Observation of cooperative Mie scattering from an ultracold atomic cloud
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, H.; Stehle, C.; Slama, S.
Scattering of light at a distribution of scatterers is an intrinsically cooperative process, which means that the scattering rate and the angular distribution of the scattered light are essentially governed by bulk properties of the distribution, such as its size, shape, and density, although local disorder and density fluctuations may have an important impact on the cooperativity. Via measurements of the radiation pressure force exerted by a far-detuned laser beam on a very small and dense cloud of ultracold atoms, we are able to identify the respective roles of superradiant acceleration of the scattering rate and of Mie scattering inmore » the cooperative process. They lead, respectively, to a suppression or an enhancement of the radiation pressure force. We observe a maximum in the radiation pressure force as a function of the phase shift induced in the incident laser beam by the cloud's refractive index. The maximum marks the borderline of the validity of the Rayleigh-Debye-Gans approximation from a regime, where Mie scattering is more complex. Our observations thus help to clarify the intricate relationship between Rayleigh scattering of light at a coarse-grained ensemble of individual scatterers and Mie scattering at the bulk density distribution.« less
A microwave backscattering model for precipitation
NASA Astrophysics Data System (ADS)
Ermis, Seda
A geophysical microwave backscattering model for space borne and ground-based remote sensing of precipitation is developed and used to analyze backscattering measurements from rain and snow type precipitation. Vector Radiative Transfer (VRT) equations for a multilayered inhomogeneous medium are applied to the precipitation region for calculation of backscattered intensity. Numerical solution of the VRT equation for multiple layers is provided by the matrix doubling method to take into account close range interactions between particles. In previous studies, the VRT model was used to calculate backscattering from a rain column on a sea surface. In the model, Mie scattering theory for closely spaced scatterers was used to determine the phase matrix for each sublayer characterized by a set of parameters. The scatterers i.e. rain drops within the sublayers were modelled as spheres with complex permittivities. The rain layer was bounded by rough boundaries; the interface between the cloud and the rain column as well as the interface between the sea surface and the rain were all analyzed by using the integral equation model (IEM). Therefore, the phase matrix for the entire rain column was generated by the combination of surface and volume scattering. Besides Mie scattering, in this study, we use T-matrix approach to examine the effect of the shape to the backscattered intensities since larger raindrops are most likely oblique in shape. Analyses show that the effect of obliquity of raindrops to the backscattered wave is related with size of the scatterers and operated frequency. For the ground-based measurement system, the VRT model is applied to simulate the precipitation column on horizontal direction. Therefore, the backscattered reflectivities for each unit range of volume are calculated from the backscattering radar cross sections by considering radar range and effective illuminated area of the radar beam. The volume scattering phase matrices for each range interval are calculated by Mie scattering theory. VRT equations are solved by matrix doubling method to compute phase matrix for entire radar beam. Model results are validated with measured data by X-band dual polarization Phase Tilt Weather Radar (PTWR) for snow, rain, wet hail type precipitation. The geophysical parameters given the best fit with measured reflectivities are used in previous models i.e. Rayleigh Approximation and Mie scattering and compared with the VRT model. Results show that reflectivities calculated by VRT models are differed up to 10 dB from the Rayleigh approximation model and up to 5 dB from the Mie Scattering theory due to both multiple scattering and attenuation losses for the rain rates as high as 80 mm/h.
Monte Carlo Simulations of Arterial Imaging with Optical Coherence Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amendt, P.; Estabrook, K.; Everett, M.
2000-02-01
The laser-tissue interaction code LATIS [London et al., Appl. Optics 36, 9068 ( 1998)] is used to analyze photon scattering histories representative of optical coherence tomography (OCT) experiment performed at Lawrence Livermore National Laboratory. Monte Carlo photonics with Henyey-Greenstein anisotropic scattering is implemented and used to simulate signal discrimination of intravascular structure. An analytic model is developed and used to obtain a scaling law relation for optimization of the OCT signal and to validate Monte Carlo photonics. The appropriateness of the Henyey-Greenstein phase function is studied by direct comparison with more detailed Mie scattering theory using an ensemble of sphericalmore » dielectric scatterers. Modest differences are found between the two prescriptions for describing photon angular scattering in tissue. In particular, the Mie scattering phase functions provide less overall reflectance signal but more signal contrast compared to the Henyey-Greenstein formulation.« less
Calculation of far-field scattering from nonspherical particles using a geometrical optics approach
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.
1991-01-01
A numerical method was developed using geometrical optics to predict far-field optical scattering from particles that are symmetric about the optic axis. The diffractive component of scattering is calculated and combined with the reflective and refractive components to give the total scattering pattern. The phase terms of the scattered light are calculated as well. Verification of the method was achieved by assuming a spherical particle and comparing the results to Mie scattering theory. Agreement with the Mie theory was excellent in the forward-scattering direction. However, small-amplitude oscillations near the rainbow regions were not observed using the numerical method. Numerical data from spheroidal particles and hemispherical particles are also presented. The use of hemispherical particles as a calibration standard for intensity-type optical particle-sizing instruments is discussed.
NASA Astrophysics Data System (ADS)
Pu, Yang; Chen, Jun; Wang, Wubao
2014-02-01
The scattering coefficient, μs, the anisotropy factor, g, the scattering phase function, p(θ), and the angular dependence of scattering intensity distributions of human cancerous and normal prostate tissues were systematically investigated as a function of wavelength, scattering angle and scattering particle size using Mie theory and experimental parameters. The Matlab-based codes using Mie theory for both spherical and cylindrical models were developed and applied for studying the light propagation and the key scattering properties of the prostate tissues. The optical and structural parameters of tissue such as the index of refraction of cytoplasm, size of nuclei, and the diameter of the nucleoli for cancerous and normal human prostate tissues obtained from the previous biological, biomedical and bio-optic studies were used for Mie theory simulation and calculation. The wavelength dependence of scattering coefficient and anisotropy factor were investigated in the wide spectral range from 300 nm to 1200 nm. The scattering particle size dependence of μs, g, and scattering angular distributions were studied for cancerous and normal prostate tissues. The results show that cancerous prostate tissue containing larger size scattering particles has more contribution to the forward scattering in comparison with the normal prostate tissue. In addition to the conventional simulation model that approximately considers the scattering particle as sphere, the cylinder model which is more suitable for fiber-like tissue frame components such as collagen and elastin was used for developing a computation code to study angular dependence of scattering in prostate tissues. To the best of our knowledge, this is the first study to deal with both spherical and cylindrical scattering particles in prostate tissues.
NASA Astrophysics Data System (ADS)
Adam, Anne; Leick, Philippe; Bittlinger, Gerd; Schulz, Christof
2009-09-01
Evaporating Diesel sprays are studied by laser Rayleigh scattering measurements in an optically accessible high-pressure/high-temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a Diesel engine during injection. n-Decane is injected into the vessel using a state-of-the-art near-production three-hole nozzle. Global images of the distributions of the liquid and vapor phases of the injected fuel are obtained using a combined Schlieren and Mie scattering setup. More details about the evaporation are revealed when the spray is illuminated by a laser light sheet: laser light can be scattered by molecules in the gas phase (Rayleigh scattering) or comparably large fuel droplets (Mie scattering). The former is seen in regions where the fuel has completely evaporated, and the latter is dominant in regions with high droplet concentrations. Studying the polarization of the signal light allows the distinction of three different regions in the spray that are characterized by a moderate, low or negligible concentration of liquid fuel droplets. The characteristics of fuel evaporation are investigated for different observation times after the start of injection, chamber conditions and injection pressures. For the quantification of the fuel concentration measurements based on Rayleigh scattering, a calibration method that uses propane as a reference gas is presented and tested. At high ambient temperatures, the accuracy of the concentration measurements is limited by pyrolysis of the fuel molecules.
Geometrical-optics code for computing the optical properties of large dielectric spheres.
Zhou, Xiaobing; Li, Shusun; Stamnes, Knut
2003-07-20
Absorption of electromagnetic radiation by absorptive dielectric spheres such as snow grains in the near-infrared part of the solar spectrum cannot be neglected when radiative properties of snow are computed. Thus a new, to our knowledge, geometrical-optics code is developed to compute scattering and absorption cross sections of large dielectric particles of arbitrary complex refractive index. The number of internal reflections and transmissions are truncated on the basis of the ratio of the irradiance incident at the nth interface to the irradiance incident at the first interface for a specific optical ray. Thus the truncation number is a function of the angle of incidence. Phase functions for both near- and far-field absorption and scattering of electromagnetic radiation are calculated directly at any desired scattering angle by using a hybrid algorithm based on the bisection and Newton-Raphson methods. With these methods a large sphere's absorption and scattering properties of light can be calculated for any wavelength from the ultraviolet to the microwave regions. Assuming that large snow meltclusters (1-cm order), observed ubiquitously in the snow cover during summer, can be characterized as spheres, one may compute absorption and scattering efficiencies and the scattering phase function on the basis of this geometrical-optics method. A geometrical-optics method for sphere (GOMsphere) code is developed and tested against Wiscombe's Mie scattering code (MIE0) and a Monte Carlo code for a range of size parameters. GOMsphere can be combined with MIE0 to calculate the single-scattering properties of dielectric spheres of any size.
An electrical analogy to Mie scattering
Caridad, José M.; Connaughton, Stephen; Ott, Christian; Weber, Heiko B.; Krstić, Vojislav
2016-01-01
Mie scattering is an optical phenomenon that appears when electromagnetic waves, in particular light, are elastically scattered at a spherical or cylindrical object. A transfer of this phenomenon onto electron states in ballistic graphene has been proposed theoretically, assuming a well-defined incident wave scattered by a perfectly cylindrical nanometer scaled potential, but experimental fingerprints are lacking. We present an experimental demonstration of an electrical analogue to Mie scattering by using graphene as a conductor, and circular potentials arranged in a square two-dimensional array. The tabletop experiment is carried out under seemingly unfavourable conditions of diffusive transport at room-temperature. Nonetheless, when a canted arrangement of the array with respect to the incident current is chosen, cascaded Mie scattering results robustly in a transverse voltage. Its response on electrostatic gating and variation of potentials convincingly underscores Mie scattering as underlying mechanism. The findings presented here encourage the design of functional electronic metamaterials. PMID:27671003
NASA Astrophysics Data System (ADS)
Zhang, Hui; Li, Zhifang; Li, Hui
2012-12-01
In order to study scattering properties of normal and cancerous tissues from human stomach, we collect images for human gastric specimens by using phase-contrast microscope. The images were processed by the way of mathematics morphology. The equivalent particle size distribution of tissues can be obtained. Combining with Mie scattering theory, the scattering properties of tissues can be calculated. Assume scattering of light in biological tissue can be seen as separate scattering events by different particles, total scattering properties can be equivalent to as scattering sum of particles with different diameters. The results suggest that scattering coefficient of the cancerous tissue is significantly higher than that of normal tissue. The scattering phase function is different especially in the backscattering area. Those are significant clinical benefits to diagnosis cancerous tissue
Light scattering by marine algae: two-layer spherical and nonspherical models
NASA Astrophysics Data System (ADS)
Quirantes, Arturo; Bernard, Stewart
2004-11-01
Light scattering properties of algae-like particles are modeled using the T-matrix for coated scatterers. Two basic geometries have been considered: off-centered coated spheres and centered spheroids. Extinction, scattering and absorption efficiencies, plus scattering in the backward plane, are compared to simpler models like homogeneous (Mie) and coated (Aden-Kerker) models. The anomalous diffraction approximation (ADA), of widespread use in the oceanographic light-scattering community, has also been used as a first approximation, for both homogeneous and coated spheres. T-matrix calculations show that some light scattering values, such as extinction and scattering efficiencies, have little dependence on particle shape, thus reinforcing the view that simpler (Mie, Aden-Kerker) models can be applied to infer refractive index (RI) data from absorption curves. The backscattering efficiency, on the other hand, is quite sensitive to shape. This calls into question the use of light scattering techniques where the phase function plays a pivotal role, and can help explain the observed discrepancy between theoretical and experimental values of the backscattering coefficient in observed in oceanic studies.
Scattering properties of natural snow and frost - Comparison with icy satellite photometry
NASA Technical Reports Server (NTRS)
Verbiscer, Anne J.; Veverka, Joseph
1990-01-01
The Hapke (1986) equation is presently fit to ascertain the single-scattering albedo of the icy satellites of Uranus and Neptune and the one-term Henyey-Greenstein particle-phase function g for each of the Middleton and Mungall (1952) goniophotometric data samples. There emerge both very high single-scattering albedos and strongly forward-scattering particle phase functions; while these are in keeping with Mie theory-based theoretical considerations, they contrast with the observed backscattering behavior of icy satellites. It is suggested the icy satellite frost grains are aggregated into particles of complex texture, which produce the unusual backscattering behavior.
Light scattering by tenuous particles - A generalization of the Rayleigh-Gans-Rocard approach
NASA Technical Reports Server (NTRS)
Acquista, C.
1976-01-01
We consider scattering by arbitrarily shaped particles that satisfy two conditions: (1) that the polarizability of the particle relative to the ambient medium be small compared to 1 and (2) that the phase shift introduced by the particle be less than 2. We solve the integro-differential equation proposed by Shifrin by using the method of successive iterations and then applying a Fourier transform. For the second iteration, results are presented that accurately describe scattering by a broad class of particles. The phase function and other elements of the scattering matrix are shown to be in excellent agreement with Mie theory for spherical scatterers.
NASA Technical Reports Server (NTRS)
Dunder, T.; Miller, R. E.
1990-01-01
A method is described for forming and spectroscopically characterizing cryogenic aerosols formed in a low temperature gas cell. By adjusting the cell pressure, gas composition and flow rate, the size distribution of aerosol particles can be varied over a wide range. The combination of pressure and flow rate determine the residence time of the aerosols in the cell and hence the time available for the particles to grow. FTIR spectroscopy, over the range from 600/cm to 6000/cm, is used to characterize the aerosols. The particle size distribution can be varied so that, at one extreme, the spectra show only absorption features associated with the infrared active vibrational bands and, at the other, they display both absorption and Mie scattering. In the latter case, Mie scattering theory is used to obtain semiquantitative aerosol size distributions, which can be understood in terms of the interplay between nucleation and condensation. In the case of acetylene aerosols, the infrared spectra suggest that the particles exist in the high temperature cubic phase of the solid.
NASA Astrophysics Data System (ADS)
Yazdani, Mohsen
Transient electromagnetic scattering by a radially uniaxial dielectric sphere is explored using three well-known methods: Debye series, Mie series, and ray tracing theory. In the first approach, the general solutions for the impulse and step responses of a uniaxial sphere are evaluated using the inverse Laplace transformation of the generalized Mie series solution. Following high frequency scattering solution of a large uniaxial sphere, the Mie series summation is split into the high frequency (HF) and low frequency terms where the HF term is replaced by its asymptotic expression allowing a significant reduction in computation time of the numerical Bromwich integral. In the second approach, the generalized Debye series for a radially uniaxial dielectric sphere is introduced and the Mie series coefficients are replaced by their equivalent Debye series formulations. The results are then applied to examine the transient response of each individual Debye term allowing the identification of impulse returns in the transient response of the uniaxial sphere. In the third approach, the ray tracing theory in a uniaxial sphere is investigated to evaluate the propagation path as well as the arrival time of the ordinary and extraordinary returns in the transient response of the uniaxial sphere. This is achieved by extracting the reflection and transmission angles of a plane wave obliquely incident on the radially oriented air-uniaxial and uniaxial-air boundaries, and expressing the phase velocities as well as the refractive indices of the ordinary and extraordinary waves in terms of the incident angle, optic axis and propagation direction. The results indicate a satisfactory agreement between Debye series, Mie series and ray tracing methods.
NASA Astrophysics Data System (ADS)
Manfred, K.; Adler, G. A.; Erdesz, F.; Franchin, A.; Lamb, K. D.; Schwarz, J. P.; Wagner, N.; Washenfelder, R. A.; Womack, C.; Murphy, D. M.
2017-12-01
Particle morphology has important implications for light scattering and radiative transfer, but can be difficult to measure. Biomass burning and other important aerosol sources can generate a mixture of both spherical and non-spherical particle morphologies, and it is necessary to represent these populations correctly in models. We describe a laser imaging nephelometer that measures the unpolarized scattering phase function of bulk aerosol at 375 and 405 nm using a wide-angle lens and CCD. We deployed this instrument to the Missoula Fire Sciences Laboratory to measure biomass burning aerosol morphology from controlled fires during the recent FIREX intensive laboratory study. Total integrated scattering signal agreed with that determined by a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrument uncertainties. We compared measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh-Debye-Gans) particle morphologies based on the size distribution reported by an optical particle counter. We show that particle morphology can vary dramatically for different fuel types, and present results for two representative fires (pine tree vs arid shrub). We find that Mie theory is inadequate to describe the actual behavior of realistic aerosols from biomass burning in some situations. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide real-time, in situ information about dominant particle morphology that is vital for accurate radiative transfer calculations.
NASA Technical Reports Server (NTRS)
Zaller, Michelle; Anderson, Robert C.; Hicks, Yolanda R.; Locke, Randy J.
1999-01-01
In aviation gas turbine combustors, many factors, such as the degree and extent of fuel/air mixing and fuel vaporization achieved prior to combustion, influence the formation of undesirable pollutants. To assist in analyzing the extent of fuel/air mixing, flow visualization techniques have been used to interrogate the fuel distributions during subcomponent tests of lean-burning fuel injectors. Discrimination between liquid and vapor phases of the fuel was determined by comparing planar laser-induced fluorescence (PLIF) images, elastically-scattered light images, and phase/Doppler interferometer measurements. Estimates of Sauter mean diameters are made by ratioing PLIF and Mie scattered intensities for various sprays, and factors affecting the accuracy of these estimates are discussed. Mie calculations of absorption coefficients indicate that the fluorescence intensities of individual droplets are proportional to their surface areas, instead of their volumes, due to the high absorbance of the liquid fuel for the selected excitation wavelengths.
Xu, Min; Wu, Tao T; Qu, Jianan Y
2008-01-01
A unified Mie and fractal model for light scattering by biological cells is presented. This model is shown to provide an excellent global agreement with the angular dependent elastic light scattering spectroscopy of cells over the whole visible range (400 to 700 nm) and at all scattering angles (1.1 to 165 deg) investigated. Mie scattering from the bare cell and the nucleus is found to dominate light scattering in the forward directions, whereas the random fluctuation of the background refractive index within the cell, behaving as a fractal random continuous medium, is found to dominate light scattering at other angles. Angularly dependent elastic light scattering spectroscopy aided by the unified Mie and fractal model is demonstrated to be an effective noninvasive approach to characterize biological cells and their internal structures. The acetowhitening effect induced by applying acetic acid on epithelial cells is investigated as an example. The changes in morphology and refractive index of epithelial cells, nuclei, and subcellular structures after the application of acetic acid are successfully probed and quantified using the proposed approach. The unified Mie and fractal model may serve as the foundation for optical detection of precancerous and cancerous changes in biological cells and tissues based on light scattering techniques.
NASA Astrophysics Data System (ADS)
Tapimo, Romuald; Tagne Kamdem, Hervé Thierry; Yemele, David
2018-03-01
A discrete spherical harmonics method is developed for the radiative transfer problem in inhomogeneous polarized planar atmosphere illuminated at the top by a collimated sunlight while the bottom reflects the radiation. The method expands both the Stokes vector and the phase matrix in a finite series of generalized spherical functions and the resulting vector radiative transfer equation is expressed in a set of polar directions. Hence, the polarized characteristics of the radiance within the atmosphere at any polar direction and azimuthal angle can be determined without linearization and/or interpolations. The spatial dependent of the problem is solved using the spectral Chebyshev method. The emergent and transmitted radiative intensity and the degree of polarization are predicted for both Rayleigh and Mie scattering. The discrete spherical harmonics method predictions for optical thin atmosphere using 36 streams are found in good agreement with benchmark literature results. The maximum deviation between the proposed method and literature results and for polar directions \\vert μ \\vert ≥0.1 is less than 0.5% and 0.9% for the Rayleigh and Mie scattering, respectively. These deviations for directions close to zero are about 3% and 10% for Rayleigh and Mie scattering, respectively.
NASA Astrophysics Data System (ADS)
Le Foll, S.; André, F.; Delmas, A.; Bouilly, J. M.; Aspa, Y.
2012-06-01
A backward Monte Carlo method for modelling the spectral directional emittance of fibrous media has been developed. It uses Mie theory to calculate the radiative properties of single fibres, modelled as infinite cylinders, and the complex refractive index is computed by a Drude-Lorenz model for the dielectric function. The absorption and scattering coefficient are homogenised over several fibres, but the scattering phase function of a single one is used to determine the scattering direction of energy inside the medium. Sensitivity analysis based on several Monte Carlo results has been performed to estimate coefficients for a Multi-Linear Model (MLM) specifically developed for inverse analysis of experimental data. This model concurs with the Monte Carlo method and is highly computationally efficient. In contrast, the surface emissivity model, which assumes an opaque medium, shows poor agreement with the reference Monte Carlo calculations.
NASA Astrophysics Data System (ADS)
Dunklin, Jeremy R.; Forcherio, Gregory T.; Roper, D. Keith
2015-08-01
Optical properties of polymer films embedded with plasmonic nanoparticles (NPs) are important in many implementations. In this work, optical extinction by polydimethylsiloxane (PDMS) films containing gold (Au) NPs was enhanced at resonance compared to AuNPs in suspensions, Beer-Lambert law, or Mie theory by internal reflection due to optical diffraction in 16 nm AuNP-PDMS films and Mie scattering in 76 nm AuNP-PDMS films. Resonant extinction per AuNP for 16 nm AuNPs with negligible resonant Mie scattering was enhanced up to 1.5-fold at interparticle separation (i.e., Wigner-Seitz radii) comparable to incident wavelength. It was attributable to diffraction through apertures formed by overlapping electric fields of adjacent, resonantly excited AuNPs at Wigner-Seitz radii equal to or less than incident wavelengths. Resonant extinction per AuNP for strongly Mie scattering 76 nm AuNPs was enhanced up to 1.3-fold at Wigner-Seitz radii four or more times greater than incident wavelength. Enhanced light trapping from diffraction and/or scattering is relevant to optoelectronic, biomedical, and catalytic activity of substrates embedded with NPs.
Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays.
Storch, Michael; Mishra, Yogeshwar Nath; Koegl, Matthias; Kristensson, Elias; Will, Stefan; Zigan, Lars; Berrocal, Edouard
2016-12-01
We report in this Letter a two-phase structured laser illumination planar imaging [two-pulse SLIPI (2p-SLIPI)] optical setup where the "lines structure" is spatially shifted by exploiting the birefringence property of a calcite crystal. By using this optical component and two cross-polarized laser pulses, the shift of the modulated pattern is not "time-limited" anymore. Consequently, two sub-images with spatially mismatched phases can be recorded within a few hundred of nanoseconds only, freezing the motion of the illuminated transient flow. In comparison with previous setups for instantaneous imaging based on structured illumination, the current optical design presents the advantage of having a single optical path, greatly simplifying its complexity. Due to its virtue of suppressing the effects from multiple light scattering, the 2p-SLIPI technique is applied here in an optically dense multi-jet direct-injection spark-ignition (DISI) ethanol spray. The fast formation of polydispersed droplets and appearance of voids after fuel injection are investigated by simultaneous detection of Mie scattering and liquid laser-induced fluorescence. The results allow for significantly improved analysis of the spray structure.
Mie and debye scattering in dusty plasmas
Guerra; Mendonca
2000-07-01
We calculate the total field scattered by a charged sphere immersed in a plasma using a unified treatment that includes the usual Mie scattering and the scattering by the Debye cloud around the particle. This is accomplished by use of the Dyadic Green function to determine the field radiated by the electrons of the Debye cloud, which is then obtained as a series of spherical vector wave functions similar to that of the Mie field. Thus we treat the Debye-Mie field as a whole and study its properties. The main results of this study are (1) the Mie (Debye) field dominates at small (large) wavelengths and in the Rayleigh limit the Debye field is constant; (2) the total cross section has an interference term between the Debye and Mie fields, important in some regimes; (3) this term is negative for negative charge of the grain, implying a total cross section smaller than previously thought; (4) a method is proposed to determine the charge of the grain (divided by a certain suppression factor) and the Debye length of the plasma; (5) a correction to the dispersion relation of an electromagnetic wave propagating in a plasma is derived.
Observation of stimulated Mie-Bragg scattering from large-size-gold-nanorod suspension in water
NASA Astrophysics Data System (ADS)
He, Guang S.; Yong, Ken-Tye; Zhu, Jing; Prasad, P. N.
2012-04-01
Highly directional backward stimulated scattering has been observed from large-size-gold nanorods suspended in water, pumped with ˜816 nm and ˜10 ns laser pulses. In comparison with other known stimulated scattering effects, the newly observed effect exhibits the following features. (i) The scattering centers are impurity particles with a size comparable in order of magnitude to the incident wavelength. (ii) There is no frequency shift between the pump wavelength and the stimulated scattering wavelength. (iii) The pump threshold can be significantly lower than that of stimulated Brillouin scattering in pure water. The nonfrequency shift can be explained by the formation of a standing-wave Bragg grating induced by the interference between the forward pump beam and the backward Mie-scattering beam. The low pump threshold results from stronger initial Mie-scattering (seed) signals and the intensity-dependent refractive-index change of the scattering medium enhanced by metallic nanoparticles.
NASA Astrophysics Data System (ADS)
Turcu, Ioan; Bratfalean, Radu; Neamtu, Silvia
2008-07-01
The adequacy of the effective phase function (EPF) used to describe the light scattered at small angles was tested on aqueous suspensions of polystyrene microspheres. Angular resolved light scattering measurements were performed on two types of latex suspension, which contained polystyrene spheres of 3 µm and 5 µm diameters, respectively. The experimental data were fitted with two EPF approximants. If the polystyrene spheres are at least 3 µm in diameter the quasi-ballistic light scattering process can be described relatively well by the EPF in a small angular range centered in the forward direction. The forward light scattering by macroscopic samples containing microspheres can be modeled relatively well if the true Mie single particle scattering phase function is replaced by a simpler Henyey-Greenstein dependence having the same width at half-height as the first scattering lobe.
Gustav Mie and the evolving subject of light scattering by particles
NASA Astrophysics Data System (ADS)
Mishchenko, Michael I.; Travis, Larry D.
2009-03-01
The year 2008 marks the centenary of the seminal paper by Gustav Mie on light scattering by homogeneous spherical particles. With more than 3,800 citations, Mie's paper has been among the most influential physics publications of the twentieth century. It has affected profoundly the development of a great variety of science disciplines including atmospheric radiation, meteorological optics, remote sensing, aerosol physics, nanoscience, astrophysics, and biomedical optics. Mie's paper represented a fundamental advancement over the earlier publications by Ludvig Lorenz in that it was explicitly based on the Maxwell equations, gave the final solution in a convenient and closed form suitable for practical computations, and imparted physical reality to the abstract concept of electromagnetic scattering. The Mie solution anticipated such general concepts as far-field scattering and the Sommerfeld-Silver-Müller boundary conditions at infinity as well as paved the way to such important extensions as the separation of variables method for spheroids and the T-matrix method. Among illustrative uses of the Mie solution are the explanation of the spectacular optical displays caused by cloud and rain droplets, the detection of sulfuric acid particles in the atmosphere of Venus from Earth-based polarimetry, and optical particle characterization based on measurements of morphology-dependent resonances. Yet there is no doubt that the full practical potential of the Mie theory is still to be revealed.
Enhancement of Chiroptical Signals by Circular Differential Mie Scattering of Nanoparticles.
Yoo, SeokJae; Park, Q-Han
2015-09-25
We enhance the weak optical signals of small chiral molecules via circular differential Mie scattering (CDMS) of nanoparticles immersed in them. CDMS is the preferential Mie scattering of left- and right-handed circularly polarized light by nanoparticles whose sizes are about the same as the wavelength of light. Solving the Mie scattering theory for chiral media, we find that the CDMS signal of the particle is linearly proportional to the chirality parameter κ of the molecules. This linear amplitude enhancement by CDMS of the particle holds, even for large particles, which have a retardation effect. We also demonstrate that the CDMS of a nanoparticle is sensitive to changes of molecular concentration, and that the nanoparticle can be utilized as a chiroptical biosensor detecting the concentration of analyte. We expect that the enhancement of molecular chiroptical signals by CDMS will pave the way for novel chiroptical spectroscopy using nanostructures.
[Spectrum simulation based on data derived from red tide].
Liu, Zhen-Yu; Cui, Ting-Wei; Yue, Jie; Jiang, Tao; Cao, Wen-Xi; Ma, Yi
2011-11-01
The present paper utilizes the absorption data of red tide water measured during the growing and dying course to retrieve imaginary part of the index of refraction based on Mie theory, carries out the simulation and analysis of average absorption efficiency factors, average backscattering efficiency factors and scattering phase function. The analysis of the simulation shows that Mie theory can be used to reproduce the absorption property of Chaetoceros socialis with an average error of 11%; the average backscattering efficiency factors depend on the value of absorption whose maximum value corresponds to the wavelength range from 400 to 700 nanometer; the average backscattering efficiency factors showed a maximum value on 17th with a low value during the outbreak of red tide and the minimum on 21th; the total scattering, weakly depending on the absorption, is proportional to the size parameters which represent the relative size of cell diameter with respect to the wavelength, while the angle scattering intensity is inversely proportional to wavelength.
NASA Technical Reports Server (NTRS)
Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.
1998-01-01
Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. For one injector, further comparison is also made with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.
Di, Huige; Zhang, Zhanfei; Hua, Hangbo; Zhang, Jiaqi; Hua, Dengxin; Wang, Yufeng; He, Tingyao
2017-03-06
Accurate aerosol optical properties could be obtained via the high spectral resolution lidar (HSRL) technique, which employs a narrow spectral filter to suppress the Rayleigh or Mie scattering in lidar return signals. The ability of the filter to suppress Rayleigh or Mie scattering is critical for HSRL. Meanwhile, it is impossible to increase the rejection of the filter without limitation. How to optimize the spectral discriminator and select the appropriate suppression rate of the signal is important to us. The HSRL technology was thoroughly studied based on error propagation. Error analyses and sensitivity studies were carried out on the transmittance characteristics of the spectral discriminator. Moreover, ratwo different spectroscopic methods for HSRL were described and compared: one is to suppress the Mie scattering; the other is to suppress the Rayleigh scattering. The corresponding HSRLs were simulated and analyzed. The results show that excessive suppression of Rayleigh scattering or Mie scattering in a high-spectral channel is not necessary if the transmittance of the spectral filter for molecular and aerosol scattering signals can be well characterized. When the ratio of transmittance of the spectral filter for aerosol scattering and molecular scattering is less than 0.1 or greater than 10, the detection error does not change much with its value. This conclusion implies that we have more choices for the high-spectral discriminator in HSRL. Moreover, the detection errors of HSRL regarding the two spectroscopic methods vary greatly with the atmospheric backscattering ratio. To reduce the detection error, it is necessary to choose a reasonable spectroscopic method. The detection method of suppressing the Rayleigh signal and extracting the Mie signal can achieve less error in a clear atmosphere, while the method of suppressing the Mie signal and extracting the Rayleigh signal can achieve less error in a polluted atmosphere.
Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere.
Hua, Dengxin; Uchida, Masaru; Kobayashi, Takao
2005-03-01
A UV Rayleigh-Mie scattering lidar has been developed for daytime measurement of temperature and aerosol optical properties in the troposphere. The transmitter is a narrowband, injection-seeded, pulsed, third-harmonic Nd:YAG laser at an eye-safe wavelength of 355 nm. Two Fabry-Perot etalons (FPEs) with a dual-pass optical layout filter the molecular Rayleigh scattering components spectrally for retrieval of the temperature and provide a high rejection rate for aerosol Mie scattering in excess of 43 dB. The Mie signal is filtered with a third FPE filter for direct profiling of aerosol optical properties. The Mie scattering component in the Rayleigh signals, which will have influence on temperature measurements, is corrected by using a measure of aerosol scattering because of the relative insufficiency of Mie rejection of Rayleigh filters in the presence of dense aerosols or clouds, and the Mie rejection capability of system is thus improved. A narrowband interference filter is incorporated with the FPEs to block solar radiation. Also, the small field of view (0.1 mrad) of the receiver and the UV wavelength used enhance the ability of the lidar to suppress the solar background signal in daytime measurement. The system is relatively compact, with a power-aperture product of 0.18 W m(-2), and has a high sensitivity to temperature change (0.62%/K). Lidar measurements taken under different weather conditions (winter and summer) are demonstrated. Good agreement between the lidar and the radiosonde measurements was obtained in terms of lapse rates and inversions. Statistical temperature errors of less than 1 K up to a height of 2 km are obtainable, with an averaging time of approximately 12 min for daytime measurements.
Asymptotic quantum elastic generalized Lorenz Mie theory
NASA Astrophysics Data System (ADS)
Gouesbet, G.
2006-10-01
The (electromagnetic) generalized Lorenz-Mie theory describes the interaction between an electromagnetic arbitrary shaped beam and a homogeneous sphere. It is a generalization of the Lorenz-Mie theory which deals with the simpler case of a plane-wave illumination. In a recent paper, we established that, if we restrict ourselves to the study of cross-sections, both for elastic and inelastic scatterings, a macroscopic sphere in Lorenz-Mie theory is formally equivalent to a quantum-like radial potential. To generalize this result, a prerequisite is to possess an asymptotic quantum generalized Lorenz-Mie theory expressing cross-sections in the case of a quantum radial potential interacting with a sub-class of quantum arbitrary wave-packets. Such a theory, restricted however to elastic scattering, is presented in this paper.
Solar system applications of Mie theory and of radiative transfer of polarized light
NASA Technical Reports Server (NTRS)
Whitehill, L. P.
1972-01-01
A theory of the multiple scattering of polarized light is discussed using the doubling method of van de Hulst. The concept of the Stokes parameters is derived and used to develop the form of the scattering phase matrix of a single particle. The diffuse reflection and transmission matrices of a single scattering plane parallel atmosphere are expressed as a function of the phase matrix, and the symmetry properties of these matrices are examined. Four matrices are required to describe scattering and transmission. The scattering matrix that results from the addition of two identical layers is derived. Using the doubling method, the scattering and transmission matrices of layers of arbitrary optical thickness can be derived. The doubling equations are then rewritten in terms of their Fourier components. Computation time is reduced since each Fourier component doubles independently. Computation time is also reduced through the use of symmetry properties.
Angular-domain scattering interferometry.
Shipp, Dustin W; Qian, Ruobing; Berger, Andrew J
2013-11-15
We present an angular-scattering optical method that is capable of measuring the mean size of scatterers in static ensembles within a field of view less than 20 μm in diameter. Using interferometry, the method overcomes the inability of intensity-based models to tolerate the large speckle grains associated with such small illumination areas. By first estimating each scatterer's location, the method can model between-scatterer interference as well as traditional single-particle Mie scattering. Direct angular-domain measurements provide finer angular resolution than digitally transformed image-plane recordings. This increases sensitivity to size-dependent scattering features, enabling more robust size estimates. The sensitivity of these angular-scattering measurements to various sizes of polystyrene beads is demonstrated. Interferometry also allows recovery of the full complex scattered field, including a size-dependent phase profile in the angular-scattering pattern.
NASA Technical Reports Server (NTRS)
Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.
1998-01-01
Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.
Feedback mechanism for smart nozzles and nebulizers
Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA
2009-01-27
Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.
NASA Astrophysics Data System (ADS)
Wang, Zhenzhu; Liu, Dong; Wang, Yingjian; Wang, Bangxin; Zhong, Zhiqing; Xie, Chenbo; Wu, Decheng; Bo, Guangyu; Shao, Jie
2014-11-01
A Dual-wavelength Mie Polarization Raman Lidar has been developed for cloud and aerosol optical properties measurement. This idar system has built in Hefei and passed the performance assessment in 2012, and then moved to Jinhua city to carry out the long-term continuous measurements of vertical distribution of regional cloud and aerosol. A double wavelengths (532 and 1064 nm) Nd-YAG laser is employed as emitting source and four channels are used for detecting back-scattering signals from atmosphere aerosol and cloud including 1064 nm Mie, 607 nm N2 Raman, two 532 nm Orthogonal Polarization channels. The temporal and spatial resolutions for this system, which is operating with a continuing mode (24/7) automatically, are 30s and 7.5m, respectively. The measured data are used for investigating the aerosol and cloud vertical structure and cloud phase from combining of cloud signal intensity, polarization ratio and color ratio.
Democratization of Nanoscale Imaging and Sensing Tools Using Photonics
2015-06-12
representative angular scattering pattern recorded on the cell phone. (b) Measured (black) and Mie theory fitted (red) angle-dependent scattering...sample onto the cell phone image sensor (Figure 3a). The one- dimensional radial scattering profile was then fitted with Mie theory to estimate the...quantitatively well-understood, as the experimental measure- ments closely match the predictions of our theory and simulations.69,84 Furthermore, the signal
Polarimetric infrared imaging simulation of a synthetic sea surface with Mie scattering.
He, Si; Wang, Xia; Xia, Runqiu; Jin, Weiqi; Liang, Jian'an
2018-03-01
A novel method to simulate the polarimetric infrared imaging of a synthetic sea surface with atmospheric Mie scattering effects is presented. The infrared emission, multiple reflections, and infrared polarization of the sea surface and the Mie scattering of aerosols are all included for the first time. At first, a new approach to retrieving the radiative characteristics of a wind-roughened sea surface is introduced. A two-scale method of sea surface realization and the inverse ray tracing of light transfer calculation are combined and executed simultaneously, decreasing the consumption of time and memory dramatically. Then the scattering process that the infrared light emits from the sea surface and propagates in the aerosol particles is simulated with a polarized light Monte Carlo model. Transformations of the polarization state of the light are calculated with the Mie theory. Finally, the polarimetric infrared images of the sea surface of different environmental conditions and detection parameters are generated based on the scattered light detected by the infrared imaging polarimeter. The results of simulation examples show that our polarimetric infrared imaging simulation can be applied to predict the infrared polarization characteristics of the sea surface, model the oceanic scene, and guide the detection in the oceanic environment.
Energy conservation - A test for scattering approximations
NASA Technical Reports Server (NTRS)
Acquista, C.; Holland, A. C.
1980-01-01
The roles of the extinction theorem and energy conservation in obtaining the scattering and absorption cross sections for several light scattering approximations are explored. It is shown that the Rayleigh, Rayleigh-Gans, anomalous diffraction, geometrical optics, and Shifrin approximations all lead to reasonable values of the cross sections, while the modified Mie approximation does not. Further examination of the modified Mie approximation for the ensembles of nonspherical particles reveals additional problems with that method.
Light scattering by lunar-like particle size distributions
NASA Technical Reports Server (NTRS)
Goguen, Jay D.
1991-01-01
A fundamental input to models of light scattering from planetary regoliths is the mean phase function of the regolith particles. Using the known size distribution for typical lunar soils, the mean phase function and mean linear polarization for a regolith volume element of spherical particles of any composition were calculated from Mie theory. The two contour plots given here summarize the changes in the mean phase function and linear polarization with changes in the real part of the complex index of refraction, n - ik, for k equals 0.01, the visible wavelength 0.55 micrometers, and the particle size distribution of the typical mature lunar soil 72141. A second figure is a similar index-phase surface, except with k equals 0.1. The index-phase surfaces from this survey are a first order description of scattering by lunar-like regoliths of spherical particles of arbitrary composition. They form the basis of functions that span a large range of parameter-space.
Development of an ejecta particle size measurement diagnostic based on Mie scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schauer, Martin Michael; Buttler, William Tillman; Frayer, Daniel K.
The goal of this work is to determine the feasibility of extracting the size of particles ejected from shocked metal surfaces (ejecta) from the angular distribution of light scattered by a cloud of such particles. The basis of the technique is the Mie theory of scattering, and implicit in this approach are the assumptions that the scattering particles are spherical and that single scattering conditions prevail. The meaning of this latter assumption, as far as experimental conditions are concerned, will become clear later. The solution to Maxwell’s equations for spherical particles illuminated by a plane electromagnetic wave was derived bymore » Gustav Mie more than 100 years ago, but several modern treatises discuss this solution in great detail. The solution is a complicated series expansion of the scattered electric field, as well as the field within the particle, from which the total scattering and absorption cross sections as well as the angular distribution of scattered intensity can be calculated numerically. The detailed nature of the scattering is determined by the complex index of refraction of the particle material as well as the particle size parameter, x, which is the product of the wavenumber of the incident light and the particle radius, i.e. x = 2rπ= λ. Figure 1 shows the angular distribution of scattered light for different particle size parameters and two orthogonal incident light polarizations as calculated using the Mie solution. It is obvious that the scattering pattern is strongly dependent on the particle size parameter, becoming more forward-directed and less polarizationdependent as the particle size parameter increases. This trend forms the basis for the diagnostic design.« less
Optical levitation experiments to assess the validity of the generalized Lorenz-Mie theory.
Guilloteau, F; Gréhan, G; Gouesbet, G
1992-05-20
Experimental near-forward-scattering diagrams obtained with one particle in optical levitation are recorded and compared with scattering diagrams computed by using the generalized Lorenz-Mie theory. Comparisons concern the particular case of an off-axis location of the particle. Agreement between experimental and computed diagrams is found to be satisfactory.
Tunable multiband directional electromagnetic scattering from spoof Mie resonant structure.
Wu, Hong-Wei; Chen, Hua-Jun; Xu, Hua-Feng; Fan, Ren-Hao; Li, Yang
2018-06-11
We demonstrate that directional electromagnetic scattering can be realized in an artificial Mie resonant structure that supports electric and magnetic dipole modes simultaneously. The directivity of the far-field radiation pattern can be switched by changing wavelength of the incident light as well as tailoring the geometric parameters of the structure. In addition, we further design a quasiperiodic spoof Mie resonant structure by alternately inserting two materials into the slits. The results show that multi-band directional light scattering is realized by exciting multiple electric and magnetic dipole modes with different frequencies in the quasiperiodic structure. The presented design concept is suitable for microwave to terahertz region and can be applied to various advanced optical devices, such as antenna, metamaterial and metasurface.
Modeling of particle radiative properties in coal combustion depending on burnout
NASA Astrophysics Data System (ADS)
Gronarz, Tim; Habermehl, Martin; Kneer, Reinhold
2017-04-01
In the present study, absorption and scattering efficiencies as well as the scattering phase function of a cloud of coal particles are described as function of the particle combustion progress. Mie theory for coated particles is applied as mathematical model. The scattering and absorption properties are determined by several parameters: size distribution, spectral distribution of incident radiation and spectral index of refraction of the particles. A study to determine the influence of each parameter is performed, finding that the largest effect is due to the refractive index, followed by the effect of size distribution. The influence of the incident radiation profile is negligible. As a part of this study, the possibility of applying a constant index of refraction is investigated. Finally, scattering and absorption efficiencies as well as the phase function are presented as a function of burnout with the presented model and the results are discussed.
Adhesion of Mineral and Soot Aerosols can Strongly Affect their Scattering and Absorption Properties
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Jana M.
2012-01-01
We use the numerically exact superposition T-matrix method to compute the optical cross sections and the Stokes scattering matrix for polydisperse mineral aerosols (modeled as homogeneous spheres) covered with a large number of much smaller soot particles. These results are compared with the Lorenz-Mie results for a uniform external mixture of mineral and soot aerosols. We show that the effect of soot particles adhering to large mineral particles can be to change the extinction and scattering cross sections and the asymmetry parameter quite substantially. The effect on the phase function and degree of linear polarization can be equally significant.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, J. A.
1992-01-01
Research findings are summarized for projects dealing with the following: application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated Mie scatterers with size distribution and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; theoretical modeling for passive microwave remote sensing of earth terrain; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.
Radiative transfer in an atmosphere-ocean system.
Plass, G N; Kattawar, G W
1969-02-01
The radiation field for an atmosphere-ocean system is calculated by a Monte Carlo method. In the atmosphere, both Rayleigh scattering by the molecules and Mie scattering by the aerosols and water droplets, when present, as well as molecular and aerosol absorption are included in the model. Similarly, in the ocean, both Rayleigh scattering by the water molecules and Mie scattering by the hydrosols as well as absorption by the water molecules and hydrosols are considered. Separate scattering functions are calculated from the Mie theory for the water droplets in clouds, the aerosols, and the hydrosols with an appropriate and different size distribution in each case. The photon path is followed accurately in three dimensions with new scattering angles determined from the appropriate scattering function including the strong forward scattering peak. Both the reflected and refracted rays, as well as the rays that undergo total internal reflection, are followed at the ocean surface, which is assumed smooth. The ocean floor is represented by a Lambert surface. The radiance and flux are given for two wavelengths, three solar angles, shallow and deep oceans, various albedos of ocean floor, various depths in atmosphere and ocean, and with and without clouds in the atmosphere.
Heinze, Brian C; Gamboa, Jessica R; Kim, Keesung; Song, Jae-Young; Yoon, Jeong-Yeol
2010-11-01
This work presents the use of integrated, liquid core, optical waveguides for measuring immunoagglutination-induced light scattering in a microfluidic device, towards rapid and sensitive detection of avian influenza (AI) viral antigens in a real biological matrix (chicken feces). Mie scattering simulations were performed and tested to optimize the scattering efficiency of the device through proper scatter angle waveguide geometry. The detection limit is demonstrated to be 1 pg mL(-1) in both clean buffer and real biological matrix. This low detection limit is made possible through on-chip diffusional mixing of AI target antigens and high acid content microparticle assay reagents, coupled with real-time monitoring of immunoagglutination-induced forward Mie scattering via high refractive index liquid core optical waveguides in close proximity (100 μm) to the sample chamber. The detection time for the assay is <2 min. This device could easily be modified to detect trace levels of any biological molecules that antibodies are available for, moving towards a robust platform for point-of-care disease diagnostics.
Mohlenhoff, Brian; Romeo, Melissa; Diem, Max; Wood, Bayden R
2005-05-01
We report infrared microspectral features of nuclei in a completely inactive and contracted (pyknotic) state, and of nuclei of actively dividing cells. For pyknotic nuclei, the very high local concentration of DNA leads to opaqueness of the chromatin and, consequently, the absence of DNA signals in the IR spectra of very small nuclei. However, these nuclei can be detected by their scattering properties, which can be described by the Mie theory of scattering from dielectric spheres. This scattering depends on the size of the nucleus; consequently, quite different scattering cross-sections are calculated and observed for pyknotic and mitotic nuclei.
NASA Astrophysics Data System (ADS)
Klüser, Lars; Di Biagio, Claudia; Kleiber, Paul D.; Formenti, Paola; Grassian, Vicki H.
2016-07-01
Optical properties (extinction efficiency, single scattering albedo, asymmetry parameter and scattering phase function) of five different desert dust minerals have been calculated with an asymptotic approximation approach (AAA) for non-spherical particles. The AAA method combines Rayleigh-limit approximations with an asymptotic geometric optics solution in a simple and straightforward formulation. The simulated extinction spectra have been compared with classical Lorenz-Mie calculations as well as with laboratory measurements of dust extinction. This comparison has been done for single minerals and with bulk dust samples collected from desert environments. It is shown that the non-spherical asymptotic approximation improves the spectral extinction pattern, including position of the extinction peaks, compared to the Lorenz-Mie calculations for spherical particles. Squared correlation coefficients from the asymptotic approach range from 0.84 to 0.96 for the mineral components whereas the corresponding numbers for Lorenz-Mie simulations range from 0.54 to 0.85. Moreover the blue shift typically found in Lorenz-Mie results is not present in the AAA simulations. The comparison of spectra simulated with the AAA for different shape assumptions suggests that the differences mainly stem from the assumption of the particle shape and not from the formulation of the method itself. It has been shown that the choice of particle shape strongly impacts the quality of the simulations. Additionally, the comparison of simulated extinction spectra with bulk dust measurements indicates that within airborne dust the composition may be inhomogeneous over the range of dust particle sizes, making the calculation of reliable radiative properties of desert dust even more complex.
Investigating biomass burning aerosol morphology using a laser imaging nephelometer
NASA Astrophysics Data System (ADS)
Manfred, Katherine M.; Washenfelder, Rebecca A.; Wagner, Nicholas L.; Adler, Gabriela; Erdesz, Frank; Womack, Caroline C.; Lamb, Kara D.; Schwarz, Joshua P.; Franchin, Alessandro; Selimovic, Vanessa; Yokelson, Robert J.; Murphy, Daniel M.
2018-02-01
Particle morphology is an important parameter affecting aerosol optical properties that are relevant to climate and air quality, yet it is poorly constrained due to sparse in situ measurements. Biomass burning is a large source of aerosol that generates particles with different morphologies. Quantifying the optical contributions of non-spherical aerosol populations is critical for accurate radiative transfer models, and for correctly interpreting remote sensing data. We deployed a laser imaging nephelometer at the Missoula Fire Sciences Laboratory to sample biomass burning aerosol from controlled fires during the FIREX intensive laboratory study. The laser imaging nephelometer measures the unpolarized scattering phase function of an aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from the bulk aerosol in the instrument is imaged onto a charge-coupled device (CCD) using a wide-angle field-of-view lens, which allows for measurements at 4-175° scattering angle with ˜ 0.5° angular resolution. Along with a suite of other instruments, the laser imaging nephelometer sampled fresh smoke emissions both directly and after removal of volatile components with a thermodenuder at 250 °C. The total integrated aerosol scattering signal agreed with both a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrumental uncertainties. We compare the measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh-Debye-Gans) particle morphologies based on the size distribution reported by an optical particle counter. Results from representative fires demonstrate that particle morphology can vary dramatically for different fuel types. In some cases, the measured phase function cannot be described using Mie theory. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide realtime, in situ information about dominant particle morphology, which is vital for understanding remote sensing data and accurately describing the aerosol population in radiative transfer calculations.
Measurement of phase function of aerosol at different altitudes by CCD Lidar
NASA Astrophysics Data System (ADS)
Sun, Peiyu; Yuan, Ke'e.; Yang, Jie; Hu, Shunxing
2018-02-01
The aerosols near the ground are closely related to human health and climate change, the study on which has important significance. As we all know, the aerosol is inhomogeneous at different altitudes, of which the phase function is also different. In order to simplify the retrieval algorithm, it is usually assumed that the aerosol is uniform at different altitudes, which will bring measurement error. In this work, an experimental approach is demonstrated to measure the scattering phase function of atmospheric aerosol particles at different heights by CCD lidar system, which could solve the problem of the traditional CCD lidar system in assumption of phase function. The phase functions obtained by the new experimental approach are used to retrieve the aerosol extinction coefficient profiles. By comparison of the aerosol extinction coefficient retrieved by Mie-scattering aerosol lidar and CCD lidar at night, the reliability of new experimental approach is verified.
Optical properties of soot particles: measurement - model comparison
NASA Astrophysics Data System (ADS)
Forestieri, S.; Lambe, A. T.; Lack, D.; Massoli, P.; Cross, E. S.; Dubey, M.; Mazzoleni, C.; Olfert, J.; Freedman, A.; Davidovits, P.; Onasch, T. B.; Cappa, C. D.
2013-12-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In order to accurately model the direct radiative impact of black carbon (BC), the refractive index and shape dependent scattering and absorption characteristics must be known. At present, the assumed shape remains highly uncertain because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet traditional optical models such as Mie theory typically assume a spherical particle morphology. To investigate the ability of various optical models to reproduce observed BC optical properties, we measured light absorption and extinction coefficients of methane and ethylene flame soot particles. Optical properties were measured by multiple instruments: absorption by a dual cavity ringdown photoacoustic spectrometer (CRD-PAS), absorption and scattering by a 3-wavelength photoacoustic/nephelometer spectrometer (PASS-3) and extinction and scattering by a cavity attenuated phase shift spectrometer (CAPS). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA) and mobility size was measured with a scanning mobility particle sizer (SMPS). Measurements were made for nascent soot particles and for collapsed soot particles following coating with dioctyl sebacate or sulfuric acid and thermal denuding to remove the coating. Wavelength-dependent refractive indices for the sampled particles were derived by fitting the observed absorption and extinction cross-sections to spherical particle Mie theory and Rayleigh-Debye-Gans theory. The Rayleigh-Debye-Gans approximation assumes that the absorption properties of soot are dictated by the individual spherules and neglects interaction between them. In general, Mie theory reproduces the observed absorption and extinction cross-sections for particles with volume equivalent diameters (VED) < ~160 nm, but systematically predicts lower absorption cross-sections relative to observations for larger particles with VED > ~160 nm. The discrepancy is most pronounced for measurements made at shorter wavelengths. In contrast, Rayleigh-Debye-Gans theory, which does not assume spherical particle morphology, exhibited good agreement with the observations for all particle diameters and wavelengths. These results indicate that the use of Mie theory to describe the absorption behavior of particles >160 nm VED will underestimate the absorption by these particles. Concurrent measurements of the absorption Angstrom exponent and the single scattering albedo, and their dependence on particle size, will also be discussed.
Ho, Derek; Drake, Tyler K.; Bentley, Rex C.; Valea, Fidel A.; Wax, Adam
2015-01-01
We evaluate a new hybrid algorithm for determining nuclear morphology using angle-resolved low coherence interferometry (a/LCI) measurements in ex vivo cervical tissue. The algorithm combines Mie theory based and continuous wavelet transform inverse light scattering analysis. The hybrid algorithm was validated and compared to traditional Mie theory based analysis using an ex vivo tissue data set. The hybrid algorithm achieved 100% agreement with pathology in distinguishing dysplastic and non-dysplastic biopsy sites in the pilot study. Significantly, the new algorithm performed over four times faster than traditional Mie theory based analysis. PMID:26309741
NASA Astrophysics Data System (ADS)
Paramonov, L. E.
2012-05-01
Light scattering by isotropic ensembles of ellipsoidal particles is considered in the Rayleigh-Gans-Debye approximation. It is proved that randomly oriented ellipsoidal particles are optically equivalent to polydisperse randomly oriented spheroidal particles and polydisperse spherical particles. Density functions of the shape and size distributions for equivalent ensembles of spheroidal and spherical particles are presented. In the anomalous diffraction approximation, equivalent ensembles of particles are shown to also have equal extinction, scattering, and absorption coefficients. Consequences of optical equivalence are considered. The results are illustrated by numerical calculations of the angular dependence of the scattering phase function using the T-matrix method and the Mie theory.
Multi-Component, Multi-Point Interferometric Rayleigh/Mie Doppler Velocimeter
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Lee, Joseph W.; Bivolaru, Daniel
2012-01-01
An interferometric Rayleigh scattering system was developed to enable the measurement of multiple, orthogonal velocity components at several points within very-high-speed or high-temperature flows. The velocity of a gaseous flow can be optically measured by sending laser light into the gas flow, and then measuring the scattered light signal that is returned from matter within the flow. Scattering can arise from either gas molecules within the flow itself, known as Rayleigh scattering, or from particles within the flow, known as Mie scattering. Measuring Mie scattering is the basis of all commercial laser Doppler and particle imaging velocimetry systems, but particle seeding is problematic when measuring high-speed and high-temperature flows. The velocimeter is designed to measure the Doppler shift from only Rayleigh scattering, and does not require, but can also measure, particles within the flow. The system combines a direct-view, large-optic interferometric setup that calculates the Doppler shift from fringe patterns collected with a digital camera, and a subsystem to capture and re-circulate scattered light to maximize signal density. By measuring two orthogonal components of the velocity at multiple positions in the flow volume, the accuracy and usefulness of the flow measurement increase significantly over single or nonorthogonal component approaches.
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.; Lock, James A.
1991-01-01
The contributions of complex rays and the secondary radiation shed by surface waves to scattering by a dielectric sphere are calculated in the context of the Debye series expansion of the Mie scattering amplitudes. Also, the contributions of geometrical rays are reviewed and compared with the Debye series. Interference effects between surface waves, complex waves, and geometrical waves are calculated, and the possibility of observing these interference effects is discussed. Experimental data supporting the observation of a surface wave-geometrical pattern is presented.
NASA Astrophysics Data System (ADS)
Krieger, Ulrich; Lienhard, Daniel; Bastelberger, Sandra; Steimer, Sarah
2014-05-01
Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a "white light" LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. [1] A. Virtanen et al. (2010): An amorphous solid state of biogenic secondary organic aerosol particles, Nature 467, 824-827. [2] B. Zobrist et al. (2011): Ultra-slow water diffusion in aqueous sucrose glasses, Phys. Chem. Chem. Phys. 13, 3514-3526. [3] D. L. Bones, J. P. Reid, D. M. Lienhard, and U. K. Krieger (2012): Comparing the mechanism of water condensation and evaporation in glassy aerosol, PNAS 109, 11613-11618. [4] O. Peña and U. Pal (2009): Scattering of electromagnetic radiation by a multilayered sphere, Comput. Phys. Commun. 180, 2348-2354.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Yang, Ping
2018-01-01
In this paper we make practical use of the recently developed first-principles approach to electromagnetic scattering by particles immersed in an unbounded absorbing host medium. Specifically, we introduce an actual computational tool for the calculation of pertinent far-field optical observables in the context of the classical Lorenzâ€"Mie theory. The paper summarizes the relevant theoretical formalism, explains various aspects of the corresponding numerical algorithm, specifies the input and output parameters of a FORTRAN program available at https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html, and tabulates benchmark results useful for testing purposes. This public-domain FORTRAN program enables one to solve the following two important problems: (i) simulate theoretically the reading of a remote well-collimated radiometer measuring electromagnetic scattering by an individual spherical particle or a small random group of spherical particles; and (ii) compute the single-scattering parameters that enter the vector radiative transfer equation derived directly from the Maxwell equations.
Mie scattering off coated microbubbles
NASA Astrophysics Data System (ADS)
Nelissen, Radboud; Koene, Elmer; Hilgenfeldt, Sascha; Versluis, Michel
2002-11-01
The acoustic behavior of coated microbubbles depends on parameters of the shell coating, which are in turn dependent on bubble size. More intimate knowledge of this size dependence is required for an improved modeling of a distribution of coated microbubbles such as found in ultrasound contrast agents (UCA). Here a setup is designed to simultaneously measure the optical and acoustic response of an ultrasound-driven single bubble contained in a capillary or levitated by the pressure field of a focused transducer. Optical detection is done by Mie scattering through an inverted microscope. Acoustical detection of the single bubble by a receiving transducer is made possible because of the large working distance of the microscope. For Mie scattering investigation of excited bubbles, two regimes can be distinguished, which require different detection techniques: Conventional wide-angle detection through the microscope objective is sufficient for bubbles of radius exceeding 10 mum. For smaller bubbles, two narrow-aperture detectors are used to reconstruct the bubble dynamics from the complex angle-dependence of the scattered light.
NASA Astrophysics Data System (ADS)
Mishchenko, Michael I.; Yang, Ping
2018-01-01
In this paper we make practical use of the recently developed first-principles approach to electromagnetic scattering by particles immersed in an unbounded absorbing host medium. Specifically, we introduce an actual computational tool for the calculation of pertinent far-field optical observables in the context of the classical Lorenz-Mie theory. The paper summarizes the relevant theoretical formalism, explains various aspects of the corresponding numerical algorithm, specifies the input and output parameters of a FORTRAN program available at https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html, and tabulates benchmark results useful for testing purposes. This public-domain FORTRAN program enables one to solve the following two important problems: (i) simulate theoretically the reading of a remote well-collimated radiometer measuring electromagnetic scattering by an individual spherical particle or a small random group of spherical particles; and (ii) compute the single-scattering parameters that enter the vector radiative transfer equation derived directly from the Maxwell equations.
Semiconductor laser insert with uniform illumination for use in photodynamic therapy
NASA Astrophysics Data System (ADS)
Charamisinau, Ivan; Happawana, Gemunu; Evans, Gary; Rosen, Arye; Hsi, Richard A.; Bour, David
2005-08-01
A low-cost semiconductor red laser light delivery system for esophagus cancer treatment is presented. The system is small enough for insertion into the patient's body. Scattering elements with nanoscale particles are used to achieve uniform illumination. The scattering element optimization calculations, with Mie theory, provide scattering and absorption efficiency factors for scattering particles composed of various materials. The possibility of using randomly deformed spheres and composite particles instead of perfect spheres is analyzed using an extension to Mie theory. The measured radiation pattern from a prototype light delivery system fabricated using these design criteria shows reasonable agreement with the theoretically predicted pattern.
Enhancing the Scientific Return from HST Imaging of Debris Disks
NASA Astrophysics Data System (ADS)
Weinberger, Alycia
2016-10-01
We propose realistic modeling of scattering of light by small aggregate dust grains that will enable us to interpret visible to near-infrared imaging of debris disks. We will determine if disk colors, phase functions, and polarizations place unique constraints on the composition of debris dust. Ongoing collisions of planetesimals generate dust; therefore, the dust provides unique information on compositions of the parent bodies. These exosolar analogs of asteroids and comets can bear clues to the history of a planetary system including migration and thermal processing. Because directly imaged debris disks are cold, they have no solid state emission features. Grain scattering properties as a function of wavelength are our only tool to reveal their compositions. Solar system interplanetary dust particles are fluffy aggregates, but most previous work on debris disk composition relied on Mie theory, i.e. assumed compact spherical grains. Mie calculations do not reproduce the observed colors and phase functions observed from debris disks. The few more complex calculations that exist do not explore the range of compositions and sizes relevant to debris disk dust. In particular, we expect porosity to help distinguish between cometary-like parent bodies, which are fluffy due to high volatile content and low collisional velocities, and asteroidal-like parent bodies that are compacted.
Steelman, Zachary A; Eldridge, Will J; Weintraub, Jacob B; Wax, Adam
2017-12-01
The refractive index (RI) of biological materials is a fundamental parameter for the optical characterization of living systems. Numerous light scattering technologies are grounded in a quantitative knowledge of the refractive index at cellular and subcellular scales. Recent work in quantitative phase microscopy (QPM) has called into question the widely held assumption that the index of the cell nucleus is greater than that of the cytoplasm, a result which disagrees with much of the current literature. In this work, we critically examine the measurement of the nuclear and whole-cell refractive index using QPM, validating that nuclear refractive index is lower than that of cytoplasm in four diverse cell lines and their corresponding isolated nuclei. We further examine Mie scattering and phase-wrapping as potential sources of error in these measurements, finding they have minimal impact. Finally, we use simulation to examine the effects of incorrect RI assumptions on nuclear morphology measurements using angle-resolved scattering information. Despite an erroneous assumption of the nuclear refractive index, accurate measurement of nuclear morphology was maintained, suggesting that light scattering modalities remain effective. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Feng; Ren, Kuan Fang; Cai, Xiaoshu
2006-07-10
The geometrical-optics approximation of light scattering by a transparent or absorbing spherical particle is extended from plane wave to Gaussian beam incidence. The formulas for the calculation of the phase of each ray and the divergence factor are revised, and the interference of all the emerging rays is taken into account. The extended geometrical-optics approximation (EGOA) permits one to calculate the scattering diagram in all directions from 0 degrees to 180 degrees. The intensities of the scattered field calculated by the EGOA are compared with those calculated by the generalized Lorenz-Mie theory, and good agreement is found. The surface wave effect in Gaussian beam scattering is also qualitatively analyzed by introducing a flux ratio factor. The approach proposed is particularly important to the further extension of the geometrical-optics approximation to the scattering of large spheroidal particles.
2017-03-10
electromagnetic radiation that propagates through a planetary atmosphere. These codes vary in the extent of their scope, incorporated models, and derived...emissive properties of the atmosphere. The propagation of electromagnetic radiation is affected by the scattering and absorption by both air molecules...Mie theory is the collection of the Mie solutions and methods to Maxwell’s Equations, which 35 describe how electromagnetic waves are scattered by
Review of Work Done with Professor Nussenzveig Regarding the Mie Theory
NASA Technical Reports Server (NTRS)
Wiscombe, W.
2003-01-01
Prof. Nussenzveig has dedicated part of his career to a surprising and unusual pursuit harking back to the heyday of classical physics: Mie theory, or the scattering of electromagnetic radiation by a homogeneous sphere. M e theory was not put forward until around 1908 (nearly simultaneously by Debye in a different form) and was quickly forgotten in the rush to the then-new quantum mechanics. It remained somewhat of a backwater until Prof. Nussenzveig brought it back by adapting complex angular momentum ideas from Regge pole theory, which had originally been invented for quantum mechanics. Since 1960, he has made fundamental contributions to actually understanding (as opposed to merely calculating) Mie theory. I became involved with this work in 1978 by inviting Prof. Nussenzveig to visit me at the National Center for Atmospheric Research. Since then we have written several papers together on approximate methods for Mie cross-sections, bubble scattering, and other subjects. This lecture will review that work, ending with his recent work on Mie resonances. The emphasis will be on the applications in atmospheric sciences.
Image processing of vaporizing GDI sprays: a new curvature-based approach
NASA Astrophysics Data System (ADS)
Lazzaro, Maurizio; Ianniello, Roberto
2018-01-01
This article introduces an innovative method for the segmentation of Mie-scattering and schlieren images of GDI sprays. The contours of the liquid phase are obtained by segmenting the scattering images of the spray by means of optimal filtering of the image, relying on variational methods, and an original thresholding procedure based on an iterative application of Otsu’s method. The segmentation of schlieren images, to get the contours of the spray vapour phase, is obtained by exploiting the surface curvature of the image to strongly enhance the intensity texture due to the vapour density gradients. This approach allows one to unambiguously discern the whole vapour phase of the spray from the background. Additional information about the spray liquid phase can be obtained by thresholding filtered schlieren images. The potential of this method has been substantiated in the segmentation of schlieren and scattering images of a GDI spray of isooctane. The fuel, heated to 363 K, was injected into nitrogen at a density of 1.12 and 3.5 kg m-3 with temperatures of 333 K and 573 K.
Optimization of fringe-type laser anemometers for turbine engine component testing
NASA Technical Reports Server (NTRS)
Seasholtz, R. G.; Oberle, L. G.; Weikle, D. H.
