Sample records for migrating subsurface plumes

  1. Area 2: Inexpensive Monitoring and Uncertainty Assessment of CO2 Plume Migration using Injection Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivasan, Sanjay

    2014-09-30

    In-depth understanding of the long-term fate of CO₂ in the subsurface requires study and analysis of the reservoir formation, the overlaying caprock formation, and adjacent faults. Because there is significant uncertainty in predicting the location and extent of geologic heterogeneity that can impact the future migration of CO₂ in the subsurface, there is a need to develop algorithms that can reliably quantify this uncertainty in plume migration. This project is focused on the development of a model selection algorithm that refines an initial suite of subsurface models representing the prior uncertainty to create a posterior set of subsurface models thatmore » reflect injection performance consistent with that observed. Such posterior models can be used to represent uncertainty in the future migration of the CO₂ plume. Because only injection data is required, the method provides a very inexpensive method to map the migration of the plume and the associated uncertainty in migration paths. The model selection method developed as part of this project mainly consists of assessing the connectivity/dynamic characteristics of a large prior ensemble of models, grouping the models on the basis of their expected dynamic response, selecting the subgroup of models that most closely yield dynamic response closest to the observed dynamic data, and finally quantifying the uncertainty in plume migration using the selected subset of models. The main accomplishment of the project is the development of a software module within the SGEMS earth modeling software package that implements the model selection methodology. This software module was subsequently applied to analyze CO₂ plume migration in two field projects – the In Salah CO₂ Injection project in Algeria and CO₂ injection into the Utsira formation in Norway. These applications of the software revealed that the proxies developed in this project for quickly assessing the dynamic characteristics of the reservoir were highly efficient and yielded accurate grouping of reservoir models. The plume migration paths probabilistically assessed by the method were confirmed by field observations and auxiliary data. The report also documents the application of the software to answer practical questions such as the optimum location of monitoring wells to reliably assess the migration of CO₂ plume, the effect of CO₂-rock interactions on plume migration and the ability to detect the plume under those conditions and the effect of a slow, unresolved leak on the predictions of plume migration.« less

  2. Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table.

    PubMed

    Kim, Jeongkon; Corapcioglu, M Yavuz

    2003-08-01

    A vertically averaged two-dimensional model was developed to describe areal spreading and migration of light nonaqueous-phase liquids (LNAPLs) introduced into the subsurface by spills or leaks from underground storage tanks. The NAPL transport model was coupled with two-dimensional contaminant transport models to predict contamination of soil gas and groundwater resulting from a LNAPL migrating on the water table. Numerical solutions were obtained by using the finite-difference method. Simulations and sensitivity analyses were conducted with a LNAPL of pure benzene to study LNAPL migration and groundwater contamination. The model was applied to subsurface contamination by jet fuel. Results indicated that LNAPL migration were affected mostly by volatilization. The generation and movement of the dissolved plume was affected by the geology of the site and the free-product plume. Most of the spilled mass remained as a free LNAPL phase 20 years after the spill. The migration of LNAPL for such a long period resulted in the contamination of both groundwater and a large volume of soil.

  3. Subsurface imaging of an abandoned solid waste landfill site in Norman, Oklahoma

    USGS Publications Warehouse

    Zume, J.T.; Tarhule, A.; Christenson, S.

    2006-01-01

    Leachate plume emanating from an old unlined municipal landfill site near the city of Norman, Oklahoma, is discharging into the underlying alluvial aquifer. Subsurface imaging techniques, electrical resistivity tomography and electrical conductivity (EC) logging, were used on the site to detect and map the position of the leachate plume. Anomalous EC zones, delineated with the two methods, correlated with the occurrence of the plume detected by water chemistry analyses from multilevel monitoring wells. Specific conductance, a potential indicator of leachate contamination, ranged from 1861 to 7710 ??S/cm in contaminated zones and from 465 to 2180 ??S/cm in uncontaminated ground water. Results are in agreement with those from earlier studies that the leachate plume emerges from the landfill along preferential pathways. Additionally, there are indications that the leading edge of the plume has migrated, at least, 200 m away from the landfill in the direction of ground water flow. ?? 2006 National Ground Water Association.

  4. Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trevisan, Luca; Pini, Ronny; Cihan, Abdullah

    The role of capillary forces during buoyant migration of CO 2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO 2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44more » m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO 2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).« less

  5. Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments

    DOE PAGES

    Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; ...

    2016-12-27

    The role of capillary forces during buoyant migration of CO 2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO 2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44more » m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO 2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).« less

  6. Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments

    NASA Astrophysics Data System (ADS)

    Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; Birkholzer, Jens T.; Zhou, Quanlin; González-Nicolás, Ana; Illangasekare, Tissa H.

    2017-01-01

    The role of capillary forces during buoyant migration of CO2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44 m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO2-surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. While these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1-10 m).

  7. Understanding CO2 Plume Behavior and Basin-Scale Pressure Changes during Sequestration Projects through the use of Reservoir Fluid Modeling

    USGS Publications Warehouse

    Leetaru, H.E.; Frailey, S.M.; Damico, J.; Mehnert, E.; Birkholzer, J.; Zhou, Q.; Jordan, P.D.

    2009-01-01

    Large scale geologic sequestration tests are in the planning stages around the world. The liability and safety issues of the migration of CO2 away from the primary injection site and/or reservoir are of significant concerns for these sequestration tests. Reservoir models for simulating single or multi-phase fluid flow are used to understand the migration of CO2 in the subsurface. These models can also help evaluate concerns related to brine migration and basin-scale pressure increases that occur due to the injection of additional fluid volumes into the subsurface. The current paper presents different modeling examples addressing these issues, ranging from simple geometric models to more complex reservoir fluid models with single-site and basin-scale applications. Simple geometric models assuming a homogeneous geologic reservoir and piston-like displacement have been used for understanding pressure changes and fluid migration around each CO2 storage site. These geometric models are useful only as broad approximations because they do not account for the variation in porosity, permeability, asymmetry of the reservoir, and dip of the beds. In addition, these simple models are not capable of predicting the interference between different injection sites within the same reservoir. A more realistic model of CO2 plume behavior can be produced using reservoir fluid models. Reservoir simulation of natural gas storage reservoirs in the Illinois Basin Cambrian-age Mt. Simon Sandstone suggest that reservoir heterogeneity will be an important factor for evaluating storage capacity. The Mt. Simon Sandstone is a thick sandstone that underlies many significant coal fired power plants (emitting at least 1 million tonnes per year) in the midwestern United States including the states of Illinois, Indiana, Kentucky, Michigan, and Ohio. The initial commercial sequestration sites are expected to inject 1 to 2 million tonnes of CO2 per year. Depending on the geologic structure and permeability anisotropy, the CO2 injected into the Mt. Simon are expected to migrate less than 3 km. After 30 years of continuous injection followed by 100 years of shut-in, the plume from a 1 million tonnes a year injection rate is expected to migrate 1.6 km for a 0 degree dip reservoir and over 3 km for a 5 degree dip reservoir. The region where reservoir pressure increases in response to CO2 injection is typically much larger than the CO2 plume. It can thus be anticipated that there will be basin wide interactions between different CO2 injection sources if multiple, large volume sites are developed. This interaction will result in asymmetric plume migration that may be contrary to reservoir dip. A basin- scale simulation model is being developed to predict CO2 plume migration, brine displacement, and pressure buildup for a possible future sequestration scenario featuring multiple CO2 storage sites within the Illinois Basin Mt. Simon Sandstone. Interactions between different sites will be evaluated with respect to impacts on pressure and CO2 plume migration patterns. ?? 2009 Elsevier Ltd. All rights reserved.

  8. Monitoring CO 2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time lapse electrical resistivity tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuan Lu; CHI Zhang; Hai Hanag

    2014-04-01

    Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoringmore » the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.« less

  9. Influence of spatial and temporal variability of subsurface soil moisture and temperature on vapour intrusion

    NASA Astrophysics Data System (ADS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2014-05-01

    A comprehensive field study was conducted at a site contaminated with chlorinated solvents, mainly trichloroethylene (TCE), to investigate the influence of subsurface soil moisture and temperature on vapour intrusion (VI) into built structures. Existing approaches to predict the risk of VI intrusion into buildings assume homogeneous or discrete layers in the vadose zone through which TCE migrates from an underlying source zone. In reality, the subsurface of the majority of contaminated sites will be subject to significant variations in moisture and temperature. Detailed site-specific data were measured contemporaneously to evaluate the impact of spatial and temporal variability of subsurface soil properties on VI exposure assessment. The results revealed that indoor air vapour concentrations would be affected by spatial and temporal variability of subsurface soil moisture and temperature. The monthly monitoring of soil-gas concentrations over a period of one year at a depth of 3 m across the study site demonstrated significant variation in TCE vapour concentrations, which ranged from 480 to 629,308 μg/m3. Soil-gas wells at 1 m depth exhibited high seasonal variability in TCE vapour concentrations with a coefficient of variation 1.02 in comparison with values of 0.88 and 0.74 in 2 m and 3 m wells, respectively. Contour plots of the soil-gas TCE plume during wet and dry seasons showed that the plume moved across the site, hence locations of soil-gas monitoring wells for human risk assessment is a site specific decision. Subsurface soil-gas vapour plume characterisation at the study site demonstrates that assessment for VI is greatly influenced by subsurface soil properties such as temperature and moisture that fluctuate with the seasons of the year.

  10. Movement of a tritium plume in shallow groundwater at a legacy low-level radioactive waste disposal site in eastern Australia.

    PubMed

    Hughes, C E; Cendón, D I; Harrison, J J; Hankin, S I; Johansen, M P; Payne, T E; Vine, M; Collins, R N; Hoffmann, E L; Loosz, T

    2011-10-01

    Between 1960 and 1968 low-level radioactive waste was buried in a series of shallow trenches near the Lucas Heights facility, south of Sydney, Australia. Groundwater monitoring carried out since the mid 1970s indicates that with the exception of tritium, no radioactivity above typical background levels has been detected outside the immediate vicinity of the trenches. The maximum tritium level detected in ground water was 390 kBq/L and the median value was 5400 Bq/L, decay corrected to the time of disposal. Since 1968, a plume of tritiated water has migrated from the disposal trenches and extends at least 100 m from the source area. Tritium in rainfall is negligible, however leachate from an adjacent and fill represents a significant additional tritium source. Study data indicate variation in concentration levels and plume distribution in response to wet and dry climatic periods and have been used to determine pathways for tritium migration through the subsurface.

  11. Progression of natural attenuation processes at a crude-oil spill site . I. Geochemical evolution of the plume

    USGS Publications Warehouse

    Cozzarelli, I.M.; Bekins, B.A.; Baedecker, M.J.; Aiken, G.R.; Eganhouse, R.P.; Tuccillo, M.E.

    2001-01-01

    A 16-year study of a hydrocarbon plume shows that the extent of contaminant migration and compound-specific behavior have changed as redox reactions, most notably iron reduction, have progressed over time. Concentration changes at a small scale, determined from analysis of pore-water samples drained from aquifer cores, are compared with concentration changes at the plume scale, determined from analysis of water samples from an observation well network. The small-scale data show clearly that the hydrocarbon plume is growing slowly as sediment iron oxides are depleted. Contaminants, such as ortho-xylene that appeared not to be moving downgradient from the oil on the basis of observation well data, are migrating in thin layers as the aquifer evolves to methanogenic conditions. However, the plume-scale observation well data show that the downgradient extent of the Fe2+ and BTEX plume did not change between 1992 and 1995. Instead, depletion of the unstable Fe (III) oxides near the subsurface crude-oil source has caused the maximum dissolved iron concentration zone within the plume to spread at a rate of approximately 3 m/year. The zone of maximum concentrations of benzene, toluene, ethylbenzene and xylene (BTEX) has also spread within the anoxic plume. In monitoring the remediation of hydrocarbon-contaminated ground water by natural attenuation, subtle concentration changes in observation well data from the anoxic zone may be diagnostic of depletion of the intrinsic electron-accepting capacity of the aquifer. Recognition of these subtle patterns may allow early prediction of growth of the hydrocarbon plume. Copyright ?? 2001 .

  12. Framework for the assessment of interaction between CO2 geological storage and other sedimentary basin resources.

    PubMed

    Michael, K; Whittaker, S; Varma, S; Bekele, E; Langhi, L; Hodgkinson, J; Harris, B

    2016-02-01

    Sedimentary basins around the world considered suitable for carbon storage usually contain other natural resources such as petroleum, coal, geothermal energy and groundwater. Storing carbon dioxide in geological formations in the basins adds to the competition for access to the subsurface and the use of pore space where other resource-based industries also operate. Managing potential impacts that industrial-scale injection of carbon dioxide may have on other resource development must be focused to prevent potential conflicts and enhance synergies where possible. Such a sustainable coexistence of various resource developments can be accomplished by implementing a Framework for Basin Resource Management strategy (FBRM). The FBRM strategy utilizes the concept of an Area of Review (AOR) for guiding development and regulation of CO2 geological storage projects and for assessing their potential impact on other resources. The AOR is determined by the expected physical distribution of the CO2 plume in the subsurface and the modelled extent of reservoir pressure increase resulting from the injection of the CO2. This information is used to define the region to be characterised and monitored for a CO2 injection project. The geological characterisation and risk- and performance-based monitoring will be most comprehensive within the region of the reservoir containing the carbon dioxide plume and should consider geological features and wells continuously above the plume through to its surface projection; this region defines where increases in reservoir pressure will be greatest and where potential for unplanned migration of carbon dioxide is highest. Beyond the expanse of the carbon dioxide plume, geological characterisation and monitoring should focus only on identified features that could be a potential migration conduit for either formation water or carbon dioxide.

  13. Characterizing leachate contamination in a landfill site using Time Domain Electromagnetic (TDEM) imaging

    NASA Astrophysics Data System (ADS)

    Baawain, Mahad S.; Al-Futaisi, Ahmed M.; Ebrahimi, A.; Omidvarborna, Hamid

    2018-04-01

    Time Domain Electromagnetic (TDEM) survey as well as drilling investigations were conducted to identify possible contamination of a dumping site in an unsaturated zone located in Barka, Oman. The method was applied to evaluate conductivity of the contaminated plumes in hot and arid/semiarid region, where high temperatures commonly ranged between 35 and 50 °C. The drilling investigation was carried out over the survey area to verify the geophysical results. The low-resistivity zone (<80 Ωm), encountered near the subsurface, indicated plume migration caused by liquid waste disposal activities. The combination of TDEM survey results with the lithology of piezometers showed that higher resistivity (>90 Ωm) was correlated with compacted or cemented gravels and cobbles, particularly that of medium dense to very dense gravels and cobbles. Additionally, the TDEM profiles suggested that the plume migration followed a preferential flow path. The resistivity range 40-80 Ωm considered as contaminated areas; however, the drilling results showed the close resistivity domain in the depth >70 m below water table for some profiles (BL1, BL2, BL3, BL4 and BL5). The combined results of drilling wells, piezometers, and TDEM apparent resistivity maps showed a coincidence of the migrated leachate plume and water table. Predicted zone of the probable contamination was located at the depth of around 65 m and horizontal offset ranges 0-280 m, 80-240 m, and 40-85 m in the sounding traverses of BL4, BL6 and BL7, respectively.

  14. Plant-based plume-scale mapping of tritium contamination in desert soils

    USGS Publications Warehouse

    Andraski, Brian J.; Stonestrom, David A.; Michel, R.L.; Halford, K.J.; Radyk, J.C.

    2005-01-01

    Plant-based techniques were tested for field-scale evaluation of tritium contamination adjacent to a low-level radioactive waste (LLRW) facility in the Amargosa Desert, Nevada. Objectives were to (i) characterize and map the spatial variability of tritium in plant water, (ii) develop empirical relations to predict and map subsurface contamination from plant-water concentrations, and (iii) gain insight into tritium migration pathways and processes. Plant sampling [creosote bush, Larrea tridentata (Sessé & Moc. ex DC.) Coville] required one-fifth the time of soil water vapor sampling. Plant concentrations were spatially correlated to a separation distance of 380 m; measurement uncertainty accounted for <0.1% of the total variability in the data. Regression equations based on plant tritium explained 96 and 90% of the variation in root-zone and sub-root-zone soil water vapor concentrations, respectively. The equations were combined with kriged plant-water concentrations to map subsurface contamination. Mapping showed preferential lateral movement of tritium through a dry, coarse-textured layer beneath the root zone, with concurrent upward movement through the root zone. Analysis of subsurface fluxes along a transect perpendicular to the LLRW facility showed that upward diffusive-vapor transport dominates other transport modes beneath native vegetation. Downward advective-liquid transport dominates at one endpoint of the transect, beneath a devegetated road immediately adjacent to the facility. To our knowledge, this study is the first to document large-scale subsurface vapor-phase tritium migration from a LLRW facility. Plant-based methods provide a noninvasive, cost-effective approach to mapping subsurface tritium migration in desert areas.

  15. Geophysical Imaging for Investigating the Delivery and Distribution of Amendments in the Heterogeneous Subsurface of the F.E. Warren AFB

    DTIC Science & Technology

    2012-11-01

    e.g., purple potassium permanganate ). For the SS7 RA, the location of fractures and the migration of byproducts associated with HRC® were difficult...distribution, were based upon observations of potassium permanganate diffusion observed at neighboring groundwater plumes where hydraulic...fracturing with potassium permanganate was used as a groundwater remedy. Although such assumptions are not uncommon, they contribute to significant

  16. Geophysical Imaging for Investigating the Delivery and Distribution of Amendments in the Heterogeneous Subsurface of the F.E. Warren AFB

    DTIC Science & Technology

    2012-12-01

    especially if the amendments are colored (e.g., purple potassium permanganate ). For the SS7 RA, the location of fractures and the migration of...to develop the conceptual model of HRC® distribution, were based upon observations of potassium permanganate diffusion observed at neighboring...groundwater plumes where hydraulic fracturing with potassium permanganate was used as a groundwater remedy. Although such assumptions are not uncommon

  17. Application of 4D resistivity image profiling to detect DNAPLs plume.

    NASA Astrophysics Data System (ADS)

    Liu, H.; Yang, C.; Tsai, Y.

    2008-12-01

    In July 1993, the soil and groundwater of the factory of Taiwan , Miaoli was found to be contaminated by dichloroethane, chlorobenzene and other hazardous solvents. The contaminants were termed to be dense non-aqueous phase liquids (DNAPLs). The contaminated site was neglected for the following years until May 1998, the Environment Protection Agency of Miaoli ordered the company immediately take an action for treatment of the contaminated site. Excavating and exposing the contaminated soil was done at the previous waste DNAPL dumped area. In addition, more than 53 wells were drilled around the pool with a maximum depth of 12 m where a clayey layer was found. Continuous pumping the groundwater and monitoring the concentration of residual DNAPL contained in the well water samples have done in different stages of remediation. However, it is suspected that the DNAPL has existed for a long time, therefore the contaminants might dilute but remnants of a DNAPL plume that are toxic to humans still remain in the soil and migrate to deeper aquifers. A former contaminated site was investigated using the 2D, 3D and 4D resisitivity image technique, with aims of determining buried contaminant geometry. This paper emphasizes the use of resistivity image profiling (RIP) method to map the limit of this DNAPL waste disposal site where the records of operations are not variations. A significant change in resistivity values was detected between known polluted and non-polluted subsurface; a high resistivity value implies that the subsurface was contaminated by DNAPL plume. The results of the survey serve to provide insight into the sensitivity of RIP method for detecting DNAPL plumes within the shallow subsurface, and help to provide valuable information related to monitoring the possible migration path of DNAPL plume in the past. According to the formerly studies in this site, affiliation by excavates with pumps water remediation had very long time, Therefore this research was used iron nanoparticles with pumps water remediation ways. The survey lines use the same length and the same position of the different time observation. The survey lines monitors the iron nanoparticles and pollution flow direction with remediation effect. By used the iron nanoparticles and pumping water remediation ways, the DNAPL plumes had eminent changed. Iron nanoparticles granule is smaller than the micron iron, Therefore the reaction rate was quite quick at the iron nanoparticles and pumps, but the ferric oxide can cause the electronic resistivity to elevate produces after the response. Pumps water rectifies may remove the ferric oxide to cause the electronic resistivity to reduce. The iron nanoparticles and pollution response is extremely obviously of the Resistivity Image Profile.

  18. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    DTIC Science & Technology

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  19. Analytical solutions to dissolved contaminant plume evolution with source depletion during carbon dioxide storage.

    PubMed

    Yang, Yong; Liu, Yongzhong; Yu, Bo; Ding, Tian

    2016-06-01

    Volatile contaminants may migrate with carbon dioxide (CO2) injection or leakage in subsurface formations, which leads to the risk of the CO2 storage and the ecological environment. This study aims to develop an analytical model that could predict the contaminant migration process induced by CO2 storage. The analytical model with two moving boundaries is obtained through the simplification of the fully coupled model for the CO2-aqueous phase -stagnant phase displacement system. The analytical solutions are confirmed and assessed through the comparison with the numerical simulations of the fully coupled model. Then, some key variables in the analytical solutions, including the critical time, the locations of the dual moving boundaries and the advance velocity, are discussed to present the characteristics of contaminant migration in the multi-phase displacement system. The results show that these key variables are determined by four dimensionless numbers, Pe, RD, Sh and RF, which represent the effects of the convection, the dispersion, the interphase mass transfer and the retention factor of contaminant, respectively. The proposed analytical solutions could be used for tracking the migration of the injected CO2 and the contaminants in subsurface formations, and also provide an analytical tool for other solute transport in multi-phase displacement system. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Microbial populations in contaminant plumes

    USGS Publications Warehouse

    Haack, S.K.; Bekins, B.A.

    2000-01-01

    Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation.

  1. Monitoring CO2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time-lapse electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Lu, C.; Zhang, C.; Huang, H.; Johnson, T.

    2012-12-01

    Geological sequestration of carbon dioxide (CO2) into the subsurface has been considered as one solution to reduce greenhouse emission to the atmosphere. Successful sequestration process requires efficient and adequate monitoring of injected fluids as they migrate into the aquifer to evaluate flow path, leakage, and geochemical interactions between CO2 and geologic media. In this synthetic field scale study, we have integrated 3D multiphase flow modeling code PFLOTRAN with 3D time-laps electrical resistivity tomography (ERT) to gain insight into the supercritical (SC) CO2 plumes movement in the deep saline aquifer and associated brine intrusion into shallower fresh water aquifer. A parallel ERT forward and inverse modeling package was introduced, and related algorithms are briefly described. The capabilities and limitations of ERT in monitoring CO2 migration are assessed by comparing the results from PFLOTRAN simulations with the ERT inversion results. In general, our study shows the ERT inversion results compare well with PFLOTRAN with reasonable discrepancies, indicating that the ERT can capture the actual CO2 plume dynamics and brine intrusion. Detailed comparisons on the location, size and volume of CO2 plume show the ERT method underestimated area review and overestimated total plume volume in the predictions of SC CO2 movements. These comparisons also show the ERT method constantly overestimate salt intrusion area and underestimated total solute amount in the predictions of brine filtration. Our study shows that together with other geochemical and geophysical methods, ERT is a potentially useful monitoring tool in detecting the SC CO2 and formation fluid migrations.

  2. Interpretaion of synthetic seismic time-lapse monitoring data for Korea CCS project based on the acoustic-elastic coupled inversion

    NASA Astrophysics Data System (ADS)

    Oh, J.; Min, D.; Kim, W.; Huh, C.; Kang, S.

    2012-12-01

    Recently, the CCS (Carbon Capture and Storage) is one of the promising methods to reduce the CO2 emission. To evaluate the success of the CCS project, various geophysical monitoring techniques have been applied. Among them, the time-lapse seismic monitoring is one of the effective methods to investigate the migration of CO2 plume. To monitor the injected CO2 plume accurately, it is needed to interpret seismic monitoring data using not only the imaging technique but also the full waveform inversion, because subsurface material properties can be estimated through the inversion. However, previous works for interpreting seismic monitoring data are mainly based on the imaging technique. In this study, we perform the frequency-domain full waveform inversion for synthetic data obtained by the acoustic-elastic coupled modeling for the geological model made after Ulleung Basin, which is one of the CO2 storage prospects in Korea. We suppose the injection layer is located in fault-related anticlines in the Dolgorae Deformed Belt and, for more realistic situation, we contaminate the synthetic monitoring data with random noise and outliers. We perform the time-lapse full waveform inversion in two scenarios. One scenario is that the injected CO2 plume migrates within the injection layer and is stably captured. The other scenario is that the injected CO2 plume leaks through the weak part of the cap rock. Using the inverted P- and S-wave velocities and Poisson's ratio, we were able to detect the migration of the injected CO2 plume. Acknowledgment This work was financially supported by the Brain Korea 21 project of Energy Systems Engineering, the "Development of Technology for CO2 Marine Geological Storage" program funded by the Ministry of Land, Transport and Maritime Affairs (MLTM) of Korea and the Korea CCS R&D Center (KCRC) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2012-0008926).

  3. Muon Tomography for Geological Repositories.

    NASA Astrophysics Data System (ADS)

    Woodward, D.; Kudryavtsev, V.; Gluyas, J.; Clark, S. J.; Thompson, L. F.; Klinger, J.; Spooner, N. J.; Blackwell, T. B.; Pal, S.; Lincoln, D. L.; Paling, S. M.; Mitchell, C. N.; Benton, C.; Coleman, M. L.; Telfer, S.; Cole, A.; Nolan, S.; Chadwick, P.

    2015-12-01

    Cosmic-ray muons are subatomic particles produced in the upper atmosphere in collisions of primary cosmic rays with atoms in air. Due to their high penetrating power these muons can be used to image the content (primarily density) of matter they pass through. They have already been used to image the structure of pyramids, volcanoes and other objects. Their applications can be extended to investigating the structure of, and monitoring changes in geological formations and repositories, in particular deep subsurface sites with stored CO2. Current methods of monitoring subsurface CO2, such as repeat seismic surveys, are episodic and require highly skilled personnel to operate. Our simulations based on simplified models have previously shown that muon tomography could be used to continuously monitor CO2 injection and migration and complement existing technologies. Here we present a simulation of the monitoring of CO2 plume evolution in a geological reservoir using muon tomography. The stratigraphy in the vicinity of the reservoir is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO2 plume. A planar detection region with a surface area of 1000 m2 is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO2 injection leads to changes in the column density of about 1%, and that the CO2 plume is already resolvable with an exposure time of less than 50 days. The attached figure show a map of CO2 plume in angular coordinates as reconstructed from observed muons. In parallel with simulation efforts, a small prototype muon detector has been designed, built and tested in a deep subsurface laboratory. Initial calibrations of the detector have shown that it can reach the required angular resolution for muon detection. Stable operation in a small borehole within a few months has been demonstrated.

  4. The Lusi eruption site: insights from surface and subsurface investigations

    NASA Astrophysics Data System (ADS)

    Mazzini, A.

    2017-12-01

    The Indonesian Lusi eruption has been spewing boiling water, gas, and sediments since the 29th of May 2006. Initially, numerous aligned eruptions sites appeared along the Watukosek fault system (WFS) that was reactivated after the Yogyakarta earthquake occurring the 27th of May in the Java Island. Within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. To date Lusi is still active and an area of 7 km2is covered by mud. Since its birth Lusi erupted with a pulsating behaviour. In the framework of the ERC grant "Lusi Lab" we conducted several years of monitoring and regional investigations coupling surface sampling and subsurface imaging in the region around Lusi. Ambient noise tomography studies, obtained with a local network of 31 stations, revealed for the first time subsurface images of the Lusi region and the adjacent Arjuno-Welirang (AW) volcanic complex. Results show that below the AW volcanic complex are present 5km deep magma chambers that are connected, through a defined corridor, with the roots of the Lusi eruption site. The Lusi subsurface shows the presence of a defined vertical hydrothermal plume that extends to at least 5km. Chemical analyses of the seeping fluids sampled from 1) the Lusi plume (using a specifically designed drone), 2) the region around Lusi, and 3) the fumaroles and the hydro thermal springs of AW, revealed striking similarities. More specifically a mantellic signature of the Lusi fluids confirms the scenario that Lusi represents a magmatic-driven hydrothermal system hosted in sedimentary basin. Seismic profiles interpretation, surface mapping, and fluid sampling show that the WFS, connecting AW and extending towards the NE of Java, acted as a preferential pathway for the igneous intrusion and fluids migration towards the subsurface. Petrography and dating of the clasts erupted at Lusi record high temperatures and indicate that the roots of the active conduit extend to at least 5km at depth, matching the observations and images obtained with geophysical investigations. Converging results support a scenario where igneous intrusions and hydrothermal fluid migrating from the AW complex moved towards the NE of Java. The triggered metamorphic reaction resulted in high overpressures that initiated the Lusi eruption site.

  5. Post-injection Multiphase Flow Modeling and Risk Assessments for Subsurface CO2 Storage in Naturally Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Jin, G.

    2015-12-01

    Subsurface storage of carbon dioxide in geological formations is widely regarded as a promising tool for reducing global atmospheric CO2 emissions. Successful geologic storage for sequestrated carbon dioxides must prove to be safe by means of risk assessments including post-injection analysis of injected CO2 plumes. Because fractured reservoirs exhibit a higher degree of heterogeneity, it is imperative to conduct such simulation studies in order to reliably predict the geometric evolution of plumes and risk assessment of post CO2injection. The research has addressed the pressure footprint of CO2 plumes through the development of new techniques which combine discrete fracture network and stochastic continuum modeling of multiphase flow in fractured geologic formations. A subsequent permeability tensor map in 3-D, derived from our preciously developed method, can accurately describe the heterogeneity of fracture reservoirs. A comprehensive workflow integrating the fracture permeability characterization and multiphase flow modeling has been developed to simulate the CO2plume migration and risk assessments. A simulated fractured reservoir model based on high-priority geological carbon sinks in central Alabama has been employed for preliminary study. Discrete fracture networks were generated with an NE-oriented regional fracture set and orthogonal NW-fractures. Fracture permeability characterization revealed high permeability heterogeneity with an order of magnitude of up to three. A multiphase flow model composed of supercritical CO2 and saline water was then applied to predict CO2 plume volume, geometry, pressure footprint, and containment during and post injection. Injection simulation reveals significant permeability anisotropy that favors development of northeast-elongate CO2 plumes, which are aligned with systematic fractures. The diffusive spreading front of the CO2 plume shows strong viscous fingering effects. Post-injection simulation indicates significant upward lateral spreading of CO2 resulting in accumulation of CO2 directly under the seal unit because of its buoyancy and strata-bound vertical fractures. Risk assessment shows that lateral movement of CO2 along interconnected fractures requires widespread seals with high integrity to confine the injected CO2.

  6. Movement and fate of solutes in a plume of sewage-contaminated ground water, Cape Cod, Massachusetts

    USGS Publications Warehouse

    LeBlanc, D. R.

    1984-01-01

    The U.S. Geological Survey (USGS) has begun a nationwide program to study the fate of toxic wastes in groundwater. Several sites where groundwater is known to be contaminated are being studied by interdisciplinary teams of geohydrologists, chemists, and microbiologists. The objective of these studies is to obtain a thorough quantitative understanding of the physical, chemical, and biological processes of contaminant generation, migration, and attenuation in aquifers. One of the sites being studied by the USGS under this program is a plume of sewage contaminated groundwater on Cape Cod, Massachusetts. The plume was formed by land disposal of treated sewage to a glacial outwash aquifer since 1936. This report summarizes results obtained during the first year of research at the Cape Cod s under the USGS Toxic-Waste Ground-Water Contamination Program. The seven papers included in this volume were presented at the Toxic Waste Technical Meeting, Tucson, Arizona, in March 1984. They provide an integrated view of the subsurface distribution of contaminants based on the first year of research and discuss hypotheses concerning the transport processes that affect the movement of contaminants in the plume. (See W89-09053 thru W89-09059) (Lantz-PTT)

  7. Numerical Model of Hydraulic Fracturing Fluid Transport in the Subsurface with Pressure Transient, Density Effects, and Imbibition

    NASA Astrophysics Data System (ADS)

    Birdsell, D.; Rajaram, H.; Dempsey, D.; Viswanathan, H.

    2014-12-01

    Understanding the transport of hydraulic fracturing (HF) fluid that is injected into the deep subsurface for shale gas extraction is important to ensure that shallow drinking water aquifers are not contaminated from an environmental and public health perspective and to understand formation damage from an oil and gas production perspective. Upward pressure gradients, permeable pathways such as faults or improperly abandoned wellbores, and the density contrast of the HF fluid to the surrounding brine encourages upward HF fluid migration. In contrast, the very low shale permeability and the imbibition of water into partially-saturated shale may sequester much of the HF fluid. Using the Finite Element Heat and Mass Transfer Code (FEHM), single-phase flow and transport simulations are performed to quantify how much HF fluid is removed via the wellbore as flowback and produced water and how much reaches overlying aquifers; imbibition is calculated with a semi-analytical one-dimensional solution and treated as a sink term. The travel time for HF fluid to reach the shallow aquifers is highly dependent on the amount of water imbibed and the suction applied to the well. If imbibition rates and suction are small, the pressure transient due to injection and the density contrast allows rapid upward plume migration at early times. The density contrast diminishes considerably within tens to hundreds of years as mixing occurs. We present estimates of HF fluid migration to shallow aquifers during the first 1,000 years after hydraulic fracturing begins for ranges of subsurface properties.

  8. Effect of spatially and temporally variable recharge on subsurface reactive transport of contaminants at Oak Ridge Integrated Field Research Challenge site

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Lichtner, P. C.; Mills, R. T.; Hammond, G. E.; Svyatskiy, D.; Tang, G.; Brooks, S. C.; Watson, D. B.; Parker, J.

    2011-12-01

    Recharge is one of the most fundamental components of groundwater systems which drives both flow and transport in the subsurface and plays an important role in the migration of contaminants at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site. The area receives an average of 137 cm of precipitation per year, most of it during winter. About 50% of the precipitation is lost to evapotranspiration, 40% runs off directly to surface water, and less than 10% recharges to ground water. The migration of the reactive contaminant plume at the site is modeled using the massively parallel flow and reactive transport model PFLOTRAN. The geology at the site consists of dipping beds of limestone, shale and sandstone with strike N 55° E and dip 45° SE, over which is superimposed a highly porous, horizontally oriented, saprolite weathering profile. To model this system in 3-D a grid was constructed with x-axis aligned with the strike of the geologic formation and z-axis vertical. This formulation requires a full permeability tensor with off-diagonal components obtained by rotation of the principal axes tensor through the formation dip angle. A full tensor capability was implemented in PFLOTRAN using the mimetic finite difference (MFD) method, a mass conserving, second-order accurate scheme with auxiliary pressure degrees of freedom at grid cell faces. A complex geochemical fluid with 17 primary reactive species and a number of minerals was implemented to model the contaminant discharged from the S-3 ponds at the ORIFRC site. A 50-year history of observed rainfall at the site was used as input to the model to estimate transient recharge conditions and to study the effect of spatially and temporally varied recharge. Results from the investigations of impact of spatio-temporal variation in recharge on the migration of contaminant plume will be presented.

  9. Containment of subsurface contaminants

    DOEpatents

    Corey, John C.

    1994-01-01

    A barrier for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates.

  10. Intermediate-Scale Experimental Study to Improve Fundamental Understanding of Attenuation Capacity for Leaking CO2 in Heterogeneous Shallow Aquifers

    NASA Astrophysics Data System (ADS)

    Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.; Illangasekare, Tissa H.

    2017-12-01

    To assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO2 migration behavior in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross section of a shallow aquifer with layered geologic heterogeneity. As water with aqueous CO2 was injected into the system to mimic a CO2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO2 evolution processes. Significant CO2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow redissolution of gas phase CO2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO2 migration. This improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.

  11. Intermediate-Scale Experimental Study to Improve Fundamental Understanding of Attenuation Capacity for Leaking CO 2 in Heterogeneous Shallow Aquifers

    DOE PAGES

    Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.; ...

    2017-11-15

    In order to assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO 2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO 2 migration behaviour in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross-section of a shallowmore » aquifer with layered geologic heterogeneity. As water with aqueous CO 2 was injected into the system to mimic a CO 2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO 2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO 2 evolution processes. Significant CO 2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow re-dissolution of gas phase CO 2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO 2 migration. In conclusion, this improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.« less

  12. Intermediate-Scale Experimental Study to Improve Fundamental Understanding of Attenuation Capacity for Leaking CO 2 in Heterogeneous Shallow Aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.

    In order to assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO 2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO 2 migration behaviour in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross-section of a shallowmore » aquifer with layered geologic heterogeneity. As water with aqueous CO 2 was injected into the system to mimic a CO 2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO 2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO 2 evolution processes. Significant CO 2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow re-dissolution of gas phase CO 2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO 2 migration. In conclusion, this improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.« less

  13. Simulating oil droplet dispersal from the Deepwater Horizon spill with a Lagrangian approach

    USGS Publications Warehouse

    North, Elizabeth W.; Schlag, Zachary; Adams, E. Eric; Sherwood, Christopher R.; He, Ruoying; Hyun, Hoon; Socolofsky, Scott A.

    2011-01-01

    An analytical multiphase plume model, combined with time-varying flow and hydrographic fields generated by the 3-D South Atlantic Bight and Gulf of Mexico model (SABGOM) hydrodynamic model, were used as input to a Lagrangian transport model (LTRANS), to simulate transport of oil droplets dispersed at depth from the recent Deepwater Horizon MC 252 oil spill. The plume model predicts a stratification-dominated near field, in which small oil droplets detrain from the central plume containing faster rising large oil droplets and gas bubbles and become trapped by density stratification. Simulated intrusion (trap) heights of ∼ 310–370 m agree well with the midrange of conductivity-temperature-depth observations, though the simulated variation in trap height was lower than observed, presumably in part due to unresolved variability in source composition (percentage oil versus gas) and location (multiple leaks during first half of spill). Simulated droplet trajectories by the SABGOM-LTRANS modeling system showed that droplets with diameters between 10 and 50 μm formed a distinct subsurface plume, which was transported horizontally and remained in the subsurface for >1 month. In contrast, droplets with diameters ≥90 μm rose rapidly to the surface. Simulated trajectories of droplets ≤50 μm in diameter were found to be consistent with field observations of a southwest-tending subsurface plume in late June 2010 reported by Camilli et al. [2010]. Model results suggest that the subsurface plume looped around to the east, with potential subsurface oil transport to the northeast and southeast. Ongoing work is focusing on adding degradation processes to the model to constrain droplet dispersal.

  14. Where the oil from surface and subsurface plumes deposited during/after Deepwater Horizon oil spill?

    NASA Astrophysics Data System (ADS)

    Yan, B.

    2016-02-01

    The Deepwater Horizon (DwH) oil spill released an estimated 4.9 million barrels (about 200 million gallons) of crude oil into the Gulf of Mexico between April 20, 2010 and July 15, 2010. Though Valentine et al. has linked the elevated oil components in some sediments with the subsurface plume, the sites with fallout from the ocean surface plume has not been identified. This piece of information is critical not only for a comprehensive scientific understanding of the ecosystem response and fate of spill-related pollutants, but also for litigation purposes and future spill response and restoration planning. In this study we focus on testing the hypothesis that marine snow from the surface plume were deposited on the sea floor over a broad area. To do so, we use publicly available data generated as part of the ongoing Natural Resource Damage Assessment (NRDA) process to assess the spatial distribution of petroleum hydrocarbons in the water column and deep-ocean sediments of the Gulf of Mexico. Sensitive hydrocarbon markers are used to differentiate hydrocarbons from surface plume, deep subsurface plume, and in-situ burning. Preliminary results suggest the overlapping but different falling sites of these plumes and the sedimentation process was controlled by various biological, chemical, and physical factors.

  15. Containment of subsurface contaminants

    DOEpatents

    Corey, J.C.

    1994-09-06

    A barrier is disclosed for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates. 5 figs.

  16. Melt migration modeling in partially molten upper mantle

    NASA Astrophysics Data System (ADS)

    Ghods, Abdolreza

    The objective of this thesis is to investigate the importance of melt migration in shaping major characteristics of geological features associated with the partial melting of the upper mantle, such as sea-floor spreading, continental flood basalts and rifting. The partial melting produces permeable partially molten rocks and a buoyant low viscosity melt. Melt migrates through the partially molten rocks, and transfers mass and heat. Due to its much faster velocity and appreciable buoyancy, melt migration has the potential to modify dynamics of the upwelling partially molten plumes. I develop a 2-D, two-phase flow model and apply it to investigate effects of melt migration on the dynamics and melt generation of upwelling mantle plumes and focusing of melt migration beneath mid-ocean ridges. Melt migration changes distribution of the melt-retention buoyancy force and therefore affects the dynamics of the upwelling plume. This is investigated by modeling a plume with a constant initial melt of 10% where no further melting is considered. Melt migration polarizes melt-retention buoyancy force into high and low melt fraction regions at the top and bottom portions of the plume and therefore results in formation of a more slender and faster upwelling plume. Allowing the plume to melt as it ascends through the upper mantle also produces a slender and faster plume. It is shown that melt produced by decompressional melting of the plume migrates to the upper horizons of the plume, increases the upwelling velocity and thus, the volume of melt generated by the plume. Melt migration produces a plume which lacks the mushroom shape observed for the plume models without melt migration. Melt migration forms a high melt fraction layer beneath the sloping base of the impermeable oceanic lithosphere. Using realistic conditions of melting, freezing and melt extraction, I examine whether the high melt fraction layer is able to focus melt from a wide partial melting zone to a narrow region beneath the observed neo-volcanic zone. My models consist of three parts; lithosphere, asthenosphere and a melt extraction region. It is shown that melt migrates vertically within the asthenosphere, and forms a high melt fraction layer beneath the sloping base of the impermeable lithosphere. Within the sloping high melt fraction layer, melt migrates laterally towards the ridge. In order to simulate melt migration via crustal fractures and cracks, melt is extracted from a melt extraction region extending to the base of the crust. Performance of the melt focusing mechanism is not significantly sensitive to the size of melt extraction region, melt extraction threshold and spreading rate. In all of the models, about half of the total melt production freezes beneath the cooling base of the lithosphere, and the rest is effectively focused towards the ridge and forms the crust. To meet the computational demand for a precise tracing of the deforming upwelling plume and including the chemical buoyancy of the partially molten zone in my models, a new numerical method is developed to solve the related pure advection equations. The numerical method is based on Second Moment numerical method of Egan and Mahoney [1972] which is improved to maintain a high numerical accuracy in shear and rotational flow fields. In comparison with previous numerical methods, my numerical method is a cost-effective, non-diffusive and shape preserving method, and it can also be used to trace a deforming body in compressible flow fields.

  17. Geodynamic modeling of the capture and release of a plume conduit by a migrating mid-ocean ridge

    NASA Astrophysics Data System (ADS)

    Hall, P. S.

    2011-12-01

    plates over the relatively stationary, long-lived conduits of mantle plumes. However, paleomagnetic data from the Hawaii-Emperor Seamount Chain suggests that the Hawaiian hotspot moved rapidly (~40 mm/yr) between 81 - 47 Ma [Tarduno et al., 2003]. Recently, Tarduno et al. [2009] suggested that this period of rapid motion might be the surface expression of a plume conduit returning to a largely vertical orientation after having been captured and tilted as the result of being "run over" by migrating mid-ocean ridge. I report on a series of analog geodynamic experiments designed to characterize the evolution of a plume conduit as a mid-ocean ridge migrates over. Experiments were conducted in a clear acrylic tank (100 cm x 70 cm x 50 cm) filled with commercial grade high-fructose corn syrup. Plate-driven flow is modeled by dragging two sheets of Mylar film (driven by independent DC motors) in opposite directions over the surface of the fluid. Ridge migration is achieved by moving the point at which the mylar sheets diverge using a separate motor drive. Buoyant plume flow is generated using a small electrical heater placed at the bottom of the tank. Plate velocities and ridge migration rate are controlled and plume temperature monitored using LabView software. Experiments are recorded using digital video which is then analyzed using digital image analysis software to track the position and shape of the plume conduit throughout the course of the experiment. The intersection of the plume conduit with the surface of the fluid is taken as an analog for the locus of hotspot volcanism and tracked as a function of time to obtain a hotspot migration rate. Results show that the plume conduit experiences significant tilting immediately following the passage of the migrating ridge.

  18. Simulating pathways of subsurface oil in the Faroe-Shetland Channel using an ocean general circulation model.

    PubMed

    Main, C E; Yool, A; Holliday, N P; Popova, E E; Jones, D O B; Ruhl, H A

    2017-01-15

    Little is known about the fate of subsurface hydrocarbon plumes from deep-sea oil well blowouts and their effects on processes and communities. As deepwater drilling expands in the Faroe-Shetland Channel (FSC), oil well blowouts are a possibility, and the unusual ocean circulation of this region presents challenges to understanding possible subsurface oil pathways in the event of a spill. Here, an ocean general circulation model was used with a particle tracking algorithm to assess temporal variability of the oil-plume distribution from a deep-sea oil well blowout in the FSC. The drift of particles was first tracked for one year following release. Then, ambient model temperatures were used to simulate temperature-mediated biodegradation, truncating the trajectories of particles accordingly. Release depth of the modeled subsurface plumes affected both their direction of transport and distance travelled from their release location, and there was considerable interannual variability in transport. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Airborne Geophysical Surveys Applied to Hydrocarbon Resource Development Environmental Studies

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; Ball, L. B.; Finn, C.; Kass, A.; Thamke, J.

    2014-12-01

    Application of airborne geophysical surveys ranges in scale from detailed site scale such as locating abandoned well casing and saline water plumes to landscape scale for mapping hydrogeologic frameworks pertinent to ground water and tectonic settings relevant to studies of induced seismicity. These topics are important in understanding possible effects of hydrocarbon development on the environment. In addition airborne geophysical surveys can be used in establishing baseline "snapshots", to provide information in beneficial uses of produced waters, and in mapping ground water resources for use in well development. The U.S. Geological Survey (USGS) has conducted airborne geophysical surveys over more than 20 years for applications in energy resource environmental studies. A majority of these surveys are airborne electromagnetic (AEM) surveys to map subsurface electrical conductivity related to plumes of saline waters and more recently to map hydrogeologic frameworks for ground water and plume migration. AEM surveys have been used in the Powder River Basin of Wyoming to characterize the near surface geologic framework for siting produced water disposal ponds and for beneficial utilization in subsurface drip irrigation. A recent AEM survey at the Fort Peck Reservation, Montana, was used to map both shallow plumes from brine pits and surface infrastructure sources and a deeper concealed saline water plume from a failed injection well. Other reported applications have been to map areas geologically favorable for shallow gas that could influence drilling location and design. Airborne magnetic methods have been used to image the location of undocumented abandoned well casings which can serve as conduits to the near surface for coproduced waters. They have also been used in conjunction with geologic framework studies to understand the possible relationships between tectonic features and induced earthquakes in the Raton Basin. Airborne gravity as well as developing deeper mapping AEM surveys could also be effectively used in mapping tectonic features. Airborne radiometric methods have not been routinely used in hydrocarbon environmental studies but might be useful in understanding the surficial distribution of deposits related to naturally occurring radioactive materials.

  20. Extent and persistence of secondary water quality impacts after enhanced reductive bioremediation

    USGS Publications Warehouse

    Borden, Robert C.; Jason M. Tillotson,; Ng, Gene-Hua Crystal.; Bekins, Barbara A.; Kent, Douglas B.; Curtis, Gary P.

    2017-01-01

    Electron donor (ED) addition can be very effective in stimulating enhanced reductive bioremediation (ERB) of a wide variety of groundwater contaminants. However, ERB can result in Secondary Water Quality Impacts (SWQIs) including decreased levels of dissolved oxygen (O2), nitrate (NO3- ), and sulfate (SO42- ), and elevated levels of dissolved manganese (Mn2+), dissolved iron (Fe2+), methane (CH4), sulfide (S2- ), organic carbon, and naturally occurring hazardous compounds (e.g., arsenic). Fortunately, this ‘plume’ of impacted groundwater is usually confined within the original contaminant plume and is unlikely to adversely impact potable water supplies. This report summarizes available information on processes controlling the production and natural attenuation of SWQI parameters and can be used as a guide in understanding the magnitude, areal extent, and duration of SWQIs in ERB treatment zones and the natural attenuation of SWQI parameters as the dissolved solutes migrate downgradient with ambient groundwater flow. This information was compiled from a wide variety of sources including a survey and statistical analysis of SWQIs from 47 ERB sites, geochemical model simulations, field studies at sites where organic-rich materials have entered the subsurface (e.g., wastewater, landfill leachate, and hydrocarbon plumes), and basic information on physical, chemical, and biological processes in the subsurface. This information is then integrated to provide a general conceptual model of the major processes controlling SWQI production and attenuation.

  1. PLUME-SCALER-EVALUATING LONG-TERM MONITORING WELL NETWORKS

    EPA Science Inventory

    EPA's Subsurface Protection and Remediation Division is developing a new computer application called PLUME-SCALER to evaluate long term monitoring well networks using typically available historical site water level data. PLUME-SCALER can be used to determine if there are enough ...

  2. Impacts of relative permeability on CO2 phase behavior, phase distribution, and trapping mechanisms

    NASA Astrophysics Data System (ADS)

    Moodie, N.; McPherson, B. J. O. L.; Pan, F.

    2015-12-01

    A critical aspect of geologic carbon storage, a carbon-emissions reduction method under extensive review and testing, is effective multiphase CO2 flow and transport simulation. Relative permeability is a flow parameter particularly critical for accurate forecasting of multiphase behavior of CO2 in the subsurface. The relative per­meability relationship assumed and especially the irreducible saturation of the gas phase greatly impacts predicted CO2 trapping mechanisms and long-term plume migration behavior. A primary goal of this study was to evaluate the impact of relative permeability on efficacy of regional-scale CO2 sequestration models. To accomplish this we built a 2-D vertical cross-section of the San Rafael Swell area of East-central Utah. This model simulated injection of CO2 into a brine aquifer for 30 years. The well was then shut-in and the CO2 plume behavior monitored for another 970 years. We evaluated five different relative permeability relationships to quantify their relative impacts on forecasted flow results of the model, with all other parameters maintained uniform and constant. Results of this analysis suggest that CO2 plume movement and behavior are significantly dependent on the specific relative permeability formulation assigned, including the assumed irreducible saturation values of CO2 and brine. More specifically, different relative permea­bility relationships translate to significant differences in CO2 plume behavior and corresponding trapping mechanisms.

  3. Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging.

    PubMed

    Reddy, K R; Adams, J A

    2000-02-25

    This paper presents two-dimensional laboratory experiments performed to study how groundwater flow may affect the injected air zone of influence and remedial performance, and how injected air may alter subsurface groundwater flow and contaminant migration during in situ air sparging. Tests were performed by subjecting uniform sand profiles contaminated with dissolved-phase benzene to a hydraulic gradient and two different air flow rates. The results of the tests were compared to a test subjected to a similar air flow rate but a static groundwater condition. The test results revealed that the size and shape of the zone of influence were negligibly affected by groundwater flow, and as a result, similar rates of contaminant removal were realized within the zone of influence with and without groundwater flow. The air flow, however, reduced the hydraulic conductivity within the zone of influence, reducing groundwater flow and subsequent downgradient contaminant migration. The use of a higher air flow rate further reduced the hydraulic conductivity and decreased groundwater flow and contaminant migration. Overall, this study demonstrated that air sparging may be effectively implemented to intercept and treat a migrating contaminant plume.

  4. Follow the Plume: Organic Molecules and Habitable Conditions in the Subsurface Ocean of Enceladus

    NASA Technical Reports Server (NTRS)

    Davila, Alfonso; McKay, Christopher P.; Willson, David; Eigenbrode, Jennifer; Hurford, Terry

    2018-01-01

    This white paper describes the astrobiological significance of the Enceladus plume, and makes a series of scientific and technological recommendations that would lead to a future mission that samples and analyzes plume materials, and searches for evidence of life.

  5. Remote Sensing and Underwater Glider Observations of a Springtime Plume in Western Lake Superior

    EPA Science Inventory

    Plumes are commonly observed in satellite imagery of western Lake Superior following storm events, and represent a significant cross-shelf pathway for sediment and other constituents. However, their subsurface extent is poorly understood. This study reports results from plume ob...

  6. INDEPENDENT TECHNICAL REVIEW OF THE BUILDING 100 PLUME, FORMER DOE PINELLAS SITE (YOUNG - RAINEY STAR CENTER), LARGO, FLORIDA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddy-Dilek, C.; Rossabi, J.; Amidon, M.

    2010-07-30

    Contaminated groundwater associated with Building 100 at the Young-Rainey Science, Technology, and Research Center, formerly the DOE Pinellas plant, is the primary remedial challenge that remains to be addressed at the site. Currently, Building 100 is an active industrial facility that is now owned and operated by the Pinellas county government. Groundwater samples collected from monitoring wells recently installed near the southern boundary of the site suggest that contaminated groundwater has migrated off the plant site. In response to the challenges presented by the Building 100 plume, the Office of Legacy Management (LM) requested assistance from the DOE Office ofmore » Groundwater and Soil Remediation (EM-32) to provide a review team to make technical recommendations so that they can efficiently and effectively address characterization and remediation of the plume. The review team was unanimous in the conclusion that a dynamic strategy that combines a phased implementation of direct push samplers, sensors, and tools can be used to better delineate the extent of contamination, control plume migration, and rapidly remediate the contaminated groundwater at the site. The initial efforts of the team focused on reviewing the site history and data, organizing the information into a conceptual model, identifying appropriate technologies, and recommending an integrated strategy. The current groundwater data from the site indicate a two-lobed plume extending to the east and south. To the east vinyl chloride is the primary contaminant of concern, to the south, vinyl chloride and cis1, 2-DCE are the primary contaminants. The limited data that are available suggest that reductive dechlorination of the TCE is already occurring but is not sufficient to prevent offsite migration of low concentrations of TCE daughter products. The team recommends that DOE pursue a strategy that builds on the natural cleansing capacity of the subsurface with reductive methods including biostimulation and/or bioaugmentation to provide a sustainable remediation system within the flow path of the plume. Additional data will be required to implement this approach and will include: (1) Better delineation of the nature and extent of contamination; (2) Demonstration the plume is currently stable or shrinking; and (3) Demonstration the full reductive dechlorination is occurring. The technical team recommends that DOE use a phased approach to identify residual contamination and to provide rapid installation of remedies. Matrices of characterization and remediation sensors, technologies, and tools were developed by the team in order to match the specific conditions and requirements of the site. The team provides a specific example of remedy that includes the incorporation of a dynamic characterization strategy moving from minimally invasive to more aggressive field techniques, the consideration of multiple complementary remediation approaches based on a spatiotemporally phased approach keyed to the different demands of different parts of the plume, and the integration and sequencing of the characterization and remediation activities.« less

  7. A composite numerical model for assessing subsurface transport of oily wastes and chemical constituents

    NASA Astrophysics Data System (ADS)

    Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Wade, S. C.; Saleem, Z. A.

    1997-02-01

    Subsurface fate and transport models are utilized to predict concentrations of chemicals leaching from wastes into downgradient receptor wells. The contaminant concentrations in groundwater provide a measure of the risk to human health and the environment. The level of potential risk is currently used by the U.S. Environmental Protection Agency to determine whether management of the wastes should conform to hazardous waste management standards. It is important that the transport and fate of contaminants is simulated realistically. Most models in common use are inappropriate for simulating the migration of wastes containing significant fractions of nonaqueous-phase liquids (NAPLs). The migration of NAPL and its dissolved constituents may not be reliably predicted using conventional aqueous-phase transport simulations. To overcome this deficiency, an efficient and robust regulatory assessment model incorporating multiphase flow and transport in the unsaturated and saturated zones of the subsurface environment has been developed. The proposed composite model takes into account all of the major transport processes including infiltration and ambient flow of NAPL, entrapment of residual NAPL, adsorption, volatilization, degradation, dissolution of chemical constituents, and transport by advection and hydrodynamic dispersion. Conceptually, the subsurface is treated as a composite unsaturated zone-saturated zone system. The composite simulator consists of three major interconnected computational modules representing the following components of the migration pathway: (1) vertical multiphase flow and transport in the unsaturated zone; (2) areal movement of the free-product lens in the saturated zone with vertical equilibrium; and (3) three-dimensional aqueous-phase transport of dissolved chemicals in ambient groundwater. Such a composite model configuration promotes computational efficiency and robustness (desirable for regulatory assessment applications). Two examples are presented to demonstrate the model verification and a site application. Simulation results obtained using the composite modeling approach are compared with a rigorous numerical solution and field observations of crude oil saturations and plume concentrations of total dissolved organic carbon at a spill site in Minnesota, U.S.A. These comparisons demonstrate the ability of the present model to provide realistic depiction of field-scale situations.

  8. Plume capture by a migrating ridge: Analog geodynamic experiments

    NASA Astrophysics Data System (ADS)

    Mendez, J. S.; Hall, P.

    2010-12-01

    Paleomagnetic data from the Hawaii-Emperor Seamount Chain (HESC) suggests that the Hawaiian hotspot moved rapidly (~40 mm/yr) between 81 - 47 Ma but has remained relatively stationary since that time. This implies that the iconic bend in the HESC may in fact reflect the transition from a period of rapid hotspot motion to a stationary state, rather than a change in motion of the Pacific plate. Tarduno et al. (2009) have suggested that this period of rapid hotspot motion might be the surface expression of a plume conduit returning to a largely vertical orientation after having been “captured” and tilted by a migrating mid-ocean ridge. We report on a series of analog fluid dynamic experiments designed to characterize the interaction between a migrating spreading center and a thermally buoyant mantle plume. Experiments were conducted in a clear acrylic tank (100 cm x 70 cm x 50 cm) filled with commercial grade high-fructose corn syrup. Plate-driven flow is modeled by dragging two sheets of Mylar film (driven by independent DC motors) in opposite directions over the surface of the fluid. Ridge migration is achieved by moving the point at which the mylar sheets diverge using a separate motor drive. Buoyant plume flow is modeled using corn syrup introduced into the bottom of the tank from an external, heated, pressurized reservoir. Small (~2 mm diameter), neutrally buoyant Delrin spheres are mixed into reservoir of plume material to aid in visualization. Plate velocities and ridge migration rate are controlled and plume temperature monitored using LabView software. Experiments are recorded using digital video which is then analyzed using digital image analysis software to track the position and shape of the plume conduit throughout the course of the experiment. The intersection of the plume conduit with the surface of the fluid is taken as an analog for the locus of hotspot volcanism and tracked as a function of time to obtain a hotspot migration rate. Experiments are scaled to the Earth's mantle through a combination of a Peclet number and a plume buoyancy number. A range of spreading rates, ridge migration rates, and plume excess temperatures representative of the Earth are considered.

  9. MICROBIAL ECOLOGY OF THE SUBSURFACE AT AN ABANDONED CREOSOTE WASTE SITE

    EPA Science Inventory

    The microbial ecology of pristine, slightly contaminated, and heavily contaminated subsurface materials, and four subsurface materials on the periphery of the plume at an abandoned creosote waste site was investigated. Except for the unsaturated zone of the heavily contaminated m...

  10. Linking Chaotic Advection with Subsurface Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Mays, D. C.; Freedman, V. L.; White, S. K.; Fang, Y.; Neupauer, R.

    2017-12-01

    This work investigates the extent to which groundwater flow kinematics drive subsurface biogeochemical processes. In terms of groundwater flow kinematics, we consider chaotic advection, whose essential ingredient is stretching and folding of plumes. Chaotic advection is appealing within the context of groundwater remediation because it has been shown to optimize plume spreading in the laminar flows characteristic of aquifers. In terms of subsurface biogeochemical processes, we consider an existing model for microbially-mediated reduction of relatively mobile uranium(VI) to relatively immobile uranium(IV) following injection of acetate into a floodplain aquifer beneath a former uranium mill in Rifle, Colorado. This model has been implemented in the reactive transport code eSTOMP, the massively parallel version of STOMP (Subsurface Transport Over Multiple Phases). This presentation will report preliminary numerical simulations in which the hydraulic boundary conditions in the eSTOMP model are manipulated to simulate chaotic advection resulting from engineered injection and extraction of water through a manifold of wells surrounding the plume of injected acetate. This approach provides an avenue to simulate the impact of chaotic advection within the existing framework of the eSTOMP code.

  11. On the importance of continental lithospheric roots in plume-continent interaction: implication for India motions over the last 130 Ma

    NASA Astrophysics Data System (ADS)

    Sibrant, A.; Davaille, A.

    2015-12-01

    Over the last 130 Ma, the India plate migration varied in velocity and direction. The oceanic magnetic anomalies indicates that the India-Asia convergence rate increase at ~ 90 Ma and at ~ 67 Ma. These episodes of acceleration correspond to the emplacement of Morondava and Deccan large igneous provinces, respectively. They therefore may be generated by the arrival of a mantle plume in the vicinity of India. We carried out laboratory experiments to examine and quantify the possible links between plume head impact and the acceleration of a continental plate. The latter is modelled by a buoyant raft, floating on the surface of a plexiglas tank containing Sugar Syrup, a temperature-dependent viscosity fluid. Plumes are generated by heating from below. The initial distance between the plume impact and the raft, as well as the raft size and density were systematically varied. The latter allows to evaluate the influence of a cratonic keel on the plate migration. Experimental results suggest that: (1) a continent can migrate under the influence of a plume head only if the thickness ratio between the keel and the plume head impact is greater than a critical value; (2) the maximum velocity achieved by the raft depends on the distance between the raft and the plume centre and (3) the direction taken by the raft is directly related to the position of the plume impact compared to the keel's. Given the Deccan Traps plume characteristics, the scaling laws derived from the experiments suggest that India could migrate after the plume impact with a velocity ranging between 61 and 125 mm/yr. This estimated range is fully coherent with the India plate velocity calculated from the oceanic magnetic anomalies, but it put strong constraints on the existence and position of cratonic keels under India. Moreover, India migration during the last 130 Ma can be quantitavely related to the successive impacts of three mantle plumes.

  12. Methods for constraining surface properties and volatile migration on Phoebe, Triton, Pluto, and the moon

    NASA Astrophysics Data System (ADS)

    Miller, Charles Frederick

    The surface properties and surface volatile content of rocky bodies contain clues as to the formation and subsequent evolution of our Solar System. Many Solar System bodies retain essentially pristine subsurface volatiles, but their surface volatiles have often undergone chemical processing from UV irradiation and heating from impacts over millennia. The result is a wide range of surface properties observed today. We analyze the surfaces of these primitive bodies with the goal of deducing their evolutionary history. To this end, we employed three targeted analysis methods to characterize the surface properties and/or volatile distribution of three Solar System satellites. We derived photometric properties of Saturn's moon Phoebe from observations taken at low solar phase angles and corn-pared these results to those published for other Solar System objects. We conclude that Phoebe's surface has similarities to both Jupiter family comets and Kuiper Belt Objects (KBOs), supporting the conjecture that Phoebe migrated to Saturn the outer Solar System. We converted a General Circulation Model (GCM) to simulate the atmospheric motion of Neptune's moon Triton. We used this model to investigate the effect of N2 surface frosts on Triton's global atmospheric circulation. Our simulations identified specific atmospheric thermal conditions that led to wind speeds and directions consistent with the motion of erupting geysers captured by Voyager 2 images. Finally, we developed an 3-D n-body ballistic plume model to analyze the geometry and dynamics of the ejecta plume created by the impact of the Lunar CRater Observation and Sensing Satellite (LCROSS) on the Moon. LCROSS was designed to detect water content in lunar regolith, but also served as a test bed for comparing the properties of a large-scale, controlled impact with laboratory impact experiments. By comparing plume simulation results to our observations of the LCROSS impact, we confirmed the predictions that the LCROSS ejecta plume was in fact a multi-component plume and found that the low velocity cutoff for high-angle particles varied with ejection angle.

  13. Observations of Inner Shelf Flows Influenced by a Small-Scale River Plume in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roth, M.; MacMahan, J.; Reniers, A.; Ozgokmen, T. M.

    2016-02-01

    Recent work has demonstrated that wind and waves are important forcing mechanisms for the inner shelf vertical current structure. Here, the inner shelf flows are evaluated away from an adjacent inlet where a small-scale buoyant plume emerges. The plume's nearshore extent, speed, vertical thickness, and density are controlled by the passage of low-pressure extratropical cyclones that are common in the northern Gulf of Mexico. The colder, brackish plume water provides vertical stratification and a cross-shore density gradient with the warmer, saline oceanic water. An Acoustic Doppler Current Profiler (ADCP) was deployed in 10m water depth as part of an intensive 2-week experiment (SCOPE), which also obtained wind and cross-shelf temperature, salinity, and velocity. The 10m ADCP remained collecting an additional year of velocity observations. The plume was not always present, but episodically influenced the experiment site. When the plume reached the site, the alongshore surface and subsurface typically flowed in opposite directions, likely caused by plume-induced pressure gradients. Plumes that extended into the subsurface appear to have caused depth-averaged onshore flow above that expected from wind and wave-driven forcing. Observations from SCOPE and the 1-year ADCP are used to describe seasonal full-depth flow patterns influenced by wind, waves, and plume presence.

  14. CO2 storage capacity estimates from fluid dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Juanes, R.; MacMinn, C. W.; Szulczewski, M.

    2009-12-01

    We study a sharp-interface mathematical model for the post-injection migration of a plume of CO2 in a deep saline aquifer under the influence of natural groundwater flow, aquifer slope, gravity override, and capillary trapping. The model leads to a nonlinear advection-diffusion equation, where the diffusive term describes the upward spreading of the CO2 against the caprock. We find that the advective terms dominate the flow dynamics even for moderate gravity override. We solve the model analytically in the hyperbolic limit, accounting rigorously for the injection period—using the true end-of-injection plume shape as an initial condition. We extend the model by incorporating the effect of CO2 dissolution into the brine, which—we find—is dominated by convective mixing. This mechanism enters the model as a nonlinear sink term. From a linear stability analysis, we propose a simple estimate of the convective dissolution flux. We then obtain semi-analytic estimates of the maximum plume migration distance and migration time for complete trapping. Our analytical model can be used to estimate the storage capacity (from capillary and dissolution trapping) at the geologic basin scale, and we apply the model to various target formations in the United States. Schematic of the migration of a CO2 plume at the geologic basin scale. During injection, the CO2 forms a plume that is subject to gravity override. At the end of the injection, all the CO2 is mobile. During the post-injection period, the CO2 migrates updip and also driven by regional groundwater flow. At the back end of the plume, where water displaces CO2, the plume leaves a wake or residual CO2 due to capillary trapping. At the bottom of the moving plume, CO2 dissolves into the brine—a process dominated by convective mixing. These two mechanisms—capillary trapping and convective dissolution—reduce the size of the mobile plume as it migrates. In this communication, we present an analytical model that predicts the migration distance and time for complete trapping. This is used to estimate storage capacity of geologic formations at the basin scale.

  15. Monitoring the evolution and migration of a methane gas plume in an unconfined sandy aquifer using time-lapse GPR and ERT.

    PubMed

    Steelman, Colby M; Klazinga, Dylan R; Cahill, Aaron G; Endres, Anthony L; Parker, Beth L

    2017-10-01

    Fugitive methane (CH 4 ) leakage associated with conventional and unconventional petroleum development (e.g., shale gas) may pose significant risks to shallow groundwater. While the potential threat of stray (CH 4 ) gas in aquifers has been acknowledged, few studies have examined the nature of its migration and fate in a shallow groundwater flow system. This study examines the geophysical responses observed from surface during a 72day field-scale simulated CH 4 leak in an unconfined sandy aquifer at Canadian Forces Base Borden, Canada, to better understand the transient behaviour of fugitive CH 4 gas in the subsurface. Time-lapse ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) were used to monitor the distribution and migration of the gas-phase and assess any impacts to groundwater hydrochemistry. Geophysical measurements captured the transient formation of a CH 4 gas plume emanating from the injector, which was accompanied by an increase in total dissolved gas pressure (P TDG ). Subsequent reductions in P TDG were accompanied by reduced bulk resistivity around the injector along with an increase in the GPR reflectivity along horizontal bedding reflectors farther downgradient. Repeat temporal GPR reflection profiling identified three events with major peaks in reflectivity, interpreted to represent episodic lateral CH 4 gas release events into the aquifer. Here, a gradual increase in P TDG near the injector caused a sudden lateral breakthrough of gas in the direction of groundwater flow, causing free-phase CH 4 to migrate much farther than anticipated based on groundwater advection. CH 4 accumulated along subtle permeability boundaries demarcated by grain-scale bedding within the aquifer characteristic of numerous Borden-aquifer multi-phase flow experiments. Diminishing reflectivity over a period of days to weeks suggests buoyancy-driven migration to the vadose zone and/or CH 4 dissolution into groundwater. Lateral and vertical CH 4 migration was primarily governed by subtle, yet measurable heterogeneity and anisotropy in the aquifer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Juvenile salmonid migratory behavior at the mouth of the Columbia River and within the plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMichael, Geoffrey A.; O'Toole, Amanda C.; Harnish, Ryan A.

    A total of 8,159 acoustic-tagged salmonid smolts were detected at the mouth of the Columbia River. Of the fish detected at the mouth, 14% of yearling Chinook salmon, 9% of steelhead, and 22% of subyearling Chinook salmon were detected on a sparse array deployed in the Columbia River plume. Chinook salmon smolts decreased travel rate as they left the river and entered the plume, while steelhead increased travel rate. Chinook salmon also spent more time in the transitional area between the river mouth and plume as compared to steelhead. In early spring, yearling Chinook salmon and steelhead predominately migrated pastmore » the plume array towards the edge of the shelf and to the south. Later in the season, yearling Chinook salmon and steelhead smolts tended to migrate out of the river mouth in a northerly direction. Subyearling Chinook salmon migrated predominately past the portion of the plume array to the north of the river mouth.« less

  17. Superfund record of decision (EPA Region 7): Cornhusker Army Ammunition Plant, Operable Unit 1, Hall County, Grand Island, NE, September 29, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The decision document presents the selected interim remedial action for the groundwater operable unit at the Cornhusker Army Ammunition Plant (CAAP). Operable Unit One encompasses the explosives groundwater plume(s), both on-post and off-post. Explosives of concern in the contaminant plume include RDX, TNT, HMX, and their decomposition products. The objective of the interim action is to contain the plume and prevent further migration of contaminants, and does not encompass full restoration of the plume of contaminated groundwater. The recommended alternatives provide an approach to containing and removing contaminant mass from the groundwater plume. This approach will control further migration ofmore » the plume and reduce the levels of the contamination in groundwater.« less

  18. Your View or Mine: Spatially Quantifying CO2 Storage Risk from Various Stakeholder Perspectives

    NASA Astrophysics Data System (ADS)

    Bielicki, J. M.; Pollak, M.; Wilson, E.; Elliot, T. R.; Guo, B.; Nogues, J. P.; Peters, C. A.

    2011-12-01

    CO2 capture and storage involves injecting captured CO2 into geologic formations, such as deep saline aquifers. This injected CO2 is to be "stored" within the rock matrix for hundreds to thousands of years, but injected CO2, or the brine it displaces, may leak from the target reservoir. Such leakage could interfere with other subsurface activities-water production, energy production, energy storage, and waste disposal-or migrate to the surface. Each of these interferences will incur multiple costs to a variety of stakeholders. Even if injected or displaced fluids do not interfere with other subsurface activities or make their way to the surface, costs will be incurred to find and fix the leak. Consequently, the suitability of a site for CO2 storage must therefore include an assessment of the risk of leakage and interference with various other activities within a three-dimensional proximity of where CO2 is being injected. We present a spatial analysis of leakage and interference risk associated with injecting CO2 into a portion of the Mount Simon sandstone in the Michigan Basin. Risk is the probability of an outcome multiplied by the impact of that outcome (Ro=po*Io). An outcome is the result of the leakage (e.g., interference with oil production), and the impact is the cost associated with the outcome. Each outcome has costs that will vary by stakeholder. Our analysis presents CO2 storage risk for multiple outcomes in a spatially explicit manner that varies by stakeholder. We use the ELSA semi-analytical model for estimating CO2 and brine leakage from aquifers to determine plume and pressure front radii, and CO2 and brine leakage probabilities for the Mount Simon sandstone and multiple units above it. Results of ELSA simulations are incorporated into RISCS: the Risk Interference Subsurface CO2 Storage model. RISCS uses three-dimensional data on subsurface geology and the locations of wells and boreholes to spatially estimate risks associated with CO2 leakage from injection reservoirs. Where plumes probabilistically intersect subsurface activities, reach groundwater, or reach the surface, RISCS uses cost estimates from the Leakage Impact Valuation framework to estimate CO2 storage leakage and interference risk in monetary terms. This framework estimates costs that might be incurred if CO2 leaks from an injection reservoir. Such leakage could beget a variety of costs, depending on the nature and extent of the impacts. The framework identifies multiple costs under headings of: (a) finding and fixing the leak, (b) business disruption, and (c) cleaning up and paying for damages. The framework also enumerates the distribution of costs between ten different stakeholders, and allocates these costs along four leakage scenarios: 1) No interference, 2) interference with a subsurface activity, 3) interference with groundwater, and 4) migration to the surface. Our methodology facilitates research along two lines. First, it allows a probabilistic assessment of leakage costs to an injection operator, and thus what the effect of leakage might be on CCS market effectiveness. Second, it allows a broader inquiry about injection site prioritization from the point of view of various stakeholders.

  19. Ground geophysical study of the Buckeye mine tailings, Boulder watershed, Montana

    USGS Publications Warehouse

    McDougal, Robert R.; Smith, Bruce D.

    2000-01-01

    The Buckeye mine site is located in the Boulder River watershed along Basin Creek, in northern Jefferson County, Montana. This project is part of the Boulder River watershed Abandoned Mine Lands Initiative, and is a collaborative effort between the U.S. Geological Survey and Bureau of Land Management in the U.S. Department of the Interior, and the U.S. Forest Service in the U.S. Department of Agriculture. The site includes a large flotation milltailing deposit, which extends to the stream and meadows below the mine. These tailings contain elevated levels of metals, such as silver, cadmium, copper, lead, and zinc. Metal-rich fluvial tailings containing these metals, are possible sources of ground and surface water contamination. Geophysical methods were used to characterize the sediments at the Buckeye mine site. Ground geophysical surveys, including electromagnetics, DC resistivity, and total field magnetic methods, were used to delineate anomalies that probably correlate with subsurface metal contamination. Subsurface conductivity was mapped using EM-31 and EM-34 terrain conductivity measuring systems. The conductivity maps represent variation of concentration of dissolved solids in the subsurface from a few meters, to an approximate depth of 30 meters. Conductive sulfides several centimeters thick were encountered in a shallow trench, dug in an area of very high conductivity, at a depth of approximately 1 to1.5 meters. Laboratory measurements of samples of the sulfide layers show the conductivity is on the order of 1000 millisiemens. DC resistivity soundings were used to quantify subsurface conductivity variations and to estimate the depth to bedrock. Total field magnetic measurements were used to identify magnetic metals in the subsurface. The EM surveys identified several areas of relatively high conductivity and detected a conductive plume extending to the southwest, toward the stream. This plume correlates well with the potentiometric surface and direction of ground water flow, and with water quality data from monitoring wells in and around the tailings. The electrical geophysical data suggests there has been vertical migration of high dissolved solids. A DC sounding made on a nearby granite outcrop to the north of the mine showed that the shallow conductivity is on the order of 5 millisiemens/m. Granite underlying the mine tailings, with similar electrical properties as the outcropping area, may be more than 30 meters deep.

  20. Subsurface fate and transport of sulfamethoxazole, 4-nonylphenol, and 17β-estradiol

    USGS Publications Warehouse

    Barber, L.B.; Meyer, M.T.; LeBlanc, D.R.; Kolpin, Dana W.; Radley, Paul; Chapelle, F.; Rubio, F.

    2008-01-01

    Subsurface fate and transport of the antibiotic sulfamethoxazole (SX), the non-ionic surfactant degradation product 4-nonylphenol (NP), and the sex hormone 17β-estradiol (E2) were evaluated in a plume of contaminated groundwater at Cape Cod, Massachusetts, USA. The plume is the result of 60 years of wastewater treatment plant effluent disposal into rapid infiltration beds. Natural-gradient, in situ tracer experiments were used to evaluate subsurface transport of SX, NP, and E2 (injected at 300, 530, and 0.55 µg/L, respectively) relative to the conservative tracer bromide. Two geochemical zones were evaluated: (1) uncontaminated groundwater overlying the plume, and (2) contaminated groundwater within the plume that has recently become oxic after decades of anoxic conditions. The uncontaminated groundwater is characterized by a microbial community unacclimated to treated wastewater, whereas the contaminated groundwater is characterized by microbes acclimated to wastewater contaminants. Results from the tracer tests in both zones showed that the antibiotic SX was co-transported with the conservative tracer bromide, with little retardation or mass removal. In contrast, NP and E2, which are more hydrophobic and biodegradable, showed sorption (relative retardation factors ranged up to 5.9) and mass loss at both the uncontaminated and contaminated sites.

  1. Intracontinental mantle plume and its implications for the Cretaceous tectonic history of East Asia

    NASA Astrophysics Data System (ADS)

    Ryu, In-Chang; Lee, Changyeol

    2017-12-01

    A-type granitoids, high-Mg basalts (e.g., picrites), adakitic rocks, basin-and-range-type fault basins, thinning of the North China Craton (NCC), and southwest-to-northeast migration of the adakites and I-type granitoids in southern Korea and southwestern Japan during the Cretaceous are attributed to the passive upwelling of deep asthenospheric mantle or ridge subduction. However, the genesis of these features remains controversial. Furthermore, the lack of ridge subduction during the Cretaceous in recently suggested plate reconstruction models poses a problem because the Cretaceous adakites in southern Korea and southwestern Japan could not have been generated by the subduction of the old Izanagi oceanic plate. Here, we speculate that plume-continent (intracontinental plume-China continent) and subsequent plume-slab (intracontinental plume-subducted Izanagi oceanic plate) interactions generated the various intracontinental magmatic and tectonic activities in eastern China, Korea, and southwestern Japan. We support our proposal using three-dimensional numerical models: 1) An intracontinental mantle plume is dragged into the mantle wedge by corner flow of the mantle wedge, and 2) the resultant channel-like flow of the mantle plume in the mantle wedge apparently migrated from southwest to northeast because of the northeast-to-southwest migration of the East Asian continental blocks with respect to the Izanagi oceanic plate. Our model calculations show that adakites and I-type granitoids can be generated by increased slab-surface temperatures because of the channel-like flow of the mantle plume in the mantle wedge. We also show that the southwest-to-northeast migration of the adakites and I-type granitoids in southern Korea and southwestern Japan can be attributable to the opposite migration of the East Asian continental blocks with respect to the Izanagi oceanic plate. This correlation implies that an intracontinental mantle plume existed in eastern China during the Cretaceous and that the mantle plume was entrained into the mantle wedge as a channel-like flow. An intracontinental mantle plume can explain the adakitic rocks, A-type granitoids, high-Mg basalts, and basin-and-range-type fault basins distributed in eastern China. Thus, the mantle plume and its interaction with the overlying continent and subducting slab through time plausibly explain the Cretaceous tectonic history of East Asia.

  2. Fortuitous encounters between seagliders and adult female northern fur seals (Callorhinus ursinus) off the Washington (USA) coast: upper ocean variability and links to top predator behavior.

    PubMed

    Pelland, Noel A; Sterling, Jeremy T; Lea, Mary-Anne; Bond, Nicholas A; Ream, Rolf R; Lee, Craig M; Eriksen, Charles C

    2014-01-01

    Behavioral responses by top marine predators to oceanographic features such as eddies, river plumes, storms, and coastal topography suggest that biophysical interactions in these zones affect predators' prey, foraging behaviors, and potentially fitness. However, examining these pathways is challenged by the obstacles inherent in obtaining simultaneous observations of surface and subsurface environmental fields and predator behavior. In this study, migratory movements and, in some cases, diving behavior of 40 adult female northern fur seals (NFS; Callorhinus ursinus) were quantified across their range and compared to remotely-sensed environmental data in the Gulf of Alaska and California Current ecosystems, with a particular focus off the coast of Washington State (USA)--a known foraging ground for adult female NFS and where autonomous glider sampling allowed opportunistic comparison of seal behavior to subsurface biophysical measurements. The results show that in these ecosystems, adult female habitat utilization was concentrated near prominent coastal topographic, riverine, or inlet features and within 200 km of the continental shelf break. Seal dive depths, in most ecosystems, were moderated by surface light level (solar or lunar), mirroring known behaviors of diel vertically-migrating prey. However, seal dives differed in the California Current ecosystem due to a shift to more daytime diving concentrated at or below the surface mixed layer base. Seal movement models indicate behavioral responses to season, ecosystem, and surface wind speeds; individuals also responded to mesoscale eddies, jets, and the Columbia River plume. Foraging within small scale surface features is consistent with utilization of the inner coastal transition zone and habitats near coastal capes, which are known eddy and filament generation sites. These results contribute to our knowledge of NFS migratory patterns by demonstrating surface and subsurface behavioral responses to a spatially and temporally dynamic ocean environment, thus reflecting its influence on associated NFS prey species.

  3. Fortuitous Encounters between Seagliders and Adult Female Northern Fur Seals (Callorhinus ursinus) off the Washington (USA) Coast: Upper Ocean Variability and Links to Top Predator Behavior

    PubMed Central

    Pelland, Noel A.; Sterling, Jeremy T.; Lea, Mary-Anne; Bond, Nicholas A.; Ream, Rolf R.; Lee, Craig M.; Eriksen, Charles C.

    2014-01-01

    Behavioral responses by top marine predators to oceanographic features such as eddies, river plumes, storms, and coastal topography suggest that biophysical interactions in these zones affect predators' prey, foraging behaviors, and potentially fitness. However, examining these pathways is challenged by the obstacles inherent in obtaining simultaneous observations of surface and subsurface environmental fields and predator behavior. In this study, migratory movements and, in some cases, diving behavior of 40 adult female northern fur seals (NFS; Callorhinus ursinus) were quantified across their range and compared to remotely-sensed environmental data in the Gulf of Alaska and California Current ecosystems, with a particular focus off the coast of Washington State (USA) – a known foraging ground for adult female NFS and where autonomous glider sampling allowed opportunistic comparison of seal behavior to subsurface biophysical measurements. The results show that in these ecosystems, adult female habitat utilization was concentrated near prominent coastal topographic, riverine, or inlet features and within 200 km of the continental shelf break. Seal dive depths, in most ecosystems, were moderated by surface light level (solar or lunar), mirroring known behaviors of diel vertically-migrating prey. However, seal dives differed in the California Current ecosystem due to a shift to more daytime diving concentrated at or below the surface mixed layer base. Seal movement models indicate behavioral responses to season, ecosystem, and surface wind speeds; individuals also responded to mesoscale eddies, jets, and the Columbia River plume. Foraging within small scale surface features is consistent with utilization of the inner coastal transition zone and habitats near coastal capes, which are known eddy and filament generation sites. These results contribute to our knowledge of NFS migratory patterns by demonstrating surface and subsurface behavioral responses to a spatially and temporally dynamic ocean environment, thus reflecting its influence on associated NFS prey species. PMID:25153524

  4. Spatial and temporal migration of a landfill leachate plume in alluvium

    USGS Publications Warehouse

    Masoner, Jason R.; Cozzarelli, Isabelle M.

