance aspects of the new monostatic profile reflectometer system are also presented. By using a raytracing code (GENRAY) to determine the approximate trajectory of the probe beam,more » the electron density (n e) profile can be successfully reconstructed with L-mode plasmas vertically shifted by more than 10 cm off the vessel midplane. Specifically, it is demonstrated that the new system has a capability to measure n e profiles with plasma vertical offsets of up to ±17 cm. Furthermore, examples are also presented of accurate, high time and spatial resolution density profile measurements made over a wide range of DIII-D conditions, e.g. the measured temporal evolution of the density profile across an L-H transition.« less

  4. A Spitzer/glimpse Search For Galaxies: What Zone Of Avoidance?

    NASA Astrophysics Data System (ADS)

    Parsons, Lamarr; Benjamin, R. A.; GLIMPSE Team

    2007-12-01

    We report the results of a visual search for galaxy candidates in an area of twelve square degrees covered by the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire-3D (GLIMPSE-3D) Spitzer Legacy programs. The areas searched consisted of three 2x2 degree blocks, with galactic coordinates centered at (330, -02), (330, +02) and (331, -02). All three regions were imaged for 2.4 seconds in the 3.6, 4.5, 5.8 and 8.0 µm bands using IRAC on the Spitzer Space Telescope. We report a total of 114 galaxy candidates, yielding an average of 9.5 candidates per square degree. We also show that the galaxy detection rate is dependent on galactic latitude, probably due to the lower diffuse 8 micron background at high latitudes. We have found that the detection rate increases from 4 per square degree (at b=1º) to 12 per square degree (at b=3º). We present the physical parameters of these galaxies, discuss their clustering, and note which have been previously detected in other wavebands/surveys. This work was supported by the National Science Foundation's REU program and the Department of Defense's ASSURE program through NSF Award AST-0453442.

  5. Miniaturization of a Combination Langmuir/Mach Probe

    NASA Astrophysics Data System (ADS)

    Melnik, P. A.; Dehart, T.; Lotz, D.

    2009-11-01

    A combination Langmuir/Mach probe has been developed to measure electron temperature and density as well as ion flow speed in TCSU. The probe is fully translatable allowing it to diagnose all radial locations of the FRC at either the mid-plane, end section, or in the exhaust jets. The 1/4'' probe stalk consists of interlocking boron nitride cylinders which encompass a 1/8'' diameter stainless steel tube that houses the probe wires. In addition to the stainless steel jacket the probe wires are twisted to minimize electromagnetic noise pickup. The tip of this combo probe is composed of a boron nitride housing and eight .020'' diameter tungsten collection leads. In TCSU, the RMF used to form and sustain the FRC makes Langmuir probe measurements difficult. To this end we have developed a drive circuit that will generate the bias voltages necessary for Langmuir probe operation. This bipolar power supply can produce steady voltages up to 200 volts at loads over 1 amp and can be swept at any frequency up to 1.5 MHz. The probe current and bias voltage will be recorded with an amplifier and transmitted via fiber optic to a receiver allowing the signals to be digitized.

  6. Comparison of Dispersion Model of Magneto-Acoustic Cyclotron Instability with Experimental Observation of 3He Ion Cyclotron Emission on JT-60U

    NASA Astrophysics Data System (ADS)

    Sumida, Shuhei; Shinohara, Kouji; Ikezoe, Ryuya; Ichimura, Makoto; Sakamoto, Mizuki; Hirata, Mafumi; Ide, Shunsuke

    2017-12-01

    The Magneto-acoustic Cyclotron Instability (MCI) is a possible emission mechanism for Ion Cyclotron Emissions (ICEs). A dispersion model of the MCI driven by a drifting-ring-type ion velocity distribution has been proposed. In this study, the model was compared with the experimental observations of 3He ICEs [ICEs(3He)] on JT-60U. For this purpose, at first, velocity distributions of deuterium-deuterium fusion produced fast 3He ions at the time of an appearance of the ICE(3He) were evaluated by using a fast ion orbit following code under a realistic condition. The calculated distribution at the edge of the plasma on the midplane on the low field side is shown to have an inverted population and strong anisotropy. This distribution can be reasonably approximated by the drifting-ring-type distribution. Next, dispersions of the MCIs driven by the drifting-ring-type distribution were compared with those of observed ICEs(3He). The comparison shows that toroidal wavenumbers and frequencies of the calculated MCIs agree with those of the observed ICEs(3He).

  7. Device for producing a fluid stream of varying composition

    DOEpatents

    Moss, Owen R.; Clark, Mark L.; Rossignol, E. John

    1982-01-01

    A device for producing a fluid stream of varying composition comprises a chamber having an inlet at one end and outlet at the other. Between the inlet and outlet there are substantially planar pans or baffles positioned normal to the bulk flow of fluid between the inlet and the outlet. These pans are arranged in pairs. Each pan, except those of the pair most remote from the inlet, is spaced from the walls of the chamber to permit air to flow past it. The pans of each pair are also spaced from each other, in a direction parallel to their planes, leaving an empty space along the mid-plane of the chamber. This produces a circulation and mixing of fluid between the pairs of pans or baffles. A secondary stream of fluid is introduced between two pairs of baffles in the intermediate portion of the chamber, so that the composition of the fluid is different in the portion adjacent to the outlet and the portion adjacent to the inlet. In a specific embodiment, the device is an exposure chamber for experimental animals, and the pans or baffles are catch pans for excrement.