1984-01-01
The fringe type laser anemometer is analyzed using the Cramer-Rao bound for the variance of the estimate of the Doppler frequency as a figure of merit. Mie scattering theory is used to calculate the Doppler signal wherein both the amplitude and phase of the scattered light are taken into account. The noise from wall scatter is calculated using the wall bidirectional reflectivity and the irradiance of the incident beams. A procedure is described to determine the optimum aperture mask for the probe volume located a given distance from a wall. The expected performance of counter type processors is also discussed in relation to the Cramer-Rao bound. Numerical examples are presented for a coaxial backscatter anemometer.
Visual detection of nucleic acids based on Mie scattering and the magnetophoretic effect.
Zhao, Zichen; Chen, Shan; Ho, John Kin Lim; Chieng, Ching-Chang; Chen, Ting-Hsuan
2015-12-07
Visual detection of nucleic acid biomarkers is a simple and convenient approach to point-of-care applications. However, issues of sensitivity and the handling of complex bio-fluids have posed challenges. Here we report on a visual method detecting nucleic acids using Mie scattering of polystyrene microparticles and the magnetophoretic effect. Magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) were surface-functionalised with oligonucleotide probes, which can hybridise with target oligonucleotides in juxtaposition and lead to the formation of MMPs-targets-PMPs sandwich structures. Using an externally applied magnetic field, the magnetophoretic effect attracts the sandwich structure to the sidewall, which reduces the suspended PMPs and leads to a change in the light transmission via the Mie scattering. Based on the high extinction coefficient of the Mie scattering (∼3 orders of magnitude greater than that of the commonly used gold nanoparticles), our results showed the limit of detection to be 4 pM using a UV-Vis spectrometer or 10 pM by direct visual inspection. Meanwhile, we also demonstrated that this method is compatible with multiplex assays and detection in complex bio-fluids, such as whole blood or a pool of nucleic acids, without purification in advance. With a simplified operation procedure, low instrumentation requirement, high sensitivity and compatibility with complex bio-fluids, this method provides an ideal solution for visual detection of nucleic acids in resource-limited settings.
Uncertainties of aerosol retrieval from neglecting non-sphericity of dust aerosols
NASA Astrophysics Data System (ADS)
Li, Chi; Xue, Yong; Yang, Leiku; Guang, Jie
2013-04-01
The Mie theory is conventionally applied to calculate aerosol optical properties in satellite remote sensing applications, while dust aerosols cannot be well modeled by the Mie calculation for their non-sphericity. It has been cited in Mishchenko et al. (1995; 1997) that neglecting non-sphericity can severely influence aerosol optical depth (AOD, ?) retrieval in case of dust aerosols because of large difference of phase functions under spherical and non-spherical assumptions, whereas this uncertainty has not been thoroughly studied. This paper aims at a better understanding of uncertainties on AOD retrieval caused by aerosol non-sphericity. A dust aerosol model with known refractive index and size distribution is generated from long-term AERONET observations since 1999 over China. Then aerosol optical properties, such as the extinction, phase function, single scattering albedo (SSA) are calculated respectively in the assumption of spherical and non-spherical aerosols. Mie calculation is carried out for spherical assumption, meanwhile for non-spherical aerosol modeling, we adopt the pre-calculated scattering kernels and software package presented by Dubovik et al. (2002; 2006), which describes dust as a shape mixture of randomly oriented polydisperse spheroids. Consequently we generate two lookup tables (LUTspheric and LUTspheroid) from simulated satellite received reflectance at top of atmosphere (TOA) under varieties of observing conditions and aerosol loadings using Second Simulation of a Satellite Signal in the Solar Spectrum - Vector (6SV) code. All the simulations are made at 550 nm, and for simplicity the Lambertian surface is assumed. Using the obtained LUTs we examine the differences of TOA reflectance (Δ?TOA = ?spheric - ?spheroid) under different surface reflectance and aerosol loadings. Afterwards AOD is retrieved using LUTspheric from the simulated TOA reflectance by LUTspheroid in order to detect the retrieval errors (Δ? = ?retreived -?input) induced by straightforwardly utilizing Mie theory in dust aerosol retrieval. As expected we find that the uncertainties mainly result from the obvious difference of phase functions (Pspheric and Pspheroid). Errors may be positive or negative, depending on the specific geometry. In scattering angle (θ) regions where Psphericis greater (30°~85° & 145°~180°), we generally get positive Δ?TOA and negative Δ?, and vice versa (85°~145°). For low aerosol loading (? ~0.25) and black surface, |Δ?TOA| could be greater than 0.004 and 0.012 around θ ~120° and θ ~170°, with |Δ?| of ~0.04 and ~0.12 respectively. In most back scattering cases (θ >100°), the magnitude of Δ? is about ten times that of Δ?TOA, while this ratio (|Δ?|/|Δ?TOA|) significantly reduces to as low as ~0.5 for forward scattering, and can reach ~20 at θ ~145°. Moreover, this errors and |Δ?|/|Δ?TOA| can increase more than ten times as aerosol loading gets higher and surface gets brighter. Therefore we conclude that the neglect of non-sphericity introduces substantial errors on radiative transfer simulation and AOD retrieval. As a result of this study, a representative aspheric aerosol model other than Mie calculation is recommended for inversion algorithms related with dust-like non-spherical aerosols. References Dubovik, O., Holben, B. N., Lapyonok, T., Sinyuk, A., Mishchenko, M. I., Yang, P., and Slutsker, I. (2002). Non-spherical aerosol retrieval method employing light scattering by spheroids. Geophyscal Research Letters, 29(10), 1415, doi:10.1029/2001GL014506. Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M., Yang, P., Eck, T. F., Volten, H., Muñoz, O., Veihelmann, B., van der Zande, W. J., Leon, J.-F., Sorokin, M., and Slutsker, I. (2006). Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. Journal of Geophysical Research, 111, D11208, doi:10.1029/2005JD006619. Mishchenko, M. I., Lacis, A. A., Carlson, B. E., and Travis, L. D. (1995). Nonsphericity of dust-like aerosols: Implications for aerosol remote sensing and climate modeling, Geophyscal Research Letters, 22, 1077- 1080. Mishchenko, M. I., Travis, L. D., Kahn, R. A., and West, R. A. (1997). Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids, Journal of Geophysical Research, 102, 16831- 16847.
Sizing of single evaporating droplet with Near-Forward Elastic Scattering Spectroscopy
NASA Astrophysics Data System (ADS)
Woźniak, M.; Jakubczyk, D.; Derkachov, G.; Archer, J.
2017-11-01
We have developed an optical setup and related numerical models to study evolution of single evaporating micro-droplets by analysis of their spectral properties. Our approach combines the advantages of the electrodynamic trapping with the broadband spectral analysis with the supercontinuum laser illumination. The elastically scattered light within the spectral range of 500-900 nm is observed by a spectrometer placed at the near-forward scattering angles between 4.3 ° and 16.2 ° and compared with the numerically generated lookup table of the broadband Mie scattering. Our solution has been successfully applied to infer the size evolution of the evaporating droplets of pure liquids (diethylene and ethylene glycol) and suspensions of nanoparticles (silica and gold nanoparticles in diethylene glycol), with maximal accuracy of ± 25 nm. The obtained results have been compared with the previously developed sizing techniques: (i) based on the analysis of the Mie scattering images - the Mie Scattering Lookup Table Method and (ii) the droplet weighting. Our approach provides possibility to handle levitating objects with much larger size range (radius from 0.5 μm to 30 μm) than with the use of optical tweezers (typically radius below 8 μm) and analyse them with much wider spectral range than with commonly used LED sources.
NASA Technical Reports Server (NTRS)
Bohren, Craig F.; Nevitt, Timothy J.; Singham, Shermila Brito
1989-01-01
All particles in the atmosphere are not spherical. Moreover, the scattering properties of randomly oriented nonspherical particles are not equivalent to those of spherical particles no matter how the term equivalent is defined. This is especially true for scattering in the backward direction and at the infrared wavelengths at which some atmospheric particles have strong absorption bands. Thus calculations based on Mie theory of infrared backscattering by dry or insoluble atmospheric particles are suspect. To support this assertion, it was noted that peaks in laboratory-measured infrared backscattering spectra show appreciable shifts compared with those calculated using Mie theory. One example is ammonium sulfate. Some success was had in modeling backscattering spectra of ammonium sulfate particles using a simple statistical theory called the continuous distribution of ellipsoids (CDE) theory. In this theory, the scattering properties of an ensemble are calculated. Recently a modified version of this theory was applied to measured spectra of scattering by kaolin particles. The particles were platelike, so the probability distribution of ellipsoidal shapes was chosen to reflect this. As with ammonium sulfate, the wavelength of measured peak backscattering is shifted longward of that predicted by Mie theory.
Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control.
Chong, Katie E; Staude, Isabelle; James, Anthony; Dominguez, Jason; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi S; Luk, Ting S; Decker, Manuel; Neshev, Dragomir N; Brener, Igal; Kivshar, Yuri S
2015-08-12
We experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0-2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the lattice spacing as a single geometric control parameter.
Size Determination of Y2O3 Crystallites in MgO Composite Using Mie Scattering
2017-11-07
particle size, and the path length through the material to generate an expected light transmission spectrum. These calculated curves were compared to...materials. In the current work, light transmission data are compared to the theoretical curves generated by the Mie scattering model in an attempt to...Since the authors wanted to compare the model’s predictions to the experimental %T values, it seemed logical to start with Beer’s Law: )exp()1( 2
Comparisons between geometrical optics and Lorenz-Mie theory
NASA Technical Reports Server (NTRS)
Ungut, A.; Grehan, G.; Gouesbet, G.
1981-01-01
Both the Lorenz-Mie and geometrical optics theories are used in calculating the scattered light patterns produced by transparent spherical particles over a wide range of diameters, between 1.0 and 100 microns, and for the range of forward scattering angles from zero to 20 deg. A detailed comparison of the results shows the greater accuracy of the geometrical optics theory in the forward direction. Emphasis is given to the simultaneous sizing and velocimetry of particles by means of pedestal calibration methods.
NASA Technical Reports Server (NTRS)
Srivastava, Vandana; Jarzembski, Maurice A.
1991-01-01
This paper uses Mie theory to treat electromagnetic scattering and to evaluate field enhancement in the forward direction of a small droplet irradiated by a high-energy beam and compares the results of calculations with the field-enhancement evaluation obtained via geometrical optics treatment. Results of this comparison suggest that the field enhancement located at the critical ring region encircling the axis in the forward direction of the droplet can support laser-induced Raman scattering. The results are supported by experimental observations of the interaction of a 120-micron-diam water droplet with a high-energy Nd:YAG laser beam.
Mie Scattering of Growing Molecular Contaminants
NASA Technical Reports Server (NTRS)
Herren, Kenneth A.; Gregory, Don A.
2007-01-01
Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers and to produce many roughly hemispherical "islands" of contamination on the surface. The mathematics of the hemispherical scattering is simplified by introducing a Virtual source below the plane of the optic, in this case a mirror, allowing the use of Mie theory to produce a solution for the resulting sphere .in transmission. Experimentally, a fixed wavelength in the vacuum ultraviolet was used as the illumination source and scattered light from the polished and coated glass mirrors was detected at a fixed angle as the contamination islands grew in time.
NASA Astrophysics Data System (ADS)
Krieger, U. K.; Steimer, S.; Lienhard, D.; Bastelberger, S.
2013-12-01
Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous MBTCA (3-methyl-1,2,3-Butanetricarboxylic acid) and shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a 'white light ' LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. Potential implications for gas to particle partitioning and heterogeneous chemistry are discussed. [1] A. Virtanen et al. (2010): An amorphous solid state of biogenic secondary organic aerosol particles, Nature 467, 824-827. [2] B. Zobrist et al. (2011): Ultra-slow water diffusion in aqueous sucrose glasses, Phys. Chem. Chem. Phys. 13, 3514-3526. [3] D. L. Bones, J. P. Reid, D. M. Lienhard, and U. K. Krieger (2012): Comparing the mechanism of water condensation and evaporation in glassy aerosol, PNAS 109, 11613-11618. [4] O. Peña and U. Pal (2009): Scattering of electromagnetic radiation by a multilayered sphere, Comput. Phys. Commun. 180, 2348-2354.
Linearized T-Matrix and Mie Scattering Computations
NASA Technical Reports Server (NTRS)
Spurr, R.; Wang, J.; Zeng, J.; Mishchenko, M. I.
2011-01-01
We present a new linearization of T-Matrix and Mie computations for light scattering by non-spherical and spherical particles, respectively. In addition to the usual extinction and scattering cross-sections and the scattering matrix outputs, the linearized models will generate analytical derivatives of these optical properties with respect to the real and imaginary parts of the particle refractive index, and (for non-spherical scatterers) with respect to the ''shape'' parameter (the spheroid aspect ratio, cylinder diameter/height ratio, Chebyshev particle deformation factor). These derivatives are based on the essential linearity of Maxwell's theory. Analytical derivatives are also available for polydisperse particle size distribution parameters such as the mode radius. The T-matrix formulation is based on the NASA Goddard Institute for Space Studies FORTRAN 77 code developed in the 1990s. The linearized scattering codes presented here are in FORTRAN 90 and will be made publicly available.
NASA Technical Reports Server (NTRS)
Dlugach, Janna M.; Mishchenko, Michael I.
2014-01-01
By using the results of highly accurate T-matrix computations for randomly oriented oblate and prolate spheroids and Chebyshev particles with varying degrees of asphericity, we analyze the effects of a deviation of water-droplet shapes from that of a perfect sphere on the behavior of Lorenz-Mie morphology-dependent resonances of various widths. We demonstrate that the positions and profiles of the resonances can change significantly with increasing asphericity. The absolute degree of asphericity required to suppress a Lorenz-Mie resonance is approximately proportional to the resonance width. Our results imply that numerical averaging of scattering characteristics of real cloud droplets over sizes may rely on a significantly coarser size-parameter resolution than that required for ideal, perfectly spherical particles.
Derivation of Z-R equation using Mie approach for a 77 GHz radar
NASA Astrophysics Data System (ADS)
Bertoldo, Silvano; Lucianaz, Claudio; Allegretti, Marco; Perona, Giovanni
2017-04-01
The ETSI (European Telecommunications Standards Institute) defines the frequency band around 77 GHz as dedicated to automatic cruise control long-range radars. This work aims to demonstrate that, with specific assumption and the right theoretical background it is also possible to use a 77 GHz as a mini weather radar and/or a microwave rain gauge. To study the behavior of a 77 GHz meteorological radar, since the raindrop size are comparable to the wavelength, it is necessary to use the general Mie scattering theory. According to the Mie formulation, the radar reflectivity factor Z is defined as a function of the wavelength on the opposite of Rayleigh approximation in which is frequency independent. Different operative frequencies commonly used in radar meteorology are considered with both the Rayleigh and Mie scattering theory formulation. Comparing them it is shown that with the increasing of the radar working frequency the use of Rayleigh approximation lead to an always larger underestimation of rain. At 77 GHz such underestimation is up to 20 dB which can be avoided with the full Mie theory. The crucial derivation of the most suited relation between the radar reflectivity factor Z and rainfall rate R (Z-R equation) is necessary to achieve the best Quantitative Precipitation Estimation (QPE) possible. Making the use of Mie scattering formulation from the classical electromagnetic theory and considering different radar working frequencies, the backscattering efficiency and the radar reflectivity factor have been derived from a wide range of rain rate using specific numerical routines. Knowing the rain rate and the corresponding reflectivity factor it was possible to derive the coefficients of the Z-R equation for each frequency with the least square method and to obtain the best coefficients for each frequency. The coefficients are then compared with the ones coming from the scientific literature. The coefficients of a 77 GHz weather radar are then obtained. A sensitivity analysis of a 77 GHz weather radar using such Z-R relation is also studied. The work shows that the right knowledge of Z-R equation is essential to use such a specific radar for the estimation of rainfall. The use Mie scattering theory is necessary for a 77 GHz radar in order to avoid the heavy underestimation of rainfall.
Gedzelman, Stanley David
2017-07-01
Three scenarios that produce colored thunderstorms are simulated. In Scenario #1, the thunderstorm's sunlit face exhibits a color gradient from white or yellow at top to red at base when the sun is near the horizon. It is simulated with a second-order scattering model as a combination of sunlight and skylight reflected from the cloud face that is attenuated and reddened by Rayleigh and Mie scattering over the long optical path near sunset that increases from cloud top to base. In Scenario #2, the base of the precipitation shaft appears luminous green-blue when surrounded by a much darker arcus cloud. It is simulated as multiply scattered light transmitted through the precipitation shaft using a Monte Carlo model that includes absorption by liquid water and ice. The color occurs over a wide range of solar zenith angles with large liquid water content, but the precipitation shaft is only bright when hydrometeors are large. Attenuation of the light by Rayleigh and Mie scattering outside the precipitation shaft shifts the spectrum to green when viewed from a distance of several kilometers. In Scenario #3, the shaded cloud face exhibits a "sickly" yellow-green color. It is simulated with a second-order scattering model as the result of distant skylight that originates in the sunlit region beyond an opaque anvil of order 40 km wide but is attenuated by Rayleigh and Mie scattering in its path to the cloud and observer.
Complex refractive index of Martian dust - Wavelength dependence and composition
NASA Technical Reports Server (NTRS)
Pang, K.; Ajello, J. M.
1977-01-01
The size distribution and complex refractive index of Martian dust-cloud particles observed in 1971 with the Mariner 9 UV spectrometer are determined by matching the observed single-scattering albedo and phase function with Mie-scattering calculations for size distributions of spheres. Values of phase function times single-scattering albedo are presented for 12 wavelength intervals in the range from 190 to 350 nm, and best-fit values are obtained for the absorption index. It is found that the absorption index of the dust particles increases with decreasing wavelength from 350 to about 210 nm and then drops off shortward of 210 nm, with a structural shoulder occurring in the absorption spectrum between 240 and 250 nm. A search for a candidate material that can explain the strong UV absorption yields TiO2, whose anatase polymorph has an absorption spectrum matching that of the Martian dust. The TiO2 content of the dust particles is estimated to be a few percent or less.
NASA Astrophysics Data System (ADS)
Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine
2017-06-01
Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, J. A.
1993-01-01
Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.
NASA Astrophysics Data System (ADS)
Monfared, S. K.; Buttler, W. T.; Frayer, D. K.; Grover, M.; LaLone, B. M.; Stevens, G. D.; Stone, J. B.; Turley, W. D.; Schauer, M. M.
2015-06-01
We report on the development of a diagnostic to provide constraints on the size of particles ejected from shocked metallic surfaces. The diagnostic is based on measurements of the intensity of laser light transmitted through a cloud of ejected particles as well as the angular distribution of scattered light, and the analysis of the resulting data is done using the Mie solution. We describe static experiments to test our experimental apparatus and present initial results of dynamic experiments on Sn targets. Improvements for future experiments are briefly discussed.
Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.
2011-01-01
We investigate optical torques over absorbent negative refractive index spherical scatterers under the influence of linear and circularly polarized TEM00 focused Gaussian beams, in the framework of the generalized Lorenz-Mie theory with the integral localized approximation. The fundamental differences between optical torques due to spin angular momentum transfer in positive and negative refractive index optical trapping are outlined, revealing the effect of the Mie scattering coefficients in one of the most fundamental properties in optical trapping systems. PMID:21833372
Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng
Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less
Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces
Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng; ...
2017-04-17
Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less
Fabry-Perot interferometer measurement of static temperature and velocity for ASTOVL model tests
NASA Technical Reports Server (NTRS)
Kourous, Helen E.; Seacholtz, Richard G.
1995-01-01
A spectrally resolved Rayleigh/Mie scattering diagnostic was developed to measure temperature and wing-spanwise velocity in the vicinity of an ASTOVL aircraft model in the Lewis 9 x 15 Low Speed Wind Tunnel. The spectrum of argon-ion laser light scattered by the air molecules and particles in the flow was resolved with a Fabry-Perot interferometer. Temperature was extracted from the spectral width of the Rayleigh scattering component, and spanwise gas velocity from the gross spectral shift. Nozzle temperature approached 800 K, and the velocity component approached 30 m/s. The measurement uncertainty was about 5 percent for the gas temperature, and about 10 m/s for the velocity. The large difference in the spectral width of the Mie scattering from particles and the Rayleigh scattering from gas molecules allowed the gas temperature to be measured in flow containing both naturally occurring dust and LDV seed (both were present).
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Gitelson, A.; Karnieli, A.; Ganor, E. (Editor); Fraser, R. S.; Nakajima, T.; Mattoo, S.; Holben, B. N.
1994-01-01
Ground-based measurements of the solar transmission and sky radiance in a horizontal plane through the Sun are taken in several geographical regions and aerosol types: dust in a desert transition zone in Israel, sulfate particles in Eastern and Western Europe, tropical aerosol in Brazil, and mixed continental/maritime aerosol in California. Stratospheric aerosol was introduced after the eruption of Mount Pinatubo in June 1991. Therefore measurements taken before the eruption are used to analyze the properties of tropospheric aerosol; measurements from 1992 are also used to detect the particle size and concentration of stratospheric aerosol. The measurements are used to retrieve the size distribution and the scattering phase function at large scattering angles of the undisturbed aerosol particles. The retrieved properties represent an average on the entire atmospheric column. A comparison between the retrieved phase function for a scattering angle of 120 deg, with phase function predicted from the retrieved size distribution, is used to test the assumption of particle homogeneity and sphericity in radiative transfer models (Mie theory). The effect was found to be small (20% +/- 15%). For the stratospheric aerosol (sulfates), as expected, the phase function was very well predicted using the Mie theory. A model with a power law distribution, based on the spectral dependence of the optical thickness, alpha, cannot estimate accurately the phase function (up to 50% error for lambda = 0.87 microns). Before the Pinatubo eruption the ratio between the volumes of sulfate and coarse particles was very well correlated with alpha. The Pinatubo stratospheric aerosol destroyed this correlation. The aerosol optical properties are compared with analysis of the size, shape, and composition of the individual particles by electron microscopy of in situ samples. The measured volume size distribution before the injection of stratospheric aerosol consistently show two modes, sulfate particles with r(sub m) less than 0.2 microns and coarse paritcles with r(sub m) greater than 0.7 microns. The 'window' in the tropospheric aerosol in this radius range was used to observe a stable stratospheric aerosol in 1992, with r(sub m) approximately 0.5 microns. A combination of such optical thickness and sky measurements can be used to assess the direct forcing and the climatic impact of aerosol. Systematic inversion for the key aerosol types (sulfates, smoke, dust, and maritime aerosol) of the size distribution and phase function can give the relationship between the aerosol physical and optical properties that can be used to compute the radiative forcing. This forcing can be validated in dedicated field experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poludniowski, Gavin G.; Evans, Philip M.
2013-04-15
Purpose: Monte Carlo methods based on the Boltzmann transport equation (BTE) have previously been used to model light transport in powdered-phosphor scintillator screens. Physically motivated guesses or, alternatively, the complexities of Mie theory have been used by some authors to provide the necessary inputs of transport parameters. The purpose of Part II of this work is to: (i) validate predictions of modulation transform function (MTF) using the BTE and calculated values of transport parameters, against experimental data published for two Gd{sub 2}O{sub 2}S:Tb screens; (ii) investigate the impact of size-distribution and emission spectrum on Mie predictions of transport parameters; (iii)more » suggest simpler and novel geometrical optics-based models for these parameters and compare to the predictions of Mie theory. A computer code package called phsphr is made available that allows the MTF predictions for the screens modeled to be reproduced and novel screens to be simulated. Methods: The transport parameters of interest are the scattering efficiency (Q{sub sct}), absorption efficiency (Q{sub abs}), and the scatter anisotropy (g). Calculations of these parameters are made using the analytic method of Mie theory, for spherical grains of radii 0.1-5.0 {mu}m. The sensitivity of the transport parameters to emission wavelength is investigated using an emission spectrum representative of that of Gd{sub 2}O{sub 2}S:Tb. The impact of a grain-size distribution in the screen on the parameters is investigated using a Gaussian size-distribution ({sigma}= 1%, 5%, or 10% of mean radius). Two simple and novel alternative models to Mie theory are suggested: a geometrical optics and diffraction model (GODM) and an extension of this (GODM+). Comparisons to measured MTF are made for two commercial screens: Lanex Fast Back and Lanex Fast Front (Eastman Kodak Company, Inc.). Results: The Mie theory predictions of transport parameters were shown to be highly sensitive to both grain size and emission wavelength. For a phosphor screen structure with a distribution in grain sizes and a spectrum of emission, only the average trend of Mie theory is likely to be important. This average behavior is well predicted by the more sophisticated of the geometrical optics models (GODM+) and in approximate agreement for the simplest (GODM). The root-mean-square differences obtained between predicted MTF and experimental measurements, using all three models (GODM, GODM+, Mie), were within 0.03 for both Lanex screens in all cases. This is excellent agreement in view of the uncertainties in screen composition and optical properties. Conclusions: If Mie theory is used for calculating transport parameters for light scattering and absorption in powdered-phosphor screens, care should be taken to average out the fine-structure in the parameter predictions. However, for visible emission wavelengths ({lambda} < 1.0 {mu}m) and grain radii (a > 0.5 {mu}m), geometrical optics models for transport parameters are an alternative to Mie theory. These geometrical optics models are simpler and lead to no substantial loss in accuracy.« less
Analysis of the scattering performance of human retinal tissue layers
NASA Astrophysics Data System (ADS)
Zhu, Dan; Gao, Zhisan; Ye, Haishui; Yuan, Qun
2017-02-01
Human retina is different from other ocular tissues, such as cornea, crystalline lens and vitreous because of high scattering performance. As an anisotropic tissue, we cannot neglect its impact on the polarization state of the scattered light. In this paper, Mie scattering and radiative transfer theory are applied to analyze the polarization state of backscattered light from four types of retinal tissues, including neural retina, retinal pigment epithelial (RPE), choroid and sclera. The results show that the most backscattered zones in different depths have almost the same electrical fields of Jones vector, which represents the polarization state of light, whether neural retina layer is under normal incidence or oblique incidence. Very little change occurs in the polarization of backscattered light compared to that of the incident light. Polarization distribution of backward scattered light from neural retina layer doesn't make apparent effects on polarization phase shifting in spectral domain OCT because its thickness is far less than photon mean free path, while other retinal tissues do not meet this rule.
Vesicle sizing by static light scattering: a Fourier cosine transform approach
NASA Astrophysics Data System (ADS)
Wang, Jianhong; Hallett, F. Ross
1995-08-01
A Fourier cosine transform method, based on the Rayleigh-Gans-Debye thin-shell approximation, was developed to retrieve vesicle size distribution directly from the angular dependence of scattered light intensity. Its feasibility for real vesicles was partially tested on scattering data generated by the exact Mie solutions for isotropic vesicles. The noise tolerance of the method in recovering unimodal and biomodal distributions was studied with the simulated data. Applicability of this approach to vesicles with weak anisotropy was examined using Mie theory for anisotropic hollow spheres. A primitive theory about the first four moments of the radius distribution about the origin, excluding the mean radius, was obtained as an alternative to the direct retrieval of size distributions.
NASA Astrophysics Data System (ADS)
Wang, Xuezhen; Lai, Jiancheng; Song, Yang; Li, Zhenhua
2018-05-01
It is generally recognized that circularly polarized light is preferentially maintained over linearly polarized light in turbid medium with Mie scatterers. However, in this work, the anomalous depolarization anisotropy is reported in the backscattering area near the point of illumination. Both experimental and Monte Carlo simulations show preferential retention of linear polarization states compared to circular polarization states in a specific backscattering area. Further analysis indicates that the anomalous depolarization behavior in the specific area is induced by lateral scattering events, which own low circular polarization memory. In addition, it is also found that the size of the anomalous depolarization area is related to the transport mean free path of the turbid medium.
Monfared, Shabnam Khalighi; Buttler, William Tillman; Frayer, Daniel K.; ...
2015-06-11
In this paper, we report on the development of a diagnostic to provide constraints on the size of particles ejected from shocked metallic surfaces. The diagnostic is based on measurements of the intensity of laser light transmitted through a cloud of ejected particles as well as the angular distribution of scattered light, and the analysis of the resulting data is done using the Mie solution. Finally, we describe static experiments to test our experimental apparatus and present initial results of dynamic experiments on Sn targets. Improvements for future experiments are briefly discussed.
Abbarchi, Marco; Naffouti, Meher; Vial, Benjamin; Benkouider, Abdelmalek; Lermusiaux, Laurent; Favre, Luc; Ronda, Antoine; Bidault, Sébastien; Berbezier, Isabelle; Bonod, Nicolas
2014-11-25
Subwavelength-sized dielectric Mie resonators have recently emerged as a promising photonic platform, as they combine the advantages of dielectric microstructures and metallic nanoparticles supporting surface plasmon polaritons. Here, we report the capabilities of a dewetting-based process, independent of the sample size, to fabricate Si-based resonators over large scales starting from commercial silicon-on-insulator (SOI) substrates. Spontaneous dewetting is shown to allow the production of monocrystalline Mie-resonators that feature two resonant modes in the visible spectrum, as observed in confocal scattering spectroscopy. Homogeneous scattering responses and improved spatial ordering of the Si-based resonators are observed when dewetting is assisted by electron beam lithography. Finally, exploiting different thermal agglomeration regimes, we highlight the versatility of this technique, which, when assisted by focused ion beam nanopatterning, produces monocrystalline nanocrystals with ad hoc size, position, and organization in complex multimers.
NASA Astrophysics Data System (ADS)
Frizyuk, Kristina; Hasan, Mehedi; Krasnok, Alex; Alú, Andrea; Petrov, Mihail
2018-02-01
Resonantly enhanced Raman scattering in dielectric nanostructures has been recently proven to be an efficient tool for nanothermometry and for the experimental determination of their mode composition. In this paper we develop a rigorous analytical theory based on the Green's function approach to calculate the Raman emission from crystalline high-index dielectric nanoparticles. As an example, we consider silicon nanoparticles which have a strong Raman response due to active optical phonon modes. We relate enhancement of Raman signal emission to the Purcell effect due to the excitation of Mie modes inside the nanoparticles. We also employ our numerical approach to calculate inelastic Raman emission in more sophisticated geometries, which do not allow a straightforward analytical form of the Green's function. The Raman response from a silicon nanodisk has been analyzed with the proposed method, and the contribution of various Mie modes has been revealed.
Radiative transfer in the earth's atmosphere and ocean: influence of ocean waves.
Plass, G N; Kattawar, G W; Guinn, J A
1975-08-01
The radiance in the earth's atmosphere and ocean is calculated for a realistic model including an ocean surface with waves. Individual photons are followed in a Monte Carlo calculation. In the atmosphere, both Rayleigh scattering by the molecules and Mie scattering by the aerosols as well as molecular and aerosol absorption are taken into account. Similarly, in the ocean, both Rayleigh scattering by the water molecules and Mie scattering by the hydrosols as well as absorption by the water molecules and hydrosols are considered. Separate single-scattering functions are used which are calculated separately for the aerosols and the hydrosols from the Mie theory with appropriate and different size distributions in each case. The scattering angles are determined from the appropriate scattering function including the strong forwardscattering peak when there is aerosol or hydrosol scattering. Both the reflected and refracted rays, as well as the rays that undergo total internal reflection, are followed at the oceanc surface. The wave slope is chosen from the Cox-Munk distribution. Graphs show the influence of the waves on the upward radiance at the top of the atmosphere and just above the ocean surface and on the downward radiance just below the ocean surface as well as deeper within the ocean. The radiance changes are sufficient at the top of the atmosphere to determine the sea state from satellite measurements. Within the ocean the waves smooth out the abrupt transition that occurs at the edge of the allowed cone for radiation entering a calm ocean. The influence of the waves on the contrast between the sky and sea at the horizon is discussed. It is shown that the downward flux just below the surface increases with wind speed at all solar angles.
Application of modern radiative transfer tools to model laboratory quartz emissivity
NASA Astrophysics Data System (ADS)
Pitman, Karly M.; Wolff, Michael J.; Clayton, Geoffrey C.
2005-08-01
Planetary remote sensing of regolith surfaces requires use of theoretical models for interpretation of constituent grain physical properties. In this work, we review and critically evaluate past efforts to strengthen numerical radiative transfer (RT) models with comparison to a trusted set of nadir incidence laboratory quartz emissivity spectra. By first establishing a baseline statistical metric to rate successful model-laboratory emissivity spectral fits, we assess the efficacy of hybrid computational solutions (Mie theory + numerically exact RT algorithm) to calculate theoretical emissivity values for micron-sized α-quartz particles in the thermal infrared (2000-200 cm-1) wave number range. We show that Mie theory, a widely used but poor approximation to irregular grain shape, fails to produce the single scattering albedo and asymmetry parameter needed to arrive at the desired laboratory emissivity values. Through simple numerical experiments, we show that corrections to single scattering albedo and asymmetry parameter values generated via Mie theory become more necessary with increasing grain size. We directly compare the performance of diffraction subtraction and static structure factor corrections to the single scattering albedo, asymmetry parameter, and emissivity for dense packing of grains. Through these sensitivity studies, we provide evidence that, assuming RT methods work well given sufficiently well-quantified inputs, assumptions about the scatterer itself constitute the most crucial aspect of modeling emissivity values.
Polarization-independent silicon metadevices for efficient optical wavefront control
Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph; ...
2015-07-20
In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the latticemore » spacing as a single geometric control parameter.« less
Polarization-independent silicon metadevices for efficient optical wavefront control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph
In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the latticemore » spacing as a single geometric control parameter.« less
Absorption Filter Based Optical Diagnostics in High Speed Flows
NASA Technical Reports Server (NTRS)
Samimy, Mo; Elliott, Gregory; Arnette, Stephen
1996-01-01
Two major regimes where laser light scattered by molecules or particles in a flow contains significant information about the flow are Mie scattering and Rayleigh scattering. Mie scattering is used to obtain only velocity information, while Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Now, recently introduced (1990, 1991) absorption filter based diagnostic techniques have started a new era in flow visualization, simultaneous velocity and thermodynamic measurements, and planar velocity measurements. Using a filtered planar velocimetry (FPV) technique, we have modified the optically thick iodine filter profile of Miles, et al., and used it in the pressure-broaden regime which accommodates measurements in a wide range of velocity applications. Measuring velocity and thermodynamic properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of the Doppler shift, but also the spectral profile of the Rayleigh scattering signal. Using multiple observation angles, simultaneous measurement of one component velocity and thermodynamic properties in a supersonic jet were measured. Presently, the technique is being extended for simultaneous measurements of all three components of velocity and thermodynamic properties.
Song, Shukun; Wang, Neng; Lu, Wanli; Lin, Zhifang
2014-10-01
Optical forces are calculated for a dielectric spherical particle illuminated by a zero-order Bessel beam based on both the generalized Lorenz-Mie theory (GLMT) and the ray optics method (ROM). Particles with positive and negative refractive indices are examined. The peculiar characteristics of the Bessel beam allow for analytical expressions for the beam shape coefficients required in the GLMT as well as a decomposition of optical force into the gradient and the scattering forces irrespective of the particle size, which enable respective comparisons for the gradient and scattering forces between the results obtained from the GLMT and the ROM. Our results demonstrate that the discrepancy between the results obtained from the GLMT and the ROM depends on the particle refractive index np, the particle size, and, also, the particle location in the beam field. As the particle size increases, the difference between the results from the GLMT and the ROM shows a general tendency of decreasing, as can be expected, but the change may exhibit oscillatory rather than monotonic behavior. A phase diagram is presented that displays the regime for particle size and refractive index where a specified accuracy can be achieved for optical force by the ROM.
Mason, Bernard J; Walker, Jim S; Reid, Jonathan P; Orr-Ewing, Andrew J
2014-03-20
The extinction cross-sections of individual, optically confined aerosol particles with radii of a micrometer or less can, in principle, be measured using cavity ring-down spectroscopy (CRDS). However, when the particle radius is comparable in magnitude to the wavelength of light stored in a high-finesse cavity, the phenomenological cross-section retrieved from a CRDS experiment depends on the location of the particle in the intracavity standing wave and differs from the Mie scattering cross-section for plane-wave irradiation. Using an evaporating 1,2,6-hexanetriol particle of initial radius ∼1.75 μm confined within the 4.5 μm diameter core of a Bessel beam, we demonstrate that the scatter in the retrieved extinction efficiency of a single particle is determined by its lateral motion, which spans a few wavelengths of the intracavity standing wave used for CRDS measurements. Fits of experimental measurements to Mie calculations, modified to account for the intracavity standing wave, allow precise retrieval of the refractive index of 1,2,6-hexanetriol particles (with relative humidity, RH < 10%) of 1.47824 ± 0.00072.
Particle shape inhomogeneity and plasmon-band broadening of solar-control LaB6 nanoparticles
NASA Astrophysics Data System (ADS)
Machida, Keisuke; Adachi, Kenji
2015-07-01
An ensemble inhomogeneity of non-spherical LaB6 nanoparticles dispersion has been analyzed with Mie theory to account for the observed broad plasmon band. LaB6 particle shape has been characterized using small-angle X-ray scattering (SAXS) and electron tomography (ET). SAXS scattering intensity is found to vary exponentially with exponent -3.10, indicating the particle shape of disk toward sphere. ET analysis disclosed dually grouped distribution of nanoparticle dispersion; one is large-sized at small aspect ratio and the other is small-sized with scattered high aspect ratio, reflecting the dual fragmentation modes during the milling process. Mie extinction calculations have been integrated for 100 000 particles of varying aspect ratio, which were produced randomly by using the Box-Muller method. The Mie integration method has produced a broad and smooth absorption band expanded towards low energy, in remarkable agreement with experimental profiles by assuming a SAXS- and ET-derived shape distribution, i.e., a majority of disks with a little incorporation of rods and spheres for the ensemble. The analysis envisages a high potential of LaB6 with further-increased visible transparency and plasmon peak upon controlled particle-shape and its distribution.
Laser diagnostics for characterization of sprays formed by a collapsing non-equilibrium bubble
NASA Astrophysics Data System (ADS)
Kannan, Y. S.; Balusamy, S.; Karri, B.
2015-12-01
In this paper, we investigate the use of laser diagnostic tools for in-plane imaging of bubble induced spray using a laser sheet and Mie scattering technique. A perspex plate of thickness 10 mm with a hole of diameter 1 mm in the center is placed in the middle of a glass tank filled with water such that the top surface of the plate coincides with the water surface. A bubble is created just below the hole using a low-voltage spark circuit such that it expands against the hole. This leads to the formation of two jets which impact leading to a spray and break-up into droplets. The spray evolution is observed using a laser sheet directed in a plane through the center of the hole. The illuminated plane is imaged using a high-speed camera based on the Mie scattering from glass beads suspended in the liquid. Results show that Mie scattering technique has potential in studying bubble-induced sprays with applications such as in fuel sprays, drug-delivery etc, and also for validation of numerical codes. We present results from our ongoing experiments in this paper.
Study of Venus' cloud layers by polarimetry using SPICAV/VEx
NASA Astrophysics Data System (ADS)
Rossi, Loïc; Marcq, Emmanuel; Montmessin, Franck; Bertaux, Jean-Loup; Korablev, Oleg; Fedorova, Anna
2013-04-01
The study of Venus's cloud layers is important in order to understand the structure, radiative balance and dynamics of the Venusian atmosphere. The main cloud layers between 50 and 70km are thought to consist in ~ 1μm radius droplets of a H2SO4-H2O solution. Nevertheless, the composition and the size distribution of the droplets are difficult to constrain more precisely. The polarization measurements have given great results in the determination of the constituents of the haze. In the early 1980s, Kawabata et al.(1980) used the polarization data from the OCPP instrument on the spacecraft Pioneer Venus to constrain the properties of the haze. They obtained a refractive index of 1.45 ± 0.04 at ? = 550nm and an effective radius of 0.23 ± 0.04μm, with a normalized size distribution variance of 0.18 ± 0.1. Our work aims to reproduce the method used by Kawabata et al. by writing a Lorentz-Mie scattering model and apply it to the so far unexploited polarization data of the SPICAV-IR instrument on-board ESA's Venus Express in order to better constrain haze and cloud particles at the top of Venus's clouds, as well as their spatial and temporal variability. We introduce here the model we developed, based on the BH-MIE scattering model. Taking into account the same size distribution of droplets as Kawabata et al., we obtained the polarization degree after a single Mie scattering by a haze at all phase angles given the effective radius and variance of the distribution and the refractive index of the droplets. Our model seems consistent as it reproduces the polarization degree modeled by Kawabata et al. We also present the first application of our model to the SPICAV-IR data under the single scattering assumption. Hence we can confirm the mean constraints on the size and refractive index of the haze and cloud droplets. In the near future, we then aim to extend our study of the polarization data by integrating our model into a radiative transfer model which will take into account the multiple scattering. Having more recent observations in wavelengths ranging from 650 to 1625nm, will put better constraints on the properties of both cloud and haze particles, with a primary focus on the cloud droplets characterization. Bibliography: BOHREN, C. F. AND HUMAN, D.R., in Absorption and Scattering of light by small particles, Wiley, 1983 KAWABATA, K. et al., Cloud and haze properties from Pioneer Venus Polarimetry, JGR, 1980
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Suttles, J. T.; Lecroy, S. R.
1985-01-01
Tabular values of phase function, Legendre polynominal coefficients, 180 deg backscatter, and extinction cross section are given for eight wavelengths in the atmospheric windows between 0.4 and 2.2 microns. Also included are single scattering albedo, asymmetry factor, and refractive indices. These values are based on Mie theory calculations for the standard rediation atmospheres (continental, maritime, urban, unperturbed stratospheric, volcanic, upper atmospheric, soot, oceanic, dust, and water-soluble) assest measured volcanic aerosols at several time intervals following the El Chichon eruption. Comparisons of extinction to 180 deg backscatter for different aerosol models are presented and related to lidar data.
NASA Technical Reports Server (NTRS)
Yang, P.; Gao, B.-C.; Wiscombe, W. J.; Mishchenko, M. I.; Platnick, S.; Huang, H.-L.; Baum, B. A.; Hu, Y. X.; Winkler, D,; Tsay, S.-C.;
2001-01-01
The conventional Lorenz-Mie formalism is extended to the scattering process associated with a coated sphere embedded in an absorbing medium. It is shown that apparent and inherent scattering cross sections of a scattering particle, which are identical in the case of transparent host medium, are different if the host medium is absorptive. Here the inherent single-scattering properties are derived from the near-field information whereas the corresponding apparent counterparts are derived from the far-field asymptotic form of the scattered wave with scaling of host absorption that is assumed to be in an exponential form. The formality extinction and scattering efficiencies defined in the same manner as in the conventional sense can be unbounded. For a nonabsorptive particle embedded in an absorbing medium, the effect of host absorption on the phase matrix elements associated with polarization is significant. This effect, however, is largely reduced for strongly absorptive particles such as soot. For soot particles coated with water, the impurity can substantially reduce the single-scattering albedo of the particle if the size parameter is small. For water-coating soot and hollow ice spheres, it is shown that the phase matrix elements -P(sub 12)/P(sub 11) and P(sub 33)/P(sub 11) are unique if the shell is thin, as compared with the case for thick shell. Furthermore, the radiative transfer equation regarding a multidisperse particle system in an absorbing medium is discussed. It is illustrated that the conventional computation algorithms can be applied to solve the multiple scattering process if the scaled apparent single-scattering properties are applied.
Diagnostics and characterization of nanodust and nanodusty plasmas★
NASA Astrophysics Data System (ADS)
Greiner, Franko; Melzer, Andrè; Tadsen, Benjamin; Groth, Sebastian; Killer, Carsten; Kirchschlager, Florian; Wieben, Frank; Pilch, Iris; Krüger, Harald; Block, Dietmar; Piel, Alexander; Wolf, Sebastian
2018-05-01
Plasmas growing or containing nanometric dust particles are widely used and proposed in plasma technological applications for production of nano-crystals and surface deposition. Here, we give a compact review of in situ methods for the diagnostics of nanodust and nanodusty plasmas, which have been developed in the framework of the SFB-TR24 to fully characterize these systems. The methods include kinetic Mie ellipsometry, angular-resolved Mie scattering, and 2D imaging Mie ellipsometry to get information about particle growth processes, particle sizes and particle size distributions. There, also the role of multiple scattering events is analyzed using radiative transfer simulations. Computed tomography and Abel inversion techniques to get the 3D dust density profiles of the particle cloud will be presented. Diagnostics of the dust dynamics yields fundamental dust and plasma properties like particle charges and electron and ion densities. Since nanodusty plasmas usually form dense dust clouds electron depletion (Havnes effect) is found to be significant.
Optical properties of potential condensates in exoplanetary atmospheres
NASA Astrophysics Data System (ADS)
Kitzmann, Daniel; Heng, Kevin
2018-03-01
The prevalence of clouds in currently observable exoplanetary atmospheres motivates the compilation and calculation of their optical properties. First, we present a new open-source Mie scattering code known as LX-MIE, which is able to consider large-size parameters (˜107) using a single computational treatment. We validate LX-MIE against the classical MIEVO code as well as previous studies. Secondly, we embark on an expanded survey of the published literature for both the real and imaginary components of the refractive indices of 32 condensate species. As much as possible, we rely on experimental measurements of the refractive indices and resort to obtaining the real from the imaginary component (or vice versa), via the Kramers-Kronig relation, only in the absence of data. We use these refractive indices as input for LX-MIE to compute the absorption, scattering and extinction efficiencies of all 32 condensate species. Finally, we use a three-parameter function to provide convenient fits to the shape of the extinction efficiency curve. We show that the errors associated with these simple fits in the Wide Field Camera 3 (WFC3), J, H, and K wavebands are ˜ 10 per cent. These fits allow for the extinction cross-section or opacity of the condensate species to be easily included in retrieval analyses of transmission spectra. We discuss prospects for future experimental work. The compilation of the optical constants and LX-MIE is publicly available as part of the open-source Exoclime Simulation Platform (http://www.exoclime.org).
Radiance distribution over a ruffled sea: contributions from glitter, sky, and ocean.
Plass, G N; Kattawar, G W; Guinn, J A
1976-12-01
The upward radiance just above the ocean surface and at the top of the atmosphere is calculated for a realistic model including an ocean surface with waves. The separate contributions of the sun glitter, the reflected sky radiance, and the upwelling photons from the ocean are calculated. The Monte Carlo method takes account of both Rayleigh scattering by the molecules and Mie scattering by the aerosols as well as molecular and aerosol absorption in the atmosphere. Similarly, in the ocean, both Rayleigh scattering by the water molecules and Mie scattering by the hydrosols as well as absorption by the water molecules and hydrosols are considered. Separate single-scattering functions are used for the aerosols and hydrosols calculated from the Mie theory. Both the reflected and refracted rays, as well as the rays that undergo total internal reflection, are followed at the ocean surface. The wave slope is chosen from the Cox-Munk distribution. The upward radiance just above the ocean surface outside of the sun glitter region is dominated by the reflected sky radiation from the horizon to a nadir angle of observation of from 68 degrees to 23 degrees depending on the azimuthal angle and the solar zenith angle; the upwelling photons from the ocean dominate over the remainder of the hemisphere, except in the region of the sun glitter which centers around the mirror image of the sun on a calm ocean. It is possible to answer various questions about the interaction of light with the ocean from the quantitative results presented here.
High Spectral Resolution Lidar: System Calibration
NASA Astrophysics Data System (ADS)
Vivek Vivekanandan, J.; Morley, Bruce; Spuler, Scott; Eloranta, Edwin
2015-04-01
One of the unique features of the high spectral resolution lidar (HSRL) is simultaneous measurements of backscatter and extinction of atmosphere. It separates molecular scattering from aerosol and cloud particle backscatter based on their Doppler spectrum width. Scattering from aerosol and cloud particle are referred as Mie scattering. Molecular or Rayleigh scattering is used as a reference for estimating aerosol extinction and backscatter cross-section. Absolute accuracy of the backscattered signals and their separation into Rayleigh and Mie scattering depends on spectral purity of the transmitted signals, accurate measurement of transmit power, and precise performance of filters. Internal calibration is used to characterize optical subsystems Descriptions of high spectral resolution lidar system and its measurement technique can be found in Eloronta (2005) and Hair et al.(2001). Four photon counting detectors are used to measure the backscatter from the combined Rayleigh and molecular scattering (high and low gain), molecular scattering and cross-polarized signal. All of the detectors are sensitive to crosstalk or leakage through the optical filters used to separate the received signals and special data files are used to remove these effects as much as possible. Received signals are normalized with respect to the combined channel response to Mie and Rayleigh scattering. The laser transmit frequency is continually monitored and tuned to the 1109 Iodine absorption line. Aerosol backscatter cross-section is measured by referencing the aerosol return signal to the molecular return signal. Extinction measurements are calculated based on the differences between the expected (theoretical) and actual change in the molecular return. In this paper an overview of calibration of the HSRL is presented. References: Eloranta, E. W., High Spectral Resolution Lidar in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Klaus Weitkamp editor, Springer Series in Optical Sciences, Springer-Verlag, New York, 2005. Hair, JW; Caldwell, LM; Krueger, D. A.Krueger, and C.Y. She 2001: High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles. Appl. Optics, 40, 5280-5294.
NASA Technical Reports Server (NTRS)
Shimizu, H.; Kobayasi, T.; Inaba, H.
1979-01-01
A method of remote measurement of the particle size and density distribution of water droplets was developed. In this method, the size of droplets is measured from the Mie scattering parameter which is defined as the total-to-backscattering ratio of the laser beam. The water density distribution is obtained by a combination of the Mie scattering parameter and the extinction coefficient of the laser beam. This method was examined experimentally for the mist generated by an ultrasonic mist generator and applied to clouds containing rain and snow. Compared with the conventional sampling method, the present method has advantages of remote measurement capability and improvement in accuracy.
Direct Demonstration of the Concept of Unrestricted Effective-Medium Approximation
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Zhanna M.; Zakharova, Nadezhda T.
2014-01-01
The modified unrestricted effective-medium refractive index is defined as one that yields accurate values of a representative set of far-field scattering characteristics (including the scattering matrix) for an object made of randomly heterogeneous materials. We validate the concept of the modified unrestricted effective-medium refractive index by comparing numerically exact superposition T-matrix results for a spherical host randomly filled with a large number of identical small inclusions and Lorenz-Mie results for a homogeneous spherical counterpart. A remarkable quantitative agreement between the superposition T-matrix and Lorenz-Mie scattering matrices over the entire range of scattering angles demonstrates unequivocally that the modified unrestricted effective-medium refractive index is a sound (albeit still phenomenological) concept provided that the size parameter of the inclusions is sufficiently small and their number is sufficiently large. Furthermore, it appears that in cases when the concept of the modified unrestricted effective-medium refractive index works, its actual value is close to that predicted by the Maxwell-Garnett mixing rule.
Particle Image Velocimetry Applications Using Fluorescent Dye-Doped Particles
NASA Technical Reports Server (NTRS)
Petrosky, Brian J.; Maisto, Pietro; Lowe, K. Todd; Andre, Matthieu A.; Bardet, Philippe M.; Tiemsin, Patsy I.; Wohl, Christopher J.; Danehy, Paul M.
2015-01-01
Polystyrene latex sphere particles are widely used to seed flows for velocimetry techniques such as Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV). These particles may be doped with fluorescent dyes such that signals spectrally shifted from the incident laser wavelength may be detected via Laser Induced Fluorescence (LIF). An attractive application of the LIF signal is achieving velocimetry in the presence of strong interference from laser scatter, opening up new research possibilities very near solid surfaces or at liquid/gas interfaces. Additionally, LIF signals can be used to tag different fluid streams to study mixing. While fluorescence-based PIV has been performed by many researchers for particles dispersed in water flows, the current work is among the first in applying the technique to micron-scale particles dispersed in a gas. A key requirement for such an application is addressing potential health hazards from fluorescent dyes; successful doping of Kiton Red 620 (KR620) has enabled the use of this relatively safe dye for fluorescence PIV for the first time. In this paper, basic applications proving the concept of PIV using the LIF signal from KR620-doped particles are exhibited for a free jet and a twophase flow apparatus. Results indicate that while the fluorescence PIV techniques are roughly 2 orders of magnitude weaker than Mie scattering, they provide a viable method for obtaining data in flow regions previously inaccessible via standard PIV. These techniques have the potential to also complement Mie scattering signals, for example in multi-stream and/or multi-phase experiments.
LANDSAT-D investigations in snow hydrology
NASA Technical Reports Server (NTRS)
Dozier, J.
1983-01-01
The atmospheric radiative transfer calculation program (ATARD) and its supporting programs (setting up atmospheric profile, making Mie tables and an exponential-sum-fitting table) were completed. More sophisticated treatment of aerosol scattering (including angular phase function or asymmetric factor) and multichannel analysis of results from ATRAD are being developed. Some progress was made on a Monte Carlo program for examining two dimensional effects, specifically a surface boundary condition that varies across a scene. The MONTE program combines ATRAD and the Monte Carlo method together to produce an atmospheric point spread function. Currently the procedure passes monochromatic tests and the results are reasonable.
Engineered disorder and light propagation in a planar photonic glass
Romanov, Sergei G.; Orlov, Sergej; Ploss, Daniel; Weiss, Clemens K.; Vogel, Nicolas; Peschel, Ulf
2016-01-01
The interaction of light with matter strongly depends on the structure of the latter at wavelength scale. Ordered systems interact with light via collective modes, giving rise to diffraction. In contrast, completely disordered systems are dominated by Mie resonances of individual particles and random scattering. However, less clear is the transition regime in between these two extremes, where diffraction, Mie resonances and near-field interaction between individual scatterers interplay. Here, we probe this transitional regime by creating colloidal crystals with controlled disorder from two-dimensional self-assembly of bidisperse spheres. Choosing the particle size in a way that the small particles are transparent in the spectral region of interest enables us to probe in detail the effect of increasing positional disorder on the optical properties of the large spheres. With increasing disorder a transition from a collective optical response characterized by diffractive resonances to single particles scattering represented by Mie resonances occurs. In between these extremes, we identify an intermediate, hopping-like light transport regime mediated by resonant interactions between individual spheres. These results suggest that different levels of disorder, characterized not only by absence of long range order but also by differences in short-range correlation and interparticle distance, exist in colloidal glasses. PMID:27277521
Wind Measurements from 15 to 50 Km with a Doppler Rayleigh Lidar
NASA Technical Reports Server (NTRS)
Garnier, A.; Chanin, M. L.
1992-01-01
The possibility to measure the mean wind in the high stratosphere using a Doppler Rayleigh lidar was demonstrated in 1989, and the Observatory of Haute Province (44 deg N, 6 deg E). It was originally developed to cover the height range 25-60 km, a region where the radars cannot operate; therefore, the system was designed to cover altitudes where the signal is only due to the Rayleigh backscattering. The instrument is currently set up at the Center d'Essais des Landes (44 deg N, 1 deg W) where it operated during the Dynamic Adapted Network for the Atmosphere Campaign in 1990. As the contribution of the Mie scattering was very low during this period above southern France, we have obtained vertical wind profiles in the stratosphere down to 15 km. Since the eruption of the Pinatubo volcano in Jun. 1991, the contribution of Mie scattering has increased between 15 and 30 km and it was very difficult with the original system to obtain wind measurements below 30 km. We will show that by using the same method with slightly different characteristics of the system, it is possible to measure the wind in the presence of Mie scattering. The first experimental results are presented.
NASA Technical Reports Server (NTRS)
Maggiori, D.
1981-01-01
All of the phenomena which influence the propagation of radiowaves at frequencies above 10 GHz (attenuation, depolarization, scintillation) can by intensified by parameters directly derived from a solution of individual scatter, naturally in addition to be meteorological elements which characterize the physical medium. The diffusion caused by rainy precipitation was studied using Mie's algorithm for rain composed of spherical drops, and Oguchi's algorithm for rain composed of drops in an ellipsoidal form with axes of rotational symmetry arrange along the vertical line of a generic reference point. Specific phase displacement and attenuation along the principal planes, propagation of radiowaves in generic polarization, and propagation with inclined axes are also considered.
Dust-concentration measurement based on Mie scattering of a laser beam
Yu, Xiaoyu; Shi, Yunbo; Wang, Tian; Sun, Xu
2017-01-01
To realize automatic measurement of the concentration of dust particles in the air, a theory for dust concentration measurement was developed, and a system was designed to implement the dust concentration measurement method based on laser scattering. In the study, the principle of dust concentration detection using laser scattering is studied, and the detection basis of Mie scattering theory is determined. Through simulation, the influence of the incident laser wavelength, dust particle diameter, and refractive index of dust particles on the scattered light intensity distribution are obtained for determining the scattered light intensity curves of single suspended dust particles under different characteristic parameters. A genetic algorithm was used to study the inverse particle size distribution, and the reliability of the measurement system design is proven theoretically. The dust concentration detection system, which includes a laser system, computer circuitry, air flow system, and control system, was then implemented according to the parameters obtained from the theoretical analysis. The performance of the designed system was evaluated. Experimental results show that the system performance was stable and reliable, resulting in high-precision automatic dust concentration measurement with strong anti-interference ability. PMID:28767662
Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators
Spinelli, P.; Verschuuren, M.A.; Polman, A.
2012-01-01
Reflection is a natural phenomenon that occurs when light passes the interface between materials with different refractive index. In many applications, such as solar cells or photodetectors, reflection is an unwanted loss process. Many ways to reduce reflection from a substrate have been investigated so far, including dielectric interference coatings, surface texturing, adiabatic index matching and scattering from plasmonic nanoparticles. Here we present an entirely new concept that suppresses the reflection of light from a silicon surface over a broad spectral range. A two-dimensional periodic array of subwavelength silicon nanocylinders designed to possess strongly substrate-coupled Mie resonances yields almost zero total reflectance over the entire spectral range from the ultraviolet to the near-infrared. This new antireflection concept relies on the strong forward scattering that occurs when a scattering structure is placed in close proximity to a high-index substrate with a high optical density of states. PMID:22353722
Tissue dispersion measurement techniques using optical coherence tomography
NASA Astrophysics Data System (ADS)
Photiou, Christos; Pitris, Costas
2017-02-01
Dispersion, a result of wavelength-dependent index of refraction variations, causes pulse-width broadening with detrimental effects in many pulsed-laser applications. It is also considered to be one of the major causes of resolution degradation in Optical Coherence Tomography (OCT). However, dispersion is material dependent and, in tissue, Group Velocity Dispersion (GVD) could be used, for example, to detect changes associated with early cancer and result in more accurate disease diagnosis. In this summary we compare different techniques for estimating the GVD from OCT images, in order to evaluate their accuracy and applicability in highly scattering samples such as muscle and adipose tissue. The methods investigated included estimation of the GVD from (i) the point spread function (PSF) degradation, (ii) the shift (walk-off) between images taken at different center wavelengths and (iii) the second derivative of the spectral phase. The measurements were degraded by the presence of strong Mie scattering and speckle noise with the most robust being the PSF degradation and the least robust the phase derivative method. If the GVD is to be used to provide sensitive diagnostic information from highly scattering human tissues, it would be preferable to use the resolution degradation as an estimator of GVD.
On the shape of martian dust and water ice aerosols
NASA Astrophysics Data System (ADS)
Pitman, K. M.; Wolff, M. J.; Clancy, R. T.; Clayton, G. C.
2000-10-01
Researchers have often calculated radiative properties of Martian aerosols using either Mie theory for homogeneous spheres or semi-empirical theories. Given that these atmospheric particles are randomly oriented, this approach seems fairly reasonable. However, the idea that randomly oriented nonspherical particles have scattering properties equivalent to even a select subset of spheres is demonstratably false} (Bohren and Huffman 1983; Bohren and Koh 1985, Appl. Optics, 24, 1023). Fortunately, recent computational developments now enable us to directly compute scattering properties for nonspherical particles. We have combined a numerical approach for axisymmetric particle shapes, i.e., cylinders, disks, spheroids (Waterman's T-Matrix approach as improved by Mishchenko and collaborators; cf., Mishchenko et al. 1997, JGR, 102, D14, 16,831), with a multiple-scattering radiative transfer algorithm to constrain the shape of water ice and dust aerosols. We utilize a two-stage iterative process. First, we empirically derive a scattering phase function for each aerosol component (starting with some ``guess'') from radiative transfer models of MGS Thermal Emission Spectrometer Emission Phase Function (EPF) sequences (for details on this step, see Clancy et al., DPS 2000). Next, we perform a series of scattering calculations, adjusting our parameters to arrive at a ``best-fit'' theoretical phase function. In this presentation, we provide details on the second step in our analysis, including the derived phase functions (for several characteristic EPF sequences) as well as the particle properties of the best-fit theoretical models. We provide a sensitivity analysis for the EPF model-data comparisons in terms of perturbations in the particle properties (i.e., range of axial ratios, sizes, refractive indices, etc). This work is supported through NASA grant NAGS-9820 (MJW) and JPL contract no. 961471 (RTC).
Physical insight into light scattering by photoreceptor cell nuclei.
Kreysing, Moritz; Boyde, Lars; Guck, Jochen; Chalut, Kevin J
2010-08-01
A recent study showed that the rod photoreceptor cell nuclei in the retina of nocturnal and diurnal mammals differ considerably in architecture: the location of euchromatin and heterochromatin in the nucleus is interchanged. This inversion has significant implications for the refractive index distribution and the light scattering properties of the nucleus. Here, we extend previous two-dimensional analysis to three dimensions (3D) by using both a numerical finite-difference time-domain and an analytic Mie theory approach. We find that the specific arrangement of the chromatin phases in the nuclear core-shell models employed have little impact on the far-field scattering cross section. However, scattering in the near field, which is the relevant regime inside the retina, shows a significant difference between the two architectures. The "inverted" photoreceptor cell nuclei of nocturnal mammals act as collection lenses, with the lensing effect being much more pronounced in 3D than in two dimensions. This lensing helps to deliver light efficiently to the light-sensing outer segments of the rod photoreceptor cells and thereby improve night vision.
Feasibility of Rayleigh Scattering Flow Diagnostics in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Herring, Gregory C.; Lee, Joseph W.; Goad, William K.
2015-01-01
Laser-based Rayleigh light scattering (RLS) was performed in the National Transonic Facility (NTF) at NASA Langley Research Center. The goal was to determine if the free-stream flow undergoes clustering (early stage of condensation from gas to liquid) or remains in a pure diatomic molecular phase. Data indicate that clusters are not observable down to levels of 10% of the total light scatter for a variety of total pressures at one N2 cryogenic-mode total temperature (Tt = -50 F = 227 K) and one air-mode temperature (Tt = +130 F = 327 K). Thus RLS appears viable as a qualitative or quantitative diagnostic for flow density in NTF in the future. Particles are distinguished from optically unresolvable clusters because they are much larger and individually resolvable in the laser beam image with Mie scattering. The same RLS apparatus was also used, without modification, to visualize naturally occurring particles entrained in the flow for both cryogenic and air-modes. Estimates of the free-stream particle flux are presented, which may be important for interpretation of laminar-to-turbulent boundary-layer transition studies. 1
Laser velocimetry with fluorescent dye-doped polystyrene microspheres.
Lowe, K Todd; Maisto, Pietro; Byun, Gwibo; Simpson, Roger L; Verkamp, Max; Danehy, Paul M; Tiemsin, Pacita I; Wohl, Christopher J
2013-04-15
Simultaneous Mie scattering and laser-induced fluorescence (LIF) signals are obtained from individual polystyrene latex microspheres dispersed in an air flow. Microspheres less than 1 μm mean diameter were doped with two organic fluorescent dyes, Rhodamine B (RhB) and dichlorofluorescein (DCF), intended either to provide improved particle-based flow velocimetry in the vicinity of surfaces or to provide scalar flow information (e.g., marking one of two fluid streams). Both dyes exhibit measureable fluorescence signals that are on the order of 10(-3) to 10(-4) times weaker than the simultaneously measured Mie signals. It is determined that at the conditions measured, 95.5% of RhB LIF signals and 32.2% of DCF signals provide valid laser-Doppler velocimetry measurements compared with the Mie scattering validation rate with 6.5 W of 532 nm excitation, while RhB excited with 1.0 W incident laser power still exhibits 95.4% valid velocimetry signals from the LIF channel. The results suggest that the method is applicable to wind tunnel measurements near walls where laser flare can be a limiting factor and monodisperse particles are essential.
NASA Astrophysics Data System (ADS)
Elnoby, Rasha M.; Mourad, M. Hussein; Elnaby, Salah L. Hassab; Abou Kana, Maram T. H.
2018-05-01
Solar based cells coated by nanoparticles (NPs) acknowledge potential utilizing as a part of photovoltaic innovation. The acquired silicon solar cells (Si-SCs) coated with different sizes of silver nanoparticles (Ag NPs) as well as uncoated were fabricated in our lab. The sizes and optical properties of prepared NPs were characterized by spectroscopic techniques and Mie theory respectively. The reflectivity of Si-SCs showed reduction of this property as the size of NPs increased. Electrical properties as open circuit current, fill factor and output power density were assessed and discussed depending on point of view of Mie theory for the optical properties of NPs. Also, photostabilities of SCs were assessed using diode laser of wavelength 450 nm and power 300 mW. Coated SCs with the largest Ag NPs size showed the highest Photostability due to its highest scattering efficiency according to Mie theory concept.
NASA Astrophysics Data System (ADS)
Sumlin, Benjamin J.; Heinson, William R.; Chakrabarty, Rajan K.
2018-01-01
The complex refractive index m = n + ik of a particle is an intrinsic property which cannot be directly measured; it must be inferred from its extrinsic properties such as the scattering and absorption cross-sections. Bohren and Huffman called this approach "describing the dragon from its tracks", since the inversion of Lorenz-Mie theory equations is intractable without the use of computers. This article describes PyMieScatt, an open-source module for Python that contains functionality for solving the inverse problem for complex m using extensive optical and physical properties as input, and calculating regions where valid solutions may exist within the error bounds of laboratory measurements. Additionally, the module has comprehensive capabilities for studying homogeneous and coated single spheres, as well as ensembles of homogeneous spheres with user-defined size distributions, making it a complete tool for studying the optical behavior of spherical particles.