    2015-01-01

    Leachate from unlined or leaky landfills can create groundwater contaminant plumes that last decades to centuries. Understanding the dynamics of leachate movement in space and time is essential for monitoring, planning and management, and assessment of risk to groundwater and surface-water resources. Over a 23.4-year period (1986–2010), the spatial extent of the Norman Landfill leachate plume increased at a rate of 7800 m2/year and expanded by 878 %, from an area of 20,800 m2 in 1986 to 203,400 m2 in 2010. A linear plume velocity of 40.2 m/year was calculated that compared favorably to a groundwater-seepage velocity of 55.2 m/year. Plume-scale hydraulic conductivity values representative of actual hydrogeological conditions in the alluvium ranged from 7.0 × 10−5 to 7.5 × 10−4 m/s, with a median of 2.0 × 10−4 m/s. Analyses of field-measured and calculated plume-scale hydraulic conductivity distributions indicate that the upper percentiles of field-measured values should be considered to assess rates of plume-scale migration, spreading, and biodegradation. A pattern of increasing Cl− concentrations during dry periods and decreasing Cl− concentrations during wet periods was observed in groundwater beneath the landfill. The opposite occurred in groundwater downgradient from the landfill; that is, Cl− concentrations in groundwater downgradient from the landfill decreased during dry periods and increased during wet periods. This pattern of changing Cl−concentrations in response to wet and dry periods indicates that the landfill retains or absorbs leachate during dry periods and produces lower concentrated leachate downgradient. During wet periods, the landfill receives more recharge which dilutes leachate in the landfill but increases leachate migration from the landfill and produces a more concentrated contaminant plume. This approach of quantifying plume expansion, migration, and concentration during variable hydrologic conditions provides increased understanding of plume behavior and migration potential and may be applied at less monitored landfill sites to evaluate potential risks of contamination to downgradient receptors.

  5. Synthetic seismic monitoring using reverse-time migration and Kirchhoff migration for CO2 sequestration in Korea

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kim, Y.; Min, D.; Oh, J.; Huh, C.; Kang, S.

    2012-12-01

    During last two decades, CO2 sequestration in the subsurface has been extensively studied and progressed as a direct tool to reduce CO2 emission. Commercial projects such as Sleipner, In Salah and Weyburn that inject more than one million tons of CO2 per year are operated actively as well as test projects such as Ketzin to study the behavior of CO2 and the monitoring techniques. Korea also began the CCS (CO2 capture and storage) project. One of the prospects for CO2 sequestration in Korea is the southwestern continental margin of Ulleung basin. To monitor the behavior of CO2 underground for the evaluation of stability and safety, several geophysical monitoring techniques should be applied. Among various geophysical monitoring techniques, seismic survey is considered as the most effective tool. To verify CO2 migration in the subsurface more effectively, seismic numerical simulation is an essential process. Furthermore, the efficiency of the seismic migration techniques should be investigated for various cases because numerical seismic simulation and migration test help us accurately interpret CO2 migration. In this study, we apply the reverse-time migration and Kirchhoff migration to synthetic seismic monitoring data generated for the simplified model based on the geological structures of Ulleung basin in Korea. Synthetic seismic monitoring data are generated for various cases of CO2 migration in the subsurface. From the seismic migration images, we can investigate CO2 diffusion patterns indirectly. From seismic monitoring simulation, it is noted that while the reverse-time migration generates clear subsurface images when subsurface structures are steeply dipping, Kirchhoff migration has an advantage in imaging horizontal-layered structures such as depositional sediments appearing in the continental shelf. The reverse-time migration and Kirchhoff migration present reliable subsurface images for the potential site characterized by stratigraphical traps. In case of vertical CO2 migration at injection point, the reverse time migration yields better images than Kirchhoff migration does. On the other hand, Kirchhoff migration images horizontal CO2 migration clearer than the reverse time migration does. From these results, we can conclude that the reverse-time migration and Kirchhoff migration can complement with each other to describe the behavior of CO2 in the subsurface. Acknowledgement This work was financially supported by the Brain Korea 21 project of Energy Systems Engineering, the "Development of Technology for CO2 Marine Geological Storage" program funded by the Ministry of Land, Transport and Maritime Affairs (MLTM) of Korea and the Korea CCS R&D Center (KCRC) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2012-0008926).

  6. IDENTIFYING AND PREDICTING DIVING PLUME BEHAVIOR AT GROUNDWATER SITES CONTAMINATED WITH MTBE: PART 2

    EPA Science Inventory

    As contaminant ground water flows downgradient from a release point, its movement is dictated by site geological conditions and hydraulics that may result in significant perpendicular contamination migration. This vertical migration pattern has been termed 'plume diving'. Under ...

  7. Monitoring Subsurface Fluid Flow Using Perfluorocarbon Tracers: Another Tool Potentially Available for Subsurface Fluid Flow Assessments

    EPA Pesticide Factsheets

    Perfluorocarbon Tracers (PFTs) Complement stable Isotopes and Geochemistry for Verifying, Assessing or Modeling Fluid Flow. Geochemistry, Isotopes and PFT’s complement Geophysics to monitor and verify plume movement, leakage to shallow aquifers or surface

  8. Electromagnetic geophysical leaching plume detection experiments - San Xavier Mine Facility, Tucson, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.O.; Wayland, J.R.

    1991-03-01

    The objective of this work was to investigate whether a subsurface plume may be detected and followed using crosshole and surface-to-borehole electromagnetic geophysical techniques. both of these techniques were experimentally demonstrated to be feasible. The presence of the injected plume was easily detected with these methods but additional work must be done to refine the techniques. 5 refs., 15 figs., 1 tab.

  9. Ion Formation Resulting from Freezing, Thawing, and Collisional Processes in Plumes Emitted from Planetary Bodies: Implications for Plume Chemistry and the Detection of Trace Organics Present in Enceladus Geysers

    NASA Astrophysics Data System (ADS)

    Beauchamp, J. L.; Wiley, J. S.; Thomas, D. A.

    2014-12-01

    Icy plumes emitted into space from Enceladus and other planetary bodies offer the intriguing possibility of sampling the composition of subsurface liquid reservoirs that may comprise habitable zones of particular astrobiological significance in our solar system. Mass spectrometric sampling of plume materials enables the detection of molecules that facilitate an assessment of the extent of chemical and biological evolution that may have occurred in a subsurface sea. In laboratory experiments we have investigated the physical and chemical processes that occur in the complex plume environment that lead to ionization of trace organic constituents, both as a result of the freezing of liquid droplets and the thawing of icy particles. We also demonstrate that collisions between icy particles lead to triboelectric charging. Subsequent discharges between oppositely charged particles result not only in the ionization of trace organics but to chemical reactions between molecular components present in the particles. For example, nitriles react with water to form amides and acids. In particular, icy particles doped with small amounts of aminoacetonitrile and water lead to the formation of the simplest amino acid glycine. The implications which these observations may have for sampling plume composition from orbit in a future mission to Enceladus will be discussed.

  10. Using electrokinetic phenomena and electrical resistance tomography to characterize the movement of subsurface fluids

    DOEpatents

    Ramirez, Abelardo L.; Cooper, John F.; Daily, William D.

    1996-01-01

    This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination.

  11. Using electrokinetic phenomena and electrical resistance tomography to characterize the movement of subsurface fluids

    DOEpatents

    Ramirez, A.L.; Cooper, J.F.; Daily, W.D.

    1996-02-27

    This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination. 1 fig.

  12. Aerial Vehicles to Detect Maximum Volume of Plume Material Associated with Habitable Areas in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Gunasekara, Onalli; Wong, Uland Y.; Furlong, Michael P.; Dille, Michael

    2017-01-01

    Current technologies of exploring habitable areas of icy moons are limited to flybys of space probes. This research project addresses long-term navigation of icy moons by developing a MATLAB adjustable trajectory based on the volume of plume material observed. Plumes expose materials from the sub-surface without accessing the subsurface. Aerial vehicles capable of scouting vapor plumes and detecting maximum plume material volumes, which are considered potentially habitable in inhospitable environments, would enable future deep-space missions to search for extraterrestrial organisms on the surface of icy moons. Although this platform is still a prototype, it demonstrates the potential aerial vehicles can have in improving the capabilities of long-term space navigation and enabling technology for detecting life in extreme environments. Additionally, this work is developing the capabilities that could be utilized as a platform for space biology research. For example, aerial vehicles that are sent to map extreme environments of icy moons or the planet Mars, could also carry small payloads with automated cell-biology experiments, designed to probe the biological response of low-gravity and high-radiation planetary environments, serving as a pathfinder for future human missions.

  13. Modeling Europa's dust plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B. S.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Jupiter's moon Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we simulate possible Europa plume configurations, analyze particle number density and surface deposition results, and estimate the expected flux of ice grains on a spacecraft. Due to Europa's high escape speed, observing an active plume will require low-altitude flybys, preferably at altitudes of 5-100 km. At higher altitudes a plume may escape detection. Our simulations provide an extensive library documenting the possible structure of Europa dust plumes, which can be quickly refined as more data on Europa dust plumes are collected.

  14. EXAMPLES OF LANDFILL-GENERATED PLUMES IN LOW-RELIEF AREAS, SOUTHEAST FLORIDA.

    USGS Publications Warehouse

    Russell, Gary M.; Stewart, Mark; Higer, Aaron L.

    1987-01-01

    Examples of effects of low topographic relief are noted in southeast Florida where water-table gradients are 7 multiplied by 10** minus **4 to 5 multiplied by 10** minus **4 feet per foot. Water-table mounding beneath the landfill and the drainage effects of nearby ditches and well have created multiple leachate plumes in Stuart where one plume migrated in a direction opposite to the apparent regional gradient. In Coral Springs analysis suggests a bifurcating plume migrating along two narrow zones. In Fort Pierce it was difficult to detect leachate because of mineralized irrigation water and fertilizer runoff from an adjacent citrus grove.

  15. Hydrology and subsurface transport of oil-field brine at the U.S. Geological Survey OSPER site "A", Osage County, Oklahoma

    USGS Publications Warehouse

    Herkelrath, W.N.; Kharaka, Y.K.; Thordsen, J.J.; Abbott, M.M.

    2007-01-01

    Spillage and improper disposal of saline produced water from oil wells has caused environmental damage at thousands of sites in the United States. In order to improve understanding of the fate and transport of contaminants at these sites, the U.S. Geological Survey carried out multidisciplinary investigations at two oil production sites near Skiatook Lake, Oklahoma. As a part of this effort, the hydrology and subsurface transport of brine at OSPER site "A", a tank battery and pit complex that was abandoned in 1973, was investigated. Based on data from 41 new boreholes that were cored and completed with monitoring wells, a large (???200 m ?? 200 m ?? 20 m) plume of saline ground water was mapped. The main dissolved species are Na and Cl, with TDS in the plume ranging as high as 30,000 mg/L. Analysis of the high barometric efficiency of the wells indicated a confined aquifer response. Well-slug tests indicated the hydraulic conductivity is low (0.3-7.0 cm/day). Simplified flow and transport modeling supports the following conceptual model: (1) prior to the produced water releases, recharge was generally low (???1 cm/a); (2) in ???60 a of oil production enough saline produced water in pits leaked into the subsurface to create the plume; (3) following abandonment of the site in 1973 and filling of Skiatook Reservoir in the mid-1980s, recharge and lateral flow of water through the plume returned to low values; (4) as a result, spreading of the brine plume caused by mixing with fresh ground water recharge, as well as natural attenuation, are very slow.

  16. Habitability of enceladus: planetary conditions for life.

    PubMed

    Parkinson, Christopher D; Liang, Mao-Chang; Yung, Yuk L; Kirschivnk, Joseph L

    2008-08-01

    The prolific activity and presence of a plume on Saturn's tiny moon Enceladus offers us a unique opportunity to sample the interior composition of an icy satellite, and to look for interesting chemistry and possible signs of life. Based on studies of the potential habitability of Jupiter's moon Europa, icy satellite oceans can be habitable if they are chemically mixed with the overlying ice shell on Myr time scales. We hypothesize that Enceladus' plume, tectonic processes, and possible liquid water ocean may create a complete and sustainable geochemical cycle that may allow it to support life. We discuss evidence for surface/ocean material exchange on Enceladus based on the amounts of silicate dust material present in the Enceladus' plume particles. Microphysical cloud modeling of Enceladus' plume shows that the particles originate from a region of Enceladus' near surface where the temperature exceeds 190 K. This could be consistent with a shear-heating origin of Enceladus' tiger stripes, which would indicate extremely high temperatures ( approximately 250-273 K) in the subsurface shear fault zone, leading to the generation of subsurface liquid water, chemical equilibration between surface and subsurface ices, and crustal recycling on a time scale of 1 to 5 Myr. Alternatively, if the tiger stripes form in a mid-ocean-ridge-type mechanism, a half-spreading rate of 1 m/year is consistent with the observed regional heat flux of 250 mW m(-2) and recycling of south polar terrain crust on a 1 to 5 Myr time scale as well.

  17. Kinematics of reflections in subsurface offset and angle-domain image gathers

    NASA Astrophysics Data System (ADS)

    Dafni, Raanan; Symes, William W.

    2018-05-01

    Seismic migration in the angle-domain generates multiple images of the earth's interior in which reflection takes place at different scattering-angles. Mechanically, the angle-dependent reflection is restricted to happen instantaneously and at a fixed point in space: Incident wave hits a discontinuity in the subsurface media and instantly generates a scattered wave at the same common point of interaction. Alternatively, the angle-domain image may be associated with space-shift (regarded as subsurface offset) extended migration that artificially splits the reflection geometry. Meaning that, incident and scattered waves interact at some offset distance. The geometric differences between the two approaches amount to a contradictory angle-domain behaviour, and unlike kinematic description. We present a phase space depiction of migration methods extended by the peculiar subsurface offset split and stress its profound dissimilarity. In spite of being in radical contradiction with the general physics, the subsurface offset reveals a link to some valuable angle-domain quantities, via post-migration transformations. The angle quantities are indicated by the direction normal to the subsurface offset extended image. They specifically define the local dip and scattering angles if the velocity at the split reflection coordinates is the same for incident and scattered wave pairs. Otherwise, the reflector normal is not a bisector of the opening angle, but of the corresponding slowness vectors. This evidence, together with the distinguished geometry configuration, fundamentally differentiates the angle-domain decomposition based on the subsurface offset split from the conventional decomposition at a common reflection point. An asymptotic simulation of angle-domain moveout curves in layered media exposes the notion of split versus common reflection point geometry. Traveltime inversion methods that involve the subsurface offset extended migration must accommodate the split geometry in the inversion scheme for a robust and successful convergence at the optimal velocity model.

  18. Reducing Risk in CO2 Sequestration: A Framework for Integrated Monitoring of Basin Scale Injection

    NASA Astrophysics Data System (ADS)

    Seto, C. J.; Haidari, A. S.; McRae, G. J.

    2009-12-01

    Geological sequestration of CO2 is an option for stabilization of atmospheric CO2 concentrations. Technical ability to safely store CO2 in the subsurface has been demonstrated through pilot projects and a long history of enhanced oil recovery and acid gas disposal operations. To address climate change, current injection operations must be scaled up by a factor of 100, raising issues of safety and security. Monitoring and verification is an essential component in ensuring safe operations and managing risk. Monitoring provides assurance that CO2 is securely stored in the subsurface, and the mechanisms governing transport and storage are well understood. It also provides an early warning mechanism for identification of anomalies in performance, and a means for intervention and remediation through the ability to locate the CO2. Through theoretical studies, bench scale experiments and pilot tests, a number of technologies have demonstrated their ability to monitor CO2 in the surface and subsurface. Because the focus of these studies has been to demonstrate feasibility, individual techniques have not been integrated to provide a more robust method for monitoring. Considering the large volumes required for injection, size of the potential footprint, length of time a project must be monitored and uncertainty, operational considerations of cost and risk must balance safety and security. Integration of multiple monitoring techniques will reduce uncertainty in monitoring injected CO2, thereby reducing risk. We present a framework for risk management of large scale injection through model based monitoring network design. This framework is applied to monitoring CO2 in a synthetic reservoir where there is uncertainty in the underlying permeability field controlling fluid migration. Deformation and seismic data are used to track plume migration. A modified Ensemble Kalman filter approach is used to estimate flow properties by jointly assimilating flow and geomechanical observations. Issues of risk, cost and uncertainty are considered.

  19. Subsurface polarimetric migration imaging for full polarimetric ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Feng, Xuan; Yu, Yue; Liu, Cai; Fehler, Michael

    2015-08-01

    Polarization is a property of electromagnetic wave that generally refers to the locus of the electric field vector, which can be used to characterize surface properties by polarimetric radar. However, its use has been less common in the ground-penetrating radar (GPR) community. Full polarimetric GPR data include scattering matrices, by which the polarization properties can be extracted, at each survey point. Different components of the measured scattering matrix are sensitive to different types of subsurface objects, which offers a potential improvement in the detection ability of GPR. This paper develops a polarimetric migration imaging method. By merging the Pauli polarimetric decomposition technique with the Krichhoff migration equation, we develop a polarimetric migration algorithm, which can extract three migrated coefficients that are sensitive to different types of objects. Then fusing the three migrated coefficients, we can obtain subsurface colour-coded reconstructed object images, which can be employed to interpret both the geometrical information and the scattering mechanism of the subsurface objects. A 3-D full polarimetric GPR data set was acquired in a laboratory experiment and was used to test the method. In the laboratory experiment, four objects-a scatterer, a ball, a plate and a dihedral target-were buried in homogeneous dry sand under a flat ground surface. By merging the reconstructed image with polarization properties, we enhanced the subsurface image and improved the classification ability of GPR.

  20. PROTOZOA IN SUBSURFACE SEDIMENTS FROM SITE CONTAMI- NATED WITH AVIATION GASOLINE OR JET FUEL

    EPA Science Inventory

    Numbers of protozoa in the subsurface of aviation gasoline and jet fuel spill areas at a Coast Guard base at Traverse City, Mich., were determined. Boreholes were drilled in an uncontaminated location, in contaminated but untreated parts of the fuel plumes, and in the aviation ga...

  1. INDOOR AIR CONCENTRATION UNIT CONVERSIONS

    EPA Science Inventory

    Migration of volatile chemicals from the subsurface into overlying buildings is called vapor intrusion (VI). Volatile organic chemicals in contaminated soils or groundwater can emit vapors, which can migrate through subsurface soils and may enter the indoor air of overlying buil...

  2. ON-LINE CALCULATOR: VAPOR INTRUSION MODELING

    EPA Science Inventory

    Migration of volatile chemicals from the subsurface into overlying buildings is called vapor intrusion (VI). Volatile organic chemicals in contaminated soils or groundwater can emit vapors, which may migrate through subsurface soils and may enter the indoor air of overlying build...

  3. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Sutherland, D. A.; Hudson, B.; Moon, T.; Catania, G. A.; Shroyer, E. L.; Nash, J. D.; Bartholomaus, T. C.; Felikson, D.; Stearns, L. A.; Noël, B. P. Y.; Broeke, M. R.

    2016-09-01

    Meltwater from the Greenland Ice Sheet often drains subglacially into fjords, driving upwelling plumes at glacier termini. Ocean models and observations of submarine termini suggest that plumes enhance melt and undercutting, leading to calving and potential glacier destabilization. Here we systematically evaluate how simulated plume structure and submarine melt during summer months depends on realistic ranges of subglacial discharge, glacier depth, and ocean stratification from 12 Greenland fjords. Our results show that grounding line depth is a strong control on plume-induced submarine melt: deep glaciers produce warm, salty subsurface plumes that undercut termini, and shallow glaciers produce cold, fresh surface-trapped plumes that can overcut termini. Due to sustained upwelling velocities, plumes in cold, shallow fjords can induce equivalent depth-averaged melt rates compared to warm, deep fjords. These results detail a direct ocean-ice feedback that can affect the Greenland Ice Sheet.

  4. Tracking the evolution of a hydrothermal event plume with a RAFOS neutrally buoyant drifter

    PubMed

    Lupton; Baker; Garfield; Massoth; Feely; Cowen; Greene; Rago

    1998-05-15

    The migration and evolution of a deep ocean hydrothermal event plume were tracked with a neutrally buoyant RAFOS float. The float remained entrained in the plume for 60 days, and the plume vorticity was calculated directly from the anticyclonic motion of the float. Concentrations of suspended particles, particulate iron, and dissolved manganese in the plume did not decay significantly during the 60 days, which indicates that event plumes would be easily detectable a year after formation.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivarson, Kristine A.; Miller, Charles W.; Arola, Craig C.

    Groundwater contamination by hexavalent chromium and other nuclear reactor operation-related contaminants has resulted in the need for groundwater remedial actions within the Hanford Site reactor areas (the Hanford Site 100 Area). The large geographic extent of the resultant contaminant plumes requires an extensive level of understanding of the aquifer structure, characteristics, and configuration to support assessment and design of remedial alternatives within the former 100-D, 100-H, and 100-K reactor areas. The authors have prepared two- and three-dimensional depictions of the key subsurface geologic structures at two Hanford Site reactor operable units (100-K and 100-D/H). These depictions, prepared using commercial-off-the-shelf (COTS)more » visualization software, provide a basis for expanding the understanding of groundwater contaminant migration pathways, including identification of geologically-defined preferential groundwater flow pathways. These identified preferential flow pathways support the conceptual site model and help explain both historical and current contaminant distribution and transport. (authors)« less

  6. Distribution and mass loss of volatile organic compounds in the surficial aquifer at sites FT03, LF13, and WP14/LF15, Dover Air Force Base, Delaware, November 2000-February 2001

    USGS Publications Warehouse

    Barbaro, Jeffrey R.; Neupane, Pradumna P.

    2002-01-01

    Ground-water and surface-water sampling was conducted in the natural attenuation study area in the East Management Unit of Dover Air Force Base, Delaware to determine the distributions of volatile organic compounds in the vicinity of four sites?Fire Training Area Three, the Rubble Area Landfill, the Receiver Station Landfill, and the Liquid Waste Disposal Landfill. This work was done by the U.S. Geological Survey, in cooperation with the U.S. Air Force, as part of an ongoing assessment of the effectiveness of natural attenuation at these sites. The specific objectives of the study were to (1) determine the areal and vertical extent of the contaminant plumes and source areas, (2) measure volatile organic compound concentrations in ground-water discharge areas and in surface water under base-flow conditions, (3) evaluate the potential for off-site migration of the mapped plumes, and (4) estimate the amount of mass loss downgradient of the Liquid Waste Disposal and Receiver Station Landfills. A direct-push drill rig and previously installed multi-level piezometers were used to determine the three-dimensional distributions of volatile organic compounds in the 30?60-foot-thick surficial aquifer underlying the natural attenuation study area. A hand -driven mini-piezometer was used to collect ground-water samples in ground-water discharge areas. A total of 319 ground-water and 4 surface-water samples were collected from November 2000 to February 2001 and analyzed for chlorinated solvents and fuel hydrocarbons. The contaminant plumes migrating from Fire Training Area Three and the Rubble Area Landfill are approximately 500 feet and 800 feet, respectively, in length. These plumes consist predominantly of cis-1,2-dichloroethene, a daughter product, indicating that extensive dechlorination of tetrachloroethene and trichloroethene has occurred at these sites. With an approximate length of 2,200 feet, the plume migrating from the Receiver Station and Liquid Waste Disposal Landfills is the largest of the three plumes in the East Management Unit. In this plume, the parent compounds, tetrachloroethene and trichloroethene, as well as cis-1,2-dichloroethene, are present downgradient of the source. Vinyl chloride was not detected in the natural attenuation study area. Vertical water-quality profiles indicate that volatile organic compounds are present mainly in the upper part of the surficial aquifer. Plumes of fuel hydrocarbon constituents were not detected in the natural attenuation study area. Volatile organic compounds were present at concentrations above detection limits in 6 of 14 samples collected from the aquifer underlying the bed of Pipe Elm Branch and the drainage ditch adjacent to Fire Training Area Three, indicating that the plumes migrating from Fire Training Area Three and the Receiver Station and Liquid Waste Disposal Landfills are reaching these ground-water discharge areas. In contrast, sampling results indicated that the plume from the Rubble Area Landfill does not reach these ground-water discharge areas. Trichloroethene was present above detection limits in one of four surface-water samples collected from Pipe Elm Branch and the drainage ditch adjacent to Fire Training Area Three. The trichloroethene concentration is below applicable Delaware Department of Natural Resources and Environmental Control surface-water-quality standards for human health. An assessment of chlorinated-solvent mass loss in the plume migrating from the Receiver Station and Liquid Waste Disposal Landfills indicates that tetrachloroethene and trichloroethene mass loss downgradient of the source is negligible. Cis-1,2-dichloroethene, however, appears to biodegrade by an unidentified reaction in the plume. Plan-view maps of the plume migrating from the Receiver Station and Liquid Waste Disposal Landfills indicate that tetrachloroethene, trichloroethene, and cis-1,2-dichloroethene may migrate off Dover Air Force Base property approximately 1,500 f

  7. Transport and fate of organic wastes in groundwater at the Stringfellow hazardous waste disposal site, southern California

    USGS Publications Warehouse

    Leenheer, J.A.; Hsu, J.; Barber, L.B.

    2001-01-01

    In January 1999, wastewater influent and effluent from the pretreatment plant at the Stringfellow hazardous waste disposal site were sampled along with groundwater at six locations along the groundwater contaminant plume. The objectives of this sampling and study were to identify at the compound class level the unidentified 40-60% of wastewater organic contaminants, and to determine what organic compound classes were being removed by the wastewater pretreatment plant, and what organic compound classes persisted during subsurface waste migration. The unidentified organic wastes are primarily chlorinated aromatic sulfonic acids derived from wastes from DDT manufacture. Trace amounts of EDTA and NTA organic complexing agents were discovered along with carboxylate metabolites of the common alkylphenolpolyethoxylate plasticizers and nonionic surfactants. The wastewater pretreatment plant removed most of the aromatic chlorinated sulfonic acids that have hydrophobic neutral properties, but the p-chlorobenzenesulfonic acid which is the primary waste constituent passed through the pretreatment plant and was discharged in the treated wastewaters transported to an industrial sewer. During migration in groundwater, p-chlorobenzenesulfonic acid is removed by natural remediation processes. Wastewater organic contaminants have decreased 3- to 45-fold in the groundwater from 1985 to 1999 as a result of site remediation and natural remediation processes. The chlorinated aromatic sulfonic acids with hydrophobic neutral properties persist and have migrated into groundwater that underlies the adjacent residential community. Copyright ?? 2001 .

  8. Dispersal and Diving Adjustments of the Green Turtle Chelonia mydas in Response to Dynamic Environmental Conditions during Post-Nesting Migration

    PubMed Central

    Chambault, Philippine; Pinaud, David; Vantrepotte, Vincent; Kelle, Laurent; Entraygues, Mathieu; Guinet, Christophe; Berzins, Rachel; Bilo, Karin; Gaspar, Philippe; de Thoisy, Benoît; Le Maho, Yvon; Chevallier, Damien

    2015-01-01

    In response to seasonality and spatial segregation of resources, sea turtles undertake long journeys between their nesting sites and foraging grounds. While satellite tracking has made it possible to outline their migration routes, we still have little knowledge of how they select their foraging grounds and adapt their migration to dynamic environmental conditions. Here, we analyzed the trajectories and diving behavior of 19 adult green turtles (Chelonia mydas) during their post-nesting migration from French Guiana and Suriname to their foraging grounds off the coast of Brazil. First Passage Time analysis was used to identify foraging areas located off Ceará state of Brazil, where the associated habitat corresponds to favorable conditions for seagrass growth, i.e. clear and shallow waters. The dispersal and diving patterns of the turtles revealed several behavioral adaptations to the strong hydrodynamic processes induced by both the North Brazil current and the Amazon River plume. All green turtles migrated south-eastward after the nesting season, confirming that they coped with the strong counter North Brazil current by using a tight corridor close to the shore. The time spent within the Amazon plume also altered the location of their feeding habitats as the longer individuals stayed within the plume, the sooner they initiated foraging. The green turtles performed deeper and shorter dives while crossing the mouth of the Amazon, a strategy which would help turtles avoid the most turbulent upper surface layers of the plume. These adjustments reveal the remarkable plasticity of this green turtle population when reducing energy costs induced by migration. PMID:26398528

  9. Dispersal and Diving Adjustments of the Green Turtle Chelonia mydas in Response to Dynamic Environmental Conditions during Post-Nesting Migration.

    PubMed

    Chambault, Philippine; Pinaud, David; Vantrepotte, Vincent; Kelle, Laurent; Entraygues, Mathieu; Guinet, Christophe; Berzins, Rachel; Bilo, Karin; Gaspar, Philippe; de Thoisy, Benoît; Le Maho, Yvon; Chevallier, Damien

    2015-01-01

    In response to seasonality and spatial segregation of resources, sea turtles undertake long journeys between their nesting sites and foraging grounds. While satellite tracking has made it possible to outline their migration routes, we still have little knowledge of how they select their foraging grounds and adapt their migration to dynamic environmental conditions. Here, we analyzed the trajectories and diving behavior of 19 adult green turtles (Chelonia mydas) during their post-nesting migration from French Guiana and Suriname to their foraging grounds off the coast of Brazil. First Passage Time analysis was used to identify foraging areas located off Ceará state of Brazil, where the associated habitat corresponds to favorable conditions for seagrass growth, i.e. clear and shallow waters. The dispersal and diving patterns of the turtles revealed several behavioral adaptations to the strong hydrodynamic processes induced by both the North Brazil current and the Amazon River plume. All green turtles migrated south-eastward after the nesting season, confirming that they coped with the strong counter North Brazil current by using a tight corridor close to the shore. The time spent within the Amazon plume also altered the location of their feeding habitats as the longer individuals stayed within the plume, the sooner they initiated foraging. The green turtles performed deeper and shorter dives while crossing the mouth of the Amazon, a strategy which would help turtles avoid the most turbulent upper surface layers of the plume. These adjustments reveal the remarkable plasticity of this green turtle population when reducing energy costs induced by migration.

  10. Leachate plume delineation and lithologic profiling using surface resistivity in an open municipal solid waste dumpsite, Sri Lanka.

    PubMed

    Wijesekara, Hasintha Rangana; De Silva, Sunethra Nalin; Wijesundara, Dharani Thanuja De Silva; Basnayake, Bendict Francis Antony; Vithanage, Meththika Suharshini

    2015-01-01

    This study presents the use of direct current resistivity techniques (DCRT) for investigation and characterization of leachate-contaminated subsurface environment of an open solid waste dumpsite at Kandy, Sri Lanka. The particular dumpsite has no liner and hence the leachate flows directly to the nearby river via subsurface and surface channels. For the identification of possible subsurface flow paths and the direction of the leachate, DCRT (two-dimensional, three-dimensional and vertical electrical sounding) have been applied. In addition, the physico-chemical parameters such as pH, electrical conductivity (EC), alkalinity, hardness, chloride, chemical oxygen demand (COD) and total organic carbon (TOC) of leachate collected from different points of the solid waste dumping area and leachate drainage channel were analysed. Resistivity data confirmed that the leachate flow is confined to the near surface and no separate plume is observed in the downstream area, which may be due to the contamination distribution in the shallow overburden thickness. The stratigraphy with leachate pockets and leachate plume movements was well demarcated inside the dumpsite via low resistivity zones (1-3 Ωm). The recorded EC, alkalinity, hardness and chloride contents in leachate were averaged as 14.13 mS cm⁻¹, 3236, 2241 and 320 mg L⁻¹, respectively, which confirmed the possible causes for low resistivity values. This study confirms that DCRT can be effectively utilized to assess the subsurface characteristics of the open dumpsites to decide on corridor placement and depth of permeable reactive barriers to reduce the groundwater contamination.

  11. Environmental Impacts of a Multi-Borehole Geothermal System: Model Sensitivity Study

    NASA Astrophysics Data System (ADS)

    Krol, M.; Daemi, N.

    2017-12-01

    Problems associated with fossil fuel consumption has increased worldwide interest in discovering and developing sustainable energy systems. One such system is geothermal heating, which uses the constant temperature of the ground to heat or cool buildings. Since geothermal heating offers low maintenance, high heating/cooling comfort, and a low carbon footprint, compared to conventional systems, there has been an increasing trend in equipping large buildings with geothermal heating. However, little is known on the potential environmental impact geothermal heating can have on the subsurface, such as the creation of subsurface thermal plumes or changes in groundwater flow dynamics. In the present study, the environmental impacts of a closed-loop, ground source heat pump (GSHP) system was examined with respect to different system parameters. To do this a three-dimensional model, developed using FEFLOW, was used to examine the thermal plumes resulting from ten years of operation of a vertical closed-loop GSHP system with multiple boreholes. A required thermal load typical of an office building located in Canada was calculated and groundwater flow and heat transport in the geological formation was simulated. Consequently, the resulting thermal plumes were studied and a sensitivity analysis was conducted to determine the effect of different parameters like groundwater flow and soil type on the development and movement of thermal plumes. Since thermal plumes can affect the efficiency of a GSHP system, this study provides insight into important system parameters.

  12. Modelling oil plumes from subsurface spills.

    PubMed

    Lardner, Robin; Zodiatis, George

    2017-11-15

    An oil plume model to simulate the behavior of oil from spills located at any given depth below the sea surface is presented, following major modifications to a plume model developed earlier by Malačič (2001) and drawing on ideas in a paper by Yapa and Zheng (1997). The paper presents improvements in those models and numerical testing of the various parameters in the plume model. The plume model described in this paper is one of the numerous modules of the well-established MEDSLIK oil spill model. The deep blowout scenario of the MEDEXPOL 2013 oil spill modelling exercise, organized by REMPEC, has been applied using the improved oil plume module of the MEDSLIK model and inter-comparison with results having the oil spill source at the sea surface are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Constraining the Enceladus Plume and Understanding Its Physics via Numerical Simulation from Underground Source to Infinity

    NASA Astrophysics Data System (ADS)

    Yeoh, S. K.; Li, Z.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Levin, D. A.

    2014-12-01

    The Enceladus ice/vapor plume not only accounts for the various features observed in the Saturnian system, such as the E-ring, the narrow neutral H2O torus, and Enceladus' own bright albedo, but also raises exciting new possibilities, including the existence of liquid water on Enceladus. Therefore, understanding the plume and its physics is important. Here we assume that the plume arises from flow expansion within multiple narrow subsurface cracks connected to reservoirs of liquid water underground, and simulate this expanding flow from the underground reservoir out to several Enceladus radii where Cassini data are available for comparison. The direct simulation Monte Carlo (DSMC) method is used to simulate the subsurface and near-field collisional regions and a free-molecular model is used to propagate the plume out into the far-field. We include the following physical processes in our simulations: the flow interaction with the crack walls, grain condensation from the vapor phase, non-equilibrium effects (e.g. freezing of molecular internal energy modes), the interaction between the vapor and the ice grains, the gravitational fields of Enceladus and Saturn, and Coriolis and centrifugal forces (due to motion in non-inertial reference frame). The end result is a plume model that includes the relevant physics of the flow from the underground source out to where Cassini measurements are taken. We have made certain assumptions about the channel geometry and reservoir conditions. The model is constrained using various available Cassini data (particularly those of INMS, CDA and UVIS) to understand the plume physics as well as estimate the vapor and grain production rates and its temporal variability.

  14. Modeling effluent distribution and nitrate transport through an on-site wastewater system.

    PubMed

    Hassan, G; Reneau, R B; Hagedorn, C; Jantrania, A R

    2008-01-01

    Properly functioning on-site wastewater systems (OWS) are an integral component of the wastewater system infrastructure necessary to renovate wastewater before it reaches surface or ground waters. There are a large number of factors, including soil hydraulic properties, effluent quality and dispersal, and system design, that affect OWS function. The ability to evaluate these factors using a simulation model would improve the capability to determine the impact of wastewater application on the subsurface soil environment. An existing subsurface drip irrigation system (SDIS) dosed with sequential batch reactor effluent (SBRE) was used in this study. This system has the potential to solve soil and site problems that limit OWS and to reduce the potential for environmental degradation. Soil water potentials (Psi(s)) and nitrate (NO(3)) migration were simulated at 55- and 120-cm depths within and downslope of the SDIS using a two-dimensional code in HYDRUS-3D. Results show that the average measured Psi(s) were -121 and -319 cm, whereas simulated values were -121 and -322 cm at 55- and 120-cm depths, respectively, indicating unsaturated conditions. Average measured NO(3) concentrations were 0.248 and 0.176 mmol N L(-1), whereas simulated values were 0.237 and 0.152 mmol N L(-1) at 55- and 120-cm depths, respectively. Observed unsaturated conditions decreased the potential for NO(3) to migrate in more concentrated plumes away from the SDIS. The agreement (high R(2) values approximately 0.97) between the measured and simulated Psi(s) and NO(3) concentrations indicate that HYDRUS-3D adequately simulated SBRE flow and NO(3) transport through the soil domain under a range of environmental and effluent application conditions.

  15. Faraday Probe Analysis, Part 2: Evaluation of Facility Effects on Ion Migration in a Hall Thruster Plume (Preprint)

    DTIC Science & Technology

    2010-02-24

    A nested Faraday probe was designed and fabricated to assess facility effects in a systematic study of ion migration in a Hall thruster plume...Current density distributions were studied at 8, 12, 16, and 20 thruster diameters downstream of the Hall thruster exit plane with four probe configurations...measurements are a significant improvement for comparisons with numerical simulations and investigations of Hall thruster performance.

  16. Simulating Bubble Plumes from Breaking Waves with a Forced-Air Venturi

    NASA Astrophysics Data System (ADS)

    Long, M. S.; Keene, W. C.; Maben, J. R.; Chang, R. Y. W.; Duplessis, P.; Kieber, D. J.; Beaupre, S. R.; Frossard, A. A.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.

    2017-12-01

    It has been hypothesized that the size distribution of bubbles in subsurface seawater is a major factor that modulates the corresponding size distribution of primary marine aerosol (PMA) generated when those bubbles burst at the air-water interface. A primary physical control of the bubble size distribution produced by wave breaking is the associated turbulence that disintegrates larger bubbles into smaller ones. This leads to two characteristic features of bubble size distributions: (1) the Hinze scale which reflects a bubble size above which disintegration is possible based on turbulence intensity and (2) the slopes of log-linear regressions of the size distribution on either side of the Hinze scale that indicate the state of plume evolution or age. A Venturi with tunable seawater and forced air flow rates was designed and deployed in an artificial PMA generator to produce bubble plumes representative of breaking waves. This approach provides direct control of turbulence intensity and, thus, the resulting bubble size distribution characterizable by observations of the Hinze scale and the simulated plume age over a range of known air detrainment rates. Evaluation of performance in different seawater types over the western North Atlantic demonstrated that the Venturi produced bubble plumes with parameter values that bracket the range of those observed in laboratory and field experiments. Specifically, the seawater flow rate modulated the value of the Hinze scale while the forced-air flow rate modulated the plume age parameters. Results indicate that the size distribution of sub-surface bubbles within the generator did not significantly modulate the corresponding number size distribution of PMA produced via bubble bursting.

  17. Assessment of Mitigation Systems on Vapor Intrusion: Temporal Trends, Attenuation Factors, and Contaminant Migration Routes under Mitigated and Non-mitigated Conditions

    EPA Science Inventory

    Vapor intrusion is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), in soil gas from the subsurface to indoor air. Vapor intrusion happens because there are pressure and concentration differentials between indoor air and soil gas. Indoor ...

  18. A preliminary experiment to collect gas from a submarine gas plume

    NASA Astrophysics Data System (ADS)

    Aoyama, C.; Fukuoka, H.

    2016-12-01

    Thousands of gas plumes have been found on the sea floors around Japan. Most of them are associated with methane hydrates on seafloor surface and/or shallow subsurface, and those bubbles are consisting largely of methane. Concerns are emerging about large scale plumes may provide the highly efficient greenhouse gas to the atmosphere. A novel methodology is proposed in this study, to collect those gas bubbles in the plumes using membrane-made dome to reduce global greenhouse effect and to develop new energy resources. Experiment field is northeast offshore of the Sado Island, Niigata prefecture of Japan, where more than 40 gas plumes had been found, gushing out from rather shallower sea floor of 150 - 400 m depth. Authors will present the achievement obtained in the preliminary gas collection experiment which was performed in a gas plume in this sea area in March 2016.

  19. Follow the plume: the habitability of Enceladus.

    PubMed

    McKay, Christopher P; Anbar, Ariel D; Porco, Carolyn; Tsou, Peter

    2014-04-01

    The astrobiological exploration of other worlds in our Solar System is moving from initial exploration to more focused astrobiology missions. In this context, we present the case that the plume of Enceladus currently represents the best astrobiology target in the Solar System. Analysis of the plume by the Cassini mission indicates that the steady plume derives from a subsurface liquid water reservoir that contains organic carbon, biologically available nitrogen, redox energy sources, and inorganic salts. Furthermore, samples from the plume jetting out into space are accessible to a low-cost flyby mission. No other world has such well-studied indications of habitable conditions. Thus, the science goals that would motivate an Enceladus mission are more advanced than for any other Solar System body. The goals of such a mission must go beyond further geophysical characterization, extending to the search for biomolecular evidence of life in the organic-rich plume. This will require improved in situ investigations and a sample return.

  20. In-situ remediation system and method for contaminated groundwater

    DOEpatents

    Corey, John C.; Looney, Brian B.; Kaback, Dawn S.

    1989-01-01

    A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like.

  1. In-situ remediation system and method for contaminated groundwater

    DOEpatents

    Corey, J.C.; Looney, B.B.; Kaback, D.S.

    1989-05-23

    A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like. 3 figs.

  2. Testing of stack-unit/aquifer sensitivity analysis using contaminant plume distribution in the subsurface of Savannah River Site, South Carolina, USA

    USGS Publications Warehouse

    Rine, J.M.; Shafer, J.M.; Covington, E.; Berg, R.C.

    2006-01-01

    Published information on the correlation and field-testing of the technique of stack-unit/aquifer sensitivity mapping with documented subsurface contaminant plumes is rare. The inherent characteristic of stack-unit mapping, which makes it a superior technique to other analyses that amalgamate data, is the ability to deconstruct the sensitivity analysis on a unit-by-unit basis. An aquifer sensitivity map, delineating the relative sensitivity of the Crouch Branch aquifer of the Administrative/Manufacturing Area (A/M) at the Savannah River Site (SRS) in South Carolina, USA, incorporates six hydrostratigraphic units, surface soil units, and relevant hydrologic data. When this sensitivity map is compared with the distribution of the contaminant tetrachloroethylene (PCE), PCE is present within the Crouch Branch aquifer within an area classified as highly sensitive, even though the PCE was primarily released on the ground surface within areas classified with low aquifer sensitivity. This phenomenon is explained through analysis of the aquifer sensitivity map, the groundwater potentiometric surface maps, and the plume distributions within the area on a unit-by- unit basis. The results of this correlation show how the paths of the PCE plume are influenced by both the geology and the groundwater flow. ?? Springer-Verlag 2006.

  3. Effects of a dual-pump crude-oil recovery system, Bemidji, Minnesota, USA

    USGS Publications Warehouse

    Delin, Geoffrey N.; Herkelrath, William N.

    2014-01-01

    A crude-oil spill occurred in 1979 when a pipeline burst near Bemidji, MN. In 1998, the pipeline company installed a dual-pump recovery system designed to remove crude oil remaining in the subsurface at the site. The remediation from 1999 to 2003 resulted in removal of about 115,000 L of crude oil, representing between 36% and 41% of the volume of oil (280,000 to 316,000 L) estimated to be present in 1998. Effects of the 1999 to 2003 remediation on the dissolved plume were evaluated using measurements of oil thicknesses in wells plus measurements of dissolved oxygen in groundwater. Although the recovery system decreased oil thicknesses in the immediate vicinity of the remediation wells, average oil thicknesses measured in wells were largely unaffected. Dissolved-oxygen measurements indicate that a secondary plume was caused by disposal of the pumped water in an upgradient infiltration gallery; this plume expanded rapidly immediately following the start of the remediation in 1999. The result was expansion of the anoxic zone of groundwater upgradient and beneath the existing natural attenuation plume. Oil-phase recovery at this site was shown to be challenging, and considerable volumes of mobile and entrapped oil remain in the subsurface despite remediation efforts.

  4. Polycyclic Aromatic Hydrocarbon Distribution and Modification in the Sub-surface Plume Near the Deepwater Horizon Wellhead

    NASA Astrophysics Data System (ADS)

    Shiller, A. M.; Joung, D.; Wade, T.

    2011-12-01

    A significant concern associated with oil spills is the toxicity associated with the polycyclic aromatic hydrocarbon (PAH) component. Ratios of various PAH's have also been used as indicators of oil sources. During a late May/early June cruise, 57 samples for PAH analysis were collected in the vicinity of the Deepwater Horizon wellhead. Most samples were from the previously reported sub-surface oil plume, centered near 1100 m depth. PAH concentrations ranged up to 117 μg/L and rapidly diminished in the subsurface with distance from the wellhead. The Macondo well oil was observed to be rich in naphthalenes. Within a few km of the wellhead, the percentage of methyl-naphthalenes in the sub-surface plume was generally higher than in the source, suggesting preferential solubilization of this low molecular weight fraction. However, the percentage rapidly decreased away from the well also suggesting rapid destruction or removal of the naphthalenes. The pyrogenic index (Wang et al.) was <0.05 for all samples, indicating a petroleum origin. For a few samples, some other PAH ratios (e.g., MP/P and P/A ratios) suggested a combustion origin. However, these ratios also tended to vary both with percent methyl-naphthalenes and distance from the wellhead, suggesting anomalous ratios originating from solubilization/degradation effects. We also obtained a more limited set of surface water samples, generally avoiding the most contaminated areas as well as areas of oil burning. For these surface water samples, similar trends were observed as at depth, probably resulting from selective volatilization and photo-degradation. Overall, the data illustrate how environmental factors lead both to reduced concentrations and fractionation of the PAH's.

  5. Supercritical CO2 Migration under Cross-Bedded Structures: Outcrop Analog from the Jurassic Navajo Sandstone

    NASA Astrophysics Data System (ADS)

    Lee, S.; Allen, J.; Han, W.; Lu, C.; McPherson, B. J.

    2011-12-01

    Jurassic aeolian sandstones (e.g. Navajo and White Rim Sandstones) on the Colorado Plateau of Utah have been considered potential sinks for geologic CO2 sequestration due to their regional lateral continuity, thickness, high porosity and permeability, presence of seal strata and proximity to large point sources of anthropogenic CO2. However, aeolian deposits usually exhibit inherent internal complexities induced by migrating bedforms of different sizes and their resulting bounding surfaces. Therefore, CO2 plume migration in such complex media should be well defined and successively linked in models for better characterization of the plume behavior. Based on an outcrop analog of the upper Navajo Sandstone in the western flank of the San Rafael Swell, Utah, we identified five different bedform types with dune and interdune facies to represent the spatial continuity of lithofacies units. Using generated 3D geometrical facies patterns of cross-bedded structures in the Navajo Sandstone, we performed numerical simulations to understand the detailed behavior of CO2 plume migration under the different cross-bedded bedforms. Our numerical simulation results indicate that cross-bedded structures (bedform types) play an important role on governing the rate and directionality of CO2 migration, resulting in changes of imbibition processes of CO2. CO2 migration tends to follow wind ripple laminations and reactivation surfaces updip. Our results suggest that geologically-based upscaling of CO2 migration is crucial in cross-bedded formations as part of reservoir or basin scale models. Furthermore, comparative modeling studies between 3D models and 2D cross-sections extracted from 3D models showed the significant three-dimensional interplay in a cross-bedded structure and the need to correctly capture the geologic heterogeneity to predict realistic CO2 plume behavior. Our outcrop analog approach presented in this study also demonstrates an alternative method for assessing geologic CO2 storage in deep formations when scarce data is available.

  6. Assessment of brine migration risks along vertical pathways due to CO2 injection

    NASA Astrophysics Data System (ADS)

    Kissinger, Alexander; Class, Holger

    2015-04-01

    Global climate change, shortage of resources and the growing usage of renewable energy sources has lead to a growing demand for the utilization of subsurface systems. Among these competing uses are Carbon Capture and Storage (CCS), geothermal energy, nuclear waste disposal, 'renewable' methane or hydrogen storage as well as the ongoing production of fossil resources like oil, gas and coal. Additionally, these technologies may also create conflicts with essential public interests such as water supply. For example, the injection of CO2 into the subsurface causes an increase in pressure reaching far beyond the actual radius of influence of the CO2 plume, potentially leading to large amounts of displaced salt water. In this work we focus on the large scale impacts of CO2 storage on brine migration but the methodology and the obtained results may also apply to other fields like waste water disposal, where large amounts of fluid are injected into the subsurface. In contrast to modeling on the reservoir scale the spatial scale required for this work is much larger in both vertical and lateral direction, as the regional hydrogeology has to be considered. Structures such as fault zones, hydrogeological windows in the Rupelian clay or salt domes are considered as potential pathways for displaced fluids into shallow systems and their influence has to be taken into account. We put the focus of our investigations on the latter type of scenario, since there is still a poor understanding of the role that salt diapirs would play in CO2 storage projects. As there is hardly any field data available on this scale, we compare different levels of model complexity in order to identify the relevant processes for brine displacement and simplify the modeling process wherever possible, for example brine injection vs. CO2 injection, simplified geometries vs. the complex formation geometry and the role of salt induced density differences on flow. Further we investigate the impact of the displaced brine due to CO2 injection and compare it to the natural fluid exchange between shallow and deep aquifers in order to asses possible damage.

  7. Directional phytoscreening: contaminant gradients in trees for plume delineation.

    PubMed

    Limmer, Matt A; Shetty, Mikhil K; Markus, Samantha; Kroeker, Ryan; Parker, Beth L; Martinez, Camilo; Burken, Joel G

    2013-08-20

    Tree sampling methods have been used in phytoscreening applications to delineate contaminated soil and groundwater, augmenting traditional investigative methods that are time-consuming, resource-intensive, invasive, and costly. In the past decade, contaminant concentrations in tree tissues have been shown to reflect the extent and intensity of subsurface contamination. This paper investigates a new phytoscreening tool: directional tree coring, a concept originating from field data that indicated azimuthal concentrations in tree trunks reflected the concentration gradients in the groundwater around the tree. To experimentally test this hypothesis, large diameter trees were subjected to subsurface contaminant concentration gradients in a greenhouse study. These trees were then analyzed for azimuthal concentration gradients in aboveground tree tissues, revealing contaminant centroids located on the side of the tree nearest the most contaminated groundwater. Tree coring at three field sites revealed sufficiently steep contaminant gradients in trees reflected nearby groundwater contaminant gradients. In practice, trees possessing steep contaminant gradients are indicators of steep subsurface contaminant gradients, providing compass-like information about the contaminant gradient, pointing investigators toward higher concentration regions of the plume.

  8. Response curves for phosphorus plume lengths from reactive-solute-transport simulations of onland disposal of wastewater in noncarbonate sand and gravel aquifers

    USGS Publications Warehouse

    Colman, John A.

    2005-01-01

    Surface-water resources in Massachusetts often are affected by eutrophication, excessive plant growth, which has resulted in impaired use for a majority of the freshwater ponds and lakes and a substantial number of river-miles in the State. Because supply of phosphorus usually is limiting to plant growth in freshwater systems, control of phosphorus input to surface waters is critical to solving the impairment problem. Wastewater is a substantial source of phosphorus for surface water, and removal of phosphorus before disposal may be necessary. Wastewater disposed onland by infiltration loses phosphorus from the dissolved phase during transport through the subsurface and may be an effective disposal method; quantification of the phosphorus loss can be simulated to determine disposal feasibility. In 2003, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated a project to simulate distance of phosphorus transport in the subsurface for plausible conditions of onland wastewater disposal and subsurface properties. A coupled one-dimensional unsaturated-zone and three-dimensional saturated-zone reactive-solute-transport model (PHAST) was used to simulate lengths of phosphorus plumes. Knowledge of phosphorus plume length could facilitate estimates of setback distances for wastewater-infiltration sites from surface water that would be sufficient to protect the surface water from eutrophication caused by phosphorus transport through the subsurface and ultimate discharge to surface water. The reactive-solute-transport model PHAST was used to simulate ground-water flow, solute transport, equilibrium chemistry for dissolved and sorbed species, and kinetic regulation of organic carbon decomposition and phosphate mineral formation. The phosphorus plume length was defined for the simulations as the maximum extent of the contour for the 0.015 milligram-per-liter concentration of dissolved phosphorus downgradient from the infiltration bed after disposal cessation. Duration of disposal before cessation was assumed to be 50 years into an infiltration bed of 20,000 square feet at the rate of 3 gallons per square foot per day. Time for the maximum extent of the phosphorus plume to develop is on the order of 100 years after disposal cessation. Simulations indicated that phosphorus transport beyond the extent of the 0.015 milligram-per-liter concentration contour was never more than 0.18 kilogram per year, an amount that would likely not alter the ecology of most surface water. Simulations of phosphorus plume lengths were summarized in a series of response curves. Simulated plume lengths ranged from 200 feet for low phosphorus-concentration effluents (0.25 milligram per liter) and thick (50 feet) unsaturated zones to 3,400 feet for high phosphorus-concentration effluents (14 milligrams per liter) discharged directly into the aquifer (unsaturated-zone thickness of 0 feet). Plume length was nearly independent of unsaturated-zone thickness at phosphorus concentrations in the wastewater that were less than 2 milligrams per liter because little or no phosphorus mineral formed at low phosphorus concentrations. For effluents of high phosphorus concentration, plume length varied from 3,400 feet for unsaturated-zone thickness of 0 to 2,550 feet for unsaturated-zone thickness of 50 feet. Model treatments of flow and equilibrium-controlled chemistry likely were more accurate than rates of kinetically controlled reactions, notably precipitation of iron-phosphate minerals; the kinetics of such reactions are less well known and thus less well defined in the model. Sensitivity analysis indicated that many chemical and physical aquifer properties, such as hydraulic gradient and model width, did not affect the simulated plume length appreciably, but duration of discharge, size of infiltration bed, amount of dispersion, and number of sorption sites on the aquifer sediments did affect plume length ap

  9. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study

    NASA Astrophysics Data System (ADS)

    Oostrom, M.; Truex, M. J.; Last, G. V.; Strickland, C. E.; Tartakovsky, G. D.

    2016-06-01

    For sites with a contaminant source located in the vadose zone, the nature and extent of groundwater contaminant plumes are a function of the contaminant flux from the vadose zone to groundwater. Especially for thick vadose zones, transport may be relatively slow making it difficult to directly measure contaminant flux. An integrated assessment approach, supported by site characterization and monitoring data, is presented to explain current vadose zone contaminant distributions and to estimate future contaminant flux to groundwater in support of remediation decisions. The U.S. Department of Energy Hanford Site (WA, USA) SX Tank Farm was used as a case study because of a large existing contaminant inventory in its deep vadose zone, the presence of a limited-extent groundwater plume, and the relatively large amount of available data for the site. A predictive quantitative analysis was applied to refine a baseline conceptual model through the completion of a series of targeted simulations. The analysis revealed that site recharge is the most important flux-controlling process for future contaminant flux. Tank leak characteristics and subsurface heterogeneities appear to have a limited effect on long-term contaminant flux into groundwater. The occurrence of the current technetium-99 groundwater plume was explained by taking into account a considerable historical water-line leak adjacent to one of the tanks. The analysis further indicates that the vast majority of technetium-99 is expected to migrate into the groundwater during the next century. The approach provides a template for use in evaluating contaminant flux to groundwater using existing site data and has elements that are relevant to other disposal sites with a thick vadose zone.

  10. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study.

    PubMed

    Oostrom, M; Truex, M J; Last, G V; Strickland, C E; Tartakovsky, G D

    2016-06-01

    For sites with a contaminant source located in the vadose zone, the nature and extent of groundwater contaminant plumes are a function of the contaminant flux from the vadose zone to groundwater. Especially for thick vadose zones, transport may be relatively slow making it difficult to directly measure contaminant flux. An integrated assessment approach, supported by site characterization and monitoring data, is presented to explain current vadose zone contaminant distributions and to estimate future contaminant flux to groundwater in support of remediation decisions. The U.S. Department of Energy Hanford Site (WA, USA) SX Tank Farm was used as a case study because of a large existing contaminant inventory in its deep vadose zone, the presence of a limited-extent groundwater plume, and the relatively large amount of available data for the site. A predictive quantitative analysis was applied to refine a baseline conceptual model through the completion of a series of targeted simulations. The analysis revealed that site recharge is the most important flux-controlling process for future contaminant flux. Tank leak characteristics and subsurface heterogeneities appear to have a limited effect on long-term contaminant flux into groundwater. The occurrence of the current technetium-99 groundwater plume was explained by taking into account a considerable historical water-line leak adjacent to one of the tanks. The analysis further indicates that the vast majority of technetium-99 is expected to migrate into the groundwater during the next century. The approach provides a template for use in evaluating contaminant flux to groundwater using existing site data and has elements that are relevant to other disposal sites with a thick vadose zone. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Evaluation of Deep Vadose Zone Contaminant Flux into Groundwater: Approach and Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostrom, Martinus; Truex, Michael J.; Last, George V.

    For sites with a contaminant source located in the vadose zone, the nature and extent of groundwater contaminant plumes are a function of the contaminant flux from the vadose zone to groundwater. Especially for thick vadose zones, transport may be relatively slow making it difficult to directly measure contaminant flux. An integrated assessment approach, supported by site characterization and monitoring data, is presented to explain current vadose zone contaminant distributions and to estimate future contaminant flux to groundwater in support of remediation decisions. The U.S. Department of Energy Hanford Site (WA, USA) SX Tank Farm was used as a casemore » study because of a large existing contaminant inventory in its deep vadose zone, the presence of a limited-extent groundwater plume, and the relatively large amount of available data for the site. A predictive quantitative analysis was applied to refine a baseline conceptual model through the completion of a series of targeted simulations. The analysis revealed that site recharge is the most important flux-controlling process for future contaminant flux. Tank leak characteristics and subsurface heterogeneities appear to have a limited effect on long-term contaminant flux into groundwater. The occurrence of the current technetium-99 groundwater plume was explained by taking into account a considerable historical water-line leak adjacent to one of the tanks. The analysis further indicates that the vast majority of technetium-99 is expected to migrate into the groundwater during the next century. The approach provides a template for use in evaluating contaminant flux to groundwater using existing site data and has elements that are relevant to other disposal sites with a thick vadose zone.« less

  12. Gas injection to inhibit migration during an in situ heat treatment process

    DOEpatents

    Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren

    2010-11-30

    Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

  13. Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior.

    PubMed

    Gasperikova, Erika; Hubbard, Susan S; Watson, David B; Baker, Gregory S; Peterson, John E; Kowalsky, Michael B; Smith, Meagan; Brooks, Scott

    2012-11-01

    Geophysical measurements, and electrical resistivity tomography (ERT) data in particular, are sensitive to properties that are related (directly or indirectly) to hydrological processes. The challenge is in extracting information from geophysical data at a relevant scale that can be used to gain insight about subsurface behavior and to parameterize or validate flow and transport models. Here, we consider the use of ERT data for examining the impact of recharge on subsurface contamination at the S-3 ponds of the Oak Ridge Integrated Field Research Challenge (IFRC) site in Tennessee. A large dataset of time-lapse cross-well and surface ERT data, collected at the site over a period of 12 months, is used to study time variations in resistivity due to changes in total dissolved solids (primarily nitrate). The electrical resistivity distributions recovered from cross-well and surface ERT data agrees well, and both of these datasets can be used to interpret spatiotemporal variations in subsurface nitrate concentrations due to rainfall, although the sensitivity of the electrical resistivity response to dilution varies with nitrate concentration. Using the time-lapse surface ERT data interpreted in terms of nitrate concentrations, we find that the subsurface nitrate concentration at this site varies as a function of spatial position, episodic heavy rainstorms (versus seasonal and annual fluctuations), and antecedent rainfall history. These results suggest that the surface ERT monitoring approach is potentially useful for examining subsurface plume responses to recharge over field-relevant scales. Published by Elsevier B.V.

  14. Identifying future directions for subsurface hydrocarbon migration research

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Clark, J. F.; Luyendyk, B.; Valentine, D.

    Subsurface hydrocarbon migration is important for understanding the input and impacts of natural hydrocarbon seepage on the environment. Great uncertainties remain in most aspects of hydrocarbon migration, including some basic mechanisms of this four-phase flow of tar, oil, water, and gas through the complex fracture-network geometry particularly since the phases span a wide range of properties. Academic, government, and industry representatives recently attended a workshop to identify the areas of greatest need for future research in shallow hydrocarbon migration.Novel approaches such as studying temporal and spatial seepage variations and analogous geofluid systems (e.g., geysers and trickle beds) allow deductions of subsurface processes and structures that remain largely unclear. Unique complexities exist in hydrocarbon migration due to its multiphase flow and complex geometry, including in-situ biological weathering. Furthermore, many aspects of the role of hydrocarbons (positive and negative) in the environment are poorly understood, including how they enter the food chain (respiration, consumption, etc.) and “percolate” to higher trophic levels. But understanding these ecological impacts requires knowledge of the emissions' temporal and spatial variability and trajectories.

  15. Method of degrading pollutants in soil

    DOEpatents

    Hazen, Terry C.; Lopez-De-Victoria, Geralyne

    1994-01-01

    A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant.

  16. Plume-ridge interaction: Shaping the geometry of mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric L.

    Manifestations of plume-ridge interaction are found across the ocean basins. Currently there are interactions between at least 21 hot spots and nearby ridges along 15--20% of the global mid-ocean ridge network. These interactions produce a number of anomalies including the presence of elevated topography, negative gravity anomalies, and anomalous crustal production. One form of anomalous crustal production is the formation of volcanic lineaments between hotspots and nearby mid-ocean ridges. In addition, observations indicate that mantle plumes tend to "capture" nearby mid-ocean ridges through asymmetric spreading, increased ridge propagation, and discrete shifts of the ridge axis, or ridge jumps. The initiation of ridge jumps and the formation of off-axis volcanic lineaments likely involve similar processes and may be closely related. In the following work, I use theoretical and numerical models to quantify the processes that control the formation of volcanic lineaments (Chapter 2), the initiation of mid-ocean ridge jumps associated with lithospheric heating due to magma passing through the plate (Chapter 3), and the initiation of jumps due to an upwelling mantle plume and magmatic heating governed by melt migration (Chapter 4). Results indicate that lineaments and ridge jumps associated with plume-ridge interaction are most likely to occur on young lithosphere. The shape of lineaments on the seafloor is predicted to be controlled by the pattern of lithospheric stresses associated with a laterally spreading, near-ridge mantle plume. Ridge jumps are likely to occur due to magmatic heating alone only in lithosphere ˜1Myr old, because the heating rate required to jump increases with spreading rate and plate age. The added effect of an upwelling plume introduces competing effects that both promote and inhibit ridge jumps. For models where magmatic heating is controlled by melt migration, repeat ridge jumps are predicted to occur as the plume and ridge separate, but only for restricted values of spreading rate, ridge migration rate, and heating rate. Overall, the results suggest that the combined effect of stresses and magmatism associated with plume-ridge interaction can significantly alter plate geometry over time.

  17. Characterization and reclamation assessment for the Central Shops Diesel Storage Facility, Savannah River Site, Aiken, South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fliermans, C.B.; Hazen, T.C.; Bledsoe, H.

    1993-10-01

    The contamination of subsurface terrestrial environments by organic contaminants is a global phenomenon. The remediation of such environments requires innovative assessment techniques and strategies for successful clean-ups. Central Shops Diesel Storage Facility at Savannah River Site was characterized to determine the extent of subsurface diesel fuel contamination using innovative approaches and effective bioremediation techniques for clean-up of the contaminant plume have been established.

  18. 3D Geospatial Models for Visualization and Analysis of Groundwater Contamination at a Nuclear Materials Processing Facility

    NASA Astrophysics Data System (ADS)

    Stirewalt, G. L.; Shepherd, J. C.

    2003-12-01

    Analysis of hydrostratigraphy and uranium and nitrate contamination in groundwater at a former nuclear materials processing facility in Oklahoma were undertaken employing 3-dimensional (3D) geospatial modeling software. Models constructed played an important role in the regulatory decision process of the U.S. Nuclear Regulatory Commission (NRC) because they enabled visualization of temporal variations in contaminant concentrations and plume geometry. Three aquifer systems occur at the site, comprised of water-bearing fractured shales separated by indurated sandstone aquitards. The uppermost terrace groundwater system (TGWS) aquifer is composed of terrace and alluvial deposits and a basal shale. The shallow groundwater system (SGWS) aquifer is made up of three shale units and two sandstones. It is separated from the overlying TGWS and underlying deep groundwater system (DGWS) aquifer by sandstone aquitards. Spills of nitric acid solutions containing uranium and radioactive decay products around the main processing building (MPB), leakage from storage ponds west of the MPB, and leaching of radioactive materials from discarded equipment and waste containers contaminated both the TGWS and SGWS aquifers during facility operation between 1970 and 1993. Constructing 3D geospatial property models for analysis of groundwater contamination at the site involved use of EarthVision (EV), a 3D geospatial modeling software developed by Dynamic Graphics, Inc. of Alameda, CA. A viable 3D geohydrologic framework model was initially constructed so property data could be spatially located relative to subsurface geohydrologic units. The framework model contained three hydrostratigraphic zones equivalent to the TGWS, SGWS, and DGWS aquifers in which groundwater samples were collected, separated by two sandstone aquitards. Groundwater data collected in the three aquifer systems since 1991 indicated high concentrations of uranium (>10,000 micrograms/liter) and nitrate (> 500 milligrams/liter) around the MPB and elevated nitrate (> 2000 milligrams/ liter) around storage ponds. Vertical connectivity was suggested between the TGWS and SGWS, while the DGWS appeared relatively isolated from the overlying aquifers. Lateral movement of uranium was also suggested over time. For example, lateral migration in the TGWS is suggested along a shallow depression in the bedrock surface trending south-southwest from the southwest corner of the MPB. Another pathway atop the buried bedrock surface, trending west-northwest from the MPB and partially reflected by current surface topography, suggested lateral migration of nitrate in the SGWS. Lateral movement of nitrate in the SGWS was also indicated north, south, and west of the largest storage pond. Definition of contaminant plume movement over time is particularly important for assessing direction and rate of migration and the potential need for preventive measures to control contamination of groundwater outside facility property lines. The 3D geospatial property models proved invaluable for visualizing and analyzing variations in subsurface uranium and nitrate contamination in space and time within and between the three aquifers at the site. The models were an exceptional visualization tool for illustrating extent, volume, and quantitative amounts of uranium and nitrate contamination in the subsurface to regulatory decision-makers in regard to site decommissioning issues, including remediation concerns, providing a perspective not possible to achieve with traditional 2D maps. The geohydrologic framework model provides a conceptual model for consideration in flow and transport analyses.

  19. Moment Analysis Characterizing Water Flow in Repellent Soils from On- and Sub-Surface Point Sources

    NASA Astrophysics Data System (ADS)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2010-05-01

    Water repellency has a significant impact on water flow patterns in the soil profile. Flow tends to become unstable in such soils, which affects the water availability to plants and subsurface hydrology. In this paper, water flow in repellent soils was experimentally studied using the light reflection method. The transient 2D moisture profiles were monitored by CCD camera for tested soils packed in a transparent flow chamber. Water infiltration experiments and subsequent redistribution from on-surface and subsurface point sources with different flow rates were conducted for two soils of different repellency degrees as well as for wettable soil. We used spatio-statistical analysis (moments) to characterize the flow patterns. The zeroth moment is related to the total volume of water inside the moisture plume, and the first and second moments are affinitive to the center of mass and spatial variances of the moisture plume, respectively. The experimental results demonstrate that both the general shape and size of the wetting plume and the moisture distribution within the plume for the repellent soils are significantly different from that for the wettable soil. The wetting plume of the repellent soils is smaller, narrower, and longer (finger-like) than that of the wettable soil compared with that for the wettable soil that tended to roundness. Compared to the wettable soil, where the soil water content decreases radially from the source, moisture content for the water-repellent soils is higher, relatively uniform horizontally and gradually increases with depth (saturation overshoot), indicating that flow tends to become unstable. Ellipses, defined around the mass center and whose semi-axes represented a particular number of spatial variances, were successfully used to simulate the spatial and temporal variation of the moisture distribution in the soil profiles. Cumulative probability functions were defined for the water enclosed in these ellipses. Practically identical cumulative probability functions (beta distribution) were obtained for all soils, all source types, and flow rates. Further, same distributions were obtained for the infiltration and redistribution processes. This attractive result demonstrates the competence and advantage of the moment analysis method.

  20. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.

    PubMed

    Zachara, John M; Long, Philip E; Bargar, John; Davis, James A; Fox, Patricia; Fredrickson, Jim K; Freshley, Mark D; Konopka, Allan E; Liu, Chongxuan; McKinley, James P; Rockhold, Mark L; Williams, Kenneth H; Yabusaki, Steve B

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (

  1. Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater-river interaction zone

    NASA Astrophysics Data System (ADS)

    Zachara, John M.; Long, Philip E.; Bargar, John; Davis, James A.; Fox, Patricia; Fredrickson, Jim K.; Freshley, Mark D.; Konopka, Allan E.; Liu, Chongxuan; McKinley, James P.; Rockhold, Mark L.; Williams, Kenneth H.; Yabusaki, Steve B.

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (< one pore volume). At the Rifle site, slow oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of residual, contaminant U; the rates of current kinetic processes (both biotic and abiotic) influencing U(VI) solid-liquid distribution; the presence of detrital organic matter and the resulting spatial heterogeneity in microbially-driven redox properties; and the magnitude of groundwater hydrologic dynamics controlled by river-stage fluctuations, geologic structures, and aquifer hydraulic properties. The comparative analysis of these sites provides important guidance to the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water interaction that are common world-wide.

  2. Attenuation of seismic waves in rocks saturated with multiphase fluids: theory and experiments

    NASA Astrophysics Data System (ADS)

    Tisato, N.; Quintal, B.; Chapman, S.; Podladchikov, Y.; Burg, J. P.

    2016-12-01

    Albeit seismic tomography could provide a detailed image of subsurface fluid distribution, the interpretation of the tomographic signals is often controversial and fails in providing a conclusive map of the subsurface saturation. However, tomographic information is important because the upward migration of multiphase fluids through the crust of the Earth can cause hazardous events such as eruptions, explosions, soil-pollution and earthquakes. In addition, multiphase fluids, such as hydrocarbons, represent important resources for economy. Seismic tomography can be improved considering complex elastic moduli and the attenuation of seismic waves (1/Q) that quantifies the energy lost by propagating elastic waves. In particular, a significant portion of the energy carried by the propagating wave is dissipated in saturated media by the wave-induced-fluid-flow (WIFF) and the wave-induced-gas-exsolution-dissolution (WIGED) mechanism. The latter describes how a propagating wave modifies the thermodynamic equilibrium between different fluid phases causing exsolution and dissolution of gas bubbles in the liquid, which in turn causes a significant frequency-dependent 1/Q and moduli dispersion. The WIGED theory was initially postulated for bubbly magmas but was only recently demonstrated and extended to bubbly water. We report the theory and laboratory experiments that have been performed to confirm the WIGED theory. In particular, we present i) attenuation measurements performed by means of the Broad Band Attenuation Vessel on porous media saturated with water and different gases, and ii) numerical experiments validating the laboratory observations. Then, we extend the theory to fluids and pressure-temperature conditions which are typical of phreatomagmatic and hydrocarbon domains and we compare the propagation of seismic waves in bubble-free and bubble-bearing subsurface domains. This work etends the knowledge of attenuation in rocks saturated with multiphase fluid and emphasizes that the WIGED mechanism is very important to image subsurface gas plumes.

  3. Fracture Network Characteristics Informed by Detailed Studies of Chlorinated Solvent Plumes in Sedimentary Rock Aquifers

    NASA Astrophysics Data System (ADS)

    Parker, B. L.; Chapman, S.

    2015-12-01

    Various numerical approaches have been used to simulate contaminant plumes in fractured porous rock, but the one that allows field and laboratory measurements to be most directly used as inputs to these models is the Discrete Fracture Network (DFN) Approach. To effectively account for fracture-matrix interactions, emphasis must be placed on identifying and parameterizing all of the fractures that participate substantially in groundwater flow and contaminated transport. High resolution plume studies at four primary research sites, where chlorinated solvent plumes serve as long-term (several decades) tracer tests, provide insight concerning the density of the fracture network unattainable by conventional methods. Datasets include contaminant profiles from detailed VOC subsampling informed by continuous core logs, hydraulic head and transmissivity profiles, packer testing and sensitive temperature logging methods in FLUTe™ lined holes. These show presence of many more transmissive fractures, contrasting observations of only a few flow zones per borehole obtained from conventional hydraulic tests including flow metering in open boreholes. Incorporating many more fractures with a wider range of transmissivities is key to predicting contaminant migration. This new understanding of dense fracture networks combined with matrix property measurements have informed 2-D DFN flow and transport modelling using Fractran and HydroGeosphere to simulate plume characteristics ground-truthed by detailed field site plume characterization. These process-based simulations corroborate field findings that plumes in sedimentary rock after decades of transport show limited plume front distances and strong internal plume attenuation by diffusion, transverse dispersion and slow degradation. This successful application of DFN modeling informed by field-derived parameters demonstrates how the DFN Approach can be applied to other sites to inform plume migration rates and remedial efficacy.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedmann, S J

    Carbon capture and sequestration (CCS) has emerged as a key technology for dramatic short-term reduction in greenhouse gas emissions in particular from large stationary. A key challenge in this arena is the monitoring and verification (M&V) of CO2 plumes in the deep subsurface. Towards that end, we have developed a tool that can simultaneously invert multiple sub-surface data sets to constrain the location, geometry, and saturation of subsurface CO2 plumes. We have focused on a suite of unconventional geophysical approaches that measure changes in electrical properties (electrical resistance tomography, electromagnetic induction tomography) and bulk crustal deformation (til-meters). We had alsomore » used constraints of the geology as rendered in a shared earth model (ShEM) and of the injection (e.g., total injected CO{sub 2}). We describe a stochastic inversion method for mapping subsurface regions where CO{sub 2} saturation is changing. The technique combines prior information with measurements of injected CO{sub 2} volume, reservoir deformation and electrical resistivity. Bayesian inference and a Metropolis simulation algorithm form the basis for this approach. The method can (a) jointly reconstruct disparate data types such as surface or subsurface tilt, electrical resistivity, and injected CO{sub 2} volume measurements, (b) provide quantitative measures of the result uncertainty, (c) identify competing models when the available data are insufficient to definitively identify a single optimal model and (d) rank the alternative models based on how well they fit available data. We present results from general simulations of a hypothetical case derived from a real site. We also apply the technique to a field in Wyoming, where measurements collected during CO{sub 2} injection for enhanced oil recovery serve to illustrate the method's performance. The stochastic inversions provide estimates of the most probable location, shape, volume of the plume and most likely CO{sub 2} saturation. The results suggest that the method can reconstruct data with poor signal to noise ratio and use hard constraints available from many sites and applications. External interest in the approach and method is high, and already commercial and DOE entities have requested technical work using the newly developed methodology for CO{sub 2} monitoring.« less

  5. Potential for the Use of Wireless Sensor Networks for Monitoring of CO2 Leakage Risks

    NASA Astrophysics Data System (ADS)

    Pawar, R.; Illangasekare, T. H.; Han, Q.; Jayasumana, A.

    2015-12-01

    Storage of supercritical CO2 in deep saline geologic formation is under study as a means to mitigate potential global climate change from green house gas loading to the atmosphere. Leakage of CO2 from these formations poses risk to the storage permanence goal of 99% of injected CO2 remaining sequestered from the atmosphere,. Leaked CO2 that migrates into overlying groundwater aquifers may cause changes in groundwater quality that pose risks to environmental and human health. For these reasons, technologies for monitoring, measuring and accounting of injected CO2 are necessary for permitting of CO2 sequestration projects under EPA's class VI CO2 injection well regulations. While the probability of leakage related to CO2 injection is thought to be small at characterized and permitted sites, it is still very important to protect the groundwater resources and develop methods that can efficiently and accurately detect CO2 leakage. Methods that have been proposed for leakage detection include remote sensing, soil gas monitoring, geophysical techniques, pressure monitoring, vegetation stress and eddy covariance measurements. We have demonstrated the use of wireless sensor networks (WSN) for monitoring of subsurface contaminant plumes. The adaptability of this technology for leakage monitoring of CO2 through geochemical changes in the shallow subsurface is explored. For this technology to be viable, it is necessary to identify geochemical indicators such as pH or electrical conductivity that have high potential for significant change in groundwater in the event of CO2 leakage. This talk presents a conceptual approach to use WSNs for CO2 leakage monitoring. Based on our past work on the use of WSN for subsurface monitoring, some of the challenges that need to be over come for this technology to be viable for leakage detection will be discussed.

  6. Method of degrading pollutants in soil

    DOEpatents

    Hazen, T.C.; Lopez-De-Victoria, G.

    1994-07-05

    Disclosed are a method and system for enhancing the motility of microorganisms. This is accomplished by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant. 5 figures.

  7. Experimental determination of methane dissolution from simulated subsurface oil leakages

    NASA Astrophysics Data System (ADS)

    Sauthoff, W.; Peltzer, E. T.; Walz, P. M.; Brewer, P. G.

    2013-12-01

    Subsurface oil leakages and increased offshore drilling efforts have raised concern over the fate of hydrocarbon mixtures of oil and gas in ocean environments. Recent wellhead and pipeline failures in the Gulf of Mexico are extreme examples of this problem. Understanding the mechanism and rate of vertical transport of hydrocarbon chemical species is necessary to predict the environmental impact of subsurface leakages. In a series of controlled experiments, we carried out a deep-sea field experiment in Monterey Canyon to investigate the behavior of a gas-saturated liquid hydrocarbon mass rising from the seafloor. Aboard the R/V Rachel Carson, we used the ROV Ventana to transport a laboratory prepared volume of decane (C10H22) saturated with methane gas (CH4) to mimic a subsurface seafloor discharge. We released the oil and gas mixture into a vertically oriented open bottom glass tube followed by methane loss rate measurements both at discrete depths, and during rapid, continuous vehicle ascent from 800 to 100 m water depth to monitor changes in dissolution and bubble nucleation. Using laser Raman techniques and HD video we quantified the chemical state of the hydrocarbon fluid, including rate of methane gas dissolution. The primary methane Raman peak was readily observable within the decane C-H stretching complex. Variation in the amount of gas dissolved in the oil greatly influences oil plume density and in turn oil plume vertical rise rate. Our results show that the rise rate of the hydrocarbon mass significantly exceeds the rate at which the excess methane was lost by dissolution. This result implies that vertical transport of methane in the saturated hydrocarbon liquid phase can greatly exceed a gas bubble plume ascending the water column from a seafloor source. These results and observations may be applicable to improved understanding of the composition, distribution, and environmental fate of leaked hydrocarbon mixtures and inform remediation efforts.

  8. Small scale monitoring of a bioremediation barrier using miniature electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Sentenac, Philippe; Hogson, Tom; Keenan, Helen; Kulessa, Bernd

    2015-04-01

    The aim of this study was to assess, in the laboratory, the efficiency of a barrier of oxygen release compound (ORC) to block and divert a diesel plume migration in a scaled aquifer model using miniature electrical resistivity tomography (ERT) as the monitoring system. Two plumes of contaminant (diesel) were injected in a soil model made of local sand and clay. The diesel plumes migration was imaged and monitored using a miniature resistivity array system that has proved to be accurate in soil resistivity variations in small-scaled models of soil. ERT results reflected the lateral spreading and diversion of the diesel plumes in the unsaturated zone. One of the contaminant plumes was partially blocked by the ORC barrier and a diversion and reorganisation of the diesel in the soil matrix was observed. The technique of time-lapse ERT imaging showed that a dense non-aqueous phase liquid (DNAPL) contaminant like diesel can be monitored through a bioremediation barrier and the technique is well suited to monitor the efficiency of the barrier. Therefore, miniature ERT as a small-scale modelling tool could complement conventional techniques, which require more expensive and intrusive site investigation prior to remediation.

  9. Plume Collection Strategies for Icy World Sample Return

    NASA Technical Reports Server (NTRS)

    Neveu, M.; Glavin, D. P.; Tsou, P.; Anbar, A. D.; Williams, P.

    2015-01-01

    Three icy worlds in the solar system display evidence of pluming activity. Water vapor and ice particles emanate from cracks near the south pole of Saturn's moon Enceladus. The plume gas contains simple hydrocarbons that could be fragments of larger, more complex organics. More recently, observations using the Hubble and Herschel space telescopes have hinted at transient water vapor plumes at Jupiter's moon Europa and the dwarf planet Ceres. Plume materials may be ejected directly from possible sub-surface oceans, at least on Enceladus. In such oceans, liquid water, organics, and energy may co-exist, making these environments habitable. The venting of habitable ocean material into space provides a unique opportunity to capture this material during a relatively simple flyby mission and return it to Earth. Plume collection strategies should enable investigations of evidence for life in the returned samples via laboratory analyses of the structure, distribution, isotopic composition, and chirality of the chemical components (including biomolecules) of plume materials. Here, we discuss approaches for the collection of dust and volatiles during flybys through Enceladus' plume, based on Cassini results and lessons learned from the Stardust comet sample return mission. We also highlight areas where sample collector and containment technology development and testing may be needed for future plume sample return missions.

  10. FIELD-DRIVEN APPROACHES TO SUBSURFACE CONTAMINANT TRANSPORT MODELING.

    EPA Science Inventory

    Observations from field sites provide a means for prioritizing research activities. In the case of petroleum releases, observations may include spiking of concentration distributions that may be related to water table fluctuation, co-location of contaminant plumes with geochemi...

  11. Saline tracer visualized with three-dimensional electrical resistivity tomography: Field-scale spatial moment analysis

    USGS Publications Warehouse

    Singha, Kamini; Gorelick, Steven M.

    2005-01-01

    Cross-well electrical resistivity tomography (ERT) was used to monitor the migration of a saline tracer in a two-well pumping-injection experiment conducted at the Massachusetts Military Reservation in Cape Cod, Massachusetts. After injecting 2200 mg/L of sodium chloride for 9 hours, ERT data sets were collected from four wells every 6 hours for 20 days. More than 180,000 resistance measurements were collected during the tracer test. Each ERT data set was inverted to produce a sequence of 3-D snapshot maps that track the plume. In addition to the ERT experiment a pumping test and an infiltration test were conducted to estimate horizontal and vertical hydraulic conductivity values. Using modified moment analysis of the electrical conductivity tomograms, the mass, center of mass, and spatial variance of the imaged tracer plume were estimated. Although the tomograms provide valuable insights into field-scale tracer migration behavior and aquifer heterogeneity, standard tomographic inversion and application of Archie's law to convert electrical conductivities to solute concentration results in underestimation of tracer mass. Such underestimation is attributed to (1) reduced measurement sensitivity to electrical conductivity values with distance from the electrodes and (2) spatial smoothing (regularization) from tomographic inversion. The center of mass estimated from the ERT inversions coincided with that given by migration of the tracer plume using 3-D advective-dispersion simulation. The 3-D plumes seen using ERT exhibit greater apparent dispersion than the simulated plumes and greater temporal spreading than observed in field data of concentration breakthrough at the pumping well.

  12. Reverse-time migration for subsurface imaging using single- and multi- frequency components

    NASA Astrophysics Data System (ADS)

    Ha, J.; Kim, Y.; Kim, S.; Chung, W.; Shin, S.; Lee, D.

