Science.gov

Sample records for migration disk evolution

  1. GIANT PLANET MIGRATION, DISK EVOLUTION, AND THE ORIGIN OF TRANSITIONAL DISKS

    SciTech Connect

    Alexander, Richard D.; Armitage, Philip J.

    2009-10-20

    We present models of giant planet migration in evolving protoplanetary disks. Our disks evolve subject to viscous transport of angular momentum and photoevaporation, while planets undergo Type II migration. We use a Monte Carlo approach, running large numbers of models with a range in initial conditions. We find that relatively simple models can reproduce both the observed radial distribution of extrasolar giant planets, and the lifetimes and accretion histories of protoplanetary disks. The use of state-of-the-art photoevaporation models results in a degree of coupling between planet formation and disk clearing, which has not been found previously. Some accretion across planetary orbits is necessary if planets are to survive at radii approx<1.5 AU, and if planets of Jupiter mass or greater are to survive in our models they must be able to form at late times, when the disk surface density in the formation region is low. Our model forms two different types of 'transitional' disks, embedded planets and clearing disks, which show markedly different properties. We find that the observable properties of these systems are broadly consistent with current observations, and highlight useful observational diagnostics. We predict that young transition disks are more likely to contain embedded giant planets, while older transition disks are more likely to be undergoing disk clearing.

  2. Satellite Migration and the Evolution of the Gas Disk

    NASA Astrophysics Data System (ADS)

    Mosqueira, I.; Estrada, P. R.

    2001-11-01

    Survival timescales for satellites in an optically thick giant planet subnebula are typically short compared to the lifetime of the gas disk. It might be hoped that satellites would open a gap in the subnebula, but satellites whose Hill spheres are smaller than the scale-height of the subnebula h may not open a gap (Lin and Papaloizou 1993, In Protostars and Planets III, 749). Only Ganymede and Titan are sufficiently massive to satisfy this constraint. To make progress we first need to characterize the viscosity properties of the subnebula. Both theoretical and numerical work have shown that nebula turbulence requires a source of "stirring" to be self-sustaining. At present, the best candidate mechanism to generate turbulence with alpha in the range 10-2}-10{-4 is an entropy gradient in the subnebula leading to a non-barotropic equation of state (Klahr and Bodenheimer, in press). Such a model leads to turbulence that is a function of position and time. For a satellite to survive in the inner disk the timescale of satellite migration must be longer than the timescale for gas dissipation. For large satellites ~ 1000 km migration is dominated by the gas torque. Here we look into the possibility that the feedback reaction of the gas disk caused by the redistribution of gas surface density around satellites with masses larger than the inertial mass (Ward 1997, Icarus 126, 261) causes a large drop in the drift velocity of such objects, thus greatly improving the likelihood that they will be left stranded following gas dissipation. For this mechanism to work the angular momentum the satellite launches at resonance locations with wavenumber m ~ r/h must be damped in a lengthscale ~ h, where most of the torque is exerted. Unlike viscous damping and radial non-linear shock dissipation, vertical wave refraction in the optically thick subnebula and non-linear dissipation at the disk surface (Lin and Papaloizou 1993) may satisfy this requirement, at least for inward travelling

  3. THE MIGRATION OF GAP-OPENING PLANETS IS NOT LOCKED TO VISCOUS DISK EVOLUTION

    SciTech Connect

    Duffell, Paul C.; MacFadyen, Andrew I.; Farris, Brian D.; Haiman, Zoltan; D'Orazio, Daniel J.

    2014-09-01

    Most standard descriptions of Type II migration state that massive, gap-opening planets must migrate at the viscous drift rate. This is based on the idea that the disk is separated into an inner and outer region and gas is considered unable to cross the gap. In fact, gas easily crosses the gap on horseshoe orbits, nullifying this necessary premise which would set the migration rate. In this work, it is demonstrated using highly accurate numerical calculations that the actual migration rate is dependent on disk and planet parameters, and can be significantly larger or smaller than the viscous drift rate. In the limiting case of a disk much more massive than the secondary, the migration rate saturates to a constant that is sensitive to disk parameters and is not necessarily of the order of the viscous rate. In the opposite limit of a low-mass disk, the migration rate decreases linearly with disk mass. Steady-state solutions in the low disk mass limit show no pile-up outside the secondary's orbit, and no corresponding drainage of the inner disk.

  4. CONSTRAINED EVOLUTION OF A RADIALLY MAGNETIZED PROTOPLANETARY DISK: IMPLICATIONS FOR PLANETARY MIGRATION

    SciTech Connect

    Russo, Matthew; Thompson, Christopher

    2015-12-10

    We consider the inner ∼1 AU of a protoplanetary disk (PPD) at a stage where angular momentum transport is driven by the mixing of a radial magnetic field into the disk from a T Tauri wind. Because the radial profile of the imposed magnetic field is well constrained, a constrained calculation of the disk mass flow becomes possible. The vertical disk profiles obtained in Paper I imply a stronger magnetization in the inner disk, faster accretion, and a secular depletion of the disk material. Inward transport of solids allows the disk to maintain a broad optical absorption layer even when the grain abundance becomes too small to suppress its ionization. Thus, a PPD may show a strong mid- to near-infrared spectral excess even while its mass profile departs radically from the minimum-mass solar nebula. The disk surface density is buffered at ∼30 g cm{sup −2}; below this, X-rays trigger magnetorotational turbulence at the midplane strong enough to loft millimeter- to centimeter-sized particles high in the disk, followed by catastrophic fragmentation. A sharp density gradient bounds the inner depleted disk and propagates outward to ∼1–2 AU over a few megayears. Earth-mass planets migrate through the inner disk over a similar timescale, whereas the migration of Jupiters is limited by the supply of gas. Gas-mediated migration must stall outside 0.04 AU, where silicates are sublimated and the disk shifts to a much lower column. A transition disk emerges when the dust/gas ratio in the MRI-active layer falls below X{sub d} ∼ 10{sup −6} (a{sub d}/μm), where a{sub d} is the grain size.

  5. PROTOPLANETARY DISK RESONANCES AND TYPE I MIGRATION

    SciTech Connect

    Tsang, David

    2011-11-10

    Waves reflected by the inner edge of a protoplanetary disk are shown to significantly modify Type I migration, even allowing the trapping of planets near the inner disk edge for small planets in a range of disk parameters. This may inform the distribution of planets close to their central stars, as observed recently by the Kepler mission.

  6. ORBITAL MIGRATION OF PROTOPLANETS IN A MARGINALLY GRAVITATIONALLY UNSTABLE DISK

    SciTech Connect

    Boss, Alan P.

    2013-02-20

    Core accretion and disk instability require giant protoplanets to form in the presence of disk gas. Protoplanet migration models generally assume disk masses low enough that the disk's self-gravity can be neglected. However, disk instability requires a disk massive enough to be marginally gravitationally unstable (MGU). Even for core accretion, an FU Orionis outburst may require a brief MGU disk phase. We present a new set of three-dimensional, gravitational radiation hydrodynamics models of MGU disks with multiple protoplanets, which interact gravitationally with the disk and with each other, including disk gas mass accretion. Initial protoplanet masses are 0.01 to 10 M {sub Circled-Plus} for core accretion models, and 0.1 to 3 M {sub Jup} for Nice scenario models, starting on circular orbits with radii of 6, 8, 10, or 12 AU, inside a 0.091 M {sub Sun} disk extending from 4 to 20 AU around a 1 M {sub Sun} protostar. Evolutions are followed for up to {approx}4000 yr and involve phases of relative stability (e {approx} 0.1) interspersed with chaotic phases (e {approx} 0.4) of orbital interchanges. The 0.01 to 10 M {sub Circled-Plus} cores can orbit stably for {approx}1000 yr: monotonic inward or outward orbital migration of the type seen in low mass disks does not occur. A system with giant planet masses similar to our solar system (1.0, 0.33, 0.1, 0.1 M {sub Jup}) was stable for over 1000 yr, and a Jupiter-Saturn-like system was stable for over 3800 yr, implying that our giant planets might well survive an MGU disk phase.

  7. Evolution of magnetized protoplanetary disks

    NASA Technical Reports Server (NTRS)

    Reyes-Ruiz, Mauricio; Stepinski, Tomasz F.

    1995-01-01

    We investigate the global evolution of a turbulent protoplanetary disk in its viscous stage, incorporating the effects of Maxwell stress due to a large-scale magnetic field permeating disk. We assume that the viscous stress is given by an alpha model. A magnetic field is produced contemporaneously by an alpha omega dynamo mechanism and the resultant Maxwell stress assists the viscous stress in providing the means for disk evolution. The aim of this work is to compare the evolution of magnetized and nonmagnetized disks driven by turbulent viscosity of the same magnitude and thus assess the effects of a self-generated magnetic field on the structure and dynamical evolution of protoplanetary disks. Two illustrative examples corresponding to two different initial conditions are considered: a high-mass case that starts with a disk of 0.245 solar mass and angular momentum of 5.6 x 10(exp 52)g sq cm/s, and a low-mass that case starts with a disk of 0.11 solar mass and angular momentum of 1.8 x 10(exp 52)g sq cm/s. For each of these two cases the radial development of a disk is calculated numerically assuming a fiducial value of the dimensionless viscosity parameter alpha(sub ss) = 0.01, as well as alpha(sub ss) = 2 x 10(exp -3). In all cases the central star has a mass equal to 1 solar mass. The most striking feature of magnetized disk evolution is the presence of the surface density bulge located in the region of the disk where the dynamo mechanism cannot support a magnetic field. The bulge persists for a time of the order of 10(exp 5)-10(exp 6) yr. The presence and persistence of the surface density bulge may have important implications for the process of planet formation and the overall characteristics of resultant planetary systems.

  8. Orbital Evolution of Moons in Weakly Accreting Circumplanetary Disks

    NASA Astrophysics Data System (ADS)

    Fujii, Yuri I.; Kobayashi, Hiroshi; Takahashi, Sanemichi Z.; Gressel, Oliver

    2017-04-01

    We investigate the formation of hot and massive circumplanetary disks (CPDs) and the orbital evolution of satellites formed in these disks. Because of the comparatively small size-scale of the sub-disk, quick magnetic diffusion prevents the magnetorotational instability (MRI) from being well developed at ionization levels that would allow MRI in the parent protoplanetary disk. In the absence of significant angular momentum transport, continuous mass supply from the parental protoplanetary disk leads to the formation of a massive CPD. We have developed an evolutionary model for this scenario and have estimated the orbital evolution of satellites within the disk. We find, in a certain temperature range, that inward migration of a satellite can be stopped by a change in the structure due to the opacity transitions. Moreover, by capturing second and third migrating satellites in mean motion resonances, a compact system in Laplace resonance can be formed in our disk models.

  9. Formation and evolution of the protoplanetary disk

    NASA Technical Reports Server (NTRS)

    Ruzmaikina, Tamara V.; Makalkin, A. B.

    1991-01-01

    A disk formation model during collapse of the protosolar nebula, yielding a low-mass protoplanetary disk is presented. The following subject areas are covered: (1) circumstellar disks; (2) conditions for the formation of stars with disks; (3) early evolution of the protoplanetary disk; and (4) temperature conditions and the convection in the protoplanetary disk.

  10. The Gas Disk: Evolution and Chemistry

    NASA Astrophysics Data System (ADS)

    Rab, Christian; Baldovin-Saavedra, Carla; Dionatos, Odysseas; Vorobyov, Eduard; Güdel, Manuel

    2016-12-01

    Protoplanetary disks are the birthplaces of planetary systems. The evolution of the star-disk system and the disk chemical composition determines the initial conditions for planet formation. Therefore a comprehensive understanding of the main physical and chemical processes in disks is crucial for our understanding of planet formation. We give an overview of the early evolution of disks, discuss the importance of the stellar high-energy radiation for disk evolution and describe the general thermal and chemical structure of disks. Finally we provide an overview of observational tracers of the gas component and disk winds.

  11. Studies of Circumstellar Disk Evolution

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2004-01-01

    Spitzer Space Telescope infrared data for our program on disk evolution has been taken (the main IRAC - 3-8 micron exposures; the 24 and 70 micron MIPS data are to come later). We now have deep maps in the four IRAC bands of the 3-Myr-old cluster Trumpler 37, and the 10-Myr-old cluster NGC 7160. Analysis of these data has now begun. We will be combining these data with our ground-based photometric and spectroscopic data to obtain a complete picture of disk frequency as a function of mass through this important age range, which spans the likely epoch of (giant) planet formation in most systems. Analysis of the SIRTF data, and follow-on ground-based spectroscopy on the converted MMT telescope using the wide-field, fiber-fed, multiobject spectrographs, Hectospec and Hectochelle, will be the major activity during the next year.Work was also performed on the following: protoplanetary disk mass accretion rates in very low-mass stars; the inner edge of T Tauri disks; accretion in intermediate-mass T Tauri stars (IMPS); and the near-infrared spectra of the rapidly-accreting protostellar disks FU Ori and V1057 Cyg.

  12. Accretion Disks in Algols: Progenitors and Evolution

    NASA Astrophysics Data System (ADS)

    van Rensbergen, W.; de Greve, J. P.

    2017-02-01

    There are only a few Algols with derived accretion disk parameters. These measurements provide additional constraints for tracing the origin of individual systems. With a modified binary evolution code, series of close binary evolution were calculated. For six Algols with accretion disks we found initial systems that evolve closely into the presently observed system parameters and disk characteristics.

  13. Nonaxisymmetric evolution in protostellar disks

    NASA Technical Reports Server (NTRS)

    Laughlin, Gregory; Bodenheimer, Peter

    1994-01-01

    We present a two-dimensional, multigridded hydrodynamical simulation of the collapse of an axisymmetric, rotating, 1 solar mass protostellar cloud, which forms a resolved, hydrotastic disk. The code includes the effects of physical viscosity, radiative transfer and radiative acceleration but not magnetic fields. We examine how the disk is affected by the inclusion of turbulent viscosity by comparing a viscous simulation with an inviscid model evolved from the same initial conditions, and we derive a disk evolutionary timescale on the order of 300,000 years if alpha = 0.01. Effects arising from non-axisymmetric gravitational instabilities in the protostellar disk are followed with a three-dimensional SPH code, starting from the two-dimensional structure. We find that the disk is prone to a series of spiral instabilities with primary azimulthal mode number m = 1 and m = 2. The torques induced by these nonaxisymmetric structures elicit material transport of angular momentum and mass through the disk, readjusting the surface density profile toward more stable configurations. We present a series of analyses which characterize both the development and the likely source of the instabilities. We speculate that an evolving disk which maintains a minimum Toomre Q-value approximately 1.4 will have a total evolutionary span of several times 10(exp 5) years, comparable to, but somewhat shorter than the evolutionary timescale resulting from viscous turbulence alone. We compare the evolution resulting from nonaxisymmetric instabilities with solutions of a one-dimensional viscous diffusion equation applied to the initial surface density and temperature profile. We find that an effective alpha-value of 0.03 is a good fit to the results of the simulation. However, the effective alpha will depend on the minimum Q in the disk at the time the instability is activated. We argue that the major fraction of the transport characterized by the value of alpha is due to the action of

  14. Evolution of Circumstellar and Circumplanetary Disks

    NASA Astrophysics Data System (ADS)

    Estrada, P. R.; Umurhan, O. M.; Gorti, U.

    2017-02-01

    The rapid discovery of exoplanets along with unprecedented imaging of protoplanetary disks is improving our understanding of the various stages of disk evolution leading up to and including planet formation and by association satellite formation.

  15. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  16. Secular evolution in disk galaxies

    NASA Astrophysics Data System (ADS)

    Knapen, J. H.

    2013-05-01

    The detailed study of the different structural components of nearby galaxies can supply vital information about the secular, or internal, evolution of these galaxies which they may have undergone since their formation. We highlight a series of new studies based on the analysis of mid-infrared images of over 2000 local galaxies which we are collecting within the Spitzer Survey of Stellar Structure in Galaxies (S^4G). In particular, we discuss new results on the thick and thin disk components of galaxies, which turn out to be roughly equally massive, and whose properties indicate that the thick disks mostly formed in situ, and to a lesser degree as a result of galaxy-galaxy interactions and secular evolution. We then briefly review recent research into rings in galaxies, which are common and closely linked to secular evolution of galaxies. Finally, we report on the research into local galaxy morphology, kinematics and stellar populations that we will perform over the coming four years within the EU-funded initial training network DAGAL (Detailed Anatomy of GALaxies).

  17. The Effect of Radial Migration on Galactic Disks

    NASA Astrophysics Data System (ADS)

    Vera-Ciro, Carlos; D'Onghia, Elena; Navarro, Julio; Abadi, Mario

    2014-10-01

    We study the radial migration of stars driven by recurring multi-arm spiral features in an exponential disk embedded in a dark matter halo. The spiral perturbations redistribute angular momentum within the disk and lead to substantial radial displacements of individual stars, in a manner that largely preserves the circularity of their orbits and that results, after 5 Gyr (~40 full rotations at the disk scale length), in little radial heating and no appreciable changes to the vertical or radial structure of the disk. Our results clarify a number of issues related to the spatial distribution and kinematics of migrators. In particular, we find that migrators are a heavily biased subset of stars with preferentially low vertical velocity dispersions. This "provenance bias" for migrators is not surprising in hindsight, for stars with small vertical excursions spend more time near the disk plane, and thus respond more readily to non-axisymmetric perturbations. We also find that the vertical velocity dispersion of outward migrators always decreases, whereas the opposite holds for inward migrators. To first order, newly arrived migrators simply replace stars that have migrated off to other radii, thus inheriting the vertical bias of the latter. Extreme migrators might therefore be recognized, if present, by the unexpectedly small amplitude of their vertical excursions. Our results show that migration, understood as changes in angular momentum that preserve circularity, can strongly affect the thin disk, but cast doubts on models that envision the Galactic thick disk as a relic of radial migration.

  18. The effect of radial migration on galactic disks

    SciTech Connect

    Vera-Ciro, Carlos; D'Onghia, Elena; Navarro, Julio; Abadi, Mario

    2014-10-20

    We study the radial migration of stars driven by recurring multi-arm spiral features in an exponential disk embedded in a dark matter halo. The spiral perturbations redistribute angular momentum within the disk and lead to substantial radial displacements of individual stars, in a manner that largely preserves the circularity of their orbits and that results, after 5 Gyr (∼40 full rotations at the disk scale length), in little radial heating and no appreciable changes to the vertical or radial structure of the disk. Our results clarify a number of issues related to the spatial distribution and kinematics of migrators. In particular, we find that migrators are a heavily biased subset of stars with preferentially low vertical velocity dispersions. This 'provenance bias' for migrators is not surprising in hindsight, for stars with small vertical excursions spend more time near the disk plane, and thus respond more readily to non-axisymmetric perturbations. We also find that the vertical velocity dispersion of outward migrators always decreases, whereas the opposite holds for inward migrators. To first order, newly arrived migrators simply replace stars that have migrated off to other radii, thus inheriting the vertical bias of the latter. Extreme migrators might therefore be recognized, if present, by the unexpectedly small amplitude of their vertical excursions. Our results show that migration, understood as changes in angular momentum that preserve circularity, can strongly affect the thin disk, but cast doubts on models that envision the Galactic thick disk as a relic of radial migration.

  19. Accretion disks in Algols: Progenitors and evolution

    NASA Astrophysics Data System (ADS)

    Van Rensbergen, W.; De Greve, J. P.

    2016-08-01

    Context. There are only a few Algols with measured accretion disk parameters. These measurements provide additional constraints for tracing the origin of individual systems, narrowing down the initial parameter space. Aims: We investigate the origin and evolution of six Algol systems with accretion disks to find the initial parameters and evolutionary constraints for them. Methods: With a modified binary evolution code, series of close binary evolution are calculated to obtain the best match for observed individual systems. Results: Initial parameters for six Algol systems with accretion disks were determined matching both the present system parameters and the observed disk characteristics. Conclusions: When Roche lobe overflow (RLOF) starts during core hydrogen burning of the donor, the disk lifetime was found to be short. The disk luminosity is comparable to the luminosity of the gainer during a large fraction of the disk lifetime.

  20. MIGRATION OF PLANETS EMBEDDED IN A CIRCUMSTELLAR DISK

    SciTech Connect

    Bromley, Benjamin C.; Kenyon, Scott J. E-mail: skenyon@cfa.harvard.edu

    2011-07-01

    Planetary migration poses a serious challenge to theories of planet formation. In gaseous and planetesimal disks, migration can remove planets as quickly as they form. To explore migration in a planetesimal disk, we combine analytic and numerical approaches. After deriving general analytic migration rates for isolated planets, we use N-body simulations to confirm these results for fast and slow migration modes. Migration rates scale as m{sup -1} (for massive planets) and (1 + (e{sub H}/3){sup 3}){sup -1}, where m is the mass of a planet and e{sub H} is the eccentricity of the background planetesimals in Hill units. When multiple planets stir the disk, our simulations yield the new result that large-scale migration ceases. Thus, growing planets do not migrate through planetesimal disks. To extend these results to migration in gaseous disks, we compare physical interactions and rates. Although migration through a gaseous disk is an important issue for the formation of gas giants, we conclude that migration has little impact on the formation of terrestrial planets.

  1. Comparison of Thin Disk and Thick Disk Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Brewer, M. M.; Carney, B. W.

    2003-12-01

    If the Milky Way's thick disk is the antecedent of the thin disk, there should be continuity in the chemical and dynamical evolution. Also, there should be continuity in the chemical evolution as showed through element-to-iron ratios compared to [Fe/H]. Previous results (i.e. Prochaska et al. 2000) suggest that the thick and thin disks do not share a common chemical history. Prior results have compared abundance analyses of thick disk stars with literature values for thin disk stars. We have selected two dozen stars, half from each population, based on kinematics and obtained high-resolution blue and red spectra for stars with similar temperatures. The stars are cool enough that their life expectancies exceed the age of the Galaxy. The stellar metallicities range from solar to one-tenth solar. The stars are analyzed using the same sets of absorption lines so that direct comparision can be made between the thick and thin disks. Abundances of alpha elements as well as s- and r- process elements confirm that the thick and thin disks appear to have experienced independent chemical histories.

  2. Type I planet migration in nearly laminar disks

    SciTech Connect

    Li, Hui; Li, Shengtai; Lubow, S H; Lin, D

    2008-01-01

    We describe two-dimensional hydrodynamic simulations of the migration of low-mass planets ({<=}30 M{sub {circle_plus}}) in nearly laminar disks (viscosity parameter {alpha} < 10{sup -3}) over timescales of several thousand orbit periods. We consider disk masses of 1, 2, and 5 times the minimum mass solar nebula, disk thickness parameters of H/r = 0.035 and 0.05, and a variety of {alpha} values and planet masses. Disk self-gravity is fully included. Previous analytic work has suggested that Type I planet migration can be halted in disks of sufficiently low turbulent viscosity, for {alpha} {approx} 10{sup -4}. The halting is due to a feedback effect of breaking density waves that results in a slight mass redistribution and consequently an increased outward torque contribution. The simulations confirm the existence of a critical mass (M{sub {alpha}} {approx} 10M{sub {circle_plus}}) beyond which migration halts in nearly laminar disks. For {alpha} {approx}> 10{sup -3}, density feedback effects are washed out and Type I migration persists. The critical masses are in good agreement with the analytic model of Rafikov. In addition, for {alpha} {approx}> 10{sup -4} steep density gradients produce a vortex instability, resulting in a small time-varying eccentricity in the planet's orbit and a slight outward migration. Migration in nearly laminar disks may be sufficiently slow to reconcile the timescales of migration theory with those of giant planet formation in the core accretion model.

  3. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    SciTech Connect

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry; Ford, K. E. Saavik

    2016-03-10

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign, trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.

  4. Disk Evolution: Testing The Foundations

    NASA Astrophysics Data System (ADS)

    Armitage, Phil

    2016-07-01

    Models for planet formation and observable large-scale structure in protoplanetary disks are built on a foundation of gas-phase physics. In the simplest telling, it is assumed that the disk evolves due to turbulence, and that photoevaporation is the dominant driver of mass loss. How secure is this foundation to our understanding? I will review recent results from magnetohydrodynamic simulations of protoplanetary disks, which suggest a modified picture in which MHD winds and fossil magnetic flux play a critical role. I will discuss what these theoretical results may imply for observations of disks.

  5. Asymmetric evolution of magnetic reconnection in collisionless accretion disk

    SciTech Connect

    Shirakawa, Keisuke Hoshino, Masahiro

    2014-05-15

    An evolution of a magnetic reconnection in a collisionless accretion disk is investigated using a 2.5 dimensional hybrid code simulation. In astrophysical disks, magnetorotational instability (MRI) is considered to play an important role by generating turbulence in the disk and contributes to an effective angular momentum transport through a turbulent viscosity. Magnetic reconnection, on the other hand, also plays an important role on the evolution of the disk through a dissipation of a magnetic field enhanced by a dynamo effect of MRI. In this study, we developed a hybrid code to calculate an evolution of a differentially rotating system. With this code, we first confirmed a linear growth of MRI. We also investigated a behavior of a particular structure of a current sheet, which would exist in the turbulence in the disk. From the calculation of the magnetic reconnection, we found an asymmetric structure in the out-of-plane magnetic field during the evolution of reconnection, which can be understood by a coupling of the Hall effect and the differential rotation. We also found a migration of X-point whose direction is determined only by an initial sign of J{sub 0}×Ω{sub 0}, where J{sub 0} is the initial current density in the neutral sheet and Ω{sub 0} is the rotational vector of the background Keplerian rotation. Associated with the migration of X-point, we also found a significant enhancement of the perpendicular magnetic field compared to an ordinary MRI. MRI-Magnetic reconnection coupling and the resulting magnetic field enhancement can be an effective process to sustain a strong turbulence in the accretion disk and to a transport of angular momentum.

  6. Asymmetric evolution of magnetic reconnection in collisionless accretion disk

    NASA Astrophysics Data System (ADS)

    Shirakawa, Keisuke; Hoshino, Masahiro

    2014-05-01

    An evolution of a magnetic reconnection in a collisionless accretion disk is investigated using a 2.5 dimensional hybrid code simulation. In astrophysical disks, magnetorotational instability (MRI) is considered to play an important role by generating turbulence in the disk and contributes to an effective angular momentum transport through a turbulent viscosity. Magnetic reconnection, on the other hand, also plays an important role on the evolution of the disk through a dissipation of a magnetic field enhanced by a dynamo effect of MRI. In this study, we developed a hybrid code to calculate an evolution of a differentially rotating system. With this code, we first confirmed a linear growth of MRI. We also investigated a behavior of a particular structure of a current sheet, which would exist in the turbulence in the disk. From the calculation of the magnetic reconnection, we found an asymmetric structure in the out-of-plane magnetic field during the evolution of reconnection, which can be understood by a coupling of the Hall effect and the differential rotation. We also found a migration of X-point whose direction is determined only by an initial sign of J0×Ω0, where J0 is the initial current density in the neutral sheet and Ω0 is the rotational vector of the background Keplerian rotation. Associated with the migration of X-point, we also found a significant enhancement of the perpendicular magnetic field compared to an ordinary MRI. MRI-Magnetic reconnection coupling and the resulting magnetic field enhancement can be an effective process to sustain a strong turbulence in the accretion disk and to a transport of angular momentum.

  7. The early evolution of protostellar disks

    NASA Technical Reports Server (NTRS)

    Stahler, Steven W.; Korycansky, D. G.; Brothers, Maxwell J.; Touma, Jihad

    1994-01-01

    We consider the origin and intital growth of the disks that form around protostars during the collapse of rotating molecular cloud cores. These disks are assumed to be inviscid and pressure free, and to have masses small compared to those of their central stars. We find that there exist three distinct components-an outer disk, in which shocked gas moves with comparable azimuthal and radical velocities; and inner disk, where material follows nearly circular orbits, but spirals slowly toward the star because of the drag exerted by adjacent onfalling matter, and a turbulent ring adjoining the first two regions. Early in the evolution, i.e., soon after infalling matter begins to miss the star, only the outer disk is present, and the total mass acceration rate onto the protostar is undiminished. Once the outer disk boundary grows to more than 2.9 times the stellar radius, first the ring, and then the inner disk appear. Thereafter, the radii of all three components expand as t(exp 3). The mass of the ring increase with time and is always 13% of the total mass that has fallen from the cloud. Concurrently with the buildup of the inner disk and ring, the accretion rate onto the star falls off. However, the protostellar mass continue to rise, asymptotically as t(exp 1/4). We calculated the radiated flux from the inner and outer disk components due to the release of gravitational potential energy. The flux from the inner disk is dominant and rises steeply toward the stellar surface. We also determine the surface temperature of the inner disk as a function of radius. The total disk luminosity decreases slowly with time, while the contributions from the ring and inner disk both fall as t(exp -2).

  8. Migration of Gas Giant Planets in a Gravitationally Unstable Disk

    NASA Astrophysics Data System (ADS)

    Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Durisen, Richard H.

    2017-01-01

    Understanding the migration of giant planets in gravitationally unstable protoplanetary disks is important for understanding planetary system architecture, especially the existence of planets orbiting close to and at large distances from their stars. Migration rates can determine the efficiency of planet formation and survival rates of planets. We present results from simulations of 0.3, 1, and 3 Jupiter-mass planets in a 0.14 M⊙ protoplanetary disk around a 1 M⊙ star, where the disk is marginally unstable to gravitational instabilities (GIs). Each planet is simulated separately. We use CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include radiative cooling governed by realistic dust opacities. The planets are inserted into the disk, once the disk has settled into its quasi-steady GI-active phase. We simulate each of the 0.3, 1, and 3 Jupiter-mass planets by inserting it at three different locations in the disk, at the corotation radius and at the inner and outer Lindblad resonances. No matter where placed, the 3 Jupiter-mass planets tend to drift inexorably inward but with a rate that slows after many orbital periods. The 1 Jupiter-mass planets migrate mostly inward, but their motion can be delayed or reversed near the corotation of the two-armed wave. The 0.3 Jupiter-mass planets are much less predictable and frequently migrate outward. We analyze how the density of matter and waves in the disk at different azimuthal locations affect the migration.

  9. Verification of runaway migration in a massive disk

    SciTech Connect

    Li, Shengtai

    2009-01-01

    Runaway migration of a proto-planet was first proposed and observed by Masset and Papaloizou (2003). The semi-major axis of the proto-planet varies by 50% over just a few tens of orbits when runaway migration happens. More recent work by D'Angelo et al. (2005) solved the same problem with locally refined grid and found that the migration rate is sharply reduced and no runaway occurs when the grid cells surrounding the planet are refined enough. To verify these two seemly contradictory results, we independently perform high-resolution simulations, solving the same problem as Masset and Papaloizou (2003), with and without self-gravity. We find that the migration rate is highly dependent on the softening used in the gravitational force between thd disk and planet. When a small softening is used in a 2D massive disk, the mass of the circumplanetary disk (CPD) increases with time with enough resolution in the CPD region. It acts as the mass is continually accreted to the CPD, which cannot be settled down until after thousands of orbits. If the planet is held on a fixed orbit long enough, the mass of CPD will become so large that the condition for the runaway migration derived in Masset (2008) will not be satisfied, and hence the runaway migration will not be triggered. However, when a large softening is used, the mass of the CPD will begin to decrease after the initial increase stage. Our numerical results with and without disk-gravity confirm that the runaway migration indeed exists when the mass deficit is larger than the total mass of the planet and CPD. Our simulations results also show that the torque from the co-orbital region, in particular the planet's Hill sphere, is the main contributor to the runaway migration, and the CPD which is lagged behind by the planet becomes so asymmetric that it accelerates the migration.

  10. Forming Gaps in Debris Disks with Migrating Planets

    NASA Astrophysics Data System (ADS)

    Morrison, Sarah J.; Kratter, Kaitlin M.

    2017-01-01

    The observed wide gaps of at least several AU in debris disks from ~10 Myr to Gyr old are suggestive of multiple planets. While two planets are likely needed for maintaining the inner and outer edges of such gaps, large gaps may require more than two if planets fully occupy the gap in dynamically packed configurations at the present day. But direct imaging surveys are not discovering enough high mass planets in these systems for giant planets to be the culprit. As an alternative to currently packed planets occupying gaps in debris disks, we investigate whether planetesimal driven planet migration could produce wide gaps with lower mass, fewer planets on relevant timescales with physically realistic planetesimal disks to be consistent with the observed properties of debris disk systems. We also assess what observational signatures we may expect in gaps cleared via migration versus more packed planetary systems. We discuss implications for the disk properties in which these mechanisms could operate within the broader evolutionary context linking planets, debris disks, and the protoplanetary disks from which they originated.

  11. The Recent Disk Evolution of Achernar

    NASA Astrophysics Data System (ADS)

    Faes, D. M.; Carciofi, A. C.; Domiciano de Souza, A.

    2016-11-01

    Achernar is a key star to investigate the Be phemonemon. Its importance derives from the possibility of investigating in detail its photospheric and circumstellar emission due to its proximity. Since early 2013 the star entered a new outburst phase, having since then formed a large disk. Here we report our first results to model the recent disk evolution based on a recent precise photospheric characterization. The analysis combine multi-technique data, including broadband polarimetry (OPD/LNA), spectroscopy (FEROS and others) and interferometry (VLTI/AMBER and PIONIER). The radiative transfer problem is solved by the HDUST code. The preliminary results indicate that the circumstellar disk was not formed by a constant mass injection, as indicated by the large variability in small temporal scales seen in polarization. Also, the forming disk manifests noticeable azimuthal asymmetries, as seen by the V/R variations in Hα, which suggests that mass ejection from the star is also non-axisymmetric. These elements offer a rare opportunity to evaluate the evolution of a just formed Be disk in detail and derive relevant physical quantities governing the system.

  12. Chemical evolution of turbulent protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Semenov, D.; Wiebe, D.; Henning, T. H.

    2007-12-01

    The importance of turbulent diffusion for disk chemical evolution is discussed. The time-dependent abundances and column densities are modeled with a 1D/2D turbulent mixing chemistry including gas-grain interactions and surface reactions and compared to the results obtained with a static (non-mixing, non-grain growth) model. We find that due to turbulent transport abundances of many observationally important molecules get higher over the disk, in particular in cold midplane, leading to higher column densities than in the static model. A notable exception is the fractional ionization that remains the same in all models. We conclude that the observed column densities in the DM Tau disk fit better with a 2D mixing model.

  13. MIGRATION OF GAS GIANT PLANETS IN GRAVITATIONALLY UNSTABLE DISKS

    SciTech Connect

    Michael, Scott; Durisen, Richard H.; Boley, Aaron C. E-mail: durisen@astro.indiana.edu

    2011-08-20

    Characterization of migration in gravitationally unstable disks is necessary to understand the fate of protoplanets formed by disk instability. As part of a larger study, we are using a three-dimensional radiative hydrodynamics code to investigate how an embedded gas giant planet interacts with a gas disk that undergoes gravitational instabilities (GIs). This Letter presents results from simulations with a Jupiter-mass planet placed in orbit at 25 AU within a 0.14 M{sub sun} disk. The disk spans 5-40 AU around a 1 M{sub sun} star and is initially marginally unstable. In one simulation, the planet is inserted prior to the eruption of GIs; in another, it is inserted only after the disk has settled into a quasi-steady GI-active state, where heating by GIs roughly balances radiative cooling. When the planet is present from the beginning, its own wake stimulates growth of a particular global mode with which it strongly interacts, and the planet plunges inward 6 AU in about 10{sup 3} years. In both cases with embedded planets, there are times when the planet's radial motion is slow and varies in direction. At other times, when the planet appears to be interacting with strong spiral modes, migration both inward and outward can be relatively rapid, covering several AUs over hundreds of years. Migration in both cases appears to stall near the inner Lindblad resonance of a dominant low-order mode. Planet orbit eccentricities fluctuate rapidly between about 0.02 and 0.1 throughout the GI-active phases of the simulations.

  14. THE COLLISIONAL EVOLUTION OF DEBRIS DISKS

    SciTech Connect

    Gaspar, Andras; Rieke, George H.; Balog, Zoltan E-mail: grieke@as.arizona.edu

    2013-05-01

    We explore the collisional decay of disk mass and infrared emission in debris disks. With models, we show that the rate of the decay varies throughout the evolution of the disks, increasing its rate up to a certain point, which is followed by a leveling off to a slower value. The total disk mass falls off {proportional_to}t {sup -0.35} at its fastest point (where t is time) for our reference model, while the dust mass and its proxy-the infrared excess emission-fades significantly faster ({proportional_to}t {sup -0.8}). These later level off to a decay rate of M{sub tot}(t){proportional_to}t {sup -0.08} and M{sub dust}(t) or L{sub ir}(t){proportional_to}t {sup -0.6}. This is slower than the {proportional_to}t {sup -1} decay given for all three system parameters by traditional analytic models. We also compile an extensive catalog of Spitzer and Herschel 24, 70, and 100 {mu}m observations. Assuming a log-normal distribution of initial disk masses, we generate model population decay curves for the fraction of stars harboring debris disks detected at 24 {mu}m. We also model the distribution of measured excesses at the far-IR wavelengths (70-100 {mu}m) at certain age regimes. We show general agreement at 24 {mu}m between the decay of our numerical collisional population synthesis model and observations up to a Gyr. We associate offsets above a Gyr to stochastic events in a few select systems. We cannot fit the decay in the far-infrared convincingly with grain strength properties appropriate for silicates, but those of water ice give fits more consistent with the observations (other relatively weak grain materials would presumably also be successful). The oldest disks have a higher incidence of large excesses than predicted by the model; again, a plausible explanation is very late phases of high dynamical activity around a small number of stars. Finally, we constrain the variables of our numerical model by comparing the evolutionary trends generated from the exploration

  15. The Evolution of Protoplanetary Disks: A Decade of HST Coronagraphy

    NASA Technical Reports Server (NTRS)

    Grady, C. A.

    2007-01-01

    This viewgraph presentation reviews the evolution of protoplanetary disks with the use Hubble Space Telescope coronagrphic imagery. The contents include: 1) Why Protoplanetary Disks in a Meeting on Exo-Planets and Debris Disks; 2) Protoplanetary Disks; 3) Binaries; 4) Theoretical Expectations; 5) Expected Evolutionary Sequence; 6) HD 169142; 7) Inner Disk of HD 169142; 8) HD 169142 is not unique; 9) The Stranger Case of HD 135344; 10) Meeus Group II; 11) Lessons Learned; and 12) Implications for Future Instruments and Missions.

  16. The Evolution of FU Orionis Disks

    NASA Astrophysics Data System (ADS)

    Green, Joel

    2015-10-01

    Mid-IR dust features occasionally vary dramatically in T Tauri stars, but are typically consistent over multiple epochs. Most T Tauri silicate features indicate both grain growth and high crystallinity fractions. In contrast, outbursting sources (FUors) exhibit some grain growth but pristine silicate emission features, hinting at modification of their protoplanetary disk chemistry, with resulting implications for planet formation. FUors are the best candidates to observe rapid changes in disks, both because they are unusually bright IR sources relative to their core mass, and vary on day, month, year, and decadal timescales. With improved spatial and spectral resolution from FORCAST, we can combine with Spitzer-IRS to observe and constrain the properties of silicate dust, and disk profiles, as they are altered by the outburst. We propose to observe five FU Orionis objects (FU Ori, V1057 Cyg, V1515 Cyg, V1735 Cyg, and V2775 Ori) in order to determine whether the outburst influences the dust feature or in- stead highlights a larger dust radius where processing has not yet occurred. This sample includes every FUor observed with Spitzer-IRS in 2005-8 that is detectable with FORCAST at sufficient S/N to sample the silicate feature. They represent a spread of FUor subtypes, and have declined in overall brightness at different rates, providing several different case studies. Their bright continuum provides the perfect opportunity for FORCAST spectroscopy, with a 7-10 year baseline to probe changes in their mid-IR properties. This will be the first mid-IR spectroscopic variability study of multi-year processes in FUors, producing calibrated spectra at better spectral and spatial resolution than previous epoch Spitzer-IRS data. We will search for changes in crystallinity fraction, grain growth, and continuum. We expect to observe signposts of dust processing and evolution providing time constraints on disk evolution, and input to planet formation models.

  17. The physical and chemical evolution of protostellar disks. The growth of protostellar disks: Progress to date

    NASA Technical Reports Server (NTRS)

    Stahler, Steven W.

    1993-01-01

    This study constitutes one part of our multi-disciplinary approach to the evolution of planet-forming disks. The goal is to establish the disks' thermal and mechanical properties as they grow by the infall of their parent interstellar clouds. Thus far, significant advances toward establishing the evolving surface density of such disks was made.

  18. Bimodial Distribution of Galactic Disk Stars on the α/Fe-Fe/H Plane as a Possible Evidence of Discontinuous Radial Migration History

    NASA Astrophysics Data System (ADS)

    Toyouchi, Daisuke; Chiba, Masashi

    2016-12-01

    We investigate the role of radial migration history of stars in chemical evolution of a disk galaxy, in particular in understanding the origin of their bimodal distribution on the [α/Fe]-[Fe/H] plane. For this purpose, we examine three different models with no, continuous, and discontinuous radial migration (DRM). We find that for the model with radial migration, the [α/Fe] ratios of stars in outer disk regions decrease more rapidly with time than the model without radial migration, because the associated net transfer of intermediate and old disk stars from inner to outer disk regions increases the rate of Type Ia relative to that of SNe II in the latter regions. Moreover, in the model assuming rapid and DRM, its effect on the stellar abundances at larger radii is significant enough to provide the large difference in the evolution of stars on the [α/Fe]-[Fe/H] plane between inner and outer disk regions. As a result, we obtain the bimodal distribution of disk stars on the [α/Fe]-[Fe/H] plane as observed in the Galactic stellar disk, thereby implying that the event of DRM may play a key role in reproducing the observed bimodality of stars on this abundance-ratio diagram. We discuss possible mechanisms causing such DRM in the early evolution of the Galactic disk, including the event of minor merging of a relatively massive satellite onto the stellar disk.

  19. Self-consistent dynamical and thermodynamical evolutions of protoplanetary disks.

    NASA Astrophysics Data System (ADS)

    Baillie, K.; Charnoz, S.; Taillifet, E.; Piau, L.

    2012-09-01

    Astronomical observations reveal the diversity of protoplanetary disk evolutions. In order to understand the global evolution of these disks from their birth, during the collapse of the molecular cloud, to their evaporation because of the stellar radiation, many processes with different timescales must be coupled: stellar evolution, thermodynamical evolution, photoevaporation, cloud collapse, viscous spreading... Simulating all these processes simultaneously is beyond the capacity of modern computers. However, by modeling the results of large scale simulations and coupling them with models of viscous evolution, we have designed a one dimension full model of disk evolution. In order to generate the most realistic protoplanetary disk, we minimize the number of input parameters and try to calculate most of them from self-consistent processes, as early as possible in the history of the disk; starting with the collapse of the molecular cloud that feeds the disk in gas. We start from the Hueso and Guillot, 2005 [2] model of disk evolution and couple the radiative transfer description of Calvet et al, 1991 [1] allowing us to handle a non-isothermal disk which midplane temperature is defined by an irradiation term form the central star and a viscous heating term depending on the optical depth of the disk. Our new model of the disk photosphere profile allows us to estimate self-consistent photosphere heights and midplane temperatures at the same time. We then follow the disk evolution using an upgrade of the viscous spreading equation from Lynden-Bell and Pringle, 1981 [3]. In particular, the molecular cloud collapse adds a time varying term to the temporal variation of the surface mass density of the disk, in the same manner that photo-evaporation introduces a density loss term. The central star itself is modeled using recent stellar evolution code described in Piau et al, 2011 [4]. Using the same temperature model in the vertical direction, we estimate 2D thermal maps of

  20. Dynamical Evolution and Migration of Circumbinary Planets and Their Habitability

    NASA Astrophysics Data System (ADS)

    Haghighipour, N.; Kley, W.; Kaltenegger, L.

    2014-03-01

    The recent success of the Kepler space telescope in detecting several circumbinary planets has raised many questions on the formation, evolution, and habitability of these objects. The detection of multiple transists in these systems points to the co-planarity of the orbital planes of the binary and planet(s), giving strong support to the idea that these planets formed in circumbinary protoplanetary disks. The proximity of some of these planets to the boundary of orbital instability around the binary suggests an evolutionary scenario in which planets form at larger distances and migrate to their present orbits. How such planets form, and how the binarity of the system affects their formation and subsequent migration are among fundamental questions that require deep understanding of the growth and evolution of solid objects in circumbinary environments, and their dynamical evolution. Given that several of the currently known circumbinary planets are in the habitable zone, the habitability of planet-hosting binary systems has also become an important topic of research. We have carried out extensive analysis of the dynamical evolution of planets in a circumbinary disk, and their habitability. The results of our hydrodynamical simulations indicate that planets migrate inward and settle near the inner edge of the circumbinary disk (the stability limit), in good agreement with the results of the observations. Our model of habitability takes into account, self-consistently, the contribution of each star to the total flux received at the top of the planet's atmosphere, producing accurate maps of the HZ of the system. We present the results of our studies and discuss their applications to the formation and habitability of the currently known Kepler circumbinary planets.

  1. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2005-01-01

    The aim of this project was to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, premain sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we developed much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measured disk accretion rates in these systems; and constructed detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  2. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2003-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  3. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2004-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  4. Tatooine Nurseries: Structure and Evolution of Circumbinary Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Vartanyan, David; Garmilla, José A.; Rafikov, Roman R.

    2016-01-01

    Recent discoveries of circumbinary planets by the Kepler mission provide motivation for understanding their birthplaces—protoplanetary disks around stellar binaries with separations ≲ 1 {{AU}}. We explore properties and evolution of such circumbinary disks focusing on modification of their structure caused by tidal coupling to the binary. We develop a set of analytical scaling relations describing viscous evolution of the disk properties, which are verified and calibrated using 1D numerical calculations with realistic inputs. Injection of angular momentum by the central binary suppresses mass accretion onto the binary and causes radial distribution of the viscous angular momentum flux {F}J to be different from that in a standard accretion disk around a single star with no torque at the center. Disks with no mass accretion at the center develop an {F}J profile that is flat in radius. Radial profiles of temperature and surface density are also quite different from those in disks around single stars. Damping of the density waves driven by the binary and viscous dissipation dominates heating of the inner disk (within 1-2 AU), pushing the ice line beyond 3-5 AU, depending on disk mass and age. Irradiation by the binary governs disk thermodynamics beyond ˜10 AU. However, self-shadowing by the hot inner disk may render central illumination irrelevant out to ˜20 AU. Spectral energy distribution of a circumbinary disk exhibits a distinctive bump around 10 μm, which may facilitate identification of such disks around unresolved binaries. Efficient tidal coupling to the disk drives orbital inspiral of the binary and may cause low-mass and relatively compact binaries to merge into a single star within the disk lifetime. We generally find that circumbinary disks present favorable sites for planet formation (despite their wider zone of volatile depletion), in agreement with the statistics of Kepler circumbinary planets.

  5. Formation, early evolution, and gravitational stability of protoplanetary disks

    NASA Technical Reports Server (NTRS)

    Nakamoto, Taishi; Nakagawa, Yoshitsugo

    1994-01-01

    The formation, viscous evolution, and gravitational stability of protoplanetary disks are investigated. The formation process is parameterized by the angular velocity of the molecular cloud core omega, while the viscous evolution is parameterized by the viscosity parameter alpha in the disk; in this study we consider a range of (0.4-6) x 10(exp -14)/s for omega and from 10(exp -5) to 10(exp -1) for alpha. The axisymmetric gravitational stabilities of the disks are checked using Toomre's criterion. The resulting disk surface temperature distribution, (d log T(sub s)/d log R) approximately = -0.6 (R is the cylindrical radius), can be attributed to two heating sources: the viscous heating dominant in the inner disk region, and the accretion shock heating dominant in the outer disk region. This surface temperature distribution matches that observed in many disks around young stellar objects. During the infall stage, disks with alpha less than 10(exp -1.5) become gravitationally unstable independent of omega. The gravitational instabilities occur at radii ranging from 5 to 40 AU. The ratio of the disk mass to the central star mass ranges from 0.2 to 0.5 at the times of instability, about 4 x 10(exp -5) x (omega/10(exp -14)/s)(exp -0.67) yr. Most disks with low alpha and high omega become gravitationally unstable during their formation phase.

  6. MIGRATION OF EXTRASOLAR PLANETS: EFFECTS FROM X-WIND ACCRETION DISKS

    SciTech Connect

    Adams, Fred C.; Cai, Mike J.; Lizano, Susana

    2009-09-10

    Magnetic fields are dragged in from the interstellar medium during the gravitational collapse that forms star/disk systems. Consideration of mean field magnetohydrodynamics in these disks shows that magnetic effects produce sub-Keplerian rotation curves and truncate the inner disk. This Letter explores the ramifications of these predicted disk properties for the migration of extrasolar planets. Sub-Keplerian flow in gaseous disks drives a new migration mechanism for embedded planets and modifies the gap-opening processes for larger planets. This sub-Keplerian migration mechanism dominates over Type I migration for sufficiently small planets (m{sub P} {approx}< 1 M {sub +}) and/or close orbits (r {approx}< 1 AU). Although the inclusion of sub-Keplerian torques shortens the total migration time by only a moderate amount, the mass accreted by migrating planetary cores is significantly reduced. Truncation of the inner disk edge (for typical system parameters) naturally explains final planetary orbits with periods P {approx} 4 days. Planets with shorter periods, P {approx} 2 days, can be explained by migration during FU-Orionis outbursts, when the mass accretion rate is high and the disk edge moves inward. Finally, the midplane density is greatly increased at the inner truncation point of the disk (the X-point); this enhancement, in conjunction with continuing flow of gas and solids through the region, supports the in situ formation of giant planets.

  7. Posterior epidural migration of a sequestrated lumbar disk fragment: MR imaging findings.

    PubMed

    Chen, C Y; Chuang, Y L; Yao, M S; Chiu, W T; Chen, C L; Chan, W P

    2006-08-01

    We present a 75-year-old man who, for 2 weeks, had progressive pain in both of his thighs when standing straight. MR imaging showed a sequestrated disk fragment, which had a signal intensity similar to that of a herniated disk with a rim enhancement in the posterior epidural space and a ruptured outermost annulus of the intervertebral disk at L2-3. Awareness of these MR imaging findings can help in the diagnosis of posterior epidural disk migration.

  8. PROTOPLANETARY DISK STRUCTURE WITH GRAIN EVOLUTION: THE ANDES MODEL

    SciTech Connect

    Akimkin, V.; Wiebe, D.; Pavlyuchenkov, Ya.; Zhukovska, S.; Semenov, D.; Henning, Th.; Vasyunin, A.; Birnstiel, T. E-mail: dwiebe@inasan.ru E-mail: zhukovska@mpia.de E-mail: henning@mpia.de E-mail: tbirnstiel@cfa.harvard.edu

    2013-03-20

    We present a self-consistent model of a protoplanetary disk: 'ANDES' ('AccretioN disk with Dust Evolution and Sedimentation'). ANDES is based on a flexible and extendable modular structure that includes (1) a 1+1D frequency-dependent continuum radiative transfer module, (2) a module to calculate the chemical evolution using an extended gas-grain network with UV/X-ray-driven processes and surface reactions, (3) a module to calculate the gas thermal energy balance, and (4) a 1+1D module that simulates dust grain evolution. For the first time, grain evolution and time-dependent molecular chemistry are included in a protoplanetary disk model. We find that grain growth and sedimentation of large grains onto the disk midplane lead to a dust-depleted atmosphere. Consequently, dust and gas temperatures become higher in the inner disk (R {approx}< 50 AU) and lower in the outer disk (R {approx}> 50 AU), in comparison with the disk model with pristine dust. The response of disk chemical structure to the dust growth and sedimentation is twofold. First, due to higher transparency a partly UV-shielded molecular layer is shifted closer to the dense midplane. Second, the presence of big grains in the disk midplane delays the freeze-out of volatile gas-phase species such as CO there, while in adjacent upper layers the depletion is still effective. Molecular concentrations and thus column densities of many species are enhanced in the disk model with dust evolution, e.g., CO{sub 2}, NH{sub 2}CN, HNO, H{sub 2}O, HCOOH, HCN, and CO. We also show that time-dependent chemistry is important for a proper description of gas thermal balance.

  9. OUTWARD MIGRATION OF JUPITER AND SATURN IN 3:2 OR 2:1 RESONANCE IN RADIATIVE DISKS: IMPLICATIONS FOR THE GRAND TACK AND NICE MODELS

    SciTech Connect

    Pierens, Arnaud; Raymond, Sean N.; Nesvorny, David; Morbidelli, Alessandro

    2014-11-01

    Embedded in the gaseous protoplanetary disk, Jupiter and Saturn naturally become trapped in 3:2 resonance and migrate outward. This serves as the basis of the Grand Tack model. However, previous hydrodynamical simulations were restricted to isothermal disks, with moderate aspect ratio and viscosity. Here we simulate the orbital evolution of the gas giants in disks with viscous heating and radiative cooling. We find that Jupiter and Saturn migrate outward in 3:2 resonance in modest-mass (M {sub disk} ≈ M {sub MMSN}, where MMSN is the {sup m}inimum-mass solar nebula{sup )} disks with viscous stress parameter α between 10{sup –3} and 10{sup –2}. In disks with relatively low-mass (M {sub disk} ≲ M {sub MMSN}), Jupiter and Saturn get captured in 2:1 resonance and can even migrate outward in low-viscosity disks (α ≤ 10{sup –4}). Such disks have a very small aspect ratio (h ∼ 0.02-0.03) that favors outward migration after capture in 2:1 resonance, as confirmed by isothermal runs which resulted in a similar outcome for h ∼ 0.02 and α ≤ 10{sup –4}. We also performed N-body runs of the outer solar system starting from the results of our hydrodynamical simulations and including 2-3 ice giants. After dispersal of the gaseous disk, a Nice model instability starting with Jupiter and Saturn in 2:1 resonance results in good solar systems analogs. We conclude that in a cold solar nebula, the 2:1 resonance between Jupiter and Saturn can lead to outward migration of the system, and this may represent an alternative scenario for the evolution of the solar system.

  10. Outward Migration of Jupiter and Saturn in 3:2 or 2:1 Resonance in Radiative Disks: Implications for the Grand Tack and Nice models

    NASA Astrophysics Data System (ADS)

    Pierens, Arnaud; Raymond, Sean N.; Nesvorny, David; Morbidelli, Alessandro

    2014-11-01

    Embedded in the gaseous protoplanetary disk, Jupiter and Saturn naturally become trapped in 3:2 resonance and migrate outward. This serves as the basis of the Grand Tack model. However, previous hydrodynamical simulations were restricted to isothermal disks, with moderate aspect ratio and viscosity. Here we simulate the orbital evolution of the gas giants in disks with viscous heating and radiative cooling. We find that Jupiter and Saturn migrate outward in 3:2 resonance in modest-mass (M disk ≈ M MMSN, where MMSN is the "minimum-mass solar nebula") disks with viscous stress parameter α between 10-3 and 10-2. In disks with relatively low-mass (M disk <~ M MMSN), Jupiter and Saturn get captured in 2:1 resonance and can even migrate outward in low-viscosity disks (α <= 10-4). Such disks have a very small aspect ratio (h ~ 0.02-0.03) that favors outward migration after capture in 2:1 resonance, as confirmed by isothermal runs which resulted in a similar outcome for h ~ 0.02 and α <= 10-4. We also performed N-body runs of the outer solar system starting from the results of our hydrodynamical simulations and including 2-3 ice giants. After dispersal of the gaseous disk, a Nice model instability starting with Jupiter and Saturn in 2:1 resonance results in good solar systems analogs. We conclude that in a cold solar nebula, the 2:1 resonance between Jupiter and Saturn can lead to outward migration of the system, and this may represent an alternative scenario for the evolution of the solar system.

  11. The circumstellar disk of HH 30. Searching for signs of disk evolution with multi-wavelength modeling

    NASA Astrophysics Data System (ADS)

    Madlener, D.; Wolf, S.; Dutrey, A.; Guilloteau, S.

    2012-07-01

    Context. Circumstellar disks are characteristic for star formation and vanish during the first few Myr of stellar evolution. During this time planets are believed to form in the dense midplane by growth, sedimentation and aggregation of dust. Indicators of disk evolution, such as holes and gaps, can be traced in the spectral energy distribution (SED) and spatially resolved images. Aims: We aim to construct a self-consistent model of HH 30 by fitting all available continuum observations simultaneously. New data sets not available in previous studies, such as high-resolution interferometric imaging with the Plateau de Bure Interferometer (PdBI) at λ = 1.3 mm and SED measured with IRS on the Spitzer Space Telescope in the mid-infrared, put strong constraints on predictions and are likely to provide new insights into the evolutionary state of this object. Methods: A parameter study based on simulated annealing was performed to find unbiased best-fit models for independent observations made in the wavelength domain λ ~ 1 μm...4 mm. The method essentially creates a Markov chain through parameter space by comparing predictions generated by our self-consistent continuum radiation transfer code MC3D with observations. Results: We present models of the edge-on circumstellar disk of HH 30 based on observations from the near-infrared to mm-wavelengths that suggest the presence of an inner depletion zone with ~45 AU radius and a steep decline of mm opacity beyond ≳ 140 AU. Our modeling indicates that several modes of dust evolution such as growth, settling, and radial migration are taking place in this object. Conclusions: High-resolution observations of HH 30 at different wavelengths with next-generation observatories such as ALMA and JWST will enable the modeling of inhomogeneous dust properties and significantly expand our understanding of circumstellar disk evolution.