Optical Limiting Based on Liquid-Liquid Immiscibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Exarhos, Gregory J.; Ferris, Kim F.; Samuels, William D.
A nonionic surfactant is used to stabilize a dispersed droplet phase in a continuous liquid phase when two immiscible liquids are mixed. As both liquid phases approach the index matched condition, interfacial scattering is suppressed, and the mixture takes on the characteristics of a Christiansen-Shelyubskii filter. If, in addition, one of the liquids exhibits a substantial nonlinear optical response, then interfacial light scattering can be reversibly turned on when a laser beam incident upon the filter exceeds a critical fluence. To demonstrate this effect, an organic phase (dichloroethane) was dispersed in an aqueous phase containing sodium thiocyanate (NaSCN) using anmore » alkyl end-capped polyethylene glycol ether. The salt concentration was adjusted so that the index-matched mixture exhibited a large pass band. Marked optical limiting was observed through this transparent medium under conditions where the focused second-harmonic output of a Q-Switched Nd:YAG laser was on the order of about 50 mJ/cm2. An open-aperture Z-scan technique was used to quantify the limiting behavior. Since the thiocyanate anion is both isostructural and isoelectronic with carbon disulfide which exhibits a large optical nonlinearity, the mechanism of optical limiting is thought to be a nonlinear shift in the aqueous fluid index of refraction, resulting in an index mismatch between the disparate phases at high laser fluence. Index mismatch between the two phases leads to multiple reflections, loss of coherence, and a significant transmission decrease due to Mie scattering. The presence of many boundaries significantly amplifies the effect. Experiments also were conducted on the phase-inverted system (aqueous phase in organic liquid). Fundamental studies of such systems are used to verify theoretical predictions of the limiting effect, and aid in the design and development of improved limiters based upon this optical deflection approach.« less
Lectures on the scattering of light. [by dielectric sphere
NASA Technical Reports Server (NTRS)
Saxon, D. S.
1974-01-01
The exact (Mie) theory for the scattering of a plane wave by a dielectric sphere is presented. Since this infinite series solution is computationally impractical for large spheres, another formulation is given in terms of an integral equation valid for a bounded, but otherwise general array of scatterers. This equation is applied to the scattering by a single sphere, and several methods are suggested for approximating the scattering cross section in closed form. A tensor scattering matrix is introduced, in terms of which some general scattering theorems are derived. The application of the formalism to multiple scattering is briefly considered.
Ultraviolet refractometry using field-based light scattering spectroscopy
Fu, Dan; Choi, Wonshik; Sung, Yongjin; Oh, Seungeun; Yaqoob, Zahid; Park, YongKeun; Dasari, Ramachandra R.; Feld, Michael S.
2010-01-01
Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angular scattering distribution of single microspheres immersed in homogeneous media is measured over the wavelength range 260 to 315 nm using quantitative phase microscopy. By least square fitting the observed scattering distribution with Mie scattering theory, the refractive index of either the sphere or the immersion medium can be determined provided that one is known a priori. Using this method, we have measured the refractive index dispersion of SiO2 spheres and bovine serum albumin (BSA) solutions in the deep UV region. Specific refractive index increments of BSA are also extracted. Typical accuracy of the present refractive index technique is ≤0.003. The precision of refractive index measurements is ≤0.002 and that of specific refractive index increment determination is ≤0.01 mL/g. PMID:20372622
Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy
Lau, Condon; Šćepanović, Obrad; Mirkovic, Jelena; McGee, Sasha; Yu, Chung-Chieh; Fulghum, Stephen; Wallace, Michael; Tunnell, James; Bechtel, Kate; Feld, Michael
2009-01-01
Model-based light scattering spectroscopy (LSS) seemed a promising technique for in-vivo diagnosis of dysplasia in multiple organs. In the studies, the residual spectrum, the difference between the observed and modeled diffuse reflectance spectra, was attributed to single elastic light scattering from epithelial nuclei, and diagnostic information due to nuclear changes was extracted from it. We show that this picture is incorrect. The actual single scattering signal arising from epithelial nuclei is much smaller than the previously computed residual spectrum, and does not have the wavelength dependence characteristic of Mie scattering. Rather, the residual spectrum largely arises from assuming a uniform hemoglobin distribution. In fact, hemoglobin is packaged in blood vessels, which alters the reflectance. When we include vessel packaging, which accounts for an inhomogeneous hemoglobin distribution, in the diffuse reflectance model, the reflectance is modeled more accurately, greatly reducing the amplitude of the residual spectrum. These findings are verified via numerical estimates based on light propagation and Mie theory, tissue phantom experiments, and analysis of published data measured from Barrett’s esophagus. In future studies, vessel packaging should be included in the model of diffuse reflectance and use of model-based LSS should be discontinued. PMID:19405760
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Indetermination of particle sizing by laser diffraction in the anomalous size ranges
NASA Astrophysics Data System (ADS)
Pan, Linchao; Ge, Baozhen; Zhang, Fugen
2017-09-01
The laser diffraction method is widely used to measure particle size distributions. It is generally accepted that the scattering angle becomes smaller and the angles to the location of the main peak of scattered energy distributions in laser diffraction instruments shift to smaller values with increasing particle size. This specific principle forms the foundation of the laser diffraction method. However, this principle is not entirely correct for non-absorbing particles in certain size ranges and these particle size ranges are called anomalous size ranges. Here, we derive the analytical formulae for the bounds of the anomalous size ranges and discuss the influence of the width of the size segments on the signature of the Mie scattering kernel. This anomalous signature of the Mie scattering kernel will result in an indetermination of the particle size distribution when measured by laser diffraction instruments in the anomalous size ranges. By using the singular-value decomposition method we interpret the mechanism of occurrence of this indetermination in detail and then validate its existence by using inversion simulations.
Evaluation of advanced light scattering technology for microgravity experiments
NASA Technical Reports Server (NTRS)
Fredericks, W. J.; Rosenblum, W. M.
1990-01-01
The capabilities of modern light scattering equipment and the uses it might have in studying processes in microgravity are evaluated. Emphasis is on the resolution of polydisperse systems. This choice was made since a major use of light scattering was expected to be the study of crystal growth of macromolecules in low gravity environments. An evaluation of a modern photon correlation spectrometer and a Mie spectrometer is presented.
Analyses of scattering characteristics of chosen anthropogenic aerosols
NASA Astrophysics Data System (ADS)
Kaszczuk, Miroslawa; Mierczyk, Zygmunt; Muzal, Michal
2008-10-01
In the work, analyses of scattering profile of chosen anthropogenic aerosols for two wavelengths (λ1 = 1064 nm and λ2 = 532 nm) were made. As an example of anthropogenic aerosol three different pyrotechnic mixtures (DM11, M2, M16) were taken. Main parameters of smoke particles were firstly analyzed and well described, taking particle shape and size into special consideration. Shape of particles was analyzed on the basis of SEM pictures, and particle size was measured. Participation of particles in each fixed fraction characterized by range of sizes was analyzed and parameters of smoke particles of characteristic sizes and function describing aerosol size distribution (ASD) were determinated. Analyses of scattering profiles were carried out on the basis of both model of scattering on spherical and nonspherical particles. In the case of spherical particles Rayleigh-Mie model was used and for nonspherical particles analyses firstly model of spheroids was used, and then Rayleigh-Mie one. For each characteristic particle one calculated value of four parameters (effective scattering cross section σSCA, effective backscattering cross section σBSCA, scattering efficiency QSCA, backscattering efficiency QBSCA) and value of backscattering coefficient β for whole particles population. Obtained results were compared with the same parameters calculated for natural aerosol (cirrus cloud).
Depolarization of an Ultrashort Pulse in a Disordered Ensemble of Mie Particles
NASA Astrophysics Data System (ADS)
Gorodnichev, E. E.; Ivliev, S. V.; Kuzovlev, A. I.; Rogozkin, D. B.
2017-12-01
We study propagation of an ultrashort pulse of polarized light through a turbid medium with the Reynolds-McCormick phase function. Within the basic mode approach to the vector radiative transfer equation, the temporal profile of the degree of polarization is calculated analytically with the use of the small-angle approximation. The degree of polarization is shown to be described by the self-similar dependence on some combination of the transport scattering coefficient, the temporal delay and the sample thickness. Our results are in excellent agreement with the data of numerical simulations carried out previously for aqueous suspension of polystyrene microspheres.
Optical image of a cometary nucleus: 1980 flyby of Comet Encke
NASA Technical Reports Server (NTRS)
Wells, W. C.; Benson, R. S.; Anderson, A. D.; Gal, G.
1974-01-01
The feasibility was investigated of obtaining optical images of a cometary nucleus via a flyby of Comet Encke. A physical model of the dust cloud surrounding the nucleus was developed by using available physical data and theoretical knowledge of cometary physics. Using this model and a Mie scattering code, calculations were made of the absolute surface brightness of the dust in the line of sight of the on-board camera and the relative surface brightness of the dust compared to the nucleus. The brightness was calculated as a function of heliocentric distance and for different phase angles (sun-comet-spacecraft angle).
An investigation of the forward scattering theorem
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1987-01-01
The calculation of an EM wave's extinction loss during propagation within an inhomogeneous medium, as in active and passive remote sensing modeling, can be undertaken either through the summation of the scattering and absorption losses or through the use of the forward scattering theorem. Attention is presently given to the similarities and differences of these two approaches as a function of dielectric properties of a spherical scatterer and the incident frequency. Scattering loss is obtainable by integrating the magnitude-squared of the scattered field over a spherical surface surrounding the scatterer; the scattered field and the field within the scatterer are computed according to Mie theory.
A Multiple Scattering Polarized Radiative Transfer Model: Application to HD 189733b
NASA Astrophysics Data System (ADS)
Kopparla, Pushkar; Natraj, Vijay; Zhang, Xi; Swain, Mark R.; Wiktorowicz, Sloane J.; Yung, Yuk L.
2016-01-01
We present a multiple scattering vector radiative transfer model that produces disk integrated, full phase polarized light curves for reflected light from an exoplanetary atmosphere. We validate our model against results from published analytical and computational models and discuss a small number of cases relevant to the existing and possible near-future observations of the exoplanet HD 189733b. HD 189733b is arguably the most well observed exoplanet to date and the only exoplanet to be observed in polarized light, yet it is debated if the planet’s atmosphere is cloudy or clear. We model reflected light from clear atmospheres with Rayleigh scattering, and cloudy or hazy atmospheres with Mie and fractal aggregate particles. We show that clear and cloudy atmospheres have large differences in polarized light as compared to simple flux measurements, though existing observations are insufficient to make this distinction. Futhermore, we show that atmospheres that are spatially inhomogeneous, such as being partially covered by clouds or hazes, exhibit larger contrasts in polarized light when compared to clear atmospheres. This effect can potentially be used to identify patchy clouds in exoplanets. Given a set of full phase polarimetric measurements, this model can constrain the geometric albedo, properties of scattering particles in the atmosphere, and the longitude of the ascending node of the orbit. The model is used to interpret new polarimetric observations of HD 189733b in a companion paper.
Multichannel forward scattering meter for oceanography
NASA Technical Reports Server (NTRS)
Mccluney, W. R.
1974-01-01
An instrument was designed and built that measures the light scattered at several angles in the forward direction simultaneously. The instrument relies on an optical multiplexing technique for frequency encoding of the different channels suitable for detection by a single photodetector. A Mie theory computer program was used to calculate the theoretical volume scattering function for a suspension of polystyrene latex spheres. The agreement between the theoretical and experimental volume scattering functions is taken as a verification of the calibration technique used.
On the size dependence of the scattering greenhouse effect of CO2 ice particles
NASA Astrophysics Data System (ADS)
Kitzmann, D.; Patzer, A. B. C.; Rauer, H.
2011-10-01
In this contribution we study the potential greenhouse effect due to scattering of CO2 ice clouds for atmospheric conditions of terrestrial extrasolar planets. Therefore, we calculate the scattering and absorption properties of CO2 ice particles using Mie theory for assumed particle size distributions with different effective radii and particle densities to determine the scattering and absorption characteristics of such clouds. Implications especially in view of a potential greenhouse warming of the planetary surface are discussed.
Fall, Mandiaye; Boutami, Salim; Glière, Alain; Stout, Brian; Hazart, Jerome
2013-06-01
A combination of the multilevel fast multipole method (MLFMM) and boundary element method (BEM) can solve large scale photonics problems of arbitrary geometry. Here, MLFMM-BEM algorithm based on a scalar and vector potential formulation, instead of the more conventional electric and magnetic field formulations, is described. The method can deal with multiple lossy or lossless dielectric objects of arbitrary geometry, be they nested, in contact, or dispersed. Several examples are used to demonstrate that this method is able to efficiently handle 3D photonic scatterers involving large numbers of unknowns. Absorption, scattering, and extinction efficiencies of gold nanoparticle spheres, calculated by the MLFMM, are compared with Mie's theory. MLFMM calculations of the bistatic radar cross section (RCS) of a gold sphere near the plasmon resonance and of a silica coated gold sphere are also compared with Mie theory predictions. Finally, the bistatic RCS of a nanoparticle gold-silver heterodimer calculated with MLFMM is compared with unmodified BEM calculations.
Multipolar second-harmonic generation by Mie-resonant dielectric nanoparticles
NASA Astrophysics Data System (ADS)
Smirnova, Daria; Smirnov, Alexander I.; Kivshar, Yuri S.
2018-01-01
By combining analytical and numerical approaches, we study resonantly enhanced second-harmonic generation by individual high-index dielectric nanoparticles made of centrosymmetric materials. Considering both bulk and surface nonlinearities, we describe second-harmonic nonlinear scattering from a silicon nanoparticle optically excited in the vicinity of the magnetic and electric dipolar resonances. We discuss the contributions of different nonlinear sources and the effect of the low-order optical Mie modes on the characteristics of the generated far field. We demonstrate that the multipolar expansion of the radiated field is dominated by dipolar and quadrupolar modes (two axially symmetric electric quadrupoles, an electric dipole, and a magnetic quadrupole) and the interference of these modes can ensure directivity of the nonlinear scattering. The developed multipolar analysis can be instructive for interpreting the far-field measurements of the nonlinear scattering and it provides prospective insights into a design of complementary metal-oxide-semiconductor compatible nonlinear nanoantennas fully integrated with silicon-based photonic circuits, as well as methods of nonlinear diagnostics.
NASA Astrophysics Data System (ADS)
Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Wang, Zhen; Labonotte, Laurent C.; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred
2018-04-01
Initially unpolarized solar radiation becomes polarized by scattering in the Earth's atmosphere. In particular molecular scattering (Rayleigh scattering) polarizes electromagnetic radiation, but also scattering of radiation at aerosols, cloud droplets (Mie scattering) and ice crystals polarizes. Each atmospheric constituent produces a characteristic polarization signal, thus spectro-polarimetric measurements are frequently employed for remote sensing of aerosol and cloud properties. Retrieval algorithms require efficient radiative transfer models. Usually, these apply the plane-parallel approximation (PPA), assuming that the atmosphere consists of horizontally homogeneous layers. This allows to solve the vector radiative transfer equation (VRTE) efficiently. For remote sensing applications, the radiance is considered constant over the instantaneous field-of-view of the instrument and each sensor element is treated independently in plane-parallel approximation, neglecting horizontal radiation transport between adjacent pixels (Independent Pixel Approximation, IPA). In order to estimate the errors due to the IPA approximation, three-dimensional (3D) vector radiative transfer models are required. So far, only a few such models exist. Therefore, the International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to provide benchmark results for polarized radiative transfer. The group has already performed an intercomparison for one-dimensional (1D) multi-layer test cases [phase A, 1]. This paper presents the continuation of the intercomparison project (phase B) for 2D and 3D test cases: a step cloud, a cubic cloud, and a more realistic scenario including a 3D cloud field generated by a Large Eddy Simulation (LES) model and typical background aerosols. The commonly established benchmark results for 3D polarized radiative transfer are available at the IPRT website (http://www.meteo.physik.uni-muenchen.de/ iprt).
Retrieval of the aerosol size distribution in the complex anomalous diffraction approximation
NASA Astrophysics Data System (ADS)
Franssens, Ghislain R.
This contribution reports some recently achieved results in aerosol size distribution retrieval in the complex anomalous diffraction approximation (ADA) to MIE scattering theory. This approximation is valid for spherical particles that are large compared to the wavelength and have a refractive index close to 1. The ADA kernel is compared with the exact MIE kernel. Despite being a simple approximation, the ADA seems to have some practical value for the retrieval of the larger modes of tropospheric and lower stratospheric aerosols. The ADA has the advantage over MIE theory that an analytic inversion of the associated Fredholm integral equation becomes possible. In addition, spectral inversion in the ADA can be formulated as a well-posed problem. In this way, a new inverse formula was obtained, which allows the direct computation of the size distribution as an integral over the spectral extinction function. This formula is valid for particles that both scatter and absorb light and it also takes the spectral dispersion of the refractive index into account. Some details of the numerical implementation of the inverse formula are illustrated using a modified gamma test distribution. Special attention is given to the integration of spectrally truncated discrete extinction data with errors.
Localized Plasmon resonance in metal nanoparticles using Mie theory
NASA Astrophysics Data System (ADS)
Duque, J. S.; Blandón, J. S.; Riascos, H.
2017-06-01
In this work, scattering light by colloidal metal nanoparticles with spherical shape was studied. Optical properties such as diffusion efficiencies of extinction and absorption Q ext and Q abs were calculated using Mie theory. We employed a MATLAB program to calculate the Mie efficiencies and the radial dependence of electric field intensities emitted for colloidal metal nanoparticles (MNPs). By UV-Vis spectroscopy we have determined the LSPR for Cu nanoparticles (CuNPs), Ni nanoparticles (NiNPs) and Co nanoparticles (CoNPs) grown by laser ablation technique. The peaks of resonances appear in 590nm, 384nm and 350nm for CuNPs, NiNPs and CoNPs respectively suspended in water. Changing the medium to acetone and ethanol we observed a shift of the resonance peaks, these values agreed with our simulations results.
Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars.
She, C Y
2001-09-20
It is well known that scattering lidars, i.e., Mie, aerosol-wind, Rayleigh, high-spectral-resolution, molecular-wind, rotational Raman, and vibrational Raman lidars, are workhorses for probing atmospheric properties, including the backscatter ratio, aerosol extinction coefficient, temperature, pressure, density, and winds. The spectral structure of molecular scattering (strength and bandwidth) and its constituent spectra associated with Rayleigh and vibrational Raman scattering are reviewed. Revisiting the correct name by distinguishing Cabannes scattering from Rayleigh scattering, and sharpening the definition of each scattering component in the Rayleigh scattering spectrum, the review allows a systematic, logical, and useful comparison in strength and bandwidth between each scattering component and in receiver bandwidths (for both nighttime and daytime operation) between the various scattering lidars for atmospheric sensing.
Accurate in situ measurement of complex refractive index and particle size in intralipid emulsions
NASA Astrophysics Data System (ADS)
Dong, Miao L.; Goyal, Kashika G.; Worth, Bradley W.; Makkar, Sorab S.; Calhoun, William R.; Bali, Lalit M.; Bali, Samir
2013-08-01
A first accurate measurement of the complex refractive index in an intralipid emulsion is demonstrated, and thereby the average scatterer particle size using standard Mie scattering calculations is extracted. Our method is based on measurement and modeling of the reflectance of a divergent laser beam from the sample surface. In the absence of any definitive reference data for the complex refractive index or particle size in highly turbid intralipid emulsions, we base our claim of accuracy on the fact that our work offers several critically important advantages over previously reported attempts. First, our measurements are in situ in the sense that they do not require any sample dilution, thus eliminating dilution errors. Second, our theoretical model does not employ any fitting parameters other than the two quantities we seek to determine, i.e., the real and imaginary parts of the refractive index, thus eliminating ambiguities arising from multiple extraneous fitting parameters. Third, we fit the entire reflectance-versus-incident-angle data curve instead of focusing on only the critical angle region, which is just a small subset of the data. Finally, despite our use of highly scattering opaque samples, our experiment uniquely satisfies a key assumption behind the Mie scattering formalism, namely, no multiple scattering occurs. Further proof of our method's validity is given by the fact that our measured particle size finds good agreement with the value obtained by dynamic light scattering.
Accurate in situ measurement of complex refractive index and particle size in intralipid emulsions.
Dong, Miao L; Goyal, Kashika G; Worth, Bradley W; Makkar, Sorab S; Calhoun, William R; Bali, Lalit M; Bali, Samir
2013-08-01
A first accurate measurement of the complex refractive index in an intralipid emulsion is demonstrated, and thereby the average scatterer particle size using standard Mie scattering calculations is extracted. Our method is based on measurement and modeling of the reflectance of a divergent laser beam from the sample surface. In the absence of any definitive reference data for the complex refractive index or particle size in highly turbid intralipid emulsions, we base our claim of accuracy on the fact that our work offers several critically important advantages over previously reported attempts. First, our measurements are in situ in the sense that they do not require any sample dilution, thus eliminating dilution errors. Second, our theoretical model does not employ any fitting parameters other than the two quantities we seek to determine, i.e., the real and imaginary parts of the refractive index, thus eliminating ambiguities arising from multiple extraneous fitting parameters. Third, we fit the entire reflectance-versus-incident-angle data curve instead of focusing on only the critical angle region, which is just a small subset of the data. Finally, despite our use of highly scattering opaque samples, our experiment uniquely satisfies a key assumption behind the Mie scattering formalism, namely, no multiple scattering occurs. Further proof of our method's validity is given by the fact that our measured particle size finds good agreement with the value obtained by dynamic light scattering.
NASA Astrophysics Data System (ADS)
Monfared, Shabnam; Buttler, William; Schauer, Martin; Lalone, Brandon; Pack, Cora; Stevens, Gerald; Stone, Joseph; Special Technologies Laboratory Collaboration; Los Alamos National Laboratory Team
2014-03-01
Los Alamos National Laboratory is actively engaged in the study of material failure physics to support the hydrodynamic models development, where an important failure mechanism of explosively shocked metals causes mass ejection from the backside of a shocked surface with surface perturbations. Ejecta models are in development for this situation. Our past work has clearly shown that the total ejected mass and mass-velocity distribution sensitively link to the wavelength and amplitude of these perturbations. While we have had success developing ejecta mass and mass-velocity models, we need to better understand the size and size-velocity distributions of the ejected mass. To support size measurements we have developed a dynamic Mie scattering diagnostic based on a CW laser that permits measurement of the forward attenuation cross-section combined with a dynamic mass-density and mass-velocity distribution, as well as a measurement of the forward scattering cross-section at 12 angles (5- 32.5 degrees) in increments of 2.5 degrees. We compare size distribution followed from Beers law with attenuation cross-section and mass measurement to the dynamic size distribution determined from scattering cross-section alone. We report results from our first quality experiments.
Application of Spectroscopic Doppler Velocimetry for Measurement of Streamwise Vorticity
NASA Technical Reports Server (NTRS)
Fagan, Amy; Zaman, Khairul B.; Elam, Kristie A.; Clem, Michelle M.
2013-01-01
A spectroscopic Doppler velocimetry technique has been developed for measuring two transverse components of velocity and hence streamwise vorticity in free jet flows. The nonintrusive optical measurement system uses Mie scattering from a 200 mW green continuous-wave laser interacting with dust and other tracer particulates naturally present in the air flow to measure the velocities. Scattered light is collected in two opposing directions to provide measurements of two orthogonal velocity components. An air-spaced Fabry-Perot interferometer is used for spectral analysis to determine the optical frequency shift between the incident laser light and the Mie scattered light. This frequency shift is directly proportional to the velocity component in the direction of the bisector of the incident and scattered light wave propagation vectors. Data were acquired for jet Mach numbers of 1.73 and 0.99 using a convergent 1.27-cm diameter round nozzle fitted with a single triangular "delta-tab". The velocity components and the streamwise vorticity calculated from the measurements are presented. The results demonstrate the ability of this novel optical system to obtain velocity and vorticity data without any artificial seeding and using a low power laser system.
Effect of glucose on the optical properties of arterial blood using Mie theory simulations
NASA Astrophysics Data System (ADS)
Clancy, Neil T.; Leahy, Martin J.
2005-08-01
The glucose concentration in arterial plasma has immediate effects on the optical properties of blood-bearing tissue due primarily to the alteration of refractive index mismatch between the scattering particles (red blood cells) and the medium (plasma). The influence of these effects on pulse oximetry is investigated using a numerical model based on Mie theory. The objective is to determine whether or not physiological fluctuations in blood glucose levels could sufficiently vary the optical properties to shift the calibration curve of a commercial pulse oximeter significantly.
Evaluation of the impact of light scatter from glistenings in pseudophakic eyes.
DeHoog, Edward; Doraiswamy, Anand
2014-01-01
To study the impact of light scatter from glistenings in pseudophakic eyes using ray tracing in a model eye Department of Research, Advanced Vision Science, Inc., Goleta, California, USA. Mathematical modeling and simulation. A pseudophakic eye model was constructed in Zemax using the Arizona eye model as the basis. The Mie scattering theory was used to describe the intensity and direction of light as it scatters for a spherical particle immersed in a given media (intraocular lens [IOL]). The modeling and evaluation of scatter and modulation transfer function (MTF) were performed for several biomaterials with various size and density of glistenings under scotopic, mesopic, and photopic conditions. As predicted by the Mie theory, the amount of scatter was a function of the relative difference in refractive index between the media and the scatterer, the size of the scatterer, and the volume fraction of the scatterer. The simulation demonstrated that an increase in density of glistenings can lead to a significant drop in the MTF of the IOL and the pseudophakic eye. This effect was more pronounced in IOLs with smaller cavitations, and the observation was consistent for all tested biomaterials. Mathematical modeling demonstrated that glistenings in IOLs will lead to reduction in the MTF of the IOL and the pseudophakic eye. The loss in MTF was more pronounced at high densities and small cavitation sizes across all biomaterials. Inconsistent and poor clinical quantification of glistenings in IOLs may explain some inconsistencies in the literature. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Cohen, D; Stamnes, S; Tanikawa, T; Sommersten, E R; Stamnes, J J; Lotsberg, J K; Stamnes, K
2013-04-22
A comparison is presented of two different methods for polarized radiative transfer in coupled media consisting of two adjacent slabs with different refractive indices, each slab being a stratified medium with no change in optical properties except in the direction of stratification. One of the methods is based on solving the integro-differential radiative transfer equation for the two coupled slabs using the discrete ordinate approximation. The other method is based on probabilistic and statistical concepts and simulates the propagation of polarized light using the Monte Carlo approach. The emphasis is on non-Rayleigh scattering for particles in the Mie regime. Comparisons with benchmark results available for a slab with constant refractive index show that both methods reproduce these benchmark results when the refractive index is set to be the same in the two slabs. Computed results for test cases with coupling (different refractive indices in the two slabs) show that the two methods produce essentially identical results for identical input in terms of absorption and scattering coefficients and scattering phase matrices.
Interferometric detection of nanoparticles
NASA Astrophysics Data System (ADS)
Hayrapetyan, Karen
Interferometric surfaces enhance light scattering from nanoparticles through constructive interference of partial scattered waves. By placing the nanoparticles on interferometric surfaces tuned to a special surface phase interferometric condition, the particles are detectable in the dilute limit through interferometric image contrast in a heterodyne light scattering configuration, or through diffraction in a homodyne scattering configuration. The interferometric enhancement has applications for imaging and diffractive biosensors. We present a modified model based on Double Interaction (DI) to explore bead-based detection mechanisms using imaging, scanning and diffraction. The application goal of this work is to explore the trade-offs between the sensitivity and throughput among various detection methods. Experimentally we use thermal oxide on silicon to establish and control surface interferometric conditions. Surface-captured gold beads are detected using Molecular Interferometric Imaging (MI2) and Spinning-Disc Interferometry (SDI). Double-resonant enhancement of light scattering leads to high-contrast detection of 100 nm radius gold nanoparticles on an interferometric surface. The double-resonance condition is achieved when resonance (or anti-resonance) from an asymmetric Fabry-Perot substrate coincides with the Mie resonance of the gold nanoparticle. The double-resonance condition is observed experimentally using molecular interferometric imaging (MI2). An invisibility condition is identified for which the gold nanoparticles are optically cloaked by the interferometric surface.
García, Antonio A.; Pirez-Gomez, Miguel A.; Pech-Pacheco, José L.; Mendez-Galvan, Jorge F.; Machain-Williams, Carlos; Talavera-Aguilar, Lourdes; Espinosa-Carrillo, José H.; Duarte-Villaseñor, Miriam M.; Be-Ortiz, Christian; Espinosa-de los Monteros, Luz E.; Castillo-Pacheco, Ariel; Garcia-Rejon, Julian E.
2017-01-01
Antibody detection and accurate diagnosis of tropical diseases is essential to help prevent the spread of disease. However, most detection methods lack cost-effectiveness and field portability, which are essential features for achieving diagnosis in a timely manner. To address this, 3D-printed oblate spheroid sample chambers were fabricated to measure green light scattering of gold nanoparticles using an optical caustic focus to detect antibodies. Scattering signals of 20–200 nm gold nanoparticles using a green laser were compared to green light emitting diode (LED) light source signals and to Mie theory. The change in signal from 60 to 120 nm decreased in the order of Mie Theory > optical caustic scattering > 90° scattering. These results suggested that conjugating 60 nm gold nanoparticles and using an optical caustic system to detect plasmonic light scattering, would result in a sensitive test for detecting human antibodies in serum. Therefore, we studied the light scattering response of conjugated gold nanoparticles exposed to different concentrations of anti-protein E antibody, and a feasibility study of 10 human serum samples using dot blot and a handheld optical caustic-based sensor device. The overall agreement between detection methods suggests that the new sensor concept shows promise to detect gold nanoparticle aggregation in a homogeneous assay. Further testing and protocol optimization is needed to draw conclusions on the positive and negative predictive values for this new testing system. PMID:28817080
Analyzing near infrared scattering from human skin to monitor changes in hematocrit
NASA Astrophysics Data System (ADS)
Chaiken, Joseph; Deng, Bin; Goodisman, Jerry; Shaheen, George; Bussjager, R. J.
2012-01-01
The leading preventable cause of death, world-wide, civilian or military, for all people between the ages of 18-45 is undetected internal hemorrhage. Autonomic compensation mechanisms mask changes such as e.g. hematocrit fluctuations that could give early warning if only they could be monitored continuously with reasonable degrees of precision and relative accuracy. Probing tissue with near infrared radiation (NIR) simultaneously produces remitted fluorescence and Raman scattering (IE) plus Rayleigh/Mie light scattering (EE) that noninvasively give chemical and physical information about the materials and objects within. We model tissue as a three-phase system: plasma and red blood cell (RBC) phases that are mobile and a static tissue phase. In vivo, any volume of tissue naturally experiences spatial and temporal fluctuations of blood plasma and RBC content. Plasma and RBC fractions may be discriminated from each other on the basis of their physical, chemical and optical properties. Thus IE and EE from NIR probing yield information about these fractions. Assuming there is no void volume in viable tissue, or that void volume is constant, changes in plasma and RBC volume fractions may be calculated from simultaneous measurements of the two observables, EE and IE. In a previously published analysis we showed the underlying phenomenology but did not provide an algorithm for calculating volume fractions from experimental data. Here we present a simple analysis that allows continuous monitoring of fluid fraction and hematocrit (Hct) changes by measuring IE and EE, and apply it to some experimental in vivo measurements.
NASA Technical Reports Server (NTRS)
Craven, P. D.; Gary, G. A.
1972-01-01
The Mie theory of light scattering by spheres was used to calculate the scattered intensity functions resulting from single scattering in a polydispersed collection of spheres. The distribution used behaves according to the inverse fourth power law; graphs and tables for the angular dependence of the intensity and polarization for this law are given. The effects of the particle size range and the integration increment are investigated.
NASA Astrophysics Data System (ADS)
Yoon, Dae-Woo; Cho, Jung-Wook; Kim, Seon-Hyo
2017-08-01
The present study proposes a countermeasure for regulating total heat flux through the mold flux layer by designed mold flux with additive metallic iron particles. The heat flux through the B2O3-CaO-SiO2-Na2O-CaF2-Fe system was investigated using the infrared emitter technique to evaluate total flux density across the mold flux film. Both scanning electron microscope (SEM) and X-ray diffraction analysis were employed in order to identify the morphological and compositional changes of the crystalline phase, according to increasing iron contents in the mold flux. It was confirmed that the crystalline layer of studied mold fluxes does not have a meaningful effect on the total heat flux density due to the similar structure and fraction of the crystalline phase. The extinction coefficient was measured for glassy mold fluxes using an ultraviolet/visible and a Fourier transformation-infrared ray spectrometer in the range of 0.5 to 5 μm. For analyzing the scattering behavior of iron particles on the extinction coefficient, the number density and diameter of particles were observed by an automated SEM (auto-SEM). With these data, Mie scattering theory is adopted to define the scattering behavior of dispersed iron droplets in glassy matrix. It was found that the theoretical scattering coefficient demonstrated about 1623 to 3295 m-1, which is in accordance with the experimental results. In doing so, this study successfully achieves the strong scattering behavior that would contribute greatly to the optimization of overall heat flux through the mold flux film during the casting process.
Characterization of micron-size hydrogen clusters using Mie scattering.
Jinno, S; Tanaka, H; Matsui, R; Kanasaki, M; Sakaki, H; Kando, M; Kondo, K; Sugiyama, A; Uesaka, M; Kishimoto, Y; Fukuda, Y
2017-08-07
Hydrogen clusters with diameters of a few micrometer range, composed of 10 8-10 hydrogen molecules, have been produced for the first time in an expansion of supercooled, high-pressure hydrogen gas into a vacuum through a conical nozzle connected to a cryogenic pulsed solenoid valve. The size distribution of the clusters has been evaluated by measuring the angular distribution of laser light scattered from the clusters. The data were analyzed based on the Mie scattering theory combined with the Tikhonov regularization method including the instrumental functions, the validity of which was assessed by performing a calibration study using a reference target consisting of standard micro-particles with two different sizes. The size distribution of the clusters was found discrete peaked at 0.33 ± 0.03, 0.65 ± 0.05, 0.81 ± 0.06, 1.40 ± 0.06 and 2.00 ± 0.13 µm in diameter. The highly reproducible and impurity-free nature of the micron-size hydrogen clusters can be a promising target for laser-driven multi-MeV proton sources with the currently available high power lasers.
NASA Astrophysics Data System (ADS)
Dunklin, Jeremy R.; Forcherio, Gregory T.; Berry, Keith R.; Roper, D. Keith
2016-09-01
Polymer films containing plasmonic nanostructures are of increasing interest for development of responsive energy, sensing, and therapeutic systems. A series of novel gold nanoparticle (AuNP)-polydimethylsiloxane (PDMS) films were fabricated to elucidate enhanced optical extinction from diffractive and scattering induced internal reflection. AuNPs with dramatically different scattering-to-absorption ratios were compared at variable interparticle separations to differentiate light trapping from optical diffraction and Mie scattering. Description of interfacial optical and thermal effects due to these interrelated contributions has progressed beyond Mie theory, Beer's law, effective media, and conventional heat transfer descriptions. Thermal dissipation rates in AuNP-PDMS with this interfacial optical reflection was enhanced relative to films containing heterogeneous AuNPs and a developed thermal dissipation description. This heuristic, which accounts for contributions of both internal and external thermal dissipations, has been shown to accurately predict thermal dissipation rates from AuNP-containing insulating and conductive substrates in both two and three-dimensional systems. Enhanced thermal response rates could enable design and adaptive control of thermoplasmonic materials for a variety of implementations.
Design and simulation of 532nm Rayleigh-Mie Doppler wind Lidar system
NASA Astrophysics Data System (ADS)
Peng, Zhuang; Xie, Chenbo; Wang, Bangxin; Shen, Fahua; Tan, Min; Li, Lu; Zhang, Zhanye
2018-02-01
Wind is one of the most significant parameter in weather forecast and the research of climate.It is essential for the weather forecast seasonally to yearly ,atmospheric dynamics,study of thermodynamics and go into the water, chemistry and aerosol which are have to do with global climate statusto measure three-dimensional troposphericwind field accurately.Structure of the doppler wind lidar system which based on Fabry-Perot etalon is introduced detailedly. In this section,the key parameters of the triple Fabry-Perot etalon are optimized and this is the key point.The results of optimizing etalon are as follows:the FSR is 8GHz,the FWHM is1GHz,3.48 GHz is the separation distance between two edge channels,and the separation distance between locking channel and the left edge channel is 1.16 GHz. In this condition,the sensitivity of wind velocity of Mie scattering and Rayleigh scattering is both 0.70%/(m/s) when the temperature is 255K in the height of 5Km and there is no wind. The simulation to this system states that in+/-50m/s radial wind speed range, the wind speed bias induced by Mie signal is less than 0.15m/s from 5 to 50km altitude.
Scattering of a high-order Bessel beam by a spheroidal particle
NASA Astrophysics Data System (ADS)
Han, Lu
2018-05-01
Within the framework of generalized Lorenz-Mie theory (GLMT), scattering from a homogeneous spheroidal particle illuminated by a high-order Bessel beam is formulated analytically. The high-order Bessel beam is expanded in terms of spheroidal vector wave functions, where the spheroidal beam shape coefficients (BSCs) are computed conveniently using an intrinsic method. Numerical results concerning scattered field in the far zone are displayed for various parameters of the incident Bessel beam and of the scatter. These results are expected to provide useful insights into the scattering of a Bessel beam by nonspherical particles and particle manipulation applications using Bessel beams.
Atmospheric scattering of middle uv radiation from an internal source.
Meier, R R; Lee, J S; Anderson, D E
1978-10-15
A Monte Carlo model has been developed which simulates the multiple-scattering of middle-uv radiation in the lower atmosphere. The source of radiation is assumed to be monochromatic and located at a point. The physical effects taken into account in the model are Rayleigh and Mie scattering, pure absorption by particulates and trace atmospheric gases, and ground albedo. The model output consists of the multiply scattered radiance as a function of look-angle of a detector located within the atmosphere. Several examples are discussed, and comparisons are made with direct-source and single-scattered contributions to the signal received by the detector.
Absorption and scattering of light by nonspherical particles. [in atmosphere
NASA Technical Reports Server (NTRS)
Bohren, C. F.
1986-01-01
Using the example of the polarization of scattered light, it is shown that the scattering matrices for identical, randomly ordered particles and for spherical particles are unequal. The spherical assumptions of Mie theory are therefore inconsistent with the random shapes and sizes of atmospheric particulates. The implications for corrections made to extinction measurements of forward scattering light are discussed. Several analytical methods are examined as potential bases for developing more accurate models, including Rayleigh theory, Fraunhoffer Diffraction theory, anomalous diffraction theory, Rayleigh-Gans theory, the separation of variables technique, the Purcell-Pennypacker method, the T-matrix method, and finite difference calculations.
Analytical study of the effects of clouds on the light produced by lightning
NASA Technical Reports Server (NTRS)
Phanord, Dieudonne D.
1990-01-01
Researchers consider the scattering of visible and infrared light due to lightning by cubic, cylindrical and spherical clouds. The researchers extend to cloud physics the work by Twersky for single and multiple scattering of electromagnetic waves. They solve the interior problem separately to obtain the bulk parameters for the scatterer equivalent to the ensemble of spherical droplets. With the interior solution or the equivalent medium approach, the multiple scattering problem is reduced to that of a single scatterer in isolation. Hence, the computing methods of Wiscombe or Bohren specialized to Mie scattering with the possibility for absorption were used to generate numerical results in short computer time.
Distance within colloidal dimers probed by rotation-induced oscillations of scattered light.
van Vliembergen, Roland W L; van IJzendoorn, Leo J; Prins, Menno W J
2016-01-25
Aggregation processes of colloidal particles are of broad scientific and technological relevance. The earliest stage of aggregation, when dimers appear in an ensemble of single particles, is very important to characterize because it opens routes for further aggregation processes. Furthermore, it represents the most sensitive phase of diagnostic aggregation assays. Here, we characterize dimers by rotating them in a magnetic field and by recording the angle dependence of light scattering. At small scattering angles, the scattering cross section can be approximated by the total cross-sectional area of the dimer. In contrast, at scattering angles around 90 degrees, we reveal that the dependence of the scattering cross section on the dimer angle shows a series of peaks per single 2π rotation of the dimers. These characteristics originate from optical interactions between the two particles, as we have verified with two-particle Mie scattering simulations. We have studied in detail the angular positions of the peaks. It appears from simulations that the influence of particle size polydispersity, Brownian rotation and refractive index on the angular positions of the peaks is relatively small. However, the angular positions of the peaks strongly depend on the distance between the particles. We find a good correspondence between measured data and calculations for a gap of 180 nm between particles having a diameter of 1 micrometer. The experiment and simulations pave the way for extracting distance-specific data from ensembles of dimerizing colloidal particles, with application for sensitive diagnostic aggregation assays.
Evaluation of loss in optical quality of multifocal intraocular lenses with glistenings.
DeHoog, Edward; Doraiswamy, Anand
2016-04-01
To study the impact of loss in optical quality from glistenings in diffractive multifocal intraocular lenses (IOLs) using ray tracing in a model eye. Independent research laboratory, Irvine, California, USA. Experimental study. A pseudophakic eye model was constructed in Zemax, an optical ray-tracing program, using the Arizona eye model as the basis. The Mie scattering theory was used to describe the intensity and direction of light as it scattered for a spherical particle immersed in a diffractive multifocal IOL. To evaluate the impact of glistening scatter, a more advanced eye model was constructed in Fred, a nonsequential optical ray-tracing software. An evaluation of scatter and modulation transfer function (MTF) was performed for a hydrophobic biomaterial with a refractive index of 1.54 for various sizes and densities of glistenings under mesopic conditions. As predicted by the Mie theory, the amount of scatter was a function of the change in the refractive index, size of the scatterer, and volume fraction of the scatterers. This modeling showed that an increase in density of glistenings can lead to a significant drop of MTF of the IOL. This effect was more pronounced in multifocal IOLs than in monofocal IOLs. Mathematical modeling showed that glistenings in multifocal IOLs lead to a reduction in MTF of the IOL and the pseudophakic eye. The relative loss of MTF in multifocal IOLs was more significant than in monofocal IOLs because of the nature of the design. Drs. DeHoog and Doraiswamy are consultants to Advanced Vision Science, Inc. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Using Directional Emissivity as a Probe of Particle Microphysical Properties
NASA Astrophysics Data System (ADS)
Pitman, K. M.; Wolff, M. J.; Bandfield, J. L.; Clayton, G. C.
2002-09-01
Real surfaces are not expected to be diffuse emitters, thus observed emissivity values are a function of viewing geometry. This fact has strong implications for analyses of the MGS/TES emission phase function (EPF) sequences and the upcoming Mars Exploration Rover mini-TES dataset. As reviewed previously [1], in the absence of strong thermal gradients, directional emissivity may be obtained via a combination of reciprocity and Kirchhoff's Law. Here we focus on the potential utility of directional emissivity as a direct probe of surface particle microphysical properties. We explore the effects of particle size and composition on observed radiances in the TES spectral regime using a combination of multiple scattering radiative transfer and Mie scattering algorithms. Comparisons of these simulated spectra to TES EPF observations of typical surface units (e.g., high and low albedo regions) will also be made. This work is supported through NASA grant NAGS-9820 (MJW) and LSU Board of Regents (KMP). [1] Pitman, K.M., et al. (2001), AAS-DPS meeting # 33, # 36.01.
Stimulated concentration (diffusion) light scattering on nanoparticles in a liquid suspension
NASA Astrophysics Data System (ADS)
Burkhanov, I. S.; Krivokhizha, S. V.; Chaikov, L. L.
2016-06-01
A nonlinear growth of the light scattering intensity has been observed and the frequency shift of the spectral line of scattered light has been measured in light backscattered in suspensions of diamond and latex nanoparticles in water. The shift corresponds to the HWHM of the line of spontaneous scattering on particles. We may conclude that there exists stimulated concentration (diffusion) light scattering on variations of the particle concentration, which is also called the stimulated Mie scattering. In a fibre probe scheme, the growth of the shift of the scattered spectral line is observed with an increase in the exciting beam power. The variation of the frequency shift with an increase in the exciting power is explained by convection in liquid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitri, F.G., E-mail: F.G.Mitri@ieee.org; Li, R.X., E-mail: rxli@mail.xidian.edu.cn; Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071
A complete description of vector Bessel (vortex) beams in the context of the generalized Lorenz–Mie theory (GLMT) for the electromagnetic (EM) resonance scattering by a dielectric sphere is presented, using the method of separation of variables and the subtraction of a non-resonant background (corresponding to a perfectly conducting sphere of the same size) from the standard Mie scattering coefficients. Unlike the conventional results of standard optical radiation, the resonance scattering of a dielectric sphere in air in the field of EM Bessel beams is examined and demonstrated with particular emphasis on the EM field’s polarization and beam order (or topologicalmore » charge). Linear, circular, radial, azimuthal polarizations as well as unpolarized Bessel vortex beams are considered. The conditions required for the resonance scattering are analyzed, stemming from the vectorial description of the EM field using the angular spectrum decomposition, the derivation of the beam-shape coefficients (BSCs) using the integral localized approximation (ILA) and Neumann–Graf’s addition theorem, and the determination of the scattering coefficients of the sphere using Debye series. In contrast with the standard scattering theory, the resonance method presented here allows the quantitative description of the scattering using Debye series by separating diffraction effects from the external and internal reflections from the sphere. Furthermore, the analysis is extended to include rainbow formation in Bessel beams and the derivation of a generalized formula for the deviation angle of high-order rainbows. Potential applications for this analysis include Bessel beam-based laser imaging spectroscopy, atom cooling and quantum optics, electromagnetic instrumentation and profilometry, optical tweezers and tractor beams, to name a few emerging areas of research.« less
Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response.
Dmitriev, Pavel A; Baranov, Denis G; Milichko, Valentin A; Makarov, Sergey V; Mukhin, Ivan S; Samusev, Anton K; Krasnok, Alexander E; Belov, Pavel A; Kivshar, Yuri S
2016-05-05
Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions.
High-throughput screening (HTS) for potential thyroid–disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limi...
EVALUATION OF A PERSONAL NEPHELOMETER FOR HUMAN EXPOSURE MONITORING
Current particulate matter (PM) exposure studies are using continuous personal nephelometers (pDR-1000, MIE, Inc.) to measure human exposure to PM. The personal nephelometer is a passive sampler which uses light scattering technology to measure particles ranging in size from 0....
Parameterization of single-scattering properties of snow
NASA Astrophysics Data System (ADS)
Räisänen, Petri; Kokhanovsky, Alexander; Guyot, Gwennole; Jourdan, Olivier; Nousiainen, Timo
2015-04-01
Snow consists of non-spherical ice grains of various shapes and sizes, which are surrounded by air and sometimes covered by films of liquid water. Still, in many studies, homogeneous spherical snow grains have been assumed in radiative transfer calculations, due to the convenience of using Mie theory. More recently, second-generation Koch fractals have been employed. While they produce a relatively flat scattering phase function typical of deformed non-spherical particles, this is still a rather ad-hoc choice. Here, angular scattering measurements for blowing snow conducted during the CLimate IMpacts of Short-Lived pollutants In the Polar region (CLIMSLIP) campaign at Ny Ålesund, Svalbard, are used to construct a reference phase function for snow. Based on this phase function, an optimized habit combination (OHC) consisting of severely rough (SR) droxtals, aggregates of SR plates and strongly distorted Koch fractals is selected. The single-scattering properties of snow are then computed for the OHC as a function of wavelength λ and snow grain volume-to-projected area equivalent radius rvp. Parameterization equations are developed for λ=0.199-2.7 μm and rvp = 10-2000 μm, which express the single-scattering co-albedo β, the asymmetry parameter g and the phase function as functions of the size parameter and the real and imaginary parts of the refractive index. Compared to the reference values computed for the OHC, the accuracy of the parameterization is very high for β and g. This is also true for the phase function parameterization, except for strongly absorbing cases (β > 0.3). Finally, we consider snow albedo and reflected radiances for the suggested snow optics parameterization, making comparisons with spheres and distorted Koch fractals. Further evaluation and validation of the proposed approach against (e.g.) bidirectional reflectance and polarization measurements for snow is planned. At any rate, it seems safe to assume that the OHC selected here provides a substantially better basis for representing the single-scattering properties of snow than spheres do. Moreover, the parameterizations developed here are analytic and simple to use, and they can also be applied to the treatment of dirty snow following (e.g.) the approach of Kokhanovsky (The Cryosphere, 7, 1325-1331, doi:10.5194/tc-7-1325-2013, 2013). This should make them an attractive option for use in radiative transfer applications involving snow.
van Dam, Dick; van Hoof, Niels J J; Cui, Yingchao; van Veldhoven, Peter J; Bakkers, Erik P A M; Gómez Rivas, Jaime; Haverkort, Jos E M
2016-12-27
Photovoltaic cells based on arrays of semiconductor nanowires promise efficiencies comparable or even better than their planar counterparts with much less material. One reason for the high efficiencies is their large absorption cross section, but until recently the photocurrent has been limited to less than 70% of the theoretical maximum. Here we enhance the absorption in indium phosphide (InP) nanowire solar cells by employing broadband forward scattering of self-aligned nanoparticles on top of the transparent top contact layer. This results in a nanowire solar cell with a photovoltaic conversion efficiency of 17.8% and a short-circuit current of 29.3 mA/cm 2 under 1 sun illumination, which is the highest reported so far for nanowire solar cells and among the highest reported for III-V solar cells. We also measure the angle-dependent photocurrent, using time-reversed Fourier microscopy, and demonstrate a broadband and omnidirectional absorption enhancement for unpolarized light up to 60° with a wavelength average of 12% due to Mie scattering. These results unambiguously demonstrate the potential of semiconductor nanowires as nanostructures for the next generation of photovoltaic devices.
NASA Technical Reports Server (NTRS)
1978-01-01
The practicability of using a classical light-scattering technique, involving comparison of angular scattering intensity patterns with theoretically determined Mie and Rayleight patterns, to detect discrete soot particles (diameter less than 50 nm) in premixed propane/air and propane/oxygen-helium flames is considered. The experimental apparatus employed in this investigation included a laser light source, a flat-flame burner, specially coated optics, a cooled photomultiplier detector, and a lock-in voltmeter readout. Although large, agglomerated soot particles were detected and sized, it was not possible to detect small, discrete particles. The limiting factor appears to be background scattering by the system's optics.
NASA Astrophysics Data System (ADS)
Fiorino, Steven T.; Elmore, Brannon; Schmidt, Jaclyn; Matchefts, Elizabeth; Burley, Jarred L.
2016-05-01
Properly accounting for multiple scattering effects can have important implications for remote sensing and possibly directed energy applications. For example, increasing path radiance can affect signal noise. This study describes the implementation of a fast-calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations into the Laser Environmental Effects Definition and Reference (LEEDR) atmospheric characterization and radiative transfer code. The multiple scattering algorithm fully solves for molecular, aerosol, cloud, and precipitation single-scatter layer effects with a Mie algorithm at every calculation point/layer rather than an interpolated value from a pre-calculated look-up-table. This top-down cumulative diffusivity method first considers the incident solar radiance contribution to a given layer accounting for solid angle and elevation, and it then measures the contribution of diffused energy from previous layers based on the transmission of the current level to produce a cumulative radiance that is reflected from a surface and measured at the aperture at the observer. Then a unique set of asymmetry and backscattering phase function parameter calculations are made which account for the radiance loss due to the molecular and aerosol constituent reflectivity within a level and allows for a more accurate characterization of diffuse layers that contribute to multiple scattered radiances in inhomogeneous atmospheres. The code logic is valid for spectral bands between 200 nm and radio wavelengths, and the accuracy is demonstrated by comparing the results from LEEDR to observed sky radiance data.
Influence of permittivity on gradient force exerted on Mie spheres.
Chen, Jun; Li, Kaikai; Li, Xiao
2018-04-01
In optical trapping, whether a particle could be stably trapped into the focus region greatly depends on the strength of the gradient force. Individual theoretical study on gradient force exerted on a Mie particle is rare because the mathematical separation of the gradient force and the scattering force in the Mie regime is difficult. Based on the recent forces separation work by Du et al. [Sci. Rep.7, 18042 (2017)SRCEC32045-232210.1038/s41598-017-17874-1], we investigate the influence of permittivity (an important macroscopic physical quantity) on the gradient force exerted on a Mie particle by cooperating numerical calculation using fast Fourier transform and analytical analysis using multipole expansion. It is revealed that gradient forces exerted on small spheres are mainly determined by the electric dipole moment except for certain permittivity with which the real part of polarizability of the electric dipole approaches zero, and gradient forces exerted on larger spheres are complex because of the superposition of the multipole moments. The classification of permittivity corresponding to different varying tendencies of gradient forces exerted on small spheres or larger Mie particles are illustrated. Absorption of particles favors the trapping of small spheres by gradient force, while it is bad for the trapping of larger particles. Moreover, the absolute values of the maximal gradient forces exerted on larger Mie particles decline greatly versus the varied imaginary part of permittivity. This work provides elaborate investigation on the different varying tendencies of gradient forces versus permittivity, which favors more accurate and free optical trapping.
Kim, K B; Shanyfelt, L M; Hahn, D W
2006-01-01
Dense-medium scattering is explored in the context of providing a quantitative measurement of turbidity, with specific application to corneal haze. A multiple-wavelength scattering technique is proposed to make use of two-color scattering response ratios, thereby providing a means for data normalization. A combination of measurements and simulations are reported to assess this technique, including light-scattering experiments for a range of polystyrene suspensions. Monte Carlo (MC) simulations were performed using a multiple-scattering algorithm based on full Mie scattering theory. The simulations were in excellent agreement with the polystyrene suspension experiments, thereby validating the MC model. The MC model was then used to simulate multiwavelength scattering in a corneal tissue model. Overall, the proposed multiwavelength scattering technique appears to be a feasible approach to quantify dense-medium scattering such as the manifestation of corneal haze, although more complex modeling of keratocyte scattering, and animal studies, are necessary.
Towards Clean Diesel Engines. Second Symposium. Book of Abstracts.
1998-04-06
and Mie-scattering imaging and EXCIPLEX technique, based on a fluorescence system. This last technique, even if it is able to distinguish...set of experimental data, ob- tained by a collaborative effort with researchers at the RWTH Aachen, is presented. Laser-induced exciplex fluorescence
Silicon Mie resonators for highly directional light emission from monolayer MoS2
NASA Astrophysics Data System (ADS)
Cihan, Ahmet Fatih; Curto, Alberto G.; Raza, Søren; Kik, Pieter G.; Brongersma, Mark L.
2018-05-01
Controlling light emission from quantum emitters has important applications, ranging from solid-state lighting and displays to nanoscale single-photon sources. Optical antennas have emerged as promising tools to achieve such control right at the location of the emitter, without the need for bulky, external optics. Semiconductor nanoantennas are particularly practical for this purpose because simple geometries such as wires and spheres support multiple, degenerate optical resonances. Here, we start by modifying Mie scattering theory developed for plane wave illumination to describe scattering of dipole emission. We then use this theory and experiments to demonstrate several pathways to achieve control over the directionality, polarization state and spectral emission that rely on a coherent coupling of an emitting dipole to optical resonances of a silicon nanowire. A forward-to-backward ratio of 20 was demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2 by optically coupling it to a silicon nanowire.
NASA Astrophysics Data System (ADS)
Hannel, Mark D.; Abdulali, Aidan; O'Brien, Michael; Grier, David G.
2018-06-01
Holograms of colloidal particles can be analyzed with the Lorenz-Mie theory of light scattering to measure individual particles' three-dimensional positions with nanometer precision while simultaneously estimating their sizes and refractive indexes. Extracting this wealth of information begins by detecting and localizing features of interest within individual holograms. Conventionally approached with heuristic algorithms, this image analysis problem can be solved faster and more generally with machine-learning techniques. We demonstrate that two popular machine-learning algorithms, cascade classifiers and deep convolutional neural networks (CNN), can solve the feature-localization problem orders of magnitude faster than current state-of-the-art techniques. Our CNN implementation localizes holographic features precisely enough to bootstrap more detailed analyses based on the Lorenz-Mie theory of light scattering. The wavelet-based Haar cascade proves to be less precise, but is so computationally efficient that it creates new opportunities for applications that emphasize speed and low cost. We demonstrate its use as a real-time targeting system for holographic optical trapping.
NASA Technical Reports Server (NTRS)
Hyde, T. W.; Alexander, W. M.
1989-01-01
In 1967, Lunar Explorer 35 was launched from the earth and placed into a stable orbit around the moon. The data from the dust particle experiment on this spacecraft were essentially continuous over a 5-yr period from the time of insertion in lunar orbit. Analysis of this data has been interpreted to show that micron-sized lunar ejecta leave the moon and traverse through selenocentric and cislunar space and obtain either interplanetary/heliocentric orbits or intercept the earth's magnetosphere and move into geocentric orbits. Extensive studies of the orbital trajectories of lunar particles in this size range have now been conducted that include a calculation of the solar radiation force using the full Mie scattering theory. A significant flux of particles with radii less than 0.1 micron are found to intercept the earth's magnetopause surface. This flux is shown to be strongly dependent upon both the particle's density and its index of refraction.
Investigations on the self-excited oscillations in a kerosene spray flame
DOE Office of Scientific and Technical Information (OSTI.GOV)
de la Cruz Garcia, M.; Mastorakos, E.; Dowling, A.P.
2009-02-15
A laboratory scale gas turbine type burner at atmospheric pressure and with air preheat was operated with aviation kerosene Jet-A1 injected from a pressure atomiser. Self-excited oscillations were observed and analysed to understand better the relationship between the spray and thermo-acoustic oscillations. The fluctuations of CH{sup *} chemiluminescence measured simultaneously with the pressure were used to determine the flame transfer function. The Mie scattering technique was used to record spray fluctuations in reacting conditions with a high speed camera. Integrating the Mie intensity over the imaged region gave a temporal signal acquired simultaneously with pressure fluctuations and the transfer functionmore » between the light scattered from the spray and the velocity fluctuations in the plenum was evaluated. Phase Doppler anemometry was used for axial velocity and drop size measurements at different positions downstream the injection plane and for various operating conditions. Pressure spectra showed peaks at a frequency that changed with air mass flow rate. The peak for low air mass flow rate operation was at 220 Hz and was associated with a resonance of the supply plenum. At the same global equivalence ratio but at high air mass flow rates, the pressure spectrum peak was at 323 Hz, a combustion chamber resonant frequency. At low air flow rates, the spray fluctuation motion was pronounced and followed the frequency of the pressure oscillation. At high air flow rates, more effective evaporation resulted in a complete disappearance of droplets at an axial distance of about 1/3 burner diameters from the injection plane, leading to a different flame transfer function and frequency of the self-excited oscillation. The results highlight the sensitivity of the self-excited oscillation to the degree of mixing achieved before the main recirculation zone. (author)« less
Estimating ice particle scattering properties using a modified Rayleigh-Gans approximation
NASA Astrophysics Data System (ADS)
Lu, Yinghui; Clothiaux, Eugene E.; Aydin, Kültegin; Verlinde, Johannes
2014-09-01
A modification to the Rayleigh-Gans approximation is made that includes self-interactions between different parts of an ice crystal, which both improves the accuracy of the Rayleigh-Gans approximation and extends its applicability to polarization-dependent parameters. This modified Rayleigh-Gans approximation is both efficient and reasonably accurate for particles with at least one dimension much smaller than the wavelength (e.g., dendrites at millimeter or longer wavelengths) or particles with sparse structures (e.g., low-density aggregates). Relative to the Generalized Multiparticle Mie method, backscattering reflectivities at horizontal transmit and receive polarization (HH) (ZHH) computed with this modified Rayleigh-Gans approach are about 3 dB more accurate than with the traditional Rayleigh-Gans approximation. For realistic particle size distributions and pristine ice crystals the modified Rayleigh-Gans approach agrees with the Generalized Multiparticle Mie method to within 0.5 dB for ZHH whereas for the polarimetric radar observables differential reflectivity (ZDR) and specific differential phase (KDP) agreement is generally within 0.7 dB and 13%, respectively. Compared to the A-DDA code, the modified Rayleigh-Gans approximation is several to tens of times faster if scattering properties for different incident angles and particle orientations are calculated. These accuracies and computational efficiencies are sufficient to make this modified Rayleigh-Gans approach a viable alternative to the Rayleigh-Gans approximation in some applications such as millimeter to centimeter wavelength radars and to other methods that assume simpler, less accurate shapes for ice crystals. This method should not be used on materials with dielectric properties much different from ice and on compact particles much larger than the wavelength.
Papaioannou, Vasileios; Lafitte, Thomas; Avendaño, Carlos; Adjiman, Claire S; Jackson, George; Müller, Erich A; Galindo, Amparo
2014-02-07
A generalization of the recent version of the statistical associating fluid theory for variable range Mie potentials [Lafitte et al., J. Chem. Phys. 139, 154504 (2013)] is formulated within the framework of a group contribution approach (SAFT-γ Mie). Molecules are represented as comprising distinct functional (chemical) groups based on a fused heteronuclear molecular model, where the interactions between segments are described with the Mie (generalized Lennard-Jonesium) potential of variable attractive and repulsive range. A key feature of the new theory is the accurate description of the monomeric group-group interactions by application of a high-temperature perturbation expansion up to third order. The capabilities of the SAFT-γ Mie approach are exemplified by studying the thermodynamic properties of two chemical families, the n-alkanes and the n-alkyl esters, by developing parameters for the methyl, methylene, and carboxylate functional groups (CH3, CH2, and COO). The approach is shown to describe accurately the fluid-phase behavior of the compounds considered with absolute average deviations of 1.20% and 0.42% for the vapor pressure and saturated liquid density, respectively, which represents a clear improvement over other existing SAFT-based group contribution approaches. The use of Mie potentials to describe the group-group interaction is shown to allow accurate simultaneous descriptions of the fluid-phase behavior and second-order thermodynamic derivative properties of the pure fluids based on a single set of group parameters. Furthermore, the application of the perturbation expansion to third order for the description of the reference monomeric fluid improves the predictions of the theory for the fluid-phase behavior of pure components in the near-critical region. The predictive capabilities of the approach stem from its formulation within a group-contribution formalism: predictions of the fluid-phase behavior and thermodynamic derivative properties of compounds not included in the development of group parameters are demonstrated. The performance of the theory is also critically assessed with predictions of the fluid-phase behavior (vapor-liquid and liquid-liquid equilibria) and excess thermodynamic properties of a variety of binary mixtures, including polymer solutions, where very good agreement with the experimental data is seen, without the need for adjustable mixture parameters.
Radiation Force Caused by Scattering, Absorption, and Emission of Light by Nonspherical Particles
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)
2001-01-01
General formulas for computing the radiation force exerted on arbitrarily oriented and arbitrarily shaped nonspherical particles due to scattering, absorption, and emission of electromagnetic radiation are derived. For randomly oriented particles with a plane of symmetry, the formula for the average radiation force caused by the particle response to external illumination reduces to the standard Debye formula derived from the Lorenz-Mie theory, whereas the average radiation force caused by emission vanishes.
NASA Astrophysics Data System (ADS)
Cannaday, Ashley E.; Draham, Robert; Berger, Andrew J.
2016-04-01
The goal of this project is to estimate non-nuclear organelle size distributions in single cells by measuring angular scattering patterns and fitting them with Mie theory. Simulations have indicated that the large relative size distribution of organelles (mean:width≈2) leads to unstable Mie fits unless scattering is collected at polar angles less than 20 degrees. Our optical system has therefore been modified to collect angles down to 10 degrees. Initial validations will be performed on polystyrene bead populations whose size distributions resemble those of cell organelles. Unlike with the narrow bead distributions that are often used for calibration, we expect to see an order-of-magnitude improvement in the stability of the size estimates as the minimum angle decreases from 20 to 10 degrees. Scattering patterns will then be acquired and analyzed from single cells (EMT6 mouse cancer cells), both fixed and live, at multiple time points. Fixed cells, with no changes in organelle sizes over time, will be measured to determine the fluctuation level in estimated size distribution due to measurement imperfections alone. Subsequent measurements on live cells will determine whether there is a higher level of fluctuation that could be attributed to dynamic changes in organelle size. Studies on unperturbed cells are precursors to ones in which the effects of exogenous agents are monitored over time.
A corresponding-states framework for the description of the Mie family of intermolecular potentials
NASA Astrophysics Data System (ADS)
Ramrattan, N. S.; Avendaño, C.; Müller, E. A.; Galindo, A.
2015-05-01
The Mie (λr, λa) intermolecular pair potential has been suggested as an alternative to the traditional Lennard-Jones (12-6) potential for modelling real systems both via simulation and theory as its implementation leads to an accuracy and flexibility in the determination of thermophysical properties that cannot be obtained when potentials of fixed range are considered. An additional advantage of using variable-range potentials is noted in the development of coarse-grained models where, as the superatoms become larger, the effective potentials are seen to become softer. However, the larger number of parameters that characterise the Mie potential (λr, λa, σ, ɛ) can hinder a rational study of the particular effects that each individual parameter have on the observed thermodynamic properties and phase equilibria, and higher degeneracy of models is observed. Here a three-parameter corresponding states model is presented in which a cohesive third parameter α is proposed following a perturbation expansion and assuming a mean-field limit. It is shown that in this approximation the free energy of any two Mie systems sharing the same value of α will be the same. The parameter α is an explicit function of the repulsive and attractive exponents and consequently dictates the form of the intermolecular pair potential. Molecular dynamics simulations of a variety of Mie systems over a range of values of α are carried out and the solid-liquid, liquid-vapour and vapour-solid phase boundaries for the systems considered are presented. Using the simulation data, we confirm that systems of the same α exhibit conformal phase behaviour for the fluid-phase properties as well as for the solid-fluid boundary, although larger differences are noted in the solid region; these can be related to the approximations in the definition of the parameter. Furthermore, it is found that the temperature range over which the vapour-liquid envelope of a given Mie system is stable follows a linear dependency with α when expressed as the ratio of the critical-point temperature to the triple-point temperature. The limit where potentials of the Mie family will not present a stable fluid envelope is predicted in terms of the parameter α and the result is found to be in excellent agreement with previous studies. This unique relation between the fluid range and the cohesive parameter α is shown to be useful to limit the pairs of Mie exponents that can be used in coarse-grained potentials to treat real systems in order to obtain temperature ranges of stability for the fluid envelope consistent with experiment.