    2017-12-01

    Reverse-time migration is a seismic data processing method for obtaining accurate subsurface structure images from seismic data. This method has been applied to obtain more precise complex geological structure information, including steep dips, by considering wave propagation characteristics based on two-way traveltime. Recently, various studies have reported the characteristics of acquired datasets from different types of media. In particular, because real subsurface media is comprised of various types of structures, seismic data represent various responses. Among them, frequency characteristics can be used as an important indicator for analyzing wave propagation in subsurface structures. All frequency components are utilized in conventional reverse-time migration, but analyzing each component is required because they contain inherent seismic response characteristics. In this study, we propose a reverse-time migration method that utilizes single- and multi- frequency components for analyzing subsurface imaging. We performed a spectral decomposition to utilize the characteristics of non-stationary seismic data. We propose two types of imaging conditions, in which decomposed signals are applied in complex and envelope traces. The SEG/EAGE Overthrust model was used to demonstrate the proposed method, and the 1st derivative Gaussian function with a 10 Hz cutoff was used as the source signature. The results were more accurate and stable when relatively lower frequency components in the effective frequency range were used. By combining the gradient obtained from various frequency components, we confirmed that the results are clearer than the conventional method using all frequency components. Also, further study is required to effectively combine the multi-frequency components.

  13. Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site

    USGS Publications Warehouse

    Warren, Ean; Bekins, Barbara A.

    2015-01-01

    Crude oil at a spill site near Bemidji, Minnesota has been undergoing aerobic and anaerobic biodegradation for over 30 years, creating a 150–200 m plume of primary and secondary contaminants. Microbial degradation generates heat that should be measurable under the right conditions. To measure this heat, thermistors were installed in wells in the saturated zone and in water-filled monitoring tubes in the unsaturated zone. In the saturated zone, a thermal groundwater plume originates near the residual oil body with temperatures ranging from 2.9 °C above background near the oil to 1.2 °C down gradient. Temperatures in the unsaturated zone above the oil body were up to 2.7 °C more than background temperatures. Previous work at this site has shown that methane produced from biodegradation of the oil migrates upward and is oxidized in a methanotrophic zone midway between the water table and the surface. Enthalpy calculations and observations demonstrate that the temperature increases primarily result from aerobic methane oxidation in the unsaturated zone above the oil. Methane oxidation rates at the site independently estimated from surface CO2 efflux data are comparable to rates estimated from the observed temperature increases. The results indicate that temperature may be useful as a low-cost measure of activity but care is required to account for the correct heat-generating reactions, other heat sources and the effects of focused recharge.

  14. A new numerical benchmark for variably saturated variable-density flow and transport in porous media

    NASA Astrophysics Data System (ADS)

    Guevara, Carlos; Graf, Thomas

    2016-04-01

    In subsurface hydrological systems, spatial and temporal variations in solute concentration and/or temperature may affect fluid density and viscosity. These variations could lead to potentially unstable situations, in which a dense fluid overlies a less dense fluid. These situations could produce instabilities that appear as dense plume fingers migrating downwards counteracted by vertical upwards flow of freshwater (Simmons et al., Transp. Porous Medium, 2002). As a result of unstable variable-density flow, solute transport rates are increased over large distances and times as compared to constant-density flow. The numerical simulation of variable-density flow in saturated and unsaturated media requires corresponding benchmark problems against which a computer model is validated (Diersch and Kolditz, Adv. Water Resour, 2002). Recorded data from a laboratory-scale experiment of variable-density flow and solute transport in saturated and unsaturated porous media (Simmons et al., Transp. Porous Medium, 2002) is used to define a new numerical benchmark. The HydroGeoSphere code (Therrien et al., 2004) coupled with PEST (www.pesthomepage.org) are used to obtain an optimized parameter set capable of adequately representing the data set by Simmons et al., (2002). Fingering in the numerical model is triggered using random hydraulic conductivity fields. Due to the inherent randomness, a large number of simulations were conducted in this study. The optimized benchmark model adequately predicts the plume behavior and the fate of solutes. This benchmark is useful for model verification of variable-density flow problems in saturated and/or unsaturated media.

  15. Hydrogeologic aspects of brine disposal in the East Poplar oil field, Fort Peck Indian Reservation, northeastern Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craigg, S.D.; Thamke, J.N.

    1993-04-01

    The East Poplar Oil Field encompasses about 70 square miles in the south-central part of the Fort Peck Indian Reservation. Oil production began in 1952 from the Mississippian Madison Group. Production depths range from about 5,500 to 6,000 feet below land surface. Large quantities of brine (water having a dissolved-solids concentration greater than 35,000 milligrams per liter) have been produced with the oil. The brine has a dissolved-solids concentration of as much as 160,000 milligrams per liter. Most of the brine has been disposed of by injection into shallower subsurface formations (mainly the Lower Cretaceous Dakota Sandstone at depths ofmore » about 3,300 feet and the Upper Cretaceous Judith River Formation at depths of about 1,000 feet). Smaller quantities of brine have been directed to storage and evaporation pits. Handling, transport, and disposal of the brine have resulted in its movement into and migration through shallow Quaternary alluvial and glacial deposits along the Poplar River valley. Locally, domestic water supplies are obtained from these deposits. The major point, sources of shallow ground-water contamination probably is leakage of brine from corroded disposal-well casing and pipelines. Using electromagnetic geophysical techniques and auger drilling, three saline-water plumes in alluvial deposits and one plum in glacial deposits have been delineated. Dominant constituents in plume areas are sodium and chloride, whereas those in nonplume areas are sodium and bicarbonate.« less

  16. Superfund record of decision (EPA Region 1): Otis Air National Guard (containment of 7 groundwater plumes), Falmouth, MA, September 25, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    The Massachusetts Military Reservation (MMR) on Cape Cod, Massachusettes lies within the boundaries of Bourne, Mashpee, and Sandwich, and abuts Falmouth. Seven groundwater contaminant plumes have migrated beyond or are approaching the installation boundary. This interim remedial action will intercept the contaminated groundwater plumes to prevent further downgradient movement of the contaminants. Extraction and treatment will continue until the final remedy for the site is chosen.

  17. Continuing Investigations of the Relationship Between Fin Whales, Zooplankton Concentrations and Hydrothermal Venting on the Juan De Fuca Ridge

    DTIC Science & Technology

    2013-09-30

    Fuca Ridge. Our goal is to understand the influences of globally distributed hydrothermal plumes on the trophic ecology of the deep ocean...layer of increased acoustic backscatter near the 3 top of the hydrothermal plume (Thomson et al., 1991; Burd et al., 1992), leading to the...shallow species, which presumably migrate vertically between the upper ocean and the hydrothermal plume (Burd and Thomson, 1994, 1995). Our approach

  18. Efforts to estimate pesticide degradation rates in subsurface ...

    EPA Pesticide Factsheets

    When pesticides are used in real-world settings, the objective is to be effective in pest eradication at the site of application, but also it is desired that the pesticide have minimal persistence and mobility as it migrates away from the application site. At the site of application, sorption on soil and surface-soil degradation rates both factor into the pesticides' persistence. But once it migrates to the subsurface vadose zone and/or aquifers, subsurface degradation rate is a factor as well. Unfortunately, numerous soil properties that might affect pesticide degradation rate vary by orders of magnitude in the subsurface environment, both spatially and temporally, e.g., organic-carbon concentration, oxygen concentration, redox conditions, pH and soil mineralogy. Consequently, estimation of subsurface pesticide degradation rates and, in tum, pesticide persistence and mobility in the environment, has remained a challenge. To address this intransigent uncertainty, we surveyed peer-reviewed literature to identify > 100 data pairs in which investigators reported pesticide degradation rates in both surface and subsurface soils, using internally consistent experimental methods. These > 100 data pairs represented >30 separate pesticides. When the > 100 subsurface half-lives were plotted against surface half-lives, a limiting line could be defined for which all subsurface half-lives but three fe ll below the line. Of the three data points plotting above the limiting li

  19. Application of Carbonate Reservoir using waveform inversion and reverse-time migration methods

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kim, H.; Min, D.; Keehm, Y.

    2011-12-01

    Recent exploration targets of oil and gas resources are deeper and more complicated subsurface structures, and carbonate reservoirs have become one of the attractive and challenging targets in seismic exploration. To increase the rate of success in oil and gas exploration, it is required to delineate detailed subsurface structures. Accordingly, migration method is more important factor in seismic data processing for the delineation. Seismic migration method has a long history, and there have been developed lots of migration techniques. Among them, reverse-time migration is promising, because it can provide reliable images for the complicated model even in the case of significant velocity contrasts in the model. The reliability of seismic migration images is dependent on the subsurface velocity models, which can be extracted in several ways. These days, geophysicists try to obtain velocity models through seismic full waveform inversion. Since Lailly (1983) and Tarantola (1984) proposed that the adjoint state of wave equations can be used in waveform inversion, the back-propagation techniques used in reverse-time migration have been used in waveform inversion, which accelerated the development of waveform inversion. In this study, we applied acoustic waveform inversion and reverse-time migration methods to carbonate reservoir models with various reservoir thicknesses to examine the feasibility of the methods in delineating carbonate reservoir models. We first extracted subsurface material properties from acoustic waveform inversion, and then applied reverse-time migration using the inverted velocities as a background model. The waveform inversion in this study used back-propagation technique, and conjugate gradient method was used in optimization. The inversion was performed using the frequency-selection strategy. Finally waveform inversion results showed that carbonate reservoir models are clearly inverted by waveform inversion and migration images based on the inversion results are quite reliable. Different thicknesses of reservoir models were also described and the results revealed that the lower boundary of the reservoir was not delineated because of energy loss. From these results, it was noted that carbonate reservoirs can be properly imaged and interpreted by waveform inversion and reverse-time migration methods. This work was supported by the Energy Resources R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2009201030001A, No. 2010T100200133) and the Brain Korea 21 project of Energy System Engineering.

  20. Incorporating Non-Linear Sorption into High Fidelity Subsurface Reactive Transport Models

    NASA Astrophysics Data System (ADS)

    Matott, L. S.; Rabideau, A. J.; Allen-King, R. M.

    2014-12-01

    A variety of studies, including multiple NRC (National Research Council) reports, have stressed the need for simulation models that can provide realistic predictions of contaminant behavior during the groundwater remediation process, most recently highlighting the specific technical challenges of "back diffusion and desorption in plume models". For a typically-sized remediation site, a minimum of about 70 million grid cells are required to achieve desired cm-level thickness among low-permeability lenses responsible for driving the back-diffusion phenomena. Such discretization is nearly three orders of magnitude more than is typically seen in modeling practice using public domain codes like RT3D (Reactive Transport in Three Dimensions). Consequently, various extensions have been made to the RT3D code to support efficient modeling of recently proposed dual-mode non-linear sorption processes (e.g. Polanyi with linear partitioning) at high-fidelity scales of grid resolution. These extensions have facilitated development of exploratory models in which contaminants are introduced into an aquifer via an extended multi-decade "release period" and allowed to migrate under natural conditions for centuries. These realistic simulations of contaminant loading and migration provide high fidelity representation of the underlying diffusion and sorption processes that control remediation. Coupling such models with decision support processes is expected to facilitate improved long-term management of complex remediation sites that have proven intractable to conventional remediation strategies.

  1. Repeat ridge jumps associated with plume-ridge interaction, melt transport, and ridge migration

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; Ito, Garrett; van Hunen, Jeroen

    2011-01-01

    Repeated shifts, or jumps, of mid-ocean ridge segments toward nearby hot spots can produce large, long-term changes to the geometry and location of the tectonic plate boundaries. Ridge jumps associated with hot spot-ridge interaction are likely caused by several processes including shear on the base of the plate due to expanding plume material as well as reheating of lithosphere as magma passes through it to feed off-axis volcanism. To study how these processes influence ridge jumps, we use numerical models to simulate 2-D (in cross section) viscous flow of the mantle, viscoplastic deformation of the lithosphere, and melt migration upward from the asthenospheric melting zone, laterally along the base of the lithosphere, and vertically through the lithosphere. The locations and rates that magma penetrates and heats the lithosphere are controlled by the time-varying accumulation of melt beneath the plate and the depth-averaged lithospheric porosity. We examine the effect of four key parameters: magmatic heating rate of the lithosphere, plate spreading rate, age of the seafloor overlying the plume, and the plume-ridge migration rate. Results indicate that the minimum value of the magmatic heating rate needed to initiate a ridge jump increases with plate age and spreading rate. The time required to complete a ridge jump decreases with larger values of magmatic heating rate, younger plate age, and faster spreading rate. For cases with migrating ridges, models predict a range of behaviors including repeating ridge jumps, much like those exhibited on Earth. Repeating ridge jumps occur at moderate magmatic heating rates and are the result of changes in the hot spot magma flux in response to magma migration along the base of an evolving lithosphere. The tendency of slow spreading to promote ridge jumps could help explain the observed clustering of hot spots near the Mid-Atlantic Ridge. Model results also suggest that magmatic heating may significantly thin the lithosphere, as has been suggested at Hawaii and other hot spots.

  2. Carbon Tetrachloride Flow and Transport in the Subsurface of the 216-Z-9 Trench at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Oostrom, M.; Rockhold, M.; Truex, M.; Thorne, P.; Last, G.; Rohay, V.

    2006-12-01

    Three-dimensional modeling was conducted with layered and heterogeneous models to enhance the conceptual model of CT distribution in the vertical and lateral direction beneath the 216-Z-9 trench and to investigate the effects of soil vapor extraction (SVE). This work supports the U.S. Department of Energy's (DOE's) efforts to characterize the nature and distribution of CT in the 200 West Area and subsequently select an appropriate final remedy. Simulations targeted migration of dense, nonaqueous phase liquid (DNAPL) consisting of CT and co-disposed organics in the subsurface beneath the 216-Z-9 trench as a function of the properties and distribution of subsurface sediments and of the properties and disposal history of the waste. Simulations of CT migration were conducted using the Subsurface Transport Over Multiple Phases (STOMP) simulator. Simulation results support a conceptual model for CT distribution where CT in the DNAPL phase is expected to have migrated primarily in a vertical direction below the disposal trench. Presence of small-scale heterogeneities tends to limit the extent of vertical migration of CT DNAPL due to enhanced retention of DNAPL compared to more homogeneous conditions, but migration is still predominantly in the vertical direction. Results also show that the Cold Creek units retain more CT DNAPL within the vadose zone than other hydrologic unit during SVE. A considerable amount of the disposed CT DNAPL may have partitioned to the vapor and subsequently water and sorbed phases. Presence of small-scale heterogeneities tends to increase the amount of volatilization. Any continued migration of CT from the vadose zone to the groundwater is likely through interaction of vapor phase CT with the groundwater and not through continued DNAPL migration. The results indicated that SVE appears to be an effective technology for vadose zone remediation, but additional effort is needed to improve simulation of the SVE process.

  3. Vadose Zone Transport Field Study: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Andy L.; Conrad, Mark E.; Daily, William D.

    2006-07-31

    From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energy’s Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets tomore » validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanford’s vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNL’s Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste migration (e.g. BC Cribs and Trenches). The improved models have been also coupled with inverse models and newly-developed parameter scaling techniques to allow estimation of field-scale and effective transport parameters for the vadose zone. The development and utility of pedotransfer functions for describing fine-scale hydrogeochemical heterogeneity and for incorporating this heterogeneity into reactive transport models was explored. An approach based on grain-size statistics appears feasible and has been used to describe heterogeneity in hydraulic properties and sorption properties, such as the cation exchange capacity and the specific surface area of Hanford sediments. This work has also led to the development of inverse modeling capabilities for time-dependent, subsurface, reactive transport with transient flow fields using an automated optimization algorithm. In addition, a number of geophysical techniques investigated for their potential to provide detailed information on the subtle changes in lithology and bedding surfaces; plume delineation, leak detection. High-resolution resistivity is now being used for detecting saline plumes at several waste sites at Hanford, including tank farms. Results from the field studies and associated analysis have appeared in more than 46 publications generated over the past 4 years. These publications include test plans and status reports, in addition to numerous technical notes and peer reviewed papers.« less

  4. Quantitative assessment of historical coastal landfill contamination using in-situ field portable XRF (FPXRF)

    NASA Astrophysics Data System (ADS)

    O'Shea, Francis; Spencer, Kate; Brasington, James

    2014-05-01

    Historically, waste was deposited on low value, easily accessible coastal land (e.g. marsh land). Within England and Wales alone, there are over 5000 historical landfills situated within coastal areas at risk of flooding at a 1 in 100 year return period (Environment Agency, 2012). Historical sites were constructed prior to relevant legislation, and have no basal or side wall engineering, and the waste constituents are mostly unknown. In theory, contaminant concentrations should be reduced through natural attenuation as the leachate plume migrates through surrounding fine-grained inter-tidal sediments before reaching receptor waters. However, erosion resulting from rising sea level and increased storm intensity may re-distribute these sediments and release associated contaminants into the estuarine and coastal environment. The diffuse discharge from these sites has not been quantified and this presents a problem for those landfill managers who are required to complete EIAs. An earlier detailed field campaign at Newlands landfill site, on the Thames Estuary, UK identified a sub-surface (~2m depth) contaminant plume extending c. 20 m from the landfill boundary into surrounding fine-grained saltmarsh sediments. These saltmarsh sediments are risk of being eroded releasing their contaminant load to the Thames Estuary. The aims of this work were to; 1) assess whether this plume is representative of other historical landfills with similar characteristics and 2) to develop a rapid screening methodology using field portable XRF that could be used to identify potential risk of other coastal landfill sites. GIS was used to select landfill sites of similar age, hydrological regime and sedimentary setting in the UK, for comparison. Collection of sediment samples and analysis by ICP OES is expensive and time-consuming, therefore cores were extracted and analysed with a Niton Goldd XRF in-situ. Contaminant data were available immediately and the sampling strategy could be adapted in the field to determine the presence, location and extent of the sub-surface contaminant plume. Although XRF analysis has gained acceptance in the study of in-situ metal contamination (Kalnicky and Singhvi 2001; Martin Peinado et al. 2010) field moisture content and sample heterogeneity can suppress X-ray signals. Therefore, sediment samples were also collected and returned to the laboratory and analysed by ICP OES for comparison. Both wet and dry certified reference materials were also analysed in the laboratory using XRF and ICP OES to observe the impact of moisture content and to produce a correction factor allowing quantitative data to be collected in the field. In-situ raw XRF data identified the location of contamination plumes in the field in agreement with ICP data, although the data were systematically suppressed compared to ICP data, under-estimating the levels of contamination. Applying a correction factor for moisture content provided accurate measurements of concentration. The use of field portable XRF with the application of a moisture content correction factor enables the rapid screening of sediment fronting coastal landfill sites, goes some way towards providing a national baseline dataset and can contribute to the development of risk assessments.

  5. Europa Plumes Located near Warm Spot on Europa

    NASA Image and Video Library

    2017-04-13

    These images of the surface of the Jovian moon Europa, taken by NASA's Galileo spacecraft, focus on a "region of interest" on the icy moon. The image at left traces the location of the erupting plumes of material, observed by NASA's Hubble Space Telescope in 2014 and again in 2016. The plumes are located inside the area surrounded by the green oval. The green oval also corresponds to a warm region on Europa's surface, as identified by the temperature map at right. The map is based on observations by the Galileo spacecraft. The warmest area is colored bright red. Researchers speculate these data offer circumstantial evidence for unusual activity that may be related to a subsurface ocean on Europa. The dark circle just below center in both images is a crater and is not thought to be related to the warm spot or the plume activity. https://photojournal.jpl.nasa.gov/catalog/PIA21444

  6. Assessment of ground-water contamination near Lantana landfill, Southeast Florida

    USGS Publications Warehouse

    Russell, G.M.; Higer, A.L.

    1988-01-01

    The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.

  7. Physical barriers formed from gelling liquids: 1. numerical design of laboratory and field experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finsterle, S.; Moridis, G.J.; Pruess, K.

    1994-01-01

    The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface.

  8. LOCATION AND CHARACTERIZATION OF SUBSURFACE ANOMALIES USING A SOIL CONDUCTIVITY PROBE

    EPA Science Inventory

    An electrical conductivity probe, designed for use with "direct push" technology, has been successfully used to locate buried drums, contaminant plumes, and to precisely locate and characterize a previously installed permeable reactive iron wall. The conductivity probe was desig...

  9. Ongoing hydrothermal activities within Enceladus

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiang-Wen; Postberg, Frank; Sekine, Yasuhito; Shibuya, Takazo; Kempf, Sascha; Horányi, Mihály; Juhász, Antal; Altobelli, Nicolas; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Tachibana, Shogo; Sirono, Sin-Iti; Moragas-Klostermeyer, Georg; Srama, Ralf

    2015-03-01

    Detection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick. These findings imply rock-water interactions in regions surrounding the core of Enceladus. The resulting chemical `footprints' are expected to be preserved in the liquid and subsequently transported upwards to the near-surface plume sources, where they eventually would be ejected and could be measured by a spacecraft. Here we report an analysis of silicon-rich, nanometre-sized dust particles (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn. We interpret these grains as nanometre-sized SiO2 (silica) particles, initially embedded in icy grains emitted from Enceladus' subsurface waters and released by sputter erosion in Saturn's E ring. The composition and the limited size range (2 to 8 nanometres in radius) of stream particles indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydrothermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus.

  10. Investigating the Relationship Between Fin and Blue Whale Locations, Zooplankton Concentrations and Hydrothermal Venting on the Juan de Fuca Ridge

    DTIC Science & Technology

    2008-01-01

    such correlations in terms of the influences of globally distributed hydrothermal plumes on the trophic ecology of the deep ocean. OBJECTIVES We are...in a 100-m-thick layer of increased acoustic backscatter near the top of the hydrothermal plume at 1.9 km depth (Thomson et al., 1991, Burd et al...zooplankton migrate vertically between the upper ocean and the hydrothermal plume (Burd & Thomson, 1994). This interpretation is consistent with a

  11. Continuing Investigations of the Relationship between Fin Whales, Zooplankton Concentrations and Hydrothermal Venting on the Juan de Fuca Ridge

    DTIC Science & Technology

    2012-09-30

    Fuca Ridge. Our goal is to understand the influences of globally distributed hydrothermal plumes on the trophic ecology of the deep ocean...a layer of increased acoustic backscatter near the top of the hydrothermal plume (Thomson et al., 1991; Burd et al., 1992), leading to the inference...shallow species which presumably migrate vertically between the upper ocean and the hydrothermal plume (Burd and Thomson, 1994, 1995). Our approach is

  12. Spatial variations in the dust-to-gas ratio of Enceladus' plume

    NASA Astrophysics Data System (ADS)

    Hedman, M. M.; Dhingra, D.; Nicholson, P. D.; Hansen, C. J.; Portyankina, G.; Ye, S.; Dong, Y.

    2018-05-01

    On day 138 of 2010, the plume of dust and gas emerging from Enceladus' South Polar Terrain passed between the Sun and the Cassini spacecraft. This solar occultation enabled Cassini's Ultraviolet Imaging Spectrograph (UVIS) and the Visual and Infrared Mapping Spectrometer (VIMS) to obtain simultaneous measurements of the plume's gas and dust components along the same lines of sight. The UVIS measurements of the plume's gas content are described in Hansen et al. (2011, GRL 38:11202) , while this paper describes the VIMS data and the information they provide about the plume's particle content. Together, the VIMS and UVIS measurements reveal that the plume material above Baghdad and Damascus sulci has a dust-to-gas mass ratio that is roughly an order of magnitude higher than the material above Alexandria and Cairo sulci. Similar trends in the plume's dust-to-gas ratio are also found in data obtained when Cassini flew through the plume in 2009, during which time the Ion and Neutral Mass Spectrometer (INMS), Radio and Plasma Wave Science instrument (RPWS) and Cosmic Dust Analyzer (CDA) instruments made in-situ measurements of the plume's gas and dust densities (Dong et al. 2015 JGR 120:915-937). These and other previously-published systematic differences in the material erupting from different fissures likely reflect variations in subsurface conditions across Encealdus' South Polar Terrain.

  13. 40 CFR 264.601 - Environmental performance standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to migration of waste constituents in the ground water or subsurface environment, considering: (1... for migration through soil, liners, or other containing structures; (2) The hydrologic and geologic... users; (6) The patterns of land use in the -region; (7) The potential for deposition or migration of...

  14. In-situ study of migration and transformation of nitrogen in groundwater based on continuous observations at a contaminated desert site

    NASA Astrophysics Data System (ADS)

    Zuo, Rui; Jin, Shuhe; Chen, Minhua; Guan, Xin; Wang, Jinsheng; Zhai, Yuanzheng; Teng, Yanguo; Guo, Xueru

    2018-04-01

    The objective of this study was to explore the controlling factors on the migration and transformation of nitrogenous wastes in groundwater using long-term observations from a contaminated site on the southwestern edge of the Tengger Desert in northwestern China. Contamination was caused by wastewater discharge rich in ammonia. Two long-term groundwater monitoring wells (Wells 1# and 2#) were constructed, and 24 water samples were collected. Five key indicators were tested: ammonia, nitrate, nitrite, dissolved oxygen, and manganese. A numerical method was used to simulate the migration process and to determine the migration stage of the main pollutant plume in groundwater. The results showed that at Well 1# the nitrogenous waste migration process had essentially been completed, while at Well 2# ammonia levels were still rising and gradually transitioning to a stable stage. The differences for Well 1# and Well 2# were primarily caused by differences in groundwater flow. The change in ammonia concentration was mainly controlled by the migration of the pollution plume under nitrification in groundwater. The nitrification rate was likely affected by changes in dissolved oxygen and potentially manganese.

  15. Fate and transport of petroleum hydrocarbons in the subsurface near Cass Lake, Minnesota

    USGS Publications Warehouse

    Drennan, Dina M.; Bekins, Barbara A.; Warren, Ean; Cozzarelli, Isabelle M.; Baedecker, Mary Jo; Herkelrath, William N.; Delin, Geoffrey N.; Rosenbauer, Robert J.; Campbell, Pamela L.

    2010-01-01

    The U.S. Geological Survey (USGS) investigated the natural attenuation of subsurface petroleum hydrocarbons leaked over an unknown number of years from an oil pipeline under the Enbridge Energy Limited Partnership South Cass Lake Pumping Station, in Cass Lake, Minnesota. Three weeks of field work conducted between May 2007 and July 2008 delineated a dissolved plume of aromatic hydrocarbons and characterized the biodegradation processes of the petroleum. Field activities included installing monitoring wells, collecting sediment cores, sampling water from wells, and measuring water-table elevations. Geochemical measurements included concentrations of constituents in both spilled and pipeline oil, dissolved alkylbenzenes and redox constituents, sediment bioavailable iron, and aquifer microbial populations. Groundwater in this area flows east-southeast at approximately 26 meters per year. Results from the oil analyses indicate a high degree of biodegradation, characterized by nearly complete absence of n-alkanes. Cass Lake oil samples were more degraded than two oil samples collected in 2008 from the similarly contaminated USGS Bemidji, Minnesota, research site 40 kilometers away. Based on 19 ratios developed for comparing oil sources, the conclusion is that the oils at the two sites appear to be from the same hydrocarbon source. In the Cass Lake groundwater plume, benzene concentrations decrease by three orders of magnitude within 150 meters (m) downgradient from the oil body floating on the water table (between well MW-10 and USGS-4 well nest). The depths of the highest benzene concentrations increase with distance downgradient from the oil, a condition typical of plumes in shallow, unconfined aquifers. Background groundwater, which is nearly saturated with oxygen, becomes almost entirely anaerobic in the plume. As at the Bemidji site, the most important biodegradation processes are anaerobic and dominated by iron reduction. The similarity between the Cass Lake and Bemidji benzene degradation rates, redox conditions, and aquifer material all support a hypothesis that the Cass Lake plume, like the Bemidji plume, is decades old. As concentrations of alkylbenzenes in the oil decrease over time, the benzene concentrations in the groundwater plume will also decrease and the plume is expected to shrink. The Fox Creek wetland, about 250 m south of the Cass Lake site, is the nearest receptor to the south.

  16. INFLUENCE OF STRATIGRAPHY ON A DIVING MTBE PLUME AND ITS CHARACTERIZATION: A CASE STUDY

    EPA Science Inventory

    Conventional conceptual models applied at petroleum release sites are often based on assumptions of vertical contaminant migration through the vadose zone followed by horizontal, downgradient transport at the water table with limited, if any, additional downward migration. Howev...

  17. Vapor Intrusion

    EPA Pesticide Factsheets

    Vapor intrusion occurs when there is a migration of volatile chemicals from contaminated groundwater or soil into an overlying building. Volatile chemicals can emit vapors that may migrate through subsurface soils and into indoor air spaces.

  18. Adaptive management for subsurface pressure and plume control in application to geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Gonzalez-Nicolas, A.; Cihan, A.; Birkholzer, J. T.; Petrusak, R.; Zhou, Q.; Riestenberg, D. E.; Trautz, R. C.; Godec, M.

    2016-12-01

    Industrial-scale injection of CO2 into the subsurface can cause reservoir pressure increases that must be properly controlled to prevent any potential environmental impact. Excessive pressure buildup in reservoir may result in ground water contamination stemming from leakage through conductive pathways, such as improperly plugged abandoned wells or distant faults, and the potential for fault reactivation and possibly seal breaching. Brine extraction is a viable approach for managing formation pressure, effective stress, and plume movement during industrial-scale CO2 injection projects. The main objectives of this study are to investigate suitable different pressure management strategies involving active brine extraction and passive pressure relief wells. Adaptive optimized management of CO2 storage projects utilizes the advanced automated optimization algorithms and suitable process models. The adaptive management integrates monitoring, forward modeling, inversion modeling and optimization through an iterative process. In this study, we employ an adaptive framework to understand primarily the effects of initial site characterization and frequency of the model update (calibration) and optimization calculations for controlling extraction rates based on the monitoring data on the accuracy and the success of the management without violating pressure buildup constraints in the subsurface reservoir system. We will present results of applying the adaptive framework to test appropriateness of different management strategies for a realistic field injection project.

  19. UST CORRECTIVE ACTION TECHNOLOGIES: ENGINEERING DESIGN OF FREE PRODUCT RECOVERY SYSTEMS

    EPA Science Inventory

    The objective of this project was to develop a technical assistance document for assessment of subsurface hydrocarbon spills and for evaluating effects of well placement and pumping rates on separate phase plume control and on free product recovery. Procedures developed for estim...

  20. EFFECTS OF THE VARIATION OF SELECT SAMPLING PARAMETERS ON SOIL VAPOR CONCENTRATIONS

    EPA Science Inventory

    Currently soil vapor surveys are commonly used as a screening technique to delineate subsurface volatile organic compound (VOC) contaminant plumes and to provide information for vapor intrusion and contaminated site evaluations. To improve our understanding of the fate and transp...

  1. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors andmore » associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.« less

  2. Seismic imaging of the geodynamic activity at the western Eger rift in central Europe

    NASA Astrophysics Data System (ADS)

    Mullick, N.; Buske, S.; Hrubcova, P.; Ruzek, B.; Shapiro, S.; Wigger, P.; Fischer, T.

    2015-04-01

    The western Eger rift at the Czech-German border in central Europe is an important geodynamically active area within the European Cenzoic rift system (ECRS) in the forelands of the Alps. Along with two other active areas of the ECRS, the French Massif Central and the east and west Eifel volcanic fields, it is characterized by numerous CO2-rich fluid emission points and frequent micro-seismicity. Existence of a plume(s) is indicated in the upper mantle which may be responsible for these observations. Here we reprocess a pre-existing deep seismic reflection profile '9HR' and interpret the subsurface structures as mapped by seismic reflectivity with previous findings, mainly from seismological and geochemical studies, to investigate the geodynamic activity in the subsurface. We find prominent hints of pathways which may allow magmatic fluids originating in the upper mantle to rise through the crust and cause the observed fluid emanations and earthquake activity.

  3. Organic contaminant transport and fate in the subsurface: Evolution of knowledge and understanding

    NASA Astrophysics Data System (ADS)

    Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.

    2015-07-01

    Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.

  4. Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding

    USGS Publications Warehouse

    Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.

    2015-01-01

    Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.

  5. Can Analysis of Acetylene and Its Biodegradation Products in Enceladus Plumes be Used to Detect the Presence of Sub-Surface Life?

    NASA Astrophysics Data System (ADS)

    Miller, L. G.; Baesman, S. M.; Oremland, R. S.

    2014-12-01

    The search for biosignatures of life on Earth includes measurement of the stable isotope fractionation of reactants and products attributed to enzymatic processes and comparison with the often smaller chemical (abiotic) fractionation. We propose that this approach might be applied to study the origin and fate of organic compounds contained in water vapor plumes emanating from Enceladus or other icy bodies, perhaps revealing information about the potential for biology occurring within a sub-surface "habitable" zone. Methanol and C2-hydrocarbons including ethylene, ethane and acetylene (C2H2) have been identified in the plumes of Enceladus. Biological degradation of acetylene proceeds by anaerobic fermentation via acetylene hydratase through acetaldehyde, with a second enzyme (acetaldehyde dismutase) forming acetate and ethanol. We found that incubation of cultures of acetylene-fermenting bacteria exhibit a kinetic isotope effect (KIE) associated with the net removal of C2H2. Consumption of acetylene by both growing and washed-cell cultures of bacteria closely related to Pelobacter acetylenicus (e.g, strain SFB93) was accompanied by a carbon isotopic fractionation of about 2 per mil (KIE = 1.8-2.7 ‰), a result we are examining with other cultures of acetylene fermenters. In addition, we are measuring the carbon isotopic composition of acetaldehyde, ethanol and acetate during fermentation to learn whether these products are fractionated sufficiently, relative to their substrate, to warrant measurement of their isotopic composition in Enceladus (or Europa) plumes to indicate enzymatic activity in liquid environments below the crust of these moons.

  6. Hubble Sees Recurring Plume Erupting From Europa

    NASA Image and Video Library

    2017-04-13

    These composite images show a suspected plume of material erupting two years apart from the same location on Jupiter's icy moon Europa. The images bolster evidence that the plumes are a real phenomenon, flaring up intermittently in the same region on the satellite. Both plumes, photographed in ultraviolet light by NASA's Hubble's Space Telescope Imaging Spectrograph, were seen in silhouette as the moon passed in front of Jupiter. The newly imaged plume, shown at right, rises about 62 miles (100 kilometers) above Europa's frozen surface. The image was taken Feb. 22, 2016. The plume in the image at left, observed by Hubble on March 17, 2014, originates from the same location. It is estimated to be about 30 miles (50 kilometers) high. The snapshot of Europa, superimposed on the Hubble image, was assembled from data from NASA's Galileo mission to Jupiter. The plumes correspond to the location of an unusually warm spot on the moon's icy crust, seen in the late 1990s by the Galileo spacecraft (see PIA21444). Researchers speculate that this might be circumstantial evidence for water venting from the moon's subsurface. The material could be associated with the global ocean that is believed to be present beneath the frozen crust. https://photojournal.jpl.nasa.gov/catalog/PIA21443

  7. Spatially resolved U(VI) partitioning and speciation: implications for plume scale behavior of contaminant U in the Hanford vadose zone.

    PubMed

    Wan, Jiamin; Kim, Yongman; Tokunaga, Tetsu K; Wang, Zheming; Dixit, Suvasis; Steefel, Carl I; Saiz, Eduardo; Kunz, Martin; Tamura, Nobumichi

    2009-04-01

    A saline-alkaline brine containing high concentration of U(VI) was accidentally spilled at the Hanford Site in 1951, introducing 10 tons of U into sediments under storage tank BX-102. U concentrations in the deep vadose zone and groundwater plumes increase with time, yet how the U has been migrating is not fully understood. We simulated the spill event in laboratory soil columns, followed by aging, and obtained spatially resolved U partitioning and speciation along simulated plumes. We found after aging, at apparent steady state, that the pore aqueous phase U concentrations remained surprisingly high (up to 0.022 M), in close agreement with the recently reported high U concentrations (up to 0.027 M) in the vadose zone plume (1). The pH values of aged pore liquids varying from 10 to 7, consistent with the measured pH of the field borehole sediments varying from 9.5 to 7.4 (2), from near the plume source to the plume front. The direct measurements of aged pore liquids together with thermodynamic calculations using a Pitzer approach revealed that UO2(CO3)3(4-) is the dominant aqueous U species within the plume body (pH 8-10), whereas Ca2UO2(CO3)3 and CaUO2(CO3)32- are also significant in the plume frontvicinity (pH 7-8), consistent with that measured from field borehole pore-waters (3). U solid phase speciation varies at different locations along the plume flow path and even within single sediment grains, because of location dependent pore and micropore solution chemistry. Our results suggest that continuous gravity-driven migration of the highly stable U02(CO3)34 in the residual carbonate and sodium rich tank waste solution is likely responsible for the detected growing U concentrations in the vadose zone and groundwater.

  8. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats.

    PubMed

    Dick, Gregory J; Anantharaman, Karthik; Baker, Brett J; Li, Meng; Reed, Daniel C; Sheik, Cody S

    2013-01-01

    Hydrothermal plumes are an important yet understudied component of deep-sea vent microbial ecosystems. The significance of plume microbial processes can be appreciated from three perspectives: (1) mediation of plume biogeochemistry, (2) dispersal of seafloor hydrothermal vent microbes between vents sites, (3) as natural laboratories for understanding the ecology, physiology, and function of microbial groups that are distributed throughout the pelagic deep sea. Plume microbiology has been largely neglected in recent years, especially relative to the extensive research conducted on seafloor and subseafloor systems. Rapidly advancing technologies for investigating microbial communities provide new motivation and opportunities to characterize this important microbial habitat. Here we briefly highlight microbial contributions to plume and broader ocean (bio)geochemistry and review recent work to illustrate the ecological and biogeographic linkages between plumes, seafloor vent habitats, and other marine habitats such as oxygen minimum zones (OMZs), cold seeps, and oil spills. 16S rRNA gene surveys and metagenomic/-transcriptomic data from plumes point to dominant microbial populations, genes, and functions that are also operative in OMZs (SUP05, ammonia-oxidizing Archaea, and SAR324 Deltaproteobacteria) and hydrocarbon-rich environments (methanotrophs). Plume microbial communities are distinct from those on the seafloor or in the subsurface but contain some signatures of these habitats, consistent with the notion that plumes are potential vectors for dispersal of microorganisms between seafloor vent sites. Finally, we put forward three pressing questions for the future of deep-sea hydrothermal plume research and consider interactions between vents and oceans on global scales.

  9. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs

    PubMed Central

    Lesniewski, Ryan A; Jain, Sunit; Anantharaman, Karthik; Schloss, Patrick D; Dick, Gregory J

    2012-01-01

    Microorganisms mediate geochemical processes in deep-sea hydrothermal vent plumes, which are a conduit for transfer of elements and energy from the subsurface to the oceans. Despite this important microbial influence on marine geochemistry, the ecology and activity of microbial communities in hydrothermal plumes is largely unexplored. Here, we use a coordinated metagenomic and metatranscriptomic approach to compare microbial communities in Guaymas Basin hydrothermal plumes to background waters above the plume and in the adjacent Carmen Basin. Despite marked increases in plume total RNA concentrations (3–4 times) and microbially mediated manganese oxidation rates (15–125 times), plume and background metatranscriptomes were dominated by the same groups of methanotrophs and chemolithoautotrophs. Abundant community members of Guaymas Basin seafloor environments (hydrothermal sediments and chimneys) were not prevalent in the plume metatranscriptome. De novo metagenomic assembly was used to reconstruct genomes of abundant populations, including Marine Group I archaea, Methylococcaceae, SAR324 Deltaproteobacteria and SUP05 Gammaproteobacteria. Mapping transcripts to these genomes revealed abundant expression of genes involved in the chemolithotrophic oxidation of ammonia (amo), methane (pmo) and sulfur (sox). Whereas amo and pmo gene transcripts were abundant in both plume and background, transcripts of sox genes for sulfur oxidation from SUP05 groups displayed a 10–20-fold increase in plumes. We conclude that the biogeochemistry of Guaymas Basin hydrothermal plumes is mediated by microorganisms that are derived from seawater rather than from seafloor hydrothermal environments such as chimneys or sediments, and that hydrothermal inputs serve as important electron donors for primary production in the deep Gulf of California. PMID:22695860

  10. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs.

    PubMed

    Lesniewski, Ryan A; Jain, Sunit; Anantharaman, Karthik; Schloss, Patrick D; Dick, Gregory J

    2012-12-01

    Microorganisms mediate geochemical processes in deep-sea hydrothermal vent plumes, which are a conduit for transfer of elements and energy from the subsurface to the oceans. Despite this important microbial influence on marine geochemistry, the ecology and activity of microbial communities in hydrothermal plumes is largely unexplored. Here, we use a coordinated metagenomic and metatranscriptomic approach to compare microbial communities in Guaymas Basin hydrothermal plumes to background waters above the plume and in the adjacent Carmen Basin. Despite marked increases in plume total RNA concentrations (3-4 times) and microbially mediated manganese oxidation rates (15-125 times), plume and background metatranscriptomes were dominated by the same groups of methanotrophs and chemolithoautotrophs. Abundant community members of Guaymas Basin seafloor environments (hydrothermal sediments and chimneys) were not prevalent in the plume metatranscriptome. De novo metagenomic assembly was used to reconstruct genomes of abundant populations, including Marine Group I archaea, Methylococcaceae, SAR324 Deltaproteobacteria and SUP05 Gammaproteobacteria. Mapping transcripts to these genomes revealed abundant expression of genes involved in the chemolithotrophic oxidation of ammonia (amo), methane (pmo) and sulfur (sox). Whereas amo and pmo gene transcripts were abundant in both plume and background, transcripts of sox genes for sulfur oxidation from SUP05 groups displayed a 10-20-fold increase in plumes. We conclude that the biogeochemistry of Guaymas Basin hydrothermal plumes is mediated by microorganisms that are derived from seawater rather than from seafloor hydrothermal environments such as chimneys or sediments, and that hydrothermal inputs serve as important electron donors for primary production in the deep Gulf of California.

  11. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats

    PubMed Central

    Dick, Gregory J.; Anantharaman, Karthik; Baker, Brett J.; Li, Meng; Reed, Daniel C.; Sheik, Cody S.

    2013-01-01

    Hydrothermal plumes are an important yet understudied component of deep-sea vent microbial ecosystems. The significance of plume microbial processes can be appreciated from three perspectives: (1) mediation of plume biogeochemistry, (2) dispersal of seafloor hydrothermal vent microbes between vents sites, (3) as natural laboratories for understanding the ecology, physiology, and function of microbial groups that are distributed throughout the pelagic deep sea. Plume microbiology has been largely neglected in recent years, especially relative to the extensive research conducted on seafloor and subseafloor systems. Rapidly advancing technologies for investigating microbial communities provide new motivation and opportunities to characterize this important microbial habitat. Here we briefly highlight microbial contributions to plume and broader ocean (bio)geochemistry and review recent work to illustrate the ecological and biogeographic linkages between plumes, seafloor vent habitats, and other marine habitats such as oxygen minimum zones (OMZs), cold seeps, and oil spills. 16S rRNA gene surveys and metagenomic/-transcriptomic data from plumes point to dominant microbial populations, genes, and functions that are also operative in OMZs (SUP05, ammonia-oxidizing Archaea, and SAR324 Deltaproteobacteria) and hydrocarbon-rich environments (methanotrophs). Plume microbial communities are distinct from those on the seafloor or in the subsurface but contain some signatures of these habitats, consistent with the notion that plumes are potential vectors for dispersal of microorganisms between seafloor vent sites. Finally, we put forward three pressing questions for the future of deep-sea hydrothermal plume research and consider interactions between vents and oceans on global scales. PMID:23720658

  12. MULTI-LAYER SAMPLING IN CONVENTIONAL MONITORING WELLS FOR IMPROVED ESTIMATION OF VERTICAL CONTAMINANT DISTRIBUTIONS AND MASS

    EPA Science Inventory

    "Traditional" approaches to sampling groundwater and interpreting monitoring well data often provide misleading pictures of plume shape and location in the subsurface and the true extent of contamination. Groundwater samples acquired using pumps and bailers in conventional monito...

  13. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

  14. Enceladus Life Finder: the Search for Life in a Habitable Moon

    NASA Technical Reports Server (NTRS)

    Cable, Morgan L.; Clark, Karla; Lunine, Jonathan I.; Postberg, Frank; Reh, Kim; Spilker, Linda; Waite, J. Hunter

    2016-01-01

    Enceladus is one of the most intriguing bodies in the solar system. In addition to having one of the brightest and youngest surfaces, this small Saturnian moon was recently discovered to have a plume erupting from its south polar terrain and a global subsurface ocean. The Cassini Mission discovered organics and nitrogen-bearing molecules in the plume, as well as salts and silicates that strongly suggest ocean water in contact with a rocky core. However, Cassini's instruments lack sufficient resolution and mass range to determine if these organics are of biotic origin. The Enceladus Life Finder (ELF) is a Discovery-class mission that would use two state-of-the-art mass spectrometers to target the gas and grains of the plume and search for evidence of life in this alien ocean.

  15. Impact of mineralization on carbon dioxide migration in term of critical value of fault permeability.

    NASA Astrophysics Data System (ADS)

    Alshammari, A.; Brantley, D.; Knapp, C. C.; Lakshmi, V.

    2017-12-01

    In this study, multi chemical components ((H2O, H2S) will be injected with supercritical carbon dioxide in onshore part of South Georgia Rift (SGR) Basin model. Chemical reaction expected issue between these components to produce stable mineral of carbonite rocks by the time. The 3D geological model has been extracted from petrel software and computer modelling group (CMG) package software has been used to build simulation model explain the effect of mineralization on fault permeability that control on plume migration critically between (0-0.05 m Darcy). The expected results will be correlated with single component case (CO2 only) to evaluate the importance the mineralization on CO2 plume migration in structure and stratigraphic traps and detect the variation of fault leakage in case of critical values (low permeability). The results will also, show us the ratio of every trapped phase in (SGR) basin reservoir model.

  16. Tetracycline Resistance in the Subsurface of a Poultry Farm: Influence of Poultry Wastes

    NASA Astrophysics Data System (ADS)

    You, Y.; Ball, W. P.; Ward, M. J.; Hilpert, M.

    2007-12-01

    Concentrated animal feeding operations (CAFOs) are considered to be important man-made reservoir of antibiotic resistant bacteria. Using the electromagnetic induction (EMI) method of geophysical characterization, we measured the apparent subsurface electrical conductivity (ECa) at a CAFO site in order to assess the movement of pollutants associated with animal waste. The map of ECa and other available data suggest that (1) soil surrounding a poultry litter storage shed is contaminated by poultry waste, (2) a contamination plume in the subsurface emanates from that shed, and (3) the development of that plume is due to groundwater flow. We focused on understanding the spread of tetracycline resistance (Tc\\tiny R), because tetracycline is one of the most frequently used antibiotics in food animal production and therefore probably used at our field site. Microbiological experiments show the presence of Tc\\tiny R bacteria in the subsurface and indicate higher concentrations in the top soil than in the aquifer. Environmental DNA was extracted to identify CAFO- associated Tc\\tiny R genes and to explore a link between the presence of Tc\\tiny R and CAFO practices. A "shot-gun" cloning approach is under development to target the most prevalent Tc\\tiny R gene. This gene will be monitored in future experiments, in which we will study the transmission of Tc\\tiny R to naive E.~coli under selective pressure of Tc. Experimental results will be used to develop a mathematical/numerical model in order to describe the transmission process and to subsequently make estimates regarding the large-scale spread of antibiotic resistance.

  17. Temporal Geophysical Investigations of the FT-2-Plume at the Wurtsmith Air Force Base, Oscoda, Michigan

    EPA Science Inventory

    The decommissioned Wurtsmith Air Force Base former Fire Training Cell (FT-02) facility has been the focus of several geophysical investigations. After several decades of fire training exercises, significant amounts of hydrocarbons and some solvents seeped into the subsurface cont...

  18. TEMPORAL GEOPHYSICAL INVESTIGATIONS OF THE FT-2-PLUME AT THE WURTSMITH AIR FORCE BASE, OSCODA, MICHIGAN

    EPA Science Inventory

    The decommissioned Wurtsmith Air Force Base former Fire Training Cell (FT-02) facility has been the focus of several geophysical investigations. After several decades of fire training exercises, significant amounts of hydrocarbons and some solvents seeped into the Subsurface cont...

  19. Measuring permanence of CO2 storage in saline formations: The Frio experiment

    USGS Publications Warehouse

    Hovorka, Susan D.; Benson, Sally M.; Doughty, Christine; Freifeild, Barry M.; Sakurai, Shinichi; Daley, Thomas M.; Kharaka, Yousif K.; Holtz, Mark H.; Trautz, Robert C.; Nance, H. Seay; Myer, Larry R.; Knauss, Kevin G.

    2006-01-01

    If CO2 released from fossil fuel during energy production is returned to the subsurface, will it be retained for periods of time significant enough to benefit the atmosphere? Can trapping be assured in saline formations where there is no history of hydrocarbon accumulation? The Frio experiment in Texas was undertaken to provide answers to these questions.One thousand six hundred metric tons of CO2 were injected into the Frio Formation, which underlies large areas of the United States Gulf Coast. Reservoir characterization and numerical modeling were used to design the experiment, as well as to interpret the results through history matching. Closely spaced measurements in space and time were collected to observe the evolution of immiscible and dissolved CO2 during and after injection. The high-permeability, steeply dipping sandstone allowed updip flow of supercritical CO2 as a result of the density contrast with formation brine and absence of a local structural trap.The front of the CO2 plume moved more quickly than had been modeled. By the end of the 10-day injection, however, the plume geometry in the plane of the observation and injection wells had thickened to a distribution similar to the modeled distribution. As expected, CO2 dissolved rapidly into brine, causing pH to fall and calcite and metals to be dissolved.Postinjection measurements, including time-lapse vertical seismic profiling transects along selected azimuths, cross-well seismic topography, and saturation logs, show that CO2 migration under gravity slowed greatly 2 months after injection, matching model predictions that significant CO2 is trapped as relative permeability decreases.

  20. The Time Variability of Individual Geysers in the Plume of Enceladus

    NASA Astrophysics Data System (ADS)

    Trumbo, S. K.; Ewald, S. P.; Ingersoll, A. P.

    2016-12-01

    Porco et al. (2014) [1] published the locations of 100 jets along the so-called "tiger stripes" that feed the massive plume of Enceladus. Hedman et al. (2013) [2] observed fluctuations in integrated plume brightness in response to periodic tidal forcing on the orbital timescale of Enceladus, in which the plume is brightest near apocenter and dimmest near pericenter. The thin crack models of Hurford et al. (2007, 2012) [3, 4] suggest that individual jets should respond to the same forces on similar timescales. However, if the jets are produced via vapor and liquid propagation through thin subterranean cracks, then they may also be controlled thermodynamically and dependent on the timescale of ice buildup on the conduit walls. Ingersoll and Ewald (2016) [5] demonstrate that the plume also varies on decadal timescales, perhaps as a result of an eleven-year tide or long-term ice accumulation within source cracks. We examine Cassini ISS Narrow Angle Camera images spanning 2005 - 2012 in order to assess the temporal variability of individual geysers and regional emission in the plume. We observe both the appearance and disappearance of individual jets, as well as visible changes in regional emission. Our observations suggest localized variations on timescales of months to years that are not easily tied to mean anomaly, but that may be indicative of subsurface processes. Theoretical models of the geyser mechanisms and subsurface plumbing predict closure timescales of individual cracks that are dependent on model parameters, such as crack width, crack tortuosity, and water table depth [6, 7, 8]. Thus, we discuss possible implications of these observations for both the mechanism and anatomy of an Enceladus geyser. [1] Porco et al. (2014), AJ, 148, 3. [2] Hedman et al. (2013), Nature, 500, 182 - 184. [3] Hurford et al. (2007), Nature, 447, 292 - 294. [4] Hurford et al. (2012), Icarus, 220, 896 - 903. [5] Ingersoll and Ewald (2016), Icarus, in review. [6] Ingersoll and Pankine (2010), Icarus, 206, 594 - 607. [7] Nakajima and Ingersoll (2016), Icarus, 272, 309 - 318. [8] Ingersoll and Nakajima (2016), Icarus, 272, 319 - 326.

  1. Final Project Report: Imaging Fault Zones Using a Novel Elastic Reverse-Time Migration Imaging Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Chen, Ting; Tan, Sirui

    Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismicmore » data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.« less

  2. Temporary vs. Permanent Sub-slab Ports: A Comparative Performance Study

    EPA Science Inventory

    Vapor intrusion (VI) is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), from the subsurface to indoor air. The VI exposure pathway extends from the contaminant source, which can be impacted soil, non-aqueous phase liquid, or contaminated...

  3. Thermal–moisture dynamics of embankments with asphalt pavement in permafrost regions of central Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Zhi; Zhang, Mingli; Ma, Wei

    Subsurface moisture content is one of the critical factors that control the thermal dynamics of embankments. However, information on the subsurface moisture movement and distribution in embankments is still limited. To better understand the coupled water and heat transport within embankments, subsurface temperature and moisture of an asphalt pavement highway were extensively measured from 2009 to 2011. Collected data indicate that pure heat conduction is the overall main mechanism of heat transport in the embankment and heat convection plays a relatively unimportant role in heat transport. The results also indicate that subsurface moisture and temperature dynamics in the asphalt layermore » is strongly related to the rainfall events, while the subsurface moisture content below the road base course maintains relatively constant. Rainfall in summer leads to rapid cooling of the subsurface soil. Our results suggest that frequent and small rainfall events favour the thermal stability of the embankment due to the loss of latent heat of water evaporation. Moisture migration during freezing still occurred in the gravel fill and the water infiltrated into the active layer during thawing period. Freezing-induced water migration may result in the increase in water content of the embankment and the decrease in compactness of gravel fill.« less

  4. Scaling behavior of microbubbles rising in water-saturated porous media

    NASA Astrophysics Data System (ADS)

    Kong, X.; Ma, Y.; Scheuermann, A.; Bringemeier, D.; Galindo-Torres, S. A.; Saar, M. O.; Li, L.

    2015-12-01

    Gas transport in the form of discrete microbubbles in saturated porous media is of importance in a number of processes relevant to many geo-environmental and engineering systems such as bubbling of greenhouse gases in river and sea beds, hydrocarbon gas migration in coal cleats and rock fractures, and air sparging for remediation of soil contaminated with volatile organic compounds. Under the assumption of no or minor volume expansion during gravity-driven migration, the transport of a single microbubble can be well described using various drag force models. However, not enough attention has been paid to the collective behavior of microbubbles during their ascend as a plume through the saturated porous medium, involving dynamic interactions between individual bubbles, bubbles and the ambient fluid, as well as bubbles and the solid matrix. With our quasi-2D, lab-scale microbubble migration experiments, where bubbles are continuously released from a diffuser at the bottom of a porous bed of hydrated gel beads, we establish a scaling relationship between the gas (bubble) release rate and various characteristic parameters of the bubble plume, such as plume tip velocity, plume width, and breakthrough time of the plume front. We find that the characteristic width of the bubble plume varies as a power of both the gas release rate and the bed thickness, with exponents of 0.2 and 0.4, respectively. Moreover, the characteristic breakthrough time also scales with both the gas release rate and the bed thickness with power-law exponents of -0.4 and 1.2, respectively. The mean pore-water velocity of the circulating ambient water also follows a power-law relationship with the gas release rate being an exponent of 0.6 of the gas release rate. This can be quantitatively proven using a simplified momentum exchange model together with the above power-law exponents for the bubble plume. These analyses on the experimental results are carried out on the basis of non-dimensional parameters and variables in order to explore the bubble transport mechanism in a way that is independent of the actual scale of the physical model. Our findings thus have implications for engineering processes and for fundamental research on bubble transport phenomena in porous media in general.

  5. Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.

    The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and to identify aspects about which additional information needed to effectively support remedy decisions.more » this document summarizes the conceptual model of iodine behavior relevant to iodine in the subsurface environment at the Hanford site.« less

  6. Tritium Fluxes through the Shallow Unsaturated Zone adjacent to a Radioactive Waste Disposal Facility in an Arid Environment

    NASA Astrophysics Data System (ADS)

    Maples, S.; Andraski, B. J.; Stonestrom, D. A.; Cooper, C. A.; Pohll, G.

    2011-12-01

    Studies at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS) in southern Nevada have documented long-distance (>400-m) tritium (3H) transport adjacent to a commercial, low-level radioactive waste disposal facility. Transport at this scale is orders of magnitude greater than anticipated; however, lateral 3H fluxes through the shallow unsaturated zone (UZ) have not been investigated in detail. The objective of this study is to estimate and compare lateral and vertical tritiated water-vapor (3HHOg) fluxes in the shallow UZ and their relation to the observed plume migration. Previous studies have recognized two distinct plumes of 3H emanating from the facility. Shallow (0.5 and 1.5-m depth) soil-water vapor samples were collected yearly along 400-m long transects through both plumes from 2003-09. Within the south plume, 3H concentrations at 1.5-m depth have decreased by 44 ± 0.3% during this period, and plume advancement there has effectively ceased (i.e., rate of advance equals rate of decay). During the same period, the west plume showed a net decrease in concentration of 34 ± 0.9% within 100-m of the facility; however, plume advancement is observed at the leading edge of the plume, and concentrations 200-300-m from the facility show an increase in 3H concentration of 64 ± 28.4%. Lateral and vertical diffusive fluxes within both plumes were calculated using 3HHOg concentrations from 2006. Lateral 3HHOg diffusive fluxes within both plumes have been estimated 25-300-m from the facility at 1.5-m depth. Mean lateral 3HHOg diffusive fluxes are 10-14 g m-2 yr-1 within the south plume, and 10-13 g m-2 yr-1 within the west plume. Mean lateral fluxes in the south plume are an order of magnitude lower than in the west plume. This behavior corresponds with the observed relative immobility of the south plume, while the elevated west plume fluxes agree with the plume advancement seen there. Shallow, upward directed, mean vertical 3HHOg fluxes 25-300-m from the facility are estimated to be 10-12 g m-2 yr-1 in the south plume and 10-11 g m-2 yr-1 in the west plume. Within both plumes, mean vertical diffusive fluxes are two orders of magnitude greater than mean lateral diffusive fluxes. Lateral diffusive 3HHOg fluxes have been calculated similarly using 2001 south plume data and were compared to 2001 south plume vertical diffusive 3HHOg fluxes published by Andraski et al. (2005). Here, too, mean vertical fluxes dwarf mean lateral fluxes (10-11 g m-2 yr-1 vs. 10-14 g m-2 yr-1). This behavior highlights the importance of upward movement and release of 3H to the atmosphere. The potential role of advective lateral transport and its contribution to observed plume migration is also under investigation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, L. M.; Environmental Science Division

    On September 7, 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) presented a Scoping Memo (Argonne 2005) for preliminary consideration by the Kansas Department of Health and Environment (KDHE), suggesting possible remedial options for the carbon tetrachloride contamination in groundwater at Everest, Kansas. The suggested approaches were discussed by representatives of the KDHE, the CCC/USDA, and Argonne at the KDHE office in Topeka on September 8-9, 2005, along with other technical and logistic issues related to the Everest site. In response to these discussions, the KDHE recommended (KDHE 2005) evaluation of several remedial processes, either alonemore » or in combination, as part of a Corrective Action Study (CAS) for Everest. The primary remedial processes suggested by the KDHE were the following: Hydraulic control by groundwater extraction with aboveground treatment; Air sparging (AS) coupled with soil vapor extraction (SVE) in large-diameter boreholes (LDBs); and Phytoremediation. As a further outcome of the 2005 meeting and as a precursor to development of a possible CAS, the CCC/USDA completed the following supplemental investigations at Everest to address several specific technical concerns discussed with the KDHE: (1) Construction of interpretive cross sections at strategic locations selected by the KDHE along the main plume migration pathway, to depict the hydrogeologic characteristics affecting groundwater flow and contaminant movement (Argonne 2006a). (2) A field investigation in early 2006 (Argonne 2006b), as follows: (a) Installation and testing of a production well and associated observation points, at locations approved by the KDHE, to determine the response of the Everest aquifer to groundwater extraction near the Nigh property. (b) Groundwater sampling for the analysis of volatile organic compounds (VOCs) and the installation of additional permanent monitoring points at locations selected by the KDHE, to further constrain the existing contaminant plume. (c) Resampling of all existing permanent monitoring points for VOCs and biodegradation parameter analyses, at the request of the KDHE. On the basis of these studies (Argonne 2006a,b) and the CCC/USDA's past investigations at Everest (Argonne 2006c), the CCC/USDA concluded that groundwater extraction is not an effective remedial option for the main body of the groundwater plume, and the KDHE concurred (KDHE 2006); the KDHE later noted, however (KDHE 2007a), that this and other technologies might represent viable remedial options in the event of further downgradient migration of the plume toward the intermittent creek. In February 2007, the CCC/USDA presented preliminary analyses of (1) the AS-SVE remedial alternative, incorporating the use of LDBs, and (2) the risks to human health and the environment posed by the observed carbon tetrachloride plume in groundwater (Argonne 2007a). The results of these analyses demonstrated the following: (1) Neither groundwater extraction nor AS-SVE in LDBs represents a practical approach for effective remediation of the groundwater contamination at Everest (near the Nigh property). (2) Periodic sampling and analyses for VOCs conducted by the CCC/USDA documented that the areal extent and range of carbon tetrachloride concentrations detected in the groundwater plume at Everest had changed relatively little from 2000 to 2006. (3) Estimates of groundwater flow and contaminant migration times, based on the hydrogeologic properties of the groundwater flow system identified at Everest (Argonne 2003, 2006b,c), indicated that, at minimum, approximately 4 years would be required for the carbon tetrachloride plume (in the subsurface) to reach the vicinity of the intermittent creek directly west of the Nigh property, and more than 20 years would be required for the contamination to reach the identified groundwater discharge area southwest of the Nigh property. (4) The existing (January-March 2006) plume posed no immediate danger of contamination to the surface waters of the intermittent creek. In light of these observations, the CCC/USDA proposed a phased program--over approximately 2-3 years--of groundwater sampling, surface water sampling, and related monitoring activities at Everest to (1) identify locations where a phytoremediation system would be effective and determine that area's extent and (2) support the potential development of a phytoremediation treatment alternative for the site. The recommended elements of the monitoring program are summarized in Table 1.1. In conjunction with this program, both the CCC/USDA and the KDHE recommended the construction of several new monitoring wells, at locations along and near the intermittent creek west of the Nigh property (Argonne 2007b; KDHE 2007b).« less

  8. High resolution spatial and temporal evolution of dissolved gases in groundwater during a controlled natural gas release experiment.

    PubMed

    Cahill, Aaron G; Parker, Beth L; Mayer, Bernhard; Mayer, K Ulrich; Cherry, John A

    2018-05-01

    Fugitive gas comprised primarily of methane (CH 4 ) with traces of ethane and propane (collectively termed C 1-3 ) may negatively impact shallow groundwater when unintentionally released from oil and natural gas wells. Currently, knowledge of fugitive gas migration, subsurface source identification and oxidation potential in groundwater is limited. To advance understanding, a controlled release experiment was performed at the Borden Research Aquifer, Canada, whereby 51m 3 of natural gas was injected into an unconfined sand aquifer over 72days with dissolved gases monitored over 323days. During active gas injection, a dispersed plume of dissolved C 1-3 evolved in a depth discrete and spatially complex manner. Evolution of the dissolved gas plume was driven by free-phase gas migration controlled by small-scale sediment layering and anisotropy. Upon cessation of gas injection, C 1-3 concentrations increased to the greatest levels observed, particularly at 2 and 6m depths, reaching up to 31.5, 1.5 and 0.1mg/L respectively before stabilizing and persisting. At no time did groundwater become fully saturated with natural gas at the scale of sampling undertaken. Throughout the experiment the isotopic composition of injected methane (δ 13 C of -42.2‰) and the wetness parameter (i.e. the ratio of C 1 to C 2+ ) constituted excellent tracers for the presence of fugitive gas at concentrations >2mg/L. At discrete times C 1-3 concentrations varied by up to 4 orders of magnitude over 8m of aquifer thickness (e.g. from <0.01 to 30mg/L for CH 4 ), while some groundwater samples lacked evidence of fugitive gas, despite being within 10m of the injection zone. Meanwhile, carbon isotope ratios of dissolved CH 4 showed no evidence of oxidation. Our results show that while impacts to aquifers from a fugitive gas event are readily detectable at discrete depths, they are spatially and temporally variable and dissolved methane has propensity to persist. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effective CO2 sequestration monitoring using joint inversion result of seismic and electromagnetic data

    NASA Astrophysics Data System (ADS)

    Noh, K.; Jeong, S.; Seol, S. J.; Byun, J.; Kwon, T.

    2015-12-01

    Man-made carbon dioxide (CO2) released into the atmosphere is a significant contributor to the greenhouse gas effect and related global warming. Sequestration of CO2 into saline aquifers has been proposed as one of the most practical options of all geological sequestration possibilities. During CO2 geological sequestration, monitoring is indispensable to delineate the change of CO2 saturation and migration of CO2 in the subsurface. Especially, monitoring of CO2 saturation in aquifers provides useful information for determining amount of injected CO2. Seismic inversion can provide the migration of CO2 plume with high resolution because velocity is reduced when CO2 replaces the pore fluid during CO2 injection. However, the estimation of CO2 saturation using the seismic method is difficult due to the lower sensitivity of the velocity to the saturation when the CO2 saturation up to 20%. On the other hand, marine controlled-source EM (mCSEM) inversion is sensitive to the resistivity changes resulting from variations in CO2 saturation, even though it has poor resolution than seismic method. In this study, we proposed an effective CO2 sequestration monitoring method using joint inversion of seismic and mCSEM data based on a cross-gradient constraint. The method was tested with realistic CO2 injection models in a deep brine aquifer beneath a shallow sea which is selected with consideration for the access convenience for the installation of source and receiver and an environmental safety. Resistivity images of CO2 plume by the proposed method for different CO2 injection stages have been significantly improved over those obtained from individual EM inversion. In addition, we could estimate a reliable CO2 saturation by rock physics model (RPM) using the P-wave velocity and the improved resistivity. The proposed method is a basis of three-dimensional estimation of reservoir parameters such as porosity and fluid saturation, and the method can be also applied for detecting a reservoir and calculating the accurate oil and gas reserves.

  10. Intermediate Scale Experimental Design to Validate a Subsurface Inverse Theory Applicable to Date-sparse Conditions

    NASA Astrophysics Data System (ADS)

    Jiao, J.; Trautz, A.; Zhang, Y.; Illangasekera, T.

    2017-12-01

    Subsurface flow and transport characterization under data-sparse condition is addressed by a new and computationally efficient inverse theory that simultaneously estimates parameters, state variables, and boundary conditions. Uncertainty in static data can be accounted for while parameter structure can be complex due to process uncertainty. The approach has been successfully extended to inverting transient and unsaturated flows as well as contaminant source identification under unknown initial and boundary conditions. In one example, by sampling numerical experiments simulating two-dimensional steady-state flow in which tracer migrates, a sequential inversion scheme first estimates the flow field and permeability structure before the evolution of tracer plume and dispersivities are jointly estimated. Compared to traditional inversion techniques, the theory does not use forward simulations to assess model-data misfits, thus the knowledge of the difficult-to-determine site boundary condition is not required. To test the general applicability of the theory, data generated during high-precision intermediate-scale experiments (i.e., a scale intermediary to the field and column scales) in large synthetic aquifers can be used. The design of such experiments is not trivial as laboratory conditions have to be selected to mimic natural systems in order to provide useful data, thus requiring a variety of sensors and data collection strategies. This paper presents the design of such an experiment in a synthetic, multi-layered aquifer with dimensions of 242.7 x 119.3 x 7.7 cm3. Different experimental scenarios that will generate data to validate the theory are presented.

  11. PROTON GENERATION BY DISSOLUTION OF INTRINSIC OR AUGMENTED ALUMINOSILICATE MINERALS FOR IN SITU CONTAMINANT REMEDIATION BY ZERO-VALENCE-STATE IRON

    EPA Science Inventory

    Metallic, or zero-valence-state, iron is being incorporated into permeable reactive subsurface barriers for remediating a variety of contaminant plume types. The remediation occurs via reductive processes that are associated with surface corrosion of the iron metal. Reaction rate...

  12. Elucidating the fate of a mixed toluene, DHM, methanol, and i-propanol plume during in situ bioremediation

    NASA Astrophysics Data System (ADS)

    Verardo, E.; Atteia, O.; Prommer, H.

    2017-06-01

    Organic pollutants such as solvents or petroleum products are widespread contaminants in soil and groundwater systems. In-situ bioremediation is a commonly used remediation technology to clean up the subsurface to eliminate the risks of toxic substances to reach potential receptors in surface waters or drinking water wells. This study discusses the development of a subsurface model to analyse the performance of an actively operating field-scale enhanced bioremediation scheme. The study site was affected by a mixed toluene, dihydromyrcenol (DHM), methanol, and i-propanol plume. A high-resolution, time-series of data was used to constrain the model development and calibration. The analysis shows that the observed failure of the treatment system is linked to an inefficient oxygen injection pattern. Moreover, the model simulations also suggest that additional contaminant spillages have occurred in 2012. Those additional spillages and their associated additional oxygen demand resulted in a significant increase in contaminant fluxes that remained untreated. The study emphasises the important role that reactive transport modelling can play in data analyses and for enhancing remediation efficiency.

  13. Control of Subsurface Contaminant Migration by Vertical Engineered Barriers

    EPA Science Inventory

    This Fact Sheet is intended to provide remedial project managers (RPMs), on-scene coordinators (OSCs), contractors, and other remediation stakeholders with a basic overview of hazardous waste containment systems constructed to prevent or limit the migration of contamination in gr...

  14. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    NASA Astrophysics Data System (ADS)

    Phillips, Cynthia B.; Molaro, Jamie; Hand, Kevin P.

    2017-10-01

    The surface of Jupiter’s moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa’s leading-trailing hemisphere brightness asymmetry.Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted “chaos-type” terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features.In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa’s surface area.Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age (~50myr) of Europa. Quantifying the timescale and volume of transported material will yield insight on whether such a process may provide fuel to sustain a biosphere in Europa’s subsurface ocean, which is relevant to searches for life by a future mission such as a potential Europa Lander.

  15. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Molaro, J.; Hand, K. P.

    2017-12-01

    The surface of Jupiter's moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa's leading-trailing hemisphere brightness asymmetry. Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted "chaos-type" terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features. In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa's surface area. Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age ( 50myr) of Europa. Quantifying the timescale and volume of transported material will yield insight on whether such a process may provide fuel to sustain a biosphere in Europa's subsurface ocean, which is relevant to searches for life by a future mission such as a potential Europa Lander.

  16. EVALUATION OF GEOPHYSICAL METHODS FOR THE DETECTION OF SUBSURFACE TETRACHLOROETHYLENE (PCE) IN CONTROLLED SPILL EXPERIMENTS

    EPA Science Inventory

    Tetrachloroethylene (PCE), typically used as a dry cleaning solvent, is a predominant contaminant in the subsurface at Superfund Sites. PCE is a dense non-aqueous phase liquid (DNAPL) that migrates downward into the earth, leaving behind areas of residual saturation and free prod...

  17. Jupiter’s moon Europa

    NASA Image and Video Library

    2014-01-24

    This composite image shows suspected plumes of water vapor erupting at the 7 o’clock position off the limb of Jupiter’s moon Europa. The plumes, photographed by NASA’s Hubble’s Space Telescope Imaging Spectrograph, were seen in silhouette as the moon passed in front of Jupiter. Hubble’s ultraviolet sensitivity allowed for the features -- rising over 100 miles (160 kilometers) above Europa’s icy surface -- to be discerned. The water is believed to come from a subsurface ocean on Europa. The Hubble data were taken on January 26, 2014. The image of Europa, superimposed on the Hubble data, is assembled from data from the Galileo and Voyager missions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckhardt, D.A.V.; Pearsall, K.A.

    Trichloroethylene (TCE), 1,2-dichloroethylene (DCE), and tetrachloroethylene (PCE) have been detected in water from five public-supply wells and six cooling-water wells that tap the Magothy aquifer at Roosevelt Field. The cooling water is discharged after use to the water table aquifer through a nearby recharge basin and a subsurface drain field. Three plumes of TCE in groundwater have been delineated - the source plume, which has penetrated both aquifers, and two more recent plumes emanating from the two discharge sites in the water-table aquifer. Concentrations of inorganic constituents in the three plumes are the same as those in ambient water inmore » the area. The two secondary plumes discharged cooling water extended at least 1,000 ft south-southeastward in the direction of regional groundwater flow. Pumping at wells screened in the middle and basal sections of the Magothy aquifers, where clay layers are absent and sandy zones provide good vertical hydraulic connection within the aquifer system, has increased the rate of downward contaminant advection. The transient increases in downward movement are cumulative over time and have brought TCE to the bottom of the Magothy aquifer, 500 ft below land surface. 38 refs., 11 figs., 8 tabs.« less

  19. Heard Island and McDonald Islands Acoustic Plumes: Split-beam Echo sounder and Deep Tow Camera Observations of Gas Seeps on the Central Kerguelen Plateau

    NASA Astrophysics Data System (ADS)

    Watson, S. J.; Spain, E. A.; Coffin, M. F.; Whittaker, J. M.; Fox, J. M.; Bowie, A. R.

    2016-12-01

    Heard and McDonald islands (HIMI) are two active volcanic edifices on the Central Kerguelen Plateau. Scientists aboard the Heard Earth-Ocean-Biosphere Interactions voyage in early 2016 explored how this volcanic activity manifests itself near HIMI. Using Simrad EK60 split-beam echo sounder and deep tow camera data from RV Investigator, we recorded the distribution of seafloor emissions, providing the first direct evidence of seabed discharge around HIMI, mapping >244 acoustic plume signals. Northeast of Heard, three distinct plume clusters are associated with bubbles (towed camera) and the largest directly overlies a sub-seafloor opaque zone (sub-bottom profiler) with >140 zones observed within 6.5 km. Large temperature anomalies did not characterize any of the acoustic plumes where temperature data were recorded. We therefore suggest that these plumes are cold methane seeps. Acoustic properties - mean volume backscattering and target strength - and morphology - height, width, depth to surface - of plumes around McDonald resembled those northeast of Heard, also suggesting gas bubbles. We observed no bubbles on extremely limited towed camera data around McDonald; however, visibility was poor. The acoustic response of the plumes at different frequencies (120 kHz vs. 18 kHz), a technique used to classify water column scatterers, differed between HIMI, suggestiing dissimilar target size (bubble radii) distributions. Environmental context and temporal characteristics of the plumes differed between HIMI. Heard plumes were concentrated on flat, sediment rich plains, whereas around McDonald plumes emanated from sea knolls and mounds with hard volcanic seafloor. The Heard plumes were consistent temporally, while the McDonald plumes varied temporally possibly related to tides or subsurface processes. Our data and analyses suggest that HIMI acoustic plumes were likely caused by gas bubbles; however, the bubbles may originate from two or more distinct processes.

  20. Optics of the Offshore Columbia River Plume from Glider Observations and Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Saldias, G.; Shearman, R. K.; Barth, J. A.; Tufillaro, N.

    2016-02-01

    The Columbia River (CR) is the largest source of freshwater along the U.S. Pacific coast. The resultant plume is often transported southward and offshore forming a large buoyant feature off Oregon and northern California in spring-summer - the offshore CR plume. Observations from autonomous underwater gliders and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery are used to characterize the optics of the offshore CR plume off Newport, Oregon. Vertical sections, under contrasting river flow conditions, reveal a low-salinity and warm surface layer of 20-25 m (fresher in spring and warmer in summer), high Colored Dissolved Organic Matter (CDOM) concentration and backscatter, and associated with the base of the plume high chlorophyll fluorescence. Plume characteristics vary in the offshore direction as the warm and fresh surface layer thickens progressively to an average 30-40 m of depth 270-310 km offshore; CDOM, backscatter, and chlorophyll fluorescence decrease in the upper 20 m and increase at subsurface levels (30-50 m depth). MODIS normalized water-leaving radiance (nLw(λ)) spectra for CR plume cases show enhanced water-leaving radiance at green bands (as compared to no-CR plume cases) up to 154 km from shore. Farther offshore, the spectral shapes for both cases are very similar, and consequently, a contrasting color signature of low-salinity plume water is practically imperceptible from ocean color remote sensing. Empirical algorithms based on multivariate regression analyses of nLw(λ) plus Sea Surface Temperature (SST) data produce more accurate results detecting offshore plume waters than previous studies using single visible bands (e.g. adg(412) or nLw(555)).

  1. Experiments on Plume Spreading by Engineered Injection and Extraction

    NASA Astrophysics Data System (ADS)

    Mays, D. C.; Jones, M.; Tigera, R. G.; Neupauer, R.

    2014-12-01

    The notion that groundwater remediation is transport-limited emphasizes the coupling between physical (i.e., hydrodynamic), geochemical, and microbiological processes in the subsurface. Here we leverage this coupling to promote groundwater remediation using the approach of engineered injection and extraction. In this approach, inspired by the literature on chaotic advection, uncontaminated groundwater is injected and extracted through a manifold of wells surrounding the contaminated plume. The potential of this approach lies in its ability to actively manipulate the velocity field near the contaminated plume, generating plume spreading above and beyond that resulting from aquifer heterogeneity. Plume spreading, in turn, promotes mixing and reaction by chemical and biological processes. Simulations have predicted that engineered injection and extraction generates (1) chaotic advection whose characteristics depend on aquifer heterogeneity, and (2) faster rates and increased extent of groundwater remediation. This presentation focuses on a complimentary effort to experimentally demonstrate these predictions experimentally. In preparation for future work using refractive index matched (RIM) porous media, the experiments reported here use a Hele-Shaw apparatus containing silicone oil. Engineered injection and extraction is used to manipulate the geometry of an initially circular plume of black pigment, and photographs record the plume geometry after each step of injection of extraction. Image analysis, using complimentary Eulerian and Lagrangian approaches, reveals the thickness and variability of the dispersion zone surrounding the deformed plume of black pigment. The size, shape, and evolution of this dispersion zone provides insight into the interplay between engineered injection and extraction, which generates plume structure, and dispersion (here Taylor dispersion), which destroys plume structure. These experiments lay the groundwork for application of engineered injection and extraction at field sites where improvements to the rate, extent, and cost of remediation are hoped.

  2. Environmental Program

    NASA Technical Reports Server (NTRS)

    Fischer, Holger

    2009-01-01

    NASA's White Sands Test Facility has six core environmental compliance capabilities: remote hazardous testing of reactive, explosive and toxic materials and fluids; hypergolic fluids materials and systems testing; oxygen materials and system testing; hypervelocity impact testing; flight hardware processing; and, propulsion testing. The facility's permit status and challenges are reviewed. Historic operations and practices dating from the 1960s through the early 1980s resulted in contamination of the facility's groundwater. An environmental restoration effort has been employed to protect public health and the health of the workforce. The restoration seeks to properly handle hazardous materials and waste processes; determine the nature and extent of the contamination; stop the migration of contaminated groundwater; stabilize the plume front which has been assessed as the greatest risk to public health; and, clean-up the environment to restore it to preexisting conditions. The Plume Front Treatment System is operational and seeks to stop the westward movement of the plume to protect drinking water and irrigation well. Specifically, the treatment system will extract contaminated water from the aquifer, remove chemical using the best available technology, and return (inject) the treated water back to the aquifer. The Mid-Plume Interception Treatment System also seeks to stop the migration of containment, as well as to evaluate new technologies to accelerate cleanup, such as bioremediation.

  3. Is the track of the Yellowstone hotspot driven by a deep mantle plume? — Review of volcanism, faulting, and uplift in light of new data

    NASA Astrophysics Data System (ADS)

    Pierce, Kenneth L.; Morgan, Lisa A.

    2009-11-01

    Geophysical imaging of a tilted mantle plume extending at least 500 km beneath the Yellowstone caldera provides compelling support for a plume origin of the entire Yellowstone hotspot track back to its inception at 17 Ma with eruptions of flood basalts and rhyolite. The widespread volcanism, combined with a large volume of buoyant asthenosphere, supports a plume head as an initial phase. Estimates of the diameter of the plume head suggest it completely spanned the upper mantle and was fed from sources beneath the transition zone, We consider a mantle-plume depth to at least 1,000 km to best explain the large scale of features associated with the hotspot track. The Columbia River-Steens flood basalts form a northward-migrating succession consistent with the outward spreading of a plume head beneath the lithosphere. The northern part of the inferred plume head spread (pancaked) upward beneath Mesozoic oceanic crust to produce flood basalts, whereas basalt melt from the southern part intercepted and melted Paleozoic and older crust to produce rhyolite from 17 to 14 Ma. The plume head overlapped the craton margin as defined by strontium isotopes; westward motion of the North American plate has likely "scraped off" the head from the plume tail. Flood basalt chemistries are explained by delamination of the lithosphere where the plume head intersected this cratonic margin. Before reaching the lithosphere, the rising plume head apparently intercepted the east-dipping Juan de Fuca slab and was deflected ~ 250 km to the west; the plume head eventually broke through the slab, leaving an abruptly truncated slab. Westward deflection of the plume head can explain the anomalously rapid hotspot movement of 62 km/m.y. from 17 to 10 Ma, compared to the rate of ~ 25 km/m.y. from 10 to 2 Ma. A plume head-to-tail transition occurred in the 14-to-10-Ma interval in the central Snake River Plain and was characterized by frequent (every 200-300 ka for about 2 m.y. from 12.7 to 10.5 Ma) "large volume (> 7000 km 3)", and high temperature rhyolitic eruptions (> 1000 °C) along a ~ 200-km-wide east-west band. The broad transition area required a heat source of comparable area. Differing characteristics of the volcanic fields here may in part be due to variations in crustal composition but also may reflect development in differing parts of an evolving plume where the older fields may reflect the eruption from several volcanic centers located above very large and extensive rhyolitic magma chamber(s) over the detached plume head while the younger fields may signal the arrival of the plume tail intercepting and melting the lithosphere and generating a more focused rhyolitic magma chamber. The three youngest volcanic fields of the hotspot track started with large ignimbrite eruptions at 10.21, 6.62, and 2.05 Ma. They indicate hotspot migration N55° E at ~ 25 km/m.y. compatible in direction and velocity with the North American Plate motion. The Yellowstone Crescent of High Terrain (YCHT) flares outward ahead of the volcanic progression in a pattern similar to a bow-wave, and thus favors a sub-lithospheric driver. Estimates of YCHT-uplift rates are between 0.1 and 0.4 mm/yr. Drainage divides have migrated northeastward with the hotspot. The Continental Divide and a radial drainage pattern now centers on the hotspot. The largest geoid anomaly in the conterminous U.S. is also centered on Yellowstone and, consistent with uplift above a mantle plume. Bands of late Cenozoic faulting extend south and west from Yellowstone. These bands are subdivided into belts based both on recency of offset and range-front height. Fault history within these belts suggests the following pattern: Belt I — starting activity but little accumulated offset; Belt II — peak activity with high total offset and activity younger than 14 ka; Belt III — waning activity with large offset and activity younger than 140 ka; and Belt IV — apparently dead on substantial range fronts (south side of the eastern Snake River Plain only). These belts of fault activity have migrated northeast in tandem with the adjacent hotspot volcanism. On the southern arm of the YCHT, fault activity occurs on the inner, western slope consistent with driving by gravitational potential energy, whereas faulting has not started on the eastern, outer, more compressional slope. Range fronts increase in height and steepness northeastward along the southern-fault band. Both the belts of faulting and the YCHT are asymmetrical across the volcanic hotspot track, flaring out 1.6 times more on the south than the north side. This and the southeast tilt of the Yellowstone plume may reflect southeast flow of the upper mantle.