  12. Protoplanetary Disk Heating and Evolution Driven by Spiral Density Waves

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2016-11-01

    Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1% level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.

  13. DYNAMICAL EVOLUTION OF VISCOUS DISKS AROUND Be STARS. I. PHOTOMETRY

    SciTech Connect

    Haubois, X.; Carciofi, A. C.; Rivinius, Th.; Okazaki, A. T.; Bjorkman, J. E.

    2012-09-10

    Be stars possess gaseous circumstellar disks that modify in many ways the spectrum of the central B star. Furthermore, they exhibit variability at several timescales and for a large number of observables. Putting the pieces together of this dynamical behavior is not an easy task and requires a detailed understanding of the physical processes that control the temporal evolution of the observables. There is an increasing body of evidence that suggests that Be disks are well described by standard {alpha}-disk theory. This paper is the first of a series that aims at studying the possibility of inferring several disk and stellar parameters through the follow-up of various observables. Here we study the temporal evolution of the disk density for different dynamical scenarios, including the disk build-up as a result of a long and steady mass injection from the star, the disk dissipation that occurs after mass injection is turned off, as well as scenarios in which active periods are followed by periods of quiescence. For those scenarios, we investigate the temporal evolution of continuum photometric observables using a three-dimensional non-LTE radiative transfer code. We show that light curves for different wavelengths are specific of a mass loss history, inclination angle, and {alpha} viscosity parameter. The diagnostic potential of those light curves is also discussed.

  14. Bimodality of Circumstellar Disk Evolution Induced by the Hall Current

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Y.; Iwasaki, K.; Okuzumi, S.; Machida, M. N.; Inutsuka, S.

    2015-09-01

    The formation process of circumstellar disks is still controversial because of the interplay of complex physical processes that occurs during the gravitational collapse of prestellar cores. In this study, we investigate the effect of the Hall current term on the formation of the circumstellar disk using three-dimensional simulations. In our simulations, all non-ideal effects, as well as the radiation transfer, are considered. The size of the disk is significantly affected by a simple difference in the inherent properties of the prestellar core, namely whether the rotation vector and the magnetic field are parallel or anti-parallel. In the former case, only a very small disk (\\lt 1 {AU}) is formed. On the other hand, in the latter case, a massive and large (\\gt 20 {AU}) disk is formed in the early phase of protostar formation. Since the parallel and anti-parallel properties do not readily change, we expect that the parallel and anti-parallel properties are also important in the subsequent disk evolution and the difference between the two cases is maintained or enhanced. This result suggests that the disk size distribution of the Class 0 young stellar objects is bimodal. Thus, the disk evolution can be categorized into two cases and we may call the parallel and anti-parallel systems Ortho-disk and Para-disk, respectively. We also show that the anti-rotating envelopes against the disk rotation appear with a size of ≳ 200 {AU}. We predict that the anti-rotating envelope will be found in the future observations.

  15. Evolution of protoplanetary disks with dynamo magnetic fields

    NASA Technical Reports Server (NTRS)

    Reyes-Ruiz, M.; Stepinski, Tomasz F.

    1994-01-01

    The notion that planetary systems are formed within dusty disks is certainly not a new one; the modern planet formation paradigm is based on suggestions made by Laplace more than 200 years ago. More recently, the foundations of accretion disk theory where initially developed with this problem in mind, and in the last decade astronomical observations have indicated that many young stars have disks around them. Such observations support the generally accepted model of a viscous Keplerian accretion disk for the early stages of planetary system formation. However, one of the major uncertainties remaining in understanding the dynamical evolution of protoplanetary disks is the mechanism responsible for the transport of angular momentum and subsequent mass accretion through the disk. This is a fundamental piece of the planetary system genesis problem since such mechanisms will determine the environment in which planets are formed. Among the mechanisms suggested for this effect is the Maxwell stress associated with a magnetic field treading the disk. Due to the low internal temperatures through most of the disk, even the question of the existence of a magnetic field must be seriously studied before including magnetic effects in the disk dynamics. On the other hand, from meteoritic evidence it is believed that magnetic fields of significant magnitude existed in the earliest, PP-disk-like, stage of our own solar system's evolution. Hence, the hypothesis that PP disks are magnetized is not made solely on the basis of theory. Previous studies have addressed the problem of the existence of a magnetic field in a steady-state disk and have found that the low conductivity results in a fast diffusion of the magnetic field on timescales much shorter than the evolutionary timescale. Hence the only way for a magnetic field to exist in PP disks for a considerable portion of their lifetimes is for it to be continuously regenerated. In the present work, we present results on the self

  16. The Evolution of FU Orionis Disks

    NASA Astrophysics Data System (ADS)

    Green, Joel D.

    2016-06-01

    Do protoplanetary disks undergo regular (or irregular) bursts of accretion? FU Orionis objects (FUors) are the strongest direct evidence for episodic accretion in low mass young stellar objects. FUors exhibit rapid changes in disk chemistry, both because they are temporarily bright IR sources relative to their core mass, and vary on day, month, year, and decade timescales. With improved spatial and spectral resolution from FORCAST, and a ten year time baseline compared with Spitzer-IRS data, we can observe and constrain the properties of silicate dust, and disk profiles, as they are altered by the outburst. We also consider the occurrence of binarity and whether any connection exists between multiplicity and evidence of recent outburst behavior.

  17. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2000-01-01

    The aim of this project was to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we: (1) Developed detailed calculations of disk structure to study physical conditions and investigate the observational effects of grain growth in T Tauri disks; (2) Studied the dusty emission and accretion rates in older disk systems, with ages closer to the expected epoch of (giant) planet formation at 3-10 Myr, and (3) Began a project to develop much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution.

  18. OUTER-DISK POPULATIONS IN NGC 7793: EVIDENCE FOR STELLAR RADIAL MIGRATION

    SciTech Connect

    Radburn-Smith, David J.; Dalcanton, Julianne J.; Roskar, Rok; Debattista, Victor P.; Streich, David; De Jong, Roelof S.; Vlajic, Marija; Holwerda, Benne W.; Purcell, Chris W.; Dolphin, Andrew E.; Zucker, Daniel B.

    2012-07-10

    We analyzed the radial surface brightness profile of the spiral galaxy NGC 7793 using HST/ACS images from the GHOSTS survey and a new HST/WFC3 image across the disk break. We used the photometry of resolved stars to select distinct populations covering a wide range of stellar ages. We found breaks in the radial profiles of all stellar populations at 280'' ({approx}5.1 kpc). Beyond this disk break, the profiles become steeper for younger populations. This same trend is seen in numerical simulations where the outer disk is formed almost entirely by radial migration. We also found that the older stars of NGC 7793 extend significantly farther than the underlying H I disk. They are thus unlikely to have formed entirely at their current radii, unless the gas disk was substantially larger in the past. These observations thus provide evidence for substantial stellar radial migration in late-type disks.

  19. THE INFLUENCE OF RADIAL STELLAR MIGRATION ON THE CHEMICAL EVOLUTION OF THE MILKY WAY

    SciTech Connect

    Wang Yue; Zhao Gang

    2013-05-20

    Stellar migration is an important dynamical process in the Galactic disk. Here we model radial stellar migration in the Galactic disk with an analytical method, then add it to a detailed Galactic chemical evolution model to study the influence of radial stellar migration on the chemical evolution of the Milky Way, especially for the abundance gradients. We found that the radial stellar migration in the Galactic disk can make the profile of the G-dwarf metallicity distribution of the solar neighborhood taller and narrower, and thus it becomes another solution to the ''G-dwarf problem''. It can also scatter the age-metallicity relation. However, after migration, the abundance distributions along the Galactic radius do not change much; namely, the abundance gradients would not be flattened by the radial stellar migration, which is different from the predictions of many theoretical works. However, it can flatten the radial gradients of the mean chemical abundance of stars, and older stars possess flatter abundance gradients than younger stars. The most significant effect of radial stellar migration on the chemical abundance is that at a certain position it scatters the abundance of stars from a relatively concentrated value to a range.

  20. The Imprint of Radial Migration on the Vertical Structure of Galaxy Disks

    NASA Astrophysics Data System (ADS)

    Vera-Ciro, Carlos; D'Onghia, Elena; Navarro, Julio F.

    2016-12-01

    We use numerical simulations to examine the effects of radial migration on the vertical structure of galaxy disks. The simulations follow three exponential disks of different mass but similar circular velocity, radial scalelength, and (constant) scale height. The disks develop different non-axisymmetric patterns, ranging from feeble, long-lived multiple arms to strong, rapidly evolving few-armed spirals. These fluctuations induce radial migration through secular changes in the angular momentum of disk particles, mixing the disk radially and blurring pre-existing gradients. Migration primarily affects stars with small vertical excursions, regardless of spiral pattern. This “provenance bias” largely determines the vertical structure of migrating stars: inward migrators thin down as they move in, whereas outward migrators do not thicken up but rather preserve the disk scale height at their destination. Migrators of equal birth radius thus develop a strong scale-height gradient, not by flaring out as commonly assumed, but by thinning down as they spread inward. Similar gradients have been observed for low-[α/Fe] mono-abundance populations (MAPs) in the Galaxy, but our results argue against interpreting them as a consequence of radial migration. This is because outward migration does not lead to thickening, implying that the maximum scale height of any population should reflect its value at birth. In contrast, Galactic MAPs have scale heights that increase monotonically outward, reaching values that greatly exceed those at their presumed birth radii. Given the strong vertical bias affecting migration, a proper assessment of the importance of radial migration in the Galaxy should take carefully into account the strong radial dependence of the scale heights of the various stellar populations.

  1. STRUCTURE AND EVOLUTION OF PRE-MAIN-SEQUENCE CIRCUMSTELLAR DISKS

    SciTech Connect

    Isella, Andrea; Carpenter, John M.; Sargent, Anneila I.

    2009-08-10

    We present new subarcsecond ({approx}0.''7) Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations of the 1.3 mm continuum emission from circumstellar disks around 11 low- and intermediate-mass pre-main-sequence stars. High-resolution observations for three additional sources were obtained from the literature. In all cases the disk emission is spatially resolved. We adopt a self-consistent accretion disk model based on the similarity solution for the disk surface density and constrain the dust radial density distribution on spatial scales of about 40 AU. Disk surface densities appear to be correlated with the stellar ages where the characteristic disk radius increases from {approx}20 AU to {approx}100 AU over about 5 Myr. This disk expansion is accompanied by a decrease in the mass accretion rate, suggesting that our sample disks form an evolutionary sequence. Interpreting our results in terms of the temporal evolution of a viscous {alpha}-disk, we estimate (1) that at the beginning of the disk evolution about 60% of the circumstellar material was located inside radii of 25-40 AU, (2) that disks formed with masses from 0.05 to 0.4 M {sub sun}, and (3) that the viscous timescale at the disk initial radius is about 0.1-0.3 Myr. Viscous disk models tightly link the surface density {sigma}(R) with the radial profile of the disk viscosity {nu}(R) {proportional_to} R {sup {gamma}}. We find values of {gamma} ranging from -0.8 to 0.8, suggesting that the viscosity dependence on the orbital radius can be very different in the observed disks. Adopting the {alpha} parameterization for the viscosity, we argue that {alpha} must decrease with the orbital radius and that it may vary between 0.5 and 10{sup -4}. From the inferred disk initial radii we derive specific angular momenta, j, for parent cores of (0.8 - 4) x 10{sup -4} km s{sup -1} pc. Comparison with the values of j in dense cores suggests that about 10% of core angular momentum and 30% of the core

  2. The Long-term Evolution of Photoevaporating Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bae, Jaehan; Hartmann, Lee; Zhu, Zhaohuan; Gammie, Charles

    2013-09-01

    We perform calculations of our one-dimensional, two-zone disk model to study the long-term evolution of the circumstellar disk. In particular, we adopt published photoevaporation prescriptions and examine whether the photoevaporative loss alone, coupled with a range of initial angular momenta of the protostellar cloud, can explain the observed decline of the frequency of optically thick dusty disks with increasing age. In the parameter space we explore, disks have accreting and/or non-accreting transitional phases lasting for <~ 20% of their lifetime, which is in reasonable agreement with observed statistics. Assuming that photoevaporation controls disk clearing, we find that the initial angular momentum distribution of clouds needs to be weighted in favor of slowly rotating protostellar cloud cores. Again, assuming inner disk dispersal by photoevaporation, we conjecture that this skewed angular momentum distribution is a result of fragmentation into binary or multiple stellar systems in rapidly rotating cores. Accreting and non-accreting transitional disks show different evolutionary paths on the \\dot{M}{--}R_wall plane, which possibly explains the different observed properties between the two populations. However, we further find that scaling the photoevaporation rates downward by a factor of 10 makes it difficult to clear the disks on the observed timescales, showing that the precise value of the photoevaporative loss is crucial to setting the clearing times. While our results apply only to pure photoevaporative loss (plus disk accretion), there may be implications for models in which planets clear disks preferentially at radii of the order of 10 AU.

  3. THE LONG-TERM EVOLUTION OF PHOTOEVAPORATING PROTOPLANETARY DISKS

    SciTech Connect

    Bae, Jaehan; Hartmann, Lee; Zhu Zhaohuan; Gammie, Charles E-mail: lhartm@umich.edu E-mail: gammie@illinois.edu

    2013-09-01

    We perform calculations of our one-dimensional, two-zone disk model to study the long-term evolution of the circumstellar disk. In particular, we adopt published photoevaporation prescriptions and examine whether the photoevaporative loss alone, coupled with a range of initial angular momenta of the protostellar cloud, can explain the observed decline of the frequency of optically thick dusty disks with increasing age. In the parameter space we explore, disks have accreting and/or non-accreting transitional phases lasting for {approx}< 20% of their lifetime, which is in reasonable agreement with observed statistics. Assuming that photoevaporation controls disk clearing, we find that the initial angular momentum distribution of clouds needs to be weighted in favor of slowly rotating protostellar cloud cores. Again, assuming inner disk dispersal by photoevaporation, we conjecture that this skewed angular momentum distribution is a result of fragmentation into binary or multiple stellar systems in rapidly rotating cores. Accreting and non-accreting transitional disks show different evolutionary paths on the M-dot-R{sub wall} plane, which possibly explains the different observed properties between the two populations. However, we further find that scaling the photoevaporation rates downward by a factor of 10 makes it difficult to clear the disks on the observed timescales, showing that the precise value of the photoevaporative loss is crucial to setting the clearing times. While our results apply only to pure photoevaporative loss (plus disk accretion), there may be implications for models in which planets clear disks preferentially at radii of the order of 10 AU.

  4. THE EVOLUTION OF PROTOPLANETARY DISKS IN THE ARCHES CLUSTER

    SciTech Connect

    Olczak, C.; Kaczmarek, T.; Pfalzner, S.; Harfst, S.; Portegies Zwart, S.

    2012-09-10

    Most stars form in a cluster environment. These stars are initially surrounded by disks from which potentially planetary systems form. Of all cluster environments, starburst clusters are probably the most hostile for planetary systems in our Galaxy. The intense stellar radiation and extreme density favor rapid destruction of circumstellar disks via photoevaporation and stellar encounters. Evolving a virialized model of the Arches cluster in the Galactic tidal field, we investigate the effect of stellar encounters on circumstellar disks in a prototypical starburst cluster. Despite its proximity to the deep gravitational potential of the Galactic center, only a moderate fraction of members escapes to form an extended pair of tidal tails. Our simulations show that encounters destroy one-third of the circumstellar disks in the cluster core within the first 2.5 Myr of evolution, preferentially affecting the least and most massive stars. A small fraction of these events causes rapid ejection and the formation of a weaker second pair of tidal tails that is overpopulated by disk-poor stars. Two predictions arise from our study. (1) If not destroyed by photoevaporation protoplanetary disks of massive late B- and early O-type stars represent the most likely hosts of planet formation in starburst clusters. (2) Multi-epoch K- and L-band photometry of the Arches cluster would provide the kinematically selected membership sample required to detect the additional pair of disk-poor tidal tails.

  5. The VLA View of the HL Tau Disk: Disk Mass, Grain Evolution, and Early Planet Formation

    NASA Astrophysics Data System (ADS)

    Carrasco-González, Carlos; Henning, Thomas; Chandler, Claire J.; Linz, Hendrik; Pérez, Laura; Rodríguez, Luis F.; Galván-Madrid, Roberto; Anglada, Guillem; Birnstiel, Til; van Boekel, Roy; Flock, Mario; Klahr, Hubert; Macias, Enrique; Menten, Karl; Osorio, Mayra; Testi, Leonardo; Torrelles, José M.; Zhu, Zhaohuan

    2016-04-01

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau, these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk-planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain-size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength, the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of (1-3) × 10-3 M ⊙, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.

  6. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2002-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we plan to: (1) Develop much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; (2) Study the dusty emission and accretion rates in these systems, with ages closer to the expected epoch of (giant) planet formation at 3-10 Myr; and (3) Develop detailed model disk structures consistent with observations to infer physical conditions in protoplanetary disks and to constrain possible grain growth as the first stage of planetesimal formation.

  7. Using Disk Eclipsing Systems to Understand Planet Formation and Evolution

    NASA Astrophysics Data System (ADS)

    Rodriguez, Joseph E.; Osborn, Hugh P.; Shappee, Benjamin John; KELT Collaboration

    2017-01-01

    The circumstellar environments of young stellar objects (YSOs) involve complex dynamical interactions between dust and gas that directly influence the formation of planets. However, our understanding of the evolution from the material in the circumstellar disk to the thousands of planetary systems discovered to date, is limited. One means to better constrain the size, mass, and composition of this planet-forming material is to observe a YSO being eclipsed by its circumstellar disk. Unfortunately, such events are rare but have already led to such insights as dense planet-forming structures within the tidally disrupted disk of a young binary star system, Saturn-like rings and gaps in the disk surrounding a young planet, stratified dust coagulation within a young protoplanetary disk, and an evolved binary star system with remnant planet-building material. Fortunately, the advent of wide-field time domain surveys provides a ideal tool to search for rare eclipse events. Using time-series photometry from the KELT project we are conducting the Disk Eclipse Search with KELT (DESK) survey to look for disk eclipsing events, specifically in young stellar associations. In addition, we are collaborating with the SuperWASP and ASAS-SN surveys which have already led to additional discoveries. This survey has already doubled the number of “disk eclipsing” systems known and will provide a framework for discovering such systems in future surveys such as LSST. I will describe a few of our recent discoveries and their impact on our understanding of circumstellar evolution.KELT is a joint collaboration between the Ohio State University, Vanderbilt University, and Lehigh University. This work was partially supported by NSF CAREER grant AST-1056524. J.E.R. is supported by a Harvard Future Faculty Leaders Postdoctoral Fellowship.

  8. Magnetic Field and Early Evolution of Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Yusuke

    2016-03-01

    The magnetic field plays a central role in the formation and evolution of circumstellar disks. The magnetic field connects the rapidly rotating central region with the outer envelope and extracts angular momentum from the central region during gravitational collapse of the cloud core. This process is known as magnetic braking. Both analytical and multidimensional simulations have shown that disk formation is strongly suppressed by magnetic braking in moderately magnetised cloud cores in the ideal magnetohydrodynamic limit. On the other hand, recent observations have provided growing evidence of a relatively large disk several tens of astronomical units in size existing in some Class 0 young stellar objects. This introduces a serious discrepancy between the theoretical study and observations. Various physical mechanisms have been proposed to solve the problem of catastrophic magnetic braking, such as misalignment between the magnetic field and the rotation axis, turbulence, and non-ideal effect. In this paper, we review the mechanism of magnetic braking, its effect on disk formation and early evolution, and the mechanisms that resolve the magnetic braking problem. In particular, we emphasise the importance of non-ideal effects. The combination of magnetic diffusion and thermal evolution during gravitational collapse provides a robust formation process for the circumstellar disk at the very early phase of protostar formation. The rotation induced by the Hall effect can supply a sufficient amount of angular momentum for typical circumstellar disks around T Tauri stars. By examining the combination of the suggested mechanisms, we conclude that the circumstellar disks commonly form in the very early phase of protostar formation.

  9. Evolution of a protolunar disk in vapor/melt equilibrium

    NASA Astrophysics Data System (ADS)

    Ward, William R.

    2017-02-01

    A model of the viscous evolution of a two-phase, vapor/melt protolunar disk is described. Droplets condense from the vapor and "rain out," forming a stratified structure with a midplane magma layer surrounded by a vapor reservoir. The magma layer is gravitationally unstable, but material interior to the Roche distance cannot fragment, and instead develops an effective viscosity. However, magma flowing across the Roche limit can fragment and accrete into moonlets, while magma spreading inward is accreted by Earth. As mass leaves the melt layer, it is replenished by vapor condensation, leading to a quasi steady state (QSS). The layer's mass is maintained at 13% of a lunar mass and replaced every 3.2 years. The vapor atmosphere steadily decreases, and once exhausted, the disk would cool below condensation temperature and spread as a time-dependent disk until it too is exhausted. The timescale of the QSS is regulated by the disk's ability to radiate all the released latent heat plus viscous dissipation energy to space at the photospheric temperature, i.e., 2000 K for silicon phase equilibrium. For the protolunar disk, latent heat dominates viscous heating, and the QSS for a 2 lunar mass disk lasts for 50 years. For comparison, a hypothetical water/steam disk orbiting an ice giant planet in which viscous heating dominates is also modeled. The photospheric temperature is closer to 373 K, and the replacement time of the water layer is 136 years. Finally, disks confined by external torques at either the planet-disk boundary or at its outer edge are also briefly examined.

  10. Two-body relaxation driven evolution of the young stellar disk in the galactic center

    SciTech Connect

    Šubr, Ladislav; Haas, Jaroslav

    2014-05-10

    The center of our Galaxy hosts almost two hundred very young stars, a subset of which is orbiting the central supermassive black hole (SMBH) in a relatively thin disk-like structure. First analyses indicated a power-law surface density profile of the disk, Σ∝R {sup β} with β = –2. Recently, however, doubts about this profile arose. In particular, it now seems to be better described by a sort of broken power law. By means of both analytical arguments and numerical N-body modeling, we show that such a broken power-law profile is a natural consequence of the two-body relaxation of the disk. Due to the small relative velocities of the nearby stars in co-planar Keplerian orbits around the SMBH, two-body relaxation is effective enough to affect the evolution of the disk on timescales comparable to its estimated age. In the inner, densest part of the disk, the profile becomes rather flat (β ≈ –1) while the outer parts keep imprints of the initial state. Our numerical models show that the observed projected surface density profile of the young stellar disk can result from two-body relaxation driven evolution of a disk with initial single power-law profile with –2 ≲ β ≲ –1.5. In addition, we suggest that two-body relaxation may have caused a significant radial migration of the S-stars toward the central SMBH, thus playing an important role in their formation scenario.

  11. Forming Gaps in Debris Disks with Fewer Planets via Planet Migration

    NASA Astrophysics Data System (ADS)

    Morrison, Sarah J.; Kratter, Kaitlin M.

    2016-10-01

    Debris disks across a wide range of ages can possess wide gaps of several AU or more; these gaps have been attributed to the presence of multiple planets. While at least two planets are likely needed for maintaining the edges of such gaps, large gaps may require more than two in more dynamically packed configurations to be able to have cleared material within the gap in the present day. As an alternative to currently packed planets occupying gaps in debris disks, we assess whether planetesimal and dynamical instability-driven planet migration could produce wide gaps with lower mass, fewer planets on relevant timescales to be consistent with the observed properties of debris disk systems. We also discuss implications for the disk properties in which these mechanisms could operate within the broader evolutionary context linking planets, debris disks, and the protoplanetary disks from which they originated.

  12. THE VLA VIEW OF THE HL TAU DISK: DISK MASS, GRAIN EVOLUTION, AND EARLY PLANET FORMATION

    SciTech Connect

    Carrasco-González, Carlos; Rodríguez, Luis F.; Galván-Madrid, Roberto; Henning, Thomas; Linz, Hendrik; Birnstiel, Til; Boekel, Roy van; Klahr, Hubert; Chandler, Claire J.; Pérez, Laura; Anglada, Guillem; Macias, Enrique; Osorio, Mayra; Flock, Mario; Menten, Karl; Testi, Leonardo; Torrelles, José M.; Zhu, Zhaohuan E-mail: l.rodriguez@crya.unam.mx E-mail: henning@mpia.de

    2016-04-10

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau, these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk–planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain-size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength, the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of (1–3) × 10{sup −3} M {sub ⊙}, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.

  13. DEAD ZONES AS THERMAL BARRIERS TO RAPID PLANETARY MIGRATION IN PROTOPLANETARY DISKS

    SciTech Connect

    Hasegawa, Yasuhiro; Pudritz, Ralph E. E-mail: pudritz@physics.mcmaster.ca

    2010-02-20

    Planetary migration in standard models of gaseous protoplanetary disks is known to be very rapid ({approx}10{sup 5} years), jeopardizing the existence of planetary systems. We present a new mechanism for significantly slowing rapid planetary migration, discovered by means of radiative transfer calculations of the thermal structure of protoplanetary disks irradiated by their central stars. Rapid dust settling in a disk's dead zone-a region with very little turbulence-leaves a dusty wall at its outer edge. We show that the back-heating of the dead zone by this irradiated wall produces a positive gradient of the disk temperature, which acts as a thermal barrier to planetary migration which persists for the disk lifetime. Although we analyze in detail the migration of a super-Earth in a low-mass disk around an M star, our findings can apply to a wide variety of young planetary systems. We compare our findings with other potentially important stopping mechanisms and show that there are large parameter spaces for which dead zones are likely to play the most important role for reproducing the observed mass-period relation in longer planetary periods.

  14. DUST EVOLUTION CAN PRODUCE SCATTERED LIGHT GAPS IN PROTOPLANETARY DISKS

    SciTech Connect

    Birnstiel, Tilman; Andrews, Sean M.; Pinilla, Paola; Kama, Mihkel E-mail: sandrews@cfa.harvard.edu E-mail: mkama@strw.leidenuniv.nl

    2015-11-01

    Recent imaging of protoplanetary disks with high resolution and contrast have revealed a striking variety of substructure. Of particular interest are cases where near-infrared scattered light images show evidence for low-intensity annular “gaps.” The origins of such structures are still uncertain, but the interaction of the gas disk with planets is a common interpretation. We study the impact that the evolution of the solid material can have on the observable properties of disks in a simple scenario without any gravitational or hydrodynamical disturbances to the gas disk structure. Even with a smooth and continuous gas density profile, we find that the scattered light emission produced by small dust grains can exhibit ring-like depressions similar to those presented in recent observations. The physical mechanisms responsible for these features rely on the inefficient fragmentation of dust particles. The occurrence and position of the proposed “gap” features depend most strongly on the dust-to-gas ratio, the fragmentation threshold velocity, the strength of the turbulence, and the age of the disk, and should be generic (at some radius) for typically adopted disk parameters. The same physical processes can affect the thermal emission at optically thin wavelengths (∼1 mm), although the behavior can be more complex; unlike for disk–planet interactions, a “gap” should not be present at these longer wavelengths.

  15. The hybrid disks: a search and study to better understand evolution of disks

    NASA Astrophysics Data System (ADS)

    Péricaud, J.; Di Folco, E.; Dutrey, A.; Guilloteau, S.; Piétu, V.

    2017-03-01

    Context. The increased sensitivity of millimeter-wave facilities now makes possible the detection of low amounts of gas in debris disks. Some of the gas-rich debris disks harbor peculiar properties, with possible pristine gas and secondary generated dust. The origin of the gas in these hybrid disks is strongly debated and the current sample is too sparse to understand this phenomenon. Aims: More detections are necessary to increase the statistics on this population. Lying at the final stages of evolution of proto-planetary disks and at the beginning of the debris disk phase, these objects could provide new insight into the processes involved in the making of planetary systems. Methods: We carried out a deep survey of the CO J = 2 → 1 and CO J = 3 → 2 lines with the APEX and IRAM radiotelescopes in young debris disks selected according to hybrid disk properties. The survey is complemented with a bibliographic study of the ratio between the emission of the gas and the continuum (SCO/Fcont) in CTTS, Herbig Ae, WTTS, hybrid, and debris disks. Results: Our sub-mm survey comprises 25 stars, including 17 new targets, and we increase the sensitivity limit by a factor 2 on eight sources compared to similar published studies. We report a 4σ tentative detection of a double-peaked CO J = 2 → 1 line around HD 23642; an eclipsing binary located in the Pleiades. We also reveal a correlation between the emission of the CO gas and the dust continuum from CTTS, Herbig Ae and few debris disks. The observed trend of the gas to dust flux ratio suggests a concurrent dissipation of the dust and gas components. Hybrid disks systematically lie above this trend, suggesting that these systems may witness a transient phase, when the dust has evolved more rapidly than the gas, with a flux ratio SCO/Fcont enhanced by a factor of between 10 and 100 compared to standard (proto-)planetary disks. Reduced data used in the paper (FITS) are only available at the CDS via anonymous ftp to http

  16. Time Evolution of a Viscous Protoplanetary Disk with a Free Geometry: Toward a More Self-consistent Picture

    NASA Astrophysics Data System (ADS)

    Baillié, Kévin; Charnoz, Sébastien

    2014-05-01

    Observations of protoplanetary disks show that some characteristics seem recurrent, even in star formation regions that are physically distant such as surface mass density profiles varying as r -1 or aspect ratios of about 0.03-0.23. Accretion rates are also recurrently found around 10-8-10-6 M ⊙ yr-1 for disks that have already evolved. Several models have been developed in order to recover these properties. However, most of them usually simplify the disk geometry if not its mid-plane temperature. This has major consequences for modeling the disk evolution over millions of years and consequently planet migration. In the present paper, we develop a viscous evolution hydrodynamical numerical code that simultaneously determines the disk photosphere geometry and the mid-plane temperature. We then compare our results of long-term simulations with similar simulations of disks with a constrained geometry along the Chiang & Goldreich prescription (d lnH/d lnr = 9/7). We find that the constrained geometry models provide a good approximation of the disk surface density evolution. However, they differ significantly regarding the temperature-time evolution. In addition, we find that shadowed regions naturally appear at the transition between viscously dominated and radiation-dominated regions that falls in the region of planetary formation. We show that χ (photosphere height to pressure scale height ratio) cannot be considered a constant, which is consistent with the findings of Watanabe & Lin. Comparisons with observations show that all disks naturally evolve toward a shallow surface density disk (Σvpropr -1). The mass flux across the disk typically stabilizes in about 1 Myr.

  17. Evolution of accretion disks in tidal disruption events

    SciTech Connect

    Shen, Rong-Feng; Matzner, Christopher D. E-mail: matzner@astro.utoronto.ca

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  18. Evolution of Accretion Disks in Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Shen, Rong-Feng; Matzner, Christopher D.

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  19. Evolution of the luminosity function of quasar accretion disks

    NASA Technical Reports Server (NTRS)

    Caditz, David M.; Petrosian, Vahe; Wandel, Amri

    1991-01-01

    Using an accretion-disk model, accretion disk luminosities are calculated for a grid of black hole masses and accretion rates. It is shown that, as the black-hole mass increases with time, the monochromatic luminosity at a given frequency first increases and then decreases rapidly as this frequency is crossed by the Wien cutoff. The upper limit on the monochromatic luminosity, which is characteristic for a given epoch, constrains the evolution of quasar luminosities and determines the evolultion of the quasar luminosity function.

  20. Probing the final stages of protoplanetary disk evolution with ALMA

    NASA Astrophysics Data System (ADS)

    Hardy, A.; Caceres, C.; Schreiber, M. R.; Cieza, L.; Alexander, R. D.; Canovas, H.; Williams, J. P.; Wahhaj, Z.; Menard, F.

    2015-11-01

    Context. The evolution of a circumstellar disk from its gas-rich protoplanetary stage to its gas-poor debris stage is not understood well. It is apparent that disk clearing progresses from the inside-out on a short time scale and models of photoevaporation are frequently used to explain this. However, the photoevaporation rates predicted by recent models differ by up to two orders of magnitude, resulting in uncertain time scales for the final stages of disk clearing. Aims: Photoevaporation theories predict that the final stages of disk-clearing progress in objects that have ceased accretion but still posses considerable material at radii far from the star. Weak-line T Tauri stars (WTTS) with infrared emission in excess of what is expected from the stellar photosphere are likely in this configuration. We aim to provide observational constraints on theories of disk-clearing by measuring the dust masses and CO content of a sample of young (1.8-26.3 Myr) WTTS. Methods: We used ALMA Band 6 to obtain continuum and 12CO(2-1) line fluxes for a sample of 24 WTTS stars with known infrared excess. For these WTTS, we inferred the dust mass from the continuum observations and derived disk luminosities and ages to allow comparison with previously detected WTTS. Results: We detect continuum emission in only four of 24 WTTS, and no 12CO(2-1) emission in any of them. For those WTTS where no continuum was detected, their ages and derived upper limits suggest they are debris disks, which makes them some of the youngest debris disks known. Of those where continuum was detected, three are possible photoevaporating disks, although the lack of CO detection suggests a severely reduced gas-to-dust ratio. Conclusions: The low fraction of continuum detections implies that, once accretion onto the star stops, the clearing of the majority of dust progresses very rapidly. Most WTTS with infrared excess are likely not in transition but are instead young debris disks, whose dust is either

  1. Giant disk galaxies : Where environment trumps mass in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Courtois, Helene M.; Zaritsky, Dennis; Sorce, Jenny G.; Pomarede, Daniel

    2015-08-01

    We identify some of the most HI massive and fastest rotating disk galaxies in the local universe with the aim of probing the processes that drive the formation of these extreme disk galaxies. By combining data from the Cosmic Flows project, which has consistently reanalyzed archival galaxy HI profiles, and 3.6 micron photometry obtained with the Spitzer Space Telescope, with which we can measure stellar mass, we use the baryonic Tully-Fisher relationship to explore whether these massive galaxies are distinct.We discuss several results, but the most striking is the systematic offset of the HI-massive sample above the baryonic Tully-Fisher. These galaxies have both more gas and more stars in their disks than the typical disk galaxy of similar rotational velocity. The ``condensed" baryon fraction, fC, the fraction of the baryons in a dark matter halo that settle either as cold gas or stars into the disk, is twice as high in the HI-massive sample than typical, and almost reaches the universal baryon fraction in some cases, suggesting that the most extreme of these galaxies have little in the way of a hot baryonic component or cold baryons distributed well outside the disk. In contrast, the star formation efficiency, measured as the ratio of the mass in stars to that in both stars and gas, shows no difference between the HI-massive sample and the typical disk galaxies. We conclude that the star formation efficiency is driven by an internal, self-regulating process, while fC is affected by external factors. Neither the morphology nor the star formation rate of these galaxies is primarily determined by either their dark or stellar mass. We also found that the most massive HI detected galaxies are located preferentially in filaments. We present the first evidence of an environmental effect on galaxy evolution using a dynamical definition of a filament.

  2. Life Estimation Method for Optical Disk and Data Migration Method for Digitally Recorded Media

    NASA Astrophysics Data System (ADS)

    Watanabe, Atsumi

    Results of Study about lifetime estimation method for DVD disk are described. The study was performed by Digital Content Association of Japan (DCAj) under commission from The Mechanical Social Systems Foundation with subsidies from JKA's industry promotional funds raised from KEIRIN RACE. DVD disks for which quality control is well performed have lifetime of 50-100 years or more. Data migration method for digitally recorded media is also described. Here, error check is requested every 3 years. If the measured error rate is larger than determined value, immediate data migration to new media is requested.

  3. EVOLUTION OF SNOW LINE IN OPTICALLY THICK PROTOPLANETARY DISKS: EFFECTS OF WATER ICE OPACITY AND DUST GRAIN SIZE

    SciTech Connect

    Oka, Akinori; Nakamoto, Taishi; Ida, Shigeru E-mail: nakamoto@geo.titech.ac.jp

    2011-09-10

    Evolution of a snow line in an optically thick protoplanetary disk is investigated with numerical simulations. The ice-condensing region in the disk is obtained by calculating the temperature and the density with the 1+1D approach. The snow line migrates as the mass accretion rate ( M-dot ) in the disk decreases with time. Calculations are carried out from an early phase with high disk accretion rates ( M-dot {approx}10{sup -7} M{sub sun} yr{sup -1}) to a later phase with low disk accretion rates ( M-dot {approx}10{sup -12} M{sub sun} yr{sup -1}) using the same numerical method. It is found that the snow line moves inward for M-dot {approx}>10{sup -10} M{sub sun} yr{sup -1}, while it gradually moves outward in the later evolution phase with M-dot {approx}<10{sup -10} M{sub sun} yr{sup -1}. In addition to the silicate opacity, the ice opacity is taken into consideration. In the inward migration phase, the additional ice opacity increases the distance of the snow line from the central star by a factor of 1.3 for dust grains {approx}< 10 {mu}m in size and of 1.6 for {approx}> 100 {mu}m. It is inevitable that the snow line comes inside Earth's orbit in the course of the disk evolution if the viscosity parameter {alpha} is in the range 0.001-0.1, the dust-to-gas mass ratio is higher than a tenth of the solar abundance value, and the dust grains are smaller than 1 mm. The formation of water-devoid planetesimals in the terrestrial planet region seems to be difficult throughout the disk evolution, which imposes a new challenge to planet formation theory.

  4. Evolution of Young Stars and Their Disks in Serpens

    NASA Astrophysics Data System (ADS)

    Oliveira, Isa; Merín, Bruno; Pontoppidan, Klaus; van Dishoeck, Ewine

    2010-11-01

    Unbiased, flux-limited surveys of protoplanetary disks and their parent stars currently exist for only a few clouds, primarily Taurus and IC 348, selected primarily by optical and near-IR data. Such surveys are essential to address questions of disk evolution as a function of stellar parameters such as spectral type, age, accretion activity and environment. Using the ‘Cores to Disks’ (c2d) Spitzer Legacy Program, we discovered a new population of young stellar objects (YSOs) in a region of only 0.8 deg2 in the Serpens Molecular Cloud. This sample contains 150 mid-IR bright (≥ 3 mJy at 8 μm) YSOs with infrared excess, having a broad range of SED types and luminosities. Serpens is therefore a unique target region for obtaining a complete, well-defined sample of multi-wavelength observations of young stars in a possible evolutionary sequence. Compared with other clouds such as Taurus and Chamaeleon, Serpens has an exceptionally high star-formation rate (5.7 × 10-5 M⊙ yr-1). Follow-up complimentary observations in the optical, near- and mid-infrared (Spitzer/IRS GO3) have allowed us to characterize both the central stars and the surrounding disks. The shape and slope of the mid-infrared excess provide information on the flaring geometry of the disks. The spectral features give constraints on grain growth and mineralogy, which in turn probes heating and radial mixing. The presence of PAH features traces UV radiation, whereas Hα and Brγ are used as diagnostics of accretion. Assuming that all stars within a sufficiently small region are nearly coeval, this provides direct constraints on the importance of environment and initial conditions on disk evolution. In this meeting, we have presented our latest results on this rich populations of YSOs, as detailed in Oliveira et al. (2009, 2010). We have discussed connections between the evolution of the disks and that of their harboring stars, and the processes that determine the evolutionary sequence of

  5. The chemical evolution of self-gravitating primordial disks

    NASA Astrophysics Data System (ADS)

    Schleicher, Dominik R. G.; Bovino, Stefano; Latif, Muhammad A.; Ferrara, Andrea; Grassi, Tommaso

    2016-01-01

    Numerical simulations show the formation of self-gravitating primordial disks during the assembly of the first structures in the Universe, in particular, during the formation of Population III and supermassive stars. Their subsequent evolution is expected to be crucial in determining the mass scale of the first cosmological objects, which depends on the temperature of the gas and dominant cooling mechanism. Here, we derive a one-zone framework to explore the chemical evolution of these disks and show that viscous heating leads to the collisional dissociation of an initially molecular gas. The effect is relevant on scales of 10 AU (1000 AU) for a central mass of 10 M⊙ (104 M⊙) at an accretion rate of 10-1 M⊙ yr-1, and provides a substantial heat input to stabilize the disk. If the gas is initially atomic, it remains atomic during the further evolution and the effect of viscous heating is less significant. The additional thermal support is particularly relevant for the formation of very massive objects, such as the progenitors of the first supermassive black holes. The stabilizing impact of viscous heating thus alleviates the need for strong radiation background as a means of keeping the gas atomic.

  6. Metallicity evolution in mergers of disk galaxies with black holes

    NASA Astrophysics Data System (ADS)

    Rantala, Antti; Johansson, Peter H.

    2016-10-01

    We use the TreeSPH simulation code Gadget-3 including a recently improved smoothed particle hydrodynamics (SPH) module, a detailed metallicity evolution model and sophisticated subresolution feedback models for supernovae and supermassive black holes in order to study the metallicity evolution in disk galaxy mergers. In addition, we examine the simulated morphology, star formation histories, metallicity gradients and kinematic properties of merging galaxies and merger remnants. We will compare our simulation results with observations of the early-type Centaurus A galaxy and the currently colliding Antennae galaxies.

  7. Internal and environmental secular evolution of disk galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2015-03-01

    This Special Session is devoted to the secular evolution of disk galaxies. Here `secular' means `slow' i.e., evolution on time scales that are generally much longer than the galaxy crossing or rotation time. Internal and environmentally driven evolution both are covered. I am indebted to Albert Bosma for reminding me at the 2011 Canary Islands Winter School on Secular Evolution that our subject first appeared in print in a comment made by Ivan King (1977) in his introductory talk at the Yale University meeting on The Evolution of Galaxies and Stellar Populations: `John Kormendy would like us to consider the possibility that a galaxy can interact with itself.. . . I'm not at all convinced, but John can show you some interesting pictures.' Two of the earliest papers that followed were Kormendy (1979a, b); the first discusses the interaction of galaxy components with each other, and the second studies these phenomena in the context of a morphological survey of barred galaxies. The earliest modeling paper that we still use regularly is Combes & Sanders (1981), which introduces the now well known idea that box-shaped bulges in edge-on galaxies are side-on, vertically thickened bars. It is gratifying to see how this subject has grown since that time. Hundreds of papers have been written, and the topic features prominently at many meetings (e.g., Block et al. 2004; Falcoń-Barroso & Knapen 2012, and this Special Session). My talk here introduces both internal and environmental secular evolution; a brief abstract follows. My Canary Islands Winter School review covers both subjects in more detail (Kormendy 2012). Kormendy & Kennicutt (2004) is a comprehensive review of internal secular evolution, and Kormendy & Bender (2012) covers environmental evolution. Both of these subject make significant progress at this meeting. Secular evolution happens because self-gravitating systems evolve toward the most tightly bound configuration that is reachable by the evolution processes

  8. Coupling Dynamical And Collisional Evolution Of Dust In Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Charnoz, Sebastien

    2010-10-01

    Gaseous circumstellar disks are rich in dust and are thought to be both accretionaly and dynamically active. Unfortunately large bodies that could be embedded in these disks are still difficult to observe and their putative properties are indirectly inferred from the observable small dust content. It is why constraining the size distribution coupled with dust-dynamics is so critical. Unfortunately, coupling effects such as a realistic time-dependant dynamics, fragmentation and coagulation, has been recognized as numerically challenging and almost no attempt really succeeded with a generic approach. In these disks, the dust dynamics is driven by a variety of processes (gravity, gas drag, radiation pressure..) inducing a size-dependant dynamics, and, at the same time collisional evolution changes the local size distributions. These two effects are intimately coupled because the local dynamics and size-distribution determines the local collision rates, that, in-turn, determines the size-distribution and modifies the particle's dynamics. Here we report on a new algorithm that overcomes these difficulties by using a hybrid approach extending the work of Charnoz & Morbidelli (Icarus, 2004, 2007). We will briefly present the method and focus on gaseous protoplanetary disks either laminar or turbulent (the time dependant transport and dust evolution will be shown) . We will show how the taking into account of a 3D dynamics helps to determine disantengle the dust size-distribution in the disk's photosphere and in the midplane and thus may provide observational signatures of accretion. We will show how the coupling of turbulence with fragmentation may significantly affect the dust/ratio for the smallest bodies. Finally, we will show that an accurate description of the time dependant dynamics of larger dusts (those with Stokes numbers >= 1) may provide a possible path to the formation of bodies larger than the accretion barrier, through accretion in a transitory regime.

  9. Consequences of tidal interaction between disks and orbiting protoplanets for the evolution of multi-planet systems with architecture resembling that of Kepler 444

    NASA Astrophysics Data System (ADS)

    Papaloizou, J. C. B.

    2016-11-01

    We study orbital evolution of multi-planet systems with masses in the terrestrial planet regime induced through tidal interaction with a protoplanetary disk assuming that this is the dominant mechanism for producing orbital migration and circularization. We develop a simple analytic model for a system that maintains consecutive pairs in resonance while undergoing orbital circularization and migration. This model enables migration times for each planet to be estimated once planet masses, circularization times and the migration time for the innermost planet are specified. We applied it to a system with the current architecture of Kepler 444 adopting a simple protoplanetary disk model and planet masses that yield migration times inversely proportional to the planet mass, as expected if they result from torques due to tidal interaction with the protoplanetary disk. Furthermore the evolution time for the system as a whole is comparable to current protoplanetary disk lifetimes. In addition we have performed a number of numerical simulations with input data obtained from this model. These indicate that although the analytic model is inexact, relatively small corrections to the estimated migration rates yield systems for which period ratios vary by a minimal extent. Because of relatively large deviations from exact resonance in the observed system of up to 2 %, the migration times obtained in this way indicate only weak convergent migration such that a system for which the planets did not interact would contract by only {˜ }1 % although undergoing significant inward migration as a whole. We have also performed additional simulations to investigate conditions under which the system could undergo significant convergent migration before reaching its final state. These indicate that migration times have to be significantly shorter and resonances between planet pairs significantly closer during such an evolutionary phase. Relative migration rates would then have to decrease

  10. Chemical Evolution and Network Analysis in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Richard, D.; Davis, S. S.

    2005-12-01

    We present a study of the chemical evolution of protoplanetary disks focusing on the characteristics of the chemical network. Species of particular interest include H2O, CO, OCS, CH3OH and CH3OCH3. We simulate the evolution in a static bi-dimensional disk between the radii of 0.4 and 300 AU. The chemical network is built upon the UMIST rate database. The network is evolved until a stationary state is reached. Each species of interest's sub-network is analyzed to identify the most active reactions. In most cases, a small sub-set of reactions (2-5) is clearly dominant, accounting for more than 90% of the activity for a given species, at a given location. Because of the wide-ranging physical conditions in the disk, with temperatures from 10K to 2000K, these subsets of reactions vary with the location. For example, in the inner disk (0.4 AU), with temperatures over 2000K, H2O chemistry is dominated (in stationary state) by the reversible reaction H2 + OH ⇌ H2O + H ; at radius 0.7 AU, at a temperature of 950K, the activity is divided between H3O+ + HCN → HCNH+ + H2O and H3+ + H2O → H3O+ + H2 ; at 6 AU, with T=135K, between O- +H2 → H2O + e-; and H3+ + H2O → H3O+ + H2. There are two major benefits to identifying these reactions. The first is to reduce the number of chemical reactions to compute realistic abundances, and lower the cost of a future dynamical disk model coupled with the chemical evolution. The second benefit is to pick some reactions to be part of a current project to refine their rates using computational quantum chemistry techniques to address a major shortcoming: the lack of information or reliability concerning the temperature dependence of the reaction rates outside of the experimental window for which data was collected. A large number of rates form the UMIST database have no temperature dependence, and the ones that do are based on the classic Arrhenius law, which can be highly inaccurate if extrapolated over a large temperature range

  11. Structure, stability, and evolution of 3D Rossby vortices in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Richard, S.; Barge, P.; Le Dizès, S.

    2013-11-01

    Context. Large-scale persistent vortices could play a key role in the evolution of protoplanetary disks, particularly in the dead zone where no turbulence associated with a magnetic field is expected. These vortices are known to form easily in 2D disks via the Rossby wave or the baroclinic instability. In three dimensions, however, their formation and stability is a complex problem and still a matter of debate. Aims: We study the formation of vortices by the Rossby wave instability in a stratified inviscid disk and describe their 3D structure, stability, and long-term evolution. Methods: Numerical simulations were performed using a fully compressible hydrodynamical code based on a second-order finite volume method. We assumed a perfect-gas law and a non-homentropic adiabatic flow. Results: The Rossby wave instability is found to proceed in 3D in a similar way as in 2D. Vortices produced by the instability look like columns of vorticity in the whole disk thickness; the weak vertical motions are related to the weak inclination of the vortex axis that appears during the development of the RWI. Vortices with aspect ratios higher than 6 are unaffected by the elliptical instability. They relax into a quasi-steady columnar structure that survives hundreds of rotations while slowly migrating inward toward the star at a rate that reduces with the vortex aspect ratio. Vortices with a lower aspect ratio are by contrast affected by the elliptic instability. Short aspect ratio vortices (χ < 4) are completely destroyed in a few orbital periods. Vortices with an intermediate aspect ratio (4 < χ < 6) are partially destroyed by the elliptical instability in a region away from the midplane where the disk stratification is sufficiently strong. Conclusions: Elongated Rossby vortices can survive many orbital periods in protoplanetary disks in the form of vorticity columns. They could play a significant role in the evolution of the gas and the gathering of solid particles to form

  12. Capture and Evolution of Planetesimals in Circumjovian Disks

    NASA Astrophysics Data System (ADS)

    D'Angelo, Gennaro; Podolak, Morris

    2015-06-01

    We study the evolution of planetesimals in evolved gaseous disks that orbit a solar-mass star and harbor a Jupiter-mass planet at {a}p≈ 5 AU. The gas dynamics are modeled with a three-dimensional hydrodynamics code that employs nested grids and achieves a resolution of one Jupiter radius in the circumplanetary disk. The code models solids as individual particles. Planetesimals are subjected to gravitational forces by the star and the planet, a drag force by the gas, disruption via ram pressure, and mass loss through ablation. The mass evolution of solids is calculated self-consistently with their temperature, velocity, and position. We consider icy and icy/rocky bodies of radius 0.1-100 km, initially deployed on orbits around the star within a few Hill radii (RH) of the planet's orbit. Planetesimals are scattered inward, outward, and toward disk regions of radius r\\gg {a}p. Scattering can relocate significant amounts of solids, provided that regions | r-{a}p| ˜ 3RH are replenished with planetesimals. Scattered bodies can be temporarily captured on planetocentric orbits. Ablation consumes nearly all solids at gas temperatures ≳ 220 K. Super-Keplerian rotation around and beyond the outer edge of the gas gap can segregate ≲ 0.1 {km} bodies, producing solid gap edges at size-dependent radial locations. Capture, break-up, and ablation of solids result in a dust-laden circumplanetary disk with low surface densities of kilometer sized planetesimals, implying relatively long timescales for satellite formation. After a giant planet acquires most of its mass, accretion of solids is unlikely to significantly alter its heavy element content. The luminosity generated by accretion of solids and the contraction luminosity can be of similar orders of magnitude.

  13. THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS OF PLANET MIGRATION IN TURBULENT STRATIFIED DISKS

    SciTech Connect

    Uribe, A. L.; Klahr, H.; Flock, M.; Henning, Th.

    2011-08-01

    We performed three-dimensional magnetohydrodynamic simulations of planet migration in stratified disks using the Godunov code PLUTO, where the disk is turbulent due to the magnetorotational instability. We study the migration for planets with different planet-star mass ratios q = M{sub p} /M{sub s} . In agreement with previous studies, for the low-mass planet cases (q = 5 x 10{sup -6} and 10{sup -5}), migration is dominated by random fluctuations in the torque. For a Jupiter-mass planet (q = M{sub p} /M{sub s} = 10{sup -3} for M{sub s} = 1M{sub sun}), we find a reduction of the magnetic stress inside the orbit of the planet and around the gap region. After an initial stage where the torque on the planet is positive, it reverses and we recover migration rates similar to those found in disks where the turbulent viscosity is modeled by an {alpha} viscosity. For the intermediate-mass planets (q = 5 x 10{sup -5}, 10{sup -4}, and 2 x 10{sup -4}), we find a new and so far unexpected behavior. In some cases they experience sustained and systematic outward migration for the entire duration of the simulation. For this case, the horseshoe region is resolved and torques coming from the corotation region can remain unsaturated due to the stresses in the disk. These stresses are generated directly by the magnetic field. The magnitude of the horseshoe drag can overcome the negative Lindblad contribution when the local surface density profile is flat or increasing outward, which we see in certain locations in our simulations due to the presence of a zonal flow. The intermediate-mass planet is migrating radially outward in locations where there is a positive gradient of a pressure bump (zonal flow).

  14. Spatially Resolved Spectroscopic Star Formation Histories of nearby Disks: Hints of Stellar Migration

    NASA Astrophysics Data System (ADS)

    Yoachim, Peter; Roškar, Rok; Debattista, Victor P.

    2012-06-01

    We use the Mitchell Spectrograph (formerly VIRUS-P) to observe 12 nearby disk galaxies. We successfully measure ages in the outer disk in six systems. In three cases (NGC 2684, NGC 6155, and NGC 7437), we find that a downward break in the disk surface brightness profile corresponds with a change in the dominant stellar population with the interior being dominated by active star formation and the exterior having older stellar populations that are best fit with star formation histories that decline with time. The observed increase in average stellar ages beyond a profile break is similar to theoretical models that predict surface brightness breaks are caused by stellar migration, with the outer disk being populated from scattered old interior stars. In three more cases (IC 1132, NGC 4904, and NGC 6691), we find no significant change in the stellar population as one crosses the break radius. In these galaxies, both the inner and outer disks are dominated by active star formation and younger stellar populations. While radial migration can contribute to the stellar populations beyond the break, it appears that more than one mechanism is required to explain all of our observed stellar profile breaks. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  15. On the Gap-opening Criterion of Migrating Planets in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Malik, M.; Meru, F.; Mayer, L.; Meyer, M.

    2015-03-01

    We perform two-dimensional hydrodynamical simulations to quantitatively explore the torque balance criterion for gap-opening (as formulated by Crida et al.) in a variety of disks when considering a migrating planet. We find that even when the criterion is satisfied, there are instances when planets still do not open gaps. We stress that gap-opening is not only dependent on whether a planet has the ability to open a gap, but whether it can do so quickly enough. This can be expressed as an additional condition on the gap-opening timescale, {{t}gap}, versus the crossing time, {{t}cross}, i.e., the time it takes the planet to cross the region which it is carving out. While this point has been briefly made in the previous literature, our results quantify it for a range of protoplanetary disk properties and planetary masses, demonstrating how crucial it is for gap-opening. This additional condition has important implications for the survival of planets formed by core accretion in low mass disks as well as giant planets or brown dwarfs formed by gravitational instability in massive disks. It is particularly important for planets with intermediate masses susceptible to Type III-like migration. For some observed transition disks or disks with gaps, we expect that estimates on the potential planet masses based on the torque balance gap-opening criterion alone may not be sufficient. With consideration of this additional timescale criterion theoretical studies may find a reduced planet survivability or that planets may migrate further inwards before opening a gap.

  16. A SEMI-ANALYTICAL DESCRIPTION FOR THE FORMATION AND GRAVITATIONAL EVOLUTION OF PROTOPLANETARY DISKS

    SciTech Connect

    Takahashi, Sanemichi Z.; Inutsuka, Shu-ichiro; Machida, Masahiro N. E-mail: inutsuka@nagoya-u.jp E-mail: machida.masahiro.018@m.kyushu-u.ac.jp

    2013-06-10

    We investigate the formation process of self-gravitating protoplanetary disks in unmagnetized molecular clouds. The angular momentum is redistributed by the action of gravitational torques in the massive disk during its early formation. We develop a simplified one-dimensional accretion disk model that takes into account the infall of gas from the envelope onto the disk and the transfer of angular momentum in the disk with an effective viscosity. First we evaluate the gas accretion rate from the cloud core onto the disk by approximately estimating the effects of gas pressure and gravity acting on the cloud core. We formulate the effective viscosity as a function of the Toomre Q parameter that measures the local gravitational stability of the rotating thin disk. We use a function for viscosity that changes sensitively with Q when the disk is gravitationally unstable. We find a strong self-regulation mechanism in the disk evolution. During the formation stage of protoplanetary disks, the evolution of the surface density does not depend on the other details of the modeling of effective viscosity, such as the prefactor of the viscosity coefficient. Next, to verify our model, we compare the time evolution of the disk calculated with our formulation with that of three-dimensional hydrodynamical simulations. The structures of the resultant disks from the one-dimensional accretion disk model agree well with those of the three-dimensional simulations. Our model is a useful tool for the further modeling of chemistry, radiative transfer, and planet formation in protoplanetary disks.

  17. Understanding the Structure and Evolution of Nearby Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng

    2014-01-01

    In order to understand the structure and evolution of disk galaxies, we studied the stellar and gaseous components as well as the star formation rate in nearby disk galaxies. We used PS1 medium deep survey images to derive five-band (grizy) surface brightness profiles down to 30 ABmag/arcsec^2 for about 700 galaxies. From these stellar mass and mass-to-light ratio radial profiles are derived. The stellar mass radial profiles tend to bend-up at large radii, this often traces an extended old stellar population. The mass-to-light ratio profiles tend to rise outside the r25 radii. We also find a larger fraction of up-bending surface brightness profiles than Polen & Trujillo (2006). This may be because their sample is biased towards low surface brightness galaxies. We used HIPASS data as well as VLA HI 21cm data to study the gas component and dynamics of disk galaxies. We used the GALEX UV images to study the star formation of a HI-selected star-forming sample of about 400 galaxies, compiling a database of FUV and NUV radial profiles and related parameters. We used this to study the star forming efficiency (SFE, star formation rate per unit area divided by gas surface mass density) of the sample galaxies. We found that the UV based SFE has a tighter relationship with HI mass than an H_alpha based SFE as typically used in previous studies and the UV SFE is flat across wide range of stellar mass. We constructed a simple model to predict the distribution of interstellar medium and star formation rate in an equilibrium disk with constant two-fluid Toomre Q. This model can reproduces the SFE relations we derived.