NASA Astrophysics Data System (ADS)
Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas
2016-04-01
The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient measurement from the CAPS PM_{ssa (calculated as the difference from the measured extinction and scattering). The study was carried out in the laboratory with controlled particle generation systems. We used both light absorbing aerosols (Regal 400R pigment black from Cabot Corp. and colloidal graphite - Aquadag - from Agar Scientific) and purely scattering aerosols (ammonium sulphate and polystyrene latex spheres), covering single scattering albedo values from approximately 0.4 to 1.0. A new truncation angle correction for the CAPS PM_{ssa integrated sphere is proposed.
Magnetically controlled multifrequency invisibility cloak with a single shell of ferrite material
NASA Astrophysics Data System (ADS)
Wang, Xiaohua; Liu, Youwen
2015-02-01
A magnetically controlled multifrequency invisibility cloak with a single shell of the isotropic and homogeneous ferrite material has been investigated based on the scattering cancellation method from the Mie scattering theory. The analytical and simulated results have demonstrated that such this shell can drastically reduce the total scattering cross-section of this cloaking system at multiple frequencies. These multiple cloaking frequencies of this shell can be externally controlled since the magnetic permeability of ferrites is well tuned by the applied magnetic field. This may provide a potential way to design a tunable multifrequency invisibility cloak with considerable flexibility.
NASA Astrophysics Data System (ADS)
Shapovalov, K. A.; Salmin, V. V.; Lazarenko, V. I.; Gar‧kavenko, V. V.
2017-05-01
The model of the autofluorescence spectrum formation of a crystalline lens taking into account light scattering was presented. Cross sections of extinction, scattering and absorption were obtained numerically for models of normal crystalline lens and cataract according to the Mie theory for polydisperse systems. To validate the model, data on the autofluorescence spectra of the normal lens and cataracts were obtained using an experimental ophthalmologic spectrofluorometer with excitation by UV light emitting diodes. In the framework of the model, the influence of the lens light scattering on the shape of the luminescence spectrum was estimated. It was found that the changes in the fluorescence spectrum of lenses with cataracts can be completely interpreted by the light scattering.
Study on off-axis detection of pulsed laser in atmosphere
NASA Astrophysics Data System (ADS)
Liang, Weiwei
2018-02-01
Laser communication, designation, and ranging are point to point and have a high degree of specificity, current laser detection, such as laser warning receiver system, could detect the scattering laser from the off-axis distance by scattering track on natural aerosols, which is helpful to locate the laser source. However, the intensity of the scattering laser is extremely weak and affected by many factors, in order to evaluate the detection characteristic, a simplified model of off-axis detection for scattering laser in the lower atmosphere based on the Mie scattering theory is presented in this paper, the performances of the off-axis laser detection in different conditions such as off-axis distance, visibility, incidence angle, and delay time are investigated.
Improved Gaussian Beam-Scattering Algorithm
NASA Technical Reports Server (NTRS)
Lock, James A.
1995-01-01
The localized model of the beam-shape coefficients for Gaussian beam-scattering theory by a spherical particle provides a great simplification in the numerical implementation of the theory. We derive an alternative form for the localized coefficients that is more convenient for computer computations and that provides physical insight into the details of the scattering process. We construct a FORTRAN program for Gaussian beam scattering with the localized model and compare its computer run time on a personal computer with that of a traditional Mie scattering program and with three other published methods for computing Gaussian beam scattering. We show that the analytical form of the beam-shape coefficients makes evident the fact that the excitation rate of morphology-dependent resonances is greatly enhanced for far off-axis incidence of the Gaussian beam.
Cavity-mode selection in spontaneous emission from oriented molecules in a microparticle.
Arnold, S; Holler, S; Goddard, N L; Griffel, G
1997-10-01
We observe preferential cavity-mode selection in spontaneous emission by oriented molecules at the surface of a microparticle. Polarization-analyzed images of a levitated microdroplet containing surface active molecules reveal a well-defined system in terms of molecular position and orientation. The measured fluorescence spectrum is compared with that of a semiclassical emission-rate-enhancement model that treats the coupling between an excited state and Mie resonances as an oscillating dipole interacting with its self-scattered field. By comparing results obtained with this theory with the relative strengths of TE to TM modes measured in the emission spectrum, we show that one can elucidate the heterogeneity of a particle from this resonant structure and determine the orientation of the emission moments relative to the phase boundary.
Attenuation analysis of long-haul NLOS atmospheric optical scattering communication
NASA Astrophysics Data System (ADS)
Zhang, Shihua; Wang, Jingyuan; Xu, Zhiyong; Song, Chao; Wang, Rong; Chen, Yiwang; Zhao, Jiyong; Wei, Yimei
2016-06-01
The attenuation characteristics of ultraviolet (UV) and infrared transmitting in the atmosphere is analyzed, when long-haul Non-Line-of-Sight (NLOS) optical scattering communication is considered. The effects of Rayleigh and Mie scattering to link performance are presented. Under given geometric configurations, a critical range RC is found. When communication range is shorter than RC, the attenuation of UV is lower than that of infrared. But the path loss of UV increases rapidly, while the path loss of infrared increases much slower. When communication range is longer than RC, the attenuation of UV is higher than that of infrared. Numerical values of RC under different geometries are analyzed. It is also indicated that, under arbitrary geometric configurations, the impact of the Rayleigh scattering to infrared scattering communication is weak, but to UV scattering, the Rayleigh scattering effect cannot be ignored.
Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting.
Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle; Bidault, Sebastien; Bonod, Nicolas; Abbarchi, Marco
2016-02-07
We report the fabrication of Si-based dielectric Mie resonators via a low cost process based on solid-state dewetting of ultra-thin amorphous Si on SiO2. We investigate the dewetting dynamics of a few nanometer sized layers annealed at high temperature to form submicrometric Si-particles. Morphological and structural characterization reveal the polycrystalline nature of the semiconductor matrix as well as rather irregular morphologies of the dewetted islands. Optical dark field imaging and spectroscopy measurements of the single islands reveal pronounced resonant scattering at visible frequencies. The linewidth of the low-order modes can be ∼20 nm in full width at half maximum, leading to a quality factor Q exceeding 25. These values reach the state-of-the-art ones obtained for monocrystalline Mie resonators. The simplicity of the dewetting process and its cost-effectiveness opens the route to exploiting it over large scales for applications in silicon-based photonics.
Transverse spin in the scattering of focused radially and azimuthally polarized vector beams
NASA Astrophysics Data System (ADS)
Singh, Ankit Kumar; Saha, Sudipta; Gupta, Subhasish Dutta; Ghosh, Nirmalya
2018-04-01
We study the effect of focusing of the radially and azimuthally polarized vector beams on the spin angular momentum (SAM) density and Poynting vector of scattered waves from a Mie particle. Remarkably, the study reveals that the SAM density of the scattered field is solely transverse in nature for radially and azimuthally polarized incident vector beams; however, the Poynting vector shows the usual longitudinal character. We also demonstrate that the transverse SAM density can further be tuned with wavelength and focusing of the incident beam by exploiting the interference of different scattering modes. These results may stimulate further experimental techniques to detect the transverse spin and Belinfante's spin-momentum densities.
Bidirectional light-scattering image processing method for high-concentration jet sprays
NASA Astrophysics Data System (ADS)
Shimizu, I.; Emori, Y.; Yang, W.-J.; Shimoda, M.; Suzuki, T.
1985-01-01
In order to study the distributions of droplet size and volume density in high-concentration jet sprays, a new technique is developed, which combines the forward and backward light scattering method and an image processing method. A pulsed ruby laser is used as the light source. The Mie scattering theory is applied to the results obtained from image processing on the scattering photographs. The time history is obtained for the droplet size and volume density distributions, and the method is demonstrated by diesel fuel sprays under various injecting conditions. The validity of the technique is verified by a good agreement in the injected fuel volume distributions obtained by the present method and by injection rate measurements.
On the size of particles near the nucleus of 2060 Chiron
NASA Technical Reports Server (NTRS)
Olkin, C. B.; Elliot, Jim L.; Dunham, Edward W.; Ford, C. H.; Gilmore, D. K.; Rank, David M.; Temi, Pasquale
1995-01-01
Simultaneous dual-wavelength observations by the KAO of a recent Chiron occultation provide a measure of the relative extinction efficiencies of particles near Chiron. This observation and Mie scattering theory allow us to constrain the size of grains causing the extinction of the starlight near Chiron.
NASA Technical Reports Server (NTRS)
Daily, J. W.
1978-01-01
Laser induced fluorescence spectroscopy of flames is discussed, and derived uncertainty relations are used to calculate detectability limits due to statistical errors. Interferences due to Rayleigh scattering from molecules as well as Mie scattering and incandescence from particles have been examined for their effect on detectability limits. Fluorescence trapping is studied, and some methods for reducing the effect are considered. Fluorescence trapping places an upper limit on the number density of the fluorescing species that can be measured without signal loss.
NASA Technical Reports Server (NTRS)
Cloud, Stanley D.
1987-01-01
A computer calculation of the expected angular distribution of coherent anti-Stokes Raman scattering (CARS) from micrometer size polystyrene spheres based on a Mie-type model, and a pilot experiment to test the feasibility of measuring CARS angular distributions from micrometer size polystyrene spheres by simply suspending them in water are discussed. The computer calculations predict a very interesting structure in the angular distributions that depends strongly on the size and relative refractive index of the spheres.
Analytical Concept: Development of a Multinational Information Strategy
2008-10-31
16 1.4.3 Training and Mentoring/ Coaching ............................................................. 16 1.5 Analysis Requirements...America. These priority focus areas will become subject to experimentation in a number of consecutive phases of the 2008 Major Integrating Event ( MIE ...factor in general, in the MNE 5 CD&E program, focused on supporting concept validation in the 2008 MIE . The Analytical Concept outlines processes and
Diffraction-based BioCD biosensor for point-of-care diagnostics
NASA Astrophysics Data System (ADS)
Choi, H.; Chang, C.; Savran, C.; Nolte, D.
2018-02-01
The BioCD platform technology uses spinning-disk interferometry to detect molecular binding to target molecular probes in biological samples. Interferometric configurations have included differential phase contrast and in-line quadrature detection. For the detection of extremely low analyte concentrations, nano- or microparticles can enhance the signal through background-free diffraction detection. Diffraction signal measurements on BioCD biosensors are achieved by forming gratings on a disc surface. The grating pattern was printed with biotinylated bovine serum albumin (BSA) and streptavidin coated beads were deployed. The diameter of the beads was 1 micron and strong protein bonding occurs between BSA and streptavidin-coated beads at the printed location. The wavelength for the protein binding detection was 635 nm. The periodic pattern on the disc amplified scattered light into the first-order diffraction position. The diffracted signal contains Mie scattering and a randomly-distributed-bead noise contributions. Variation of the grating pattern periodicity modulates the diffraction efficiency. To test multiple spatial frequencies within a single scan, we designed a fan-shaped grating to perform frequency filter multiplexing on a diffraction-based BioCD.
NASA Technical Reports Server (NTRS)
Shaffer, William A.; Samuelson, Robert E.; Conrath, Barney J.
1986-01-01
An average of 51 Voyager 1 IRIS spectra of Jupiter's North Tropical Zone was analyzed to infer the abundance, vertical extent, and size distribution of the particles making up the ammonia cloud in this region. It is assumed that the cloud base coincides with the level at which 100% saturation of ammonia vapor occurs. The vertical distribution of particulates above this level is determined by assuming a constant total ammonia mixing ratio and adjusting the two phases so that the vapor is saturated throughout the cloud. A constant scaling factor then adjusts the base number density. A radiative transfer program is used that includes the effects of absorption and emission of all relevant gases as well as anisotropic scattering by cloud particles. Mie scattering from a gaussian particle size distribution is assumed. The vertical thermal structure is inferred from a temperature retrieval program that utilizes the collision induced S(0) and S(1) molecular hydrogen lines between 300 and 700.cm, and the 1304.cm methane band.
NASA Astrophysics Data System (ADS)
Vignéras-Lefebvre, V.; Miane, J. L.; Parneix, J. P.
1993-03-01
A modelisation of the behaviour of heterogeneous structures, made with spherical particles, submitted to microwave fields, using multiple scattering, is presented. First of all, we expose the principle of scattering by a single sphere, using Mie's equations represented in the form of a transfer matrix. This matrix, generalized to a distribution of particles, allows the translation of an average behaviour of the material. As part of the limit of Rayleigh, the value of the effective permittivity thus obtained is compared to experimental results. Une modélisation du comportement de structures hétérogènes composées de particules sphériques, soumises à des champs hyperfréquences, utilisant la multidiffusion, est présentée. Dans un premier temps, nous exposons le principe de la diffusion par une seule sphère en utilisant les équations de Mie représentées sous forme matricielle. Cette matrice généralisée à une distribution de particules permet de traduire un comportement moyen du matériau. Dans le cadre de l'approximation de Rayleigh, la valeur de la permittivité ainsi calculée est comparée à des résultats expérimentaux.
Jones, Stephanie H; King, Martin D; Ward, Andrew D
2013-12-21
A method is described to measure the refractive index dispersion with wavelength of optically trapped solid particles in air. Knowledge of the refraction properties of solid particles is critical for the study of aerosol; both in the laboratory and in the atmosphere for climate studies. Single micron-sized polystyrene beads were optically trapped in air using a vertically aligned counter-propagating configuration of focussed laser beams. Each bead was illuminated using white light from a broadband light emitting diode (LED) and elastic scattering within the bead was collected onto a spectrograph. The resulting Mie spectra were analysed to accurately determine polystyrene bead radii to ±0.4 nm and values of the refractive index to ±0.0005 over a wavelength range of 480-700 nm. We demonstrate that optical trapping combined with elastic scattering can be used to both accurately size polystyrene beads suspended in air and determine their wavelength dependent refractive index. The refractive index dispersions are in close agreement with reported values for polystyrene beads in aqueous dispersion. Our results also demonstrate a variation in the refractive index of polystyrene, from bead to bead, in a commercial sample. The measured variation highlights that care must be taken when using polystyrene beads as a calibration aerosol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedman, Matthew M.; Stark, Christopher C., E-mail: mhedman@uidaho.edu, E-mail: cstark@stsci.edu
The appearance of debris disks around distant stars depends upon the scattering/phase function (SPF) of the material in the disk. However, characterizing the SPFs of these extrasolar debris disks is challenging because only a limited range of scattering angles are visible to Earth-based observers. By contrast, Saturn’s tenuous rings can be observed over a much broader range of geometries, so their SPFs can be much better constrained. Since these rings are composed of small particles released from the surfaces of larger bodies, they are reasonable analogs to debris disks and so their SPFs can provide insights into the plausible scatteringmore » properties of debris disks. This work examines two of Saturn’s dusty rings: the G ring (at 167,500 km from Saturn’s center) and the D68 ringlet (at 67,600 km). Using data from the cameras on board the Cassini spacecraft, we are able to estimate the rings’ brightnesses at scattering angles ranging from 170° to 0.°5. We find that both of the rings exhibit extremely strong forward-scattering peaks, but for scattering angles above 60° their brightnesses are nearly constant. These SPFs can be well approximated by a linear combination of three Henyey–Greenstein functions, and are roughly consistent with the SPFs of irregular particles from laboratory measurements. Comparing these data to Fraunhofer and Mie models highlights several challenges involved in extracting information about particle compositions and size distributions from SPFs alone. The SPFs of these rings also indicate that the degree of forward scattering in debris disks may be greatly underestimated.« less
NASA Astrophysics Data System (ADS)
Jones, Stephanie H.; King, Martin D.; Ward, Andrew D.
2014-09-01
A counter-propagating optical trap has been used to study thin organic films on the surface of solid particles levitated in air. Micron sized silica spheres have been trapped in air between opposed 1064 nm laser beams, and illuminated with a broadband white LED. Backscattered light from the trapped particle was collected to obtain a Mie spectrum over the 495-670 nm wavelength range and this was used to determine particle radius and wavelength dependent refractive index (Jones et al., 2013). The trapped particle was coated using a flow of organic vapour and the resultant thin film analysed using a coated sphere model. Resonance positions in the Mie spectrum were monitored with time in order to determine film formation, thickness and refractive index. Whilst thin films are believed to form naturally on atmospheric aerosols (Tervahattu et al., 2002), a debate remains as to whether the organic component completely coats the aerosol surface or partially engulfs it. Such films are readily oxidised in the atmosphere causing a change in aerosol properties and knowledge of aerosol properties is required to understand their effect on the climate. The use of optical trapping combined with Mie spectra acquisition to study and characterise coated solid particles is therefore an important step in atmospheric science.
Classical plasma dynamics of Mie-oscillations in atomic clusters
NASA Astrophysics Data System (ADS)
Kull, H.-J.; El-Khawaldeh, A.
2018-04-01
Mie plasmons are of basic importance for the absorption of laser light by atomic clusters. In this work we first review the classical Rayleigh-theory of a dielectric sphere in an external electric field and Thomson’s plum-pudding model applied to atomic clusters. Both approaches allow for elementary discussions of Mie oscillations, however, they also indicate deficiencies in describing the damping mechanisms by electrons crossing the cluster surface. Nonlinear oscillator models have been widely studied to gain an understanding of damping and absorption by outer ionization of the cluster. In the present work, we attempt to address the issue of plasmon relaxation in atomic clusters in more detail based on classical particle simulations. In particular, we wish to study the role of thermal motion on plasmon relaxation, thereby extending nonlinear models of collective single-electron motion. Our simulations are particularly adopted to the regime of classical kinetics in weakly coupled plasmas and to cluster sizes extending the Debye-screening length. It will be illustrated how surface scattering leads to the relaxation of Mie oscillations in the presence of thermal motion and of electron spill-out at the cluster surface. This work is intended to give, from a classical perspective, further insight into recent work on plasmon relaxation in quantum plasmas [1].
Physical Chemistry and Biophysics of Single Trapped Microparticles
NASA Astrophysics Data System (ADS)
Dem, Claudiu; Schmitt, Michael; Kiefer, Wolfgang; Popp, Jürgen
Microparticles, particularly in the form of spheres and cylinders with radii larger than the wavelength of light, as well as coated gas bubbles, are at the center of various fields of study that include linear and nonlinear optics, combustion diagnostics, fuel dynamics, colloid chemistry, atmospheric science, telecommunications, and pulmonary medicine. The spectroscopy of single microparticles is feasible nowadays due to the development of various optical and electromagnetic trapping techniques. While data derived from elastic scattering, such as the angular distribution of the scattered radiation or the radiation pressure acting on spherical resonators, e.g., microdroplets, provides mainly information about the morphology of the particle, inelastic light scattering, e.g., Raman spectroscopy, yields additional information concerning the chemical composition of the material under investigation. Trapping techniques allow to obtain Raman spectra of single particles, whose sizes are of the order of or larger than the wavelength of the exciting light. However, in scattering systems with well-defined geometries, e.g., cylindrical, spherical, or spheroidal cavities, the use of Raman spectroscopy as a diagnostic probe becomes complicated due to morphologydependent resonances (MDRs) of the cavity. Such cavity resonances may give rise to sharp peaks in a Raman spectrum that are not present in bulk Raman spectra. These peaks result from resonanceinduced enhancements to the Raman scattering. The physical nature of these resonances can be described for dielectric particles by means of the well-known Lorenz-Mie theory. These MDRs can be used together with Raman data for a comprehensive study of the physical properties as well as the time dependence of chemical reactions. Here, we present a short review of our own work on combined inelastic/elastic (Raman/Mie) light scattering studies and their applications to several microchemical reactions as well as on elastic light scattering on a femtosecond timescale. A few representative examples have been chosen to demonstrate the power of such light scattering studies of microparticles trapped by optical or electrodynamical forces.
Characterization of single particle aerosols by elastic light scattering at multiple wavelengths
NASA Astrophysics Data System (ADS)
Lane, P. A.; Hart, M. B.; Jain, V.; Tucker, J. E.; Eversole, J. D.
2018-03-01
We describe a system to characterize individual aerosol particles using stable and repeatable measurement of elastic light scattering. The method employs a linear electrodynamic quadrupole (LEQ) particle trap. Charged particles, continuously injected by electrospray into this system, are confined to move vertically along the stability line in the center of the LEQ past a point where they are optically interrogated. Light scattered in the near forward direction was measured at three different wavelengths using time-division multiplexed collinear laser beams. We validated our method by comparing measured silica microsphere data for four selected diameters (0.7, 1.0, 1.5 and 2.0 μm) to a model of collected scattered light intensities based upon Lorenz-Mie scattering theory. Scattered light measurements at the different wavelengths are correlated, allowing us to distinguish and classify inhomogeneous particles.
Radiance and polarization of multiple scattered light from haze and clouds.
Kattawar, G W; Plass, G N
1968-08-01
The radiance and polarization of multiple scattered light is calculated from the Stokes' vectors by a Monte Carlo method. The exact scattering matrix for a typical haze and for a cloud whose spherical drops have an average radius of 12 mu is calculated from the Mie theory. The Stokes' vector is transformed in a collision by this scattering matrix and the rotation matrix. The two angles that define the photon direction after scattering are chosen by a random process that correctly simulates the actual distribution functions for both angles. The Monte Carlo results for Rayleigh scattering compare favorably with well known tabulated results. Curves are given of the reflected and transmitted radiances and polarizations for both the haze and cloud models and for several solar angles, optical thicknesses, and surface albedos. The dependence on these various parameters is discussed.
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.; Lock, James A.
1993-01-01
Scattering calculations using a detailed model of the multimode laser beam in the forward-scattering spectrometer probe (FSSP) were carried out using a recently developed extension to Mie scattering theory. From this model, new calibration curves for the FSSP were calculated. The difference between the old calibration curves and the new ones is small for droplet diameters less than 10 microns, but the difference increases to approximately 10 percent at diameters of 50 microns. When using glass beads to calibrate the FSSP, calibration errors can be minimized by using glass beads of many different diameters, over the entire range of the FSSP. If the FSSP is calibrated using one-diameter glass beads, then the new formalism is necessary to extrapolate the calibration over the entire range.
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.; Lock, James A.
1993-01-01
Scattering calculations using a more detailed model of the multimode laser beam in the forward-scattering spectrometer probe (FSSP) were carried out by using a recently developed extension to Mie scattering theory. From this model, new calibration curves for the FSSP were calculated. The difference between the old calibration curves and the new ones is small for droplet diameters less than 10 micrometers, but the difference increases to approximately 10% at diameters of 50 micrometers. When using glass beads to calibrate the FSSP, calibration errors can be minimized, by using glass beads of many different diameters, over the entire range of the FSSP. If the FSSP is calibrated using one-diameter glass beads, then the new formalism is necessary to extrapolate the calibration over the entire range.
Optical scattering lengths in large liquid-scintillator neutrino detectors.
Wurm, M; von Feilitzsch, F; Göger-Neff, M; Hofmann, M; Lachenmaier, T; Lewke, T; Marrodán Undagoitia, T; Meindl, Q; Möllenberg, R; Oberauer, L; Potzel, W; Tippmann, M; Todor, S; Traunsteiner, C; Winter, J
2010-05-01
For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.
Optical scattering lengths in large liquid-scintillator neutrino detectors
NASA Astrophysics Data System (ADS)
Wurm, M.; von Feilitzsch, F.; Göger-Neff, M.; Hofmann, M.; Lachenmaier, T.; Lewke, T.; Undagoitia, T. Marrodán; Meindl, Q.; Möllenberg, R.; Oberauer, L.; Potzel, W.; Tippmann, M.; Todor, S.; Traunsteiner, C.; Winter, J.
2010-05-01
For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.
NASA Astrophysics Data System (ADS)
McClymer, J. P.
2016-08-01
Many fluids appear white because refractive index differences lead to multiple scattering. In this paper, we use safe, low-cost commercial index matching fluids to quantitatively study light transmission as a function of index mismatch, reduce multiple scattering to allow single scattering probes, and to precisely determine the index of refraction of suspended material. The transmission profile is compared with Rayleigh-Gans and Mie theory predictions. The procedure is accessible as a student laboratory project, while providing advantages over other standard methods of measuring the refractive index of an unknown nanoparticle, making it valuable to researchers.
A modified Rayleigh-Gans-Debye formula for small angle X-ray scattering by interstellar dust grains
NASA Astrophysics Data System (ADS)
Sharma, Subodh K.
2015-05-01
A widely used approximation in studies relating to small angle differential scattering cross-section of X-rays scattered by interstellar dust grains is the well known Rayleigh-Gans-Debye approximation (RGDA). The validity of this approximation, however, is limited only to X-ray energies greater than about 1 keV. At lower energies, this approximation overestimates the exact results. In this paper a modification to the RGDA is suggested. It is shown that a combination of the RGDA with Ramsauer approximation retains the formal simplicity of the RGDA and also yields good agreement with Mie computations at all X-ray energies.
Laser velocimetry technique applied to the Langley 0.3 meter transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Gartrell, L. R.; Gooderum, P. B.; Hunter, W. W., Jr.; Meyers, J. F.
1981-01-01
A low power laser velocimeter operating in the forward scatter mode was used to measure free stream mean velocities in the Langley 0.3 Meter Transonic Cryogenic Tunnel. Velocity ranging from 51 to 235 m/s was measured. Measurements were obtained for a variety of nominal tunnel conditions: Mach numbers from 0.20 to 0.77, total temperatures from 100 to 250 K, and pressures from 101 to 152 kPa. Particles were not injected to augment the existing Mie scattering materials. Liquid nitrogen droplets were the existing liqht scattering material. Tunnel vibrations and thermal effects had no detrimental effects on the optical system.
Geometrical optics model of Mie resonances
Roll; Schweiger
2000-07-01
The geometrical optics model of Mie resonances is presented. The ray path geometry is given and the resonance condition is discussed with special emphasis on the phase shift that the rays undergo at the surface of the dielectric sphere. On the basis of this model, approximate expressions for the positions of first-order resonances are given. Formulas for the cavity mode spacing are rederived in a simple manner. It is shown that the resonance linewidth can be calculated regarding the cavity losses. Formulas for the mode density of Mie resonances are given that account for the different width of resonances and thus may be adapted to specific experimental situations.
Time Dependence of Aerosol Light Scattering Downwind of Forest Fires
NASA Astrophysics Data System (ADS)
Kleinman, L. I.; Sedlacek, A. J., III; Wang, J.; Lewis, E. R.; Springston, S. R.; Chand, D.; Shilling, J.; Arnott, W. P.; Freedman, A.; Onasch, T. B.; Fortner, E.; Zhang, Q.; Yokelson, R. J.; Adachi, K.; Buseck, P. R.
2017-12-01
In the first phase of BBOP (Biomass Burn Observation Project), a Department of Energy (DOE) sponsored study, wildland fires in the Pacific Northwest were sampled from the G-1 aircraft via sequences of transects that encountered emission whose age (time since emission) ranged from approximately 15 minutes to four hours. Comparisons between transects allowed us to determine the near-field time evolution of trace gases, aerosol particles, and optical properties. The fractional increase in aerosol concentration with plume age was typically less than a third of the fractional increase in light scattering. In some fires the increase in light scattering exceeded a factor of two. Two possible causes for the discrepancy between scattering and aerosol mass are i) the downwind formation of refractory tar balls that are not detected by the AMS and therefore contribute to scattering but not to aerosol mass and ii) changes to the aerosol size distribution. Both possibilities are considered. Our information on tar balls comes from an analysis of TEM grids. A direct determination of size changes is complicated by extremely high aerosol number concentrations that caused coincidence problems for the PCASP and UHSAS probes. We instead construct a set of plausible log normal size distributions and for each member of the set do Mie calculations to determine mass scattering efficiency (MSE), angstrom exponents, and backscatter ratios. Best fit size distributions are selected by comparison with observed data derived from multi-wavelength scattering measurements, an extrapolated FIMS size distribution, and mass measurements from an SP-AMS. MSE at 550 nm varies from a typical near source value of 2-3 to about 4 in aged air.
Effects of Defect Size and Number Density on the Transmission and Reflection of Guided Elastic Waves
2016-04-22
localized region, a photoacoustic source generates elastic waves on one side of the damaged region, and then two ultrasound transducers measure the...where the defects are of the same order as the wavelength of the ultrasound , we find ourselves confronted with Mie scattering, which has weaker
Superenhancers: novel opportunities for nanowire optoelectronics.
Khudiyev, Tural; Bayindir, Mehmet
2014-12-16
Nanowires play a crucial role in the development of new generation optoelectronic devices ranging from photovoltaics to photodetectors, as these designs capitalize on the low material usage, utilize leaky-mode optical resonances and possess high conversion efficiencies associated with nanowire geometry. However, their current schemes lack sufficient absorption capacity demanded for their practical applicability, and more efficient materials cannot find widespread usage in these designs due to their rarity and cost. Here we suggest a novel and versatile nanoconcentrator scheme utilizing unique optical features of non-resonant Mie (NRM) scattering regime associated with low-index structures. The scattering regime is highly compatible with resonant Mie absorption effect taking place in nanowire absorbers. This technique in its optimized forms can provide up to 1500% total absorption enhancement, 400-fold material save and is suitable for large-area applications with significant area preservation compared to thin-film of same materials. Proposed superenhancer concept with its exceptional features such as broadband absorption enhancement, polarization immunity and material-independent manner paves the way for development of efficient nanowire photosensors or solar thermophotovoltaic devices and presents novel design opportunities for self-powered nanosystems.
NASA Astrophysics Data System (ADS)
Orozco, Daniel
The Earth's atmosphere is composed of a large number of different gases as well as tiny suspended particles, both in solid and liquid state. These tiny particles, called atmospheric aerosols, have an immense impact on our health and on our global climate. Atmospheric aerosols influence the Earth's radiation budget both directly and indirectly. In the direct effect, aerosols scatter and absorb sunlight changing the radiative balance of the Earth-atmosphere system. Aerosols indirectly influence the Earth's radiation budget by modifying the microphysical and radiative properties of clouds as well as their water content and lifetime. In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering coefficient and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. This dissertation presents the aerosol hygroscopicity experiment investigated using a novel dryer-humidifier system, coupled to a TSI-3563 nephelometer, to obtain the light scattering coefficient (sp) as a function of relative humidity (RH) in hydration and dehydration modes. The measurements were performed in Porterville, CA (Jan 10-Feb 6, 2013), Baltimore, MD (Jul 3-30, 2013), and Golden, CO (Jul 12-Aug 10, 2014). Observations in Porterville and Golden were part of the NASA-sponsored DISCOVER-AQ project. The measured sp under varying RH in the three sites was combined with ground aerosol extinction, PM2:5mass concentrations, particle composition measurements, and compared with airborne observations performed during campaigns. The enhancement factor, f(RH), defined as the ratio of sp(RH) at a certain RH divided by sp at a dry value, was used to evaluate the aerosol hygroscopicity. Different empirical fits were evaluated using the f(RH) data. The widely used gamma model was found inappropriate, as it overestimates f(RH) for RH<75%. Abetter empirical fit with two power-law curve-fitting parameters c and k was found to replicate f(RH) accurately from the three sites. The relationship between the organic carbon mass (OMC) and the species that are affected by RH and f(RH) was also studied and categorized between the sites. A second experiment is reported where the first two elements of the scattering matrix of laboratory generated particles were studied under different humidity conditions. The non-spherical particles generated were ammonium sulfate, sodium chloride, and ammonium nitrate. The optical measurements were performed with a polarized imaging nephelometer (PI-Neph) installed in series with the humidifier dryer apparatus. The inorganic salts experienced low (80%) RH levels so that the observations could contrast the differences when the salts were crystallized (low RH) and when the particles turned to aqueous solutions after deliquesence (high RH). The measurements with the PI-Neph produce the aerosol phase function and the polarized phase function in a range of angles that go from 3 to 177. The results showed significant changes in the phase function and polarized phase function due to the hygroscopic growth. Although the inorganic salts used inthe experiments were non-spherical, the dry measurements were successfully reproduced with the Mie theory using literature values for the dry index of refraction. Moreover, the changes in the particle size distribution and index of refraction were evaluated through classic thermodynamic equilibrium theory producing comparable results with the simulations performed with Mie formalism. The final experiment consisted in the measurements of phase function and degree of linear polarization of ambient aerosols sampled in Baltimore, MD with the PI-Neph. This study was centered on specific case studies where different aerosol conditions were experienced such as clean, haze episode, and transported smoke event. The approach employed consisted of dry and humid observations of ambient aerosols to compare them with total column products by AERONET. A relatively low difference between the phase function and the degree of linear polarization was measured at high and low RH. The small difference found in the scattering elements and their retrievals is attributed to the general aerosol composition in the region. It was observed that a RH increase causes the particles to scatter more light uniformly over all the scattering angles, and also, that the water uptake did not change markedly the particle's polarization properties. The comparison between in-situ and total column derived observations were highly correlated for most of the cases. The size distribution retrievals from the in-situ measurements were very comparable to the size distributions reported by AERONET, but only for the fine modes.
Energy Balance for a Sonoluminescence Bubble Yields a Measure of Ionization Potential Lowering
NASA Astrophysics Data System (ADS)
Kappus, B.; Bataller, A.; Putterman, S. J.
2013-12-01
Application of energy conservation between input sound and the microplasma which forms at the moment of sonoluminescence places bounds on the process, whereby the gas is ionized. Detailed pulsed Mie scattering measurements of the radius versus time for a xenon bubble in sulfuric acid provide a complete characterization of the hydrodynamics and minimum radius. For a range of emission intensities, the blackbody spectrum emitted during collapse matches the minimum bubble radius, implying opaque conditions are attained. This requires a degree of ionization >36%. Analysis reveals only 2.1±0.6eV/atom of energy available during light emission. In order to unbind enough charge, collective processes must therefore reduce the ionization potential by at least 75%. We interpret this as evidence that a phase transition to a highly ionized plasma is occurring during sonoluminescence.
Energy balance for a sonoluminescence bubble yields a measure of ionization potential lowering.
Kappus, B; Bataller, A; Putterman, S J
2013-12-06
Application of energy conservation between input sound and the microplasma which forms at the moment of sonoluminescence places bounds on the process, whereby the gas is ionized. Detailed pulsed Mie scattering measurements of the radius versus time for a xenon bubble in sulfuric acid provide a complete characterization of the hydrodynamics and minimum radius. For a range of emission intensities, the blackbody spectrum emitted during collapse matches the minimum bubble radius, implying opaque conditions are attained. This requires a degree of ionization >36%. Analysis reveals only 2.1±0.6 eV/atom of energy available during light emission. In order to unbind enough charge, collective processes must therefore reduce the ionization potential by at least 75%. We interpret this as evidence that a phase transition to a highly ionized plasma is occurring during sonoluminescence.
Complex refractive index of Martian dust - Mariner 9 ultraviolet observations
NASA Technical Reports Server (NTRS)
Pang, K.; Ajello, J. M.; Hord, C. W.; Egan, W. G.
1976-01-01
Mariner 9 ultraviolet spectrometer observations of the 1971 dust clouds obscuring the surface of Mars have been analyzed by matching the observed dust phase function with Mie scattering calculations for size distributions of homogeneous and isotropic material. Preliminary results indicate an effective particle radius of not less than 0.2. The real component of the index of refraction is not less than 1.8 at both 268 and 305 nm; corresponding values for the imagery component are 0.02 and 0.01. These values are consistent with those found by Mead (1970) for the visible and near-visible wavelengths. The refractive index and the absorption coefficient increase rapidly with decreasing wavelength in going from the visible to the ultraviolet, indicating the presence of an ultraviolet absorption band which may shield organisms from ultraviolet irradiation.
Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.
2008-01-01
The Dense Media Radiative Transfer theory (DMRT) of Quasicrystalline Approximation of Mie scattering by sticky particles is used to study the multiple scattering effects in layered snow in microwave remote sensing. Results are illustrated for various snow profile characteristics. Polarization differences and frequency dependences of multilayer snow model are significantly different from that of the single-layer snow model. Comparisons are also made with CLPX data using snow parameters as given by the VIC model. ?? 2007 IEEE.
Radiative heat transfer in strongly forward scattering media of circulating fluidized bed combustors
NASA Astrophysics Data System (ADS)
Ates, Cihan; Ozen, Guzide; Selçuk, Nevin; Kulah, Gorkem
2016-10-01
Investigation of the effect of particle scattering on radiative incident heat fluxes and source terms is carried out in the dilute zone of the lignite-fired 150 kWt Middle East Technical University Circulating Fluidized Bed Combustor (METU CFBC) test rig. The dilute zone is treated as an axisymmetric cylindrical enclosure containing grey/non-grey, absorbing, emitting gas with absorbing, emitting non/isotropically/anisotropically scattering particles surrounded by grey diffuse walls. A two-dimensional axisymmetric radiation model based on Method of Lines (MOL) solution of Discrete Ordinates Method (DOM) coupled with Grey Gas (GG)/Spectral Line-Based Weighted Sum of Grey Gases Model (SLW) and Mie theory/geometric optics approximation (GOA) is extended for incorporation of anisotropic scattering by using normalized Henyey-Greenstein (HG)/transport approximation for the phase function. Input data for the radiation model is obtained from predictions of a comprehensive model previously developed and benchmarked against measurements on the same CFBC burning low calorific value indigenous lignite with high volatile matter/fixed carbon (VM/FC) ratio in its own ash. Predictive accuracy and computational efficiency of nonscattering, isotropic scattering and forward scattering with transport approximation are tested by comparing their predictions with those of forward scattering with HG. GG and GOA based on reflectivity with angular dependency are found to be accurate and CPU efficient. Comparisons reveal that isotropic assumption leads to under-prediction of both incident heat fluxes and source terms for which discrepancy is much larger. On the other hand, predictions obtained by neglecting scattering were found to be in favorable agreement with those of forward scattering at significantly less CPU time. Transport approximation is as accurate and CPU efficient as HG. These findings indicate that negligence of scattering is a more practical choice in solution of the radiative transfer equation (RTE) in conjunction with conservation equations for the system under consideration.
Nonideal ultrathin mantle cloak for electrically large conducting cylinders.
Liu, Shuo; Zhang, Hao Chi; Xu, He-Xiu; Cui, Tie Jun
2014-09-01
Based on the concept of the scattering cancellation technique, we propose a nonideal ultrathin mantle cloak that can efficiently suppress the total scattering cross sections of an electrically large conducting cylinder (over one free-space wavelength). The cloaking mechanism is investigated in depth based on the Mie scattering theory and is simultaneously interpreted from the perspective of far-field bistatic scattering and near-field distributions. We remark that, unlike the perfect transformation-optics-based cloak, this nonideal cloaking technique is mainly designed to minimize simultaneously several scattering multipoles of a relatively large geometry around considerably broad bandwidth. Numerical simulations and experimental results show that the antiscattering ability of the metasurface gives rise to excellent total scattering reduction of the electrically large cylinder and remarkable electric-field restoration around the cloak. The outstanding cloaking performance together with the good features of and ultralow profile, flexibility, and easy fabrication predict promising applications in the microwave frequencies.
Multi-Wavelength Measurement of Soot Optical Properties: Influence of Non-Absorbing Coatings
NASA Astrophysics Data System (ADS)
Freedman, Andrew; Renbaum-Wollf, Lindsay; Forestieri, Sara; Lambe, Andrew; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy
2015-04-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. Important in quantifying the direct radiative impacts of soot in climate models, and specifically of black carbon (BC), is the assumed BC refractive index and shape-dependent interaction of light with BC particles. The latter assumption carries significant uncertainty because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet many optical models such as Mie theory in particular, typically assume a spherical particle morphology. It remains unclear under what conditions this is an acceptable assumption. To investigate the ability of various optical models to reproduce observed BC optical properties, we obtained measurements of light absorption, scattering and extinction coefficients and thus single scattering albedo (SSA) of size-resolved soot particles. Measurements were made on denuded soot particles produced using both methane and ethylene as fuels. In addition, these soot particles were coated with dioctyl sebacate or sulfuric acid and the enhancement in the apparent mass absorption coefficient determined. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm. Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The results will be interpreted in light of both Mie theory which assumes spherical and uniform particles and Rayleigh-Debye-Gans (RDG) theory, which assumes that the absorption properties of soot are dictated by the individual spherules. For denuded soot, effective refractive indices will be determined.
Transfer of thermal microwaves in the atmosphere, volume 1
NASA Technical Reports Server (NTRS)
Paris, J. F.
1971-01-01
The Mie theory is used to determine the absorption and scattering properties of liquid hydrometeors at 27 microwave frequencies from 500 MHz to 60 GHz. Based on the Marshall-Palmer distribution of drop sizes, regression equations are developed for the volume absorption coefficient of rain as a function of its temperature and content of liquid water.
Over the past decade there has been interest in exploring possible relationships between atmospheric visibility (extinction of light) and the chemical form of aerosols in the atmosphere. ser-friendly, menu-driven program for the personal computer (AT 286 with math co-processor or...
NASA Astrophysics Data System (ADS)
Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin
2016-04-01
Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.
On the relationship between aerosol content and errors in telephotometer experiments.
NASA Technical Reports Server (NTRS)
Thomas, R. W. L.
1971-01-01
This paper presents an invariant imbedding theory of multiple scattering phenomena contributing to errors in telephotometer experiments. The theory indicates that there is a simple relationship between the magnitudes of the errors introduced by successive orders of scattering and it is shown that for all optical thicknesses each order can be represented by a coefficient which depends on the field of view of the telescope and the properties of the scattering medium. The verification of the theory and the derivation of the coefficients have been accomplished by a Monte Carlo program. Both monodisperse and polydisperse systems of Mie scatterers have been treated. The results demonstrate that for a given optical thickness the coefficients increase strongly with the mean particle size particularly for the smaller fields of view.
Atmospheric particulate analysis using angular light scattering
NASA Technical Reports Server (NTRS)
Hansen, M. Z.
1980-01-01
Using the light scattering matrix elements measured by a polar nephelometer, a procedure for estimating the characteristics of atmospheric particulates was developed. A theoretical library data set of scattering matrices derived from Mie theory was tabulated for a range of values of the size parameter and refractive index typical of atmospheric particles. Integration over the size parameter yielded the scattering matrix elements for a variety of hypothesized particulate size distributions. A least squares curve fitting technique was used to find a best fit from the library data for the experimental measurements. This was used as a first guess for a nonlinear iterative inversion of the size distributions. A real index of 1.50 and an imaginary index of -0.005 are representative of the smoothed inversion results for the near ground level atmospheric aerosol in Tucson.
Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin
2016-04-07
Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.
Castellón, Erick; Martínez, María; Madrigal-Carballo, Sergio; Arias, María Laura; Vargas, William E; Chavarría, Max
2013-01-01
Río Celeste (Sky-Blue River) in Tenorio National Park (Costa Rica), a river that derives from the confluence and mixing of two colorless streams--Río Buenavista (Buenavista River) and Quebrada Agria (Sour Creek)--is renowned in Costa Rica because it presents an atypical intense sky-blue color. Although various explanations have been proposed for this unusual hue of Río Celeste, no exhaustive tests have been undertaken; the reasons hence remain unclear. To understand this color phenomenon, we examined the physico-chemical properties of Río Celeste and of the two streams from which it is derived. Chemical analysis of those streams with ion-exchange chromatography (IC) and inductively coupled plasma atomic emission spectroscopy (ICP-OES) made us discard the hypothesis that the origin of the hue is due to colored chemical species. Our tests revealed that the origin of this coloration phenomenon is physical, due to suspended aluminosilicate particles (with diameters distributed around 566 nm according to a lognormal distribution) that produce Mie scattering. The color originates after mixing of two colorless streams because of the enlargement (by aggregation) of suspended aluminosilicate particles in the Río Buenavista stream due to a decrease of pH on mixing with the acidic Quebrada Agria. We postulate a chemical mechanism for this process, supported by experimental evidence of dynamic light scattering (DLS), zeta potential measurements, X-ray diffraction and scanning electron microscopy (SEM) with energy-dispersive spectra (EDS). Theoretical modeling of the Mie scattering yielded a strong coincidence between the observed color and the simulated one.
Soldier Performance Research Project: Armor Field and SIMNET Tests
1989-09-01
Office of the D-uty Chief of Staff for Pxsonnel, and the U.S. Army Armor Center. Mie results are being used to support the UXADOC distribution of quality...experience with the simulators. During this phase, the instructors coached the crews through the course and encouraged the cr to ask questions. The...Fbrthernore, the overall magnitude of the errors, nearly one kilometer on average, suggests tankers have trouble determining accurate grid coordinates. Mie
Metasurface Mirrors for External Control of Mie Resonances.
van de Groep, Jorik; Brongersma, Mark L
2018-06-13
The ability to control and structurally tune the optical resonances of semiconductor nanostructures has far-reaching implications for a wide range of optical applications, including photodetectors, (bio)sensors, and photovoltaics. Such control is commonly obtained by tailoring the nanostructure's geometry, material, or dielectric environment. Here, we combine insights from the field of coherent optics and metasurface mirrors to effectively turn Mie resonances on and off with high spatial control and in a polarization-dependent fashion. We illustrate this in an integrated device by manipulating the photocurrent spectra of a single-nanowire photodetector placed on a metasurface mirror. This approach can be generalized to control spectral, angle-dependent, absorption, and scattering properties of semiconductor nanostructures with an engineered metasurface and without a need to alter their geometric or materials properties.
Imaging complex objects using learning tomography
NASA Astrophysics Data System (ADS)
Lim, JooWon; Goy, Alexandre; Shoreh, Morteza Hasani; Unser, Michael; Psaltis, Demetri
2018-02-01
Optical diffraction tomography (ODT) can be described using the scattering process through an inhomogeneous media. An inherent nonlinearity exists relating the scattering medium and the scattered field due to multiple scattering. Multiple scattering is often assumed to be negligible in weakly scattering media. This assumption becomes invalid as the sample gets more complex resulting in distorted image reconstructions. This issue becomes very critical when we image a complex sample. Multiple scattering can be simulated using the beam propagation method (BPM) as the forward model of ODT combined with an iterative reconstruction scheme. The iterative error reduction scheme and the multi-layer structure of BPM are similar to neural networks. Therefore we refer to our imaging method as learning tomography (LT). To fairly assess the performance of LT in imaging complex samples, we compared LT with the conventional iterative linear scheme using Mie theory which provides the ground truth. We also demonstrate the capacity of LT to image complex samples using experimental data of a biological cell.
Modifying infrared scattering effects of single yeast cells with plasmonic metal mesh
NASA Astrophysics Data System (ADS)
Malone, Marvin A.; Prakash, Suraj; Heer, Joseph M.; Corwin, Lloyd D.; Cilwa, Katherine E.; Coe, James V.
2010-11-01
The scattering effects in the infrared (IR) spectra of single, isolated bread yeast cells (Saccharomyces cerevisiae) on a ZnSe substrate and in metal microchannels have been probed by Fourier transform infrared imaging microspectroscopy. Absolute extinction [(3.4±0.6)×10-7 cm2 at 3178 cm-1], scattering, and absorption cross sections for a single yeast cell and a vibrational absorption spectrum have been determined by comparing it to the scattering properties of single, isolated, latex microspheres (polystyrene, 5.0 μm in diameter) on ZnSe, which are well modeled by the Mie scattering theory. Single yeast cells were then placed into the holes of the IR plasmonic mesh, i.e., metal films with arrays of subwavelength holes, yielding "scatter-free" IR absorption spectra, which have undistorted vibrational lineshapes and a rising generic IR absorption baseline. Absolute extinction, scattering, and absorption spectral profiles were determined for a single, ellipsoidal yeast cell to characterize the interplay of these effects.
Light scattering properties of kidney epithelial cells and nuclei
NASA Astrophysics Data System (ADS)
Vitol, Elina A.; Kurzweg, Timothy P.; Nabet, Bahram
2006-02-01
Enlargement of mammalian cells nuclei due to the cancerous inflammation can be detected early through noninvasive optical techniques. We report on the results of cellular experiments, aimed towards the development of a fiber optic endoscopic probe used for precancerous detection of Barrett's esophagus. We previously presented white light scattering results from tissue phantoms (polystyrene polybead microspheres). In this paper, we discuss light scattering properties of epithelial MDCK (Madine-Darby Canine Kidney) cells and cell nuclei suspensions. A bifurcated optical fiber is used for experimental illumination and signal detection. The resulting scattering spectra from the cells do not exhibit the predicted Mie theory oscillatory behavior inherent to ideally spherical scatterers, such as polystyrene microspheres. However, we are able to demonstrate that the Fourier transform spectra of the cell suspensions are well correlated with the Fourier transform spectra of cell nuclei, concluding that the dominate scatterer in the backscattering region is the nucleus. This correlation experimentally illustrates that in the backscattering region, the cell nuclei are the main scatterer in the cells of the incident light.
Impact of Scattering Model on Disdrometer Derived Attenuation Scaling
NASA Technical Reports Server (NTRS)
Zemba, Michael; Luini, Lorenzo; Nessel, James; Riva, Carlo (Compiler)
2016-01-01
NASA Glenn Research Center (GRC), the Air Force Research Laboratory (AFRL), and the Politecnico di Milano (POLIMI) are currently entering the third year of a joint propagation study in Milan, Italy utilizing the 20 and 40 GHz beacons of the Alphasat TDP5 Aldo Paraboni scientific payload. The Ka- and Q-band beacon receivers were installed at the POLIMI campus in June of 2014 and provide direct measurements of signal attenuation at each frequency. Collocated weather instrumentation provides concurrent measurement of atmospheric conditions at the receiver; included among these weather instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which records droplet size distributions (DSD) and droplet velocity distributions (DVD) during precipitation events. This information can be used to derive the specific attenuation at frequencies of interest and thereby scale measured attenuation data from one frequency to another. Given the ability to both predict the 40 GHz attenuation from the disdrometer and the 20 GHz timeseries as well as to directly measure the 40 GHz attenuation with the beacon receiver, the Milan terminal is uniquely able to assess these scaling techniques and refine the methods used to infer attenuation from disdrometer data.In order to derive specific attenuation from the DSD, the forward scattering coefficient must be computed. In previous work, this has been done using the Mie scattering model, however, this assumes a spherical droplet shape. The primary goal of this analysis is to assess the impact of the scattering model and droplet shape on disdrometer derived attenuation predictions by comparing the use of the Mie scattering model to the use of the T-matrix method, which does not assume a spherical droplet. In particular, this paper will investigate the impact of these two scattering approaches on the error of the resulting predictions as well as on the relationship between prediction error and rain rate.
Impact of Scattering Model on Disdrometer Derived Attenuation Scaling
NASA Technical Reports Server (NTRS)
Zemba, Michael; Luini, Lorenzo; Nessel, James; Riva, Carlo
2016-01-01
NASA Glenn Research Center (GRC), the Air Force Research Laboratory (AFRL), and the Politecnico di Milano (POLIMI) are currently entering the third year of a joint propagation study in Milan, Italy utilizing the 20 and 40 GHz beacons of the Alphasat TDP#5 Aldo Paraboni scientific payload. The Ka- and Q-band beacon receivers were installed at the POLIMI campus in June of 2014 and provide direct measurements of signal attenuation at each frequency. Collocated weather instrumentation provides concurrent measurement of atmospheric conditions at the receiver; included among these weather instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which records droplet size distributions (DSD) and droplet velocity distributions (DVD) during precipitation events. This information can be used to derive the specific attenuation at frequencies of interest and thereby scale measured attenuation data from one frequency to another. Given the ability to both predict the 40 gigahertz attenuation from the disdrometer and the 20 gigahertz time-series as well as to directly measure the 40 gigahertz attenuation with the beacon receiver, the Milan terminal is uniquely able to assess these scaling techniques and refine the methods used to infer attenuation from disdrometer data. In order to derive specific attenuation from the DSD, the forward scattering coefficient must be computed. In previous work, this has been done using the Mie scattering model, however, this assumes a spherical droplet shape. The primary goal of this analysis is to assess the impact of the scattering model and droplet shape on disdrometer-derived attenuation predictions by comparing the use of the Mie scattering model to the use of the T-matrix method, which does not assume a spherical droplet. In particular, this paper will investigate the impact of these two scattering approaches on the error of the resulting predictions as well as on the relationship between prediction error and rain rate.
NASA Astrophysics Data System (ADS)
Yu, Haitao; Sun, Hui; Shen, Jianqi; Tropea, Cameron
2018-03-01
The primary rainbow observed when light is scattered by a spherical drop has been exploited in the past to measure drop size and relative refractive index. However, if higher spatial resolution is required in denser drop ensembles/sprays, and to avoid then multiple drops simultaneously appearing in the measurement volume, a highly focused beam is desirable, inevitably with a Gaussian intensity profile. The present study examines the primary rainbow pattern resulting when a Gaussian beam is scattered by a spherical drop and estimates the attainable accuracy when extracting size and refractive index. The scattering is computed using generalized Lorenz-Mie theory (GLMT) and Debye series decomposition of the Gaussian beam scattering. The results of these simulations show that the measurement accuracy is dependent on both the beam waist radius and the position of the drop in the beam waist.
Ultrasonic trap for light scattering measurement
NASA Astrophysics Data System (ADS)
Barton, Petr; Pavlu, Jiri
2017-04-01
Light scattering is complex phenomenon occurring widely in space environments, including the dense dusty clouds, nebulas or even the upper atmosphere of the Earth. However, when the size of the dust (or of other scattering center) is close to the incident light wavelength, theoretical determination is difficult. In such case, Mie theory is to be used but there is a lack of the material constants for most space-related materials. For experimental measurement of light scattering, we designed unique apparatus, based on ultrasonic trap. Using acoustic levitation we are able to capture the dust grain in midair, irradiate it with laser, and observe scattering directly with goniometer-mounted photodiode. Advantage of this approach is ability to measure directly in the air (thus, no need for the carrier medium) and possibility to study non-spherical particles. Since the trap development is nearly finished and initial experiments are carried out, the paper presents first tests on water droplets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Tim; Institut für Physikalische Chemie, Universität zu Köln, 50939 Köln; Schwab, Tobias
A random scattering approach to enhance light extraction in white top-emitting organic light-emitting diodes (OLEDs) is reported. Through solution processing from fluorinated solvents, a nano-particle scattering layer (NPSL) can be deposited directly on top of small molecule OLEDs without affecting their electrical performance. The scattering length for light inside the NPSL is determined from transmission measurements and found to be in agreement with Mie scattering theory. Furthermore, the dependence of the light outcoupling enhancement on electron transport layer thickness is studied. Depending on the electron transport layer thickness, the NPSL enhances the external quantum efficiency of the investigated white OLEDsmore » by between 1.5 and 2.3-fold. For a device structure that has been optimized prior to application of the NPSL, the maximum external quantum efficiency is improved from 4.7% to 7.4% (1.6-fold improvement). In addition, the scattering layer strongly reduces the undesired shift in emission color with viewing angle.« less
Radiative properties of flame-generated soot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koeylue, U.O.; Faeth, G.M.
1993-05-01
Approximate methods for estimating the optical properties of flame-generated soot aggregates were evaluated using existing computer simulations and measurements in the visible and near-infrared portions of the spectrum. The following approximate methods were evaluated for both individual aggregates and polydisperse aggregate populations: the Rayleigh scattering approximation, Mie scattering for an equivalent sphere, and Rayleigh-Debye-Gans (R-D-G) scattering for both given and fractal aggregates. Results of computer simulations involved both prescribed aggregate geometry and numerically generated aggregates by cluster-cluster aggregation; multiple scattering was considered exactly using the mean-field approximation, and ignored using the R-D-G approximation. Measurements involved the angular scattering properties ofmore » soot in the postflame regions of both premixed and nonpremixed flames. The results show that available computer simulations and measurements of soot aggregate optical properties are not adequate to provide a definitive evaluation of the approximate prediction methods. 40 refs., 7 figs., 1 tab.« less
Using Nadir and Directional Emissivity as a Probe of Particle Microphysical Properties
NASA Astrophysics Data System (ADS)
Pitman, Karly M.; Wolff, Michael J.; Bandfield, Joshua L.; Clayton, Geoffrey C.
Real surfaces are not expected to be diffuse emitters, thus observed emissivity values of surface dust deposits are a function of viewing geometry. Attempts to model infrared emission spectral profiles of surface dust deposits at nadir have not yet matured to match the sophistication of astrophysical dust radiative transfer codes. In the absence of strong thermal gradients, directional emissivity may be obtained theoretically via a combination of reciprocity and Kirchhoff's Law. Owing to a lack of laboratory data on directional emissivity for comparison, theorists have not explored the potential utility of directional emissivity as a direct probe of surface dust microphysical properties. Motivated by future analyses of MGS/TES emission phase function (EPF) sequences and the upcoming Mars Exploration Rover mini-TES dataset, we explore the effects of dust particle size and composition on observed radiances at nadir and off-nadir geometries in the TES spectral regime using a combination of multiple scattering radiative transfer and Mie scattering algorithms. Comparisons of these simulated spectra to laboratory spectra of standard mineral assemblages will also be made. This work is supported through NASA grant NAGS-9820 (MJW) and LSU Board of Regents (KMP).
Monte Carlo simulation of spectral reflectance and BRDF of the bubble layer in the upper ocean.
Ma, Lanxin; Wang, Fuqiang; Wang, Chengan; Wang, Chengchao; Tan, Jianyu
2015-09-21
The presence of bubbles can significantly change the radiative properties of seawater and these changes will affect remote sensing and underwater target detection. In this work, the spectral reflectance and bidirectional reflectance characteristics of the bubble layer in the upper ocean are investigated using the Monte Carlo method. The Hall-Novarini (HN) bubble population model, which considers the effect of wind speed and depth on the bubble size distribution, is used. The scattering coefficients and the scattering phase functions of bubbles in seawater are calculated using Mie theory, and the inherent optical properties of seawater for wavelengths between 300 nm and 800 nm are related to chlorophyll concentration (Chl). The effects of bubble coating, Chl, and bubble number density on the spectral reflectance of the bubble layer are studied. The bidirectional reflectance distribution function (BRDF) of the bubble layer for both normal and oblique incidence is also investigated. The results show that bubble populations in clear waters under high wind speed conditions significantly influence the reflection characteristics of the bubble layer. Furthermore, the contribution of bubble populations to the reflection characteristics is mainly due to the strong backscattering of bubbles that are coated with an organic film.
Laser Doppler detection systems for gas velocity measurement.
Huffaker, R M
1970-05-01
The velocity of gas flow has been remotely measured using a technique which involves the coherent detection of scattered laser radiation from small particles suspended in the fluid utilizing the doppler effect. Suitable instrumentation for the study of wind tunnel type and atmospheric flows are described. Mainly for reasons of spatial resolution, a function of the laser wavelength, the wind tunnel system utilizes an argon laser operating at 0.5 micro. The relaxed spatial resolution requirement of atmospheric applications allows the use of a carbon dioxide laser, which has superior performance at a wavelength of 10.6 micro, a deduction made from signal-to-noise ratio considerations. Theoretical design considerations are given which consider Mie scattering predictions, two-phase flow effects, photomixing fundamentals, laser selection, spatial resolution, and spectral broadening effects. Preliminary experimental investigations using the instrumentation are detailed. The velocity profile of the flow field generated by a 1.27-cm diam subsonic jet was investigated, and the result compared favorably with a hot wire investigation conducted in the same jet. Measurements of wind velocity at a range of 50 m have also shown the considerable promise of the atmospheric system.
Biomolecular Mechanisms of Adaptive Reflectance and Related Biophotonic Systems in Molluscs
2015-01-09
From Silica Skeletons of Sponges to Dynamically Tunable Photonics in Squid: Bio-inspired Materials Open New Horizons for Marine Biodiscovery...both types of reflective cells, the morphologies and dimensions of the dehydrated vesicles dictate that omnidirectional, broadband Mie scattering...family of synthetic polymeric thin films that exhibit electrically driven simultaneous changes in morphology and refractive index. The lesson we
Yuta, Atsushi; Ukai, Kotaro; Sakakura, Yasuo; Tani, Hideshi; Matsuda, Fukiko; Yang, Tian-qun; Majima, Yuichi
2002-07-01
We made a prediction of the Japanese cedar (Cryptomeria japonica) pollen counts at Tsu city based on male flower-setting conditions of standard trees. The 69 standard trees from 23 kinds of clones, planted at Mie Prefecture Science and Technology Promotion Center (Hakusan, Mie) in 1964, were selected. Male flower-setting conditions for 276 faces (69 trees x 4 points of the compass) were scored from 0 to 3. The average of scores and total pollen counts from 1988 to 2000 was analyzed. As the results, the average scores from standard trees and total pollen counts except two mass pollen-scattered years in 1995 and 2000 had a positive correlation (r = 0.914) by linear function. On the mass pollen-scattered years, pollen counts were influenced from the previous year. Therefore, the score of the present year minus that of the previous year were used for analysis. The average scores from male flower-setting conditions and pollen counts had a strong positive correlation (r = 0.994) when positive scores by taking account of the previous year were analyzed. We conclude that prediction of pollen counts are possible based on the male flower-setting conditions of standard trees.
Photonic Bandgaps in Photonic Molecules
NASA Technical Reports Server (NTRS)
Smith, David D.; Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Curreri, Peter A. (Technical Monitor)
2002-01-01
This talk will focus on photonic bandgaps that arise due to nearly free photon and tight-binding effects in coupled microparticle and ring-resonator systems. The Mie formulation for homogeneous spheres is generalized to handle core/shell systems and multiple concentric layers in a manner that exploits an analogy with stratified planar systems, thereby allowing concentric multi-layered structures to be treated as photonic bandgap (PBG) materials. Representative results from a Mie code employing this analogy demonstrate that photonic bands arising from nearly free photon effects are easily observed in the backscattering, asymmetry parameter, and albedo for periodic quarter-wave concentric layers, though are not readily apparent in extinction spectra. Rather, the periodicity simply alters the scattering profile, enhancing the ratio of backscattering to forward scattering inside the bandgap, in direct analogy with planar quarter-wave multilayers. PBGs arising from tight-binding may also be observed when the layers (or rings) are designed such that the coupling between them is weak. We demonstrate that for a structure consisting of N coupled micro-resonators, the morphology dependent resonances split into N higher-Q modes, in direct analogy with other types of oscillators, and that this splitting ultimately results in PBGs which can lead to enhanced nonlinear optical effects.
Mécanismes et traitement de l’anémie aiguë chez le brûlé grave
Siah, S.; El Khatib, K.; Messaoudi, N.
2016-01-01
Summary Les brûlés graves présentent souvent, au cours de la phase aiguë, des anémies plus au moins profondes pouvant nécessiter des transfusions. L’anémie du brûlé a deux origines principales: le saignement péri-opératoire (des stratégies doivent être mises en place pour le réduire) et l’anémie de réanimation (que l’on peut en partie réduire en évitant les bilans inutiles) chez un patient ayant des troubles de l’hématopoïèse. Le traitement, chez ces patients à l’hématopoïèse altérée, repose sur la transfusion. Celle-ci n’est pas dénuée d’effets secondaires et une stratégie transfusionnelle restrictive doit être appliquée. PMID:28149231
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Anderson, Robert C.; Locke, Randy J.
2000-01-01
Planar laser-induced fluorescence (PLIF), planar Mie scattering (PMie), and linear (1-D) spontaneous Raman scattering are applied to flame tube and sector combustors that burn Jet-A fuel at a range of inlet temperatures and pressures that simulate conditions expected in future high-performance civilian gas turbine engines. Chemiluminescence arising from C2 in the flame was also imaged. Flame spectral emissions measurements were obtained using a scanning spectrometer. Several different advanced concept fuel injectors were examined. First-ever PLIF and chemiluminescence data are presented from the 60-atm Gas turbine combustor facility.
NASA Astrophysics Data System (ADS)
Ullah, Kaleem; Liu, Xuefeng; Krasnok, Alex; Habib, Muhammad; Song, Li; Garcia-Camara, Braulio
2018-07-01
In this work, we show the spatial distribution of the scattered electromagnetic field of dielectric particles by using a new super-resolution method based on polarization modulation. Applying this technique, we were able to resolve the multipolar distribution of a Cu2O particle with a radius of 450 nm. In addition, FDTD and Mie simulations have been carried out to validate and confirm the experimental results. The results are helpful to understand the resonant modes of dielectric submicron particles which have a broad range of potential applications, such as all-optical devices or nanoantennas.
Mid-latitude Rayleigh-Mie-Raman Lidar for Observations from 15 to 120 km
NASA Astrophysics Data System (ADS)
Wickwar, V. B.; Sox, L.; Heron, J. P.; Emerick, M. T.
2013-12-01
The original Rayleigh scatter lidar system that ran from 1993-2004 at the Atmospheric Lidar Observatory (ALO; 41.7° N, 111.8° W) in the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU) is undergoing a series of upgrades to transform it into a Rayleigh-Mie-Raman (RMR) scatter lidar. The original lidar covered the mesosphere from 45 to 90 km. The upgraded system will cover the region from approximately 15 to 120 km. The scientific impetus for these upgrades is to enable measurements of densities and temperatures throughout the middle atmosphere, covering most of the stratosphere, all of the mesosphere and well into the lower thermosphere. Initially, at the upper end, this will provide good information about the poorly observed region between 90 and 120 km. When the whole system comes on line, it will better enable coupling studies across these regions. By normalizing the relative densities to NCEP reanalysis or radiosonde densities below 30 km, the densities will become absolute all the way up to 120 km. By adding these new observations to those from the original data set, we will continue to examine temperature trends in the mesosphere. The upgrade is based on increasing the telescope collecting area to almost 5 m2 and increasing the 532 nm laser power to 42 W at 30 Hz. The combined effect is a 70 times increase in sensitivity. This increase enables us to go higher. It will also enable us to go lower by making Raman observations possible in the stratosphere, which will allow us to untangle the Rayleigh and Mie returns. Initial observations are approaching 120 km. These observations show significant temperature differences at the highest altitudes when compared to the MSISe00 empirical model.