  4. Generation of dense plume fingers in saturated-unsaturated homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens J. M.; Graf, Thomas

    2015-02-01

    Flow under variable-density conditions is widespread, occurring in geothermal reservoirs, at waste disposal sites or due to saltwater intrusion. The migration of dense plumes typically results in the formation of vertical plume fingers which are known to be triggered by material heterogeneity or by variations in source concentration that causes the density variation. Using a numerical groundwater model, six perturbation methods are tested under saturated and unsaturated flow conditions to mimic heterogeneity and concentration variations on the pore scale in order to realistically generate dense fingers. A laboratory-scale sand tank experiment is numerically simulated, and the perturbation methods are evaluated by comparing plume fingers obtained from the laboratory experiment with numerically simulated fingers. Dense plume fingering for saturated flow can best be reproduced with a spatially random, time-constant perturbation of the solute source. For unsaturated flow, a spatially and temporally random noise of solute concentration or a random conductivity field adequately simulate plume fingering.

  5. Coupled heat and silica transport associated with dike intrusion into sedimentary rock: effects on isotherm location and permeability evolution

    NASA Astrophysics Data System (ADS)

    Dutrow, Barbara L.; Travis, Bryan J.; Gable, Carl W.; Henry, Darrell J.

    2001-11-01

    An 11-meter-wide alkalic monchiquite dike recovered from the subsurface of Louisiana has produced a metasomatic aureole in the adjacent interbedded carbonate mudstones and siltstones. The asymmetric contact aureole, which extends nearly 6 m above and 4 m below the intrusion, contains the metamorphic minerals, diopside, pectolite, fluor-apophyllite, fluorite, and garnet. A series of coupled heat and mass transport calculations was undertaken to provide thermal constraints for the aureole, in the absence of robust geothermometric assemblages, and insights into accompanying mass transport associated with the sedimentary rock-dike system. Calculations were completed for systems with homogeneous, anisotropic, and layered permeability, κ. Transport, dissolution, and precipitation of silica were also incorporated into calculations. All systems modeled indicate that the thermal pulse waned in ∼3 yr with a return to background temperatures in ∼10 yr. Heat and fluid transport produce maximum temperature isotherms that are distinctly different in spatial extent and lateral variability for each numerical system. The homogeneous κ case produced isotherms that pinch and swell vertically above the dike and have large lateral variations, in contrast to the anisotropic κ case that produced a single large plume above the dike. The layered system κ case produced the most spatially extensive thermal aureole, unlike that recorded in the rocks. Addition of dissolved silica to the flow system significantly impacts the calculated transport of heat and fluid, primarily due to density changes that affect upwelling dynamics. Although precipitation and dissolution of SiO2 can affect flow through the feedback to permeability, κ changes were found to be minor for these system conditions. Where κ decreased, flow was refocused into higher κ zones, thus mitigating the κ differences over time. This negative feedback tends to defocus flow and provides a mechanism for lateral migration of plumes. Coupled heat and silica transport produces a complex isotherm geometry surrounding the intrusion due to formation of upwelling and downwelling plumes and lateral translation of plumes, leading to variability in the isotherm pattern that does not reflect the inherent heterogeneity of the initial material properties. Initial heterogeneities in κ are not a prerequisite for the development of a complicated flow and transport pattern. In addition, if isotherms reflect isograds, these calculations demonstrate that isograds may not form uniform structures with isograd boundaries characterized by their distance from the heat source.

  6. Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Q.; Birkholzer, J.T.; Mehnert, E.

    Integrated modeling of basin- and plume-scale processes induced by full-scale deployment of CO{sub 2} storage was applied to the Mt. Simon Aquifer in the Illinois Basin. A three-dimensional mesh was generated with local refinement around 20 injection sites, with approximately 30 km spacing. A total annual injection rate of 100 Mt CO{sub 2} over 50 years was used. The CO{sub 2}-brine flow at the plume scale and the single-phase flow at the basin scale were simulated. Simulation results show the overall shape of a CO{sub 2} plume consisting of a typical gravity-override subplume in the bottom injection zone of highmore » injectivity and a pyramid-shaped subplume in the overlying multilayered Mt. Simon, indicating the important role of a secondary seal with relatively low-permeability and high-entry capillary pressure. The secondary-seal effect is manifested by retarded upward CO{sub 2} migration as a result of multiple secondary seals, coupled with lateral preferential CO{sub 2} viscous fingering through high-permeability layers. The plume width varies from 9.0 to 13.5 km at 200 years, indicating the slow CO{sub 2} migration and no plume interference between storage sites. On the basin scale, pressure perturbations propagate quickly away from injection centers, interfere after less than 1 year, and eventually reach basin margins. The simulated pressure buildup of 35 bar in the injection area is not expected to affect caprock geomechanical integrity. Moderate pressure buildup is observed in Mt. Simon in northern Illinois. However, its impact on groundwater resources is less than the hydraulic drawdown induced by long-term extensive pumping from overlying freshwater aquifers.« less

  7. Velocity control as a tool for optimal plume containment in the Equus Beds aquifer, Kansas

    USGS Publications Warehouse

    Heidari, M.; Sadeghipour, J.; Drici, O.

    1987-01-01

    A ground-water-management model was developed to investigate the best management options for the containment of an oil-field-brine plume in the Equus Beds aquifer in south-central Kansas. The main purpose of the management model was to find the optimal locations and minimum rates of pumpage of a set of plume-interception wells, to successfully reverse the velocity vectors at observation wells located along the plume front, and also to satisfy freshwater demands from supply wells. The effects of the calculated minimum withdrawals from the interception wells on the migration of contaminants throughout the ground-water system were evaluated utilizing a solute-transport model. This latter analysis was carried out to ensure the containment of the plume. Whereas application of the management model to the study area achieves the management objectives, the implementation of the results is believed to be impractical and expensive.

  8. Modeling Sr-90 Retardation by Fractured Rocks Based on the Results of In Situ and Laboratory Research

    NASA Astrophysics Data System (ADS)

    Samsanova, L.; Kotchergina, N. V.; Glinsky, M.; Zinin, A.; Ivanov, I.

    2001-12-01

    Industrial solutions from the surface storage of liquid radioactive wastes in Lake Karachay have been migrating in groundwaters for 50 years. Interaction of industrial solutions with fractured water-bearing rocks results in the formation of a plume body of contaminated rocks due to a partial retardation of the migrating radionuclides. In conducting research of the fractured rocks core samples from the wells located within the contaminated ground water plume, we have obtained empirical estimations of the retardation parameter (Sr-90 interphase distribution factor, Kd). To interpret the experimental data on Sr-90 Kd, a method of modeling of strontium-90 retardation by fractured rocks has been developed. The process of transient filtration for a flow fragment from Lake Karachay was reconstructed. Epignose modeling of the industrial solution's main flow migrating from Lake Karachay in south direction was performed. By solving the inverse tasks Kd of strontium-90 was estimated for the fractured rocks.

  9. Urban heat fluxes in the subsurface of Cologne, Germany

    NASA Astrophysics Data System (ADS)

    Zhu, K.; Bayer, P.; Blum, P.

    2012-04-01

    Urbanization during the last hundred years has led to both environmental and thermal impacts on the subsurface. The urban heat island (UHI) effect is mostly described as an atmospheric phenomenon, where the measured aboveground temperatures in cities are elevated in comparison to undisturbed rural regions. However, UHIs can be found below, as well as above ground. A large amount of anthropogenic heat migrates into the urban subsurface, which also raises the ground temperature and permanently changes the thermal conditions in shallow aquifers. The main objective of our work is to study and determine the urban heat fluxes in Cologne, Germany, and to improve our understanding of the dynamics of subsurface energy fluxes in UHIs. Ideally, our findings will contribute to strategic and more sustainable geothermal use in cities. For a quantitative analysis of the energy fluxes within the subsurface and across the atmospheric boundary, two and three-dimensional coupled numerical flow and heat transport models were developed. The simulation results indicate that during the past hundred years, an average vertical urban heat flux that ranges between 80 and 375 mW m-2 can be deduced. Thermal anomalies have migrated into the local urban aquifer system and they reach a depth of about 150 m. In this context, the influence of the regional groundwater flow on the subsurface heat transport and temperature development is comprehensively discussed.

  10. Estimating sub-surface dispersed oil concentration using acoustic backscatter response.

    PubMed

    Fuller, Christopher B; Bonner, James S; Islam, Mohammad S; Page, Cheryl; Ojo, Temitope; Kirkey, William

    2013-05-15

    The recent Deepwater Horizon disaster resulted in a dispersed oil plume at an approximate depth of 1000 m. Several methods were used to characterize this plume with respect to concentration and spatial extent including surface supported sampling and autonomous underwater vehicles with in situ instrument payloads. Additionally, echo sounders were used to track the plume location, demonstrating the potential for remote detection using acoustic backscatter (ABS). This study evaluated use of an Acoustic Doppler Current Profiler (ADCP) to quantitatively detect oil-droplet suspensions from the ABS response in a controlled laboratory setting. Results from this study showed log-linear ABS responses to oil-droplet volume concentration. However, the inability to reproduce ABS response factors suggests the difficultly in developing meaningful calibration factors for quantitative field analysis. Evaluation of theoretical ABS intensity derived from the particle size distribution provided insight regarding method sensitivity in the presence of interfering ambient particles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Active Cryovolcanism on Europa?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, W. B.; Cracraft, M.; Deustua, S. E

    Evidence for plumes of water on Europa has previously been found using the Hubble Space Telescope using two different observing techniques. Roth et al. found line emission from the dissociation products of water. Sparks et al. found evidence for off-limb continuum absorption as Europa transited Jupiter. Here, we present a new transit observation of Europa that shows a second event at the same location as a previous plume candidate from Sparks et al., raising the possibility of a consistently active source of erupting material on Europa. This conclusion is bolstered by comparison with a nighttime thermal image from the Galileomore » Photopolarimeter-Radiometer that shows a thermal anomaly at the same location, within the uncertainties. The anomaly has the highest observed brightness temperature on the Europa nightside. If heat flow from a subsurface liquid water reservoir causes the thermal anomaly, its depth is ≈1.8–2 km, under simple modeling assumptions, consistent with scenarios in which a liquid water reservoir has formed within a thick ice shell. Models that favor thin regions within the ice shell that connect directly to the ocean, however, cannot be excluded, nor modifications to surface thermal inertia by subsurface activity. Alternatively, vapor deposition surrounding an active vent could increase the thermal inertia of the surface and cause the thermal anomaly. This candidate plume region may offer a promising location for an initial characterization of Europa’s internal water and ice and for seeking evidence of Europa’s habitability.« less

  12. Active Cryovolcanism on Europa?

    NASA Astrophysics Data System (ADS)

    Sparks, W. B.; Schmidt, B. E.; McGrath, M. A.; Hand, K. P.; Spencer, J. R.; Cracraft, M.; E Deustua, S.

    2017-04-01

    Evidence for plumes of water on Europa has previously been found using the Hubble Space Telescope using two different observing techniques. Roth et al. found line emission from the dissociation products of water. Sparks et al. found evidence for off-limb continuum absorption as Europa transited Jupiter. Here, we present a new transit observation of Europa that shows a second event at the same location as a previous plume candidate from Sparks et al., raising the possibility of a consistently active source of erupting material on Europa. This conclusion is bolstered by comparison with a nighttime thermal image from the Galileo Photopolarimeter-Radiometer that shows a thermal anomaly at the same location, within the uncertainties. The anomaly has the highest observed brightness temperature on the Europa nightside. If heat flow from a subsurface liquid water reservoir causes the thermal anomaly, its depth is ≈1.8-2 km, under simple modeling assumptions, consistent with scenarios in which a liquid water reservoir has formed within a thick ice shell. Models that favor thin regions within the ice shell that connect directly to the ocean, however, cannot be excluded, nor modifications to surface thermal inertia by subsurface activity. Alternatively, vapor deposition surrounding an active vent could increase the thermal inertia of the surface and cause the thermal anomaly. This candidate plume region may offer a promising location for an initial characterization of Europa’s internal water and ice and for seeking evidence of Europa’s habitability.

  13. Evaluation of subsurface exploration, sampling, and water-quality-analysis methods at an abandoned wood-preserving plant site at Jackson, Tennessee

    USGS Publications Warehouse

    Parks, W.S.; Carmichael, J.K.; Mirecki, J.E.

    1993-01-01

    Direct Push Technology (DPT) and a modified-auger method of sampling were used at an abandoned wood-preserving plant site at Jackson, Tennessee, to collect lithologic data and ground-water samples in an area known to be affected by a subsurface creosote plume. The groundwater samples were analyzed using (1) gas chromatography with photo-ionization detection (GS/PID), (2) high- performance liquid chromatography (HPLC), (3) colonmetric phenol analysis, and (4) toxicity bioassay. DPT piezocone and cone-penetrometer-type tools provided lithologic data and ground-water samples at two onsite stations to a depth of refusal of about 35 feet below land surface. With the assistance of an auger rig, this depth was extended to about 65 feet by pushing the tools in advance of the augers. Following the DPT work, a modified-auger method was tested by the USGS. This method left doubt as to the integrity of the samples collected once zones of contamination were penetrated. GC/PID and HPLC methods of water-quality analysis provided the most data concerning contaminants in the ground-water and proved to be the most effective in creosote plume detection. Analyses from these methods showed that the highest concentrations of contaminants were detected at depths less than about 35 feet below land surface. Phenol analyses provided data supplemental to the HPLC analyses. Bioassay data indicated that toxicity associated with the plume extended to depths of about 55 feet below land surface.

  14. Numerical simulation of bubble plumes and an analysis of their seismic attributes

    NASA Astrophysics Data System (ADS)

    Li, Canping; Gou, Limin; You, Jiachun

    2017-04-01

    To study the bubble plume's seismic response characteristics, the model of a plume water body has been built in this article using the bubble-contained medium acoustic velocity model and the stochastic medium theory based on an analysis of both the acoustic characteristics of a bubble-contained water body and the actual features of a plume. The finite difference method is used for forward modelling, and the single-shot seismic record exhibits the characteristics of a scattered wave field generated by a plume. A meaningful conclusion is obtained by extracting seismic attributes from the pre-stack shot gather record of a plume. The values of the amplitude-related seismic attributes increase greatly as the bubble content goes up, and changes in bubble radius will not cause seismic attributes to change, which is primarily observed because the bubble content has a strong impact on the plume's acoustic velocity, while the bubble radius has a weak impact on the acoustic velocity. The above conclusion provides a theoretical reference for identifying hydrate plumes using seismic methods and contributes to further study on hydrate decomposition and migration, as well as on distribution of the methane bubble in seawater.

  15. 40 CFR 264.251 - Design and operating requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface water at any time during the active life (including the closure period) of the waste pile. The liner may... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The...

  16. 40 CFR 264.251 - Design and operating requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface water at any time during the active life (including the closure period) of the waste pile. The liner may... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The...

  17. 40 CFR 264.251 - Design and operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The... attenuative capacity and thickness of the liners and soils present between the pile and ground water or...

  18. 40 CFR 264.251 - Design and operating requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The... attenuative capacity and thickness of the liners and soils present between the pile and ground water or...

  19. 40 CFR 264.251 - Design and operating requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The... attenuative capacity and thickness of the liners and soils present between the pile and ground water or...

  20. When Boundary Layers Collide: Plumes v. Subduction Zones

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Betts, P. G.; Miller, M. S.; Willis, D.; O'Driscoll, L.

    2014-12-01

    Many subduction zones retreat while hotspots remain sufficiently stable in the mantle to provide an approximate reference frame. As a consequence, the mantle can be thought of as an unusual convecting system which self-organises to promote frequent collisions of downgoing material with upwellings. We present three 3D numerical models of subduction where buoyant material from a plume head and an associated ocean-island chain or plateau produce flat slab subduction and deformation of the over-riding plate. We observe transient instabilities of the convergent margin including: contorted trench geometry; trench migration parallel with the plate margin; folding of the subducting slab and orocline development at the convergent margin; and transfer of the plateau to the overriding plate. The presence of plume material beneath the oceanic plateau causes flat subduction above the plume, resulting in a "bowed" shaped subducting slab. In the absence of a plateau at the surface, the slab can remain uncoupled from the over-riding plate during very shallow subduction and hence there is very little shortening at the surface or advance of the plate boundary. In plateau-only models, plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction re-establishes directly behind the trailing edge of the plateau. The plateau shortens during accretion and some plateau material subducts. In a plateau-plus-plume model, accretion is associated with rapid trench advance as the flat slab drives the plateau into the margin. This indentation stops once a new convergent boundary forms close to the original trench location. A slab window formed beneath the accreted plateau allows plume material to flow from beneath the subducting plate to the underside of the overriding plate. In all of these models the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate. The models provide a dynamic context for plateau and plume accretion in accretionary orogenic systems.

  1. Is the track of the Yellowstone hotspot driven by a deep mantle plume? - Review of volcanism, faulting, and uplift in light of new data

    USGS Publications Warehouse

    Pierce, K.L.; Morgan, L.A.

    2009-01-01

    Geophysical imaging of a tilted mantle plume extending at least 500??km beneath the Yellowstone caldera provides compelling support for a plume origin of the entire Yellowstone hotspot track back to its inception at 17??Ma with eruptions of flood basalts and rhyolite. The widespread volcanism, combined with a large volume of buoyant asthenosphere, supports a plume head as an initial phase. Estimates of the diameter of the plume head suggest it completely spanned the upper mantle and was fed from sources beneath the transition zone, We consider a mantle-plume depth to at least 1,000 km to best explain the large scale of features associated with the hotspot track. The Columbia River-Steens flood basalts form a northward-migrating succession consistent with the outward spreading of a plume head beneath the lithosphere. The northern part of the inferred plume head spread (pancaked) upward beneath Mesozoic oceanic crust to produce flood basalts, whereas basalt melt from the southern part intercepted and melted Paleozoic and older crust to produce rhyolite from 17 to 14??Ma. The plume head overlapped the craton margin as defined by strontium isotopes; westward motion of the North American plate has likely "scraped off" the head from the plume tail. Flood basalt chemistries are explained by delamination of the lithosphere where the plume head intersected this cratonic margin. Before reaching the lithosphere, the rising plume head apparently intercepted the east-dipping Juan de Fuca slab and was deflected ~ 250??km to the west; the plume head eventually broke through the slab, leaving an abruptly truncated slab. Westward deflection of the plume head can explain the anomalously rapid hotspot movement of 62??km/m.y. from 17 to 10??Ma, compared to the rate of ~ 25??km/m.y. from 10 to 2??Ma. A plume head-to-tail transition occurred in the 14-to-10-Ma interval in the central Snake River Plain and was characterized by frequent (every 200-300??ka for about 2??m.y. from 12.7 to 10.5??Ma) "large volume (> 7000??km3)", and high temperature rhyolitic eruptions (> 1000????C) along a ~ 200-km-wide east-west band. The broad transition area required a heat source of comparable area. Differing characteristics of the volcanic fields here may in part be due to variations in crustal composition but also may reflect development in differing parts of an evolving plume where the older fields may reflect the eruption from several volcanic centers located above very large and extensive rhyolitic magma chamber(s) over the detached plume head while the younger fields may signal the arrival of the plume tail intercepting and melting the lithosphere and generating a more focused rhyolitic magma chamber. The three youngest volcanic fields of the hotspot track started with large ignimbrite eruptions at 10.21, 6.62, and 2.05??Ma. They indicate hotspot migration N55?? E at ~ 25??km/m.y. compatible in direction and velocity with the North American Plate motion. The Yellowstone Crescent of High Terrain (YCHT) flares outward ahead of the volcanic progression in a pattern similar to a bow-wave, and thus favors a sub-lithospheric driver. Estimates of YCHT-uplift rates are between 0.1 and 0.4??mm/yr. Drainage divides have migrated northeastward with the hotspot. The Continental Divide and a radial drainage pattern now centers on the hotspot. The largest geoid anomaly in the conterminous U.S. is also centered on Yellowstone and, consistent with uplift above a mantle plume. Bands of late Cenozoic faulting extend south and west from Yellowstone. These bands are subdivided into belts based both on recency of offset and range-front height. Fault history within these belts suggests the following pattern: Belt I - starting activity but little accumulated offset; Belt II - peak activity with high total offset and activity younger than 14??ka; Belt III - waning activity with large offset and activity younger than 140??ka; and Belt IV - apparently dead on substanti

  2. A Pseudo-Vertical Equilibrium Model for Slow Gravity Drainage Dynamics

    NASA Astrophysics Data System (ADS)

    Becker, Beatrix; Guo, Bo; Bandilla, Karl; Celia, Michael A.; Flemisch, Bernd; Helmig, Rainer

    2017-12-01

    Vertical equilibrium (VE) models are computationally efficient and have been widely used for modeling fluid migration in the subsurface. However, they rely on the assumption of instant gravity segregation of the two fluid phases which may not be valid especially for systems that have very slow drainage at low wetting phase saturations. In these cases, the time scale for the wetting phase to reach vertical equilibrium can be several orders of magnitude larger than the time scale of interest, rendering conventional VE models unsuitable. Here we present a pseudo-VE model that relaxes the assumption of instant segregation of the two fluid phases by applying a pseudo-residual saturation inside the plume of the injected fluid that declines over time due to slow vertical drainage. This pseudo-VE model is cast in a multiscale framework for vertically integrated models with the vertical drainage solved as a fine-scale problem. Two types of fine-scale models are developed for the vertical drainage, which lead to two pseudo-VE models. Comparisons with a conventional VE model and a full multidimensional model show that the pseudo-VE models have much wider applicability than the conventional VE model while maintaining the computational benefit of the conventional VE model.

  3. Containment of groundwater contamination plumes: minimizing drawdown by aligning capture wells parallel to regional flow

    NASA Astrophysics Data System (ADS)

    Christ, John A.; Goltz, Mark N.

    2004-01-01

    Pump-and-treat systems that are installed to contain contaminated groundwater migration typically involve placement of extraction wells perpendicular to the regional groundwater flow direction at the down gradient edge of a contaminant plume. These wells capture contaminated water for above ground treatment and disposal, thereby preventing further migration of contaminated water down gradient. In this work, examining two-, three-, and four-well systems, we compare well configurations that are parallel and perpendicular to the regional groundwater flow direction. We show that orienting extraction wells co-linearly, parallel to regional flow, results in (1) a larger area of aquifer influenced by the wells at a given total well flow rate, (2) a center and ultimate capture zone width equal to the perpendicular configuration, and (3) more flexibility with regard to minimizing drawdown. Although not suited for some scenarios, we found orienting extraction wells parallel to regional flow along a plume centerline, when compared to a perpendicular configuration, reduces drawdown by up to 7% and minimizes the fraction of uncontaminated water captured.

  4. Plumes do not Exist: Plate Circulation is Confined to Upper Mantle

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2002-12-01

    Plumes from deep mantle are widely conjectured to define an absolute reference frame, inaugurate rifting, drive plates, and profoundly modify oceans and continents. Mantle properties and composition are assumed to be whatever enables plumes. Nevertheless, purported critical evidence for plume speculation is false, and all data are better interpreted without plumes. Plume fantasies are made ever more complex and ad hoc to evade contradictory data, and have no predictive value because plumes do not exist. All plume conjecture derives from Hawaii and the guess that the Emperor-Hawaii inflection records a 60-degree change in Pacific plate direction at 45 Ma. Paleomagnetic latitudes and smooth Pacific spreading patterns disprove any such change. Rationales for other fixed plumes collapse when tested, and hypotheses of jumping, splitting, and gyrating plumes are specious. Thermal and physical properties of Hawaiian lithosphere falsify plume predictions. Purported tomographic support elsewhere represents artifacts and misleading presentations. Asthenosphere is everywhere near solidus temperature, so melt needs a tensional setting for egress but not local heat. Gradational and inconsistent contrasts between MORB and OIB are as required by depth-varying melt generation and behavior in contrasted settings and do not indicate systematically unlike sources. MORB melts rise, with minimal reaction, through hot asthenosphere, whereas OIB melts react with cool lithosphere, and lose mass, by crystallizing refractories and retaining and assimilating fusibles. The unfractionated lower mantle of plume conjecture is contrary to cosmologic and thermodynamic data, for mantle below 660 km is more refractory than that above. Subduction, due to density inversion by top-down cooling that forms oceanic lithosphere, drives plate tectonics and upper-mantle circulation. It organizes plate motions and lithosphere stress, which controls plate boundaries and volcanic chains. Hinge rollback is the key to kinematics. Arcs advance and collide, fast-spreading Pacific shrinks, etc. A fore-arc basin atop an overriding plate shows that hinge and non-shortening plate front there track together: velocities of rollback and advance are equal. Convergence velocity commonly also equals rollback velocity but often is greater. Slabs sinking broadside push upper mantle back under incoming plates and force rapid Pacific spreading, whereas overriding plates flow forward with retreating hinges. Backarc basins open behind island arcs migrating with hinges. Slabs settle on uncrossable 660-km discontinuity. (Contrary tomographic claims reflect sampling and smearing artifacts, notably due to along-slab raypaths.) Plates advance over sunken slabs and mantle displaced rearward by them, and ridges spread where advancing plates pull away. Ridges migrate over asthenosphere, producing geophysical and bathymetric asymmetry, and tap fresh asthenosphere into which slab material is recycled upward. Sluggish deep-mantle circulation is decoupled from rapid upper-mantle circulation, so plate motions can be referenced to semistable lower mantle. Global plate motions make kinematic sense if Antarctica, almost ringed by departing ridges and varying little in Cenozoic paleomagnetic position, is stationary: hinges roll back, ridges migrate, and directions and velocities of plate rotations accord with subduction, including sliding and crowding of oceanic lithosphere toward free edges, as the dominant drive. (The invalid hotspot and no-net-rotation frames minimize motions of hinges and ridges, and their plate motions lack kinematic sense.) Northern Eurasia also is almost stationary, Africa rotates very slowly counterclockwise toward Aegean and Zagros, Pacific plate races toward surface-exit subduction systems, etc.

  5. Advancing Knowledge on Fugitive Natural Gas from Energy Resource Development at a Controlled Release Field Observatory

    NASA Astrophysics Data System (ADS)

    Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.

    2017-12-01

    Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted to plan methane release experiments in 2018 and onwards. This research will create knowledge which informs strategies to detect and monitor fugitive gas fluxes at the surface and in groundwater; as well as guide associated regulatory and technical policies.

  6. Delineation of contaminant plume for an inorganic contaminated site using electrical resistivity tomography: comparison with direct-push technique.

    PubMed

    Liao, Qing; Deng, Yaping; Shi, Xiaoqing; Sun, Yuanyuan; Duan, Weidong; Wu, Jichun

    2018-03-03

    Precise delineation of contaminant plume distribution is essential for effective remediation of contaminated sites. Traditional in situ investigation methods like direct-push (DP) sampling are accurate, but are usually intrusive and costly. Electrical resistivity tomography (ERT) method, as a non-invasive geophysical technique to map spatiotemporal changes in resistivity of the subsurface, is becoming increasingly popular in environmental science. However, the resolution of ERT for delineation of contaminant plumes still remains controversial. In this study, ERT and DP technique were both conducted at a real inorganic contaminated site. The reliability of the ERT method was validated by the direct comparisons of their investigation results that the resistivity acquired by ERT method is in accordance with the total dissolved solid concentration in groundwater and the overall variation of the total iron content in soil obtained by DP technique. After testifying the applicability of ERT method for contaminant identification, the extension of contaminant plume at the study site was revealed by supplementary ERT surveys conducted subsequently in the surrounding area of the contaminant source zone.

  7. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachara, John M.; Freshley, Mark D.; Last, George V.

    2012-11-01

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactionsmore » between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.« less

  8. Observations of inner shelf cross-shore surface material transport adjacent to a coastal inlet in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roth, Mathias K.; MacMahan, Jamie; Reniers, Ad; Özgökmen, Tamay M.; Woodall, Kate; Haus, Brian

    2017-04-01

    Motivated by the Deepwater Horizon oil spill, the Surfzone and Coastal Oil Pathways Experiment obtained Acoustic Doppler Current Profiler (ADCP) Eulerian and GPS-drifter based Lagrangian "surface" (<1 m) flow observations in the northern Gulf of Mexico to describe the influence of small-scale river plumes on surface material transport pathways in the nearshore. Lagrangian paths are qualitatively similar to surface pathlines derived from non-traditional, near-surface ADCP velocities, but both differ significantly from depth-averaged subsurface pathlines. Near-surface currents are linearly correlated with wind velocities (r =0.76 in the alongshore and r =0.85 in the cross-shore) at the 95% confidence level, and are 4-7 times larger than theoretical estimates of wind and wave-driven surface flow in an un-stratified water column. Differences in near-surface flow are attributed to the presence of a buoyant river plume forced by winds from passing extratropical storms. Plume boundary fronts induce a horizontal velocity gradient where drifters deployed outside of the plume in oceanic water routinely converge, slow, and are re-directed. When the plume flows west parallel to the beach, the seaward plume boundary front acts as a coastal barrier that prevents 100% of oceanic drifters from beaching within 27 km of the inlet. As a result, small-scale, wind-driven river plumes in the northern Gulf of Mexico act as coastal barriers that prevent offshore surface pollution from washing ashore west of river inlets.

  9. Bioremediation of a Large Chlorinated Solvent Plume, Dover AFB, DE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, Aleisa C

    2015-01-01

    Bioremediation of a Large Chlorinated Solvent Plume, Dover AFB, DE Aleisa Bloom, (Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA) Robert Lyon (bob.lyon@aecom.com), Laurie Stenberg, and Holly Brown (AECOM, Germantown, Maryland, USA) ABSTRACT: Past disposal practices at Dover Air Force Base (AFB), Delaware, created a large solvent plume called Area 6 (about 1 mile long, 2,000 feet wide, and 345 acres). The main contaminants are PCE, TCE, and their degradation products. The remedy is in-situ accelerated anaerobic bioremediation (AAB). AAB started in 2006 and is focusing on source areas and downgradient plume cores. Direct-push injections occurred in source areas wheremore » contamination is typically between 5 and 20 feet below ground surface. Lower concentration dissolved-phased contamination is present downgradient at 35 and 50 feet below ground surface. Here, permanent injection/extraction wells installed in transects perpendicular to the flow of groundwater are used to apply AAB. The AAB substrate is a mix of sodium lactate, emulsified vegetable oil, and nutrients. After eight years, dissolved contaminant mass within the main 80-acre treatment area has been reduced by over 98 percent. This successful application of AAB has stopped the flux of contaminants to the more distal portions of the plume. While more time is needed for effects to be seen in the distal plume, AAB injections will soon cease, and the remedy will transition to natural attenuation. INTRODUCTION Oak Ridge National Laboratory Environmental Science Division (ORNL) and AECOM (formerly URS Corporation) have successfully implemented in situ accelerated anaerobic bioremediation (AAB) to remediate chlorinated solvent contamination in a large, multi-sourced groundwater plume at Dover Air Force Base (AFB). AAB has resulted in significant reductions of dissolved phase chlorinated solvent concentrations. This plume, called Area 6, was originally over 1 mile in length and over 2,000 feet wide (Figure 1). It originated from at least four separate source areas that comingled in the subsurface to form the large plume. The major contaminants of concern (COCs) are tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1-TCA), which were historically used for degreasing operations in the maintenance of aircraft and support vehicles. Relatively small areas of elevated PCE, TCE, and 1,1,1-TCA were delineated in the shallow portion of the water table aquifer by direct-push groundwater sampling. Focused direct-push AAB treatment occurred in March 2006 at these source areas (Figure 1). Downgradient of the these areas and deeper in the aquifer, AAB treatment was implemented using rows of extraction/injection wells oriented perpendicular to groundwater flow to create multiple reductive zones across the plume cores, defined as areas where more than 1,000 micrograms per liter (ug/L) total solvent concentrations were present. Initial indications of successful degradation were observed within 6 months of starting injections. FIGURE 1. Dover AFB Area 6 plume. This paper describes the AAB implementation and progress of remediation after 8 years of treatment and periodic groundwater monitoring. SITE LITHOLOGY Contamination at the site is limited to the surficial aquifer, which consists of 35 to 50 feet (ft) (11 to 15 meters [m]) of unconsolidated Pleistocene deposits of the Columbia Formation. The Columbia Formation consists of fine to coarse sand with silt and clay lenses and less common gravel lenses. Silts and silty sands are generally encountered to a depth of 10 to 12 ft (3.05 to 3.65 m) below ground surface (bgs) and grade to medium- and coarse-grained sands to a depth of 35 to 50 ft (11 to 15 m) bgs. There is a clay and silt unit (part of the Calvert Formation) below the surficial aquifer that acts as an aquitard to the downward migration of contaminants. The depth to the water table varies across the site but usually ranges from 8 to 15 ft (2.4 to 4.5 m) bgs in the treatment area. REMEDIAL APPROACH AND OPERATIONS Because the Columbia Aquifer is used as a source of potable water off base, the remedial goal is to restore the aquifer to usable condition, i.e., reduce all chemicals of concern to below drinking water maximum contaminant levels (MCLs). To achieve this goal, AAB was selected as the best remedial alternative to reduce the solvent contamination. Source areas with high solvent concentrations were present in the shallow portion of the aquifer. From the source areas, dissolved solvents migrated downgradient and deeper in the aquifer with the flow of groundwater. In the deeper portion of the aquifer, the individual plumes comingle to form the larger Area 6 Plume, which covers approximately 345 acres. Types of Substrate. Previous AAB pilot tests at Dover AFB used either sodium lactate or emulsified vegetable oil (EVO) as substrates to stimulate microbial growth. The best results were obtained with...« less

  10. Influence of the Pressure Difference and Door Swing on Heavy Contaminants Migration between Rooms

    PubMed Central

    Hendiger, Jacek; Chludzińska, Marta; Ziętek, Piotr

    2016-01-01

    This paper presents the results of investigations whose aim was to describe the influence of the pressure difference level on the ability of contaminants migration between neighbouring rooms in dynamic conditions associated with door swing. The analysis was based on airflow visualization made with cold smoke, which simulated the heavy contaminants. The test room was pressurized to a specific level and then the door was opened to observe the trail of the smoke plume in the plane of the door. The door was opened in both directions: to the positively and negatively pressurized room. This study focuses on the visualization of smoke plume discharge and an uncertainty analysis is not applicable. Unlike other studies which focus on the analysis of pressure difference, the present study looks at the contaminants which are heavier than air and on “pumping out” the contaminants by means of door swing. Setting the proper level of pressure difference between the contaminated room and the neighbouring rooms can prove instrumental in ensuring protection against toxic contaminants migration. This study helped to establish the threshold of pressure difference necessary to reduce migration of heavy contaminants to neighbouring rooms. PMID:27171260

  11. Influence of the Pressure Difference and Door Swing on Heavy Contaminants Migration between Rooms.

    PubMed

    Hendiger, Jacek; Chludzińska, Marta; Ziętek, Piotr

    2016-01-01

    This paper presents the results of investigations whose aim was to describe the influence of the pressure difference level on the ability of contaminants migration between neighbouring rooms in dynamic conditions associated with door swing. The analysis was based on airflow visualization made with cold smoke, which simulated the heavy contaminants. The test room was pressurized to a specific level and then the door was opened to observe the trail of the smoke plume in the plane of the door. The door was opened in both directions: to the positively and negatively pressurized room. This study focuses on the visualization of smoke plume discharge and an uncertainty analysis is not applicable. Unlike other studies which focus on the analysis of pressure difference, the present study looks at the contaminants which are heavier than air and on "pumping out" the contaminants by means of door swing. Setting the proper level of pressure difference between the contaminated room and the neighbouring rooms can prove instrumental in ensuring protection against toxic contaminants migration. This study helped to establish the threshold of pressure difference necessary to reduce migration of heavy contaminants to neighbouring rooms.

  12. Hydrology of the solid waste burial ground as related to potential migration of radionuclides, Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Barraclough, Jack T.; Robertson, J.B.; Janzer, V.J.; Saindon, L.G.

    1976-01-01

    A study was made (1970-1974) to evaluate the geohydrologic and geochemical controls on subsurface migration of radionuclides from pits and trenches in the Idaho National Engineering Laboratory (INEL) solid waste burial ground and to determine the existence and extent of radionuclide migration from the burial ground. A total of about 1,700 sediment, rock, and water samples were collected from 10 observation wells drilled in and near the burial ground of Idaho National Engineering Laboratory, formerly the National Reactor Testing Station (NRTS). Within the burial ground area, the subsurface rocks are composed principally of basalt. Wind- and water-deposited sediments occur at the surface and in beds between the thicker basalt zones. Two principal sediment beds occur at about 110 feet and 240 feet below the land surface. The average thickness of the surficial sedimentary layer is about 15 feet while that of the two principal subsurface layers is 13 and 14 feet, respectively. The water table in the aquifer beneath the burial ground is at a depth of about 580 feet. Fission, activation, and transuranic elements were detected in some of the samples from the 110- and 240-foot sedimentary layers. (Woodard-USGS)

  13. Observed Spatial and Temporal Variability of Subglacial Discharge-Driven Plumes in Greenland's Outlet Glacial Fjords

    NASA Astrophysics Data System (ADS)

    Sutherland, D.; Carroll, D.; Nash, J. D.; Shroyer, E.; Mickett, J.; Stearns, L. A.; Fried, M.; Bartholomaus, T.; Catania, G. A.

    2015-12-01

    Hydrographic and velocity observations in Greenland's outlet glacier fjords have revealed, unsurprisingly, a rich set of dynamics over a range of spatial and temporal scales. Through teasing apart the distinct processes that control circulation within these fjords, we are likely to better understand the impact of fjord circulation on modulating outlet glacier dynamics, and thus, changes in Greenland Ice Sheet mass balance. Here, we report on data from the summers of 2013-2015 in two neighboring fjords in the Uummannaq Bay region of west Greenland: Kangerlussuup Sermia (KS) and Rink Isbræ (RI). We find strong subglacial discharge driven plumes in both systems that evolve on synoptic and seasonal time scales, without the complicating presence of other circulation processes. The plumes both modify fjord water properties and respond to differences in ambient water properties, supporting the notion that a feedback exists between subglacial discharge plume circulation and water mass properties. This feedback between subglacial discharge and water properties potentially influences submarine melt rates at the glacier termini. Observed plume properties, including the vertical structure of velocity, and temperature and salinity anomalies, are compared favorably to model estimates. In KS, we find a near-surface intensified plume with high sediment content that slows and widens as it evolves downstream. In contrast, the plume in RI is entirely subsurface, ranging from 100-300 m depth at its core during summer, although it shows similar temperature, salinity, and optical backscatter signals to the KS plume. Importantly, the distinct vertical plume structures imprint on the overall water mass properties found in each fjord, raising the minimum temperatures by up to 1-2°C in the case of RI.

  14. Effects of ethanol addition on micellar solubilization and plume migration during surfactant enhanced recovery of tetrachloroethene.

    PubMed

    Taylor, Tammy P; Rathfelder, Klaus M; Pennell, Kurt D; Abriola, Linda M

    2004-03-01

    Alcohol addition has been suggested for use in combination with surfactant flushing to enhance solubilization kinetics and permit density control of dense non-aqueous phase liquid (DNAPL)-laden surfactant plumes. This study examined the effects of adding ethanol (EtOH) to a 4% Tween 80 (polyoxyethylene (20) sorbitan monooleate) solution used to flush tetrachloroethene (PCE)-contaminated porous media. The influence of EtOH concentration, subsurface layering and scale on flushing solution delivery and PCE recovery was investigated through a combination of experimental and mathematical modeling studies. Results of batch experiments demonstrated that the addition of 2.5%, 5% and 10% (wt.) EtOH incrementally increased the PCE solubilization capacity and viscosity of the surfactant solution, while reducing solution density from 1.002 to 0.986 g/cm3. Effluent concentration data obtained from one-dimensional (1-D) column experiments were used to characterize rate-limited micellar solubilization of residual PCE, which was strongly dependent upon flow velocity and weakly dependent upon EtOH concentration. Two-dimensional (2-D) box studies illustrated that minor differences (0.008 g/cm3) between flushing and resident solution density can strongly influence surfactant front propagation. A two-dimensional multiphase simulator, MISER, was used to model the influence of EtOH composition on the aqueous flow field and PCE mass recovery. The ability of the numerical simulator to predict effluent concentrations and front propagation was demonstrated for both 1-D columns and 2-D boxes flushed with EtOH-amended Tween 80 solutions. Results of this study quantify the potential influence of alcohol addition on surfactant solution properties and solubilization capacity, and demonstrate the importance of considering small density variations in remedial design.

  15. Geomicrobiology of High-Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State

    PubMed Central

    Fredrickson, James K.; Zachara, John M.; Balkwill, David L.; Kennedy, David; Li, Shu-mei W.; Kostandarithes, Heather M.; Daly, Michael J.; Romine, Margaret F.; Brockman, Fred J.

    2004-01-01

    Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), 137Cs, and 99Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to ∼104 CFU g−1, but viable microorganisms were recovered from 11 of 16 samples, including several of the most radioactive ones (e.g., >10 μCi of 137Cs/g). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples, but other phyla high in G+C content were also represented, including Rhodococcus and Nocardia. Two isolates from the second-most radioactive sample (>20 μCi of 137Cs g−1) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20 kGy. Many of the gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that gram-positive bacteria, predominantly from phyla high in G+C content, are indigenous to Hanford vadose sediments and that some are effective at surviving the extreme physical and chemical stress associated with radioactive waste. PMID:15240306

  16. Factors Effecting the Fate and Transport of CL-20 in the Vadose Zone and Groundwater: Final Report 2002 - 2004 SERDP Project CP-1255

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szecsody, James E.; Riley, Robert G.; Devary, Brooks J.

    2005-06-01

    This SERDP-funded project was initiated to investigate the fate of CL-20 in the subsurface environment, with a focus on identification and quantification of geochemical and microbial reactions of CL-20. CL-20 can be released to the surface and subsurface terrestrial environment by: a) manufacturing processes, b) munition storage, and c) use with low order detonation or unexploded ordnance. The risk of far-field subsurface migration was assessed through labora-tory experiments with a variety of sediments and subsurface materials to quantify processes that control CL-20 sorption-limited migration and degradation. Results of this study show that CL-20 will exhibit differing behavior in the subsurfacemore » terrestrial environment: 1. CL-20 on the sediment surface will photodegrade and interact with plants/animals (described in other SERDP projects CU 1254, 1256). CL-20 will exhibit greater sorption in humid sediments to organic matter. Transport will be solubility limited (i.e., low CL-20 aqueous solubility). 2. CL-20 infiltration into soils (<2 m) from spills will be subject to sorption to soil organic matter (if present), and low to high biodegradation rates (weeks to years) depending on the microbial population (greater in humid environment). 3. CL-20 in the vadose zone (>2 m) will be, in most cases, subject to low sorption and low degradation rates, so would persist in the subsurface environment and be at risk for deep migration. Low water content in arid regions will result in a decrease in both sorption and the degradation rate. Measured degradation rates in unsaturated sediments of years would result in significant subsurface migration distances. 4. CL-20 in groundwater will be subject to some sorption but likely very slow degradation rates. CL-20 sorption will be greater than RDX. Most CL-20 degradation will be abiotic (ferrous iron and other transition metals), because most deep subsurface systems have extremely low natural microbial populations. Degradation rates will range from weeks (iron reducing systems) to years. Although CL-20 will move rapidly through most sediments in the terrestrial environment, subsurface remediation can be utilized for cleanup. Transformation of CL-20 to intermediates can be rapidly accomplished under: a) reducing conditions (CL-20 4.1 min. half-life, RDX 18 min. half-life), b) alkaline (pH >10) conditions, and c) bioremediation with added nutrients. CL-20 degradation to intermediates may be insufficient to mitigate environmental impact, as the toxicity of many of these compounds is unknown. Biostimulation in oxic to reducing systems by carbon and nutrient addition can mineralize CL-20, with the most rapid rates occurring under reducing conditions.« less

  17. Subsurface Gas Flow and Ice Grain Acceleration within Enceladus and Europa Fissures: 2D DSMC Models

    NASA Astrophysics Data System (ADS)

    Tucker, O. J.; Combi, M. R.; Tenishev, V.

    2014-12-01

    The ejection of material from geysers is a ubiquitous occurrence on outer solar system bodies. Water vapor plumes have been observed emanating from the southern hemispheres of Enceladus and Europa (Hansen et al. 2011, Roth et al. 2014), and N2plumes carrying ice and ark particles on Triton (Soderblom et al. 2009). The gas and ice grain distributions in the Enceladus plume depend on the subsurface gas properties and the geometry of the fissures e.g., (Schmidt et al. 2008, Ingersoll et al. 2010). Of course the fissures can have complex geometries due to tidal stresses, melting, freezing etc., but directly sampled and inferred gas and grain properties for the plume (source rate, bulk velocity, terminal grain velocity) can be used to provide a basis to constrain characteristic dimensions of vent width and depth. We used a 2-dimensional Direct Simulation Monte Carlo (DSMC) technique to model venting from both axi-symmetric canyons with widths ~2 km and narrow jets with widths ~15-40 m. For all of our vent geometries, considered the water vapor source rates (1027­ - 1028 s-1) and bulk gas velocities (~330 - 670 m/s) obtained at the surface were consistent with inferred values obtained by fits of the data for the plume densities (1026 - 1028 s-1, 250 - 1000 m/s) respectively. However, when using the resulting DSMC gas distribution for the canyon geometries to integrate the trajectories of ice grains we found it insufficient to accelerate submicron ice grains to Enceladus' escape speed. On the other hand, the gas distributions in the jet like vents accelerated grains > 10 μm significantly above Enceladus' escape speed. It has been suggested that micron-sized grains are ejected from the vents with speeds comparable to the Enceladus escape speed. Here we report on these results including comparisons to results obtained from 1D models as well as discuss the implications of our plume model results. We also show preliminary results for similar considerations applied to Europa. References: Hansen, 2011. Geophys. Res. Lett. 38, L11202; Ingersoll, 2010. Icarus 206, 594 - 607; Schmidt, 2008. Nature 451, 685 - 688; Soderblom, 2009. Science 250, 412 - 415; Roth, 2013l. Science http://dx.doi.org/10.1126/science.1247051 2013

  18. Joint effect of freshwater plume and coastal upwelling on phytoplankton growth off the Changjiang River

    NASA Astrophysics Data System (ADS)

    Tseng, Y.-F.; Lin, J.; Dai, M.; Kao, S.-J.

    2013-06-01

    Changjiang River discharges vast amount of unbalanced nutrients (dissolved inorganic nitrogen (N) and phosphorus (P) with N / P > 80 in general) into the East China Sea during summertime. To explore nutrient dynamics and P stress potential for phytoplankton, a cruise was conducted in the Changjiang plume during summer 2011. With 3-D observations of nutrients, chlorophyll a (Chl a), and bulk alkaline phosphatase activity (APA), we concluded that the Changjiang Diluted Water (CDW) and coastal upwelling significantly influenced the horizontal and vertical heterogeneities of phytoplankton P-deficiency in the plume. Allochthonous APA was detected at nutrient-enriched freshwater end. Excessive N (~10 to 112 µM) was obserevd throughout the entire plume surface. In the plume fringe where featured by stratification and excess N, diapycnal phosphate supply was blocked to stimulate APA for phytoplankton growth. We observed upwelling outcrops just attaching the turbidity front at seaward side, where Chl a peaked yet much less APA was detected. An external phosphate supply from subsurface, which stimulated phytoplankton growth but inhibited APA, was suggested and the supply was likely sourced from the Nearshore Kuroshio Branch Current. In such hydrographically complicated Changjiang plume, phosphate supply instead of its concentration was more important determining the expression of APA. Meanwhile, allochthounous APA may also alter the usefulness of APA as a P-stress indicator.

  19. Joint effect of freshwater plume and coastal upwelling on phytoplankton growth off the Changjiang River

    NASA Astrophysics Data System (ADS)

    Tseng, Y.-F.; Lin, J.; Dai, M.; Kao, S.-J.

    2014-01-01

    The Changjiang (Yangtze) River discharges vast amount of unbalanced nutrients (dissolved inorganic nitrogen and phosphorus with N / P ratio > 80 in general) into the East China Sea in summer. To study nutrient dynamics and P-stress potential for phytoplankton, a cruise was conducted in the Changjiang plume during summer 2011. With 3-D observations of nutrients, chlorophyll a (Chl a), and bulk alkaline phosphatase activity (APA), we concluded that the Changjiang Diluted Water and coastal upwelling significantly influenced the horizontal and vertical heterogeneities of phytoplankton P deficiency in the Changjiang plume. Allochthonous APA was detected at nutrient-enriched freshwater end. Excessive N (~ 10 to 112 μM) was observed throughout the entire plume surface. In the plume fringe featuring stratification and excess N, diapycnal phosphate supply was blocked and phytoplankton APA was stimulated for growth. We observed an upwelling just attaching to the turbidity front at seaward side where Chl a peaked yet much less APA was detected. An external phosphate supply from subsurface, which promoted phytoplankton growth but inhibited APA, was suggested to be sourced from the Nearshore Kuroshio Branch Current. In the so hydrographically complicated Changjiang plume, phosphate supply instead of its concentration may be more important in determining the expression of APA. Meanwhile, allochthonous APA may also alter the usefulness of APA as a P-stress indicator.

  20. Active Volcanic Eruptions on Io

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.

    The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  1. Vertical structure of the phytoplankton community associated with a coastal plume in the Gulf of Mexico

    USGS Publications Warehouse

    Wawrik, B.; Paul, J.H.; Campbell, L.; Griffin, D.; Houchin, L.; Fuentes-Ortega, A.; Muller-Karger, F.

    2003-01-01

    Low salinity plumes of coastal origin are occasionally found far offshore, where they display a distinct color signature detectable by satellites. The impact of such plumes on carbon fixation and phytoplankton community structure in vertical profiles and on basin wide scales is poorly understood. On a research cruise in June 1999, ocean-color satellite-images (Sea-viewing Wide Field-of-view Sensor, SeaWiFS) were used in locating a Mississippi River plume in the eastern Gulf of Mexico. Profiles sampled within and outside of the plume were analyzed using flow cytometry, HPLC pigment analysis and primary production using 14C incorporation. Additionally, RubisCO large subunit (rbcL) gene expression was measured by hybridization of extracted RNA using 3 full-length RNA gene probes specific for individual phytoplankton clades. We also used a combination of RT-PCR/PCR and TA cloning in order to generate cDNA and DNA rbcL clone libraries from samples taken in the plume. Primary productivity was greatest in the low salinity surface layer of the plume. The plume was also associated with high Synechococcus counts and a strong peak in Form IA rbcL expression. Form IB rbcL (green algal) mRNA was abundant at the subsurface chlorophyll maximum (SCM), whereas Form ID rbcL (chromophytic) expression showed little vertical structure. Phylogenetic analysis of cDNA libraries demonstrated the presence of Form IA rbcL Synechococcus phylotypes in the plume. Below the plume, 2 spatially separated and genetically distinct rbcL clades of Prochlorococcus were observed. This indicated the presence of the high- and low-light adapted clades of Prochlorococcus. A large and very diverse clade of Prymnesiophytes was distributed throughout the water column, whereas a clade of closely related prasinophytes may have dominated at the SCM. These data indicate that the Mississippi river plume may dramatically alter the surface picoplankton composition of the Gulf of Mexico, with Synechococcus displacing Prochlorococcus in the surface waters.

  2. The Yellowstone ‘hot spot’ track results from migrating Basin Range extension

    USGS Publications Warehouse

    Foulger, Gillian R.; Christiansen, Robert L.; Anderson, Don L.; Foulger, Gillian R.; Lustrino, Michele; King, Scott D.

    2015-01-01

    Whether the volcanism of the Columbia River Plateau, eastern Snake River Plain, and Yellowstone (western U.S.) is related to a mantle plume or to plate tectonic processes is a long-standing controversy. There are many geological mismatches with the basic plume model as well as logical flaws, such as citing data postulated to require a deep-mantle origin in support of an “upper-mantle plume” model. USArray has recently yielded abundant new seismological results, but despite this, seismic analyses have still not resolved the disparity of opinion. This suggests that seismology may be unable to resolve the plume question for Yellowstone, and perhaps elsewhere. USArray data have inspired many new models that relate western U.S. volcanism to shallow mantle convection associated with subduction zone processes. Many of these models assume that the principal requirement for surface volcanism is melt in the mantle and that the lithosphere is essentially passive. In this paper we propose a pure plate model in which melt is commonplace in the mantle, and its inherent buoyancy is not what causes surface eruptions. Instead, it is extension of the lithosphere that permits melt to escape to the surface and eruptions to occur—the mere presence of underlying melt is not a sufficient condition. The time-progressive chain of rhyolitic calderas in the eastern Snake River Plain–Yellowstone zone that has formed since basin-range extension began at ca. 17 Ma results from laterally migrating lithospheric extension and thinning that has permitted basaltic magma to rise from the upper mantle and melt the lower crust. We propose that this migration formed part of the systematic eastward migration of the axis of most intense basin-range extension. The bimodal rhyolite-basalt volcanism followed migration of the locus of most rapid extension, not vice versa. This model does not depend on seismology to test it but instead on surface geological observations.

  3. Installation Restoration Program Records Search for Dobbins Air Force Base, Georgia

    DTIC Science & Technology

    1982-04-01

    migation Death to irond water ____________ lift ogaeiitation 1 . Subsurface flow_____I a _____________ Direct aess W 4round water______ j Submrs(10 x actr...potential pathways, surface water migation , flooding, and ground-water * migration. Select the highest rating, and proceed to C. f 1. Surface water migration

  4. Bedrock geology and outcrop fracture trends in the vicinity of the Savage Municipal Well Superfund site, Milford, New Hampshire

    USGS Publications Warehouse

    Burton, William C.; Harte, Philip T.

    2013-01-01

    The Savage Municipal Well Superfund site consists of an eastward-directed plume of volatile organic compounds, principally tetrachloroethylene (PCE), in alluvium and glacial sand and gravel in the Souhegan River valley, just south of the river and about 4 kilometers west of the town of Milford, New Hampshire. Sampling of monitoring wells at the site has helped delineate the extent of the plume and has determined that some contaminant has migrated into the underlying crystalline bedrock, including bedrock north of the river within 200 meters of a nearby residential development that was constructed in 1999. Borehole geophysical logging has identified a northeast preferential trend for bedrock fractures, which may provide a pathway for the migration of contaminant under and north of the Souhegan River. The current study investigates the bedrock geologic setting for the site, including its position relative to known regional geologic structures, and compiles new strike and dip measurements of joints in exposed bedrock to determine if there are dominant trends in orientation similar to what was found in the boreholes. The site is located on the northwestern limb of a northeast-trending regional anticlinorium that is southeast of the Campbell Hill fault zone. The Campbell Hill fault zone defines the contact between granite and gneiss of the anticlinorium and granite and schist to the northwest and is locally marked by lenses of massive vein quartz, minor faults, and fracture zones that could potentially affect plume migration. The fault zone was apparently not intercepted by any of the boreholes that were drilled to delineate the contaminant plume and therefore passes to the north of the northernmost borehole in the vicinity of the new residential area. Joints measured in surface exposures indicate a strong preferred direction of strike to the north-northeast corroborating the borehole data and previous outcrop and geophysical studies. The north-northeast preferred direction matches the direction of elongation of the cone of depression formed during a pump test of the bedrock wells and could explain a potential pathway for the migration of contaminant north of the river.

  5. Chlorinated organic compounds in ground water at Roosevelt Field, Nassau County, Long Island, New York

    USGS Publications Warehouse

    Eckhardt, D.A.; Pearsall, K.A.

    1989-01-01

    Trichloroethylene (TCE), 1,2-dichloroethylene (DCE), and tetrachloroethylene (PCE) have been detected in water from five public-supply wells and six cooling-water wells that tap the Magothy aquifer at Roosevelt Field, a 200-acre area that is now a large shopping mall and office-building complex. The cooling water is discharged after use to the water table (upper glacial) aquifer through a nearby recharge basin and a subsurface drain field. Three plumes of TCE in groundwater have been delineated--the source plume, which has penetrated both aquifers , and two more recent plumes emanating from the two discharge sites in the water-table aquifer. Concentrations of inorganic constituents in the three plumes are the same as those in ambient water in the area. The two secondary plumes discharged cooling water extended at least 1,000 ft south-southeastward in the direction of regional groundwater flow. Pumping at wells screened in the middle and basal sections of the Magothy aquifers, where clay layers are absent and sandy zones provide good vertical hydraulic connection within the aquifer system, has increased the rate of downward contaminant advection. The transient increases in downward movement are cumulative over time and have brought TCE to the bottom of the Magothy aquifer, 500 ft below land surface. (USGS)

  6. Lunar and Martian Sub-surface Habitat Structure Technology Development and Application

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.; Strong, Janet D.

    2005-01-01

    NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Subsidace structures such as caves and lava tubes offer readily available and existing in-situ habitat options. Sub-surface dwellings can provide complete radiation, micro-meteorite and exhaust plume shielding and a moderate and constant temperature environment; they are, therefore, excellent pre-existing habitat risk mitigation elements. Technical challenges to subsurface habitat structure development include surface penetration (digging and mining equipment), environmental pressurization, and psychological environment enhancement requirements. Lunar and Martian environments and elements have many beneficial similarities. This will allow for lunar testing and design development of subsurface habitat structures for Martian application; however, significant differences between lunar and Martian environments and resource elements will mandate unique application development. Mars is NASA's ultimate exploration goal and is known to have many very large lava tubes. Other cave types are plausible. The Moon has unroofed rilles and lava tubes, but further research will, in the near future, define the extent of Lunar and Martian differences and similarities. This paper will discuss Lunar and Martian subsurface habitation technology development challenges and opportunities.

  7. Biodegradation of crude oil in Arctic subsurface water from the Disko Bay (Greenland) is limited.

    PubMed

    Scheibye, Katrine; Christensen, Jan H; Johnsen, Anders R

    2017-04-01

    Biological degradation is the main process for oil degradation in a subsurface oil plume. There is, however, little information on the biodegradation potential of Arctic, marine subsurface environments. We therefore investigated oil biodegradation in microcosms at 2 °C containing Arctic subsurface seawater from the Disko Bay (Greenland) and crude oil at three concentrations of 2.5-10 mg/L. Within 71 days, the total petroleum hydrocarbon concentration decreased only by 18 ± 18% for an initial concentration of 5 mg/L. The saturated alkanes nC13-nC30 and the isoprenoids iC18-iC21 were biodegraded at all concentrations indicating a substantial potential for biodegradation of these compound classes. Polycyclic aromatic compounds (PACs) disappeared from the oil phase, but dissolution was the main process of removal. Analysis of diagnostic ratios indicated almost no PAC biodegradation except for the C1-naphthalenes. To conclude, the marine subsurface microorganisms from the Disko Bay had the potential for biodegradation of n-alkanes and isoprenoids while the metabolically complex and toxic PACs and their alkylated homologs remained almost unchanged. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. In-Situ Contained And Of Volatile Soil Contaminants

    DOEpatents

    Varvel, Mark Darrell

    2005-12-27

    The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.

  9. In-Situ Containment and Extraction of Volatile Soil Contaminants

    DOEpatents

    Varvel, Mark Darrell

    2005-12-27

    The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.

  10. Trichloroethylene (TCE) in tree cores to complement a subsurface investigation on residential property near a former electroplating facility.

    PubMed

    Wilcox, Jeffrey D; Johnson, Kathy M

    2016-10-01

    Tree cores were collected and analyzed for trichloroethylene (TCE) on a private property between a former electroplating facility in Asheville, North Carolina (USA), and a contaminated wetland/spring complex. TCE was detected in 16 of 31 trees, the locations of which were largely consistent with a "plume core" delineated by a more detailed subsurface investigation nearly 2 years later. Concentrations in tree cores and nearby soil borings were not correlated, perhaps due to heterogeneities in both geologic and tree root structure, spatial and temporal variability in transpiration rates, or interferences caused by other contaminants at the site. Several tree cores without TCE provided evidence for significantly lower TCE concentrations in shallow groundwater along the margins of the contaminated spring complex in an area with limited accessibility. This study demonstrates that tree core analyses can complement a more extensive subsurface investigation, particularly in residential or ecologically sensitive areas.

  11. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, Terry C.; Fliermans, Carl B.

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  12. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1995-01-24

    An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strickland, Christopher E.; Johnson, Christian D.; Lee, Brady D.

    Iodine-129 (129I) generated at the U.S. Department of Energy (DOE) Hanford Site during plutonium production was released to the subsurface, resulting in several large, though dilute, plumes in the groundwater, including the plume in the 200-UP-1 operable unit (OU). Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited, though work is under way to better understand the fate and transport of 129I in the environment and the effectiveness of potential remediation technologies. The recent UP-1 Evaluation Plan for Iodine and report on the Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Sitemore » provide information on the history of contamination in the 200-UP-1 OU, relevant controlling processes (biological and geochemical), risk, the conceptual site model, and potential remedial options, which provided a foundation for this study. In this study, available information was compiled and used to categorize potential remediation technologies, culminating in a recommendation of promising technologies for further evaluation. Approaches to improve the technical information about promising technologies are also recommended in this study so that a subsequent evaluation of potential remediation alternatives can assess these technologies.« less

  14. Evolution of the electrical resistivity anisotropy during saline tracer tests: insights from geoelectrical milli-fluidic experiments

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Jimenez-Martinez, J.; Legendre, R.; Le Borgne, T.; Meheust, Y.; Linde, N.

    2017-12-01

    The use of time-lapse electrical resistivity tomography has been largely developed in environmental studies to remotely monitor water saturation and contaminant plumes migration. However, subsurface heterogeneities, and corresponding preferential transport paths, yield a potentially large anisotropy in the electrical properties of the subsurface. In order to study this effect, we have used a newly developed geoelectrical milli-fluidic experimental set-up with a flow cell that contains a 2D porous medium consisting of a single layer of cylindrical solid grains. We performed saline tracer tests under full and partial water saturations in that cell by jointly injecting air and aqueous solutions with different salinities. The flow cell is equipped with four electrodes to measure the bulk electrical resistivity at the cell's scale. The spatial distribution of the water/air phases and the saline solute concentration field in the water phase are captured simultaneously with a high-resolution camera by combining a fluorescent tracer with the saline solute. These data are used to compute the longitudinal and transverse effective electrical resistivity numerically from the measured spatial distributions of the fluid phases and the salinity field. This approach is validated as the computed longitudinal effective resistivities are in good agreement with the laboratory measurements. The anisotropy in electrical resistivity is then inferred from the computed longitudinal and transverse effective resistivities. We find that the spatial distribution of saline tracer, and potentially air phase, drive temporal changes in the effective resistivity through preferential paths or barriers for electrical current at the pore scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical resistivity, especially for partially saturated conditions. Therefore, considering the electrical resistivity as a tensor could improve our understanding of transport properties from field-scale time-lapse ERT.

  15. SPECIAL ANALYSIS AIR PATHWAY MODELING OF E-AREA LOW-LEVEL WASTE FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiergesell, R.; Taylor, G.

    This Special Analysis (SA) was initiated to address a concern expressed by the Department of Energy's Low Level Waste Disposal Facility Federal Review Group (LFRG) Review Team during their review of the 2008 E-Area Performance Assessment (PA) (WSRC, 2008). Their concern was the potential for overlapping of atmospheric plumes, emanating from the soil surface above SRS LLW disposal facilities within the E-Area, to contribute to the dose received by a member of the public during the Institutional Control (IC) period. The implication of this concern was that the dose to the maximally-exposed individual (MEI) located at the SRS boundary mightmore » be underestimated during this time interval. To address this concern a re-analysis of the atmospheric pathway releases from E-Area was required. In the process of developing a new atmospheric release model (ARM) capable of addressing the LFRG plume overlap concern, it became obvious that new and better atmospheric pathway disposal limits should be developed for each of the E-Area disposal facilities using the new ARM. The scope of the SA was therefore expanded to include the generation of these new limits. The initial work conducted in this SA was to develop a new ARM using the GoldSim{reg_sign} program (GTG, 2009). The model simulates the subsurface vapor diffusion of volatile radionuclides as they release from E-Area disposal facility waste zones and migrate to the land surface. In the process of this work, many new features, including several new physical and chemical transport mechanisms, were incorporated into the model. One of the most important improvements was to incorporate a mechanism to partition volatile contaminants across the water-air interface within the partially saturated pore space of the engineered and natural materials through which vapor phase transport occurs. A second mechanism that was equally important was to incorporate a maximum concentration of 1.9E-07 Ci/m{sup 3} of {sup 14}CO{sub 2} in the air-filled pores of cementitious materials. The ARM also combines the individual transport models constructed for each E-Area disposal facility into a single model, and was ultimately used to analyze the LFRG concern regarding the potential for atmospheric plume overlap at the SRS boundary during the IC period. To evaluate the plume overlap issue, a conservative approach was adopted whereby the MEI at the SRS boundary was exposed to the releases from all E-Area disposal facilities simultaneously. This is equivalent to a 100% overlap of all atmospheric plumes emanating from E-Area. Should the dose received from this level of atmospheric plume overlap still fall below the permissible exposure level of 10 mrem/yr, then the LFRG concern would be alleviated. The structuring of the ARM enables this evaluation to be easily performed. During the IC period, the peak of the 'total plume overlap dose' was computed to be 1.9E-05 mrem/yr, which is five orders of magnitude lower than the 10 mrem/yr PA performance objective for the atmospheric release pathway. The main conclusion of this study is that for atmospheric releases from the E-Area disposal facilities, plume overlap does not cause the total dose to the MEI at the SRS boundary during the IC to exceed the Performance Assessment (PA) performance objective. Additionally, the potential for plume overlap was assessed in the post-Institutional Control period. Atmospheric plume overlap is less likely to occur during this period but conceivably could occur if the prevailing wind direction shifted so as to pass directly over all EArea disposal facilities and transport airborne radionuclides to the MEI at the 100 m point of compliance (POC). This concern was also demonstrated of little concern, as the maximum plume overlap dose was found to be 1.45E+00 mrem/yr (or {approx}15% of the performance measure) during this period and under these unlikely conditions.« less

  16. Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results

    NASA Astrophysics Data System (ADS)

    Birdsell, Daniel T.; Rajaram, Harihar; Dempsey, David; Viswanathan, Hari S.

    2015-09-01

    Understanding the transport of hydraulic fracturing (HF) fluid that is injected into the deep subsurface for shale gas extraction is important to ensure that shallow drinking water aquifers are not contaminated. Topographically driven flow, overpressured shale reservoirs, permeable pathways such as faults or leaky wellbores, the increased formation pressure due to HF fluid injection, and the density contrast of the HF fluid to the surrounding brine can encourage upward HF fluid migration. In contrast, the very low shale permeability and capillary imbibition of water into partially saturated shale may sequester much of the HF fluid, and well production will remove HF fluid from the subsurface. We review the literature on important aspects of HF fluid migration. Single-phase flow and transport simulations are performed to quantify how much HF fluid is removed via the wellbore with flowback and produced water, how much reaches overlying aquifers, and how much is permanently sequestered by capillary imbibition, which is treated as a sink term based on a semianalytical, one-dimensional solution for two-phase flow. These simulations include all of the important aspects of HF fluid migration identified in the literature review and are performed in five stages to faithfully represent the typical operation of a hydraulically fractured well. No fracturing fluid reaches the aquifer without a permeable pathway. In the presence of a permeable pathway, 10 times more fracturing fluid reaches the aquifer if well production and capillary imbibition are not included in the model.

  17. Simulation of DNAPL migration in heterogeneous translucent porous media based on estimation of representative elementary volume

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Wu, Jianfeng; Wu, Jichun

    2017-10-01

    When the dense nonaqueous phase liquid (DNAPL) comes into the subsurface environment, its migration behavior is crucially affected by the permeability and entry pressure of subsurface porous media. A prerequisite for accurately simulating DNAPL migration in aquifers is then the determination of the permeability, entry pressure and corresponding representative elementary volumes (REV) of porous media. However, the permeability, entry pressure and corresponding representative elementary volumes (REV) are hard to determine clearly. This study utilizes the light transmission micro-tomography (LTM) method to determine the permeability and entry pressure of two dimensional (2D) translucent porous media and integrates the LTM with a criterion of relative gradient error to quantify the corresponding REV of porous media. As a result, the DNAPL migration in porous media might be accurately simulated by discretizing the model at the REV dimension. To validate the quantification methods, an experiment of perchloroethylene (PCE) migration is conducted in a two-dimensional heterogeneous bench-scale aquifer cell. Based on the quantifications of permeability, entry pressure and REV scales of 2D porous media determined by the LTM and relative gradient error, different models with different sizes of discretization grid are used to simulate the PCE migration. It is shown that the model based on REV size agrees well with the experimental results over the entire migration period including calibration, verification and validation processes. This helps to better understand the microstructures of porous media and achieve accurately simulating DNAPL migration in aquifers based on the REV estimation.

  18. Enceladus Environmental Explorer (EVE): A Mission Concept

    NASA Astrophysics Data System (ADS)

    Lawson, M. J.; Amador, E. S.; Carrier, B. L.; Albuja, A.; Bapst, J.; Cahill, K. R. S.; Ebersohn, F.; Gainey, S.; Gartrelle, G.; Greenberger, R. N.; Hale, J. M.; Johnston, S.; Olivares, J.; Parcheta, C. E.; Sheehan, J. P.; Thorpe, A. K.; Zareh, S. K.

    2014-12-01

    Enceladus is an intriguing planetary body, which possibly has the ingredients needed for life. Further, it has numerous (over 100) continuously erupting geysers that eject material into the atmosphere which provide a unique opportunity to sample the body's internal chemistry from orbit. At JPL's Planetary Science Summer School, Team X and a group of students developed a mission concept to directly sample Enceladus' plumes. The mission, named Enceladus Environmental Explorer (EVE), follows NASA's Planetary Science Decadal survey and would assess the potential habitability of Saturn's icy satellite through analysis of the chemistry of the subsurface ocean and the nature of the organic chemistry in the plume. EVE would look at geological and geophysical surface processes of Enceladus by investigating the heat output of Enceladus, plumes' mechanics, the extent of the liquid subsurface reservoir(s), and gravitational variation. The EVE mission concept aimed for a January 2023 launch on an Atlas 551 class launch vehicle and would arrive at Saturn July 2031. A two-year-long Saturn moon tour would allow sufficient deceleration to permit a polar orbital insertion around Enceladus in March 2035, remaining stable for 54 weeks of observation. The proposed instrument payload includes: 1) SUb MilliMeter Enceladus Radiometer (SUMMER; equivalent to Rosetta MIRO), 2) Enceladus Dust and Gas Experiment (EDGE; an enhanced version of Rosetta COSIMA), 3) MAGnetometer for Ionic Concentration (MAGIC; equivalent to MMS/ InSIGHT magnetometer), 4) Visual Imaging Camera with Topographic Observational Resolution (VICTOR) and 5) Enceladus Radio Gravity Science (ERGS). Our suggested orbital timeline would allow the most comprehensive dataset yet collected of a moon in the outer solar system, mapping the entire surface twice with SUMMER and VICTOR, while sampling the plume directly 232 times with EDGE. MAGIC would also provide over a year of sampling of the magnetic field variations from orbit. Enceladus Environmental Explorer (EVE) offers a unique opportunity to determine the potential for life on Enceladus.

  19. Enceladus Plume Structure and Time Variability: Comparison of Cassini Observations

    PubMed Central

    Perry, Mark E.; Hansen, Candice J.; Waite, J. Hunter; Porco, Carolyn C.; Spencer, John R.; Howett, Carly J. A.

    2017-01-01

    Abstract During three low-altitude (99, 66, 66 km) flybys through the Enceladus plume in 2010 and 2011, Cassini's ion neutral mass spectrometer (INMS) made its first high spatial resolution measurements of the plume's gas density and distribution, detecting in situ the individual gas jets within the broad plume. Since those flybys, more detailed Imaging Science Subsystem (ISS) imaging observations of the plume's icy component have been reported, which constrain the locations and orientations of the numerous gas/grain jets. In the present study, we used these ISS imaging results, together with ultraviolet imaging spectrograph stellar and solar occultation measurements and modeling of the three-dimensional structure of the vapor cloud, to constrain the magnitudes, velocities, and time variability of the plume gas sources from the INMS data. Our results confirm a mixture of both low and high Mach gas emission from Enceladus' surface tiger stripes, with gas accelerated as fast as Mach 10 before escaping the surface. The vapor source fluxes and jet intensities/densities vary dramatically and stochastically, up to a factor 10, both spatially along the tiger stripes and over time between flyby observations. This complex spatial variability and dynamics may result from time-variable tidal stress fields interacting with subsurface fissure geometry and tortuosity beyond detectability, including changing gas pathways to the surface, and fluid flow and boiling in response evolving lithostatic stress conditions. The total plume gas source has 30% uncertainty depending on the contributions assumed for adiabatic and nonadiabatic gas expansion/acceleration to the high Mach emission. The overall vapor plume source rate exhibits stochastic time variability up to a factor ∼5 between observations, reflecting that found in the individual gas sources/jets. Key Words: Cassini at Saturn—Geysers—Enceladus—Gas dynamics—Icy satellites. Astrobiology 17, 926–940. PMID:28872900

  20. Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones

    NASA Astrophysics Data System (ADS)

    Yang, Lurong; Wang, Xinyu; Mendoza-Sanchez, Itza; Abriola, Linda M.

    2018-04-01

    Sequestered mass in low permeability zones has been increasingly recognized as an important source of organic chemical contamination that acts to sustain downgradient plume concentrations above regulated levels. However, few modeling studies have investigated the influence of this sequestered mass and associated (coupled) mass transfer processes on plume persistence in complex dense nonaqueous phase liquid (DNAPL) source zones. This paper employs a multiphase flow and transport simulator (a modified version of the modular transport simulator MT3DMS) to explore the two- and three-dimensional evolution of source zone mass distribution and near-source plume persistence for two ensembles of highly heterogeneous DNAPL source zone realizations. Simulations reveal the strong influence of subsurface heterogeneity on the complexity of DNAPL and sequestered (immobile/sorbed) mass distribution. Small zones of entrapped DNAPL are shown to serve as a persistent source of low concentration plumes, difficult to distinguish from other (sorbed and immobile dissolved) sequestered mass sources. Results suggest that the presence of DNAPL tends to control plume longevity in the near-source area; for the examined scenarios, a substantial fraction (43.3-99.2%) of plume life was sustained by DNAPL dissolution processes. The presence of sorptive media and the extent of sorption non-ideality are shown to greatly affect predictions of near-source plume persistence following DNAPL depletion, with plume persistence varying one to two orders of magnitude with the selected sorption model. Results demonstrate the importance of sorption-controlled back diffusion from low permeability zones and reveal the importance of selecting the appropriate sorption model for accurate prediction of plume longevity. Large discrepancies for both DNAPL depletion time and plume longevity were observed between 2-D and 3-D model simulations. Differences between 2- and 3-D predictions increased in the presence of sorption, especially for the case of non-ideal sorption, demonstrating the limitations of employing 2-D predictions for field-scale modeling.

  1. Distribution of microbial physiologic types in an aquifer contaminated by crude oil

    USGS Publications Warehouse

    Bekins, B.A.; Godsy, E.M.; Warren, E.

    1999-01-01

    We conducted a plume-scale study of the microbial ecology in the anaerobic portion of an aquifer contaminated by crude-oil compounds. The data provide insight into the patterns of ecological succession, microbial nutrient demands, and the relative importance of free-living versus attached microbial populations. The most probable number (MPN) method was used to characterize the spatial distribution of six physiologic types: aerobes, denitrifiers, iron-reducers, heterotrophic fermenters, sulfate-reducers, and methanogens. Both free-living and attached numbers were determined over a broad cross-section of the aquifer extending horizontally from the source of the plume at a nonaqueous oil body to 66 m downgradient, and vertically from above the water table to the base of the plume below the water table. Point samples from widely spaced locations were combined with three closely spaced vertical profiles to create a map of physiologic zones for a cross-section of the plume. Although some estimates suggest that less than 1% of the subsurface microbial population can be grown in laboratory cultures, the MPN results presented here provide a comprehensive qualitative picture of the microbial ecology at the plume scale. Areas in the plume that are evolving from iron-reducing to methanogenic conditions are clearly delineated and generally occupy 25-50% of the plume thickness. Lower microbial numbers below the water table compared to the unsaturated zone suggest that nutrient limitations may be important in limiting growth in the saturated zone. Finally, the data indicate that an average of 15% of the total population is suspended.

  2. Velocity analysis of simultaneous-source data using high-resolution semblance—coping with the strong noise

    NASA Astrophysics Data System (ADS)

    Gan, Shuwei; Wang, Shoudong; Chen, Yangkang; Qu, Shan; Zu, Shaohuan

    2016-02-01

    Direct imaging of simultaneous-source (or blended) data, without the need of deblending, requires a precise subsurface velocity model. In this paper, we focus on the velocity analysis of simultaneous-source data using the normal moveout-based velocity picking approach.We demonstrate that it is possible to obtain a precise velocity model directly from the blended data in the common-midpoint domain. The similarity-weighted semblance can help us obtain much better velocity spectrum with higher resolution and higher reliability compared with the traditional semblance. The similarity-weighted semblance enforces an inherent noise attenuation solely in the semblance calculation stage, thus it is not sensitive to the intense interference. We use both simulated synthetic and field data examples to demonstrate the performance of the similarity-weighted semblance in obtaining reliable subsurface velocity model for direct migration of simultaneous-source data. The migrated image of blended field data using prestack Kirchhoff time migration approach based on the picked velocity from the similarity-weighted semblance is very close to the migrated image of unblended data.

  3. The Application of Depth Migration for Processing GPR Data

    NASA Astrophysics Data System (ADS)

    Hoai Trung, Dang; Van Giang, Nguyen; Thanh Van, Nguyen

    2018-03-01

    Migration methods play a significant role in processing ground penetrating radar data. Beside recovering the true image of subsurface structures from the prior designed velocity model and the raw GPR data, the migration algorithm could be an effective tool in bulding real environmental velocity model. In this paper, we have proposed one technique using energy diagram extracted from migrated data as a criterion of looking for the correct velocity. Split Step Fourier migration, a depth migration, is chosen for facing the challenge where the velocity varies laterally and vertically. Some results verified on field data on Vietnam show that migrated sections with calculated velocity from energy diagram have the best quality.

  4. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface

    DTIC Science & Technology

    2008-08-01

    seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  5. Prestack reverse time migration for tilted transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Jang, Seonghyung; Hien, Doan Huy

    2013-04-01

    According to having interest in unconventional resource plays, anisotropy problem is naturally considered as an important step for improving the seismic image quality. Although it is well known prestack depth migration for the seismic reflection data is currently one of the powerful tools for imaging complex geological structures, it may lead to migration error without considering anisotropy. Asymptotic analysis of wave propagation in transversely isotropic (TI) media yields a dispersion relation of couple P- and SV wave modes that can be converted to a fourth order scalar partial differential equation (PDE). By setting the shear wave velocity equal zero, the fourth order PDE, called an acoustic wave equation for TI media, can be reduced to couple of second order PDE systems and we try to solve the second order PDE by the finite difference method (FDM). The result of this P wavefield simulation is kinematically similar to elastic and anisotropic wavefield simulation. We develop prestack depth migration algorithm for tilted transversely isotropic media using reverse time migration method (RTM). RTM is a method for imaging the subsurface using inner product of source wavefield extrapolation in forward and receiver wavefield extrapolation in backward. We show the subsurface image in TTI media using the inner product of partial derivative wavefield with respect to physical parameters and observation data. Since the partial derivative wavefields with respect to the physical parameters require extremely huge computing time, so we implemented the imaging condition by zero lag crosscorrelation of virtual source and back propagating wavefield instead of partial derivative wavefields. The virtual source is calculated directly by solving anisotropic acoustic wave equation, the back propagating wavefield on the other hand is calculated by the shot gather used as the source function in the anisotropic acoustic wave equation. According to the numerical model test for a simple geological model including syncline and anticline, the prestack depth migration using TTI-RTM in weak anisotropic media shows the subsurface image is similar to the true geological model used to generate the shot gathers.

  6. A parametric study of Enceladus plumes based on DSMC calculations for retrieving the outgassing parameters as measured by Cassini instruments

    NASA Astrophysics Data System (ADS)

    Mahieux, Arnaud; Goldstein, David B.; Varghese, Philip; Trafton, Laurence M.

    2017-10-01

    The vapor and particulate plumes arising from the southern polar regions of Enceladus are a key signature of what lies below the surface. Multiple Cassini instruments (INMS, CDA, CAPS, MAG, UVIS, VIMS, ISS) measured the gas-particle plume over the warm Tiger Stripe region and there have been several close flybys. Numerous observations also exist of the near-vent regions in the visible and the IR. The most likely source for these extensive geysers is a subsurface liquid reservoir of somewhat saline water and other volatiles boiling off through crevasse-like conduits into the vacuum of space.In this work, we use a DSMC code to simulate the plume as it exits a vent, considering axisymmetric conditions, in a vertical domain extending up to 10 km. Above 10 km altitude, the flow is collisionless and well modeled in a separate free molecular code. We perform a DSMC parametric and sensitivity study of the following vent parameters: vent diameter, outgassed flow density, water gas/water ice mass flow ratio, gas and ice speed, and ice grain diameter. We build parametric expressions of the plume characteristics at the 10 km upper boundary (number density, temperature, velocity) that will be used in a Bayesian inversion algorithm in order to constrain source conditions from fits to plume observations by various instruments on board the Cassini spacecraft and assess the parametric sensitivity study.

  7. Public health assessment for George Air Force Base, Victorville, San Bernardino County, California, Region 9: CERCLIS Number CA2570024453. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    George Air Force Base (AFB) is located in Victorville, California, in the Mojave Desert approximately 90 miles northeast of Los Angeles. Areas of concern at George AFB are divided into three operable units (OUs): Groundwater in the northeast portion of the base and adjacent off-site land is contaminated with volatile organic compounds, primarily TCE. A groundwater extraction and treatment system, designed to prevent migration of the contaminant plume towards the Mojave River, was completed in 1997. OU 1 also includes two other sites: SD-25, an industrial/storm drain, and WP-26, the former sewage treatment plant percolation ponds. Contaminated sediments and pipingmore » were removed from the storm drain at SD-25. A variety of leaks in this system resulted in an estimated of perhaps as much as a 750,000 to 800,000-gallon plume of jet propellant no. 4 (JP-4) encompassing an area of over 31 acres, as well as a dissolved-phase plume of benzene, toluene, ethylbenzene, and xylenes extending over an area of 121 acres. Because of OU2 plumes is almost completely covered by asphalt, and studies conducted thus far have not demonstrated significant migration of the plume, George AFB, state and federal regulators continue to evaluate the feasibility of natural attenuation as a possible cleanup strategy. This OU consists of the remaining Installation Restoration Program sites, includes old landfills, other dump and burial sites, munitions sites, fire training areas, and spill areas. In February 1997, George AFB completed a remedial investigation/feasibility study for OU 3.« less

  8. Wastewater injection, aquifer biogeochemical reactions, and resultant groundwater N fluxes to coastal waters: Kā'anapali, Maui, Hawai'i.