  18. Planetesimal-driven planet migration in the presence of a gas disk

    NASA Astrophysics Data System (ADS)

    Capobianco, Christopher C.; Duncan, Martin; Levison, Harold F.

    2011-01-01

    We report here on an extension of a previous study by Kirsh et al. (Kirsh, D.R., Duncan, M., Brasser, R., Levison, H.F. [2009]. Icarus 199, 197-209) of planetesimal-driven migration using our N-body code SyMBA (Duncan, M.J., Levison, H.F., Lee, M.H. [1998]. Astron. J. 116, 2067-2077). The previous work focused on the case of a single planet of mass Mem, immersed in a planetesimal disk with a power-law surface density distribution and Rayleigh distributed eccentricities and inclinations. Typically 10 4-10 5 equal-mass planetesimals were used, where the gravitational force (and the back-reaction) on each planetesimal by the Sun and planet were included, while planetesimal-planetesimal interactions were neglected. The runs reported on here incorporate the dynamical effects of a gas disk, where the Adachi et al. (Adachi, I., Hayashi, C., Nakazawa, K. [1976]. Prog. Theor. Phys. 56, 1756-1771) prescription of aerodynamic gas drag is implemented for all bodies. In some cases the Papaloizou and Larwood (Papaloizou, J.C.B., Larwood, J.D. [2000]. Mon. Not. R. Astron. Soc. 315, 823-833) prescription of Type-I migration for the planet are implemented, as well as a mass distribution. In the gas-free cases, rapid planet migration was observed - at a rate independent of the planet's mass - provided the planet's mass was not large compared to the mass in planetesimals capable of entering its Hill sphere. In such cases, both inward and outward migrations can be self-sustaining, but there is a strong propensity for inward migration. When a gas disk is present, aerodynamic drag can substantially modify the dynamics of scattered planetesimals. For sufficiently large or small mono-dispersed planetesimals, the planet typically migrates inward. However, for a range of plausible planetesimal sizes (i.e. 0.5-5.0 km at 5.0 AU in a minimum mass Hayashi disk) outward migration is usually triggered, often accompanied by substantial planetary mass accretion. The origins of this behaviour are

  19. Evolution of migration in a periodically changing environment.

    PubMed

    Blanquart, F; Gandon, S

    2011-02-01

    The ability to migrate can evolve in response to various forces. In particular, when selection is heterogeneous in space but constant in time, local adaptation induces a fitness cost on immigrants and selects against migration. The evolutionary outcome, however, is less clear when selection also varies temporally. Here, we present a two-locus model analyzing the effects of spatial and temporal variability in selection on the evolution of migration. The first locus is under temporally varying selection (various periodic functions are considered, but a general nonparametric framework is used), and the second locus is a modifier controlling migration ability. First, we study the dynamics of local adaptation and derive the migration rate that maximizes local adaptation as a function of the speed and geometry of the fluctuations in the environment. Second, we derive an analytical expression for the evolutionarily stable migration rate. When there is no cost of migration, we show that higher migration rates are favored when selection changes fast. When migration is costly, however, the evolutionarily stable migration rate is maximal for an intermediate speed of the variation of selection. This model may help in understanding the evolution of migration in a broad range of scenarios and, in particular, in host-parasite systems, where selection is thought to vary quickly in both space and time.

  20. Oxygen abundance in local disk and bulge: chemical evolution with a strictly universal IMF

    NASA Astrophysics Data System (ADS)

    Caimmi, R.; Milanese, E.

    2009-09-01

    , or enhanced in, forming stars at different rates with respect to a selected reference case. Models involving a strictly universal IMF (i.e. gas neither inhibited from, nor enhanced in, forming stars with respect to a selected reference case) can also reproduce the data to an acceptable extent. Our main conclusions are (1) different models are necessary to fit the (incomplete) halo sample, which is consistent with the idea of two distinct halo components: an inner, flattened halo in slow prograde rotation, and an outer, spherical halo in net retrograde rotation (Carollo et al. in Nature 450:1020, 2007); (2) the oxygen enrichment within the inner SN halo, the SN thick disk, and the bulge, was similar and coeval within the same metallicity range, as inferred from observations (Prochaska et al. in Astron. J. 120:2513, 2000); (3) the fit to thin disk data implies an oxygen abundance range similar to its thick disk counterpart, with the extension of conclusion (2) to the thin disk, and the evolution of the thick + thin disk as a whole (Haywood in Mon. Not. R. Astron. Soc. 388:1175, 2008) cannot be excluded; (4) leaving outside the outer halo, a fit to the data related to different environments is provided by models with a strictly universal IMF but different probabilities of a region being active, which implies different global efficiencies of the star formation rate; (5) a special case of stellar migration across the disk can be described by models with enhanced star formation, where a fraction of currently observed SN stars were born in situ and a comparable fraction is due to the net effect of stellar migration, according to recent results based on high-resolution N-body + smooth particle hydrodynamics simulations (Ro\\vskar et al. in Astrophys. J. Lett. 684:L79, 2008).

  1. ON THE HORSESHOE DRAG OF A LOW-MASS PLANET. II. MIGRATION IN ADIABATIC DISKS

    SciTech Connect

    Masset, F. S.; Casoli, J. E-mail: jules.casoli@cea.f

    2009-09-20

    We evaluate the horseshoe drag exerted on a low-mass planet embedded in a gaseous disk, assuming the disk's flow in the co-orbital region to be adiabatic. We restrict this analysis to the case of a planet on a circular orbit, and we assume a steady flow in the corotating frame. We also assume that the corotational flow upstream of the U-turns is unperturbed, so that we discard saturation effects. In addition to the classical expression for the horseshoe drag in barotropic disks, which features the vortensity gradient across corotation, we find an additional term which scales with the entropy gradient, and whose amplitude depends on the perturbed pressure at the stagnation point of the horseshoe separatrices. This additional torque is exerted by evanescent waves launched at the horseshoe separatrices, as a consequence of an asymmetry of the horseshoe region. It has a steep dependence on the potential's softening length, suggesting that the effect can be extremely strong in the three-dimensional case. We describe the main properties of the co-orbital region (the production of vortensity during the U-turns, the appearance of vorticity sheets at the downstream separatrices, and the pressure response), and we give torque expressions suitable to this regime of migration. Side results include a weak, negative feedback on migration, due to the dependence of the location of the stagnation point on the migration rate, and a mild enhancement of the vortensity-related torque at a large entropy gradient.

  2. Migration and growth of protoplanetary embryos. I. Convergence of embryos in protoplanetary disks

    SciTech Connect

    Zhang, Xiaojia; Lin, Douglas N. C.; Liu, Beibei; Li, Hui

    2014-12-10

    According to the core accretion scenario, planets form in protostellar disks through the condensation of dust, coagulation of planetesimals, and emergence of protoplanetary embryos. At a few AU in a minimum mass nebula, embryos' growth is quenched by dynamical isolation due to the depletion of planetesimals in their feeding zone. However, embryos with masses (M{sub p} ) in the range of a few Earth masses (M {sub ⊕}) migrate toward a transition radius between the inner viscously heated and outer irradiated regions of their natal disk. Their limiting isolation mass increases with the planetesimals surface density. When M{sub p} > 10 M {sub ⊕}, embryos efficiently accrete gas and evolve into cores of gas giants. We use a numerical simulation to show that despite stream line interference, convergent embryos essentially retain the strength of non-interacting embryos' Lindblad and corotation torques by their natal disks. In disks with modest surface density (or equivalently accretion rates), embryos capture each other in their mutual mean motion resonances and form a convoy of super-Earths. In more massive disks, they could overcome these resonant barriers to undergo repeated close encounters, including cohesive collisions that enable the formation of massive cores.

  3. The evolution of protostellar disks under the influence of external UV radiation and central stellar winds

    NASA Technical Reports Server (NTRS)

    Yorke, H. W.; Richling, S.

    2001-01-01

    The evolution and appearance of circumstellar disks in star forming regions can be influenced strongly by the radiation from nearby hot stars. Here we describe the results of numerical simulations of the evolution of protostellar disks and their immediate surroundings under the influence of external UV radiation.

  4. Propeller Peregrinations: Ongoing Observations of Disk-Embedded Migration In Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.

    2012-10-01

    The "propeller" moons within Saturn's rings are the first objects ever to have their orbits tracked while embedded in a disk, rather than moving through empty space (Tiscareno etal. 2010, ApJL; hereafter T10). The km-sized "giant propellers" whose orbits have been tracked in the outer-A ring, as well as their smaller 0.1-km-sized brethren swarming in the mid-A ring, are not seen directly; rather, their locations are inferred by means of the propeller-shaped disturbances they create in the surrounding ring material (Tiscareno etal. 2006, Nature; Sremcevic etal. 2007, Nature; Tiscareno etal. 2008, AJ). The orbits of giant propellers are primarily Keplerian, but with clear excursions of the semimajor axis on the order of +-0.15 degrees longitude for the largest and best-studied, and +-several degrees longitude for others (T10). Most theories that have been proposed to explain the non-Keplerian motion of propeller moons rely on gravitational and/or collisional interactions between the moon and the surrounding disk, and thus hold out the prospect for directly observing processes that are important in protoplanetary scenarios and other disk systems. One model suggests that the moons migrate due to azimuthal variations in the disk that they themselves create (Pan and Chiang 2010, ApJL; 2012, AJ). Although the classical form of "Type I migration," relying on the asymmetries in the dynamics themselves, is not powerful enough to explain the observed motions (Crida etal. 2010, AJ), modifications of that model relying on temporal (Rein and Papaloizou 2010, A&A, Pan etal. 2012, MNRAS) or radial (Tiscareno 2012, P&SS) variations in the disk have been suggested. The different models make different predictions, and future data will likely distinguish among them. In 2012, after a nearly two-year hiatus, Cassini left Saturn's ringplane and resumed tracking the propellers. We will report early results of the new observing campaign.

  5. Dynamical Phase Transition in a Model for Evolution with Migration

    NASA Astrophysics Data System (ADS)

    Waclaw, Bartłomiej; Allen, Rosalind J.; Evans, Martin R.

    2010-12-01

    We study a simple quasispecies model for evolution in two different habitats, with different fitness landscapes, coupled through one-way migration. Our key finding is a dynamical phase transition at a critical value of the migration rate, at which the time to reach the steady state diverges. The genetic composition of the population is qualitatively different above and below the transition. Using results from localization theory, we show that the critical migration rate may be very small—demonstrating that evolutionary outcomes can be very sensitive to even a small amount of migration.

  6. Consumer resource interactions and the evolution of migration

    PubMed Central

    Drown, Devin M.; Dybdahl, Mark F.; Gomulkiewicz, Richard

    2013-01-01

    Theoretical studies have demonstrated that selection will favor increased migration when fitnesses vary both temporally and spatially, but it is far from clear how pervasive those theoretical conditions are in nature. While consumer-resource interactions are omnipresent in nature and can generate spatial and temporal variation, it is unknown even in theory whether these dynamics favor the evolution of migration. We develop a mathematical model to address whether and how migration evolves when variability in fitness is determined at least in part by consumer-resource coevolutionary interactions. Our analyses show that such interactions can drive the evolution of migration in the resource, consumer, or both species and thus supplies a general explanation for the pervasiveness of migration. Over short time scales, we show the direction of change in migration rate is determined primarily by the state of local adaptation of the species involved: rates increase when a species is locally maladapted and decrease when locally adapted. Our results reveal that long-term evolutionary trends in migration rates can differ dramatically depending on the strength or weakness of interspecific interactions and suggest an explanation for the evolutionary divergence of migration rates among interacting species. PMID:24152008

  7. ON THE ORBITAL EVOLUTION OF A GIANT PLANET PAIR EMBEDDED IN A GASEOUS DISK. II. A SATURN-JUPITER CONFIGURATION

    SciTech Connect

    Zhang Hui; Zhou Jilin

    2010-08-10

    We carry out a series of high-resolution (1024 x 1024) hydrodynamic simulations to investigate the orbital evolution of a Saturn-Jupiter pair embedded in a gaseous disk. This work extends the results of our previous work by exploring a different orbital configuration-Jupiter lies outside Saturn (q < 1, where q {identical_to} M{sub i} /M{sub o} is the mass ratio of the inner planet and the outer one). We focus on the effects of different initial separations (d) between the two planets and the various surface density profiles of the disk, where {sigma} {proportional_to} r {sup -}{alpha}. We also compare the results of different orbital configurations of the planet pair. Our results show that (1) when the initial separation is relatively large (d>d {sub iLr}, where d {sub iLr} is the distance between Jupiter and its first inner Lindblad resonance), the two planets undergo divergent migration. However, the inward migration of Saturn could be halted when Jupiter compresses the inner disk in which Saturn is embedded. (2) Convergent migration occurs when the initial separation is smaller (d < d {sub iLr}) and the density slope of the disk is nearly flat ({alpha} < 1/2). Saturn is then forced by Jupiter to migrate inward where the two planets are trapped into mean motion resonances (MMRs), and Saturn may get very close to the central star. (3) In the case of q < 1, the eccentricity of Saturn could be excited to a very high value (e{sub S} {approx} 0.4-0.5) by the MMRs and the system could maintain stability. These results explain the formation of MMRs in the exoplanet systems where the outer planet is more massive than the inner one. It also helps us to understand the origin of the 'hot Jupiter/Saturn' with a highly eccentric orbit.

  8. Hydrocarbon Emission Rings in Protoplanetary Disks Induced by Dust Evolution

    NASA Astrophysics Data System (ADS)

    Bergin, Edwin A.; Du, Fujun; Cleeves, L. Ilsedore; Blake, G. A.; Schwarz, K.; Visser, R.; Zhang, K.

    2016-11-01

    We report observations of resolved C2H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C3H2 emission ring with an identical spatial distribution to C2H in the TW Hya disk. This suggests that these are hydrocarbon rings (i.e., not limited to C2H). Using a detailed thermo-chemical model we show that reproducing the emission from C2H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.

  9. The End of Protoplanetary Disk Evolution: An ALMA Survey of Upper Scorpius

    NASA Astrophysics Data System (ADS)

    Barenfeld, Scott A.; Carpenter, John M.; Sargent, Anneila I.; Ricci, Luca; Isella, Andrea

    2017-01-01

    The evolution of the mass of solids in circumstellar disks is a key factor in determining how planets form. Infrared observations have established that the dust in primordial disks vanishes around the majority of stars by an age of 5-10 Myr. However, how this disappearance proceeds is poorly constrained. Only with longer wavelength observations, where the dust emission is optically thin, is it possible to measure disk dust mass and how it varies as a function of age. To this end, we have obtained ALMA 0.88 mm observations of over 100 sources with suspected circumstellar disks in the Upper Scorpius OB Association (Upper Sco). The 5-11 Myr age of Upper Sco suggests that any such disks will be quite evolved, making this association an ideal target to compare to systems of younger disks in order to study evolution. With ALMA, we achieve an order of magnitude improvement in sensitivity over previous (sub)millimeter surveys of Upper Sco and detect 58 disks in the continuum. We calculate the total dust masses of these disks and compare their masses to those of younger disks in Taurus, Lupus, and Chamaeleon. We find strong evidence for a decline in disk dust mass between these 1-3 Myr old systems and the 5-11 Myr old Upper Sco. Our results represent the first definitive measurement of a decline in disk dust mass with age.

  10. VISCOUS EVOLUTION AND PHOTOEVAPORATION OF CIRCUMSTELLAR DISKS DUE TO EXTERNAL FAR ULTRAVIOLET RADIATION FIELDS

    SciTech Connect

    Anderson, Kassandra R.; Adams, Fred C.; Calvet, Nuria

    2013-09-01

    This paper explores the effects of FUV radiation fields from external stars on circumstellar disk evolution. Disks residing in young clusters can be exposed to extreme levels of FUV flux from nearby OB stars, and observations show that disks in such environments are being actively photoevaporated. Typical FUV flux levels can be factors of {approx}10{sup 2}-10{sup 4} higher than the interstellar value. These fields are effective in driving mass loss from circumstellar disks because they act at large radial distance from the host star, i.e., where most of the disk mass is located, and where the gravitational potential well is shallow. We combine viscous evolution (an {alpha}-disk model) with an existing FUV photoevaporation model to derive constraints on disk lifetimes, and to determine disk properties as functions of time, including mass-loss rates, disk masses, and radii. We also consider the effects of X-ray photoevaporation from the host star using an existing model, and show that for disks around solar-mass stars, externally generated FUV fields are often the dominant mechanism in depleting disk material. For sufficiently large viscosities, FUV fields can efficiently photoevaporate disks over the entire range of parameter space. Disks with viscosity parameter {alpha} = 10{sup -3} are effectively dispersed within 1-3 Myr; for higher viscosities ({alpha} = 10{sup -2}) disks are dispersed within {approx}0.25-0.5 Myr. Furthermore, disk radii are truncated to less than {approx}100 AU, which can possibly affect the formation of planets. Our model predictions are consistent with the range of observed masses and radii of proplyds in the Orion Nebula Cluster.

  11. Evolution of cooperation driven by social-welfare-based migration

    NASA Astrophysics Data System (ADS)

    Li, Yan; Ye, Hang; Zhang, Hong

    2016-03-01

    Individuals' migration behavior may play a significant role in the evolution of cooperation. In reality, individuals' migration behavior may depend on their perceptions of social welfare. To study the relationship between social-welfare-based migration and the evolution of cooperation, we consider an evolutionary prisoner's dilemma game (PDG) in which an individual's migration depends on social welfare but not on the individual's own payoff. By introducing three important social welfare functions (SWFs) that are commonly studied in social science, we find that social-welfare-based migration can promote cooperation under a wide range of parameter values. In addition, these three SWFs have different effects on cooperation, especially through the different spatial patterns formed by migration. Because the relative efficiency of the three SWFs will change if the parameter values are changed, we cannot determine which SWF is optimal for supporting cooperation. We also show that memory capacity, which is needed to evaluate individual welfare, may affect cooperation levels in opposite directions under different SWFs. Our work should be helpful for understanding the evolution of human cooperation and bridging the chasm between studies of social preferences and studies of social cooperation.

  12. The intrinsic Neptune Trojan orbit distribution: Implications for the primordial disk and planet migration

    NASA Astrophysics Data System (ADS)

    Parker, Alex H.

    2015-02-01

    The present-day orbit distribution of the Neptune Trojans is a powerful probe of the dynamical environment of the outer Solar System during the late stages of planet migration. In this work, I conservatively debias the inclination, eccentricity, and libration amplitude distributions of the Neptune Trojans by reducing a priori unknown discovery and follow-up survey properties to nuisance parameters and using a likelihood-free Bayesian rejection sampler for parameter estimation. Using this survey-agnostic approach, I confirm that the Neptune Trojans are a dynamically excited population: at >95% confidence, the Neptune Trojans' inclination width must be σi>11° . For comparison and motivation purposes, I also model the Jupiter Trojan orbit distributions in the same basis and produce new estimates of their parameters (Jupiter Trojan σi=14.4° ±0.5° , σL11=11.8° ±0.5° , and σe=0.061±0.002 ). The debiased inclination, libration amplitude, and eccentricity distributions of the Neptune Trojans are nominally very similar to those of the Jupiter Trojans. I use these new constraints to inform a suite of simulations of Neptune Trojan capture by an eccentric, rapidly-migrating Neptune from an initially dynamically-hot disk. These simulations demonstrate that if migration and eccentricity-damping timescales were short (τa≲ 10 Myr, τe≲ 1 Myr), the disk that Neptune migrated into must have been pre-heated (prior to Neptune's appearance) to a width comparable to the Neptune Trojans' extant width to produce a captured population with an inclination distribution width consistent with that of the observed population.

  13. Nonlinear evolution of protostellar disks and light modulations in young stellar objects

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.; Bell, K. R.

    1990-01-01

    An evolutionary model of dynamical processes in protostellar disks is described and illustrated with graphs of typical results. The effective transport mechanisms are discussed, including thermal convection, nonaxisymmetric gravitational instabilities in the outer regions of disks, and wave propagation. Consideration is then given to the stages of dynamical evolution, FU Ori outburst phenomena, unsteady accretion-disk flows, and nonlinear feedback as a mechanism to modulate mass transfer. The simulations show that mass redistribution is determined by angular-momentum transfer, which in turn is regulated by the effective viscosity generated by convectively driven turbulence. Significant mass transfer occurs as a result of mixing of infalling material with disk gas and is affected by the tidal torque associated with the growth of nonaxisymmetric disturbances in the outer disk. The time scale for disk evolution is found to be about 1 Myr.

  14. Tracing Evolution of Galactic Disks: Continuing the Legacy of HST / Keck with TMT, JWST and ALMA

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik

    2014-07-01

    With HST and Keck we have been able to measure the detailed assembly of L* and brighter galaxy disks to z~0.85. We have shown evidence for downsizing in the formation and evolution of structures such as stellar bars. These signposts for disk maturity have allowed us to measure the precise rate of disk assembly over the last 7Gyr. Recent analysis of DEEP2 data also indicate that bars are absent in dynamically hot disks - however, we do not have solid measurements for stellar velocity dispersion in disks at high redshift. With the TMT we will be able to make such measurements for the first time. Combined with high resolution infrared observations from JWST we will be able to measure the stellar mass distribution and structures in disks to z~3. And with ALMA we are measuring the evolution of the molecular gas fraction and dust in disk galaxies. I will discuss the synergy of these new great observatories and describe how they will allow us to extend our study of disk assembly and evolution from the present day to the epoch of disk formation at z~3. I will also discuss how these facilities will allow us to push the boundaries of such studies to lower mass (sub-L*) galaxies.

  15. Gas Evolution in the Planet-Forming Region of Disks

    NASA Astrophysics Data System (ADS)

    Pascucci, Ilaria

    2010-11-01

    The timescale over which gas-rich disks disperse profoundly affects not only the formation of giant planets but also the habitability of terrestrial planets. In this contributed talk we presented new atomic and molecular diagnostics that can be used to trace the dispersal of gas at disk radii where planets form. We also showed the first observational evidence for photoevaporation driven by the central star and discussed the efficiency of this disk dispersal mechanism.

  16. The evolution of stellar metallicity gradients of the Milky Way disk from LSS-GAC main sequence turn-off stars: a two-phase disk formation history?

    NASA Astrophysics Data System (ADS)

    Xiang, Mao-Sheng; Liu, Xiao-Wei; Yuan, Hai-Bo; Huang, Yang; Wang, Chun; Ren, Juan-Juan; Chen, Bing-Qiu; Sun, Ning-Chen; Zhang, Hua-Wei; Huo, Zhi-Ying; Rebassa-Mansergas, Alberto

    2015-08-01

    Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk. We use 297 042 main sequence turn-off stars selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC) to determine the radial and vertical gradients of stellar metallicity, Δ[Fe/H]/ΔR and Δ[Fe/H]/Δ|Z| of the Milky Way disk in the direction of the anticenter. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. We have carried out a detailed analysis of the selection effects resulting from the selection, observation and data reduction of LSS-GAC targets and the potential biases of a magnitude limited sample on the determinations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars with the oldest ages (≳ 11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars with the oldest ages (≳ 11 Gyr) are negative and only show very weak variations with Galactocentric distance in the disk plane, R, while those yielded by younger stars show strong variations with R. After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maximum (steepest) at age 7-8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assembly of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are

  17. Formation and Evolution of the Disk System of the Milky Way: [alpha/Fe] Ratios and Kinematics of the SEGUE G-Dwarf Sample

    SciTech Connect

    Lee, Young Sun; Beers, Timothy C.; An, Deokkeun; Ivezic, Zeljko; Just, Andreas; Rockosi, Constance M.; Morrison, Heather L.; Johnson, Jennifer A.; Schonrich, Ralph; Bird, Jonathan; Yanny, Brian; /Fermilab /Case Western Reserve U.

    2011-04-01

    of distance from the plane; neither subsample has significant numbers of stars with eccentricity above 0.6. These observational results provide strong new constraints on models for the formation and evolution of the Milky Way's disk system. For example, the observed dependence of the mean rotational velocity on metallicity for thin-disk stars is inconsistent with predictions from classical local chemical evolution models. We also consider the predictions of several contemporary models of disk evolution, such as radial migration, gas-rich mergers, disk heating, and pure accretion models. We find that radial migration appears to have played an important role in the evolution of the thin-disk population, but possibly less so, relative to the gas-rich merger or disk heating scenarios, for the thick disk. Pure accretion models appear to be ruled out by the observed distribution of eccentricities for thick-disk stars. We emphasize that more physically realistic models, and simulations that probe a greater range of disk formation scenarios, need to be constructed in order to carry out the detailed quantitative comparisons that our new data enable.

  18. Migration and the evolution of duetting in songbirds.

    PubMed

    Logue, David M; Hall, Michelle L

    2014-05-07

    Many groups of animals defend shared resources with coordinated signals. The best-studied of these signals are the vocal duets produced by mated pairs of birds. Duets are believed to be more common among tropical-breeding species, but a comprehensive test of this hypothesis is lacking, and the mechanisms that generate latitudinal patterns in duetting are not known. We used a stratified sample of 372 songbird species to conduct the first broad-scale, phylogenetically explicit analysis of duet evolution. We found that duetting evolves in association with the absence of migration, but not with sexual monochromatism or tropical breeding. We conclude that the evolution of migration exerts a major influence on the evolution of duetting. The perceived association between tropical breeding and duetting may be a by-product of the migration-duetting relationship. Migration reduces the average duration of partnerships, potentially reducing the benefits of cooperative behaviour, including duetting. Ultimately, the evolution of coordinated resource-defence signals in songbirds may be driven by ecological conditions that favour sedentary lifestyles and social stability.

  19. STRUCTURE AND EVOLUTION OF CIRCUMBINARY DISKS AROUND SUPERMASSIVE BLACK HOLE BINARIES

    SciTech Connect

    Rafikov, Roman R.

    2013-09-10

    We explore properties of circumbinary disks around supermassive black hole (SMBH) binaries in centers of galaxies by reformulating standard viscous disk evolution in terms of the viscous angular momentum flux F{sub J}. If the binary stops gas inflow and opens a cavity in the disk, then the inner disk evolves toward a constant-F{sub J} (rather than a constant M-dot ) state. We compute disk properties in different physical regimes relevant for SMBH binaries, focusing on the gas-assisted evolution of systems starting at separations 10{sup -4} - 10{sup -2} pc, and find the following. (1) Mass pileup at the inner disk edge caused by the tidal barrier accelerates binary inspiral. (2) Binaries can be forced to merge even by a disk with a mass below that of the secondary. (3) Torque on the binary is set non-locally, at radii far larger than the binary semi-major axis; its magnitude does not reflect disk properties in the vicinity of the binary. (4) Binary inspiral exhibits hysteresis-it depends on the past evolution of the disk. (5) The Eddington limit can be important for circumbinary disks even if they accrete at sub-Eddington rates, but only at late stages of the inspiral. (6) Gas overflow across the orbit of the secondary can be important for low secondary mass, high- M-dot systems, but mainly during the inspiral phase dominated by the gravitational wave emission. (7) Circumbinary disks emit more power and have harder spectra than constant M-dot disks; their spectra are very sensitive to the amount of overflow across the secondary orbit.

  20. DISK EVOLUTION IN THE THREE NEARBY STAR-FORMING REGIONS OF TAURUS, CHAMAELEON, AND OPHIUCHUS

    SciTech Connect

    Furlan, E.; Watson, Dan M.; McClure, M. K. E-mail: dmw@pas.rochester.ed

    2009-10-01

    We analyze samples of Spitzer Infrared Spectrograph spectra of T Tauri stars in the Ophiuchus, Taurus, and Chamaeleon I star-forming regions, whose median ages lie in the <1-2 Myr range. The median mid-infrared spectra of objects in these three regions are similar in shape, suggesting, on average, similar disk structures. When normalized to the same stellar luminosity, the medians follow each other closely, implying comparable mid-infrared excess emission from the circumstellar disks. We use the spectral index between 13 and 31 {mu}m and the equivalent width of the 10 {mu}m silicate emission feature to identify objects whose disk configuration departs from that of a continuous, optically thick accretion disk. Transitional disks, whose steep 13-31 {mu}m spectral slope and near-IR flux deficit reveal inner disk clearing, occur with about the same frequency of a few percent in all three regions. Objects with unusually large 10 {mu}m equivalent widths are more common (20%-30%); they could reveal the presence of disk gaps filled with optically thin dust. Based on their medians and fraction of evolved disks, T Tauri stars in Taurus and Chamaeleon I are very alike. Disk evolution sets in early, since already the youngest region, the Ophiuchus core (L1688), has more settled disks with larger grains. Our results indicate that protoplanetary disks show clear signs of dust evolution at an age of a few Myr, even as early as approx1 Myr, but age is not the only factor determining the degree of evolution during the first few million years of a disk's lifetime.

  1. Evolution of the Milky Way with radial motions of stars and gas. I. The solar neighbourhood and the thin and thick disks

    NASA Astrophysics Data System (ADS)

    Kubryk, M.; Prantzos, N.; Athanassoula, E.

    2015-08-01

    Context. We study the role of radial migration of stars on the chemical evolution of the Milky Way disk. Aims: We are interested in the impact of that process on the local properties of the disk (age-metallicity relation and its dispersion, metallicity distribution, evolution of abundance ratios) and on the morphological properties of the resulting thick and thin disks. Methods: We use a model with several new or up-dated ingredients: atomic and molecular gas phases, star formation that depends on molecular gas, yields from a recent homogeneous grid and observationally inferred SNIa rates. We describe radial migration with parametrised time- and radius-dependent diffusion coefficients, based on the analysis of an N-body+SPH simulation. We also consider parametrised radial gas flows, induced by the action of the Galactic bar. Results: Our model reproduces current values of most of the main global observables of the MW disk and bulge, and also the observed "stacked" evolution of MW-type galaxies. The azimuthally averaged radial velocity of gas inflow is constrained to less than a few tenths of km s-1. Radial migration is constrained by the observed dispersion in the age-metallicity relation. Assuming that the thick disk is the oldest (>9 Gyr) part of the disk, we find that the adopted radial migration scheme can quantitatively reproduce the main local properties of the thin and thick disk: metallicity distributions, "two-branch" behaviour in the O/Fe vs. Fe/H relation and the local surface densities of stars. The thick disk extends up to ~11 kpc and has a scale length of 1.8 kpc, which is considerably shorter than the thin disk, because of the inside-out formation scheme. We also show how, in this framework, current and forthcoming spectroscopic observations can constrain the nucleosynthesis yields of massive stars for the metallicity range of 0.1 Z⊙ to 2-3 Z⊙. Appendices are available in electronic form at http://www.aanda.org

  2. The Evolution of a Planet-Forming Disk (Artist's Concept Animation)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the evolution of a planet-forming disk around a star. Initially, the young disk is bright and thick with dust, providing raw materials for building planets. In the first 10 million years or so, gaps appear within the disk as newborn planets coalesce out of the dust, clearing out a path.

    In time, this planetary 'debris disk' thins out as gravitational interactions with numerous planets slowly sweep away the dust. Steady pressure from the starlight and solar winds also blows out the dust. After a few billion years, only a thin ring remains in the outermost reaches of the system, a faint echo of the once-brilliant disk.

    Our own solar system has a similar debris disk -- a ring of comets called the Kuiper Belt. Leftover dust in the inner portion of the solar system is known as 'zodiacal dust.'

    Bright, young disks can be imaged directly by visible-light telescopes, such as NASA's Hubble Space Telescope. Older, fainter debris disks can be detected only by infrared telescopes like NASA's Spitzer Space Telescope, which sense the disks' dim heat.

  3. Disk Evolution in Cep OB2: Results from the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Sicilia-Aguilar Aurora; Hartmann, Lee W.; Calvet Nuria; Megeath, S. T.; Muzerolle, James; Allen, Lori; D'Alessio, Paola; Merin, Bruno; Stauffer, John; Lada, Charles; Young, Erick

    2006-01-01

    We presented the results of an infrared imaging survey of Tr 37 and NGC 7160 using the IRAC and MIPS instruments on board the Spitzer Space Telescope. Our observations cover the wavelength range from 3.6 to 24 microns, allowing us to detect disk emission over a typical range of radii 0.1 to 20 AU from the central star. In Tr 37, with an age of about 4 Myr, about 48% of the low-mass stars exhibit detectable disk emission in the IRAC bands. Roughly 10% of the stars with disks may be "transition" objects, with essentially photospheric fluxes at wavelengths i 4.5 microns but with excesses at longer wavelengths, indicating an optically thin inner disk. The median optically thick disk emission in Tr 37 is lower than the corresponding median for stars in the younger Taurus region; the decrease in infrared excess is larger at 6-8 microns than at 24 microns, suggesting that grain growth and/or dust settling has proceeded faster at smaller disk radii, as expected on general theoretical grounds. Only about 4% of the low-mass stars in the 10 Myr old cluster NGC 7160 show detectable infrared disk emission. We also find evidence for 24 micron excesses around a few intermediate-mass stars, which may represent so-called "debris disk" systems. Our observations provided new constraints on disk evolution through an important age range.

  4. Evolution of states in a continuum migration model

    NASA Astrophysics Data System (ADS)

    Kondratiev, Yuri; Kozitsky, Yuri

    2017-03-01

    The Markov evolution of states of a continuum migration model is studied. The model describes an infinite system of entities placed in R^d in which the constituents appear (immigrate) with rate b(x) and disappear, also due to competition. For this model, we prove the existence of the evolution of states μ _0 mapsto μ _t such that the moments μ _t(N_Λ ^n) , nin N, of the number of entities in compact Λ subset R^d remain bounded for all t>0 . Under an additional condition, we prove that the density of entities and the second correlation function remain point-wise bounded globally in time.

  5. Young stars in ɛ Chamaleontis and their disks: disk evolution in sparse associations

    NASA Astrophysics Data System (ADS)

    Fang, M.; van Boekel, R.; Bouwman, J.; Henning, Th.; Lawson, W. A.; Sicilia-Aguilar, A.

    2013-01-01

    Context. The nearby young stellar association ɛ Cha has an estimated age of 3-5 Myr, making it an ideal laboratory to study the disk dissipation process and provide empirical constraints on the timescale of planet formation. Aims: We wish to complement existing optical and near-infrared data of the ɛ Cha association, which provide the stellar properties of its members, with mid-infrared data that probe the presence, geometry, and mineralogical composition of protoplanetary disks around individual stars. Methods: We combine the available literature data with our Spitzer/IRS spectroscopy and VLT/VISIR imaging data. We use proper motions to refine the membership of ɛ Cha. Masses and ages of individual stars are estimated by fitting model atmospheres to the optical and near-infrared photometry, followed by placement in the Hertzsprung-Russell diagram. The Spitzer/IRS spectra are analyzed using the two-layer temperature distribution spectral decomposition method. Results: Two stars previously identified as members, CXOU J120152.8 and 2MASS J12074597, have proper motions that are very different from those of the other stars. But other observations suggest that the two stars are still young and thus might still be related to ɛ Cha. HD 104237C is the lowest mass member of ɛ Cha with an estimated mass of ~13-15 Jupiter masses. The very low mass stars USNO-B120144.7 and 2MASS J12005517 show globally depleted spectral energy distributions, pointing at strong dust settling. 2MASS J12014343 may have a disk with a very specific inclination, where the central star is effectively screened by the cold outer parts of a flared disk, but the 10 μm radiation of the warm inner disk can still reach us. We find that the disks in sparse stellar associations are dissipated more slowly than those in denser (cluster) environments. We detect C2H2 rovibrational band around 13.7 μm on the IRS spectrum of USNO-B120144.7. We find strong signatures of grain growth and crystallization in all

  6. THE TORQUING OF CIRCUMNUCLEAR ACCRETION DISKS BY STARS AND THE EVOLUTION OF MASSIVE BLACK HOLES

    SciTech Connect

    Bregman, Michal; Alexander, Tal

    2012-03-20

    An accreting massive black hole (MBH) in a galactic nucleus is surrounded by a dense stellar cluster. We analyze and simulate numerically the evolution of a thin accretion disk due to its internal viscous torques, due to the frame-dragging torques of a spinning MBH (the Bardeen-Petterson effect), and due to the orbit-averaged gravitational torques by the stars (resonant relaxation). We show that the evolution of the MBH mass accretion rate, the MBH spin growth rate, and the covering fraction of the disk relative to the central ionizing continuum source, are all strongly coupled to the stochastic fluctuations of the stellar potential via the warps that the stellar torques excite in the disk. These lead to fluctuations by factors of up to a few in these quantities over a wide range of timescales, with most of the power on timescales {approx}> (M{sub .}/M{sub d} )P(R{sub d} ), where M{sub .} and M{sub d} are the masses of the MBH and disk, and P is the orbital period at the disk's mass-weighted mean radius R{sub d}. The response of the disk is stronger the lighter it is and the more centrally concentrated the stellar cusp. As proof of concept, we simulate the evolution of the low-mass maser disk in NGC 4258 and show that its observed O(10 Degree-Sign ) warp can be driven by the stellar torques. We also show that the frame dragging of a massive active galactic nucleus disk couples the stochastic stellar torques to the MBH spin and can excite a jitter of a few degrees in its direction relative to that of the disk's outer regions.

  7. The Torquing of Circumnuclear Accretion Disks by Stars and the Evolution of Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Bregman, Michal; Alexander, Tal

    2012-03-01

    An accreting massive black hole (MBH) in a galactic nucleus is surrounded by a dense stellar cluster. We analyze and simulate numerically the evolution of a thin accretion disk due to its internal viscous torques, due to the frame-dragging torques of a spinning MBH (the Bardeen-Petterson effect), and due to the orbit-averaged gravitational torques by the stars (resonant relaxation). We show that the evolution of the MBH mass accretion rate, the MBH spin growth rate, and the covering fraction of the disk relative to the central ionizing continuum source, are all strongly coupled to the stochastic fluctuations of the stellar potential via the warps that the stellar torques excite in the disk. These lead to fluctuations by factors of up to a few in these quantities over a wide range of timescales, with most of the power on timescales >~ (M •/Md )P(Rd ), where M • and Md are the masses of the MBH and disk, and P is the orbital period at the disk's mass-weighted mean radius Rd . The response of the disk is stronger the lighter it is and the more centrally concentrated the stellar cusp. As proof of concept, we simulate the evolution of the low-mass maser disk in NGC 4258 and show that its observed O(10°) warp can be driven by the stellar torques. We also show that the frame dragging of a massive active galactic nucleus disk couples the stochastic stellar torques to the MBH spin and can excite a jitter of a few degrees in its direction relative to that of the disk's outer regions.

  8. The Key Roles of the Gas Disk in the Formation and Evolution of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Liu, H. G.

    2012-11-01

    The detection of exoplanets becomes hotter and hotter, especially the detection of Earth-like exoplanets. With the accumulation of observational data and the progress of Kepler mission of NASA, more exoplanets can be found or confirmed. The understanding of formation and evolution of exoplanets will be largely improved when much more samples are provided. According to the acknowledged theories of planet formation, the protoplanet is formed in the protoplanetary disc. Due to the interactions between the disc and protoplanets, the property of the disc plays a key role during the formation and evolution of planets. We investigate the later stage of planet formation, when the Mars-sized cores appear and the gas disc has not been depleted yet. Interactions among the planetary cores can excite their orbital eccentricities, accelerate their mergings, and thus sculpture their final orbital architecture. The interactions between the cores and gas discs lead to the type I and II migrations as well as the eccentricity damping. However, the rates of type I, II migrations are still uncertain in different disc models. In chapter 1, we introduce the main methods of exoplanet detection and the achievements of Kepler space telescope. We also list some examples of exoplanetary systems to show their diversity. The acknowledged theories of planet formation, including the gravitational instability and core accretion scenarios, are presented in detail in chapter 2. The studies in chapter 3 contribute to the final assembling of planetary systems with N-body simulations, including the type I and II migrations of planets, the eccentricity damping, and the gas accretion of massive cores in a viscous disk. In order to compare the observations in statistics, we use the Monte Carlo method to set a distribution of different discs. Our results of simulations interpret the distribution of exoplanets and may be a guidance for the further observations. In chapter 5, considering the uncertainty of

  9. Dynamical evolution of viscous disks around be stars. II. Polarimetry

    SciTech Connect

    Haubois, X.; Mota, B. C.; Carciofi, A. C.; Bednarski, D.; Draper, Z. H.; Wisniewski, J. P.; Rivinius, Th.

    2014-04-10

    Be stars exhibit variability for a great number of observables. Putting the pieces of the disk dynamics together is not an easy task and requires arduous modeling before achieving a good fit to the observational data. In order to guide the modeling process and make it more efficient, it is very instructive to investigate reference dynamical cases. This paper focuses on continuum polarimetric quantities and is the second of a series that aims to demonstrate the capacity of deriving the dynamical history and fundamental parameters of a classical Be star through follow-up of various observables. After a detailed study of the different opacities at play in the formation of polarized spectra, we investigate predictions of polarimetric observables in the continuum for different dynamical scenarios. Our models are based on a coupling of a hydrodynamic viscous decretion simulations in a disk and a three-dimensional non-LTE radiative transfer code. Through introduction of the polarization color diagram (PCD), we show that certain combinations of polarimetric observables exhibit features that are characteristic of a mass-loss history. This diagram also enables estimates of fundamental parameters such as the inclination angle, disk density scale, and the α viscous diffusion parameter. We present the PCD as a powerful diagnosis tool to track the dynamical phases of a Be star, such as disk build-up, dissipation, periodic, and episodic outbursts. Finally, we confront our models with observations of four Be stars that exhibited long-term polarimetric activity.

  10. The Evolution of the Accretion Disk Around 4U 1820-30 During a Superburst

    NASA Technical Reports Server (NTRS)

    Ballantyne, D. R.; Strohmayer, T. E.

    2004-01-01

    Accretion from a disk onto a collapsed, relativistic star - a neutron star or black hole - is the mechanism widely believed to be responsible for the emission from compact X-ray binaries. Because of the extreme spatial resolution required, it is not yet possible to directly observe the evolution or dynamics of the inner parts of the accretion disk where general relativistic effects are dominant. Here, we use the bright X-ray emission from a superburst on the surface of the neutron star 4U 1820-30 as a spotlight to illuminate the disk surface. The X-rays cause iron atoms in the disk t o fluoresce, allowing a determination of the ionization state, covering factor and inner radius of the disk over the course of the burst. The time-resolved spectral fitting shows that the inner region of the disk is disrupted by the burst, possibly being heated into a thicker, more tenuous flow, before recovering its previous form in approximately 1000 s. This marks the first instance that the evolution of the inner regions of an accretion disk has been observed in real-time.

  11. The Transitional Protoplanetary Disk Frequency as a Function of Age: Disk Evolution in the Coronet Cluster, Taurus, and Other 1--8 Myr-old Regions

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Sicilia-Aguilar, Auora

    2011-01-01

    We present Spitzer 3.6-24 micron photometry and spectroscopy for stars in the 1-3 Myr-old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. (2008). Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. (2008) to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters - IC 348, NGC 2362, and eta Cha -- to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks -- those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from approx.15-20% at 1-2 Myr to > 50% at 5-8 Myr; the mean transitional disk lifetime is closer to approx. 1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. (2009) and Sicilia-Aguilar et al. (2009). In the Coronet Cluster and IC 348, transitional disks are more numerous for very low-mass M3--M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically-thick primordial disks is Mdisk approx. 0.001-0.003 M*. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full SED modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.

  12. GALACTIC ULTRACOMPACT X-RAY BINARIES: DISK STABILITY AND EVOLUTION

    SciTech Connect

    Heinke, C. O.; Ivanova, N.; Engel, M. C.; Pavlovskii, K.; Sivakoff, G. R.; Gladstone, J. C.; Cartwright, T. F.

    2013-05-10

    We study the mass-transfer rates and disk stability conditions of ultracompact X-ray binaries (UCXBs) using empirical time-averaged X-ray luminosities from Paper I and compiled information from the literature. The majority of UCXBs are consistent with evolutionary tracks for white dwarf donors. Three UCXBs with orbital periods longer than 40 minutes have mass-transfer rates above 10{sup -10} M{sub Sun} yr{sup -1}, inconsistent with white dwarf donor tracks. We show that if helium star donors can retain their initial high entropy, they can explain the observed mass-transfer rates of these UCXBs. Several UCXBs show persistent luminosities apparently below the disk instability limit for irradiated He accretion disks. We point out that a predominantly C and/or O disk (as observed in the optical spectra of several) lowers the disk instability limit, explaining this disagreement. The orbital period and low time-averaged mass-transfer rate of 2S 0918-549 provide evidence that the donor star is a low-entropy C/O white dwarf, consistent with optical spectra. We combine existing information to constrain the masses of the donors in 4U 1916-053 (0.064 {+-} 0.010 M{sub Sun }) and 4U 1626-67 (<0.036 M{sub Sun} for a 1.4 M{sub Sun} neutron star). We show that 4U 1626-67 is indeed persistent, and not undergoing a transient outburst, leaving He star models as the best explanation for the donor.

  13. EVOLUTION OF X-RAY AND FAR-ULTRAVIOLET DISK-DISPERSING RADIATION FIELDS

    SciTech Connect

    Ingleby, Laura; Calvet, Nuria; Miller, Jon; Bergin, Edwin; Hartmann, Lee; Hernandez, Jesus; Briceno, Cesar; Espaillat, Catherine E-mail: ncalvet@umich.edu E-mail: ebergin@umich.edu E-mail: jesush@cida.ve E-mail: cespaillat@cfa.harvard.edu

    2011-04-15

    We present new X-ray and far-ultraviolet (FUV) observations of T Tauri stars covering the age range 1-10 Myr. Our goals are to observationally constrain the intensity of radiation fields responsible for evaporating gas from the circumstellar disk and to assess the feasibility of current photoevaporation models, focusing on X-ray and UV radiation. We greatly increase the number of 7-10 Myr old T Tauri stars observed in X-rays by including observations of the well-populated 25 Ori aggregate in the Orion OB1a subassociation. With these new 7-10 Myr objects, we confirm that X-ray emission remains constant from 1 to 10 Myr. We also show, for the first time, observational evidence for the evolution of FUV radiation fields with a sample of 56 accreting and non-accreting young stars spanning 1 Myr to 1 Gyr. We find that the FUV emission decreases on timescales consistent with the decline of accretion in classical T Tauri stars until reaching the chromospheric level in weak T Tauri stars and debris disks. Overall, we find that the observed strength of high-energy radiation is consistent with that required by photoevaporation models to dissipate the disks in timescales of approximately 10 Myr. Finally, we find that the high-energy fields that affect gas evolution are not similarly affecting dust evolution; in particular, we find that disks with inner clearings, transitional disks, have similar levels of FUV emission as full disks.

  14. On the Orbital Evolution of a Giant Planet Pair Embedded in a Gaseous Disk. I. Jupiter-Saturn Configuration

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhou, Ji-Lin

    2010-05-01

    We carry out a series of high-resolution (1024 × 1024) hydrodynamical simulations to investigate the orbital evolution of Jupiter and Saturn embedded in a gaseous protostellar disk. Our work extends the results in the classical papers of Masset & Snellgrove and Morbidelli & Crida by exploring various surface density profiles (σ), where σ vprop r -α. The stability of the mean motion resonances (MMRs) caused by the convergent migration of the two planets is studied as well. Our results show that (1) the gap formation process of Saturn is greatly delayed by the tidal perturbation of Jupiter. These perturbations cause inward or outward runaway migration of Saturn, depending on the density profiles on the disk. (2) The convergent migration rate increases as α increases and the type of MMRs depends on α as well. When 0 < α < 1, the convergent migration speed of Jupiter and Saturn is relatively slow, thus they are trapped into 2:1 MMR. When α>4/3, Saturn passes through the 2:1 MMR with Jupiter and is captured into the 3:2 MMR. (3) The 3:2 MMR turns out to be unstable when the eccentricity of Saturn (es ) increases too high. The critical value above which instability will set in is es ~ 0.15. We also observe that the two planets are trapped into 2:1 MMR after the break of 3:2 MMR. This process may provide useful information for the formation of orbital configuration between Jupiter and Saturn in the solar system.

  15. ON THE ORBITAL EVOLUTION OF A GIANT PLANET PAIR EMBEDDED IN A GASEOUS DISK. I. JUPITER-SATURN CONFIGURATION

    SciTech Connect

    Zhang Hui; Zhou Jilin

    2010-05-01

    We carry out a series of high-resolution (1024 x 1024) hydrodynamical simulations to investigate the orbital evolution of Jupiter and Saturn embedded in a gaseous protostellar disk. Our work extends the results in the classical papers of Masset and Snellgrove and Morbidelli and Crida by exploring various surface density profiles ({sigma}), where {sigma} {proportional_to} r {sup -{alpha}}. The stability of the mean motion resonances (MMRs) caused by the convergent migration of the two planets is studied as well. Our results show that (1) the gap formation process of Saturn is greatly delayed by the tidal perturbation of Jupiter. These perturbations cause inward or outward runaway migration of Saturn, depending on the density profiles on the disk. (2) The convergent migration rate increases as {alpha} increases and the type of MMRs depends on {alpha} as well. When 0 < {alpha} < 1, the convergent migration speed of Jupiter and Saturn is relatively slow, thus they are trapped into 2:1 MMR. When {alpha}>4/3, Saturn passes through the 2:1 MMR with Jupiter and is captured into the 3:2 MMR. (3) The 3:2 MMR turns out to be unstable when the eccentricity of Saturn (e{sub s} ) increases too high. The critical value above which instability will set in is e{sub s} {approx} 0.15. We also observe that the two planets are trapped into 2:1 MMR after the break of 3:2 MMR. This process may provide useful information for the formation of orbital configuration between Jupiter and Saturn in the solar system.

  16. A TREND BETWEEN COLD DEBRIS DISK TEMPERATURE AND STELLAR TYPE: IMPLICATIONS FOR THE FORMATION AND EVOLUTION OF WIDE-ORBIT PLANETS

    SciTech Connect

    Ballering, Nicholas P.; Rieke, George H.; Su, Kate Y. L.; Montiel, Edward

    2013-09-20

    Cold debris disks trace the limits of planet formation or migration in the outer regions of planetary systems, and thus have the potential to answer many of the outstanding questions in wide-orbit planet formation and evolution. We characterized the infrared excess spectral energy distributions of 174 cold debris disks around 546 main-sequence stars observed by both the Spitzer Infrared Spectrograph and the Multiband Imaging Photometer for Spitzer. We found a trend between the temperature of the inner edges of cold debris disks and the stellar type of the stars they orbit. This argues against the importance of strictly temperature-dependent processes (e.g., non-water ice lines) in setting the dimensions of cold debris disks. Also, we found no evidence that delayed stirring causes the trend. The trend may result from outward planet migration that traces the extent of the primordial protoplanetary disk, or it may result from planet formation that halts at an orbital radius limited by the efficiency of core accretion.

  17. Galaxy Zoo Hubble: First results of the redshift evolution of disk fraction in the red sequence

    NASA Astrophysics Data System (ADS)

    Galloway, Melanie; Willett, Kyle; Fortson, Lucy; Scarlata, Claudia; Beck, Melanie; Masters, Karen; Melvin, Tom

    2016-01-01

    The transition of galaxies from the blue cloud to the red sequence is commonly linked to a morphological transformation from disk to elliptical structure. However, the correlation between color and morphology is not one-to-one, as evidenced by the existence of a significant population of red disks. As this stage in a galaxy's evolution is likely to be transitory, the mechanism by which red disks are formed offers insight to the processes that trigger quenching of star formation and the galaxy's position on the star-forming sequence. To study the population of disk galaxies in the red sequence as a function of cosmic time, we utilize data from the Galaxy Zoo: Hubble project, which uses crowdsourced visual classifications of images of galaxies selected from the AEGIS, COSMOS, GEMS, and GOODS surveys. We construct a large sample of over 10,000 disk galaxies spanning a wide (0 < z < 1.0) redshift range. We use this sample to examine the change in the fraction of disks in the red sequence with respect to all disks from z˜1 to the present day. Preliminary results confirm that the fraction of disks in the red sequence decreases as the Universe evolves. We discuss the quenching processes which may explain this trend, and which morphological transformations are most affected by it.

  18. Rotational Evolution of Magnetars in the Presence of a Fallback Disk

    NASA Astrophysics Data System (ADS)

    Tong, H.; Wang, W.; Liu, X. W.; Xu, R. X.

    2016-12-01

    Magnetars may have a strong surface dipole field. Observationally, two magnetars may have passive fallback disks. In the presence of a fallback disk, the rotational evolution of magnetars may be changed. In the self-similar fallback disk model, it is found that (1) when the disk mass is significantly lower than 10-6 M ⊙, the magnetar is unaffected by the fallback disk and it will be a normal magnetar. (2) When the disk mass is high but the surface dipole field of the magnetar is about or below 1014 G, the magnetar will also be a normal magnetar. A magnetar plus a passive fallback disk system is expected. This may correspond to the observations of magnetars 4U 0142+61 and 1E 2259+586. (3) When the disk mass is high and the surface dipole field of the magnetar is as high as 4 × 1015 G, the magnetar will evolve from the ejector phase to the propeller phase, and then enter rotational equilibrium. The magnetar will be slowed down quickly in the propeller phase. The final rotational period can be as high 2 × 104 s. This may correspond to the super-slow magnetar in the supernova remnant RCW 103. Therefore, the three types of magnetars can be understood in a unified way.

  19. Evolution of dynamo-generated magnetic fields in accretion disks around compact and young stars

    NASA Technical Reports Server (NTRS)

    Stepinski, Tomasz F.

    1994-01-01

    Geometrically thin, optically thick, turbulent accretion disks are believed to surround many stars. Some of them are the compact components of close binaries, while the others are throught to be T Tauri stars. These accretion disks must be magnetized objects because the accreted matter, whether it comes from the companion star (binaries) or from a collapsing molecular cloud core (single young stars), carries an embedded magnetic field. In addition, most accretion disks are hot and turbulent, thus meeting the condition for the MHD turbulent dynamo to maintain and amplify any seed field magnetic field. In fact, for a disk's magnetic field to persist long enough in comparison with the disk viscous time it must be contemporaneously regenerated because the characteristic diffusion time of a magnetic field is typically much shorter than a disk's viscous time. This is true for most thin accretion disks. Consequently, studying magentic fields in thin disks is usually synonymous with studying magnetic dynamos, a fact that is not commonly recognized in the literature. Progress in studying the structure of many accretion disks was achieved mainly because most disks can be regarded as two-dimensional flows in which vertical and radial structures are largely decoupled. By analogy, in a thin disk, one may expect that vertical and radial structures of the magnetic field are decoupled because the magnetic field diffuses more rapidly to the vertical boundary of the disk than along the radius. Thus, an asymptotic method, called an adiabatic approximation, can be applied to accretion disk dynamo. We can represent the solution to the dynamo equation in the form B = Q(r)b(r,z), where Q(r) describes the field distribution along the radius, while the field distribution across the disk is included in the vector function b, which parametrically depends on r and is normalized by the condition max (b(z)) = 1. The field distribution across the disk is established rapidly, while the radial

  20. The First 40 Million Years of Circumstellar Disk Evolution: The Signature of Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    Meng, Huan; Rieke, George; Su, Kate Y. L.; Gaspar, Andras

    2017-01-01

    We characterize the first 40 Myr of evolution of circumstellar disks through a unified study of the infrared properties of members of young clusters and associations with ages from 2 Myr up to ˜40 Myr. Our work features: 1.) a filtering technique to flag noisy backgrounds; 2.) a method based on the probability distribution of deflections, P(D), to obtain statistically valid photometry for faint sources; and 3.) use of the evolutionary trend of transitional disks to constrain the overall behavior of bright disks. We find that the fraction of optically thick disks three or more times brighter than the stellar photospheres at 24 μm decays relatively slowly initially and then much more rapidly by ~10 Myr. However, there is a continuing component until ~35 Myr, probably due primarily to massive clouds of debris generated in giant impacts during the oligarchic/chaotic growth phases of terrestrial planets. If the contribution from primordial disks is excluded, the evolution of the incidence of these oligarchic/chaotic debris disks can be described empirically by a log-normal function with the peak at 12 - 20 Myr, including ~13% of the original population, and with a post-peak mean duration of 10 - 20 Myr.

  1. THE INNER DISK STRUCTURE, DISK-PLANET INTERACTIONS, AND TEMPORAL EVOLUTION IN THE β PICTORIS SYSTEM: A TWO-EPOCH HST/STIS CORONAGRAPHIC STUDY

    SciTech Connect

    Apai, Dániel; Schneider, Glenn; Grady, Carol A.; Wyatt, Mark C.; Lagrange, Anne-Marie; Kuchner, Marc J.; Stark, Christopher J.; Lubow, Stephen H.