Scattering Properties of Heterogeneous Mineral Particles with Absorbing Inclusions
NASA Technical Reports Server (NTRS)
Dlugach, Janna M.; Mishchenko, Michael I.
2015-01-01
We analyze the results of numerically exact computer modeling of scattering and absorption properties of randomly oriented poly-disperse heterogeneous particles obtained by placing microscopic absorbing grains randomly on the surfaces of much larger spherical mineral hosts or by imbedding them randomly inside the hosts. These computations are paralleled by those for heterogeneous particles obtained by fully encapsulating fractal-like absorbing clusters in the mineral hosts. All computations are performed using the superposition T-matrix method. In the case of randomly distributed inclusions, the results are compared with the outcome of Lorenz-Mie computations for an external mixture of the mineral hosts and absorbing grains. We conclude that internal aggregation can affect strongly both the integral radiometric and differential scattering characteristics of the heterogeneous particle mixtures.
Analysis of scattering by a linear chain of spherical inclusions in an optical fiber
NASA Astrophysics Data System (ADS)
Chremmos, Ioannis D.; Uzunoglu, Nikolaos K.
2006-12-01
The scattering by a linear chain of spherical dielectric inclusions, embedded along the axis of an optical fiber, is analyzed using a rigorous integral equation formulation, based on the dyadic Green's function theory. The coupled electric field integral equations are solved by applying the Galerkin technique with Mie-type expansion of the field inside the spheres in terms of spherical waves. The analysis extends the previously studied case of a single spherical inhomogeneity inside a fiber to the multisphere-scattering case, by utilizing the classic translational addition theorems for spherical waves in order to analytically extract the direct-intersphere-coupling coefficients. Results for the transmitted and reflected power, on incidence of the fundamental HE11 mode, are presented for several cases.
Controlling the scattering properties of thin, particle-doped coatings
NASA Astrophysics Data System (ADS)
Rogers, William; Corbett, Madeleine; Manoharan, Vinothan
2013-03-01
Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.
NASA Astrophysics Data System (ADS)
Berthet, Gwenaël; Renard, Jean-Baptiste; Brogniez, Colette; Robert, Claude; Chartier, Michel; Pirre, Michel
2002-12-01
Aerosol extinction coefficients have been derived in the 375-700-nm spectral domain from measurements in the stratosphere since 1992, at night, at mid- and high latitudes from 15 to 40 km, by two balloonborne spectrometers, Absorption par les Minoritaires Ozone et NOx (AMON) and Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NOx (SALOMON). Log-normal size distributions associated with the Mie-computed extinction spectra that best fit the measurements permit calculation of integrated properties of the distributions. Although measured extinction spectra that correspond to background aerosols can be reproduced by the Mie scattering model by use of monomodal log-normal size distributions, each flight reveals some large discrepancies between measurement and theory at several altitudes. The agreement between measured and Mie-calculated extinction spectra is significantly improved by use of bimodal log-normal distributions. Nevertheless, neither monomodal nor bimodal distributions permit correct reproduction of some of the measured extinction shapes, especially for the 26 February 1997 AMON flight, which exhibited spectral behavior attributed to particles from a polar stratospheric cloud event.
Rynders, Corey A.; Weltman, Judy Y.; Jiang, Boyi; Breton, Marc; Patrie, James; Barrett, Eugene J.
2014-01-01
Background: A single bout of exercise improves postprandial glycemia and insulin sensitivity in prediabetic patients; however, the impact of exercise intensity is not well understood. The present study compared the effects of acute isocaloric moderate (MIE) and high-intensity (HIE) exercise on glucose disposal and insulin sensitivity in prediabetic adults. Methods: Subjects (n = 18; age 49 ± 14 y; fasting glucose 105 ± 11 mg/dL; 2 h glucose 170 ± 32 mg/dL) completed a peak O2 consumption/lactate threshold (LT) protocol plus three randomly assigned conditions: 1) control, 1 hour of seated rest, 2) MIE (at LT), and 3) HIE (75% of difference between LT and peak O2 consumption). One hour after exercise, subjects received an oral glucose tolerance test (OGTT). Plasma glucose, insulin, and C-peptide concentrations were sampled at 5- to 10-minute intervals at baseline, during exercise, after exercise, and for 3 hours after glucose ingestion. Total, early-phase, and late-phase area under the glucose and insulin response curves were compared between conditions. Indices of insulin sensitivity (SI) were derived from OGTT data using the oral minimal model. Results: Compared with control, SI improved by 51% (P = .02) and 85% (P < .001) on the MIE and HIE days, respectively. No differences in SI were observed between the exercise conditions (P = .62). Improvements in SI corresponded to significant reductions in the glucose, insulin, and C-peptide area under the curve values during the late phase of the OGTT after HIE (P < .05), with only a trend for reductions after MIE. Conclusion: These results suggest that in prediabetic adults, acute exercise has an immediate and intensity-dependent effect on improving postprandial glycemia and insulin sensitivity. PMID:24243632
NASA Technical Reports Server (NTRS)
Alexandrov, Mikhail D.; Cairns, Brian; Mishchenko, Michael I.
2012-01-01
We present a novel technique for remote sensing of cloud droplet size distributions. Polarized reflectances in the scattering angle range between 135deg and 165deg exhibit a sharply defined rainbow structure, the shape of which is determined mostly by single scattering properties of cloud particles, and therefore, can be modeled using the Mie theory. Fitting the observed rainbow with such a model (computed for a parameterized family of particle size distributions) has been used for cloud droplet size retrievals. We discovered that the relationship between the rainbow structures and the corresponding particle size distributions is deeper than it had been commonly understood. In fact, the Mie theory-derived polarized reflectance as a function of reduced scattering angle (in the rainbow angular range) and the (monodisperse) particle radius appears to be a proxy to a kernel of an integral transform (similar to the sine Fourier transform on the positive semi-axis). This approach, called the rainbow Fourier transform (RFT), allows us to accurately retrieve the shape of the droplet size distribution by the application of the corresponding inverse transform to the observed polarized rainbow. While the basis functions of the proxy-transform are not exactly orthogonal in the finite angular range, this procedure needs to be complemented by a simple regression technique, which removes the retrieval artifacts. This non-parametric approach does not require any a priori knowledge of the droplet size distribution functional shape and is computationally fast (no look-up tables, no fitting, computations are the same as for the forward modeling).
Bayesian parameter estimation in spectral quantitative photoacoustic tomography
NASA Astrophysics Data System (ADS)
Pulkkinen, Aki; Cox, Ben T.; Arridge, Simon R.; Kaipio, Jari P.; Tarvainen, Tanja
2016-03-01
Photoacoustic tomography (PAT) is an imaging technique combining strong contrast of optical imaging to high spatial resolution of ultrasound imaging. These strengths are achieved via photoacoustic effect, where a spatial absorption of light pulse is converted into a measurable propagating ultrasound wave. The method is seen as a potential tool for small animal imaging, pre-clinical investigations, study of blood vessels and vasculature, as well as for cancer imaging. The goal in PAT is to form an image of the absorbed optical energy density field via acoustic inverse problem approaches from the measured ultrasound data. Quantitative PAT (QPAT) proceeds from these images and forms quantitative estimates of the optical properties of the target. This optical inverse problem of QPAT is illposed. To alleviate the issue, spectral QPAT (SQPAT) utilizes PAT data formed at multiple optical wavelengths simultaneously with optical parameter models of tissue to form quantitative estimates of the parameters of interest. In this work, the inverse problem of SQPAT is investigated. Light propagation is modelled using the diffusion equation. Optical absorption is described with chromophore concentration weighted sum of known chromophore absorption spectra. Scattering is described by Mie scattering theory with an exponential power law. In the inverse problem, the spatially varying unknown parameters of interest are the chromophore concentrations, the Mie scattering parameters (power law factor and the exponent), and Gruneisen parameter. The inverse problem is approached with a Bayesian method. It is numerically demonstrated, that estimation of all parameters of interest is possible with the approach.
Müller, Erich A; Mejía, Andrés
2017-10-24
The statistical associating fluid theory of variable range employing a Mie potential (SAFT-VR-Mie) proposed by Lafitte et al. (J. Chem Phys. 2013, 139, 154504) is one of the latest versions of the SAFT family. This particular version has been shown to have a remarkable capability to connect experimental determinations, theoretical calculations, and molecular simulations results. However, the theoretical development restricts the model to chains of beads connected in a linear fashion. In this work, the capabilities of the SAFT-VR Mie equation of state for modeling phase equilibria are extended for the case of planar ring compounds. This modification proposed replaces the Helmholtz energy of chain formation by an empirical contribution based on a parallelism to the second-order thermodynamic perturbation theory for hard sphere trimers. The proposed expression is given in terms of an extra parameter, χ, that depends on the number of beads, m s , and the geometry of the ring. The model is used to describe the phase equilibrium for planar ring compounds formed of Mie isotropic segments for the cases of m s equals to 3, 4, 5 (two configurations), and 7 (two configurations). The resulting molecular model is further parametrized, invoking a corresponding states principle resulting in sets of parameters that can be used indistinctively in theoretical calculations or in molecular simulations without any further refinements. The extent and performance of the methodology has been exemplified by predicting the phase equilibria and vapor pressure curves for aromatic hydrocarbons (benzene, hexafluorobenzene, toluene), heterocyclic molecules (2,5-dimethylfuran, sulfolane, tetrahydro-2H-pyran, tetrahydrofuran), and polycyclic aromatic hydrocarbons (naphthalene, pyrene, anthracene, pentacene, and coronene). An important aspect of the theory is that the parameters of the model can be used directly in molecular dynamics (MD) simulations to calculate equilibrium phase properties and interfacial tensions with an accuracy that rivals other coarse grained and united atom models, for example, liquid densities, are predicted, with a maximum absolute average deviation of 3% from both the theory and the MD simulations, while the interfacial tension is predicted, with a maximum absolute average of 8%. The extension to mixtures is exemplified by considering a binary system of hexane (chain fluid) and tetrahydro-2H-pyran (ring fluid).
Castellón, Erick; Martínez, María; Madrigal-Carballo, Sergio; Arias, María Laura; Vargas, William E.; Chavarría, Max
2013-01-01
Río Celeste (Sky-Blue River) in Tenorio National Park (Costa Rica), a river that derives from the confluence and mixing of two colorless streams—Río Buenavista (Buenavista River) and Quebrada Agria (Sour Creek)—is renowned in Costa Rica because it presents an atypical intense sky-blue color. Although various explanations have been proposed for this unusual hue of Río Celeste, no exhaustive tests have been undertaken; the reasons hence remain unclear. To understand this color phenomenon, we examined the physico-chemical properties of Río Celeste and of the two streams from which it is derived. Chemical analysis of those streams with ion-exchange chromatography (IC) and inductively coupled plasma atomic emission spectroscopy (ICP-OES) made us discard the hypothesis that the origin of the hue is due to colored chemical species. Our tests revealed that the origin of this coloration phenomenon is physical, due to suspended aluminosilicate particles (with diameters distributed around 566 nm according to a lognormal distribution) that produce Mie scattering. The color originates after mixing of two colorless streams because of the enlargement (by aggregation) of suspended aluminosilicate particles in the Río Buenavista stream due to a decrease of pH on mixing with the acidic Quebrada Agria. We postulate a chemical mechanism for this process, supported by experimental evidence of dynamic light scattering (DLS), zeta potential measurements, X-ray diffraction and scanning electron microscopy (SEM) with energy-dispersive spectra (EDS). Theoretical modeling of the Mie scattering yielded a strong coincidence between the observed color and the simulated one. PMID:24058661
NASA Astrophysics Data System (ADS)
Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto
1997-06-01
We measured angular distribution of the light scattering from live mouse embryo with 632.8nm in wavelength to evaluate the embryo viability. We aim to measure the mitochondrial density in human embryo which have relation to the embryo viability. We have constructed the light scattering measurement system to detect the mitochondrial density non-invasively. We have employed two optical fibers for the illumination and sensing to change the angle between these fibers. There were two dips on the scattering angular distribution from the embryo. These dips existed on 30 and 85 deg. We calculated the scattering angular pattern by Mie theory to fit the measured scattering estimated scattering size and density. The best fitting was obtained when the particle size and density were 0.9 micrometers and 1010 particles per ml, respectively. These values coincided with the approximated values of mitochondrial in the embryo. The measured light scattering may mainly originated from mitochondria in spite of the existence of the various scattering particles in the embryo. Since our simple scattering measurement may offer the mitochondrial density in the embryo, it might become the practical method of human embryo on in vitro fertilization-embryo transfer.
NASA Astrophysics Data System (ADS)
Heng, Ri-Liang; Pilon, Laurent
2016-05-01
This study presents experimental measurements of the radiation characteristics of unicellular freshwater cyanobacterium Synechocystis sp. during their exponential growth in F medium. Their scattering phase function at 633 nm average spectral absorption and scattering cross-sections between 400 and 750 nm were measured. In addition, an inverse method was used for retrieving the spectral effective complex index of refraction of overlapping or touching bispheres and quadspheres from their absorption and scattering cross-sections. The inverse method combines a genetic algorithm and a forward model based on Lorenz-Mie theory, treating bispheres and quadspheres as projected area and volume-equivalent coated spheres. The inverse method was successfully validated with numerically predicted average absorption and scattering cross-sections of suspensions consisting of bispheres and quadspheres, with realistic size distributions, using the T-matrix method. It was able to retrieve the monomers' complex index of refraction with size parameter up to 11, relative refraction index less than 1.3, and absorption index less than 0.1. Then, the inverse method was applied to retrieve the effective spectral complex index of refraction of Synechocystis sp. approximated as randomly oriented aggregates consisting of two overlapping homogeneous spheres. Both the measured absorption cross-section and the retrieved absorption index featured peaks at 435 and 676 nm corresponding to chlorophyll a, a peak at 625 nm corresponding to phycocyanin, and a shoulder around 485 nm corresponding to carotenoids. These results can be used to optimize and control light transfer in photobioreactors. The inverse method and the equivalent coated sphere model could be applied to other optically soft particles of similar morphologies.
NASA Astrophysics Data System (ADS)
Hartstra, I.; Wapenaar, C. P. A.
2015-12-01
We discuss a method to retrieve the multi-receiver Moho reflection response by interferometry from SH-wave coda in the 0.5-3 Hz frequency range. An image derived from a reflection response with a well defined virtual source would provide deterministic impedance contrasts, which can complement transmission tomography. For an accurate retrieval, cross-correlation interferometry requires the coda wave field to sample the imaging target and isotropically illuminate the receiver array. When these illumination requirements are not or only partially met, the stationary phase cannot be fully captured and artifacts will contaminate the retrieved reflection response. Here we conduct numerical scalar 2D finite difference simulations to investigate the challenging situation in which only shallow crustal earthquake sources illuminate the Moho and the response is recorded by a 2D linear array. We quantify to what extent the prevalence of scatterers in the crust can improve the illumination conditions and thus the retrieval of the Moho reflection. The accuracy of the retrieved reflection is evaluated for two physically different scattering regimes: the Rayleigh and Mie regime. We only use the earlier part of the scattering coda, because we have found that the later diffusive part does not significantly improve the retrieval. The density of the spherical scatterers is varied in order to change the scattering mean free path. This characteristic length scale is calculated for each model with the 2D radiative transfer equation, which is the governing equation in the earlier part of the scattering coda. The experiment is repeated for models of different geological settings derived from existing S-wave tomographies, which vary in Moho depth and reflectivity. The scattering mean free path can be approximated for real data if intrinsic attenuation is known, because the wavenumber-dependent scattering attenuation of the coherent wave amplitude is dependent on the scattering mean free path. This link makes it possible to determine in which spatial and temporal bandwidth retrieval is most optimal for a specific geological setting.
Nicolini, Ariana M; Fronczek, Christopher F; Yoon, Jeong-Yeol
2015-05-15
We have developed a rapid, sensitive, and specific droplet-based immunoassay for the detection of Escherichia coli and Salmonella within a single-pipetted sample. Polycaprolactone (PCL) electrospun fibers on indium-tin-oxide (ITO) glass provide a sufficient surface to render a non-slip droplet condition, and while the PCL fibers lend a local hydrophilicity (contact angle θ=74°) for sufficient sub-micron particle adhesion, air pockets within the fibers lend an apparent hydrophobicity. Overall, the contact angle of water on this electrospun surface is 119°, and the air pockets cause the droplet to be completely immobile and resistant to movement, protecting it from external vibration. By using both anti-E. coli conjugated, 510 nm diameter green fluorescent particles (480 nm excitation and 520 nm emission) and anti-Salmonella conjugated, 400 nm diameter red fluorescent particles (640 nm excitation and 690 nm emission), we can detect multiple targets in a single droplet. Using appropriate light sources guided by fiber optics, we determined a detection limit of 10(2) CFU mL(-1). Immunoagglutination can be observed under a fluorescence microscope. Fluorescence detection (at the emission wavelength) of immunoagglutination was maximum at 90° from the incident light, while light scattering (at the excitation wavelength) was still present and behaved similarly, indicating the ability of double detection, greatly improving credibility and reproducibility of the assay. A power function (light intensity) simulation of elastic Mie scatter confirmed that both fluorescence and light scattering were present. Due to the size of the fluorescent particles relative to their incident excitation wavelengths, Mie scatter conditions were observed, and fluorescence signals show a similar trend to light scattering signals. Smartphone detection was included for true portable detection, in which the high contact angle pinning of the droplet makes this format re-usable and re-configurable. Copyright © 2014 Elsevier B.V. All rights reserved.
BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory
Berisha, Sebastian; van Dijk, Thomas; Bhargava, Rohit; Carney, P. Scott; Mayerich, David
2017-01-01
Understanding the structure of a scattered electromagnetic (EM) field is critical to improving the imaging process. Mechanisms such as diffraction, scattering, and interference affect an image, limiting the resolution, and potentially introducing artifacts. Simulation and visualization of scattered fields thus plays an important role in imaging science. However, EM fields are high-dimensional, making them time-consuming to simulate, and difficult to visualize. In this paper, we present a framework for interactively computing and visualizing EM fields scattered by micro and nano-particles. Our software uses graphics hardware for evaluating the field both inside and outside of these particles. We then use Monte-Carlo sampling to reconstruct and visualize the three-dimensional structure of the field, spectral profiles at individual points, the structure of the field at the surface of the particle, and the resulting image produced by an optical system. PMID:29170738
Algorithms for radiative transfer simulations for aerosol retrieval
NASA Astrophysics Data System (ADS)
Mukai, Sonoyo; Sano, Itaru; Nakata, Makiko
2012-11-01
Aerosol retrieval work from satellite data, i.e. aerosol remote sensing, is divided into three parts as: satellite data analysis, aerosol modeling and multiple light scattering calculation in the atmosphere model which is called radiative transfer simulation. The aerosol model is compiled from the accumulated measurements during more than ten years provided with the world wide aerosol monitoring network (AERONET). The radiative transfer simulations take Rayleigh scattering by molecules and Mie scattering by aerosols in the atmosphere, and reflection by the Earth surface into account. Thus the aerosol properties are estimated by comparing satellite measurements with the numerical values of radiation simulations in the Earth-atmosphere-surface model. It is reasonable to consider that the precise simulation of multiple light-scattering processes is necessary, and needs a long computational time especially in an optically thick atmosphere model. Therefore efficient algorithms for radiative transfer problems are indispensable to retrieve aerosols from space.
Calculations of Reflected and Transmitted Radiance for Earth's Atmosphere.
Plass, G N; Kattawar, G W
1968-06-01
The reflected and transmitted radiance of the earth's atmosphere is calculated by Monte Carlo techniques. The exact scattering function for the aerosols is used as calculated from the Mie theory. The aerosol vs height distributions proposed by Elterman and by Kondratiev et al. are compared. The Rayleigh and aerosol scattering events are included in the calculation, as well as the ozone absorption, where appropriate. Results are given at wavelengths of 0.27 micro, 0.3 micro, 0.4 micro, 0.7 micro, and 1.67 micro. The mean optical paths of the reflected and transmitted photons, the flux at the lower boundary, and the planetary albedo are tabulated.
Pulse height response of an optical particle counter to monodisperse aerosols
NASA Technical Reports Server (NTRS)
Wilmoth, R. G.; Grice, S. S.; Cuda, V.
1976-01-01
The pulse height response of a right angle scattering optical particle counter has been investigated using monodisperse aerosols of polystyrene latex spheres, di-octyl phthalate and methylene blue. The results confirm previous measurements for the variation of mean pulse height as a function of particle diameter and show good agreement with the relative response predicted by Mie scattering theory. Measured cumulative pulse height distributions were found to fit reasonably well to a log normal distribution with a minimum geometric standard deviation of about 1.4 for particle diameters greater than about 2 micrometers. The geometric standard deviation was found to increase significantly with decreasing particle diameter.
NASA Technical Reports Server (NTRS)
Ghovanlou, A. H.; Gupta, J. N.; Henderson, R. G.
1977-01-01
The development of quantitative analytical procedures for relating scattered signals, measured by a remote sensor, was considered. The applications of a Monte Carlo simulation model for radiative transfer in turbid water are discussed. The model is designed to calculate the characteristics of the backscattered signal from an illuminated body of water as a function of the turbidity level, and the spectral properties of the suspended particulates. The optical properties of the environmental waters, necessary for model applications, were derived from available experimental data and/or calculated from Mie formalism. Results of applications of the model are presented.
Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model
NASA Astrophysics Data System (ADS)
Wang, Jia Jie; Han, Yi Ping; Chang, Jiao Yong; Chen, Zhu Yang
2018-02-01
Within the framework of generalized Lorenz-Mie theory (GLMT), an eccentrically stratified dielectric sphere model illuminated by an arbitrarily incident Bessel beam is applied to investigate the scattering characteristics of a single nucleated biological cell. The Bessel beam propagating in an arbitrary direction is expanded in terms of vector spherical wave functions (VSWFs), where the beam shape coefficients (BSCs) are calculated rigorously in a closed analytical form. The effects of the half-cone angle of Bessel beam, the location of the particle in the beam, the size ratio of nucleus to cell, and the location of the nucleus inside the cell on the scattering properties of a nucleated cell are analyzed. The results provide useful references for optical diagnostic and imaging of particle having nucleated structure.
Scanning fiber angle-resolved low coherence interferometry
Zhu, Yizheng; Terry, Neil G.; Wax, Adam
2010-01-01
We present a fiber-optic probe for Fourier-domain angle-resolved low coherence interferometry for the determination of depth-resolved scatterer size. The probe employs a scanning single-mode fiber to collect the angular scattering distribution of the sample, which is analyzed using the Mie theory to obtain the average size of the scatterers. Depth sectioning is achieved with low coherence Mach–Zehnder interferometry. In the sample arm of the interferometer, a fixed fiber illuminates the sample through an imaging lens and a collection fiber samples the backscattered angular distribution by scanning across the Fourier plane image of the sample. We characterize the optical performance of the probe and demonstrate the ability to execute depth-resolved sizing with subwavelength accuracy by using a double-layer phantom containing two sizes of polystyrene microspheres. PMID:19838271
Inversion method based on stochastic optimization for particle sizing.
Sánchez-Escobar, Juan Jaime; Barbosa-Santillán, Liliana Ibeth; Vargas-Ubera, Javier; Aguilar-Valdés, Félix
2016-08-01
A stochastic inverse method is presented based on a hybrid evolutionary optimization algorithm (HEOA) to retrieve a monomodal particle-size distribution (PSD) from the angular distribution of scattered light. By solving an optimization problem, the HEOA (with the Fraunhofer approximation) retrieves the PSD from an intensity pattern generated by Mie theory. The analyzed light-scattering pattern can be attributed to unimodal normal, gamma, or lognormal distribution of spherical particles covering the interval of modal size parameters 46≤α≤150. The HEOA ensures convergence to the near-optimal solution during the optimization of a real-valued objective function by combining the advantages of a multimember evolution strategy and locally weighted linear regression. The numerical results show that our HEOA can be satisfactorily applied to solve the inverse light-scattering problem.
Wang, Letian; Rho, Yoonsoo; Shou, Wan; Hong, Sukjoon; Kato, Kimihiko; Eliceiri, Matthew; Shi, Meng; Grigoropoulos, Costas P; Pan, Heng; Carraro, Carlo; Qi, Dongfeng
2018-03-27
Manipulating and tuning nanoparticles by means of optical field interactions is of key interest for nanoscience and applications in electronics and photonics. We report scalable, direct, and optically modulated writing of nanoparticle patterns (size, number, and location) of high precision using a pulsed nanosecond laser. The complex nanoparticle arrangement is modulated by the laser pulse energy and polarization with the particle size ranging from 60 to 330 nm. Furthermore, we report fast cooling-rate induced phase switching of crystalline Si nanoparticles to the amorphous state. Such phase switching has usually been observed in compound phase change materials like GeSbTe. The ensuing modification of atomic structure leads to dielectric constant switching. Based on these effects, a multiscale laser-assisted method of fabricating Mie resonator arrays is proposed. The number of Mie resonators, as well as the resonance peaks and dielectric constants of selected resonators, can be programmed. The programmable light-matter interaction serves as a mechanism to fabricate optical metasurfaces, structural color, and multidimensional optical storage devices.
Optical measurement methods in thermogasdynamics
NASA Technical Reports Server (NTRS)
Stursberg, K.; Erhardt, K.; Krahr, W.; Becker, M.
1978-01-01
A review is presented of a number of optical methods of flow measurements. Consideration is given to such spectroscopic methods as emission and absorption techniques, electron beam-stimulated fluorescence, and light scattering - Rayleigh, Raman and Mie - methods. The following visualization methods are also discussed: shadow photography, schlieren photography, interferometry, holographic interferometry, laser anemometry, particle holography, and electron-excitation imaging. A large bibliography is presented and the work is copiously illustrated with figures and photographs.
The Aerosol Models in MODTRAN: Incorporating Selected Measurements From Northern Australia
2005-12-01
biomass burning smoke aerosol is modelled assuming the particles are spherical and Mie scattering theory is used to calculate the extinction and...and therefore internally mixed aerosol particles are hygroscopic . Shettle and Fenn model the growth in the size of aerosol particles and changes in...by Sutherland and Khanna [21] was to obtain measurements of the optical properties of organic -based aerosols produced by burning vegetation.
Nanoparticle light scattering on interferometric surfaces
NASA Astrophysics Data System (ADS)
Hayrapetyan, K.; Arif, K. M.; Savran, C. A.; Nolte, D. D.
2011-03-01
We present a model based on Mie Surface Double Interaction (MSDI) to explore bead-based detection mechanisms using imaging and scanning. The application goal of this work is to explore the trade-offs between the sensitivity and throughput among various detection methods. Experimentally we use thermal oxide on silicon to establish and control surface interferometric conditions. Surface-captured gold beads are detected using Molecular Interferometric Imaging (MI2) and Spinning-Disc Interferometry (SDI).
A new electrodynamic balance design for low temperature studies
NASA Astrophysics Data System (ADS)
Tong, H.-J.; Ouyang, B.; Pope, F. D.; Kalberer, M.
2014-07-01
In this paper we describe a newly designed cold electrodynamic balance (CEDB) system, which was built to study the evaporation kinetics and freezing properties of supercooled water droplets. The temperature of the CEDB chamber at the location of the levitated water droplet can be controlled in the range: -40 to +40 °C, which is achieved using a combination of liquid nitrogen cooling and heating by positive temperature coefficient heaters. The measurement of liquid droplet radius is obtained by analyzing the Mie elastic light scattering from a 532 nm laser. The Mie scattering signal was also used to characterize and distinguish droplet freezing events; liquid droplets produce a regular fringe pattern whilst the pattern from frozen particles is irregular. The evaporation rate of singly levitated water droplets was calculated from time resolved measurements of the radii of evaporating droplets and a clear trend of the evaporation rate on temperature was measured. The statistical freezing probabilities of aqueous pollen extracts (pollen washing water) are obtained in the temperature range: -4.5 to -40 °C. It was found that that pollen washing water from water birch (Betula fontinalis occidentalis) pollen can act as ice nuclei in the immersion freezing mode at temperatures as warm as -22.45 (±0.65) °C.
Microwave signatures of snow, ice and soil at several wavelengths
NASA Technical Reports Server (NTRS)
Gloersen, P.; Schmugge, T. J.; Chang, T. C.
1974-01-01
Analyses of data obtained from aircraft-borne radiometers have shown that the microwave signatures of various parts of the terrain depend on both the volume scattering cross-section and the dielectric loss in the medium. In soil, it has been found that experimental data fit a model in which the scattering cross section is negligible compared to the dielectric loss. On the other hand, the volume scattering cross-section in snow and continental ice was found, from analyzing data obtained with aircraft- and spacecraft-borne radiometers, to be more important than the dielectric loss or surface reflectivity in determining the observed microwave emissivity. A model which assumes Mie scattering of ice particles of various sizes was found to be the dominant volume scattering mechanism in these media. Both spectral variation in the microwave signatures of snow and ice fields, as well as the variation in the emissivity of continental ice sheets such as those covering Greenland and Antarctica appear to be consistent with this model.
Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells.
van Lare, Claire; Lenzmann, Frank; Verschuuren, Marc A; Polman, Albert
2015-08-12
We demonstrate an effective light trapping geometry for thin-film solar cells that is composed of dielectric light scattering nanocavities at the interface between the metal back contact and the semiconductor absorber layer. The geometry is based on resonant Mie scattering. It avoids the Ohmic losses found in metallic (plasmonic) nanopatterns, and the dielectric scatterers are well compatible with nearly all types of thin-film solar cells, including cells produced using high temperature processes. The external quantum efficiency of thin-film a-Si:H solar cells grown on top of a nanopatterned Al-doped ZnO, made using soft imprint lithography, is strongly enhanced in the 550-800 nm spectral band by the dielectric nanoscatterers. Numerical simulations are in good agreement with experimental data and show that resonant light scattering from both the AZO nanostructures and the embedded Si nanostructures are important. The results are generic and can be applied on nearly all thin-film solar cells.
BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory
NASA Astrophysics Data System (ADS)
Berisha, Sebastian; van Dijk, Thomas; Bhargava, Rohit; Carney, P. Scott; Mayerich, David
2017-02-01
Understanding the structure of a scattered electromagnetic (EM) field is critical to improving the imaging process. Mechanisms such as diffraction, scattering, and interference affect an image, limiting the resolution and potentially introducing artifacts. Simulation and visualization of scattered fields thus plays an important role in imaging science. However, the calculation of scattered fields is extremely time-consuming on desktop systems and computationally challenging on task-parallel systems such as supercomputers and cluster systems. In addition, EM fields are high-dimensional, making them difficult to visualize. In this paper, we present a framework for interactively computing and visualizing EM fields scattered by micro and nano-particles. Our software uses graphics hardware for evaluating the field both inside and outside of these particles. We then use Monte-Carlo sampling to reconstruct and visualize the three-dimensional structure of the field, spectral profiles at individual points, the structure of the field at the surface of the particle, and the resulting image produced by an optical system.
Composition measurements of binary mixture droplets by rainbow refractometry.
Wilms, J; Weigand, B
2007-04-10
So far, refractive index measurements by rainbow refractometry have been used to determine the temperature of single droplets and ensembles of droplets. Rainbow refractometry is, for the first time, to the best of our knowledge, applied to measure composition histories of evaporating, binary mixture droplets. An evaluation method is presented that makes use of Airy theory and the simultaneous size measurement by Mie scattering imaging. The method further includes an empirical correction function for a certain diameter and refractive index range. The measurement uncertainty was investigated by numerical simulations with Lorenz-Mie theory. For the experiments, an optical levitation setup was used allowing for long measurement periods. Temperature measurements of single-component droplets at different temperature levels are shown to demonstrate the accuracy of rainbow refractometry. Measurements of size and composition histories of binary mixture droplets are presented for two different mixtures. Experimental results show good agreement with numerical results using a rapid-mixing model.
Modeling the Solar Probe Plus Dust Environment: Comparison with MESSENGER Observations
NASA Astrophysics Data System (ADS)
Strong, S. B.; Strikwerda, T.
2009-12-01
NASA’s Solar Probe Plus mission will be the first to approach the Sun as close as 9 solar radii from the surface. This mission will provide the only in-situ observations of the Sun’s corona. In the absence of observational data (e.g. Helios, Pioneer), specifically at distances less than 0.4 AU, the precise ambient dust distributions at these distances remain unknown and limited to extrapolative models for distances < 1 AU (e.g. Mann et al. 2004). For the Solar Probe Plus mission, it has become critical to characterize the inner solar system dust environment in order to examine potential impacts on spacecraft health and attitude. We have implemented the Mann et al. (2004) and Grün et al. (1985) dust distribution theory along with Mie scattering effects to determine the magnitude of solar irradiance scattered towards an optical sensor such as a star tracker as a function of ecliptic latitude and longitude for distances 0.05 to 1 AU. Background irradiance data from NASA’s MESSENGER mission (down to 0.3 AU) reveal trends consistent with our model predictions, potentially validating Mann et al. (2004) and Grün et al. (1985) theory, but perhaps suggesting an enhancement of dust density short ward of 0.3 AU. This paper will present the scattering model and analysis of MESSENGER data gathered to date, during the phasing orbits, and includes star tracker background irradiance, irradiance distribution over the sky, and effects on star magnitude sensitivity and position accuracy.
Lidar instruments proposed for Eos
NASA Technical Reports Server (NTRS)
Grant, William B.; Browell, Edward V.
1990-01-01
Lidar, an acronym for light detection and ranging, represents a class of instruments that utilize lasers to send probe beams into the atmosphere or onto the surface of the Earth and detect the backscattered return in order to measure properties of the atmosphere or surface. The associated technology has matured to the point where two lidar facilities, Geodynamics Laser Ranging System (GLRS), and Laser Atmospheric Wind Sensor (LAWS) were accepted for Phase 2 studies for Eos. A third lidar facility Laser Atmospheric Sounder and Altimeter (LASA), with the lidar experiment EAGLE (Eos Atmospheric Global Lidar Experiment) was proposed for Eos. The generic lidar system has a number of components. They include controlling electronics, laser transmitters, collimating optics, a receiving telescope, spectral filters, detectors, signal chain electronics, and a data system. Lidar systems that measure atmospheric constituents or meteorological parameters record the signal versus time as the beam propagates through the atmosphere. The backscatter arises from molecular (Rayleigh) and aerosol (Mie) scattering, while attenuation arises from molecular and aerosol scattering and absorption. Lidar systems that measure distance to the Earth's surface or retroreflectors in a ranging mode record signals with high temporal resolution over a short time period. The overall characteristics and measurements objectives of the three lidar systems proposed for Eos are given.
Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays.
You, David J; Park, Tu San; Yoon, Jeong-Yeol
2013-02-15
Semi-quantitative thyr oid stimulating hormone (TSH) lateral flow immunochromatographic assays (LFA) are used to screen for serum TSH concentration >5 mIUL(-1) (hypothyroidism). The LFA format, however, is unable to measure TSH in the normal range or detect suppressed levels of TSH (<0.4 mIU L(-1); hyperthyroidism). In fact, it does not provide quantitative TSH values at all. Obtaining quantitative TSH results, especially in the low concentration range, has until now required the use of centralized clinical laboratories which require specimen transport, specialized equipment and personnel, and result in increased cost and delays in the timely reporting of important clinical results. We have conducted a series of experiments to develop and validate an optical system and image analysis algorithm based upon a cell phone platform. It is able to provide point-of-care quantitative TSH results with a high level of sensitivity and reproducibility comparable to that of a clinical laboratory-based third-generation TSH immunoassay. Our research approach uses the methodology of the optimized Rayleigh/Mie scatter detection by taking into consideration the optical characteristics of a nitrocellulose membrane and gold nanoparticles on an LFA for quantifying TSH levels. Using a miniature spectrometer, LED light source, and optical fibers on a rotating benchtop apparatus, the light intensity from different angles of incident light and angles of detection to the LFA were measured. The optimum angles were found that the minimized Mie scattering from nitrocellulose membrane, consequently maximizes the Rayleigh scatter detection from the gold nanoparticles in the LFA bands. Using the results from the benchtop apparatus, a cell-phone-based apparatus was designed which utilized the embedded flash in the cell phone camera as the light source, piped the light with an optical fiber from the flash through a collimating lens to illuminate the LFA. Quantification of TSH was performed in an iOS application directly on the phone and verified using the code written in MATLAB. The limit of detection of the system was determined to be 0.31 mIU L(-1) (never achieved before on an LFA format), below the commonly accepted minimum concentration of 0.4 mIU L(-1) indicating clinical significance of hyperthyroidism. The system was further evaluated using human serum showing an accurate and reproducible platform for rapid and point-of-care quantification of TSH using a cell phone. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Jun-You; Qi, Hong; Ren, Ya-Tao; Ruan, Li-Ming
2018-04-01
An accurate and stable identification technique is developed to retrieve the optical constants and particle size distributions (PSDs) of particle system simultaneously from the multi-wavelength scattering-transmittance signals by using the improved quantum particle swarm optimization algorithm. The Mie theory are selected to calculate the directional laser intensity scattered by particles and the spectral collimated transmittance. The sensitivity and objective function distribution analysis were conducted to evaluate the mathematical properties (i.e. ill-posedness and multimodality) of the inverse problems under three different optical signals combinations (i.e. the single-wavelength multi-angle light scattering signal, the single-wavelength multi-angle light scattering and spectral transmittance signal, and the multi-angle light scattering and spectral transmittance signal). It was found the best global convergence performance can be obtained by using the multi-wavelength scattering-transmittance signals. Meanwhile, the present technique have been tested under different Gaussian measurement noise to prove its feasibility in a large solution space. All the results show that the inverse technique by using multi-wavelength scattering-transmittance signals is effective and suitable for retrieving the optical complex refractive indices and PSD of particle system simultaneously.
Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters
NASA Astrophysics Data System (ADS)
Safari, Mohammad S.; Vorontsova, Maria A.; Poling-Skutvik, Ryan; Vekilov, Peter G.; Conrad, Jacinta C.
2015-10-01
Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine and natural resource engineering. Differential dynamic microscopy (DDM) was recently developed to quantify the dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential dynamic microscopy is well established for monodisperse particle populations, but has not been applied to solutions containing weakly scattering polydisperse biological nanoparticles. Here we use bright-field DDM (BDDM) to measure the dynamics of protein-rich liquid clusters, whose size ranges from tens to hundreds of nanometers and whose total volume fraction is less than 10-5. With solutions of two proteins, hemoglobin A and lysozyme, we evaluate the cluster diffusion coefficients from the dependence of the diffusive relaxation time on the scattering wave vector. We establish that for weakly scattering populations, an optimal thickness of the sample chamber exists at which the BDDM signal is maximized at the smallest sample volume. The average cluster diffusion coefficient measured using BDDM is consistently lower than that obtained from dynamic light scattering at a scattering angle of 90∘. This apparent discrepancy is due to Mie scattering from the polydisperse cluster population, in which larger clusters preferentially scatter more light in the forward direction.
Determination of Atmospheric Aerosol Characteristics from the Polarization of Scattered Radiation
NASA Technical Reports Server (NTRS)
Harris, F. S., Jr.; McCormick, M. P.
1973-01-01
Aerosols affect the polarization of radiation in scattering, hence measured polarization can be used to infer the nature of the particles. Size distribution, particle shape, real and absorption parts of the complex refractive index affect the scattering. From Lorenz-Mie calculations of the 4-Stokes parameters as a function of scattering angle for various wavelengths the following polarization parameters were plotted: total intensity, intensity of polarization in plane of observation, intensity perpendicular to the plane of observation, polarization ratio, polarization (using all 4-Stokes parameters), plane of the polarization ellipse and its ellipticity. A six-component log-Gaussian size distribution model was used to study the effects of the nature of the polarization due to variations in the size distribution and complex refractive index. Though a rigorous inversion from measurements of scattering to detailed specification of aerosol characteristics is not possible, considerable information about the nature of the aerosols can be obtained. Only single scattering from aerosols was used in this paper. Also, the background due to Rayleigh gas scattering, the reduction of effects as a result of multiple scattering and polarization effects of possible ground background (airborne platforms) were not included.
Protein aggregation studied by forward light scattering and light transmission analysis
NASA Astrophysics Data System (ADS)
Penzkofer, A.; Shirdel, J.; Zirak, P.; Breitkreuz, H.; Wolf, E.
2007-12-01
The aggregation of the circadian blue-light photo-receptor cryptochrome from Drosophila melanogaster (dCry) is studied by transmission and forward light scattering measurement in the protein transparent wavelength region. The light scattering in forward direction is caused by Rayleigh scattering which is proportional to the degree of aggregation. The light transmission through the samples in the transparent region is reduced by Mie light scattering in all directions. It depends on the degree of aggregation and the monomer volume fill factor of the aggregates (less total scattering with decreasing monomer volume fill factor of protein globule) allowing a distinction between tightly packed protein aggregation (monomer volume fill factor 1) and loosely packed protein aggregation (monomer volume fill factor less than 1). An increase in aggregation with temperature, concentration, and blue-light exposure is observed. At a temperature of 4 °C and a protein concentration of less than 0.135 mM no dCry aggregation was observed, while at 24 °C and 0.327 mM gelation occurred (loosely packed aggregates occupying the whole solution volume).
All silicon waveguide spherical microcavity coupler device.
Xifré-Pérez, E; Domenech, J D; Fenollosa, R; Muñoz, P; Capmany, J; Meseguer, F
2011-02-14
A coupler based on silicon spherical microcavities coupled to silicon waveguides for telecom wavelengths is presented. The light scattered by the microcavity is detected and analyzed as a function of the wavelength. The transmittance signal through the waveguide is strongly attenuated (up to 25 dB) at wavelengths corresponding to the Mie resonances of the microcavity. The coupling between the microcavity and the waveguide is experimentally demonstrated and theoretically modeled with the help of FDTD calculations.
Recent developments with the asian dust and aerosol lidar observation network (AD-NET)
NASA Astrophysics Data System (ADS)
Sugimoto, Nobuo; Shimizu, Atsushi; Nishizawa, Tomoaki; Jin, Yoshitaka
2018-04-01
Recent developments of lidars and data analysis methods for AD-Net, and the studies using ADNet are presented. Continuous observation was started in 2001 at three stations using polarizationsensitive Mie-scattering lidars. Currently, lidars, including three multi-wavelength Raman lidars and one high-spectral-resolution lidar, are operated at 20 stations. Recent studies on validation/assimilation of chemical transport models, climatology, and epidemiology of Asian dust are also described.
Switching from visibility to invisibility via Fano resonances: theory and experiment.
Rybin, Mikhail V; Filonov, Dmitry S; Belov, Pavel A; Kivshar, Yuri S; Limonov, Mikhail F
2015-03-05
Subwavelength structures demonstrate many unusual optical properties which can be employed for engineering of a new generation of functional metadevices, as well as controlled scattering of light and invisibility cloaking. Here we demonstrate that the suppression of light scattering for any direction of observation can be achieved for a uniform dielectric object with high refractive index, in a sharp contrast to the cloaking with multilayered plasmonic structures suggested previously. Our finding is based on the novel physics of cascades of Fano resonances observed in the Mie scattering from a homogeneous dielectric rod. We observe this effect experimentally at microwaves by employing high temperature-dependent dielectric permittivity of a glass cylinder with heated water. Our results open a new avenue in analyzing the optical response of high-index dielectric nanoparticles and the physics of cloaking.
Switching from Visibility to Invisibility via Fano Resonances: Theory and Experiment
Rybin, Mikhail V.; Filonov, Dmitry S.; Belov, Pavel A.; Kivshar, Yuri S.; Limonov, Mikhail F.
2015-01-01
Subwavelength structures demonstrate many unusual optical properties which can be employed for engineering of a new generation of functional metadevices, as well as controlled scattering of light and invisibility cloaking. Here we demonstrate that the suppression of light scattering for any direction of observation can be achieved for a uniform dielectric object with high refractive index, in a sharp contrast to the cloaking with multilayered plasmonic structures suggested previously. Our finding is based on the novel physics of cascades of Fano resonances observed in the Mie scattering from a homogeneous dielectric rod. We observe this effect experimentally at microwaves by employing high temperature-dependent dielectric permittivity of a glass cylinder with heated water. Our results open a new avenue in analyzing the optical response of high-index dielectric nanoparticles and the physics of cloaking. PMID:25739324
Nanoscale surface modification of glass using a 1064 nm pulsed laser
NASA Astrophysics Data System (ADS)
Theppakuttai, Senthil; Chen, Shaochen
2003-07-01
We report a method to produce nanopatterns on borosilicate glass by a Nd:yttrium-aluminum-garnet laser (10 ns, 1064 nm), using silica nanospheres. Nonlinear absorption of the enhanced optical field between the spheres and glass sample is believed to be the primary reason for the creation of nanofeatures on the glass substrate. By shining the laser beam from the backside of the glass sample, the scattering effects are minimized and only the direct field enhancement due to the spheres is utilized for surface patterning. To confirm this, calculations based on the Mie scattering theory were performed, and the resulting intensity as a function of scattering angles are presented. The nanofeatures thus obtained by this method are 350 nm in diameter and the distance between them is around 640 nm, which is same as the size of spheres used.
NASA Astrophysics Data System (ADS)
Tedela, Getachew; Singh, Sujeeta; Fiddler, Marc; Bililign, Solomon
2013-03-01
Accurate measurement of optical properties of aerosols is crucial for quantifying the influence of aerosols on climate. Aerosols that scatter and absorb radiation can have a cooling or warming effect depending on the magnitude of the respective scattering and absorption terms. One example is black carbon known for its strong absorption. The reported refractive indices for black carbon particles range from 1.2 +0i to 2.75 +1.44i. Our work attempts to measure extinction coefficient, and scattering coefficient of black carbon particles at different incident beam wavelengths using a cavity ring-down spectrometer and a Nephelometer and compare to Mie theory predictions. We report calibration results using polystyrene latex spheres and preliminary results on using commercial black carbon particles. The work is supported by the Department of Defense grant W911NF-11-1-0188.
Protein aggregate turbidity: Simulation of turbidity profiles for mixed-aggregation reactions.
Hall, Damien; Zhao, Ran; Dehlsen, Ian; Bloomfield, Nathaniel; Williams, Steven R; Arisaka, Fumio; Goto, Yuji; Carver, John A
2016-04-01
Due to their colloidal nature, all protein aggregates scatter light in the visible wavelength region when formed in aqueous solution. This phenomenon makes solution turbidity, a quantity proportional to the relative loss in forward intensity of scattered light, a convenient method for monitoring protein aggregation in biochemical assays. Although turbidity is often taken to be a linear descriptor of the progress of aggregation reactions, this assumption is usually made without performing the necessary checks to provide it with a firm underlying basis. In this article, we outline utilitarian methods for simulating the turbidity generated by homogeneous and mixed-protein aggregation reactions containing fibrous, amorphous, and crystalline structures. The approach is based on a combination of Rayleigh-Gans-Debye theory and approximate forms of the Mie scattering equations. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Walsh, A. J.; Tielens, A. G. G. M.; Ruth, A. A.
2016-07-01
We report the formation of nanoparticles with significant diamond character after UV multi-photon laser excitation of gaseous naphthalene, buffered in static helium gas, at room temperature. The nanoparticles are identified in situ by their absorption and scattering spectra between 400 and 850 nm, which are modeled using Mie theory. Comparisons of the particles' spectroscopic and optical properties with those of carbonaceous materials indicate a sp3/sp2 hybridization ratio of 8:1 of the particles formed. The particle extinction in the closed static (unstirred) gas-phase system exhibits a complex and quasi-oscillatory time dependence for the duration of up to several hours with periods ranging from seconds to many minutes. The extinction dynamics of the system is based on a combination of transport features and particle interaction, predominantly agglomeration. The relatively long period of agglomeration allows for a unique analysis of the agglomeration process of diamond-like carbon nanoparticles in situ.
Radiative transfer code SHARM for atmospheric and terrestrial applications
NASA Astrophysics Data System (ADS)
Lyapustin, A. I.
2005-12-01
An overview of the publicly available radiative transfer Spherical Harmonics code (SHARM) is presented. SHARM is a rigorous code, as accurate as the Discrete Ordinate Radiative Transfer (DISORT) code, yet faster. It performs simultaneous calculations for different solar zenith angles, view zenith angles, and view azimuths and allows the user to make multiwavelength calculations in one run. The Δ-M method is implemented for calculations with highly anisotropic phase functions. Rayleigh scattering is automatically included as a function of wavelength, surface elevation, and the selected vertical profile of one of the standard atmospheric models. The current version of the SHARM code does not explicitly include atmospheric gaseous absorption, which should be provided by the user. The SHARM code has several built-in models of the bidirectional reflectance of land and wind-ruffled water surfaces that are most widely used in research and satellite data processing. A modification of the SHARM code with the built-in Mie algorithm designed for calculations with spherical aerosols is also described.
Radiative transfer code SHARM for atmospheric and terrestrial applications.
Lyapustin, A I
2005-12-20
An overview of the publicly available radiative transfer Spherical Harmonics code (SHARM) is presented. SHARM is a rigorous code, as accurate as the Discrete Ordinate Radiative Transfer (DISORT) code, yet faster. It performs simultaneous calculations for different solar zenith angles, view zenith angles, and view azimuths and allows the user to make multiwavelength calculations in one run. The Delta-M method is implemented for calculations with highly anisotropic phase functions. Rayleigh scattering is automatically included as a function of wavelength, surface elevation, and the selected vertical profile of one of the standard atmospheric models. The current version of the SHARM code does not explicitly include atmospheric gaseous absorption, which should be provided by the user. The SHARM code has several built-in models of the bidirectional reflectance of land and wind-ruffled water surfaces that are most widely used in research and satellite data processing. A modification of the SHARM code with the built-in Mie algorithm designed for calculations with spherical aerosols is also described.
NASA Astrophysics Data System (ADS)
Bezur, L.; Marshall, J.; Ottaway, J. M.
A square-wave wavelength modulation system, based on a rotating quartz chopper with four quadrants of different thicknesses, has been developed and evaluated as a method for automatic background correction in carbon furnace atomic emission spectrometry. Accurate background correction is achieved for the residual black body radiation (Rayleigh scatter) from the tube wall and Mie scatter from particles generated by a sample matrix and formed by condensation of atoms in the optical path. Intensity modulation caused by overlap at the edges of the quartz plates and by the divergence of the optical beam at the position of the modulation chopper has been investigated and is likely to be small.
Sky-radiance gradient measurements at narrow bands in the visible.
Winter, E M; Metcalf, T W; Stotts, L B
1995-07-01
Accurate calibrated measurements of the radiance of the daytime sky were made in narrow bands in the visible portion of the spectrum. These measurements were made over several months and were tabulated in a sun-referenced coordinate system. The radiance as a function of wavelength at angles ranging from 5 to 90 deg was plotted. A best-fit inverse power-law fit shows inversely linear behavior of the radiance versus wavelength near the Sun (5 deg) and a slope approaching inverse fourth power far from the Sun (60 deg). This behavior fits a Mie-scattering interpretation near the Sun and a Rayleigh-scattering interpretation away from the Sun. The results are also compared with LOWTRAN models.
Monostatic lidar/radar invisibility using coated spheres.
Zhai, Peng-Wang; You, Yu; Kattawar, George W; Yang, Ping
2008-02-04
The Lorenz-Mie theory is revisited to explicitly include materials whose permeability is different from unity. The expansion coefficients of the scattered field are given for light scattering by both homogeneous and coated spheres. It is shown that the backscatter is exactly zero if the impedance of the spherical particles is equal to the intrinsic impedance of the surrounding medium. If spherical particles are sufficiently large, the zero backscatter can be explained as impedance matching using the asymptotic expression for the radar backscattering cross section. In the case of a coated sphere, the shell can be regarded as a cloak if the product of the thickness and the imaginary part of the refractive index of the outer shell is large.
Smith, Zachary J; Chu, Kaiqin; Wachsmann-Hogiu, Sebastian
2012-01-01
We report on the construction of a Fourier plane imaging system attached to a cell phone. By illuminating particle suspensions with a collimated beam from an inexpensive diode laser, angularly resolved scattering patterns are imaged by the phone's camera. Analyzing these patterns with Mie theory results in predictions of size distributions of the particles in suspension. Despite using consumer grade electronics, we extracted size distributions of sphere suspensions with better than 20 nm accuracy in determining the mean size. We also show results from milk, yeast, and blood cells. Performing these measurements on a portable device presents opportunities for field-testing of food quality, process monitoring, and medical diagnosis.
Observations on the Freezing of Supercooled Pollen Washing Water by a New Electrodynamic Balance
NASA Astrophysics Data System (ADS)
Tong, Haijie; Pope, Francis D.; Kalberer, Markus
2014-05-01
Primary biological particles can act as efficient ice nuclei (IN) by initiating freezing events at temperatures warmer than the homogenous freezing temperature [1, 2]. For example, pollen grain particles can trigger freezing events at temperatures as warm as -5 °C in the contact freezing mode [3]. More recently pollen residues, which are released by washing pollen grains in water, were also observed to act as efficient IN in the immersion mode [4, 5]. In this study we developed a new cold electrodynamic balance (CEDB) system and investigated the freezing properties of single particles of supercooled pollen washing water (SPWW). The EDB technique allows for a contact free measurement of freezing events. The phase of the particle (liquid or frozen solid) can be distinguished via measuring the Mie scattering signal from the particle. Furthermore the size of liquid (spherical) particles can be determined. The freezing events are characterized through the loss of the regular Mie scattering signal from the levitated droplet as it changes state from liquid to a frozen solid. The statistical freezing probabilities of SPWW were obtained in the temperature range: -15 to -40 °C. Each temperature measurement point consists of the analysis of 30-100 droplets. Preliminary conclusions are that SPWW is IN active in the immersion mode. Further discussion will focus on the temperature range of the IN activity, the important variables (other than temperature) for IN activity, other likely modes of IN activity, and the implications of these results in terms of the atmospheric relevance of SPWW. This study was supported by the NERC. We acknowledge Professor Jonathan Reid and James Davis from the University of Bristol for providing information of the design of the warm EDB system. References: [1] Möhler, O., et al. (2007) Biogeosciences, 4, 1059-1071. [2] Prenni, A. J., et al. (2009) Nat. Geosci., 2, 401-404. [3] Diehl, K., et al. (2002) Atmos. Res., 61, 125-133. [4] Pummer, B. G., et al. (2012) Atmos. Chem. Phys., 12, 2541-2550. [5] Augustin, S., et al. (2013) Atmos. Chem. Phys., 13, 10989-11003.
Estimation of Rainfall Rates from Passive Microwave Remote Sensing.
NASA Astrophysics Data System (ADS)
Sharma, Awdhesh Kumar
Rainfall rates have been estimated using the passive microwave and visible/infrared remote sensing techniques. Data of September 14, 1978 from the Scanning Multichannel Microwave Radiometer (SMMR) on board SEA SAT-A and the Visible and Infrared Spin Scan Radiometer (VISSR) on board GOES-W (Geostationary Operational Environmental Satellite - West) was obtained and analyzed for rainfall rate retrieval. Microwave brightness temperatures (MBT) are simulated, using the microwave radiative transfer model (MRTM) and atmospheric scattering models. These MBT were computed as a function of rates of rainfall from precipitating clouds which are in a combined phase of ice and water. Microwave extinction due to ice and liquid water are calculated using Mie-theory and Gamma drop size distributions. Microwave absorption due to oxygen and water vapor are based on the schemes given by Rosenkranz, and Barret and Chung. The scattering phase matrix involved in the MRTM is found using Eddington's two stream approximation. The surface effects due to winds and foam are included through the ocean surface emissivity model. Rainfall rates are then inverted from MBT using the optimization technique "Leaps and Bounds" and multiple linear regression leading to a relationship between the rainfall rates and MBT. This relationship has been used to infer the oceanic rainfall rates from SMMR data. The VISSR data has been inverted for the rainfall rates using Griffith's scheme. This scheme provides an independent means of estimating rainfall rates for cross checking SMMR estimates. The inferred rainfall rates from both techniques have been plotted on a world map for comparison. A reasonably good correlation has been obtained between the two estimates.
Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes.
Wilson, Jeremy D; Cottrell, William J; Foster, Thomas H
2007-01-01
Angularly resolved light scattering and wavelength-resolved darkfield scattering spectroscopy measurements were performed on intact, control EMT6 cells and cells stained with high-extinction lysosomal- or mitochondrial-localizing dyes. In the presence of the lysosomal-localizing dye NPe6, we observe changes in the details of light scattering from stained and unstained cells, which have both wavelength- and angular-dependent features. Analysis of measurements performed at several wavelengths reveals a reduced scattering cross section near the absorption maximum of the lysosomal-localizing dye. When identical measurements are made with cells loaded with a similar mitochondrial-localizing dye, HPPH, we find no evidence that staining mitochondria had any effect on the light scattering. Changes in the scattering properties of candidate populations of organelles induced by the addition of an absorber are modeled with Mie theory, and we find that any absorber-induced scattering response is very sensitive to the inherent refractive index of the organelle population. Our measurements and modeling are consistent with EMT6-cell-mitochondria having refractive indices close to those reported in the literature for organelles, approximately 1.4. The reduction in scattering cross section induced by NPe6 constrains the refractive index of lysosomes to be significantly higher. We estimate the refractive index of lysosomes in EMT6 cells to be approximately 1.6.
Chirped femtosecond pulse scattering by spherical particles
NASA Astrophysics Data System (ADS)
Kim, Dal-Woo; Xiao, Gang-Yao; Lee, Tong-Nyong
1996-05-01
Generalized Lorentz-Mie formulas are used to study the scattering characteristics when a chirped femtosecond pulse illuminates a spherical particle. For a linear chirped Gaussian pulse with the envelope function g( tau ) = exp[- pi (1 + ib) tau 2], dimensionless parameter b is defined as a chirp. The calculation illustrated that even for pulses with a constant carrier wavelength ( lambda 0 = 0.5 mu m) and pulse-filling coefficient (l0 = 1.98), the efficiencies for extinction and scattering differ very much between the carrier wave and the different chirped pulses. The slowly varying background of the extinction and the scattering curves is damped by the chirp. When the pulse is deeply chirped, the maxima and minima of the background curves reduce to the point where they disappear, and the efficiency curves illustrate a steplike dependence on the sphere size. Another feature is that the only on the amount of chirp (|b|), regardless of upchirp (b greater than 0) or downchirp (b less than 0).
Raman Antenna Effect in Semiconducting Nanowires.
NASA Astrophysics Data System (ADS)
Chen, Gugang; Xiong, Qihua; Eklund, Peter
2007-03-01
A novel Raman antenna effect has been observed in Raman scattering experiments recently carried out on individual GaP nanowires [1]. The Raman antenna effect is perfectly general and should appear in all semiconducting nanowires. It is characterized by an anomalous increase in the Raman cross section for scattering from LO or TO phonons when the electric field of the incident laser beam is parallel to the nanowire axis. We demonstrate that the explanation for the effect lies in the polarization dependence of the Mie scattering from the nanowire and the concomitant polarization-dependent electric field set up inside the wire. Our analysis involves calculations of the internal electric field using the discrete dipole approximation (DDA). We find that the Raman antenna effect happens only for nanowire diameters d<λ/4, where λ is the excitation laser wavelength. Our calculations are found in good agreement with recent experimental results for scattering from individual GaP nanowires. [1] Q. Xiong, G. Chen, G. D. Mahan, P. C. Eklund, in preparation, 2006.
Analysis of electromagnetic scattering by uniaxial anisotropic bispheres.
Li, Zheng-Jun; Wu, Zhen-Sen; Li, Hai-Ying
2011-02-01
Based on the generalized multiparticle Mie theory and the Fourier transformation approach, electromagnetic (EM) scattering of two interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes is investigated. By introducing the Fourier transformation, the EM fields in the uniaxial anisotropic spheres are expanded in terms of the spherical vector wave functions. The interactive scattering coefficients and the expansion coefficients of the internal fields are derived through the continuous boundary conditions on which the interaction of the bispheres is considered. Some selected calculations on the effects of the size parameter, the uniaxial anisotropic absorbing dielectric, and the sphere separation distance are described. The backward radar cross section of two uniaxial anisotropic spheres with a complex permittivity tensor changing with the sphere separation distance is numerically studied. The authors are hopeful that the work in this paper will help provide an effective calibration for further research on the scattering characteristic of an aggregate of anisotropic spheres or other shaped anisotropic particles.
Seet, Katrina Y T; Nieminen, Timo A; Zvyagin, Andrei V
2009-01-01
The cell nucleus is the dominant optical scatterer in the cell. Neoplastic cells are characterized by cell nucleus polymorphism and polychromism-i.e., the nuclei exhibits an increase in the distribution of both size and refractive index. The relative size parameter, and its distribution, is proportional to the product of the nucleus size and its relative refractive index and is a useful discriminant between normal and abnormal (cancerous) cells. We demonstrate a recently introduced holographic technique, digital Fourier microscopy (DFM), to provide a sensitive measure of this relative size parameter. Fourier holograms were recorded and optical scatter of individual scatterers were extracted and modeled with Mie theory to determine the relative size parameter. The relative size parameter of individual melanocyte cell nuclei were found to be 16.5+/-0.2, which gives a cell nucleus refractive index of 1.38+/-0.01 and is in good agreement with previously reported data. The relative size parameters of individual malignant melanocyte cell nuclei are expected to be greater than 16.5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovryn, B.; Wright, T.; Khaydarov, J.D.
1995-12-31
The authors employ Forward Scattering Particle Image Velocimetry (FSPIV) to measure all three components of the velocity of a buoyant polystyrene particle in oil. Unlike conventional particle image velocimetry (PIV) techniques, FSPIV employs coherent or partially coherent back illumination and collects the forward scattered wavefront; additionally, the field-of-view is microscopic. Using FSPIV, it is possible to easily identify the particle`s centroid and to simultaneously obtain the fluid velocity in different planes perpendicular to the viewing direction without changing the collection or imaging optics. The authors have trained a neural network to identify the scattering pattern as function of displacement alongmore » the optical axis (axial defocus) and determine the transverse velocity by tracking the centroid as function of time. They present preliminary results from Mie theory calculations which include the effect of the imaging system. To their knowledge, this is the first work of this kind; preliminary results are encouraging.« less
Real-time particulate mass measurement based on laser scattering
NASA Astrophysics Data System (ADS)
Rentz, Julia H.; Mansur, David; Vaillancourt, Robert; Schundler, Elizabeth; Evans, Thomas
2005-11-01
OPTRA has developed a new approach to the determination of particulate size distribution from a measured, composite, laser angular scatter pattern. Drawing from the field of infrared spectroscopy, OPTRA has employed a multicomponent analysis technique which uniquely recognizes patterns associated with each particle size "bin" over a broad range of sizes. The technique is particularly appropriate for overlapping patterns where large signals are potentially obscuring weak ones. OPTRA has also investigated a method for accurately training the algorithms without the use of representative particles for any given application. This streamlined calibration applies a one-time measured "instrument function" to theoretical Mie patterns to create the training data for the algorithms. OPTRA has demonstrated this algorithmic technique on a compact, rugged, laser scatter sensor head we developed for gas turbine engine emissions measurements. The sensor contains a miniature violet solid state laser and an array of silicon photodiodes, both of which are commercial off the shelf. The algorithmic technique can also be used with any commercially available laser scatter system.
Fresnel diffraction by spherical obstacles
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.
1989-01-01
Lommel functions were used to solve the Fresnel-Kirchhoff diffraction integral for the case of a spherical obstacle. Comparisons were made between Fresnel diffraction theory and Mie scattering theory. Fresnel theory is then compared to experimental data. Experiment and theory typically deviated from one another by less than 10 percent. A unique experimental setup using mercury spheres suspended in a viscous fluid significantly reduced optical noise. The major source of error was due to the Gaussian-shaped laser beam.
Refractive Index Sensing Using Visible Electromagnetic Resonances of Supported Cu2O Particles.
Susman, Mariano D; Vaskevich, Alexander; Rubinstein, Israel
2017-03-08
Plasmonic metal nanostructures, in colloidal or surface-supported forms, have been extensively studied in the context of metamaterials design and applications, in particular as refractometric sensing platforms. Recently, high refractive index (high-n) dielectric subwavelength structures have been experimentally shown to support strong Mie scattering resonances, predicted to exhibit analogous refractive index sensing capabilities. Here we present the first experimental demonstration of the use of supported high-n dielectric nano/microparticle ensembles as refractive index sensing platforms, using cuprous oxide as a model high-n material. Single-crystalline Cu 2 O particles were deposited on transparent substrates using a chemical deposition scheme, showing well-defined electric and magnetic dipolar resonances (EDR and MDR, respectively) in the visible range, which change in intensity and wavelength upon changing the medium refractive index (n m ). The significant modulation of the MDR intensity when n m is modified appears to be the most valuable empirical sensing parameter. The Mie scattering properties of Cu 2 O particles, particularly the spectral dependence of the MDR on n m , are theoretically modeled to support the experimental observations. MDR extinction changes (i.e., refractive index sensitivity) per particle are >100 times higher compared to localized surface plasmon resonance (LSPR) changes in supported Au nanoislands, encouraging the evaluation of Cu 2 O and other high-n dielectric particles and sensing modes in order to improve the sensitivity in optical (bio)sensing applications.