  8. PLANET SHADOWS IN PROTOPLANETARY DISKS. II. OBSERVABLE SIGNATURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang-Condell, Hannah

    2009-07-20

    We calculate simulated images of disks perturbed by embedded small planets. These 10-50 M{sub +} bodies represent the growing cores of giant planets. We examine scattered light and thermal emission from these disks over a range of wavelengths, taking into account the wavelength-dependent opacity of dust in the disk. We also examine the effect of inclination on the observed perturbations. We find that the perturbations are best observed in the visible to mid-infrared (mid-IR). Scattered light images reflect shadows produced at the surface of perturbed disks, while the infrared images follow thermal emission from the surface of the disk, showingmore » cooled/heated material in the shadowed/brightened regions. At still longer wavelengths in the submillimeter, the perturbation fades as the disk becomes optically thin and surface features become overwhelmed by emission closer toward the midplane of the disk. With the construction of telescopes such as TMT, GMT, and ALMA due in the next decade, there is a real possibility of observing planets forming in disks in the optical and submillimeter. However, having the angular resolution to observe the features in the mid-IR will remain a challenge.« less

  9. Mirror-field confined compact plasma source using permanent magnet for plasma processings.

    PubMed

    Goto, Tetsuya; Sato, Kei-Ichiro; Yabuta, Yuki; Sugawa, Shigetoshi

    2016-12-01

    A mirror-field confined compact electron cyclotron resonance (ECR) plasma source using permanent magnets was developed, aiming for the realization of high-quality plasma processings where high-density reactive species are supplied to a substrate with minimizing the ion bombardment damages. The ECR position was located between a microwave transmissive window and a quartz limiter, and plasmas were transported from the ECR position to a midplane of the magnetic mirror field through the quartz limiter. Thus, a radius of core plasma could be determined by the limiter, which was 15 mm in this study. Plasma parameters were investigated by the Langmuir probe measurement. High-density plasma larger than 10 11 cm -3 could be produced by applying 5.85-GHz microwave power of 10 W or more. For the outside region of the core plasma where a wafer for plasma processings will be set at, the ion current density was decreased dramatically with distance from the core plasma and became smaller by approximately two orders of magnitude that in the core plasma region for the radial position of 40 mm, suggesting the realization of reduction in ion bombardment damages.

  10. Visualizing and Quantifying Blob Characteristics on NSTX

    NASA Astrophysics Data System (ADS)

    Davis, William; Zweben, Stewart; Myra, James; D'Ippolito, Daniel; Ko, Matthew

    2012-10-01

    Understanding the radial motion of blob-filaments in the tokamak edge plasma is important since this motion can affect the width of the heat and particle scrape-off layer (SOL) [1]. High resolution (64x80), high speed (400,000 frames/sec) edge turbulence movies taken of the NSTX outer midplane separatrix region have recently been analyzed for blob motion. Regions of high light emission from gas puff imaging within a 25x30 cm cross-section were used to track blob-filaments in the plasma edge and into the SOL. Software tools have been developed for visualizing blob movement and automatically generating statistics of blob speed, shape, amplitude, size, and orientation; thousands of blobs have been analyzed for dozens of shots. The blob tracking algorithm and resulting database entries are explained in detail. Visualization tools also show how poloidal and radial motion change as blobs move through the scrape-off-layer (SOL), e.g. suggesting the influence of sheared flow. Relationships between blob size and velocity are shown for various types of plasmas and compared with simplified theories of blob motion. This work was supported by DOE Contract DE-AC02-09-CH11466. [4pt] [1] J.R. Myra et al, Phys. Plasmas 18, 012305 (2011)

  11. The transiting dust clumps in the evolved disc of the Sun-like UXor RZ Psc

    NASA Astrophysics Data System (ADS)

    Kennedy, Grant M.; Kenworthy, Matthew A.; Pepper, Joshua; Rodriguez, Joseph E.; Siverd, Robert J.; Stassun, Keivan G.; Wyatt, Mark C.

    2017-01-01

    RZ Psc is a young Sun-like star, long associated with the UXor class of variable stars, which is partially or wholly dimmed by dust clumps several times each year. The system has a bright and variable infrared excess, which has been interpreted as evidence that the dimming events are the passage of asteroidal fragments in front of the host star. Here, we present a decade of optical photometry of RZ Psc and take a critical look at the asteroid belt interpretation. We show that the distribution of light curve gradients is non-uniform for deep events, which we interpret as possible evidence for an asteroidal fragment-like clump structure. However, the clumps are very likely seen above a high optical depth midplane, so the disc's bulk clumpiness is not revealed. While circumstantial evidence suggests an asteroid belt is more plausible than a gas-rich transition disc, the evolutionary status remains uncertain. We suggest that the rarity of Sun-like stars showing disc-related variability may arise because (i) any accretion streams are transparent and/or (ii) turbulence above the inner rim is normally shadowed by a flared outer disc.

  12. Implementation of the 3D edge plasma code EMC3-EIRENE on NSTX

    DOE PAGES

    Lore, J. D.; Canik, J. M.; Feng, Y.; ...

    2012-05-09

    The 3D edge transport code EMC3-EIRENE has been applied for the first time to the NSTX spherical tokamak. A new disconnected double null grid has been developed to allow the simulation of plasma where the radial separation of the inner and outer separatrix is less than characteristic widths (e.g. heat flux width) at the midplane. Modelling results are presented for both an axisymmetric case and a case where 3D magnetic field is applied in an n = 3 configuration. In the vacuum approximation, the perturbed field consists of a wide region of destroyed flux surfaces and helical lobes which aremore » a mixture of long and short connection length field lines formed by the separatrix manifolds. This structure is reflected in coupled 3D plasma fluid (EMC3) and kinetic neutral particle (EIRENE) simulations. The helical lobes extending inside of the unperturbed separatrix are filled in by hot plasma from the core. The intersection of the lobes with the divertor results in a striated flux footprint pattern on the target plates. As a result, profiles of divertor heat and particle fluxes are compared with experimental data, and possible sources of discrepancy are discussed.« less