    2015-02-20

    We present deep Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphic images of the β Pic debris disk obtained at two epochs separated by 15 yr. The new images and the re-reduction of the 1997 data provide the most sensitive and detailed views of the disk at optical wavelengths as well as the yet smallest inner working angle optical coronagraphic image of the disk. Our observations characterize the large-scale and inner-disk asymmetries and we identify multiple breaks in the disk radial surface brightness profile. We study in detail the radial and vertical disk structure and show that the disk is warped. We explore the disk at the location of the β Pic b super-Jupiter and find that the disk surface brightness slope is continuous between 0.''5 and 2.''0, arguing for no change at the separations where β Pic b orbits. The two epoch images constrain the disk's surface brightness evolution on orbital and radiation pressure blow-out timescales. We place an upper limit of 3% on the disk surface brightness change between 3'' and 5'', including the locations of the disk warp, and the CO and dust clumps. We discuss the new observations in the context of high-resolution multi-wavelength images and divide the disk asymmetries in two groups: axisymmetric and non-axisymmetric. The axisymmetric structures (warp, large-scale butterfly, etc.) are consistent with disk structure models that include interactions of a planetesimal belt and a non-coplanar giant planet. The non-axisymmetric features, however, require a different explanation.

  2. ON THE EVOLUTION AND SURVIVAL OF PROTOPLANETS EMBEDDED IN A PROTOPLANETARY DISK

    SciTech Connect

    Vazan, A.; Helled, R.

    2012-09-01

    We model the evolution of a Jupiter-mass protoplanet formed by the disk instability mechanism at various radial distances accounting for the presence of the disk. Using three different disk models, it is found that a newly formed Jupiter-mass protoplanet at a radial distance of {approx}<5-10 AU cannot undergo a dynamical collapse and evolve further to become a gravitational bound planet. We therefore conclude that giant planets, if formed by the gravitational instability mechanism, must form and remain at large radial distances during the first {approx}10{sup 5}-10{sup 6} years of their evolution. The minimum radial distances in which protoplanets of 1 Saturn-mass, 3 and 5 Jupiter-mass protoplanets can evolve using a disk model with M-dot = 10{sup -6} M{sub Sun} yr{sup -1} and {alpha} = 10{sup -2} are found to be 12, 9, and 7 AU, respectively. The effect of gas accretion on the planetary evolution of a Jupiter-mass protoplanet is also investigated. It is shown that gas accretion can shorten the pre-collapse timescale substantially. Our study suggests that the timescale of the pre-collapse stage does not only depend on the planetary mass, but is greatly affected by the presence of the disk and efficient gas accretion.

  3. ON THE EVOLUTION OF THE CO SNOW LINE IN PROTOPLANETARY DISKS

    SciTech Connect

    Martin, Rebecca G.; Livio, Mario

    2014-03-10

    CO is thought to be a vital building block for prebiotic molecules that are necessary for life. Thus, understanding where CO existed in a solid phase within the solar nebula is important for understanding the origin of life. We model the evolution of the CO snow line in a protoplanetary disk. We find that the current observed location of the CO snow line in our solar system, and in the solar system analog TW Hydra, cannot be explained by a fully turbulent disk model. With time-dependent disk models we find that the inclusion of a dead zone (a region of low turbulence) can resolve this problem. Furthermore, we obtain a fully analytic solution for the CO snow line radius for late disk evolutionary times. This will be useful for future observational attempts to characterize the demographics and predict the composition and habitability of exoplanets.

  4. Accretion Disks around Black Holes: Dynamical Evolution, Meridional Circulations, and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lee, William H.; Ramirez-Ruiz, Enrico

    2002-10-01

    We study the hydrodynamic evolution of massive accretion disks around black holes, formed when a neutron star is disrupted by a black hole in a binary system. The initial conditions are taken from three-dimensional calculations of coalescing binaries. By assuming azimuthal symmetry we are able to follow the time dependence of the disk structure for 0.2 s in cylindrical coordinates (r,z). We use an ideal gas equation of state and assume that all the dissipated energy is radiated away. The disks evolve because of viscous stresses, modeled with an α law. We study the disk structure and, in particular, the strong meridional circulations that are established and persist throughout our calculations. These consist of strong outflows along the equatorial plane that reverse direction close to the surface of the disk and converge on the accretor. In the context of gamma-ray bursts (GRBs), we estimate the energy released from the system in neutrinos and through magnetic-dominated mechanisms and find it can be as high as Eν~1052 ergs and EBZ~1051 ergs, respectively, during an estimated accretion timescale of 0.1-0.2 s. The νν annihilation is likely to produce bursts from only a short, impulsive energy input Lνν~t-5/2 and so would be unable to account for a large fraction of bursts that show complicated light curves. On the other hand, a gas mass ~0.1-0.25 Msolar survives in the orbiting debris, which enables strong magnetic fields ~1016 G to be anchored in the dense matter long enough to power short duration GRBs. We highlight the effects that the initial disk and black holes masses, viscosity, and binary mass ratio have on the evolution of the disk structure. Finally, we investigate the continuous energy injection that arises as the black hole slowly swallows the rest of the disk and discuss its consequences on the GRB afterglow emission.

  5. Nature vs. Nurture: The influence of OB star environments on proto-planetary disk evolution.

    NASA Astrophysics Data System (ADS)

    Bouwman, Jeroen; Feigelson, Eric; Getman, Kostantin; Henning, Thomas; Lawson, Warrick; Linz, Hendrik; Luhman, Kevin; Roccatagliata, Veronica; Sicilia Aguilar, Aurora; Townsley, Leisa; Wang, Junfeng

    2006-05-01

    A natural approach for understanding the origin and diversity of planetary systems is to study the birth sites of planetary systems under varying environmental conditions. Dust grains in protoplanetary disks, the building blocks of planets, are structurally and chemically altered, and grow through coagulation into planetesimals. The disk geometry may change from a flaring to a more flattened structure, gaps may develop under the gravitational influence of protoplanets, and eventually the disk will dissipate, terminating the planet formation process. While the infrared properties of disks in quiet cloud environments have been extensively studied, investigations under the conditions of strong UV radiation and stellar winds in the proximity of OB stars have been limited. We propose a combined IRAC/IRS study of a large, well-defined and unbiased X-ray selected sample of pre-main-sequence stars in three OB associations: Pismis 24 in NGC 6357, NGC 2244 in the Rosette Nebula, and IC 1795 in the W3 complex. The samples are based on recent Chandra X-ray Observatory studies which reliably identify hundreds of cluster members and were carefully chosen to avoid high infrared nebular background. A new Chandra exposure of IC 1795 is requested, and an optical followup to characterise the host stars is planned. Modelling the Spitzer findings will provide the composition and size of dust present as well as the geometry, mass, and gaps in the global structure of the disk. As hundreds of cluster members will be covered with IRAC and dozens with IRS, good statistics on the disk evolution and dispersal as a function of location with respect to OB stars will be obtained. Comparison of disk properties within our sample and with existing Spitzer studies of quiescent star-forming regions should significantly advance the aim of characterising the influence of the environment on the evolution of protoplanetary disks. This effort relies on a powerful synergy between the Chandra and Spitzer

  6. The Mid-infrared Evolution of the FU Orionis Disk

    NASA Astrophysics Data System (ADS)

    Green, Joel D.; Jones, Olivia C.; Keller, Luke D.; Poteet, Charles A.; Yang, Yao-Lun; Fischer, William J.; Evans, Neal J., II; Sargent, Benjamin A.; Rebull, Luisa M.

    2016-11-01

    We present new SOFIA-FORCAST observations obtained in 2016 February of the archetypal outbursting low-mass young stellar object FU Orionis, and we compare the continuum, solid-state, and gas properties with mid-infrared data obtained at the same wavelengths in 2004 with Spitzer-IRS. In this study, we conduct the first mid-infrared spectroscopic comparison of an FUor over a long time period. Over a 12-year period, UBVR monitoring indicates that FU Orionis has continued its steady decrease in overall brightness by ˜14%. We find that this decrease in luminosity occurs only at wavelengths ≲20 μm. In particular, the continuum shortward of the silicate emission complex at 10 μm exhibits a ˜12% (˜3σ) drop in flux density but no apparent change in slope; both the Spitzer and SOFIA spectra are consistent with a 7200 K blackbody. Additionally, the detection of water absorption is consistent with the Spitzer spectrum. The silicate emission feature at 10 μm continues to be consistent with unprocessed grains, unchanged over 12 years. We conclude that either the accretion rate in FU Orionis has decreased by ˜12-14% over this time baseline or the inner disk has cooled, but the accretion disk remains in a superheated state outside the innermost region.

  7. Adaptive network dynamics and evolution of leadership in collective migration

    NASA Astrophysics Data System (ADS)

    Pais, Darren; Leonard, Naomi E.

    2014-01-01

    The evolution of leadership in migratory populations depends not only on costs and benefits of leadership investments but also on the opportunities for individuals to rely on cues from others through social interactions. We derive an analytically tractable adaptive dynamic network model of collective migration with fast timescale migration dynamics and slow timescale adaptive dynamics of individual leadership investment and social interaction. For large populations, our analysis of bifurcations with respect to investment cost explains the observed hysteretic effect associated with recovery of migration in fragmented environments. Further, we show a minimum connectivity threshold above which there is evolutionary branching into leader and follower populations. For small populations, we show how the topology of the underlying social interaction network influences the emergence and location of leaders in the adaptive system. Our model and analysis can be extended to study the dynamics of collective tracking or collective learning more generally. Thus, this work may inform the design of robotic networks where agents use decentralized strategies that balance direct environmental measurements with agent interactions.

  8. Chondrules - Ubiquitous Chondritic Solids Tracking the Evolution of the Solar Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Bizzarro, M.; Connelly, J. N.

    2017-02-01

    The only record of our solar system’s formation comes from mm- to cm-sized calcium-aluminium-rich inclusions and chondrules. We review the chronology and stable isotopic compositions of chondrules and discuss the evolution of the protoplanetary disk.

  9. Evolution of the Radial Abundance Gradient and Cold Gas of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Shi; Chang, Rui-Xiang; Yin, Jun

    2014-10-01

    In order to understand the forming mechanism of the radial abun- dance gradient of the Galactic disk and the evolution of cold gas, we have con- structed a chemical evolution model of the Galactic disk, in which the star for- mation law concerned with molecular hydrogens is adopted, and the evolution of mass surface density is calculated for the molecular and atomic hydrogens separately, then the model predictions and the observed radial distributions of some physical quantities are compared. The result indicates that the model prediction is sensitive to the adopted infall timescale, the model which adopts the star formation law concerned with the molecular hydrogens can agree well with the major observed properties of the Galactic disk, especially can obtain naturally the radial oxygen abundance gradient of the Galactic disk, and the radial surface density profile of cold gas. The assumption of instantaneous or non-instantaneous recycling approximation has a small effect on the evolution of cold gas, especially in the case of rather low gas density.

  10. From Disks to Planets

    NASA Astrophysics Data System (ADS)

    Youdin, Andrew N.; Kenyon, Scott J.

    This pedagogical chapter covers the theory of planet formation, with an emphasis on the physical processes relevant to current research. After summarizing empirical constraints from astronomical and geophysical data, we describe the structure and evolution of protoplanetary disks. We consider the growth of planetesimals and of larger solid protoplanets, followed by the accretion of planetary atmospheres, including the core accretion instability. We also examine the possibility that gas disks fragment directly into giant planets and/or brown dwarfs. We defer a detailed description of planet migration and dynamical evolution to other work, such as the complementary chapter in this series by Morbidelli.

  11. Chemical Evolution and Star Formation History of the Disks of Spirals in Local Group

    NASA Astrophysics Data System (ADS)

    Yin, J.

    2011-05-01

    Milky Way (MW), M31 and M33 are the only three spiral galaxies in our Local group. MW and M31 have similar mass, luminosity and morphology, while M33 is only about one tenth of MW in terms of its baryonic mass. Detailed theoretical researches on these three spirals will help us to understand the formation and evolution history of both spiral galaxies and Local group. Referring to the phenomenological chemical evolution model adopted in MW disk, a similar model is established to investigate the star formation and chemical enrichment history of these three local spirals. Firstly, the properties of M31 disk are studied by building a similar chemical evolution model which is able to successfully describe the MW disk. It is expected that a simple unified phenomenological chemical evolution model could successfully describe the radial and global properties of both disks. Comparing with the former work, we adopt an extensive data set as model constraints, including the star formation profile of M31 disk derived from the recent UV data of GALEX. The comparison among the observed properties of these two disks displays very interesting similarities in their radial profiles when the distance from the galactic center is expressed in terms of the corresponding scale length. This implies some common processes in their formation and evolution history. Based on the observed data of the gas mass surface density and SFR surface density, the SFR radial profile of MW can be well described by Kennicutt-Schmidt star formation law (K-S law) or modified K-S law (SFR is inversely proportional to the distance from the galactic center), but this is not applicable to the M31 disk. Detailed calculations show that our unified model describes fairly well all the main properties of the MW disk and most properties of M31 disk, provided that the star formation efficiency of M31 disk is adjusted to be twice as large as that of MW disk (as anticipated from the lower gas fraction of M31). However, the

  12. DISK EVOLUTION IN OB ASSOCIATIONS: DEEP SPITZER/IRAC OBSERVATIONS OF IC 1795

    SciTech Connect

    Roccatagliata, Veronica; Bouwman, Jeroen; Henning, Thomas; Gennaro, Mario; Sicilia-Aguilar, Aurora; Feigelson, Eric; Kim, Jinyoung Serena; Lawson, Warrick A.

    2011-06-01

    We present a deep Spitzer/Infrared Array Camera (IRAC) survey of the OB association IC 1795 carried out to investigate the evolution of protoplanetary disks in regions of massive star formation. Combining Spitzer/IRAC data with Chandra/Advanced CCD Imaging Spectrometer observations, we find 289 cluster members. An additional 340 sources with an infrared excess, but without X-ray counterpart, are classified as cluster member candidates. Both surveys are complete down to stellar masses of about 1 M{sub sun}. We present pre-main-sequence isochrones computed for the first time in the Spitzer/IRAC colors. The age of the cluster, determined via the location of the Class III sources in the [3.6]-[4.5]/[3.6] color-magnitude diagram, is in the range of 3-5 Myr. As theoretically expected, we do not find any systematic variation in the spatial distribution of disks within 0.6 pc of either O-type star in the association. However, the disk fraction in IC 1795 does depend on the stellar mass: sources with masses >2 M{sub sun} have a disk fraction of {approx}20%, while lower mass objects (2-0.8 M{sub sun}) have a disk fraction of {approx}50%. This implies that disks around massive stars have a shorter dissipation timescale.

  13. Dynamic-chemical evolution of the early protoplanetary disk and chemical diversity of asteroids

    NASA Astrophysics Data System (ADS)

    Nagahara, Hiroko

    2015-08-01

    Evolution of a protoplanetary disk is dynamic, where angular momentum is transported outward whereas masses are inward. Although the overall material transport is inward, a significant amount of outward transporation occurs due to diffusion, which resulted in mixing of materials with different degree of thermal processing.In the present study, we investigate the mixing of materials in a protoplanetary disk by combining fluid dynamics and themodynamics, and discuss the chemical evolution of the disk as a function of time and space and the conditions to generate chemical heterogeneity in the 2-4 AU within 106 years.The essence of the model is of a standard disk evolution model, which is combined with particle tracking model by Ciesla (2010). It enables us to track all the movement of individual particles. The chemical composition of dust particles is assumed with chemical equilibrium calculation. Summing up the number of grains with different chemical compositions, we trace the temporal and spatial change of chemical composition of the disk.The results show that some fraction of dust grains were transported to ~13AU after 105 years, ~50 AU after 5x105 years, and ~100 AU after a million years, though the most of them were fallen into the proto-sun. The flux of inward and outward dust transportation is significant within 105 years. The chemical composition of the disk is relatively enriched in refractory elements due to the outward transport of significant amounts of grains heated to high temperatures, and more heterogeneous at the early stage due to various degree of mixing of high temperature and low temperature components. It becomes homogeneous with unfractionated composition with time.Carbonaceous chondrites are thought to be fragments of asteroids, which are remnants of planetesimals. The chemical composition of carbonaceous chondrites are successfully reproduced with the present model, but only at the early stage of disk evolution (<105 years) unless the disk

  14. The Evolution of Luminous Compact Blue Galaxies: Disks or Spheroids?

    NASA Astrophysics Data System (ADS)

    Pisano, D. J.; Rabidoux, K.; Garland, C. A.; Guzmán, R.; Castander, F. J.; Pérez-Gallego, J.

    2011-12-01

    Luminous compact blue galaxies (LCBGs) are a diverse class of galaxies characterized by high luminosity, blue color, and high surface brightness that sit at the critical juncture of galaxies evolving from the blue to the red sequence. As part of our multi-wavelength survey of local LCBGs, we have been studying the HI content of these galaxies using both single-dish telescopes and interferometers. Our goals are to determine if single-dish HI observations represent a true measure of the dynamical mass of LCBGs and to look for signatures of recent interactions that may be triggering star formation in LCBGs. Our data show that while some LCBGs are undergoing interactions, many appear isolated. While all LCBGs contain HI and show signatures of rotation, the population does not lie on the Tully-Fisher relation nor can it evolve onto it. Furthermore, the HI maps of many LCBGs show signatures of dynamically hot components, suggesting that we are seeing the formation of a thick disk or spheroid in at least some LCBGs. There is good agreement between the HI and Hα kinematics for LCBGs, and both are similar in appearance to the Hα kinematics of high redshift star-forming galaxies. Our combined data suggest that star formation in LCBGs is primarily quenched by virial heating, consistent with model predictions.

  15. The First 40 Million Years of Circumstellar Disk Evolution: The Signature of Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    Meng, Huan Y. A.; Rieke, George H.; Su, Kate Y. L.; Gáspár, András

    2017-02-01

    We characterize the first 40 Myr of evolution of circumstellar disks through a unified study of the infrared properties of members of young clusters and associations with ages from 2 Myr up to ∼40 Myr: NGC 1333, NGC 1960, NGC 2232, NGC 2244, NGC 2362, NGC 2547, IC 348, IC 2395, IC 4665, Chamaeleon I, Orion OB1a and OB1b, Taurus, the β Pictoris Moving Group, ρ Ophiuchi, and the associations of Argus, Carina, Columba, Scorpius–Centaurus, and Tucana–Horologium. Our work features: (1) a filtering technique to flag noisy backgrounds; (2) a method based on the probability distribution of deflections, P(D), to obtain statistically valid photometry for faint sources; and (3) use of the evolutionary trend of transitional disks to constrain the overall behavior of bright disks. We find that the fraction of disks three or more times brighter than the stellar photospheres at 24 μm decays relatively slowly initially and then much more rapidly by ∼10 Myr. However, there is a continuing component until ∼35 Myr, probably due primarily to massive clouds of debris generated in giant impacts during the oligarchic/chaotic growth phases of terrestrial planets. If the contribution from primordial disks is excluded, the evolution of the incidence of these oligarchic/chaotic debris disks can be described empirically by a log-normal function with the peak at 12–20 Myr, including ∼13% of the original population, and with a post-peak mean duration of 10–20 Myr.

  16. Coupling protoplanetary disk formation with early protostellar evolution: influence on planet traps

    NASA Astrophysics Data System (ADS)

    Baillie, Kevin; Piau, Laurent

    2016-10-01

    Protoplanetary disk structures are known to be shaped by various thermal and compositional effects such as (though not limited to) shadowed regions, sublimation lines, density bumps... The resulting irregularities in the surface mass density and temperature profiles are key elements to determine the location where planetary embryos can be trapped. These traps provide hints of which planets are most likely to survive, at what distance from the star, and potentially with what composition (Baillié, Charnoz, Pantin, 2015, A&A 577, A65; Baillié, Charnoz, Pantin, 2016, A&A 590, A60). These structures are determined by the viscous spreading of the disk, that is initially formed by the collapse of the molecular cloud.Starting from the numerical hydrodynamical model detailed in Baillié & Charnoz., 2014, ApJ 786, 35 which couples the disk thermodynamics, its photosphere geometry, its dynamics and its dust composition in order to follow its long-term evolution, we now consider the early stages of the central star. We model the joint formation of the disk and the star: their mass are directly derived from the collapse of the molecular cloud while the star temperature, radius and brightness are interpolated over pre-calculated stellar evolutions. Therefore, our simulations no longer depend on the initial profile of the "Minimum Mass Solar Nebula", and allow us to model the influence of the forming star on the protoplanetary disk. In particular, we will present the resulting distribution of the sublimation lines of the main dust species, as well as the locations of the planet traps at various disk ages. In the longer term, we intend to investigate the influence of the star properties on the selection of the surviving planets.

  17. TIDAL DISRUPTIONS IN CIRCUMBINARY DISKS. I. STAR FORMATION, DYNAMICS, AND BINARY EVOLUTION

    SciTech Connect

    Amaro-Seoane, Pau; Brem, Patrick; Cuadra, Jorge E-mail: Patrick.Brem@aei.mpg.de

    2013-02-10

    In our current interpretation of the hierarchical structure of the universe, it is well established that galaxies collide and merge with each other during their lifetimes. If massive black holes (MBHs) reside in galactic centers, we expect them to form binaries in galactic nuclei surrounded by a circumbinary disk. If cooling is efficient enough, the gas in the disk will clump and trigger stellar formation in situ. In this first paper we address the evolution of the binary under the influence of the newly formed stars, which form individually and also clustered. We use smoothed particle hydrodynamics techniques to evolve the gas in the circumbinary disk and to study the phase of star formation. When the amount of gas in the disk is negligible, we further evolve the system with a high-accurate direct-summation N-body code to follow the evolution of the stars, the innermost binary and tidal disruption events (TDEs). For this, we modify the direct N-body code to include (1) treatment of TDEs and (2) 'gas cloud particles' that mimic the gas, so that the stellar clusters do not dissolve when we follow their infall on to the MBHs. We find that the amount of stars disrupted by either infalling stellar clusters or individual stars is as large as 10{sup -4} yr{sup -1} per binary, higher than expected for typical galaxies.

  18. Community Evolution in International Migration Top1 Networks.

    PubMed

    Peres, Mihaela; Xu, Helian; Wu, Gang

    2016-01-01

    Focusing on each country's topmost destination/origin migration relation with other countries, this study builds top1 destination networks and top1 origin networks in order to understand their skeletal construction and community dynamics. Each top1 network covers approximately 50% of the complete migrant network stock for each decade between 1960 and 2000. We investigate the community structure by implementing the Girvan-Newman algorithm and compare the number of components and communities to illustrate their differences. We find that (i) both top1 networks (origin and destination) exhibited communities with a clear structure and a surprising evolution, although 80% edges persist between each decade; (ii) top1 destination networks focused on developed countries exhibiting shorter paths and preferring more advance countries, while top1 origin networks focused both on developed as well as more substantial developing nations that presented a longer path and more stable groups; (iii) only few countries have a decisive influence on community evolution of both top1 networks. USA took the leading position as a destination country in top1 destination networks, while China and India were the main Asian emigration countries in top1 origin networks; European countries and the Russian Federation played an important role in both.

  19. Community Evolution in International Migration Top1 Networks

    PubMed Central

    Xu, Helian

    2016-01-01

    Focusing on each country’s topmost destination/origin migration relation with other countries, this study builds top1 destination networks and top1 origin networks in order to understand their skeletal construction and community dynamics. Each top1 network covers approximately 50% of the complete migrant network stock for each decade between 1960 and 2000. We investigate the community structure by implementing the Girvan-Newman algorithm and compare the number of components and communities to illustrate their differences. We find that (i) both top1 networks (origin and destination) exhibited communities with a clear structure and a surprising evolution, although 80% edges persist between each decade; (ii) top1 destination networks focused on developed countries exhibiting shorter paths and preferring more advance countries, while top1 origin networks focused both on developed as well as more substantial developing nations that presented a longer path and more stable groups; (iii) only few countries have a decisive influence on community evolution of both top1 networks. USA took the leading position as a destination country in top1 destination networks, while China and India were the main Asian emigration countries in top1 origin networks; European countries and the Russian Federation played an important role in both. PMID:26859406

  20. IMPACT OF GRAIN EVOLUTION ON THE CHEMICAL STRUCTURE OF PROTOPLANETARY DISKS

    SciTech Connect

    Vasyunin, A. I.; Birnstiel, T.; Zhukovska, S.; Henning, T.; Dullemond, C. P.; Wiebe, D. S. E-mail: zhukovska@mpia.de E-mail: dullemon@mpia.de E-mail: dwiebe@inasan.ru

    2011-02-01

    We study the impact of dust evolution in a protoplanetary disk (PPD) around a T Tauri star on the disk's chemical composition. For the first time, we utilize a comprehensive model of dust evolution, which includes growth, fragmentation, and sedimentation. Specific attention is paid to the influence of grain evolution on the penetration of the UV field in the disk. A chemical model that includes a comprehensive set of gas-phase and grain-surface chemical reactions is used to simulate the chemical structure of the disk. The main effect of grain evolution on the disk's chemical composition comes from sedimentation and, to a lesser degree, from reduction of the total grain-surface area. The net effect of grain growth is suppressed by the fragmentation process which maintains a population of small grains, dominating the total grain surface area. We consider three models of dust properties. In model GS, both growth and sedimentation are taken into account. In models A5 and A4, all grains are assumed to be the same size (10{sup -5} cm and 10{sup -4} cm, respectively) with a constant gas-to-dust mass ratio of 100. As in previous studies, the 'three-layer' pattern (cold midplane, warm molecular layer, and hot atmosphere) in the disk-chemical structure is preserved in all models, but shifted closer to the midplane in models with increased grain size (GS and A4). Unlike other similar studies, we find that in models GS and A4, the column densities of most gas-phase species are enhanced by 1-3 orders of magnitude relative to those in a model with pristine dust (A5), while column densities of their surface counterparts are decreased. We show that column densities of certain species, such as C{sub 2}H, HC{sub 2n+1}N (n = 0-3), H{sub 2}O, and some other molecules, as well as the C{sub 2}H{sub 2}/HCN abundance ratio, all of which are accessible with Herschel and ALMA, can be used as observational tracers of early stages of the grain evolution process in PPDs.

  1. Evolution of the Radial Abundance Gradient and Cold Gas along the Milky Way Disk

    NASA Astrophysics Data System (ADS)

    Chen, Q. S.; Chang, R. X.; Yin, J.

    2014-03-01

    We have constructed a phenomenological model of the chemical evolution of the Milky Way disk, and treated the molecular and atomic gas separately. Using this model, we explore the radial profiles of oxygen abundance, the surface density of cold gas, and their time evolutions. It is shown that the model predictions are very sensitive to the adopted infall time-scale. By comparing the model predictions with the observations, we find that the model adopting the star formation law based on H_2 can properly predict the observed radial distributions of cold gas and oxygen abundance gradient along the disk. We also compare the model results with the predictions of the model which adopts the instantaneous recycling approximation (IRA), and find that the IRA assumption has little influence on the model results, especially in the low-density gas region.

  2. Abundances and Evolution of Lithium in the Galactic Halo and Disk

    NASA Astrophysics Data System (ADS)

    Ryan, Sean G.; Kajino, Toshitaka; Beers, Timothy C.; Suzuki, Takeru Ken; Romano, Donatella; Matteucci, Francesca; Rosolankova, Katarina

    2001-03-01

    We have measured the Li abundance of 18 stars with -2<~[Fe/H]<~-1 and 6000<~Teff<~6400 K, a parameter range that was poorly represented in previous studies. We examine the Galactic chemical evolution (GCE) of this element, combining these data with previous samples of turnoff stars over the full range of halo metallicities. We find that A(Li) increases from a level of ~2.10 at [Fe/H]=-3.5 to ~2.40 at [Fe/H]=-1.0, where A(Li)=log10(n(Li)/n(H))+12.00. We compare the observations with several GCE calculations, including existing one-zone models and a new model developed in the framework of inhomogeneous evolution of the Galactic halo. We show that Li evolved at a constant rate relative to iron throughout the halo and old disk epochs but that during the formation of young disk stars, the production of Li relative to iron increased significantly. These observations can be understood in the context of models in which postprimordial Li evolution during the halo and old disk epochs is dominated by Galactic cosmic-ray fusion and spallation reactions, with some contribution from the ν-process in supernovae. The onset of more efficient Li production (relative to iron) in the young disk coincides with the appearance of Li from novae and asymptotic giant branch (AGB) stars. The major challenge facing the models is to reconcile the mild evolution of Li during the halo and old disk phases with the more efficient production (relative to iron) at [Fe/H]>-0.5. We speculate that cool-bottom processing (production) of Li in low-mass stars may provide an important late-appearing source of Li, without attendant Fe production, that might explain the Li production in the young disk. Based on observations obtained with the University College London échelle spectrograph (UCLES) on the Anglo-Australian Telescope (AAT) and the Utrecht échelle spectrograph (UES) on the William Herschel Telescope (WHT).

  3. Stellar evolution in N-body simulations of disk galaxies. I

    NASA Technical Reports Server (NTRS)

    Comins, N. F.

    1983-01-01

    The Kalnajs (1972, 1976) Omega models of global mass and velocity distributions are employed in the present two-dimensional N-body simulation, which allows for a spectrum of particle masses, stellar explosions, explosion remnant interactions with an interstellar medium, and the creation of new stars from the gas. Two sequences of runs using the Omega values of 0.8 and 0.9 examine the separate and combined effects of particle mass distribution, the gravitational influence of an interstellar gas distribution on the N-body particles, and stellar evolution, allowing for stellar explosions and star formation from the gas. It is found that both Omega values' nonequilibrium results dramatically change when evolution is allowed to occur. These results call for more realistic coupled N-body and evolution simulations in order to improve the understanding of disk galaxy evolution.

  4. Evolution in circumstellar envelopes of Be stars: From disks to rings?

    NASA Astrophysics Data System (ADS)

    Rivinius, Th.; Baade, D.; Štefl, S.; Maintz, M.

    2001-11-01

    New series of echelle spectra were obtained to study the medium- and long-term evolution of the disks of several Be stars. Subtle variations in the wings of optically thin and thick emission lines suggest that the conventional, static picture of the disk being in quasi-contact with the central star is justified primarily (or perhaps only) after an outburst event. Some weeks to months later, a low-density region seems to develop above the star and slowly grows outwards. A subsequent outburst may later replenish this cavity. In fact, in two stars this more ring-like structure is apparently at times detached far enough from the star to allow for the formation of a secondary inner disk from the ejecta of a later outburst. This behaviour is not necessarily representative of Be stars in general because in the later spectral sub-types, discrete mass loss events have not so far been observed to play a major role. In the light of the apparent life cycle of such disks, a brief discussion is given of the differences in strength and variability between the winds of Be and normal B stars. It seems possible to attribute these differences to matter that was initially in the disk and therefore largely shielded from the stellar radiation, but that during the course of the inner excavation (or even complete distruction) of the disk becomes exposed. Based on observations collected at the European Southern Observatory at La Silla, Chile, ESO proposal No. 64.H-0548 and on observations with the Wendelstein 80-cm and the Ondřejov 2-m telescopes, both equipped with the HEROS spectrograph provided by the Landessternwarte Heidelberg.

  5. Modelling circumbinary protoplanetary disks. II. Gas disk feedback on planetesimal dynamical and collisional evolution in the circumbinary systems Kepler-16 and 34

    NASA Astrophysics Data System (ADS)

    Lines, S.; Leinhardt, Z. M.; Baruteau, C.; Paardekooper, S.-J.; Carter, P. J.

    2016-05-01

    Aims: We investigate the feasibility of planetesimal growth in circumbinary protoplanetary disks around the observed systems Kepler-16 and Kepler-34 under the gravitational influence of a precessing eccentric gas disk. Methods: We embed the results of our previous hydrodynamical simulations of protoplanetary disks around binaries into an N-body code to perform 3D, high-resolution, inter-particle gravity-enabled simulations of planetesimal growth and dynamics that include the gravitational force imparted by the gas. Results: Including the full, precessing asymmetric gas disk generates high eccentricity orbits for planetesimals orbiting at the edge of the circumbinary cavity, where the gas surface density and eccentricity have their largest values. The gas disk is able to efficiently align planetesimal pericenters in some regions leading to phased, non-interacting orbits. Outside of these areas eccentric planetesimal orbits become misaligned and overlap leading to crossing orbits and high relative velocities during planetesimal collisions. This can lead to an increase in the number of erosive collisions that far outweighs the number of collisions that result in growth. Gravitational focusing from the static axisymmetric gas disk is weak and does not significantly alter collision outcomes from the gas free case. Conclusions: Due to asymmetries in the gas disk, planetesimals are strongly perturbed onto highly eccentric orbits. Where planetesimals orbits are not well aligned, orbit crossings lead to an increase in the number of erosive collisions. This makes it difficult for sustained planetesimal accretion to occur at the location of Kepler-16b and Kepler-34b and we therefore rule out in situ growth. This adds further support to our initial suggestions that most circumbinary planets should form further out in the disk and migrate inwards.

  6. THE WELL-ALIGNED ORBIT OF WASP-84b: EVIDENCE FOR DISK MIGRATION OF A HOT JUPITER

    SciTech Connect

    Anderson, D. R.; Triaud, A. H. M. J.; Turner, O. D.; Brown, D. J. A.; Clark, B. J. M.; Smalley, B.; Cameron, A. Collier; Doyle, A. P.; Gillon, M.; Hellier, C.; Lovis, C.; Maxted, P. F. L.; Pollacco, D.; Queloz, D.; Smith, A. M. S.

    2015-02-10

    We report the sky-projected orbital obliquity (spin–orbit angle) of WASP-84 b, a 0.69M{sub Jup} planet in an 8.52 day orbit around a G9V/K0V star, to be λ = −0.3 ± 1.7°. We obtain a true obliquity of ψ = 17.3 ± 7.7° from a measurement of the inclination of the stellar spin axis with respect to the sky plane. Due to the young age and the weak tidal forcing of the system, we suggest that the orbit of WASP-84b is unlikely to have both realigned and circularized from the misaligned and/or eccentric orbit likely to have arisen from high-eccentricity migration. Therefore we conclude that the planet probably migrated via interaction with the protoplanetary disk. This would make it the first “hot Jupiter” (P<10 d) to have been shown to have migrated via this pathway. Further, we argue that the distribution of obliquities for planets orbiting cool stars (T{sub eff} < 6250 K) suggests that high-eccentricity migration is an important pathway for the formation of short-orbit, giant planets.

  7. WITNESSING THE DIFFERENTIAL EVOLUTION OF DISK GALAXIES IN LUMINOSITY AND SIZE VIA GRAVITATIONAL LENSING

    SciTech Connect

    Bandara, Kaushala; Crampton, David; Peng, Chien; Simard, Luc

    2013-11-01

    We take advantage of the magnification in size and flux of a galaxy provided by gravitational lensing to analyze the properties of 62 strongly lensed galaxies from the Sloan Lens ACS (SLACS) Survey. The sample of lensed galaxies spans a redshift range of 0.20 ≤ z ≤ 1.20 with a median redshift of z = 0.61. We use the lens modeling code LENSFIT to derive the luminosities, sizes, and Sérsic indices of the lensed galaxies. The measured properties of the lensed galaxies show a primarily compact, {sup d}isk{sup -}like population with the peaks of the size and Sérsic index distributions corresponding to ∼1.50 kpc and n ∼ 1, respectively. Comparison of the SLACS galaxies to a non-lensing, broadband imaging survey shows that a lensing survey allows us to probe a galaxy population that reaches ∼2 mag fainter. Our analysis allows us to compare the (z) = 0.61 disk galaxy sample (n ≤ 2.5) to an unprecedented local galaxy sample of ∼670, 000 SDSS galaxies at z ∼ 0.1; this analysis indicates that the evolution of the luminosity-size relation since z ∼ 1 may not be fully explained by a pure-size or pure-luminosity evolution but may instead require a combination of both. Our observations are also in agreement with recent numerical simulations of disk galaxies that show evidence of a mass-dependent evolution since z ∼ 1, where high-mass disk galaxies (M{sub *} > 10{sup 9} M{sub ☉}) evolve more in size and low-mass disk galaxies (M{sub *} ≤ 10{sup 9} M{sub ☉}) evolve more in luminosity.

  8. PROTOSTELLAR DISK EVOLUTION OVER MILLION-YEAR TIMESCALES WITH A PRESCRIPTION FOR MAGNETIZED TURBULENCE

    SciTech Connect

    Landry, Russell; Dodson-Robinson, Sarah E.; Turner, Neal J.

    2013-07-10

    Magnetorotational instability (MRI) is the most promising mechanism behind accretion in low-mass protostellar disks. Here we present the first analysis of the global structure and evolution of non-ideal MRI-driven T-Tauri disks on million-year timescales. We accomplish this in a 1+1D simulation by calculating magnetic diffusivities and utilizing turbulence activity criteria to determine thermal structure and accretion rate without resorting to a three-dimensional magnetohydrodynamical (MHD) simulation. Our major findings are as follows. First, even for modest surface densities of just a few times the minimum-mass solar nebula, the dead zone encompasses the giant planet-forming region, preserving any compositional gradients. Second, the surface density of the active layer is nearly constant in time at roughly 10 g cm{sup -2}, which we use to derive a simple prescription for viscous heating in MRI-active disks for those who wish to avoid detailed MHD computations. Furthermore, unlike a standard disk with constant-{alpha} viscosity, the disk midplane does not cool off over time, though the surface cools as the star evolves along the Hayashi track. Instead, the MRI may pile material in the dead zone, causing it to heat up over time. The ice line is firmly in the terrestrial planet-forming region throughout disk evolution and can move either inward or outward with time, depending on whether pileups form near the star. Finally, steady-state mass transport is an extremely poor description of flow through an MRI-active disk, as we see both the turnaround in the accretion flow required by conservation of angular momentum and peaks in M-dot (R) bracketing each side of the dead zone. We caution that MRI activity is sensitive to many parameters, including stellar X-ray flux, grain size, gas/small grain mass ratio and magnetic field strength, and we have not performed an exhaustive parameter study here. Our 1+1D model also does not include azimuthal information, which prevents

  9. THE EVOLUTION OF STELLAR POPULATIONS IN THE OUTER DISKS OF SPIRAL GALAXIES

    SciTech Connect

    Alberts, Stacey; Calzetti, Daniela; Dong Hui; Johnson, L. C.; Dale, Daniel A.; Bianchi, Luciana; Thilker, David; Chandar, Rupali; Kennicutt, Robert C.; Meurer, Gerhardt R.; Regan, Michael

    2011-04-10

    We investigate recent star formation in the extended ultraviolet (XUV) disks of five nearby galaxies (NGC 0628, NGC 2090, NGC 2841, NGC 3621, and NGC 5055) using a long wavelength baseline comprised of ultraviolet and mid-infrared imaging from the Galaxy Evolution Explorer and the Spitzer Infrared Array Camera. We identify 229 unresolved stellar complexes across targeted portions of their XUV disks and utilize spectral energy distribution fitting to measure their stellar ages and masses through comparison with Starburst99 population synthesis models of instantaneous burst populations. We find that the median age of outer-disk associations in our sample is {approx}100 Myr with a large dispersion that spans the entire range of our models (1 Myr to 1 Gyr). This relatively evolved state for most associations addresses the observed dearth of H{alpha} emission in some outer disks, as H{alpha} can only be observed in star-forming regions younger than {approx}10 Myr. The large age dispersion is robust against variations in extinction (in the range E(B - V) = 0-0.3 mag) and variations in the upper end of the stellar initial mass function (IMF). In particular, we demonstrate that the age dispersion is insensitive to steepening of the IMF, up to extreme slopes.

  10. The Herschel/PACS view of the Cep OB2 region: Global protoplanetary disk evolution and clumpy star formation

    NASA Astrophysics Data System (ADS)

    Sicilia-Aguilar, Aurora; Roccatagliata, Veronica; Getman, Konstantin; Rivière-Marichalar, Pablo; Birnstiel, Tilman; Merín, Bruno; Fang, Min; Henning, Thomas; Eiroa, Carlos; Currie, Thayne

    2015-01-01

    Context. The Cep OB2 region, with its two intermediate-aged clusters Tr 37 and NGC 7160, is a paradigm of sequential star formation and an ideal site for studies of protoplanetary disk evolution. Aims: We use Herschel data to study the protoplanetary disks and the star formation history of the region. Methods: Herschel/PACS observations at 70 and 160 μm probe the disk properties (mass, dust sizes, structure) and the evolutionary state of a large number of young stars. Far-IR data also trace the remnant cloud material and small-scale cloud structure. Results: We detect 95 protoplanetary disks at 70 μm, 41 at 160 μm, and obtain upper limits for more than 130 objects. The detection fraction at 70 μm depends on the spectral type (88% for K4 or earlier stars, 17% for M3 or later stars) and on the disk type (~50% for full and pre-transitional disks, ~35% for transitional disks, no low-excess/depleted disks detected). Non-accreting disks are not detected, suggesting significantly lower masses. Accreting transition and pre-transition disks have systematically higher 70 μm excesses than full disks, suggestive of more massive, flared and/or thicker disks. Herschel data also reveal several mini-clusters in Tr 37, which are small, compact structures containing a few young stars surrounded by nebulosity. Conclusions: Far-IR data are an excellent probe of the evolution of disks that are too faint for sub-millimetre observations. We find a strong link between far-IR emission and accretion, and between the inner and outer disk structure. Herschel confirms the dichotomy between accreting and non-accreting transition disks. Accretion is a powerful measure of global disk evolution: substantial mass depletion and global evolution need to occur to shut down accretion in a protoplanetary disk, even if the disk has inner holes. Disks likely follow different evolutionary paths: low disk masses do not imply opening inner holes, and having inner holes does not require low disk masses

  11. Evolution scales for wave regimes in liquid film flow over a spinning disk

    NASA Astrophysics Data System (ADS)

    Matar, Omar K.; Sisoev, Grigori M.; Lawrence, Chris J.

    2004-05-01

    We study the spatiotemporal development of a thin viscous film flowing over a spinning disk. A coupled system of evolution equations for the film thickness and volumetric flow rates in the radial and azimuthal directions is derived using the Karman-Polhausen method, assuming a parabolic profile for the film velocity. In the limit of large Eckman number, this system reduces to equations previously used to study the falling film problem. Numerical solutions of the system are obtained starting from initially waveless profiles, which correspond to the Nusselt solution for the case of a spinning disk. Results from these simulations reveal the development of finite-amplitude waves, which, locally, approximate closely to the shape of quasisteady periodic traveling waves. These waves are found to be in good agreement with the predictions of the localized version of the model.

  12. Planet signatures and effect of the chemical evolution of the Galactic thin-disk stars

    NASA Astrophysics Data System (ADS)

    Spina, Lorenzo; Meléndez, Jorge; Ramírez, Ivan

    2016-01-01

    Context. Studies based on high-precision abundance determinations revealed that chemical patterns of solar twins are characterised by the correlation between the differential abundances relative to the Sun and the condensation temperatures (Tc) of the elements. It has been suggested that the origin of this relation is related to the chemical evolution of the Galactic disk, but other processes, associated with the presence of planets around stars, might also be involved. Aims: We analyse HIRES spectra of 14 solar twins and the Sun to provide new insights on the mechanisms that can determine the relation between [X/H] and Tc. Methods: Our spectroscopic analysis produced stellar parameters (Teff, log g, [Fe/H], and ξ), ages, masses, and abundances of 22 elements (C, O, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, and Ba). We used these determinations to place new constraints on the chemical evolution of the Galactic disk and to verify whether this process alone can explain the different [X/H]-Tc slopes observed so far. Results: We confirm that the [X/Fe] ratios of all the species correlate with age. The slopes of these relations allow us to describe the effect that the chemical evolution of the Galactic disk has on the chemical patterns of the solar twins. After subtracting the chemical evolution effect, we find that the unevolved [X/H]-Tc slope values do not depend on the stellar ages anymore. However, the wide diversity among these [X/H]-Tc slopes, covering a range of ± 4 × 10-5 dex K-1, indicates that processes in addition to the chemical evolution may affect the [X/H]-Tc slopes. Conclusions: The wide range of unevolved [X/H]-Tc slope values spanned at all ages by our sample could reflect the wide diversity among exo-planetary systems observed so far and the variety of fates that the matter in circumstellar disks can experience.

  13. Migration and the evolution of sexual dichromatism: evolutionary loss of female coloration with migration among wood-warblers.

    PubMed

    Simpson, Richard K; Johnson, Michele A; Murphy, Troy G

    2015-06-22

    The mechanisms underlying evolutionary changes in sexual dimorphism have long been of interest to biologists. A striking gradient in sexual dichromatism exists among songbirds in North America, including the wood-warblers (Parulidae): males are generally more colourful than females at northern latitudes, while the sexes are similarly ornamented at lower latitudes. We use phylogenetically controlled comparative analysis to test three non-mutually exclusive hypotheses for the evolution of sexual dichromatism among wood-warblers. The first two hypotheses focus on the loss of female coloration with the evolution of migration, either owing to the costs imposed by visual predators during migration, or owing to the relaxation of selection for female social signalling at higher latitudes. The third hypothesis focuses on whether sexual dichromatism evolved owing to changes in male ornamentation as the strength of sexual selection increases with breeding latitude. To test these hypotheses, we compared sexual dichromatism to three variables: the presence of migration, migration distance, and breeding latitude. We found that the presence of migration and migration distance were both positively correlated with sexual dichromatism, but models including breeding latitude alone were not strongly supported. Ancestral state reconstruction supports the hypothesis that the ancestral wood-warblers were monochromatic, with both colourful males and females. Combined, these results are consistent with the hypotheses that the evolution of migration is associated with the relaxation of selection for social signalling among females and that there are increased predatory costs along longer migratory routes for colourful females. These results suggest that loss of female ornamentation can be a driver of sexual dichromatism and that social or natural selection may be a stronger contributor to variation in dichromatism than sexual selection.

  14. Migration and the evolution of sexual dichromatism: evolutionary loss of female coloration with migration among wood-warblers

    PubMed Central

    Simpson, Richard K.; Johnson, Michele A.; Murphy, Troy G.

    2015-01-01

    The mechanisms underlying evolutionary changes in sexual dimorphism have long been of interest to biologists. A striking gradient in sexual dichromatism exists among songbirds in North America, including the wood-warblers (Parulidae): males are generally more colourful than females at northern latitudes, while the sexes are similarly ornamented at lower latitudes. We use phylogenetically controlled comparative analysis to test three non-mutually exclusive hypotheses for the evolution of sexual dichromatism among wood-warblers. The first two hypotheses focus on the loss of female coloration with the evolution of migration, either owing to the costs imposed by visual predators during migration, or owing to the relaxation of selection for female social signalling at higher latitudes. The third hypothesis focuses on whether sexual dichromatism evolved owing to changes in male ornamentation as the strength of sexual selection increases with breeding latitude. To test these hypotheses, we compared sexual dichromatism to three variables: the presence of migration, migration distance, and breeding latitude. We found that the presence of migration and migration distance were both positively correlated with sexual dichromatism, but models including breeding latitude alone were not strongly supported. Ancestral state reconstruction supports the hypothesis that the ancestral wood-warblers were monochromatic, with both colourful males and females. Combined, these results are consistent with the hypotheses that the evolution of migration is associated with the relaxation of selection for social signalling among females and that there are increased predatory costs along longer migratory routes for colourful females. These results suggest that loss of female ornamentation can be a driver of sexual dichromatism and that social or natural selection may be a stronger contributor to variation in dichromatism than sexual selection. PMID:26019159

  15. The Gaia-ESO Survey: Separating disk chemical substructures with cluster models. Evidence of a separate evolution in the metal-poor thin disk

    NASA Astrophysics Data System (ADS)

    Rojas-Arriagada, A.; Recio-Blanco, A.; de Laverny, P.; Schultheis, M.; Guiglion, G.; Mikolaitis, Š.; Kordopatis, G.; Hill, V.; Gilmore, G.; Randich, S.; Alfaro, E. J.; Bensby, T.; Koposov, S. E.; Costado, M. T.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.; Chiappini, C.

    2016-02-01

    Context. Recent spectroscopic surveys have begun to explore the Galactic disk system on the basis of large data samples, with spatial distributions sampling regions well outside the solar neighborhood. In this way, they provide valuable information for testing spatial and temporal variations of disk structure kinematics and chemical evolution. Aims: The main purposes of this study are to demonstrate the usefulness of a rigorous mathematical approach to separate substructures of a stellar sample in the abundance-metallicity plane, and provide new evidence with which to characterize the nature of the metal-poor end of the thin disk sequence. Methods: We used a Gaussian mixture model algorithm to separate in the [Mg/Fe] vs. [Fe/H] plane a clean disk star subsample (essentially at RGC< 10 kpc) from the Gaia-ESO survey (GES) internal data release 2 (iDR2). We aim at decomposing it into data groups highlighting number density and/or slope variations in the abundance-metallicity plane. An independent sample of disk red clump stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) was used to cross-check the identified features. Results: We find that the sample is separated into five groups associated with major Galactic components; the metal-rich end of the halo, the thick disk, and three subgroups for the thin disk sequence. This is confirmed with the sample of red clump stars from APOGEE. The three thin disk groups served to explore this sequence in more detail. The two metal-intermediate and metal-rich groups of the thin disk decomposition ([Fe/H] > -0.25 dex) highlight a change in the slope at solar metallicity. This holds true at different radial regions of the Milky Way. The distribution of Galactocentric radial distances of the metal-poor part of the thin disk ([Fe/H] < -0.25 dex) is shifted to larger distances than those of the more metal-rich parts. Moreover, the metal-poor part of the thin disk presents indications of a scale height

  16. Propeller peregrinations: Ongoing observations of disk-embedded migration in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.; Cassini Imaging Team

    2016-10-01

    The "propeller" moons within Saturn's rings are the first objects ever to have their orbits tracked while embedded in a disk, rather than moving through empty space (Tiscareno et al. 2010, ApJL). The km-sized "giant propellers" whose orbits have been tracked in the outer-A ring, as well as their smaller 0.1-km-sized brethren swarming in the mid-A ring, are not seen directly; rather, their locations are inferred by means of the propeller-shaped disturbances they create in the surrounding ring material (Tiscareno et al. 2006, Nature; Sremcevic et al. 2007, Nature; Tiscareno et al. 2008, AJ). The orbits of giant propellers are primarily Keplerian, but with clear excursions of up to several degrees longitude over a decade of observations. Most theories that have been proposed to explain the non-Keplerian motion of propeller moons (e.g., Pan et al. 2012, MNRAS; Tiscareno 2013, P&SS) rely on gravitational and/or collisional interactions between the moon and the surrounding disk, and thus hold out the prospect for directly observing processes that are important in protoplanetary scenarios and other disk systems. We will review the current dynamical models and report on recent ongoing observations by the Cassini imaging camera.

  17. Propeller peregrinations: Ongoing observations of disk-embedded migration in Saturn’s rings

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.

    2016-05-01

    The "propeller" moons within Saturn's rings are the first objects ever to have their orbits tracked while embedded in a disk, rather than moving through empty space (Tiscareno et al. 2010, ApJL). The km-sized "giant propellers" whose orbits have been tracked in the outer-A ring, as well as their smaller 0.1-km-sized brethren swarming in the mid-A ring, are not seen directly; rather, their locations are inferred by means of the propeller-shaped disturbances they create in the surrounding ring material (Tiscareno et al. 2006, Nature; Sremcevic et al. 2007, Nature; Tiscareno et al. 2008, AJ). The orbits of giant propellers are primarily Keplerian, but with clear excursions of up to several degrees longitude over a decade of observations. Most theories that have been proposed to explain the non-Keplerian motion of propeller moons (e.g., Pan et al. 2012, MNRAS; Tiscareno 2013, P&SS) rely on gravitational and/or collisional interactions between the moon and the surrounding disk, and thus hold out the prospect for directly observing processes that are important in protoplanetary scenarios and other disk systems. We will review the current dynamical models and report on recent ongoing observations by the Cassini imaging camera.

  18. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    PubMed Central

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    2014-01-01

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. ProDiMo protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The Drift cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models. PMID:25370190

  19. Migratory Recovery from Infection as a Selective Pressure for the Evolution of Migration.

    PubMed

    Shaw, Allison K; Binning, Sandra A

    2016-04-01

    Migration, a widespread animal behavior, can influence how individuals acquire and transmit pathogens. Past work has demonstrated that migration can reduce the costs of pathogen or parasite infection through two processes: migratory escape from infected areas or individuals and migratory culling of infected individuals. Here, we propose a third process: migratory recovery, where infected individuals lose their parasites and recover from infection during migration. Recovery can occur when parasites and/or their intermediate hosts cannot support changes in the migratory host's internal or external environment during migration. Thus, parasite mortality increases with migration. Although migratory recovery is likely widespread across species, it remains challenging to empirically test it as a selective force promoting migration. We develop a model and determine the conditions under which migratory recovery theoretically favors the evolution of migration. We show that incorporating migratory recovery into a model of migratory escape increases the range of biologically realistic conditions favoring migration and leads to scenarios where partial migration can evolve. Motivated by empirical estimates of infection costs, our model shows how recovery from infection could drive the evolution of migration. We suggest a number of future directions for both theoretical and empirical research in this area.

  20. Insights into Planet Formation from Debris Disks: I. The Solar System as an Archetype for Planetesimal Evolution

    NASA Astrophysics Data System (ADS)

    Matthews, Brenda C.; Kavelaars, JJ

    2016-12-01

    Circumstellar disks have long been regarded as windows into planetary systems. The advent of high sensitivity, high resolution imaging in the submillimeter where both the solid and gas components of disks can be detected opens up new possibilities for understanding the dynamical histories of these systems and therefore, a better ability to place our own solar system, which hosts a highly evolved debris disk, in context. Comparisons of dust masses from protoplanetary and debris disks have revealed a stark downturn in mass in millimeter-sized grains around a stellar age of 10 Myr, ostensibly in the "transition disk" phase, suggesting a period of rapid accretion of such grains onto planetesimals. This rapid formation phase is in keeping with radionucleide studies of Kuiper Belt Objects in the solar system. Importantly, this suggests that any thermal gradients in the gas of disks of this era will be "frozen in" to the planetesimals as they rapidly accrete from the solids and ices in their vicinity. Measurements of radial gradients in thermal tracers such as DHO, DCN and other tracers can therefore provide insight into the nascent solar system's abundances. In studies of dynamical evolution of the solar system, it is tacitly assumed that such abundances can reveal the location of formation for bodies now found in the asteroid belt and Kuiper belt. Similarly, evidence of gas detected from collisional evolution in young debris disks could potentially reveal how rapidly objects have dynamically evolved in those systems, most of which will be significantly younger than the solar system.

  1. STRUCTURE AND EVOLUTION OF DEBRIS DISKS AROUND F-TYPE STARS. I. OBSERVATIONS, DATABASE, AND BASIC EVOLUTIONARY ASPECTS

    SciTech Connect

    Moor, A.; Abraham, P.; Kiss, L. L.; Kiss, Cs.; Pascucci, I.; Apai, D.; Kospal, A.; Csengeri, T.; Henning, Th.; Juhasz, A.; Bayliss, D.; Kovacs, J.; Szalai, T.

    2011-03-15

    Although photometric and spectroscopic surveys with the Spitzer Space Telescope remarkably increased the number of well-studied debris disks around A-type and Sun-like stars, detailed analyses of debris disks around F-type stars remained less frequent. Using the MIPS camera and the Infrared Spectrograph (IRS) spectrograph, we searched for debris dust around 82 F-type stars with Spitzer. We found 27 stars that harbor debris disks, nine of which are new discoveries. The dust distribution around two of our stars, HD 50571 and HD 170773, was found to be marginally extended on the 70 {mu}m MIPS images. Combining the MIPS and IRS measurements with additional infrared and submillimeter data, we achieved excellent spectral coverage for most of our debris systems. We have modeled the excess emission of 22 debris disks using a single temperature dust ring model and of five debris systems with two-temperature models. The latter systems may contain two dust rings around the star. In accordance with the expected trends, the fractional luminosity of the disks declines with time, exhibiting a decay rate consistent with the range of model predictions. We found the distribution of radial dust distances as a function of age to be consistent with the predictions of both the self-stirred and the planetary-stirred disk evolution models. A more comprehensive investigation of the evolution of debris disks around F-type stars, partly based on the presented data set, will be the subject of an upcoming paper.

  2. Global Evolution of Solid Matter in Turbulent Protoplanetry Disks. Part 1; Aerodynamics of Solid Particles

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Valageas, P.

    1996-01-01

    The problem of planetary system formation and its subsequent character can only be addressed by studying the global evolution of solid material entrained in gaseous protoplanetary disks. We start to investigate this problem by considering the space-time development of aerodynamic forces that cause solid particles to decouple from the gas. The aim of this work is to demonstrate that only the smallest particles are attached to the gas, or that the radial distribution of the solid matter has no momentary relation to the radial distribution of the gas. We present the illustrative example wherein a gaseous disk of 0.245 solar mass and angular momentum of 5.6 x 10(exp 52) g/sq cm/s is allowed to evolve due to turbulent viscosity characterized by either alpha = 10(exp -2) or alpha = 10(exp -3). The motion of solid particles suspended in a viscously evolving gaseous disk is calculated numerically for particles of different sizes. In addition we calculate the global evolution of single-sized, noncoagulating particles. We find that particles smaller than 0.1 cm move with the gas; larger particles have significant radial velocities relative to the gas. Particles larger than 0.1 cm but smaller than 10(exp 3) cm have inward radial velocities much larger than the gas, whereas particles larger than 10(exp 4) cm have inward velocities much smaller than the gas. A significant difference in the form of the radial distribution of solids and the gas develops with time. It is the radial distribution of solids, rather than the gas, that determines the character of an emerging planetary system.

  3. Evolution of second-generation stars in stellar disks of globular and nuclear clusters: ω Centauri as a test case

    SciTech Connect

    Mastrobuono-Battisti, Alessandra; Perets, Hagai B.