A scattering database of marine particles and its application in optical analysis
NASA Astrophysics Data System (ADS)
Xu, G.; Yang, P.; Kattawar, G.; Zhang, X.
2016-12-01
In modeling the scattering properties of marine particles (e.g. phytoplankton), the laboratory studies imply a need to properly account for the influence of particle morphology, in addition to size and composition. In this study, a marine particle scattering database is constructed using a collection of distorted hexahedral shapes. Specifically, the scattering properties of each size bin and refractive index are obtained by the ensemble average associated with distorted hexahedra with randomly tilted facets and selected aspect ratios (from elongated to flattened). The randomness degree in shape-generation process defines the geometric irregularity of the particles in the group. The geometric irregularity and particle aspect ratios constitute a set of "shape factors" to be accounted for (e.g. in best-fit analysis). To cover most of the marine particle size range, we combine the Invariant Imbedding T-matrix (II-TM) method and the Physical-Geometric Optics Hybrid (PGOH) method in the calculations. The simulated optical properties are shown and compared with those obtained from Lorenz-Mie Theory. Using the scattering database, we present a preliminary optical analysis of laboratory-measured optical properties of marine particles.
Polarization of the Radiation Reflected and Transmitted by the Earth's Atmosphere.
Plass, G N; Kattawar, G W
1970-05-01
The polarization of the reflected and transmitted radiation is calculated for a realistic model of the earth's atmosphere at five wavelengths ranging from 0.27 micro to 1.67 micro. The single scattering matrix is calculated from the Mie theory for an aerosol size distribution appropriate for our atmosphere. The solar photons are followed through multiple collisions with the aerosols and the Rayleigh scattering centers in the atmosphere by a Monte Carlo method. The aerosol number density as well as the ratio of aerosol to Rayleigh scattering varies with height. The proportion of aerosol to Rayleigh scattering is adjusted for each wavelength; ozone absorption is included where appropriate. The polarization is presented as a function of the zenith and azimuthal angle for six values of the earth's albedo, two values of the solar zenith angle, and four values of the total aerosol concentration. In general the polarization decreases as the wavelength increases and as the total aerosol concentration increases (because of the increasing importance of aerosol scattering). In most situations the polarization is much more sensitive than the radiance to changes in the parameters which specify the atmosphere.
Light Scattering by Lunar Exospheric Dust: What could be Learned from LRO LAMP and LADEE UVS?
NASA Astrophysics Data System (ADS)
Glenar, D. A.; Stubbs, T. J.; Richard, D. T.; Stern, S. A.; Retherford, K. D.; Gladstone, R.; Feldman, P. D.; Colaprete, A.; Delory, G. T.
2011-12-01
Two complementary spectrometers, namely the Lunar Reconnaissance Orbiter, Lyman Alpha Mapping Project (LAMP) and the planned Lunar Atmosphere and Dust Environment Explorer (LADEE) Ultraviolet Explorer (UVS) will carry out sensitive searches for high altitude exospheric dust, via detection of scattered sunlight. The combined spectral coverage of these instruments extends from far-UV to near-IR wavelengths. Over this wavelength range, grain size parameter (X=2πr/λ, with r the grain radius and λ the wavelength) changes dramatically, which makes broad wavelength coverage a good diagnostic of grain size. Utilizing different pointing geometries, both LAMP and UVS are able to observe dust over a range of scattering angles, as well as measure the dust vertical profile via limb measurements at multiple tangent heights. We summarize several categories of information that can be inferred from the data sets, using broadband simulations of horizon glow as observed at the limb. Grain scattering properties used in these simulations were computed for multiple grain shapes using Discrete-Dipole theory. Some cautionary remarks are included regarding the use of Mie theory to interpret scattering measurements.
Generating Color from Polydisperse, Near Micron-Sized TiO2 Particles.
Alam, Al-Mahmnur; Baek, Kyungnae; Son, Jieun; Pei, Yi-Rong; Kim, Dong Ha; Choy, Jin-Ho; Hyun, Jerome K
2017-07-19
Single particle Mie calculations of near micron-sized TiO 2 particles predict strong light scattering dominating the visible range that would give rise to a white appearance. We demonstrate that a polydisperse collection of these "white" particles can result in the generation of visible colors through ensemble scattering. The weighted averaging of the scattering over the particle size distribution modifies the sharp, multiple, high order scattering modes from individual particles into broad variations in the collective extinction. These extinction variations are apparent as visible colors for particles suspended in organic solvent at low concentration, or for a monolayer of particles supported on a transparent substrate viewed in front of a white light source. We further exploit the color variations on optical sensitivity to the surrounding environment to promote micron-sized TiO 2 particles as stable and robust agents for detecting the optical index of homogeneous media with high contrast sensitivities. Such distribution-modulated scattering properties provide TiO 2 particles an intriguing opportunity to impart color and optical sensitivity to their widespread electronic and chemical platforms such as antibacterial windows, catalysis, photocatalysis, optical sensors, and photovoltaics.
You, David J; Geshell, Kenneth J; Yoon, Jeong-Yeol
2011-10-15
Direct and sensitive detection of foodborne pathogens from fresh produce samples was accomplished using a handheld lab-on-a-chip device, requiring little to no sample processing and enrichment steps for a near-real-time detection and truly field-deployable device. The detection of Escherichia coli K12 and O157:H7 in iceberg lettuce was achieved utilizing optimized Mie light scatter parameters with a latex particle immunoagglutination assay. The system exhibited good sensitivity, with a limit of detection of 10 CFU mL(-1) and an assay time of <6 min. Minimal pretreatment with no detrimental effects on assay sensitivity and reproducibility was accomplished with a simple and cost-effective KimWipes filter and disposable syringe. Mie simulations were used to determine the optimal parameters (particle size d, wavelength λ, and scatter angle θ) for the assay that maximize light scatter intensity of agglutinated latex microparticles and minimize light scatter intensity of the tissue fragments of iceberg lettuce, which were experimentally validated. This introduces a powerful method for detecting foodborne pathogens in fresh produce and other potential sample matrices. The integration of a multi-channel microfluidic chip allowed for differential detection of the agglutinated particles in the presence of the antigen, revealing a true field-deployable detection system with decreased assay time and improved robustness over comparable benchtop systems. Additionally, two sample preparation methods were evaluated through simulated field studies based on overall sensitivity, protocol complexity, and assay time. Preparation of the plant tissue sample by grinding resulted in a two-fold improvement in scatter intensity over washing, accompanied with a significant increase in assay time: ∼5 min (grinding) versus ∼1 min (washing). Specificity studies demonstrated binding of E. coli O157:H7 EDL933 to only O157:H7 antibody conjugated particles, with no cross-reactivity to K12. This suggests the adaptability of the system for use with a wide variety of pathogens, and the potential to detect in a variety of biological matrices with little to no sample pretreatment. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Landi Degl'Innocenti, Egidio
2015-10-01
The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.
Color Richness in Cephalopod Chromatophores Originating from High Refractive Index Biomolecules.
Dinneen, Sean R; Osgood, Richard M; Greenslade, Margaret E; Deravi, Leila F
2017-01-05
Cephalopods are arguably one of the most photonically sophisticated marine animals, as they can rapidly adapt their dermal color and texture to their surroundings using both structural and pigmentary coloration. Their chromatophore organs facilitate this process, but the molecular mechanism potentiating color change is not well understood. We hypothesize that the pigments, which are localized within nanostructured granules in the chromatophore, enhance the scattering of light within the dermal tissue. To test this, we extracted the phenoxazone-based pigments from the chromatophore and extrapolated their complex refractive index (RI) from experimentally determined real and approximated imaginary portions of the RI. Mie theory was used to calculate the absorbance and scattering cross sections (cm 2 /particle) across a broad diameter range at λ = 589 nm. We observed that the pigments were more likely to scatter attenuated light than absorb it and that these characteristics may contribute to the color richness of cephalopods.
NASA Technical Reports Server (NTRS)
Whiteman, David N.
2003-01-01
In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman and Rayleigh-Mie lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here those results are used to derive the temperature dependent forms of the equations for the water vapor mixing ratio, aerosol scattering ratio, aerosol backscatter coefficient, and extinction to backscatter ratio (Sa). The error equations are developed, the influence of differential transmission is studied and different laser sources are considered in the analysis. The results indicate that the temperature functions become significant when using narrowband detection. Errors of 5% and more can be introduced in the water vapor mixing ratio calculation at high altitudes and errors larger than 10% are possible for calculations of aerosol scattering ratio and thus aerosol backscatter coefficient and extinction to backscatter ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ooi, C. H. Raymond
2009-07-10
Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with anmore » integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.« less
Chapter 1: Direct Normal Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myer, Daryl R.
2016-04-15
This chapter addresses the quantitative and qualitative aspects of the solar resource, the direct solar radiation. It discusses the total or integrated broadband direct beam extraterrestrial radiation (ETR). This total integrated irradiance is comprised of photons of electromagnetic radiation. The chapter also discusses the impact of the atmosphere and its effect upon the direct normal irradiance (DNI) beam radiation. The gases and particulates present in the atmosphere traversed by the direct beam reflect, absorb, and scatter differing spectral regions and proportions of the direct beam, and act as a variable filter. Knowledge of the available broadband DNI beam radiation resourcemore » data is essential in designing a concentrating photovoltaic (CPV) system. Spectral variations in the DNI beam radiation affect the performance of a CPV system depending on the solar cell technology used. The chapter describes propagation and scattering processes of circumsolar radiation (CSR), which includes the Mie scattering from large particles.« less
Light Scattering by Fractal Dust Aggregates. I. Angular Dependence of Scattering
NASA Astrophysics Data System (ADS)
Tazaki, Ryo; Tanaka, Hidekazu; Okuzumi, Satoshi; Kataoka, Akimasa; Nomura, Hideko
2016-06-01
In protoplanetary disks, micron-sized dust grains coagulate to form highly porous dust aggregates. Because the optical properties of these aggregates are not completely understood, it is important to investigate how porous dust aggregates scatter light. In this study, the light scattering properties of porous dust aggregates were calculated using a rigorous method, the T-matrix method, and the results were then compared with those obtained using the Rayleigh-Gans-Debye (RGD) theory and Mie theory with the effective medium approximation (EMT). The RGD theory is applicable to moderately large aggregates made of nearly transparent monomers. This study considered two types of porous dust aggregates—ballistic cluster-cluster agglomerates (BCCAs) and ballistic particle-cluster agglomerates. First, the angular dependence of the scattered intensity was shown to reflect the hierarchical structure of dust aggregates; the large-scale structure of the aggregates is responsible for the intensity at small scattering angles, and their small-scale structure determines the intensity at large scattering angles. Second, it was determined that the EMT underestimates the backward scattering intensity by multiple orders of magnitude, especially in BCCAs, because the EMT averages the structure within the size of the aggregates. It was concluded that the RGD theory is a very useful method for calculating the optical properties of BCCAs.
Polarization resolved angular optical scattering of aerosol particles
NASA Astrophysics Data System (ADS)
Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui
2014-05-01
Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.
LIGHT SCATTERING BY FRACTAL DUST AGGREGATES. I. ANGULAR DEPENDENCE OF SCATTERING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tazaki, Ryo; Tanaka, Hidekazu; Okuzumi, Satoshi
2016-06-01
In protoplanetary disks, micron-sized dust grains coagulate to form highly porous dust aggregates. Because the optical properties of these aggregates are not completely understood, it is important to investigate how porous dust aggregates scatter light. In this study, the light scattering properties of porous dust aggregates were calculated using a rigorous method, the T -matrix method, and the results were then compared with those obtained using the Rayleigh–Gans–Debye (RGD) theory and Mie theory with the effective medium approximation (EMT). The RGD theory is applicable to moderately large aggregates made of nearly transparent monomers. This study considered two types of porousmore » dust aggregates—ballistic cluster–cluster agglomerates (BCCAs) and ballistic particle–cluster agglomerates. First, the angular dependence of the scattered intensity was shown to reflect the hierarchical structure of dust aggregates; the large-scale structure of the aggregates is responsible for the intensity at small scattering angles, and their small-scale structure determines the intensity at large scattering angles. Second, it was determined that the EMT underestimates the backward scattering intensity by multiple orders of magnitude, especially in BCCAs, because the EMT averages the structure within the size of the aggregates. It was concluded that the RGD theory is a very useful method for calculating the optical properties of BCCAs.« less
Spectral solution of the inverse Mie problem
NASA Astrophysics Data System (ADS)
Romanov, Andrey V.; Konokhova, Anastasiya I.; Yastrebova, Ekaterina S.; Gilev, Konstantin V.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.; Yurkin, Maxim A.
2017-10-01
We developed a fast method to determine size and refractive index of homogeneous spheres from the power Fourier spectrum of their light-scattering patterns (LSPs), measured with the scanning flow cytometer. Specifically, we used two spectral parameters: the location of the non-zero peak and zero-frequency amplitude, and numerically inverted the map from the space of particle characteristics (size and refractive index) to the space of spectral parameters. The latter parameters can be reliably resolved only for particle size parameter greater than 11, and the inversion is unique only in the limited range of refractive index with upper limit between 1.1 and 1.25 (relative to the medium) depending on the size parameter and particular definition of uniqueness. The developed method was tested on two experimental samples, milk fat globules and spherized red blood cells, and resulted in accuracy not worse than the reference method based on the least-square fit of the LSP with the Mie theory. Moreover, for particles with significant deviation from the spherical shape the spectral method was much closer to the Mie-fit result than the estimated uncertainty of the latter. The spectral method also showed adequate results for synthetic LSPs of spheroids with aspect ratios up to 1.4. Overall, we present a general framework, which can be used to construct an inverse algorithm for any other experimental signals.
Composition measurements of binary mixture droplets by rainbow refractometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilms, J.; Weigand, B
2007-04-10
So far, refractive index measurements by rainbow refractometry have been used to determine the temperature of single droplets and ensembles of droplets. Rainbow refractometry is, for the first time, to the best of our knowledge, applied to measure composition histories of evaporating, binary mixture droplets. An evaluation method is presented that makes use of Airy theory and the simultaneous size measurement by Mie scattering imaging. The method further includes an empirical correction function for a certain diameter and refractive index range. The measurement uncertainty was investigated by numerical simulations with Lorenz-Mie theory. For the experiments, an optical levitation setup wasmore » used allowing for long measurement periods. Temperature measurements of single-component droplets at different temperature levels are shown to demonstrate the accuracy of rainbow refractometry. Measurements of size and composition histories of binary mixture droplets are presented for two different mixtures. Experimental results show good agreement with numerical results using a rapid-mixing model.« less
China, Swarup; Scarnato, Barbara; Owen, Robert C.; ...
2015-01-14
The radiative properties of soot particles depend on their morphology and mixing state, but their evolution during transport is still elusive. In this paper, we report observations from an electron microscopy analysis of individual particles transported in the free troposphere over long distances to the remote Pico Mountain Observatory in the Azores in the North Atlantic. Approximately 70% of the soot particles were highly compact and of those 26% were thinly coated. Discrete dipole approximation simulations indicate that this compaction results in an increase in soot single scattering albedo by a factor of ≤2.17. The top of the atmosphere directmore » radiative forcing is typically smaller for highly compact than mass-equivalent lacy soot. Lastly, the forcing estimated using Mie theory is within 12% of the forcing estimated using the discrete dipole approximation for a high surface albedo, implying that Mie calculations may provide a reasonable approximation for compact soot above remote marine clouds.« less
NASA Astrophysics Data System (ADS)
Dufal, Simon; Lafitte, Thomas; Haslam, Andrew J.; Galindo, Amparo; Clark, Gary N. I.; Vega, Carlos; Jackson, George
2015-05-01
An accurate representation of molecular association is a vital ingredient of advanced equations of state (EOSs), providing a description of thermodynamic properties of complex fluids where hydrogen bonding plays an important role. The combination of the first-order thermodynamic perturbation theory (TPT1) of Wertheim for associating systems with an accurate description of the structural and thermodynamic properties of the monomer fluid forms the basis of the statistical associating fluid theory (SAFT) family of EOSs. The contribution of association to the free energy in SAFT and related EOSs is very sensitive to the nature of intermolecular potential used to describe the monomers and, crucially, to the accuracy of the representation of the thermodynamic and structural properties. Here we develop an accurate description of the association contribution for use within the recently developed SAFT-VR Mie framework for chain molecules formed from segments interacting through a Mie potential [T. Lafitte, A. Apostolakou, C. Avendaño, A, Galindo, C. S. Adjiman, E. A. Müller, and G. Jackson, J. Chem. Phys. 139, 154504 (2013)]. As the Mie interaction represents a soft-core potential model, a method similar to that adopted for the Lennard-Jones potential [E. A. Müller and K. E. Gubbins, Ind. Eng. Chem. Res. 34, 3662 (1995)] is employed to describe the association contribution to the Helmholtz free energy. The radial distribution function (RDF) of the Mie fluid (which is required for the evaluation of the integral at the heart of the association term) is determined for a broad range of thermodynamic conditions (temperatures and densities) using the reference hyper-netted chain (RHNC) integral-equation theory. The numerical data for the association kernel of Mie fluids with different association geometries are then correlated for a range of thermodynamic states to obtain a general expression for the association contribution which can be applied for varying values of the Mie repulsive exponent. The resulting SAFT-VR Mie EOS allows for a much improved description of the vapour-liquid equilibria and single-phase properties of associating fluids such as water, methanol, ammonia, hydrogen sulphide, and their mixtures. A comparison is also made between the theoretical predictions of the degree of association for water and the extent of hydrogen bonding obtained from molecular simulations of the SPC/E and TIP4P/2005 atomistic models.
Scattering of aerosol particles by a Hermite-Gaussian beam in marine atmosphere.
Huang, Qingqing; Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Yan, Xu; Liu, Songhua
2017-07-01
Based on the complex-source-point method and the generalized Lorenz-Mie theory, the scattering properties and polarization of aerosol particles by a Hermite-Gaussian (HG) beam in marine atmosphere is investigated. The influences of beam mode, beam width, and humidity on the scattered field are analyzed numerically. Results indicate that when the number of HG beam modes u (v) increase, the radar cross section of aerosol particles alternating appears at maximum and minimum values in the forward and backward scattering, respectively, because of the special petal-shaped distribution of the HG beam. The forward and backward scattering of aerosol particles decreases with the increase in beam waist. When beam waist is less than the radius of the aerosol particle, a minimum value is observed in the forward direction. The scattering properties of aerosol particles by the HG beam are more sensitive to the change in relative humidity compared with those by the plane wave and the Gaussian beam (GB). The HG beam shows superiority over the plane wave and the GB in detecting changes in the relative humidity of marine atmosphere aerosol. The effects of relative humidity on the polarization of the HG beam have been numerically analyzed in detail.
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Seasholtz, Richard G.; Elam, Krisie A.; Panda, Jayanta
2004-01-01
Measurement of time-averaged velocity, density, temperature, and turbulence in gas flows using a nonintrusive, point-wise measurement technique based on molecular Rayleigh scattering is discussed. Subsonic and supersonic flows in a 25.4-mm diameter free jet facility were studied. The developed instrumentation utilizes a Fabry-Perot interferometer to spectrally resolve molecularly scattered light from a laser beam passed through a gas flow. The spectrum of the scattered light contains information about velocity, density, and temperature of the gas. The technique uses a slow scan, low noise 16-bit depth CCD camera to record images of the fringes formed by Rayleigh scattered light passing through the interferometer. A kinetic theory model of the Rayleigh scattered light is used in a nonlinear least squares fitting routine to estimate the unknown parameters from the fringe images. The ability to extract turbulence information from the fringe image data proved to be a challenge since the fringe is broadened by not only turbulence, but also thermal fluctuations and aperture effects from collecting light over a range of scattering angles. Figure 1 illustrates broadening of a Rayleigh spectrum typical of flow conditions observed in this work due to aperture effects and turbulence for a scattering angle, chi(sub s), of 90 degrees, f/3.67 collection optics, mean flow velocity, u(sub k), of 300 m/s, and turbulent velocity fluctuations, sigma (sub uk), of 55 m/s. The greatest difficulty in processing the image data was decoupling the thermal and turbulence broadening in the spectrum. To aid in this endeavor, it was necessary to seed the ambient air with smoke and dust particulates; taking advantage of the turbulence broadening in the Mie scattering component of the spectrum of the collected light (not shown in the figure). The primary jet flow was not seeded due to the difficulty of the task. For measurement points lacking particles, velocity, density, and temperature information could reliably be recovered, however the turbulence estimates contained significant uncertainty. Resulting flow parameter estimates are presented for surveys of Mach 0.6, 0.95, and 1.4 jet flows. Velocity, density, and temperature were determined with accuracies of 5 m/s, 1.5%, and 1%, respectively, in flows with no particles present, and with accuracies of 5 m/s, 1-4%, and 2% in flows with particles. Comparison with hotwire data for the Mach 0.6 condition demonstrated turbulence estimates with accuracies of about 5 m/s outside the jet core where Mie scattering from dust/smoke particulates aided in the estimation of turbulence. Turbulence estimates could not be recovered with any significant accuracy for measurement points where no particles were present.
Single-Pulse Multi-Point Multi-Component Interferometric Rayleigh Scattering Velocimeter
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Danehy, Paul M.; Lee, Joseph W.; Gaffney, Richard L., Jr.; Cutler, Andrew D.
2006-01-01
A simultaneous multi-point, multi-component velocimeter using interferometric detection of the Doppler shift of Rayleigh, Mie, and Rayleigh-Brillouin scattered light in supersonic flow is described. The system uses up to three sets of collection optics and one beam combiner for the reference laser light to form a single collimated beam. The planar Fabry-Perot interferometer used in the imaging mode for frequency detection preserves the spatial distribution of the signal reasonably well. Single-pulse multi-points measurements of up to two orthogonal and one non-orthogonal components of velocity in a Mach 2 free jet were performed to demonstrate the technique. The average velocity measurements show a close agreement with the CFD calculations using the VULCAN code.
Electrically tunable metasurface based on Mie-type dielectric resonators.
Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo
2017-02-21
In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak.
Electrically tunable metasurface based on Mie-type dielectric resonators
Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo
2017-01-01
In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak. PMID:28220861
Electrically tunable metasurface based on Mie-type dielectric resonators
NASA Astrophysics Data System (ADS)
Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo
2017-02-01
In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak.
NASA Astrophysics Data System (ADS)
Corrales, Lia
2015-05-01
X-ray bright quasars might be used to trace dust in the circumgalactic and intergalactic medium through the phenomenon of X-ray scattering, which is observed around Galactic objects whose light passes through a sufficient column of interstellar gas and dust. Of particular interest is the abundance of gray dust larger than 0.1 μ m, which is difficult to detect at other wavelengths. To calculate X-ray scattering from large grains, one must abandon the traditional Rayleigh-Gans approximation. The Mie solution for the X-ray scattering optical depth of the universe is ∼ 1%. This presents a great difficulty for distinguishing dust scattered photons from the point source image of Chandra, which is currently unsurpassed in imaging resolution. The variable nature of AGNs offers a solution to this problem, as scattered light takes a longer path and thus experiences a time delay with respect to non-scattered light. If an AGN dims significantly (≳ 3 dex) due to a major feedback event, the Chandra point source image will be suppressed relative to the scattering halo, and an X-ray echo or ghost halo may become visible. I estimate the total number of scattering echoes visible by Chandra over the entire sky: {{N}ech}∼ {{10}3}({{ν }fb}/y{{r}-1}), where {{ν }fb} is the characteristic frequency of feedback events capable of dimming an AGN quickly.
Meteoroid head echo polarization features studied by numerical electromagnetics modeling
NASA Astrophysics Data System (ADS)
Vertatschitsch, L. E.; Sahr, J. D.; Colestock, P.; Close, S.
2011-12-01
Meteoroid head echoes are radar returns associated with scatter from the dense plasma surrounding meteoroids striking the Earth's atmosphere. Such echoes are detected by high power, large aperture (HPLA) radars. Frequently such detections show large variations in signal strength that suggest constructive and destructive interference. Using the ARPA Long-Range Tracking and Instrumentation Radar (ALTAIR) we can also observe the polarization of the returns. Usually, scatter from head echoes resembles scatter from a small sphere; when transmitting right circular polarization (RC), the received signal consists entirely of left circular polarization (LC). For some detections, power is also received in the RC channel, which indicates the presence of a more complicated scattering process. Radar returns of a fragmenting meteoroid are simulated using a hard-sphere scattering model numerically evaluated in the resonant region of Mie scatter. The cross- and co-polar scattering cross-sections are computed for pairs of spheres lying within a few wavelengths, simulating the earliest stages of fragmentation upon atmospheric impact. The likelihood of detecting this sort of idealized fragmentation event is small, but this demonstrates the measurements that would result from such an event would display RC power comparable to LC power, matching the anomalous data. The resulting computations show that fragmentation is a consistent interpretation for these head echo radar returns.
NASA Technical Reports Server (NTRS)
Flesia, C.; Schwendimann, P.
1992-01-01
The contribution of the multiple scattering to the lidar signal is dependent on the optical depth tau. Therefore, the radar analysis, based on the assumption that the multiple scattering can be neglected is limited to cases characterized by low values of the optical depth (tau less than or equal to 0.1) and hence it exclude scattering from most clouds. Moreover, all inversion methods relating lidar signal to number densities and particle size must be modified since the multiple scattering affects the direct analysis. The essential requests of a realistic model for lidar measurements which include the multiple scattering and which can be applied to practical situations follow. (1) Requested are not only a correction term or a rough approximation describing results of a certain experiment, but a general theory of multiple scattering tying together the relevant physical parameter we seek to measure. (2) An analytical generalization of the lidar equation which can be applied in the case of a realistic aerosol is requested. A pure analytical formulation is important in order to avoid the convergency and stability problems which, in the case of numerical approach, are due to the large number of events that have to be taken into account in the presence of large depth and/or a strong experimental noise.
NASA Astrophysics Data System (ADS)
Hsiao, Austin; Hunter, Martin; Greiner, Cherry; Gupta, Sharad; Georgakoudi, Irene
2011-03-01
Leukemia is the most common and deadly cancer among children and one of the most prevalent cancers among adults. Improvements in its diagnosis and monitoring of leukemic patients could have a significant impact in their long-term treatment. We demonstrate that light-scattering spectroscopy (LSS)-based approaches could serve as a tool to achieve this goal. Specifically, we characterize the light scattering properties of leukemic (NALM-6) cells and compare them to those of normal lymphocytes and granulocytes in the 440-710 nm range, over +/-4 deg about the exact backscattering direction. We find that the LSS spectra are well described by an inverse power-law wavelength dependence, with a power exponent insensitive to the scattering angle but significantly higher for leukemic cells than for normal leukocytes. This is consistent with differences in the subcellular morphology of these cells, detected in differential interference contrast images. Furthermore, the residual light-scattering signal, extracted after subtracting the inverse power-law fit from the data, can be analyzed assuming a Gaussian distribution of spherical scatterers using Mie theory. This analysis yields scatterer sizes that are consistent with the diameters of cell nuclei and allows the detection of the larger nuclei of NALM-6 cells compared to those of lymphocytes and granulocytes.
Micron-size hydrogen cluster target for laser-driven proton acceleration
NASA Astrophysics Data System (ADS)
Jinno, S.; Kanasaki, M.; Uno, M.; Matsui, R.; Uesaka, M.; Kishimoto, Y.; Fukuda, Y.
2018-04-01
As a new laser-driven ion acceleration technique, we proposed a way to produce impurity-free, highly reproducible, and robust proton beams exceeding 100 MeV using a Coulomb explosion of micron-size hydrogen clusters. In this study, micron-size hydrogen clusters were generated by expanding the cooled high-pressure hydrogen gas into a vacuum via a conical nozzle connected to a solenoid valve cooled by a mechanical cryostat. The size distributions of the hydrogen clusters were evaluated by measuring the angular distribution of laser light scattered from the clusters. The data were analyzed mathematically based on the Mie scattering theory combined with the Tikhonov regularization method. The maximum size of the hydrogen cluster at 25 K and 6 MPa in the stagnation state was recognized to be 2.15 ± 0.10 μm. The mean cluster size decreased with increasing temperature, and was found to be much larger than that given by Hagena’s formula. This discrepancy suggests that the micron-size hydrogen clusters were formed by the atomization (spallation) of the liquid or supercritical fluid phase of hydrogen. In addition, the density profiles of the gas phase were evaluated for 25 to 80 K at 6 MPa using a Nomarski interferometer. Based on the measurement results and the equation of state for hydrogen, the cluster mass fraction was obtained. 3D particles-in-cell (PIC) simulations concerning the interaction processes of micron-size hydrogen clusters with high power laser pulses predicted the generation of protons exceeding 100 MeV and accelerating in a laser propagation direction via an anisotropic Coulomb explosion mechanism, thus demonstrating a future candidate in laser-driven proton sources for upcoming multi-petawatt lasers.
NASA Astrophysics Data System (ADS)
Heaps, Charles W.; Schatz, George C.
2017-06-01
A computational method to model diffraction-limited images from super-resolution surface-enhanced Raman scattering microscopy is introduced. Despite significant experimental progress in plasmon-based super-resolution imaging, theoretical predictions of the diffraction limited images remain a challenge. The method is used to calculate localization errors and image intensities for a single spherical gold nanoparticle-molecule system. The light scattering is calculated using a modification of generalized Mie (T-matrix) theory with a point dipole source and diffraction limited images are calculated using vectorial diffraction theory. The calculation produces the multipole expansion for each emitter and the coherent superposition of all fields. Imaging the constituent fields in addition to the total field provides new insight into the strong coupling between the molecule and the nanoparticle. Regardless of whether the molecular dipole moment is oriented parallel or perpendicular to the nanoparticle surface, the anisotropic excitation distorts the center of the nanoparticle as measured by the point spread function by approximately fifty percent of the particle radius toward to the molecule. Inspection of the nanoparticle multipoles reveals that distortion arises from a weak quadrupole resonance interfering with the dipole field in the nanoparticle. When the nanoparticle-molecule fields are in-phase, the distorted nanoparticle field dominates the observed image. When out-of-phase, the nanoparticle and molecule are of comparable intensity and interference between the two emitters dominates the observed image. The method is also applied to different wavelengths and particle radii. At off-resonant wavelengths, the method predicts images closer to the molecule not because of relative intensities but because of greater distortion in the nanoparticle. The method is a promising approach to improving the understanding of plasmon-enhanced super-resolution experiments.
Optical scatter imaging of cellular and mitochondrial swelling in brain tissue models of stroke
NASA Astrophysics Data System (ADS)
Johnson, Lee James
2001-08-01
The severity of brain edema resulting from a stroke can determine a patient's survival and the extent of their recovery. Cellular swelling is the microscopic source of a significant part of brain edema. Mitochondrial swelling also appears to be a determining event in the death or survival of the cells that are injured during a stroke. Therapies for reducing brain edema are not effective in many cases and current treatments of stroke do not address mitochondrial swelling at all. This dissertation is motivated by the lack of a complete understanding of cellular swelling resulting from stroke and the lack of a good method to begin to study mitochondrial swelling resulting from stroke in living brain tissue. In this dissertation, a novel method of detecting mitochondrial and cellular swelling in living hippocampal slices is developed and validated. The system is used to obtain spatial and temporal information about cellular and mitochondrial swelling resulting from various models of stroke. The effect of changes in water content on light scatter and absorption are examined in two models of brain edema. The results of this study demonstrate that optical techniques can be used to detect changes in water content. Mie scatter theory, the theoretical basis of the dual- angle scatter ratio imaging system, is presented. Computer simulations based on Mie scatter theory are used to determine the optimal angles for imaging. A detailed account of the early systems is presented to explain the motivations for the system design, especially polarization, wavelength and light path. Mitochondrial sized latex particles are used to determine the system response to changes in scattering particle size and concentration. The dual-angle scatter ratio imaging system is used to distinguish between osmotic and excitotoxic models of stroke injury. Such distinction cannot be achieved using the current techniques to study cellular swelling in hippocampal slices. The change in the scatter ratio is then shown to correlate to mitochondrial swelling, as observed with electron microscopy. The system is finally used to study mitochondrial and cellular swelling. Evidence of the susceptibility of certain hippocampal regions, CA1 and the dentate gyrus, to exhibit mitochondrial swelling as the result of oxygen and glucose deprivation is presented. In addition, for the first time, the time course of mitochondrial swelling is seen. Finally, experiments with scatter imaging and measurement of nitric oxide with carbon fiber electrodes demonstrate a clear link between nitric oxide and cellular swelling. A potential mechanism of the action of nitric oxide is evaluated. Nitric oxide appears to act to cause cellular swelling without the release of glutamate. The use of targeted nitric oxide inhibitors may be useful for the reduction of edema.
Laser Radar Study Using Resonance Absorption for Remote Detection Of Air Pollutants
NASA Technical Reports Server (NTRS)
Igarashi, Takashi
1973-01-01
A laser radar using resonance absorption has an advantage of increased detection range and sensitivity compared with that achieved by Raman or resonance back scattering. In this paper, new laser radar system using resonance absorption is proposed and results obtained from this laser radar system are discussed. NO2, SO2 gas has an absorption spectrum at 4500 A and 3000 A respectively as shown in Fig. 1. A laser light including at least a set of an absorption peak (lambda)1 and a valley (lambda)2 is emitted into a pollutant atmosphere. The light reflected with a topographical reflector or an atmospheric Mie scattering as distributed reflectors is received and divided into two wavelength components (lambda)1 and (lambda)2. The laser radar system used in the investigation is shown in Fig', 2 and consists of a dye laser transmitter, an optical receiver with a special monochrometer and a digital processer. Table 1 shows the molecular constants of NO2, and SO2 and the dye laser used in this experiment. In this system, the absolute concentration of the pollutant gas can be measured in comparison with a standard gas cell. The concentration of NO2, SO2 as low as 0.1 ppm have been measured at 100 m depth resolution. For a 1 mJ laser output, the observable range of this system achieved up to 300 m using the distributed Mie reflector. The capability and technical limitation of the system will be discussed in detail.
NASA Astrophysics Data System (ADS)
Tong, H.-J.; Ouyang, B.; Nikolovski, N.; Lienhard, D. M.; Pope, F. D.; Kalberer, M.
2015-03-01
In this paper we describe a newly designed cold electrodynamic balance(CEDB) system, built to study the evaporation kinetics and freezing properties of supercooled water droplets. The temperature of the CEDB chamber at the location of the levitated water droplet can be controlled in the range -40 to +40 °C, which is achieved using a combination of liquid nitrogen cooling and heating by positive temperature coefficient heaters. The measurement of liquid droplet radius is obtained by analysing the Mie elastic light scattering from a 532 nm laser. The Mie scattering signal was also used to characterise and distinguish droplet freezing events; liquid droplets produce a regular fringe pattern, whilst the pattern from frozen particles is irregular. The evaporation rate of singly levitated water droplets was calculated from time-resolved measurements of the radii of evaporating droplets and a clear trend of the evaporation rate on temperature was measured. The statistical freezing probabilities of aqueous pollen extracts (pollen washing water) are obtained in the temperature range -4.5 to -40 °C. It was found that that pollen washing water from water birch (Betula fontinalis occidentalis) pollen can act as ice nuclei in the immersion freezing mode at temperatures as warm as -22.45 (±0.65) °C. Furthermore it was found that the protein-rich component of the washing water was significantly more ice-active than the non-proteinaceous component.
Long-wavelength Radar Studies of the Lunar Maria
NASA Technical Reports Server (NTRS)
Campbell, Bruce A.; Hawke, B. Ray; Thompson, Thomas W.
1995-01-01
Radar measurements at 70 cm and 7.5 m wavelengths provide insight into the structure and chemical properties of the upper 5-100 m of the lunar regolith and crust. Past work has identified a number of anomalous regions and changes in echo strength, some attributed to differences in titanium content. There has been little opportunity, however, to compare calibrated long-wavelength backscatter among different units or to theoretical model results. We combine recent high-resolution (3-5 km) 70-cm radar data for the nearside with earlier calibrated full-disk observations to provide a reasonable estimate of the true lunar backscatter coefficient. These data are tested against models for quasi-specular scattering from the surface, echoes from a buried substrate, and Mie scattering from surface and buried rocks. We find that 70 cm echoes likely arise from Mie scattering by distributed rocks within the soil, consistent with earlier hypotheses. Returns from a buried substrate would provide a plausible fit to the observations only if the regolith depth were approx.3 m or less and varied little across the maria. Depolarized echoes are due to some combination of single and multiple scattering events, but it appears that single scattering alone could account for the observed echo power, based on comparisons with terrestrial rocky surfaces. Backscatter strength from the regolith is most strongly affected by the loss tangent, whose variation with mineral content is still poorly defined. We compared the backscatter values for the mare deposits to the oxide contents inferred from spectral ratio methods, and found that in general the unit boundaries evident in radar images closely follow those seen in color difference images. The 70-cm data are not well correlated with TiO2 values found using the Charette relationship nor with Fe abundances derived from Clementine observations. The lack of a relationship between radar echo and Fe content is reasonable given the distribution of iron among various mineral phases, but ilmenite content (FeTiO3) has typically been cited as the dominant cause of changes in loss tangent (and thus the radar absorption). The lack of correlation between the radar data and TiO2 estimates may arise from uncertainties in the Charette technique, subtle differences in the upper surface and bulk properties of the regolith, mineralogic effects on the radar not linked to titanium content, or to some combination of these factors. Dark crater haloes in the mare and highlands, and low radar returns from apparent cryptomare regions, are used to illustrate the role radar data can play in identifying changes in regolith composition; low-return haloes around craters such as Petavius may indicate 5-25% contamination of the highlands soil by excavated mare material or a layer of rock-poor ejecta at least several meters deep. The 7.5-m data were shown to correlate to a reasonable degree with estimates of Fe abundance, suggesting that this component of the mare basalts is primarily responsible for attenuation losses at very long wavelengths. The different sensitivities of the two radar wavelengths and multispectral data offers the potential for future deep mapping of the mare lava flows and regolith.
Long-wavelength Radar Studies of the Lunar Maria
NASA Technical Reports Server (NTRS)
Campbell, Bruce A.; Hawke, B. Ray; Thompson, Thomas W.
1995-01-01
Radar measurements at 70 cm and 7.5 m wavelengths provide insight into the structure and chemical properties of the upper 5-100 m of the lunar regolith and crust. Past work has identified a number of anomalous regions and changes in echo strength, some attributed to differences in titanium content. There has been little opportunity, however, to compare calibrated long-wavelength backscatter among different units or to theoretical model results. We combine recent high-resolution (3-5 km) 70-cm radar data for the nearside with earlier calibrated full-disk observations to provide a reasonable estimate of the true lunar backscatter coefficient. These data are tested against models for quasi-specular scattering from the surface, echoes from a buried substrate, and Mie scattering from surface and buried rocks. We find that 70 cm echoes likely arise from Mie scattering by distributed rocks within the soil, consistent with earlier hypotheses. Returns from a buried substrate would provide a plausible fit to the observations only if the regolith depth were 3 m or less and varied little across the maria. Depolarized echoes are due to some combination of single and multiple scattering events, but it appears that single scattering alone could account for the observed echo power, based on comparisons with terrestrial rocky surfaces. Backscatter strength from the regolith is most strongly affected by the loss tangent, whose variation with mineral content is still poorly defined. We compared the backscatter values for the mare deposits to the oxide contents inferred from spectral ratio methods, and found that in general the unit boundaries evident in radar images closely follow those seen in color difference images. The 70-cm data are not well correlated with TiO2 values found using the Charette relationship nor with Fe abundances derived from Clementine observations. The lack of a relationship between radar echo and Fe content is reasonable given the distribution of iron among various mineral phases, but ilmenite content (FeTiO3) has typically been cited as the dominant cause of changes in loss tangent (and thus the radar absorption). The lack of correlation between the radar data and TiO2 estimates may arise from uncertainties in the Charette technique, subtle differences in the upper surface and bulk properties of the regolith, mineralogic effects on the radar not linked to titanium content, or to some combination of these factors. Dark crater haloes in the mare and highlands, and low radar returns from apparent cryptomare regions, are used to illustrate the role radar data can play in identifying changes in regolith composition; low-return haloes around craters such as Petavius may indicate 5-25% contamination of the highlands soil by excavated mare material or a layer of rock-poor ejecta at least several meters deep. The 7.5-m data were shown to correlate to a reasonable degree with estimates of Fe abundance, suggesting that this component of the mare basalts is primarily responsible for attenuation losses at very long wavelengths. The different sensitivities of the two radar wavelengths and multispectral data offers the potential for future deep mapping of the mare lava flows and regolith.
NASA Astrophysics Data System (ADS)
Pham, Trang T. T.; Mathews, Nripan; Lam, Yeng-Ming; Mhaisalkar, Subodh
2018-03-01
Sub-micrometer cavities have been incorporated in the TiO2 photoanode of dye-sensitized solar cell to enhance its optical property with light scattering effect. These are large pores of several hundred nanometers in size and scatter incident light due to the difference refraction index between the scattering center and the surrounding materials, according to Mie theory. The pores are created using polystyrene (PS) or zinc oxide (ZnO) templates reported previously which resulted in ellipsoidal and spherical shapes, respectively. The effect of size and shape of scattering center was modeled using a numerical analysis finite-difference time-domain (FDTD). The scattering cross-section was not affected significantly with different shapes if the total displacement volume of the scattering center is comparable. Experiments were carried out to evaluate the optical property with varying size of ZnO templates. Photovoltaic effect of dye-sensitized solar cells made from these ZnO-assisted films were investigated with incident-photon-to-current efficiency to understand the effect of scattering center size on the enhancement of absorption. With 380 nm macropores incorporated, the power conversion efficiency has increased by 11% mostly thanks to the improved current density, while 170 nm and 500 nm macropores samples did not have increment in sufficiently wide range of absorbing wavelengths.
Optical Sensing of Polarization States Changes in Meat due to the Ageing
NASA Astrophysics Data System (ADS)
Tománek, Pavel; Mikláš, Jan; Abubaker, Hamed Mohamed; Grmela, Lubomír
2010-11-01
Food materials or biological materials display large compositional variations, inhomogeneities, and anisotropic structures. The biological tissues consist of cells which dimensions are bigger than a wavelength of visible light, therefore Mie scattering of transmitted and reflected light occurs and different polarization states arise. The meat industry needs reliable meat quality information throughout the production process in order to guarantee high-quality meat products for consumers. The minor importance is still given to the food quality control and inspection during processing operations or storing conditions. The paper presents a quite simple optical method allowing measure the freshness or ageing of products. The principle is to study temporal characteristics of polarization states of forward or backward scattered laser light in the samples in function of meat ageing.
A New Approach for Spectroradiometric Calibration Consistency on the Ground and in Space
NASA Technical Reports Server (NTRS)
Heath, Donald F.; Geprgoev. Geprgo
2013-01-01
A Space-based Calibration Transfer Spectroradiometer (SCATS) is combined with a ground calibration spectral albedo radiometric standard which consists of an opaque quartz glass Mie scattering diffuser (MSD) which has very good Lambertian scattering properties in both reflectance and transmittance modes. This system provides the capability for determining long term changes in the spectral albedo calibrations which operate in the solar reflective wavelength region. The spectral albedo calibration would be traceable to the SIRCUS and STARR NIST calibration facilities. The on-orbit radiometric standard is the Sun. The NIST traceable ground spectral albedo calibration is invariant between the ground and on-orbit over the instrument lifetime due to the use of a field of view defining mechanical baffle to differentiate between radiance and irradiance.
Constraining ejecta particle size distributions with light scattering
NASA Astrophysics Data System (ADS)
Schauer, Martin; Buttler, William; Frayer, Daniel; Grover, Michael; Lalone, Brandon; Monfared, Shabnam; Sorenson, Daniel; Stevens, Gerald; Turley, William
2017-06-01
The angular distribution of the intensity of light scattered from a particle is strongly dependent on the particle size and can be calculated using the Mie solution to Maxwell's equations. For a collection of particles with a range of sizes, the angular intensity distribution will be the sum of the contributions from each particle size weighted by the number of particles in that size bin. The set of equations describing this pattern is not uniquely invertible, i.e. a number of different distributions can lead to the same scattering pattern, but with reasonable assumptions about the distribution it is possible to constrain the problem and extract estimates of the particle sizes from a measured scattering pattern. We report here on experiments using particles ejected by shockwaves incident on strips of triangular perturbations machined into the surface of tin targets. These measurements indicate a bimodal distribution of ejected particle sizes with relatively large particles (median radius 2-4 μm) evolved from the edges of the perturbation strip and smaller particles (median radius 200-600 nm) from the perturbations. We will briefly discuss the implications of these results and outline future plans.
Scattering and propagation of a Laguerre-Gaussian vortex beam by uniaxial anisotropic bispheres
NASA Astrophysics Data System (ADS)
Qu, Tan; Wu, Zhensen; Shang, Qingchao; Li, Zhengjun; Wu, Jiaji; Li, Haiying
2018-04-01
Within the framework of the generalized multi-particle Mie (GMM) theory, analytical solution to electromagnetic scattering of two interacting homogeneous uniaxial anisotropic spheres by a Laguerre-Gaussian (LG) vortex beam is investigated. The particles with different size and dielectric parameter tensor elements are arbitrarily configured. Based on the continuous boundary conditions at each sphere surface, the interactive scattering coefficients are derived. The internal and near-surface field is investigated to describe the propagation of LG vortex beam through the NaCl crystal. In addition, the far fields of some typical anisotropic medium such as LiNbO3, TiO2 bispheres illuminated by an LG vortex beam are numerically presented in detail to analyze the influence of the anisotropic parameters, sphere positions, separation distance and topological charge etc. The results show that LG vortex beam has a better recovery after interacting with a spherical particle compared with Gaussian beam. The study in the paper are useful for the further research on the scattering and propagation characteristics of arbitrary vortex beam in anisotropic chains and periodic structure.
Peng, Feng; Effler, Steve W
2012-05-01
The relationship between the particulate scattering coefficient (b(p)) and the concentration of suspended particulate matter (SPM), as represented by the mass-specific scattering coefficient of particulates (b(p)*=b(p)/SPM), depends on particle size distribution (PSD). This dependence is quantified for minerogenic particle populations in this paper through calculations of b(p)* for common minerals as idealized populations (monodispersed spheres); contemporaneous measurements of b(p), SPM, and light-scattering attributes of mineral particles with scanning electron microscopy interfaced with automated image and x-ray analyses (SAX), for a connected stream-reservoir system where minerogenic particles dominate b(p); and estimates of b(p) and its size dependency (through SAX results-driven Mie theory calculations), particle volume concentration, and b(p)*. Modest changes in minerogenic PSDs are shown to result in substantial variations in b(p)*. Good closure of the SAX-based estimates of b(p) and particle volume concentration with bulk measurements is demonstrated. Converging relationships between b(p)* and particle size, developed from three approaches, were well described by power law expressions.
Two particle tracking and detection in a single Gaussian beam optical trap.
Praveen, P; Yogesha; Iyengar, Shruthi S; Bhattacharya, Sarbari; Ananthamurthy, Sharath
2016-01-20
We have studied in detail the situation wherein two microbeads are trapped axially in a single-beam Gaussian intensity profile optical trap. We find that the corner frequency extracted from a power spectral density analysis of intensity fluctuations recorded on a quadrant photodetector (QPD) is dependent on the detection scheme. Using forward- and backscattering detection schemes with single and two laser wavelengths along with computer simulations, we conclude that fluctuations detected in backscattering bear true position information of the bead encountered first in the beam propagation direction. Forward scattering, on the other hand, carries position information of both beads with substantial contribution from the bead encountered first along the beam propagation direction. Mie scattering analysis further reveals that the interference term from the scattering of the two beads contributes significantly to the signal, precluding the ability to resolve the positions of the individual beads in forward scattering. In QPD-based detection schemes, detection through backscattering, thereby, is imperative to track the true displacements of axially trapped microbeads for possible studies on light-mediated interbead interactions.
ATLID, the atmospheric lidar on board the Earthcare Satellite
NASA Astrophysics Data System (ADS)
Hélière, Arnaud; Gelsthorpe, Robert; Le Hors, Lénaïc.; Toulemont, Yves
2017-11-01
The EarthCARE mission is the sixth Earth Explorer Mission of the ESA Living Planet Programme, with a launch date planned in 2015. It addresses the interaction and impact of clouds and aerosols on the Earth's radiative budget. ATLID (ATmospheric LIDar), one of the four instruments of EarthCARE, shall determine vertical profiles of cloud and aerosol physical parameters (altitude, optical depth, backscatter ratio and depolarisation ratio) in synergy with other instruments. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes with a vertical resolution of about 100 m from ground to an altitude of 40 km. As a result of high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol (Mie) and molecular (Rayleigh) scattering, which gives access to aerosol optical depth. The purpose of the paper is to present the progress in the instrument and subsystem design. The instrument is currently in phase C where the detailed design of all sub-systems is being performed. Emphasis will be put on the major technological developments, in particular the laser Transmitter, the optical units and detector developments.
Melting dynamics of ice in the mesoscopic regime
Citroni, Margherita; Fanetti, Samuele; Falsini, Naomi; Foggi, Paolo; Bini, Roberto
2017-01-01
How does a crystal melt? How long does it take for melt nuclei to grow? The melting mechanisms have been addressed by several theoretical and experimental works, covering a subnanosecond time window with sample sizes of tens of nanometers and thus suitable to determine the onset of the process but unable to unveil the following dynamics. On the other hand, macroscopic observations of phase transitions, with millisecond or longer time resolution, account for processes occurring at surfaces and time limited by thermal contact with the environment. Here, we fill the gap between these two extremes, investigating the melting of ice in the entire mesoscopic regime. A bulk ice Ih or ice VI sample is homogeneously heated by a picosecond infrared pulse, which delivers all of the energy necessary for complete melting. The evolution of melt/ice interfaces thereafter is monitored by Mie scattering with nanosecond resolution, for all of the time needed for the sample to reequilibrate. The growth of the liquid domains, over distances of micrometers, takes hundreds of nanoseconds, a time orders of magnitude larger than expected from simple H-bond dynamics. PMID:28536197
Blood cell counting and classification by nonflowing laser light scattering method
NASA Astrophysics Data System (ADS)
Yang, Ye; Zhang, Zhenxi; Yang, Xinhui; Jiang, Dazong; Yeo, Joon Hock
1999-11-01
A new non-flowing laser light scattering method for counting and classifying blood cells is presented. A linear charge- coupled device with 1024 elements is used to detect the scattered light intensity distribution of the blood cells. A pinhole plate is combined with the CCD to compete the focusing of the measurement system. An isotropic sphere is used to simulate the blood cell. Mie theory is used to describe the scattering of blood cells. In order to inverse the size distribution of blood cells from their scattered light intensity distribution, Powell method combined with precision punishment method is used as a dependent model method for measurement red blood cells and blood plates. Non-negative constraint least square method combined with Powell method and precision punishment method is used as an independent model for measuring white blood cells. The size distributions of white blood cells and red blood cells, and the mean diameter of red blood cells are measured by this method. White blood cells can be divided into three classes: lymphocytes, middle-sized cells and neutrocytes according to their sizes. And the number of blood cells in unit volume can also be measured by the linear dependence of blood cells concentration on scattered light intensity.
NASA Astrophysics Data System (ADS)
Shen, Fahua; Wang, Bangxin; Shi, Wenjuan; Zhuang, Peng; Zhu, Chengyun; Xie, Chenbo
2018-04-01
A novel design of the 532 nm Rayleigh-Mie Doppler lidar receiving system is carried out. The use of polarization isolation technology to effectively improve the receiving system optical reception efficiency, suppress the background noise, not only improves the system wind field detection accuracy, while achieving a high-accuracy temperature measurement. The wind speed and temperature measurement principle of the system are discussed in detail, and the triple Fabry-Perot etalon parameters are optimized. Utilizing the overall design parameters of the system, the system detection performance is simulated. The simulation results show that from 5 to 50 km altitude with vertical resolution of 0.1 km@5 ∼20 km, 0.5 km@20 ∼40 km, 1 km@40 ∼50 km, by using the laser with single pulse energy of 600 mJ, repetition frequency of 50 Hz and the receiving telescope with aperture of 0.8 m, with 2min integration time and in ±50 m/s radial wind speed range, the radial wind speed measurement accuracies of our designed lidar in the day and night are better than 2.6 m/s and 0.9 m/s respectively, and its performance is obviously superior to that of traditional system 5.6 m/s and 1.4 m/s wind speed accuracies; with 10min integration time and in 210 ∼280 K temperature range, the temperature measurement accuracies of the system in the day and night are better than 3.4 K and 1.2 K respectively; since the wind speed sensitivities of the Mie and Rayleigh scattering signals are not exactly the same, in ±50 m/s radial wind speed range, the wind speed bias induced by Mie signal is less than 1 m/s in the temperature range of 210-290 K and in the backscatter ratio range of 1-1.5 for pair measurement.
Scattering properties of soot-containing particles and their impact by humidity in 1.6 μm
NASA Astrophysics Data System (ADS)
Fan, M.; Chen, L.; Xiong, X.; Li, S.; Tao, J.; Su, L.; Zou, M.; Zhang, Y.
2014-02-01
Short-wave infrared (SWIR) band in wavelength near 1.6 μm is one of the key bands used for satellite observation of Carbon Dioxide (CO2). However, one major uncertainty to use this band for the CO2 retrieval is the scattering by cloud and aerosol particles. To better understand the scattering properties of soot-containing particles in this band, this paper studied the scattering properties for three typical types of soot-containing particles in China: (I) internal mixture, (II) pure soot aggregate, and (III) semi-external mixture. Assumed as single non-spherical particle for type I, its scattering property is computed using the T-matrix method combined with the Maxwell-Garnett effective medium theory and the hygroscopic growth theory. For types II and III, a particle-cluster aggregation algorithm is employed to generate fractal-like aggregates, and their scattering properties are computed using the Core-Mantle Generalized Multi-sphere Mie-solution method combined with the hygroscopic growth theory of both monomers and aggregated particles. The simulated results demonstrate that their scattering properties are quite different and strongly impacted by the levels of relative humidity (RH). For type I, the RH plays a much more important role than the morphology in impacting the scattering properties, and the scattering phase functions among different shaped particles have a larger difference for larger particles and higher RH. For type II, both the RH and morphology significantly affect its scattering properties. The single scattering albedo (ω) can be underestimated up to ~50% without considering the effects of RH and morphological changes. For type III, its scattering properties mainly depend on the RH and the size of the large water-soluble particle. Although the enlarged soot aggregate, which is attached to a water-soluble particle, almost does not change the light direction, it can result in a significant reduction in ω (~0.15) at low RH for small particles. By comparing the scattering parameters of wet particles at a certain RH level with the dry ones, the impact by the heterogeneity of aerosols generally becomes larger with the increase of RH, but becomes smaller with the increase of particle size. These results suggest that, although the water vapor absorption itself is small in 1.6 μm CO2 band, it can significantly impact the scattering properties of these particles through its effect on the hygroscopic growth of the non-spherical and heterogeneous aerosols. This impact should be taken into account in the retrieval of CO2 using 1.6 μm as well as other related remote sensing applications.
Statistical Mechanical Model for Adsorption Coupled with SAFT-VR Mie Equation of State.
Franco, Luís F M; Economou, Ioannis G; Castier, Marcelo
2017-10-24
We extend the SAFT-VR Mie equation of state to calculate adsorption isotherms by considering explicitly the residual energy due to the confinement effect. Assuming a square-well potential for the fluid-solid interactions, the structure imposed by the fluid-solid interface is calculated using two different approaches: an empirical expression proposed by Travalloni et al. ( Chem. Eng. Sci. 65 , 3088 - 3099 , 2010 ), and a new theoretical expression derived by applying the mean value theorem. Adopting the SAFT-VR Mie ( Lafitte et al. J. Chem. Phys. , 139 , 154504 , 2013 ) equation of state to describe the fluid-fluid interactions, and solving the phase equilibrium criteria, we calculate adsorption isotherms for light hydrocarbons adsorbed in a carbon molecular sieve and for carbon dioxide, nitrogen, and water adsorbed in a zeolite. Good results are obtained from the model using either approach. Nonetheless, the theoretical expression seems to correlate better the experimental data than the empirical one, possibly implying that a more reliable way to describe the structure ensures a better description of the thermodynamic behavior.
NASA Astrophysics Data System (ADS)
Mott, Derrick; Lee, JaeDong; Thi Bich Thuy, Nguyen; Aoki, Yoshiya; Singh, Prerna; Maenosono, Shinya
2011-06-01
This paper reports a qualitative comparison between the optical properties of a set of silver core, gold shell nanoparticles with varying composition and structure to those calculated using the Mie solution. To achieve this, silver nanoparticles were synthesized in aqueous phase from a silver hydroxide precursor with sodium acrylate as dual reducing-capping agent. The particles were then coated with a layer of gold with controllable thickness through a reduction-deposition process. The resulting nanoparticles reveal well defined optical properties that make them suitable for comparison to ideal calculated results using the Mie solution. The discussion focuses on the correlation between the synthesized core shell nanoparticles with varying Au shell thickness and the Mie solution results in terms of the optical properties. The results give insight in how to design and synthesize silver core, gold shell nanoparticles with controllable optical properties (e.g., SPR band in terms of intensity and position), and has implications in creating nanoparticle materials to be used as biological probes and sensing elements.
Quantitative interpretations of Visible-NIR reflectance spectra of blood.
Serebrennikova, Yulia M; Smith, Jennifer M; Huffman, Debra E; Leparc, German F; García-Rubio, Luis H
2008-10-27
This paper illustrates the implementation of a new theoretical model for rapid quantitative analysis of the Vis-NIR diffuse reflectance spectra of blood cultures. This new model is based on the photon diffusion theory and Mie scattering theory that have been formulated to account for multiple scattering populations and absorptive components. This study stresses the significance of the thorough solution of the scattering and absorption problem in order to accurately resolve for optically relevant parameters of blood culture components. With advantages of being calibration-free and computationally fast, the new model has two basic requirements. First, wavelength-dependent refractive indices of the basic chemical constituents of blood culture components are needed. Second, multi-wavelength measurements or at least the measurements of characteristic wavelengths equal to the degrees of freedom, i.e. number of optically relevant parameters, of blood culture system are required. The blood culture analysis model was tested with a large number of diffuse reflectance spectra of blood culture samples characterized by an extensive range of the relevant parameters.
Le Gonidec, Yves; Gibert, Dominique
2006-11-01
We perform a multiscale analysis of the backscattering properties of a complex interface between water and a layer of randomly arranged glass beads with diameter D=1 mm. An acoustical experiment is done to record the wavelet response of the interface in a large frequency range from lambda/D=0.3 to lambda/D=15. The wavelet response is a physical analog of the mathematical wavelet transform which possesses nice properties to detect and characterize abrupt changes in signals. The experimental wavelet response allows to identify five frequency domains corresponding to different backscattering properties of the complex interface. This puts quantitative limits to the validity domains of the models used to represent the interface and which are flat elastic, flat visco-elastic, rough random half-space with multiple scattering, and rough elastic from long to short wavelengths respectively. A physical explanation based on Mie scattering theory is proposed to explain the origin of the five frequency domains identified in the wavelet response.
Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Spann, J. F., Jr.; Abbas, M. M.
1998-01-01
This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.
Raman Gas Species Measurements in Hydrocarbon-Fueled Rocket Engine Injector Flows
NASA Technical Reports Server (NTRS)
Wehrmeyer, Joseph A.; Trinh, Huu Phuoc; Hartfield, Roy J.; Dobson, Christopher C.; Eskridge, Richard H.
2000-01-01
Propellent injector development at MSFC (Marshall Space Flight Center) includes experimental analysis using optical techniques, such as Raman, fluorescence, or Mie scattering. For the application of spontaneous Raman scattering to hydrocarbon-fueled flows a technique needs to be developed to remove the interfering polycyclic aromatic hydrocarbon fluorescence from the relatively weak Raman signals. A current application of such a technique is to the analysis of the mixing and combustion performance of multijet, impinging-jet candidate fuel injectors for the baseline Mars ascent engine, which will burn methane and liquid oxygen produced in-situ on Mars to reduce the propellent mass transported to Mars for future manned Mars missions. The present technique takes advantage of the strongly polarized nature of Raman scattering. It is shown to be discernable from unpolarized fluorescence interference by subtracting one polarized image from another. Both of these polarized images are obtained from a single laser pulse by using a polarization-separating calcite rhomb mounted in the imaging spectrograph. A demonstration in a propane-air flame is presented.
Particle sizing by weighted measurements of scattered light
NASA Technical Reports Server (NTRS)
Buchele, Donald R.
1988-01-01
A description is given of a measurement method, applicable to a poly-dispersion of particles, in which the intensity of scattered light at any angle is weighted by a factor proportional to that angle. Determination is then made of four angles at which the weighted intensity is four fractions of the maximum intensity. These yield four characteristic diameters, i.e., the diameters of the volume/area mean (D sub 32 the Sauter mean) and the volume/diameter mean (D sub 31); the diameters at cumulative volume fractions of 0.5 (D sub v0.5 the volume median) and 0.75 (D sub v0.75). They also yield the volume dispersion of diameters. Mie scattering computations show that an average diameter less than three micrometers cannot be accurately measured. The results are relatively insensitive to extraneous background light and to the nature of the diameter distribution. Also described is an experimental method of verifying the conclusions by using two microscopic slides coated with polystyrene microspheres to simulate the particles and the background.
Holographic Characterization of Colloidal Fractal Aggregates
NASA Astrophysics Data System (ADS)
Wang, Chen; Cheong, Fook Chiong; Ruffner, David B.; Zhong, Xiao; Ward, Michael D.; Grier, David G.
In-line holographic microscopy images of micrometer-scale fractal aggregates can be interpreted with the Lorenz-Mie theory of light scattering and an effective-sphere model to obtain each aggregate's size and the population-averaged fractal dimension. We demonstrate this technique experimentally using model fractal clusters of polystyrene nanoparticles and fractal protein aggregates composed of bovine serum albumin and bovine pancreas insulin. This technique can characterize several thousand aggregates in ten minutes and naturally distinguishes aggregates from contaminants such as silicone oil droplets. Work supported by the SBIR program of the NSF.
The internal caustic structure of illuminated liquid droplets
NASA Technical Reports Server (NTRS)
Lock, James A.; Hovenac, Edward A.
1991-01-01
The internal electric field of an illuminated liquid droplet is studied in detail using both wave theory and ray theory. The internal field obtains its maximum values on the caustics within the droplet. Ray theory is used to determine the equations of these caustics and the density of rays on them. The Debye series expansion of the interior field Mie amplitudes is used to calculate the wave theory version of these caustics. The physical interpretation of the sources of stimulated Raman scattering and fluorescence emission within a liquid droplet is then given.
NASA Astrophysics Data System (ADS)
Hashimoto, G. L.; Roos-Serote, M.; Sugita, S.
2004-11-01
We evaluate the spatial variation of venusian surface emissivity at a near-infrared wavelength using multispectral images obtained by the Near-Infrared Mapping Spectrometer (NIMS) on board the Galileo spacecraft. The Galileo made a close flyby to Venus in February 1990. During this flyby, NIMS observed the nightside of Venus with 17 spectral channels, which includes the well-known spectral windows at 1.18, 1.74, and 2.3 μ m. The surface emissivity is evaluated at 1.18 μ m, at which thermal radiation emitted from the planetary surface could be detected. To analyze the NIMS observations, synthetic spectra have been generated by means of a line-by-line radiative transfer program which includes both scattering and absorption. We used the discrete ordinate method to calculate the spectra of vertically inhomogeneous plane-parallel atmosphere. Gas opacity is calculated based on the method of Pollack et al. (1993), though binary absorption coefficients for continuum opacity are adjusted to achieve an acceptable fit to the NIMS data. We used Mie scattering theory and a cloud model developed by Pollack et al. (1993) to determine the single scattering albedo and scattering phase function of the cloud particles. The vertical temperature profile of Venus International Reference Atmosphere (VIRA) is used in all our calculations. The procedure of the analysis is the followings. We first made a correction for emission angle. Then, a modulation of emission by the cloud opacities is removed using simultaneously measured 1.74 and 2.3 μ m radiances. The resulting images are correlated with the topographic map of Magellan. To search for variations in surface emissivity, this cloud corrected images are divided by synthetic radiance maps that were created from the Magellan data. This work has been supported by The 21st Century COE Program of Origin and Evolution of Planetary Systems of Ministry of Education, Culture, Sports, Science and Technology (MEXT).
NASA Astrophysics Data System (ADS)
Lu, Yinghui; Aydin, Kültegin; Clothiaux, Eugene E.; Verlinde, Johannes
2014-03-01
Ice crystal scattering properties at microwave radar wavelengths can be modeled with the Generalized Multi-particle Mie (GMM) method by decomposing an ice crystal into a cluster of tiny spheres composed of solid ice. In this decomposition the mass distribution of the tiny spheres in the cluster is no longer equivalent to that in the original ice crystal because of gaps between the tiny spheres. To compensate for the gaps in the cluster representation of an ice crystal in the GMM computation of crystal scattering properties, the Maxwell Garnett approximation is used to estimate what the dielectric function of the tiny spheres (i.e., the inclusions) in the cluster must be to make the cluster of tiny spheres with associated air gaps (i.e., the background matrix) dielectrically equivalent to the original solid ice crystal. Overall, compared with the T-matrix method for spheroids outside resonance regions this approach agrees to within mostly 0.3 dB (and often better) in the horizontal backscattering cross section σhh and the ratio of horizontal and vertical backscattering cross sections σhh/σvv, and 6% for the amplitude scattering matrix elements Re{S22-S11} and Im{S22} in the forward direction. For crystal sizes and wavelengths near resonances, where the scattering parameters are highly sensitive to the crystal shape, the differences are generally within 1.2 dB for σhh and σhh/σvv, 20% for Re{S22-S11} and 6% for Im{S22}. The Discrete Dipole Approximation (DDA) results for the same spheroids are generally closer than those of GMM to the T-matrix results. For hexagonal plates the differences between GMM and the DDA at a W-band wavelength (3.19 mm) are mostly within 0.6 dB for σhh, 1 dB for σhh/σvv, 11% for Re{S22-S11} and 12% for Im{S22}. For columns the differences are within 0.3 dB for σhh and σhh/σvv, 8% for Re{S22-S11} and 4% for Im{S22}. This method shows higher accuracy than an alternative method that artificially increases the thickness of ice plates to provide the same mass as the original ice crystal.