  13. Effects of Chemistry on Vertical Dust Motion in Early Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yoshinori; Korenaga, Jun

    2017-11-01

    We propose the possibility of a new phenomenon affecting the settling of dust grains at the terrestrial region in early protoplanetary disks. Sinking dust grains evaporate in a hot inner region during the early stage of disk evolution, and the effects of condensation and evaporation on vertical dust settling can be significant. A 1D dust settling model considering both physical and chemical aspects is presented in this paper. Modeling results show that dust grains evaporate as they descend into the hotter interior and form a condensation front, above which dust-composing major elements, Mg, Si, and Fe, accumulate, creating a large temperature gradient. Repeated evaporation at the front inhibits grain growth, and small grain sizes elevate the opacity away from the midplane. Self-consistent calculations, including radiative heat transfer and condensation theory, suggest that the mid-disk temperature could be high enough for silicates to remain evaporated longer than previous estimates. The formation of a condensation front leads to contrasting settling behaviors between highly refractory elements, such as Al and Ca, and moderately refractory elements, such as Mg, Si, and Fe, suggesting that elemental abundance in planetesimals may not be a simple function of volatility.

  14. Initial Computations of Vertical Displacement Events with NIMROD

    NASA Astrophysics Data System (ADS)

    Bunkers, Kyle; Sovinec, C. R.

    2014-10-01

    Disruptions associated with vertical displacement events (VDEs) have potential for causing considerable physical damage to ITER and other tokamak experiments. We report on initial computations of generic axisymmetric VDEs using the NIMROD code [Sovinec et al., JCP 195, 355 (2004)]. An implicit thin-wall computation has been implemented to couple separate internal and external regions without numerical stability limitations. A simple rectangular cross-section domain generated with the NIMEQ code [Howell and Sovinec, CPC (2014)] modified to use a symmetry condition at the midplane is used to test linear and nonlinear axisymmetric VDE computation. As current in simulated external coils for large- R / a cases is varied, there is a clear n = 0 stability threshold which lies below the decay-index criterion for the current-loop model of a tokamak to model VDEs [Mukhovatov and Shafranov, Nucl. Fusion 11, 605 (1971)]; a scan of wall distance indicates the offset is due to the influence of the conducting wall. Results with a vacuum region surrounding a resistive wall will also be presented. Initial nonlinear computations show large vertical displacement of an intact simulated tokamak. This effort is supported by U.S. Department of Energy Grant DE-FG02-06ER54850.

  15. Long-term fuel retention and release in JET ITER-Like Wall at ITER-relevant baking temperatures

    NASA Astrophysics Data System (ADS)

    Heinola, K.; Likonen, J.; Ahlgren, T.; Brezinsek, S.; De Temmerman, G.; Jepu, I.; Matthews, G. F.; Pitts, R. A.; Widdowson, A.; Contributors, JET

    2017-08-01

    The fuel outgassing efficiency from plasma-facing components exposed in JET-ILW has been studied at ITER-relevant baking temperatures. Samples retrieved from the W divertor and Be main chamber were annealed at 350 and 240 °C, respectively. Annealing was performed with thermal desoprtion spectrometry (TDS) for 0, 5 and 15 h to study the deuterium removal effectiveness at the nominal baking temperatures. The remained fraction was determined by emptying the samples fully of deuterium by heating W and Be samples up to 1000 and 775 °C,respectively. Results showed the deposits in the divertor having an increasing effect to the remaining retention at temperatures above baking. Highest remaining fractions 54 and 87 % were observed with deposit thicknesses of 10 and 40 μm, respectively. Substantially high fractions were obtained in the main chamber samples from the deposit-free erosion zone of the limiter midplane, in which the dominant fuel retention mechanism is via implantation: 15 h annealing resulted in retained deuterium higher than 90 % . TDS results from the divertor were simulated with TMAP7 calculations. The spectra were modelled with three deuterium activation energies resulting in good agreement with the experiments.

  16. Suppression of atmospheric recycling of planets embedded in a protoplanetary disc by buoyancy barrier

    NASA Astrophysics Data System (ADS)

    Kurokawa, Hiroyuki; Tanigawa, Takayuki

    2018-06-01

    The ubiquity of super-Earths poses a problem for planet formation theory to explain how they avoided becoming gas giants. Rapid recycling of the envelope gas of planets embedded in a protoplanetary disc has been proposed to delay the cooling and following accretion of disc gas. We compare isothermal and non-isothermal 3D hydrodynamical simulations of the gas flow past a planet to investigate the influence on the feasibility of the recycling mechanism. Radiative cooling is implemented by using the β cooling model. We find that, in either case, gas enters the Bondi sphere at high latitudes and leaves through the midplane regions, or vice versa when disc gas rotates sub-Keplerian. However, in contrast to the isothermal case where the recycling flow reaches the deeper part of the envelope, the inflow is inhibited from reaching the deep envelope in the non-isothermal case. Once the atmosphere starts cooling, buoyant force prevents the high-entropy disc gas from intruding the low-entropy atmosphere. We suggest that the buoyancy barrier isolates the lower envelope from the recycling and allows further cooling, which may lead runaway gas accretion onto the core.