    2013-12-10

    Globular clusters (GCs) and many nuclear clusters (NCs) show evidence of hosting multiple generations of stellar populations. Younger stellar populations in NCs appear to reside in disk-like structures, including the NC in our own Galactic center as well as in M31. Kinematic studies of the anomalous GC ω Centauri, thought to possibly be a former dwarf galaxy (or a galactic nucleus), show evidence of hosting a central, kinematically cold disk component. These observations suggest that formation of second- (or multiple) generation stars may occur in flattened disk-like structures. Here, we use detailed N-body simulations to explore the possible evolution of such stellar disks embedded in GCs. We follow the long-term evolution of a disk-like structure similar to that observed in ω Centauri and study its properties. We find that a stellar-disk-like origin for second-generation stellar populations can leave behind significant kinematic signatures in properties of the clusters, including an anisotropic distribution and lower velocity dispersions, which can be used to constrain the origin of second-generations stars and their dynamical evolution.

  4. The effects of the formation of a giant planet on the evolution of the protoplanetary disk: the case of Jupiter in the Solar System

    NASA Astrophysics Data System (ADS)

    Turrini, Diego

    2015-11-01

    The formation of a giant planet is one of the milestones in the life of a planetary system, as it plays a leading role in shaping its subsequent evolution. Once the core of the forming giant planet reaches the critical mass needed to trigger the hydrodynamical instability in the surrounding nebular gas and start the rapid phase of gas accretion, the planetary system in which the planet is embedded suddenly experience the appearance of a strong gravitational perturber. Even in absence of migration, this event will trigger a 0.5-1 Myr-long phase of violent remixing and enhanced collisional evolution of the planetary bodies in the protoplanetary disk. For what it concerns the giant planet itself, this primordial bombardment will result in the capture of high-Z material from a wide orbital range, including the inner regions of the planetary system. For what it concerns the other bodies of the protoplanetary disk, this phase of remixing and bombardment will result in the collisional erosion of the smallest planetesimals in the dynamically-excited orbital regions and in the delivery of water and volatile elements to the inner regions of the planetary system. While the mass growth of the giant planet is necessary and sufficient condition to trigger this primordial bombardment, planetary migration plays a major role in determining its intensity. Using the formation of Jupiter in the Solar System as our case study, we will illustrate how this event affects the Jovian system and the asteroid belt. Concerning the latter, we will also discuss how the composition of asteroid Vesta, whose formation and differentiation predate the formation of Jupiter, supplies information on the primordial dynamical evolution of the giant planet.

  5. OXYGEN ABUNDANCES IN NEARBY FGK STARS AND THE GALACTIC CHEMICAL EVOLUTION OF THE LOCAL DISK AND HALO

    SciTech Connect

    Ramirez, I.; Lambert, D. L.; Allende Prieto, C.

    2013-02-10

    Atmospheric parameters and oxygen abundances of 825 nearby FGK stars are derived using high-quality spectra and a non-local thermodynamic equilibrium analysis of the 777 nm O I triplet lines. We assign a kinematic probability for the stars to be thin-disk (P {sub 1}), thick-disk (P {sub 2}), and halo (P {sub 3}) members. We confirm previous findings of enhanced [O/Fe] in thick-disk (P {sub 2} > 0.5) relative to thin-disk (P {sub 1} > 0.5) stars with [Fe/H] {approx}< -0.2, as well as a 'knee' that connects the mean [O/Fe]-[Fe/H] trend of thick-disk stars with that of thin-disk members at [Fe/H] {approx}> -0.2. Nevertheless, we find that the kinematic membership criterion fails at separating perfectly the stars in the [O/Fe]-[Fe/H] plane, even when a very restrictive kinematic separation is employed. Stars with 'intermediate' kinematics (P {sub 1} < 0.7, P {sub 2} < 0.7) do not all populate the region of the [O/Fe]-[Fe/H] plane intermediate between the mean thin-disk and thick-disk trends, but their distribution is not necessarily bimodal. Halo stars (P {sub 3} > 0.5) show a large star-to-star scatter in [O/Fe]-[Fe/H], but most of it is due to stars with Galactocentric rotational velocity V < -200 km s{sup -1}; halo stars with V > -200 km s{sup -1} follow an [O/Fe]-[Fe/H] relation with almost no star-to-star scatter. Early mergers with satellite galaxies explain most of our observations, but the significant fraction of disk stars with 'ambiguous' kinematics and abundances suggests that scattering by molecular clouds and radial migration have both played an important role in determining the kinematic and chemical properties of solar neighborhood stars.

  6. Analyzing the Distribution and Chemical Evolution of Major Nitrogen Carriers within Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Pegues, Jamila; Oberg, Karin

    2016-01-01

    Nitrogen is an important component in many of the world's known organic and inorganic compounds, and its presence is crucial for the existence and survival of life as we know it on Earth today. And yet, in comparison to the total amount of nitrogen available, nitrogen exists as a depleted resource throughout the Solar System, with Earth and unearthed meteorites featuring nitrogen levels depleted from 1 to 5 orders of magnitude relative to the Sun. Additionally, comets have been discovered that contain depleted levels of N2 in comparison to CO, despite the similar binding strengths of both N2 and CO to ices, with ices functioning as the main component in comets.Mechanisms that are likely to play a major part in the distribution of nitrogen throughout the Solar System, and other extra-solar systems, are condensation fronts, such as snowlines and snowsurfaces. Here, condensation fronts refer to the locations at which 50% of a given volatile is contained in gaseous form, while the other 50% is contained within grain form. During formation, astronomical bodies will accumulate different chemical compositions, depending upon where they form with respect to the locations of the condensation fronts within the system. In addition, a system's initial chemistry, as well as how that chemistry evolves, will ultimately alter how the volatiles in the system are distributed over time.Thus, the locations of these condensation fronts, coupled with a protoplanetary disk's initial chemistry and chemical evolution, are mechanisms that affect the eventual distribution and evolution of the disk's volatiles. In this project, we characterize and interpret these mechanisms within disk models. We vary the disk's time dependence and initial chemical conditions, and then analyze the effects of those variations upon the main carriers of nitrogen in both gaseous and grain form. From observed patterns and characteristics of these varied models, we evolve our understanding of curious nitrogen

  7. The Global Perspective on the Evolution of Solids in a Protoplanetary Disk

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Valageas, P.

    1996-01-01

    It is currently thought that planets around solar-type stars form by the accumulation of solid matter entrained in a gaseous, turbulent protoplanetary disk. We have developed a model designed to simulate the part of this process that starts from small particles suspended in the gaseous disk at the end of the formation stage, and ends up with most of the solid material aggregated into 1-10-km planetesimals. The major novelty of our approach is its emphasis on the global, comprehensive treatment of the problem, as our model simultaneously keeps track of the evolution of gas and solid particles due to gas-solid coupling, coagulation, sedimentation, and evaporation/condensation. The result of our calculations is the radial distribution of solid material circumnavigating a star in the form of a planetesimal swarm. Such a distribution should well approximate the radial apportionment of condensed components of the planets spread over the radial extent of the mature planetary system. Therefore we view our calculations as an attempt to predict the large-scale architecture of planetary systems and to assess their potential diversity. In particular, we have found that some initial conditions lead to all solids being lost to the star, but we can also identify initial conditions leading to a radial distribution of solid material quite reminiscent of what is found in our solar system.

  8. Vortex Formation and Evolution in Planet Harboring Disks Under Thermal Relaxation

    NASA Astrophysics Data System (ADS)

    Lobo Gomes, Aiara; Klahr, Hubert; Uribe, Ana Lucia; Pinilla, Paola; Surville, Clément

    2015-09-01

    We study the evolution of planet-induced vortices in radially stratified disks, with initial conditions allowing for radial buoyancy. For this purpose we run global two-dimensional hydrodynamical simulations, using the PLUTO code. Planet-induced vortices are a product of the Rossby wave instability (RWI) triggered in the edges of a planetary gap. In this work we assess the influence of radial buoyancy for the development of the vortices. We found that radial buoyancy leads to smoother planetary gaps, which generates weaker vortices. This effect is less pronounced for locally isothermal and quasi-isothermal (very small cooling rate) disks. We observed the formation of two generations of vortices. The first generation of vortices is formed in the outer wall of the planetary gap. The merged primary vortex induces accretion, depleting the mass on its orbit. This process creates a surface density enhancement beyond the primary vortex position. The second generation of vortices arise in this surface density enhancement, indicating that the bump in this region is sufficient to trigger the RWI. The merged secondary vortex is a promising explanation for the location of the vortex in the Oph IRS 48 system. Finally, we observed a nonmonotonic behavior for the vortex lifetimes as a function of the thermal relaxation timescale, agreeing with previous studies. The birth times of the secondary vortices also display a nonmonotonic behavior, which is correlated with the growth time of the primary vortex and its induced accretion.

  9. Where is the Light? Tracing the Evolution of Bulges and Disks since z ~ 0.8†

    NASA Astrophysics Data System (ADS)

    Tasca, Lidia A. M.; Tresse, Laurence; Tresse

    2011-12-01

    The chronology of galactic bulge and disk formation is studied by analysing the relative contributions of these components to the B band rest-frame luminosity density (LD) at two different cosmological epochs. The luminosity function (LF) of the bulge and disk components at z ~ 0.8 is computed on a galaxy subsample of the final zCOSMOS ``bright'' catalogue of roughly 20,000 objects with spectroscopic redshift in the COSMOS field. The comparison is then performed on galaxies in the local universe. Our preliminary results show that the LD in the disk component strongly decreases from ~ 80% at z ~ 0.8 to ~ 50% at z = 0, the bulges having a specular behaviour. The observational constraints provided in this work are aimed to discriminate among competing scenarios of galaxy formation and evolution. An appropriate comparison with hydrodynamical semianalytical models will be considered in a future study to understand further the formation and evolution of galaxies.

  10. Water vapor in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Banzatti, Andrea

    2013-03-01

    This thesis is devoted to a study of the conditions and evolution of the planet formation region in young circumstellar disks, by means of spectroscopic observations of molecular gas emission. The main focus of this work is the infrared spectrum of water (H2O), which provides thousands of emission lines tracing the warm and dense gas inward of the water snow line in disks. The analysis includes also emission from some organic molecules that trace the carbon chemistry, C2H2, HCN, and CO2, as well as emission from OH that is connected to the formation and destruction of the water molecule. Two are the main directions explored in this work, for which we used spectra from the Spitzer Space Telescope (IRS) and the Very Large Telescope (VISIR and X-shooter). The first is to investigate how variable accretion phenomena occurring during the T Tauri phase affect the molecular environments in the planet formation region of disks. By monitoring T Tauri stars in different phases of accretion, we found that outbursts can remarkably affect their mid-infrared molecular emission. We propose a scenario where accretion flares trigger a recession of the water snow line, increasing water emission from the disk, when the accretion luminosity keeps higher over long enough timescales for the thermal structure of the disk to change (at least a few weeks, as observed in the strongly variable EX Lupi). In addition, enhanced UV radiation is found to produce OH from photodissociation of water in the disk. Organic molecules instead disappear during a strong outburst, and we are currently investigating the long-term evolution of these effects. A second direction was taken to tackle another fundamental problem: the origin of water vapor in inner disks. Some models predict that water is produced by evaporation of icy solids migrating inward of the snow line. One way to probe this scenario is by measuring the abundance of water vapor in the inner disk, and compare it to the oxygen abundance

  11. Postglacial population expansion drives the evolution of long-distance migration in a songbird.

    PubMed

    Milá, Borja; Smith, Thomas B; Wayne, Robert K

    2006-11-01

    The evolution of long-distance migratory behavior from sedentary populations is a central problem in studies of animal migration. Three crucial issues that remain unresolved are: (1) the biotic and abiotic factors promoting evolution of migratory behavior, (2) the geographic origin of ancestral sedentary populations, and (3) the time scale over which migration evolves. We test the role of postglacial population expansions during the Quaternary in driving the evolution of songbird migration against prevailing views favoring the role of intraspecific competition. In contrast to previous attempts to investigate these questions using interspecific phylogenies, we adopt an intraspecific approach and examine the phylogeography of a North American songbird, the chipping sparrow (Spizella passerina), which exhibits both long-distance migratory behavior in temperate North America and sedentary behavior in Mexico and Central America. We show that migratory populations descend from sedentary populations in southern Mexico and that migration has evolved as a result of a northward population expansion into temperate North America since the last glacial maximum 18,000 years ago. Migration appears to have evolved rapidly in some species as populations colonized areas of high seasonality in the temperate zone. The phylogeography of the yellow-eyed junco (Junco phaeonotus), a strictly sedentary species, provides a null model supporting the view that northward range expansions were driven solely by environmental factors and not by a predisposition to evolve migratory behavior. These results provide the strongest evidence to date that historical climate patterns can drive the rapid evolution of avian migration in natural populations, and they suggest a general mechanism for the repeated evolution of migration within and across bird lineages.

  12. Evolution of cooperation driven by reputation-based migration.

    PubMed

    Cong, Rui; Wu, Bin; Qiu, Yuanying; Wang, Long

    2012-01-01

    How cooperation emerges and is stabilized has been a puzzling problem to biologists and sociologists since Darwin. One of the possible answers to this problem lies in the mobility patterns. These mobility patterns in previous works are either random-like or driven by payoff-related properties such as fitness, aspiration, or expectation. Here we address another force which drives us to move from place to place: reputation. To this end, we propose a reputation-based model to explore the effect of migration on cooperation in the contest of the prisoner's dilemma. In this model, individuals earn their reputation scores through previous cooperative behaviors. An individual tends to migrate to a new place if he has a neighborhood of low reputation. We show that cooperation is promoted for relatively large population density and not very large temptation to defect. A higher mobility sensitivity to reputation is always better for cooperation. A longer reputation memory favors cooperation, provided that the corresponding mobility sensitivity to reputation is strong enough. The microscopic perception of the effect of this mechanism is also given. Our results may shed some light on the role played by migration in the emergence and persistence of cooperation.

  13. Nonlinear calculations of the time evolution of black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Luo, C.

    1994-01-01

    Based on previous works on black hole accretion disks, I continue to explore the disk dynamics using the finite difference method to solve the highly nonlinear problem of time-dependent alpha disk equations. Here a radially zoned model is used to develop a computational scheme in order to accommodate functional dependence of the viscosity parameter alpha on the disk scale height and/or surface density. This work is based on the author's previous work on the steady disk structure and the linear analysis of disk dynamics to try to apply to x-ray emissions from black candidates (i.e., multiple-state spectra, instabilities, QPO's, etc.).

  14. GABAergic interneuron migration and the evolution of the neocortex.

    PubMed

    Tanaka, Daisuke H; Nakajima, Kazunori

    2012-04-01

    A neocortex is present in all mammals but is not present in other classes of vertebrates, and the neocortex is extremely elaborate in humans. Changes in excitatory projection neurons and their progenitors within the developing dorsal pallium in the most recent common ancestor of mammals are thought to have been involved in the evolution of the neocortex. Our recent findings suggest that changes in the migratory ability of inhibitory interneurons derived from outside the neocortex may also have been involved in the evolution of the neocortex. In this article we review the literature on the migratory profile of inhibitory interneurons in several different species and the literature on comparisons between the intrinsic migratory ability of interneurons derived from different species. Finally, we propose a hypothesis about the mammalian-specific evolution of the migratory ability of interneurons and its potential contribution to the establishment of a functional neocortex.

  15. DO GIANT PLANETS SURVIVE TYPE II MIGRATION?

    SciTech Connect

    Hasegawa, Yasuhiro; Ida, Shigeru E-mail: ida@geo.titech.ac.jp

    2013-09-10

    Planetary migration is one of the most serious problems to systematically understand the observations of exoplanets. We clarify that the theoretically predicted type II, migration (like type I migration) is too fast, by developing detailed analytical arguments in which the timescale of type II migration is compared with the disk lifetime. In the disk-dominated regime, the type II migration timescale is characterized by a local viscous diffusion timescale, while the disk lifetime is characterized by a global diffusion timescale that is much longer than the local one. Even in the planet-dominated regime where the inertia of the planet mass reduces the migration speed, the timescale is still shorter than the disk lifetime except in the final disk evolution stage where the total disk mass decays below the planet mass. This suggests that most giant planets plunge into the central stars within the disk lifetime, and it contradicts the exoplanet observations that gas giants are piled up at r {approx}> 1 AU. We examine additional processes that may arise in protoplanetary disks: dead zones, photoevaporation of gas, and gas flow across a gap formed by a type II migrator. Although they make the type II migration timescale closer to the disk lifetime, we show that none of them can act as an effective barrier for rapid type II migration with the current knowledge of these processes. We point out that gas flow across a gap and the fraction of the flow accreted onto the planets are uncertain and they may have the potential to solve the problem. Much more detailed investigation for each process may be needed to explain the observed distribution of gas giants in extrasolar planetary systems.

  16. THE EVOLUTION OF CIRCUMPLANETARY DISKS AROUND PLANETS IN WIDE ORBITS: IMPLICATIONS FOR FORMATION THEORY, OBSERVATIONS, AND MOON SYSTEMS

    SciTech Connect

    Shabram, Megan; Boley, Aaron C.

    2013-04-10

    Using radiation hydrodynamics simulations, we explore the evolution of circumplanetary disks around wide-orbit proto-gas giants. At large distances from the star ({approx}100 AU), gravitational instability followed by disk fragmentation can form low-mass substellar companions (massive gas giants and/or brown dwarfs) that are likely to host large disks. We examine the initial evolution of these subdisks and their role in regulating the growth of their substellar companions, as well as explore consequences of their interactions with circumstellar material. We find that subdisks that form in the context of GIs evolve quickly from a very massive state. Long-term accretion rates from the subdisk onto the proto-gas giant reach {approx}0.3 Jupiter masses kyr{sup -1}. We also find consistency with previous simulations, demonstrating that subdisks are truncated at {approx}1/3 of the companion's Hill radius and are thick, with (h/r) of {approx}> 0.2. The thickness of subdisks draws to question the use of thin-disk approximations for understanding the behavior of subdisks, and the morphology of subdisks has implications for the formation and extent of satellite systems. These subdisks create heating events in otherwise cold regions of the circumstellar disk and serve as planet formation beacons that can be detected by instruments such as ALMA.

  17. Evolution of Warped Accretion Disks in Active Galactic Nuclei. I. Roles of Feeding at the Outer Boundaries

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2013-02-01

    We investigate the alignment processes of spinning black holes and their surrounding warped accretion disks in a frame of two different types of feeding at the outer boundaries. We consider (1) fixed flows in which gas is continually fed with a preferred angular momentum, and (2) free flows in which there is no gas supply and the disks diffuse freely at their outer edges. As expected, we find that for the cases of fixed flows the black hole disk systems always align on timescales of several 106 yr, irrespective of the initial inclinations. If the initial inclination angles are larger than π/2, the black hole accretion transits from retrograde to prograde fashion, and the accreted mass onto the black holes during these two phases is comparable. On the other hand, for the cases of free flows, both alignments and anti-alignments can occur, depending on the initial inclinations and the ratios of the angular momentum of the disks to that of the black holes. In such cases, the disks will be consumed within timescales of 106 yr by black holes accreting at the Eddington limit. We propose that there is a close connection between the black hole spin and the lifetime for which the feeding persists, which determines the observable episodic lifetimes of active galactic nuclei. We conclude that careful inclusion of the disk feeding at the outer boundaries is crucial for modeling the evolution of the black hole spin.

  18. Young Stellar Object Variability (YSOVAR): Mid Infrared Clues to Accretion Disk Physics and Protostar Rotational Evolution

    NASA Astrophysics Data System (ADS)

    Stauffer, John; Akeson, Rachel; Allen, Lori; Ardila, David; Barrado, David; Bayo, Amelia; Bouvier, Jerome; Calvet, Nuria; Carey, Sean; Carpenter, John; Ciardi, David; Covey, Kevin; Favata, Fabio; Flaherty, Kevin; Forbrich, Jan; Guieu, Sylvain; Gutermuth, Rob; Hartmann, Lee; Hillenbrand, Lynne; Hora, Joe; McCaughrean, Mark; Megeath, Tom; Morales-Calderon, Maria; Muzerolle, James; Plavchan, Peter; Rebull, Luisa; Skrutskie, Mike; Smith, Howard; Song, Inseok; Stapelfeldt, Karl; Sung, Hwankyung; Terebey, Susan; Vrba, Fred; Werner, Mike; Whitney, Barbara; Winston, Elaine; Wood, Kenny

    2008-12-01

    Spitzer/IRAC in the warm mission is the only facility now existing or planned capable of carrying out an extensive, accurate time series photometric monitoring survey of star-forming regions in the thermal infrared. The demonstrated sensitivity and stability of IRAC allows measurement of the relative fluxes of YSO's down to the substellar mass limit to 1-2% accuracy in star-forming regions out to >500 pc. We propose a time series monitoring exploration science survey of the Orion Nebula Cluster and 11 very young, populous embedded star-forming cores which will provide >D 80 epochs of data for > 1500 YSO's. We will complement these observations with contemporaneous optical and near-IR monitoring data in order to allow comparison of the phase, amplitude and light-curve shape as a function of wavelength. These data will allow us to: (a) provide otherwise unobtainable constraints on the structure of the inner disks in Class I and II YSOs - and hence, perhaps, provide clues to the formation and migration of planets at young ages; (b) measure the short and long-term stability of hot spots on the surfaces of YSO's of all evolutionary stages; and (c) determine rotational periods for the largest sample to date of Class I YSO's and hence obtain the best measure of the initial angular momentum distribution of young stars.

  19. Time-Dependent Simulations of the Formation and Evolution of Disk-Accreted Atmospheres Around Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Stoekl, Alexander; Dorfi, Ernst

    2014-05-01

    In the early, embedded phase of evolution of terrestrial planets, the planetary core accumulates gas from the circumstellar disk into a planetary envelope. This atmosphere is very significant for the further thermal evolution of the planet by forming an insulation around the rocky core. The disk-captured envelope is also the staring point for the atmospheric evolution where the atmosphere is modified by outgassing from the planetary core and atmospheric mass loss once the planet is exposed to the radiation field of the host star. The final amount of persistent atmosphere around the evolved planet very much characterizes the planet and is a key criterion for habitability. The established way to study disk accumulated atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. We present, for the first time, time-dependent radiation hydrodynamics simulations of the accumulation process and the interaction between the disk-nebula gas and the planetary core. The calculations were performed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) in spherical symmetry solving the equations of hydrodynamics, gray radiative transport, and convective energy transport. The models range from the surface of the solid core up to the Hill radius where the planetary envelope merges into the surrounding protoplanetary disk. Our results show that the time-scale of gas capturing and atmospheric growth strongly depends on the mass of the solid core. The amount of atmosphere accumulated during the lifetime of the protoplanetary disk (typically a few Myr) varies accordingly with the mass of the planet. Thus, a core with Mars-mass will end up with about 10 bar of atmosphere while for an Earth-mass core, the surface pressure reaches several 1000 bar. Even larger planets with several Earth masses quickly capture massive envelopes which in turn become gravitationally unstable leading to runaway accretion and the eventual

  20. Millimeter Continuum Observations Of Disk Solids

    NASA Astrophysics Data System (ADS)

    Andrews, Sean

    2016-07-01

    I will offer a condensed overview of some key issues in protoplanetary disk research that makes use interferometric measurements of the millimeter-wavelength continuum emitted by their solid particles. Several lines of evidence now qualitatively support theoretical models for the growth and migration of disk solids, but also advertise a quantitative tension with the traditional efficiency of that evolution. New observations of small-scale substructures in disks might both reconcile the conflict and shift our focus in the mechanics of planet formation.

  1. Indications of that migration of stem cells is influenced by the extra cellular matrix architecture in the mammalian intervertebral disk region.

    PubMed

    Henriksson, H Barreto; Papadimitriou, N; Tschernitz, S; Svala, E; Skioldebrand, E; Windahl, S; Junevik, K; Brisby, H

    2015-10-01

    Disk-degeneration is believed a major cause for lumbar pain. Previously, potential stem cell niches in the intervertebral disk (IVD) region, located adjacent to epiphyseal plate, was reported. The aim of the study was to examine migration of mesenchymal stem cells (MSCs), extracellular matrix (ECM) architecture in a potential cellular migration route (CMR; area located between the niche and IVD) and in the IVD in non-degenerated lapine- and in human degenerated IVD tissues. Human MSCs (n=3), human degenerated IVD tissues (n=10) and lapine IVDs (n=10) were collected. The samples were examined by immunohistochemistry for stem cell markers; CD90, OCT3/4, pre-chondrocytic marker; GDF5, catabolic markers; MMP9, MMP13, inflammatory marker; IL1R, cellular migration markers; SNAI1, SNAI2, adhesion markers; β1-INTEGRIN and DDR2. In addition, gene-expression analyses (Real time PCR) were performed on additional samples. Further, time lapse studies were performed with hMSCs cultured on aligned COLL-I-fibers-coated glass-slides in DMEM-LG, 10% human serum containing fibroblast growth factor (bFGF). Presence of stem cells (CD90+, OCT3/4+), pre-chondocytic cells (GDF5+) and cells positive for migration markers (SNAI1+, SNAI2+), catabolic markers (MMP9+, MMP13+), inflammatory marker (IL1R+), adhesion markers (DDR2+, B1-INTEGRIN+) were detected (gene- and protein level) in investigated CMR and IVD regions. In the time lapse studies, MSCs alignment and protrusions were observed orientated in the same direction as collagen fibers. Results display influence of ECM collagen architecture and collagen fiber spatial direction on migration of stem cells. The results can be useful when developing tissue-engineering strategies for disk-degeneration.

  2. The accretion of migrating giant planets

    NASA Astrophysics Data System (ADS)

    Dürmann, Christoph; Kley, Wilhelm

    2017-02-01

    Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.

  3. Tracing chemical evolution over the extent of the Milky Way's disk with apogee red clump stars

    SciTech Connect

    Nidever, David L.; Bovy, Jo; Bird, Jonathan C.; Andrews, Brett H.; Johnson, Jennifer A.; Weinberg, David H.; Hayden, Michael; Holtzman, Jon; Feuillet, Diane; Majewski, Steven R.; García Pérez, Ana E.; Smith, Verne; Robin, Annie C.; Sobeck, Jennifer; Cunha, Katia; Allende Prieto, Carlos; Zasowski, Gail; Schiavon, Ricardo P.; Schneider, Donald P.; Shetrone, Matthew; and others

    2014-11-20

    We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and α-element abundances of stars over a large part of the Milky Way disk. Using a sample of ≈10, 000 kinematically unbiased red-clump stars with ∼5% distance accuracy as tracers, the [α/Fe] versus [Fe/H] distribution of this sample exhibits a bimodality in [α/Fe] at intermediate metallicities, –0.9 < [Fe/H] <–0.2, but at higher metallicities ([Fe/H] ∼+0.2) the two sequences smoothly merge. We investigate the effects of the APOGEE selection function and volume filling fraction and find that these have little qualitative impact on the α-element abundance patterns. The described abundance pattern is found throughout the range 5 < R < 11 kpc and 0 < |Z| < 2 kpc across the Galaxy. The [α/Fe] trend of the high-α sequence is surprisingly constant throughout the Galaxy, with little variation from region to region (∼10%). Using simple galactic chemical evolution models, we derive an average star-formation efficiency (SFE) in the high-α sequence of ∼4.5 × 10{sup –10} yr{sup –1}, which is quite close to the nearly constant value found in molecular-gas-dominated regions of nearby spirals. This result suggests that the early evolution of the Milky Way disk was characterized by stars that shared a similar star-formation history and were formed in a well-mixed, turbulent, and molecular-dominated ISM with a gas consumption timescale (SFE{sup –1}) of ∼2 Gyr. Finally, while the two α-element sequences in the inner Galaxy can be explained by a single chemical evolutionary track, this cannot hold in the outer Galaxy, requiring, instead, a mix of two or more populations with distinct enrichment histories.

  4. A METHOD FOR COUPLING DYNAMICAL AND COLLISIONAL EVOLUTION OF DUST IN CIRCUMSTELLAR DISKS: THE EFFECT OF A DEAD ZONE

    SciTech Connect

    Charnoz, Sebastien; Taillifet, Esther

    2012-07-10

    Dust is a major component of protoplanetary and debris disks as it is the main observable signature of planetary formation. However, since dust dynamics are size-dependent (because of gas drag or radiation pressure) any attempt to understand the full dynamical evolution of circumstellar dusty disks that neglect the coupling of collisional evolution with dynamical evolution is thwarted because of the feedback between these two processes. Here, a new hybrid Lagrangian/Eulerian code is presented that overcomes some of these difficulties. The particles representing 'dust clouds' are tracked individually in a Lagrangian way. This system is then mapped on an Eulerian spatial grid, inside the cells of which the local collisional evolutions are computed. Finally, the system is remapped back in a collection of discrete Lagrangian particles, keeping their number constant. An application example of dust growth in a turbulent protoplanetary disk at 1 AU is presented. First, the growth of dust is considered in the absence of a dead zone and the vertical distribution of dust is self-consistently computed. It is found that the mass is rapidly dominated by particles about a fraction of a millimeter in size. Then the same case with an embedded dead zone is investigated and it is found that coagulation is much more efficient and produces, in a short timescale, 1-10 cm dust pebbles that dominate the mass. These pebbles may then be accumulated into embryo-sized objects inside large-scale turbulent structures as shown recently.

  5. Accretion dynamics and disk evolution in NGC 2264: a study based on CoRoT photometric observations

    NASA Astrophysics Data System (ADS)

    Alencar, S. H. P.; Teixeira, P. S.; Guimarães, M. M.; McGinnis, P. T.; Gameiro, J. F.; Bouvier, J.; Aigrain, S.; Flaccomio, E.; Favata, F.

    2010-09-01

    Context. The young cluster NGC 2264 was observed with the CoRoT satellite for 23 days uninterruptedly in March 2008 with unprecedented photometric accuracy. We present the first results of our analysis of the accreting population belonging to the cluster as observed by CoRoT. Aims: We search for possible light curve variability of the same nature as that observed in the classical T Tauri star AA Tau, which was attributed to a magnetically controlled inner disk warp. The inner warp dynamics is supposed to be directly associated with the interaction between the stellar magnetic field and the inner disk region. Methods: We analyzed the CoRoT light curves of 83 previously known classical T Tauri stars that belong to NGC 2264 classifying them according to their light-curve morphology. We also studied the CoRoT light-curve morphology as a function of a Spitzer-based classification of the star-disk systems. Results: The classification derived on the basis of the CoRoT light-curve morphology agrees very well with the Spitzer IRAC-based classification of the systems. The percentage of AA Tau-like light curves decreases as the inner disk dissipates, from 40% ± 10% in systems with thick inner disks to 36% ± 16% in systems with anemic disks and zero in naked photosphere systems. Indeed, 91% ± 29% of the CTTS with naked photospheres exhibit pure spot-like variability, while only 18% ± 7% of the thick disk systems do so, presumably those seen at low inclination and thus free of variable obscuration. Conclusions: AA Tau-like light curves are found to be fairly common, with a frequency of at least ~30 to 40% in young stars with inner dusty disks. The temporal evolution of the light curves indicates that the structure of the inner disk warp, located close to the corotation radius and responsible for the obscuration episodes, varies over a timescale of a few (~1-3) rotational periods. This probably reflects the highly dynamical nature of the star-disk magnetospheric interaction

  6. SHAPE EVOLUTION OF MASSIVE EARLY-TYPE GALAXIES: CONFIRMATION OF INCREASED DISK PREVALENCE AT z > 1

    SciTech Connect

    Chang, Yu-Yen; Van der Wel, Arjen; Rix, Hans-Walter; Ramkumar, Balasubramanian; Wuyts, Stijn; Zibetti, Stefano; Holden, Bradford

    2013-01-10

    We use high-resolution K-band VLT/HAWK-I imaging over 0.25 deg{sup 2} to study the structural evolution of massive early-type galaxies since z {approx} 2. Mass-selected samples, complete down to log(M/M {sub Sun }) {approx} 10.7 such that 'typical' (L*) galaxies are included at all redshifts, are drawn from pre-existing photometric redshift surveys. We then separate the samples into different redshift slices and classify them as late- or early-type galaxies on the basis of their specific star formation rate. Axis-ratio measurements for the {approx}400 early-type galaxies in the redshift range 0.6 < z < 1.8 are accurate to 0.1 or better. The projected axis-ratio distributions are then compared with lower redshift samples. We find strong evidence for evolution of the population properties: early-type galaxies at z > 1 are, on average, flatter than at z < 1 and the median projected axis ratio at a fixed mass decreases with redshift. However, we also find that at all epochs z {approx}< 2, the most massive early-type galaxies (log(M/M {sub Sun }) > 11.3) are the roundest, with a pronounced lack of galaxies that are flat in projection. Merging is a plausible mechanism that can explain both results: at all epochs, merging is required for early-type galaxies to grow beyond log(M/M {sub Sun }) {approx} 11.3, and all early types over time gradually and partially lose their disk-like characteristics.

  7. Shape Evolution of Massive Early-type Galaxies: Confirmation of Increased Disk Prevalence at z > 1

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Yen; van der Wel, Arjen; Rix, Hans-Walter; Wuyts, Stijn; Zibetti, Stefano; Ramkumar, Balasubramanian; Holden, Bradford

    2013-01-01

    We use high-resolution K-band VLT/HAWK-I imaging over 0.25 deg2 to study the structural evolution of massive early-type galaxies since z ~ 2. Mass-selected samples, complete down to log(M/M ⊙) ~ 10.7 such that "typical" (L*) galaxies are included at all redshifts, are drawn from pre-existing photometric redshift surveys. We then separate the samples into different redshift slices and classify them as late- or early-type galaxies on the basis of their specific star formation rate. Axis-ratio measurements for the ~400 early-type galaxies in the redshift range 0.6 < z < 1.8 are accurate to 0.1 or better. The projected axis-ratio distributions are then compared with lower redshift samples. We find strong evidence for evolution of the population properties: early-type galaxies at z > 1 are, on average, flatter than at z < 1 and the median projected axis ratio at a fixed mass decreases with redshift. However, we also find that at all epochs z <~ 2, the most massive early-type galaxies (log(M/M ⊙) > 11.3) are the roundest, with a pronounced lack of galaxies that are flat in projection. Merging is a plausible mechanism that can explain both results: at all epochs, merging is required for early-type galaxies to grow beyond log(M/M ⊙) ~ 11.3, and all early types over time gradually and partially lose their disk-like characteristics.

  8. A Hot Big Bang Theory: Magnetic Fields and the Early Evolution of the Protolunar Disk

    NASA Astrophysics Data System (ADS)

    Gammie, C. F.; Liao, Wei-Ting; Ricker, P. M.

    2016-09-01

    The leading theory for the formation of Earth’s Moon invokes a collision between a Mars-sized body and the proto-Earth to produce a disk of orbiting material that later condenses to form the Moon. We show that the disk opacity is large, and cooling is therefore inefficient ({t}{cool}{{Ω }}\\gg 1). In this regime, angular momentum transport in the disk leads to steady heating unless α \\lt {({t}{cool}{{Ω }})}-1\\ll 1. Following earlier work by Charnoz and Michaut, and Carballido et al., we show that once the disk is completely vaporized it is well coupled to the magnetic field. We consider a scenario in which turbulence driven by magnetic fields leads to a brief, hot phase where the disk is geometrically thick, with strong turbulent mixing. The disk cools by spreading until it decouples from the field. We point out that approximately half the accretion energy is dissipated in the boundary layer where the disk meets the Earth’s surface. This creates high entropy material close to the Earth, driving convection and mixing. Finally, a hot magnetized disk could drive bipolar outflows that remove mass and angular momentum from the Earth-Moon system.

  9. Migration Of Saturn's Small Satellites Embedded In Ring Divisions

    NASA Astrophysics Data System (ADS)

    Salmon, Julien; Charnoz, S.

    2010-10-01

    The migration of a secondary body embedded in a disk orbiting around a massive central body is a well-known problem in the study of protoplanetary disks. Depending on the secondary's properties, and the disk's surface density, the object will migrate differently (the so-called type I, II and III migration). In Saturn's rings, the Encke and Keeler gaps shelter Pan and Daphnis. Although the formation of Saturn's small satellites has been recently suggested to be the product of ring material accretion through the Roche limit (Charnoz et al. 2010), the origin of these very small bodies ( 30km for Pan and 9km for Daphnis) embedded in the rings is yet to be explained. The torque exerted by the rings onto these moonlets should cause them to migrate. The direction of the migration should however be very dependent on the disk's surface density profile around the satellite, and also on the large scale structure of the disk. Determining how Pan and Daphnis migrate in the rings is an important question, as it might give us clues on the local density profile but also on the large-scale viscous evolution of the A ring, that may depend critically on the possible confinement of its inner edge, which is still a matter of debate. We use a 1D numerical code including the disk's viscous evolution, with a realistic viscosity model including the effects of the disk's self-gravity, and resonant interactions between the disk and the satellites at Lindblad resonances. As expected, after a short transition regime the moonlet starts to migrate with its division, somewhat similarly to a type-II migration. The migration rate depends on the A ring density but is sensitive also to the confinement state of the A ring inner edge. The magnitude and the detectability of this migration will be quantified.

  10. Influence of luminosity bursts on properties of protostellar disks

    NASA Astrophysics Data System (ADS)

    Vorobyov, E. I.; Pavlyuchenkov, Ya. N.; Trinkl, P.

    2014-08-01

    A (2+ 1)-dimensional numerical model for the formation and evolution of young stellar objects with sub-solar masses is presented. The numerical hydrodynamicall code describing the formation and evolution of a protostellar disk in a two-dimensional approximation is supplemented by one-dimensional code for the evolution of the star and an algorithm for establishing the vertical structure of the disk. This code is used to investigate the influence of luminosity bursts with intensities similar to those observed in FU Orionis objects (FUors) on the properties and thermal balance of protostellar disks. A model with gravitational instability and fragmentation of the disk, with subsequent migration of the fragments onto the protostar, is used as a basic model for FUors. Typical FUor bursts ( L ˜ 100 L ⊙) can appreciably influence the thermal balance of their disks and parent envelopes, leading to an increase in the disk temperature by more than a factor of two. On the other hand, massive fragments in the disk are only weakly perturbed by such bursts, partially due to screening by the disk and partially due to their high temperature brought about by adiabatic heating. Apart from massive fragments, the characteristic thermal time scales are appreciably shorter than the dynamical time scales throughout the radial extent of the disk and envelope; this enables the use of a stationary radiative-transfer equation when determining the vertical structure of the disk.

  11. Herniated disk

    MedlinePlus

    Lumbar radiculopathy; Cervical radiculopathy; Herniated intervertebral disk; Prolapsed intervertebral disk; Slipped disk; Ruptured disk; Herniated nucleus pulposus: Low back pain - herniated disk; LBP - herniated disk; Sciatica - herniated disk; Herniated disk

  12. EFFECTS OF CIRCUMNUCLEAR DISK GAS EVOLUTION ON THE SPIN OF CENTRAL BLACK HOLES

    SciTech Connect

    Maio, Umberto; Dotti, Massimo; Petkova, Margarita; Perego, Albino; Volonteri, Marta

    2013-04-10

    Mass and spin are the only two parameters needed to completely characterize black holes (BHs) in general relativity. However, the interaction between BHs and their environment is where complexity lies, as the relevant physical processes occur over a large range of scales. That is particularly relevant in the case of supermassive black holes (SMBHs), hosted in galaxy centers, and surrounded by swirling gas and various generations of stars. These compete with the SMBH for gas consumption and affect both dynamics and thermodynamics of the gas itself. How the behavior of such a fiery environment influences the angular momentum of the gas accreted onto SMBHs, and, hence, BH spins, is uncertain. We explore the interaction between SMBHs and their environment via first three-dimensional sub-parsec resolution simulations (ranging from {approx}0.1 pc to {approx}1 kpc scales) that study the evolution of the SMBH spin by including the effects of star formation, stellar feedback, radiative transfer, and metal pollution according to the proper stellar yields and lifetimes. This approach is crucial in investigating the impact of star formation processes and feedback effects on the angular momentum of the material that could accrete on the central hole. We find that star formation and feedback mechanisms can locally inject significant amounts of entropy in the surrounding medium, and impact the inflow inclination angles and Eddington fractions. As a consequence, the resulting trends show upper-intermediate equilibrium values for the spin parameter of a {approx_equal} 0.6-0.9, corresponding to radiative efficiencies {epsilon} {approx_equal} 9%-15%. These results suggest that star formation feedback taking place in the circumnuclear disk during the infall alone cannot induce very strong chaotic trends in the gas flow, quite independently from the different numerical parameters.

  13. Linear corotation torques in non-barotropic disks

    SciTech Connect

    Tsang, David

    2014-02-20

    A fully analytic expression for the linear corotation torque to first order in eccentricity for planets in non-barotropic protoplanetary disks is derived, taking into account the effect of disk entropy gradients. This torque formula is applicable to both the co-orbital, corotation torques and the non-co-orbital, corotation torques—for planets in orbits with non-zero eccentricity—in disks where the thermal diffusivity and viscosity are sufficient to maintain the linearity of these interactions. While the co-orbital, corotation torque is important for migration of planets in Type I migration, the non-co-orbital, corotation torque plays an important role in the eccentricity evolution of giant planets that have opened gaps in the disk. The presence of an entropy gradient in the disk can significantly modify the corotation torque in both these cases.

  14. The collapse of clouds and the formation and evolution of stars and disks

    NASA Technical Reports Server (NTRS)

    Shu, Frank; Najita, Joan; Galli, Daniele; Ostriker, Eve; Lizano, Susana

    1993-01-01

    We consider the interrelationships among the structure of molecular clouds; the collapse of rotating cloud cores; the formation of stars and disks; the origin of molecular outflows, protostellar winds, and highly collimated jets; the birth of planetary and binary systems; and the dynamics of star/disk/satellite interactions. Our discussion interweaves theory with the results of observations that span from millimeter wavelengths to X-rays.

  15. Metallicity gradients in local Universe galaxies: Time evolution and effects of radial migration

    NASA Astrophysics Data System (ADS)

    Magrini, Laura; Coccato, Lodovico; Stanghellini, Letizia; Casasola, Viviana; Galli, Daniele

    2016-04-01

    Context. Our knowledge of the shape of radial metallicity gradients in disc galaxies has recently improved. Conversely, the understanding of their time evolution is more complex, since it requires analysis of stellar populations with different ages or systematic studies of galaxies at different redshifts. In the local Universe, H ii regions and planetary nebulae (PNe) are important tools to investigate radial metallicity gradients in disc galaxies. Aims: We present an in-depth study of all nearby spiral galaxies (M33, M31, NGC 300, and M81) with direct-method nebular abundances of both populations, aiming at studying the evolution of their radial metallicity gradients. For the first time, we also evaluate the radial migration of PN populations. Methods: For the selected galaxies, we analysed H ii region and PN properties to: determine whether oxygen in PNe is a reliable tracer for past interstellar medium (ISM) composition; homogenise published datasets; estimate the migration of the oldest stellar populations; and determine the overall chemical enrichment and slope evolution. Results: We confirm that oxygen in PNe is a reliable tracer for past ISM metallicity. We find that PN gradients are flatter than or equal to those of H ii regions. When radial motions are negligible, this result provides a direct measurement of the time evolution of the gradient. For galaxies with dominant radial motions, we provide upper limits on the gradient evolution. Finally, the total metal content increases with time in all target galaxies, and early morphological types have a larger increment Δ(O/H) than late-type galaxies. Conclusions: Our findings provide important constraints to discriminate among different galactic evolutionary scenarios, favouring cosmological models with enhanced feedback from supernovae. The advent of extremely large telescopes allows us to include galaxies in a wider range of morphologies and environments, thus putting firmer constraints on galaxy formation

  16. A robust tool highlights the influence of bird migration on influenza A virus evolution.

    PubMed

    Dugan, Vivien G

    2012-12-01

    One of the fundamental unknowns in the field of influenza biology is a panoramic understanding of the role wild birds play in the global maintenance and spread of influenza A viruses. Wild aquatic birds are considered a reservoir host for all lowly pathogenic avian influenza A viruses (AIV) and thus serve as a potential source of zoonotic AIV, such as Australasian-origin H5N1 responsible for morbidity and mortality in both poultry and humans, as well as genes that may contribute to the emergence of pandemic viruses. Years of broad, in-depth wild bird AIV surveillance have helped to decipher key observations and ideas regarding AIV evolution and viral ecology including the trending of viral lineages, patterns of gene flow within and between migratory flyways and the role of geographic boundaries in shaping viral evolution (Bahl et al. 2009; Lam et al. 2012). While these generally 'virus-centric' studies have ultimately advanced our broader understanding of AIV dynamics, recent studies have been more host-focused, directed at determining the potential impact of host behaviour on AIV, specifically, the influence of bird migration upon AIV maintenance and transmission. A large number of surveillance studies have taken place in Alaska, United States-a region where several global flyways overlap-with the aim of detecting the introduction of novel, Australasian-origin highly pathogenic H5N1 AIV into North America. By targeting bird species with known migration habits, long-distance migrators were determined to be involved in the intercontinental movement of individual AIV gene segments, but not entire viruses, between the Australasian and North American flyways (Koehler et al. 2008; Pearce et al. 2010). Yet, bird movement is not solely limited to long-distance migration, and the relationship of resident or nonmigratory and intermediate-distance migrant populations with AIV ecology has only recently been explored by Hill et al. (2012) in this issue of Molecular Ecology

  17. Time evolution of shear-induced particle margination and migration in a cellular suspension

    NASA Astrophysics Data System (ADS)

    Qi, Qin M.; Shaqfeh, Eric S. G.

    2016-11-01

    The inhomogeneous center-of-mass distributions of red blood cells and platelets normal to the flow direction in small vessels play a significant role in hemostasis and drug delivery. Under pressure-driven flow in channels, the migration of deformable red blood cells at steady state is characterized by a cell-free or Fahraeus-Lindqvist layer near the vessel wall. Rigid particles such as platelets, however, "marginate" and thus develop a near-wall excess concentration. In order to evaluate the role of branching and design suitable microfluidic devices, it is important to investigate the time evolution of particle margination and migration from a non-equilibrium state and determine the corresponding entrance lengths. From a mechanistic point of view, deformability-induced hydrodynamic lift and shear-induced diffusion are essential mechanisms for the cross-flow migration and margination. In this talk, we determine the concentration distribution of red blood cells and platelets by solving coupled Boltzmann advection-diffusion equations for both species and explore their time evolution. We verify our model by comparing with large-scale, multi-cell simulations and experiments. Our Boltzmann collision theory serves as a fast alternative to large-scale simulations.

  18. A determination of the thick disk chemical abundance distribution: Implications for galaxy evolution

    NASA Technical Reports Server (NTRS)

    Gilmore, Gerard; Wyse, Rosemary F. G.; Jones, Bryn J.

    1995-01-01

    We present a determination of the thick disk iron abundance distribution obtained from an in situ sample of F/G stars. These stars are faint, 15 less than or approximately = V less than or approximately = 18, selected on the basis of color, being a subset of the larger survey of Gilmore and Wyse designed to determine the properties of the stellar populations several kiloparsecs from the Sun. The fields studied in the present paper probe the iron abundance distribution of the stellar populations of the galaxy at 500-3000 pc above the plane, at the solar Galactocentric distance. The derived chemical abundance distributions are consistent with no metallicity gradients in the thick disk over this range of vertical distance, and with an iron abundance distribution for the thick disk that has a peak at -0.7 dex. The lack of a vertical gradient argues against slow, dissipational settling as a mechanism for the formation of the thick disk. The photometric and metallicity data support a turn-off of the thick disk that is comparable in age to the metal-rich globular clusters, or greater than or approximately = 12 Gyr, and are consistent with a spread to older ages.

  19. Unified reduction principle for the evolution of mutation, migration, and recombination

    PubMed Central

    Altenberg, Lee; Liberman, Uri; Feldman, Marcus W.

    2017-01-01

    Modifier-gene models for the evolution of genetic information transmission between generations of organisms exhibit the reduction principle: Selection favors reduction in the rate of variation production in populations near equilibrium under a balance of constant viability selection and variation production. Whereas this outcome has been proven for a variety of genetic models, it has not been proven in general for multiallelic genetic models of mutation, migration, and recombination modification with arbitrary linkage between the modifier and major genes under viability selection. We show that the reduction principle holds for all of these cases by developing a unifying mathematical framework that characterizes all of these evolutionary models. PMID:28265103

  20. The Evolution of the FU Orionis Disk, and the Seeds of Planet Formation

    NASA Astrophysics Data System (ADS)

    Green, Joel D.

    2016-10-01

    Young stars form new planetary systems during the collapse of a giant cloud of gas and dust. Tiny dust particles and gas parcels collide and stick together, growing slowly into planetary cores and then full-size planets. But is this process a steady and slow one, or are there bumps in the road to planet construction? In 1936, the young star FU Orionis (FU Ori) became 100 times brighter in only a few short months. Although astronomers didn't realize at the time, FU Ori was undergoing a "burst" of accretion -- instead of a slow trickle of material falling into the central star, nearly 20 Jupiters worth of material have fallen in and burned since 1936. This sustained flow is a large fraction of the entire measureable disk mass (both gas and dust) surrounding FU Ori. FU Ori has slowly faded over the past 80 years, reducing by approximately 1 mag. in B. But what changes did this increased brightness wreak upon FU Ori's disk, and what implications would it have for any planets that might have formed or form later? Unlike most observed young stars, FU Ori and its (~ 10) brethren with similar behavior show no evidence of crystalline dust grains like forsterite (peridot), and the temperatures at an Earth-equivalent distance would have risen from room temperature to a scalding 1000 degrees Kelvin.Our study with SOFIA/FORCAST, in comparison with our previous study with Spitzer/IRS, provides the first multi-epoch infrared spectroscopic study of an FUor, as it appeared in 2004 and 2016. First, the continuum (the energy emitted by viscous heating in the disk) has decreased by 13% but is still fit by a 7200 K blackbody at 13% less strength; second, the heating source behind disk's atmosphere (similar to a stellar atmosphere, as the superheated inner disk is at the same temperature as a typical star) has also decreased, exciting less high temperature water vapor. This change has not completely propagated to the rest of the disk. The silicate dust remains unchanged. We conclude

  1. The Evolution of Disks and Winds in Dwarf Nova Outbursts - FUSE

    NASA Technical Reports Server (NTRS)

    Long, Knox

    2002-01-01

    This project was a project to study the FUV spectra of two proto-typical dwarf novae, U Gem and SS Cygni, through an outburst cycle. The luminosity of the boundary layer in the two systems, as evidenced by earlier EUVE observations, is different in the two systems. Our intensive study of the two systems was intended to (1) probe the ionization and kinematic structure of the wind as a function of system brightness, (2) isolate the contributions of the disk to the FUV spectra, and (3) examine physical conditions and abundances of material just being accreted onto the disk from the secondary. The U Gem and SS Cyg observations took place in March and October 2000, respectively. The data obtained with FUSE was of excellent quality. Analysis of the both observations is now essentially complete, although some modeling of the SS Cyg spectra is ongoing, as we complete an ApJ manuscript on this object. Our main results for U Gem are as follows: The plateau spectra have continuum shapes and fluxes that are approximated by steady state accretion disk model spectra with an accretion rate 7x10(exp 9) Msolar/yr. The spectra also show numerous absorption lines of H I, He II, and 2-5 times ionized transitions of C, N, O, P, S, and Si. There are no emission features in the spectra, with the possible exception of a weak feature on the red wing of the 0 VI doublet. The absorption lines are narrow (FWHM approx. 50 km/s), too narrow to arise from the disk photosphere, and at low velocities (less than or equal to 700 km/s). The S VI and O VI doublets are optically thick. The absorption lines in the plateau spectra show orbital variability: in spectra obtained at orbital phases between 0.53 and 0.79, low-ionization absorption lines appear and the central depths of the preexisting lines increase. The increase in line absorption occurs at the same orbital phases as previously observed EUV and X-ray light-curve dips. If the absorbing material is in (near-) Keplerian rotation around the disk

  2. The Evolving Properties of Water in a Dynamic Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Ciesla, Fred

    2015-08-01

    Protoplanetary disks are dynamic objects, through which mass and angular momentum are transported as part of the final stages of pre-main sequence evolution of their central stars. These disks are also rich chemical factories, in which materials inherited from the interstellar medium are transformed through a series of reactions (involving, gases, solids, ions, and photons) to the eventual building blocks of the planets.The chemical and physical evolution of a protoplanetary disk are intimately connected. Both solids and gases are subjected to large-scale motions associated with disk evolution and diffusion within the gas. Solids also settle toward the disk midplane and migrate inwards due to gravity and gas drag. This dynamical evolution exposes primitive materials to a range of physical conditions (pressure, temperature, radiation environment) within the disk. It is the integrated effects of these environments that define the physical and chemical properties of a solid grain prior to its incorporation into a planetesimal or planet.Water serves as an interesting tracer of this evolution, as it would be processed in a variety of ways within a protoplanetary disk. I will discuss new methods that allow us to trace the dynamical movement of water vapor and ice throughout the lifetime of a protoplanetary disk and to determine the physical environments to which the water would be exposed. In particular, I will show how the early evolution of a protoplanetary disk impacts the D/H ratio of the water inherited by planetary materials. I will also explore how photodesorption of water by UV photons can lead to the formation of amorphous ice and thus the trapping of noble gases and other volatiles at levels that are much greater than predicted by equilibrium chemistry models. These effects combine to lead to constantly evolving properties of water during the early stages of planet formation. I will also discuss how the observed properties of Solar System bodies constrain these

  3. Phyllotaxis, disk packing, and Fibonacci numbers

    NASA Astrophysics Data System (ADS)

    Mughal, A.; Weaire, D.

    2017-02-01

    We consider the evolution of the packing of disks (representing the position of buds) that are introduced at the top of a surface which has the form of a growing stem. They migrate downwards, while conforming to three principles, applied locally: dense packing, homogeneity, and continuity. We show that spiral structures characterized by the widely observed Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, ...), as well as related structures, occur naturally under such rules. Typical results are presented in an animation.

  4. Phyllotaxis, disk packing, and Fibonacci numbers.

    PubMed

    Mughal, A; Weaire, D

    2017-02-01

    We consider the evolution of the packing of disks (representing the position of buds) that are introduced at the top of a surface which has the form of a growing stem. They migrate downwards, while conforming to three principles, applied locally: dense packing, homogeneity, and continuity. We show that spiral structures characterized by the widely observed Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, ...), as well as related structures, occur naturally under such rules. Typical results are presented in an animation.

  5. Setting the volatile composition of (exo)planet-building material. Does chemical evolution in disk midplanes matter?

    NASA Astrophysics Data System (ADS)

    Eistrup, Christian; Walsh, Catherine; van Dishoeck, Ewine F.

    2016-11-01

    Context. The atmospheres of extrasolar planets are thought to be built largely through accretion of pebbles and planetesimals. Such pebbles are also the building blocks of comets. The chemical composition of their volatiles are usually taken to be inherited from the ices in the collapsing cloud. However, chemistry in the protoplanetary disk midplane can modify the composition of ices and gases. Aims: To investigate if and how chemical evolution affects the abundances and distributions of key volatile species in the midplane of a protoplanetary disk in the 0.2-30 AU range. Methods: A disk model used in planet population synthesis models is adopted, providing temperature, density and ionisation rate at different radial distances in the disk midplane. A full chemical network including gas-phase, gas-grain interactions and grain-surface chemistry is used to evolve chemistry in time, for 1 Myr. Both molecular (inheritance from the parent cloud) and atomic (chemical reset) initial conditions are investigated. Results: Great diversity is observed in the relative abundance ratios of the main considered species: H2O, CO, CO2, CH4, O2, NH3 and N2. The choice of ionisation level, the choice of initial abundances, as well as the extent of chemical reaction types included are all factors that affect the chemical evolution. The only exception is the inheritance scenario with a low ionisation level, which results in negligible changes compared with the initial abundances, regardless of whether or not grain-surface chemistry is included. The grain temperature plays an important role, especially in the critical 20-28 K region where atomic H no longer sticks long enough to the surface to react, but atomic O does. Above 28 K, efficient grain-surface production of CO2 ice is seen, as well as O2 gas and ice under certain conditions, at the expense of H2O and CO. H2O ice is produced on grain surfaces only below 28 K. For high ionisation levels at intermediate disk radii, CH4 gas is

  6. Experimental and numerical findings on the long-term evolution of migrating alternate bars in alluvial channels

    NASA Astrophysics Data System (ADS)

    Crosato, Alessandra; Desta, Frehiwot Beidmariam; Cornelisse, John; Schuurman, Filip; Uijttewaal, Wim S. J.

    2012-06-01

    Migrating alternate bars form in alluvial channels as a result of morphodynamic instability. Extensive literature can be found on their origin and short-term development, but their long-term evolution has been poorly studied so far. In particular, it is not clear whether migrating bars eventually reach a (dynamic) equilibrium, as in previous studies bars were observed to elongate with time. We studied the long-term evolution of alternate bars by performing two independent long-duration laboratory experiments and some numerical tests with a physics-based depth-averaged model. In a straight flume with constant water flow and sediment recirculation, migrating bars followed a cyclic variation. They became gradually longer and higher for a while, then quickly much shorter and lower. In one case, all migrating bars simultaneously vanished almost completely only to reform soon after. At the same time, steady bars, two to three times as long, progressively developed from upstream, gradually suppressing the migrating bars. We also observed simultaneous vanishing of migrating bars in an annular flume experiment, this time at intervals of 6-8 d. Numerical simulations of long alluvial channels with constant flow rate and fixed banks show periodic vanishing of a few migrating bars at a time, occurring at regular spacing. Under constant flow rates, migrating bars appear as a transition phenomenon of alluvial channels having a cyclic character. These observations, however, might hold only for certain morphodynamics conditions, which should be further investigated.