Measurement of Scattering Cross Section with a Spectrophotometer with an Integrating Sphere Detector
Gaigalas, A. K.; Wang, Lili; Karpiak, V.; Zhang, Yu-Zhong; Choquette, Steven
2012-01-01
A commercial spectrometer with an integrating sphere (IS) detector was used to measure the scattering cross section of microspheres. Analysis of the measurement process showed that two measurements of the absorbance, one with the cuvette placed in the normal spectrometer position, and the second with the cuvette placed inside the IS, provided enough information to separate the contributions from scattering and molecular absorption. Measurements were carried out with microspheres with different diameters. The data was fitted with a model consisting of the difference of two terms. The first term was the Lorenz-Mie (L-M) cross section which modeled the total absorbance due to scattering. The second term was the integral of the L-M differential cross section over the detector acceptance angle. The second term estimated the amount of forward scattered light that entered the detector. A wavelength dependent index of refraction was used in the model. The agreement between the model and the data was good between 300 nm and 800 nm. The fits provided values for the microsphere diameter, the concentration, and the wavelength dependent index of refraction. For wavelengths less than 300 nm, the scattering cross section had significant spectral structure which was inversely related to the molecular absorption. This work addresses the measurement and interpretation of the scattering cross section for wavelengths between 300 nm and 800 nm. PMID:26900524
Analytical optical scattering in clouds
NASA Technical Reports Server (NTRS)
Phanord, Dieudonne D.
1989-01-01
An analytical optical model for scattering of light due to lightning by clouds of different geometry is being developed. The self-consistent approach and the equivalent medium concept of Twersky was used to treat the case corresponding to outside illumination. Thus, the resulting multiple scattering problem is transformed with the knowledge of the bulk parameters, into scattering by a single obstacle in isolation. Based on the size parameter of a typical water droplet as compared to the incident wave length, the problem for the single scatterer equivalent to the distribution of cloud particles can be solved either by Mie or Rayleigh scattering theory. The super computing code of Wiscombe can be used immediately to produce results that can be compared to the Monte Carlo computer simulation for outside incidence. A fairly reasonable inverse approach using the solution of the outside illumination case was proposed to model analytically the situation for point sources located inside the thick optical cloud. Its mathematical details are still being investigated. When finished, it will provide scientists an enhanced capability to study more realistic clouds. For testing purposes, the direct approach to the inside illumination of clouds by lightning is under consideration. Presently, an analytical solution for the cubic cloud will soon be obtained. For cylindrical or spherical clouds, preliminary results are needed for scattering by bounded obstacles above or below a penetrable surface interface.
Gaigalas, A K; Wang, Lili; Karpiak, V; Zhang, Yu-Zhong; Choquette, Steven
2012-01-01
A commercial spectrometer with an integrating sphere (IS) detector was used to measure the scattering cross section of microspheres. Analysis of the measurement process showed that two measurements of the absorbance, one with the cuvette placed in the normal spectrometer position, and the second with the cuvette placed inside the IS, provided enough information to separate the contributions from scattering and molecular absorption. Measurements were carried out with microspheres with different diameters. The data was fitted with a model consisting of the difference of two terms. The first term was the Lorenz-Mie (L-M) cross section which modeled the total absorbance due to scattering. The second term was the integral of the L-M differential cross section over the detector acceptance angle. The second term estimated the amount of forward scattered light that entered the detector. A wavelength dependent index of refraction was used in the model. The agreement between the model and the data was good between 300 nm and 800 nm. The fits provided values for the microsphere diameter, the concentration, and the wavelength dependent index of refraction. For wavelengths less than 300 nm, the scattering cross section had significant spectral structure which was inversely related to the molecular absorption. This work addresses the measurement and interpretation of the scattering cross section for wavelengths between 300 nm and 800 nm.
NASA Astrophysics Data System (ADS)
Aleiferis, P. G.; Hardalupas, Y.; Taylor, A. M. K. P.; Ishii, K.; Urata, Y.
2005-11-01
Lean-burn spark-ignition engines exhibit higher efficiency and lower specific emissions in comparison with stoichiometrically charged engines. However, as the air-to-fuel (A/F) ratio of the mixture is made leaner than stoichiometric, cycle-by-cycle variations in the early stages of in-cylinder combustion, and subsequent indicated mean effective pressure (IMEP), become more pronounced and limit the range of lean-burn operation. Viable lean-burn engines promote charge stratification, the mixture near the spark plug being richer than the cylinder volume averaged value. Recent work has shown that cycle-by-cycle variations in the early stages of combustion in a stratified-charge engine can be associated with variations in both the local value of A/F ratio near the spark plug around ignition timing, as well as in the volume averaged value of the A/F ratio. The objective of the current work was to identify possible sources of such variability in A/F ratio by studying the in-cylinder field of fuel-droplet distribution during the early intake stroke. This field was visualised in an optical single-cylinder 4-valve pentroof-type spark-ignition engine by means of laser-sheet illumination in planes parallel to the cylinder head gasket 6 and 10 mm below the spark plug. The engine was run with port-injected isooctane at 1500 rpm with 30% volumetric efficiency and air-to-fuel ratio corresponding to both stoichiometric firing (A/F=15, Φ =1.0) and mixture strength close to the lean limit of stable operation (A/F=22, Φ =0.68). Images of Mie intensity scattered by the cloud of fuel droplets were acquired on a cycle-by-cycle basis. These were studied in order to establish possible correlations between the cyclic variations in size, location and scattered-light intensity of the cloud of droplets with the respective variations in IMEP. Because of the low level of Mie intensity scattered by the droplets and because of problems related to elastic scattering on the walls of the combustion chamber, as well as problems related to engine “rocking” at the operating conditions close to the misfire limit, the acquired images were processed for background subtraction by using a PIV-based data correction algorithm. After this processing, the arrival and leaving timings of fuel droplets into the illuminated plane were found not to vary significantly on a cycle-by-cycle basis but the recorded cycle-by-cycle variations in Mie intensity suggested that the amount of fuel in the cylinder could have been 6 26% greater for the “strong” cycles with IMEP 115% higher than the average IMEP, than the ones imaged for “weak” cycles at less than 85% the average IMEP. This would correspond to a maximum cyclic variability in the in-cylinder equivalence ratio Φ of the order of 0.17.
Impact of the ozone monitoring instrument row anomaly on the long-term record of aerosol products
NASA Astrophysics Data System (ADS)
Torres, Omar; Bhartia, Pawan K.; Jethva, Hiren; Ahn, Changwoo
2018-05-01
Since about three years after the launch the Ozone Monitoring Instrument (OMI) on the EOS-Aura satellite, the sensor's viewing capability has been affected by what is believed to be an internal obstruction that has reduced OMI's spatial coverage. It currently affects about half of the instrument's 60 viewing positions. In this work we carry out an analysis to assess the effect of the reduced spatial coverage on the monthly average values of retrieved aerosol optical depth (AOD), single scattering albedo (SSA) and the UV Aerosol Index (UVAI) using the 2005-2007 three-year period prior to the onset of the row anomaly. Regional monthly average values calculated using viewing positions 1 through 30 were compared to similarly obtained values using positions 31 through 60, with the expectation of finding close agreement between the two calculations. As expected, mean monthly values of AOD and SSA obtained with these two scattering-angle dependent subsets of OMI observations agreed over regions where carbonaceous or sulphate aerosol particles are the predominant aerosol type. However, over arid regions, where desert dust is the main aerosol type, significant differences between the two sets of calculated regional mean values of AOD were observed. As it turned out, the difference in retrieved desert dust AOD between the scattering-angle dependent observation subsets was due to the incorrect representation of desert dust scattering phase function. A sensitivity analysis using radiative transfer calculations demonstrated that the source of the observed AOD bias was the spherical shape assumption of desert dust particles. A similar analysis in terms of UVAI yielded large differences in the monthly mean values for the two sets of calculations over cloudy regions. On the contrary, in arid regions with minimum cloud presence, the resulting UVAI monthly average values for the two sets of observations were in very close agreement. The discrepancy under cloudy conditions was found to be caused by the parameterization of clouds as opaque Lambertian reflectors. When properly accounting for cloud scattering effects using Mie theory, the observed UVAI angular bias was significantly reduced. The analysis discussed here has uncovered important algorithmic deficiencies associated with the model representation of the angular dependence of scattering effects of desert dust aerosols and cloud droplets. The resulting improvements in the handling of desert dust and cloud scattering have been incorporated in an improved version of the OMAERUV algorithm.
Exact simulation of polarized light reflectance by particle deposits
NASA Astrophysics Data System (ADS)
Ramezan Pour, B.; Mackowski, D. W.
2015-12-01
The use of polarimetric light reflection measurements as a means of identifying the physical and chemical characteristics of particulate materials obviously relies on an accurate model of predicting the effects of particle size, shape, concentration, and refractive index on polarized reflection. The research examines two methods for prediction of reflection from plane parallel layers of wavelength—sized particles. The first method is based on an exact superposition solution to Maxwell's time harmonic wave equations for a deposit of spherical particles that are exposed to a plane incident wave. We use a FORTRAN-90 implementation of this solution (the Multiple Sphere T Matrix (MSTM) code), coupled with parallel computational platforms, to directly simulate the reflection from particle layers. The second method examined is based upon the vector radiative transport equation (RTE). Mie theory is used in our RTE model to predict the extinction coefficient, albedo, and scattering phase function of the particles, and the solution of the RTE is obtained from adding—doubling method applied to a plane—parallel configuration. Our results show that the MSTM and RTE predictions of the Mueller matrix elements converge when particle volume fraction in the particle layer decreases below around five percent. At higher volume fractions the RTE can yield results that, depending on the particle size and refractive index, significantly depart from the exact predictions. The particle regimes which lead to dependent scattering effects, and the application of methods to correct the vector RTE for particle interaction, will be discussed.
Cheng, Tianhai; Wu, Yu; Chen, Hao
2014-06-30
Light absorbing carbon aerosols play a substantial role in climate change through radiative forcing, which is the dominant absorber of solar radiation. Radiative properties of light absorbing carbon aerosols are strongly dependent on the morphological factors and the mixing mechanism of black carbon with other aerosol components. This study focuses on the morphological effects on the optical properties of internally mixed light absorbing carbon aerosols using the numerically exact superposition T-matrix method. Three types aerosols with different aging status such as freshly emitted BC particles, thinly coated light absorbing carbon aerosols, heavily coated light absorbing carbon aerosols are studied. Our study showed that morphological factors change with the aging of internally mixed light absorbing carbon aerosols to result in a dramatic change in their optical properties. The absorption properties of light absorbing carbon aerosols can be enhanced approximately a factor of 2 at 0.67 um, and these enhancements depend on the morphological factors. A larger shell/core diameter ratio of volume-equivalent shell-core spheres (S/C), which indicates the degree of coating, leads to stronger absorption. The enhancement of absorption properties accompanies a greater enhancement of scattering properties, which is reflected in an increase in single scattering albedo (SSA). The enhancement of single scattering albedo due to the morphological effects can reach a factor of 3.75 at 0.67 μm. The asymmetry parameter has a similar yet smaller enhancement. Moreover, the corresponding optical properties of shell-and-core model determined by using Lorenz -Mie solutions are presented for comparison. We found that the optical properties of internally mixed light absorbing carbon aerosol can differ fundamentally from those calculated for the Mie theory shell-and-core model, particularly for thinly coated light absorbing carbon aerosols. Our studies indicate that the complex morphology of internally mixed light absorbing carbon aerosols must be explicitly considered in climate radiation balance.
NASA Astrophysics Data System (ADS)
Sung, Kung-Bin; Lin, Yang-Hsien; Lin, Fong-jheng; Hsieh, Chao-Mao; Wu, Shang-Ju
2017-04-01
Three-dimensional (3D) refractive-index (RI) microscopy is an emerging technique suitable for live-cell imaging due to its label-free and fast 3D imaging capabilities. We have developed a common-path system to acquire 3D RI microscopic images of cells with excellent speed and stability. After obtaining 3D RI distributions of individual leukocytes, we used a 3D finite-difference time-domain tool to study light scattering properties. Backscattering spectra of lymphocytes, monocytes and neutrophils are different from each other. Backscattering spectra of lymphocytes matched well with those of homogeneous spheres as predicted by Mie theory while backscattering spectra of neutrophils are significantly more intense than those of the other two types. This suggests the possibility of classifying the three types of leukocytes based on backscattering.
Optimization and design of pigments for heat-insulating coatings
NASA Astrophysics Data System (ADS)
Wang, Guang-Hai; Zhang, Yue
2010-12-01
This paper reports that heat insulating property of infrared reflective coatings is obtained through the use of pigments which diffuse near-infrared thermal radiation. Suitable structure and size distribution of pigments would attain maximum diffuse infrared radiation and reduce the pigment volume concentration required. The optimum structure and size range of pigments for reflective infrared coatings are studied by using Kubelka—Munk theory, Mie model and independent scattering approximation. Taking titania particle as the pigment embedded in an inorganic coating, the computational results show that core-shell particles present excellent scattering ability, more so than solid and hollow spherical particles. The optimum radius range of core-shell particles is around 0.3 ~ 1.6 μm. Furthermore, the influence of shell thickness on optical parameters of the coating is also obvious and the optimal thickness of shell is 100-300 nm.
Development of wide-angle 2D light scattering static cytometry
NASA Astrophysics Data System (ADS)
Xie, Linyan; Liu, Qiao; Shao, Changshun; Su, Xuantao
2016-10-01
We have recently developed a 2D light scattering static cytometer for cellular analysis in a label-free manner, which measures side scatter (SSC) light in the polar angular range from 79 to 101 degrees. Compared with conventional flow cytometry, our cytometric technique requires no fluorescent labeling of the cells, and static cytometry measurements can be performed without flow control. In this paper we present an improved label-free static cytometer that can obtain 2D light scattering patterns in a wider angular range. By illuminating the static microspheres on chip with a scanning optical fiber, wide-angle 2D light scattering patterns of single standard microspheres with a mean diameter of 3.87 μm are obtained. The 2D patterns of 3.87 μm microspheres contain both large-angle forward scatter (FSC) and SSC light in the polar angular range from 40 to 100 degrees, approximately. Experimental 2D patterns of 3.87 μm microspheres are in good agreement with Mie theory simulated ones. The wide-angle light scattering measurements may provide a better resolution for particle analysis as compared with the SSC measurements. Two dimensional light scattering patterns of HL-60 human acute leukemia cells are obtained by using our static cytometer. Compared with SSC 2D light scattering patterns, wide-angle 2D patterns contain richer information of the HL-60 cells. The obtaining of 2D light scattering patterns in a wide angular range could help to enhance the capabilities of our label-free static cytometry for cell analysis.
Testing the mutual information expansion of entropy with multivariate Gaussian distributions.
Goethe, Martin; Fita, Ignacio; Rubi, J Miguel
2017-12-14
The mutual information expansion (MIE) represents an approximation of the configurational entropy in terms of low-dimensional integrals. It is frequently employed to compute entropies from simulation data of large systems, such as macromolecules, for which brute-force evaluation of the full configurational integral is intractable. Here, we test the validity of MIE for systems consisting of more than m = 100 degrees of freedom (dofs). The dofs are distributed according to multivariate Gaussian distributions which were generated from protein structures using a variant of the anisotropic network model. For the Gaussian distributions, we have semi-analytical access to the configurational entropy as well as to all contributions of MIE. This allows us to accurately assess the validity of MIE for different situations. We find that MIE diverges for systems containing long-range correlations which means that the error of consecutive MIE approximations grows with the truncation order n for all tractable n ≪ m. This fact implies severe limitations on the applicability of MIE, which are discussed in the article. For systems with correlations that decay exponentially with distance, MIE represents an asymptotic expansion of entropy, where the first successive MIE approximations approach the exact entropy, while MIE also diverges for larger orders. In this case, MIE serves as a useful entropy expansion when truncated up to a specific truncation order which depends on the correlation length of the system.
The single scattering properties of soot aggregates with concentric core-shell spherical monomers
NASA Astrophysics Data System (ADS)
Wu, Yu; Cheng, Tianhai; Gu, Xingfa; Zheng, Lijuan; Chen, Hao; Xu, Hui
2014-03-01
Anthropogenic soot aerosols are shown as complex, fractal-like aggregated structures with high light absorption efficiency. In atmospheric environment, soot monomers may tend to acquire a weakly absorbing coating, such as an organic coating, which introduces further complexity to the optical properties of the aggregates. The single scattering properties of soot aggregates can be significantly influenced by the coated status of these kinds of aerosols. In this article, the monomers of fractal soot aggregates are modelled as semi-external mixtures (physical contact) with constant radius of soot core and variable sizes of the coating for specific soot volume fractions. The single scattering properties of these coated soot particles, such as phase function, the cross sections of extinction and absorption, single scattering albedo (SSA) and asymmetry parameter (ASY), are calculated using the numerically exact superposition T-matrix method. The random-orientation averaging results have shown that the single scattering properties of these coated soot aggregates are significantly different from the single volume-equivalent core-shell sphere approximation using the Mie theory and the homogeneous aggregates with uncoated monomers using the effective medium theory, such as Maxwell-Garnett and Bruggemann approximations, which overestimate backscattering of coated soot. It is found that the SSA and cross sections of extinction and absorption are increased for soot aggregates with thicker weakly absorbing coating on the monomers. Especially, the SSA values of these simulated aggregates with less soot core volume fractions are remarkably (~50% for core volume fraction of soot aggregates of 0.5, ~100% for a core volume fraction of 0.2, at 0.67 μm) larger than for uncoated soot particles without consideration of coating. Moreover, the cross sections of extinction and absorption are underestimated by the computation of equivalent homogeneous fractal aggregate approximation (within 5% for the T-matrix method and 10-25% for the Rayleigh-Debye-Gans approximation due to different soot volume fractions). Further understanding of the optical properties of these coated soot aggregates would be helpful for both environment monitoring and climate studies.
NASA Astrophysics Data System (ADS)
Kneifel, S.; Battaglia, A.; Kollias, P.; Leinonen, J. S.; Maahn, M.; Kalesse, H.; Tridon, F.; Crewell, S.
2016-12-01
During the last years, an increasing number of microwave (MW) scattering databases and novel approximations for single particles, complex aggregates and even rimed and melting aggregates became available. While these developments are in general a great step forward, their evaluation with observations is a very necessary but also challenging task. Recently available multi-frequency radar observations which cover the Rayleigh up to the Mie scattering regime revealed characteristic signatures of rimed and unrimed aggregated particles. However, the observed signatures are still affected by both, the particle size distribution (PSD) and the single scattering properties of the particles which makes a clear evaluation of one or the other challenging. In this contribution we present a new approach which uses the radar Doppler spectra at three frequencies (X, Ka, and W-band) collected during a recent winter field campaign in Finland. We analyzed a snowfall event which includes rimed and unrimed snow aggregates. A large selection of spectra obtained from low-turbulence regions within the cloud reveals distinctly different signatures of the derived Doppler spectral ratios. Due to the third frequency, a characteristic curve can be derived which is almost independent of the underlying particle size distribution and velocity-size relation. The characteristics of the curves obtained for rimed and unrimed are distinctly different. The observed signatures were compared with scattering calculations obtained with discrete dipole approximation (DDA), self-similar Rayleigh-Gans approximation (SSRG), and with the classical soft spheroid (T-Matrix) method. While the DDA calculations of unrimed and rimed aggregates fit the observed signatures well, the T-Matrix results lie far outside the observed range. The SSRG approximations was found to be principally able to recover the main features but a better matching would need an adjustment of the published coefficients. Future campaigns, like the new German Collaborative Research Center Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)³, will provide combined airborne in-situ and remote sensing observations of mixed-phase clouds to further validate the results of the triple-frequency Doppler spectra approach.
Veghte, Daniel P; Freedman, Miriam A
2012-11-06
It is currently unknown whether mineral dust causes a net warming or cooling effect on the climate system. This uncertainty stems from the varied and evolving shape and composition of mineral dust, which leads to diverse interactions of dust with solar and terrestrial radiation. To investigate these interactions, we have used a cavity ring-down spectrometer to study the optical properties of size-selected calcium carbonate particles, a reactive component of mineral dust. The size selection of nonspherical particles like mineral dust can differ from spherical particles in the polydispersity of the population selected. To calculate the expected extinction cross sections, we use Mie scattering theory for monodisperse spherical particles and for spherical particles with the polydispersity observed in transmission electron microscopy images. Our results for calcium carbonate are compared to the well-studied system of ammonium sulfate. While ammonium sulfate extinction cross sections agree with Mie scattering theory for monodisperse spherical particles, the results for calcium carbonate deviate at large and small particle sizes. We find good agreement for both systems, however, between the calculations performed using the particle images and the cavity ring-down data, indicating that both ammonium sulfate and calcium carbonate can be treated as polydisperse spherical particles. Our results indicate that having an independent measure of polydispersity is essential for understanding the optical properties of nonspherical particles measured with cavity ring-down spectroscopy. Our combined spectroscopy and microscopy techniques demonstrate a novel method by which cavity ring-down spectroscopy can be extended for the study of more complex aerosol particles.
Development status of the EarthCARE Mission and its atmospheric Lidar
NASA Astrophysics Data System (ADS)
Hélière, A.; Wallace, K.; Pereira Do Carmo, J.; Lefebvre, A.; Eisinger, M.; Wehr, T.
2016-09-01
The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop as part of ESA's Living Planet Programme, the third Earth Explorer Core Mission, EarthCARE, with the fundamental objective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. EarthCARE payload consists of two active and two passive instruments: an ATmospheric LIDar (ATLID), a Cloud Profiling Radar (CPR), a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer (BBR). The four instruments data are processed individually and in a synergetic manner to produce a large range of products, which include vertical profiles of aerosols, liquid water and ice, observations of cloud distribution and vertical motion within clouds, and will allow the retrieval of profiles of atmospheric radiative heating and cooling. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes with a vertical resolution up to 100 m from ground to an altitude of 40 km. Thanks to a high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol (Mie) and molecular (Rayleigh) scattering, which gives access to aerosol optical depth. Co-polarised and cross-polarised components of the Mie scattering contribution are also separated and measured on dedicated channels. This paper gives an overview of the mission science objective, the satellite configuration with its four instruments and details more specifically the implementation and development status of the Atmospheric Lidar. Manufacturing status and first equipment qualification test results, in particular for what concerns the laser transmitter development are presented.
Mukherjee, Lipi; Zhai, Peng-Wang; Hu, Yongxiang; Winker, David M.
2018-01-01
Polarized radiation fields in a turbid medium are influenced by single-scattering properties of scatterers. It is common that media contain two or more types of scatterers, which makes it essential to properly mix single-scattering properties of different types of scatterers in the vector radiative transfer theory. The vector radiative transfer solvers can be divided into two basic categories: the stochastic and deterministic methods. The stochastic method is basically the Monte Carlo method, which can handle scatterers with different scattering properties explicitly. This mixture scheme is called the external mixture scheme in this paper. The deterministic methods, however, can only deal with a single set of scattering properties in the smallest discretized spatial volume. The single-scattering properties of different types of scatterers have to be averaged before they are input to deterministic solvers. This second scheme is called the internal mixture scheme. The equivalence of these two different mixture schemes of scattering properties has not been demonstrated so far. In this paper, polarized radiation fields for several scattering media are solved using the Monte Carlo and successive order of scattering (SOS) methods and scattering media contain two types of scatterers: Rayleigh scatterers (molecules) and Mie scatterers (aerosols). The Monte Carlo and SOS methods employ external and internal mixture schemes of scatterers, respectively. It is found that the percentage differences between radiances solved by these two methods with different mixture schemes are of the order of 0.1%. The differences of Q/I, U/I, and V/I are of the order of 10−5 ~ 10−4, where I, Q, U, and V are the Stokes parameters. Therefore, the equivalence between these two mixture schemes is confirmed to the accuracy level of the radiative transfer numerical benchmarks. This result provides important guidelines for many radiative transfer applications that involve the mixture of different scattering and absorptive particles. PMID:29047543
Thorough small-angle X-ray scattering analysis of the instability of liquid micro-jets in air.
Marmiroli, Benedetta; Cacho-Nerin, Fernando; Sartori, Barbara; Pérez, Javier; Amenitsch, Heinz
2014-01-01
Liquid jets are of interest, both for their industrial relevance and for scientific applications (more important, in particular for X-rays, after the advent of free-electron lasers that require liquid jets as sample carrier). Instability mechanisms have been described theoretically and by numerical simulation, but confirmed by few experimental techniques. In fact, these are mainly based on cameras, which is limited by the imaging resolution, and on light scattering, which is hindered by absorption, reflection, Mie scattering and multiple scattering due to complex air/liquid interfaces during jet break-up. In this communication it is demonstrated that synchrotron small-angle X-ray scattering (SAXS) can give quantitative information on liquid jet dynamics at the nanoscale, by detecting time-dependent morphology and break-up length. Jets ejected from circular tubes of different diameters (100-450 µm) and speeds (0.7-21 m s(-1)) have been explored to cover the Rayleigh and first wind-induced regimes. Various solvents (water, ethanol, 2-propanol) and their mixtures have been examined. The determination of the liquid jet behaviour becomes essential, as it provides background data in subsequent studies of chemical and biological reactions using SAXS or X-ray diffraction based on synchrotron radiation and free-electron lasers.
Measure of Backscatter for small particles of atmosphere by lasers
NASA Astrophysics Data System (ADS)
Abud, Mariam M.
2018-05-01
It developed a program for the atmosphere to study the backscattering for contents gas and molecules, aerosol, fog, clouds and rain droplets. By using Rayleigh, Mie and geometric scattering. The aim of research, using different types of lasers from various optical region, is to calculate differential cross scatter section and backscatter of atmosphere component in one layer from height 10-2000m. 180° is backscattering angle using ISA standard sea level condition P=1013.25 (kpa) at t0=15 ° C.and then calculated the density of molecules and water vapor molecules represented D in kg/m3. Results reflected index consist of the large value of the real part and imaginary m=1.463-0.028i.this research diff. scatter cross section of different component of atmosphere layer decreased vs. wavelengths. The purpose of lider research to find backscatter from UV to IR laser within the optical range in the atmosphere and measurement of excitation and analysis of backscatter signals. Recently, the atmosphere of Iraq has become full of dust and pollution, so by knowing the differential cross scatter section and backscatter of atmosphere. Relation between total Rayleigh scatter coefficient & type of particles include fog and clouds, aerosols and water droplets (-0.01, 0.025,- 0.005) m-1/sr-1.
Optical readout of displacements of nanowires along two mutually perpendicular directions
NASA Astrophysics Data System (ADS)
Fu, Chenghua
2017-05-01
Nanowires are good force transducers due to their low mass. The singleness of the direction of the motion detection in a certain system is an existing limitation, and to overcome the limitation is the key point in this article. Optical methods, such as polarized light interferometry and light scattering, are generally used for detecting the displacement of nanowires. Typically, either light interference or light scattering is considered when relating the displacement of a nanowire with the photodetector's measurements. In this work, we consider both the light interference along the optical axis and light scattering perpendicular to the optical axis of a micro-lens fiber optic interferometer. Identifying the displacement along the two directions and the corresponding vibration conversion efficiency coefficients for the nanowire is a significant part of our study. Our analysis shows that the optimal working point of the micro-lens fiber optic interferometer can realize the detection of displacement along the optical axis without the disturbance coming from the motion perpendicular to the optical axis, and vice versa. We use Mie scattering theory to calculate the scattering light for the reason that the size of the nanowire is comparable to the wavelength of light. Our results could provide a guide for optical readout experiments of the displacement of nanowires.
Abdominal functional electrical stimulation to enhance mechanical insufflation-exsufflation
McLean, Alan N.; Allan, David B.; Gollee, Henrik
2016-01-01
Context Respiratory complications, attributed to the build-up of secretions in the airway, are a leading cause of rehospitalisation for the tetraplegic population. Previously, we observed that the application of Abdominal Functional Electrical Stimulation (AFES) improved cough function and increased demand for secretion removal, suggesting AFES may aid secretion clearance. Clinically, secretion clearance is commonly achieved by using Mechanical insufflation-exsufflation (MI-E) to simulate a cough. In this study the feasibility of combining AFES with MI-E is evaluated. Findings AFES was successfully combined with MI-E at eight fortnightly assessment sessions conducted with one sub-acute participant with tetraplegia. By using the signal from a pressure sensor, integrated with the MI-E device, AFES was correctly applied in synchrony with MI-E with an accuracy of 96.7%. Acute increases in exhaled volume and peak flow were observed during AFES assisted MI-E, compared to MI-E alone, at six of eight assessment sessions. Conclusion The successful integration of AFES with MI-E at eight assessment sessions demonstrates the feasibility of this technique. The acute increases in respiratory function observed at the majority of assessment sessions generate the hypothesis that AFES assisted MI-E may be more effective for secretion clearance than MI-E alone. PMID:26689243
Effects of multiple scattering on radiative properties of soot fractal aggregates
NASA Astrophysics Data System (ADS)
Yon, Jérôme; Liu, Fengshan; Bescond, Alexandre; Caumont-Prim, Chloé; Rozé, Claude; Ouf, François-Xavier; Coppalle, Alexis
2014-01-01
The in situ optical characterization of smokes composed of soot particles relies on light extinction, angular static light scattering (SLS), or laser induced incandescence (LII). These measurements are usually interpreted by using the Rayleigh-Debye-Gans theory for Fractal Aggregates (RDG-FA). RDG-FA is simple to use but it completely neglects the impact of multiple scattering (MS) within soot aggregates. In this paper, based on a scaling approach that takes into account MS effects, an extended form of the RDG-FA theory is proposed in order to take into account these effects. The parameters of this extended theory and their dependency on the number of primary sphere inside the aggregate (1
Scattering and radiative properties of complex soot and soot-containing particles
NASA Astrophysics Data System (ADS)
Liu, L.; Mishchenko, M. I.; Mackowski, D. W.; Dlugach, J.
2012-12-01
Tropospheric soot and soot containing aerosols often exhibit nonspherical overall shapes and complex morphologies. They can externally, semi-externally, and internally mix with other aerosol species. This poses a tremendous challenge in particle characterization, remote sensing, and global climate modeling studies. To address these challenges, we used the new numerically exact public-domain Fortran-90 code based on the superposition T-matrix method (STMM) and other theoretical models to analyze the potential effects of aggregation and heterogeneity on light scattering and absorption by morphologically complex soot containing particles. The parameters we computed include the whole scattering matrix elements, linear depolarization ratios, optical cross-sections, asymmetry parameters, and single scattering albedos. It is shown that the optical characteristics of soot and soot containing aerosols very much depend on particle sizes, compositions, and aerosol overall shapes. The soot particle configurations and heterogeneities can have a substantial effect that can result in a significant enhancement of extinction and absorption relative to those computed from the Lorenz-Mie theory. Meanwhile the model calculated information combined with in-situ and remote sensed data can be used to constrain soot particle shapes and sizes which are much needed in climate models.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 41 Public Contracts and Property Management 4 2014-07-01 2014-07-01 false Allocation of M&IE Rates To Be Used in Making Deductions From the M&IE Allowance B Appendix B to Chapter 301 Public Contracts.... 301, App. B Appendix B to Chapter 301—Allocation of M&IE Rates To Be Used in Making Deductions From...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false Allocation of M&IE Rates To Be Used in Making Deductions From the M&IE Allowance B Appendix B to Chapter 301 Public Contracts.... 301, App. B Appendix B to Chapter 301—Allocation of M&IE Rates To Be Used in Making Deductions From...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false Allocation of M&IE Rates To Be Used in Making Deductions From the M&IE Allowance B Appendix B to Chapter 301 Public Contracts.... 301, App. B Appendix B to Chapter 301—Allocation of M&IE Rates To Be Used in Making Deductions From...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false Allocation of M&IE Rates To Be Used in Making Deductions From the M&IE Allowance B Appendix B to Chapter 301 Public Contracts.... 301, App. B Appendix B to Chapter 301—Allocation of M&IE Rates To Be Used in Making Deductions From...
Excitation of resonances of microspheres on an optical fiber
NASA Astrophysics Data System (ADS)
Serpengüzel, A.; Arnold, S.; Griffel, G.
1995-04-01
Morphology-dependent resonances (MDR's) of solid microspheres are excited by using an optical fiber coupler. The narrowest measured MDR linewidths are limited by the excitation laser linewidth ( < 0.025 nm). Only MDR's, with an on-resonance to off-resonance intensity ratio of 104, contribute to scattering. The intensity of various resonance orders is understood by the localization principle and the recently developed generalized Lorentz-Mie theory. The microsphere fiber system has potential for becoming a building block in dispersive microphotonics. The basic physics underlying our approach may be considered a harbinger for the coupling of active photonic microstructures such as microdisk lasers.
Program Models A Laser Beam Focused In An Aerosol Spray
NASA Technical Reports Server (NTRS)
Barton, J. P.
1996-01-01
Monte Carlo analysis performed on packets of light. Program for Analysis of Laser Beam Focused Within Aerosol Spray (FLSPRY) developed for theoretical analysis of propagation of laser pulse optically focused within aerosol spray. Applied for example, to analyze laser ignition arrangement in which focused laser pulse used to ignite liquid aerosol fuel spray. Scattering and absorption of laser light by individual aerosol droplets evaluated by use of electromagnetic Lorenz-Mie theory. Written in FORTRAN 77 for both UNIX-based computers and DEC VAX-series computers. VAX version of program (LEW-16051). UNIX version (LEW-16065).
Optimal illusion and invisibility of multilayered anisotropic cylinders and spheres.
Zhang, Lin; Shi, Yan; Liang, Chang-Hong
2016-10-03
In this paper, full-wave electromagnetic scattering theory is employed to investigate illusion and invisibility of inhomogeneous anisotropic cylinders and spheres. With the use of a shell designed according to Mie series theory for multiple piecewise anisotropic layers, radar cross section (RCS) of the coated inhomogeneous anisotropic object can be dramatically reduced or disguised as another object in the long-wavelength limit. With the suitable adjustment of the anisotropy parameters of the shell, optimal illusion and invisibility characteristics of the coated inhomogeneous anisotropic object can be achieved. Details of theoretical analysis and numerical examples are presented to validate the proposed methodology.
Influencing of various phosphor parameters on the LED performance
NASA Astrophysics Data System (ADS)
Wu, Yi Ping; Zhang, Shu Qin; Jin, Shang-zhong; Shi, Chang Shou; Li, Liang; Yu, RenYong
2012-10-01
In this paper ,the advantages and disadvantages of the methods to achieve White LED are reviewed, and phosphor-converted white LEDs are discussed in detail. In the case of blue chip exciting YAG phosphor to get white LED, use Mie scattering theory to construct physical model, then analyze how the package, concentration, thickness and particle size of phosphor work on extraction efficiency, spatial Chroma uniformity and color temperature of white LED. The conclusion of this paper advances the application of LED solid-state light source. In the end, the paper puts forward the direction and focus of phosphor research.
NASA Astrophysics Data System (ADS)
Li, Xiangzhen; Qi, Xiao; Han, Xiang'e.
2015-10-01
The characteristics of laser scattering from sea surface have a great influence on application performance, from submarine communication, laser detection to laser diffusion communication. Foams will appear when the wind speed exceeds a certain value, so the foam can be seen everywhere in the upper layer of the ocean. Aiming at the volume-surface composite model of rough sea surface with foam layer driven by wind, and the similarities and differences of scattering characteristics between blue-green laser and microwave, an improved two-scale method for blue-green laser to calculate the scattering coefficient is presented in this paper. Based on the improved two-scale rough surface scattering theory, MIE theory and VRT( vector radiative transfer ) theory, the relations between the foam coverage of the sea surface and wind speed and air-sea temperature difference are analyzed. Aiming at the Gauss sea surface in blue-green laser, the dependence of back- and bistatie-scattering coefficient on the incident and azimuth angle, the coverage of foams, as well as the wind speed are discussed in detail. The results of numerical simulations are compared and analyzed in this paper. It can be concluded that the foam layer has a considerable effect on the laser scattering with the increase of wind speed, especially for a large incident angle. Theoretical analysis and numerical simulations show that the improved two-scale method is reasonable and efficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue-Toyoda, Maki; Kato, Kohsuke; Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575
Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter andmore » enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX.« less
NASA Technical Reports Server (NTRS)
Wells, R. A.
1979-01-01
A physical model of Mars is presented on the basis of light-scattering observations of the Martian atmosphere and surface and interior data obtained from observations of the geopotential field. A general description of the atmosphere is presented, with attention given to the circulation and the various cloud types, and data and questions on the blue haze-clearing effect and the seasonal darkening wave are summarized and the Mie scattering model developed to explain these observations is presented. The appearance of the planet from earth and spacecraft through Mariner 9 is considered, and attention is given to the preparation of topographical contour maps, the canal problem and large-scale lineaments observed from Mariner 9, the gravity field and shape of the planet and the application of Runcorn's geoid/convection theory to Mars. Finally, a summary of Viking results is presented and their application to the understanding of Martian geophysics is discussed.
Nanoscale Interparticle Distance within Dimers in Solution Measured by Light Scattering
2017-01-01
We demonstrate a novel approach to quantify the interparticle distance in colloidal dimers using Mie scattering. The interparticle distance is varied in a controlled way by changing the ionic strength of the solution and the magnetic attraction between the particles. The measured scaling behavior is interpreted using an energy–distance model that includes the repulsive electrostatic and attractive magnetic interactions. The center-to-center distances of particles with a 525 nm radius can be determined with a root-mean-square accuracy of 12 nm. The data show that the center-to-center distance is larger by 83 nm compared to perfect spheres. The underlying distance offset can be attributed to repulsion by charged protrusions caused by particle surface roughness. The measurement method accurately quantifies interparticle distances that can be used to study cluster formation and colloid aggregation in complex systems, e.g., in biosensing applications. PMID:29183122
Determining the Size of Pores in a Partially Transparent Ceramics from Total-Reflection Spectra
NASA Astrophysics Data System (ADS)
Mironov, R. A.; Zabezhailov, M. O.; Georgiu, I. F.; Cherepanov, V. V.; Rusin, M. Yu.
2018-03-01
A technique is proposed for determining the pore-size distribution based on measuring the dependence of total reflectance in the domain of partial transparency of a material. An assumption about equality of scattering-coefficient spectra determined by solving the inverse radiation transfer problem and by theoretical calculation with the Mie theory is used. The technique is applied to studying a quartz ceramics. The poresize distribution is also determined using mercury and gas porosimetry. All three methods are shown to produce close results for pores with diameters of <180 nm, which occupy 90% of the void volume. In the domain of pore dimensions of >180 nm, the methods show differences that might be related to both specific procedural features and the structural properties of ceramics. The spectral-scattering method has a number of advantages over traditional porosimetry, and it can be viewed as a routine industrial technique.
NASA Astrophysics Data System (ADS)
Nguyen, Anh Q. D.; Nguyen, Vinh H.
2017-08-01
In this study, we present an insightful investigation on optimal selection of scattering enhancement particles (SEP) to satisfy each specific optical property of white LEDs (WLEDs). The interested contenders include CaCO3, CaF2, SiO2, and TiO2, each of them is added with YAG:Ce phosphor compounding. The quality improvement on each considered property is demonstrated convincingly by applying Mie-scattering theory together with Monte Carlo simulation on a particular WLEDs which has the color temperature of 8500K. It is observed by simulation results that TiO2 particles provide the highest color uniformity among the SEP, as increasing TiO2 concentration. These results of this work can serve as a practical guideline for manufacturing high-quality WLEDs.
Radiation Pressure Measurements on Micron Size Individual Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P.D.; Spann, J. F.; Tankosic, D.; Witherow, W. K.; LeClair, A.; West, E.; Sheldon, R.; Gallagher, D. L.; Adrian, M. L.
2003-01-01
Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2 micron to 6.82 micron range and irradiating them from above with laser radiation focused to beam-widths of approx. 175-400 micron, at ambient pressures approx. 10(exp -3) to 10(exp -4) torr. The downward displacement of the particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of silica and the corresponding extinction and scattering efficiencies.
Radiation Pressure Measurements on Micron-Size Individual Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Witherow, W. K.; West, E. A.; Gallagher, D. L.; Adrian, M. L.; Fishman, G. J.; Tankosic, D.; LeClair, A.
2003-01-01
Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2- to 6.82-micron range and irradiating them from above with laser radiation focused to beam widths of approximately 175- 400 microns at ambient pressures particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of SiO2 and the corresponding extinction and scattering efficiencies.
In vivo diagnosis of skin cancer using polarized and multiple scattered light spectroscopy
NASA Astrophysics Data System (ADS)
Bartlett, Matthew Allen
This thesis research presents the development of a non-invasive diagnostic technique for distinguishing between skin cancer, moles, and normal skin using polarized and multiple scattered light spectroscopy. Polarized light incident on the skin is single scattered by the epidermal layer and multiple scattered by the dermal layer. The epidermal light maintains its initial polarization while the light from the dermal layer becomes randomized and multiple scattered. Mie theory was used to model the epidermal light as the scattering from the intercellular organelles. The dermal signal was modeled as the diffusion of light through a localized semi-homogeneous volume. These models were confirmed using skin phantom experiments, studied with in vitro cell cultures, and applied to human skin for in vivo testing. A CCD-based spectroscopy system was developed to perform all these experiments. The probe and the theory were tested on skin phantoms of latex spheres on top of a solid phantom. We next extended our phantom study to include in vitro cells on top of the solid phantom. Optical fluorescent microscope images revealed at least four distinct scatterers including mitochondria, nucleoli, nuclei, and cell membranes. Single scattering measurements on the mammalian cells consistently produced PSD's in the size range of the mitochondria. The clinical portion of the study consisted of in vivo measurements on cancer, mole, and normal skin spots. The clinical study combined the single scattering model from the phantom and in vitro cell studies with the diffusion model for multiple scattered light. When parameters from both layers were combined, we found that a sensitivity of 100% and 77% can be obtained for detecting cancers and moles, respectively, given the number of lesions examined.
Asymptotic quantum inelastic generalized Lorenz Mie theory
NASA Astrophysics Data System (ADS)
Gouesbet, G.
2007-10-01
The (electromagnetic) generalized Lorenz-Mie theory describes the interaction between an electromagnetic arbitrary shaped beam and a homogeneous sphere. It is a generalization of the Lorenz-Mie theory which deals with the simpler case of a plane wave illumination. In a recent paper, we consider (i) elastic cross-sections in electromagnetic generalized Lorenz-Mie theory and (ii) elastic cross-sections in an associated quantum generalized Lorenz-Mie theory. We demonstrated that the electromagnetic problem is equivalent to a superposition of two effective quantum problems. We now intend to generalize this result from elastic cross-sections to inelastic cross-sections. A prerequisite is to build an asymptotic quantum inelastic generalized Lorenz-Mie theory, which is presented in this paper.
Effect of Aerosol Variation on Radiance in the Earth's Atmosphere-Ocean System.
Plass, G N; Kattawar, G W
1972-07-01
The reflected and transmitted radiance is calculated for a realistic model of the atmosphere-ocean system. Multiple scattering to all orders as well as anisotropic scattering from aerosols are taken into account by a Monte Carlo technique. The probability for reflection or refraction at the ocean surface is calculated for each photon. Scattering and absorption by water molecules (Rayleigh) and by hydrosols (Mie) are taken into account within the ocean. The radiance is calculated for a normal aerosol distribution as well as for a three and ten times normal distribution. Calculations are also made for an aerosol layer near the earth as well as for one in the stratosphere. The upward radiance at the top of the atmosphere depends strongly on the total number of aerosols but not on their spatial distribution. Variations in the ozone amount also have little effect on the upward radiance. The calculations are made at the following wavelengths: 0.7 micro, 0.9 micro, 1.67 micro. The radiance above and below the ocean surface as well as the flux at various levels are also discussed.
NASA Technical Reports Server (NTRS)
Wehrmeyer, Joseph A.; Trinh, Huu Phuoc
2001-01-01
Propellant injector development at MSFC includes experimental analysis using optical techniques, such as Raman, fluorescence, or Mie scattering. For the application of spontaneous Raman scattering to hydrocarbon-fueled flows a technique needs to be developed to remove the interfering polycyclic aromatic hydrocarbon fluorescence from the relatively weak Raman signals. A current application of such a technique is to the analysis of the mixing and combustion performance of multijet, impinging-jet candidate fuel injectors for the baseline Mars ascent engine, which will burn methane and liquid oxygen produced in-situ on Mars to reduce the propellant mass transported to Mars for future manned Mars missions. The present technique takes advantage of the strongly polarized nature of Raman scattering. It is shown to be discernable from unpolarized fluorescence interference by subtracting one polarized image from another. Both of these polarized images are obtained from a single laser pulse by using a polarization-separating calcite rhomb mounted in the imaging spectrograph. A demonstration in a propane-air flame is presented.
High Energy Studies of Astrophysical Dust
NASA Astrophysics Data System (ADS)
Corrales, Lia Racquel
Astrophysical dust---any condensed matter ranging from tens of atoms to micron sized grains---accounts for about one third of the heavy elements produced in stars and disseminated into space. These tiny pollutants are responsible for producing the mottled appearance in the spray of light we call the "Milky Way." However these seemingly inert particles play a strong role in the physics of the interstellar medium, aiding star and planet formation, and perhaps helping to guide galaxy evolution. Most dust grains are transparent to X-ray light, leaving a signature of atomic absorption, but also scattering the light over small angles. Bright X-ray objects serendipitously situated behind large columns of dust and gas provide a unique opportunity to study the dust along the line of sight. I focus primarily on X-ray scattering through dust, which produces a diffuse halo image around a central point source. Such objects have been observed around X-ray bright Galactic binaries and extragalactic objects that happen to shine through the plane of the Milky Way. I use the Chandra X-ray Observatory, a space-based laboratory operated by NASA, which has imaging resolution ideal for studying X-ray scattering halos. I examine several bright X-ray objects with dust-free sight lines to test their viability as templates and develop a parametric model for the Chandra HETG point spread function (PSF). The PSF describes the instrument's imaging response to a point source, an understanding of which is necessary for properly measuring the surface brightness of X-ray scattering halos. I use an HETG observation of Cygnus X-3, one of the brightest objects available in the Chandra archive, to derive a dust grain size distribution. There exist degenerate solutions for the dust scattering halo, but with the aid of Bayesian analytics I am able to apply prior knowledge about the Cyg X-3 sight line to measure the relative abundance of dust in intervening Milky Way spiral arms. I also demonstrate how information from a single scattering halo can be used in conjunction with X-ray spectroscopy to directly measure the dust-to-gas mass ratio, laying the groundwork for future scattering halo surveys. Distant quasars also produce X-rays that pierce the intergalactic medium. These sources invite the unique opportunity to search for extragalactic dust, whether distributed diffusely throughout intergalactic space, surrounding other galaxies, or occupying reservoirs of cool intergalactic gas. I review X-ray scattering in a cosmological context, examining the range and sensitivity of Chandra to detect the low surface brightness levels of intergalactic scattering. Of particular interest is large "grey" dust, which would cause systematic errors in precision cosmology experiments at a level comparable to the size of the error bars sought. This requires using the more exact Mie scattering treatment, which reduces the scattering cross-section for soft X-rays by a factor of about ten, compared to the Rayleigh-Gans approximation used for interstellar X-ray scattering studies. This allows me to relax the limit on intergalactic dust imposed by previous X-ray imaging of a z=4.3 quasar, QSO 1508+5714, which overestimated the scattering intensity. After implementing the Mie solution with the cosmological integral for scattering halo intensity, I found that intergalactic dust will scatter 1-3% of soft X-ray light. Unfortunately the wings of the Chandra PSF are brighter than the surface brightness expected for these intergalactic scattering halos. The X-ray signatures of intergalactic dust may only be visible if a distant quasar suddenly dimmed by a factor of 1000 or more, leaving behind an X-ray scattering echo, or "ghost" halo.
Refraction limit of miniaturized optical systems: a ball-lens example.
Kim, Myun-Sik; Scharf, Toralf; Mühlig, Stefan; Fruhnert, Martin; Rockstuhl, Carsten; Bitterli, Roland; Noell, Wilfried; Voelkel, Reinhard; Herzig, Hans Peter
2016-04-04
We study experimentally and theoretically the electromagnetic field in amplitude and phase behind ball-lenses across a wide range of diameters, ranging from a millimeter scale down to a micrometer. Based on the observation, we study the transition between the refraction and diffraction regime. The former regime is dominated by observables for which it is sufficient to use a ray-optical picture for an explanation, e.g., a cusp catastrophe and caustics. A wave-optical picture, i.e. Mie theory, is required to explain the features, e.g., photonic nanojets, in the latter regime. The vanishing of the cusp catastrophe and the emergence of the photonic nanojet is here understood as the refraction limit. Three different criteria are used to identify the limit: focal length, spot size, and amount of cross-polarization generated in the scattering process. We identify at a wavelength of 642 nm and while considering ordinary glass as the ball-lens material, a diameter of approximately 10 µm as the refraction limit. With our study, we shed new light on the means necessary to describe micro-optical system. This is useful when designing optical devices for imaging or illumination.
Optical properties of honeycomb photonic structures
NASA Astrophysics Data System (ADS)
Sinelnik, Artem D.; Rybin, Mikhail V.; Lukashenko, Stanislav Y.; Limonov, Mikhail F.; Samusev, Kirill B.
2017-06-01
We study, theoretically and experimentally, optical properties of different types of honeycomb photonic structures, known also as "photonic graphene." First, we employ the two-photon polymerization method to fabricate the honeycomb structures. In the experiment, we observe a strong diffraction from a finite number of elements, thus providing a unique tool to define the exact number of scattering elements in the structure with the naked eye. Next, we study theoretically the transmission spectra of both honeycomb single layer and two-dimensional (2D) structures of parallel dielectric circular rods. When the dielectric constant of the rod materials ɛ is increasing, we reveal that a 2D photonic graphene structure transforms into a metamaterial when the lowest TE 01 Mie gap opens up below the lowest Bragg band gap. We also observe two Dirac points in the band structure of 2D photonic graphene at the K point of the Brillouin zone and demonstrate a manifestation of Dirac lensing for the TM polarization. The performance of the Dirac lens is that the 2D photonic graphene layer converts a wave from point source into a beam with flat phase surfaces at the Dirac frequency for the TM polarization.
NASA Astrophysics Data System (ADS)
Lin, Hong; Wang, Xinming; Liang, Kun
2010-10-01
For monitoring and forecasting of the ocean red tide in real time, a marine environment monitoring technology based on the double-wavelength airborne lidar system is proposed. An airborne lidar is father more efficient than the traditional measure technology by the boat. At the same time, this technology can detect multi-parameter about the ocean red tide by using the double-wavelength lidar.It not only can use the infrared laser to detect the scattering signal under the water and gain the information about the red tise's density and size, but also can use the blue-green laser to detect the Brillouin scattering signal and deduce the temperature and salinity of the seawater.The red tide's density detecting model is firstly established by introducing the concept about the red tide scattering coefficient based on the Mie scattering theory. From the Brillouin scattering theory, the relationship about the blue-green laser's Brillouin scattering frequency shift value and power value with the seawater temperature and salinity is found. Then, the detecting mode1 of the saewater temperature and salinity can be established. The value of the red tide infrared scattering signal is evaluated by the simulation, and therefore the red tide particles' density can be known. At the same time, the blue-green laser's Brillouin scattering frequency shift value and power value are evaluated by simulating, and the temperature and salinity of the seawater can be known. Baed on the multi-parameters, the ocean red tide's growth can be monitored and forecasted.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Marto, Joseph P.; Schwab, James J.
2018-05-01
Two optical scattering instruments for particle mass measurement, the Thermo Personal Data RAM (PDR-1500) and the TSI Environmental DustTrak DRX (Model 8543) were evaluated by (1) using poly- and mono-disperse test aerosol in the laboratory, and (2) sampling ambient aerosol. The responses of these optical scattering instruments to different particle characteristics (size, composition, concentration) were compared with responses from reference instruments. A Mie scattering calculation was used to explain the dependence of the optical instruments' response to aerosol size and composition. Concurrently, the detection efficiency of one Alphasense Optical Particle Counter (OPC-N2) was evaluated in the laboratory as well. The relationship between aerosol mass concentration and optical scattering was determined to be strongly dependent on aerosol size and to a lesser extent on aerosol composition (as reflected in the refractive indices of the materials tested) based on ambient measurements. This confirms that there is no simple way to use optical scattering instruments over a wide range of conditions without adjustments based on knowledge of aerosol size and composition. In particular, a test period measuring ambient aerosol with optical scattering instruments and a mass based method (an Aerodyne Aerosol Mass Spectrometer) determined that roughly two thirds of the variance (R2 = 0.64) of the optical to mass signal ratio is explained by the aerosol mass median diameter alone. These observations and calculations help evaluate the applicability and limitations of these optical scattering instruments, and provide guidance to designing suitable applications for each instrument by considering aerosol sources and aerosol size.
Mechanical Insufflation-Exsufflation Device Prescription for Outpatients With Tetraplegia
Crew, James D; Svircev, Jelena N; Burns, Stephen P
2010-01-01
Background: Mechanical insufflation-exsufflation (MIE) is an option for secretion mobilization in outpatients with spinal cord injury (SCI) who lack an effective cough and are at high risk for developing pneumonia. Objective: To describe characteristics of persons with SCI who received MIE devices for outpatient use and compare respiratory hospitalizations before and after MIE prescription. Design: Retrospective cohort study of all persons who were prescribed MIE devices for outpatient use during 2000 to 2006 by a Veterans Affairs SCI service. Results: We identified 40 patients with tetraplegia (4.5% of population followed by the SCI service) who were prescribed MIE devices. Of these, 30 (75%) had neurologic levels of C5 or rostral, and 33 (83%) had motor-complete injuries. For chronically injured patients who were prescribed MIE for home use, there was a nonsignificant reduction in respiratory hospitalization rates by 34% (0.314/y before MIE vs 0.208/y after MIE; P = 0.21). A posthoc subgroup analysis showed a significant decline in respiratory hospitalizations for patients with significant tobacco smoking histories. Conclusions: Mechanical insufflation-exsufflation was typically prescribed for people with motor-complete tetraplegia. Outpatient MIE usage may reduce respiratory hospitalizations in smokers with SCI. Further research of this alternative, noninvasive method is warranted in the outpatient SCI population. PMID:20486531
The topological phase diagram of cimetidine: A case of overall monotropy.
Céolin, R; Rietveld, I B
2017-03-01
Cimetidine is a histamine H 2 -receptor antagonist used against peptic ulcers. It is known to exhibit crystalline polymorphism. Forms A and D melt within 0.35 degrees from each other and the enthalpies of fusion are similar as well. The present paper demonstrates how to construct a pressure-temperature phase diagram with only calorimetric and volumetric data available. The phase diagram provides the stability domains and the phase equilibria for the phases A, D, the liquid and the vapor. Cimetidine is overall monotropic with form D the only stable solid phase. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Chao, Guo-Shan; Sung, Kung-Bin
2010-01-01
Reflectance spectra measured from epithelial tissue have been used to extract size distribution and refractive index of cell nuclei for noninvasive detection of precancerous changes. Despite many in vitro and in vivo experimental results, the underlying mechanism of sizing nuclei based on modeling nuclei as homogeneous spheres and fitting the measured data with Mie theory has not been fully explored. We describe the implementation of a three-dimensional finite-difference time-domain (FDTD) simulation tool using a Gaussian pulse as the light source to investigate the wavelength-dependent characteristics of backscattered light from a nuclear model consisting of a nucleolus and clumps of chromatin embedded in homogeneous nucleoplasm. The results show that small-sized heterogeneities within the nuclei generate about five times higher backscattering than homogeneous spheres. More interestingly, backscattering spectra from heterogeneous spherical nuclei show periodic oscillations similar to those from homogeneous spheres, leading to high accuracy of estimating the nuclear diameter by comparison with Mie theory. In addition to the application in light scattering spectroscopy, the reported FDTD method could be adapted to study the relations between measured spectral data and nuclear structures in other optical imaging and spectroscopic techniques for in vivo diagnosis.
Prévalence des dyslipidémies au laboratoire de biochimie du CHU Aristide le Dantec de Dakar, Sénégal
Cissé, Fatou; Agne, Fatou Diallo; Diatta, Alassane; Mbengue, Abdou Salam; Ndiaye, Arame; Samba, Abdourahmane; Thiam, Souleymane; Doupa, Dominique; Sarr, Gaston Ndéné; Sall, Niama Diop; Touré, Méissa
2016-01-01
Introduction L'objectif de cette étude était d'évaluer la prévalence des dyslipidémies chez les patients reçus au laboratoire de Biochimie de l'Hôpital Aristide Le Dantec pour le dosage d'un paramètre lipidique au cours de l'année 2013. Méthodes Il s'agit d'une étude rétrospective portant sur 1356 patients âgés de 10 à 94 ans reçus au laboratoire de Biochimie du CHU Le Dantec de janvier à décembre 2013. Etaient inclus dans l'étude, tous les patients ayant au moins un paramètre du bilan lipidique dont les résultats étaient enregistrés dans le registre du laboratoire. Le cholestérol total, le cholestérol HDL, le cholestérol LDL ainsi que les triglycérides ont été dosés grâce à des méthodes enzymatiques sur un automate de Biochimie de type Cobas Integra 400 (Roche Diagnostics). Résultats La prévalence des dyslipidémies dans notre population d'étude est de 39,30%. Les prévalences de l'hypercholestérolémie, l'hypoHDLémie, l'hyperLDLémie, l'hypertriglycéridémie et l'hyperlipidémie mixte étaient respectivement : 30,89% ; 7,30% ; 31,19% ; 0,51% ; 7,22%. Les sujets de 40 à 59 ans semblaient être plus exposés et on note une prédominance féminine en ce qui concerne l'hypercholestérolémie (54,17% vs 45,82%), l'hypoHDLémie (54,54% vs45, 45%), et l'hyperlipidémie mixte (51,08% vs 48,97%). Enfin les dyslipidémies étaient fortement corrélées à l'HTA et l'obésité. Conclusion La forte prévalence des dyslipidémies retrouvée dans notre étude démontre l'intérêt d'étudier la prévalence des facteurs de risque cardio-vasculaires en particulier les dyslipidémies dans la population sénégalaise. PMID:28292030
NASA Astrophysics Data System (ADS)
Close, L. M.; Dutrey, A.; Roddier, F.; Guilloteau, S.; Roddier, C.; Northcott, M.; Ménard, F.; Duvert, G.; Graves, J. E.; Potter, D.
1998-05-01
We have obtained high-resolution (FWHM = 0.15") deep images of the UY Aur binary at J, H, and K' with the University of Hawaii adaptive optics instrument. We clearly detect an R ~ 500 AU circumbinary disk discovered with millimeter interferometry, making UY Aur the second young binary with a confirmed circumbinary disk. It appears that the disk is inclined ~42° from face on. We find that the near side of the disk is brighter than the far side by factors of 2.6, 2.7, and 6.5 times at K', H, and J, respectively. The original GG Tau circumbinary disk has been reexamined and is found to have similar flux ratios of 1.5, 2.6, and 3.6 at K', H, and J, respectively. A realistic power-law distribution (p = 4.7) of spherical dust aggregates (composed of silicates, amorphous carbon, and graphite) that reproduces the observed ISM extinction curve also predicts these observed flux ratios from Mie scattering theory. We find the observed preference of forward-scattering over back-scattering is well fitted (global χ2 minimization) by Mie scattering off particles in the range amin = 0.03 μm to amax = 0.5-0.6 μm. The existence of a significant population of grain radii larger than 0.6 μm is not supported by the scattering observations. Based on the observed disk inclination we derive an orbit for UY Aur where the mass for the binary is 1.6+0.47-0.67 M⊙. Based on the observed K7 and M0 spectral types for UY Aur A and B, accretion disk models for the inner disks around the central stars were constructed. The models suggest that small (lower limit R ~ 5-10 AU) inner disks exist around B and A. It appears that B is accreting ~5 times faster than A, and that both inner disks may be exhausted in ~102-103 yr without replenishment from the outer circumbinary disk. Our images suggest that these inner disks may indeed be resupplied with material through thin streamers of material that penetrate inside the circumbinary disk. Currently it appears that such a streamer may be a close to UY Aur B. Comparison of our IR images and the millimeter images of the gas clearly show that the dust seen in our IR images traces the gas in the circumbinary disk, as was also the case with GG Tau.
On signatures of clouds in exoplanetary transit spectra
NASA Astrophysics Data System (ADS)
Pinhas, Arazi; Madhusudhan, Nikku
2017-11-01
Transmission spectra of exoplanetary atmospheres have been used to infer the presence of clouds/hazes. Such inferences are typically based on spectral slopes in the optical deviant from gaseous Rayleigh scattering or low-amplitude spectral features in the infrared. We investigate three observable metrics that could allow constraints on cloud properties from transmission spectra, namely the optical slope, the uniformity of this slope and condensate features in the infrared. We derive these metrics using model transmission spectra considering Mie extinction from a wide range of condensate species, particle sizes and scaleheights. First, we investigate possible degeneracies among the cloud properties for an observed slope. We find, for example, that spectra with very steep optical slopes suggest sulphide clouds (e.g. MnS, ZnS, Na2S) in the atmospheres. Secondly, (non)uniformities in optical slopes provide additional constraints on cloud properties, e.g. MnS, ZnS, TiO2 and Fe2O3 have significantly non-uniform slopes. Thirdly, infrared spectra provide an additional powerful probe into cloud properties, with SiO2, Fe2O3, Mg2SiO4 and MgSiO3 bearing strong infrared features observable with James Webb Space Telescope. We investigate observed spectra of eight hot Jupiters and discuss their implications. In particular, no single or composite condensate species considered here conforms to the steep and non-uniform optical slope observed for HD 189733b. Our work highlights the importance of the three above metrics to investigate cloud properties in exoplanetary atmospheres using high-precision transmission spectra and detailed cloud models. We make our Mie scattering data for condensates publicly available to the community.
NASA Astrophysics Data System (ADS)
Williams, C. R.; Chandra, C. V.
2017-12-01
The vertical evolution of falling raindrops is a result of evaporation, breakup, and coalescence acting upon those raindrops. Computing these processes using vertically pointing radar observations is a two-step process. First, the raindrop size distribution (DSD) and vertical air motion need to be estimated throughout the rain shaft. Then, the changes in DSD properties need to be quantified as a function of height. The change in liquid water content is a measure of evaporation, and the change in raindrop number concentration and size are indicators of net breakup or coalescence in the vertical column. The DSD and air motion can be retrieved using observations from two vertically pointing radars operating side-by-side and at two different wavelengths. While both radars are observing the same raindrop distribution, they measure different reflectivity and radial velocities due to Rayleigh and Mie scattering properties. As long as raindrops with diameters greater than approximately 2 mm are in the radar pulse volumes, the Rayleigh and Mie scattering signatures are unique enough to estimate DSD parameters using radars operating at 3- and 35-GHz (Williams et al. 2016). Vertical decomposition diagrams (Williams 2016) are used to explore the processes acting on the raindrops. Specifically, changes in liquid water content with height quantify evaporation or accretion. When the raindrops are not evaporating, net raindrop breakup and coalescence are identified by changes in the total number of raindrops and changes in the DSD effective shape as the raindrops. This presentation will focus on describing the DSD and air motion retrieval method using vertical profiling radar observations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility in Northern Oklahoma.
Extinction cross section measurements for a single optically trapped particle
NASA Astrophysics Data System (ADS)
Cotterell, Michael I.; Preston, Thomas C.; Mason, Bernard J.; Orr-Ewing, Andrew J.; Reid, Jonathan P.
2015-08-01
Bessel beam (BB) optical traps have become widely used to confine single and multiple aerosol particles across a broad range of sizes, from a few microns to < 200 nm in radius. The radiation pressure force exerted by the core of a single, zeroth-order BB incident on a particle can be balanced by a counter-propagating gas flow, allowing a single particle to be trapped indefinitely. The pseudo non-diffracting nature of BBs enables particles to be confined over macroscopic distances along the BB core propagation length; the position of the particle along this length can be finely controlled by variation of the BB laser power. This latter property is exploited to optimize the particle position at the center of the TEM00 mode of a high finesse optical cavity, allowing cavity ring-down spectroscopy (CRDS) to be performed on single aerosol particles and their optical extinction cross section, σext, measured. Further, the variation in the light from the illuminating BB elastically scattered by the particle is recorded as a function of scattering angle. Such intensity distributions are fitted to Lorenz-Mie theory to determine the particle radius. The trends in σext with particle radius are modelled using cavity standing wave Mie simulations and a particle's varying refractive index with changing relative humidity is determined. We demonstrate σext measurements on individual sub-micrometer aerosol particles and determine the lowest limit in particle size that can be probed by this technique. The BB-CRDS method will play a key role in reducing the uncertainty associated with atmospheric aerosol radiative forcing, which remains among the largest uncertainties in climate modelling.
Probing the pre-PN Mass Loss Histories in the PPN Dust Shells
NASA Astrophysics Data System (ADS)
Ueta, T.