    PubMed

    Fackrell, Joseph K; Glenn, Craig R; Popp, Brian N; Whittier, Robert B; Dulai, Henrietta

    2016-09-15

    We utilize N and C species concentration data along with δ(15)N values of NO3(-) and δ(13)C values of dissolved inorganic C to evaluate the stoichiometry of biogeochemical reactions (mineralization, nitrification, anammox, and denitrification) occurring within a subsurface wastewater plume that originates as treated wastewater injection and enters the coastal waters of Maui as submarine groundwater discharge. Additionally, we compare wastewater effluent time-series data, injection rates, and treatment history with submarine spring discharge time-series data. We find that heterotrophic denitrification is the primary mechanism of N loss within the groundwater plume and that chlorination for pathogen disinfection suppresses microbial activity in the aquifer responsible for N loss, resulting in increased coastal ocean N loading. Replacement of chlorination with UV disinfection may restore biogeochemical reactions responsible for N loss within the aquifer and return N-attenuating conditions in the effluent plume, reducing N loading to coastal waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Fountains of Enceladus - Image #2

    NASA Image and Video Library

    2005-11-28

    Recent Cassini images of Saturn's moon Enceladus backlit by the sun show the fountain-like sources of the fine spray of material that towers over the south polar region. The image was taken looking more or less broadside at the "tiger stripe" fractures observed in earlier Enceladus images. It shows discrete plumes of a variety of apparent sizes above the limb of the moon. The greatly enhanced and colorized image shows the enormous extent of the fainter, larger-scale component of the plume. Imaging scientists, as reported in the journal Science on March 10, 2006, believe that the jets are geysers erupting from pressurized subsurface reservoirs of liquid water above 273 degrees Kelvin (0 degrees Celsius). http://photojournal.jpl.nasa.gov/catalog/PIA07759

  10. Evaluation of a predictive ground-water solute-transport model at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Lewis, Barney D.; Goldstein, Flora J.

    1982-01-01

    Aqueous chemical and radioactive wastes discharged to shallow ponds and to shallow or deep wells on the Idaho National Engineering Laboratory (INEL) since 1952 have affected the quality of the ground water in the underlying Snake River Plain aquifer. The aqueous wastes have created large and laterally dispersed concentration plumes within the aquifer. The waste plumes with the largest areal distribution are those of chloride , tritium, and with high specific conductance values. The data from eight wells drilled near the southern INEL boundary during the summer of 1980 were used to evaluate the accuracy of a predictive modeling study completed in 1973, and to simulate 1980 positions of chloride and tritium plumes. Data interpretation from the drilling program indicates that the hydrogeologic characteristics of the subsurface rocks have marked effects on the regional ground-water flow regimen and, therefore, the movement of aqueous wastes. As expected, the waste plumes projected by the computer model for 1980, extended somewhat further downgradient than indicated by well data due to conservative worst-case assumptions in the model input and inacurate approximations of subsequent waste discharge and aquifer recharge conditions. (USGS)

  11. Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.

    Isotopes of iodine were generated during plutonium production within the nine production reactors at the U.S. Department of Energy Hanford Site. The short half-life 131I that was released from the fuel into the atmosphere during the dissolution process (when the fuel was dissolved) in the Hanford Site 200 Area is no longer present at concentrations of concern in the environment. The long half-life 129I generated at the Hanford Site during reactor operations was (1) stored in single-shell and double-shell tanks, (2) discharged to liquid disposal sites (e.g., cribs and trenches), (3) released to the atmosphere during fuel reprocessing operations, ormore » (4) captured by off-gas absorbent devices (silver reactors) at chemical separations plants (PUREX, B-Plant, T-Plant, and REDOX). Releases of 129I to the subsurface have resulted in several large, though dilute, plumes in the groundwater. There is also 129I remaining in the vadose zone beneath disposal or leak locations. The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. In addition, its behavior in subsurface is different from that of other more common and important contaminants (e.g., U, Cr and Tc) in terms of sorption (adsorption and precipitation), and aqueous phase species transformation via redox reactions. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and identify aspects about which additional information is needed to effectively support remedy decisions.« less

  12. Impact of CO 2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO 2 Leakage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulliver, Djuna; Gregory, Kelvin B.; Lowry, Gregorgy V.

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO 2) emissions to the atmosphere. During this process, CO 2 is injected as super critical carbon dioxide (SC-CO 2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO 2 in subsurface geologic formations could unintentionally lead to CO 2 leakage into overlying freshwater aquifers. Introduction of CO 2 into these subsurface environments will greatly increase the CO 22 concentration and will create CO 2 concentration gradients that drivemore » changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO 2 gradients will impact these communities. The overarching goal of this project is to understand how CO 2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO 2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO 2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO 2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO 2 injection/leakage plume where CO 2 concentrations are highest. At CO 2 exposures expected downgradient from the CO 2 plume, selected microorganisms emerged as dominant in the CO 2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site-dependent results suggest a limited ability to predict the emerging dominant species for other CO 2 exposed environments. This study improves the understanding of how a subsurface microbial community may respond to conditions expected from GCS and CO 2 leakage. This is the first step for understanding how a CO 2-altered microbial community may impact injectivity, permanence of stored CO 2, and subsurface water quality. Future work with microbial communities from new subsurface sites would increase the current understanding of this project. Additionally, incorporation of metagenomic methods would increase understanding of potential microbial processes that may be prevalent in CO 2 exposed environments.« less

  13. Impact of CO 2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO 2 Leakage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulliver, Djuna M.; Gregory, Kelvin B.; Lowry, Gregory V.

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO 2) emissions to the atmosphere. During this process, CO 2 is injected as super critical carbon dioxide (SC-CO 2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO 2 in subsurface geologic formations could unintentionally lead to CO 2 leakage into overlying freshwater aquifers. Introduction of CO 2 into these subsurface environments will greatly increase the CO 2 concentration and will create CO 2 concentration gradients that drivemore » changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO 2 gradients will impact these communities. The overarching goal of this project is to understand how CO 2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO 2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO 2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO 2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO 2 injection/leakage plume where CO 2 concentrations are highest. At CO 2 exposures expected downgradient from the CO 2 plume, selected microorganisms emerged as dominant in the CO 2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site-dependent results suggest a limited ability to predict the emerging dominant species for other CO 2-exposed environments. This study improves the understanding of how a subsurface microbial community may respond to conditions expected from GCS and CO 2 leakage. This is the first step for understanding how a CO 2-altered microbial community may impact injectivity, permanence of stored CO 2, and subsurface water quality. Future work with microbial communities from new subsurface sites would increase the current understanding of this project. Additionally, incorporation of metagenomic methods would increase understanding of potential microbial processes that may be prevalent in CO 2 exposed environments.« less

  14. Innovative Strategy For Long Term Monitoring Of Metal And Radionuclide Plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddy-Dilek, Carol; Millings, Margaret R.; Looney, Brian B.

    2014-01-08

    Many government and private industry sites that were once contaminated with radioactive and chemical wastes cannot be cleaned up enough to permit unrestricted human access. The sites will require long term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality at these "legacy" sites. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site, the larger DOE complex, and many large federal and private sites. There is a need to optimize the performance and manage the costmore » of long term surveillance and monitoring at their sites. Currently, SRNL is initiating a pilot field test using alternative protocols for long term monitoring of metals and radionuclides. A key component of the approach is that monitoring efforts are focused on measurement of low cost metrics related to hydrologic and chemical conditions that control contaminant migration. The strategy combines careful monitoring of hydrologic boundary conditions with measurement of master variables such as chemical surrogates along with a smaller number of standard well analyses. In plumes contaminated with metals, master variables control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. Significant changes in these variables will result in conditions whereby the plume may not be stable and therefore can be used to predict possible plume migration. Conversely, concentration measurements for all types of contaminants in groundwater are a lagging indicator plume movement - major changes contaminant concentrations indicate that contamination has migrated. An approach based on measurement of master variables and explicit monitoring of hydrologic boundary conditions combined with traditional metrics should lead to improved monitoring while simultaneously reducing costs. This paradigm is being tested at the SRS F-Area where an innovative passive remedial system is being monitored and evaluated over the long term prior to traditional regulatory closure. Contaminants being addressed at this site are uranium, strontium-90, iodine-129, and tritium. We believe that the proposed strategies will be more effective in early identification of potential risks; these strategies will also be cost effective because controlling variables are relatively simple to measure. These variables also directly reflect the evolution of the plume through time, so that the monitoring strategy can be modified as the plume 'ages'. This transformational long-term monitoring paradigm will generate large cost savings to DOE, other federal agencies and industry and will provide improved performance and leading indicators of environmental management performance.« less

  15. Final Report: Molecular Mechanisms of Interfacial Reactivity in Near Surface and Extreme Geochemical Environments (DE-SC0009362)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, David A

    2016-03-27

    The prediction of the long-term stability and safety of geologic sequestration of greenhouse gases requires a detailed understanding of subsurface transport and chemical interactions between the disposed greenhouse gases and the geologic media. In this regard, mineral-fluid interactions are of prime importance since reactions that occur on or near the interface can assist in the long term sequestration of CO2 by trapping in mineral phases such as carbonates, as well as influencing the subsurface migration of the disposed fluids via creation or plugging of pores or fractures in the host rock strata. Previous research on mineral-fluid interaction for subsurface CO2more » storage has focused almost entirely on the aqueous phase, i.e., reactivity with aqueous solutions or brines containing dissolved CO2. However, interactions with neat to water-saturated non-aqueous fluids are of equal if not greater importance since supercritical CO2 (scCO2) is less dense than the aqueous phase or oil which will create a buoyant scCO2 plume that ultimately will dominate the pore volume within the caprock, and the injected scCO2 will contain water soon after injection and this water can be highly reactive. Collectively, therefore, mineral interactions with water-saturated scCO2-dominated fluids are pivotal and could result in the stable sequestration of CO2 by trapping in mineral phases such as metal carbonates within otherwise permeable zones in the caprock. The primary objective is to unravel the molecular mechanisms governing the reactivity of mineral phases important in the geologic sequestration of CO2 with variably wet supercritical carbon dioxide as a function of T, P, and mineral structure using computational chemistry. This work is in close collaboration with the PNNL Geosciences effort. The focus of the work at The University of Alabama is computational studies of the formation of magnesium and calcium carbonates and oxides and their reactivity and providing computational support of the experimental efforts at PNNL, especially for energetics, structural properties, and interpretation of spectra.« less

  16. Absolute plate motions relative to deep mantle plumes

    NASA Astrophysics Data System (ADS)

    Wang, Shimin; Yu, Hongzheng; Zhang, Qiong; Zhao, Yonghong

    2018-05-01

    Advances in whole waveform seismic tomography have revealed the presence of broad mantle plumes rooted at the base of the Earth's mantle beneath major hotspots. Hotspot tracks associated with these deep mantle plumes provide ideal constraints for inverting absolute plate motions as well as testing the fixed hotspot hypothesis. In this paper, 27 observed hotspot trends associated with 24 deep mantle plumes are used together with the MORVEL model for relative plate motions to determine an absolute plate motion model, in terms of a maximum likelihood optimization for angular data fitting, combined with an outlier data detection procedure based on statistical tests. The obtained T25M model fits 25 observed trends of globally distributed hotspot tracks to the statistically required level, while the other two hotspot trend data (Comores on Somalia and Iceland on Eurasia) are identified as outliers, which are significantly incompatible with other data. For most hotspots with rate data available, T25M predicts plate velocities significantly lower than the observed rates of hotspot volcanic migration, which cannot be fully explained by biased errors in observed rate data. Instead, the apparent hotspot motions derived by subtracting the observed hotspot migration velocities from the T25M plate velocities exhibit a combined pattern of being opposite to plate velocities and moving towards mid-ocean ridges. The newly estimated net rotation of the lithosphere is statistically compatible with three recent estimates, but differs significantly from 30 of 33 prior estimates.

  17. Alignments of volcanic features in the southern hemisphere of Mars produced by migrating mantle plumes

    NASA Astrophysics Data System (ADS)

    Leone, Giovanni

    2016-01-01

    Mars shows alignments of volcanic landforms in its southern hemisphere, starting from the equatorial regions and converging towards the South Pole, and visible at global scale. These composite alignments of volcanoes, calderas, shields, vents, heads of valley networks and massifs between the equatorial regions and the southern polar region define twelve different lines, fitted by rhumb lines (loxodromes), that I propose to be the traces of mantle plumes. The morphology of the volcanic centres changes along some of the alignments suggesting different processes of magma emplacement and eruptive style. The diameters of the volcanic centres and of the volcanic provinces are largest at Tharsis and Elysium, directly proportional to the number of alignments starting from them. A minor presence of unaligned volcanic features is observed on the northern lowlands and on the highlands outside the 12 major alignments. The heads of channels commonly interpreted as fluvial valleys are aligned with the other volcanic centres; unaltered olivine is present along their bed-floors, raising severe doubts as to their aqueous origin. Several hypotheses have tried to explain the formation of Tharsis with the migration of a single mantle plume under the Martian lithosphere, but the discovery of twelve alignments, six starting from Tharsis, favours the hypothesis of several mantle plumes as predicted by the model of the Southern Polar Giant Impact (SPGI) and provides a new view on the formation of the volcanic provinces of Mars.

  18. Tidal modulation on the Changjiang River plume in summer

    NASA Astrophysics Data System (ADS)

    WU, H.

    2011-12-01

    Tide effects on the structure of the near-field Changjiang River Plume and on the extension of the far-field plume have often been neglected in analysis and numerical simulations, which is the focus of this study. Numerical experiments highlighted the crucial role of the tidal forcing in modulating the Changjiang River plume. Without the tidal forcing, the plume results in an unrealistic upstream extension along the Jiangsu Coast. With the tidal forcing, the vertical mixing increases, resulting in a strong horizontal salinity gradient at the northern side of the Changjiang River mouth along the Jiangsu Coast, which acts as a dynamic barrier and restricts the northward migration of the plume. Furthermore, the tidal forcing produces a bi-directional plume structure in the near field and the plume separation is located at the head of the submarine canyon. A significant bulge occurs around the head of submarine canyon and rotates anticyclonically, which carries large portion of the diluted water towards the northeast and merges into the far-field plume. A portion of the diluted water moves towards the southeast, which is mainly caused by tidal ratification. This bi-directional plume structure is more evident under certain wind condition. During the neap tide with the reduced tidal energy, the near-field plume extends farther offshore and the bulge becomes less evident. These dynamic behaviors are maintained and fundamentally important in the region around the river mouth even under the summer monsoon and the shelf currents, although in the far field the wind forcing and shelf currents eventually dominate the plume extension.
    H. Wu

  19. Mantle plume capture, anchoring, and outflow during Galápagos plume-ridge interaction

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Geist, D. J.; Richards, M. A.

    2015-05-01

    Compositions of basalts erupted between the main zone of Galápagos plume upwelling and adjacent Galápagos Spreading Center (GSC) provide important constraints on dynamic processes involved in transfer of deep-mantle-sourced material to mid-ocean ridges. We examine recent basalts from central and northeast Galápagos including some that have less radiogenic Sr, Nd, and Pb isotopic compositions than plume-influenced basalts (E-MORB) from the nearby ridge. We show that the location of E-MORB, greatest crustal thickness, and elevated topography on the GSC correlates with a confined zone of low-velocity, high-temperature mantle connecting the plume stem and ridge at depths of ˜100 km. At this site on the ridge, plume-driven upwelling involving deep melting of partially dehydrated, recycled ancient oceanic crust, plus plate-limited shallow melting of anhydrous peridotite, generate E-MORB and larger amounts of melt than elsewhere on the GSC. The first-order control on plume stem to ridge flow is rheological rather than gravitational, and strongly influenced by flow regimes initiated when the plume was on axis (>5 Ma). During subsequent northeast ridge migration material upwelling in the plume stem appears to have remained "anchored" to a contact point on the GSC. This deep, confined NE plume stem-to-ridge flow occurs via a network of melt channels, embedded within the normal spreading and advection of plume material beneath the Nazca plate, and coincides with locations of historic volcanism. Our observations require a more dynamically complex model than proposed by most studies, which rely on radial solid-state outflow of heterogeneous plume material to the ridge.

  20. Dynamics of a vertical turbulent plume in a stratification typical of Greenland fjords: an idealized model of subglacial discharge

    NASA Astrophysics Data System (ADS)

    Stenberg, Erik; Ezhova, Ekaterina; Cenedese, Claudia; Brandt, Luca

    2017-04-01

    We the report results of large eddy simulations of a turbulent buoyant plume in a configuration providing an idealized model of subglacial discharge from a submarine glacier in stratifications typical of Greenland Fjords. We neglect a horizontal momentum of the plume and assume that its influence on the plume dynamics is small and important only close to the source. Moreover, idealized models have considered the plume adjacent to the glacier as a half-conical plume (e.g., [1]). Thus, to compare the results for such plume with the classical plume theory, developed for free plumes entraining ambient fluid from all directions, it is convenient to add the second half-conical part and consider a free plume with double the total discharge as a model. Given the estimate of the total subglacial discharge for Helheim Glacier in Sermilik Fjord [2], we perform simulations with double the total discharge in order to investigate the dynamics of the flow in typical winter and summer stratifications in Greenland fjords [3]. The plume is discharged from a round source of various diameters. In winter, when the stratification is similar to an idealised two-layers case, turbulent entrainment and generation of internal waves by the plume top are in agreement with the theoretical and numerical results obtained for turbulent jets in a two-layer stratification. In summer, instead, the stratification is more complex and turbulent entrainment is significantly reduced. The subsurface layer in summer is characterized by a strong density gradient and the oscillating plume generates non-linear internal waves which are able to mix this layer even if the plume does not penetrate to the surface. The classical theory for the integral parameters of a turbulent plume in a homogeneous fluid gives accurate predictions of the plume parameters in the weakly stratified lower layer up to the pycnocline. [1] Mankoff, K. D., F. Straneo, C. Cenedese, S. B. Das, C. D. Richards, and H. Singh, 2016: Structure and dynamics of a subglacial discharge plume in a Greenland Fjord. J. Geophys. Res., 121, doi:10.1002/2016JC011764. [2] Sciascia, R., F. Straneo, C. Cenedese, and P. Heimbach, 2013: Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res., 118, 2492-2506. [3] Straneo, F., R. Curry, D. Sutherland, G. Hamilton, C. Cenedese, K. Vage, and L. Stearns, 2011: Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nature Geosci., 4, 322-327.

  1. Rheology Gradients at the Base of the Lithosphere and the Stabilization of Deep Mantle Plumes in Stagnant-Lid Planets

    NASA Astrophysics Data System (ADS)

    King, S. D.

    2017-12-01

    In high-Rayleigh-number, spherical-shell convection, such as one expects to find in the interiors of large silicate planetary bodies, plumes will migrate unless they are anchored to fixed structures. Within the Earth LLSVPs or core-mantle boundary topography have been proposed to anchor deep mantle plumes, fixing the location of hotspots. The relative stability of volcanic features on Mars and Venus, which are thought to be related to mantle plumes, have not be satisfactorily explained. Thus, it is surprising to see high-Rayleigh-number, stagnant-lid, spherical-shell convection calculations where plumes seeded by the structure of the initial condition persist in a stable configuration for more than 1 Gyr. By comparing calculations with a fixed lithospheric rheology structure with a lithosphere rheology determined by temperature and pressure, I show that in these calculations, topography on the base of the stagnant lid (i.e., the lithosphere-asthenosphere boundary) is responsible for the spatial stability of the plumes. If there is symmetry in the plume distribution, this symmetry can prevent the lithosphere becoming unstable and overturning, leading to a significantly over-thickened lithosphere relative to predictions based on scaling laws. This is confirmed by considering an identical calculation where the symmetry in the plume distribution is broken. I discuss geological and geophysical implications for planetary bodies resulting of long-lived, stable, mantle structures.

  2. Influence of the Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic

    NASA Astrophysics Data System (ADS)

    Goes, Joaquim I.; Gomes, Helga do Rosario; Chekalyuk, Alexander M.; Carpenter, Edward J.; Montoya, Joseph P.; Coles, Victoria J.; Yager, Patricia L.; Berelson, William M.; Capone, Douglas G.; Foster, Rachel A.; Steinberg, Deborah K.; Subramaniam, Ajit; Hafez, Mark A.

    2014-01-01

    An Advanced Laser Fluorometer (ALF) capable of discriminating several phytoplankton pigment types was utilized in conjunction with microscopic data to map the distribution of phytoplankton communities in the Amazon River plume in May-June-2010, when discharge from the river was at its peak. Cluster analysis and Non-metric Multi-Dimensional Scaling (NMDS) helped distinguish three distinct biological communities that separated largely on the basis of salinity gradients across the plume. These three communities included an "estuarine type" comprised of a high biomass mixed population of diatoms, cryptophytes and green-water Synechococcus spp. located upstream of the plume, a "mesohaline type" made up largely of communities of Diatom-Diazotroph Associations (DDAs) and located in the northwestern region of the plume and an "oceanic type" in the oligotrophic waters outside of the plume made up of Trichodesmium and Synechococcus spp. Although salinity appeared to have a substantial influence on the distribution of different phytoplankton groups, ALF and microscopic measurements examined in the context of the hydro-chemical environment of the river plume, helped establish that the phytoplankton community structure and distribution were strongly controlled by inorganic nitrate plus nitrite (NO3 + NO2) availability whose concentrations were low throughout the plume. Towards the southern, low-salinity region of the plume, NO3 + NO2 supplied by the onshore flow of subsurface (∼80 m depth) water, ensured the continuous sustenance of the mixed phytoplankton bloom. The large drawdown of SiO3 and PO4 associated with this "estuarine type" mixed bloom at a magnitude comparable to that observed for DDAs in the mesohaline waters, leads us to contend that, diatoms, cryptophytes and Synechococcus spp., fueled by the offshore influx of nutrients also play an important role in the cycling of nutrients in the Amazon River plume.

  3. Treatment of Chlorinated Solvents in Groundwater Beneath an Occupied Building at the Young-Rainey STAR Center, Pinellas, FL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, Joe; Surovchak, Scott; Tabor, Charles

    Groundwater contamination, consisting of two dissolved-phase plumes originating from chlorinated solvent source areas, in the southeastern portion of the Young- Rainey Star Center (also known as the Pinellas County, Florida, Site) in Largo, Florida, has migrated beyond the property boundary, beneath the roadways, and beneath adjacent properties to the south and east. Groundwater contamination will persist as long as the onsite contaminant source remains. The origin of the contamination appears to be multiple long-term point sources beneath Building 100, a 4.5 ha (11 acre) building that housed manufacturing facilities during US DOE operations at the site. The site is nowmore » owned by Pinellas County, and most of the space inside the building is leased to private companies, so DOE chose not to conduct characterization or remediation through the floor of the building, instead choosing to conduct all work from outside the building. Injection of emulsified soybean oil and a microbial culture has been used at other areas of the site to accelerate naturally occurring bacterial processes that degrade groundwater contaminants to harmless compounds, and that same approach was chosen for this task. The technical approach consisted of installing horizontal wells from outside the building footprint, extending through and around the identified subsurface treatment areas, and terminating beneath the building. Two 107 m (350 ft) long wells, two 122 m (400 ft) long wells, and four 137 m (450 ft) long wells have been installed to intersect the inferred source areas and confirmed contaminant plumes beneath the building. DOE then injected emulsified vegetable oil and a microbial culture into the horizontal wells at each of several target areas beneath the building where the highest groundwater contaminant concentrations have been detected. The target areas are the northwest corner of the building between the old drum storage pad locations and monitoring well PIN12-S35B, the vicinity of former monitoring well PIN12-S57B, and hydraulically upgradient from the south plume and the east plume at the points where they exit from beneath the building. We describe the details of designing and constructing horizontal injection wells for bioremediation beneath a large, occupied industrial production facility, including lessons learned; technical, logistical, and environmental challenges; community relations; and regulatory relations. Because of the expected lag in biological acclimation and response, distance between the treatment areas and associated monitoring points, and low groundwater velocity, it will likely be years before the full impact of the project will be realized.« less

  4. Reconnaissance gas measurements on the East Rift Zone of Kilauea Volcano, Hawai'i by Fourier transform infrared spectroscopy

    USGS Publications Warehouse

    McGee, Kenneth A.; Elias, Tamar; Sutton, A. Jefferson; Doukas, Michael P.; Zemek, Peter G.; Gerlach, Terrence M.

    2005-01-01

    We report the results of a set of measurements of volcanic gases on two small ground level plumes in the vicinity of Pu`u `O`o cone on the middle East Rift Zone (ERZ) of Kilauea volcano, Hawai`i on 15 June 2001 using open-path Fourier transform infrared (FTIR) spectroscopy. The work was carried out as a reconnaissance survey to assess the monitoring and research value of FTIR measurements at this volcano. Despite representing emissions of residual volatiles from lava that has undergone prior degassing, the plumes contained detectable amounts of CO2, CO, SO2, HCl, HF and SiF4. Various processes, including subsurface cooling, condensation of water in the atmospheric plume, oxidation, dissolution in water, and reactions with wall rocks at plume vents affect the abundance of these gases. Low concentrations of volcanic CO2 measured against a high ambient background are not well constrained by FTIR spectroscopy. Although there appear to be some differences between these gases and Pu`u `O`o source gases, ratios of HCl/SO2, HF/SO2 and CO/SO2 determined by FTIR measurements of these two small plumes compare reasonably well with earlier published analyses of ERZ vent samples. The measurements yielded emission rate estimates of 4, 11 and 4 t d-1

  5. Spatial Variability in Enceladus' Plume Material Properties across Tiger Stripes: Observed Correlations and Implications

    NASA Astrophysics Data System (ADS)

    Dhingra, D.; Hedman, M. M.; Clark, R. N.; Postberg, F.

    2016-12-01

    The plume material emerging from Enceladus' south-pole has contributions from many sources distributed along four distinct fissures designated as Alexandria, Cairo, Baghdad and Damascus. In principle, the properties of the material escaping into the plume would depend upon the conditions within these individual fissures. Therefore, the particles emitted from different sources could have different properties. Indeed, observations made by the Visual and Infrared Mapping Spectrometer (VIMS) and Cosmic Dust Analyzer (CDA) instruments indicate differences in the water-ice grain sizes and abundance of organic-rich particles along the various fissures. These differences can be detected in both the plume surface deposits around the fissures [e.g. Brown et al., 2006; Jaumann et al, 2008] as well as in the active plume eruptions [Postberg et al., 2011; Dhingra et al., 2015, 2016]. Furthermore, these variations may represent systematic trends in particle size and organic content across the south polar terrain. We are analyzing these spatial correlations between different parameters and what they mean for the sub-surface environment in the active south polar terrain of Enceladus. Brown et al. (2006) Science, 311, 1425-1428Dhingra at al. (2015) 46th Lunar Planet. Sci. Conf., Abst#1648Dhingra et al. (2016) Icarus, under reviewJaumann et al. (2008) Icarus, 193, 407-419Postberg et al. (2011) Nature, 474, 620-622

  6. Limited-memory BFGS based least-squares pre-stack Kirchhoff depth migration

    NASA Astrophysics Data System (ADS)

    Wu, Shaojiang; Wang, Yibo; Zheng, Yikang; Chang, Xu

    2015-08-01

    Least-squares migration (LSM) is a linearized inversion technique for subsurface reflectivity estimation. Compared to conventional migration algorithms, it can improve spatial resolution significantly with a few iterative calculations. There are three key steps in LSM, (1) calculate data residuals between observed data and demigrated data using the inverted reflectivity model; (2) migrate data residuals to form reflectivity gradient and (3) update reflectivity model using optimization methods. In order to obtain an accurate and high-resolution inversion result, the good estimation of inverse Hessian matrix plays a crucial role. However, due to the large size of Hessian matrix, the inverse matrix calculation is always a tough task. The limited-memory BFGS (L-BFGS) method can evaluate the Hessian matrix indirectly using a limited amount of computer memory which only maintains a history of the past m gradients (often m < 10). We combine the L-BFGS method with least-squares pre-stack Kirchhoff depth migration. Then, we validate the introduced approach by the 2-D Marmousi synthetic data set and a 2-D marine data set. The results show that the introduced method can effectively obtain reflectivity model and has a faster convergence rate with two comparison gradient methods. It might be significant for general complex subsurface imaging.

  7. Simple dielectric mixing model in the monitoring of CO2 leakage from geological storage aquifer

    NASA Astrophysics Data System (ADS)

    Abidoye, L. K.; Bello, A. A.

    2017-03-01

    The principle of the dielectric mixing for multiphase systems in porous media has been employed to investigate CO2-water-porous media system and monitor the leakage of CO2, in analogy to scenarios that can be encountered in geological carbon sequestration. A dielectric mixing model was used to relate the relative permittivity for different subsurface materials connected with the geological carbon sequestration. The model was used to assess CO2 leakage and its upward migration, under the influences of the depth-dependent characteristics of the subsurface media as well as the fault-connected aquifers. The results showed that for the upward migration of CO2 in the subsurface, the change in the bulk relative permittivity (εb) of the CO2-water-porous media system clearly depicts the leakage and movement of CO2, especially at depth shallower than 800 m. At higher depth, with higher pressure and temperature, the relative permittivity of CO2 increases with pressure, while that of water decreases with temperature. These characteristics of water and supercritical CO2, combine to limit the change in the εb, at higher depth. Furthermore, it was noted that if the pore water was not displaced by the migrating CO2, the presence of CO2 in the system increases the εb. But, with the displacement of pore water by the migrating CO2, it was shown how the εb profile decreases with time. Owing to its relative simplicity, composite dielectric behaviour of multiphase materials can be effectively deployed for monitoring and enhancement of control of CO2 movement in the geological carbon sequestration.

  8. Authigenic carbon entombed in methane-soaked sediments from the northeastern transform margin of the Guaymas Basin, Gulf of California

    NASA Astrophysics Data System (ADS)

    Paull, Charles K.; Ussler, William; Peltzer, Edward T.; Brewer, Peter G.; Keaten, Rendy; Mitts, Patrick J.; Nealon, Jeffrey W.; Greinert, Jens; Herguera, Juan-Carlos; Elena Perez, M.

    2007-06-01

    Extensive ROV-based sampling and exploration of the seafloor was conducted along an eroded transform-parallel fault scarp on the northeastern side of the Guaymas Basin in the Gulf of California to observe the nature of fluids venting from the seafloor, measure the record left by methane-venting on the carbonates from this area, and determine the association with gas hydrate. One gas vent vigorous enough to generate a water-column gas plume traceable for over 800 m above the seafloor was found to emanate from a ˜10-cm-wide orifice on the eroded scarp face. Sediment temperature measurements and topography on a sub-bottom reflector recorded in a transform-parallel seismic reflection profile identified a subsurface thermal anomaly beneath the gas vent. Active chemosynthetic biological communities (CBCs) and extensive authigenic carbonates that coalesce into distinct chemoherm structures were encountered elsewhere along the eroded transform-parallel scarp. The carbon isotopic composition of methane bubbles flowing vigorously from the gas vent (-53.6±0.8‰ PDB) is comparable to methane found in sediment cores taken within the CBCs distributed along the scarp (-51.9±8.1‰ PDB). However, the δ13C value of the CO 2 in the vent gas (+12.4±1.1‰ PDB) is very distinct from those for dissolved inorganic carbon (DIC) (-35.8‰ to -2.9‰ PDB) found elsewhere along the scarp, including underneath CBCs. The δ13C values of the carbonate-rich sediments and rocks exposed on the seafloor today also span an unusually large range (-40.9‰ to +12.9‰ PDB) and suggest two distinct populations of authigenic carbonate materials were sampled. Unconsolidated sediments and some carbonate rocks, which have lithologic evidence for near-seafloor formation, have negative δ13C values, while carbonate rocks that clearly formed in the subsurface have positive δ13C values (up to +23.0‰) close to that measured for CO 2 in the vent gas. There appears to be two carbon sources for the authigenic carbonates: (1) deeply-sourced, isotopically heavy CO 2 (˜+12‰); and (2) isotopically light DIC derived from local anaerobic oxidation of methane at the sulfate-methane interface in the shallow subsurface. Addition of isotopically light methane-derived carbon at the seafloor may completely mask the isotopically heavy CO 2 signature (+12.4‰) in the underlying sediments. Thus, the authigenic carbonates may have formed from the same methane- and carbon dioxide-bearing fluid, but under different migration and alteration conditions, depending on how it migrated through the sediment column.

  9. Imaging lateral groundwater flow in the shallow subsurface using stochastic temperature fields

    NASA Astrophysics Data System (ADS)

    Fairley, Jerry P.; Nicholson, Kirsten N.

    2006-04-01

    Although temperature has often been used as an indication of vertical groundwater movement, its usefulness for identifying horizontal fluid flow has been limited by the difficulty of obtaining sufficient data to draw defensible conclusions. Here we use stochastic simulation to develop a high-resolution image of fluid temperatures in the shallow subsurface at Borax Lake, Oregon. The temperature field inferred from the geostatistical simulations clearly shows geothermal fluids discharging from a group of fault-controlled hydrothermal springs, moving laterally through the subsurface, and mixing with shallow subsurface flow originating from nearby Borax Lake. This interpretation of the data is supported by independent geochemical and isotopic evidence, which show a simple mixing trend between Borax Lake water and discharge from the thermal springs. It is generally agreed that stochastic simulation can be a useful tool for extracting information from complex and/or noisy data and, although not appropriate in all situations, geostatistical analysis may provide good definition of flow paths in the shallow subsurface. Although stochastic imaging techniques are well known in problems involving transport of species, e.g. delineation of contaminant plumes from soil gas survey data, we are unaware of previous applications to the transport of thermal energy for the purpose of inferring shallow groundwater flow.

  10. Simulation of Europa's water plume .

    NASA Astrophysics Data System (ADS)

    Lucchetti, A.; Cremonese, G.; Schneider, N. M.; Plainaki, C.; Mazzotta Epifani, E.; Zusi, M.; Palumbo, P.

    Plumes on Europa would be extremely interesting science and mission targets, particularly due to the unique opportunity to obtain direct information on the subsurface composition, thereby addressing Europa's potential habitability. The existence of water plume on the Jupiter's moon Europa has been long speculated until the recent discover. HST imaged surpluses of hydrogen Lyman alpha and oxygen emissions above the southern hemisphere in December 2012 that are consistent with two 200 km high plumes of water vapor (Roth et al. 2013). In previous works ballistic cryovolcanism has been considered and modeled as a possible mechanism for the formation of low-albedo features on Europa's surface (Fagents et al. 2000). Our simulation agrees with the model of Fagents et al. (2000) and consists of icy particles that follow ballistic trajectories. The goal of such an analysis is to define the height, the distribution and the extension of the icy particles falling on the moon's surface as well as the thickness of the deposited layer. We expect to observe high albedo regions in contrast with the background albedo of Europa surface since we consider that material falling after a cryovolcanic plume consists of snow. In order to understand if this phenomenon is detectable we convert the particles deposit in a pixel image of albedo data. We consider also the limb view of the plume because, even if this detection requires optimal viewing geometry, it is easier detectable in principle against sky. Furthermore, we are studying the loss rates due to impact electron dissociation and ionization to understand how these reactions decrease the intensity of the phenomenon. We expect to obtain constraints on imaging requirements necessary to detect potential plumes that could be useful for ESA's JUICE mission, and in particular for the JANUS camera (Palumbo et al. 2014).

  11. Numerical investigation of road salt impact on an urban wellfield.

    PubMed

    Bester, M L; Frind, E O; Molson, J W; Rudolph, D L

    2006-01-01

    The impact of road salt on a wellfield in a complex glacial moraine aquifer system is studied by numerical simulation. The moraine underlies an extensive urban and industrial landscape, which draws its water supply from >20 wellfields, several of which are approaching or have exceeded the drinking water limit for chloride. The study investigates the mechanisms of road salt infiltration, storage, and transport in the subsurface and assesses the effectiveness of mitigation measures designed to reduce the impact. The three-dimensional transport model accounts for increases in salt loading, as well as growth of the urbanized area and road network over the past 50 years. The simulations, which focus on one impacted wellfield, show chloride plumes originating mainly at arterial roads and migrating through aquitard windows into the water supply aquifers. The results suggest that the aquifer system contains a large and heterogeneously distributed mass of chloride and that concentrations in the aquifer can be substantially higher than the concentrations in the well water. Future impact scenarios indicate that although the system responds rapidly to reductions in salt loading, the residual chloride mass may take decades to flush out, even if road salting were discontinued. The implications with respect to urban wellfields in typical snow-belt areas are discussed.

  12. Bio-Physical Coupling of Seabirds and Prey with a Dynamic River Plume

    NASA Astrophysics Data System (ADS)

    Phillips, E. M.; Horne, J. K.; Zamon, J. E.; Adams, J.

    2016-02-01

    Freshwater plumes and plume density fronts are important regions of bio-physical coupling. On the west coast of North America, discharge from the Columbia River into the northern California Current creates a large, dynamic plume and multiple plume fronts. These nutrient-rich, productive waters fuel primary and secondary production, supporting a wide variety of small pelagic prey fish, large populations of Pacific salmon, seabirds, and marine mammals. To determine the influence of the Columbia River plume on marine predators, we analyzed at-sea seabird counts, in situ environmental data, surface trawl densities of prey fish, and acoustic backscatter measurements collected from research vessels in May and June 2010-2012. Concurrent distribution patterns of satellite-tagged sooty shearwaters (Puffinus griseus) and common murres (Uria aalge) were compared with seabird counts from ship surveys. To evaluate plume use by satellite-tagged birds, daily surface salinity values from SELFE hindcast models were extracted at each tag location. Both seabird species occurred in plume waters disproportionate to the total surveyed area, concentrating in the river plume when river flow and plume volume decreased. Murres were consistently within 20 km of the geographic mean center of the river plume. In contrast, shearwaters consistently occurred 100 km to the north of the plume center, where high densities of prey fish occur. Although acoustically detected prey also occurred in greater densities within the plume when volume decreased, surface catches of prey in the plume did not vary with changing plume conditions. Geographic indices of colocation (GIC) were low between murres and prey species caught in surface trawls, whereas GICs were >0.5 between shearwaters and prey species including squid (Loligo opalescens), juvenile Chinook salmon (Oncorhynchus tshawytscha), and coho (O. kisutch) salmon. We conclude that the river plume and associated fronts are identifiable, predictable, and persistent physical features that foraging seabirds track to maximize prey encounter rates. Given projected changes in flow regimes related to climate change, our results suggest that seabird use of the river plume may have significant impacts on anadromous salmonid species, which use the plume to migrate to the ocean.

  13. The Value of Information: Assessing the Ability of Electrical Resistivity to Detect CO2 Leakage in a Shallow Aquifer

    NASA Astrophysics Data System (ADS)

    Trainor Guitton, W. J.; Yang, X.; Mansoor, K.; Ramirez, A. L.; Sun, Y.; Carroll, S.

    2012-12-01

    This study demonstrates a methodology for evaluating the value of electrical resistivity data to detect CO2 leakage in a shallow groundwater aquifer. This methodology adopts the value of information (VOI) metric from the field of decision analysis. We consider a stakeholder's decision of whether or not to remediate the aquifer, given that they are uncertain whether or not a CO2 leak has occurred from a deep storage source through a well-bore into the shallow aquifer and what the impact of that leak would be. Two themes of uncertainty are needed for VOI studies. The first is related to the uncertain state of the subsurface, which is directly related to the outcome of the decision. In our example, it is uncertain whether or not the shallow groundwater has been impacted by CO2 leakage. The impact may be determined by the existence of depressed pH or elevated TDS (total dissolved solids) plume. We utilize results from a previous work that investigated uncertainty quantification of spatial heterogeneity and leakage rates (Mansoor et al, 2011). Therefore, we have a comprehensive suite of 713 simulations that represent our uncertainty regarding the existence and extent of a CO2 plume. Given certain TDS and pH thresholds, the simulations are categorized into two groups: impacted (a plume exists) or not impacted (no plume) at time=50 years. The second theme is related to the information's accuracy to inform us about the existence of a plume (e.g. the state of the subsurface directly relevant to the decision). The uncertainty of the information is measured by the data likelihood and is used to determine the value of imperfect information. For this demonstration, we consider how electrical resistivity data can detect the existence of pH plumes (due to the dissolution of CO2) and TDS (due to the accompanying brine leakage). The pH and TDS output from the 713 simulations are used to determine the electrical resistivity at time = 0 and time=50 years. An empirical method is used to compare the time=0 and time=50 resistivities: the geometric log mean ratio (GLMR) of the 2 data sets is calculated (Daily et al, 2004). This requires only the forward response be calculated at the 2 different times. The GLMR is used as a sensitivity measure, representing how much the electrical resistivity would change given the conditions of the aquifer. The likelihood of electrical resistivity to detect the presence of a plume is estimated by comparing the GLMR and the category (plume or no plume) for all the 713 simulations. Electrical resistivity forward models were calculated for two acquisition configurations: surface electrodes only and surface-to-borehole. For the surface acquisition, a GLMR >0.05 exclusively identifies impacted simulations. Whereas GLMR <0.05 give a more ambiguous message: both simulations that are impacted and not have GMLR<0.05. The degree of this ambiguity changes with different definitions of the plume (i.e. pH and TDS thresholds). Surface-to-borehole forward models were performed for a borehole located 200m from the leaky well. Results show that surface-to-borehole resistivity data is more reliable at distinguishing between impacted and non-impacted simulations, and therefore the VOI is higher than for surface electrodes alone. Prepared by LLNL under Contract No. DE-AC52-07NA27344.

  14. System for the removal of contaminant soil-gas vapors

    DOEpatents

    Weidner, Jerry R.; Downs, Wayne C.; Kaser, Timothy G.; Hall, H. James

    1997-01-01

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.

  15. System for the removal of contaminant soil-gas vapors

    DOEpatents

    Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

    1997-12-16

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

  16. The Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFC Focused on Hanford’s 300 Area Uranium Plume Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    The purpose of the project is to conduct research at an Integrated Field-Scale Research Challenge Site in the Hanford Site 300 Area, CERCLA OU 300-FF-5 (Figure 1), to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The project will investigate a series of science questions posed for research related to the effect of spatial heterogeneities, the importance of scale, coupled interactions between biogeochemical, hydrologic, and mass transfer processes, and measurements/approaches needed to characterize a mass-transfer dominated system. The research will be conducted by evaluating three (3) different hypotheses focused onmore » multi-scale mass transfer processes in the vadose zone and groundwater, their influence on field-scale U(VI) biogeochemistry and transport, and their implications to natural systems and remediation. The project also includes goals to 1) provide relevant materials and field experimental opportunities for other ERSD researchers and 2) generate a lasting, accessible, and high-quality field experimental database that can be used by the scientific community for testing and validation of new conceptual and numerical models of subsurface reactive transport.« less

  17. Hydrocarbon Plume Dynamics in the Worldś Most Spectacular Hydrocarbon Seeps, Santa Barbara Channel, California

    NASA Astrophysics Data System (ADS)

    Mau, S.; Reed, J.; Clark, J.; Valentine, D.

    2006-12-01

    Large quantities of natural gas are emitted from the seafloor into the coastal ocean near Coal Oil Point, Santa Barbara Channel (SBC), California. Methane, ethane, and propane were quantified in the surface water at 79 stations in a 270 km2 area in order to map the surficial hydrocarbon plume and to quantify air-sea exchange of these gases. A time series was initiated for 14 stations to identify the variability of the mapped plume, and biologically-mediated oxidation rates of methane were measured to quantify the loss of methane in surface water. The hydrocarbon plume was found to comprise ~70 km2 and extended beyond study area. The plume width narrowed from 3 km near the source to 0.7 km further from the source, and then expanded to 6.7 km at the edge of the study area. This pattern matches the cyclonic gyre which is the normal current flow in this part of the Santa Barbara Channel - pushing water to the shore near the seep field and then broadening the plume while the water turns offshore further from the source. Concentrations of gaseous hydrocarbons decrease as the plume migrates. Time series sampling shows similar plume width and hydrocarbon concentrations when normal current conditions prevail. In contrast, smaller plume width and low hydrocarbon concentrations were observed when an additional anticyclonic eddy reversed the normal current flow, and a much broader plume with higher hydrocarbon concentrations was observed during a time of diminished speed within the current gyre. These results demonstrate that surface currents control hydrocarbon plume dynamics in the SBC, though hydrocarbon flux to the atmosphere is likely less dependent on currents. Estimates of air- sea hydrocarbon flux and biological oxidation rates will also be presented.

  18. Physiological considerations in applying laboratory-determined buoyant densities to predictions of bacterial and protozoan transport in groundwater: Results of in-situ and laboratory tests

    USGS Publications Warehouse

    Harvey, R.W.; Metge, D.W.; Kinner, N.; Mayberry, N.

    1997-01-01

    Buoyant densities were determined for groundwater bacteria and microflagellates (protozoa) from a sandy aquifer (Cape Cod, MA) using two methods: (1) density-gradient centrifugation (DGC) and (2) Stoke's law approximations using sedimentation rates observed during natural-gradient injection and recovery tests. The dwarf (average cell size, 0.3 ??m), unattached bacteria inhabiting a pristine zone just beneath the water table and a majority (~80%) of the morphologically diverse community of free- living bacteria inhabiting a 5-km-long plume of organically-contaminated groundwater had DGC-determined buoyant densities <1.019 g/cm3 before culturing. In the aquifer, sinking rates for the uncultured 2-??m size class of contaminant plume bacteria were comparable to that of the bromide tracer (1.9 x 10-3 M), also suggesting a low buoyant density. Culturing groundwater bacteria resulted in larger (0.8-1.3 ??m), less neutrally- buoyant (1.043-1.081 g/cm3) cells with potential sedimentation rates up to 64-fold higher than those predicted for the uncultured populations. Although sedimentation generally could be neglected in predicting subsurface transport for the community of free-living groundwater bacteria, it appeared to be important for the cultured isolates, at least until they readapt to aquifer conditions. Culturing-induced alterations in size of the contaminant-plume microflagellates (2-3 ??m) were ameliorated by using a lower nutrient, acidic (pH 5) porous growth medium. Buoyant densities of the cultured microflagellates were low, i.e., 1.024-1.034 g/cm3 (using the DGC assay) and 1.017-1.039 g/cm3 (estimated from in-situ sedimentation rates), suggesting good potential for subsurface transport under favorable conditions.

  19. Infiltration from an impoundment for coal‐bed natural gas, Powder River Basin, Wyoming: Evolution of water and sediment chemistry

    USGS Publications Warehouse

    Healy, Richard W.; Rice, Cynthia A.; Bartos, Timothy T.; P. McKinley, Michael

    2008-01-01

    Development of coal‐bed natural gas (CBNG) in the Powder River Basin, Wyoming, has increased substantially in recent years. Among environmental concerns associated with this development is the fate of groundwater removed with the gas. A preferred water‐management option is storage in surface impoundments. As of January 2007, permits for more than 4000 impoundments had been issued within Wyoming. A study was conducted on changes in water and sediment chemistry as water from an impoundment infiltrated the subsurface. Sediment cores were collected prior to operation of the impoundment and after its closure and reclamation. Suction lysimeters were used to collect water samples from beneath the impoundment. Large amounts of chloride (12,300 kg) and nitrate (13,500 kg as N), most of which accumulated naturally in the sediments over thousands of years, were released into groundwater by infiltrating water. Nitrate was more readily flushed from the sediments than chloride. If sediments at other impoundment locations contain similar amounts of chloride and nitrate, impoundments already permitted could release over 48 × 106 kg of chloride and 52 × 106 kg of nitrate into groundwater in the basin. A solute plume with total dissolved solid (TDS) concentrations at times exceeding 100,000 mg/L was created in the subsurface. TDS concentrations in the plume were substantially greater than those in the CBNG water (about 2300 mg/L) and in the ambient shallow groundwater (about 8000 mg/L). Sulfate, sodium, and magnesium are the dominant ions in the plume. The elevated concentrations are attributed to cation‐exchange‐enhanced gypsum dissolution. As gypsum dissolves, calcium goes into solution and is exchanged for sodium and magnesium on clays. Removal of calcium from solution allows further gypsum dissolution.

  20. MeltMigrator: A MATLAB-based software for modeling three-dimensional melt migration and crustal thickness variations at mid-ocean ridges following a rules-based approach

    NASA Astrophysics Data System (ADS)

    Bai, Hailong; Montési, Laurent G. J.; Behn, Mark D.

    2017-01-01

    MeltMigrator is a MATLAB®-based melt migration software developed to process three-dimensional mantle temperature and velocity data from user-supplied numerical models of mid-ocean ridges, calculate melt production and melt migration trajectories in the mantle, estimate melt flux along plate boundaries, and predict crustal thickness distribution on the seafloor. MeltMigrator is also capable of calculating compositional evolution depending on the choice of petrologic melting model. Programmed in modules, MeltMigrator is highly customizable and can be expanded to a wide range of applications. We have applied it to complex mid-ocean ridge model settings, including transform faults, oblique segments, ridge migration, asymmetrical spreading, background mantle flow, and ridge-plume interaction. In this technical report, we include an example application to a segmented mid-ocean ridge. MeltMigrator is available as a supplement to this paper, and it is also available from GitHub and the University of Maryland Geodynamics Group website.

  1. Satellite tagging, remote sensing, and autonomous vehicles reveal interactions between physiology and environment in a North Pacific top marine predator species

    NASA Astrophysics Data System (ADS)

    Pelland, N.; Sterling, J.; Springer, A.; Iverson, S.; Johnson, D.; Lea, M. A.; Bond, N. A.; Ream, R.; Lee, C.; Eriksen, C.

    2016-02-01

    Behavioral responses by top marine predators to oceanographic features such as eddies, river plumes, storms, and coastal topography suggest that biophysical interactions in these zones affect predators' prey, foraging behaviors, and potentially fitness. However, examining these pathways is challenged by the obstacles inherent in obtaining simultaneous observations of surface and subsurface environmental fields and predator behavior. This work describes recent publications and ongoing studies of northern fur seal (NFS) foraging ecology during their 8-month migration. Satellite-tracked movement and dive behavior in the North Pacific ocean was compared to remotely sensed data, atmospheric reanalysis, autonomous in situ ocean sampling, and animal borne temperature and salinity data. Integration of these data demonstrates how reproductive fitness, physiology, and environment shape NFS migratory patterns. Seal mass correlates with dive ability and thus larger males exploit prey aggregating at the base of the winter mixed-layer depth in the Bering Sea and interior northern North Pacific Ocean. Smaller adult females migrate to the Gulf of Alaska and California Current ecosystems - where surface wind speeds decline, mixed-layer depths shoal, and coastal production is fueled by upwelling, coastal capes, and eddies - and less commonly to the Transitional Zone Chlorophyll Front, where fronts and eddies may concentrate prey. Surface wind speed and direction influence movement behavior of all age and size classes, though to a greater degree in the smaller pups and adult females than adult males. For naïve and physiologically less-capable pups, the timing and strength of autumn winds during migratory dispersal may play a role in shaping migratory routes and the environmental conditions faced by pups along these routes. In combination with other factors such as pup condition, this may play a role in interannual variations in overwinter survivorship.

  2. Emission of Methane and Heavier Alkanes From the La Brea Tar Pits Seepage Area, Los Angeles

    NASA Astrophysics Data System (ADS)

    Etiope, G.; Doezema, L. A.; Pacheco, C.

    2017-11-01

    Natural hydrocarbon (oil and gas) seeps are widespread in Los Angeles, California, due to gas migration, along faults, from numerous subsurface petroleum fields. These seeps may represent important natural contributors of methane (CH4) and heavier alkanes (C2-C4) to the atmosphere, in addition to anthropogenic fossil fuel and biogenic sources. We measured the CH4 flux by closed-chamber method from the La Brea Tar Pits park (0.1 km2), one of the largest seepage sites in Los Angeles. The gas seepage occurs throughout the park, not only from visible oil-asphalt seeps but also diffusely from the soil, affecting grass physiology. About 500 kg CH4 d-1 is emitted from the park, especially along a belt of enhanced degassing that corresponds to the 6th Street Fault. Additional emissions are from bubble plumes in the lake within the park (order of 102-103 kg d-1) and at the intersection of Wilshire Boulevard and Curson Avenue (>130 kg d-1), along the same fault. The investigated area has the highest natural gas flux measured thus far for any onshore seepage zone in the USA. Gas migration, oil biodegradation, and secondary methanogenesis altered the molecular composition of the original gas accumulated in the Salt Lake Oil Field (>300 m deep), leading to high C1/C2+ and i-butane/n-butane ratios. These molecular alterations can be important tracers of natural seepage and should be considered in the atmospheric modeling of the relative contribution of fossil fuel (anthropogenic fugitive emission and natural geologic sources) versus biogenic sources of methane, on local and global scales.

  3. Numerical simulation of seasonal heat storage in a contaminated shallow aquifer - Temperature influence on flow, transport and reaction processes

    NASA Astrophysics Data System (ADS)

    Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian

    2015-04-01

    The energy market in Germany currently faces a rapid transition from nuclear power and fossil fuels towards an increased production of energy from renewable resources like wind or solar power. In this context, seasonal heat storage in the shallow subsurface is becoming more and more important, particularly in urban regions with high population densities and thus high energy and heat demand. Besides the effects of increased or decreased groundwater and sediment temperatures on local and large-scale groundwater flow, transport, geochemistry and microbiology, an influence on subsurface contaminations, which may be present in the urban surbsurface, can be expected. Currently, concerns about negative impacts of temperature changes on groundwater quality are the main barrier for the approval of heat storage at or close to contaminated sites. The possible impacts of heat storage on subsurface contamination, however, have not been investigated in detail yet. Therefore, this work investigates the effects of a shallow seasonal heat storage on subsurface groundwater flow, transport and reaction processes in the presence of an organic contamination using numerical scenario simulations. A shallow groundwater aquifer is assumed, which consists of Pleistoscene sandy sediments typical for Northern Germany. The seasonal heat storage in these scenarios is performed through arrays of borehole heat exchangers (BHE), where different setups with 6 and 72 BHE, and temperatures during storage between 2°C and 70°C are analyzed. The developing heat plume in the aquifer interacts with a residual phase of a trichloroethene (TCE) contamination. The plume of dissolved TCE emitted from this source zone is degraded by reductive dechlorination through microbes present in the aquifer, which degrade TCE under anaerobic redox conditions to the degradation products dichloroethene, vinyl chloride and ethene. The temperature dependence of the microbial degradation activity of each degradation step is taken into account for the numerical simulations. Hence, the simulations are performed with the code OpenGeoSys, which is especially suited for simulating coupled thermal, hydraulic and geochemical processes. The scenario simulations show an increase in the source zone emission of TCE at higher temperatures, which is primarily due to the focusing of the groundwater flow in the area of higher temperatures within the source zone and to a lesser part to an increase in TCE solubility. On the other hand, a widening of the contaminant plume and enlargement of the area for TCE biodegradation is induced, which leads to an increase in biodegradation of the chlorinated hydrocarbons. In combination almost no change in the overall ratio of degraded to emitted TCE is found, which shows that the seasonal heat storage is not negatively influencing the present TCE contamination under these assumptions. The results of this work serve to support the risk assessment for the interaction between heat storage and contaminations in the shallow subsurface and show positive interactions as well as possible conflicts.

  4. Remedial Investigation/Feasibility Study (RI/FS) Report, David Global Communications Site. Volume 2

    DTIC Science & Technology

    1994-02-23

    adequately and prevent continued contamiuation of the groundwater. Groundwater containment systems would inhibit off-site migration of groundwater.) Response...and treatment would inhibit offsite movement of groundwater contamination and serve to remediate subsurface contamination to levels accepted by the...would inhibit oft-site migration of groundwater.) 3. xvii Glossar• of Terms Please define the following: anaerobic dohaloqenatiou - halogen

  5. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    PubMed

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Saturn Magnetospheric Impact on Surface Molecular Chemistry and Astrobiological Potential of Enceladus

    NASA Technical Reports Server (NTRS)

    Cooper, Paul D.; Cooper, John F.; Sittler, Edward C.; Burger, Matthew H.; Sturner, Steven J.; Rymer, Abigail M.

    2008-01-01

    The active south polar surface of Enceladus is exposed to strong chemical processing by direct interaction with charged plasma and energetic particles in the local magnetospheric environment of this icy moon. Chemical oxidation activity is suggested by detection of H202 at the surface in this region and less directly by substantial presence of C02, CO, and N2 in the plume gases. Molecular composition of the uppermost surface, including ejecta from plume activity, is radiolytically transformed mostly by penetrating energetic electrons with lesser effects from more depleted populations of energetic protons. The main sources of molecular plasma ions and E-ring dust grains in the magnetospheric environment are the cryovolcanic plume emissions from Enceladus. These molecular ions and the dust grains are chemically processed by magnetospheric interactions that further impact surface chemistry on return to Enceladus. For example, H20 neutrals dominating the emitted plume gas return to the surface mostly as H30+ ions after magnetospheric processing. Surface oxidant loading is further increased by return of radiolytically processed ice grains from the E-ring. Plume frost deposition and micrometeoroid gardening protect some fraction of newly produced molecular species from destruction by further irradiation. The evident horizontal and vertical mobility of surface ices in the south polar region drive mixing of these processed materials into the moon interior with potential impacts on deep ice molecular chemistry and plume gas production. Similarly as suggested previously for Europa, the externally driven source of radiolytic oxidants could affect evolution of life in any subsurface liquid water environments of Enceladus.

  7. Linearized inversion of multiple scattering seismic energy

    NASA Astrophysics Data System (ADS)

    Aldawood, Ali; Hoteit, Ibrahim; Zuberi, Mohammad

    2014-05-01

    Internal multiples deteriorate the quality of the migrated image obtained conventionally by imaging single scattering energy. So, imaging seismic data with the single-scattering assumption does not locate multiple bounces events in their actual subsurface positions. However, imaging internal multiples properly has the potential to enhance the migrated image because they illuminate zones in the subsurface that are poorly illuminated by single scattering energy such as nearly vertical faults. Standard migration of these multiples provides subsurface reflectivity distributions with low spatial resolution and migration artifacts due to the limited recording aperture, coarse sources and receivers sampling, and the band-limited nature of the source wavelet. The resultant image obtained by the adjoint operator is a smoothed depiction of the true subsurface reflectivity model and is heavily masked by migration artifacts and the source wavelet fingerprint that needs to be properly deconvolved. Hence, we proposed a linearized least-square inversion scheme to mitigate the effect of the migration artifacts, enhance the spatial resolution, and provide more accurate amplitude information when imaging internal multiples. The proposed algorithm uses the least-square image based on single-scattering assumption as a constraint to invert for the part of the image that is illuminated by internal scattering energy. Then, we posed the problem of imaging double-scattering energy as a least-square minimization problem that requires solving the normal equation of the following form: GTGv = GTd, (1) where G is a linearized forward modeling operator that predicts double-scattered seismic data. Also, GT is a linearized adjoint operator that image double-scattered seismic data. Gradient-based optimization algorithms solve this linear system. Hence, we used a quasi-Newton optimization technique to find the least-square minimizer. In this approach, an estimate of the Hessian matrix that contains curvature information is modified at every iteration by a low-rank update based on gradient changes at every step. At each iteration, the data residual is imaged using GT to determine the model update. Application of the linearized inversion to synthetic data to image a vertical fault plane demonstrate the effectiveness of this methodology to properly delineate the vertical fault plane and give better amplitude information than the standard migrated image using the adjoint operator that takes into account internal multiples. Thus, least-square imaging of multiple scattering enhances the spatial resolution of the events illuminated by internal scattering energy. It also deconvolves the source signature and helps remove the fingerprint of the acquisition geometry. The final image is obtained by the superposition of the least-square solution based on single scattering assumption and the least-square solution based on double scattering assumption.

  8. Transport of nitrogen in a treated-wastewater plume to coastal discharge areas, Ashumet Valley, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Barbaro, Jeffrey R.; Walter, Donald A.; LeBlanc, Denis R.

    2013-01-01

    Land disposal of treated wastewater from a treatment plant on the Massachusetts Military Reservation in operation from 1936 to 1995 has created a plume of contaminated groundwater that is migrating toward coastal discharge areas in the town of Falmouth, Massachusetts. To develop a better understanding of the potential impact of the treated-wastewater plume on coastal discharge areas, the U.S. Geological Survey, in cooperation with the Air Force Center for Engineering and the Environment, evaluated the fate of nitrogen (N) in the plume. Groundwater samples from two large sampling events in 1994 and 2007 were used to map the size and location of the plume, calculate the masses of nitrate-N and ammonium-N, evaluate changes in mass since cessation of disposal in 1995, and create a gridded dataset suitable for use in nitrogen-transport simulations. In 2007, the treated-wastewater plume was about 1,200 meters (m) wide, 30 m thick, and 7,700 m long and contained approximately 87,000 kilograms (kg) nitrate-N and 31,600 kg total ammonium-N. An analysis of previous studies and data from 1994 and 2007 sampling events suggests that most of biologically reactive nitrogen in the plume in 2007 will be transported to coastal discharge areas as either nitrate or ammonium with relatively little transformation to an environmentally nonreactive end product such as nitrogen gas. Nitrogen-transport simulations were conducted with a previously calibrated regional three-dimensional MODFLOW groundwater flow model. Mass-loaded particle tracking was used to simulate the advective transport of nitrogen to discharge areas (or receptors) along the coast. In the simulations, nonreactive transport (no mass loss in the aquifer) was assumed, providing an upper-end estimate of nitrogen loads to receptors. Simulations indicate that approximately 95 percent of the nitrate-N and 99 percent of the ammonium-N in the wastewater plume will eventually discharge to the Coonamessett River, Backus River, Green Pond, and Bournes River. Approximately 76 percent of the total nitrate-N mass in the plume will discharge to these receptors within 100 years of 2007; 90 and 94 percent will discharge within 200 and 500 years, respectively. Nitrate loads will peak within about 50 years at all of the major receptors. The highest peak loads will occur at the Coonamessett River (450 kg per year (kg/yr) nitrate-N) and the Backus River (350 kg/yr nitrate-N). Because of adsorption, travel times are longer for ammonium than for nitrate; approximately 5 percent of the total ammonium-N mass in the plume will discharge to receptors within 100 years; 46 and 81 percent will discharge within 200 and 500 years, respectively. The simulations indicate that the Coonamessett River will receive the largest cumulative nitrogen mass and the highest rate of discharge (load). Ongoing discharge to Ashumet Pond is relatively minor because most of the wastewater plume mass has already migrated downgradient from the pond. To evaluate the contribution of the nitrogen loads from the treated-wastewater plume to total nitrogen loads to the discharge areas, the simulated treated-wastewater plume loads were compared to steady-state nonpoint-source loads calculated by the Massachusetts Estuaries Project for 2005. Simulation results indicate that the total nitrogen loads from the treated-wastewater plume are much lower than corresponding steady-state nonpoint-source loads from the watersheds; peak plume loads are equal to 11 percent or less of the nonpoint-source loads.

  9. Gas Supersaturation May Reduce the Survival of Yearling Chinook Salmon in the Lower Columbia River and Ocean Plume

    NASA Technical Reports Server (NTRS)

    Brosnan, Ian; Welch, David; Scott, Melinda Jacobs

    2015-01-01

    Unusually high flows in the Columbia River in 2011 raised total dissolved gas (TDG) levels in the river above the 120 percent legal limit imposed to prevent harmful impacts to aquatic organisms. This provided a unique opportunity to evaluate the effect on smolt survival. In-river (IR) migrating juvenile yearling Chinook released at Bonneville Dam with acoustic tags during periods when TDG exceeded 120 percent received estimated maximum exposures of 134 TDG. Subsequent daily survival rates in the lower river and plume were reduced by 0.06 per day (SE equals 0.01) and 0.15 per day (SE equals 0.05) relative to IR migrant fish released when TDG was less than 120 percent. Transported smolts (T) released 10-13 kilometers below Bonneville Dam had lower maximum exposure levels (126 percent) and experienced no difference in daily survival rates relative to unexposed smolts. River temperature levels and trends in turbidity and disease prevalence between releases of high and low exposure smolts were not consistent with the observed effects on survival rates. We conclude that smolts may suffer from chronic effects of elevated TDG exposure while migrating through the Columbia River and plume. Consideration should be given to measuring these survival losses in an explicit experimental framework that isolates possible confounding factors.

  10. Assessment of Mitigation Systems on Vapor Intrusion ...

    EPA Pesticide Factsheets

    Vapor intrusion is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), in soil gas from the subsurface to indoor air. Vapor intrusion happens because there are pressure and concentration differentials between indoor air and soil gas. Indoor environments are often negatively pressurized with respect to outdoor air and soil gas (for example, from exhaust fans or the stack effect), and this pressure difference allows soil gas containing subsurface vapors to flow into indoor air through advection. In addition, concentration differentials cause VOCs and radon to migrate from areas of higher to lower concentrations through diffusion, which is another cause of vapor intrusion. Current practice for evaluating the vapor intrusion pathway involves a multiple line of evidence approach based on direct measurements in groundwater, external soil gas, subslab soil gas, and/or indoor air. No single line of evidence is considered definitive, and direct measurements of vapor intrusion can be costly, especially where significant spatial and temporal variability require repeated measurements at multiple locations to accurately assess the chronic risks of long-term exposure to volatile organic compounds (VOCs) like chloroform, perchloroethylene (PCE), and trichloroethylene (TCE).

  11. Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK

    NASA Astrophysics Data System (ADS)

    Parnell, John; Baba, Mas'ud; Bowden, Stephen; Muirhead, David

    2017-04-01

    Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK. John Parnell, Mas'ud Baba, Stephen Bowden, David Muirhead Subsurface biodegradation in current oil reservoirs is well established, but there are few examples of fossil subsurface degradation. Biomarker compositions of viscous and solid oil residues ('bitumen') in fractured Precambrian and other basement rocks below the Carboniferous cover in Shropshire, UK, show that they are variably biodegraded. High levels of 25-norhopanes imply that degradation occurred in the subsurface. Lower levels of 25-norhopanes occur in active seepages. Liquid oil trapped in fluid inclusions in mineral veins in the fractured basement confirm that the oil was emplaced fresh before subsurface degradation. A Triassic age for the veins implies a 200 million year history of hydrocarbon migration in the basement rocks. The data record microbial colonization of a fractured basement reservoir, and add to evidence in modern basement aquifers for microbial activity in deep fracture systems. Buried basement highs may be especially favourable to colonization, through channelling fluid flow to shallow depths and relatively low temperatures

  12. Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea

    NASA Astrophysics Data System (ADS)

    Leifer, Ira; Chernykh, Denis; Shakhova, Natalia; Semiletov, Igor

    2017-06-01

    Sonar surveys provide an effective mechanism for mapping seabed methane flux emissions, with Arctic submerged permafrost seepage having great potential to significantly affect climate. We created in situ engineered bubble plumes from 40 m depth with fluxes spanning 0.019 to 1.1 L s-1 to derive the in situ calibration curve (Q(σ)). These nonlinear curves related flux (Q) to sonar return (σ) for a multibeam echosounder (MBES) and a single-beam echosounder (SBES) for a range of depths. The analysis demonstrated significant multiple bubble acoustic scattering - precluding the use of a theoretical approach to derive Q(σ) from the product of the bubble σ(r) and the bubble size distribution where r is bubble radius. The bubble plume σ occurrence probability distribution function (Ψ(σ)) with respect to Q found Ψ(σ) for weak σ well described by a power law that likely correlated with small-bubble dispersion and was strongly depth dependent. Ψ(σ) for strong σ was largely depth independent, consistent with bubble plume behavior where large bubbles in a plume remain in a focused core. Ψ(σ) was bimodal for all but the weakest plumes. Q(σ) was applied to sonar observations of natural arctic Laptev Sea seepage after accounting for volumetric change with numerical bubble plume simulations. Simulations addressed different depths and gases between calibration and seep plumes. Total mass fluxes (Qm) were 5.56, 42.73, and 4.88 mmol s-1 for MBES data with good to reasonable agreement (4-37 %) between the SBES and MBES systems. The seepage flux occurrence probability distribution function (Ψ(Q)) was bimodal, with weak Ψ(Q) in each seep area well described by a power law, suggesting primarily minor bubble plumes. The seepage-mapped spatial patterns suggested subsurface geologic control attributing methane fluxes to the current state of subsea permafrost.

  13. CO2 Capillary-Trapping Processes in Deep Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Soltanian, Mohamadreza; Ritzi, Robert W., Jr.; Dominic, David F.

    2014-05-01

    The idea of reducing the Earth's greenhouse effect by sequestration of CO2 into the Earth's crust has been discussed and evaluated for more than two decades. Deep saline aquifers are the primary candidate formations for realization of this idea. Evaluation of reservoir capacity and the risk of CO2 leakage require a detailed modeling of the migration and distribution of CO2 in the subsurface structure. There is a finite risk that structural (or hydrodynamic) trapping by caprock may be compromised (e.g. by improperly abandoned wells, stratigraphic discontinuities, faults, etc.). Therefore, other trapping mechanisms (capillary trapping, dissolution, and mineralization) must be considered. Capillary trapping may be very important in providing a "secondary-seal", and is the focus of our investigation. The physical mechanism of CO2 trapping in porous media by capillary trapping incorporates three related processes, i.e. residual trapping, trapping due to hysteresis of the relative permeability, and trapping due to hysteresis of the capillary pressure. Additionally CO2 may be trapped in heterogeneous media due to difference in capillary pressure entry points for different materials. The amount of CO2 trapped by these processes is a complicated nonlinear function of the spatial distribution of permeability, permeability anisotropy, capillary pressure, relative permeability of brine and CO2, permeability hysteresis and residual gas saturation (as well as the rate, total amount and placement of injected CO2). Geological heterogeneities essentially affect the dynamics of a CO2 plume in subsurface environments. Recent studies have led to new conceptual and quantitative models for sedimentary architecture in fluvial deposits over a range of scales that are relevant to the performance of some deep saline reservoirs [1, 2]. We investigated how the dynamics of a CO2 plume, during and after injection, is influenced by the hierarchical and multi-scale stratal architecture in such reservoirs. The results strongly suggest that representing these small scales features, and representing how they are organized within a hierarchy of larger-scale features, is critical to understanding capillary trapping processes. References [1] Bridge, J.S. (2006), Fluvial facies models: Recent developments, in Facies Models Revisited, SEPM Spec. Publ., 84, edited by H. W. Posamentier and R. G. Walker, pp. 85-170, Soc. for Sediment. Geol. (SEPM), Tulsa, Okla [2] Ramanathan, R., A. Guin, R.W. Ritzi, D.F. Dominic, V.L. Freedman, T.D. Scheibe, and I.A. Lunt (2010), Simulating the heterogeneity in channel belt deposits: Part 1. A geometric-based methodology and code, Water Resources Research, v. 46, W04515.

  14. Soil pore-gas sampling by photoacoustic radiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sollid, J.E.

    1994-11-01

    Concentrations of volatile organics in a soil pore-gas plume were measured using a commercially available multigas monitor. The monitor is a photoacoustic radiometer (PAR) controlled by an on-board, programmable microprocessor. The measurements determine the extent and location of the vapor plume in the subsurface. At least twelve wells surrounding the sources are measured quarterly. The sources are located in former liquid chemical waste disposal pits and shafts at Los Alamos National Laboratory. The primary constituents of the plume are 1,1,1 trichloroethane (TCA), trichloroethene (TCE), and tetrachloroethene or perchloroethene or perchloroethene (PCE). Four quarters of data are presented for TCA. Allmore » were used primarily as solvents and degreasers. Previously the composition of the vapor plume was determined by Gas Chromatography Mass Spectrometer GCMS methods. Photoacoustic radiometry and gas chromatography are discussed giving the advantages and disadvantages of each method, although in this program they are basically complementary. Gas chromatography is a more qualitative method to determine which analytes are present and the approximate concentration. Photoacoustic radiometry, to function well, requires foreknowledge of constituents and serves best to determine how much is present. Measurements are quicker and more direct with photoacoustic methods. Once the constituents to be measured are known, the cost to monitor is much less using photoacoustics, and the results are available more quickly.« less

  15. Characterizing Uncertainty In Electrical Resistivity Tomography Images Due To Subzero Temperature Variability

    NASA Astrophysics Data System (ADS)

    Herring, T.; Cey, E. E.; Pidlisecky, A.

    2017-12-01

    Time-lapse electrical resistivity tomography (ERT) is used to image changes in subsurface electrical conductivity (EC), e.g. due to a saline contaminant plume. Temperature variation also produces an EC response, which interferes with the signal of interest. Temperature compensation requires the temperature distribution and the relationship between EC and temperature, but this relationship at subzero temperatures is not well defined. The goal of this study is to examine how uncertainty in the subzero EC/temperature relationship manifests in temperature corrected ERT images, especially with respect to relevant plume parameters (location, contaminant mass, etc.). First, a lab experiment was performed to determine the EC of fine-grained glass beads over a range of temperatures (-20° to 20° C) and saturations. The measured EC/temperature relationship was then used to add temperature effects to a hypothetical EC model of a conductive plume. Forward simulations yielded synthetic field data to which temperature corrections were applied. Varying the temperature/EC relationship used in the temperature correction and comparing the temperature corrected ERT results to the synthetic model enabled a quantitative analysis of the error of plume parameters associated with temperature variability. Modeling possible scenarios in this way helps to establish the feasibility of different time-lapse ERT applications by quantifying the uncertainty associated with parameter(s) of interest.

  16. Identification of Preferential Groundwater Flow Pathways from Local Tracer Breakthrough Curves

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Sleep, B. E.; Dearden, R.; Wealthall, G.

    2009-12-01

    Characterizing preferential groundwater flow paths in the subsurface is a key factor in the design of in situ remediation technologies. When applying reaction-based remediation methods, such as enhanced bioremediation, preferential flow paths result in fast solute migration and potentially ineffective delivery of reactants, thereby adversely affecting treatment efficiency. The presence of such subsurface conduits was observed at the SABRe (Source Area Bioremediation) research site. Non-uniform migration of contaminants and electron donor during the field trials of enhanced bioremediation supported this observation. To better determine the spatial flow field of the heterogeneous aquifer, a conservative tracer test was conducted. Breakthrough curves were obtained at a reference plane perpendicular to the principal groundwater flow direction. The resulting dataset was analyzed using three different methods: peak arrival times, analytical solution fitting and moment analysis. Interpretation using the peak arrival time method indicated areas of fast plume migration. However, some of the high velocities are supported by single data points, thus adding considerable uncertainty to the estimated velocity distribution. Observation of complete breakthrough curves indicated different types of solute breakthrough, corresponding to different transport mechanisms. Sharp peaks corresponded to high conductivity preferential flow pathways, whereas more dispersed breakthrough curves with long tails were characteristic of significant dispersive mixing and dilution. While analytical solutions adequately quantified flow characteristics for the first type of curves, they failed to do so for the second type, in which case they gave unrealistic results. Therefore, a temporal moment analysis was performed to obtain complete spatial distributions of mass recovery, velocity and dispersivity. Though the results of moment analysis qualitatively agreed with the results of previous methods, more realistic estimates of velocities were obtained and the presence of one major preferential flow pathway was confirmed. However, low mass recovery and deviations from the 10% scaling rule for dispersivities indicate that insufficient spatial and temporal monitoring, as well as interpolation and truncation errors introduced uncertainty in the flow and transport parameters estimated by the method of moments. The results of the three analyses are valuable for enhancing the understanding of mass transport and remediation performance. Comparing the different interpretation methods, increasing the amount of concentration data considered in the analysis, the derived velocity fields were smoother and the estimated local velocities and dispersivities became more realistic. In conclusion, moment analysis is a method that represents a smoothed average of the velocity across the entire breakthrough curve, whereas the peak arrival time, which may be a less well constrained estimate, represents the physical peak arrival and typically yields a higher velocity than the moment analysis. This is an important distinction when applying the results of the tracer test to field sites.

  17. DEVELOPMENT AND APPLICATION OF BOREHOLE FLOWMETERS FOR ENVIRONMENTAL ASSESSMENT

    EPA Science Inventory

    In order to understand the origin of contaminant plumes and infer their future migration, one requires a knowledge of the hydraulic conductivity (K) distribution. n many aquifers, the borehole flowmeter offers the most direct technique available for developing a log of hydraulic ...

  18. Marine bird aggregations associated with the tidally-driven plume and plume fronts of the Columbia River

    NASA Astrophysics Data System (ADS)

    Zamon, Jeannette E.; Phillips, Elizabeth M.; Guy, Troy J.

    2014-09-01

    Freshwater discharge from large rivers into the coastal ocean creates tidally-driven frontal systems known to enhance mixing, primary production, and secondary production. Many authors suggest that tidal plume fronts increase energy flow to fish-eating predators by attracting planktivorous fishes to feed on plankton aggregated by the fronts. However, few studies of plume fronts directly examine piscivorous predator response to plume fronts. Our work examined densities of piscivorous seabirds relative to the plume region and plume fronts of the Columbia River, USA. Common murres (Uria aalge) and sooty shearwaters (Puffinus griseus) composed 83% of all birds detected on mesoscale surveys of the Washington and Oregon coasts (June 2003-2006), and 91.3% of all birds detected on fine scale surveys of the plume region less than 40 km from the river mouth (May 2003 and 2006). Mesoscale comparisons showed consistently more predators in the central plume area compared to the surrounding marine area (murres: 10.1-21.5 vs. 3.4-8.2 birds km-2; shearwaters: 24.2-75.1 vs. 11.8-25.9 birds km-2). Fine scale comparisons showed that murre density in 2003 and shearwater density in both 2003 and 2006 were significantly elevated in the tidal plume region composed of the most recently discharged river water. Murres tended to be more abundant on the north face of the plume. In May 2003, more murres and shearwaters were found within 3 km of the front on any given transect, although maximum bird density was not necessarily found in the same location as the front itself. Predator density on a given transect was not correlated with frontal strength in either year. The high bird densities we observed associated with the tidal plume demonstrate that the turbid Columbia River plume does not necessarily provide fish with refuge from visual predators. Bird predation in the plume region may therefore impact early marine survival of Pacific salmon (Oncorhynchus spp.), which must migrate through the tidal plume and plume front to enter the ocean. Because murres and shearwaters eat primarily planktivorous fish such as the northern anchovy (Engraulis mordax), aggregation of these birds in the plume supports the hypothesis that it is the plume region as a whole, and not just the plume fronts, which enhances trophic transfer to piscivorous predators via planktivorous fishes.

  19. The Enceladus Ionizing Radiation Environment: Implications for Biomolecules

    NASA Astrophysics Data System (ADS)

    Teodoro, L. A.; Elphic, R. C.; Davila, A. F.; McKay, C.; Dartnell, L.

    2016-12-01

    Enceladus' subsurface ocean is a possible abode for life, but it is inaccessible with current technology. However, icy particles and vapor are being expelled into space through surface fractures known as Tiger Stripes, forming a large plume centered in the South Polar Terrains. Direct chemical analyses by Cassini have revealed salts and organic compounds in a significant fraction of plume particles, which suggests that the subsurface ocean is the main source of materials in the plume (i.e. frozen ocean spray). While smaller icy particles in the plume reach escape velocity and feed Saturn's E-ring, larger particles fall back on the moon's surface, where they accumulate as icy mantling deposits at practically all latitudes. The organic content of these fall-out materials could be of great astrobiological relevance. Galactic Cosmic Rays (GCRs) that strike both Enceladus' surface and the lofted icy particles produce ionizing radiation in the form of high-energy electrons, protons, gamma rays, neutrons and muons. An additional source of ionizing radiation is the population of energetic charged particles in Saturn's magnetosphere. The effects of ionizing radiation in matter always involve the destruction of chemical bonds and the creation of free radicals. Both affect organic matter, and can damage or destroy biomarkers over time. Using ionizing radiation transport codes, we recreated the radiation environment on the surface of Enceladus, and evaluated its possible effects on organic matter (including biomarkers) in the icy mantling deposits. Here, we present full Monte-Carlo simulations of the nuclear reactions induced by the GCRs hitting Enceladus's surface using a code based on the GEANT-4 toolkit for the transport of particles. To model the GCR primary spectra for Z= 1-26 (protons to iron nuclei) we assumed the CREAME96 model under solar minimum, modified to take into account Enceladus' location. We considered bulk compositions of: i) pure water ice, ii) water ice and organics (1-10%), and iii) water ice, organics and salts (up to 2%). The computed flux of ionizing radiation is converted into dosage at the molecular level using a "biologically-weighted" scheme, which provides an estimate of the biomarkers' survival time.

  20. THEO concept mission: Testing the Habitability of Enceladus's Ocean

    NASA Astrophysics Data System (ADS)

    MacKenzie, Shannon M.; Caswell, Tess E.; Phillips-Lander, Charity M.; Stavros, E. Natasha; Hofgartner, Jason D.; Sun, Vivian Z.; Powell, Kathryn E.; Steuer, Casey J.; O'Rourke, Joseph G.; Dhaliwal, Jasmeet K.; Leung, Cecilia W. S.; Petro, Elaine M.; Wynne, J. Judson; Phan, Samson; Crismani, Matteo; Krishnamurthy, Akshata; John, Kristen K.; DeBruin, Kevin; Budney, Charles J.; Mitchell, Karl L.

    2016-09-01

    Saturn's moon Enceladus offers a unique opportunity in the search for life and habitable environments beyond Earth, a key theme of the National Research Council's 2013-2022 Decadal Survey. A plume of water vapor and ice spews from Enceladus's south polar region. Cassini data suggest that this plume, sourced by a liquid reservoir beneath the moon's icy crust, contain organics, salts, and water-rock interaction derivatives. Thus, the ingredients for life as we know it - liquid water, chemistry, and energy sources - are available in Enceladus's subsurface ocean. We have only to sample the plumes to investigate this hidden ocean environment. We present a New Frontiers class, solar-powered Enceladus orbiter that would take advantage of this opportunity, Testing the Habitability of Enceladus's Ocean (THEO). Developed by the 2015 Jet Propulsion Laboratory Planetary Science Summer School student participants under the guidance of TeamX, this mission concept includes remote sensing and in situ analyses with a mass spectrometer, a sub-mm radiometer-spectrometer, a camera, and two magnetometers. These instruments were selected to address four key questions for ascertaining the habitability of Enceladus's ocean within the context of the moon's geological activity: (1) how are the plumes and ocean connected? (2) are the abiotic conditions of the ocean suitable for habitability? (3) how stable is the ocean environment? (4) is there evidence of biological processes? By taking advantage of the opportunity Enceladus's plumes offer, THEO represents a viable, solar-powered option for exploring a potentially habitable ocean world of the outer solar system.

  1. Analytical solutions to non-Fickian subsurface dispersion in uniform groundwater flow

    USGS Publications Warehouse

    Zou, S.; Xia, J.; Koussis, Antonis D.

    1996-01-01

    Analytical solutions are obtained by the Fourier transform technique for the one-, two-, and three-dimensional transport of a conservative solute injected instantaneously in a uniform groundwater flow. These solutions account for dispersive non-linearity caused by the heterogeneity of the hydraulic properties of aquifer systems and can be used as building blocks to construct solutions by convolution (principle of superposition) for source conditions other than slug injection. The dispersivity is assumed to vary parabolically with time and is thus constant for the entire system at any given time. Two approaches for estimating time-dependent dispersion parameters are developed for two-dimensional plumes. They both require minimal field tracer test data and, therefore, represent useful tools for assessing real-world aquifer contamination sites. The first approach requires mapped plume-area measurements at two specific times after the tracer injection. The second approach requires concentration-versus-time data from two sampling wells through which the plume passes. Detailed examples and comparisons with other procedures show that the methods presented herein are sufficiently accurate and easier to use than other available methods.

  2. A mantle plume beneath California? The mid-Miocene Lovejoy Flood Basalt, northern California

    USGS Publications Warehouse

    Garrison, N.J.; Busby, C.J.; Gans, P.B.; Putirka, K.; Wagner, D.L.