  7. The evolution of asteroids in the jumping-Jupiter migration model

    NASA Astrophysics Data System (ADS)

    Virgilio Roig, Fernando; Nesvorný, David

    2015-11-01

    In this work, we investigate the evolution of a primordial belt of asteroids, represented by a large number of massless test particles, under the gravitational effect of migrating Jovian planets in the framework of the jumping-Jupiter model. We perform several simulations considering test particles distributed in the Main Belt, as well as in the Hilda and Trojan groups. The simulations start with Jupiter and Saturn locked in the mutual 3:2 mean motion resonance plus 3 Neptune-mass planets in a compact orbital configuration. Mutual planetary interactions during migration led one of the Neptunes to be ejected in less than 10 Myr of evolution, causing Jupiter to jump by about 0.3 au in semi-major axis. This introduces a large scale instability in the studied populations of small bodies. After the migration phase, the simulations are extended over 4 Gyr, and we compare the final orbital structure of the simulated test particles to the current Main Belt of asteroids with absolute magnitude H < 9.7. The results indicate that, in order to reproduce the present Main Belt, the primordial belt should have had a distribution peaked at ˜10o in inclination and at ˜0.1 in eccentricity. We discuss the implications of this for the Grand Tack model. The results also indicate that neither primordial Hildas, nor Trojans, survive the instability, confirming the idea that such populations must have been implanted from other sources. In particular, we address the possibility of implantation of Hildas and Trojans from the Main Belt population, but find that this contribution should be minor.

  8. The Evolution of Asteroids in the Jumping-Jupiter Migration Model

    NASA Astrophysics Data System (ADS)

    Roig, Fernando; Nesvorný, David

    2015-12-01

    In this work, we investigate the evolution of a primordial belt of asteroids, represented by a large number of massless test particles, under the gravitational effect of migrating Jovian planets in the framework of the jumping-Jupiter model. We perform several simulations considering test particles distributed in the Main Belt, as well as in the Hilda and Trojan groups. The simulations start with Jupiter and Saturn locked in the mutual 3:2 mean motion resonance plus three Neptune-mass planets in a compact orbital configuration. Mutual planetary interactions during migration led one of the Neptunes to be ejected in less than 10 Myr of evolution, causing Jupiter to jump by about 0.3 AU in semimajor axis. This introduces a large-scale instability in the studied populations of small bodies. After the migration phase, the simulations are extended over 4 Gyr, and we compare the final orbital structure of the simulated test particles to the current Main Belt of asteroids with absolute magnitude H < 9.7. The results indicate that, in order to reproduce the present Main Belt, the primordial belt should have had a distribution peaked at ∼10° in inclination and at ∼0.1 in eccentricity. We discuss the implications of this for the Grand Tack model. The results also indicate that neither primordial Hildas, nor Trojans, survive the instability, confirming the idea that such populations must have been implanted from other sources. In particular, we address the possibility of implantation of Hildas and Trojans from the Main Belt population, but find that this contribution should be minor.

  9. THE EVOLUTION OF ASTEROIDS IN THE JUMPING-JUPITER MIGRATION MODEL

    SciTech Connect

    Roig, Fernando; Nesvorný, David E-mail: davidn@boulder.swri.edu

    2015-12-15

    In this work, we investigate the evolution of a primordial belt of asteroids, represented by a large number of massless test particles, under the gravitational effect of migrating Jovian planets in the framework of the jumping-Jupiter model. We perform several simulations considering test particles distributed in the Main Belt, as well as in the Hilda and Trojan groups. The simulations start with Jupiter and Saturn locked in the mutual 3:2 mean motion resonance plus three Neptune-mass planets in a compact orbital configuration. Mutual planetary interactions during migration led one of the Neptunes to be ejected in less than 10 Myr of evolution, causing Jupiter to jump by about 0.3 AU in semimajor axis. This introduces a large-scale instability in the studied populations of small bodies. After the migration phase, the simulations are extended over 4 Gyr, and we compare the final orbital structure of the simulated test particles to the current Main Belt of asteroids with absolute magnitude H < 9.7. The results indicate that, in order to reproduce the present Main Belt, the primordial belt should have had a distribution peaked at ∼10° in inclination and at ∼0.1 in eccentricity. We discuss the implications of this for the Grand Tack model. The results also indicate that neither primordial Hildas, nor Trojans, survive the instability, confirming the idea that such populations must have been implanted from other sources. In particular, we address the possibility of implantation of Hildas and Trojans from the Main Belt population, but find that this contribution should be minor.

  10. Type II Migration and Giant Planet Survival

    NASA Technical Reports Server (NTRS)

    Ward, William R.

    2003-01-01

    Type II migration, in which a newly formed large planet opens a gap in its precursor circumstellar nebula and subsequently evolves with it, has been implicated as a delivery mechanism responsible for close stellar companions. Large scale migration is possible in a viscously spreading disk of surface density sigma (r,t) when most of it is sacrificed to the primary in order to promote a small portion of the disk to much higher angular momentum orbits. Embedded planets generally follow its evolution unless their own angular momentum is comparable to that of the disk. The fraction of the starting disk mass, M (sub d) = 2pi integral rsigma(r,0)dr, that is consumed by the star depends on the distance at which material escapes the disk's outer boundary. If the disk is allowed to expand indefinitely, virtually all of the disk will fall into the primary in order to send a vanishingly small portion to infinity. For such a case, it is difficult to explain the survival of any giant planets, including Jupiter and Saturn. Realistically, however, there are processes that could truncate a disk at a finite distance, r(sub d). Recent numerical modeling has illustrated that planets can survive in this case. We show here that much of these results can be understood by simple conservation arguments.

  11. PLANETESIMAL AND PROTOPLANET DYNAMICS IN A TURBULENT PROTOPLANETARY DISK: IDEAL UNSTRATIFIED DISKS

    SciTech Connect

    Yang, Chao-Chin; Mac Low, Mordecai-Mark; Menou, Kristen E-mail: mordecai@amnh.or

    2009-12-20

    The dynamics of planetesimals and planetary cores may be strongly influenced by density perturbations driven by magneto-rotational turbulence in their natal protoplanetary gas disks. Using the local shearing box approximation, we perform numerical simulations of planetesimals moving as massless particles in a turbulent, magnetized, unstratified gas disk. Our fiducial disk model shows turbulent accretion characterized by a Shakura-Sunyaev viscosity parameter of alpha approx 10{sup -2}, with rms density perturbations of approx10%. We measure the statistical evolution of particle orbital properties in our simulations including mean radius, eccentricity, and velocity dispersion. We confirm random walk growth in time of all three properties, the first time that this has been done with direct orbital integration in a local model. We find that the growth rate increases with the box size used at least up to boxes of eight scale heights in horizontal size. However, even our largest boxes show velocity dispersions sufficiently low that collisional destruction of planetesimals should be unimportant in the inner disk throughout its lifetime. Our direct integrations agree with earlier torque measurements showing that type I migration dominates over diffusive migration by stochastic torques for most objects in the planetary core and terrestrial planet mass range. Diffusive migration remains important for objects in the mass range of kilometer-sized planetesimals. Discrepancies in the derived magnitude of turbulence between local and global simulations of magneto-rotationally unstable disks remains an open issue, with important consequences for planet formation scenarios.

  12. The evolution of a Pluto-like system during the migration of the ice giants

    NASA Astrophysics Data System (ADS)

    Pires, Pryscilla; Giuliatti Winter, Silvia M.; Gomes, Rodney S.

    2015-01-01

    The planetary migration of the Solar System giant planets in the framework of the Nice model (Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F. [2005]. Nature 435,459-461; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R. [2005]. Nature 435, 462-465; Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A. [2005]. Nature 435, 466-469) creates a dynamical mechanism which can be used to explain the distribution of objects currently observed in the Kuiper belt (e.g., Levison, H.F., Morbidelli, A., Vanlaerhoven, C., Gomes, R., Tsiganis, K. [2008]. Icarus 196, 258-273). Through this mechanism the planetesimals within the disk, heliocentric distance ranging from beyond Neptune's orbit to approximately 34 AU, are delivered to the belt after a temporary eccentric phase of Uranus and Neptune's orbits. We reproduced the mechanism proposed by Levison et al. to implant bodies into the Kuiper belt. The capture of Pluto into the external 3:2 mean motion resonance with Neptune is associated with this gravitational scattering model. We verified the existence of several close encounters between the ice giants and the planetesimals during their outward radial migration, then we believe that the analysis of the dynamical history of the plutonian satellites during this kind of migration is important, and would provide some constrains about their place of formation - within the primordial planetesimal disk or in situ. We performed N-body simulations and recorded the trajectories of the planetesimals during close approaches with Uranus and Neptune. Close encounters with Neptune are the most common, reaching approximately 1200 in total. A Pluto similarly sized body assumed the hyperbolic trajectories of the former primordial planetesimal with respect to those giant planets. We assumed the current mutual orbital configuration and sizes for Pluto's satellites, then we found that the rate of destruction of systems similar to that of Pluto with closest approaches to Uranus or Neptune

  13. COMPARING THE ACCRETION DISK EVOLUTION OF BLACK HOLE AND NEUTRON STAR X-RAY BINARIES FROM LOW TO SUPER-EDDINGTON LUMINOSITY

    SciTech Connect

    Weng Shanshan; Zhang Shuangnan E-mail: zhangsn@ihep.ac.cn

    2011-09-20

    Low-mass X-ray binaries (LMXBs) are systems in which a low-mass companion transfers mass via Roche-lobe overflow onto a black hole (BH) or a weakly magnetized neutron star (NS). It is believed that both the solid surface and the magnetic field of an NS can affect the accretion flow and show some observable effects. Using the disk emission dominant data, we compare the disk evolution of the two types of systems from low luminosity to super-Eddington luminosity. As the luminosity decreases the disk in the NS LMXB 4U1608-522 begins to leave the innermost stable circular orbit (ISCO) at much higher luminosity ({approx}0.1 L{sub Edd}), compared with BH LMXBs at much lower luminosity ({approx}0.03 L{sub Edd}), due to the interaction between the NS magnetosphere and accretion flow. However, as the luminosity increases above a critical luminosity, the disks in BH and NS LMXBs trace the same evolutionary pattern, because the magnetosphere is restricted inside ISCO, and then both the NS surface emission and (dipole) magnetic field do not significantly affect the secular evolution of the accretion disk, which is driven by the increased radiation pressure in the inner region. We further suggest that the NS surface emission provides additional information about the accretion disk not available in BH systems. Through the observed NS surface emission, we argue that the disk thickness H/R is less than 0.3-0.4, and that the significant outflow from the inner disk edge exists at a luminosity close to Eddington luminosity.

  14. The age of the Galactic disk - Inflow, chemical evolution, astration, and radioactivity

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.

    1989-01-01

    Theoretical models of Galactic evolution and observational data on the age of the Galaxy are compared, with a focus on recent results. Topics addressed include the infall of material and its effects on the age-metallicity relation, the distribution of metallicity, the present gas fraction and metallicity, and the age spectrum of interstellar nuclei; the chemical evolution of the solar neighborhood; the key results of nuclear cosmochronology; and astration effects on Galactic age. It is found that both nuclear cosmochronology and detailed stellar and Galactic evolution models tend to support an age of 12-16 Gyr.

  15. Evolution of Clouds of Migrating Micron-particles with Hydrodynamic and Electrostatic Interactions

    NASA Astrophysics Data System (ADS)

    Li, Shuiqing; Chen, Sheng

    2016-11-01

    The evolution of dilute clouds of charged micron-sized particles during the migration in an external electric field is numerically investigated. The hydrodynamic interaction is modeled employing the Oseen dynamics in the limit of small-but-finite particle Reynolds number. The effects of external field and inter-particle Coulomb repulsion are accounted by a pairwise summation. As a result, with a dominant external electrostatic force, the cloud is seen to flatten into a planar configuration with particle leakage in the tail and eventually breaks up into two small clouds. Decreasing the external force or increasing the pairwise Coulomb repulsion has a similar effect on the dynamics of the cloud, i.e., decreases the scaled migrating velocity of the cloud and makes the cloud steady in its spherical shape. While this behavior bears some similarity with the transition from the Stokes regime to the micro-scale inertia dominant regime, the underlying physical mechanisms differ. Finally, the variation of the typical aspect ratio of the cloud, as a function of a scaled radial velocity of particles, is used to quantify the effect of Coulomb repulsion on the stability of the shape of the cloud.

  16. On the Temporal Evolution of the Disk Counterpart of Type II Spicules in the Quiet Sun

    NASA Astrophysics Data System (ADS)

    Sekse, D. H.; Rouppe van der Voort, L.; De Pontieu, B.

    2013-02-01

    The newly established type II spicule has been speculated to provide enough hot plasma to play an important role in the mass loading and heating of the solar corona. With the identification of rapid blueshifted excursions (RBEs) as the on-disk counterpart of type II spicules we have analyzed three different high-quality timeseries with the CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish Solar Telescope on La Palma and subjected to an automated detection routine to detect a large number of RBEs for statistical purposes. Our observations are of a quiet-Sun region at disk center and we find lower Doppler velocities, 15-40 km s-1, and Doppler widths, 2-15 km s-1, of RBEs than in earlier coronal hole studies, 30-50 km s-1 and 7-23 km s-1, respectively. In addition, we examine the spatial dependence of Doppler velocities and widths along the RBE axis and conclude that there is no clear trend to this over the field of view or in individual RBEs in the quiet Sun at disk center. These differences with previous coronal hole studies are attributed to the more varying magnetic field configuration in quiet-Sun conditions. Using an extremely high-cadence data set has allowed us to improve greatly on the determination of lifetimes of RBEs, which we find to range from 5 to 60 s with an average lifetime of 30 s, as well as the transverse motions in RBEs, with transverse velocities up to 55 km s-1 and averaging 12 km s-1. Furthermore, our measurements of the recurrence rates of RBEs provide important new constraints on coronal heating by spicules. We also see many examples of a sinusoidal wave pattern in the transverse motion of RBEs with periods averaging 54 s and amplitudes from 21.5 to 129 km which agrees well with previous studies of wave motion in spicules at the limb. We interpret the appearance of RBEs over their full length within a few seconds as the result of a combination of three kinds of motions as is earlier reported for spicules. Finally, we look at the

  17. SELF-GRAVITY, RESONANCES AND ORBITAL DIFFUSION IN STELLAR DISKS

    SciTech Connect

    Fouvry, Jean-Baptiste; Pichon, Christophe; Binney, James

    2015-06-10

    Fluctuations in a stellar system's gravitational field cause the orbits of stars to evolve. The resulting evolution of the system can be computed with the orbit-averaged Fokker–Planck equation once the diffusion tensor is known. We present the formalism that enables one to compute the diffusion tensor from a given source of noise in the gravitational field when the system's dynamical response to that noise is included. In the case of a cool stellar disk we are able to reduce the computation of the diffusion tensor to a one-dimensional integral. We implement this formula for a tapered Mestel disk that is exposed to shot noise and find that we are able to explain analytically the principal features of a numerical simulation of such a disk. In particular the formation of narrow ridges of enhanced density in action space is recovered. As the disk's value of Toomre's Q is reduced and the disk becomes more responsive, there is a transition from a regime of heating in the inner regions of the disk through the inner Lindblad resonance to one of radial migration of near-circular orbits via the corotation resonance in the intermediate regions of the disk. The formalism developed here provides the ideal framework in which to study the long-term evolution of all kinds of stellar disks.

  18. Stellar mass distribution of S4G disk galaxies and signatures of bar-induced secular evolution

    NASA Astrophysics Data System (ADS)

    Díaz-García, S.; Salo, H.; Laurikainen, E.

    2016-12-01

    profiles, and the disk(+bulge) component of the rotation curve (and their dispersion) in bins of M∗ and T. We find evidence for bar-induced secular evolution of disk galaxies in terms of disk spreading and enhanced central mass concentration. We also obtain average bars (2D), and we show that bars hosted by early-type galaxies are more centrally concentrated and have larger density amplitudes than their late-type counterparts. The FITS files of the synthetic images and the tabulated radial profiles of the mean (and dispersion of) stellar mass density, 3.6 μm surface brightness, Fourier amplitudes, gravitational force, and the stellar contribution to the circular velocity are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A84

  19. Comets as collisional fragments of a primordial planetesimal disk

    NASA Astrophysics Data System (ADS)

    Morbidelli, A.; Rickman, H.

    2015-11-01

    Context. The Rosetta mission and its exquisite measurements have revived the debate on whether comets are pristine planetesimals or collisionally evolved objects. Aims: We investigate the collisional evolution experienced by the precursors of current comet nuclei during the early stages of the solar system in the context of the so-called Nice model. Methods: We considered two environments for the collisional evolution: (1) the transplanetary planetesimal disk, from the time of gas removal until the disk was dispersed by the migration of the ice giants; and (2) the dispersing disk during the time that the scattered disk was formed. We performed simulations using different methods in the two cases to determine the number of destructive collisions typically experienced by a comet nucleus of 2 km radius. Results: In the widely accepted scenario, where the dispersal of the planetesimal disk occurred at the time of the Late Heavy Bombardment about 4 Gy ago, comet-sized planetesimals have a very low probability of surviving destructive collisions in the disk. On the extreme assumption that the disk was dispersed directly upon gas removal, a significant fraction of the planetesimals might have remained intact. However, these survivors would still bear the marks of many nondestructive impacts. Conclusions: The Nice model of solar system evolution predicts that typical km-sized comet nuclei are predominantly fragments resulting from collisions experienced by larger parent bodies. An important goal for future research is to investigate whether the observed properties of comet nuclei are compatible with such a collisional origin.

  20. Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns

    NASA Technical Reports Server (NTRS)

    Meulemans, Daniel; Bronner-Fraser, Marianne

    2002-01-01

    The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the vertebrate dorsal neural tube and pharyngeal arches, implying co-option of AP-2 genes by neural crest cells early in vertebrate evolution. Expression in non-neural ectoderm is a conserved feature in amphioxus and vertebrates, suggesting an ancient role for AP-2 genes in this tissue. There is also common expression in subsets of ventrolateral neurons in the anterior neural tube, consistent with a primitive role in brain development. Comparison of AP-2 expression in axolotl and lamprey suggests an elaboration of cranial neural crest patterning in gnathostomes. However, migration of AP-2-expressing neural crest cells medial to the pharyngeal arch mesoderm appears to be a primitive feature retained in all vertebrates. Because AP-2 has essential roles in cranial neural crest differentiation and proliferation, the co-option of AP-2 by neural crest cells in the vertebrate lineage was a potentially crucial event in vertebrate evolution.

  1. Shaping Disk Galaxy Stellar Populations via Internal and External Processes

    NASA Astrophysics Data System (ADS)

    Roškar, Rok

    2015-03-01

    In recent years, effects such as the radial migration of stars in disks have been recognized as important drivers of the properties of stellar populations. Radial migration arises due to perturbative effects of disk structures such as bars and spiral arms, and can deposit stars formed in disks to regions far from their birthplaces. Migrant stars can significantly affect the demographics of their new locales, especially in low-density regions such as in the outer disks. However, in the cosmological environment, other effects such as mergers and filamentary gas accretion also influence the disk formation process. Understanding the relative importance of these processes on the detailed evolution of stellar population signatures is crucial for reconstructing the history of the Milky Way and other nearby galaxies. In the Milky Way disk in particular, the formation of the thickened component has recently attracted much attention due to its potential to serve as a diagnostic of the galaxy's early history. Some recent work suggests, however, that the vertical structure of Milky Way stellar populations is consistent with models that build up the thickened component through migration. I discuss these developments in the context of cosmological galaxy formation.

  2. X-RAYING AN ACCRETION DISK IN REALTIME: THE EVOLUTION OF IONIZED REFLECTION DURING A SUPERBURST FROM 4U 1636-536

    SciTech Connect

    Keek, L.; Ballantyne, D. R.; Kuulkers, E.; Strohmayer, T. E.

    2014-12-20

    When a thermonuclear X-ray burst ignites on an accreting neutron star, the accretion disk undergoes sudden strong X-ray illumination, which can drive a range of processes in the disk. Observations of superbursts, with durations of several hours, provide the best opportunity to study these processes and to probe accretion physics. Using detailed models of X-ray reflection, we perform time resolved spectroscopy of the superburst observed from 4U 1636-536 in 2001 with the Rossi X-Ray Timing Explorer. The spectra are consistent with a blackbody reflecting off a photoionized accretion disk, with the ionization state dropping with time. The evolution of the reflection fraction indicates that the initial reflection occurs from a part of the disk at larger radius, subsequently transitioning to reflection from an inner region of the disk. Even though this superburst did not reach the Eddington limit, we find that a strong local absorber develops during the superburst. Including this event, only two superbursts have been observed by an instrument with sufficient collecting area to allow for this analysis. It highlights the exciting opportunity for future X-ray observatories to investigate the processes in accretion disks when illuminated by superbursts.

  3. Decoupling of a giant planet from its disk in an inclined binary system

    NASA Astrophysics Data System (ADS)

    Picogna, G.; Marzari, F.

    2015-11-01

    Context. We explore the dynamical evolution of a planet that is embedded in a circumstellar disk, as part of a binary system where the orbital plane of the companion star is significantly tilted with respect to the initial disk plane. Aims: Our aim is to test whether the planet remains within the disk and continues to migrate towards the star in a Type I/II mode, in spite of the secular perturbations of the companion star. Our findings, could explain why observed exoplanets have significant inclination in relation to the equatorial plane of their host star. Methods: We used two different smoothed particle hydrodynamic codes, VINE and PHANTOM, to model the evolution of a star+disk+planet system with a companion star over time. Results: After an initial coupled evolution, the inclinations of the disk and the planet begin to differ significantly. The period of oscillation of the disk inclination, in relation to the initial plane, becomes shorter for the planet, which evolves independently after about 104 yr, following a perturbed N-body behaviour. However, the planet continues to migrate towards the star because, during its orbital motion, it crosses the disk plane, and friction with the gas causes angular momentum loss. Conclusions: In a significantly inclined binary system, disks and planets are not dynamically coupled for small binary separations but evolve almost independently. The planet abandons the disk, and because of the onset of a significant mutual inclination, it interacts with the gas only when its orbit intersects the disk plane. The drift of the planet towards the star is not due to Type I/II, where the planet is embedded in the disk, but to the friction with the gas while crossing the disk.

  4. A Spitzer Study of Pseudobulges in S0 Galaxies: Secular Evolution of Disks

    NASA Astrophysics Data System (ADS)

    Barway, Sudhanshu; Vaghmare, Kaustubh; Mathur, Smita; Kembhavi, Ajit

    2017-03-01

    A comparison of pseudobulges in S0 and spiral galaxies is presented using structural parameters derived from 2-d decomposition of mid-infrared images taken at 3.6 μm by Spitzer IRAC. The position of the bulges on the Kormendy diagram has been used as an initial classification criterion for determining the nature of the bulge. To make the classification more secure, the criterion proposed by Fisher and Drory (2008) has also been used, which involves using the n = 2 division line on Sérsic index. We find that among the 185 S0 galaxies, 27 are pseudobulge hosts while 160 are classical. Of these 25 pseudobulge hosts, only two belong to the bright luminosity class (MK < 22.66, AB system) while rest belong to the faint luminosity class (MK > 22.66, AB system). We find that among spiral galaxies, 77 % (24 of 31) of the bulges are classified as pseudobulges. As pointed out by various studies, the presence of such a large fraction poses problems to our current picture of galaxy formation. How ever, our primary result is that the disk scale length of pseudobulge hosting S0s is significantly smaller on average than that of their spiral counterparts. This can be explained as a lowered disk luminosity which in turn implies that S0s have evolved from spiral progenitors. We also argue that early type spirals are more likely to be the progenitors based on bulge and total luminosity arguments. We speculate that if late type spirals hosting pseudobulges have to evolve into S0s, an additional mechanism along with gas stripping of spirals is needed. We have also investigated the effect of environment on pseudobulges in the two samples, but no significant trends were found in the properties of the pseudobulges as a function of the various structural parameters. The study is made more difficult because of the low number statistics one deals with when the sample is sub-divided based on whether it is in a field or group/cluster environment. The study of pseudobulges based on environment

  5. The WEAVE disk dynamics survey

    NASA Astrophysics Data System (ADS)

    Famaey, B.; Antoja, T.; Romero-Gomez, M.; Siebert, A.; Babusiaux, C.; Di Matteo, P.; Figueras, F.; Fragkoudi, F.; Garzon-Lopez, F.; Gonzalez-Fernandez, C.; Martinez-Valpuesta, I.; Monari, G.; Mor-Crespo, R.; Hill, V.

    2016-12-01

    WEAVE is the next-generation wide-field survey facility for the William Herschel Telescope. It consists of a multi-object fibre spectrograph with a 2°-diameter field of view that can obtain ˜ 1000 spectra simultaneously. The "WEAVE Galactic Archaeology survey" is the survey focused on the Milky Way, as a complement to the Gaia space mission, and will start operating in early 2018. This survey is subdivided in four sub-surveys, among which the "WEAVE disk dynamics survey". This survey plans to measure the radial velocities (and abundances as far as possible) of ˜ 10^6 stars with magnitude 15disk to unravel the detailed features of its gravitational potential. In particular, the non-axisymmetric perturbations such as the bar and spiral arms, are among the main drivers of the evolution of the Galactic disks. Questions (i) about their nature - e.g., are these features transient, quasi-stationary, or do both types co-exist? - (ii) about their detailed structure and dynamics - e.g., is the bar short or long, what is its pattern speed? -, as well as (iii) about their influence on secular processes such as stellar radial migration are essential elements for a better understanding of the chemo-dynamical evolution of our Galaxy, and of galaxies in general. This survey is designed to answer these questions.

  6. The bright end of the exo-Zodi luminosity function: Disk evolution and implications for exo-Earth detectability

    NASA Astrophysics Data System (ADS)

    Kennedy, G. M.; Wyatt, M. C.

    2014-01-01

    This contribution summarises the first characterisation of the 12 μm warm dust (``exo-Zodi'') luminosity function around Sun-like stars, focussing on the dustiest systems that can be identified by the WISE mission (Kennedy & Wyatt 2013). We use the sample of main-sequence stars observed by Hipparcos within 150pc as an unbiased sample, and report the detection of six new warm dust candidates. The ages of five of these new sources are unknown, meaning that they may be sites of terrestrial planet formation or rare analogues of other old warm dust systems. We show that the dustiest old (> Gyr) systems such as BD+20 307 are 1 in 10,000 occurrences. Bright warm dust is much more common around young (<120 Myr) systems, with a ~1% occurrence rate. We show that a two component in situ model where all stars have initially massive warm disks and in which warm debris is also generated at some random time along the stars' main-sequence lifetime, perhaps due to a collision, can explain the observations. However, if all stars only have initially massive warm disks these would not be visible at Gyr ages, and random collisions on the main-sequence are too infrequent to explain the high disk occurrence rate for young stars. That is, neither component can explain the observations on their own. Despite these conclusions, we cannot rule out an alternative dynamical model in which comets are scattered in from outer regions because the distribution of systems with the appropriate dynamics is unknown. Our in situ model predicts that the fraction of stars with exo-Zodi bright enough to cause problems for future exo-Earth imaging attempts is at least roughly 10%, and is higher for populations of stars younger than a few Gyr. This prediction of roughly 10% also applies to old stars because bright systems like BD+20 307 imply a population of fainter systems that were once bright, but are now decaying through fainter levels. Our prediction should be strongly tested by the Large Binocular

  7. The bright end of the exo-Zodi luminosity function: Disk evolution and implications for exo-Earth detectability

    NASA Astrophysics Data System (ADS)

    Kennedy, Grant; Wyatt, Mark

    2013-07-01

    We present the first characterisation of the 12um warm dust (``exo-Zodi'') luminosity function around Sun-like stars, focussing on the dustiest systems that can be identified by the WISE mission. We use the sample of main-sequence stars observed by Hipparcos within 150pc as an unbiased sample, and report the detection of six new warm dust candidates. The ages of five of these new sources are unknown, meaning that they may be sites of terrestrial planet formation or rare analogues of other old warm dust systems. We show that the dustiest old (>Gyr) systems such as BD+20 307 are 1 in 10,000 occurrences. Bright warm dust is much more common around young (<120Myr) systems, with a ~1% occurrence rate. We show that a two component in situ model where all stars have initially massive warm disks and in which warm debris is also generated at some random time along the stars' main-sequence lifetime, perhaps due to a collision, can explain the observations. However, if all stars only have initially massive warm disks these would not be visible at Gyr ages, and random collisions on the main-sequence are too infrequent to explain the high disk occurrence rate for young stars. That is, neither component can explain the observations on their own. Despite these conclusions, we cannot rule out an alternative dynamical model in which comets are scattered in from outer regions because the distribution of systems with the appropriate dynamics is unknown. Our in situ model predicts that the fraction of stars with exo-Zodi bright enough to cause problems for future exo-Earth imaging attempts is at least roughly 10%, and is higher for populations of stars younger than a few Gyr. This prediction of roughly 10% also applies to old stars because bright systems like BD+20 307 imply a population of fainter systems that were once bright, but are now decaying through fainter levels. Our prediction should be strongly tested by the Large Binocular Telescope Interferometer, which will provide

  8. Migration Theories

    NASA Astrophysics Data System (ADS)

    Crida, Aurélien

    2015-08-01

    The great variety of the architectures of the extra-solar planetary systems has revealed the fundamental role played by planetary migration: the interactions between the planets and the gaseous disk in which they form leads to a modification of their orbits. Here, I will review the basic processes and the most recent results in this area.Planets up to ~50 Earth masses are prone to so-called type I migration.I will describe the processes at play, namely the Lindblad and corotation torques, and explain how the total torque depends on the planet mass and the local disk structure. Application to realistic disks shows one or two sweet spot(s) for outward migration of planets roughly between 5 and 30 Earth masses around the snowline ; this is confirmed by dedicated 3D numerical simulations. This has strong consequences on the formation of hot Super-Earths or mini-Neptunes.For smaller mass planets, it has been recently proposed that the heating of the neighboring gas by the luminous planet can lead to a positive torque, hence promoting outward migration. On the other hand, if the planet is not a heat source, a cold finger appears, whose resulting torque is negative. Applications of these two recent results should be discussed.Giant planets open gaps in the proto-planetary disk, and then are supposedly subject to type II migration, following the viscous accretion of the disk. This standard picture has been questioned recently, as gas appears to drift through the gap. Although the gap opening process is well understood in 2D for a planet on a fixed orbit, recent results on 3D simulations or migrating planets make the picture more accurate.Our ever better understanding of planet-disk interactions is of crucial importance as the statistics on extra solar systems keep growing and the results of these interactions are now imaged.

  9. Evolution of heavy-element abundances in the Galactic halo and disk

    NASA Technical Reports Server (NTRS)

    Mathews, G. J.; Cowan, J. J.; Schramm, D. N.

    1988-01-01

    The constraints on the universal energy density and cosmological constant from cosmochronological ages and the Hubble age are reviewed. Observational evidence for the galactic chemical evolution of the heavy-element chronometers is descirbed in the context of numerical models. The viability of the recently discovered Th/Nd stellar chronometer is discussed, along with the suggestion that high r-process abundances in metal-poor stars may have resulted from a primordial r-process, as may be required by some inhomogeneous cosmologies.

  10. STABILITY OF THE OUTER PLANETS IN MULTIRESONANT CONFIGURATIONS WITH A SELF-GRAVITATING PLANETESIMAL DISK

    SciTech Connect

    Reyes-Ruiz, M.; Aceves, H.; Chavez, C. E.

    2015-05-10

    We study the effect of a massive planetesimal disk on the dynamical stability of the outer planets in a system representing the early solar system assuming, as has been suggested recently, that these planets were initially locked in a compact and multiresonant configuration as a result of gas-driven migration in a protoplanetary disk. The planetesimal disk is represented by an ensemble of 2000 lunar mass bodies for which the gravitational interaction is calculated self-consistently using the Mercury6.5 code. Several initial multiresonant configurations and planetesimal disk models are considered. Under such conditions a strong dynamical instability, manifested as a rapid giant planet migration and planetesimal disk dispersal, develops on a timescale of less than 40 Myr in most cases. Dynamical disk heating due to the gravitational interactions among planetesimals leads to more frequent interactions between the planetesimals and the ice giants, in comparison to models in which planetesimal–planetesimal interactions are neglected. The number of particles used to represent the planetesimal disk has implications for our results, and although our studies represent the first self-consistent calculations of unstable planetesimal-driven migration, our results point toward the need for using more realistic treatments of the planetesimal disk. Finally, in the framework of our model, we discuss the possible implications of our results on the early evolution of the solar system.

  11. Satellite And Propeller Migration In Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Crida, Aurelien; Charnoz, S.; Papaloizou, J.; Salmon, J.

    2009-09-01

    Saturn's rings host satellites like Pan and Daphnis, and smaller bodies like the recently discovered propellers (Tiscareno et al. 2006). These bodies interact gravitationally with the rings. Actually, the resulting perturbations on the ring system have revealed the presence of embedded objects (the Encke and Keeler gaps associated with Pan and Daphnis respectively, the little two-folded structures called propellers tracing the scattering of ring particles by some embedded small objects). Reciprocally, the rings must act on the embedded bodies, leading to their migration. Here, we study how the standard theory of planetary migration applies in Saturn's ring, where the pressure is negligible in contrast with standard protoplanetary disks. Pan and Daphnis should be in standard type II migration, governed by the global disk evolution. Therefore, their presence and position provide constraints on the history of the A-ring, which can be studied using numerical simulations of disk-satellite interactions. The propellers are fully embedded in the disc, and therefore should be subject to type I migration. The simple impulse approximation used by Lin and Papaloi zou (1979) to derive the one-sided torque is particularly suited to this case. Refining their calculation, taking density variations into account, and discussing the possibility for these bodies to enter the type III, runaway regime of migration, we aim at estimating a possible migration rate for these propellers, to be compared to the system life time.

  12. RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE

    SciTech Connect

    Russo, Matthew; Thompson, Christopher

    2015-11-10

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B{sub r} ∼ (10{sup −4}–10{sup −2})(r/ AU){sup −2} G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10{sup −8} M{sub ⊙} yr{sup −1} are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.

  13. The origin and evolution of r- and s-process elements in the Milky Way stellar disk

    NASA Astrophysics Data System (ADS)

    Battistini, Chiara; Bensby, Thomas

    2016-02-01

    Context. Elements heavier than iron are produced through neutron-capture processes in the different phases of stellar evolution. Asymptotic giant branch (AGB) stars are believed to be mainly responsible for elements that form through the slow neutron-capture process, while the elements created in the rapid neutron-capture process have production sites that are less understood. Knowledge of abundance ratios as functions of metallicity can lead to insight into the origin and evolution of our Galaxy and its stellar populations. Aims: We aim to trace the chemical evolution of the neutron-capture elements Sr, Zr, La, Ce, Nd, Sm, and Eu in the Milky Way stellar disk. This will allow us to constrain the formation sites of these elements, as well as to probe the evolution of the Galactic thin and thick disks. Methods: Using spectra of high resolution (42 000 ≲ R ≲ 65 000) and high signal-to-noise (S/N ≳ 200) obtained with the MIKE and the FEROS spectrographs, we determine Sr, Zr, La, Ce, Nd, Sm, and Eu abundances for a sample of 593 F and G dwarf stars in the solar neighborhood. The abundance analysis is based on spectral synthesis using one-dimensional, plane-parallel, local thermodynamic equilibrium (LTE) model stellar atmospheres calculated with the MARCS 2012 code. Results: We present abundance results for Sr (156 stars), Zr (311 stars), La (242 stars), Ce (365 stars), Nd (395 stars), Sm (280 stars), and Eu (378 stars). We find that Nd, Sm, and Eu show trends similar to what is observed for the α elements in the [X/Fe]-[Fe/H] abundance plane. For [Sr/Fe] and [Zr/Fe], we find decreasing abundance ratios for increasing metallicity, reaching sub-solar values at super-solar metallicities. [La/Fe] and [Ce/Fe] do not show any clear trend with metallicity, and they are close to solar values at all [Fe/H]. The trends of abundance ratios [X/Fe] as a function of stellar ages present different slopes before and after 8 Gyr. Conclusions: The rapid neutron-capture process is

  14. EFFECTS OF DUST FEEDBACK ON VORTICES IN PROTOPLANETARY DISKS

    SciTech Connect

    Fu, Wen; Liang, Edison; Li, Hui; Li, Shengtai; Lubow, Stephen

    2014-11-10

    We carried out two-dimensional, high-resolution simulations to study the effect of dust feedback on the evolution of vortices induced by massive planets in protoplanetary disks. Various initial dust to gas disk surface density ratios (0.001-0.01) and dust particle sizes (Stokes number 4 × 10{sup –4}-0.16) are considered. We found that while dust particles migrate inward, vortices are very effective at collecting them. When dust density becomes comparable to gas density within the vortex, a dynamical instability is excited and it alters the coherent vorticity pattern and destroys the vortex. This dust feedback effect is stronger with a higher initial dust/gas density ratio and larger dust grain. Consequently, we found that the disk vortex lifetime can be reduced up to a factor of 10. We discuss the implications of our findings on the survivability of vortices in protoplanetary disks and planet formation.

  15. UNSTABLE PLANETARY SYSTEMS EMERGING OUT OF GAS DISKS

    SciTech Connect

    Matsumura, Soko; Thommes, Edward W.; Chatterjee, Sourav; Rasio, Frederic A.

    2010-05-01

    The discovery of over 400 extrasolar planets allows us to statistically test our understanding of the formation and dynamics of planetary systems via numerical simulations. Traditional N-body simulations of multiple-planet systems without gas disks have successfully reproduced the eccentricity (e) distribution of the observed systems by assuming that the planetary systems are relatively closely packed when the gas disk dissipates, so that they become dynamically unstable within the stellar lifetime. However, such studies cannot explain the small semimajor axes a of extrasolar planetary systems, if planets are formed, as the standard planet formation theory suggests, beyond the ice line. In this paper, we numerically study the evolution of three-planet systems in dissipating gas disks, and constrain the initial conditions that reproduce the observed a and e distributions simultaneously. We adopt initial conditions that are motivated by the standard planet formation theory, and self-consistently simulate the disk evolution and planet migration, by using a hybrid N-body and one-dimensional gas disk code. We also take into account eccentricity damping, and investigate the effect of saturation of corotation resonances on the evolution of planetary systems. We find that the a distribution is largely determined in a gas disk, while the e distribution is determined after the disk dissipation. We also find that there may be an optimum disk mass which leads to the observed a-e distribution. Our simulations generate a larger fraction of planetary systems trapped in mean-motion resonances (MMRs) than the observations, indicating that the disk's perturbation to the planetary orbits may be important to explain the observed rate of MMRs. We also find a much lower occurrence of planets on retrograde orbits than the current observations of close-in planets suggest.

  16. Connecting historical disk interactions with current planetary system architectures

    NASA Astrophysics Data System (ADS)

    Ellinger, Emily; Steffen, Jason H.

    2015-01-01

    Recent analyses of Kepler's multiplanet systems show several statistically significant peaks in the distribution of period ratios (Steffen & Hwang arXiv:1409.3320). One prominent peak is near a period ratio of 2.2. Usually planets that migrate in a gas disk become trapped at period ratios of 2:1, 3:2, etc. Thus, standard disk migration would not predict a large number of planets near 2.2. A paper by Baruteau, C. & Papaloizou, J. (2013, ApJ, 778, 7-21) may have identified an explanation to the unexpected peak. Planets in a gas disk that open a common gap often bypassed the 2:1 resonance and stopped their migration at smaller period ratios. However, planets that did not open a common gap often stopped their migration wide of the 2:1 resonance due to interactions with the wakes left by the planets. Using FARGO3D to model planet/disk interactions I hope to identify the system parameters that are needed to produce the observed period ratios. This information will give important insights into the dynamical evolution of planetary systems. We present the results of our simulations.

  17. Migration or residency? The evolution of movement behavior and information usage in seasonal environments.

    PubMed

    Shaw, Allison K; Couzin, Iain D

    2013-01-01

    Migration, the seasonal movement of individuals among different locations, is a behavior found throughout the animal kingdom. Although migration is widely studied at taxonomically restricted levels, cross-taxonomic syntheses of migration are less common. As a result, we lack answers to broad questions such as what ultimate factors generally drive animal migration. Here we present such a synthesis by using a spatially explicit, individual-based model in which we evolve behavior rules via simulations under a wide range of ecological conditions to answer two questions. First, under what types of ecological conditions can an individual maximize its fitness by migrating (vs. being a resident)? Second, what types of information do individuals use to guide their movement? We show that migration is selected for when resource distributions are dominated more by seasonality than by local patchiness, and residency (nonmigratory behavior) is selected for when the reverse is true. When selected for, migration evolves as both a movement behavior and an information usage strategy. We also find that different types of migration can evolve, depending on the ecological conditions and availability of information. Finally, we present empirical support for our main results, drawn from migration patterns exhibited by a variety of taxonomic groups.

  18. The Anguilla spp. migration problem: 40 million years of evolution and two millennia of speculation.

    PubMed

    Righton, D; Aarestrup, K; Jellyman, D; Sébert, P; van den Thillart, G; Tsukamoto, K

    2012-07-01

    Anguillid eels Anguilla spp. evolved between 20 and 40 million years ago and possess a number of remarkable migratory traits that have fascinated scientists for millennia. Despite centuries of effort, the spawning areas and migrations are known only for a few species. Even for these species, information on migratory behaviour is remarkably sketchy. The latest knowledge on the requirements for successful migration and field data on the migrations of adults and larvae are presented, how experiments on swimming efficiency have progressed the understanding of migration are highlighted and the challenges of swimming at depth considered. The decline of Anguilla spp. across the world is an ongoing concern for fisheries and environmental managers. New developments in the knowledge of eel migration will, in addition to solving a centuries old mystery, probably help to identify how this decline might be halted or even reversed.

  19. The Evolution of Massive Morphological Spheroid and Disk Galaxies in CANDELS from 11 to 6 Billion Years Ago

    NASA Astrophysics Data System (ADS)

    McIntosh, Daniel H.; CANDELS Collaboration

    2017-01-01

    The premiere HST/WFC3 Treasury program CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) has produced detailed visual classifications for statistically useful samples of bright (H>24.5mag) galaxies during and after z~2, the epoch of peak galaxy development. By averaging multiple classifications per galaxy that encompass spheroid-only, bulge-dominated, disk-dominated, disk-only, and irregular/peculiar appearances at visible rest-frame wavelengths, we find that 90% of massive (>1e10 Msun) galaxies at 0.6disk morphologies. Morphological spheroids are physically distinct from disks in terms of Sersic indices, half-light sizes, and axial ratios from GALFIT measurements, and quenched (Q) vs. active star formation (SF) based on either specific SFR or rest-frame UVJ analyses. At all redshifts probed, disks with/without subdominant central mass concentrations are flat, larger and mostly SF, compared to spheroids and dominant 'bulges' which are round, smaller and evolving from 50% SF at z>2 to mostly Q at later times. Combining morphologies, structural properties, and SF nature, we find clear differences in the histories of spheroid and disk populations that are robust to selections based on visual or Sersic selection, and to either Q/SF divisor. Massive spheroids experience strong number density growth, substantial size growth, and rapid changes in SF fraction suggesting quenching processes that act on <0.5 Gyr timescales. In contrast, the massive disk population undergoes a steady addition of similar-size disks and a mild decline in average sSFR. Our results indicate that active SF in disks appears to slowly build up their inner mass (or bulge), which subsequently quenches these galaxies. Data-theory comparison is needed to better constrain which physical processes drive the transformation and quenching of massive galaxies.

  20. DUSTY DISKS AROUND WHITE DWARFS. I. ORIGIN OF DEBRIS DISKS

    SciTech Connect

    Dong Ruobing; Wang Yan; Lin, D. N. C.; Liu, X.-W. E-mail: yuw123@psu.ed E-mail: liuxw@bac.pku.edu.c

    2010-06-01

    A significant fraction of the mature FGK stars have cool dusty disks at least an order of magnitude brighter than the solar system's outer zodiacal light. Since such dusts must be continually replenished, they are generally assumed to be the collisional fragments of residual planetesimals analogous to the Kuiper-Belt objects. At least 10% of solar-type stars also bear gas giant planets. The fraction of stars with known gas giants or detectable debris disks (or both) appears to increase with the stellar mass. Here, we examine the dynamical evolution of systems of long-period gas giant planets and residual planetesimals as their host stars evolve off the main sequence, lose mass, and form planetary nebula around remnant white dwarf cores. The orbits of distant gas giant planets and super-km-size planetesimals expand adiabatically. During the most intense asymptotic giant branch mass-loss phase, sub-meter-size particles migrate toward their host stars due to the strong hydrodynamical drag by the intense stellar wind. Along their migration paths, gas giant planets capture and sweep up sub-km-size planetesimals onto their mean-motion resonances. These planetesimals also acquire modest eccentricities which are determined by the mass of the perturbing planets, and the rate and speed of stellar mass loss. The swept-up planetesimals undergo disruptive collisions which lead to the production of grains with an extended size range. The radiation drag on these particles is ineffective against the planets' resonant barrier and they form 30-50 AU size rings which can effectively reprocess the stellar irradiation in the form of FIR continuum. We identify the recently discovered dust ring around the white dwarf WD 2226-210 at the center of the Helix nebula as a prototype of such disks and suggest such rings may be common.

  1. Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution

    NASA Astrophysics Data System (ADS)

    Whipple, K. X.; Forte, A. M.; DiBiase, R. A.; Gasparini, N. M.; Ouimet, W. B.

    2017-01-01

    Efforts to extract information about climate and tectonics from topography commonly assume that river networks are static. Drainage divides can migrate through time, however, and recent work has shown that divide mobility can potentially induce changes in river profiles comparable to changes caused by variation in rock uplift, climate, or rock properties. We use 1-D river profile and 2-D landscape evolution simulations to evaluate how mobile divides influence the interpretation of river profiles in tectonically active settings. We define a nondimensional divide migration number, NDm, as the ratio of the timescale of channel profile response to a change in drainage area (TdA) to the timescale of divide migration (TDm). In simulations of headward divide migration, NDm is much less than unity with no measurable perturbation of channel profiles. Only in simulations configured to induce rapid lateral divide migration are there occasional large stream capture events and zones where localized drainage area loss is fast enough to support NDm values near unity. The rapid response of channel profiles to changes in drainage area ensures that under most conditions profiles maintain quasi-equilibrium forms and thus generally reflect spatiotemporal variation in rock uplift, climate, or rock properties even during active divide migration. This implies that channel profile form may not reliably record divide mobility, so we evaluate alternate metrics of divide mobility. In our simulations and an example in Taiwan, we find that simple measures of cross-divide contrasts in topography are more robust metrics of divide mobility than measures of drainage network topology.

  2. Planetesimal and Protoplanet Dynamics in a Turbulent Protoplanetary Disk: Ideal Stratified Disks

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Chin; Mac Low, Mordecai-Mark; Menou, Kristen

    2012-04-01

    Due to the gravitational influence of density fluctuations driven by magneto-rotational instability in the gas disk, planetesimals and protoplanets undergo diffusive radial migration as well as changes in other orbital properties. The magnitude of the effect on particle orbits can have important consequences for planet formation scenarios. We use the local-shearing-box approximation to simulate an ideal, isothermal, magnetized gas disk with vertical density stratification and simultaneously evolve numerous massless particles moving under the gravitational field of the gas and the host star. We measure the evolution of the particle orbital properties, including mean radius, eccentricity, inclination, and velocity dispersion, and its dependence on the disk properties and the particle initial conditions. Although the results converge with resolution for fixed box dimensions, we find the response of the particles to the gravity of the turbulent gas correlates with the horizontal box size, up to 16 disk scale heights. This correlation indicates that caution should be exercised when interpreting local-shearing-box models involving gravitational physics of magneto-rotational turbulence. Based on heuristic arguments, nevertheless, the criterion Lh /R ~ O(1), where Lh is the horizontal box size and R is the distance to the host star, is proposed to possibly circumvent this conundrum. If this criterion holds, we can still conclude that magneto-rotational turbulence seems likely to be ineffective at driving either diffusive migration or collisional erosion under most circumstances.

  3. PLANETESIMAL AND PROTOPLANET DYNAMICS IN A TURBULENT PROTOPLANETARY DISK: IDEAL STRATIFIED DISKS

    SciTech Connect

    Yang, Chao-Chin; Mac Low, Mordecai-Mark; Menou, Kristen E-mail: mordecai@amnh.org

    2012-04-01

    Due to the gravitational influence of density fluctuations driven by magneto-rotational instability in the gas disk, planetesimals and protoplanets undergo diffusive radial migration as well as changes in other orbital properties. The magnitude of the effect on particle orbits can have important consequences for planet formation scenarios. We use the local-shearing-box approximation to simulate an ideal, isothermal, magnetized gas disk with vertical density stratification and simultaneously evolve numerous massless particles moving under the gravitational field of the gas and the host star. We measure the evolution of the particle orbital properties, including mean radius, eccentricity, inclination, and velocity dispersion, and its dependence on the disk properties and the particle initial conditions. Although the results converge with resolution for fixed box dimensions, we find the response of the particles to the gravity of the turbulent gas correlates with the horizontal box size, up to 16 disk scale heights. This correlation indicates that caution should be exercised when interpreting local-shearing-box models involving gravitational physics of magneto-rotational turbulence. Based on heuristic arguments, nevertheless, the criterion L{sub h} /R {approx} O(1), where L{sub h} is the horizontal box size and R is the distance to the host star, is proposed to possibly circumvent this conundrum. If this criterion holds, we can still conclude that magneto-rotational turbulence seems likely to be ineffective at driving either diffusive migration or collisional erosion under most circumstances.

  4. Herniated Disk

    MedlinePlus

    ... to pain if the back is stressed. A herniated disk is a disk that ruptures. This allows the ... or back pain. Your doctor will diagnose a herniated disk with a physical exam and, sometimes, imaging tests. ...

  5. Evolution of Quantitative Traits under a Migration-Selection Balance: When Does Skew Matter?

    PubMed

    Débarre, Florence; Yeaman, Sam; Guillaume, Frédéric

    2015-10-01

    Quantitative-genetic models of differentiation under migration-selection balance often rely on the assumption of normally distributed genotypic and phenotypic values. When a population is subdivided into demes with selection toward different local optima, migration between demes may result in asymmetric, or skewed, local distributions. Using a simplified two-habitat model, we derive formulas without a priori assuming a Gaussian distribution of genotypic values, and we find expressions that naturally incorporate higher moments, such as skew. These formulas yield predictions of the expected divergence under migration-selection balance that are more accurate than models assuming Gaussian distributions, which illustrates the importance of incorporating these higher moments to assess the response to selection in heterogeneous environments. We further show with simulations that traits with loci of large effect display the largest skew in their distribution at migration-selection balance.

  6. The status of circular migration in the evolution of Melanesian towns: an attempt at explanation.

    PubMed

    Walsh, A C

    1992-01-01

    "This article proposes a model of Melanesian urbanization and associated forms of migration, both permanent and temporary/circular. The model describes four stages of urban development, spanning the arrival of capitalism to a futuristic city of the next century. The author links the future of circular migration in Melanesia to the relative strengths of the precapitalist and capitalist modes of production and associated social relations, particularly the wantok [kinship network]."

  7. Migration of lymphocytes on fibronectin-coated surfaces: temporal evolution of migratory parameters

    NASA Technical Reports Server (NTRS)

    Bergman, A. J.; Zygourakis, K.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Lymphocytes typically interact with implanted biomaterials through adsorbed exogenous proteins. To provide a more complete characterization of these interactions, analysis of lymphocyte migration on adsorbed extracellular matrix proteins must accompany the commonly performed adhesion studies. We report here a comparison of the migratory and adhesion behavior of Jurkat cells (a T lymphoblastoid cell line) on tissue culture treated and untreated polystyrene surfaces coated with various concentrations of fibronectin. The average speed of cell locomotion showed a biphasic response to substrate adhesiveness for cells migrating on untreated polystyrene and a monotonic decrease for cells migrating on tissue culture-treated polystyrene. A modified approach to the persistent random walk model was implemented to determine the time dependence of cell migration parameters. The random motility coefficient showed significant increases with time when cells migrated on tissue culture-treated polystyrene surfaces, while it remained relatively constant for experiments with untreated polystyrene plates. Finally, a cell migration computer model was developed to verify our modified persistent random walk analysis. Simulation results suggest that our experimental data were consistent with temporally increasing random motility coefficients.

  8. Migration of lymphocytes on fibronectin-coated surfaces: temporal evolution of migratory parameters.

    PubMed

    Bergman, A J; Zygourakis, K

    1999-12-01

    Lymphocytes typically interact with implanted biomaterials through adsorbed exogenous proteins. To provide a more complete characterization of these interactions, analysis of lymphocyte migration on adsorbed extracellular matrix proteins must accompany the commonly performed adhesion studies. We report here a comparison of the migratory and adhesion behavior of Jurkat cells (a T lymphoblastoid cell line) on tissue culture treated and untreated polystyrene surfaces coated with various concentrations of fibronectin. The average speed of cell locomotion showed a biphasic response to substrate adhesiveness for cells migrating on untreated polystyrene and a monotonic decrease for cells migrating on tissue culture-treated polystyrene. A modified approach to the persistent random walk model was implemented to determine the time dependence of cell migration parameters. The random motility coefficient showed significant increases with time when cells migrated on tissue culture-treated polystyrene surfaces, while it remained relatively constant for experiments with untreated polystyrene plates. Finally, a cell migration computer model was developed to verify our modified persistent random walk analysis. Simulation results suggest that our experimental data were consistent with temporally increasing random motility coefficients.

  9. ORBITAL MIGRATION OF LOW-MASS PLANETS IN EVOLUTIONARY RADIATIVE MODELS: AVOIDING CATASTROPHIC INFALL

    SciTech Connect

    Lyra, Wladimir; Mac Low, Mordecai-Mark; Paardekooper, Sijme-Jan E-mail: mordecai@amnh.or

    2010-06-01

    Outward migration of low-mass planets has recently been shown to be a possibility in non-barotropic disks. We examine the consequences of this result in evolutionary models of protoplanetary disks. Planet migration occurs toward equilibrium radii with zero torque. These radii themselves migrate inwards because of viscous accretion and photoevaporation. We show that as the surface density and temperature fall the planet orbital migration and disk depletion timescales eventually become comparable, with the precise timing depending on the mass of the planet. When this occurs, the planet decouples from the equilibrium radius. At this time, however, the gas surface density is already too low to drive substantial further migration. A higher mass planet, of 10 M {sub +}, can open a gap during the late evolution of the disk, and stops migrating. Low-mass planets, with 1 or 0.1 M {sub +}, released beyond 1 AU in our models avoid migrating into the star. Our results provide support for the reduced migration rates adopted in recent planet population synthesis models.

  10. Origin and dynamical evolution of Neptune Trojans - I. Formation and planetary migration

    NASA Astrophysics Data System (ADS)

    Lykawka, P. S.; Horner, J.; Jones, B. W.; Mukai, T.

    2009-10-01

    We present the results of detailed dynamical simulations of the effect of the migration of the four giant planets on both the transport of pre-formed Neptune Trojans and the capture of new Trojans from a trans-Neptunian disc. The cloud of pre-formed Trojans consisted of thousands of massless particles placed on dynamically cold orbits around Neptune's L4 and L5 Lagrange points, while the trans-Neptunian disc contained tens of thousands of such particles spread on dynamically cold orbits between the initial and final locations of Neptune. Through the comparison of the results with the previous work on the known Neptunian Trojans, we find that scenarios involving the slow migration of Neptune over a large distance (50 Myr to migrate from 18.1 au to its current location, using an exponential-folding time of τ = 10 Myr) provide the best match to the properties of the known Trojans. Scenarios with faster migration (5Myr, with τ = 1Myr), and those in which Neptune migrates from 23.1 au to its current location, fail to adequately reproduce the current-day Trojan population. Scenarios which avoid disruptive perturbation events between Uranus and Neptune fail to yield any significant excitation of pre-formed Trojans (transported with efficiencies between 30 and 98 per cent whilst maintaining the dynamically cold nature of these objects - e < 0.1, i < 5°). Conversely, scenarios with periods of strong Uranus-Neptune perturbation lead to the almost complete loss of such pre-formed objects. In these cases, a small fraction (~0.15 per cent) of these escaped objects are later recaptured as Trojans prior to the end of migration, with a wide range of eccentricities (<0.35) and inclinations (<40°). In all scenarios (including those with such disruptive interaction between Uranus and Neptune), the capture of objects from the trans-Neptunian disc (through which Neptune migrates) is achieved with efficiencies between ~0.1 and ~1 per cent. The captured Trojans display a wide range

  11. Chemodynamical signatures of radial migration in the Milky Way

    NASA Astrophysics Data System (ADS)

    Loebman, Sarah

    2016-05-01

    Recent analysis of the SDSS-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 12 stellar catalog has revealed that the Milky Way’s (MW) metallicity distribution function (MDF) changes shape as a function of radius, transitioning from being negatively skewed at small Galactocentric radii to positively skewed at large Galactocentric radii. I will discuss the dynamical process that has likely generated this chemical signature: radial migration. Using a high-resolution, N-body+SPH simulation, I will illustrate how the changing skewness arises from radial migration—metal-rich stars form in the inner disk and subsequently migrate to the metal-poorer outer disk. These migrated stars represent a large fraction (> 50%) of the stars in the outer disk; they populate the high-metallicity tail of the MDFs and are, in general, more metal-rich than the surrounding outer disk gas. The simulation also reproduces another surprising APOGEE result: the spatially invariant high-[α/Fe] MDFs. This arises in the simulation from the migration of a population formed within a narrow range of radii (3.2 ±1.2 kpc) and time (8.8 ± 0.6 Gyr ago), rather than from spatially extended star formation in a homogeneous medium at early times. These results point toward the crucial role radial migration has played in shaping our MW.