2001-12-01
Proto-planetary nebulae (PPNs) are immediate progenitors of planetary nebulae (PNs) rapidly evolving over a relatively short time scale. Unlike the full-fledged PNs, the circumstellar dust shells of PPNs have neither been photo-ionized nor been swept up by fast winds. Since the PPN shells retain pristine fossil records of mass loss histories of these stars during the pre-PN phases, these dust shells provide ideal astronomical laboratories in which to investigate the origin of complex PN structures that we observe. We have conducted imaging surveys of the PPN shells in mid-infrared and optical wavelengths, probing the dust distribution directly via mid-infrared thermal dust emission arising from the shells and indirectly via dust-scattered stellar optical emission passing through the shells. From these surveys, we have found that (1) the PPN shells are intrinsically axisymmetric due to equatorially-enhanced superwind mass loss that occurred immediately before the beginning of the PPN phase, and (2) the variable degree of equatorial enhancement in the shells, which is probably related to the progenitor mass, has resulted in different optical depths and morphologies. To characterize the PPN shell geometries, we have developed and employed a 2.5 dimensional radiative transfer code that treats dust absorption, reemission, and an/isotropic scattering in any axisymmetric system illuminated by a central energy source. In the code, the dust optical properties are derived from the laboratory-measured refractive index using Mie theory allowing a distribution of sizes for each species in each composition layer in the shell. Our numerical analysis would be able to de-project and recover 3-D geometrical quantities, such as the pole-to-equator density ratio, from the observational data. These model calculations would provide constraining parameters for hydrodynamical models intended to generate equatorial enhancements during dust mass loss as well as initial parameters for magneto-hydrodynamical models aimed to reproduce highly complex PN morphologies.
Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission
Lakowicz, Joseph R.
2009-01-01
Metallic particles and surfaces display diverse and complex optical properties. Examples include the intense colors of noble metal colloids, surface plasmon resonance absorption by thin metal films, and quenching of excited fluorophores near the metal surfaces. Recently, the interactions of fluorophores with metallic particles and surfaces (metals) have been used to obtain increased fluorescence intensities, to develop assays based on fluorescence quenching by gold colloids, and to obtain directional radiation from fluorophores near thin metal films. For metal-enhanced fluorescence it is difficult to predict whether a particular metal structure, such as a colloid, fractal, or continuous surface, will quench or enhance fluorescence. In the present report we suggest how the effects of metals on fluorescence can be explained using a simple concept, based on radiating plasmons (RPs). The underlying physics may be complex but the concept is simple to understand. According to the RP model, the emission or quenching of a fluorophore near the metal can be predicted from the optical properties of the metal structures as calculated from electrodynamics, Mie theory, and/or Maxwell’s equations. For example, according to Mie theory and the size and shape of the particle, the extinction of metal colloids can be due to either absorption or scattering. Incident energy is dissipated by absorption. Far-field radiation is created by scattering. Based on our model small colloids are expected to quench fluorescence because absorption is dominant over scattering. Larger colloids are expected to enhance fluorescence because the scattering component is dominant over absorption. The ability of a metal’s surface to absorb or reflect light is due to wavenumber matching requirements at the metal–sample interface. Wavenumber matching considerations can also be used to predict whether fluorophores at a given distance from a continuous planar surface will be emitted or quenched. These considerations suggest that the so called “lossy surface waves” which quench fluorescence are due to induced electron oscillations which cannot radiate to the far-field because wavevector matching is not possible. We suggest that the energy from the fluorophores thought to be lost by lossy surface waves can be recovered as emission by adjustment of the sample to allow wavevector matching. The RP model provides a rational approach for designing fluorophore–metal configurations with the desired emissive properties and a basis for nanophotonic fluorophore technology. PMID:15691498
Methods for describing the electromagnetic properties of silver and gold nanoparticles.
Zhao, Jing; Pinchuk, Anatoliy O; McMahon, Jeffrey M; Li, Shuzhou; Ausman, Logan K; Atkinson, Ariel L; Schatz, George C
2008-12-01
This Account provides an overview of the methods that are currently being used to study the electromagnetics of silver and gold nanoparticles, with an emphasis on the determination of extinction and surface-enhanced Raman scattering (SERS) spectra. These methods have proven to be immensely useful in recent years for interpreting a wide range of nanoscience experiments and providing the capability to describe optical properties of particles up to several hundred nanometers in dimension, including arbitrary particle structures and complex dielectric environments (adsorbed layers of molecules, nearby metal films, and other particles). While some of the methods date back to Mie's celebrated work a century ago, others are still at the forefront of algorithm development in computational electromagnetics. This Account gives a qualitative description of the physical and mathematical basis behind the most commonly used methods, including both analytical and numerical methods, as well as representative results of applications that are relevant to current experiments. The analytical methods that we discuss are either derived from Mie theory for spheres or from the quasistatic (Gans) model as applied to spheres and spheroids. In this discussion, we describe the use of Mie theory to determine electromagnetic contributions to SERS enhancements that include for retarded dipole emission effects, and the use of the quasistatic approximation for spheroidal particles interacting with dye adsorbate layers. The numerical methods include the discrete dipole approximation (DDA), the finite difference time domain (FDTD) method, and the finite element method (FEM) based on Whitney forms. We discuss applications such as using DDA to describe the interaction of two gold disks to define electromagnetic hot spots, FDTD for light interacting with metal wires that go from particle-like plasmonic response to the film-like transmission as wire dimension is varied, and FEM studies of electromagnetic fields near cubic particles.
Optical extinction of highly porous aerosol following atmospheric freeze drying
NASA Astrophysics Data System (ADS)
Adler, Gabriela; Haspel, Carynelisa; Moise, Tamar; Rudich, Yinon
2014-06-01
Porous glassy particles are a potentially significant but unexplored component of atmospheric aerosol that can form by aerosol processing through the ice phase of high convective clouds. The optical properties of porous glassy aerosols formed from a freeze-dry cycle simulating freezing and sublimation of ice particles were measured using a cavity ring down aerosol spectrometer (CRD-AS) at 532 nm and 355 nm wavelength. The measured extinction efficiency was significantly reduced for porous organic and mixed organic-ammonium sulfate particles as compared to the extinction efficiency of the homogeneous aerosol of the same composition prior to the freeze-drying process. A number of theoretical approaches for modeling the optical extinction of porous aerosols were explored. These include effective medium approximations, extended effective medium approximations, multilayer concentric sphere models, Rayleigh-Debye-Gans theory, and the discrete dipole approximation. Though such approaches are commonly used to describe porous particles in astrophysical and atmospheric contexts, in the current study, these approaches predicted an even lower extinction than the measured one. Rather, the best representation of the measured extinction was obtained with an effective refractive index retrieved from a fit to Mie scattering theory assuming spherical particles with a fixed void content. The single-scattering albedo of the porous glassy aerosols was derived using this effective refractive index and was found to be lower than that of the corresponding homogeneous aerosol, indicating stronger relative absorption at the wavelengths measured. The reduced extinction and increased absorption may be of significance in assessing direct, indirect, and semidirect forcing in regions where porous aerosols are expected to be prevalent.
NASA Astrophysics Data System (ADS)
Liu, Jia; Zhang, Yongming; Zhang, Qixing; Wang, Jinjun
2018-03-01
The complete scattering matrix for cement dust was measured as a function of scattering angle from 5° to 160° at a wavelength of 532 nm, as a representative of mineral dust of anthropogenic origin in urban areas. Other related characteristics of cement dust, such as particle size distribution, chemical composition, refractive index, and micromorphology, were also analyzed. For this objective, a newly improved apparatus was built and calibrated using water droplets. Measurements of water droplets were in good agreement with Lorenz-Mie calculations. To facilitate the direct applicability of measurements for cement dust in radiative transfer calculation, the synthetic scattering matrix was computed and defined over the full scattering angle range from 0° to 180°. The scattering matrices for cement dust and typical natural mineral dusts were found to be similar in trends and angular behaviors. Angular distributions of all matrix elements were confined to rather limited domains. To promote the application of light-scattering matrix in atmospheric observation and remote sensing, discrimination methods for various atmospheric particulates (cement dust, soot, smolder smoke, and water droplets) based on the angular distributions of their scattering matrix elements are discussed. The ratio -F12/F11 proved to be the most effective discrimination method when a single matrix element is employed; aerosol identification can be achieved based on -F12/F11 values at 90° and 160°. Meanwhile, the combinations of -F12/F11 with F22/F11 (or (F11 - F22)/(F11 + F22)) or -F12/F11 with F44/F11 at 160° can be used when multiple matrix elements at the same scattering angle are selected.
Microscopy with spatial filtering for sorting particles and monitoring subcellular morphology
NASA Astrophysics Data System (ADS)
Zheng, Jing-Yi; Qian, Zhen; Pasternack, Robert M.; Boustany, Nada N.
2009-02-01
Optical scatter imaging (OSI) was developed to non-invasively track real-time changes in particle morphology with submicron sensitivity in situ without exogenous labeling, cell fixing, or organelle isolation. For spherical particles, the intensity ratio of wide-to-narrow angle scatter (OSIR, Optical Scatter Image Ratio) was shown to decrease monotonically with diameter and agree with Mie theory. In living cells, we recently reported this technique is able to detect mitochondrial morphological alterations, which were mediated by the Bcl-xL transmembrane domain, and could not be observed by fluorescence or differential interference contrast images. Here we further extend the ability of morphology assessment by adopting a digital micromirror device (DMD) for Fourier filtering. When placed in the Fourier plane the DMD can be used to select scattering intensities at desired combination of scattering angles. We designed an optical filter bank consisting of Gabor-like filters with various scales and rotations based on Gabor filters, which have been widely used for localization of spatial and frequency information in digital images and texture analysis. Using a model system consisting of mixtures of polystyrene spheres and bacteria, we show how this system can be used to sort particles on a microscopic slide based on their size, orientation and aspect ratio. We are currently applying this technique to characterize the morphology of subcellular organelles to help understand fundamental biological processes.
Small angle light scattering characterization of single micrometric particles in microfluidic flows
NASA Astrophysics Data System (ADS)
Dannhauser, David; Romeo, Giovanni; Causa, Filippo; Netti, Paolo A.
2013-04-01
A CCD-camera based small angle light scattering (SALS) apparatus has been used to characterize single micrometric particles flowing in a micro-channel. The measured scattering vector spans the range 2x10-2 - 6:8x101μm-1. The incident laser light is collimated to a spot of about 50 μm in diameter at the sample position with a divergence lower than 0.045 rad. Such small collimated laser beam opens the possibility to perform on-line SALS of micron-sized particles flowing in micro-channels. By properly designing the micro-channel and using a viscoelastic liquid as suspending medium we are able to realize a precise 3D focusing of the target particles. The forward scattering emitted from the particle is collected by a lens with high numerical aperture. At the focal point of that lens a homemade beam stop is blocking the incident light. Finally, a second lens maps the scattered light on the CCD sensor, allowing to obtain far field images on short distances. Measurements with mono-disperse polystyrene particles, both in quiescent and in-flow conditions have been realized. Experiments in-flow allow to measure the single particle scattering. Results are validated by comparison with calculations based on the Lorenz-Mie theory. The quality of the measured intensity profiles confirms the possibility to use our apparatus in real multiplex applications, with particles down to 1 μm in radius.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mourant, J.R.; Boyer, J.; Johnson, T.M.
1995-03-01
The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. In proceedings of earlier SPIE conferences we reported on clinical measurements in the bladder, and we report here on recent results of clinical tests in the gastrointestinal tract. With the OBS, tissue pathologies are detected/diagnosed using spectral measurements of the elastic optical transport properties (scattering and absorption) of the tissue over a wide range of wavelengths. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the factmore » that many tissue pathologies, including a majority of cancer forms, exhibit significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes m an optical signature that is derived from the wavelength-dependence of elastic scattering. Additionally, the optical geometry of the OBS beneficially enhances its sensitivity for measuring absorption bands. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope or catheter, or to direct surface examination, as well as interstitial needle insertion. Data acquistion/display time is <1 second.« less
An Accurate Analytic Approximation for Light Scattering by Non-absorbing Spherical Aerosol Particles
NASA Astrophysics Data System (ADS)
Lewis, E. R.
2017-12-01
The scattering of light by particles in the atmosphere is a ubiquitous and important phenomenon, with applications to numerous fields of science and technology. The problem of scattering of electromagnetic radiation by a uniform spherical particle can be solved by the method of Mie and Debye as a series of terms depending on the size parameter, x=2πr/λ, and the complex index of refraction, m. However, this solution does not provide insight into the dependence of the scattering on the radius of the particle, the wavelength, or the index of refraction, or how the scattering varies with relative humidity. Van de Hulst demonstrated that the scattering efficiency (the scattering cross section divided by the geometric cross section) of a non-absorbing sphere, over a wide range of particle sizes of atmospheric importance, depends not on x and m separately, but on the quantity 2x(m-1); this is the basis for the anomalous diffraction approximation. Here an analytic approximation for the scattering efficiency of a non-absorbing spherical particle is presented in terms of this new quantity that is accurate over a wide range of particle sizes of atmospheric importance and which readily displays the dependences of the scattering efficiency on particle radius, index of refraction, and wavelength. For an aerosol for which the particle size distribution is parameterized as a gamma function, this approximation also yields analytical results for the scattering coefficient and for the Ångström exponent, with the dependences of scattering properties on wavelength and index of refraction clearly displayed. This approximation provides insight into the dependence of light scattering properties on factors such as relative humidity, readily enables conversion of scattering from one index of refraction to another, and demonstrates the conditions under which the aerosol index (the product of the aerosol optical depth and the Ångström exponent) is a useful proxy for the number of cloud condensation nuclei.
Robert, B; Perrin, M-A; Coquerel, G; Céolin, R; Rietveld, I B
2016-03-01
The topological pressure-temperature phase diagram for the dimorphism of spiperone, a potent neuroleptic drug, has been constructed using literature data and improved crystal structures obtained with new crystallographic data from single-crystal X-ray diffraction at various temperatures. It is inferred that form II, which is the more dense form and exhibits the lower melting temperature, becomes the more stable phase under pressure. Under ambient conditions, form I is more stable. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
41 CFR 301-11.102 - What is the applicable M&IE rate?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false What is the applicable M... Lodgings-Plus Per Diem § 301-11.102 What is the applicable M&IE rate? For days of travel which Your applicable M&IE rate is Require lodging The M&IE rate applicable for the TDY location or stopover point. Do...
41 CFR 301-11.101 - What allowance will I be paid for M&IE?
Code of Federal Regulations, 2010 CFR
2010-07-01
... paid for M&IE? 301-11.101 Section 301-11.101 Public Contracts and Property Management Federal Travel... Lodgings-Plus Per Diem § 301-11.101 What allowance will I be paid for M&IE? (a) Except as provided in... allowance is More than 12 but less than 24 hours 75 percent of the applicable M&IE rate for each calendar...
41 CFR 301-11.101 - What allowance will I be paid for M&IE?
Code of Federal Regulations, 2011 CFR
2011-07-01
... paid for M&IE? 301-11.101 Section 301-11.101 Public Contracts and Property Management Federal Travel... Lodgings-Plus Per Diem § 301-11.101 What allowance will I be paid for M&IE? (a) Except as provided in... allowance is More than 12 but less than 24 hours 75 percent of the applicable M&IE rate for each calendar...
Opal-like Multicolor Appearance of Self-Assembled Photonic Array.
Arnon, Zohar A; Pinotsi, Dorothea; Schmidt, Matthias; Gilead, Sharon; Guterman, Tom; Sadhanala, Aditya; Ahmad, Shahab; Levin, Aviad; Walther, Paul; Kaminski, Clemens F; Fändrich, Marcus; Kaminski Schierle, Gabriele S; Adler-Abramovich, Lihi; Shimon, Linda J W; Gazit, Ehud
2018-06-20
Molecular self-assembly of short peptide building blocks leads to the formation of various material architectures that may possess unique physical properties. Recent studies had confirmed the key role of biaromaticity in peptide self-assembly, with the diphenylalanine (FF) structural family as an archetypal model. Another significant direction in the molecular engineering of peptide building blocks is the use of fluorenylmethoxycarbonyl (Fmoc) modification, which promotes the assembly process and may result in nanostructures with distinctive features and macroscopic hydrogel with supramolecular features and nanoscale order. Here, we explored the self-assembly of the protected, noncoded fluorenylmethoxycarbonyl-β,β-diphenyl-Ala-OH (Fmoc-Dip) amino acid. This process results in the formation of elongated needle-like crystals with notable aromatic continuity. By altering the assembly conditions, arrays of spherical particles were formed that exhibit strong light scattering. These arrays display vivid coloration, strongly resembling the appearance of opal gemstones. However, unlike the Rayleigh scattering effect produced by the arrangement of opal, the described optical phenomenon is attributed to Mie scattering. Moreover, by controlling the solution evaporation rate, i.e., the assembly kinetics, we were able to manipulate the resulting coloration. This work demonstrates a bottom-up approach, utilizing self-assembly of a protected amino acid minimal building block, to create arrays of organic, light-scattering colorful surfaces.
Plasmonically Enhanced Reflectance of Heat Radiation from Low-Bandgap Semiconductor Microinclusions.
Tang, Janika; Thakore, Vaibhav; Ala-Nissila, Tapio
2017-07-18
Increased reflectance from the inclusion of highly scattering particles at low volume fractions in an insulating dielectric offers a promising way to reduce radiative thermal losses at high temperatures. Here, we investigate plasmonic resonance driven enhanced scattering from microinclusions of low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating composite to tailor its infrared reflectance for minimizing thermal losses from radiative transfer. To this end, we compute the spectral properties of the microcomposites using Monte Carlo modeling and compare them with results from Fresnel equations. The role of particle size-dependent Mie scattering and absorption efficiencies, and, scattering anisotropy are studied to identify the optimal microinclusion size and material parameters for maximizing the reflectance of the thermal radiation. For composites with Si and Ge microinclusions we obtain reflectance efficiencies of 57-65% for the incident blackbody radiation from sources at temperatures in the range 400-1600 °C. Furthermore, we observe a broadbanding of the reflectance spectra from the plasmonic resonances due to charge carriers generated from defect states within the semiconductor bandgap. Our results thus open up the possibility of developing efficient high-temperature thermal insulators through use of the low-bandgap semiconductor microinclusions in insulating dielectrics.
Optical Properties of Ice Particles in Young Contrails
NASA Technical Reports Server (NTRS)
Hong, Gang; Feng, Qian; Yang, Ping; Kattawar, George; Minnis, Patrick; Hu, Yong X.
2008-01-01
The single-scattering properties of four types of ice crystals (pure ice crystals, ice crystals with an internal mixture of ice and black carbon, ice crystals coated with black carbon, and soot coated with ice) in young contrails are investigated at wavelengths 0.65 and 2.13 micrometers using Mie codes from coated spheres. The four types of ice crystals have distinct differences in their single-scattering properties because of the embedded black carbon. The bulk scattering properties of young contrails consisting of the four types of ice crystals are further investigated by averaging their single-scattering properties over a typical ice particle size distribution found in young contrails. The effect of the radiative properties of the four types of ice particles on the Stokes parameters I, Q, U, and V is also investigated for different viewing zenith angles and relative azimuth angles with a solar zenith angle of 30 degrees using a vector radiative transfer model based on the adding-doubling technique. The Stokes parameters at a wavelength of 0.65 micrometers show pronounced differences for the four types of ice crystals. Those at a wavelength of 2.13 micrometers show similar variations with the viewing zenith angle and relative azimuth angle, but their values are noticeably different.
NASA Astrophysics Data System (ADS)
Yang, YuFeng; Li, Ting
2018-02-01
The study of the relationship between transmittance visibility and PM2.5 concentration under the haze conditions has important theoretical significance for Free Space Optical communication (FSO). In this paper, the influence of PM2.5 concentration on the transmittance, attenuation coefficient and visibility was studied by light scattering theory, and the results by Mie theory and Monte Carlo method were analyzed. At the same time, the effect of PM2.5 particle size distribution on visibility was also analyzed, and the visibility calculated by light scattering method was compared with the visibility measured in Beijing from 2014 to 2016. The result shows that the higher PM2.5 concentration is the more obvious the multiple scattering effect is. When the mass concentration of PM2.5 is constant, the larger the geometric mean of the particle diameter is, the larger the visibility is. By comparing the visibility measured and the visibility calculated, we can see that when PM2.5 concentration is higher than 100μg/m3 , PM2.5 is the main factor affecting the visibility; and when PM2.5 concentration is lower than 100μg/m3, other factors (such as PM10, wind speed, air pressure and gas molecules) should also need to be considered.
NASA Astrophysics Data System (ADS)
Genty-Vincent, Anaïs; Van Song, Théo Phan; Andraud, Christine; Menu, Michel
2017-07-01
Blanching of easel oil paintings is a recurring alteration that can affect the varnish layer and also the paint layer itself, and strongly alter the visual appearance. Our examinations by field emission gun scanning electron microscopy (FEG-SEM) of altered and unaltered samples revealed the presence of spherical pores in the altered layers, with a pore size ranging from few nanometers to few micrometers. The aim of the present study is to corroborate that the visual appearance modification can be explained by light scattering theories (Mie or Rayleigh depending on the pore size of the considered layer). The four-flux model was used to resolve the radiative transfer equation (RTE) and model the light scattering in porous varnish layers as well as in porous green earth and raw umber oil paint layers. It enables to highlight that the pore size has an important impact on the visual appearance of the altered layer (color and opacity modification). The pore concentration and the thickness of the altered part affect, however, only the opacity. This work points out that the blanching of easel oil paintings is due to light scattering by the pores, which is an important result toward the proposal of adapted and durable future conservation treatments.
Active imaging with the aids of polarization retrieve in turbid media system
NASA Astrophysics Data System (ADS)
Tao, Qiangqiang; Sun, Yongxuan; Shen, Fei; Xu, Qiang; Gao, Jun; Guo, Zhongyi
2016-01-01
We propose a novel active imaging based on the polarization retrieve (PR) method in turbid media system. In our simulations, the Monte Carlo (MC) algorithm has been used to investigate the scattering process between the incident photons and the scattering particles, and the visually concordant object but with different polarization characteristics in different regions, has been selected as the original target that is placed in the turbid media. Under linearly and circularly polarized illuminations, the simulation results demonstrate that the corresponding polarization properties can provide additional information for the imaging, and the contrast of the polarization image can also be enhanced greatly compared to the simplex intensity image in the turbid media. Besides, the polarization image adjusted by the PR method can further enhance the visibility and contrast. In addition, by PR imaging method, with the increasing particles' size in Mie's scale, the visibility can be enhanced, because of the increased forward scattering effect. In general, in the same circumstance, the circular polarization images can offer a better contrast and visibility than that of linear ones. The results indicate that the PR imaging method is more applicable to the scattering media system with relatively larger particles such as aerosols, heavy fog, cumulus, and seawater, as well as to biological tissues and blood media.
NASA Astrophysics Data System (ADS)
Boness, D. A.; Terrell-Martinez, B.
2010-12-01
As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.
NASA Astrophysics Data System (ADS)
Chen, Yi-Chun; Jiang, Chong-Jhih; Yang, Tsung-Hsun; Sun, Ching-Cherng
2012-07-01
A biometry-based human eye model was developed by using the empirical anatomic and optical data of ocular parameters. The gradient refractive index of the crystalline lens was modeled by concentric conicoid isoindical surfaces and was adaptive to accommodation and age. The chromatic dispersion of ocular media was described by Cauchy equations. The intraocular scattering model was composed of volumetric Mie scattering in the cornea and the crystalline lens, and a diffusive-surface model at the retina fundus. The retina was regarded as a Lambertian surface and was assigned its corresponding reflectance at each wavelength. The optical performance of the eye model was evaluated in CodeV and ASAP and presented by the modulation transfer functions at single and multiple wavelengths. The chromatic optical powers obtained from this model resembled that of the average physiological eyes. The scattering property was assessed by means of glare veiling luminance and compared with the CIE general disability glare equation. By replacing the transparent lens with a cataractous lens, the disability glare curve of cataracts was generated to compare with the normal disability glare curve. This model has high potential for investigating visual performance in ordinary lighting and display conditions and under the influence of glare sources.
Modeling thermal infrared (2-14 micrometer) reflectance spectra of frost and snow
NASA Technical Reports Server (NTRS)
Wald, Andrew E.
1994-01-01
Existing theories of radiative transfer in close-packed media assume that each particle scatters independently of its neighbors. For opaque particles, such as are common in the thermal infrared, this assumption is not valid, and these radiative transfer theories will not be accurate. A new method is proposed, called 'diffraction subtraction', which modifies the scattering cross section of close-packed large, opaque spheres to account for the effect of close packing on the diffraction cross section of a scattering particle. This method predicts the thermal infrared reflectance of coarse (greater than 50 micrometers radius), disaggregated granular snow. However, such coarse snow is typically old and metamorphosed, with adjacent grains welded together. The reflectance of such a welded block can be described as partly Fresnel in nature and cannot be predicted using Mie inputs to radiative transfer theory. Owing to the high absorption coefficient of ice in the thermal infrared, a rough surface reflectance model can be used to calculate reflectance from such a block. For very small (less than 50 micrometers), disaggregated particles, it is incorrect in principle to treat diffraction independently of reflection and refraction, and the theory fails. However, for particles larger than 50 micrometers, independent scattering is a valid assumption, and standard radiative transfer theory works.
Polarized radiative transfer considering thermal emission in semitransparent media
NASA Astrophysics Data System (ADS)
Ben, Xun; Yi, Hong-Liang; Tan, He-Ping
2014-09-01
The characteristics of the polarization must be considered for a complete and correct description of radiation transfer in a scattering medium. Observing and identifying the polarizition characteristics of the thermal emission of a hot semitransparent medium have a major significance to analyze the optical responses of the medium for different temperatures. In this paper, a Monte Carlo method is developed for polarzied radiative transfer in a semitransparent medium. There are mainly two kinds of mechanisms leading to polarization of light: specular reflection on the Fresnel boundary and scattering by particles. The determination of scattering direction is the key to solve polarized radiative transfer problem using the Monte Carlo method. An optimized rejection method is used to calculate the scattering angles. In the model, the treatment of specular reflection is also considered, and in the process of tracing photons, the normalization must be applied to the Stokes vector when scattering, reflection, or transmission occurs. The vector radiative transfer matrix (VRTM) is defined and solved using Monte Carlo strategy, by which all four Stokes elements can be determined. Our results for Rayleigh scattering and Mie scattering are compared well with published data. The accuracy of the developed Monte Carlo method is shown to be good enough for the solution to vector radiative transfer. Polarization characteristics of thermal emission in a hot semitransparent medium is investigated, and results show that the U and V parameters of Stokes vector are equal to zero, an obvious peak always appear in the Q curve instead of the I curve, and refractive index has a completely different effect on I from Q.
NASA Technical Reports Server (NTRS)
Otugen, M. Volkan
1997-01-01
Non-intrusive techniques for the dynamic measurement of gas flow properties such as density, temperature and velocity, are needed in the research leading to the development of new generation high-speed aircraft. Accurate velocity, temperature and density data obtained in ground testing and in-flight measurements can help understand the flow physics leading to transition and turbulence in supersonic, high-altitude flight. Such non-intrusive measurement techniques can also be used to study combustion processes of hydrocarbon fuels in aircraft engines. Reliable, time and space resolved temperature measurements in various combustor configurations can lead to a better understanding of high temperature chemical reaction dynamics thus leading to improved modeling and better prediction of such flows. In view of this, a research program was initiated at Polytechnic University's Aerodynamics Laboratory with support from NASA Lewis Research Center through grants NAG3-1301 and NAG3-1690. The overall objective of this program has been to develop laser-based, non-contact, space- and time-resolved temperature and velocity measurement techniques. In the initial phase of the program a ND:YAG laser-based dual-line Rayleigh scattering technique was developed and tested for the accurate measurement of gas temperature in the presence of background laser glare. Effort was next directed towards the development of a filtered, spectrally-resolved Rayleigh/Mie scattering technique with the objective of developing an interferometric method for time-frozen velocity measurements in high-speed flows utilizing the uv line of an ND:YAG laser and an appropriate molecular absorption filter. This effort included both a search for an appropriate filter material for the 266 nm laser line and the development and testing of several image processing techniques for the fast processing of Fabry-Perot images for velocity and temperature information. Finally, work was also carried out for the development of a new laser-based strain-rate and vorticity technique for the time-resolved measurement of vorticity and strain-rates in turbulent flows.
Excitation of resonances of microspheres on an optical fiber.
Serpengüzel, A; Arnold, S; Griffel, G
1995-04-01
Morphology-dependent resonances (MDR's) of solid microspheres are excited by using an optical fiber coupler. The narrowest measured MDR linewidths are limited by the excitation laser linewidth (<0.025 nm). Only MDR's, with an on-resonance to off-resonance intensity ratio of 10(4), contribute to scattering. The intensity of various resonance orders is understood by the localization principle and the recently developed generalized Lorentz-Mie theory. The microsphere fiber system has potential for becoming a building block in dispersive microphotonics. The basic physics underlying our approach may be considered a harbinger for the coupling of active photonic microstructures such as microdisk lasers.
The wavelength dependent model of extinction in fog and haze for free space optical communication.
Grabner, Martin; Kvicera, Vaclav
2011-02-14
The wavelength dependence of the extinction coefficient in fog and haze is investigated using Mie single scattering theory. It is shown that the effective radius of drop size distribution determines the slope of the log-log dependence of the extinction on wavelengths in the interval between 0.2 and 2 microns. The relation between the atmospheric visibility and the effective radius is derived from the empirical relationship of liquid water content and extinction. Based on these results, the model of the relationship between visibility and the extinction coefficient with different effective radii for fog and for haze conditions is proposed.
Single Point vs. Mapping Approach for Spectral Cytopathology (SCP)
Schubert, Jennifer M.; Mazur, Antonella I.; Bird, Benjamin; Miljković, Miloš; Diem, Max
2011-01-01
In this paper we describe the advantages of collecting infrared microspectral data in imaging mode opposed to point mode. Imaging data are processed using the PapMap algorithm, which co-adds pixel spectra that have been scrutinized for R-Mie scattering effects as well as other constraints. The signal-to-noise quality of PapMap spectra will be compared to point spectra for oral mucosa cells deposited onto low-e slides. Also the effects of software atmospheric correction will be discussed. Combined with the PapMap algorithm, data collection in imaging mode proves to be a superior method for spectral cytopathology. PMID:20449833
NASA Technical Reports Server (NTRS)
Tratt, David M.; Menzies, Robert T.
1995-01-01
The evolution of the volcanic debris plume originating from the June 1991 eruption of Mt. Pinatubo has been monitored since its genesis using a ground-based backscatter lidar facility sited at the Jet Propulsion Laboratory (JPL). Both absolute and relative pre- and post-Pinatubo backscatter observations are in accord with Mie scattering projections based on measured aerosol particle size distributions reported in the literature. The post-Pinatubo column-integrated backscatter coefficient peaked approximately 400 days after the eruption, and the observed upper boundary of the aerosol column subsided at a rate of approximately 200 m/mon.
Morphology-Dependent Resonances of Spherical Droplets with Numerous Microscopic Inclusions
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.
2014-01-01
We use the recently extended superposition T-matrix method to study the behavior of a sharp Lorenz-Mie resonance upon filling a spherical micrometer-sized droplet with tens and hundreds of randomly positioned microscopic inclusions. We show that as the number of inclusions increases, the extinction cross-section peak and the sharp asymmetry-parameter minimum become suppressed, widen, and move toward smaller droplet size parameters, while ratios of diagonal elements of the scattering matrix exhibit sharp angular features indicative of a distinctly nonspherical particle. Our results highlight the limitedness of the concept of an effective refractive index of an inhomogeneous spherical particle.
Manipulation of metal-dielectric core-shell particles in optical fields
NASA Astrophysics Data System (ADS)
Chvátal, Lukáš; Šiler, Martin; Zemánek, Pavel
2014-12-01
Metal-dielectric core-shell particles represent promising tools in nanoplasmonics. In combination with optical tweezers they can be manipulated in a contactless way through fluid and their plasmonic properties can be used to probe or modify the local environment. We perform a numerical parametric study to find the particle geometry and material parameters under which such particle can be stably confined in optical tweezers. We use the theory based on Mie scattering in the focal field of an ideal water immersion objective of numerical aperture NA=1.2. For very thin metal layers we find that strong trapping on the optical axis can be achieved.
Development of a diffraction imaging flow cytometer
Jacobs, Kenneth M.; Lu, Jun Q.
2013-01-01
Diffraction images record angle-resolved distribution of scattered light from a particle excited by coherent light and can correlate highly with the 3D morphology of a particle. We present a jet-in-fluid design of flow chamber for acquisition of clear diffraction images in a laminar flow. Diffraction images of polystyrene spheres of different diameters were acquired and found to correlate highly with the calculated ones based on the Mie theory. Fast Fourier transform analysis indicated that the measured images can be used to extract sphere diameter values. These results demonstrate the significant potentials of high-throughput diffraction imaging flow cytometry for extracting 3D morphological features of cells. PMID:19794790
Mangifera indica L. extract attenuates glutamate-induced neurotoxicity on rat cortical neurons.
Lemus-Molina, Yeny; Sánchez-Gómez, Maria Victoria; Delgado-Hernández, René; Matute, Carlos
2009-11-01
Overstimulation of ionotropic glutamate receptors causes excitotoxic neuronal death contributing to neurodegenerative disorders. Massive influx of calcium in excitotoxicity provokes alterations in the membrane potential of mitochondria and increases the production of reactive oxygen species. Here we report that Mangifera indica L. extracts (MiE) prevent glutamate-induced excitotoxicity in primary cultured neurons of the rat cerebral cortex. To evaluate the effects of MiE on excitotoxicity, cells were stimulated with L-glutamic acid (50 microM; 10 min) alone or in the presence of MiE. Maximal protection (56%) was obtained with 2.5 microg/mL of MiE. In turn, we measured the effects of MiE on excitotoxic-induced oxidative stress and mitochondrial depolarization by fluorimetry using 5,6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and tetramethylrhodamine, respectively. Both parameters were effectively reduced by MiE at concentrations which showed neuroprotection. Mangiferin, an antioxidant polyphenol which is a major component of MiE, was also effective in preventing neuronal death, oxidative stress and mitochondrial depolarization. Maximal protection (64%) was obtained at 12.5 microg/mL of mangiferin which also attenuated oxidative stress and mitochondrial depolarization at the neuroprotective concentrations. Together, these results indicate that MiE is an efficient neuroprotector of excitotoxic neuronal death, indicates that mangiferin carries a substantial part of the antioxidant and neuroprotective activity of MiE, and that this natural extract has therapeutic potential to treat neurodegenerative disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bigio, I.J.; Boyer, J.; Johnson, T.M.
1994-10-01
The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. Our clinical studies have expanded since the last Biomedical Optics Europe conference (Budapest, September 1993), and we report here on the latest results of clinical tests in gastrointestinal tract. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the factmore » that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength-dependence of elastic scattering. The OBS employs a small fiberoptic probe that is amenable to use with any endoscope or catheter, or to direct surface examination. The probe is designed to be used in optical contact with the tissue under examination and has separate illuminating and collecting fibers. Thus, the light that is collected and transmitted to the analyzing spectrometer must first scatter through a small volume of the tissue before entering the collection fiber(s). Consequently, the system is also sensitive to the optical absorption spectrum of the tissue, over an effective operating range of <300 to 950 nm, and such absorption adds valuable complexity to the scattering spectral signature.« less
Meier, Jeffery L; Keller, Michael J; McCoy, James J
2002-01-01
We have shown previously that the human cytomegalovirus (HCMV) major immediate-early (MIE) distal enhancer is needed for MIE promoter-dependent transcription and viral replication at low multiplicities of infection (MOI). To understand how this region works, we constructed and analyzed a series of HCMVs with various distal enhancer mutations. We show that the distal enhancer is composed of at least two parts that function independently to coordinately activate MIE promoter-dependent transcription and viral replication. One such part is contained in a 47-bp segment that has consensus binding sites for CREB/ATF, SP1, and YY1. At low MOI, these working parts likely function in cis to directly activate MIE gene expression, thus allowing viral replication to ensue. Three findings support the view that these working parts are likely cis-acting elements. (i) Deletion of either part of a bisegmented distal enhancer only slightly alters MIE gene transcription and viral replication. (ii) Reversing the distal enhancer's orientation largely preserves MIE gene transcription and viral replication. (iii) Placement of stop codons at -300 or -345 in all reading frames does not impair MIE gene transcription and viral replication. Lastly, we show that these working parts are dispensable at high MOI, partly because of compensatory stimulation of MIE promoter activity and viral replication that is induced by a virion-associated component(s) present at a high viral particle/cell ratio. We conclude that the distal enhancer is a complex multicomponent cis-acting region that is required to augment both MIE promoter-dependent transcription and HCMV replication.
Extinction efficiencies from DDA calculations solved for finite circular cylinders and disks
NASA Technical Reports Server (NTRS)
Withrow, J. R.; Cox, S. K.
1993-01-01
One of the most commonly noted uncertainties with respect to the modeling of cirrus clouds and their effect upon the planetary radiation balance is the disputed validity of the use of Mie scattering results as an approximation to the scattering results of the hexagonal plates and columns found in cirrus clouds. This approximation has historically been a kind of default, a result of the lack of an appropriate analytical solution of Maxwell's equations to particles other than infinite cylinders and spheroids. Recently, however, the use of such approximate techniques as the Discrete Dipole Approximation has made scattering solutions on such particles a computationally intensive but feasible possibility. In this study, the Discrete Dipole Approximation (DDA) developed by Flatau (1992) is used to find such solutions for homogeneous, circular cylinders and disks. This can serve to not only assess the validity of the current radiative transfer schemes which are available for the study of cirrus but also to extend the current approximation of equivalent spheres to an approximation of second order, homogeneous finite circular cylinders and disks. The results will be presented in the form of a single variable, the extinction efficiency.
NASA Astrophysics Data System (ADS)
Derkachov, G.; Jakubczyk, T.; Jakubczyk, D.; Archer, J.; Woźniak, M.
2017-07-01
Utilising Compute Unified Device Architecture (CUDA) platform for Graphics Processing Units (GPUs) enables significant reduction of computation time at a moderate cost, by means of parallel computing. In the paper [Jakubczyk et al., Opto-Electron. Rev., 2016] we reported using GPU for Mie scattering inverse problem solving (up to 800-fold speed-up). Here we report the development of two subroutines utilising GPU at data preprocessing stages for the inversion procedure: (i) A subroutine, based on ray tracing, for finding spherical aberration correction function. (ii) A subroutine performing the conversion of an image to a 1D distribution of light intensity versus azimuth angle (i.e. scattering diagram), fed from a movie-reading CPU subroutine running in parallel. All subroutines are incorporated in PikeReader application, which we make available on GitHub repository. PikeReader returns a sequence of intensity distributions versus a common azimuth angle vector, corresponding to the recorded movie. We obtained an overall ∼ 400 -fold speed-up of calculations at data preprocessing stages using CUDA codes running on GPU in comparison to single thread MATLAB-only code running on CPU.
Raman Gas Species Measurements in Hydrocarbon-Fueled Rocket Engine Injector Flows
NASA Technical Reports Server (NTRS)
Wehrmeyer, Joseph; Hartfield, Roy J., Jr.; Trinh, Huu P.; Dobson, Chris C.; Eskridge, Richard H.
2000-01-01
Rocket engine propellent injector development at NASA-Marshall includes experimental analysis using optical techniques, such as Raman, fluorescence, or Mie scattering. For the application of spontaneous Raman scattering to hydrocarbon-fueled flows a technique needs to be developed to remove the interfering polycyclic aromatic hydrocarbon fluorescence from the relatively weak Raman signals. A current application of such a technique is to the analysis of the mixing and combustion performance of multijet, impinging-jet candidate fuel injectors for the baseline Mars ascent engine, which will burn methane and liquid oxygen produced in-situ on Mars to reduce the propellent mass transported to Mars for future manned Mars missions. The Raman technique takes advantage of the strongly polarized nature of Raman scattering. It is shown to be discernable from unpolarized fluorescence interference by subtracting one polarized image from another. Both of these polarized images are obtained from a single laser pulse by using a polarization-separating calcite rhomb mounted in the imaging spectrograph. A demonstration in a propane-air flame is presented, as well as a high pressure demonstration in the NASA-Marshall Modular Combustion Test Artice, using the liquid methane-liquid oxygen propellant system
Applying Aggregate Exposure Pathway and Adverse Outcome ...
Hazard assessment for nanomaterials often involves applying in vitro dose-response data to estimate potential health risks that arise from exposure to products that contain nanomaterials. However, much uncertainty is inherent in relating bioactivities observed in an in vitro system to the perturbations of biological mechanisms that lead to apical adverse health outcomes in living organisms. The Adverse Outcome Pathway (AOP) framework addresses this uncertainty by acting as a scaffold onto which in vitro toxicity testing and other data can be arranged to aid in the interpretation of these results in terms of biologically-relevant responses, as an AOP connects an upstream molecular initiating event (MIE) to a downstream adverse outcome. In addition to hazard assessment, risk estimation also requires reconciling in vitro concentrations sufficient to produce bioactivity with in vivo concentrations that can trigger a MIE at the relevant biological target. Such target site exposures (TSEs) can be estimated by integrating pharmacokinetic considerations with environmental and exposure factors. Environmental and exposure data have been historically scattered in various resources, such as monitoring data for air pollutants or exposure models for specific chemicals. The Aggregate Exposure Pathway (AEP) framework is introduced to organize existing knowledge concerning biologically, chemically, and physically plausible, as well as empirically supported, links between the i
NASA Astrophysics Data System (ADS)
Chao, Guo-Shan; Sung, Kung-Bin
2010-02-01
Backscattered light spectra have been used to extract size distribution of cell nuclei in epithelial tissues for noninvasive detection of precancerous lesions. In existing experimental studies, size estimation is achieved by assuming nuclei as homogeneous spheres or spheroids and fitting the measured data with models based on Mie theory. However, the validity of simplifying nuclei as homogeneous spheres has not been thoroughly examined. In this study, we investigate the spectral characteristics of backscattering from models of spheroidal nuclei under plane wave illumination using three-dimensional finite-difference time-domain (FDTD) simulation. A modulated Gaussian pulse is used to obtain wavelength dependent scattering intensity with a single FDTD run. The simulated model of nuclei consists of a nucleolus and randomly distributed chromatin condensation in homogeneous cytoplasm and nucleoplasm. The results show that backscattering spectra from spheroidal nuclei have similar oscillating patterns to those from homogeneous spheres with the diameter equal to the projective length of the spheroidal nucleus along the propagation direction. The strength of backscattering is enhanced in heterogeneous spheroids as compared to homogeneous spheroids. The degree of which backscattering spectra of heterogeneous nuclei deviate from Mie theory is highly dependent on the distribution of chromatin/nucleolus but not sensitive to nucleolar size, refractive index fluctuation or chromatin density.
NASA Astrophysics Data System (ADS)
Bai, J.; Wu, Z. S.; Ge, C. X.; Li, Z. J.; Qu, T.; Shang, Q. C.
2018-07-01
Based on the generalized multi-particle Mie equation (GMM) and Electromagnetic Momentum (EM) theory, the lateral binding force (BF) exerted on bi-sphere induced by an arbitrary polarized high-order Bessel beam (HOBB) is investigated with particular emphasis on the half-conical angle of the wave number components and the order (or topological charge) of the beam. The illuminating HOBB with arbitrary polarization angle is described in terms of beam shape coefficients (BSCs) within the framework of generalized Lorenz-Mie theories (GLMT). Utilizing the vector addition theorem of the spherical vector wave functions (SVWFs), the interactive scattering coefficients are derived through the continuous boundary conditions on which the interaction of the bi-sphere is considered. Numerical effects of various parameters such as beam polarization angles, incident wavelengths, particle sizes, material losses and the refractive index, including the cases of weak, moderate, and strong than the surrounding medium are numerically analyzed in detail. The observed dependence of the separation of optically bound particles on the incidence of HOBB is in agreement with earlier theoretical prediction. Accurate investigation of BF induced by HOBB could provide an effective test for further research on BF between more complex particles, which plays an important role in using optical manipulation on particle self-assembly.
Morally injurious experiences and meaning in Salvadorian teachers exposed to violence.
Currier, Joseph M; Holland, Jason M; Rojas-Flores, Lisseth; Herrera, Sofia; Foy, David
2015-01-01
Helping professionals working to alleviate the effects of violence and injustice can confront morally injurious experiences (MIE) that violate deeply held moral values/beliefs, placing them at risk for burnout and trauma-related problems (e.g., posttraumatic stress disorder [PTSD]). Focusing on 257 teachers from educational departments throughout El Salvador, we incorporated structural equation modeling (SEM) to examine (1) whether exposure to MIEs for this population (e.g., betrayal, witnessing harm to an innocent student) are directly linked with higher PTSD symptomatology and work-related burnout and (2) whether MIEs contribute to these outcomes via meaning made of trauma. SEM results revealed that MIEs were in fact uniquely linked with PTSD symptoms and burnout, above and beyond rates of direct victimization and demographic factors. In addition, greater MIEs were indirectly linked with study outcomes via the extent to which teachers were able to make meaning of their identified stressors. These findings support the importance of screening for MIEs among helping professionals and also suggest that meaning making could serve as a central mediating factor for how MIEs contribute to trauma-related problems among persons working to promote peace and justice in the world. (c) 2015 APA, all rights reserved).
Laser guidance of mesoscale particles
NASA Astrophysics Data System (ADS)
Underdown, Frank Hartman, Jr.
Mesoscale particles are guided and trapped in hollow optical fibers using radiation pressure forces. Laser light from a 0.4W, 780nm diode laser is guided in a low- loss fiber mode and used to generate the guidance forces. Laser scattering and absorption forces propels particles along the fiber and polarization gradient forces attract them to the fiber's axial center. Using two counter propagating laser beams, inside the fiber, particles can be trapped in three dimensions. Measuring the spring constant of the trap gives the gradient force. This dissertation describes Rayleigh and Mie scattering models for calculating guidance forces. Calculated forces as a function of particle size and composition (i.e. dielectric, semiconductor, and metals) will be presented. For example, under typical experimental conditions 100nm Au particles are guided by a 2 × 10-14 N propulsive force in a water filled fiber. In comparison, the measured force, obtained from the particle's velocity and Stokes' law, is 7.98 × 10-14 N.
O Some Theoretical Studies and Applications of Light Scattering by Small Particles
NASA Astrophysics Data System (ADS)
Zhan, Jiyu
1992-01-01
A theoretical study of the interference structure of the Mie extinction cross section Q_{ rm ext} is presented. For real refractive indices m < 2.5 the dominant term of Q _{rm ext} has an x dependence of the form sin^2 ((m - 1)x), leading to the periodicity of Deltax = pi/(m - 1). At m > 2.5 the Q _{rm ext} curve does not have a simple periodic structure. Analytical expression for absorption and scattering coefficients of polydispersion of hexagonal plates, that are used to model fluffy snow flakes, are derived by the anomalous diffraction approximation (ADA). The results are within 12% accuracy when compared to the calculations of the superposition of dipoles method. A method for measuring the real part of the refractive indices of phytoplankton, bacteria or other particulate material suspended in seawater is developed based on the ADA. The accuracy in determining the real part of the refractive index is around 0.005.
NASA Astrophysics Data System (ADS)
Sanattalab, Ehsan; SalmanOgli, Ahmad; Piskin, Erhan
2016-04-01
We investigated the tumor-targeted nanoparticles that influence heat generation. We suppose that all nanoparticles are fully functionalized and can find the target using active targeting methods. Unlike the commonly used methods, such as chemotherapy and radiotherapy, the treatment procedure proposed in this study is purely noninvasive, which is considered to be a significant merit. It is found that the localized heat generation due to targeted nanoparticles is significantly higher than other areas. By engineering the optical properties of nanoparticles, including scattering, absorption coefficients, and asymmetry factor (cosine scattering angle), the heat generated in the tumor's area reaches to such critical state that can burn the targeted tumor. The amount of heat generated by inserting smart agents, due to the surface Plasmon resonance, will be remarkably high. The light-matter interactions and trajectory of incident photon upon targeted tissues are simulated by MIE theory and Monte Carlo method, respectively. Monte Carlo method is a statistical one by which we can accurately probe the photon trajectories into a simulation area.
NASA Astrophysics Data System (ADS)
Huang, Xiaohua; El-Sayed, Ivan H.; El-Sayed, Mostafa A.
2005-08-01
Gold nanoparticles with unique optical properties offer useful applications in biotechnology. In this article two applications that we have developed are summarized, in one they are used in cancer cell diagnostics and in the other they are found to have catalytic property for the NADH oxidation reaction which is important in ATP formations. By conjugation with anti-EGFR antibodies which specifically target EGFR that are usually overexpressed on most cancer cells, gold nanoparticles are used as a molecular contrast agent for cancer cell diagnostics using their both strong surface plasmon absorption and efficient Mie scattering properties. Au nanoparticles are also good catalysts for many reactions due to their high surface to volume ratio. Au nanoparticles are found to be the catalyst for the NADH oxidation reaction. This was studied by monitoring the effect of the nanoparticles on NADH fluorescence intensity and lifetime as well as the change of the surface plasmon absorption band during the reaction.
Acoustic Interaction Forces and Torques Acting on Suspended Spheres in an Ideal Fluid.
Lopes, J Henrique; Azarpeyvand, Mahdi; Silva, Glauber T
2016-01-01
In this paper, the acoustic interaction forces and torques exerted by an arbitrary time-harmonic wave on a set of N objects suspended in an inviscid fluid are theoretically analyzed. We utilize the partial-wave expansion method with translational addition theorem and re-expansion of multipole series to solve the related multiple scattering problem. We show that the acoustic interaction force and torque can be obtained using the farfield radiation force and torque formulas. To exemplify the method, we calculate the interaction forces exerted by an external traveling and standing plane wave on an arrangement of two and three olive-oil droplets in water. The droplets' radii are comparable to the wavelength (i.e., Mie scattering regime). The results show that the acoustic interaction forces present an oscillatory spatial distribution which follows the pattern formed by interference between the external and rescattered waves. In addition, acoustic interaction torques arise on the absorbing droplets whenever a nonsymmetric wavefront is formed by the external and rescattered waves' interference.
NASA Astrophysics Data System (ADS)
Penttilä, Antti; Maconi, Göran; Kassamakov, Ivan; Gritsevich, Maria; Hæggström, Edward; Muinonen, Karri
2017-04-01
We describe a setup for measuring the full angular Mueller matrix profile of a single mm- to µm-size sample, and verify the experimental results against a theoretical model. The scatterometer has a fixed or levitating sample, illuminated with a laser beam whose full polarization state is controlled. The scattered light is detected with a wave retarder-linear polarizer-photomultiplier tube combination that is attached to a rotational stage, to allow measuring the full angular profile, with the exception of the backscattering direction. By controlling the angle of the linear polarizers and the angle of the axis of the wave retarders before and after the scatterer we record such a combination of intensities that reconstructing the full Mueller matrix of the scatterer is possible. We have performed the first measurements of our calibration sample, a 5 mm sphere (N-BK7 glass, Edmund Optics). We verify the first measurement results by comparing the angular scattering profile against the theoretical results computed using Mie theory. The profiles recorded using the linear polarizers only agree with the theoretical predictions in all scattering angles. With the linear polarizers, we are able to construct the upper left 2×2 submatrix of the full Mueller matrix. The constructed (1,1) and (2,2) elements of the matrix are almost identical, as they should for a sphere, as well as the (1,2) and (2,1) elements. There are some discrepancies, as expected since calibration spheres are never perfect spherical shapes with completely homogeneous internal structure. Acknowledgments: The research is funded by the ERC Advanced Grant No. 320773 (SAEMPL).
Simulating propagation of coherent light in random media using the Fredholm type integral equation
NASA Astrophysics Data System (ADS)
Kraszewski, Maciej; Pluciński, Jerzy
2017-06-01
Studying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g. Radiative Transfer Theory and Monte Carlo methods) but they do not treat coherence properties of light directly. Some variations of these methods allows to predict behavior of coherent light but only for an averaged realization of the scattering medium. This limits their application in studying many physical phenomena connected to a specific distribution of scattering particles (e.g. laser speckle). In general, numerical simulation of coherent light propagation in a specific realization of random medium is a time- and memory-consuming problem. The goal of the presented research was to develop new efficient method for solving this problem. The method, presented in our earlier works, is based on solving the Fredholm type integral equation, which describes multiple light scattering process. This equation can be discretized and solved numerically using various algorithms e.g. by direct solving the corresponding linear equations system, as well as by using iterative or Monte Carlo solvers. Here we present recent development of this method including its comparison with well-known analytical results and a finite-difference type simulations. We also present extension of the method for problems of multiple scattering of a polarized light on large spherical particles that joins presented mathematical formalism with Mie theory.
Exercise intensity and postprandial health outcomes in adolescents.
Bond, Bert; Williams, Craig A; Isic, Carly; Jackman, Sarah R; Tolfrey, Keith; Barrett, Laura A; Barker, Alan R
2015-05-01
The effect of exercise intensity and sex on postprandial risk factors for cardiovascular disease in adolescents is unknown. We examined the effect of a single bout of work-matched high-intensity interval exercise (HIIE) and moderate-intensity exercise (MIE) on postprandial triacylglycerol (TAG) and systolic blood pressure (SBP) in adolescents. Twenty adolescents (10 male, 14.3 ± 0.3 years) completed three 1-day trials: (1) rest (CON); (2) 8 × 1 min cycling at 90 % peak power with 75 s recovery (HIIE); (3) cycling at 90 % of the gas exchange threshold (MIE), 1 h before consuming a high-fat milkshake (1.50 g fat and 80 kJ kg(-1)). Postprandial TAG, SBP and fat oxidation were assessed over 4 h Compared to CON, the incremental area under the curve for TAG (IAUC-TAG) was not significantly lowered in HIIE [P = 0.22, effect size (ES) = 0.24] or MIE (P = 0.65, ES = 0.04) for boys. For girls, HIIE and MIE lowered IAUC-TAG by 34 % (P = 0.02, ES = 0.58) and 38 % (P = 0.09, ES = 0.73), respectively, with no difference between HIIE and MIE (P = 0.74, ES = 0.14). Changes in TAG were not related to energy expenditure during exercise or postprandial fat oxidation. Postprandial SBP (total-AUC pooled for both sexes) was lower in HIIE compared to CON (P = 0.01, ES = 0.68) and MIE (P = 0.02, ES = 0.60), with no difference between MIE and CON (P = 0.45, ES = 0.14). A single bout of HIIE and MIE, performed 1 h before an HFM, can meaningfully attenuate IAUC-TAG in girls but not boys. Additionally, HIIE, but not MIE, may lower postprandial SBP in normotensive adolescents.
Meier, Jeffery L.; Keller, Michael J.; McCoy, James J.
2002-01-01
We have shown previously that the human cytomegalovirus (HCMV) major immediate-early (MIE) distal enhancer is needed for MIE promoter-dependent transcription and viral replication at low multiplicities of infection (MOI). To understand how this region works, we constructed and analyzed a series of HCMVs with various distal enhancer mutations. We show that the distal enhancer is composed of at least two parts that function independently to coordinately activate MIE promoter-dependent transcription and viral replication. One such part is contained in a 47-bp segment that has consensus binding sites for CREB/ATF, SP1, and YY1. At low MOI, these working parts likely function in cis to directly activate MIE gene expression, thus allowing viral replication to ensue. Three findings support the view that these working parts are likely cis-acting elements. (i) Deletion of either part of a bisegmented distal enhancer only slightly alters MIE gene transcription and viral replication. (ii) Reversing the distal enhancer’s orientation largely preserves MIE gene transcription and viral replication. (iii) Placement of stop codons at −300 or −345 in all reading frames does not impair MIE gene transcription and viral replication. Lastly, we show that these working parts are dispensable at high MOI, partly because of compensatory stimulation of MIE promoter activity and viral replication that is induced by a virion-associated component(s) present at a high viral particle/cell ratio. We conclude that the distal enhancer is a complex multicomponent cis-acting region that is required to augment both MIE promoter-dependent transcription and HCMV replication. PMID:11739696
Spectral softening in the X-RAY afterglow of GRB 130925A as predicted by the dust scattering model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yi-Nan; Shao, Lang, E-mail: lshao@hebtu.edu.cn
2014-07-01
Gamma-ray bursts (GRBs) usually occur in a dense star-forming region with a massive circumburst medium. The small-angle scattering of intense prompt X-ray emission off the surrounding dust grains will have observable consequences and sometimes can dominate the X-ray afterglow. In most of the previous studies, only the Rayleigh-Gans (RG) approximation is employed for describing the scattering process, which works accurately for the typical size of grains (with radius of a ≤ 0.1 μm) in the diffuse interstellar medium. When the size of the grains may significantly increase, as in a more dense region where GRBs would occur, the RG approximationmore » may not be valid enough for modeling detailed observational data. In order to study the temporal and spectral properties of the scattered X-ray emission more accurately with potentially larger dust grains, we provide a practical approach using the series expansions of anomalous diffraction (AD) approximation based on the complicated Mie theory. We apply our calculations to understand the puzzling X-ray afterglow of recently observed GRB 130925A that showed a significant spectral softening. We find that the X-ray scattering scenarios with either AD or RG approximation adopted could well reproduce both the temporal and spectral profile simultaneously. Given the plateau present in the early X-ray light curve, a typical distribution of smaller grains as in the interstellar medium would be suggested for GRB 130925A.« less
Spectral Softening in the X-Ray Afterglow of GRB 130925A as Predicted by the Dust Scattering Model
NASA Astrophysics Data System (ADS)
Zhao, Yi-Nan; Shao, Lang
2014-07-01
Gamma-ray bursts (GRBs) usually occur in a dense star-forming region with a massive circumburst medium. The small-angle scattering of intense prompt X-ray emission off the surrounding dust grains will have observable consequences and sometimes can dominate the X-ray afterglow. In most of the previous studies, only the Rayleigh-Gans (RG) approximation is employed for describing the scattering process, which works accurately for the typical size of grains (with radius of a <= 0.1 μm) in the diffuse interstellar medium. When the size of the grains may significantly increase, as in a more dense region where GRBs would occur, the RG approximation may not be valid enough for modeling detailed observational data. In order to study the temporal and spectral properties of the scattered X-ray emission more accurately with potentially larger dust grains, we provide a practical approach using the series expansions of anomalous diffraction (AD) approximation based on the complicated Mie theory. We apply our calculations to understand the puzzling X-ray afterglow of recently observed GRB 130925A that showed a significant spectral softening. We find that the X-ray scattering scenarios with either AD or RG approximation adopted could well reproduce both the temporal and spectral profile simultaneously. Given the plateau present in the early X-ray light curve, a typical distribution of smaller grains as in the interstellar medium would be suggested for GRB 130925A.
Zhu, Chengchu; Jin, Ketao
2013-01-01
Since its introduction in the People’s Republic of China in 1992, minimally invasive esophagectomy (MIE) has shown the classical advantages of minimally invasive surgery over its open counterpart. Like all pioneers of the technique, cardiothoracic surgeons in the People’s Republic of China claim that MIE has a lower risk of pulmonary infection, faster recovery, a shorter hospital stay, and a more rapid return to daily activities than open esophagectomy, while offering the same functional and oncologic results. There has been burgeoning interest in MIE in the People’s Republic of China since 1995. The last decade has witnessed nationwide growth in the application of MIE and yielded a significant amount of scientific data in support of its clinical merits and advantages. However, no prospective randomized controlled trials have actually investigated the benefits of MIE in the People’s Republic of China. Here we review the current data and state of the art MIE treatment for esophageal cancer in the People’s Republic of China. PMID:23493989
Prévalence et facteurs associés à l’anémie en grossesse à l’Hôpital Général de Douala
Tchente, Charlotte Nguefack; Tsakeu, Eveline Ngouadjeu Dongho; Nguea, Arlette Géraldine; Njamen, Théophile Nana; Ekane, Gregory Halle; Priso, Eugene Belley
2016-01-01
Introduction L’anémie est un problème de santé publique, prédominant chez les enfants et les femmes en âge de procréer. L’objectif de l’étude était de déterminer la prévalence et les facteurs associés à l’anémie chez les femmes enceintes à l’Hôpital Général de Douala. Méthodes Il s’agissait d’une étude transversale qui s’est déroulée de juillet 2012 à juillet 2013. Toutes les femmes enceintes consentantes se présentant pour consultation prénatale et ayant réalisées une numération formule sanguine (NFS) étaient incluses. Les caractéristiques sociodémographiques, les antécédents obstétricaux et les résultats de la NFS étaient enregistrés sur une fiche technique pré-testée. L’anémie était définie selon les critères de l’OMS. Après quelques statistiques descriptives, nous avons effectué une analyse bivariée à l’aide du test de Chi 2 et la probabilité exacte de Fisher pour rechercher les facteurs associés à l’anémie. Une valeur de p< 0,05 était considérée significative. Résultats Au total 415 gestantes ont été recrutées. La prévalence de l’anémie était de 39,8%. L’âge moyen était de 29,89±4,835ans. Le taux moyen d’hémoglobine était de 10,93±1,23.L’anémie normochrome normocytaire (53,3%) était prédominante. L’anémie était sévère dans 2,4% des cas. L’anémie en grossesse était significativement associée aux antécédents de pathologies chroniques (P=0,02) et d’anémie gravidique antérieure (P=0,003). L’anémie était plus observée au 3ème trimestre (P=0,04) et l’allaitement maternel était protecteur (P=0,02). Conclusion La prévalence de l’anémie chez la femme enceinte reste élevée. Un accent doit être mis sur une meilleureprise en charge des pathologies chroniques chez les gestantes et sur leur suivi en post natal afin de corriger l’anémie avant la grossesse ultérieure. PMID:28292095
Shock-initiated Combustion of a Spherical Density Inhomogeneity
NASA Astrophysics Data System (ADS)
Haehn, Nicholas; Oakley, Jason; Rothamer, David; Anderson, Mark; Ranjan, Devesh; Bonazza, Riccardo
2010-11-01
A spherical density inhomogeneity is prepared using fuel and oxidizer at a stoichiometric ratio and Xe as a diluent that increases the overall density of the bubble mixture (55% Xe, 30% H2, 15% O2). The experiments are performed in the Wisconsin Shock Tube Laboratory in a 9.2 m vertical shock tube with a 25.4 cm x 25.4 cm square cross-section. An injector is used to generate a 5 cm diameter soap film bubble filled with the combustible mixture. The injector retracts flush into the side of the tube releasing the bubble into a state of free fall. The combustible bubble is accelerated by a planar shock wave in N2 (2.0 < M < 2.8). The mismatch of acoustic impedances results in shock-focusing at the downstream pole of the bubble. The shock focusing results in localized temperatures and pressures significantly larger than nominal conditions behind a planar shock wave, resulting in auto-ignition at the focus. Planar Mie scattering and chemiluminescence are used simultaneously to visualize the bubble morphology and combustion characteristics. During the combustion phase, both the span-wise and stream-wise lengths of the bubble are seen to increase compared to the non-combustible scenario. Additionally, smaller instabilities are observed on the upstream surface, which are absent in the non-combustible bubbles.
NASA Technical Reports Server (NTRS)
Smith, David D.
2002-01-01
This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.
Velocity visualization in gaseous flows
NASA Technical Reports Server (NTRS)
Hanson, R. K.; Hiller, B.; Hassa, C.; Booman, R. A.
1984-01-01
Techniques yielding simultaneous, multiple-point measurements of velocity in reacting or nonreacting flow fields have the potential to significantly impact basic and applied studies of fluid mechanics. This research program is aimed at investigating several candidate schemes which could provide such measurement capability. The concepts under study have in common the use of a laser source (to illuminate a column, a grid, a plane or a volume in the flow) and the collection of light at right angles (from Mie scattering, fluorescence, phosphorescence or chemiluminescence) using a multi-element solid-state camera (100 x 100 array of photodiodes). The work will include an overview and a status report of work in progress with particular emphasis on the method of Doppler-modulated absorption.
Elmer-Dixon, Margaret M; Bowler, Bruce E
2018-05-19
A novel approach to quantify mixed lipid systems is described. Traditional approaches to lipid vesicle quantification are time consuming, require large amounts of material and are destructive. We extend our recently described method for quantification of pure lipid systems to mixed lipid systems. The method only requires a UV-Vis spectrometer and does not destroy sample. Mie scattering data from absorbance measurements are used as input into a Matlab program to calculate the total vesicle concentration and the concentrations of each lipid in the mixed lipid system. The technique is fast and accurate, which is essential for analytical lipid binding experiments. Copyright © 2018. Published by Elsevier Inc.
Partial-Wave Representations of Laser Beams for Use in Light-Scattering Calculations
NASA Technical Reports Server (NTRS)
Gouesbet, Gerard; Lock, James A.; Grehan, Gerard
1995-01-01
In the framework of generalized Lorenz-Mie theory, laser beams are described by sets of beam-shape coefficients. The modified localized approximation to evaluate these coefficients for a focused Gaussian beam is presented. A new description of Gaussian beams, called standard beams, is introduced. A comparison is made between the values of the beam-shape coefficients in the framework of the localized approximation and the beam-shape coefficients of standard beams. This comparison leads to new insights concerning the electromagnetic description of laser beams. The relevance of our discussion is enhanced by a demonstration that the localized approximation provides a very satisfactory description of top-hat beams as well.
2nd Generation Airborne Precipitation Radar (APR-2)
NASA Technical Reports Server (NTRS)
Durden, S.; Tanelli, S.; Haddad, Z.; Im, E.
2012-01-01
Dual-frequency operation with Ku-band (13.4 GHz) and Ka-band (35.6 GHz). Geometry and frequencies chosen to simulate GPM radar. Measures reflectivity at co- and cross-polarizations, and Doppler. Range resolution is approx. 60 m. Horizontal resolution at surface is approx. 1 km. Reflectivity calibration is within 1.5 dB, based on 10 deg sigmaO at Ku-band and Mie scattering calculations in light rain at Ka-band. LDR measurements are OK to near -20 dB; LDR lower than this is likely contaminated by system cross-polarization isolation. Velocity is motion-corrected total Doppler, including particle fall speed. Aliasing can be seen in some places; can usually be dealiased with an algorithm. .
Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy
Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre
2016-01-01
The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air. PMID:27619546