    2008-01-01

    The Lovejoy basalt represents the largest eruptive unit identified in California, and its age, volume, and chemistry indicate a genetic affinity with the Columbia River Basalt Group and its associated mantle-plume activity. Recent field mapping, geochemical analyses, and radiometric dating suggest that the Lovejoy basalt erupted during the mid-Miocene from a fissure at Thompson Peak, south of Susanville, California. The Lovejoy flowed through a paleovalley across the northern end of the Sierra Nevada to the Sacramento Valley, a distance of 240 km. Approximately 150 km3 of basalt were erupted over a span of only a few centuries. Our age dates for the Lovejoy basalt cluster are near 15.4 Ma and suggest that it is coeval with the 16.1-15.0 Ma Imnaha and Grande Ronde flows of the Columbia River Basalt Group. Our new mapping and age dating support the interpretation that the Lovejoy basalt erupted in a forearc position relative to the ancestral Cascades arc, in contrast with the Columbia River Basalt Group, which erupted in a backarc position. The arc front shifted trenchward into the Sierran block after 15.4 Ma. However, the Lovejoy basalt appears to be unrelated to volcanism of the predominantly calc-alkaline Cascade arc; instead, the Lovejoy is broadly tholeiitic, with trace-element characteristics similar to the Columbia River Basalt Group. Association of the Lovejoy basalt with mid-Miocene flood basalt volcanism has considerable implications for North American plume dynamics and strengthens the thermal "point source" explanation, as provided by the mantle-plume hypothesis. Alternatives to the plume hypothesis usually call upon lithosphere-scale cracks to control magmatic migrations in the Yellowstone-Columbia River basalt region. However, it is difficult to imagine a lithosphere-scale flaw that crosses Precambrian basement and accreted terranes to reach the Sierra microplate, where the Lovejoy is located. Therefore, we propose that the Lovejoy represents a rapid migration of plume-head material, at ??20 cm/yr to the southwest, a direction not previously recognized. ?? 2008 The Geological Society of America.

  3. Extending RTM Imaging With a Focus on Head Waves

    NASA Astrophysics Data System (ADS)

    Holicki, Max; Drijkoningen, Guy

    2016-04-01

    Conventional industry seismic imaging predominantly focuses on pre-critical reflections, muting post-critical arrivals in the process. This standard approach neglects a lot of information present in the recorded wave field. This negligence has been partially remedied with the inclusion of head waves in more advanced imaging techniques, like Full Waveform Inversion (FWI). We would like to see post-critical information leave the realm of labour-intensive travel-time picking and tomographic inversion towards full migration to improve subsurface imaging and parameter estimation. We present a novel seismic imaging approach aimed at exploiting post-critical information, using the constant travel path for head-waves between shots. To this end, we propose to generalize conventional Reverse Time Migration (RTM) to scenarios where the sources for the forward and backward propagated wave-fields are not coinciding. RTM functions on the principle that backward propagated receiver data, due to a source at some locations, must overlap with the forward propagated source wave field, from the same source location, at subsurface scatterers. Where the wave-fields overlap in the subsurface there is a peak at the zero-lag cross-correlation, and this peak is used for the imaging. For the inclusion of head waves, we propose to relax the condition of coincident sources. This means that wave-fields, from non-coincident-sources, will not overlap properly in the subsurface anymore. We can make the wave-fields overlap in the subsurface again, by time shifting either the forward or backward propagated wave-fields until the wave-fields overlap. This is the same as imaging at non-zero cross-correlation lags, where the lag is the travel time difference between the two wave-fields for a given event. This allows us to steer which arrivals we would like to use for imaging. In the simplest case we could use Eikonal travel-times to generate our migration image, or we exclusively image the subsurface with the head wave from the nth-layer. To illustrate the method we apply it to a layered Earth model with five layers and compare it to conventional RTM. We will show that conventional RTM highlights interfaces, while our head-wave based images highlight layers, producing fundamentally different images. We also demonstrate that our proposed imaging scheme is more sensitive to the velocity model than conventional RTM, which is important for improved velocity model building in the future.

  4. A lander mission to probe subglacial water on Saturn's moon Enceladus for life

    NASA Astrophysics Data System (ADS)

    Konstantinidis, Konstantinos; Flores Martinez, Claudio L.; Dachwald, Bernd; Ohndorf, Andreas; Dykta, Paul; Bowitz, Pascal; Rudolph, Martin; Digel, Ilya; Kowalski, Julia; Voigt, Konstantin; Förstner, Roger

    2015-01-01

    The plumes discovered by the Cassini mission emanating from the south pole of Saturn's moon Enceladus and the unique chemistry found in them have fueled speculations that Enceladus may harbor life. The presumed aquiferous fractures from which the plumes emanate would make a prime target in the search for extraterrestrial life and would be more easily accessible than the moon's subglacial ocean. A lander mission that is equipped with a subsurface maneuverable ice melting probe will be most suitable to assess the existence of life on Enceladus. A lander would have to land at a safe distance away from a plume source and melt its way to the inner wall of the fracture to analyze the plume subsurface liquids before potential biosignatures are degraded or destroyed by exposure to the vacuum of space. A possible approach for the in situ detection of biosignatures in such samples can be based on the hypothesis of universal evolutionary convergence, meaning that the independent and repeated emergence of life and certain adaptive traits is wide-spread throughout the cosmos. We thus present a hypothetical evolutionary trajectory leading towards the emergence of methanogenic chemoautotrophic microorganisms as the baseline for putative biological complexity on Enceladus. To detect their presence, several instruments are proposed that may be taken aboard a future subglacial melting probe. The "Enceladus Explorer" (EnEx) project funded by the German Space Administration (DLR), aims to develop a terrestrial navigation system for a subglacial research probe and eventually test it under realistic conditions in Antarctica using the EnEx-IceMole, a novel maneuverable subsurface ice melting probe for clean sampling and in situ analysis of ice and subglacial liquids. As part of the EnEx project, an initial concept study is foreseen for a lander mission to Enceladus to deploy the IceMole near one of the active water plumes on the moon's South-Polar Terrain, where it will search for signatures of life. The general mission concept is to place the Lander at a safe distance from an active plume. The IceMole would then be deployed to melt its way through the ice crust to an aquiferous fracture at a depth of 100 m or more for an in situ examination for the presence of microorganisms. The driving requirement for the mission is the high energy demand by the IceMole to melt through the cold Enceladan ices. This requirement is met by a nuclear reactor providing 5 kW of electrical power. The nuclear reactor and the IceMole are placed on a pallet lander platform. An Orbiter element is also foreseen, with the main function of acting as a communications relay between Lander and Earth. After launch, the Lander and Orbiter will perform the interplanetary transfer to Saturn together, using the on-board nuclear reactor to power electric thrusters. After Saturn orbit insertion, the Combined Spacecraft will continue using Nuclear Electric Propulsion to reach the orbit of Enceladus. After orbit insertion at Enceladus, the Orbiter will perform a detailed reconnaissance of the South-Polar Terrain. At the end of the reconnaissance phase, the Lander will separate from the Orbiter and an autonomously guided landing sequence will place it near one of the active vapor plumes. Once landed, the IceMole will be deployed and start melting through the ice, while navigating around hazards and towards a target subglacial aquiferous fracture. An initial estimation of the mission's cost is given, as well as recommendations on the further development of enabling technologies. The planetary protection challenges posed by such a mission are also addressed.

  5. A TECHNICAL ASSESSMENT OF THE CURRENT WATER POLICY BOUNDARY AT U.S. DEPARTMENT OF ENERGY, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-12-13

    In 1988, groundwater contaminated with trichloroethene (TCE) and technetium-99 (Tc-99) was identified in samples collected from residential water wells withdrawing groundwater from the Regional Gravel Aquifer (RGA) north of the Paducah Gaseous Diffusion Plant (PGDP) facility. In response, the U.S. Department of Energy (DOE) provided temporary drinking water supplies to approximately 100 potentially affected residents by initially supplying bottled water, water tanks, and water-treatment systems, and then by extending municipal water lines, all at no cost, to those persons whose wells could be affected by contaminated groundwater. The Water Policy boundary was established in 1993. In the Policy, DOE agreedmore » to pay the reasonable monthly cost of water for homes and businesses and, in exchange, many of the land owners signed license agreements committing to cease using the groundwater via rural water wells. In 2012, DOE requested that Oak Ridge Associated Universities (ORAU), managing contractor of Oak Ridge Institute for Science and Education (ORISE), provide an independent assessment of the quality and quantity of the existing groundwater monitoring data and determine if there is sufficient information to support a modification to the boundary of the current Water Policy. As a result of the assessment, ORAU concludes that sufficient groundwater monitoring data exists to determine that a shrinkage and/or shift of the plume(s) responsible for the initial development of this policy has occurred. Specifically, there is compelling evidence that the TCE plume is undergoing shrinkage due to natural attenuation and associated degradation. The plume shrinkage (and migration) has also been augmented in local areas where large volumes of groundwater were recovered by pump-and treat remedial systems along the eastern and western boundaries of the Northwest Plume, and in other areas where pump-and-treat systems have been deployed by DOE to remove source contaminants. The available evidence supports adjusting the western and northwestern Water Policy boundary. Based on the historical and modeled hydrogeological data reflecting past flow and plume attenuation, along with associated plume migration toward the northeast, the establishment of a new boundary along the westernmost margin of the earliest indication of the TCE plume is proposed and justified on hydrogeological grounds. Approximately 30% of the original area would remain within the adjusted Water Policy area west and northwest of the PGDP facility. This modification would release about 70% of the area, although individual properties would overlap the new boundary.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENNETT,D.B.; PAQUETTE,D.E.; KLAUS,K.

    The BNL water supply system meets all water quality standards and has sufficient pumping and storage capacity to meet current and anticipated future operational demands. Because BNL's water supply is drawn from the shallow Upper Glacial aquifer, BNL's source water is susceptible to contamination. The quality of the water supply is being protected through (1) a comprehensive program of engineered and operational controls of existing aquifer contamination and potential sources of new contamination, (2) groundwater monitoring, and (3) potable water treatment. The BNL Source Water Assessment found that the source water for BNL's Western Well Field (comprised of Supply Wellsmore » 4, 6, and 7) has relatively few threats of contamination and identified potential sources are already being carefully managed. The source water for BNL's Eastern Well Field (comprised of Supply Wells 10, 11, and 12) has a moderate number of threats to water quality, primarily from several existing volatile organic compound and tritium plumes. The g-2 Tritium Plume and portions of the Operable Unit III VOC plume fall within the delineated source water area for the Eastern Well Field. In addition, portions of the much slower migrating strontium-90 plumes associated with the Brookhaven Graphite Research Reactor, Waste Concentration Facility and Building 650 lie within the Eastern source water area. However, the rate of travel in the aquifer for strontium-90 is about one-twentieth of that for tritium and volatile organic compounds. The Laboratory has been carefully monitoring plume migration, and has made adjustments to water supply operations. Although a number of BNL's water supply wells were impacted by VOC contamination in the late 1980s, recent routine analysis of water samples from BNL's supply wells indicate that no drinking water standards have been reached or exceeded. The high quality of the water supply strongly indicates that the operational and engineered controls implemented over the past ten years have effectively protected the quality of the water supply.« less

  7. Risk assessment of groundwater environmental contamination: a case study of a karst site for the construction of a fossil power plant.

    PubMed

    Liu, Fuming; Yi, Shuping; Ma, Haiyi; Huang, Junyi; Tang, Yukun; Qin, Jianbo; Zhou, Wan-Huan

    2017-12-20

    This paper presents a demonstration of an integrated risk assessment and site investigation for groundwater contamination through a case study, in which the geologic and hydrogeological feature of the site and the blueprint of the fossil power plant (FPP) were closely analyzed. Predictions for groundwater contamination in case of accidents were performed by groundwater modeling system (GMS) and modular three-dimensional multispecies transport model (MT3DMS). Results indicate that the studied site area presents a semi-isolated hydrogeological unit with multiplicity in stratum lithology, the main aquifers at the site are consisted of the filled karst development layer with a thickness between 6.0 and 40.0 m. The poor permeability of the vadose zone at the FPP significantly restricted the infiltration of contaminants through the vadose zone to the subsurface. The limited influence of rarely isotropic porous karstified carbonate rocks on the groundwater flow system premised the simulate scenarios of plume migration. Analysis of the present groundwater chemistry manifested that that the groundwater at the site and the local area are of the HCO 3 -Ca, HCO 3 , and SO 4 -Ca types. A few of the water samples were contaminated by coliform bacteria and ammonia nitrogen as a result of the local cultivation. Prediction results indicate that the impact of normal construction and operation processes on the groundwater environment is negligible. However, groundwater may be partly contaminated within a certain period in the area of leakage from the diesel tanks, the industrial wastewater pool, and the cooling tower water tank in case of accidents. On a positive note, none of the plumes would reach the local sensitive areas for groundwater using. Finally, an anti-seepage scheme and a monitoring program are proposed to safeguard the groundwater protection. The integrated method of the site investigation and risk assessment used in this case study can facilitate the protection of groundwater for the construction of large-scale industrial project.

  8. Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Hailin; Dai, Zhenxue; Jiao, Zunsheng

    2011-01-01

    Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target salinemore » aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline aquifer and surrounding formations. This uncertainty in leakage will be used to feed into risk assessment modeling.« less

  9. Laboratory investigations of the effects of geologic heterogeneity on groundwater salinization and flush-out times from a tsunami-like event.

    PubMed

    Vithanage, M; Engesgaard, P; Jensen, K H; Illangasekare, T H; Obeysekera, J

    2012-08-01

    This intermediate scale laboratory experimental study was designed to improve the conceptual understanding of aquifer flushing time associated with diffuse saltwater contamination of coastal aquifers due to a tsunami-like event. The motivation comes from field observations made after the tsunami in December, 2004 in South Asia. The focus is on the role and effects of heterogeneity on flushing effectiveness. A scheme that combines experimentation in a 4.8m long laboratory tank and numerical modeling was used. To demonstrate the effects of geologic heterogeneity, plume migration and flushing times were analyzed in both homogeneous and layered media and under different boundary conditions (ambient flow, saltwater infiltration rate, freshwater recharge). Saltwater and freshwater infiltrations imitate the results of the groundwater salinization from the tsunami and freshening from the monsoon rainfall. The saltwater plume behavior was monitored both through visual observations (digital photography) of the dyed salt water and using measurements taken from several electrical conductivity sensors installed through the tank walls. The variable-density, three dimensional code HST3D was used to simulate the tank experiments and understand the fate and movement of the saltwater plume under field conditions. The results from the tank experiments and modeling demonstrated that macro-scale heterogeneity significantly influenced the migration patterns and flushing times of diffuse saltwater contamination. Ambient flow had a direct influence on total flush-out time, and heterogeneity impacted flush-out times for the top part of the tank and total flush-out times. The presence of a continuous low-permeability layer caused a 40% increase in complete flush-out time due to the slower flow of salt water in the low-permeability layer. When a relatively small opening was introduced in the low-permeability layer, salt water migrated quickly into a higher-permeable layer below causing a reduction in flush-out time. Freshwater recharge caused an early dilution of salt water in the top part of the tank in the case of a layered media, but also pushed the saltwater plume into the low-permeability layer which led to increased total flush-out times. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Visualization of gas dissolution following upward gas migration in porous media: Technique and implications for stray gas

    NASA Astrophysics Data System (ADS)

    Van De Ven, C. J. C.; Mumford, Kevin G.

    2018-05-01

    The study of gas-water mass transfer in porous media is important in many applications, including unconventional resource extraction, carbon storage, deep geological waste storage, and remediation of contaminated groundwater, all of which rely on an understanding of the fate and transport of free and dissolved gas. The novel visual technique developed in this study provided both quantitative and qualitative observations of gas-water mass transfer. Findings included interaction between free gas architecture and dissolved plume migration, plume geometry and longevity. The technique was applied to the injection of CO2 in source patterns expected for stray gas originating from oil and gas operations to measure dissolved phase concentrations of CO2 at high spatial and temporal resolutions. The data set is the first of its kind to provide high resolution quantification of gas-water dissolution, and will facilitate an improved understanding of the fundamental processes of gas movement and fate in these complex systems.

  11. Numerical simulations of the impact of seasonal heat storage on source zone emission in a TCE contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian

    2016-04-01

    In urban regions, with high population densities and heat demand, seasonal high temperature heat storage in the shallow subsurface represents an attractive and efficient option for a sustainable heat supply. In fact, the major fraction of energy consumed in German households is used for room heating and hot water production. Especially in urbanized areas, however, the installation of high temperature heat storage systems is currently restricted due to concerns on negative influences on groundwater quality caused e.g. by possible interactions between heat storages and subsurface contaminants, which are a common problem in the urban subsurface. Detailed studies on the overall impact of the operation of high temperature heat storages on groundwater quality are scarce. Therefore, this work investigates possible interactions between groundwater temperature changes induced by heat storage via borehole heat exchangers and subsurface contaminations by numerical scenario analysis. For the simulation of non-isothermal groundwater flow, and reactive transport processes the OpenGeoSys code is used. A 2D horizontal cross section of a shallow groundwater aquifer is assumed in the simulated scenario, consisting of a sandy sediment typical for Northern Germany. Within the aquifer a residual trichloroethene (TCE) contaminant source zone is present. Temperature changes are induced by a seasonal heat storage placed within the aquifer with scenarios of maximum temperatures of 20°C, 40°C and 60°C, respectively, during heat injection and minimum temperatures of 2°C during heat extraction. In the scenario analysis also the location of the heat storage relative to the TCE source zone and plume was modified. Simulations were performed in a homogeneous aquifer as well as in a set of heterogeneous aquifers with hydraulic conductivity as spatially correlated random fields. In both cases, results show that the temperature increase in the heat plume and the consequential reduction of water viscosity lead to locally increased groundwater flow. Depending on the positioning of the heat storage relative to the TCE contamination, groundwater fluxes hence may be induced to increase within or partially bypass the TCE source zone. At the same time, TCE solubility decreases between 10 and 40 °C, which reduces TCE emission and almost compensates for the effects of a temperature induced increase of groundwater flow through the source zone. In total, the numerical simulations thus show only minor influences of the heat plume on the TCE emission compared to a thermally undisturbed aquifer. Acknowledgments: This work is part of the ANGUS+ project (www.angusplus.de) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative "Energiespeicher".

  12. Radionuclide inventories for the F- and H-area seepage basin groundwater plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiergesell, Robert A; Kubilius, Walter P.

    2016-05-01

    Within the General Separations Areas (GSA) at the Savannah River Site (SRS), significant inventories of radionuclides exist within two major groundwater contamination plumes that are emanating from the F- and H-Area seepage basins. These radionuclides are moving slowly with groundwater migration, albeit more slowly due to interaction with the soil and aquifer matrix material. The purpose of this investigation is to quantify the activity of radionuclides associated with the pore water component of the groundwater plumes. The scope of this effort included evaluation of all groundwater sample analyses obtained from the wells that have been established by the Environmental Compliancemore » & Area Completion Projects (EC&ACP) Department at SRS to monitor groundwater contamination emanating from the F- and H-Area Seepage Basins. Using this data, generalized groundwater plume maps for the radionuclides that occur in elevated concentrations (Am-241, Cm-243/244, Cs-137, I-129, Ni-63, Ra-226/228, Sr-90, Tc-99, U-233/234, U-235 and U-238) were generated and utilized to calculate both the volume of contaminated groundwater and the representative concentration of each radionuclide associated with different plume concentration zones.« less

  13. Analysis of gaseous SO2, CO2 and halogen species in volcanic plumes using a multirotor Unmanned Aerial Vehicle (UAV).

    NASA Astrophysics Data System (ADS)

    Rüdiger, J.; de Moor, M. J.; Tirpitz, L.; Bobrowski, N.; Gutmann, A.; Hoffmann, T.

    2016-12-01

    Volcanoes are a large source for several reactive atmospheric trace gases including sulfur and halogen containing species. The detailed understanding of volcanic plume chemistry is needed to draw information from gas measurements on subsurface processes. This knowledge is essential for using gas measurements as a monitoring tool for volcanic activity. The reactive bromine species bromine monoxide (BrO) is of particular interest, because BrO as well as SO2 are readily measurable from safe distance by spectroscopic remote sensing techniques. BrO is not directly emitted, but is formed in the plume by a multiphase reaction mechanism. The abundance of BrO changes as a function of the distance from the vent as well as the spatial position in the plume. The precursor substance for the formation of BrO is HBr with Br2 as an intermediate product. In this study we present the application of a UAV as a carrier for a remote-controlled sampling system for halogen species (Br2, HBr, BrCl, etc), based on the gas diffusion denuder technique, which allows speciation and enrichment by selective organic reactions. For the analysis of gaseous SO2 and CO2 an in-situ gas monitoring system was additionally mounted. This setup was deployed into the gas plumes of Stromboli Volcano (Italy) and Masaya Volcano (Nicaragua) in 2016, to investigate the halogen chemistry at distant locations in the plume further downwind to the emission source, which are in most cases not accessible by other approaches. The used quadrocopter (0.75 m in diameter) weighs 2.45 kg and lifts a payload of 1.3 kg. Flights into the plume were conducted with ascents of up to 900 m, starting at 500 to 800 m altitude. From telemetrically transmitted SO2 mixing ratios, areas of dense plume were localized to keep the UAV stationary for up to 10 minutes of sampling time. Herein we will present time and spatial resolved gas mixing ratio data for SO2, CO2 and halogen species for a downwind plume age of about 3 to 5 minutes.

  14. Coupling Eruptive Dynamics Models to Multi-fluid Plasma Dynamic Simulations at Enceladus

    NASA Astrophysics Data System (ADS)

    Paty, C. S.; Dufek, J.; Waite, J. H.; Tokar, R. L.

    2011-12-01

    The interaction of Saturn's magnetosphere with Enceladus provides an exciting natural laboratory for expanding our understanding of charge-neutral-dust interactions and their impact on mass and momentum loading of the system and the associated magnetic perturbations. However, one of the more challenging questions regarding the Enceladus plume relates to the subsurface eruptive mechanism responsible for generating the observed jets of material that compose the plume, and the three-dimensional distribution of neutral gas and dust in the plume. In this work we implement a multiphase eruptive dynamics model [cf. Dufek & Bergantz, 2007; Dufek and Bergantz, 2005] to examine the evolution of the plume morphology for a given eruption. We model the eruptive mechanism in a two-part, coupled domain including a fissure model and a plume model. A high resolution, multiphase, fissure model examines eruptive processes in a fissure from fragmentation to the surface. The fissure model is two-dimensional and provides spatial and temporal information about the dust/ice grains and gas. The depth to the fragmentation surface is currently treated as a free parameter and we examine a range of fissure morphologies. We do not explicitly force choked conditions at the vent, but rather due to the geometry, the velocities of the particle and gas mixture approach the sound speed for a 'dusty' gas mixture. The fissure model provides a source for the 3D plume model which examines the morphology of the plume resulting from different fissure configurations and provides a self-consistent physical basis to link concentrations in different regions of the plume to an eruptive mechanism. These initial models describing the resulting gas and dust grain distribution will be presented in the context of existing observations. We will also demonstrate the first stages of integration of these results into the existing multi-fluid plasma dynamic simulations of Enceladus' interaction with Saturn's magnetosphere. These more sophisticated plume morphologies and their effects on the plasma dynamic interaction will be assessed in the context of existing modeling efforts for this system.

  15. Remote real-time monitoring of subsurface landfill gas migration.

    PubMed

    Fay, Cormac; Doherty, Aiden R; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O'Connor, Noel E; Smeaton, Alan F; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months.

  16. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    PubMed Central

    Fay, Cormac; Doherty, Aiden R.; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M.; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O’Connor, Noel E.; Smeaton, Alan F.; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strickland, Christopher E.; Lawter, Amanda R.; Qafoku, Nikolla

    Isotopes of iodine were generated during plutonium production from nine production reactors at the U.S. Department of Energy Hanford Site. The long half-life 129I generated at the Hanford Site during reactor operations was 1) stored in single-shell and double-shell tanks, 2) discharged to liquid disposal sites (e.g., cribs and trenches), 3) released to the atmosphere during fuel reprocessing operations, or 4) captured by off-gas absorbent devices (silver reactors) at chemical separations plants (PUREX, B-Plant, T-Plant, and REDOX). Releases of 129I to the subsurface have resulted in several large, though dilute, plumes in the groundwater, including the plume in the 200-UP-1more » operable unit. There is also 129I remaining in the vadose zone beneath disposal or leak locations. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited.« less

  18. Distributional patterns of arsenic concentrations in contaminant plumes offer clues to the source of arsenic in groundwater at landfills

    USGS Publications Warehouse

    Harte, Philip T.

    2015-01-01

    The distributional pattern of dissolved arsenic concentrations from landfill plumes can provide clues to the source of arsenic contamination. Under simple idealized conditions, arsenic concentrations along flow paths in aquifers proximal to a landfill will decrease under anthropogenic sources but potentially increase under in situ sources. This paper presents several conceptual distributional patterns of arsenic in groundwater based on the arsenic source under idealized conditions. An example of advanced subsurface mapping of dissolved arsenic with geophysical surveys, chemical monitoring, and redox fingerprinting is presented for a landfill site in New Hampshire with a complex flow pattern. Tools to assist in the mapping of arsenic in groundwater ultimately provide information on the source of contamination. Once an understanding of the arsenic contamination is achieved, appropriate remedial strategies can then be formulated.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, L. M.; Environmental Science Division

    The results of the 2006 investigation of contaminant sources at Navarre, Kansas, clearly demonstrate the following: {sm_bullet} Sources of carbon tetrachloride contamination were found on the Navarre Co-op property. These sources are the locations of the highest concentrations of carbon tetrachloride found in soil and groundwater at Navarre. The ongoing groundwater contamination at Navarre originates from these sources. {sm_bullet} The sources on the Co-op property are in locations where the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) never conducted grain storage operations. {sm_bullet} No definitive sources of carbon tetrachloride were identified on the portion of the currentmore » Co-op property formerly used by the CCC/USDA. {sm_bullet} The source areas on the Co-op property are consistent with the locations of the most intense Co-op operations, both historically and at present. The Co-op historically stored carbon tetrachloride for retail sale and used it as a grain fumigant in these locations. {sm_bullet} The distribution patterns of other contaminants (tetrachloroethene and nitrate) originating from sources on the Co-op property mimic the carbon tetrachloride plume. These other contaminants are not associated with CCC/USDA operations. {sm_bullet} The distribution of carbon tetrachloride at the Co-op source areas, particularly the absence of contamination in soils at depths less than 20 ft below ground level, is consistent with vertical migration into the subsurface through a conduit (well Co-op 2), with subsequent lateral migration through the subsurface. {sm_bullet} The groundwater flow direction, which is toward the west-northwest, is not consistent with migration of carbon tetrachloride in groundwater from the former CCC/USDA property to the source areas on the Co-op property. {sm_bullet} The absence of soil and groundwater contamination along surface drainage pathways on the former CCC/USDA property is not consistent with migration of carbon tetrachloride in surface water runoff from the former CCC/USDA property to the source areas on the Co-op property. {sm_bullet} The contamination detected in soil and groundwater samples collected along the northern boundary of the former CCC/USDA facility can be attributed to migration from the Co-op sources or to operations of the Co-op on the property after CCC/USDA operations ended. {sm_bullet} The southern boundary of the Co-op property has expanded over time, so that the Co-op has operated for a lengthy period in all areas previously leased by the CCC/USDA (Figure S.1). The Co-op began expanding onto the former CCC/USDA property in 1969 and has operated on that property longer than the CCC/USDA did. The use of carbon tetrachloride as a grain fumigant was standard industry practice until 1985, when the compound was banned by the U.S. Environmental Protection Agency. {sm_bullet} Petroleum-related contamination was detected on the southern part of the former CCC/USDA property. This contamination is associated with aboveground storage tanks that are owned and operated by the Co-op. The major findings of the 2006 investigations are summarized in greater detail below. The 2006 investigation was implemented by the Environmental Science Division of Argonne National Laboratory on behalf of the CCC/USDA.« less

  20. Lithosphere erosion and continental breakup: Interaction of extension, plume upwelling and melting

    NASA Astrophysics Data System (ADS)

    Lavecchia, Alessio; Thieulot, Cedric; Beekman, Fred; Cloetingh, Sierd; Clark, Stuart

    2017-06-01

    We present the results of thermo-mechanical modelling of extension and breakup of a heterogeneous continental lithosphere, subjected to plume impingement in presence of intraplate stress field. We incorporate partial melting of the extending lithosphere, underlying upper mantle and plume, caused by pressure-temperature variations during the thermo-mechanical evolution of the conjugate passive margin system. Effects of melting included in the model account for thermal effects, causing viscosity reduction due to host rock heating, and mechanical effects, due to cohesion loss. Our study provides better understanding on how presence of melts can influence the evolution of rifting. Here we focus particularly on the role of melting for the temporal and spatial evolution of passive margin geometry and rift migration. Depending on the lithospheric structure, melt presence may have a significant impact on the characteristics of areas affected by lithospheric extension. Pre-existing lithosphere heterogeneities determine the location of initial breakup, but in presence of plumes the subsequent evolution is more difficult to predict. For small distances between plume and area of initial rifting, the development of symmetric passive margins is favored, whereas increasing the distance promotes asymmetry. For a plume-rifting distance large enough to prevent interaction, the effect of plumes on the overlying lithosphere is negligible and the rift persists at the location of the initial lithospheric weakness. When the melt effect is included, the development of asymmetric passive continental margins is fostered. In this case, melt-induced lithospheric weakening may be strong enough to cause rift jumps toward the plume location.

  1. Monitoring radionuclide contamination in the unsaturated zone - Lessons learned at the Amargosa Desert Research Site, Nye County, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Abraham, Jared D.; Andraski, Brian J.; Baker, Ronald J.; Mayers, C. Justin; Michel, Robert L.; Prudic, David E.; Striegl, Robert G.; Walvoord, Michelle Ann

    2004-01-01

    Contaminant-transport processes are being investigated at the U.S. Geological Survey’s Amargosa Desert Research Site (A DRS), adjacent to the Nation’s first commercial disposal facility for low-level radioactive waste. Gases containing tritium and radiocarbon are migrating through a 110-m thick unsaturated zone from unlined trenches that received waste from 1962 to 1992. Results relevant to long- term monitoring of radionuclides are summarized as follows. Contaminant plumes have unexpected histories and spatial configurations due to uncertainties in the: (1) geologic framework, (2) biochemical reactions involving waste components, (3) interactions between plume components and unsaturated-zone materials, (4) disposal practices, and (5) physical transport processes. Information on plume dynamics depends on ex-situ wet-chemical techniques because in-situ sensors for the radionuclides of interest do not exist. As at other radioactive-waste disposal facilities, radionuclides at the ADRS are mixed with varying amounts of volatile organic compounds (VOCs). Carbon-dioxide and VOC anomalies provide proxies for radioactive contamination. Contaminants in the unsaturated zone migrate along preferential pathways. Effective monitoring thus requires accurate geologic characterization. Direct- current electrical-resistivity imaging successfully mapped geologic units controlling preferential transport at the ADRS. Direct sampling of water from the unsaturated zone is complex and time consuming. Sampling plant water is an efficient alternative for mapping shallow tritium contamination.

  2. Effects of simplifying fracture network representation on inert chemical migration in fracture-controlled aquifers

    USGS Publications Warehouse

    Wellman, Tristan; Shapiro, Allen M.; Hill, Mary C.

    2009-01-01

    While it is widely recognized that highly permeable 'large-scale' fractures dominate chemical migration in many fractured aquifers, recent studies suggest that the pervasive 'small-scale' fracturing once considered of less significance can be equally important for characterizing the spatial extent and residence time associated with transport processes. A detailed examination of chemical migration through fracture-controlled aquifers is used to advance this conceptual understanding. The influence of fracture structure is evaluated by quantifying the effects to transport caused by a systematic removal of fractures from three-dimensional discrete fracture models whose attributes are derived from geologic and hydrologic conditions at multiple field sites. Results indicate that the effects to transport caused by network simplification are sensitive to the fracture network characteristics, degree of network simplification, and plume travel distance, but primarily in an indirect sense since correlation to individual attributes is limited. Transport processes can be 'enhanced' or 'restricted' from network simplification meaning that the elimination of fractures may increase or decrease mass migration, mean travel time, dispersion, and tailing of the concentration plume. The results demonstrate why, for instance, chemical migration may not follow the classic advection-dispersion equation where dispersion approximates the effect of the ignored geologic structure as a strictly additive process to the mean flow. The analyses further reveal that the prediction error caused by fracture network simplification is reduced by at least 50% using the median estimate from an ensemble of simplified fracture network models, and that the error from network simplification is at least 70% less than the stochastic variability from multiple realizations. Copyright 2009 by the American Geophysical Union.

  3. Interpretation of Ground Temperature Anomalies in Hydrothermal Discharge Areas

    NASA Astrophysics Data System (ADS)

    Price, A. N.; Lindsey, C.; Fairley, J. P., Jr.

    2017-12-01

    Researchers have long noted the potential for shallow hydrothermal fluids to perturb near-surface temperatures. Several investigators have made qualitative or semi-quantitative use of elevated surface temperatures; for example, in snowfall calorimetry, or for tracing subsurface flow paths. However, little effort has been expended to develop a quantitative framework connecting surface temperature observations with conditions in the subsurface. Here, we examine an area of shallow subsurface flow at Burgdorf Hot Springs, in the Payette National Forest, north of McCall, Idaho USA. We present a simple analytical model that uses easily-measured surface data to infer the temperatures of laterally-migrating shallow hydrothermal fluids. The model is calibrated using shallow ground temperature measurements and overburden thickness estimates from seismic refraction studies. The model predicts conditions in the shallow subsurface, and suggests that the Biot number may place a more important control on the expression of near-surface thermal perturbations than previously thought. In addition, our model may have application in inferring difficult-to-measure parameters, such as shallow subsurface discharge from hydrothermal springs.

  4. In Situ Biotreatment of TBA with Recirculation/Oxygenation

    PubMed Central

    North, Katharine P.; Mackay, Douglas M.; Kayne, Julian S.; Petersen, Daniel; Rasa, Ehsan; Rastegarzadeh, Laleh; Holland, Reef B.; Scow, Kate M.

    2012-01-01

    The potential for in situ biodegradation of tert-butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base (VAFB). In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 days. TBA concentrations were reduced from approximately 500 μg/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient. In the second experiment, a site-calibrated model was used to design a double recirculating well pair with oxygen amendment, which successfully delivered oxygen to the subsurface for 291 days and also decreased TBA concentrations to below the detection limit. Methylibium petroleiphilum strain PM1, a known TBA-degrading bacterium, was detectable at the study site but addition of oxygen had little impact on the already low baseline population densities, suggesting that there was not enough carbon within the groundwater plume to support significant new growth in the PM1 population. Given favorable hydrogeologic and geochemical conditions, the use of recirculating well pairs to introduce dissolved oxygen into the subsurface is a viable method to stimulate in situ biodegradation of TBA or other aerobically-degradable aquifer contaminants. PMID:23358537

  5. In Situ Biotreatment of TBA with Recirculation/Oxygenation.

    PubMed

    North, Katharine P; Mackay, Douglas M; Kayne, Julian S; Petersen, Daniel; Rasa, Ehsan; Rastegarzadeh, Laleh; Holland, Reef B; Scow, Kate M

    2012-01-01

    The potential for in situ biodegradation of tert-butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base (VAFB). In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 days. TBA concentrations were reduced from approximately 500 μg/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient. In the second experiment, a site-calibrated model was used to design a double recirculating well pair with oxygen amendment, which successfully delivered oxygen to the subsurface for 291 days and also decreased TBA concentrations to below the detection limit. Methylibium petroleiphilum strain PM1, a known TBA-degrading bacterium, was detectable at the study site but addition of oxygen had little impact on the already low baseline population densities, suggesting that there was not enough carbon within the groundwater plume to support significant new growth in the PM1 population. Given favorable hydrogeologic and geochemical conditions, the use of recirculating well pairs to introduce dissolved oxygen into the subsurface is a viable method to stimulate in situ biodegradation of TBA or other aerobically-degradable aquifer contaminants.

  6. Geotechnical sensing using electromagnetic attenuation between radio transceivers

    NASA Astrophysics Data System (ADS)

    Ghazanfari, Ehsan; Pamukcu, Sibel; Yoon, Suk-Un; Suleiman, Muhannad T.; Cheng, Liang

    2012-12-01

    Monitoring the onset of a geo-event such as the intrusion of a chemical plume or a slow progressive mass slide that results in marked changes in the physical properties of the host soil could be potentially accomplished using a distributed network of embedded radio transceivers. This paper introduces a new concept of subsurface geo-event monitoring, which takes advantage of the spatial and temporal variations in signal strength of electromagnetic (EM) waves transmitted within the net of distributed radios within a sensing area. Results of experiments in the laboratory and the field demonstrated that variations in EM signal strength could be used to detect physical changes in the subsurface. Changes in selected physical properties of host soil including water content, density, and formation of discontinuities could be discerned from the changes in the signal strength of the transmitted wave between embedded radio transceivers. Good agreement was observed between a theoretical model and the experimental results for inter-transceiver distances less than 55 cm. These results demonstrated a viable new approach for distributed sensing and monitoring of subsurface hazards for civil infrastructure within a networked domain of radio transceivers.

  7. A simple method for calculating growth rates of petroleum hydrocarbon plumes

    USGS Publications Warehouse

    Bekins, B.A.; Cozzarelli, I.M.; Curtis, G.P.

    2005-01-01

    Consumption of aquifer Fe(III) during biodegradation of ground water contaminants may result in expansion of a contaminant plume, changing the outlook for monitored natural attenuation. Data from two research sites contaminated with petroleum hydrocarbons show that toluene and xylenes degrade under methanogenic conditions, but the benzene and ethylbenzene plumes grow as aquifer Fe(III) supplies are depleted. By considering a one-dimensional reaction front in a constant unidirectional flow field, it is possible to derive a simple expression for the growth rate of a benzene plume. The method balances the mass flux of benzene with the Fe(III) content of the aquifer, assuming that the biodegradation reaction is instantaneous. The resulting expression shows that the benzene front migration is retarded relative to the ground water velocity by a factor that depends on the concentrations of hydrocarbon and bioavailable Fe(III). The method provides good agreement with benzene plumes at a crude oil study site in Minnesota and a gasoline site in South Carolina. Compared to the South Carolina site, the Minnesota site has 25% higher benzene flux but eight times the Fe(III), leading to about one-sixth the expansion rate. Although it was developed for benzene, toluene, ethylbenzene, and xylenes, the growth-rate estimation method may have applications to contaminant plumes from other persistent contaminant sources. Copyright ?? 2005 National Ground Water Association.

  8. The Ensemble Kalman Filter for Groundwater Plume Characterization: A Case Study.

    PubMed

    Ross, James L; Andersen, Peter F

    2018-04-17

    The Kalman filter is an efficient data assimilation tool to refine an estimate of a state variable using measured data and the variable's correlations in space and/or time. The ensemble Kalman filter (EnKF) (Evensen 2004, 2009) is a Kalman filter variant that employs Monte Carlo analysis to define the correlations that help to refine the updated state. While use of EnKF in hydrology is somewhat limited, it has been successfully applied in other fields of engineering (e.g., oil reservoir modeling, weather forecasting). Here, EnKF is used to refine a simulated groundwater tetrachloroethylene (TCE) plume that underlies the Tooele Army Depot-North (TEAD-N) in Utah, based on observations of TCE in the aquifer. The resulting EnKF-based assimilated plume is simulated forward in time to predict future plume migration. The correlations that underpin EnKF updating implicitly contain information about how the plume developed over time under the influence of complex site hydrology and variable source history, as they are predicated on multiple realizations of a well-calibrated numerical groundwater flow and transport model. The EnKF methodology is compared to an ordinary kriging-based assimilation method with respect to the accurate representation of plume concentrations in order to determine the relative efficacy of EnKF for water quality data assimilation. © 2018, National Ground Water Association.

  9. Enceladus and Europa: How Does Hydrothermal Activity Begin at the Surface?

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    The question of how the surface hydrothermal activity (e.g., eruptive plumes and heat flow) is initiated can be addressed within the frame-work of our "Perrier Ocean" model. This model delivers the necessary heat and chemicals to support the heat flow and plumes observed by Cassini in Enceladus' South Polar Region. The model employs closed-loop circulation of water from a sub-surface ocean. The ocean is the main reservoir of heat and chemicals, including dissolved gases. As ocean water moves up toward the surface, pressure is re-duced and gases exsolve forming bubbles. This bub-bly mixture is less dense than the icy crust and the buoyant ocean-water mixture rises toward the surface. Near the surface, heat and chemicals, including some volatiles, are delivered to the chambers in which plumes form and also to shallow reservoirs that keep the surface ice "warm". (Plume operations, per se, are as described by Schmidt et al. and Postberg et al. and are adopted by us.) After transferring heat, the water cools, bubbles contract and dissolve, and the mixture is now relatively dense. It descends through cracks in the crust and returns to the ocean. Once the closed-loop circulation has started it is self-sustaining. Loss of water via the erupting plumes is relatively negligible compared to the amount needed to maintain the heat flow.We note that the activity described herein for the the "Perrier-Ocean" model could, a priori, apply to all small icy bodies that sheltered an interior ocean at some point in their history.

  10. Tidally modulated eruptions on Enceladus: Cassini ISS observations and models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimmo, Francis; Porco, Carolyn; Mitchell, Colin, E-mail: carolyn@ciclops.org

    2014-09-01

    We use images acquired by the Cassini Imaging Science Subsystem (ISS) to investigate the temporal variation of the brightness and height of the south polar plume of Enceladus. The plume's brightness peaks around the moon's apoapse, but with no systematic variation in scale height with either plume brightness or Enceladus' orbital position. We compare our results, both alone and supplemented with Cassini near-infrared observations, with predictions obtained from models in which tidal stresses are the principal control of the eruptive behavior. There are three main ways of explaining the observations: (1) the activity is controlled by right-lateral strike slip motion;more » (2) the activity is driven by eccentricity tides with an apparent time delay of about 5 hr; (3) the activity is driven by eccentricity tides plus a 1:1 physical libration with an amplitude of about 0.°8 (3.5 km). The second hypothesis might imply either a delayed eruptive response, or a dissipative, viscoelastic interior. The third hypothesis requires a libration amplitude an order of magnitude larger than predicted for a solid Enceladus. While we cannot currently exclude any of these hypotheses, the third, which is plausible for an Enceladus with a subsurface ocean, is testable by using repeat imaging of the moon's surface. A dissipative interior suggests that a regional background heat source should be detectable. The lack of a systematic variation in plume scale height, despite the large variations in plume brightness, is plausibly the result of supersonic flow; the details of the eruption process are yet to be understood.« less

  11. Feasibility of Detecting Bioorganic Compounds in Enceladus Plumes with the Enceladus Organic Analyzer

    PubMed Central

    Razu, Md Enayet; Kim, Jungkyu; Stockton, Amanda M.; Turin, Paul; Butterworth, Anna

    2017-01-01

    Abstract Enceladus presents an excellent opportunity to detect organic molecules that are relevant for habitability as well as bioorganic molecules that provide evidence for extraterrestrial life because Enceladus' plume is composed of material from the subsurface ocean that has a high habitability potential and significant organic content. A primary challenge is to send instruments to Enceladus that can efficiently sample organic molecules in the plume and analyze for the most relevant molecules with the necessary detection limits. To this end, we present the scientific feasibility and engineering design of the Enceladus Organic Analyzer (EOA) that uses a microfluidic capillary electrophoresis system to provide sensitive detection of a wide range of relevant organic molecules, including amines, amino acids, and carboxylic acids, with ppm plume-detection limits (100 pM limits of detection). Importantly, the design of a capture plate that effectively gathers plume ice particles at encounter velocities from 200 m/s to 5 km/s is described, and the ice particle impact is modeled to demonstrate that material will be efficiently captured without organic decomposition. While the EOA can also operate on a landed mission, the relative technical ease of a fly-by mission to Enceladus, the possibility to nondestructively capture pristine samples from deep within the Enceladus ocean, plus the high sensitivity of the EOA instrument for molecules of bioorganic relevance for life detection argue for the inclusion of EOA on Enceladus missions. Key Words: Lab-on-a-chip—Organic biomarkers—Life detection—Planetary exploration. Astrobiology 17, 902–912. PMID:28915087

  12. The feeding system of the Lusi eruption revealed by ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Javad Fallahi, Mohammad; Obermann, Anne; Lupi, Matteo; Mazzini, Adriano

    2017-04-01

    Lusi is a clastic dominated geysering system located in the northeastern Java backarc basin in Indonesia. Based on fluid geochemistry it has been described as a newborn sedimentary-hosted hydrothermal system. The present study provides a 3D model of shear wave velocity anomaly beneath Lusi and the neighboring Arjuno-Welirang volcanic complex and aims to better understand the subsurface structures as well as the Lusi plumbing system. To date, our data represent the first image of a hydrothermal plume in the upper crust seen with geophysical methods. We use 10 months of ambient noise data recorded by 31 temporary seismic stations and use ambient noise tomography methods to obtain the shear wave velocity model. The obtained tomographic images reveal the presence of a low velocity zone that connects the Arjuno-Welirang volcanic complex at about 5 km depth and ultimately emerging at the Lusi eruption site. Magmatic reservoirs beneath volcanic systems are also identified. Low shear wave anomalies representing magmatic reservoirs are less pronounced for the Arjuno-Welirang volcanic complex (the oldest system investigated in this study), intermediate beneath the Penanggungan volcano and result much more pronounced beneath the newborn Lusi. The results obtained in this study are consistent with a scenario envisaging a magmatic intrusion at depth and/or hydrothermal fluids migrating from the volcanic complex and extending towards the sedimentary basin.

  13. Ground-water flow and the potential effects of remediation at Graces Quarters, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Tenbus, F.J.; Fleck, W.B.

    1996-01-01

    Ground water in the east-central part of Graces Quarters, a former open-air chemical-agent test facility at Aberdeen Proving Ground, Maryland, is contaminated with chlorinated volatile organic compounds. The U.S. Geological Survey's finite- difference model was used to help understand ground-water flow and simulate the effects of alternative remedial actions to clean up the ground water. Scenarios to simulate unstressed conditions and three extraction well con- figurations were used to compare alternative remedial actions on the contaminant plume. The scenarios indicate that contaminants could migrate from their present location to wetland areas within 10 years under unstressed conditions. Pumping 7 gal/min (gallons per minute) from one well upgradient of the plume will not result in containment or removal of the highest contaminant concentrations. Pumping 7 gal/min from three wells along the central axis of the plume should result in containment and removal of dissolved contami- nants, as should pumping 7 gal/min from three wells at the leading edge of the plume while injecting 7 gal/min back into an upgradient well.

  14. Migration of carbon dioxide included micro-nano bubble water in porous media and its monitoring

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Hamamoto, S.; Suzuki, K.; Koichi, O.

    2017-12-01

    The distributed CO2 storage is the small scale storage and its located near the emission areas. In the distributed CO2 storage, the CO2 is neutralized by sediment and underground water in the subsurface region (300-500m depth). Carbon dioxide (CO2) included micro-nano bubbles is one approach in neutralizing CO2 and sediments by increasing CO2 volume per unit volume of water and accelerating the chemical reaction. In order to design underground treatment for CO2 gas in the subsurface, it is required to elucidate the behavior of CO2 included micro-nano bubbles in the water. In this study, we carried out laboratory experiment using the soil tank, and measure the amount of leakage of CO2 gas at the surface. In addition, the process of migration of carbon dioxide included micro-nano bubble was monitored by the nondestructive method, wave velocity and resistivity.

  15. Tackling the Challenge of Deep Vadose Zone Remediation at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Morse, J. G.; Wellman, D. M.; Gephart, R.

    2010-12-01

    The Central Plateau of the Hanford Site in Washington State contains some 800 waste disposal sites where 1.7 trillion liters of contaminated water was once discharged into the subsurface. Most of these sites received liquids from the chemical reprocessing of spent uranium fuel to recover plutonium. In addition, 67 single shell tanks have leaked or are suspected to have leaked 3.8 million liters of high alkali and aluminate rich cesium-contaminated liquids into the sediment. Today, this inventory of subsurface contamination contains an estimated 550,000 curies of radioactivity and 150 million kg (165,000 tons) of metals and hazardous chemicals. Radionuclides range from mobile 99Tc to more immobilized 137Cs, 241Am, uranium, and plutonium. A significant fraction of these contaminants likely remain within the deep vadose zone. Plumes of groundwater containing tritium, nitrate, 129I and other contaminants have migrated through the vadose zone and now extend outward from the Central Plateau to the Columbia River. During most of Hanford Site history, subsurface studies focused on groundwater monitoring and characterization to support waste management decisions. Deep vadose zone studies were not a priority because waste practices relied upon that zone to buffer contaminant releases into the underlying aquifer. Remediation of the deep vadose zone is now central to Hanford Site cleanup because these sediments can provide an ongoing source of contamination to the aquifer and therefore to the Columbia River. However, characterization and remediation of the deep vadose zone pose some unique challenges. These include sediment thickness; contaminant depth; coupled geohydrologic, geochemical, and microbial processes controlling contaminant spread; limited availability and effectiveness of traditional characterization tools and cleanup remedies; and predicting contaminant behavior and remediation performance over long time periods and across molecular to field scales. The U.S Department of Energy recognizes these challenges and is committed to a sustained, focused effort of continuing to apply existing technologies where feasible while investing and developing in new innovative, field-demonstrated capabilities supporting longer-term basic and applied research to establish the technical underpinning for solving intractable deep vadose zone problems and implementing final remedies. This approach will rely upon Multi-Project Teams focusing on coordinated projects across multiple DOE offices, programs, and site contractors plus the facilitation of basic and applied research investments through implementing a Deep Vadose Zone Applied Field Research Center and other scientific studies.

  16. Connectivity in modelling subsurface stormflow and tracer transport in a forested hillslope

    NASA Astrophysics Data System (ADS)

    Laine-Kaulio, Hanne; Koivusalo, Harri

    2016-04-01

    Preferential flow characterizes subsurface water movement in forested hillslopes. Connectivity of preferential flowpaths in soil, as well as connections between the preferential flowpaths and the soil matrix, control the flow patterns in hillslopes. We simulated subsurface stormflow and tracer transport within a forested hillslope section in Eastern Finland with a modifiable and detailed, physically-based 3-D dual-permeability model. The objective was to investigate the role of flowpath connectivity in capturing the observed migration velocity and concentration status of a tracer plume during the different stages of an irrigation experiment. Hypotheses to explain the observed transport behaviour were formulated based on observed spatial variations in the soil properties. The hypotheses were then tested by running corresponding model versions against spatial high-frequency data from the irrigation experiment. The 3-D distribution of preferential flowpaths, and the connections and disconnections between them, had the most crucial role in capturing the observed transport event with the model. Lateral by-pass flow in the preferential flow network and the transmissivity feedback phenomenon dominated the tracer transport. However, disconnections in lateral preferential flow restrained the transport, making the transport route devious instead of being directly lateral. These disconnections were caused by spots of cemented soil material. Stones had an opposite effect on the flow route formation compared to the cemented spots because preferential flowpaths were present on stone surfaces. Preferential flowpaths related to stones were linked with other types of preferential flowpaths in soil, facilitating the connectivity of preferential flowpaths within the entire hillslope. To take into account the discontinuity in lateral preferential flow and the tortuosity of the dominant flow routes in the model, an explicit representation of the 3-D distribution of saturated hydraulic conductivity in the preferential flow network was required. In addition, with-depth changing porosity values of both pore domains of soil, i.e., the preferential flowpaths and the soil matrix, as well as explicit descriptions of local water losses into the underlying bedrock, were found important for successful simulations. Other investigated model features, including complexity in the values of the rest of the model parameters and in the calculation routines used in describing the flow connections between the preferential flowpaths and the soil matrix, were not found beneficial for the model outcome.

  17. Remediating Contaminant Plumes in Groundwater with Shallow Excavations Containing Coarse Reactive Media.

    PubMed

    Hudak, Paul F

    2018-02-01

    A groundwater flow and mass transport model tested the capability of shallow excavations filled with coarse, reactive media to remediate a hypothetical unconfined aquifer with a maximum saturated thickness of 5 m. Modeled as contaminant sinks, the rectangular excavations were 10 m downgradient of an initial contaminant plume originating from a source at the top of the aquifer. The initial plume was approximately 259 m long, 23 m wide, and 5 m thick, with a downgradient tip located approximately 100 m upgradient of the site boundary. The smallest trench capable of preventing offsite migration was 11 m long (measured perpendicular to groundwater flow), 4 m wide (measured parallel to groundwater flow), and 3 m deep. Results of this study suggest that shallow trenches filled with coarse filter media that partially penetrate unconfined aquifers may be a viable alternative for remediating contaminated groundwater at some sites.

  18. A close-up look at Io from Galileo's near-infrared mapping spectrometer

    USGS Publications Warehouse

    Lopes-Gautier, R.; Doute, S.; Smythe, W.D.; Kamp, L.W.; Carlson, R.W.; Davies, A.G.; Leader, F.E.; McEwen, A.S.; Geissler, P.E.; Kieffer, S.W.; Keszthelyi, L.; Barbinis, E.; Mehlman, R.; Segura, M.; Shirley, J.; Soderblom, L.A.

    2000-01-01

    Infrared spectral images of Jupiter's volcanic moon Io, acquired during the October and November 1999 and February 2000 flybys of the Galileo spacecraft, were used to study the thermal structure and sulfur dioxide distribution of active volcanoes. Loki Patera, the solar system's most powerful known volcano, exhibits large expanses of dark, cooling lava on its caldera floor. Prometheus, the site of long-lived plume activity, has two major areas of thermal emission, which support ideas of plume migration. Sulfur dioxide deposits were mapped at local scales and show a more complex relationship to surface colors than previously thought, indicating the presence of other sulfur compounds.

  19. Microbial populations in contaminant plumes

    NASA Astrophysics Data System (ADS)

    Haack, Sheridan K.; Bekins, Barbara A.

    Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation. La biodégradation efficace des polluants souterrains requiert deux éléments: des populations microbiennes possédant les aptitudes nécessaires à la dégradation, et des conditions géochimiques et hydrologiques souterraines favorables. Des contraintes pratiques sur la conception et l'interprétation des expériences à la fois en microbiologie et en hydrogéologie ont conduit à une connaissance limitée des interactions entre les phénomènes hydrogéologiques et microbiologiques des environnements souterrains. Ces contraintes pratiques sont dues à des contradictions entre les échelles d'étude de l'hydrogéologie et de la microbiologie et à des limitations pratiques sur la capacitéà définir avec précision les populations microbiennes dans les échantillons. Cependant, des progrès dans l'application de méthodes d'échantillonnage à l'échelle locale et des approches pluridisciplinaires des études de terrain ont commencéà améliorer de façon significative notre compréhension des interactions hydrogéologiques et microbiologiques. De plus, les analyses moléculaires et sur les cultures des populations microbiennes présentes dans les panaches de pollution souterraine ont mis en évidence une adaptation significative de ces populations aux conditions environnementales du panache. Les résultats d'études récentes laissent penser que la variabilité des conditions géochimiques et hydrologiques souterraines influence significativement la structure des communautés microbiennes souterraines. Des recherches combinées sur les conditions de terrain et sur la structure des communautés microbiennes apportent les informations nécessaires à la compréhension des interactions entre les populations microbiennes souterraines, la géochimie du panache et la biodégradation du polluant. Para que la biodegradación de los contaminantes en el subsuelo sea eficiente se requiere: (1) una población microbiana con capacidad de degradación y (2) unas condiciones hidrológicas y geoquímicas favorables. Las restricciones de tipo práctico en los diseños y la interpretación de experimentos, tanto hidrogeológicos como microbiológicos, han dado lugar a un conocimiento limitado de la interrelación entre estas dos ciencias por lo que respecta al subsuelo. Estas restricciones incluyen: (1) inconsistencias entre las escalas de investigación en ambas ciencias (hidrogeología y microbiología) y (2) limitaciones prácticas para definir poblaciones microbianas en las muestras. Sin embargo, los avances en la aplicación de métodos de muestreo a pequeña escala y las investigaciones de campo con equipos interdisciplinares están mejorando significativamente el conocimiento de las interacciones entre hidrogeología y microbiología. Del mismo modo, los análisis moleculares y de cultivos sobre poblaciones microbianas en penachos contaminados han mostrado la adaptación de los microbios a las condiciones naturales. Estudios recientes sugieren que la variabilidad en las condiciones geoquímicas e hidrogeológicas del subsuelo afecta enormemente la estructura de la comunidad microbiana. Las investigaciones que combinan las condiciones del medio con la estructura de la comunidad microbiana proporcionarán el conocimiento necesario para entender las complejas relaciones entre las poblaciones microbianas subsuperficiales, la geoquímica de los penachos de contaminación y la biodegradación de los contaminantes.

  20. Plume-induced roll back subduction around Venus large coronae

    NASA Astrophysics Data System (ADS)

    Davaille, A.; Smrekar, S. E.; Tomlinson, S. M.

    2016-12-01

    On Venus, possible subduction trenches are mainly associated with large coronae, eventhough the latter are thought to be produced by hot mantle plumes. The mechanism of assocation between subduction and plume has long remained elusive. However, we recently observe the same association in laboratory experiments on thermal convection in colloidal aqueous dispersions of silica nanoparticles, which deform in the Newtonian regime at low solid particle fraction φp, and transition to strain-rate weakening, plasticity, elasticity, and brittle properties as φp increases. Hence, a dense skin akin to a planetary lithosphere grows on the surface when the system is dried from above. When a hot plume rises under the skin, the latter undergoes a flexural deformation which puts it under tension. Cracks then develop, sometimes using pre-existing weaknesses. Plume material (being more buoyant that the laboratory lithosphere) upwells through the cracks and spreads as a axisymmetric gravity current above the broken denser skin. The latter bends and sinks under the conjugate action of its own weight and the plume gravity current. The brittle character of the top experimental lithosphere forbids it to deform viscously to accomodate the sinking motions. Instead, the plate continues to tear as a sheet of paper would do upon intrusion. Several slabs are therefore produced, associated with trenches localized along partial circles on the plume, and strong roll-back is always observed. Depending on the lithospheric strength, roll-back can continue and triggers a complete resurfacing, or it stops when the plume stops spreading. Scalings derived from the experiments suggest that a weaker lithosphere than that present on Earth today is required for such a convective regime. We identified two candidates on Venus. At Artemis and Quetzelpetlatl Coronae, the radar image observations and subsurface density variations inferred from modeling the gravity and topography agree with the predictions from the laboratory. Evidence for geologically recent volcanism at Quetzelpetlatl further suggests that subduction may be currently active on Venus. However, a more complete appraisal of this mechanism for Venus resurfacing will require a better knowledge of Venus topography and gravity field, such as proposed by the future mission VERITAS.

  1. Two-dimensional resistivity investigation of the North Cavalcade Street site, Houston, Texas, August 2003

    USGS Publications Warehouse

    Kress, Wade H.; Teeple, Andrew

    2005-01-01

    Forward modeling was used as an interpretative tool to relate the subsurface distribution of resistivity from four DC resistivity lines to known, assumed, and hypothetical information on subsurface lithologies. The final forward models were used as an estimate of the true resistivity structure for the field data. The forward models and the inversion results of the forward models show the depth, thickness, and extent of strata as well as the resistive anomalies occurring along the four lines and the displacement of strata resulting from the Pecore Fault along two of the four DC resistivity lines. Ten additional DC resistivity lines show similarly distributed shallow subsurface lithologies of silty sand and clay strata. Eight priority areas of resistive anomalies were identified for evaluation in future studies. The interpreted DC resistivity data allowed subsurface stratigraphy to be extrapolated between existing boreholes resulting in an improved understanding of lithologies that can influence contaminant migration.

  2. Use of plume mapping data to estimate chlorinated solvent mass loss

    USGS Publications Warehouse

    Barbaro, J.R.; Neupane, P.P.

    2006-01-01

    Results from a plume mapping study from November 2000 through February 2001 in the sand-and-gravel surficial aquifer at Dover Air Force Base, Delaware, were used to assess the occurrence and extent of chlorinated solvent mass loss by calculating mass fluxes across two transverse cross sections and by observing changes in concentration ratios and mole fractions along a longitudinal cross section through the core of the plume. The plume mapping investigation was conducted to determine the spatial distribution of chlorinated solvents migrating from former waste disposal sites. Vertical contaminant concentration profiles were obtained with a direct-push drill rig and multilevel piezometers. These samples were supplemented with additional ground water samples collected with a minipiezometer from the bed of a perennial stream downgradient of the source areas. Results from the field program show that the plume, consisting mainly of tetrachloroethylene (PCE), trichloroethene (TCE), and cis-1,2-dichloroethene (cis-1,2-DCE), was approximately 670 m in length and 120 m in width, extended across much of the 9- to 18-m thickness of the surficial aquifer, and discharged to the stream in some areas. The analyses of the plume mapping data show that losses of the parent compounds, PCE and TCE, were negligible downgradient of the source. In contrast, losses of cis-1,2-DCE, a daughter compound, were observed in this plume. These losses very likely resulted from biodegradation, but the specific reaction mechanism could not be identified. This study demonstrates that plume mapping data can be used to estimate the occurrence and extent of chlorinated solvent mass loss from biodegradation and assess the effectiveness of natural attenuation as a remedial measure.

  3. Origin of VC-only plumes from naturally enhanced dechlorination in a peat-rich hydrogeologic setting

    NASA Astrophysics Data System (ADS)

    Filippini, Maria; Amorosi, Alessandro; Campo, Bruno; Herrero-Martìn, Sara; Nijenhuis, Ivonne; Parker, Beth L.; Gargini, Alessandro

    2016-09-01

    The occurrence of vinyl chloride (VC) is often a main concern at sites contaminated with chlorinated solvents due to its high degree of toxicity and carcinogenicity. VC occurrence in aquifers is most often related to the degradation of higher chlorinated ethenes or ethanes and it is generally detected in plumes along with parent contaminants. However, specific combination of stratigraphic, hydrogeologic and geochemical conditions can enhance the degradation of parents and lead to the formation of plumes almost entirely composed of VC (i.e. VC-only plumes). This paper investigates the causes of VC-only plumes in the aquifers below the city of Ferrara (northern Italy) by combining multiple lines of evidence. The City of Ferrara is located on an alluvial lowland, built by the River Po, and is made up of alternating unconsolidated sandy aquifer and silt-clay aquitard deposits of fluvial origin. This region has been strongly impacted by prior industrial activities, with the occurrence of chlorinated compounds at several sites. VC-only plumes with uncertain source location were found at two contaminated sites. The source zone of a third plume composed of chloroethenes from PCE to VC was investigated for high resolution depositional facies architecture and contaminant distribution (contaminant concentration and Compound Specific Isotope Analysis - CSIA). The investigation suggested that degradation of PCE and TCE takes place during contaminant migration through peat-rich (swamp) layers related to the Holocene transgression, which locally act as a ;reactor; for stimulating degradation with the accumulation of VC in the strongly reducing environment of the peat. Regional-scale stratigraphic architecture showed the ubiquitous occurrence of swamp layers at distinct stratigraphic levels in the investigated system and their apparent linkage to the in situ creation of the VC-only plumes.

  4. Modelling reaction front formation and oscillatory behaviour in a contaminant plume

    NASA Astrophysics Data System (ADS)

    Cribbin, Laura; Fowler, Andrew; Mitchell, Sarah; Winstanley, Henry

    2013-04-01

    Groundwater contamination is a concern in all industrialised countries that suffer countless spills and leaks of various contaminants. Often, the contaminated groundwater forms a plume that, under the influences of regional groundwater flow, could eventually migrate to streams or wells. This can have catastrophic consequences for human health and local wildlife. The process known as bioremediation removes pollutants in the contaminated groundwater through bacterial reactions. Microorganisms can transform the contaminant into less harmful metabolic products. It is important to be able to predict whether such bioremediation will be sufficient for the safe clean-up of a plume before it reaches wells or lakes. Borehole data from a contaminant plume which resulted from spillage at a coal carbonisation plant in Mansfield, England is the motivation behind modelling the properties of a contaminant plume. In the upper part of the plume, oxygen is consumed and a nitrate spike forms. Deep inside the plume, nitrate is depleted and oscillations of organic carbon and ammonium concentration profiles are observed. While there are various numerical models that predict the evolution of a contaminant plume, we aim to create a simplified model that captures the fundamental characteristics of the plume while being comparable in accuracy to the detailed numerical models that currently exist. To model the transport of a contaminant, we consider the redox reactions that occur in groundwater systems. These reactions deplete the contaminant while creating zones of dominant terminal electron accepting processes throughout the plume. The contaminant is depleted by a series of terminal electron acceptors, the order of which is typically oxygen, nitrate, manganese, iron, sulphate and carbon dioxide. We describe a reaction front, characteristic of a redox zone, by means of rapid reaction and slow diffusion. This aids in describing the depletion of oxygen in the upper part of the plume. To describe the oscillatory behaviour of the reactant concentrations deeper in the plume, we employ the dynamics of competing bacterial populations. We show that the oscillatory behaviour, characteristic of competing populations, can describe the oscillations observed among the reactants.

  5. A partially coupled, fraction-by-fraction modelling approach to the subsurface migration of gasoline spills

    NASA Astrophysics Data System (ADS)

    Fagerlund, F.; Niemi, A.

    2007-01-01

    The subsurface spreading behaviour of gasoline, as well as several other common soil- and groundwater pollutants (e.g. diesel, creosote), is complicated by the fact that it is a mixture of hundreds of different constituents, behaving differently with respect to e.g. dissolution, volatilisation, adsorption and biodegradation. Especially for scenarios where the non-aqueous phase liquid (NAPL) phase is highly mobile, such as for sudden spills in connection with accidents, it is necessary to simultaneously analyse the migration of the NAPL and its individual components in order to assess risks and environmental impacts. Although a few fully coupled, multi-phase, multi-constituent models exist, such models are highly complex and may be time consuming to use. A new, somewhat simplified methodology for modelling the subsurface migration of gasoline while taking its multi-constituent nature into account is therefore introduced here. Constituents with similar properties are grouped together into eight fractions. The migration of each fraction in the aqueous and gaseous phases as well as adsorption is modelled separately using a single-constituent multi-phase flow model, while the movement of the free-phase gasoline is essentially the same for all fractions. The modelling is done stepwise to allow updating of the free-phase gasoline composition at certain time intervals. The output is the concentration of the eight different fractions in the aqueous, gaseous, free gasoline and solid phases with time. The approach is evaluated by comparing it to a fully coupled multi-phase, multi-constituent numerical simulator in the modelling of a typical accident-type spill scenario, based on a tanker accident in northern Sweden. Here the PCFF method produces results similar to those of the more sophisticated, fully coupled model. The benefit of the method is that it is easy to use and can be applied to any single-constituent multi-phase numerical simulator, which in turn may have different strengths in incorporating various processes. The results demonstrate that the different fractions have significantly different migration behaviours and although the methodology involves some simplifications, it is a considerable improvement compared to modelling the gasoline constituents completely individually or as one single mixture.

  6. Hydrogeologic setting and ground water flow beneath a section of Indian River Bay, Delaware

    USGS Publications Warehouse

    Krantz, David E.; Manheim, Frank T.; Bratton, John F.; Phelan, Daniel J.

    2004-01-01

    The small bays along the Atlantic coast of the Delmarva Peninsula (Delaware, Maryland, and Virginia) are a valuable natural resource, and an asset for commerce and recreation. These coastal bays also are vulnerable to eutrophication from the input of excess nutrients derived from agriculture and other human activities in the watersheds. Ground water discharge may be an appreciable source of fresh water and a transport pathway for nutrients entering the bays. This paper presents results from an investigation of the physical properties of the surficial aquifer and the processes associated with ground water flow beneath Indian River Bay, Delaware. A key aspect of the project was the deployment of a new technology, streaming horizontal resistivity, to map the subsurface distribution of fresh and saline ground water beneath the bay. The resistivity profiles showed complex patterns of ground water flow, modes of mixing, and submarine ground water discharge. Cores, gamma and electromagnetic-induction logs, and in situ ground water samples collected during a coring operation in Indian River Bay verified the interpretation of the resistivity profiles. The shore-parallel resistivity lines show subsurface zones of fresh ground water alternating with zones dominated by the flow of salt water from the estuary down into the aquifer. Advective flow produces plumes of fresh ground water 400 to 600 m wide and 20 m thick that may extend more than 1 km beneath the estuary. Zones of dispersive mixing between fresh and saline ground water develop on the upper, lower, and lateral boundaries of the the plume. the plumes generally underlie small incised valleys that can be traced landward to stream draining the upland. The incised valleys are filled with 1 to 2 m of silt and peat that act as a semiconfining layer to restrict the downward flow of salt water from the estuary. Active circulation of both the fresh and saline ground water masses beneath the bay is inferred from the geophysical results and supported by geochemical data.

  7. Triton's geyser-like plumes: Discovery and basic characterization

    USGS Publications Warehouse

    Soderblom, L.A.; Kieffer, S.W.; Becker, T.L.; Brown, R.H.; Cook, A.F.; Hansen, C.J.; Johnson, T.V.; Kirk, R.L.; Shoemaker, E.M.

    1990-01-01

    At least four active geyser-like eruptions were discovered in Voyager 2 images of Triton, Neptune's large satellite. The two best documented eruptions occur as columns of dark material rising to an altitude of about 8 kilometers where dark clouds of material are left suspended to drift downwind over 100 kilometers. The radii of the rising columns appear to be in the range of several tens of meters to a kilometer. One model for the mechanism to drive the plumes involves heating of nitrogen ice in a sub-surface greenhouse environment; nitrogen gas pressurized by the solar heating explosively vents to the surface carrying clouds of ice and dark particles into the atmosphere. A temperature increase of less than 4 kelvins above the ambient surface value of 38 ?? 3 kelvins is more than adequate to drive the plumes to an 8-kilometer altitude. The mass flux in the trailing clouds is estimated to consist of up to 10 kilograms of fine dark particles per second or twice as much nitrogen ice and perhaps several hundred or more kilograms of nitrogen gas per second. Each eruption may last a year or more, during which on the order of a tenth of a cubic kilometer of ice is sublimed.

  8. Observations and modelling of subglacial discharge and heat transport in Godthåbsfjord (Greenland, 64 °N)

    NASA Astrophysics Data System (ADS)

    Bendtsen, Jørgen; Mortensen, John; Rysgaard, Søren

    2017-04-01

    Subglacial discharge from tidewater outlet glaciers forms convective bouyant freshwater plumes ascending close the glacier face, and entrainment of ambient bottom water increases the salinity of the water until the plume reaches its level of neutral buoyancy at sub-surface levels or reaches the surface. Relatively warm bottom water masses characterize many fjords around Greenland and therefore entrainment would also increase the temperature in the plumes and, thereby, impact the heat transport in the fjords. However, relatively few oceanographic measurements have been made in or near plumes from subglacial discharge and, therefore, the potential for subglacial discharge for increasing heat transport towards the tidewater outlet glaciers are poorly understood. We present the first direct hydrographic measurements in a plume from subglacial discharge in Godthåbsfjord (located on the western coast of Greenland) where a XCTD was launched from a helicopter directly into the plume. Measurements of the surface salinity showed that the plume only contained 7% of freshwater at the surface, implying a large entrainment with a mixing ratio of 1:13 between outflowing meltwater and saline fjord water. These observations are analyzed together with seasonal observations of ocean heat transport towards the tidewater outlet glaciers in Godthåbsfjord and we show that subglacial discharge only had modest effects on the overall heat budget in front of the glacier. These results were supported from a high-resolution three-dimensional model of Godthåbsfjord. The model explicitly considered subglacial freshwater discharge from three tidewater outlet glaciers where entrainment of bottom water was taken into account. Model results showed that subglacial discharge only affected the fjord circulation relatively close ( 10 km) to the glaciers. Thus, the main effect on heat transport was due to the freshwater discharge itself whereas the subsurface discharge and associated entrainment only had a minor dynamical effect on the fjord circulation. However, mixing of bottom water by subglacial discharge also brings large amounts of nutrients to the surface and estimates of the potential nutrient transport show that this may have a significant impact on the biological production in front of tidewater outlet glaciers. Related publications: Bendtsen, J., Mortensen, J., Lennert, K. and S. Rysgaard (2015), Heat sources for glacial ice melt in a West Greenland tidewater outlet glacier fjord: the role of subglacial freshwater discharge, Geophys. Res. Lett., 42, doi:10.1002/2015GL063846. Bendtsen, J., Mortensen, J., and Rysgaard, S. (2015), Modelling subglacial discharge and its influence on ocean heat transport in Arctic fjords, Ocean Dynamics, 65, 1535-1546, 10.1007/s10236-015-0883-1. Mortensen, J., J. Bendtsen, K. Lennert, and S. Rysgaard (2014), Seasonal variability of the circulation system in a west Greenland tidewater outlet glacier fjord, Godthåbsfjord (64°N), J. Geophys. Res. Earth Surf., 119, 2591-2603, doi:10.1002/2014JF003267. Mortensen, J., Bendtsen, J., Motyka, R. J., Lennert, K., Truffer, M., Fahnestock, M. and S. Rysgaard (2013), On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord. J. Geophys. Res. 118, 1-14, doi:10.1002/jgrc.20134.

  9. Update On Vapor Intrusion At The U.S. EPA

    EPA Science Inventory

    Increasing attention has been given to understanding the impacts of subsurface vapor contaminant migration into overlying buildings. Many of these impacted structures are residences and manufacturing facilities where current and future occupants face undesirable health risks. T...

  10. Final OSWER Vapor Intrusion Guidance

    EPA Science Inventory

    EPA is preparing to finalize its guidance on assessing and addressing vapor intrusion, which is defined as migration of volatile constituents from contaminated media in the subsurface (soil or groundwater) into the indoor environment. In November 2002, EPA issued draft guidance o...

  11. Least-squares reverse time migration in elastic media

    NASA Astrophysics Data System (ADS)

    Ren, Zhiming; Liu, Yang; Sen, Mrinal K.

    2017-02-01

    Elastic reverse time migration (RTM) can yield accurate subsurface information (e.g. PP and PS reflectivity) by imaging the multicomponent seismic data. However, the existing RTM methods are still insufficient to provide satisfactory results because of the finite recording aperture, limited bandwidth and imperfect illumination. Besides, the P- and S-wave separation and the polarity reversal correction are indispensable in conventional elastic RTM. Here, we propose an iterative elastic least-squares RTM (LSRTM) method, in which the imaging accuracy is improved gradually with iteration. We first use the Born approximation to formulate the elastic de-migration operator, and employ the Lagrange multiplier method to derive the adjoint equations and gradients with respect to reflectivity. Then, an efficient inversion workflow (only four forward computations needed in each iteration) is introduced to update the reflectivity. Synthetic and field data examples reveal that the proposed LSRTM method can obtain higher-quality images than the conventional elastic RTM. We also analyse the influence of model parametrizations and misfit functions in elastic LSRTM. We observe that Lamé parameters, velocity and impedance parametrizations have similar and plausible migration results when the structures of different models are correlated. For an uncorrelated subsurface model, velocity and impedance parametrizations produce fewer artefacts caused by parameter crosstalk than the Lamé coefficient parametrization. Correlation- and convolution-type misfit functions are effective when amplitude errors are involved and the source wavelet is unknown, respectively. Finally, we discuss the dependence of elastic LSRTM on migration velocities and its antinoise ability. Imaging results determine that the new elastic LSRTM method performs well as long as the low-frequency components of migration velocities are correct. The quality of images of elastic LSRTM degrades with increasing noise.

  12. Assessment of attenuation processes in a chlorinated ethene plume by use of stream bed Passive Flux Meters, streambed Point Velocity Probes and contaminant mass balances

    NASA Astrophysics Data System (ADS)

    Rønde, V.; McKnight, U. S.; Annable, M. D.; Devlin, J. F.; Cremeans, M.; Sonne, A. T.; Bjerg, P. L.

    2017-12-01

    Chlorinated ethenes (CE) are abundant groundwater contaminants and pose risk to both groundwater and surface water bodies, as plumes can migrate through aquifers to streams. After release to the environment, CE may undergo attenuation. The hyporheic zone is believed to enhance CE attenuation, however studies contradicting this have also been reported. Since dilution commonly reduces contaminant concentrations in streams to below quantification limits, use of mass balances along the pathway from groundwater to stream is unusual. Our study is conducted at the low-land Grindsted stream, Denmark, which is impacted by a contaminant plume. CE have been observed in the stream water; hence our study site provides an unusual opportunity to study attenuation processes in a CE plume as it migrates through the groundwater at the stream bank, through the stream bed and further to the point of fully mixed conditions in the stream. The study undertook the determination of redox conditions and CE distribution from bank to stream; streambed contaminant flux estimation using streambed Passive Flux Meters (sPFM); and quantification of streambed water fluxes using temperature profiling and streambed Point Velocity Probes (SBPVP). The advantage of the sPFM is that it directly measures the contaminant flux without the need for water samples, while the advantage of the SBPVP is its ability to measure the vertical seepage velocity without the need for additional geological parameters. Finally, a mass balance assessment along the plume pathway was conducted to account for any losses or accumulations. The results show consistencies in spatial patterns between redox conditions and extent of dechlorination; between contaminant fluxes from sPFM and concentrations from water samples; and between seepage velocities from SBPVP and temperature-based water fluxes. Mass balances and parent-metabolite compound ratios indicate limited degradation between the bank and the point of fully mixed stream water. Since the plume at the bank mainly consists of cis-DCE and vinyl chloride, this implies high and persistent stream water concentrations of these compounds. Finally, this study demonstrates the usefulness and complementary nature of sPFM and SBPVP measurements for assessing the attenuation processes through mass balance calculations.

  13. Inferring the width of the upwelling region at mid-ocean ridges from the throttling effect of small-offset transforms: Implications for the dynamics of `normal' and plume-influenced mid- ocean ridges

    NASA Astrophysics Data System (ADS)

    Phipps Morgan, J.; Ranero, C. R.

    2006-12-01

    The fundamental question "How wide is the upwelling and melting region beneath mid-ocean ridges (MORs)?" remains a subject of ongoing debate after 4 decades of intensive study. The basic observational difficulty is that lateral melt migration has the potential to bring melt produced within a wide subaxial region to the ~2km- wide neovolcanic zone that has been observed to be the site of almost all oceanic crustal emplacement. Here we use an indirect approach to infer this width from the minimum length of the ridge-offsets that mark the limits of the `region of influence' of on-ridge plumes on the axial relief, axial morphology, and crustal thickness along the ridge — e.g. as seen along ridge segments influenced by the Galapagos and Iceland plumes, and at the terminations of fossil volcanic rifted margins and the paleo-Azores plume-ridge interaction. We adopt Vogt's [1972] hypothesis for along-ridge asthenospheric flow in a narrow vertical slot beneath the axis of plume- influenced `macro-segments'. We find that: (1) There is a threshold distance to the lateral offsets that bound plume-influenced macrosegments; all such `barrier offsets' are greater than ~30km, while smaller offsets do not appear to be a barrier to along-axis flow. (2) Recent seismic and E-M observations along the southern EPR are consistent with a narrow westward-dipping subaxial slot. (3) A similar pattern is seen in the often abrupt transitions between volcanic and non-volcanic rifted margins, which is discussed in a companion presentation by Ranero and Phipps Morgan (this meeting). (4) A ~30km width for the region of ridge upwelling and melting offers a simple conceptual explanation for the apparent ~30km threshold length for the existence of strike-slip transform faults and the occurrence of non-transform offsets at smaller ridge offset-distances. (5) It also offers a simple conceptual explanation for the largest scale of segmentation of axial relief seen at fast-spreading ridges; these 500-1000km `long wavelength undulations of the axis' (Macdonald et al., 1989) may be macro- segments sharing a single contiguous subaxial slot that is bent but not broken beneath non-transform offsets. (6) If asthenosphere consumption by plate-spreading is less than plume-supply into a macro-segment, then the shallow seafloor and excess gravitational spreading stresses associated with a plume-influenced ridge will lead to growth of the axial slot by ridge propagation, propagation that continues until the offset of the associated migrating shear zone becomes long enough to halt it. We think this is a promising conceptual framework with which to understand the dynamic similarities and differences between plume-influenced and `normal' mid-ocean ridges.

  14. Vadose Zone and Surficial Monitoring a Controlled Release of Methane in the Borden Aquifer, Ontario.

    NASA Astrophysics Data System (ADS)

    Forde, O.; Mayer, K. U.; Cahill, A.; Parker, B. L.; Cherry, J. A.

    2015-12-01

    Development of shale gas resources and potential impacts on groundwater and fugitive gas emissions necessitates further research on subsurface methane gas (CH4) migration and fate. To address this issue, a controlled release experiment is undertaken at the Borden research aquifer, Ontario, Canada. Due to low solubility, it is expected that the injection will lead to gas exsolution and ebullition. Gas migration is expected to extend to the unsaturated zone and towards the ground surface, and may possibly be affected by CH4 oxidation. The project consists of multiple components targeting the saturated zone, unsaturated zone, and gas emissions at the ground surface. This presentation will focus on the analysis of surficial CO2 and CH4 effluxes and vadose zone gas composition to track the temporal and spatial evolution of fugitive gas. Surface effluxes are measured with flux chambers connected to a laser-based gas analyzer, and subsurface gas samples are being collected via monitoring wells equipped with sensors for oxygen, volumetric water content, electrical conductivity, and temperature to correlate with changes in gas composition. First results indicate rapid migration of CH4 to the ground surface in the vicinity of the injection locations. We will present preliminary data from this experiment and evaluate the distribution and rate of gas migration. This research specifically assesses environmental risks associated with fugitive gas emissions related to shale gas resource development.

  15. How Displaced Migratory Birds Could Use Volatile Atmospheric Compounds to Find Their Migratory Corridor: A Test Using a Particle Dispersion Model

    PubMed Central

    Safi, Kamran; Gagliardo, Anna; Wikelski, Martin; Kranstauber, Bart

    2016-01-01

    Olfaction represents an important sensory modality for navigation of both homing pigeons and wild birds. Experimental evidence in homing pigeons showed that airborne volatile compounds carried by the winds at the home area are learned in association with wind directions. When displaced, pigeons obtain information on the direction of their displacement using local odors at the release site. Recently, the role of olfactory cues in navigation has been reported also for wild birds during migration. However, the question whether wild birds develop an olfactory navigational map similar to that described in homing pigeons or, alternatively, exploit the distribution of volatile compounds in different manner for reaching the goal is still an open question. Using an interdisciplinary approach, we evaluate the possibilities of reconstructing spatio-temporally explicit aerosol dispersion at large spatial scales using the particle dispersion model FLEXPART. By combining atmospheric information with particle dispersion models, atmospheric scientists predict the dispersion of pollutants for example, after nuclear fallouts or volcanic eruptions or wildfires, or in retrospect reconstruct the origin of emissions such as aerosols. Using simple assumptions, we reconstructed the putative origin of aerosols traveling to the location of migrating birds. We use the model to test whether the putative odor plume could have originated from an important stopover site. If the migrating birds knew this site and the associated plume from previous journeys, the odor could contribute to the reorientation towards the migratory corridor, as suggested for the model scenario in displaced Lesser black-backed gulls migrating from Northern Europe into Africa. PMID:27799899

  16. Ground-penetrating radar (GPR) responses for sub-surface salt contamination and solid waste: modeling and controlled lysimeter studies.