  17. ALE3D Simulation and Measurement of Violence in a Fast Cookoff Experiment with LX-10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClelland, M A; Maienschein, J L; Howard, W M

    We performed a computational and experimental analysis of fast cookoff of LX-10 (94.7% HMX, 5.3% Viton A) confined in a 2 kbar steel tube with reinforced end caps. A Scaled-Thermal-Explosion-eXperiment (STEX) was completed in which three radiant heaters were used to heat the vessel until ignition, resulting in a moderately violent explosion after 20.4 minutes. Thermocouple measurements showed tube temperatures as high as 340 C at ignition and LX-10 surface temperatures as high as 279 C, which is near the melting point of HMX. Three micro-power radar systems were used to measure mean fragment velocities of 840 m/s. Photonics Dopplermore » Velocimeters (PDVs) showed a rapid acceleration of fragments over 80 {micro}s. A one-dimensional ALE3D cookoff model at the vessel midplane was used to simulate the heating, thermal expansion, LX-10 decomposition composition, and closing of the gap between the HE (High Explosive) and vessel wall. Although the ALE3D simulation terminated before ignition, the model provided a good representation of heat transfer through the case and across the dynamic gap to the explosive.« less

  18. Collisionality and temperature dependence of the edge main-ion co-current rotation profile feature on DIII-D

    NASA Astrophysics Data System (ADS)

    Haskey, Shaun; Grierson, Brian; Ashourvan, Arash; Battaglia, Devon; Chrystal, Colin; Burrell, Keith; Groebner, Richard; Degrassie, John; Stagner, Luke; Stoltzfus-Dueck, Timothy; Pablant, Novimir

    2017-10-01

    A new edge main-ion (D+) CER system and upgraded edge impurity system are revealing clear differences between the main-ion and dominant impurity (C6+) toroidal rotation from the pedestal top to the scrape off layer on DIII-D with implications for intrinsic rotation studies. A peaked co-current edge toroidal rotation is observed for the main ion species near the outboard midplane separatrix with values up to 140 km/s for low collisionality QH modes. In lower power (PNBI = 0.8MW) H-modes the edge rotation is still present but reduced to 50km/s. D+ and C6+ toroidal rotation differences are presented for a variety of scenarios covering a significant range of edge collisionality and Ti. Observations are compared with predictions from several models including collisionless ion orbit loss calculations and more complete modeling using the XGC0 code, which also predicts 140km/s edge rotation for low collisionality QH mode cases. Work supported by the U.S. DOE under DE-AC02-09CH11466, No. DE-FC02-04ER54698, and DE-FC02-95ER54309.

  19. SOL and Edge Flows in DIII-D

    NASA Astrophysics Data System (ADS)

    Boedo, J. A.; Degrassie, J. S.; Grierson, B. A.; Rudakov, D. A.

    2015-11-01

    Recent measurements at DIII-D edge plasmas at the outer midplane show that, in the absence of external torque, the edge and near-SOL plasma flow is largely dominated by the intrinsic source of rotation most likely due to thermal ion loss. We also show that when NBI heating is present, the core momentum competes with the edge intrinsic momentum and can overwhelm it, in short, NBI-heated discharges at high power tend to determine edge and near SOL flows. Experiments performed in the DIII-D tokamak with OH heated, ECH-heated and NBI-heated discharges are diagnosed for core plasma flow with CER and edge/SOL plasma flow with Mach probes. We have changed the amount of NBI, OH and ECH heating while scanning the discharge collisionality. We have compared the experimental measurements to two complementary thermal ion loss theories that explain most of the observed features, including a scaling with Ti. One theory considers passing and trapped particles that are lost via a loss cone purely due to drifts and the other considers turbulence-enhanced loss of passing particles. Work supported by the US DOE under DE-FC02-04ER54698, DE-FG02-07ER54917 and DE-AC02-09CH111466.

  20. Fully non-inductive plasma start-up with lower-hybrid waves using the outboard-launch and top-launch antennas on the TST-2 spherical tokamak

    NASA Astrophysics Data System (ADS)

    Tsujii, Naoto; Takase, Yuichi; Ejiri, Akira; Shinya, Takahiro; Yajima, Satoru; Yamazaki, Hibiki; Togashi, Hiro; Moeller, Charles P.; Roidl, Benedikt; Takahashi, Wataru; Toida, Kazuya; Yoshida, Yusuke

    2017-10-01

    Removal of the central solenoid is essential to realize an economical spherical tokamak fusion reactor, but non-inductive plasma start-up is a challenge. On the TST-2 spherical tokamak, non-inductive plasma start-up using lower-hybrid (LH) waves has been investigated. Using the capacitively-coupled combline (CCC) antenna installed at the outboard midplane, fully non-inductive plasma current ramp-up up to a quarter of that of the typical Ohmic discharges has been achieved. Although it was desirable to keep the density low during the plasma current ramp-up to avoid the LH density limit, it was recognized that there was a maximum current density that could be carried by a given electron density. Since the density needed to increase as the plasma current was ramped-up, the achievable plasma current was limited by the maximum operational toroidal field of TST-2. The top-launch CCC antenna was installed to access higher density with up-shift of the parallel index of refraction. Numerical analysis of LH current drive with the outboard-launch and top-launch antennas was performed and the results were qualitatively consistent with the experimental observations.

  1. Evolution of the Solar Nebula. II. Thermal Structure during Nebula Formation

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.