  12. A behavior-oriented dynamic model for sandbar migration and 2DH evolution

    USGS Publications Warehouse

    Splinter, K.D.; Holman, R.A.; Plant, N.G.

    2011-01-01

    A nonlinear model is developed to study the time-dependent relationship between the alongshore variability of a sandbar, a(t), and alongshore-averaged sandbar position, xc(t). Sediment transport equations are derived from energetics-based formulations. A link between this continuous physical representation and a parametric form describing the migration of sandbars of constant shape is established through a simple transformation of variables. The model is driven by offshore wave conditions. The parametric equations are dynamically coupled such that changes in one term (i.e., xc) drive changes in the other (i.e., a(t)). The model is tested on 566 days of data from Palm Beach, New South Wales, Australia. Using weighted nonlinear least squares to estimate best fit model coefficients, the model explained 49% and 41% of the variance in measured xc and a(t), respectively. Comparisons against a 1-D horizontal (1DH) version of the model showed significant improvements when the 2DH terms were included (1DH and 2DH Brier skill scores were -0.12 and 0.42, respectively). Onshore bar migration was not predicted in the 1DH model, while the 2DH model correctly predicted onshore migration in the presence of 2DH morphology and allowed the bar to remain closer to shore for a given amount of breaking, providing an important hysteresis to the system. The model is consistent with observations that active bar migration occurs under breaking waves with onshore migration occurring at timescales of days to weeks and increasing 2DH morphology, while offshore migration occurs rapidly under high waves and coincides with a reduction in 2DH morphology. Copyright ?? 2011 by the American Geophysical Union.

  13. A behavior-oriented dynamic model for sandbar migration and 2DH evolution

    NASA Astrophysics Data System (ADS)

    Splinter, Kristen D.; Holman, Robert A.; Plant, Nathaniel G.

    2011-01-01

    A nonlinear model is developed to study the time-dependent relationship between the alongshore variability of a sandbar, a(t), and alongshore-averaged sandbar position, xc(t). Sediment transport equations are derived from energetics-based formulations. A link between this continuous physical representation and a parametric form describing the migration of sandbars of constant shape is established through a simple transformation of variables. The model is driven by offshore wave conditions. The parametric equations are dynamically coupled such that changes in one term (i.e., xc) drive changes in the other (i.e., a(t)). The model is tested on 566 days of data from Palm Beach, New South Wales, Australia. Using weighted nonlinear least squares to estimate best fit model coefficients, the model explained 49% and 41% of the variance in measured xc and a(t), respectively. Comparisons against a 1-D horizontal (1DH) version of the model showed significant improvements when the 2DH terms were included (1DH and 2DH Brier skill scores were -0.12 and 0.42, respectively). Onshore bar migration was not predicted in the 1DH model, while the 2DH model correctly predicted onshore migration in the presence of 2DH morphology and allowed the bar to remain closer to shore for a given amount of breaking, providing an important hysteresis to the system. The model is consistent with observations that active bar migration occurs under breaking waves with onshore migration occurring at timescales of days to weeks and increasing 2DH morphology, while offshore migration occurs rapidly under high waves and coincides with a reduction in 2DH morphology.

  14. Hillslope response to knickpoint migration in the Southern Appalachians: Implications for the evolution of post-orogenic landscapes

    USGS Publications Warehouse

    Wegmann, S.F.G.; Franke, K.L.; Hughes, S.; Lewis, R.Q.; Lyons, N.; Paris, P.; Ross, K.; Bauer, J.B.; Witt, A.C.

    2011-01-01

    The southern Appalachians represent a landscape characterized by locally high topographic relief, steep slopes, and frequent mass movement in the absence of significant tectonic forcing for at least the last 200 Ma. The fundamental processes responsible for landscape evolution in a post-orogenic landscape remain enigmatic. The non-glaciated Cullasaja River basin of south-western North Carolina, with uniform lithology, frequent debris flows, and the availability of high-resolution airborne lidar DEMs, is an ideal natural setting to study landscape evolution in a post-orogenic landscape through the lens of hillslope-channel coupling. This investigation is limited to channels with upslope contributing areas >2.7 km2, a conservative estimate of the transition from fluvial to debris-flow dominated channel processes. Values of normalized hypsometry, hypsometric integral, and mean slope vs elevation are used for 14 tributary basins and the Cullasaja basin as a whole to characterize landscape evolution following upstream knickpoint migration. Results highlight the existence of a transient spatial relationship between knickpoints present along the fluvial network of the Cullasaja basin and adjacent hillslopes. Metrics of topography (relief, slope gradient) and hillslope activity (landslide frequency) exhibit significant downstream increases below the current position of major knickpoints. The transient effect of knickpoint-driven channel incision on basin hillslopes is captured by measuring the relief, mean slope steepness, and mass movement frequency of tributary basins and comparing these results with the distance from major knickpoints along the Cullasaja River. A conceptual model of area-elevation and slope distributions is presented that may be representative of post-orogenic landscape evolution in analogous geologic settings. Importantly, the model explains how knickpoint migration and channel- hillslope coupling is an important factor in tectonically-inactive (i

  15. The Effect of Convective Overstability on Planet Disk Interactions

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Gomes, Aiara Lobo

    2016-10-01

    We run global two dimensional hydrodynamical simulations, using the PLUTO code and the planet-disk model of Uribe et al. 2011, to investigate the effect of the convective overstability (CO) on planet-disk interactions. First, we study the long-term evolution of planet-induced vortices. We found that the CO leads to smoother planetary gap edges, thus weaker planet-induced vortices. The main result was the observation of two generation of vortices, which can pose an explanation for the location of the vortex in the Oph IRS48 system. The lifetime of the primary vortices, as well as the birth time of the secondary vortices are shown to be highly dependent on the thermal relaxation timescale. Second, we study the long-term evolution of the migration of low mass planets and assess whether the CO can prevent the saturation of the horseshoe drag. We found that the disk parameters that favour slow inward or outward migration oppose the amplification of vortices, meaning that the CO does not seem to be a good mechanism to prevent the saturation of the horseshoe drag. On the other hand, we observed a planetary trap, caused by vortices formed in the horseshoe region. This trap may be an alternative mechanism to prevent the fast type I migration rates.

  16. Chemical Signposts in Transition Disks

    NASA Astrophysics Data System (ADS)

    Cleeves, I.; Bergin, E. A.; Fogel, J.

    2011-05-01

    In the era of the Kepler Mission, the detection of numerous multi-planet systems has demonstrated that planet-formation appears to be a rather ubiquitous phenomenon. Such systems are believed to form from nascent protoplanetary disks, whose environment sets the stage for initial planetary chemical composition and evolution. However, disk systems typically vary by orders of magnitude in radiation field, densities and temperatures, and thus complex disk models are necessary to fully understand this unique chemical environment. Further evidence for disks as progenitors to planetary systems comes from Spitzer surveys of young disk systems, which have revealed a class of objects known as ``transition disks''. These systems appear to have inner voids and gaps in the dust opacity, possibly indicative of planet evolution and disk clearing. This physical evolution in the dust disk will significantly impact its chemical nature, and therefore these potentially planet-forming systems in ``transition'' should have unique chemical signatures. We predict one such signature to be an active chemistry at the wall interface where the conditions are such that the disk is both heated and optically thick to the photo-dissociating UV. The net result is a wide variety of gas-phase molecules, appearing in line emission as bright molecular rings far from the central star. This behavior should also reveal a wealth of information about the physical conditions in this actively evolving zone between the inner ``cleared'' disk and the massive outer disk. For this presentation I will discuss the features of our disk chemical model pipeline and select model results of transition disk systems. I will also highlight the exciting future of protoplanetary disk chemistry in the era of ALMA, which will truly revolutionize our understanding of the chemical nature of disks.

  17. Circumstellar disks of the most vigorously accreting young stars

    PubMed Central

    Liu, Hauyu Baobab; Takami, Michihiro; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I.; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M.; Karr, Jennifer L.; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-01-01

    Stars may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Our high-resolution near-infrared imaging has verified the presence of the key associated features, large-scale arms and arcs surrounding four young stellar objects undergoing luminous outbursts. Our hydrodynamics simulations and radiative transfer models show that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation phase. The effect of those tempestuous episodes of disk evolution on star and planet formation remains to be understood. PMID:26989772

  18. Circumstellar disks of the most vigorously accreting young stars.

    PubMed

    Liu, Hauyu Baobab; Takami, Michihiro; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer L; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-02-01

    Stars may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Our high-resolution near-infrared imaging has verified the presence of the key associated features, large-scale arms and arcs surrounding four young stellar objects undergoing luminous outbursts. Our hydrodynamics simulations and radiative transfer models show that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation phase. The effect of those tempestuous episodes of disk evolution on star and planet formation remains to be understood.

  19. 35-Day Evolution of the Her X-1 Pulse Profile: Evidence for a Resolved Inner Disk Occultation of the Neutron Star

    NASA Technical Reports Server (NTRS)

    Scott, D. Matthew; Leahy, Denis A.; Wilson, Robert B.

    1999-01-01

    Ginga and RXTE observations have allowed an unprecedented view of the recurrent systematic pulse shape changes associated with the 35-day cycle of Her X-1, a phenomena currently unique among the known accretion-powered pulsars. We present observations of the pulse shape evolution. An explanation for the pulse evolution in terms of a freely precessing neutron star is reviewed and shown to have several major difficulties in explaining the observed pulse evolution pattern. Instead, we propose a phenomenlogical model for the pulse evolution based upon an occultation of the pulse emitting region by the tilted, inner edge of a precessing accretion disk. The systematic and repeating pulse shape changes require a resolved occultation of the pulse emission region. The observed pulse profile motivates the need for a pulsar beam consisting of a composite coaxial pencil and fan beam but the observed evolution pattern requires the fan beam to be focused around the neutron star and beamed in the antipodal direction. The spectral hardness of the pencil beam component suggests an origin at the magnetic polar cap, with the relatively softer fan beam emission produced by backscattering from within the accretion column, qualitatively consistent with several theoretical models for X-ray emission from the accretion column of an accreting neutron star.

  20. The 35 Day Evolution of the Hercules X-1 Pulse Profile: Evidence for a Resolved Inner Disk Occultation of the Neutron Star

    NASA Technical Reports Server (NTRS)

    Scott, D. Matthew; Leahy, Denis A.; Wilson, Robert B.

    2000-01-01

    Ginga and Rossi X-Ray Timing Explorer observations have allowed an unprecedented view of the recurrent systematic pulse shape changes associated with the 35 day cycle of Hercules X-1, a phenomenon currently unique among the known accretion-powered pulsars. We present observations of the pulse shape evolution. An explanation for the pulse evolution in terms of a freely precessing neutron star is reviewed and shown to have several major difficulties in explaining the observed pulse evolution pattern. Instead, we propose a phenomenological model for the pulse evolution based on an occultation of the pulse-emitting region by the tilted, inner edge of a precessing accretion disk. The systematic and repeating pulse shape changes require a resolved occultation of the pulse emission region. The observed pulse profile motivates the need for a pulsar beam consisting of a composite coaxial pencil and fan beam, but the observed evolution pattern requires the fan beam to be focused around the neutron star and beamed in the antipodal direction. The spectral hardness of the pencil beam component suggests an origin at the magnetic polar cap, with the relatively softer fan beam emission produced by backscattering from within the accretion column, qualitatively consistent with several theoretical models for X-ray emission from the accretion column of an accreting neutron star.

  1. Migrating Planets

    NASA Astrophysics Data System (ADS)

    Murray, N.; Hansen, B.; Holman, M.; Tremaine, S.

    1998-01-01

    A planet orbiting in a disk of planetesimals can experience an instability in which it migrates to smaller orbital radii. Resonant interactions between the planet and planetesimals remove angular momentum from the planetesimals, increasing their eccentricities. Subsequently, the planetesimals either collide with or are ejected by the planet, reducing the semimajor axis of the planet. If the surface density of planetesimals exceeds a critical value, corresponding to 0.03 solar masses of gas inside the orbit of Jupiter, the planet will migrate inward a large distance. This instability may explain the presence of Jupiter-mass objects in small orbits around nearby stars.

  2. Evolution and connectivity in the world-wide migration system of the mallard: Inferences from mitochondrial DNA

    PubMed Central

    2011-01-01

    Background Main waterfowl migration systems are well understood through ringing activities. However, in mallards (Anas platyrhynchos) ringing studies suggest deviations from general migratory trends and traditions in waterfowl. Furthermore, surprisingly little is known about the population genetic structure of mallards, and studying it may yield insight into the spread of diseases such as Avian Influenza, and in management and conservation of wetlands. The study of evolution of genetic diversity and subsequent partitioning thereof during the last glaciation adds to ongoing discussions on the general evolution of waterfowl populations and flyway evolution. Hypothesised mallard flyways are tested explicitly by analysing mitochondrial mallard DNA from the whole northern hemisphere. Results Phylogenetic analyses confirm two mitochondrial mallard clades. Genetic differentiation within Eurasia and North-America is low, on a continental scale, but large differences occur between these two land masses (FST = 0.51). Half the genetic variance lies within sampling locations, and a negligible portion between currently recognised waterfowl flyways, within Eurasia and North-America. Analysis of molecular variance (AMOVA) at continent scale, incorporating sampling localities as smallest units, also shows the absence of population structure on the flyway level. Finally, demographic modelling by coalescence simulation proposes a split between Eurasia and North-America 43,000 to 74,000 years ago and strong population growth (~100fold) since then and little migration (not statistically different from zero). Conclusions Based on this first complete assessment of the mallard's world-wide population genetic structure we confirm that no more than two mtDNA clades exist. Clade A is characteristic for Eurasia, and clade B for North-America although some representatives of clade A are also found in North-America. We explain this pattern by evaluating competing hypotheses and conclude that a

  3. THE DYNAMICAL EVOLUTION OF LOW-MASS HYDROGEN-BURNING STARS, BROWN DWARFS, AND PLANETARY-MASS OBJECTS FORMED THROUGH DISK FRAGMENTATION

    SciTech Connect

    Li, Yun; Kouwenhoven, M. B. N.; Stamatellos, D.; Goodwin, S. P.

    2015-06-01

    Theory and simulations suggest that it is possible to form low-mass hydrogen-burning stars, brown dwarfs (BDs), and planetary-mass objects (PMOs) via disk fragmentation. As disk fragmentation results in the formation of several bodies at comparable distances to the host star, their orbits are generally unstable. Here, we study the dynamical evolution of these objects. We set up the initial conditions based on the outcomes of the smoothed-particle hydrodynamics simulations of Stamatellos and Whitworth, and for comparison we also study the evolution of systems resulting from lower-mass fragmenting disks. We refer to these two sets of simulations as set 1 and set 2, respectively. At 10 Myr, approximately half of the host stars have one companion left, and approximately 22% (set 1) to 9.8% (set 2) of the host stars are single. Systems with multiple secondaries in relatively stable configurations are common (about 30% and 44%, respectively). The majority of the companions are ejected within 1 Myr with velocities mostly below 5 km s{sup −1}, with some runaway escapers with velocities over 30 km s{sup −1}. Roughly 6% (set 1) and 2% (set 2) of the companions pair up into very low-mass binary systems, resulting in respective binary fractions of 3.2% and 1.2%. The majority of these pairs escape as very low-mass binaries, while others remain bound to the host star in hierarchical configurations (often with retrograde inner orbits). Physical collisions with the host star (0.43 and 0.18 events per host star for set 1 and set 2, respectively) and between companions (0.08 and 0.04 events per host star for set 1 and set 2, respectively) are relatively common and their frequency increases with increasing disk mass. Our study predicts observable properties of very low-mass binaries, low-mass hierarchical systems, the BD desert, and free-floating BDs and PMOs in and near young stellar groupings, which can be used to distinguish between different formation scenarios of very low

  4. DISK-SATELLITE INTERACTION IN DISKS WITH DENSITY GAPS

    SciTech Connect

    Petrovich, Cristobal; Rafikov, Roman R.

    2012-10-10

    Gravitational coupling between a gaseous disk and an orbiting perturber leads to angular momentum exchange between them that can result in gap opening by planets in protoplanetary disks and clearing of gas by binary supermassive black holes (SMBHs) embedded in accretion disks. Understanding the co-evolution of the disk and the orbit of the perturber in these circumstances requires knowledge of the spatial distribution of the torque exerted by the latter on a highly non-uniform disk. Here we explore disk-satellite interaction in disks with gaps in linear approximation both in Fourier and in physical space, explicitly incorporating the disk non-uniformity in the fluid equations. Density gradients strongly displace the positions of Lindblad resonances in the disk (which often occur at multiple locations), and the waveforms of modes excited close to the gap edge get modified compared to the uniform disk case. The spatial distribution of the excitation torque density is found to be quite different from the existing prescriptions: most of the torque is exerted in a rather narrow region near the gap edge where Lindblad resonances accumulate, followed by an exponential falloff with the distance from the perturber. Despite these differences, for a given gap profile, the full integrated torque exerted on the disk agrees with the conventional uniform disk theory prediction at the level of {approx}10%. The nonlinearity of the density wave excited by the perturber is shown to decrease as the wave travels out of the gap, slowing down its nonlinear evolution and damping. Our results suggest that gap opening in protoplanetary disks and gas clearing around SMBH binaries can be more efficient than the existing theories predict. They pave the way for self-consistent calculations of the gap structure and the orbital evolution of the perturber using accurate prescription for the torque density behavior.

  5. Decoupling of a giant planet from its disk in an inclined binary system

    NASA Astrophysics Data System (ADS)

    Marzari, F.; Picogna, G.

    According to \\cite{Triaud_2010} and \\cite{Albrecht_2012} about 40% of hot Jupiters have orbits significantly tilted respect to the equatorial plane of the star. It has been suggested \\cite{Batygin_2012} that the evolution of a protoplanetary disk under the perturbations of a binary companion may be responsible for the observed spin-orbit misalignment of these exoplanets. A fundamental requirement for this model to work is that the planet is kept within the disk during its precession. In this way the planet would continue its migration by tidal interaction with the disk and, at the same time, once the disk is dissipated it would maintain its inclination. Previous studies seem to suggest that indeed a giant planet is forced to evolve within the disks even in presence of strong perturbing forces as those induced by a companion star. By using two different SPH codes (VINE and phantom) we show that on the long term the planet definitively decouples from the disk evolution and its orbital plane significantly departs from that of the disk. For a detailed analysis an discussion we refer to \\cite{Picogna_2015}.

  6. ON THE INTERACTION BETWEEN A PROTOPLANETARY DISK AND A PLANET IN AN ECCENTRIC ORBIT: APPLICATION OF DYNAMICAL FRICTION

    SciTech Connect

    Muto, Takayuki; Takeuchi, Taku; Ida, Shigeru

    2011-08-10

    We present a new analytic approach to the disk-planet interaction that is especially useful for planets with eccentricity larger than the disk aspect ratio. We make use of the dynamical friction formula to calculate the force exerted on the planet by the disk, and the force is averaged over the period of the planet. The resulting migration and eccentricity damping timescale agree very well with previous works in which the planet eccentricity is moderately larger than the disk aspect ratio. The advantage of this approach is that it is possible to apply this formulation to arbitrary large eccentricity. We have found that the timescale of the orbital evolution depends largely on the adopted disk model in the case of highly eccentric planets. We discuss the possible implication of our results for the theory of planet formation.

  7. Migrating from the Library of Today to the Library of Tomorrow: Re- or E-volution?

    ERIC Educational Resources Information Center

    Ershova, Tatiana V.; Hohlov, Yuri E.

    This paper discusses library development in the changing environment arising within the forthcoming Information/Knowledge Society. The role of the library as a social institution is examined in the context of the evolution of the whole literary and knowledge system. Ideas about conceptual changes to be introduced by the library in order to respond…

  8. A hinge migration mechanism unlocks the evolution of green-to-red photoconversion in GFP-like proteins.

    PubMed

    Kim, Hanseong; Zou, Taisong; Modi, Chintan; Dörner, Katerina; Grunkemeyer, Timothy J; Chen, Liqing; Fromme, Raimund; Matz, Mikhail V; Ozkan, S Banu; Wachter, Rebekka M

    2015-01-06

    In proteins, functional divergence involves mutations that modify structure and dynamics. Here we provide experimental evidence for an evolutionary mechanism driven solely by long-range dynamic motions without significant backbone adjustments, catalytic group rearrangements, or changes in subunit assembly. Crystallographic structures were determined for several reconstructed ancestral proteins belonging to a GFP class frequently employed in superresolution microscopy. Their chain flexibility was analyzed using molecular dynamics and perturbation response scanning. The green-to-red photoconvertible phenotype appears to have arisen from a common green ancestor by migration of a knob-like anchoring region away from the active site diagonally across the β barrel fold. The allosterically coupled mutational sites provide active site conformational mobility via epistasis. We propose that light-induced chromophore twisting is enhanced in a reverse-protonated subpopulation, activating internal acid-base chemistry and backbone cleavage to enlarge the chromophore. Dynamics-driven hinge migration may represent a more general platform for the evolution of novel enzyme activities.

  9. A hinge migration mechanism unlocks the evolution of green-to-red photoconversion in GFP-like proteins

    PubMed Central

    Kim, Hanseong; Zou, Taisong; Modi, Chintan; Dörner, Katerina; Grunkemeyer, Timothy J.; Chen, Liqing; Fromme, Raimund; Matz, Mikhail V.; Ozkan, S. Banu; Wachter, Rebekka M.

    2015-01-01

    Summary In proteins, functional divergence involves mutations that modify structure and dynamics. Here, we provide experimental evidence for an evolutionary mechanism driven solely by long-range dynamic motions without significant backbone adjustments, catalytic group rearrangements, or changes in subunit assembly. Crystallographic structures were determined for several reconstructed ancestral proteins belonging to a GFP class frequently employed in superresolution microscopy. Their chain flexibility was analyzed using molecular dynamics and perturbation response scanning. The green-tored photoconvertible phenotype appears to have arisen from a common green ancestor by migration of a knob-like anchoring region away from the active site diagonally across the beta-barrel fold. The allosterically coupled mutational sites provide active site conformational mobility via epistasis. We propose that light-induced chromophore twisting is enhanced in a reverse-protonated subpopulation, activating internal acid-base chemistry and backbone cleavage to enlarge the chromophore. Dynamics-driven hinge migration may represent a more general platform for the evolution of novel enzyme activities. PMID:25565105

  10. Wide-angle seismic constraints on the evolution of the deep San Andreas plate boundary by Mendocino triple junction migration

    USGS Publications Warehouse

    Hole, J.A.; Beaudoin, B.C.; Henstock, T.J.

    1998-01-01

    Recent wide-angle seismic observations that constrain the existence and structure of a mafic layer in the lower crust place strong constraints on the evolution of the San Andreas plate boundary system in northern and central California. Northward migration of the Mendocino Triple Junction and the subducted Juan de Fuca lithospheric slab creates a gap under the continent in the new strike-slip system. This gap must be filled by either asthenospheric upwelling or a northward migrating slab attached to the Pacific plate. Both processes emplace a mafic layer, either magmatic underplating or oceanic crust, beneath the California Coast Ranges. A slab of oceanic lithosphere attached to the Pacific plate is inconsistent with the seismic observation that the strike-slip faults cut through the mafic layer to the mantle, detaching the layer from the Pacific plate. The layer could only be attached to the Pacific plate if large vertical offsets and other complex structures observed beneath several strike-slip faults are original oceanic structures that are not caused by the faults. Otherwise, if oceanic slabs exist beneath California, they do not migrate north to fill the growing slab gap. The extreme heat pulse created by asthenospheric upwelling is inconsistent with several constraints from the seismic data, including a shallower depth to the slab gap than is predicted by heat flow models, seismic velocity and structure that are inconsistent with melting or metamorphism of the overlying silicic crust, and a high seismic velocity in the upper mantle. Yet either the Pacific slab model or the asthenospheric upwelling model must be correct. While the mafic material in the lower crust could have been emplaced prior to triple junction migration, the deeper slab gap must still be filled. A preexisting mafic layer does not reduce the inconsistencies of the Pacific slab model. Such material could, however, compensate for the decrease in mafic magma that would be produced if

  11. INTERACTION OF A GIANT PLANET IN AN INCLINED ORBIT WITH A CIRCUMSTELLAR DISK

    SciTech Connect

    Marzari, F.; Nelson, Andrew F. E-mail: andy.nelson@lanl.go

    2009-11-10

    We investigate the dynamical evolution of a Jovian-mass planet injected into an orbit highly inclined with respect to its nesting gaseous disk. Planet-planet scattering induced by convergent planetary migration and mean motion resonances may push a planet into such an out-of-plane configuration with inclinations as large as 20{sup 0}-30{sup 0}. In this scenario, the tidal interaction of the planet with the disk is more complex and, in addition to the usual Lindblad and corotation resonances, it also involves inclination resonances responsible for bending waves. We have performed three-dimensional hydrodynamic simulations of the disk and of its interactions with the planet with a smoothed particle hydrodynamics code. A main result is that the initial large eccentricity and inclination of the planetary orbit are rapidly damped on a timescale of the order of 10{sup 3} yr, almost independently of the initial semimajor axis and eccentricity of the planet. The disk is warped in response to the planet perturbations and it precesses. Inward migration also occurs when the planet is inclined, and it has a drift rate that is intermediate between type I and type II migration. The planet is not able to open a gap until its inclination becomes lower than approx10{sup 0}, when it also begins to accrete a significant amount of mass from the disk.

  12. Angular momentum evolution during star and planetary system formation

    NASA Astrophysics Data System (ADS)

    Davies, Claire L.; Greaves, Jane S.

    2014-01-01

    We focused on analysing the role played by protoplanetary disks in the evolution of angular momentum during star formation. If all the angular momentum contained within collapsing pre-stellar cores was conserved during their formation, proto-stars would reach rotation rates exceeding their break-up velocities before they reached the main sequence (Bodenheimer 1995). In order to avoid this occuring, methods by which proto-stars can lose angular momentum must exist. Angular momentum can be transferred from star to disk via stellar magnetic field lines through a process called magnetic braking (Camenzind 1990; Königl 1991). Alternatively, the stellar angular momentum can be lost from the star-disk system entirely via stellar- or disk-winds (e.g. Pelletier & Pudritz 1992; Matt & Pudritz 2005). The proportion of lost stellar angular momentum retained within the protoplanetary disk is important to studies of planetary system formation. If the bulk motion within the disk remains Keplerian, any increase of angular momentum in the disk causes an outward migration of disk material and an expansion of the disk. Therefore, an increase in disk angular momentum may cause a reduction in the disk surface density, often used to indicate the disk's ability to form planets. We made use of multi-wavelength data available in the literature to directly calculate the stellar and disk angular momenta for two nearby regions of star formation. Namely, these were the densely populated and highly irradiated Orion Nebula Cluster (ONC) and the comparitively sparse Taurus-Auriga region. Due to the limited size of the ONC dataset, we produced an average surface density profile for the region. We modelled the stars as solid body rotators due to their fully convective nature (Krishnamurthi et al. 1997) and assumed the disks are flat and undergo Keplerian rotation about the same rotation axis as the star. We observed the older disks within each of the two star forming regions to be preferentially

  13. Brown dwarf disks with ALMA

    SciTech Connect

    Ricci, L.; Isella, A.; Testi, L.; De Gregorio-Monsalvo, I.; Natta, A.; Scholz, A.

    2014-08-10

    We present Atacama Large Millimeter/submillimeter Array continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J = 3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks' physical structure in dust. The results of our analysis show that the disks are relatively large; the smallest one has an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density, and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks, data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low-mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, the main mechanisms proposed for the formation of brown dwarfs and very low-mass stars, as well as the potential of finding rocky and giant planets around very low-mass objects.

  14. The relationship between annual survival rate and migration distance in mallards: an examination of the time-allocation hypothesis for the evolution of migration

    USGS Publications Warehouse

    Hestbeck, J.B.; Nichols, J.D.; Hines, J.E.

    1992-01-01

    Predictions of the time-allocation hypothesis were tested with several a posteriori analyses of banding data for the mallard (Anas platyrhynchos). The time-allocation hypothesis states that the critical difference between resident and migrant birds is their allocation of time to reproduction on the breeding grounds and survival on the nonbreeding grounds. Residents have higher reproduction and migrants have higher survival. Survival and recovery rates were estimated by standard band-recovery methods for banding reference areas in the central United States and central Canada. A production-rate index was computed for each reference area with data from the U.S. Fish and Wildlife Service May Breeding Population Survey and July Production Survey. An analysis of covariance was used to test for the effects of migration distance and time period (decade) on survival, recovery, and production rates. Differences in migration chronology were tested by comparing direct-recovery distributions for different populations during the fall migration. Differences in winter locations were tested by comparing distributions of direct recoveries reported during December and January. A strong positive relationship was found between survival rate, and migration distance for 3 of the 4 age and sex classes. A weak negative relationship was found between recovery rate and migration distance. No relationship was found between production rate and migration distance. During the fall migration, birds from the northern breeding populations were located north of birds from the southern breeding populations. No pattern could be found in the relative locations of breeding and wintering areas. Although our finding that survival rate increased with migration distance was consistent with the time-allocation hypothesis, our results on migration chronology and location of wintering areas were not consistent with the mechanism underlying the time-allocation hypothesis. Neither this analysis nor other recent

  15. Changes in cortical interneuron migration contribute to the evolution of the neocortex.

    PubMed

    Tanaka, Daisuke H; Oiwa, Ryo; Sasaki, Erika; Nakajima, Kazunori

    2011-05-10

    The establishment of the mammalian neocortex is often explained phylogenetically by an evolutionary change in the pallial neuronal progenitors of excitatory projection neurons. It remains unclear, however, whether and how the evolutionary change in inhibitory interneurons, which originate outside the neocortex, has been involved in the establishment of the neocortex. In this study, we transplanted chicken, turtle, mouse, and marmoset medial ganglionic eminence (MGE) cells into the embryonic mouse MGE in utero and compared their migratory behaviors. We found that the MGE cells from all of the species were able to migrate through the mouse neocortical subventricular zone and that both the mouse and marmoset cells subsequently invaded the neocortical cortical plate (CP). However, regardless of their birthdates and interneuron subtypes, most of the chicken and turtle cells ignored the neocortical CP and passed beneath it, although they were able to invade the archicortex and paleocortex, suggesting that the proper responsiveness of MGE cells to guidance cues to enter the neocortical CP is unique to mammals. When chicken MGE cells were transplanted directly into the neocortical CP, they were able to survive and mature, suggesting that the neocortical CP itself is essentially permissive for postmigratory development of chicken MGE cells. These results suggest that an evolutionary change in the migratory ability of inhibitory interneurons, which originate outside the neocortex, was involved in the establishment of the neocortex by supplying inhibitory components to the network.

  16. The atomic and molecular content of disks around very low-mass stars and brown dwarfs

    SciTech Connect

    Pascucci, I.; Herczeg, G.; Carr, J. S.; Bruderer, S.

    2013-12-20

    There is growing observational evidence that disk evolution is stellar-mass-dependent. Here, we show that these dependencies extend to the atomic and molecular content of disk atmospheres. We analyze a unique dataset of high-resolution Spitzer/IRS spectra from eight very low mass star and brown dwarf disks. We report the first detections of Ne{sup +}, H{sub 2}, CO{sub 2}, and tentative detections of H{sub 2}O toward these faint and low-mass disks. Two of our [Ne II] 12.81 μm emission lines likely trace the hot (≥5000 K) disk surface irradiated by X-ray photons from the central stellar/sub-stellar object. The H{sub 2} S(2) and S(1) fluxes are consistent with arising below the fully or partially ionized surface traced by the [Ne II] emission in gas at ∼600 K. We confirm the higher C{sub 2}H{sub 2}/HCN flux and column density ratio in brown dwarf disks previously noted from low-resolution IRS spectra. Our high-resolution spectra also show that the HCN/H{sub 2}O fluxes of brown dwarf disks are on average higher than those of T Tauri disks. Our LTE modeling hints that this difference extends to column density ratios if H{sub 2}O lines trace warm ≥600 K disk gas. These trends suggest that the inner regions of brown dwarf disks have a lower O/C ratio than those of T Tauri disks, which may result from a more efficient formation of non-migrating icy planetesimals. An O/C = 1, as inferred from our analysis, would have profound implications on the bulk composition of rocky planets that can form around very low mass stars and brown dwarfs.

  17. Evidence of local short-distance spawning migration of tropical freshwater eels, and implications for the evolution of freshwater eel migration.

    PubMed

    Arai, Takaomi

    2014-10-01

    Freshwater eels have fascinated biologists for centuries due to the spectacular long-distance migrations between the eels' freshwater habitats and their spawning areas far out in the ocean and the mysteries of their ecology. The spawning areas of Atlantic eels and Japanese eel were located far offshore in the Atlantic Ocean and the Pacific Ocean, respectively, and their reproduction took place thousands of kilometers away from their growth habitats. Phylogenetic studies have revealed that freshwater eels originated in the Indonesian region. However, remarkably little is known about the life histories of tropical freshwater eels despite the fact that tropical eels are key to understanding the nature of primitive forms of catadromous migration. This study found spawning-condition tropical freshwater eels in Lake Poso, central Sulawesi, Indonesia, with considerably high gonadosomatic index values and with histologically fully developed gonads. This study provides the first evidence that under certain conditions, freshwater eels have conditions that are immediately able to spawn even in river downstream. The results suggest that, in contrast to the migrations made by the Atlantic and Japanese eels, freshwater eels originally migrated only short distances of <100 kilometers to local spawning areas adjacent to their freshwater growth habitats. Ancestral eels most likely underwent a catadromous migration from local short-distance movements in tropical coastal waters to the long-distance migrations characteristic of present-day temperate eels, which has been well established as occurring in subtropical gyres in both hemispheres.

  18. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    SciTech Connect

    Pugliese, D.; Stuchlík, Z. E-mail: zdenek.stuchlik@physics.cz

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  19. Barrier island evolution and reworking by inlet migration along the Mississippi-Alabama gulf coast

    SciTech Connect

    Rucker, J.B.; Snowden, J.O. )

    1990-09-01

    The five barrier islands along the Mississippi-Alabama coast are located 10 to 14 mi (16 to 23 km) offshore and separate Mississippi Sound from the Gulf of Mexico. The barrier islands in the chain are, from east to west: Dauphin Island, Petit Bois Island, Horn Island, Ship Island, and Cat Island. The islands are low sand bodies situated on a relatively broad Holocene sand platform that extends 70 mi (113 km) from Dauphin Island on the east to Cat Island on the west. The platform varies in thickness from 25 to 75 ft (7.6 to 23 m) and rests on Holocene marine clays or on Pleistocene sediments. The barrier island chain predates the St. Bernard lobe of the Mississippi delta complex, which began to prograde about 3,000 years ago, and continued until it was abandoned approximately 1,500 years ago. In contrast to the other islands, Cat Island at the western down-drift end of the Mississippi-Alabama barrier island chain is characterized by more than 12 prominent east west-oriented progradational linear ridges. The ridge system of Cat Island is interpreted as a relict of an earlier stage in the life cycle of the barrier platform when there was a more robust littoral drift system and an abundant sediment supply During the Pre-St. Bernard Delta period of vigorous sedimentation, all of the islands in the barrier chain probably exhibited progradational ridges similar to those now found only on Cat Island. Presently, only vestigial traces of these progradational features remain on the islands to the east of Cat Island. Unlike Cat Island, which has been protected and preserved by the St. Bernard Delta, the other barrier islands have been modified and reworked during the past 1,500 years by processes of island and tidal inlet migration, accompanied by a general weakening of the littoral drift and a reduction of the available sediment supply.

  20. Future hard disk drive systems

    NASA Astrophysics Data System (ADS)

    Wood, Roger

    2009-03-01

    This paper briefly reviews the evolution of today's hard disk drive with the additional intention of orienting the reader to the overall mechanical and electrical architecture. The modern hard disk drive is a miracle of storage capacity and function together with remarkable economy of design. This paper presents a personal view of future customer requirements and the anticipated design evolution of the components. There are critical decisions and great challenges ahead for the key technologies of heads, media, head-disk interface, mechanics, and electronics.

  1. Extrasolar planet population synthesis . IV. Correlations with disk metallicity, mass, and lifetime

    NASA Astrophysics Data System (ADS)

    Mordasini, C.; Alibert, Y.; Benz, W.; Klahr, H.; Henning, T.

    2012-05-01

    Context. This is the fourth paper in a series showing the results of planet population synthesis calculations. In Paper I, we presented our methods. In Paper II, we compared the synthetic and the observed planetary population statistically. Paper III addressed the influences of the stellar mass on the population. Aims: Our goal in this fourth paper is to systematically study the effects of important disk properties, namely disk metallicity, mass, and lifetime on fundamental properties of planets like mass and semimajor axis. Methods: For a large number of protoplanetary disks that have properties following distributions derived from observations, we calculated a population of planets with our formation model. The model is based on the classical core accretion paradigm but self-consistently includes planet migration and disk evolution. Results: We find a very large number of correlations. Regarding the planetary initial mass function, metallicity, Mdisk, and τdisk play different roles. For high metallicities, giant planets are more frequent. For high Mdisk, giant planets are more massive. For long τdisk, giant planets are both more frequent and massive. At low metallicities, very massive giant planets cannot form, but otherwise giant planet mass and metallicity are nearly uncorrelated. In contrast, (maximum) planet masses and disk gas masses are correlated. The formation of giant planets is possible for initial planetesimal surface densities ΣS of at least 6 g/cm2 at 5.2 AU. The best spot for giant planet formation is at ~5 AU. In- and outside this distance, higher ΣS are necessary. Low metallicities can be compensated for by high Mdisk, and vice versa, but not ad infinitum. At low metallicities, giant planets only form outside the ice line, while giant planet formation occurs throughout the disk at high metallicities. The extent of migration increases with Mdisk and τdisk and usually decreases with metallicity. No clear correlation of metallicity and the

  2. The origin and evolution of the odd-Z iron-peak elements Sc, V, Mn, and Co in the Milky Way stellar disk

    NASA Astrophysics Data System (ADS)

    Battistini, Chiara; Bensby, Thomas

    2015-05-01

    Context. Elements heavier than Li are produced in the interiors of stars. However, for many elements the exact production sites and the timescales on which they are dispersed into the interstellar medium are unknown. Having a clear picture on the origins of the elements is important for our ability to trace and understand the formation and chemical evolution of the Milky Way and its stellar populations. Aims: The aim of this study is to investigate the origin and evolution of Sc, V, Mn, and Co for a homogeneous and statistically significant sample of stars probing the different populations of the Milky Way, in particular the thin and thick disks. Methods: Using high-resolution spectra obtained with the MIKE, FEROS, SOFIN, FIES, UVES, and HARPS spectrographs, we determine Sc, V, Mn, and Co abundances for a large sample of F and G dwarfs in the solar neighborhood. The method is based on spectral synthesis and using one-dimensional, plane-parallel, local thermodynamic equilibrium (LTE) model stellar atmospheres calculated with the MARCS 2012 code. The non-LTE (NLTE) corrections from the literature were applied to Mn and Co. Results: We find that the abundance trends derived for Sc (594 stars), V (466 stars), and Co (567 stars) are very similar to what has been observed for the α-elements in the thin and thick disks. On the contrary, Mn (569 stars) is generally underabundant relative to the Sun (i.e., [ Mn/Fe ] < 0) for [ Fe/H ] < 0. In addition, for Mn, when NLTE corrections are applied, the trend changes and is almost flat over the entire metallicity range of the stars in our sample (-2 ≲ [ Fe/H ] ≲ + 0.4). The [Sc/Fe]-[Fe/H] abundance trends show a small separation between the thin and thick disks, while for V and Co they completely overlap. For Mn there is a small difference in [Mn/Fe], but only when NLTE corrections are used. Comparisons with Ti as a reference element show flat trends for all the elements except for Mn that show well separated [Mn

  3. ACCRETION OUTBURSTS IN CIRCUMPLANETARY DISKS

    SciTech Connect

    Lubow, S. H.; Martin, R. G.

    2012-04-20

    We describe a model for the long-term evolution of a circumplanetary disk that is fed mass from a circumstellar disk and contains regions of low turbulence (dead zones). We show that such disks can be subject to accretion-driven outbursts, analogous to outbursts previously modeled in the context of circumstellar disks to explain FU Ori phenomena. Circumplanetary disks around a proto-Jupiter can undergo outbursts for infall accretion rates onto the disks in the range M-dot{sub infall} approx. 10{sup -9} to 10{sup -7} M{sub Sun} yr{sup -1}, typical of accretion rates in the T Tauri phase. During outbursts, the accretion rate and disk luminosity increases by several orders of magnitude. Most of the planet mass growth during planetary gas accretion may occur via disk outbursts involving gas that is considerably hotter than predicted by steady state models. For low infall accretion rates M-dot{sub infall} {approx}< 10{sup -10} M{sub sun} yr{sup -1} that occur in late stages of disk accretion, disk outbursts are unlikely to occur, even if dead zones are present. Such conditions are favorable for the formation of icy satellites.

  4. Planetary migration, accretion, and atmospheres

    NASA Astrophysics Data System (ADS)

    Dobbs-Dixon, Ian M.

    This dissertation explores three distinct projects in the field of planetary formation and evolution: type I migration, cessation of mass accretion, and the atmospheric dynamics of hot Jupiters. All three of these projects touch on outstanding or unresolved issues in the field. Each attempts to unify analytic and numerical approaches in order to physically motivate solutions while simultaneously probing areas currently inaccessible to purely analytic approaches. The first section, type I migration, explores the outstanding problem of the rapid inward migration of low mass planets embedded in protoplanetary disks. Analytic estimates of migration predict characteristic timescales that are much shorter then either observed disk lifetimes or theoretical core-accretion formation timescales. If migration is actually as efficient as these analytic estimates predict, planet formation across the observed range of masses and semimajor axis' is difficult. Here I introduce several new formalisms to both allow the disk to adiabatically adjust to the presence of a planet and include the effect of axisymmetric disk self-gravity. I find that these modifications increase migration timescales by approximately 4 times. In addition to these numerical improvements, I present simulations of migration in lower sound-speed regions of the disk on the grounds that self shadowing within the disk could yield substantially cooler gas temperatures then those derived by most irradiated disk models. In such regions the planetary perturbation excites a secondary instability, leading to the formation of vortices. These vortices cause a substantial reduction in the net torque, increasing migration timescales by up to approximately 200 times the analytically predicted rate. The second section addresses the mechanism for shutting off accretion onto giant planets. According to the conventional sequential accretion scenario, giant planets acquire a majority of their gas in a runaway phase. Conventional

  5. Evolution of the hormonal control of animal performance: insights from the seaward migration of salmon

    USGS Publications Warehouse

    McCormick, S.D.

    2009-01-01

    The endocrine system is the key mediator of environmental and developmental (internal) information, and is likely to be involved in altering the performance of animals when selection has favored phenotypic plasticity. The endocrine control of performance should be especially pronounced in animals that undergo a developmental shift in niche, such as occurs in migratory species. By way of example, I review the developmental and environmental control of the preparatory changes for seawater entry of juvenile salmon (known as smolting) and its hormonal regulation. There is a size threshold for smolt development in juvenile Atlantic salmon that results in greater sensitivity of the growth hormone and cortisol axes to changes in daylength. These hormones, in turn, have broad effects on survival, ion homeostasis, growth and swimming performance during entry into seawater. Migratory niche shifts and metamorphic events are extreme examples of the role of hormones in animal performance and represent one end of a continuum. A framework for predicting when hormones will be involved in performance of animals is presented. Endocrine involvement in performance will be more substantial when (1) selection differentials on traits underlying performance are high and temporally discontinuous over an animal's lifetime, (2) the energetic and fitness costs of maintaining performance plasticity are less than those of constant performance, (3) cues for altering performance are reliable indicators of critical environmental conditions, require neurosensory input, and minimize effects of lag, and (4) the need for coordination of organs, tissues and cells to achieve increased performance is greater. By examining these impacts of selection, endocrinologists have an opportunity to contribute to the understanding of performance, phenotypic plasticity, and the evolution of life-history traits.

  6. POPULATION SYNTHESIS OF YOUNG ISOLATED NEUTRON STARS: THE EFFECT OF FALLBACK DISK ACCRETION AND MAGNETIC FIELD EVOLUTION

    SciTech Connect

    Fu, Lei; Li, Xiang-Dong

    2013-10-01

    The spin evolution of isolated neutron stars (NSs) is dominated by their magnetic fields. The measured braking indices of young NSs show that the spin-down mechanism due to magnetic dipole radiation with constant magnetic fields is inadequate. Assuming that the NS magnetic field is buried by supernova fallback matter and re-emerges after accretion stops, we carry out a Monte Carlo simulation of the evolution of young NSs, and show that most of the pulsars have braking indices ranging from –1 to 3. The results are compatible with the observational data of NSs associated with supernova remnants. They also suggest that the initial spin periods of NSs might occupy a relatively wide range.

  7. Hydrodynamical Modeling of Large Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kurfürst, P.; Krtǐcka, J.

    2016-11-01

    Direct centrifugal ejection from a critically or near-critically rotating surface forms a gaseous equatorial decretion disk. Anomalous viscosity provides the efficient mechanism for transporting the angular momentum outwards. The outer part of the disk can extend up to a very large distance from the parent star. We study the evolution of density, radial and azimuthal velocity, and angular momentum loss rate of equatorial decretion disks out to very distant regions. We investigate how the physical characteristics of the disk depend on the distribution of temperature and viscosity. We also study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. We use analytical calculations to study the stability of outflowing disks submerged to the magnetic field. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. Therefore, the disk sonic radius can be roughly considered as an outer disk radius.

  8. Fat crystal migration and aggregation and polymorphism evolution during the formation of granular crystals in beef tallow and palm oil.

    PubMed

    Meng, Zong; Geng, Wenxin; Wang, Xingguo; Liu, Yuanfa

    2013-12-26

    Six rectangular block all beef tallow (BT)-based and all palm oil (PO)-based model shortenings prepared on a laboratory scale, denoted BTMS and POMS, respectively, were stored under two storage conditions, (1) constant temperatures (5 and 20 °C, respectively and (2) temperature fluctuations (5 °C for 12 h and 20 °C for 12 h for a cycle), to induce granular crystals. The fat crystal migration and aggregation, sensory evaluations, and polymorphism evolutions during the formation of granular crystals in the above samples were investigated systematically. In comparison to the constant temperature storage, the crystal growth and hierarchical aggregation process were more quick and the conversion rate of the β-form crystal was also faster in both BTMS and POMS under temperature cycling storage and, concomitantly, easier to induce the formation of granular crystals. From the comprehensive analysis of crystal sizes and the sensory evaluation results, it can be concluded that the detection threshold for graininess ranged from 40 to 90 μm, with the smaller size being perceived only at higher crystal concentrations. The possible formation mechanism and the realistic control approaches for granular crystals in plastic fats also are clarified in the present study.

  9. Extinct Beringian wolf morphotype found in the continental U.S. has implications for wolf migration and evolution.

    PubMed

    Meachen, Julie A; Brannick, Alexandria L; Fry, Trent J

    2016-05-01

    Pleistocene diversity was much higher than today, for example there were three distinct wolf morphotypes (dire, gray, Beringian) in North America versus one today (gray). Previous fossil evidence suggested that these three groups overlapped ecologically, but split the landscape geographically. The Natural Trap Cave (NTC) fossil site in Wyoming, USA is an ideally placed late Pleistocene site to study the geographical movement of species from northern to middle North America before, during, and after the last glacial maximum. Until now, it has been unclear what type of wolf was present at NTC. We analyzed morphometrics of three wolf groups (dire, extant North American gray, Alaskan Beringian) to determine which wolves were present at NTC and what this indicates about wolf diversity and migration in Pleistocene North America. Results show NTC wolves group with Alaskan Beringian wolves. This provides the first morphological evidence for Beringian wolves in mid-continental North America. Their location at NTC and their radiocarbon ages suggest that they followed a temporary channel through the glaciers. Results suggest high levels of competition and diversity in Pleistocene North American wolves. The presence of mid-continental Beringian morphotypes adds important data for untangling the history of immigration and evolution of Canis in North America.

  10. USING KUIPER BELT BINARIES TO CONSTRAIN NEPTUNE'S MIGRATION HISTORY

    SciTech Connect

    Murray-Clay, Ruth A.; Schlichting, Hilke E.

    2011-04-01

    Approximately 10%-20% of all Kuiper Belt objects (KBOs) occupy mean-motion resonances with Neptune. This dynamical configuration likely resulted from resonance capture as Neptune migrated outward during the late stages of planet formation. The details of Neptune's planetesimal-driven migration, including its radial extent and the concurrent eccentricity evolution of the planet, are the subject of considerable debate. Two qualitatively different proposals for resonance capture have been proposed-migration-induced capture driven by smooth outward evolution of Neptune's orbit and chaotic capture driven by damping of the planet's eccentricity near its current semi-major axis. We demonstrate that the distribution of comparable-mass, wide-separation binaries occupying resonant orbits can differentiate between these two scenarios. If migration-induced capture occurred, this fraction records information about the formation locations of different populations of KBOs. Chaotic capture, in contrast, randomizes the orbits of bodies as they are placed in resonance. In particular, if KBO binaries are formed by dynamical capture in a protoplanetary disk with a surface mass density typical of observed extrasolar disks, then migration-induced capture produces the following signatures. The 2:1 resonance should contain a dynamically cold component, with inclinations less than 5{sup 0}-10{sup 0}, having a binary fraction comparable to that among cold classical KBOs. If the 3:2 resonance also hosts a cold component, its binary fraction should be 20%-30% lower than in the cold classical belt. Among cold 2:1 (and if present 3:2) KBOs, objects with eccentricities e < 0.2 should have a binary fraction {approx}20% larger than those with e>0.2. Other binary formation scenarios and disk surface density profiles can generate analogous signatures but produce quantitatively different results. Searches for cold components in the binary fractions of resonant KBOs are currently practical. The

  11. The Ellipticities of Cluster Early-type Galaxies from z ~ 1 to z ~ 0: No Evolution in the Overall Distribution of Bulge-to-Disk Ratios

    NASA Astrophysics Data System (ADS)

    Holden, B. P.; Franx, M.; Illingworth, G. D.; Postman, M.; van der Wel, A.; Kelson, D. D.; Blakeslee, J. P.; Ford, H.; Demarco, R.; Mei, S.

    2009-03-01

    We have compiled a sample of early-type cluster galaxies from 0 < z < 1.3 and measured the evolution of their ellipticity distributions. Our sample contains 487 galaxies in 17 z>0.3 clusters with high-quality space-based imaging and a comparable sample of 210 galaxies in 10 clusters at z < 0.05. We select early-type galaxies (elliptical and S0 galaxies) that fall within the cluster R 200, and which lie on the red-sequence in the magnitude range -19.3>MB > - 21, after correcting for luminosity evolution as measured by the fundamental plane. Our ellipticity measurements are made in a consistent manner over our whole sample. We perform extensive simulations to quantify the systematic and statistical errors, and find that it is crucial to use point-spread function (PSF)-corrected model fits; determinations of the ellipticity from Hubble Space Telescope image data that do not account for the PSF "blurring" are systematically and significantly biased to rounder ellipticities at redshifts z>0.3. We find that neither the median ellipticity, nor the shape of the ellipticity distribution of cluster early-type galaxies evolves with redshift from z ~ 0 to z>1 (i.e., over the last ~8 Gyr). The median ellipticity at z>0.3 is statistically identical with that at z < 0.05, being higher by only 0.01 ± 0.02 or 3 ± 6%, while the distribution of ellipticities at z>0.3 agrees with the shape of the z < 0.05 distribution at the 1-2% level (i.e., the probability that they are drawn from the same distribution is 98-99%). These results are strongly suggestive of an unchanging overall bulge-to-disk ratio distribution for cluster early-type galaxies over the last ~8 Gyr from z ~ 1 to z ~ 0. This result contrasts with that from visual classifications which show that the fraction of morphologically-selected disk-dominated early-type galaxies, or S0s, is significantly lower at z>0.4 than at z ~ 0. We find that the median disk-dominated early-type, or S0, galaxy has a somewhat higher

  12. Spectral Energy Distributions of Young Stars in IC 348: The Role of Disks in Angular Momentum Evolution of Young, Low-mass Stars

    NASA Astrophysics Data System (ADS)

    Le Blanc, Thompson S.; Covey, Kevin R.; Stassun, Keivan G.

    2011-08-01

    Theoretical work suggests that a young star's angular momentum content and rotation rate may be strongly influenced by magnetic interactions with its circumstellar disk. A generic prediction of these "disk-locking" theories is that a disk-locked star will be forced to co-rotate with the Keplerian angular velocity of the inner edge of the disk; that is, the disk's inner-truncation radius should equal its co-rotation radius. These theories have also been interpreted to suggest a gross correlation between young stars' rotation periods and the structural properties of their circumstellar disks, such that slowly rotating stars possess close-in disks that enforce the star's slow rotation, whereas rapidly rotating stars possess anemic or evacuated inner disks that are unable to brake the stars and instead the stars spin up as they contract. To test these expectations, we model the spectral energy distributions (SEDs) of 33 young stars in IC 348 with known rotation periods and infrared excesses indicating the presence of circumstellar disks. For each star, we match the observed SED, typically sampling 0.6-8.0 μm, to a grid of 200,000 pre-computed star+disk radiative transfer models, from which we infer the disk's inner-truncation radius. We then compare this truncation radius to the disk's co-rotation radius, calculated from the star's measured rotation period. We do not find obvious differences in the disk truncation radii of slow rotators versus rapid rotators. This holds true both at the level of whether close-in disk material is present at all, and in analyzing the precise location of the inner disk edge relative to the co-rotation radius among the subset of stars with close-in disk material. One interpretation is that disk locking is unimportant for the IC 348 stars in our sample. Alternatively, if disk locking does operate, then it must operate on both the slow and rapid rotators, potentially producing both spin-up and spin-down torques, and the transition from the

  13. Structure and dynamics of the Milky Way disk as revealed from the radial velocity distributions of APOGEE red clump stars

    NASA Astrophysics Data System (ADS)

    Toyouchi, Daisuke; Chiba, Masashi

    2017-03-01

    We investigate the structure and dynamics of the Milky Way (MW) disk stars based on the analysis of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) data, to infer the past evolution histories of the MW disk component(s) possibly affected by radial migration and/or satellite accretions. APOGEE is the first near-infrared spectroscopic survey for a large number of the MW disk stars, providing their radial velocities and chemical abundances without significant dust extinction effects. We here adopt red-clump (RC) stars (Bovy et al. 2014), for which the distances from the Sun are determined precisely, and analyze their radial velocities and chemical abundances in the MW disk regions covering from the Galactocentric distance, R, of 5 kpc to 14 kpc. We investigate their dynamical properties, such as mean rotational velocities, and velocity dispersions, as a function of R, based on the MCMC Bayesian method. We find that at all radii, the dynamics of alpha-poor stars, which are candidates of young disk stars, is much different from that of alpha-rich stars, which are candidates of old disk stars. We find that our Jeans analysis for our sample stars reveals characteristic spatial and dynamical properties of the MW disk, which are generally in agreement with the recent independent work by Bovy et al. (2015) but with a different method from ours.

  14. Dynamical evolution of the Gliese 436 planetary system. Kozai migration as a potential source for Gliese 436b's eccentricity

    NASA Astrophysics Data System (ADS)

    Beust, H.; Bonfils, X.; Montagnier, G.; Delfosse, X.; Forveille, T.

    2012-09-01

    Context. The close-in planet orbiting GJ 436 presents a puzzling orbital eccentricity (e ≃ 0.14) considering its very short orbital period. Given the age of the system, this planet should have been tidally circularized a long time ago. Many attempts to explain this were proposed in recent years, either involving abnormally weak tides, or the perturbing action of a distant companion. Aims: In this paper, we address the latter issue based on Kozai migration. We propose that GJ 436b was formerly located further away from the star and that it underwent a migration induced by a massive, inclined perturber via Kozai mechanism. In this context, the perturbations by the companion trigger high-amplitude variations to GJ 436b that cause tides to act at periastron. Then the orbit tidally shrinks to reach its present day location. Methods: We numerically integrate the 3-body system including tides and general relativity correction. We use a modified symplectic integrator as well as a fully averaged integrator. The former is slower but accurate to any order in semi-major axis ratio, while the latter is first truncated to some order (4th) in semi-major axis ratio before averaging. Results: We first show that starting from the present-day location of GJ 436b inevitably leads to damping the Kozai oscillations and to rapidly circularizing the planet. Conversely, starting from 5-10 times further away allows the onset of Kozai cycles. The tides act in peak eccentricity phases and reduce the semi-major axis of the planet. The net result is a two-fold evolution, characterized by two phases: a first one with Kozai cycles and a slowly shrinking semi-major axis, and a second one once the planet gets out of the Kozai resonance characterized by a more rapid decrease. The timescale of this process appears in most cases much longer than the standard circularization time of the planet by a factor of 50 or above. Conclusions: This model can provide a solution to the eccentricity paradox of GJ

  15. Nebra Disk

    NASA Astrophysics Data System (ADS)

    Pásztor, Emília

    An important archaeological find from the Bronze Age has come to light in Germany. It is a round bronze disk adorned with gold figures that might be interpreted as symbols for stars, the sun, and the moon, making the disk the oldest known surviving depiction of celestial objects in Europe. By comparing the iconography and ideography of the disk with archaeological finds, ethnographic material, and historical notes of different cultures and periods, the conclusion has been reached that the compositional elements might be understood as the depiction of a traditional folk worldview.