    PubMed

    Wijewardana, Y N S; Shilpadi, A T; Mowjood, M I M; Kawamoto, K; Galagedara, L W

    2017-02-01

    The assessment of polluted areas and municipal solid waste (MSW) sites using non-destructive geophysical methods is timely and much needed in the field of environmental monitoring and management. The objectives of this study are (i) to evaluate the ground-penetrating radar (GPR) wave responses as a result of different electrical conductivity (EC) in groundwater and (ii) to conduct MSW stratification using a controlled lysimeter and modeling approach. A GPR wave simulation was carried out using GprMax2D software, and the field test was done on two lysimeters that were filled with sand (Lysimeter-1) and MSW (Lysimeter-2). A Pulse EKKO-Pro GPR system with 200- and 500-MHz center frequency antennae was used to collect GPR field data. Amplitudes of GPR-reflected waves (sub-surface reflectors and water table) were studied under different EC levels injected to the water table. Modeling results revealed that the signal strength of the reflected wave decreases with increasing EC levels and the disappearance of the subsurface reflection and wave amplitude reaching zero at higher EC levels (when EC >0.28 S/m). Further, when the EC level was high, the plume thickness did not have a significant effect on the amplitude of the reflected wave. However, it was also found that reflected signal strength decreases with increasing plume thickness at a given EC level. 2D GPR profile images under wet conditions showed stratification of the waste layers and relative thickness, but it was difficult to resolve the waste layers under dry conditions. These results show that the GPR as a non-destructive method with a relatively larger sample volume can be used to identify highly polluted areas with inorganic contaminants in groundwater and waste stratification. The current methods of MSW dumpsite investigation are tedious, destructive, time consuming, costly, and provide only point-scale measurements. However, further research is needed to verify the results under heterogeneous aquifer conditions and complex dumpsite conditions.

  17. A Fly-Through Mission Strategy Targeting Peptide as a Signature of Chemical Evolution and Possible Life in Enceladus Plumes

    NASA Technical Reports Server (NTRS)

    Fujishima, Kosuke; Dziomba, Szymon; Takahagi, Wataru; Shibuya, Takazo; Takano, Yoshinori; Guerrouache, Mohamed; Carbonnier, Benjamin; Takai, Ken; Rothschild, Lynn J.; Yano, Hajime

    2016-01-01

    In situ detection of organic molecules in the extraterrestrial environment provides a key step towards better understanding the variety and the distribution of building blocks of life and it may ultimately lead to finding extraterrestrial life within the Solar System. Here we present combined results of two separate experiments that enable us to realize such in situ life signature detection from the deep habitats of the "Ocean World": a hydrothermal reactor experiment simulating complex organic synthesis and a simulated fly-through capture experiment of organic-bearing microparticles using silica aerogels, followed by subsequent analysis. Both experiments employ peptide as a plausible organics existing in Encleadus plume particles produced in its subsurface ocean. Recent laboratory hydrothermal experiments and a theoretical model on silica saturation indicated an on going hydrothermal reactions in subsurface Enceladus ocean. Given the porous chondritic origin of the core, it is likely that organic compounds originated by radiation chemistry such as amino acid precursors could have been provided, leached, and altered through widespread water-rock interactions. By using the same laboratory experimental setup from the latest water-rock interaction study, we performed amino acid polymerization experiments for 144 days and monitored the organic complexity changing over time. So far over 3,000 peaks up to the size of greater than 600 MW were observed through the analysis of capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS) with an indication of amino acid derivatives and short peptides. Generally abiotic polymerization of enantiomeric amino acids results in forming stereoisomeric peptides with identical molecular weight and formula as opposed to homochiral biopolymers. Assuming Enceladus plume particles may contain a mixture of stereoisomeric peptides, we were able to distinguish 16 of the 17 stereoisomeric tripeptides as a test sample using capillary electrophoresis (CE) under optimized conditions. We further conducted Enceladus plume fly-through capture experiment by accelerating peptides soaked in rock particles up to a speed of 5.7 km/s and capturing with originally developed hydrophobic silica aerogels. Direct peptide extraction with acetonitrile-water followed by CE analysis led to detection of only but two stereoisomeric acidic peptide peaks, presenting the first run-through hypervelocuty impact sample analysis targeting peptides as key molecule to to understand the ongoing astrobiology on Enceladus.

  18. Mantle plume capture, anchoring and outflow during ridge interaction

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Richards, M. A.; Geist, D.

    2015-12-01

    Geochemical and geophysical studies have shown that >40% of the world's mantle plumes are currently interacting with the global ridge system and such interactions may continue for up to 180 Myr[1]. At sites of plume-ridge interaction up to 1400 km of the spreading centre is influenced by dispersed plume material but there are few constraints on how and where the ridge-ward transfer of deep-sourced material occurs, and also how it is sustained over long time intervals. Galápagos is an archetypal example of an off-axis plume and sheds important light on these mechanisms. The Galápagos plume stem is located ~200 km south of the spreading axis and its head influences 1000 km of the ridge. Nevertheless, the site of enriched basalts, greatest crustal thickness and elevated topography on the ridge, together with active volcanism in the archipelago, correlate with a narrow zone (~150 km) of low-velocity, high-temperature mantle that connects the plume stem and ridge at depths of ~100 km[2]. The enriched ridge basalts contain a greater amount of partially-dehydrated, recycled oceanic crust than basalts elsewhere on the spreading axis, or indeed basalts erupted in the region between the plume stem and ridge. The presence of these relatively volatile-rich ridge basalts requires flow of plume material below the peridotite solidus (i.e.>80 km). We propose a 2-stage model for the development and sustainment of a confined zone of deep ridge-ward plume flow. This involves initial on-axis capture and establishment of a sub-ridge channel of plume flow. Subsequent anchoring of the plume stem to a contact point on the ridge during axis migration results in confined ridge-ward flow of plume material via a deep network of melt channels embedded in the normal spreading and advection of the plume head[2]. Importantly, sub-ridge flow is maintained. The physical parameters and styles of mantle flow we have defined for Galápagos are less-well known at other sites of plume-ridge interactions, e.g. Tristan, Amsterdam. The observations require a more dynamically complex model than proposed by most studies, which rely on radial solid-state outflow of heterogeneous plume material to the ridge. [1] Whittaker JM et al (2015) Nature Geosci 10.1038/ngeo2437 [2]Gibson SA, Geist DG & Richards MA (2015) Geochem Geophys Geosyst 10.1002/2015GC005723

  19. Compositional variation in aging volcanic plumes - Analysis of gaseous SO2, CO2 and halogen species in volcanic emissions using an Unmanned Aerial Vehicle (UAV).

    NASA Astrophysics Data System (ADS)

    Rüdiger, Julian; Lukas, Tirpitz; Bobrowski, Nicole; Gutmann, Alexandra; Liotta, Marcello; de Moor, Maarten; Hoffmann, Thorsten

    2017-04-01

    Volcanoes are a large source for several reactive atmospheric trace gases including sulfur and halogen containing species. The detailed understanding of volcanic plume chemistry is needed to draw information from gas measurements on subsurface processes. This knowledge is essential for using gas measurements as a monitoring tool for volcanic activity. The reactive bromine species bromine monoxide (BrO) is of particular interest, because BrO as well as SO2 are readily measurable from safe distance by spectroscopic remote sensing techniques. BrO is not directly emitted, but is formed in the plume by a multiphase reaction mechanism. The abundance of BrO changes as a function of the distance from the vent as well as the spatial position in the plume. The precursor substance for the formation of BrO is HBr with Br2as an intermediate product. In this study we present the application of a UAV as a carrier for a remote-controlled sampling system for halogen species (Br2, HBr, BrCl, etc), based on the gas diffusion denuder technique, which allows speciation and enrichment by selective organic reactions. For the analysis of gaseous SO2 and CO2 an in-situ gas monitoring system was additionally mounted. This setup was deployed into the gas plumes of Stromboli Volcano (Italy), Masaya Volcano (Nicaragua) and Turrialba Volcano (Costa Rica) in 2016, to investigate the halogen chemistry at distant locations in the plume further downwind to the emission source, which are in most cases not accessible by other approaches. Flights into the plume were conducted with ascents of up to 1000 m. From telemetrically transmitted SO2 mixing ratios, areas of dense plume where localized to keep the UAV stationary for up to 10 minutes of sampling time. Additionally, ground based samples were taken at the crater rim (at Masaya and Turrialba) using alkaline traps, denuder and gas sensors for comparison with airborne-collected data. Herein we will present time and spatial resolved gas mixing ratio data for SO2, CO2 and halogen species for crater rim sites and a downwind plume age of about 3 to 5 minutes.

  20. Effects of Atmospheric Conditions and the Land/Atmospheric Interface on Transport of Chemical Vapors from Subsurface Sources

    NASA Astrophysics Data System (ADS)

    Rice, A. K.; Smits, K. M.; Cihan, A.; Howington, S. E.; Illangasekare, T. H.

    2013-12-01

    Understanding the movement of chemical vapors and gas through variably saturated soil subjected to atmospheric thermal and mass flux boundary conditions at the land/atmospheric interface is important to many applications, including landmine detection, methane leakage during natural gas production from shale and CO2 leakage from deep geologic storage. New, advanced technologies exist to sense chemical signatures and gas leakage at the land/atmosphere interface, but interpretation of sensor signals remains a challenge. Chemical vapors are subject to numerous interactions while migrating through the soil environment, masking source conditions. The process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal quantification of other processes, such as convective gas flow and temporal or spatial variation in soil moisture. Vapor migration is affected by atmospheric conditions (e.g. humidity, temperature, wind velocity), soil thermal and hydraulic properties and contaminant properties, all of which are physically and thermodynamically coupled. The complex coupling of two drastically different flow regimes in the subsurface and atmosphere is commonly ignored in modeling efforts, or simplifying assumptions are made to treat the systems as de-coupled. Experimental data under controlled laboratory settings are lacking to refine the theory for proper coupling and complex treatment of vapor migration through porous media in conversation with atmospheric flow and climate variations. Improving fundamental understanding and accurate quantification of these processes is not feasible in field settings due to lack of controlled initial and boundary conditions and inability to fully characterize the subsurface at all relevant scales. The goal of this work is to understand the influence of changes in atmospheric conditions to transport of vapors through variably saturated soil. We have developed a tank apparatus with a network of soil and atmospheric sensors and a head space for air flow to simulate the atmospheric boundary layer. Experiments were performed under varying temperature values at the soil surface bounded by the atmospheric boundary layer. The model of Smits et al. [2011], accounting for non-equilibrium phase change and coupled heat, water vapor and liquid water flux through soil, was amended to include organic vapor in the gas phase and migration mechanisms often overlooked in models (thermal and Knudsen diffusion, density driven advection). Experimental results show increased vapor mass flux across the soil/atmospheric interface due to heat applied from the atmosphere and coupling of heat and mass transfer in the shallow subsurface for both steady and diurnal temperature patterns. Comparison of model results to experimental data shows dynamic interactions between transport in porous media and boundary conditions. Results demonstrate the value of considering interactions of the atmosphere and subsurface to better understand chemical gas transport through unsaturated soils and the land/atmospheric interface.

  1. Subduction on Venus and Implications for Volatile Cycling, Early Earth and Exoplanets

    NASA Astrophysics Data System (ADS)

    Smrekar, S. E.; Davaille, A.; Mueller, N. T.; Dyar, M. D.; Helbert, J.; Barnes, H.

    2017-12-01

    Plate tectonics plays a key role in long-term climate evolution by cycling volatiles between the interior, surface and atmosphere. Subduction is a critical process. It is the first step in transitioning between a stagnant and a mobile lid, a means for conveying volatiles into the mantle, and a mechanism for creating felsic crust. Laboratory experiments using realistic rheology illuminate the deformation produced by plume-induced subduction (Davaille abstract). Characteristics include internal rifting and volcanism, external rift branches, with a partial arc of subduction creating a trench on the margins of the plume head, and an exterior flexural bulge with small strain extension perpendicular to the trench. These characteristics, along with a consistent gravity signature, occur at the two largest coronae (quasi-circular volcano-tectonic features) on Venus (Davaille et al. Nature Geos. 2017). This interpretation resolves a long-standing debate about the dual plume and subduction characteristics of these features. Numerous coronae also show signs of plume-induced subduction. At Astkhik Planum, subduction appears to have migrated beyond the margins of Selu Corona to create a 1600 km-long, linear subduction zone, along Vaidilute Rupes. The fractures that define Selu Corona merge with the trench to the north and a rift zone to the east, consistent with plume-induced subduction migrating outward from the corona. The lithosphere and crust are much thinner here than in other potential subduction zones. Subduction appears to have generated massive volcanism which could explain the 400 m elevation of the plateau. Within the plateau there are low-viscosity flow sets nearly 1000 km that may be associated with near infrared low emissivity in VIRTIS data. Unusual lava compositions might be indicative of recycling of CO2 or other volatiles into the lithosphere. Little evidence exists to illustrate how plate tectonics initiated on Earth, but Venus' high surface temperature makes it a good analog of Earth's Archean. There is increasing evidence that Venus is a dynamic planet with possible active and/or recent volcanism and subduction. Studying these processes on Venus provides a window into both early Earth and offers constraints on the conditions needed to initiate plate tectonics on exoplanets.

  2. Hydrogeology and trichloroethene contamination in the sea-level aquifer beneath the Logistics Center, Fort Lewis, Washington

    USGS Publications Warehouse

    Dinicola, Richard S.

    2005-01-01

    The U.S. Army disposed of waste trichloroethene (TCE) and other materials in the East Gate Disposal Yard near the Logistics Center on Fort Lewis, Washington, from the 1940s to the early 1970s. As a result, ground water contaminated with primarily TCE extends more than 3 miles downgradient from the East Gate Disposal Yard. The site is underlain by a complex and heterogeneous sequence of glacial and non-glacial deposits that have been broadly categorized into an upper and a lower aquifer (the latter referred to as the sea-level aquifer). TCE contamination was detected in both aquifers. This report describes an investigation by the U.S. Geological Survey (USGS) of the source, migration, and attenuation of TCE in the sea-level aquifer. A refined conceptual model for ground-water flow and contaminant migration into and through the sea-level aquifer was developed in large part from interpretation of environmental tracer data. The tracers used included stable isotopes of oxygen (18O), hydrogen (2H), and carbon (13C); the radioactive hydrogen isotope tritium (3H); common ions and redox-related analytes; chlorofluorocarbons; and sulfur hexafluoride. Tracer and TCE concentrations were determined for samples collected by the USGS from 37 wells and two surface-water sites in American Lake during 1999-2000. Ground-water levels were measured by the USGS in more than 40 wells during 2000-01, and were combined with measurements by the U.S. Army and others to create potentiometric-surface maps. Localized ground-water flow features were identified that are of particular relevance to the migration of TCE in the study area. A ridge of ground water beneath American Lake diverts the flow of TCE-contaminated ground water in the sea-level aquifer to the west around the southern end of the lake. Tracer data provided clear evidence that American Lake is a significant source of recharge to the sea-level aquifer that has created that ridge of ground water. High ground-water altitudes at locations north and northeast of the Logistics Center combined with the ridge beneath American Lake prevent TCE contaminated water beneath the Logistics Center from migrating toward municipal water-supply wells northeast of the site. The 1999-2000 TCE concentrations measured by the USGS at older wells screened in the sea-level aquifer were similar to those measured since 1995, but the known downgradient extent of the TCE contamination expanded nearly 2 miles after the Army installed and sampled new wells during 2003-04. Concentrations of TCE in the sea-level aquifer were consistently highest in the upper part of the aquifer throughout the plume, although TCE has spread throughout much of the thickness of the aquifer in the downgradient portions of the plume. Environmental tracer data indicated that the primary pathway for contaminant migration into the sea-level aquifer is through the previously identified confining unit window, an area where the predominately fine-grained confining unit is relatively coarse grained and more permeable. Other less substantial pathways for contaminant migration also were identified near the East Gate Disposal Yard and the I-5 pump-and-treat facilities. Those areas are near active pumping wells and ground-water reintroduction facilities, but there is no evidence that the contaminant migration was caused or enhanced by those activities. Within the sea-level aquifer, TCE concentrations continue to migrate westward in the flow field strongly influenced by ground-water recharge from American Lake. Historical data are not available to definitively determine if the 5-?g/L leading edge of the current TCE plume is stable or if it is still moving downgradient. However, an evaluation of the available data combined with TCE traveltime estimates indicates that the peak TCE concentrations in the sea-level aquifer may have not yet reached the wells near the currently defined leading edge of the plume. Hypothetically, the 5-?g/L leading edge

  3. Using flowmeter pulse tests to define hydraulic connections in the subsurface: A fractured shale example

    USGS Publications Warehouse

    Williams, J.H.; Paillet, Frederick L.

    2002-01-01

    Cross-borehole flowmeter pulse tests define subsurface connections between discrete fractures using short stress periods to monitor the propagation of the pulse through the flow system. This technique is an improvement over other cross-borehole techniques because measurements can be made in open boreholes without packers or previous identification of water-producing intervals. The method is based on the concept of monitoring the propagation of pulses rather than steady flow through the fracture network. In this method, a hydraulic stress is applied to a borehole connected to a single, permeable fracture, and the distribution of flow induced by that stress monitored in adjacent boreholes. The transient flow responses are compared to type curves computed for several different types of fracture connections. The shape of the transient flow response indicates the type of fracture connection, and the fit of the data to the type curve yields an estimate of its transmissivity and storage coefficient. The flowmeter pulse test technique was applied in fractured shale at a volatile-organic contaminant plume in Watervliet, New York. Flowmeter and other geophysical logs were used to identify permeable fractures in eight boreholes in and near the contaminant plume using single-borehole flow measurements. Flowmeter cross-hole pulse tests were used to identify connections between fractures detected in the boreholes. The results indicated a permeable fracture network connecting many of the individual boreholes, and demonstrated the presence of an ambient upward hydraulic-head gradient throughout the site.

  4. Tritium plume dynamics in the shallow unsaturated zone in an arid environment

    USGS Publications Warehouse

    Maples, S.R.; Andraski, Brian J.; Stonestrom, David A.; Cooper, C.A.; Pohll, G.; Michel, R.L.

    2014-01-01

    The spatiotemporal variability of a tritium plume in the shallow unsaturated zone and the mechanisms controlling its transport were evaluated during a 10-yr study. Plume movement was minimal and its mass declined by 68%. Upward-directed diffusive-vapor tritium fluxes and radioactive decay accounted for most of the observed plume-mass declines.Effective isolation of tritium (3H) and other contaminants at waste-burial facilities requires improved understanding of transport processes and pathways. Previous studies documented an anomalously widespread (i.e., theoretically unexpected) distribution of 3H (>400 m from burial trenches) in a dry, sub-root-zone gravelly layer (1–2-m depth) adjacent to a low-level radioactive waste (LLRW) burial facility in the Amargosa Desert, Nevada, that closed in 1992. The objectives of this study were to: (i) characterize long-term, spatiotemporal variability of 3H plumes; and (ii) quantify the processes controlling 3H behavior in the sub-root-zone gravelly layer beneath native vegetation adjacent to the facility. Geostatistical methods, spatial moment analyses, and mass flux calculations were applied to a spatiotemporally comprehensive, 10-yr data set (2001–2011). Results showed minimal bulk-plume advancement during the study period and limited Fickian spreading of mass. Observed spreading rates were generally consistent with theoretical vapor-phase dispersion. The plume mass diminished more rapidly than would be expected from radioactive decay alone, indicating net efflux from the plume. Estimates of upward 3H efflux via diffusive-vapor movement were >10× greater than by dispersive-vapor or total-liquid movement. Total vertical fluxes were >20× greater than lateral diffusive-vapor fluxes, highlighting the importance of upward migration toward the land surface. Mass-balance calculations showed that radioactive decay and upward diffusive-vapor fluxes contributed the majority of plume loss. Results indicate that plume losses substantially exceeded any continuing 3H contribution to the plume from the LLRW facility during 2001 to 2011 and suggest that the widespread 3H distribution resulted from transport before 2001.

  5. Modeling multiphase migration of organic chemicals in groundwater systems--a review and assessment.

    PubMed Central

    Abriola, L M

    1989-01-01

    Over the past two decades, a number of models have been developed to describe the multiphase migration of organic chemicals in the subsurface. This paper presents the state-of-the-art with regard to such modeling efforts. The mathematical foundations of these models are explored and individual models are presented and discussed. Models are divided into three groups: a) those that assume a sharp interface between the migrating fluids; b) those that incorporate capillarity; and c) those that consider interphase transport of mass. Strengths and weaknesses of each approach are considered along with supporting data for model validation. Future research directions are also highlighted. PMID:2695322

  6. Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Engelhardt, I.; Piepenbrink, M.; Trauth, N.; Stadler, S.; Kludt, C.; Schulz, M.; Schüth, C.; Ternes, T. A.

    2011-03-01

    SummaryHydrodynamic exchange between surface-water and groundwater was studied at a river located within the Rhine Valley in Germany. Piezometric pressure heads and environmental tracers such as temperature, stable isotopes, chloride, X-ray contrast media, and artificial sweetener were investigated within the hyporheic zone and river water plume. Vertical profiles of environmental tracers were collected using multi-level wells within the neutral up-gradient zone, beneath the river bed, and within the horizontal proximal and distal down-gradient zone. Infiltration velocities were calculated from pressure heads, temperature fluctuations and gradients. The amount of river water within groundwater was estimated from vertical profiles of chloride, stable isotopes, and persistent pharmaceuticals. Profiles of stable isotopes and chloride reveal the existence of down-welling within the shallow hyporheic zone that is generated by river bed irregularities. Due to down-welling an above-average migration of river water into the hyporheic zone establishes even under upward hydraulic pressure gradients. The investigated environmental tracers could not distinctively display short-time-infiltration velocities representative for flood waves, while average infiltration velocities calculated over several months are uniform displayed. Based on vertical temperature profiles the down-gradient migration of the river water plume could be observed even after long periods of effluent conditions and over a distance of 200 m from the river bank. X-ray contrast media and artificial sweeteners were observed in high concentrations within the proximal zone, but were not detected at a distance of 200 m from the river bank. Using temperature as environmental tracer within the hyporheic zone may result in overestimating the migration of pollutants within the river water plume as the process of natural attenuation will be neglected. Furthermore, temperature was not able to display the effect of down-welling. Stable isotopes and chloride were found to be suitable environmental tracers to forecast the release and fate of organic contaminants within the hyporheic zone.

  7. Reservoir Architecture Control on the Geometry of a CO2 Plume Using 4D Seismic, Sleipner Field.

    NASA Astrophysics Data System (ADS)

    Bitrus, Roy; Iacopini, David; Bond, Clare

    2017-04-01

    Time lapse seismic from the Sleipner field, Norwegian North Sea represents a unique database to understand the geometry of a saline aquifer, the Utsira Sand Formation, and its role in containing sequestered CO2. The heterogeneous high permeability Utsira Sand formation bounded by an overlying seal is surrounded by impermeable to semi-permeable intra-reservoir thin shale units that influence the migration of injected CO2. It is important to understand and verify the dynamics of injected CO2 plume migration as this ensures close to accurate predictions of the evolving and stable state of CO2 in storage projects. Previous detailed interpretation results of the thin shale units and permeability flow path chimneys within the Utsira Formation have been used in this research. The Utsira Cap rock, IUTS1 and IUTS1 (Intra-Utsira Shale Units) are the top three units that affect the containment and upward migration path of injected CO2. They are combined with seismic geobodies of the CO2 plume across time lapse data. Here, these seismic geobodies are created using 2 methods to delineate the 3D shape and the cubic volume occupancy of the CO2 plume within the reservoir. Method 1 employs the use of an envelope attribute volume, where samples are extracted from voxels that contain seismic trace amplitude values of injected CO2 across the 3D data. These extracted samples are then tracked throughout the target area and then classed and quantified as a CO2 geobodies. Method 2 applies the same concept; the only difference is the samples extracted from voxels are classed based on the proximity and connectivity of pre-defined amplitude values. Both methods employ the use of a Bayesian classifier which defines the probability density function used to categorise the extracted threshold values. Our result of the 3D geobody shapes are compared against the internal geometry of the reservoir which shows the influence of the cap rock and intra-reservoir thin shales on the CO2 plume acting as baffles and flow paths. The amount of injected CO2 is compared against the occupied volume of CO2 within the reservoir rock. Result values are plotted in graphs and they give an indication of the upper and lower end of reservoir volume occupied by injected supercritical CO2. These values are based on the porosity, permeability, density and temperature values of the rock volume, formation fluid and supercritical CO2. The results also show a decrease in effective rock volume occupied by CO2 reaching the Utsira top cap rock with increase in injected amounts of CO2. Our results indicate that the methods proposed can be applied to storage reservoirs in their early to mid-stages to help predict and understand the internal geometries of the reservoir unit and how they can affect the containment or upward migration flow of CO2. The CO2 volumetric measurement can also be used as a well-grounded assessment for future saline aquifer storage projects.

  8. Antarctic analogs for Enceladus

    NASA Astrophysics Data System (ADS)

    Murray, A. E.; Andersen, D. T.; McKay, C. P.

    2014-12-01

    Enceladus is a new world for Astrobiology. The Cassini discovery of the icy plume emanating from the South Polar region indicates an active world, where detection of water, organics, sodium, and nano-particle silica in the plume strongly suggests that the source is a subsurface salty ocean reservoir. Recent gravity data from Cassini confirms the presence of a regional sea extending north to 50°S. An ocean habitat under a thick ice cover is perhaps a recurring theme in the Outer Solar System, but what makes Enceladus unique is that the plume jetting out into space is carrying samples of this ocean. Therefore, through the study of Enceladus' plumes we can gain new insights not only of a possible habitable world in the Solar Systems, but also about the formation and evolution of other icy-satellites. Cassini has been able to fly through this plume - effectively sampling the ocean. It is time to plan for future missions that do more detailed analyses, possibly return samples back to Earth and search for evidence of life. To help prepare for such missions, the need for earth-based analog environments is essential for logistical, methodological (life detection) and theoretical development. We have undertaken studies of two terrestrial environments that are close analogs to Enceladus' ocean: Lake Vida and Lake Untersee - two ice-sealed Antarctic lakes that represent physical, chemical and possibly biological analogs for Enceladus. By studying the diverse biology and physical and chemical constraints to life in these two unique lakes we will begin to understand the potential habitability of Enceladus and other icy moons, including possible sources of nutrients and energy, which together with liquid water are the key ingredients for life. Analog research such as this will also enable us to develop and test new strategies to search for evidence of life on Enceladus.

  9. Effects of Subsurface Microbial Ecology on Geochemical Evolution of a Crude-Oil Contaminated Aquifer

    NASA Astrophysics Data System (ADS)

    Bekins, B. A.; Cozzarelli, I. M.; Godsy, E. M.; Warren, E.; Hostettler, F. D.

    2001-12-01

    We have identified several subsurface habitats for microorganisms in a crude oil contaminated located near Bemidji, Minnesota. These aquifer habitats include: 1) the unsaturated zone contaminated by hydrocarbon vapors, 2) the zones containing separate-phase crude oil, and 3) the aqueous-phase contaminant plume. The surficial glacial outwash aquifer was contaminated when a crude oil pipeline burst in 1979. We analyzed sediment samples from the contaminated aquifer for the most probable numbers of aerobes, iron reducers, fermenters, and three types of methanogens. The microbial data were then related to gas, water, and oil chemistry, sediment extractable iron, and permeability. The microbial populations in the various contaminated subsurface habitats each have special characteristics and these affect the aquifer and contaminant chemistry. In the eight-meter-thick, vapor-contaminated vadose zone, a substantial aerobic population has developed that is supported by hydrocarbon vapors and methane. Microbial numbers peak in locations where access to both hydrocarbons and nutrients infiltrating from the surface is maximized. The activity of this population prevents hydrocarbon vapors from reaching the land surface. In the zone where separate-phase crude oil is present, a consortium of methanogens and fermenters dominates the populations both above and below the water table. Moreover, gas concentration data indicate that methane production has been active in the oily zone since at least 1986. Analyses of the extracted separate-phase oil show that substantial degradation of C15 -C35 n-alkanes has occurred since 1983, raising the possibility that significant degradation of C15 and higher n-alkanes has occurred under methanogenic conditions. However, lab and field data suggest that toxic inhibition by crude oil results in fewer acetate-utilizing methanogens within and adjacent to the separate-phase oil. Data from this and other sites indicate that toxic inhibition of acetoclastic methanogenesis in the proximity of separate phase contaminant sources may result in build-up of acetate in contaminant plumes. Within the aqueous-phase contaminant plume steep vertical hydrocarbon concentration gradients are associated with sharp transitions in the dominant microbial population. In the 20 years since the aquifer became contaminated, sediment iron oxides have been depleted and the dominant physiologic type has changed in areas of high contaminant flux from iron reducing to methanogenic. Thus, methanogens are found in high permeability horizons down gradient from the oil while iron reducers persist in low permeability zones. Expansion of the methanogenic zone over time has resulted in a concomitant increase in the aquifer volume contaminated with the highest concentrations of benzene and ethylbenzene.

  10. Shallow, non-pumped wells: a low-energy alternative for cleaning polluted groundwater.

    PubMed

    Hudak, Paul F

    2013-07-01

    This modeling study evaluated the capability of non-pumped wells with filter media for preventing contaminant plumes from migrating offsite. Linear configurations of non-pumped wells were compared to permeable reactive barriers in simulated shallow homogeneous and heterogeneous aquifers. While permeable reactive barriers enabled faster contaminant removal and shorter distances of contaminant travel, non-pumped wells also prevented offsite contaminant migration. Overall, results of this study suggest that discontinuous, linear configurations of non-pumped wells may be a viable alternative to much more costly permeable reactive barriers for preventing offsite contaminant travel in some shallow aquifers.

  11. Timing of the formation and migration of giant planets as constrained by CB chondrites

    PubMed Central

    Johnson, Brandon C.; Walsh, Kevin J.; Minton, David A.; Krot, Alexander N.; Levison, Harold F.

    2016-01-01

    The presence, formation, and migration of giant planets fundamentally shape planetary systems. However, the timing of the formation and migration of giant planets in our solar system remains largely unconstrained. Simulating planetary accretion, we find that giant planet migration produces a relatively short-lived spike in impact velocities lasting ~0.5 My. These high-impact velocities are required to vaporize a significant fraction of Fe,Ni metal and silicates and produce the CB (Bencubbin-like) metal-rich carbonaceous chondrites, a unique class of meteorites that were created in an impact vapor-melt plume ~5 My after the first solar system solids. This indicates that the region where the CB chondrites formed was dynamically excited at this early time by the direct interference of the giant planets. Furthermore, this suggests that the formation of the giant planet cores was protracted and the solar nebula persisted until ~5 My. PMID:27957541

  12. Timing of the formation and migration of giant planets as constrained by CB chondrites.

    PubMed

    Johnson, Brandon C; Walsh, Kevin J; Minton, David A; Krot, Alexander N; Levison, Harold F

    2016-12-01

    The presence, formation, and migration of giant planets fundamentally shape planetary systems. However, the timing of the formation and migration of giant planets in our solar system remains largely unconstrained. Simulating planetary accretion, we find that giant planet migration produces a relatively short-lived spike in impact velocities lasting ~0.5 My. These high-impact velocities are required to vaporize a significant fraction of Fe,Ni metal and silicates and produce the CB (Bencubbin-like) metal-rich carbonaceous chondrites, a unique class of meteorites that were created in an impact vapor-melt plume ~5 My after the first solar system solids. This indicates that the region where the CB chondrites formed was dynamically excited at this early time by the direct interference of the giant planets. Furthermore, this suggests that the formation of the giant planet cores was protracted and the solar nebula persisted until ~5 My.

  13. Remote laser evaporative molecular absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hughes, Gary B.; Lubin, Philip; Cohen, Alexander; Madajian, Jonathan; Kulkarni, Neeraj; Zhang, Qicheng; Griswold, Janelle; Brashears, Travis

    2016-09-01

    We describe a novel method for probing bulk molecular and atomic composition of solid targets from a distant vantage. A laser is used to melt and vaporize a spot on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption occurs as the blackbody radiation passes through the ejected plume. Bulk molecular and atomic composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected plume. The proposed method is distinct from current stand-off approaches to composition analysis, such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes target material and observes emission spectra to determine bulk atomic composition. Initial simulations of absorption profiles with laser heating show great promise for Remote Laser-Evaporative Molecular Absorption (R-LEMA) spectroscopy. The method is well-suited for exploration of cold solar system targets—asteroids, comets, planets, moons—such as from a spacecraft orbiting the target. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole or trench, and shallow subsurface composition profiling is possible. This paper describes system concepts for implementing the proposed method to probe the bulk molecular composition of an asteroid from an orbiting spacecraft, including laser array, photovoltaic power, heating and ablation, plume characteristics, absorption, spectrometry and data management.

  14. Early atmospheric detection of carbon dioxide from carbon capture and storage sites.

    PubMed

    Pak, Nasrin Mostafavi; Rempillo, Ofelia; Norman, Ann-Lise; Layzell, David B

    2016-08-01

    The early atmospheric detection of carbon dioxide (CO2) leaks from carbon capture and storage (CCS) sites is important both to inform remediation efforts and to build and maintain public support for CCS in mitigating greenhouse gas emissions. A gas analysis system was developed to assess the origin of plumes of air enriched in CO2, as to whether CO2 is from a CCS site or from the oxidation of carbon compounds. The system measured CO2 and O2 concentrations for different plume samples relative to background air and calculated the gas differential concentration ratio (GDCR = -ΔO2/ΔCO2). The experimental results were in good agreement with theoretical calculations that placed GDCR values for a CO2 leak at 0.21, compared with GDCR values of 1-1.8 for the combustion of carbon compounds. Although some combustion plume samples deviated in GDCR from theoretical, the very low GDCR values associated with plumes from CO2 leaks provided confidence that this technology holds promise in providing a tool for the early detection of CO2 leaks from CCS sites. This work contributes to the development of a cost-effective technology for the early detection of leaks from sites where CO2 has been injected into the subsurface to enhance oil recovery or to permanently store the gas as a strategy for mitigating climate change. Such technology will be important in building public confidence regarding the safety and security of carbon capture and storage sites.

  15. In Situ Bioremediation by Natural Attenuation: from Lab to Field Scale

    NASA Astrophysics Data System (ADS)

    Banwart, S. A.; Thornton, S.; Rees, H.; Lerner, D.; Wilson, R.; Romero-Gonzalez, M.

    2007-03-01

    In Situ Bioremediation is a passive technology to degrade soil and groundwater contamination in order to reduce environmental and human health risk. Natural attenuation is the application of engineering biotechnology principles to soil and groundwater systems as natural bioreactors to transform or immobilize contamination to less toxic or less bioavailable forms. Current advances in computational methods and site investigation techniques now allow detailed numerical models to be adequately parameterized for interpretation of processes and their interactions in the complex sub-surface system. Clues about biodegradation processes point to the dominant but poorly understood behaviour of attached growth microbial populations that exist within the context of biofilm formation. New techniques that combine biological imaging with non-destructive chemical analysis are providing new insights into attached growth influence on Natural Attenuation. Laboratory studies have been carried out in porous media packed bed reactors that physically simulate plume formation in aquifers. Key results show that only a small percentage of the total biomass within the plume is metabolically active and that activity is greatest at the plume fringe. This increased activity coincides with the zone where dispersive mixing brings dissolved O2 from outside the plume in contact with the contamination and microbes. The exciting new experimental approaches in lab systems offer tremendous potential to move Natural Attenuation and other in situ bioremediation approaches away from purely empirical engineering approaches, to process descriptions that are far more strongly based on first principles and that have a far greater predictive capacity for remediation performance assessment.

  16. Mapping of plume deposits and surface composition on Enceladus

    NASA Astrophysics Data System (ADS)

    Nordheim, T. A.; Scipioni, F.; Cruikshank, D. P.; Clark, R. N.,; Hand, K. P.

    2017-01-01

    A major result of the Cassini mission was the discovery that the small mid-sized moon Enceladus is presently geological active[Dougherty et al., 2006; Porco et al., 2006; Spencer et al., 2006; Hansen et al., 2008]. This activity results in plumes of water vapor and ice emanating from a series of fractures ("Tiger Stripes") at the moon's South Pole. Some fraction of plume material escapes the moon's gravity and populates the E-ring as well as ultimately providing a source of fresh plasma in the Saturnian magnetosphere [Pontius and Hill, 2006; Kempf et al., 2010]. However, a significant portion of plume material is redeposited on Enceladus and thus provides a source of surface contaminants. By studying the near-infrared spectral signatures of these contaminants we may put new constraints on the composition of the plumes and, ultimately, their source, which is currently believed to be Enceladus's global sub-surface ocean [Iess et al., 2014]. Here we present preliminary results from our analysis of observations from the Visual and Infrared Mapping Spectrometer (VIMS) [Brown et al., 2005] onboard Cassini and mapping of plume deposits across the surface of Enceladus. We have investigated the global variation of the water ice Fresnel peak at 3.1 μm, which may be used as an indicator of ice crystallinity [Hansen & McCord, 2004; Jaumann et al., 2008; Newman et al., 2008]. We have also investigated the slope of the 1.11-2.25 μm spectral region, which serves as an indicator of water ice grain size for small grains (< 100 μm) as well as the presence of contaminants [e.g. Filacchione et al., 2010]. Finally, we have identified and mapped an absorption feature centered at 3.25 μm that may be related to organic contaminants, represented by the band depth of the fundamental C-H stretch [e.g. Cruikshank et al., 2014; Scipioni et al., 2014].

  17. OVERVIEW OF USEPA'S ORD TECHNICAL OUTREACH AND SUPPORT ACTIVITIES ON VAPOR INTRUSION IMPACTS

    EPA Science Inventory

    Increasing attention has been given to understanding the impacts of subsurface vapor contaminant migration into overlying buildings. Many of these impacted structures are residences, where occupants face undesirable health risks. The science of determining, characterizing and man...

  18. Spatial variations in isostatic compensation mechanisms of the Ninetyeast Ridge and their tectonic significance

    NASA Astrophysics Data System (ADS)

    Sreejith, K. M.; Krishna, K. S.

    2013-10-01

    Ninetyeast Ridge (NER), one of the longest linear volcanic features on the Earth, offers an excellent opportunity of understanding the isostatic response to the interactions of mantle plume with the migrating mid-ocean ridge. Bathymetry, geoid, and gravity (shipborne and satellite) data along 72 closely spaced transects and 17 overlapping grids on the NER are analyzed and modeled to determine the effective elastic thickness (Te) beneath the entire ridge. The results of 2-D and 3-D flexural modeling of the NER show large spatial variations in Te values ranging from 4 to 35 km, suggesting that the ridge was compensated along its length by different isostatic mechanisms. The southern (south of 22°S latitude) and northern (north of 2°N latitude) parts of the NER have Te values of >10 and >23 km, respectively, revealing that the southern part was emplaced on a lithosphere of intermediate strength possibly on flank of the Indian plate, whereas the northern part was emplaced in an intraplate setting. In contrast, in the central part of the NER (between latitudes 22°S and 2°N), highly variable Te values (4-22 km) are estimated. The scattered Te values in the central NER suggest that this part may have evolved due to the occurrence of frequent ridge jumps caused by the interaction of Kerguelen hot spot with rapid northward migration of the Wharton spreading ridge. Residual Mantle Bouguer Anomaly (RMBA) map of the NER and adjacent basins reveals that the entire length of the NER is associated with a significant negative anomaly up to 200 mGal, indicating the presence of thickened crust or less dense mantle beneath the ridge. 3-D crustal thickness map of the NER, generated by inversion of the RMBA data, shows a thick crust ranging from 15 to 19 km. The present study clearly shows that NER possesses a highly segmented isostatic pattern with the occurrence of subcrustal underplating or subsurface loading.

  19. Concept for Inclusion of Analytical and Computational Capability in Optical Plume Anomaly Detection (OPAD) for Measurement of Neutron Flux

    NASA Technical Reports Server (NTRS)

    Patrick, M. Clinton; Cooper, Anita E.; Powers, W. T.

    2004-01-01

    Researchers are working on many konts to make possible high speed, automated classification and quantification of constituent materials in numerous environments. NASA's Marshall Space Flight Center has implemented a system for rocket engine flow fields/plumes; the Optical Plume Anomaly Detection (OPAD) system was designed to utilize emission and absorption spectroscopy for monitoring molecular and atomic particulates in gas plasma. An accompanying suite of tools and analytical package designed to utilize information collected by OPAD is known as the Engine Diagnostic Filtering System (EDIFIS). The current combination of these systems identifies atomic and molecular species and quantifies mass loss rates in H2/O2 rocket plumes. Additionally, efforts are being advanced to hardware encode components of the EDIFIS in order to address real-time operational requirements for health monitoring and management. This paper addresses the OPAD with its tool suite, and discusses what is considered a natural progression: a concept for migrating OPAD towards detection of high energy particles, including neutrons and gamma rays. The integration of these tools and capabilities will provide NASA with a systematic approach to monitor space vehicle internal and external environment.

  20. Natural attenuation of volatile organic compounds (VOCs) in the leachate plume of a municipal landfill: Using alkylbenzenes as process probes

    USGS Publications Warehouse

    Eganhouse, R.P.; Cozzarelli, I.M.; Scholl, M.A.; Matthews, L.L.

    2001-01-01

    More than 70 individual VOCs were identified in the leachate plume of a closed municipal landfill. Concentrations were low when compared with data published for other landfills, and total VOCs accounted for less than 0.1% of the total dissolved organic carbon. The VOC concentrations in the core of the anoxic leachate plume are variable, but in all cases they were found to be near or below detection limits within 200 m of the landfall. In contrast to the VOCs, the distributions of chloride ion, a conservative tracer, and nonvolatile dissolved organic carbon, indicate little dilution over the same distance. Thus, natural attentuation processes are effectively limiting migration of the VOC plume. The distribution of C2-3-benzenes, paired on the basis of their octanol-water partition coefficients and Henry's law constants, were systematically evaluated to assess the relative importance of volatilization, sorption, and biodegradation as attenuation mechanisms. Based on our data, biodegradation appears to be the process primarily responsible for the observed attenuation of VOCs at this site. We believe that the alkylbenzenes are powerful process probes that can and should be exploited in studies of natural attenuation in contaminated ground water systems.

  1. Subsurface Monitoring of CO2 Sequestration - A Review and Look Forward

    NASA Astrophysics Data System (ADS)

    Daley, T. M.

    2012-12-01

    The injection of CO2 into subsurface formations is at least 50 years old with large-scale utilization of CO2 for enhanced oil recovery (CO2-EOR) beginning in the 1970s. Early monitoring efforts had limited measurements in available boreholes. With growing interest in CO2 sequestration beginning in the 1990's, along with growth in geophysical reservoir monitoring, small to mid-size sequestration monitoring projects began to appear. The overall goals of a subsurface monitoring plan are to provide measurement of CO2 induced changes in subsurface properties at a range of spatial and temporal scales. The range of spatial scales allows tracking of the location and saturation of the plume with varying detail, while finer temporal sampling (up to continuous) allows better understanding of dynamic processes (e.g. multi-phase flow) and constraining of reservoir models. Early monitoring of small scale pilots associated with CO2-EOR (e.g., the McElroy field and the Lost Hills field), developed many of the methodologies including tomographic imaging and multi-physics measurements. Large (reservoir) scale sequestration monitoring began with the Sleipner and Weyburn projects. Typically, large scale monitoring, such as 4D surface seismic, has limited temporal sampling due to costs. Smaller scale pilots can allow more frequent measurements as either individual time-lapse 'snapshots' or as continuous monitoring. Pilot monitoring examples include the Frio, Nagaoka and Otway pilots using repeated well logging, crosswell imaging, vertical seismic profiles and CASSM (continuous active-source seismic monitoring). For saline reservoir sequestration projects, there is typically integration of characterization and monitoring, since the sites are not pre-characterized resource developments (oil or gas), which reinforces the need for multi-scale measurements. As we move beyond pilot sites, we need to quantify CO2 plume and reservoir properties (e.g. pressure) over large scales, while still obtaining high resolution. Typically the high-resolution (spatial and temporal) tools are deployed in permanent or semi-permanent borehole installations, where special well design may be necessary, such as non-conductive casing for electrical surveys. Effective utilization of monitoring wells requires an approach of modular borehole monitoring (MBM) were multiple measurements can be made. An example is recent work at the Citronelle pilot injection site where an MBM package with seismic, fluid sampling and distributed fiber sensing was deployed. For future large scale sequestration monitoring, an adaptive borehole-monitoring program is proposed.

  2. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media.

    PubMed

    Kanti Sen, Tushar; Khilar, Kartic C

    2006-02-28

    In this review article, the authors present up-to-date developments on experimental, modeling and field studies on the role of subsurface colloidal fines on contaminant transport in saturated porous media. It is a complex phenomenon in porous media involving several basic processes such as colloidal fines release, dispersion stabilization, migration and fines entrapment/plugging at the pore constrictions and adsorption at solid/liquid interface. The effects of these basic processes on the contaminant transport have been compiled. Here the authors first present the compilation on in situ colloidal fines sources, release, stabilization of colloidal dispersion and migration which are a function of physical and chemical conditions of subsurface environment and finally their role in inorganic and organic contaminants transport in porous media. The important aspects of this article are as follows: (i) it gives not only complete compilation on colloidal fines-facilitated contaminant transport but also reviews the new role of colloidal fines in contaminant retardation due to plugging of pore constrictions. This plugging phenomenon also depends on various factors such as concentration of colloidal fines, superficial velocity and bead-to-particle size ratio. This plugging-based contaminant transport can be used to develop containment technique in soil and groundwater remediation. (ii) It also presents the importance of critical salt concentration (CSC), critical ionic strength for mixed salt, critical shear stressor critical particle concentration (CPC) on in situ colloidal fines release and migration and consequently their role on contaminant transport in porous media. (iii) It also reviews another class of colloidal fines called biocolloids and their transport in porous media. Finally, the authors highlight the future research based on their critical review on colloid-associated contaminant transport in saturated porous media.

  3. Stochastic Seismic Inversion and Migration for Offshore Site Investigation in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Son, J.; Medina-Cetina, Z.

    2017-12-01

    We discuss the comparison between deterministic and stochastic optimization approaches to the nonlinear geophysical full-waveform inverse problem, based on the seismic survey data from Mississippi Canyon in the Northern Gulf of Mexico. Since the subsea engineering and offshore construction projects actively require reliable ground models from various site investigations, the primary goal of this study is to reconstruct the accurate subsurface information of the soil and rock material profiles under the seafloor. The shallow sediment layers have naturally formed heterogeneous formations which may cause unwanted marine landslides or foundation failures of underwater infrastructure. We chose the quasi-Newton and simulated annealing as deterministic and stochastic optimization algorithms respectively. Seismic forward modeling based on finite difference method with absorbing boundary condition implements the iterative simulations in the inverse modeling. We briefly report on numerical experiments using a synthetic data as an offshore ground model which contains shallow artificial target profiles of geomaterials under the seafloor. We apply the seismic migration processing and generate Voronoi tessellation on two-dimensional space-domain to improve the computational efficiency of the imaging stratigraphical velocity model reconstruction. We then report on the detail of a field data implementation, which shows the complex geologic structures in the Northern Gulf of Mexico. Lastly, we compare the new inverted image of subsurface site profiles in the space-domain with the previously processed seismic image in the time-domain at the same location. Overall, stochastic optimization for seismic inversion with migration and Voronoi tessellation show significant promise to improve the subsurface imaging of ground models and improve the computational efficiency required for the full waveform inversion. We anticipate that by improving the inversion process of shallow layers from geophysical data will better support the offshore site investigation.

  4. Influence of microorganisms on the oxidation state distribution of multivalent actinides under anoxic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Donald Timothy; Borkowski, Marian; Lucchini, Jean - Francois

    2010-12-10

    The fate and potential mobility of multivalent actinides in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium, uranium and neptunium are the near-surface multivalent contaminants of concern and are also key contaminants for the deep geologic disposal of nuclear waste. Their mobility is highly dependent on their redox distribution at their contamination source as well as along their potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity.more » Under anoxic conditions, indirect and direct bioreduction mechanisms exist that promote the prevalence of lower-valent species for multivalent actinides. Oxidation-state-specific biosorption is also an important consideration for long-term migration and can influence oxidation state distribution. Results of ongoing studies to explore and establish the oxidation-state specific interactions of soil bacteria (metal reducers and sulfate reducers) as well as halo-tolerant bacteria and Archaea for uranium, neptunium and plutonium will be presented. Enzymatic reduction is a key process in the bioreduction of plutonium and uranium, but co-enzymatic processes predominate in neptunium systems. Strong sorptive interactions can occur for most actinide oxidation states but are likely a factor in the stabilization of lower-valent species when more than one oxidation state can persist under anaerobic microbiologically-active conditions. These results for microbiologically active systems are interpreted in the context of their overall importance in defining the potential migration of multivalent actinides in the subsurface.« less

  5. Leachate plumes in ground water from Babylon and Islip landfills, Long Island, New York

    USGS Publications Warehouse

    Kimmel, Grant E.; Braids, O.C.

    1980-01-01

    Landfills operated by the towns of Babylon and Islip in southwest and central Suffolk County, N.Y., contain urban refuse incinerated garbage, and scavenger (cesspool) waste; some industrial refuse is deposited at the Babylon site. The Islip landfill was started in 1933, the Babylon landfill in 1947. The landfills are in contact with and discharge leachate into the highly permeable upper glacial aquifer (hydraulic conductivity 190 and 500 ft/d). The aquifer is 74 feet thick at the Babylon landfill and 170 feet thick at the Islip landfill. The leachate-enriched water occupies the boundaries retard downward migration of the plumes to deeper aquifers. The Babylon plume is 1,900 feet wide at the landfill and narrows to about 700 feet near its terminus 10,000 feet from the landfill. The Islip plume is 5,000 feet from the landfill. Hydrochemical maps and sections show the distribution of the major chemical constituents of the plumes. The most highly leachate-enriched ground water obtained was from the Babylon site; it contained 860 mg/L sodium, 110 mg/L potassium, 565 mg/L calcium, 100 mg/L magnesium, 2,7000 mg/L bicarbonate, and 1,300 mg/L chloride. Simulation of the movement and dispersion of the Babylon plume with a mathematical dispersion model indicated the coefficient of the longitudinal dispersion to be about 60 feet squared per day and the ground-water velocity to be 1 ft/d. However, the velocity determined from the hydraulic gradient and public-supply wells in the area was 4 ft/d, which would cause a plume four times as long as that predicted by the model. (Kosco-USGS)

  6. Immobilization of Iodate and Iodide using Iron Oxides through Sorption and Co-precipitation at Hanford Site

    NASA Astrophysics Data System (ADS)

    Wang, G.; Qafoku, N. P.; Truex, M. J.; Strickland, C. E.; Freedman, V. L.

    2017-12-01

    Isotopes of iodine were generated during plutonium production at the U.S. Department of Energy (DOE) Hanford Site. The long half-life 129I generated during reactor operations has been released into the subsurface, resulting in several large plumes at the Hanford subsurface. We studied the interaction of iodate (IO3-) and iodide (I-) with Fe oxides. A series of batch experiments were conducted to investigate adsorption and co-precipitation of iodine species in the presence of a variety of Fe oxides, such as ferrihydrite, goethite, hematite and magnetite. In the sorption experiments, each Fe oxide was added to an artificial groundwater containing either iodate or iodide, and reacted at room temperature. The sorption batch experiments for each mineral were conducted at varied initial iodate or iodide concentrations under 3 different pH conditions (pH 5, 7, and 9). In the co-precipitation batch experiments, the initial Fe-mineral-forming solutions were prepared in artificial groundwater containing iodate or iodide. Our results indicate that both sorption and co-precipitation are viable mechanisms of the attenuation of the liquid phase iodine. Species Fe oxides could serve as hosts of iodate and iodide that are present at the Hanford subsurface.

  7. Statistics of chemical gradients in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Le Borgne, T.; Huck, P. D.; Dentz, M.; Villermaux, E.

    2017-12-01

    As they create chemical disequilibrium and drive mixing fluxes, spatial gradients in solute concentrations exert a strong control on mixing and biogeochemical reactions in the subsurface. Large concentration gradients may develop in particular at interfaces between surface water and groundwater bodies, such as hyporheic zones, sea water - surface water interfaces or recharge areas. They also develop around contaminant plumes and fluids injected in subsurface operations. While macrodispersion theories predict smooth gradients, decaying in time due to dispersive dissipation, we show that concentration gradients are sustained by flow heterogeneity and have broadly distributed values. We present a general theory predicting the statistics of concentration gradients from the flow heterogeneity (Le Borgne et al., 2017). Analytical predictions are validated from high resolution simulations of transport in heterogeneous Darcy fields ranging from low to high permeability variances and low to high Peclet numbers. This modelling framework hence opens new perspectives for quantifying the dynamics of chemical gradients and the kinetics of associated biogeochemical reactions in heterogeneous subsurface environments.Reference:Le Borgne T., P.D. Huck, M. Dentz and E. Villermaux (2017) Scalar gradients in stirred mixtures and the deconstruction of random fields, J. of Fluid Mech. vol. 812, pp. 578-610 doi:10.1017/jfm.2016.799

  8. Subsurface transport of orthophosphate in five agricultural watersheds, USA

    USGS Publications Warehouse

    Domagalski, Joseph L.; Johnson, Henry M.

    2011-01-01

    Concentrations of dissolved orthophosphate (ortho P) in the unsaturated zone, groundwater, tile drains, and groundwater/stream water interfaces were assessed in five agricultural watersheds to determine the potential for subsurface transport. Concentrations of iron oxides were measured in the aquifer material and adsorption of ortho P on oxide surfaces was assessed by geochemical modeling. Attenuation of ortho P in these aquifers was attributed primarily to sorption onto iron oxides, and in one location onto clay minerals. Only one location showed a clear indication of phosphorus transport to a stream from groundwater discharge, although groundwater did contribute to the stream load elsewhere. Subsurface ortho P movement at a site in California resulted in a plume down gradient from orchards, which was attenuated by a 200 m thick riparian zone with natural vegetation. Iron oxides had an effect on phosphorus movement and concentrations at all locations, and groundwater chemistry, especially pH, exerted a major control on the amount of phosphorus adsorbed. Groundwater pH at a site in Maryland was below 5 and that resulted in complete sequestration of phosphorus and no movement toward the stream. Geochemical modeling indicated that as the surfaces approached saturation, groundwater concentrations of ortho P rise rapidly.

  9. Large scale and long term application of bioslurping: the case of a Greek petroleum refinery site.

    PubMed

    Gidarakos, E; Aivalioti, M

    2007-11-19

    This paper presents the course and the remediation results of a 4-year application of bioslurping technology on the subsurface of a Greek petroleum refinery, which is still under full operation and has important and complicated subsurface contamination problems, mainly due to the presence of light non-aqueous phase liquids (LNAPL). About 55 wells are connected to the central bioslurping unit, while a mobile bioslurping unit is also used whenever and wherever is necessary. Moreover, there are about 120 additional wells for the monitoring of the subsurface of the facilities that cover a total area of 1,000,000 m(2). An integrated monitoring program has also been developed and applied on the site, including frequent LNAPL layer depth and thickness measurements, conduction of bail-down and recovery tests, sampling and chemical analysis of the free oil phase, etc., so as to evaluate the remediation technique's efficiency and ensure a prompt tracing of any new potential leak. Despite the occurrence of new leaks within the last 4 years and the observed entrapment of LNAPL in the vadoze zone, bioslurping has managed to greatly restrict the original plume within certain and relatively small parts of the refinery facilities.

  10. Investigating In-Situ Mass Transfer Processes in a Groundwater U Plume Influenced by Groundwater-River Hydrologic and Geochemical Coupling (Invited)

    NASA Astrophysics Data System (ADS)

    Zachara, J. M.

    2009-12-01

    The Hanford Integrated Field Research Challenge (IFRC) site is a DOE/BER-supported experimental and monitoring facility focused on multi-scale mass transfer processes (hanfordifc@pnl.gov). It is located within the footprint of a historic uranium (U) waste disposal pond that overlies a contaminated vadose zone and a 1 km+ groundwater U plume. The plume is under a regulatory clean-up mandate. The site is in hydraulic connectivity with the Columbia River that is located approximately 300 m distant. Dramatic seasonal variations in Columbia River stage cause 2m+ variations in water table and associated changes in groundwater flow directions and composition that are believed to recharge contaminant U to the plume through lower vadose zone pumping. The 60 m triangular shaped facility contains 37 monitoring wells equipped with down-hole electrical resistance tomography electrode and thermistor arrays, pressure transducers for continual water level monitoring, and specific conductance electrodes. Well spacings allow cross-hole geophysical interrogation and dynamic plume monitoring. Various geophysical and hydrologic field characterizations were performed during and after well installation, and retrieved sediments are being subjected to a hierarchal laboratory characterization process to support geostatistical models of hydrologic properties, U(VI) distribution and speciation, and equilibrium and kinetic reaction parameters for robust but tractable field-scale reactive transport calculations. Three large scale (10,000 gal+), non-reactive tracer experiments have been performed to evaluate groundwater flowpaths and velocities, facies scale mass transfer, and subsurface heterogeneity effects under different hydrologic conditions (e.g., flow vectors toward or away from the river). A passive monitoring experiment was completed during spring and summer of 2009 that documents spatially variable U(VI) release and plume recharge from the contaminated lower vadose zone during oscillating rising and falling water table events. A large scale injection experiment to evaluate in situ U(VI) desorption kinetics controlled by mass transfer is planned for the fall of 2009. The presentation will summarize key results from these different activities, and discuss their implications to improved plume forecasting and development of an effective groundwater remedy.

  11. Anomalous Lower Crustal and Surface Features as a Result of Plume-induced Continental Break-up: Inferences from Numerical Models

    NASA Astrophysics Data System (ADS)

    Beniest, A.; Koptev, A.; Leroy, S. D.

    2016-12-01

    Anomalous features along the South American and African rifted margins at depth and at the surface have been recognised with gravity and magnetic modelling. They include high velocity/high density bodies at lower crustal level and topography variations that are usually interpreted as aborted rifts. We present fully-coupled lithosphere-scale numerical models that permit us to explain both features in a relatively simple framework of an interaction between rheologically stratified continental lithosphere and an active mantle plume. We used 2D and 3D numerical models to investigate the impact of thermo-rheological structure of the continental lithosphere and initial plume position on continental rifting and breakup processes. Based on the results of our 2D experiments, three main types of continental break-up are revealed: A) mantle plume-induced break-up, directly located above the centre of the mantle anomaly, B) mantle plume-induced break-up, 50 to 250 km displaced from the initial plume location and C) self-induced break-up due to convection and/or slab-subduction/delamination, considerably shifted (300 to 800 km) from the initial plume position. With our 3D, laterally homogenous initial setup, we show that a complex system, with the axis of continental break-up 100's of km's shifted from the original plume location, can arise spontaneously from simple and perfectly symmetric preliminary settings. Our modelling demonstrates that fragments of a laterally migrating plume head become glued to the base of the lithosphere and remain at both sides of the newly-formed oceanic basin after continental break-up. Underplated plume material soldered into lower parts of lithosphere can be interpreted as the high-velocity/high density magmatic bodies at lower crustal levels. In the very early stages of rifting, first impingement of the vertically upwelled mantle plume to the lithospheric base leads to surface topographic variations. Given the shifted position of the final spreading centre with respect to initial plume position, these topographic variations resemble aborted rifts that are observed on passive margins. Lastly, after continuous extension and transition to the spreading state, strain rate relocalizations develop that can be interpreted as ridge jumps that are commonly observed in nature.

  12. Angle-domain common-image gathers from anisotropic Gaussian beam migration and its application to anisotropy-induced imaging errors analysis

    NASA Astrophysics Data System (ADS)

    Han, Jianguang; Wang, Yun; Yu, Changqing; Chen, Peng

    2017-02-01

    An approach for extracting angle-domain common-image gathers (ADCIGs) from anisotropic Gaussian beam prestack depth migration (GB-PSDM) is presented in this paper. The propagation angle is calculated in the process of migration using the real-value traveltime information of Gaussian beam. Based on the above, we further investigate the effects of anisotropy on GB-PSDM, where the corresponding ADCIGs are extracted to assess the quality of migration images. The test results of the VTI syncline model and the TTI thrust sheet model show that anisotropic parameters ɛ, δ, and tilt angle 𝜃, have a great influence on the accuracy of the migrated image in anisotropic media, and ignoring any one of them will cause obvious imaging errors. The anisotropic GB-PSDM with the true anisotropic parameters can obtain more accurate seismic images of subsurface structures in anisotropic media.

  13. LABORATORY INVESTIGATION OF RESIDUAL LIQUID ORGANICS FROM SPILLS, LEAKS, AND THE DISPOSAL OF HAZARDOUS WASTES IN GROUNDWATER

    EPA Science Inventory

    Organic liquids that are essentially immiscible with water migrate through the subsurface through the influence of capillary, viscous and buoyancy forces. our experimental methods were employed. irst, quantitative displacement experiments using short soil columns; second, additio...

  14. Electrical Signatures of Ethanol-Liquid Mixtures: Implications for Monitoring Biofuels Migration in the Subsurface

    EPA Science Inventory

    Ethanol (EtOH), an emerging contaminant with potential direct and indirect environmental effects, poses threats to water supplies when spilled in large volumes. A series of experiments was directed at understanding the electrical geophysical signatures arising from groundwater co...

  15. EVALUATING THE SENSITIVITY OF SCREENING-LEVEL VAPOR INTRUSTION MODELS

    EPA Science Inventory

    Vapor intrusion is defined as the migration of volatile chemicals from the subsurface into overlying buildings. Volatile organic contaminants (VOCs) in soil or ground water can volatilize into soil gas and be transported towards the land surface where it can enter homes or busin...

  16. LABORATORY INVESTIGATION OF RESIDUAL LIQUID ORGANICS FROM SPILLS, LEAKS, AND THE DISPOSAL OF HAZARDOUS WASTES IN GROUNDWATER

    EPA Science Inventory

    Organic liquids that are essentially immiscible with water migrate through the subsurface through the influence of capillary, viscous and buoyancy forces. Four experimental methods were employed. First, quantitative displacement experiments using short soil columns; second, add...

  17. Thermally-Driven Mantle Plumes Reconcile Hot-spot Observations

    NASA Astrophysics Data System (ADS)

    Davies, D.; Davies, J.

    2008-12-01

    Hot-spots are anomalous regions of magmatism that cannot be directly associated with plate tectonic processes (e.g. Morgan, 1972). They are widely regarded as the surface expression of upwelling mantle plumes. Hot-spots exhibit variable life-spans, magmatic productivity and fixity (e.g. Ito and van Keken, 2007). This suggests that a wide-range of upwelling structures coexist within Earth's mantle, a view supported by geochemical and seismic evidence, but, thus far, not reproduced by numerical models. Here, results from a new, global, 3-D spherical, mantle convection model are presented, which better reconcile hot-spot observations, the key modification from previous models being increased convective vigor. Model upwellings show broad-ranging dynamics; some drift slowly, while others are more mobile, displaying variable life-spans, intensities and migration velocities. Such behavior is consistent with hot-spot observations, indicating that the mantle must be simulated at the correct vigor and in the appropriate geometry to reproduce Earth-like dynamics. Thermally-driven mantle plumes can explain the principal features of hot-spot volcanism on Earth.

  18. Three-dimensional numerical simulations of methane gas migration from decommissioned hydrocarbon production wells into shallow aquifers

    NASA Astrophysics Data System (ADS)

    Roy, N.; Molson, J.; Lemieux, J.-M.; Van Stempvoort, D.; Nowamooz, A.

    2016-07-01

    Three-dimensional numerical simulations are used to provide insight into the behavior of methane as it migrates from a leaky decommissioned hydrocarbon well into a shallow aquifer. The conceptual model includes gas-phase migration from a leaky well, dissolution into groundwater, advective-dispersive transport and biodegradation of the dissolved methane plume. Gas-phase migration is simulated using the DuMux multiphase simulator, while transport and fate of the dissolved phase is simulated using the BIONAPL/3D reactive transport model. Methane behavior is simulated for two conceptual models: first in a shallow confined aquifer containing a decommissioned leaky well based on a monitored field site near Lindbergh, Alberta, Canada, and secondly on a representative unconfined aquifer based loosely on the Borden, Ontario, field site. The simulations show that the Lindbergh site confined aquifer data are generally consistent with a 2 year methane leak of 2-20 m3/d, assuming anaerobic (sulfate-reducing) methane oxidation and with maximum oxidation rates of 1 × 10-5 to 1 × 10-3 kg/m3/d. Under the highest oxidation rate, dissolved methane decreased from solubility (110 mg/L) to the threshold concentration of 10 mg/L within 5 years. In the unconfined case with the same leakage rate, including both aerobic and anaerobic methane oxidation, the methane plume was less extensive compared to the confined aquifer scenarios. Unconfined aquifers may therefore be less vulnerable to impacts from methane leaks along decommissioned wells. At other potential leakage sites, site-specific data on the natural background geochemistry would be necessary to make reliable predictions on the fate of methane in groundwater.

  19. Feasibility of the Scalable, Automated, Semipermanent Seismic Array (SASSA) to Monitor Possible Carbon Dioxide Migration

    NASA Astrophysics Data System (ADS)

    Livers, A. J.; Burnison, S. A.; Salako, O.; Barajas-Olalde, C.; Hamling, J. A.; Gorecki, C. D.

    2016-12-01

    The feasibility of monitoring potential carbon dioxide (CO2) migration in a reservoir using a sparse seismic array is being evaluated by the Energy & Environmental Research Center (EERC) at the Denbury Onshore LLC-operated Bell Creek oil field in Montana, which is undergoing commercial CO2 enhanced oil recovery (EOR). This new method may provide an economical means of continuously monitoring the CO2 plume edge and the CO2 reservoir boundaries and/or to interpret vertical or lateral out-of-reservoir CO2 migration. A 96-station scalable, automated, semipermanent seismic array (SASSA) was deployed in October 2015 to detect and track CO2 plume migration not by imaging, but by monitoring discrete source-receiver midpoints. Midpoints were strategically located within and around four injector-producer patterns covering approximately one square mile. Three-dimensional (3-D) geophysical ray tracing was used to determine surface receiver locations. Receivers used were FairfieldNodal Zland three-component, autonomous, battery-powered nodes. A GISCO ESS850 accelerated weight drop source located in a secure structure was remotely fired on a weekly basis for one calendar year, including a two-month period prior to initiation of CO2 injection to establish a baseline. Fifty shots were fired one day each week to facilitate increased signal-to-noise through novel receiver domain processing and vertical stacking. Receiver domain processing allowed for individualization of processing parameters to maximize signal enhancement and noise attenuation. Reflection events in the processed SASSA data correlate well to 3-D surface survey data collected in the field. Preliminary time-lapse data results for several individual SASSA receivers show a phase shift in the reflection events below the reservoir after injection, suggesting possible migration of the CO2 in the reservoir to the corresponding midpoint locations. This work is supported by the U.S. Department of Energy National Energy Technology Laboratory under Award No. FE0012665.

  20. Methane Distribution In Plumes Of The South Mariana Back-arc Spreading Center

    NASA Astrophysics Data System (ADS)

    Toki, T.; Hirota, A.; Tsunogai, U.; Gamo, T.; Nakamura, K.; Noguchi, T.; Taira, N.; Oomori, T.; Ishibashi, J.; Utsumi, M.

    2004-12-01

    In the South Mariana Back-arc Spreading Center, two methane plumes were observed in water column based on analysis of methane in seawater samples collected during the R/V Thompson expeditions in 2003 around water depth of 2,700 m over the Fryer site on the ridge-axis seamount (12\\deg57.22N, 143\\deg37.16E, depth: 2,850 m). The estimated end-member isotopic compositions of methane in the two plumes are \\delta13C_{CH4} = -5‰ PDB and -50‰ PDB. These values indicated that the two plumes were originated from the different sources. During YK03-09 cruise using the submersible Shinkai 6500 from October to November in 2003, detailed seafloor observation discovered sulfide chimneys emitting black and clear hydrothermal fluid on the off-axis seamount at Pika site (12°55.15N, 143°36.96E, depth: 2,773 m). The result of analysis of isotopic composition of methane in the hydrothermal fluids recovered from the off-axis hydrothermal vents using WHATS (Water and Hydrothermal Atsuryoku Tight Sampler) was averaged value of -4‰ PDB (standard deviation = 1‰ PDB, n = 3). Hydrothermal fluids from the Fryer site were also sampled and were measured: average value = -6.7‰ PDB, standard deviation = 0.3‰ PDB, n = 3. During the R/V Thompson expeditions in March 2004 using ROV ROPOS, 11 ROPOS dives and CTD-RMS plume surveys were conducted, and newly discovered a huge hydrothermal structure with active fluid venting at Achaean site on the ridge skirt (12°56.37N, 143°37.92E, depth: 2,990 m). The δ ^{13}C_{CH4} value of the fluid sample from the site using ROCS (Rotary Clean Seawater sampler) was -14.7‰ PDB. Analysis of isotopic composition of methane in the plume samples collected using the CTD-hydrocast at water depth of 2,500 m over the Archaean site showed -45‰ PDB. Source of methane (δ ^{13}C_{CH4} = -50‰ PDB), however, in the two plumes of the South Mariana Back-arc Spreading Center has been missing. The δ ^{13}C of methane cannot be considered in sediment-starved seafloor hydrothermal fluids as the results from an abiogenic reaction in magma. Alternative explanation would be the secondary stimulated plume of methane that is formed in invertebrate guts of zooplankton swarmed about microbes in the plume, as proposed about a subsurface CH_{4} maximum in the upper oceanic water column. The secondary methane plume may be associated with methane plume without a corresponding enrichment in ^{3}He, observed in the Mariana Trough Back-arc basin at 14° N.

  1. Volcanic Tephra ejected in south eastern Asia is the sole cause of all historic ENSO events. This natural aerosol plume has been intensified by an anthropogenic plume in the same region in recent decades which has intensified some ENSO events and altered the Southern Oscillation Index characteristics

    NASA Astrophysics Data System (ADS)

    Potts, K. A.

    2017-12-01

    ENSO events are the most significant perturbation of the climate system. Previous attempts to link ENSO with volcanic eruptions typically failed because only large eruptions across the globe which eject tephra into the stratosphere were considered. I analyse all volcanic eruptions in South Eastern (SE) Asia (10ºS to 10ºN and from 90ºE to 160ºE) the most volcanically active area in the world with over 23% of all eruptions in the Global Volcanism Program database occurring here and with 5 volcanoes stated to have erupted nearly continuously for 30 years. SE Asia is also the region where the convective arm of the thermally direct Walker Circulation occurs driven by the intense equatorial solar radiation which creates the high surface temperature. The volcanic tephra plume intercepts some of the solar radiation by absorption/reflection which cools the surface and heats the atmosphere creating a temperature inversion compared to periods without the plume. This reduces convection and causes the Walker Cell and Trade Winds to weaken. This reduced wind speed causes the central Pacific Ocean to warm which creates convection there which further weakens the Walker Cell. With the reduced wind stress the western Pacific warm pool migrates east. This creates an ENSO event which continues until the tephra plume reduces, typically when the SE Asian monsoon commences, and convection is re-established over SE Asia and the Pacific warm pool migrates back to the west. Correlations of SE Asian tephra and the ENSO indices are typically over 0.80 at p < 0.01 In recent decades the anthropogenic SE Asian aerosol Plume (SEAP) has intensified the volcanic plume in some years from August to November. Using NASA satellite data from 1978 and the NASA MERRA 2 reanalysis dataset I show correlation coefficients typically over 0.70 and up to 0.97 at p < 0.01 between the aerosol optical depth or index and the ENSO indices. If two events A and B correlate 5 options are available: 1. A causes B; 2. B causes A; 3. C, another event, causes A &B simultaneously; 4. It's a coincidence; and 5. The relationship is complex with feedback. The volcanic correlations only allow options 1 or 4 as ENSO cannot cause volcanoes to erupt and are backed up by several independent satellite datasets. I conclude volcanic and anthropogenic aerosols over SE Asia are the sole cause of all ENSO events.

  2. Enceladus Plume Movie

    NASA Image and Video Library

    2005-12-06

    Jets of icy particles burst from Saturn’s moon Enceladus in this brief movie sequence of four images taken on Nov. 27, 2005. The sensational discovery of active eruptions on a third outer solar system body (Io and Triton are the others) is surely one of the great highlights of the Cassini mission. Imaging scientists, as reported in the journal Science on March 10, 2006, believe that the jets are geysers erupting from pressurized subsurface reservoirs of liquid water above 273 degrees Kelvin (0 degrees Celsius). Images taken in January 2005 appeared to show the plume emanating from the fractured south polar region of Enceladus, but the visible plume was only slightly brighter than the background noise in the image, because the lighting geometry was not suitable to reveal the true details of the feature. This potential sighting, in addition to the detection of the icy particles in the plume by other Cassini instruments, prompted imaging scientists to target Enceladus again with exposures designed to confirm the validity of the earlier plume sighting. The new views show individual jets, or plume sources, that contribute to the plume with much greater visibility than the earlier images. The full plume towers over the 505-kilometer-wide (314-mile) moon and is at least as tall as the moon's diameter. The four 10-second exposures were taken over the course of about 36 minutes at approximately 12 minute intervals. Enceladus rotates about 7.5 degrees in longitude over the course of the frames, and most of the observed changes in the appearances of the jets is likely attributable to changes in the viewing geometry. However, some of the changes may be due to actual variation in the flow from the jets on a time scale of tens of minutes. Additionally, the shift of the sources seen here should provide information about their location in front of and behind the visible limb (edge) of Enceladus. These images were obtained using the Cassini spacecraft narrow-angle camera at distances between 144,350 and 149,520 kilometers (89,695 and 92,907 miles) from Enceladus and at a phase angle of about 161 degrees. Image scale is about 900 meters (2,950 feet) per pixel on Enceladus. A movie is available at http://photojournal.jpl.nasa.gov/catalog/PIA07762

  3. Using Smoke Injection in Drains to Identify Potential Preferential Pathways in a Drained Arable Field

    NASA Astrophysics Data System (ADS)

    Nielsen, M. H.; Petersen, C. T.; Hansen, S.

    2014-12-01

    Macropores forming a continuous pathway between the soil surface and subsurface drains favour the transport of many contaminants from agricultural fields to surface waters. The smoke injection method presented by Shipitalo and Gibbs (2000) used for demonstrating and quantifying such pathways has been further developed and used on a drained Danish sandy loam. In order to identify the preferential pathways to drains, smoke was injected in three 1.15 m deep tile drains (total drain length 93 m), and smoke emitting macropores (SEMP) at the soil surface were counted and characterized as producing either strong or weak plumes compared to reference plumes from 3 and 6 mm wide tubes. In the two situations investigated in the present study - an early spring and an autumn situation, smoke only penetrated the soil surface layer via earthworm burrows located in a 1.0 m wide belt directly above the drain lines. However, it is known from previous studies that desiccation fractures in a dry summer situation also can contribute to the smoke pattern. The distance between SEMP measured along the drain lines was on average 0.46 m whereas the average spacing between SEMP with strong plumes was 2.3 m. Ponded water was applied in 6 cm wide rings placed above 52 burrows including 17 reference burrows which did not emit smoke. Thirteen pathways in the soil were examined using dye tracer and profile excavation. SEMP with strong plumes marked the entrance of highly efficient transport pathways conducting surface applied water and dye tracer into the drain. However, no single burrow was traced all the way from the surface into the drain, the dye patterns branched off in a network of other macropores. Water infiltration rates were significantly higher (P < 0.05) in SEMP with strong plumes (average rate: 247 mL min-1 n = 19) compared to SEMP with weak plumes (average rate: 87 mL min-1 n = 16) and no plumes (average rate: 56 mL min-1 n = 17). The results suggest that the smoke injection method is useful for identification of potentially efficient pathways for surface applied contaminants to drains and surface waters, pathways being associated primarily with unevenly distributed SEMP producing strong smoke plumes.

  4. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration of plutonium in the subsurface.

  5. Timing of water plume eruptions on Enceladus explained by interior viscosity structure

    NASA Astrophysics Data System (ADS)

    Běhounková, Marie; Tobie, Gabriel; Čadek, Ondřej; Choblet, Gaël; Porco, Carolyn; Nimmo, Francis

    2015-08-01

    At the south pole of Saturn's icy moon Enceladus, eruptions of water vapour and ice emanate from warm tectonic ridges. Observations in the infrared and visible spectra have shown an orbital modulation of the plume brightness, which suggests that the eruption activity is influenced by tidal forces. However, the observed activity seems to be delayed by several hours with respect to predictions based on simple tidal models. Here we simulate the viscoelastic tidal response of Enceladus with a full three-dimensional numerical model and show that the delay in eruption activity may be a natural consequence of the viscosity structure in the south-polar region and the size of the putative subsurface ocean. By systematically comparing simulations of variations in normal stress along faults with plume brightness data, we show that the observed activity is reproduced for two classes of interior models with contrasting thermal histories: a low-viscosity convective region above a polar sea extending about 45°-60° from the south pole at a depth below the surface as small as 30 km, or a convecting ice shell of 60-70 km in thickness above a global ocean. Our analysis further shows that the eruption activity is controlled by the average normal stress applied across the cracks, thus providing a constraint on the eruption mechanism.

  6. GaAs Spectrometer for Electron Spectroscopy at Europa

    NASA Astrophysics Data System (ADS)

    Lioliou, G.; Barnett, A. M.

    2016-12-01

    We propose a GaAs based electron spectrometer for a hypothetical future mission orbiting Europa. Previous observations at Europa's South Pole with the Hubble Space Telescope of hydrogen Lyman-α and oxygen OI 130.4 nm emissions were consistent with water vapor plumes [Roth et al., 2014, Science 343, 171]. Future observations and analysis of plumes on Europa could provide information about its subsurface structure and the distribution of liquid water within its icy shells [Rhoden at al. 2015, Icarus 253, 169]. In situ low energy (1keV - 100keV) electron spectroscopy along with UV imaging either in situ or with the Hubble Space Telescope Wide Field Camera 3 or similar would allow verification of the auroral observations being due to electron impact excitation of water vapor plumes. The proposed spectrometer includes a novel GaAs p+-i-n+ photodiode and a custom-made charge-sensitive preamplifier. The use of an early prototype GaAs detector for direct electron spectroscopy has already been demonstrated in ground based applications [Barnett et al., 2012, J. Instrum. 7, P09012]. Based on previous radiation hardness measurements of GaAs, the expected duration of the mission without degradation of the detector performance is estimated to be 4 months. Simulations and laboratory experiments characterising the detection performance of the proposed system are presented.

  7. a Comparative Case Study of Reflection Seismic Imaging Method

    NASA Astrophysics Data System (ADS)

    Alamooti, M.; Aydin, A.

    2017-12-01

    Seismic imaging is the most common means of gathering information about subsurface structural features. The accuracy of seismic images may be highly variable depending on the complexity of the subsurface and on how seismic data is processed. One of the crucial steps in this process, especially in layered sequences with complicated structure, is the time and/or depth migration of seismic data.The primary purpose of the migration is to increase the spatial resolution of seismic images by repositioning the recorded seismic signal back to its original point of reflection in time/space, which enhances information about complex structure. In this study, our objective is to process a seismic data set (courtesy of the University of South Carolina) to generate an image on which the Magruder fault near Allendale SC can be clearly distinguished and its attitude can be accurately depicted. The data was gathered by common mid-point method with 60 geophones equally spaced along an about 550 m long traverse over a nearly flat ground. The results obtained from the application of different migration algorithms (including finite-difference and Kirchhoff) are compared in time and depth domains to investigate the efficiency of each algorithm in reducing the processing time and improving the accuracy of seismic images in reflecting the correct position of the Magruder fault.

  8. Elastic Reverse Time Migration (RTM) From Surface Topography

    NASA Astrophysics Data System (ADS)

    Akram, Naveed; Chen, Xiaofei

    2017-04-01

    Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.

  9. Elastic Reverse Time Migration (RTM) From Surface Topography

    NASA Astrophysics Data System (ADS)

    Naveed, A.; Chen, X.

    2016-12-01

    Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.

  10. Monitoring the decontamination of a site polluted by DNAPLs

    NASA Astrophysics Data System (ADS)

    Audí-Miró, C.; Espinola, R.; Torrentó, C.; Otero, N.; Rossi, A.; Palau, J.; Soler, A.

    2012-04-01

    The aim of this study is to monitor the decontamination of a site polluted by DNAPLs coming from an automotive industry. The contamination was caused by the poor management of the waste generated by the industrial activity, which was discharged into a seepage pit. As a result, soil contamination was produced in the seepage pit area and a plume of DNAPLs-contaminated groundwater was generated. To recover the original environmental quality, a dual action was proposed: in the first place, the removal of the source of contamination and in the second one, the treatment of the DNAPLs plume. The elimination of the source of contamination consisted on a selective excavation of the seepage pit and an offsite management of the contaminated land. To restore the groundwater quality, a passive treatment system using a permeable reactive barrier (PRB) of zero valent iron (ZVI) was implemented. In order to determine the efficiency of the remediation actions, a chemical, isotopic and hydrogeological control of the main solvents detected in groundwater (perchloroethylene -PCE-, trichloroethene -TCE- and cis-dichloroethylene -cis-DCE-) has been established. Results show a decrease in PCE concentration that has been attributed to the removal of the source more than to a degradation process. However, the presence of PCE by-products, TCE and cis-DCE, might indicate a possible PCE biotic degradation. δ13CPCE values analyzed upstream and downstream of the barrier don't show isotopic changes associated to the PRB (values are around -20‰ in all the sampling points). TCE might have experienced a natural advanced degradation process according to the high concentration of cis-DCE found prior the installation of the PRB and the isotopic enrichment in δ13CTCE in some specific areas of the plume (-19.9‰ in the source and -16‰ before the barrier). Slight isotopic changes have been observed in the water flow in a far distance after the barrier (-15.4‰). δ13Ccis-DCE experienced an enrichment upstream to downstream of the barrier (from -15.5‰ to -11.5‰) indicating that a possible abiotic degradation due to the PRB is being produced. However, an enrichment in δ13Ccis-DCE from the focus area to the barrier (from -19.9‰ to -15.5‰) was also detected, suggesting that biotic degradation of cis-DCE is occurring in the field. As a conclusion, preliminary concentration and isotopic results seem to indicate that the PRB does not intercept the whole contaminated plume. The installation of a monitoring system of multilevel piezometers of new construction around the PRB has been proposed in order to study in detail the underground sections most affected by pollution and help to define patterns of migration of DNAPLs in the subsurface, giving the possibility to improve the design of the ZVI-PRB.

  11. Organic Carbon as Inhibitor to SVOC and Metal Migration in Stormwater Drywells Discharging to the Subsurface-SLIDES

    EPA Science Inventory

    The Safe Drinking Water Act (SDWA) authorizes the Underground Injection Control (UIC) program to protect underground drinking water (USDW) sources from contamination caused by underground injection wells, including regulation of stormwater drainage drywells for parking lot and ro...

  12. JOHNSON AND ETTINGER (1991) VAPOR INTRUSION MODEL WITH SUB-SLAB CONCENTRATION

    EPA Science Inventory

    Migration of volatile chemicals from the subsurface into overlying buildings is known as vapor intrusion (VI). Under certain circumstances, people living in homes above contaminated soil or ground water may be exposed to harmful levels of these vapors. Vapor intrusion is a part...

  13. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  14. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  15. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  16. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  17. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  18. Arsenic Groundwater Contamination in Bengal: a Coupled Geochemical and Geophysical Study

    NASA Astrophysics Data System (ADS)

    Charlet, L.; Ansari, A. A.; Dietrich, M.; Latscha, A.; LeBeux, A.; Chatterjee, D.; Mallik, S. B.