    1993-11-01

    Models of the thermal structure of protoplanetary disks are required for understanding the physics and chemistry of the earliest phases of planet formation. Numerical hydrodynamical models of the protostellar collapse phase have not been evolved far enough in time to be relevant to planet formation, i.e., to a relatively low-mass disk surrounding a protostar. One simplification is to assume a pre-existing solar-mass protostar, and calculate the structure of just the disk as it forms from the highest angular momentum vestiges of the placental cloud core. A spatially second-order accurate, axisymmetric (two-dimensional), radiative hydrodynamics code has been used to construct three sets of protoplanetary disk models under this assumption. Because compressional heating has been included, but not viscous or other heating sources, the model temperatures obtained should be considered lower bounds. The first set started from a spherically symmetric configuration appropriate for freely falling gas: ρ ∝ r-3/2, υr ∝ r-1/2, but with rotation (Ω ∝ r-1, where r is the spherical coordinate radius). These first models turned out to be unsatisfactory because in order to achieve an acceptable mass accretion rate onto the protostar (Mṡ ≤ 10-5 Msun yr-1 for low-mass star formation), the disk mass became much too small (˜ 0.0002 Msun). The second set improved on the first set by ensuring that the late-arriving, high angular momentum gas did not accrete directly onto the protosun. By starting from a disklike cloud flattened about the equatorial plane and flowing vertically toward the midplane, these models led to Mṡ → 0, as desired. However, because the initial cloud was not chosen to be close to equilibrium, the disk rapidly contracted vertically, producing an effective disk mass accretion rate Mṡd ˜ 10-2 Msun yr-1, again too high. Hence, the third (and most realistic) set started from an approximate equilibrium state for an adiabatic, self-gravitating "fat" Keplerian disk, with surface density σ ∝ r-1/2, surrounded by a much lower density "halo" infalling onto the disk. This initial condition produced Mṡs → 0 and Mṡd ˜ 10-6 to 10-5 Msun yr-1, as desired. The resulting nebula temperature distributions show that midplane temperatures of at least 1000 K inside 2.5 AU, falling to around 100 K outside 5 AU, are to be expected during the formation phase of a minimum mass nebula containing ˜0.02 Msun within 10 AU. This steady state temperature distribution appears to be consistent with cosmochemical evidence which has been interpreted as implying a phase of relatively high temperatures in the inner nebula. The temperature distribution also implies that the nebula would be cool enough outside 5 AU to allow ices to accumulate into planetesimals even at this relatively early phase of nebula evolution.

  2. Fracture mechanics analyses of partial crack closure in shell structures

    NASA Astrophysics Data System (ADS)

    Zhao, Jun

    2007-12-01

    This thesis presents the theoretical and finite element analyses of crack-face closure behavior in shells and its effect on the stress intensity factor under a bending load condition. Various shell geometries, such as spherical shell, cylindrical shell containing an axial crack, cylindrical shell containing a circumferential crack and shell with double curvatures, are all studied. In addition, the influence of material orthotropy on the crack closure effect in shells is also considered. The theoretical formulation is developed based on the shallow shell theory of Delale and Erdogan, incorporating the effect of crack-face closure at the compressive edges. The line-contact assumption, simulating the crack-face closure at the compressive edges, is employed so that the contact force at the closure edges is introduced, which can be translated to the mid-plane of the shell, accompanied by an additional distributed bending moment. The unknown contact force is computed by solving a mixed-boundary value problem iteratively, that is, along the crack length, either the normal displacement of the crack face at the compressive edges is equal to zero or the contact pressure is equal to zero. It is found that due to the curvature effects crack closure may not always occur on the entire length of the crack, depending on the direction of the bending load and the geometry of the shell. The crack-face closure influences significantly the magnitude of the stress intensity factors; it increases the membrane component but decreases the bending component. The maximum stress intensity factor is reduced by the crack-face closure. The significant influence of geometry and material orthotropy on rack closure behavior in shells is also predicted based on the analytical solutions. Three-dimensional FEA is performed to validate the theoretical solutions. It demonstrates that the crack face closure occurs actually over an area, not on a line, but the theoretical solutions of the stress intensity factor and the FEA solutions are in good agreement, because the contact area is very small compared with the shell thickness.

  3. VizieR Online Data Catalog: FARGO_THORIN 1.0 hydrodynamic code (Chrenko+, 2017)

    NASA Astrophysics Data System (ADS)

    Chrenko, O.; Broz, M.; Lambrechts, M.

    2017-07-01

    This archive contains the source files, documentation and example simulation setups of the FARGO_THORIN 1.0 hydrodynamic code. The program was introduced, described and used for simulations in the paper. It is built on top of the FARGO code (Masset, 2000A&AS..141..165M, Baruteau & Masset, 2008ApJ...672.1054B) and it is also interfaced with the REBOUND integrator package (Rein & Liu, 2012A&A...537A.128R). THORIN stands for Two-fluid HydrOdynamics, the Rebound integrator Interface and Non-isothermal gas physics. The program is designed for self-consistent investigations of protoplanetary systems consisting of a gas disk, a disk of small solid particles (pebbles) and embedded protoplanets. Code features: I) Non-isothermal gas disk with implicit numerical solution of the energy equation. The implemented energy source terms are: Compressional heating, viscous heating, stellar irradiation, vertical escape of radiation, radiative diffusion in the midplane and radiative feedback to accretion heating of protoplanets. II) Planets evolved in 3D, with close encounters allowed. The orbits are integrated using the IAS15 integrator (Rein & Spiegel, 2015MNRAS.446.1424R). The code detects the collisions among planets and resolve them as mergers. III) Refined treatment of the planet-disk gravitational interaction. The code uses a vertical averaging of the gravitational potential, as outlined in Muller & Kley (2012A&A...539A..18M). IV) Pebble disk represented by an Eulerian, presureless and inviscid fluid. The pebble dynamics is affected by the Epstein gas drag and optionally by the diffusive effects. We also implemented the drag back-reaction term into the Navier-Stokes equation for the gas. Archive summary: ------------------------------------------------------------------------- directory/file Explanation ------------------------------------------------------------------------- /in_relax Contains setup of the first example simulation /in_wplanet Contains setup of the second example simulation /srcmain Contains the source files of FARGOTHORIN /src_reb Contains the source files of the REBOUND integrator package to be linked with THORIN GUNGPL3 GNU General Public License, version 3 LICENSE License agreement README Simple user's guide UserGuide.pdf Extended user's guide refman.pdf Programer's guide ----------------------------------------------------------------------------- (1 data file).

  4. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, C. M., E-mail: coopercm@fusion.gat.com; Pace, D. C.; Paz-Soldan, C.

    2016-11-15

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5–100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead “pinhole camera” mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses permore » second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.« less

  5. Fast-moving features in the debris disk around AU Microscopii.

    PubMed

    Boccaletti, Anthony; Thalmann, Christian; Lagrange, Anne-Marie; Janson, Markus; Augereau, Jean-Charles; Schneider, Glenn; Milli, Julien; Grady, Carol; Debes, John; Langlois, Maud; Mouillet, David; Henning, Thomas; Dominik, Carsten; Maire, Anne-Lise; Beuzit, Jean-Luc; Carson, Joseph; Dohlen, Kjetil; Engler, Natalia; Feldt, Markus; Fusco, Thierry; Ginski, Christian; Girard, Julien H; Hines, Dean; Kasper, Markus; Mawet, Dimitri; Ménard, François; Meyer, Michael R; Moutou, Claire; Olofsson, Johan; Rodigas, Timothy; Sauvage, Jean-Francois; Schlieder, Joshua; Schmid, Hans Martin; Turatto, Massimo; Udry, Stephane; Vakili, Farrokh; Vigan, Arthur; Wahhaj, Zahed; Wisniewski, John

    2015-10-08

    In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source. These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the β Pictoris system, in which the known planet generates an observable warp in the disk. The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units. Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10-60 astronomical units, persisting over intervals of 1-4 years. All these features appear to move away from the star at projected speeds of 4-10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.

  6. PARTITIONING TUNGSTEN BETWEEN MATRIX PRECURSORS AND CHONDRULE PRECURSORS THROUGH RELATIVE SETTLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, Alexander, E-mail: ahubbard@amnh.org

    2016-08-01

    Recent studies of chondrites have found a tungsten isotopic anomaly between chondrules and matrix. Given the refractory nature of tungsten, this implies that W was carried into the solar nebula by at least two distinct families of pre-solar grains. The observed chondrule/matrix split requires that the distinct families were kept separate during the dust coagulation process, and that the two families of grain interacted with the chondrule formation mechanism differently. We take the co-existence of different families of solids in the same general orbital region at the chondrule-precursor size as given, and explore the requirements for them to have interactedmore » with the chondrule formation process at significantly different rates. We show that this sorting of families of solids into chondrule- and matrix-destined dust had to have been at least as powerful a sorting mechanism as the relative settling of aerodynamically distinct grains at least two scale heights above the midplane. The requirement that the chondrule formation mechanism was correlated in some fashion with a dust-grain sorting mechanism argues strongly for spatially localized chondrule formation mechanisms such as turbulent dissipation in non-thermally ionized disk surface layers, and argues against volume-filling mechanisms such as planetesimal bow shocks.« less

  7. Heating during solar nebula formation and Mg isotopic fractionation in precursor grains of CAIs and chondrules

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Nagahara, H.; Kitagami, K.; Nakagawa, Y.

    1994-01-01

    In some Ca-Al-rich inclusion (CAI) grains, mass-dependent isotopic fractionations of Mg, Si, and O are observed and large Mg isotopic fractionation is interpreted to have been produced by cosmochemical processes such as evaporation and condensation. Mass-dependent Mg isotopic fractionation was found in olivine chondrules of Allende meteorites. Presented is an approximate formula for the temperature of the solar nebula that depends on heliocentric distance and the initial gas distribution. Shock heating during solar nebula formation can cause evaporative fractionation within interstellar grains involved in a gas at the inner zone (a less than 3 AU) of the disk. Alternatively collision of late-accreting gas blobs might cause similar heating if Sigma(sub s) and Sigma are large enough. Since the grain size is small, the solid/gas mass ratio is low and solar (low P(sub O2)), and the ambient gas pressure is low, this heating event could not produce chondrules themselves. Chondrule formation should proceed around the disk midplane after dust grains would grow and sediment to increase the solid/gas ratio there. The heating source there is uncertain, but transient rapid accretion through the disk could release a large amount of heat, which would be observed as FU Orionis events.

  8. Tracing Water Vapor and Ice During Dust Growth

    NASA Astrophysics Data System (ADS)

    Krijt, Sebastiaan; Ciesla, Fred J.; Bergin, Edwin A.

    2016-12-01

    The processes that govern the evolution of dust and water (in the form of vapor or ice) in protoplanetary disks are intimately connected. We have developed a model that simulates dust coagulation, dust dynamics (settling, turbulent mixing), vapor diffusion, and condensation/sublimation of volatiles onto grains in a vertical column of a protoplanetary disk. We employ the model to study how dust growth and dynamics influence the vertical distribution of water vapor and water ice in the region just outside the radial snowline. Our main finding is that coagulation (boosted by the enhanced stickiness of icy grains) and the ensuing vertical settling of solids results in water vapor being depleted, but not totally removed, from the region above the snowline on a timescale commensurate with the vertical turbulent mixing timescale. Depending on the strength of the turbulence and the temperature, the depletion can reach factors of up to ˜50 in the disk atmosphere. In our isothermal column, this vapor depletion results in the vertical snowline moving closer to the midplane (by up to 2 gas scale heights) and the gas-phase {{C}}/{{O}} ratio above the vertical snowline increasing. Our findings illustrate the importance of dynamical effects and the need for understanding coevolutionary dynamics of gas and solids in planet-forming environments.

  9. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; Commaux, N.; Eidietis, N. W.; Hollmann, E. M.; Shiraki, D.

    2016-11-01

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  10. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited).

    PubMed

    Cooper, C M; Pace, D C; Paz-Soldan, C; Commaux, N; Eidietis, N W; Hollmann, E M; Shiraki, D

    2016-11-01

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  11. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    DOE PAGES

    Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; ...