    2001-05-01

    Arsenic contamination in drinking water is a problem of great concern in Ganges delta region, and could be one of the largest natural calamity in the world. In the present study, a contamination plume located in the Lalpur area (Chakdaha Block, Nadia District, West Bengal, India) was studied. A coupled geochemical and geophysical approach was employed to understand the mechanism of arsenic mobilisation from the sediments to groundwater, as a first step towards a global explanation of the phenomenon for other contaminated areas in the Ganges delta. The groundwater As concentration, in the 10 km x 10 km studied area, ranges from 10 to 500 ppb. In situ chemical speciation of arsenic was carried out and various geochemical parameters were measured in representative contaminated wells to interpret the mobilization mechanism in terms of redox kinetics. Through geophysical investigations, subsurface lithology, sediment depositional and geomorphological characteristics were determined and correlated with the arsenic contamination processes. From a geomorphological viewpoint, the contaminated area is located in an abandoned paleochannel of the Hooghly river, interpreted as the active site of deposition of fine sediments which were preserved as clay pockets at certain depths. These clay pockets are rich in organic matter, which may be the driving force for redox potential change and thus, may have driven the mobilisation of arsenic in groundwater. The clay pockets rich in organic matter presumably represent the major reservoir where arsenic is sitting and getting released due to redox mechanism. They are sampled at present. A piezometric depression cone characterized by a radial groundwater flow is located underneath the highly populated Lalpur area. The arsenic plume appears to migrate from the Hooghly river towards the cone of depression following the water flowpath, and this shall be verified in forthcoming field campaigns. As (III) constitutes 42 % of the total As concentration. It is several times more toxic than As (V). The As (III) / As (V) and S (-II) / S (VI) ratios are not at equilibrium with the Eh measured in groundwater. The groundwater is at equilibrium with Ba(II) and Fe(II) arsenate minerals, barite and siderite. The reactive transport modeling of the data is explored.

  19. Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes.

    PubMed

    Brakstad, Odd G; Nordtug, Trond; Throne-Holst, Mimmi

    2015-04-15

    During the Deepwater Horizon (DWH) accident in 2010 a dispersant (Corexit 9500) was applied at the wellhead to disperse the Macondo oil and reduce the formation of surface slicks. A subsurface plume of small oil droplets was generated near the leaking well at 900-1300 m depth. A novel laboratory system was established to investigate biodegradation of small droplet oil dispersions (10 μm or 30 μm droplet sizes) of the Macondo oil premixed with Corexit 9500, using coastal Norwegian seawater at a temperature similar to the DWH plume (4-5°C). Biotransformation of volatile and semivolatile hydrocarbons and oil compound groups was generally faster in the 10 μm than in the 30 μm dispersions, showing the importance of oil droplet size for biodegradation. These data therefore indicated that dispersant treatment to reduce the oil droplet size may increase the biodegradation rates of oil compounds in the deepwater oil droplets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; themore » importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.« less

  1. Ash production by attrition in volcanic conduits and plumes.

    PubMed

    Jones, T J; Russell, J K

    2017-07-17

    Tephra deposits result from explosive volcanic eruption and serve as indirect probes into fragmentation processes operating in subsurface volcanic conduits. Primary magmatic fragmentation creates a population of pyroclasts through volatile-driven decompression during conduit ascent. In this study, we explore the role that secondary fragmentation, specifically attrition, has in transforming primary pyroclasts upon transport in volcanic conduits and plumes. We utilize total grain size distributions from a suite of natural and experimentally produced tephra to show that attrition is likely to occur in all explosive volcanic eruptions. Our experimental results indicate that fine ash production and surface area generation is fast (<15 min) thereby rapidly raising the fractal dimension of tephra deposits. Furthermore, a new metric, the Entropy of Information, is introduced to quantify the degree of attrition (secondary fragmentation) from grain size data. Attrition elevates fine ash production which, in turn, has consequences for eruption column stability, tephra dispersal, aggregation, volcanic lightening generation, and has concomitant effects on aviation safety and Earth's climate.

  2. Long-Term Fate of Organic Micropollutants in Sewage-Contaminated Groundwater

    USGS Publications Warehouse

    Barber, L.B.; Schroeder, M.P.; LeBlanc, D.R.

    1988-01-01

    Disposal of secondary sewage effluent by rapid infiltration has produced a plume of contaminated groundwater over 3500 m long near Falmouth, MA. Approximately 50 volatile organic compounds were detected and identified in the plume, at concentrations ranging from 10 ng/L to 500 ??g/L, by closed-loop stripping and purge- and-trap in conjuction with gas chromatography-mass spectrometry. The dominant contaminants were di-, tri- and tetrachloroethene, o- and p-dichlorobenzene, C1 to C6 alkylbenzenes, 2,6-di-tert-butylbenzoquinone, and several isomers of p-nonylphenol. The chloroethenes and chlorobenzenes had the same general distribution as chloride and boron and appear to be transported with little retardation. Less soluble compounds, such as nonylphenol and di-tert-butylbenzoquinone, appear to be retarded during subsurface transport by sorption processes. Although biodegradation of labile organic compounds occurs near the infiltration beds, many trace compounds, including chlorinated benzenes, alkylbenzenes, and aliphatic hydrocarbons, have persisted for more than 30 years in the aquifer.

  3. Spatially adaptive migration tomography for multistatic GPR imaging

    DOEpatents

    Paglieroni, David W; Beer, N. Reginald

    2013-08-13

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  4. Sorption of Perfluorochemicals to Matrices Relevant to Sites Impacted by Aqueous Film-Forming Foam

    NASA Astrophysics Data System (ADS)

    Sepulvado, J.; Higgins, C.

    2011-12-01

    Perfluorochemicals are a class of emerging contaminants consisting of fluorinated surfactants that are chemically and thermally stable and which contain a fluorocarbon tail that is both hydro- and oleophobic. Because of these unique properties, PFCs have a wide variety of uses including food paper packaging products, stain repellants, nonstick coatings, and aqueous film-forming foams (AFFF). At fire-training facilities, repeated application of AFFF is used to extinguish hydrocarbon fuel fires ignited for training purposes. The presence of perfluochemicals (PFCs) in groundwater as a result of repeated AFFF application at these facilities has been documented. Due to factors such as the recent push towards regulation of PFCs in drinking water, concerns have arisen about the fate of these compounds in the subsurface. Groundwater plumes containing PFC subclasses such as perfluorocarboxylic acids (PFCAs), perfluoroalkylsulfonates (PFAS), and fluorotelomer sulfonates (FtSs) in the μg/L to mg/L range have been detected. These plumes also may contain co-contaminants such as hydrocarbon fuel components and chlorinated solvents, some of which may exist as nonaqueous phase liquids (NAPL). This study examined the sorption of PFCs to soil and aquifer material across the concentration range applicable to AFFF-impacted sites (μg/L - mg/L) and looked at the impact of co-contaminants, including NAPL, on PFC sorption. PFC sorption was variable and indicated that similar to previous work on PFC sorption to sediment, subsurface PFC transport will depend on factors such as the sorbent organic carbon content, PFC subclass, solution chemistry, and PFC chain length.

  5. 2D Time-lapse Resistivity Monitoring of an Organic Produced Gas Plume in a Landfill using ERT.

    NASA Astrophysics Data System (ADS)

    Amaral, N. D.; Mendonça, C. A.; Doherty, R.

    2014-12-01

    This project has the objective to study a landfill located on the margins of Tietê River, in São Paulo, Brazil, using the electroresistivity tomography method (ERT). Due to huge organic matter concentrations in the São Paulo Basin quaternary sediments, there is subsurface depth related biogas accumulation (CH4 and CO2), induced by anaerobic degradation of the organic matter. 2D resistivity sections were obtained from a test area since March 2012, a total of 7 databases, being the last one dated from October 2013. The studied line has the length of 56m, the electrode interval is of 2m. In addition, there are two boreholes along the line (one with 3 electrodes and the other one with 2) in order to improve data quality and precision. The boreholes also have a multi-level sampling system that indicates the fluid (gas or water) presence in relation to depth. With our results it was possible to map the gas plume position and its area of extension in the sections as it is a positive resistivity anomaly, with the gas level having approximately 5m depth. With the time-lapse analysis (Matlab script) between the obtained 2D resistivity sections from the site, it was possible to map how the biogas volume and position change in the landfill in relation to time. Our preliminary results show a preferential gas pathway through the subsurface studied area. A consistent relation between the gas depth and obtained microbiological data from archea and bacteria population was also observed.

  6. Impact of DNAPL Storage in Cracked Low Permeability Layers on Dissolved Contaminant Plume Persistence

    NASA Astrophysics Data System (ADS)

    Goltz, M. N.; Sievers, K. W.; Huang, J.; Demond, A. H.

    2012-12-01

    The subsurface storage and transport of a Dense Non-Aqueous Phase Liquid (DNAPL) was evaluated using a numerical model. DNAPLs are organic liquids comprised of slightly water-soluble chemicals or chemical mixtures that have a density greater than water. DNAPLs may pool atop low permeability layers upon entering the subsurface. Even with the removal or destruction of most pooled DNAPL mass, small amounts of the remaining contaminant, which had been transported into the low permeability layer, can dissolve into flowing groundwater and continue to act as a contamination source for decades. Recently developed models assume that transport in the low permeability zones is strictly diffusive; however field observations suggest that more mass is stored in the low permeability zones than can be explained by diffusion alone. Observations and experimental evidence indicate that cracks in low permeability layers may have apertures of sufficient size to allow entry of separate phase DNAPL. In this study, a numerical flow and transport model is employed using a dual domain construct (high and low permeability layers) to investigate the impact of DNAPL entry into cracked low permeability zones on dissolved contaminant plume evolution and persistence. This study found that DNAPL within cracks can significantly contribute to down gradient dissolved phase concentrations; however, the extent of this contribution is very dependent upon the rate of DNAPL dissolution. Given these findings, remediation goals may be difficult to meet if source remediation strategies are used which do not account for the effect of cracking upon contaminant transport and storage in low permeability layers.

  7. Coupled charge migration and fluid mixing in reactive fronts

    NASA Astrophysics Data System (ADS)

    Ghosh, Uddipta; Bandopadhyay, Aditya; Jougnot, Damien; Le Borgne, Tanguy; Meheust, Yves

    2017-04-01

    Quantifying fluid mixing in subsurface environments and its consequence on biogeochemical reactions is of paramount importance owing to its role in processes such as contaminant migration, aquifer remediation, CO2 sequestration or clogging processes, to name a few (Dentz et al. 2011). The presence of strong velocity gradients in porous media is expected to lead to enhanced diffusive mixing and augmented reaction rates (Le Borgne et al. 2014). Accurate in situ imaging of subsurface reactive solute transport and mixing remains to date a challenging proposition: the opacity of the medium prevents optical imaging and field methods based on tracer tests do not provide spatial information. Recently developed geophysical methods based on the temporal monitoring of electrical conductivity and polarization have shown promises for mapping and monitoring biogeochemical reactions in the subsurface although it remains challenging to decipher the multiple sources of electrical signals (e.g. Knight et al. 2010). In this work, we explore the coupling between fluid mixing, reaction and charge migration in porous media to evaluate the potential of mapping reaction rates from electrical measurements. To this end, we develop a new theoretical framework based on a lamellar mixing model (Le Borgne et al. 2013) to quantify changes in electrical mobility induced by chemical reactions across mixing fronts. Electrical conductivity and induced polarization are strongly dependent on the concentration of ionic species, which in turn depend on the local reaction rates. Hence, our results suggest that variation in real and complex electrical conductivity may be quantitatively related to the mixing and reaction dynamics. Thus, the presented theory provides a novel upscaling framework for quantifying the coupling between mixing, reaction and charge migration in heterogeneous porous media flows. References: Dentz. et al., Mixing, spreading and reaction in heterogeneous media: A brief review J. Contam. Hydrol. 120-121, 1 (2011). Le Borgne et al. Impact of Fluid Deformation on Mixing-Induced Chemical Reactions in heterogeneous Flows, Geophys. Res. Lett. 41, 7898 (2014). Knight, et al., Geophysics at the interface: Response of geophysical properties to solid-fluid, fluid-fluid, and solid-solid interfaces. Rev. Geophys. 48, (2010). Le Borgne et al. (2013) Stretching, coalescence and mixing in porous media, Phys. Rev. Lett., 110, 204501

  8. USE OF CATIONIC SURFACTANTS TO MODIFY SOIL SURFACES TO PROMOTE SORPTION AND RETARD MIGRATION OF HYDROPHOBIC ORGANIC COMPOUNDS

    EPA Science Inventory

    Cationic surfactants can be used to modify surfaces of soils and subsurface materials to promote adsorption of hydrophobic organic compounds (HOC). Batch and column experiments were performed to investigate this phenomenon with the cationic surfactant dodecylpyridinium (DP), a se...

  9. Sub-slab vs. Near-slab Soil Vapor Profiles at a Chlorinated Solvent Site (1)

    EPA Science Inventory

    A critical issue in assessing the vapor intrusion pathway is the distribution and migration of VOCs from the subsurface source to the near surface environment. Of particular importance is the influence of a slab. Therefore, EPA/ORD is funding a research program with the primary...

  10. Sub-slab vs. Near-slab Soil Vapor Profiles at a Chlorinated Solvent Site

    EPA Science Inventory

    A critical issue in assessing the vapor intrusion pathway is the distribution and migration of VOCs from the subsurface source to the near surface environment. Therefore, EPA/ORD funded a research project with the primary goal of comparing vertical profiles of soil gas concentrat...

  11. LABORATORY INVESTIGATION OF RESIDUAL LIQUID ORGANICS FROM SPILLS, LEAKS, AND THE DISPOSAL OF HAZARDOUS WASTES IN GROUNDWATER

    EPA Science Inventory

    Organic liquids that are essentially immiscible with water migrate through the subsurface under the influence of capillary, viscous, and buoyancy forces. These liquids originate from the improper disposal of hazardous wastes, and the spills and leaks of petroleum hydrocarbons a...

  12. Early atmospheric detection of carbon dioxide from carbon capture and storage sites

    PubMed Central

    Pak, Nasrin Mostafavi; Rempillo, Ofelia; Norman, Ann-Lise; Layzell, David B.

    2016-01-01

    ABSTRACT The early atmospheric detection of carbon dioxide (CO2) leaks from carbon capture and storage (CCS) sites is important both to inform remediation efforts and to build and maintain public support for CCS in mitigating greenhouse gas emissions. A gas analysis system was developed to assess the origin of plumes of air enriched in CO2, as to whether CO2 is from a CCS site or from the oxidation of carbon compounds. The system measured CO2 and O2 concentrations for different plume samples relative to background air and calculated the gas differential concentration ratio (GDCR = −ΔO2/ΔCO2). The experimental results were in good agreement with theoretical calculations that placed GDCR values for a CO2 leak at 0.21, compared with GDCR values of 1–1.8 for the combustion of carbon compounds. Although some combustion plume samples deviated in GDCR from theoretical, the very low GDCR values associated with plumes from CO2 leaks provided confidence that this technology holds promise in providing a tool for the early detection of CO2 leaks from CCS sites.  Implications: This work contributes to the development of a cost-effective technology for the early detection of leaks from sites where CO2 has been injected into the subsurface to enhance oil recovery or to permanently store the gas as a strategy for mitigating climate change. Such technology will be important in building public confidence regarding the safety and security of carbon capture and storage sites. PMID:27111469

  13. Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, M.; Linde, N.; Peacock, J.; Zyserman, F. I.; Kalscheuer, T.; Thiel, S.

    2015-12-01

    Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.

  14. Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation.

    PubMed

    Chen, Ku-Fan; Kao, Chih-Ming; Chen, Chiu-Wen; Surampalli, Rao Y; Lee, Mu-Sheng

    2010-01-01

    In the first phase of this study, the effectiveness of intrinsic bioremediation on the containment of petroleum hydrocarbons was evaluated at a gasoline spill site. Evidences of the occurrence of intrinsic bioremediation within the BTEX (benzene, toluene, ethylbenzene, and xylenes) plume included (1) decreased BTEX concentrations; (2) depletion of dissolved oxygen (DO), nitrate, and sulfate; (3) production of dissolved ferrous iron, methane, and CO2; (4) deceased pH and redox potential; and (5) increased methanogens, total heterotrophs, and total anaerobes, especially within the highly contaminated areas. In the second phase of this study, enhanced aerobic bioremediation process was applied at site to enhance the BTEX decay rates. Air was injected into the subsurface near the mid-plume area to biostimulate the naturally occurring microorganisms for BTEX biodegradation. Field results showed that enhanced bioremediation process caused the change of BTEX removal mechanisms from anaerobic biodegradation inside the plume to aerobic biodegradation. This variation could be confirmed by the following field observations inside the plume due to the enhanced aerobic bioremediation process: (1) increased in DO, CO2, redox potential, nitrate, and sulfate, (2) decreased in dissolved ferrous iron, sulfide, and methane, (3) increased total heterotrophs and decreased total anaerobes. Field results also showed that the percentage of total BTEX removal increased from 92% to 99%, and the calculated total BTEX first-order natural attenuation rates increased from 0.0092% to 0.0188% per day, respectively, after the application of enhanced bioremediation system from the spill area to the downgradient area (located approximately 300 m from the source area).

  15. Probabilistic 3-D time-lapse inversion of magnetotelluric data: Application to an enhanced geothermal system

    USGS Publications Warehouse

    Rosas-Carbajal, Marina; Linde, Nicolas; Peacock, Jared R.; Zyserman, F. I.; Kalscheuer, Thomas; Thiel, Stephan

    2015-01-01

    Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved.We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.

  16. A consistent framework to predict mass fluxes and depletion times for DNAPL contaminations in heterogeneous aquifers under uncertainty

    NASA Astrophysics Data System (ADS)

    Koch, Jonas; Nowak, Wolfgang

    2013-04-01

    At many hazardous waste sites and accidental spills, dense non-aqueous phase liquids (DNAPLs) such as TCE, PCE, or TCA have been released into the subsurface. Once a DNAPL is released into the subsurface, it serves as persistent source of dissolved-phase contamination. In chronological order, the DNAPL migrates through the porous medium and penetrates the aquifer, it forms a complex pattern of immobile DNAPL saturation, it dissolves into the groundwater and forms a contaminant plume, and it slowly depletes and bio-degrades in the long-term. In industrial countries the number of such contaminated sites is tremendously high to the point that a ranking from most risky to least risky is advisable. Such a ranking helps to decide whether a site needs to be remediated or may be left to natural attenuation. Both the ranking and the designing of proper remediation or monitoring strategies require a good understanding of the relevant physical processes and their inherent uncertainty. To this end, we conceptualize a probabilistic simulation framework that estimates probability density functions of mass discharge, source depletion time, and critical concentration values at crucial target locations. Furthermore, it supports the inference of contaminant source architectures from arbitrary site data. As an essential novelty, the mutual dependencies of the key parameters and interacting physical processes are taken into account throughout the whole simulation. In an uncertain and heterogeneous subsurface setting, we identify three key parameter fields: the local velocities, the hydraulic permeabilities and the DNAPL phase saturations. Obviously, these parameters depend on each other during DNAPL infiltration, dissolution and depletion. In order to highlight the importance of these mutual dependencies and interactions, we present results of several model set ups where we vary the physical and stochastic dependencies of the input parameters and simulated processes. Under these changes, the probability density functions demonstrate strong statistical shifts in their expected values and in their uncertainty. Considering the uncertainties of all key parameters but neglecting their interactions overestimates the output uncertainty. However, consistently using all available physical knowledge when assigning input parameters and simulating all relevant interactions of the involved processes reduces the output uncertainty significantly back down to useful and plausible ranges. When using our framework in an inverse setting, omitting a parameter dependency within a crucial physical process would lead to physical meaningless identified parameters. Thus, we conclude that the additional complexity we propose is both necessary and adequate. Overall, our framework provides a tool for reliable and plausible prediction, risk assessment, and model based decision support for DNAPL contaminated sites.

  17. The Europa Imaging System (EIS): High-Resolution, 3-D Insight into Europa's Geology, Ice Shell, and Potential for Current Activity

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; McEwen, A. S.; Collins, G. C.; Fletcher, L. N.; Hansen, C. J.; Hayes, A.; Hurford, T., Jr.; Kirk, R. L.; Barr, A.; Nimmo, F.; Patterson, G.; Quick, L. C.; Soderblom, J. M.; Thomas, N.

    2015-12-01

    The Europa Imaging System will transform our understanding of Europa through global decameter-scale coverage, three-dimensional maps, and unprecedented meter-scale imaging. EIS combines narrow-angle and wide-angle cameras (NAC and WAC) designed to address high-priority Europa science and reconnaissance goals. It will: (A) Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar; (B) Constrain formation processes of surface features and the potential for current activity by characterizing endogenic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure, and by searching for evidence of recent activity, including potential plumes; and (C) Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. The NAC provides very high-resolution, stereo reconnaissance, generating 2-km-wide swaths at 0.5-m pixel scale from 50-km altitude, and uses a gimbal to enable independent targeting. NAC observations also include: near-global (>95%) mapping of Europa at ≤50-m pixel scale (to date, only ~14% of Europa has been imaged at ≤500 m/pixel, with best pixel scale 6 m); regional and high-resolution stereo imaging at <1-m/pixel; and high-phase-angle observations for plume searches. The WAC is designed to acquire pushbroom stereo swaths along flyby ground-tracks, generating digital topographic models with 32-m spatial scale and 4-m vertical precision from 50-km altitude. These data support characterization of cross-track clutter for radar sounding. The WAC also performs pushbroom color imaging with 6 broadband filters (350-1050 nm) to map surface units and correlations with geologic features and topography. EIS will provide comprehensive data sets essential to fulfilling the goal of exploring Europa to investigate its habitability and perform collaborative science with other investigations, including cartographic and geologic maps, regional and high-resolution digital topography, GIS products, color and photometric data products, a geodetic control network tied to radar altimetry, and a database of plume-search observations.

  18. Effect of Trichloroethylene on Minimum Energy Requirement and Gene Expression in a Nutrient Limited Methanotroph

    NASA Astrophysics Data System (ADS)

    Colwell, F. S.; Delwiche, M.; Newby, D.; Wood, A.; Bingham, M.; Crawford, R. L.; Strap, J. L.

    2005-12-01

    Monitored natural attenuation (MNA) of contaminant plumes requires data for predictive modeling of plume destruction including the rates of microbial contaminant degradation. Methanotrophs are implicated in co-metabolism of trichloroethylene (TCE) in the Snake River Plain aquifer (SRPA) where MNA is the selected method of treatment. Our research aims to: 1) determine realistic activities of these cells when starved, a condition typical of subsurface microbes, and 2) detect the genes that are transcribed when methanotrophs experience stress or starvation related to TCE exposure and conditions in the subsurface. Methylosinus trichosporium OB3b (OB3b), a model methanotroph, was starved in a biomass recycle reactor and soluble methane monooxygenase (sMMO) activities determined, with and without TCE exposure (ca. 100 μg TCE/L). Starved methanotrophs, present at 3 x 109 cells/mL in the reactor, consumed methane at 0.001 fmoles of methane/cell/day and gradually increased sMMO activities when exposed to higher methane concentrations. sMMO activities of starved OB3b cells exposed to TCE were indistinguishable from cells that were not exposed over brief (one day) periods. The sequences of eight genes, known to code for starvation/stress proteins, were retrieved from phylogenetic relatives (α-proteobacteria) of OB3b. Primers (18-22 bp) were designed from conserved regions in the consensus sequences to obtain OB3b-specific sequences for the eight genes. Primers for the starvation/stress genes successfully amplified all eight genes in OB3b using PCR. Our plan is to clone and sequence these OB3b genes then synthesize oligonucleotides that can be added to a microarray that includes targets for OB3b structural and regulatory gene sequences as a prelude to evaluating gene expression under different nutrient availability conditions and in the presence and absence of TCE. Incorporation of starvation-based rate estimates into natural attenuation models of contaminant plumes will permit estimates of the fraction of TCE natural attenuation that can be attributed to methanotrophic co-metabolism in a given aquifer system.

  19. Evaluation of areas of contribution and water quality at receptors related to TCE plumes in a valley fill aquifer system

    NASA Astrophysics Data System (ADS)

    Lefebvre, R.; Ouellon, T.; Blais, V.; Ballard, J.; Brunet, P.

    2009-05-01

    The Val-Belair sector is located within Quebec City, about 20 km from downtown. Potential source zones and TCE plumes in groundwater are found at the western limit of the sector. At the center of the sector, four municipal water supply wells pump groundwater from an aquifer in surficial sediments where dissolved TCE is found. Private residential wells are also found in the sector. The Nelson River and its tributaries drain the sector and flows from west to east. New characterization results and available data were used to develop a numerical model of groundwater flow and mass transport to 1) define geological and hydrogeological contexts, 2) delineate the distribution of TCE and identify its migration paths and 3) evaluate the effect of TCE on the water quality of receptors (Nelson River, municipal and residential wells). In the sector, 30 to 40 m of sediments filling a buried valley form two aquifers separated by an aquitard: an unconfined deltaic aquifer at surface, an underlying silty prodeltaic aquitard and a semi-confined aquifer of deltaic sands and diamictons. Groundwater exchanges between the aquifers are generally downward through the aquitard, but near the Nelson River there is upward flow. Monitoring has led to sparse TCE detections in the Nelson River, regular detections at a mean value of 0.62 μg/L at one municipal well, occasional detections at another well and no detection at the other two wells. No TCE was detected in private wells, which are located outside the migration paths of TCE plumes. The context and numerical modeling with particle tracking and mass transport show the relationships between the two source zones, three TCE plumes and three receptors. Municipal wells pump in the semi-confined aquifer at a level appearing sustainable, but use most of the recharge in the sub-watershed. Areas of contribution to the wells thus cover almost all the study area with a complex pattern. These wells compete with the effect of the Nelson River to drain groundwater flow. Mass transport shows that most of the TCE mass flux from the TCE plumes ends up in the Nelson River, but at low concentrations, thus restricting TCE concentrations in the municipal wells at levels much lower than the maximum concentration limit.

  20. Constraining the Enceladus plume using numerical simulation and Cassini data

    NASA Astrophysics Data System (ADS)

    Yeoh, Seng Keat; Li, Zheng; Goldstein, David B.; Varghese, Philip L.; Levin, Deborah A.; Trafton, Laurence M.

    2017-01-01

    Since its discovery, the Enceladus plume has been subjected to intense study due to the major effects that it has on the Saturnian system and the window that it provides into the interior of Enceladus. However, several questions remain and we attempt to answer some of them in this work. In particular, we aim to constrain the H2O production rate from the plume, evaluate the relative importance of the jets and the distributed sources along the Tiger Stripes, and make inferences about the source of the plume by accurately modeling the plume and constraining the model using the Cassini INMS and UVIS data. This is an extension of a previous work (Yeoh, S.K., et al. [2015] Icarus, 253, 205-222) in which we only modeled the collisional part of the Enceladus plume and studied its important physical processes. In this work, we propagate the plume farther into space where the flow has become free-molecular and the Cassini INMS and UVIS data were sampled. Then, we fit this part of the plume to the INMS H2O density distributions sampled along the E3, E5 and E7 trajectories and also compare some of the fit results with the UVIS measurements of the plume optical depth collected during the solar occultation observation on 18 May 2010. We consider several vent conditions and source configurations for the plume. By constraining our model using the INMS and UVIS data, we estimate H2O production rates of several hundred kgs-1: 400-500 kg/s during the E3 and E7 flybys and ∼900 kg/s during the E5 flyby. These values agree with other estimates and are consistent with the observed temporal variability of the plume over the orbital period of Enceladus (Hedman, M.M., et al. [2013] Nature, 500, 182-184). In addition, we determine that one of the Tiger Stripes, Cairo, exhibits a local temporal variability consistent with the observed overall temporal variability of the plume. We also find that the distributed sources along the Tiger Stripes are likely dominant while the jets provide a lesser contribution. Moreover, our best-fit solutions for the plume are sensitive to the vent conditions chosen. The spreading angle of the jet produced is the main difference among the vent conditions and thus it appears to be an important parameter in fitting to these INMS data sets. In general, we find that narrow jets produce better fits, suggesting high Mach numbers (> 5) at the vents. This is supported by certain narrow features believed to be jets in both the INMS and UVIS data sets. This tends to rule out sublimation from the surface but points to a deep underground source for the plume. However, the underground source can be either sublimation from an icy reservoir or evaporation from a liquid reservoir. A high Mach number at the vent also suggests subsurface channels with large variations in width and not fairly straight channels so that the gas can undergo sufficient expansion. Additionally, the broad spreading angles inferred for the μm-sized grains (Ingersoll, A.P. and Ewald, S.P. [2011] Icarus, 216, 492-506; Postberg, F., et al. [2011] Nature, 474, 620-622) cannot be due to spreading by the gas above the surface alone. Some other mechanism(s) must also be responsible, perhaps occurring below the surface, which further points to an underground source for the plume.

  1. Hydrogeological modeling constraints provided by geophysical and geochemical mapping of a chlorinated ethenes plume in northern France

    NASA Astrophysics Data System (ADS)

    Razafindratsima, Stephen; Guérin, Roger; Bendjoudi, Hocine; de Marsily, Ghislain

    2014-09-01

    A methodological approach is described which combines geophysical and geochemical data to delineate the extent of a chlorinated ethenes plume in northern France; the methodology was used to calibrate a hydrogeological model of the contaminants' migration and degradation. The existence of strong reducing conditions in some parts of the aquifer is first determined by measuring in situ the redox potential and dissolved oxygen, dissolved ferrous iron and chloride concentrations. Electrical resistivity imaging and electromagnetic mapping, using the Slingram method, are then used to determine the shape of the pollutant plume. A decreasing empirical exponential relation between measured chloride concentrations in the water and aquifer electrical resistivity is observed; the resistivity formation factor calculated at a few points also shows a major contribution of chloride concentration in the resistivity of the saturated porous medium. MODFLOW software and MT3D99 first-order parent-daughter chain reaction and the RT3D aerobic-anaerobic model for tetrachloroethene (PCE)/trichloroethene (TCE) dechlorination are finally used for a first attempt at modeling the degradation of the chlorinated ethenes. After calibration, the distribution of the chlorinated ethenes and their degradation products simulated with the model approximately reflects the mean measured values in the observation wells, confirming the data-derived image of the plume.

  2. Inverse scattering pre-stack depth imaging and it's comparison to some depth migration methods for imaging rich fault complex structure

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Mubarok, Syahrul; Deny, Agus; Widowati, Sri; Kurniadi, Rizal

    2012-06-01

    Migration is important issue for seismic imaging in complex structure. In this decade, depth imaging becomes important tools for producing accurate image in depth imaging instead of time domain imaging. The challenge of depth migration method, however, is in revealing the complex structure of subsurface. There are many methods of depth migration with their advantages and weaknesses. In this paper, we show our propose method of pre-stack depth migration based on time domain inverse scattering wave equation. Hopefully this method can be as solution for imaging complex structure in Indonesia, especially in rich thrusting fault zones. In this research, we develop a recent advance wave equation migration based on time domain inverse scattering wave which use more natural wave propagation using scattering wave. This wave equation pre-stack depth migration use time domain inverse scattering wave equation based on Helmholtz equation. To provide true amplitude recovery, an inverse of divergence procedure and recovering transmission loss are considered of pre-stack migration. Benchmarking the propose inverse scattering pre-stack depth migration with the other migration methods are also presented, i.e.: wave equation pre-stack depth migration, waveequation depth migration, and pre-stack time migration method. This inverse scattering pre-stack depth migration could image successfully the rich fault zone which consist extremely dip and resulting superior quality of seismic image. The image quality of inverse scattering migration is much better than the others migration methods.

  3. Multiphase modeling of geologic carbon sequestration in saline aquifers.

    PubMed

    Bandilla, Karl W; Celia, Michael A; Birkholzer, Jens T; Cihan, Abdullah; Leister, Evan C

    2015-01-01

    Geologic carbon sequestration (GCS) is being considered as a climate change mitigation option in many future energy scenarios. Mathematical modeling is routinely used to predict subsurface CO2 and resident brine migration for the design of injection operations, to demonstrate the permanence of CO2 storage, and to show that other subsurface resources will not be degraded. Many processes impact the migration of CO2 and brine, including multiphase flow dynamics, geochemistry, and geomechanics, along with the spatial distribution of parameters such as porosity and permeability. In this article, we review a set of multiphase modeling approaches with different levels of conceptual complexity that have been used to model GCS. Model complexity ranges from coupled multiprocess models to simplified vertical equilibrium (VE) models and macroscopic invasion percolation models. The goal of this article is to give a framework of conceptual model complexity, and to show the types of modeling approaches that have been used to address specific GCS questions. Application of the modeling approaches is shown using five ongoing or proposed CO2 injection sites. For the selected sites, the majority of GCS models follow a simplified multiphase approach, especially for questions related to injection and local-scale heterogeneity. Coupled multiprocess models are only applied in one case where geomechanics have a strong impact on the flow. Owing to their computational efficiency, VE models tend to be applied at large scales. A macroscopic invasion percolation approach was used to predict the CO2 migration at one site to examine details of CO2 migration under the caprock. © 2015, National Ground Water Association.

  4. Modeling and risk assessment of a 30-Year-old subsurface radioactive-liquid drain field

    NASA Astrophysics Data System (ADS)

    Dawson, Lon A.; Pohl, Phillip I.

    1997-11-01

    The contamination from a 30-year-old radioactive liquid drain field was assessed for movement in the subsurface and potential risks to humans. This assessment included determining field concentrations of cesium 137 (137Cs) and other inorganic contaminants and modeling of the flow and transport of the liquid waste that was sent to the drain field. The field investigation detected no contamination deeper than 15 feet (4.6 m) from the bottom of the drain field. Prediction of the water content of the vadose zone showed no saturated conditions for times greater than 10 years after the known infiltration. Sensitivity analysis of the modeling parameters showed the equilibrium sorption coefficient to be the most important factor in predicting the contaminant plumes. Calibration of modeling results with field data gave a 137Cs sorption coefficient that is within the range of values found in the literature. The risk assessment for the site showed that the contamination poses no significant risk to human health.

  5. In-situ chemical barrier and method of making

    DOEpatents

    Cantrell, K.J.; Kaplan, D.I.

    1999-01-12

    A chemical barrier is formed by injecting a suspension of solid particles or colloids into the subsurface. First, a stable colloid suspension is made including a surfactant and a non-Newtonian fluid. This stable colloid suspension is characterized by colloid concentration, colloid size, colloid material, solution ionic strength, and chemical composition. A second step involves injecting the optimized stable colloid suspension at a sufficiently high flow rate to move the colloids through the subsurface sediment, but not at such a high rate so as to induce resuspending indigenous soil particles in the aquifer. While injecting the stable colloid suspension, a withdrawal well may be used to draw the injected colloids in a direction perpendicular to the flow path of a contaminant plume. The withdrawal well, may then be used as an injection well, and a third well, in line with the first two wells, may then be used as a withdrawal well, thereby increasing the length of the colloid barrier. This process would continue until emplacement of the colloid barrier is complete. 7 figs.

  6. In-situ chemical barrier and method of making

    DOEpatents

    Cantrell, Kirk J.; Kaplan, Daniel I.

    1999-01-01

    A chemical barrier is formed by injecting a suspension of solid particles or colloids into the subsurface. First, a stable colloid suspension is made including a surfactant and a non-Newtonian fluid. This stable colloid suspension is characterized by colloid concentration, colloid size, colloid material, solution ionic strength, and chemical composition. A second step involves injecting the optimized stable colloid suspension at a sufficiently high flow rate to move the colloids through the subsurface sediment, but not at such a high rate so as to induce resuspending indigenous soil particles in the aquifer. While injecting the stable colloid suspension, a withdrawal well may be used to draw the injected colloids in a direction perpendicular to the flow path of a contaminant plume. The withdrawal well, may then be used as an injection well, and a third well, in line with the first two wells, may then be used as a withdrawal well, thereby increasing the length of the colloid barrier. This process would continue until emplacement of the colloid barrier is complete.

  7. Exploration of a Subsurface Biosphere in a Volcanic Massive Sulfide: Results of the Mars Analog Rio Tinto Drilling Experiment

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.; Stevens, T.; Amils, R.; Fernandez, D.

    2005-12-01

    Biological systems on Earth require three key ingredients-- liquid water, an energy source, and a carbon source, that are found in very few extraterrestrial environments. Previous examples of independent subsurface ecosystems have been found only in basalt aquifers. Such lithotrophic microbial ecosystems (LME) have been proposed as models for steps in the early evolution of Earth's biosphere and for potential biospheres on other planets where the surface is uninhabitable, such as Mars and Europa.. The Mars Analog Rio Tinto Experiment (MARTE) has searched in a volcanic massive sulfide deposit in Rio Tinto Spain for a subsurface biosphere capable of living without sunlight or oxygen and found a subsurface ecosystem driven by the weathering of the massive sulfide deposit (VMS) in which the rock matrix provides sufficient resources to support microbial metabolism, including the vigorous production of H2 by water-rock interactions. Microbial production of methane and sulfate occurred in the sulfide orebody and microbial production of methane and hydrogen sulfide continued in an anoxic plume downgradient from the sulfide ore. Organic carbon concentrations in the parent rock were too low to support microbes. The Rio Tinto system thus represents a new type of subsurface ecosystem with strong relevance for exobiological studies. Commercial drilling was used to reach the aquifer system at 100 m depth and conventional laboratory techniques were used to identify and characterize the biosphere. Then, the life search strategy that led to successful identification of this biosphere was applied to the development of a robotic drilling, core handling, inspection, subsampling, and life detection system built on a prototype planetary lander that was deployed in Rio Tinto Spain in September 2005 to test the capability of a robotic drilling system to search for subsurface life. A remote science team directed the simulation and analyzed the data from the MARTE robotic drill. The results of this experiment have important implications for the strategy for searching for life on Mars.

  8. Introduction: energy and the subsurface.

    PubMed

    Christov, Ivan C; Viswanathan, Hari S

    2016-10-13

    This theme issue covers topics at the forefront of scientific research on energy and the subsurface, ranging from carbon dioxide (CO2) sequestration to the recovery of unconventional shale oil and gas resources through hydraulic fracturing. As such, the goal of this theme issue is to have an impact on the scientific community, broadly, by providing a self-contained collection of articles contributing to and reviewing the state-of-the-art of the field. This collection of articles could be used, for example, to set the next generation of research directions, while also being useful as a self-study guide for those interested in entering the field. Review articles are included on the topics of hydraulic fracturing as a multiscale problem, numerical modelling of hydraulic fracture propagation, the role of computational sciences in the upstream oil and gas industry and chemohydrodynamic patterns in porous media. Complementing the reviews is a set of original research papers covering growth models for branched hydraulic crack systems, fluid-driven crack propagation in elastic matrices, elastic and inelastic deformation of fluid-saturated rock, reaction front propagation in fracture matrices, the effects of rock mineralogy and pore structure on stress-dependent permeability of shales, topographic viscous fingering and plume dynamics in porous media convection.This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).

  9. Application of electromagnetic techniques in survey of contaminated groundwater at an abandoned mine complex in southwestern Indiana, U.S.A.

    USGS Publications Warehouse

    Brooks, G.A.; Olyphant, G.A.; Harper, D.

    1991-01-01

    In part of a large abandoned mining complex, electromagnetic geophysical surveys were used along with data derived from cores and monitoring wells to infer sources of contamination and subsurface hydrologic connections between acidic refuse deposits and adjacent undisturbed geologic materials. Electrical resistivity increases sharply along the boundary of an elevated deposit of pyritic coarse refuse, which is highly contaminated and electrically conductive, indicating poor subsurface hydrologic connections with surrounding deposits of fine refuse and undisturbed glacial material. Groundwater chemistry, as reflected in values of specific conductance, also differs markedly across the deposit's boundary, indicating that a widespread contaminant plume has not developed around the coarse refuse in more than 40 yr since the deposit was created. Most acidic drainage from the coarse refuse is by surface runoff and is concentrated around stream channels. Although most of the contaminated groundwater within the study area is concentrated within the surficial refuse deposits, transects of apparent resistivity and phase angle indicate the existence of an anomalous conductive layer at depth (>4 m) in thick alluvial sediments along the northern boundary of the mining complex. Based on knowledge of local geology, the anomaly is interpreted to represent a subsurface connection between the alluvium and a flooded abandoned underground mine. ?? 1991 Springer-Verlag New York Inc.

  10. Application of electromagnetic techniques in survey of contaminated groundwater at an abandoned mine complex in southwestern Indiana, U.S.A.

    NASA Astrophysics Data System (ADS)

    Brooks, Glenn A.; Olyphant, Greg A.; Harper, Denver

    1991-07-01

    In part of a large abandoned mining complex, electromagnetic geophysical surveys were used along with data derived from cores and monitoring wells to infer sources of contamination and subsurface hydrologic connections between acidic refuse deposits and adjacent undisturbed geologic materials. Electrical resistivity increases sharply along the boundary of an elevated deposit of pyritic coarse refuse, which is highly contaminated and electrically conductive, indicating poor subsurface hydrologic connections with surrounding deposits of fine refuse and undisturbed glacial material. Groundwater chemistry, as reflected in values of specific conductance, also differs markedly across the deposit's boundary, indicating that a widespread contaminant plume has not developed around the coarse refuse in more than 40 yr since the deposit was created. Most acidic drainage from the coarse refuse is by surface runoff and is concentrated around stream channels. Although most of the contaminated groundwater within the study area is concentrated within the surficial refuse deposits, transects of apparent resistivity and phase angle indicate the existence of an anomalous conductive layer at depth (>4 m) in thick alluvial sediments along the northern boundary of the mining complex. Based on knowledge of local geology, the anomaly is interpreted to represent a subsurface connection between the alluvium and a flooded abandoned underground mine.

  11. Movement and fate of crude-oil in contaminants in the subsurface environment at Bemidji, Minnesota: Chapter C in U.S. Geological Survey program on toxic waste--ground-water contamination: Proceedings of the Third technical meeting, Pensacola, Florida, March 23-27, 1987

    USGS Publications Warehouse

    Hult, Marc F.

    1987-01-01

    Predictions of the evolution and ultimate geometry of contaminant plumes resulting from spills require quantitative descriptions of the rate of mass transfer from the organic fluid to ground water. Pfannkuch presents laboratory and field work that describe how the the rate of oil dissolution, and therefore the strength of the contaminant source, is controlled by fluctuations in ground-water velocity and water-table fluctuations.

  12. Io meteorology - How atmospheric pressure is controlled locally by volcanos and surface frosts

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    1989-01-01

    The present modification of the Ingersoll et al. (1985) hydrodynamic model of the SO2 gas sublimation-driven flow from the day to the night side of Io includes the effects of nonuniform surface properties noted in observational studies. Calculations are conducted for atmospheric pressures, horizontal winds, sublimation rates, and condensation rates for such surface conditions as patchy and continuous frost cover, volcanic venting, surface temperature discontinuities, subsurface cold trapping, and the propagation of insolation into the frost. While pressure is found to follow local vapor pressure away from the plumes, it becomes higher inside them.

  13. USGS Toxic Substances Hydrology Program, 2010

    USGS Publications Warehouse

    Buxton, Herbert T.

    2010-01-01

    The U.S. Geological Survey (USGS) Toxic Substances Hydrology Program adapts research priorities to address the most important contamination issues facing the Nation and to identify new threats to environmental health. The Program investigates two major types of contamination problems: * Subsurface Point-Source Contamination, and * Watershed and Regional Contamination. Research objectives include developing remediation methods that use natural processes, characterizing and remediating contaminant plumes in fractured-rock aquifers, identifying new environmental contaminants, characterizing new and understudied pesticides in common pesticide-use settings, explaining mercury methylation and bioaccumulation, and developing approaches for remediating watersheds affected by active and historic mining.

  14. Modeling of Near-Surface Leakage and Seepage of CO2 for Risk Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenburg, Curtis M.; Unger, Andre A.J.

    2004-02-18

    The injection of carbon dioxide (CO2) into deep geologic carbon sequestration sites entails risk that CO2 will leak away from the primary storage formation and migrate upwards to the unsaturated zone from which it can seep out of the ground. We have developed a coupled modeling framework called T2CA for simulating CO2 leakage and seepage in the subsurface and in the atmospheric surface layer. The results of model simulations can be used to calculate the two key health, safety, and environmental (HSE) risk drivers, namely CO2 seepage flux and nearsurface CO2 concentrations. Sensitivity studies for a subsurface system with amore » thick unsaturated zone show limited leakage attenuation resulting in correspondingly large CO2 concentrations in the shallow subsurface. Large CO2 concentrations in the shallow subsurface present a risk to plant and tree roots, and to humans and other animals in subsurface structures such as basements or utility vaults. Whereas CO2 concentrations in the subsurface can be high, surfacelayer winds reduce CO2 concentrations to low levels for the fluxes investigated. We recommend more verification and case studies be carried out with T2CA, along with the development of extensions to handle additional scenarios such as calm conditions, topographic effects, and catastrophic surface-layer discharge events.« less

  15. 2-D and 3-D Difraction Stake Migration Method Using GPR: A Case Study in Canakkale (Turkey)

    NASA Astrophysics Data System (ADS)

    Çaǧlar Yalçiner, Cahit

    In this study, ground-penetrating radar (GPR) method was applied for Clandestine cemetery detection in Ηanakkale (Dardanelles), west Turkey. Investigated area was a historical area which was used as tent hospitals during the World War I. The study area was also used to bury soldiers who died during the treatment process in tent hospitals. Because of agricultural activity grave stones were used by local people, thus, most of the graves were lost in the field. 45 GPR profiles were applied with a GPR system (RAMAC) equipped with 250 MHz central frequency shielded antenna. After main processing steps on raw data, migration was applied to improve section resolution and develop the realism of the subsurface images. Although the GPR in results before migration the anomalous zones are visible, after migration the results became much more visible both in the profiles and 3D illustrations, thus, migrated GPR data were preferred to locate the buried martyrdoms.

  16. Resolving the potential mantle reservoirs that influence volcanism in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Maletic, E. L.; Darrah, T.

    2017-12-01

    Lithospheric extension and magmatism are key characteristics of active continental rift zones and are often associated with long-lasting alkaline magmatic provinces. In these settings, a relationship between lithospheric extension and mantle plumes is often assumed for the forces leading to rift evolution and the existence of a plume is commonly inferred, but typically only extension is supported by geological evidence. A prime example of long-lasting magmatism associated with an extensive area of continental rifting is the West Antarctic Rift System (WARS), a 2000 km long zone of ongoing extension within the Antarctic plate. The WARS consists of high alkaline silica-undersaturated igneous rocks with enrichments in light rare earth elements (LREEs). The majority of previous geochemical work on WARS volcanism has focused on bulk classification, modal mineralogy, major element composition, trace element chemistry, and radiogenic isotopes (e.g., Sr, Nd, and Pb isotopes), but very few studies have evaluated volatile composition of volcanics from this region. Previous explanations for WARS volcanism have hypothesized a plume beneath Marie Byrd Land, decompression melting of a fossilized plume head, decompression melting of a stratified mantle source, and mixing of recycled oceanic crust with one or more enriched mantle sources from the deep mantle, though researchers are yet to reach a consensus. Unlike trace elements and radiogenic isotopes which can be recycled between the crust and mantle and which are commonly controlled by degrees of partial melting and prior melt differentiation, noble gases are present in low concentrations and chemically inert, allowing them to serve as reliable tracers of volatile sources and subsurface processes. Here, we present preliminary noble gas isotope (e.g., 3He/4He, CO2/3He, CH4/3He, 40Ar/36Ar, 40Ar*/4He) data for a suite of lava samples from across the WARS. By coupling major and trace element chemistry with noble gas elemental and isotopic composition and other volatiles from a suite of volcanic rocks in the WARS, we can better constrain a magmatic source and provide geological evidence that could support or oppose the existence of a mantle plume, HIMU plume, or deconvolve mantle-lithosphere interactions.

  17. On the Color of the Orinoco River Plume

    NASA Astrophysics Data System (ADS)

    Odriozola, A.; Muller-Karger, F.; Carder, K.; Hu, C.; Varela, R.

    2005-05-01

    In situ measurements were used to study the bio-optical properties of marine waters within the Gulf of Paria (GOP, Venezuela) and in the Southeastern Caribbean Sea (SEC) as they are affected by the seasonal discharge of the Orinoco River plume. The main purpose of this study was to determine the impact of colored dissolved organic matter (CDOM) (also known as Gelbstoff), phytoplankton, and total suspended matter (TSM) in the color of the Orinoco River plume. This information is essential for regional ocean color algorithms development. Salinity and silica values indicate that the GOP and SEC waters were under the influence of the Orinoco River plume during both seasons. This riverine influence resulted in high values of Gelbstoff absorption, ag(λ), which contributed to up to 90% of the total absorption at 440 nm in both the GOP and SEC regardless of the season. Phytoplankton absorption contributions were normally around 5%, but during the dry season these values reached 20% in the SEC. Ratios of ag(440) to ph(440) were extremely large, with most of the values ranging from 10 to 50. Due to the strong absorption by Gelbstoff, light at the blue wavelengths (412 nm, 440 nm and 490 nm) was attenuated to 1% of the subsurface irradiance in the first 5 m of the water column within the GOP, and in the first 10 m of the water column in the SEC. Furthermore, the absorption by Gelbstoff significantly decreased the water leaving radiance (Lw(λ)) in the blue wavelengths along the Orinoco River plume. As ag(λ) relatively decreased from the GOP to the SEC (mean ~1.6 m-1 and mean ~0.9 m-1, respectively), a shift in the maximum peak of Rrs(λ) spectra (Rrsmax(λ)), towards shorter wavelengths (from ~ 580 nm to ~500 nm) was observed. Similar to Gelbstoff, concentrations of TSM normally decreased from the stations near the Delta to the stations in the SEC. The impact of TSM on the color of the Orinoco plume was represented by a reduction in the magnitude of Rrsmax(λ) of ~50% going from the waters near the Orinoco delta to the SEC, indistinctively of the season.

  18. A Multifaceted Sampling Approach to Better Understanding Biogeochemical and Hydrogeological Controls on Uranium Mobility at a Former Uranium Mill Tailings Site in Riverton, Wyoming

    NASA Astrophysics Data System (ADS)

    Dam, W. L.; Johnson, R. H.; Campbell, S.; Bone, S. E.; Noel, V.; Bargar, J.

    2015-12-01

    Understanding uranium mobility in subsurface environments is not trivial. Obtaining sufficient data to accurately represent soil and aquifer characteristics can require unique approaches that evolve with added site knowledge. At Riverton, the primary source of uranium mill tailings remaining from ore processing was removed but contaminant plumes have persisted longer than predicted by groundwater modeling. What are the primary mechanisms controlling plume persistence? DOE is conducting new characterization studies to assist our understanding of underlying biogeochemical and hydrogeological mechanisms affecting secondary sources. A variety of field sampling techniques are being sequentially employed including augering, trenching, pore water sampling, and installing multi-level wells. In August 2012, vadose zone soil samples from 34 locations and groundwater from 103 boreholes were collected with Geoprobe ® direct push rods. Lower than expected uranium concentrations in composited shallow soils indicated the need for more focused and deeper samples. In May 2014, soil samples containing evaporites were collected along the bank of the Little Wind River; elevated uranium concentrations in evaporite minerals correlated with plume configurations and reflect contaminated groundwater discharge at the river. In September 2014, hand anger samples collected by the river and oxbow lake also indicated the presence of organic rich zones containing elevated uranium (>50 mg/kg). Subsequent samples collected from five backhoe trenches in May 2015 revealed a highly heterogeneous vadose zone composed of clay, silt, sand and cobbles containing evaporites and organic rich zones which may interact with groundwater plumes.Plans for August 2015 include sonic drilling to obtain continuous cores from the surface down to the base of the surficial aquifer with multi-level monitoring wells constructed in each borehole to assess vertical variation in groundwater chemistry. Temporary well-points will be installed adjacent to the river to assess geochemical and flow controls in the area of plume stagnation. Analyses include critical element speciation (C, S, Fe, and U), microbes, isotopes, diffusivity and flow characteristics. These activities support a dramatically improved understanding of plume persistence.

  19. "Sniffing" Jupiter's moon Europa through ground-based IR observations

    NASA Astrophysics Data System (ADS)

    Paganini, Lucas; Mumma, Michael J.; Hurford, Terry; Roth, Lorenz; Villanueva, Geronimo Luis

    2016-10-01

    The ability to sample possible plumes from the subsurface ocean in Europa represents a major step in our search for extraterrestrial life. If plumes exist, sampling the effluent material would provide insights into their chemistry and relevant information about the prospect that life could exist, or now exists, within the ocean. Most of the difficulties in detecting plumes come from the less frequent observational coverage of Europa, which contrasts strongly with the frequent Cassini flybys of Enceladus (Spencer & Nimmo 2013). Recent observations have been taken with HST/STIS in 2014/2015, but results have shown no evident confirmation of the 2012 plume detection (Roth et al. 2014, 2015). Future in situ observations (Europa Mission) will provide definitive insights, but not before the spacecraft's arrival in ~2025, thus an interim approach is needed to inform such space mission planning and to complement existing observations at other wavelengths.In 2015, we initiated a strong campaign to build a comprehensive survey of possible plumes on Europa through high-resolution IR spectroscopy with Keck/NIRSPEC. We were awarded 10 nights out of 15 total nights available for Key Strategic Mission Support projects for the 2016A, 2016B, 2017A, and 2017B semesters under NASA time with the Keck Observatory. In 2016A, we observed Europa during 10 half-nights and will continue to do so for another 10 half-nights in 2017A. We target a serendipitous search of gaseous activity from Europa to confirm and constrain the chemical composition of possible Europan plumes that can aid the investigation of physical processes underlying (or on) its surface. Ultimately, we seek to: (1) provide information that can inform planning for NASA's Europa mission, (2) further our current understanding of Europa's gas environment, and (3) complement studies that are currently underway with other facilities (like the Hubble Space Telescope). In this presentation, we will discuss preliminary results, challenges, and future plans of our observing campaign.* This work was supported by a NASA Keck PI Data Award (PI LP), administered by the NASA Exoplanet Science Institute, and by the NASA Astrobiology Institute under proposal 13-13NAI7-0032 (PI MJM).

  20. Numerical Generation of Dense Plume Fingers in Unsaturated Homogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Cremer, C.; Graf, T.

    2012-04-01

    In nature, the migration of dense plumes typically results in the formation of vertical plume fingers. Flow direction in fingers is downwards, which is counterbalanced by upwards flow of less dense fluid between fingers. In heterogeneous media, heterogeneity itself is known to trigger the formation of fingers. In homogeneous media, however, fingers are also created even if all grains had the same diameter. The reason is that pore-scale heterogeneity leading to different flow velocities also exists in homogeneous media due to two effects: (i) Grains of identical size may randomly arrange differently, e.g. forming tetrahedrons, hexahedrons or octahedrons. Each arrangement creates pores of varying diameter, thus resulting in different average flow velocities. (ii) Random variations of solute concentration lead to varying buoyancy effects, thus also resulting in different velocities. As a continuation of previously made efforts to incorporate pore-scale heterogeneity into fully saturated soil such that dense fingers are realistically generated (Cremer and Graf, EGU Assembly, 2011), the current paper extends the research scope from saturated to unsaturated soil. Perturbation methods are evaluated by numerically re-simulating a laboratory-scale experiment of plume transport in homogeneous unsaturated sand (Simmons et al., Transp. Porous Media, 2002). The following 5 methods are being discussed: (i) homogeneous sand, (ii) initial perturbation of solute concentration, (iii) spatially random, time-constant perturbation of solute source, (iv) spatially and temporally random noise of simulated solute concentration, and (v) random K-field that introduces physically insignificant but numerically significant heterogeneity. Results demonstrate that, as opposed to saturated flow, perturbing the solute source will not result in plume fingering. This is because the location of the perturbed source (domain top) and the location of finger generation (groundwater surface) do not coincide. Alternatively, similar to saturated flow, applying either a random concentration noise (iv) or a random K-field (v) generates realistic plume fingering. Future work will focus on the generation mechanisms of plume finger splitting.

  1. Transition From Archean Plume-Arc Orogens to Phanerozoic Style Convergent Margin Orogens, and Changing Mantle Lithosphere

    NASA Astrophysics Data System (ADS)

    Kerrich, R.; Jia, Y.; Wyman, D.

    2001-12-01

    Mantle plume activity was more intense in the Archean and komatiite-basalt volcanic sequences are a major component of many Archean greenstone belts. Tholeiitic basalts compositionally resemble Phanerozoic and Recent ocean plateau basalts, such as those of Ontong Java and Iceland. However, komatiite-basalt sequences are tectonically imbricated with bimodal arc lavas and associated trench turbidites. Interfingering of komatiite flows with boninite series flows, and primitive to evolved arc basalts has recently been identified in the 2.7 Ga Abitibi greenstone belt, demonstrating spatially and temporally associated plume and arc magmatism. These observations are consistent with an intra-oceanic arc migrating and capturing an ocean plateau, where the plateau jams the arc and imbricated plateau-arc crust forms a greenstone belt orogen. Melting of shallowly subducted plateau basalt crust (high Ba, Th, LREE) accounts for the areally extensive and voluminous syntectonic tonalite batholiths. In contrast, the adakite-Mg-andesite-Niobium enriched basalt association found in Archean greenstone belts and Cenozoic arcs are melts of LREE depleted MORB slab. Buoyant residue from anomalously hot mantle plume melting at > 100km rises to couple with the composite plume-arc crust to form the distinctively thick and refractory Archean continental lithospheric mantle. New geochemical data for structurally hosted ultramafic units along the N. American Cordillera, from S. California to the Yukon, show that these are obducted slices of sub-arc lithospheric mantle. Negatively fractionated HREE with high Al2O3/TiO2 ratios signify prior melt extraction, and variably enriched Th and LREE with negative Nb anomalies a subduction component in a convergent margin. A secular decrease of mantle plume activity and temperature results in plume-arc dominated geodynamics in the Archean with shallow subduction and thick CLM, whereas Phanerozoic convergent margins are dominated by arc-continent, arc-terrane, and terrane-terrane collision with steep subduction resulting in narrow belts of granitoids and obduction of lithospheric mantle.

  2. ENVIRONMENTAL RESEARCH BRIEF: USE OF CATIONIC SURFACTANTS TO MODIFY AQUIFER MATERIALS TO REDUCE THE MOBILITY OF HYDROPHOBIC ORGANIC COMPOUNDS

    EPA Science Inventory

    Cationic surfactants can be used to modify surfaces of soils and subsurface materials to promote sorption of hydrophobic organic compounds (HOC) and retard their migration. For example, cationic surfactants could be injected into an aquifer downgradient from a source of HOC conta...

  3. WORKSHOP REPORT - CONSIDERATIONS FOR DEVELOPING LEACHING TEST METHODS FOR SEMI- AND NON-VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    The report provides a summary of the information exchange at a workshop on the potential for release of semi- or non-volatile organic constituents at contaminated sites where sub-surface treatment has been used to control migration, and from waste that is disposed or re-used. The...

  4. Efforts to estimate pesticide degradation rates in subsurface vadose and aquifer materials

    EPA Science Inventory

    When pesticides are used in real-world settings, the objective is to be effective in pest eradication at the site of application, but also it is desired that the pesticide have minimal persistence and mobility as it migrates away from the application site. At the site of applicat...

  5. TEMPORAL MOISTURE CONTENT VARIABILITY BENEATH AND EXTERNAL TO A BUILDING AND THE POTENTIAL EFFECTS ON VAPOR INTRUSION RISK ASSESSMENT

    EPA Science Inventory

    Migration of vapors from organic chemicals residing in the subsurface into overlying buildings is known as vapor intrusion. Because of the difficulty in evaluating vapor intrusion by indoor air sampling, models are often employed to determine if a potential indoor inhalation exp...

  6. Spray Above Enceladus

    NASA Image and Video Library

    2005-11-28

    A fine spray of small, icy particles emanating from the warm, geologically unique province surrounding the south pole of Saturn’s moon Enceladus was observed in a Cassini narrow-angle camera image of the crescent moon taken on Jan. 16, 2005. Taken from a high-phase angle of 148 degrees -- a viewing geometry in which small particles become much easier to see -- the plume of material becomes more apparent in images processed to enhance faint signals. Imaging scientists have measured the light scattered by the plume's particles to determine their abundance and fall-off with height. Though the measurements of particle abundance are more certain within 100 kilometers (60 miles) of the surface, the values measured there are roughly consistent with the abundance of water ice particles measured by other Cassini instruments (reported in September, 2005) at altitudes as high as 400 kilometers (250 miles) above the surface. Imaging scientists, as reported in the journal Science on March 10, 2006, believe that the jets are geysers erupting from pressurized subsurface reservoirs of liquid water above 273 degrees Kelvin (0 degrees Celsius). The image at the left was taken in visible green light. A dark mask was applied to the moon's bright limb in order to make the plume feature easier to see. The image at the right has been color-coded to make faint signals in the plume more apparent. Images of other satellites (such as Tethys and Mimas) taken in the last 10 months from similar lighting and viewing geometries, and with identical camera parameters as this one, were closely examined to demonstrate that the plume towering above Enceladus' south pole is real and not a camera artifact. The images were acquired at a distance of about 209,400 kilometers (130,100 miles) from Enceladus. Image scale is about 1 kilometer (0.6 mile) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA07760

  7. Development and application of a sampling method for the determination of reactive halogen species in volcanic gas emissions.

    PubMed

    Rüdiger, Julian; Bobrowski, Nicole; Liotta, Marcello; Hoffmann, Thorsten

    2017-10-01

    Volcanoes release large amounts of reactive trace gases including sulfur and halogen-containing species into the atmosphere. The knowledge of halogen chemistry in volcanic plumes can deliver information about subsurface processes and is relevant for the understanding of the impact of volcanoes on atmospheric chemistry. In this study, a gas diffusion denuder sampling method using 1,3,5-trimethoxybenzene (1,3,5-TMB)-coated glass tubes for the in situ derivatization of reactive halogen species (RHS) was characterized by a series of laboratory experiments. The coating proved to be applicable to collect selectively gaseous bromine species with oxidation states (OS) of +1 or 0 (such as Br 2 , BrCl, HOBr, BrO, and BrONO 2 ) while being unreactive to HBr (OS -1). The reaction of 1,3,5-TMB with reactive bromine species forms 1-bromo-2,4,6-TMB-other halogens give corresponding derivatives. Solvent elution of the derivatives followed by analysis with GC-MS results in absolute detection limits of a few nanograms for Br 2 , Cl 2 , and I 2 . In 2015, the technique was applied on volcanic gas plumes at Mt. Etna (Italy) measuring reactive bromine mixing ratios between 0.8 and 7.0 ppbv. Total bromine mixing ratios between 4.7 and 27.5 ppbv were derived from alkaline trap samples, simultaneously taken by a Raschig tube and analyzed with IC and ICP-MS. This leads to the first results of the reactive bromine contribution to total bromine in volcanic emissions, spanning over a range between 12% (±1) and 36% (±2). Our finding is in an agreement with previous model studies, which imply values <44% for plume ages <1 min, which is consistent with the assumed plume age at the sampling sites. Graphical abstract Illustration of the measurement procedure for the determination of reactive halogen species in volcanic plumes.

  8. An Overview of In-Stu Treatability Studies at Marshall Space Flight Center, Huntsville, Alabama

    NASA Technical Reports Server (NTRS)

    McElroy, Bill; Keith, Amy; Glasgow, J. K.; Dasappa, Srini; McCaleb, Rebecca (Technical Monitor)

    2001-01-01

    Marshall Space Flight Center (MSFC) is located in Huntsville, Alabama (north-central Alabama), on approximately 1,840 acres near the center of the U.S. Army's Redstone Arsenal (RSA). MSFC is the National Aeronautics and Space Administration's (NASA's) principal propulsion development center. Its scientists, engineers, and support personnel play a major role in the National Space Transportation System by managing space shuttle mission activities, including the microgravity laboratory. In addition, MSFC will be a significant contributor to several of NASA's future programs, including the Reusable Launch Vehicle (X-33), International Space Station, and Advanced X-ray Astrophysics Facility, as well as research on a variety of space science applications. MSFC has been used to develop, test and manufacture space vehicles and components since 1960, when civilian rocketry and missile activities were transferred from RSA to MSFC. In 1994, MSFC was placed on the National Priority List for the management of hazardous waste sites, under the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). One requirement of the CERCLA program is to evaluate the nature and extent of environmental contamination resulting from identified CERCLA sites, assess the public health and environmental risks associated with the identified contamination, and identify potential remedial actions. A CERCLA remedial investigation (RI) for the groundwater system has identified at least five major plumes of chlorinated volatile organic compounds (CVOCs) in the groundwater beneath the facility. These plumes are believed to be the result of former management practices at 14 main facility locations (termed "source areas") where CVOCs were released to the subsurface. Trichloroethene (TCE) is the predominant CVOC and is common to all the plumes. Perchloroethene (PCE) also exists in two of the plumes. In addition to TCE and PCE, carbon tetrachloride and 1,1,2,2-tetrachloroethane are contained in one of the plumes. The CVOCs are believed to exist as dense non-aqueous phase liquids (DNAPLs) beneath many of the source areas.

  9. Spatial Variability in Enceladus' Plume Material: Convergence of Evidence or Coincidence?

    NASA Astrophysics Data System (ADS)

    Dhingra, Deepak; Hedman, Matthew M.; Clark, Roger Nelson

    2016-10-01

    Systematic spatial trends in the properties of the plume material emerging from Enceladus' tiger stripes can be observed in multiple observations from the Cassini mission. Subtle near infrared spectral differences within the plume have been reported across tiger stripes based on Visual and Infrared Mapping Spectrometer (VIMS) observations at high spatial resolution [1]. These spectral differences are likely due to variable water-ice grain size distribution along the source fissures (i.e. tiger stripes) and perhaps by the presence/absence of water vapor emission [2]. We now report a correlation of this spatial trend (along tiger stripes) with several other published results including (a) differences in the ice particle sizes across tiger stripes on Enceladus' surface [3, 4], (b) the surface abundance of organic material [3] and finally, (c) the relative proportion of type II grains (associated with organic/siliceous material) in the plume [5] from Damascus to Alexandria as measured by the Cosmic Dust Analyzer (CDA) instrument.The general trend indicates that at least some of the plume properties (viz. particle size, organic abundance) achieve a peak over Damascus and then become gradually subtle towards Alexandria. The observed differences between tiger stripes eruptions and the nature of correlations (trends from Damascus to Alexandria) hold important clues to the subsurface environment at Enceladus including differences in the geological setting of the individual tiger stripes [6]. The latter is a likely possibility given the large spatial spread of eruptions in Encealdus' South Polar Terrain (SPT).[1] Dhingra et al., (2015) 46th Lunar Planet. Sci. Conf., Abstract#1648[2] Dhingra et al. (2016) Icarus, submitted[3] Brown et al. (2006) Science, 311, 1425-1428[4] Jaumann et al. (2008) Icarus, 193, 407-419[5] Postberg et al. (2011) Nature, doi:10.1038/nature10175[6] Yin and Pappalardo (2015) Icarus, 260, 409-439

  10. THEO: Testing the Habitability of Enceladus’s Ocean

    NASA Astrophysics Data System (ADS)

    MacKenzie, Shannon; Caswell, Tess; Crismani, Matteo; DeBruin, Kevin; Dhaliwal, Jasmeet; Hofgartner, Jason; Krishnamurthy, Akshata; John, Kristen; Phillips-Lander, Charity; Leung, Cecilia; O'Rourke, Joseph; Petro, Elaine; Phan, Samson; Powell, Kathryn; Stavros, E. Natasha; Steuer, Casey; Sun, Vivian; Wynne, Jut; Budney, Charles; Mitchell, Karl

    2015-11-01

    Saturn’s moon Enceladus offers a unique opportunity in the search for life and habitable environments beyond Earth, a key theme of the 2013 Decadal Survey as it informs our understanding of life and habitability on our own planet by addressing (1) the limits of life under colder, fainter sun conditions, (2) the importance of hydrothermal alteration in the origin of life, and (3) the distribution of molecules in the solar system that may have served as the precursors for life. Plumes of predominately water vapor and ice spew from the south pole of Enceladus. Cassini’s data suggest these plumes are sourced by a liquid reservoir beneath the moon’s icy crust that contains organics, salts, and water-rock interaction derivatives. Thus, the ingredients for life as we know it— liquid water, hydrocarbons, and energy sources— are available in Enceladus’s subsurface ocean. We only have to sample the plumes to investigate this hidden ocean environment.With the help of TeamX, the 2015 JPL Planetary Science Summer School student participants developed a proof of concept Enceladus New Frontiers-class solar-powered orbiter. The mission, Testing the Habitability of Enceladus’s Ocean (THEO) conducts remote sensing and in-situ analyses with the following instrument suite: a mass spectrometer, a sub-mm radiometer-spectrometer, a camera, and two magnetometers. Measurements from these instruments can address four key questions for ascertaining Enceladean ocean habitability within the context of the moon’s geological activity. How are the plumes and ocean connected? Is there evidence of biological processes? Are the abiotic conditions of the ocean suitable for habitability? What mechanisms maintain the liquid state of the ocean? By taking advantage of the opportunity Enceladus’s plumes offer, THEO represents a viable, solar-powered option for exploring the potentially habitable ocean worlds of the outer solar system. This work was carried out at JPL/Caltech under a contract with NASA.

  11. CO2 plume management in saline reservoir sequestration

    USGS Publications Warehouse

    Frailey, S.M.; Finley, R.J.

    2011-01-01

    A significant difference between injecting CO2 into saline aquifers for sequestration and injecting fluids into oil reservoirs or natural gas into aquifer storage reservoirs is the availability and use of other production and injection wells surrounding the primary injection well(s). Of major concern for CO2 sequestration using a single well is the distribution of pressure and CO2 saturation within the injection zone. Pressure is of concern with regards to caprock integrity and potential migration of brine or CO2 outside of the injection zone, while CO2 saturation is of interest for storage rights and displacement efficiency. For oil reservoirs, the presence of additional wells is intended to maximize oil recovery by injecting CO2 into the same hydraulic flow units from which the producing wells are withdrawing fluids. Completing injectors and producers in the same flow unit increases CO2 throughput, maximizes oil displacement efficiency, and controls pressure buildup. Additional injectors may surround the CO2 injection well and oil production wells in order to provide external pressure to these wells to prevent the injected CO2 from migrating from the pattern between two of the producing wells. Natural gas storage practices are similar in that to reduce the amount of "cushion" gas and increase the amount of cycled or working gas, edge wells may be used for withdrawal of gas and center wells used for gas injection. This reduces loss of gas to the formation via residual trapping far from the injection well. Moreover, this maximizes the natural gas storage efficiency between the injection and production wells and reduces the areal extent of the natural gas plume. Proposed U.S. EPA regulations include monitoring pressure and suggest the "plume" may be defined by pressure in addition to the CO2 saturated area. For pressure monitoring, it seems that this can only be accomplished by injection zone monitoring wells. For pressure, these wells would not need to be very close to the injection well, compared to monitoring wells intended to measure CO2 saturation via fluid sampling or cased-hole well logs. If pressure monitoring wells become mandated, these wells could be used for managing the CO2 saturation and aquifer pressure distribution. To understand the relevance and effectiveness of producing and injecting brine to improve storage efficiency, direct the plume to specific pore space, and redistribute the pressure, numerical models of CO2 injection into aquifers are used. Simulated cases include various aquifer properties at a single well site and varying the number and location of surrounding wells for plume management. Strategies in terms of completion intervals can be developed to effectively contact more vertical pore space in relatively thicker geologic formations. Inter-site plume management (or cooperative) wells for the purpose of pressure monitoring and plume management may become the responsibility of a consortium of operators or a government entity, not individual sequestration site operators. ?? 2011 Published by Elsevier Ltd.

  12. Stealth export of hydrogen and methane from a low temperature serpentinization system

    NASA Astrophysics Data System (ADS)

    Larson, B. I.; Lang, S. Q.; Lilley, M. D.; Olson, E. J.; Lupton, J. E.; Nakamura, K.; Buck, N. J.

    2015-11-01

    Chemical input to the deep sea from hydrothermal systems is a globally distributed phenomenon. Hydrothermal discharge is one of the primary mechanisms by which the Earth's interior processes manifest themselves at the Earth's surface, and it provides a source of energy for autotrophic processes by microbes that are too deep to capitalize on sunlight. Much is known about the water-column signature of this discharge from high-temperature mid-ocean Ridge (MOR) environments and their neighboring low-temperature counterparts. Hydrothermal discharge farther away from the ridge, however, has garnered less attention, owing in part to the difficulty in finding this style of venting, which eludes methods of detection that work well for high-temperature 'black smoker'-type venting. Here we present a case study of the plume from one such 'invisible' off-axis environment, The Lost City, with an emphasis on the dissolved volatile content of the hydrothermal plume. Serpentinization and abiotic organic synthesis generate significant concentrations of H2 and CH4 in vent fluid, but these species are unevenly transported to the overlying plume, which itself appears to be a composite of two different sources. A concentrated vent cluster on the talus slope channels fluid through at least eight chimneys, producing a water-column plume with the highest observed concentrations of CH4 in the field. In contrast, a saddle in the topography leading up to a carbonate cap hosts broadly distributed, nearly invisible venting apparent only in its water-column signals of redox potential and dissolved gas content, including the highest observed plume H2. After normalizing H2 and CH4 to the 3He background-corrected anomaly (3HeΔ) to account for mixing and relative amount of mantle input, it appears that, while a minimum of 60% of CH4 is transported out of the system, greater than 90% of the H2 is consumed in the subsurface prior to venting. The exception to this pattern occurs in the plume originating from the area dubbed Chaff Beach, in which somewhat more than 10% of the original H2 remains, indicating that this otherwise unremarkable plume, and others like it, may represent a significant source of H2 to the deep sea.

  13. Contribution of 3-D time-lapse ERT to the study of leachate recirculation in a landfill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clement, R., E-mail: remi.clement@hmg.inpg.fr; Grenoble Universite, B.P. 53, 38041 Grenoble Cedex 9; Oxarango, L.

    2011-03-15

    Leachate recirculation is a key process in the operation of municipal waste landfills as bioreactors. It aims at increasing the moisture content to optimise the biodegradation. Because waste is a very heterogeneous and anisotropic porous media, the geometry of the leachate plume recirculation is difficult to delineate from the surface at the scale of the bioreactor site. In this study, 3-D time-lapse electrical resistivity tomography (ERT) was used to obtain useful information for understanding leachate recirculation hydrodynamics. The ERT inversion methodology and the electrode arrays were optimised using numerical modelling simulating a 3-D leachate injection scenario. Time-lapse ERT was subsequentlymore » applied at the field scale during an experimental injection. We compared ERT images with injected volumes to evaluate the sensitivity of time-lapse ERT to delineate the plume migration. The results show that time-lapse ERT can accomplish the following: (i) accurately locate the injection plume, delineating its depth and lateral extension; (ii) be used to estimate some hydraulic properties of waste.« less

  14. Influence of Capillary Force and Buoyancy on CO2 Migration During CO2 Injection in a Sandstone Reservoir

    NASA Astrophysics Data System (ADS)

    Wu, H.; Pollyea, R.

    2017-12-01

    Carbon capture and sequestration (CCS) is one component of a broad carbon management portfolio designed to mitigate adverse effects of anthropogenic CO2 emissions. During CCS, capillary trapping is an important mechanism for CO2 isolation in the disposal reservoir, and, as a result, the distribution of capillary force is an important factor affecting CO2 migration. Moreover, the movement of CO2 being injected to the reservoir is also affected by buoyancy, which results from the density difference between CO2 and brine. In order to understand interactions between capillary force and buoyancy, we implement a parametric modeling experiment of CO2 injections in a sandstone reservoir for combinations of the van Genuchten capillary pressure model that bound the range of capillary pressure-saturation curves measured in laboratory experiments. We simulate ten years supercritical CO2 (scCO2) injections within a 2-D radially symmetric sandstone reservoir for five combinations of the van Genuchten model parameters λ and entry pressure (P0). Results are analyzed on the basis of a modified dimensionless ratio, ω, which is similar to the Bond number and defines the relationship between buoyancy pressure and capillary pressure. We show how parametric variability affects the relationship between buoyancy and capillary force, and thus controls CO2 plume geometry. These results indicate that when ω >1, then buoyancy governs the system and CO2 plume geometry is governed by upward flow. In contrast, when ω <1, then buoyancy is smaller than capillary force and lateral flow governs CO2 plume geometry. As a result, we show that the ω ratio is an easily implemented screening tool for qualitative assessment of reservoir performance.

  15. Time-domain least-squares migration using the Gaussian beam summation method

    NASA Astrophysics Data System (ADS)

    Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo

    2018-04-01

    With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modeling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modeling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a preconditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.

  16. Time-domain least-squares migration using the Gaussian beam summation method

    NASA Astrophysics Data System (ADS)

    Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo

    2018-07-01

    With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modelling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modelling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a pre-conditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.

  17. Enhanced Seismic Imaging of Turbidite Deposits in Chicontepec Basin, Mexico

    NASA Astrophysics Data System (ADS)

    Chavez-Perez, S.; Vargas-Meleza, L.

    2007-05-01

    We test, as postprocessing tools, a combination of migration deconvolution and geometric attributes to attack the complex problems of reflector resolution and detection in migrated seismic volumes. Migration deconvolution has been empirically shown to be an effective approach for enhancing the illumination of migrated images, which are blurred versions of the subsurface reflectivity distribution, by decreasing imaging artifacts, improving spatial resolution, and alleviating acquisition footprint problems. We utilize migration deconvolution as a means to improve the quality and resolution of 3D prestack time migrated results from Chicontepec basin, Mexico, a very relevant portion of the producing onshore sector of Pemex, the Mexican petroleum company. Seismic data covers the Agua Fria, Coapechaca, and Tajin fields. It exhibits acquisition footprint problems, migration artifacts and a severe lack of resolution in the target area, where turbidite deposits need to be characterized between major erosional surfaces. Vertical resolution is about 35 m and the main hydrocarbon plays are turbidite beds no more than 60 m thick. We also employ geometric attributes (e.g., coherent energy and curvature), computed after migration deconvolution, to detect and map out depositional features, and help design development wells in the area. Results of this workflow show imaging enhancement and allow us to identify meandering channels and individual sand bodies, previously undistinguishable in the original seismic migrated images.

  18. Design of a high temperature subsurface thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Zheng, Qi

    Solar thermal energy is taking up increasing proportions of future power generation worldwide. Thermal energy storage technology is a key method for compensating for the inherent intermittency of solar resources and solving the time mismatch between solar energy supply and electricity demand. However, there is currently no cost-effective high-capacity compact storage technology available (Bakker et al., 2008). The goal of this work is to propose a high temperature subsurface thermal energy storage (HSTES) technology and demonstrate its potential energy storage capability by developing a solar-HSTES-electricity generation system. In this work, main elements of the proposed system and their related state-of-art technologies are reviewed. A conceptual model is built to illustrate the concept, design, operating procedure and application of such a system. A numerical base model is built within the TOUGH2-EOS1 multiphase flow simulator for the evaluation of system performance. Additional models are constructed and simulations are done to identify the effect of different operational and geological influential factors on the system performance. Our work shows that when the base model is run with ten years operation of alternate injection and production processes - each for a month - with a thermal power input of 10.85 MW, about 83% of the injected thermal energy could be recovered within each working cycle from a stabilized HSTES system. After the final conversion into electrical energy, a relative (compared with the direct use of hot water) electricity generation efficiency of 73% is obtained. In a typical daily storage scenario, the simulated thermal storage efficiency could exceed 78% and the relative electricity generation efficiency is over 66% in the long run. In a seasonal storage scenario, these two efficiencies reach 69% and 53% respectively by the end of the simulation period of 10 years. Additional simulations reveal a thinner storage aquifer with a higher horizontal-to-vertical permeability ratio is favored by the storage system. A basin-shape reservoir is more favored than a flat reservoir, while a flat reservoir is better than a dome-shape reservoir. The effect of aquifer stratification is variable: it depends on the relative position of the well screen and the impermeable lenses within the reservoir. From the operational aspect, the well screen position is crucial and properly shortening the screen length can help heat recovery. The proportion of the injection/storage/recovery processes within a cycle, rather than their exact lengths, affects the storage efficiency. Reservoir preheating helps improve the energy storage efficiency for the first several cycles. However, it does not contribute much to the system performance in the long run. Simulations also indicate that buoyancy effect is of significant importance in heat distribution and the plume migration. Reducing the gravity override effect of the heat plume could be an important consideration in efficiency optimization.

  19. Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals

    NASA Astrophysics Data System (ADS)

    Raghunath, P.; Huang, W. F.; Lin, M. C.

    2013-04-01

    Hydrogenation of TiO2 is relevant to hydrogen storage and water splitting. We have carried out a detailed mechanistic study on TiO2 hydrogenation through H and/or H2 diffusion from the surface into subsurface layers of anatase TiO2 (101) by periodic density functional theory calculations implementing on-site Coulomb interactions (DFT + U). Both H atoms and H2 molecules can migrate from the crystal surface into TiO2 near subsurface layer with 27.8 and 46.2 kcal/mol energy barriers, respectively. The controlling step for the former process is the dissociative adsorption of H2 on the surface which requires 47.8 kcal/mol of energy barrier. Both hydrogen incorporation processes are expected to be equally favorable. The barrier energy for H2 migration from the first layer of the subsurface Osub1 to the 2nd layer of the subsurface oxygen Osub2 requires only 6.6 kcal. The presence of H atoms on the surface and inside the subsurface layer tends to promote both H and H2 penetration into the subsurface layer by reducing their energy barriers, as well as to prevent the escape of the H2 from the cage by increasing its escaping barrier energy. The H2 molecule inside a cage can readily dissociate and form 2HO-species exothermically (ΔH = -31.0 kcal/mol) with only 26.2 kcal/mol barrier. The 2HO-species within the cage may further transform into H2O with a 22.0 kcal/mol barrier and 19.3 kcal/mol exothermicity relative to the caged H2 molecule. H2O formation following the breaking of Ti-O bonds within the cage may result in the formation of O-vacancies and surface disordering as observed experimentally under a high pressure and moderately high temperature condition. According to density of states analysis, the projected density of states of the interstitial H, H2, and H2O appear prominently within the TiO2 band gap; in addition, the former induces a shift of the band gap position notably towards the conduction band. The thermochemistry for formation of the most stable sub-surface species (2HO and H2O) has been predicted. These results satisfactorily account for the photo-catalytic activity enhancement observed experimentally by hydrogenation at high temperatures and high pressures.

  20. Large Scale Behavior and Droplet Size Distributions in Crude Oil Jets and Plumes

    NASA Astrophysics Data System (ADS)

    Katz, Joseph; Murphy, David; Morra, David

    2013-11-01

    The 2010 Deepwater Horizon blowout introduced several million barrels of crude oil into the Gulf of Mexico. Injected initially as a turbulent jet containing crude oil and gas, the spill caused formation of a subsurface plume stretching for tens of miles. The behavior of such buoyant multiphase plumes depends on several factors, such as the oil droplet and bubble size distributions, current speed, and ambient stratification. While large droplets quickly rise to the surface, fine ones together with entrained seawater form intrusion layers. Many elements of the physics of droplet formation by an immiscible turbulent jet and their resulting size distribution have not been elucidated, but are known to be significantly influenced by the addition of dispersants, which vary the Weber Number by orders of magnitude. We present experimental high speed visualizations of turbulent jets of sweet petroleum crude oil (MC 252) premixed with Corexit 9500A dispersant at various dispersant to oil ratios. Observations were conducted in a 0.9 m × 0.9 m × 2.5 m towing tank, where large-scale behavior of the jet, both stationary and towed at various speeds to simulate cross-flow, have been recorded at high speed. Preliminary data on oil droplet size and spatial distributions were also measured using a videoscope and pulsed light sheet. Sponsored by Gulf of Mexico Research Initiative (GoMRI).

Top