    2016-08-30

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20,000 pulses permore » second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Furthermore, magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.« less

  12. Impact-induced fracture mechanisms of immiscible PC/ABS (50/50) blends

    NASA Astrophysics Data System (ADS)

    Machmud, M. N.; Omiya, M.; Inoue, H.; Kishimoto, K.

    2018-03-01

    This paper presents a study on fracture mechanisms of polycarbonate (PC)/acrylonitrile-butadiene-styrene (ABS) (50/50) blends with different ABS types under a drop weight impact test (DWIT) using a circular sheet specimen. Formation of secondary crack indicated by a stress-whitening layer on the mid-plane of scattered specimens and secondary surface of fracture perpendicular to primary fracture surface were captured under scanning electron microscope (SEM). Although the both blends finally failed in brittle modes, SEM observation showed that their secondary fracture mechanisms were completely different. Observation through the thickness of the etched PC/ABS specimen samples using SEM also clearly showed that PC and ABS were immiscible. The immiscibility between PC and ABS was indicated by presence of their layer structures through the thickness of the blends. It was revealed that layer of ABS structure was influenced by size of rubber particle and this latter parameter then affected microstructure and fracture mechanisms of the blends. Impact-induced fracture mechanisms of the blends due to such microstructures are discussed in this paper. It was also pointed out that the secondary cracking was likely caused by interface delamination between PC and ABS layers in the core due to transverse shear stress generated during the impact test.

  13. Observational Studies of the Clearing Phase in Proto-Planetary Disks Surrounding Intermediate Mass Stars

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    1999-01-01

    A detailed study of circumstellar gas associated with young, intermediate-mass stars has demonstrated that, far from being unique or an infrequently occurring phenomenon, beta Pic-like infall activity is routinely observed in stars younger than 10-50 Myr when the observer's line of sight lies within 15 degrees of the disk mid-plane. Detailed studies of 2 Herbig Ae/Be stars, AB Aur and HD 163296 demonstrate that enhanced infall episodes last 20-60 hours, comparable to the duration of similar episodes in beta Pictoris. The infall activity is consistent with detection of the comae of swarms of star-grazing bodies of asteroidal to cometary composition. Episodic fluctuations in the infall activity are clearly present by approximately 6 Myr, and may indicate the presence of massive planets within the disk. This study has therefore, directly contributed to NASA's Origins of Planetary Systems theme by identifying under what conditions extra-solar planetesimals can be remotely sensed, indicating that such bodies appear to be routinely detectable among young stars in the 1-10 Myr range, and suggesting that temporal studies of spectroscopic variability may provide a means of identifying those systems harboring massive planets. This study has resulted in 2 refereed review papers, 13 other refereed papers, and 17 conference papers.

  14. Full-wave generalizations of the fundamental Gaussian beam.

    PubMed

    Seshadri, S R

    2009-12-01

    The basic full wave corresponding to the fundamental Gaussian beam was discovered for the outwardly propagating wave in a half-space by the introduction of a source in the complex space. There is a class of extended full waves all of which reduce to the same fundamental Gaussian beam in the appropriate limit. For the extended full Gaussian waves that include the basic full Gaussian wave as a special case, the sources are in the complex space on different planes transverse to the propagation direction. The sources are cylindrically symmetric Gaussian distributions centered at the origin of the transverse planes, the axis of symmetry being the propagation direction. For the special case of the basic full Gaussian wave, the source is a point source. The radiation intensity of the extended full Gaussian waves is determined and their characteristics are discussed and compared with those of the fundamental Gaussian beam. The extended full Gaussian waves are also obtained for the oppositely propagating outwardly directed waves in the second half-space. The radiation intensity distributions in the two half-spaces have reflection symmetry about the midplane. The radiation intensity distributions of the various extended full Gaussian waves are not significantly different. The power carried by the extended full Gaussian waves is evaluated and compared with that of the fundamental Gaussian beam.

  15. Recent progress towards a quantitative description of filamentary SOL transport

    NASA Astrophysics Data System (ADS)

    Carralero, D.; Siccinio, M.; Komm, M.; Artene, S. A.; D'Isa, F. A.; Adamek, J.; Aho-Mantila, L.; Birkenmeier, G.; Brix, M.; Fuchert, G.; Groth, M.; Lunt, T.; Manz, P.; Madsen, J.; Marsen, S.; Müller, H. W.; Stroth, U.; Sun, H. J.; Vianello, N.; Wischmeier, M.; Wolfrum, E.; ASDEX Upgrade Team; COMPASS Team; Contributors, JET; The EUROfusion MST Team

    2017-05-01

    A summary of recent results on filamentary transport, mostly obtained with the ASDEX-Upgrade tokamak (AUG), is presented and discussed in an attempt to produce a coherent picture of scrape-off layer (SOL) filamentary transport. A clear correlation is found between L-mode density shoulder formation in the outer midplane and a transition between the sheath-limited and the inertial filamentary regimes. Divertor collisionality is found to be the parameter triggering the transition. A clear reduction of the ion temperature takes place in the far SOL after the transition, both for the background and the filaments. This coincides with a strong variation of the ion temperature distribution, which deviates from Gaussianity and becomes dominated by a strong peak below 5 eV. The filament transition mechanism triggered by a critical value of collisionality seems to be generally applicable to inter-ELM H-mode plasmas, although a secondary threshold related to deuterium fueling is observed. EMC3-EIRENE simulations of neutral dynamics show that an ionization front near the main chamber wall is formed after the shoulder formation. Finally, a clear increase of SOL opacity to neutrals is observed, associated with the shoulder formation. A common SOL transport framework is proposed to account for all these results, and their potential implications for future generation devices are discussed.

  16. Plasma Turbulence Imaging via Beam Emission Spectroscopy in the Core of the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    McKee, George R.; Fonck, Raymond J.; Gupta, Deepak K.; Schlossberg, David J.; Shafer, Morgan W.; Boivin, Réjean L.; Solomon, Wayne

    Beam Emission Spectroscopy (BES), a high-sensitivity, good spatial resolution imaging diagnostic system, has been deployed and recently upgraded and expanded at the DIII-D tokamak to better understand density fluctuations arising from plasma turbulence. The currently deployed system images density fluctuations over an approximately 5 × 7 cm region at the plasma mid-plane (radially scannable over 0.2 < r/a ≤ 1) with a 5 × 6 (radial × poloidal) grid of rectangular detection channels, with one microsecond time resolution. BES observes collisionally-induced, Doppler-shifted Dα fluorescence (λ = 652-655 nm) of injected deuterium neutral beam atoms. The diagnostic wavenumber sensitivity is approximately k⊥ < 2.5 cm-1, allowing measurement of longwavelength (k⊥ρI < 1) density fluctuations. The recent upgrade includes expanded fiber optics bundles, customdesigned high-transmission, sharp-edge interference filters, ultra fast collection optics, and enlarged photodiode detectors that together provide nearly an order of magnitude increase in sensitivity relative to an earlier generation BES system. The high sensitivity allows visualization of turbulence at normalized density fluctuation amplitudes of ‾n/n < 1%, typical of fluctuation levels in the core region. The imaging array allows for sampling over 2-3 turbulent eddy scale lengths, which captures the essential dynamics of eddy evolution, interaction and shearing.

  17. Transition from Collisional to Collisionless Regimes in Interpenetrating Plasma Flows on the National Ignition Facility

    DOE PAGES

    Ross, J. S.; Higginson, D. P.; Ryutov, D.; ...

    2017-05-05

    A study of the transition from collisional to collisionless plasma flows has been carried out at the National Ignition Facility using high Mach number (M > 4) counterstreaming plasmas. In these experiments, CD-CD and CD-CH planar foils separated by 6–10 mm are irradiated with laser energies of 250 kJ per foil, generating ~1000 km/s plasma flows. Varying the foil separation distance scales the ion density and average bulk velocity and, therefore, the ion-ion Coulomb mean free path, at the interaction region at the midplane. The characteristics of the flow interaction have been inferred from the neutrons and protons generated bymore » deuteron-deuteron interactions and by x-ray emission from the hot, interpenetrating, and interacting plasmas. A localized burst of neutrons and bright x-ray emission near the midpoint of the counterstreaming flows was observed, suggesting strong heating and the initial stages of shock formation. As the separation of the CD-CH foils increases we observe enhanced neutron production compared to particle-in-cell simulations that include Coulomb collisions, but do not include collective collisionless plasma instabilities. Here, the observed plasma heating and enhanced neutron production is consistent with the initial stages of collisionless shock formation, mediated by the Weibel filamentation instability.« less

  18. The study of heat flux for disruption on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Yang, Zhendong; Fang, Jianan; Gong, Xianzu; Gan, Kaifu; Luo, Jiarong; Zhao, Hailin; Cui, Zhixue; Zhang, Bin; Chen, Meiwen

    2016-05-01

    Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptions have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dRsep = -2 cm, while it changes to upper single null (dRsep = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m2.

  19. On Galactic Density Modeling in the Presence of Dust Extinction

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Rix, Hans-Walter; Green, Gregory M.; Schlafly, Edward F.; Finkbeiner, Douglas P.

    2016-02-01

    Inferences about the spatial density or phase-space structure of stellar populations in the Milky Way require a precise determination of the effective survey volume. The volume observed by surveys such as Gaia or near-infrared spectroscopic surveys, which have good coverage of the Galactic midplane region, is highly complex because of the abundant small-scale structure in the three-dimensional interstellar dust extinction. We introduce a novel framework for analyzing the importance of small-scale structure in the extinction. This formalism demonstrates that the spatially complex effect of extinction on the selection function of a pencil-beam or contiguous sky survey is equivalent to a low-pass filtering of the extinction-affected selection function with the smooth density field. We find that the angular resolution of current 3D extinction maps is sufficient for analyzing Gaia sub-samples of millions of stars. However, the current distance resolution is inadequate and needs to be improved by an order of magnitude, especially in the inner Galaxy. We also present a practical and efficient method for properly taking the effect of extinction into account in analyses of Galactic structure through an effective selection function. We illustrate its use with the selection function of red-clump stars in APOGEE using and comparing a variety of current 3D extinction maps.

  20. Geometrically Thick Obscuration by Radiation-driven Outflow from Magnetized Tori of Active Galactic Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Chi-Ho; Krolik, Julian H.

    2017-07-01

    Near-Eddington radiation from active galactic nuclei (AGNs) has significant dynamical influence on the surrounding dusty gas, plausibly furnishing AGNs with geometrically thick obscuration. We investigate this paradigm with radiative magnetohydrodynamics simulations. The simulations solve the magnetohydrodynamics equations simultaneously with the infrared (IR) and ultraviolet (UV) radiative transfer (RT) equations; no approximate closure is used for RT. We find that our torus, when given a suitable sub-Keplerian angular momentum profile, spontaneously evolves toward a state in which its opening angle, density distribution, and flow pattern change only slowly. This “steady” state lasts for as long as there is gas resupply towardmore » the inner edge. The torus is best described as a midplane inflow and a high-latitude outflow. The outflow is launched from the torus inner edge by UV radiation and expands in solid angle as it ascends; IR radiation continues to drive the wide-angle outflow outside the central hole. The dusty outflow obscures the central source in soft X-rays, the IR, and the UV over three-quarters of solid angle, and each decade in column density covers roughly equal solid angle around the central source; these obscuration properties are similar to what observations imply.« less

Top