  16. Magnetic disk

    NASA Technical Reports Server (NTRS)

    Mallinson, John C.

    1992-01-01

    Magnetic disk recording was invented in 1953 and has undergone intensive development ever since. As a result of this 38 years of development, the cost per byte and the areal density have halved and doubled respectively every 2-2 1/2 years. Today, the cost per byte is lower than 10(exp -6) dollars per byte and area densities exceed 100 10(exp 6) bits per square inch. In this talk, the recent achievements in magnetic disk recording are first surveyed briefly. Then, the principal areas of current technical development are outlined. Finally, some comments are made about the future of magnetic disk recording.

  17. Disk Drives

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A new material known as AlBeMet, developed by Brush Wellman for research applications in the National Aero-Space Plane (NASP) program, is now used for high performance disk drives. AlBeMet is a compression of aluminum, beryllium metal matrix composite. It reduces system weight and its high thermal conductivity can effectively remove heat and increase an electrical system's lifetime. The lighter, stiffer AlBeMet (AlBeMet 160) used in the disk drive means heads can be moved faster, improving disk performance.

  18. Gravitational Instability in Planetesimal Disks

    NASA Astrophysics Data System (ADS)

    Bolin, Bryce T.; Lithwick, Yoram; Pan, Margaret; Rein, Hanno; Wu, Yanqin

    2014-11-01

    Gravitational instability (GI) has been proposed as a method of forming giant gas planets enhanced by disk thermodynamics in a protoplanetary disk (Boss, 1997, Science 276; Durisen et al., 2007, Protostars and Planets V) and as a method of forming planetesimals through the focusing of boulders by the interaction between solids and gases in a turbulent circumstellar disk (Johansen et al., 2007, Nature 448; Youdin & Goodman, 2005, Astrophys. J. 620). GI is mediated through a gaseous circumstellar disk in each each of these scenarios. We explore the possibility of GI occurring in a planetesimal disk devoid of gas. In this regime, mutual collisions between planetesimals are required to dissipate their orbital shear and velocity dispersion enough for collapse to occur as described by the Toomre stability criterion (Toomre, 1964, Astrophys. J. 139; Toomre, 1981, Structure and Evolution of Normal Galaxies). How frequent must collisions be between planetesimals in a gravitationally stable planetesimal disk for GI to occur? Are there collisional rates where GI is postponed indefinitely in an equilibrium state between gravitational stirring and collisional cooling? We present 3D shearing sheet simulations using the REBOUND N-body code with the symplectic epicyclic integrator (Rein & Liu, 2011, A&A 537; Rein & Tremaine, 2011, MNRAS 415) in which the candidate collision rates are within a few orders of magnitude of the disk dynamical lifetime. Our simulations suggest that collisions rate directly controls disk cooling. The shape of the disk cooling curve is independent of the collision rate when scaled to the collision time.

  19. A twisted disk equation that describes warped galaxy disks

    NASA Technical Reports Server (NTRS)

    Barker, K.

    1994-01-01

    Warped H1 gas layers in the outer regions of spiral galaxies usually display a noticeably twisted structure. This structure is thought to arise primarily as a result of differential precession in the H1 disk as it settles toward a 'preferred orientation' in an underlying dark halo potential well that is not spherically symmetric. In an attempt to better understand the structure and evolution of these twisted, warped disk structures, we have utilized the 'twist-equation' formalism. Specifically, we have generalized the twist equation to allow the treatment of non-Keplerian disks and from it have derived the steady-state structure of twisted disks that develop from free precession in a nonspherical, logarithmic halo potential. This generalized equation can also be used to examine the time-evolutionary behavior of warped galaxy disks.

  20. The Upside Down Assembly of Simulated Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Bird, Jonathan C.; Kazantzidis, S.; Weinberg, D. H.; Guedes, J.; Callegari, S.; Mayer, L.; Madau, P.

    2014-01-01

    The puzzle of disk galaxy formation, and the formation of the Milky Way itself, remains unsolved. We analyze the present-day structure and assembly history of a high resolution hydrodynamic simulation of the formation of a Milky Way-like disk galaxy, from the ``Eris'' simulation suite, dissecting it into cohorts of stars formed at different epochs of cosmic history. The oldest disk cohorts form in structures that are radially compact and relatively thick, while subsequent cohorts form in progressively larger, thinner, colder configurations from gas with increasing levels of rotational support. The disk thus forms ``inside-out'' in a radial sense and ``upside-down'' in a vertical sense. While secular heating and radial migration may influence the final state of each age cohort, the dynamics of each co-eval population generically exhibit only minor evolution since formation. This assembly history is largely responsible for the galaxy's present-day correlations of stellar age with spatial and kinematic structure, which themselves are a good qualitative match to the observed correlations for mono-abundance stellar populations in the Milky Way.

  1. Protoplanetary Nebula Evolution using the Beta Viscosity Model

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2003-01-01

    The evolutionary dynamics of a protoplanetary disk is an important component of the planet formation process. In particular, the dynamic and thermodynamic field plays a critical role in chemical evolution, the migration of dust particles in the nebula, and the radial transport of meteoritic components. The dynamic evolution is investigated using analytical solutions of the surface density transport equations using a turbulence model based on hydrodynamic generation of turbulence. It captures the major properties of the disk including region of separation between radial inflow and-outflow and the evolution of the central plane temperature. The analytical formulas are compared with available numerical solutions based on the alpha viscosity model. The beta viscosity model, heretofore used for steady-state disks, is shown to be a useful approximation for unsteady problems.

  2. Tracking the Distribution of 26Al and 60Fe during the Early Phases of Star and Disk Evolution

    NASA Astrophysics Data System (ADS)

    Kuffmeier, Michael; Frostholm Mogensen, Troels; Haugbølle, Troels; Bizzarro, Martin; Nordlund, Åke

    2016-07-01

    The short-lived 26Al and 60Fe radionuclides are synthesized and expelled into the interstellar medium by core-collapse supernova events. The solar system’s first solids, calcium-aluminum refractory inclusions (CAIs), contain evidence for the former presence of the 26 Al nuclide defining the canonical 26Al/27 Al ratio of ˜ 5× {10}-5. A different class of objects temporally related to canonical CAIs are CAIs with fractionation and unidentified nuclear effects (FUN CAIs), which record a low initial 26Al/27Al of 10-6. The contrasting level of 26Al between these objects is often interpreted as reflecting the admixing of the 26Al nuclides during the early formative phase of the Sun. We use giant molecular cloud scale adaptive mesh-refinement numerical simulations to trace the abundance of 26Al and 60Fe in star-forming gas during the early stages of accretion of individual low-mass protostars. We find that the 26Al/27Al and 60Fe/56Fe ratios of accreting gas within a vicinity of 1000 au of the stars follow the predicted decay curves of the initial abundances at the time of star formation without evidence of spatial or temporal heterogeneities for the first 100 kyr of star formation. Therefore, the observed differences in 26Al/27Al ratios between FUN and canonical CAIs are likely not caused by admixing of supernova material during the early evolution of the proto-Sun. Selective thermal processing of dust grains is a more viable scenario to account for the heterogeneity in 26Al/27Al ratios at the time of solar system formation.

  3. Imprints of Radial Migration on the Milky Way’s Metallicity Distribution Functions

    NASA Astrophysics Data System (ADS)

    Loebman, Sarah R.; Debattista, Victor P.; Nidever, David L.; Hayden, Michael R.; Holtzman, Jon A.; Clarke, Adam J.; Roškar, Rok; Valluri, Monica

    2016-02-01

    Recent analysis of the SDSS-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 12 stellar catalog has revealed that the Milky Way’s (MW) metallicity distribution function (MDF) changes shape as a function of radius, transitioning from being negatively skewed at small Galactocentric radii to positively skewed at large Galactocentric radii. Using a high-resolution, N-body+SPH simulation, we show that the changing skewness arises from radial migration—metal-rich stars form in the inner disk and subsequently migrate to the metal-poorer outer disk. These migrated stars represent a large fraction (\\gt 50%) of the stars in the outer disk; they populate the high-metallicity tail of the MDFs and are, in general, more metal-rich than the surrounding outer disk gas. The simulation also reproduces another surprising APOGEE result: the spatially invariant high-[α/Fe] MDFs. This arises in the simulation from the migration of a population formed within a narrow range of radii (3.2 ±1.2 kpc) and time (8.8 ± 0.6 Gyr ago), rather than from spatially extended star formation in a homogeneous medium at early times. These results point toward the crucial role radial migration has played in shaping our MW.

  4. Generalized Similarity for Accretion/Decretion Disks

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2016-10-01

    Decretion (or external) disks are gas disks freely expanding to large radii due to their internal stresses. They are expected to naturally arise in tidal disruption events, around Be stars, in mass-losing post-main-sequence binaries, as a result of supernova fallback, etc. Their evolution is theoretically understood in two regimes: when the central object does not exert torque on the disk (a standard assumption for conventional accretion disks) or when no mass inflow (or outflow) occurs at the disk center. However, many astrophysical objects—circumbinary disks, Be stars, neutron stars accreting in a propeller regime, etc.—feature non-zero torque simultaneously with the non-zero accretion (or ejection of mass) at the disk center. We provide a general description for the evolution of such disks (both linear and nonlinear) in the self-similar regime, to which the disk should asymptotically converge with time. We identify a similarity parameter λ, which is uniquely related to the degree, to which the central mass accretion is suppressed by the non-zero central torque. The known decretion disk solutions correspond to the two discrete values of λ, while our new solutions cover a continuum of its physically allowed values, corresponding to either accretion or mass ejection by the central object. A direct relationship between λ and central \\dot{M} and torque is also established. We describe the time evolution of the various disk characteristics for different λ, and show that the observable properties (spectrum and luminosity evolution) of the decretion disks, in general, are different from the standard accretion disks with no central torque.

  5. The Matryoshka Disk: Keck/NIRC2 Discovery of a Solar-system-scale, Radially Segregated Residual Protoplanetary Disk around HD 141569A

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Grady, Carol A.; Cloutier, Ryan; Konishi, Mihoko; Stassun, Keivan; Debes, John; van der Marel, Nienke; Muto, Takayuki; Jayawardhana, Ray; Ratzka, Thorsten

    2016-03-01

    Using Keck/NIRC2 {L}\\prime (3.78 μm) data, we report the direct imaging discovery of a scattered-light-resolved, solar-system-scale residual protoplanetary disk around the young A-type star HD 141569A, interior to and concentric with the two ring-like structures at wider separations. The disk is resolved down to ∼0.″25 and appears as an arc-like rim with attached hook-like features. It is located at an angular separation intermediate between that of warm CO gas identified from spatially resolved mid-infrared spectroscopy and diffuse dust emission recently discovered with the Hubble Space Telescope. The inner disk has a radius of ∼39 au, a position angle consistent with north up, and an inclination of i ∼ 56o and has a center offset from the star. Forward modeling of the disk favors a thick torus-like emission sharply truncated at separations beyond the torus’s photocenter and heavily depleted at smaller separations. In particular, the best-fit density power law for the dust suggests that the inner disk dust and gas (as probed by CO) are radially segregated, a feature consistent with the dust trapping mechanism inferred from observations of “canonical” transitional disks. However, the inner disk component may instead be explained by radiation pressure-induced migration in optically thin conditions, in contrast to the two stellar companion/planet-influenced ring-like structures at wider separations. HD 141569A’s circumstellar environment—with three nested, gapped, concentric dust populations—is an excellent laboratory for understanding the relationship between planet formation and the evolution of both dust grains and disk architecture.

  6. Developing Insights into Debris Disk Composition from Dust Scattering

    NASA Astrophysics Data System (ADS)

    Weinberger, Alycia

    Science Goals: To enable interpretation of visible to near-IR spectrophotometric imaging of debris disks, we propose realistic modeling of scattering of light by small aggregate dust grains and new laboratory measurements of meteoritic organic analogs. We will determine if disk colors, phase functions, and polarizations place unique constraints on the composition of debris dust. Ongoing collisions of planetesimals generate dust; therefore, the dust provides unique information on compositions of the parent bodies. These exosolar analogs of asteroids and comets bear clues to the history of a planetary system including migration and thermal processing. In the solar system, small bodies delivered volatiles to Earth, and they presumably play the same role for exoplanets. Because directly imaged debris disks are cold, they have no solid-state emission features. Grain scattering properties as a function of wavelength are our only tool to reveal their compositions. Hubble Space Telescope (HST) imaging showed debris disks to be populated with small grains, a few tenths of a micron and larger. Radiation pressure and blasting by the interstellar medium sweep the dust away. New work from HST and ground-based adaptive optics systems reveal the color and polarization of the scattered light at wavelengths from visible to near-IR, with two dozen disks imaged at some subset of wavelengths. Far-IR and submm images from Herschel and ALMA show that the same disks also contain large, i.e. mm-sized, grains. Our goal is to develop dust calculations so that spectrophotometry of disks can determine dust compositions. Solar system interplanetary dust particles are fluffy aggregates, but most previous work on debris disk composition relied on Mie theory, i.e. assumed compact spherical grains. Mie calculations do not reproduce the observed colors and phase functions observed from debris disks. The few more complex calculations that exist do not explore the range of compositions and sizes

  7. Gene trees, species trees and Earth history combine to shed light on the evolution of migration in a model avian system.

    PubMed

    Voelker, Gary; Bowie, Rauri C K; Klicka, John

    2013-06-01

    The evolution of migration in birds has fascinated biologists for centuries. In this study, we performed phylogenetic-based analyses of Catharus thrushes, a model genus in the study of avian migration, and their close relatives. For these analyses, we used both mitochondrial and nuclear genes, and the resulting phylogenies were used to trace migratory traits and biogeographic patterns. Our results provide the first robust assessment of relationships within Catharus and relatives and indicate that both mitochondrial and autosomal genes contribute to overall support of the phylogeny. Measures of phylogenetic informativeness indicated that mitochondrial genes provided more signal within Catharus than did nuclear genes, whereas nuclear loci provided more signal for relationships between Catharus and close relatives than did mitochondrial genes. Insertion and deletion events also contributed important support across the phylogeny. Across all taxa included in the study, and for Catharus, possession of long-distance migration is reconstructed as the ancestral condition, and a North American (north of Mexico) ancestral area is inferred. Within Catharus, sedentary behaviour evolved after the first speciation event in the genus and is geographically and temporally correlated with Central American distributions and the final closure of the Central American Seaway. Migratory behaviour subsequently evolved twice in Catharus and is geographically and temporally correlated with a recolonization of North America in the late Pleistocene. By temporally linking speciation events with changes in migratory condition and events in Earth history, we are able to show support for several competing hypotheses relating to the geographic origin of migration.

  8. Probing for Exoplanets Hiding in Dusty Debris Disks: Inner (<10 AU) Disk Imaging, Characterization, and Exploration

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn; HST GO 12228 Team

    2011-01-01

    We are obtaining HST/STIS observations of a well-selected sample of eleven circumstellar (CS) debris disks, all with HST pedigree, using PSF-subtracted multi-roll coronagraphic imaging. Our observations are probing the interior CS regions of these debris systems (inner working distances < approximately 8 AU for half the sample), corresponding to the giant planet and Kuiper belt regions within our own solar system. These images will enable us to: (a) directly inter-compare the architectures of these exoplanetary debris systems in the context of our own Solar System, (b) characterize the material in these regions at high spatial resolution and, (c) look for sub-structures within the disks that are sign posts of planetary formation and evolution; in particular, asymmetries and non-uniform debris structures signaling the presence of co-orbiting perturbing planets. All of our objects were previously observed at longer wavelengths (with lower spatial resolution and imaging efficacy) with NICMOS, but with an inner working angle comparable to STIS multi-roll coronagraphy. The combination of new optical and existing near-IR imaging will strongly constrain the dust properties enabling an assessment of grain processing and planetesimal populations. These results will directly inform upon the posited planet formation mechanisms that occur after the approximately 10 My epoch of gas depletion (a time in our solar system when giant planets were migrating and the terrestrial planets were forming) and directly test theoretical models of these processes. The outer reaches (only) of most of these systems were previously observed with a much larger ( 6x on average), spatially limiting, effective inner working angle of the ACS coronagraph and do not reveal the inner structures of these CS disks. Our investigation will uniquely probe into the interior regions of these systems for the first time with spatial resolution comparable to ACS and with augmenting NICMOS near-IR disk photometry

  9. Magnetic and gravitational disk-star interactions: an interdependence of PMS stellar rotation rates and spin-orbit misalignments

    SciTech Connect

    Batygin, Konstantin; Adams, Fred C. E-mail: fca@umich.edu

    2013-12-01

    The presence of giant gaseous planets that reside in close proximity to their host stars, i.e., hot Jupiters, may be a consequence of large-scale radial migration through the protoplanetary nebulae. Within the framework of this picture, significant orbital obliquities characteristic of a substantial fraction of such planets can be attributed to external torques that perturb the natal disks out of alignment with the spin axes of their host stars. Therefore, the acquisition of orbital obliquity likely exhibits sensitive dependence on the physics of disk-star interactions. Here, we analyze the primordial excitation of spin-orbit misalignment of Sun-like stars in light of disk-star angular momentum transfer. We begin by calculating the stellar pre-main-sequence rotational evolution, accounting for spin-up due to gravitational contraction and accretion as well as spin-down due to magnetic star-disk coupling. We devote particular attention to angular momentum transfer by accretion, and show that while generally subdominant to gravitational contraction, this process is largely controlled by the morphology of the stellar magnetic field (that is, specific angular momentum accreted by stars with octupole-dominated surface fields is smaller than that accreted by dipole-dominated stars by an order of magnitude). Subsequently, we examine the secular spin-axis dynamics of disk-bearing stars, accounting for the time-evolution of stellar and disk properties, and demonstrate that misalignments are preferentially excited in systems where stellar rotation is not overwhelmingly rapid. Moreover, we show that the excitation of spin-orbit misalignment occurs impulsively through an encounter with a resonance between the stellar precession frequency and the disk-torquing frequency. Cumulatively, the model developed herein opens up a previously unexplored avenue toward understanding star-disk evolution and its consequences in a unified manner.

  10. HIGH-RESOLUTION STUDY OF THE CLUSTER COMPLEXES IN A LENSED SPIRAL AT REDSHIFT 1.5: CONSTRAINTS ON THE BULGE FORMATION AND DISK EVOLUTION

    SciTech Connect

    Adamo, Angela; Oestlin, G.; Zackrisson, E.; Guaita, L.; Bastian, N.; Livermore, R. C.

    2013-04-01

    We analyze the clump population of the spiral galaxy Sp 1149 at redshift 1.5. Located behind the galaxy cluster MACS J1149.5+2223, Sp 1149 has been significantly magnified allowing us to study the galaxy on physical scales down to {approx}100 pc. The galaxy cluster frame is among the targets of the Cluster Lensing And Supernova survey with Hubble (CLASH), an ongoing Hubble Space Telescope (HST) Multi-Cycle Treasury program. We have used the publicly available multi-band imaging data set to reconstruct the spectral energy distributions of the clumps in Sp 1149, and derive, by means of stellar evolutionary models, their physical properties. We found that 40% of the clumps observed in Sp 1149 are older than 30 Myr and can be as old as 300 Myr. These are also the more massive (luminous) clumps in the galaxy. Among the complexes in the local reference sample, the star-forming knots in luminous blue compact galaxies could be considered progenitor analogs of these long-lived clumps. The remaining 60% of clumps have colors comparable to local cluster complexes, suggesting a similar young age. We observe that the Sp 1149 clumps follow the M{proportional_to}R {sup 2} relation similar to local cluster complexes, suggesting similar formation mechanisms although they may have different initial conditions (e.g., higher gas surface densities). We suggest that the galaxy is experiencing a slow decline in star formation rate and a likely transitional phase toward a more quiescent star formation mode. The older clumps have survived between 6 and 20 dynamical times and are all located at projected distances smaller than 4 kpc from the center. Their current location suggests migration toward the center and the possibility of being the building blocks of the bulge. On the other hand, the dynamical timescale of the younger clumps is significantly shorter, meaning that they are quite close to their birthplace. We show that the clumps of Sp 1149 may account for the expected metal

  11. High-resolution Study of the Cluster Complexes in a Lensed Spiral at Redshift 1.5: Constraints on the Bulge Formation and Disk Evolution

    NASA Astrophysics Data System (ADS)

    Adamo, Angela; Östlin, G.; Bastian, N.; Zackrisson, E.; Livermore, R. C.; Guaita, L.

    2013-04-01

    We analyze the clump population of the spiral galaxy Sp 1149 at redshift 1.5. Located behind the galaxy cluster MACS J1149.5+2223, Sp 1149 has been significantly magnified allowing us to study the galaxy on physical scales down to ~100 pc. The galaxy cluster frame is among the targets of the Cluster Lensing And Supernova survey with Hubble (CLASH), an ongoing Hubble Space Telescope (HST) Multi-Cycle Treasury program. We have used the publicly available multi-band imaging data set to reconstruct the spectral energy distributions of the clumps in Sp 1149, and derive, by means of stellar evolutionary models, their physical properties. We found that 40% of the clumps observed in Sp 1149 are older than 30 Myr and can be as old as 300 Myr. These are also the more massive (luminous) clumps in the galaxy. Among the complexes in the local reference sample, the star-forming knots in luminous blue compact galaxies could be considered progenitor analogs of these long-lived clumps. The remaining 60% of clumps have colors comparable to local cluster complexes, suggesting a similar young age. We observe that the Sp 1149 clumps follow the MvpropR 2 relation similar to local cluster complexes, suggesting similar formation mechanisms although they may have different initial conditions (e.g., higher gas surface densities). We suggest that the galaxy is experiencing a slow decline in star formation rate and a likely transitional phase toward a more quiescent star formation mode. The older clumps have survived between 6 and 20 dynamical times and are all located at projected distances smaller than 4 kpc from the center. Their current location suggests migration toward the center and the possibility of being the building blocks of the bulge. On the other hand, the dynamical timescale of the younger clumps is significantly shorter, meaning that they are quite close to their birthplace. We show that the clumps of Sp 1149 may account for the expected metal-rich globular cluster population

  12. Disks around stars and the growth of planetary systems.

    PubMed

    Greaves, Jane S

    2005-01-07

    Circumstellar disks play a vital evolutionary role, providing a way to move gas inward and onto a young star. The outward transfer of angular momentum allows the star to contract without breaking up, and the remnant disk of gas and particles is the reservoir for forming planets. High-resolution spectroscopy is uncovering planetary dynamics and motion within the remnant disk, and imaging at infrared to millimeter wavelengths resolves disk structure over billions of years of evolution. Most stars are born with a disk, and models of planet formation need to form such bodies from the disk material within the disk's 10-million-year life-span.

  13. Recent Observational Progress on Accretion Disks Around Compact Objects

    NASA Astrophysics Data System (ADS)

    Miller, Jon M.

    2016-04-01

    Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.

  14. Accretion disk thermal instability in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Mineshige, S.; Shields, G. A.

    1990-03-01

    The nonlinear evolution and spatial propagation of the thermal instability in accretion disks in galactic nuclei are investigated. Integrations of the vertical structure of the disks are described for different alpha prescriptions, and the thermal stability is examined. Global time-dependent calculations of the unstable disks are performed which show that there are two distinct types of behavior according to the assumed prescription for the viscosity parameter: the 'purr' type and the 'roar' type. The roar type is analyzed in some detail.

  15. Disk Surface Density Transitions as Protoplanet Traps

    NASA Astrophysics Data System (ADS)

    Masset, F. S.; Morbidelli, A.; Crida, A.; Ferreira, J.

    2006-05-01

    The tidal torque exerted by a protoplanetary disk with power-law surface density and temperature profiles onto an embedded protoplanetary embryo is generally a negative quantity that leads to the embryo inward migration. Here we investigate how the tidal torque balance is affected at a disk surface density radial jump. The jump has two consequences: (1) It affects the differential Lindblad torque. In particular, if the disk is merely empty on the inner side, the differential Lindblad torque almost amounts to the large negative outer Lindblad torque. (2) It affects the corotation torque, which is a quantity very sensitive to the local gradient of the disk surface density. In particular, if the disk is depleted on the inside and the jump occurs radially over a few pressure scale heights, the corotation torque is a positive quantity that is much larger than in a power-law disk. We show by means of customized numerical simulations of low-mass planets embedded in protoplanetary nebulae with a surface density jump that the second effect is dominant; that is, that the corotation torque largely dominates the differential Lindblad torque on the edge of a central depletion, even a shallow one. Namely, a disk surface density jump of about 50% over 3-5 disk thicknesses suffices to cancel out the total torque. As a consequence, the type I migration of low-mass objects reaching the jump should be halted, and all these objects should be trapped there provided some amount of dissipation is present in the disk to prevent the corotation torque saturation. As dissipation is provided by turbulence, which induces a jitter of the planet semimajor axis, we investigate under which conditions the trapping process overcomes the trend of turbulence to induce stochastic migration across the disk. We show that a cavity with a large outer to inner surface density ratio efficiently traps embryos from 1 to 15 M⊕, at any radius up to 5 AU from the central object, in a disk that has same surface

  16. Observational constraints on planet formation and migration timescales

    NASA Astrophysics Data System (ADS)

    David, Trevor J.

    2017-01-01

    Short-period planets have the power to unlock many of the mysteries of planet formation and, fortunately, they are abundant. There is growing evidence that high-eccentricity migration channels are not responsible for all short-period planets; this notion is supported by the recent discovery of K2-33 b, a short-period, Neptune-sized exoplanet transiting a 5-10 Myr old star in the Upper Scorpius association. While in situ formation of K2-33 b can not be conclusively ruled out, the planet is parked just interior to the corotation radius, where theory predicts inwardly migrating planets are halted; this may be interpreted as tantalizing evidence of disk-driven migration. Occurrence rate studies of all clusters observed by K2 will allow for robust conclusions about the predominant modes of planet migration. Moreover, K2-33 b is likely still contracting, and should eventually join the populous class of close-in sub-Neptunes. In addition to K2-33 b, the Kepler/K2 mission has enabled the discovery of planets in the intermediate age Hyades and Praesepe clusters. Many of these close-in planets exhibit radii that are large given their semi-major axes and host star characteristics. It is possible that, even at ages of several hundred Myr, these planets have not finished contracting or are undergoing atmospheric mass loss. If this is the case, we are directly constraining the evolutionary timescales of short-period planets. Finally, the characteristic timescales of protoplanetary disk evolution (and thus giant planet formation) and debris disk evolution can be refined with new fundamental calibrators for pre-main sequence evolutionary models and modern catalogs of homogeneous stellar ages, respectively.

  17. SANs and Large Scale Data Migration at the NASA Center for Computational Sciences

    NASA Technical Reports Server (NTRS)

    Salmon, Ellen M.

    2004-01-01

    Evolution and migration are a way of life for provisioners of high-performance mass storage systems that serve high-end computers used by climate and Earth and space science researchers: the compute engines come and go, but the data remains. At the NASA Center for Computational Sciences (NCCS), disk and tape SANs are deployed to provide high-speed I/O for the compute engines and the hierarchical storage management systems. Along with gigabit Ethernet, they also enable the NCCS's latest significant migration: the transparent transfer of 300 Til3 of legacy HSM data into the new Sun SAM-QFS cluster.

  18. Evolution.

    ERIC Educational Resources Information Center

    Mayr, Ernst

    1978-01-01

    Traces the history of evolution theory from Lamarck and Darwin to the present. Discusses natural selection in detail. Suggests that, besides biological evolution, there is also a cultural evolution which is more rapid than the former. (MA)

  19. Disk Galaxies : Building Blocks Of The Universe?

    NASA Astrophysics Data System (ADS)

    Bower, Richard

    2016-10-01

    In my talk I look at the origin of disk galaxies from the theoretical perspective. In particular I look at simple ways to use the properties of disk galaxies, and their evolution, to test our current paradigm for galaxy formation within the CDM scenario.

  20. Signs of planet formation in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Osorio, M.

    2017-03-01

    In this paper, I present results of four protoplanetary disks, studied by our team, that show signs of planet formation. Our high angular resolution radio interferometric observations of these sources suggest that we are witnessing different stages of the planet formation and disk evolution processes working at different scales.

  1. TOWARD A GLOBAL EVOLUTIONARY MODEL OF PROTOPLANETARY DISKS

    SciTech Connect

    Bai, Xue-Ning

    2016-04-20

    A global picture of the evolution  of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.

  2. Low-state disks and low-beta disks

    NASA Technical Reports Server (NTRS)

    Mineshige, Shin; Kusnose, Masaaki; Matsumoto, Ryoji

    1995-01-01

    Stellar black hole candidates (BHCs) exhibit bimodal spectral states. We calculate nonthermal disk spectra, demonstrating that a large photon index (alpha (sub x) approximately 2-3) observed in the soft (high) state is due to a copious soft photon supply, whereas soft photon starvation leads to a smaller index (alpha (sub x) approximately 1.5-2) in the hard (low) state. Thus, the absence of the soft component flux in the low state cannot be due to obscuration. A possible disk configuration during the low state is discussed. We proposed that a low-state disk may be a low-beta disk in which magnetic pressure may exceed gas pressure becuase of the suppression of field escape by a strong shear. As a result, disk material will take the form of blobs constricted by mainly toroidal magnetic fields. Fields are dissipated mainly by occasional reconnection events with a huge energy release. This will account for large-amplitude, aperiodic X-ray variations (flickering) and high-energy radiation with small alpha(sub x) from hard state BHCs and possibly from active galactic nuclei. Further, we propose a hysteretic relation between the mass-flow rate and plasma-beta, a ratio of gas pressure to magnetic pressure, for the spectral evolution of transient BHCs. The disk is in the low-beta state in quiescence and early rise. The low-beta disk is optically thin and affected by advection. A hard-to-soft transition occurs before the peak luminosity, since there is no advection-dominated branch at higher luminosities. An optically thick, high-beta disk appears at small radii. In the decay phase of the light curve, the standard-type disk becomes effectively optically thin, when a soft-hard transition is triggered. High-beta plasmas in the main body shrink to form minute blobs, and low-beta coronal plasma fills interblob space.

  3. Gravitational Instabilities in Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  4. Disk filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  5. Optical disks

    NASA Technical Reports Server (NTRS)

    Lopez-Swafford, B.

    1986-01-01

    A comprehensive overview of the different types of optical storage technology is presented. Research efforts to integrate this technology into the VAX/VMS environment are discussed. In addition, plans for future applications of optical disk technology are described. The applications should prove to be beneficial to the NSSDC user community as a whole. Of particular interest is the concentration on the collaboration with the Dynamics Explorer project.

  6. Disk filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  7. The Low Mass of Mars: First Evidence of Early Gas-Driven Migration by Jupiter

    NASA Astrophysics Data System (ADS)

    Walsh, K. J.; Morbidelli, A.; Raymond, S. N.; O'Brien, D. P.; Mandell, A. M.

    2010-12-01

    Numerical simulations of planetary accretion have succeeded in matching most of the physical and orbital properties of the terrestrial planets with one glaring exception: they categorically form Mars analogs that are roughly an order of magnitude too massive (Raymond et al. 2009). The initial conditions that best reproduce the mass of Mars require that the inner planetesimal disk had an outer edge at 1 Astronomical Unit (AU) (Hansen 2009). To date, no mechanism has been shown to create this edge and remain compatible with the current-day solar system, in particular the existence of the asteroid belt. Here we show that a substantial gas-driven radial migration of the giant planets is the needed mechanism. Hydrodynamical simulations show that the evolution of Jupiter and Saturn in a gas-disk generically leads to a two-stage, inward-then-outward, migration where the extent of each stage of migration depends on a priori unconstrained disk parameters (Masset & Snellgrove 2001, Morbidelli et al. 2007, Pierens & Nelson 2008). We demonstrate with numerical simulations that, if Jupiter migrated inwards to 1.5 AU before migrating out towards its current location, its gravitational influence would truncate the inner planetesimal disk at 1 AU. The resulting disk naturally reproduces all the terrestrial planets including Mars. During the giant planets' migration, the asteroid belt is emptied and later re-populated from two distinct parent populations. This provides the first dynamical explanation for the current dichotomy of physical properties of the main asteroid belt, with anhydrous asteroids (S-type) in the inner part and primitive asteroids (C-type) in the outer part (Gradie & Tedesco 1982). Our model links the origin of the inner solar system -- explaining the mass of Mars and the properties of the asteroid belt -- to a realistic evolution of the giant planets. Thus Mars and the asteroid belt provide the first evidence for an early solar system evolution characterized by

  8. Geometrical Structures of Chemically Decomposed Thick and Thin Disk Populations

    NASA Astrophysics Data System (ADS)

    Kawata, D.; Brook, C. B.; Rahimi, A.; Gibson, B. K.

    2016-10-01

    We summarize the thick and thin disk formation commonly seen in cosmological N-body simulations. As suggested in Brook et al. (2004), a hierarchical clustering scenario causes multiple minor gas-rich mergers, and leads to the formation of a kinematically hot disk, thick disk population, at a high redshift. Once the mergers become less significant at a later epoch, the thin disk population starts building up. Because in this scenario the thick disk population forms intensively at high redshift through multiple gas-rich mergers, the thick disk population is compact and has systematically higher [α/Fe] abundance than the thin disk population. We discuss that the thick disk population would be affected by the formation of the thin disk and suffer from the radial migration, which helps the thick disk population to be observed in the solar neighborhood. In addition, we show that the current cosmological simulations also naturally predict that the thin disk population is flaring at the outer region. As shown in Rahimi et al. (2014), at high vertical height from the disk plane, the compact thick disk population (low metallicity and high [α/Fe]) is dominant in the inner region and the flaring thin disk population (high metallicity and low [α/Fe]) contributes more in the outer region. This helps to explain the positive radial metallicity gradient and negative radial [α/Fe] gradient observed at high vertical height in the Milky Way stellar disk.

  9. The star formation history of low-mass disk galaxies: A case study of NGC 300

    NASA Astrophysics Data System (ADS)

    Kang, Xiaoyu; Zhang, Fenghui; Chang, Ruixiang; Wang, Lang; Cheng, Liantao

    2016-01-01

    Context. Since NGC 300 is a bulgeless, isolated low-mass galaxy and it has not experienced radial migration during its evolution history, it can be treated as an ideal laboratory to test the simple galactic chemical evolution model. Aims: Our main aim is to investigate the main properties of the star formation history (SFH) of NGC 300 and compare its SFH with that of M 33 to explore the common properties and differences between these two nearby low-mass systems. Methods: We construct a simple chemical evolution model for NGC 300, assuming its disk forms gradually from continuous accretion of primordial gas and including the gas-outflow process. The model allows us to build a bridge between the SFH and observed data of NGC 300, in particular, the present-day radial profiles and global observed properties (e.g., cold gas mass, star formation rate, and metallicity). By means of comparing the model predictions with the corresponding observations, we adopt the classical χ2 methodology to find out the best combination of free parameters a, b, and bout. Results: Our results show that by assuming an inside-out formation scenario and an appropriate outflow rate, our model reproduces well most of the present-day observational values. The model not only reproduces well the radial profiles, but also the global observational data for the NGC 300 disk. Our results suggest that NGC 300 may experience a rapid growth of its disk. Through comparing the best-fitting, model-predicted SFH of NGC 300 with that of M 33, we find that the mean stellar age of NGC 300 is older than that of M 33 and there is a recent lack of primordial gas infall onto the disk of NGC 300. Our results also imply that the local environment may play a key role in the secular evolution of galaxy disks.

  10. The Plio-Pleistocene evolution of the Crotone Basin (southern Italy): Interplay between sedimentation, tectonics and eustasy in the frame of Calabrian Arc migration

    NASA Astrophysics Data System (ADS)

    Zecchin, Massimo; Caffau, Mauro; Civile, Dario; Critelli, Salvatore; Di Stefano, Agata; Maniscalco, Rosanna; Muto, Francesco; Sturiale, Giovanni; Roda, Cesare

    2012-12-01

    The Crotone Basin is the exposed part of a larger Neogene forearc basin developed in the Ionian Sea in the frame of the SE-ward migration of the Calabrian Arc, which led to the subduction of the Ionian lithosphere and the spreading of the Tyrrhenian back-arc Basin (central Mediterranean). Taking into account the geologic context that accompanied its accumulation, the Plio-Pleistocene part of the Crotone Basin succession is exceptionally well preserved, and consists of a suite of continental, paralic, shallow-marine and deep-marine deposits organized to form unconformity bounded stratal units that in turn compose two main tectono-stratigraphic cycles. The unconformities separating these units are well recognizable along the basin margin and tend to vanish basinwards, and they record phases of basin reorganization linked to large-scale tectonics. In particular, the basin evolution was characterized by a cyclic pattern consisting of an alternation between longer subsidence phases, that favored the accumulation of stratal units, and uplift phases that led to base-level falls and the generation of unconformities. These phases were strictly related to an alternation between active subduction of the Ionian lithosphere below the Calabrian Arc, accompanied by the spreading of the Tyrrhenian back-arc Basin and by extension and subsidence in the forearc basin, and regional-scale compressional and transpressional events, during which the Arc migration temporarily stopped. The younger uplift of the basin, started during middle Pleistocene and still active, was characterized by extensional tectonics, and its interplay with glacio-eustasy controlled the formation of marine terraces. Since the Plio-Pleistocene tectonic episodes affecting the Calabrian Arc during its SE-ward migration seem to be all recorded in the Crotone Basin, the recognition of their effects on the basin fill and their time constraint become both critical, representing a reference to develop a clearer picture

  11. Human migration to space: Alternative technological approaches for long-term adaptation to extraterrestrial environments and the implications for human evolution

    NASA Astrophysics Data System (ADS)

    Lockard, Elizabeth Song

    As humans embark upon the next phase of Space exploration---establishing human outposts in low-Earth orbit, on the Moon, and on Mars---the scope of human factors must expand beyond the meager requirements for short-term missions to Space to include issues of comfort and well-being necessary for long-term durations. However, to habitate---to dwell in a place---implies more than creature comforts in order to adapt. Human factors research must also include a phenomenological perspective---an understanding of how we experience the places we live in---in order for a community to be robust and to thrive. The first phase of migration will be an especially tenuous one requiring intensive technological intervention. The modes by which those technologies are implemented will have significant bearing on the process of human adaptation: the nature of the mediation can be either one of domination, subordination, avoidance, or integration. Ultimately, adaptation is best ensured if symbiotic processes of negotiation and cooperation between subject and environment are espoused over acts of conquest or acquiescence. The adaptive mechanisms we choose to develop and employ will have wider implications for long-range human evolution. The transformations we will undergo will be influenced by both the initial decision to migrate to Space (technological), as well as the actual conditions of Space (environmental). Migration to extraterrestrial environments will be unequivocally the most profound catalyst for evolution in the history of humankind---not only for the human species itself but also for the new environments we will eventually inhabit. At the same time, we also find ourselves---via a new generation of bio-, nano-, and digital technologies---in the position to consciously and willfully direct our own evolution. Technology has always been transformative, but in the not-so-distant future, we will soon possess the capacity to radically re-invent ourselves in almost any way

  12. Orbital distribution and dynamical characteristics of Neptune Trojans effected by planetary migration

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Yuan

    2015-08-01

    With more and more Neptunian Trojans (NTs) being discovered, the orbital characteristic of NTs could impose more restrictions on the evolution history of the planets on our Solar system. Here we simulate the processes of planetary migration and the orbital damping of Uranus and Neptune during migration, and investigate the orbital element distributions of NTs effected by the processes. By comparison, we find that the orbital dissipation of Uranus and Neptune has a significant influence to the orbital distribution of the NTs, and should be considered in the following investigations. Furthermore, in order to obtain the current proportion of high-inclination orbits of NTs, NTs being captured from the trans-Neptunian disk account for the dominant part in the final NTs clouds, which is consistent with the previous conclusions. We also study different distributions of initial orbital elements of original NTs and test particles in the trans-Neptunian disk, including the cold and stir-up disk. The result shows that different distributions of planetesimal disk correspond to similar results on the distributions of NTs after the planetary migrations.

  13. A two-phase code for protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Inaba, S.; Barge, P.; Daniel, E.; Guillard, H.

    2005-02-01

    A high accuracy 2D hydrodynamical code has been developed to simulate the flow of gas and solid particles in protoplanetary disks. Gas is considered as a compressible fluid while solid particles, fully coupled to the gas by aerodynamical forces, are treated as a pressure-free diluted second phase. The solid particles lose energy and angular momentum which are transfered to the gas. As a result particles migrate inward toward the star and gas moves outward. High accuracy is necessary to account for the coupling. Boundary conditions must account for the inward/outward motions of the two phases. The code has been tested on one and two dimensional situations. The numerical results were compared with analytical solutions in three different cases: i) the disk is composed of a single gas component; ii) solid particles migrate in a steady flow of gas; iii) gas and solid particles evolve simultaneously. The code can easily reproduce known analytical solutions and is a powerful tool to study planetary formation at the decoupling stage. For example, the evolution of an over-density in the radial distribution of solids is found to differ significantly from the case where no back reaction of the particles onto the gas is assumed. Inside the bump, solid particles have a drift velocity approximately 16 times smaller than outside which significantly increases the residence time of the particles in the nebula. This opens some interesting perspectives to solve the timescale problem for the formation of planetesimals.

  14. Magneto-thermal Disk Winds from Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning; Ye, Jiani; Goodman, Jeremy; Yuan, Feng

    2016-02-01

    The global evolution and dispersal of protoplanetary disks (PPDs) are governed by disk angular-momentum transport and mass-loss processes. Recent numerical studies suggest that angular-momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a one-dimensional model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on (1) the magnetic field strength at the wind base, characterized by the poloidal Alfvén speed vAp, (2) the sound speed cs near the wind base, and (3) how rapidly poloidal field lines diverge (achieve {R}-2 scaling). When {v}{Ap}\\gg {c}{{s}}, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accelerated mainly by the pressure of the toroidal magnetic field. In both cases, the dominant role played by magnetic forces likely yields wind outflow rates that exceed purely hydrodynamical mechanisms. For typical PPD accretion-rate and wind-launching conditions, we expect vAp to be comparable to cs at the wind base. The resulting wind is heavily loaded, with a total wind mass-loss rate likely reaching a considerable fraction of the wind-driven accretion rate. Implications for modeling global disk evolution and planet formation are also discussed.

  15. THE STAR-FORMING HISTORIES OF THE NUCLEUS, BULGE, AND INNER DISK OF NGC 5102: CLUES TO THE EVOLUTION OF A NEARBY LENTICULAR GALAXY {sup ,} {sup ,}

    SciTech Connect

    Davidge, T. J.

    2015-01-20

    Long slit spectra recorded with the Gemini Multi-Object Spectrograph on Gemini South are used to examine the star-forming history (SFH) of the lenticular galaxy NGC 5102. Structural and supplemental photometric information are obtained from archival Spitzer [3.6] images. Absorption features at blue and visible wavelengths are traced out along the minor axis to galactocentric radii ∼60 arcsec (∼0.9 kpc), sampling the nucleus, bulge, and disk components. Comparisons with model spectra point to luminosity-weighted metallicities that are consistent with the colors of resolved red giant branch stars in the disk. The nucleus has a luminosity-weighted age at visible wavelengths of ∼1{sub −0.1}{sup +0.2} Gyr, and the integrated light is dominated by stars that formed over a time period of only a few hundred Myr. For comparison, the luminosity-weighted ages of the bulge and disk are ∼2{sub −0.2}{sup +0.5} Gyr and 10{sub −2}{sup +2} Gyr, respectively. The g' – [3.6] colors of the nucleus and bulge are consistent with the spectroscopically based ages. In contrast to the nucleus, models that assume star-forming activity spanning many Gyr provide a better match to the spectra of the bulge and disk than simple stellar population models. Isophotes in the bulge have a disky shape, hinting that the bulge was assembled from material with significant rotational support. The SFHs of the bulge and disk are consistent with the bulge forming from the collapse of a long-lived bar, rather than from the collapse of a transient structure that formed as the result of a tidal interaction. It is thus suggested that the progenitor of NGC 5102 was a barred disk galaxy that morphed into a lenticular galaxy through the buckling of its bar.

  16. History of surgery for ruptured disk.

    PubMed

    Patwardhan, R V; Hadley, M N

    2001-01-01

    The history of surgery for ruptured disk of the human spine began approximately a century ago. Advances in the understanding of symptoms and signs of root or cord compression, their relationship to the pathology, and the refinement in imaging techniques have contributed to the present surgical management of rupture disk disease. Historical findings relevant to the cervical, thoracic, and lumbosacral regions of the spine, with relevant pathophysiology, imaging, and surgical treatment, including the evolution of various surgical approaches are discussed. Surgeons and other contributors in the medical field are cited for their respective contributions to the evolution of the present operative approaches for disk ruptures in the cervical, thoracic, and lumbar spinal regions.

  17. Evidence for dust grain growth in young circumstellar disks.

    PubMed

    Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J

    2001-06-01

    Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.

  18. Dust in protoplanetary disks: observations

    NASA Astrophysics Data System (ADS)

    Waters, L. B. F. M.

    2015-09-01

    Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies) that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV) wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness), the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution), a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014). 2nd Lecture of the Summer School "Protoplanetary Disks: Theory and Modelling Meet Observations"

  19. Secular Evolution of Galaxies

    NASA Astrophysics Data System (ADS)

    Falcón-Barroso, Jesús; Knapen, Johan H.

    2013-10-01

    Preface; 1. Secular evolution in disk galaxies John Kormendy; 2. Galaxy morphology Ronald J. Buta; 3. Dynamics of secular evolution James Binney; 4. Bars and secular evolution in disk galaxies: theoretical input E. Athanassoula; 5. Stellar populations Reynier F. Peletier; 6. Star formation rate indicators Daniela Calzetti; 7. The evolving interstellar medium Jacqueline van Gorkom; 8. Evolution of star formation and gas Nick Z. Scoville; 9. Cosmological evolution of galaxies Isaac Shlosman.

  20. Proteinquakes in the Evolution of Influenza Virus Hemagglutinin (A/H1N1) under Opposing Migration and Vaccination Pressures

    PubMed Central

    Phillips, J. C.

    2015-01-01

    Influenza virus contains two highly variable envelope glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Here we show that, while HA evolution is much more complex than NA evolution, it still shows abrupt punctuation changes linked to punctuation changes of NA. HA exhibits proteinquakes, which resemble earthquakes and are related to hydropathic shifting of sialic acid binding regions. HA proteinquakes based on shifting sialic acid interactions are required for optimal balance between the receptor-binding and receptor-destroying activities of HA and NA for efficient virus replication. Our comprehensive results present a historical (1945–2011) panorama of HA evolution over thousands of strains and are consistent with many studies of HA and NA interactions based on a few mutations of a few strains. PMID:25654090

  1. Radiative Transfer in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Graziani, L.; Aiello, S.; Belleni-Morante, A.; Cecchi-Pestellini, C.

    2008-09-01

    Abstract Protoplanetary disks are the precursors of planetary systems. All building materials needed to assembly the planetary systems are supplied by these reservoirs, including many organic molecules [1,2]. Thus, the physical and chemical properties in Protoplanetary disks set the boundary conditions for the formation and evolution of planets and other solar system bodies. In standard radiative scenario structure and chemistry of protoplanetary disks depend strongly on the nature of central star around which they formed. The dust temperature is manly set by the stellar luminosity, while the chemistry of the whole disk depends on the UV and X ray fluxes [3,4,6,8]. Therefore, a knowledge as accurate as possible of the radiative transfer (RT) inside disks is a prerequisite for their modelling. Actually, real disks are complex, stratified and inhomogeneous environments requiring a detailed dust mixture modelling and the ability to follow the radiation transfer across radial and vertical gradients. Different energetic processes as the mass accretion processes onto the star surface, the viscous dissipative heating dominating the midplane region, and the flared atmospheres radiation reprocessing, have a significant role in the disk structuring [4,5,8]. During the last 10 years many authors suggested various numerical and analytical techniques to resolve the disk temperature structure providing vertical temperature profiles and disk SED databases [4,6]. In this work we present the results of our semi analytical and numerical model solving the radiative transfer problem in two separate interesting disk regions: 1) Disk atmospheres at large radius, r > 10 AU. 2) Vertical disk structure over 1 < r < 10 AU and 10 < r < 100 AU. A simplified analytical approach based on P-N approximation [7] for a rectified disk surface (suitable for limited range of r) is compared and contrasted with a more accurate Monte Carlo integration [5]. Our code can handle arbitrary dust

  2. Star formation rates and abundance gradients in disk galaxies

    NASA Technical Reports Server (NTRS)

    Wyse, Rosemary F. G.; Silk, Joseph

    1989-01-01

    Analytic models for the evolution of disk galaxies are presented, placing special emphasis on the radial properties. These models are straightforward extensions of the original Schmidt (1959, 1963) models, with a dependence of star formation rate on gas density. The models provide successful descriptions of several measures of galactic disk evolution, including solar neighborhood chemical evolution, the presence and amplitude of metallicity and color gradients in disk galaxies, and the global rates of star formation in disk galaxies, and aid in the understanding of the apparent connection between young and old stellar populations in spiral galaxies.

  3. Sintering-Induced Dust Ring Formation In Protoplanetary Disks: Application To The Hl Tau Disk

    NASA Astrophysics Data System (ADS)

    Momose, Munetake

    2016-07-01

    We explain the multiple ring structure revealed in the disk around HL Tau as a consequence of aggregate sintering. We use a dust growth model to simulate global dust evolution due to sintering, coagulation, fragmentation, and radial inward drift in a modeled HL Tau disk. Our best fitted model reproduces the positions of optically-thick bright rings with an accuracy of <30%.

  4. The Star-forming Histories of the Nucleus, Bulge, and Inner Disk of NGC 5102: Clues to the Evolution of a Nearby Lenticular Galaxy

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2015-01-01

    Long slit spectra recorded with the Gemini Multi-Object Spectrograph on Gemini South are used to examine the star-forming history (SFH) of the lenticular galaxy NGC 5102. Structural and supplemental photometric information are obtained from archival Spitzer [3.6] images. Absorption features at blue and visible wavelengths are traced out along the minor axis to galactocentric radii ~60 arcsec (~0.9 kpc), sampling the nucleus, bulge, and disk components. Comparisons with model spectra point to luminosity-weighted metallicities that are consistent with the colors of resolved red giant branch stars in the disk. The nucleus has a luminosity-weighted age at visible wavelengths of {˜ } 1+0.2-0.1 Gyr, and the integrated light is dominated by stars that formed over a time period of only a few hundred Myr. For comparison, the luminosity-weighted ages of the bulge and disk are {˜ } 2+0.5-0.2 Gyr and 10+2-2 Gyr, respectively. The g' - [3.6] colors of the nucleus and bulge are consistent with the spectroscopically based ages. In contrast to the nucleus, models that assume star-forming activity spanning many Gyr provide a better match to the spectra of the bulge and disk than simple stellar population models. Isophotes in the bulge have a disky shape, hinting that the bulge was assembled from material with significant rotational support. The SFHs of the bulge and disk are consistent with the bulge forming from the collapse of a long-lived bar, rather than from the collapse of a transient structure that formed as the result of a tidal interaction. It is thus suggested that the progenitor of NGC 5102 was a barred disk galaxy that morphed into a lenticular galaxy through the buckling of its bar. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  5. Planetary Migration and Kuiper Belt Dynamics

    NASA Astrophysics Data System (ADS)

    Malhotra, Renu

    The Kuiper belt holds memory of the dynamical processes that shaped the architecture of the solar system, including the orbital migration history of the giant planets. We propose studies of the orbital dynamics of the Kuiper Belt in order to understand the origin of its complex dynamical structure and its link to the orbital migration history of the giant planets. By means of numerical simulations, statistical tests, as well as analytical calculations we will (1) investigate the origin of resonant Kuiper belt objects to test alternative scenarios of Neptune's migration history, (2) investigate the long term dynamical evolution of the Haumea family of Kuiper Belt objects in order to improve the age estimate of this family, and (3) investigate resonance-sticking behavior and the Kozai-Lidov mechanism and its role in the origin of the extended scattered disk. These studies directly support the goals of the NASA-OSS program by improving our understanding of the origin of the solar system's architecture. Our results will provide constraints on the nature and timing of the dynamical excitation event that is thought to have occurred in early solar system history and to have determined the architecture of the present-day solar system; our results will also provide deeper theoretical understanding of sticky mean motion resonances which contribute greatly to the longevity of many small bodies, improve our understanding of dynamical transport of planetesimals in planetary systems, and help interpret observations of other planetary systems.

  6. Why do primordial germ cells migrate through an embryo and what does it mean for biological evolution?

    PubMed

    Olovnikov, A M

    2013-10-01

    An explanation of the role of primordial germ cell (PGC) migration during embryogenesis is proposed. According to the hypothesis, various PGCs during their migrations through an early embryo are contacting with anlagen of organs and acquiring nonidentical organ specificities. An individual PGC gets such an organ specificity, which corresponds to specificity of the first anlage with which this PGC has the first contact. As a result, the cellular descendants of PGCs (oocytes or spermatocytes) will express nonidentical organ-specific receptors, hence becoming functionally heterogeneous. Therefore, each clone of germ cells becomes capable of recognizing specifically the molecular signals that correspond only to "its" organ of the body. Such signals are produced by the body's organ when it functions in an extreme mode. Signals from the "exercising" organ of the body are delivered to the gonad only via the brain retransmitter, which is composed of neurons grouped as virtual organs of a homunculus. Homunculi are so-called somatotopic maps of the skeletomotor and other parts of the body represented in the brain. Signals, as complexes of regulatory RNAs and proteins, are transported from the "exercising" organ of the body to the corresponding virtual organ of the homunculus where they are processed and then forwarded to the gonad. The organ-specific signal will be selectively recognized by certain gametocytes according to their organ specificity, and then it will initiate the directed epimutation in the gametocyte genome. The nonrandomness of the gene order in chromosomes, that is the synteny and genetic map, is controlled by the so-called creatron that consolidates the soma and germline into a united system, providing the possibility of evolutionary responses of an organism to environmental influences.

  7. Trapping planets in an evolving protoplanetary disk: preferred time, locations, and planet mass

    NASA Astrophysics Data System (ADS)

    Baillié, K.; Charnoz, S.; Pantin, E.

    2016-05-01

    Context. Planet traps are necessary to prevent forming planets from falling onto their host star by type I inward migration. Surface mass density and temperature gradient irregularities favor the apparition of traps (planet accumulation region) and deserts (planet depletion zone). These features are found at the dust sublimation lines and heat transition barriers. Aims: We study how planets may remain trapped or escape these traps as they grow and as the disk evolves viscously with time. Methods: We numerically model the temporal viscous evolution of a protoplanetary disk by coupling its dynamics, thermodynamics, geometry, and composition. The resulting midplane density and temperature profiles allow the modeling of the interactions of this type of evolving disk with potential planets, even before the steady state is reached. Results: We follow the viscous evolution of a minimum mass solar nebula and compute the Lindblad and corotation torques that this type of disk would exert on potential planets of various masses that are located within the planetary formation region. We determine the position of planet traps and deserts in relationship with the sublimation lines, shadowed regions, and heat transition barriers. We notice that the planet mass affects the trapping potential of the mentioned structures through the saturation of the corotation torque. Planets that are a few tens of Earth masses can be trapped at the sublimation lines until they reach a certain mass while planets that are more massive than 100 M⊕ can only be trapped permanently at the heat transition barriers. They may also open gaps beyond 5 au and enter type II migration. Conclusions: Coupling a bimodal planetary migration model with a self-consistent evolved disk, we were able to distinguish several potential planet populations after five million years of evolution: two populations of giant planets that could stay trapped around 5.5 and 9 au and possibly open gaps, some super-Earths trapped

  8. A New M Dwarf Debris Disk Candidate in a Young Moving Group Discovered with Disk Detective

    NASA Astrophysics Data System (ADS)

    Silverberg, Steven M.; Kuchner, Marc J.; Wisniewski, John P.; Gagne, Jonathan; Bans, Alissa; Bhattacharjee, Shambo; Currie, Thayne M.; Debes, John H.; Biggs, Joseph R.; Bosch, Milton; Doll, Katharina; Durantini Luca, Hugo A.; Enachioaie, Alexandru; Griffith, Phillip; Hyogo, Michiharu; Piniero, Fernanda; Disk Detective Collaboration

    2017-01-01

    The ongoing Disk Detective citizen science project has been identifying new debris disk candidates for over two years. We present an overview of the project and its current status, and discuss the newest result from this project: J080822.18-644357.3, a new candidate member of the young (~45 Myr) Carina association identified by the Bayesian analysis tool BANYAN II. This star, an M5.5V star with very strong infrared excess, would be the oldest M dwarf debris disk detected in a moving group if confirmed as a member. This discovery could thus be an important constraint on our understanding of M dwarf debris disk evolution.

  9. A New M Dwarf Debris Disk Candidate in a Young Moving Group Discovered with Disk Detective

    NASA Astrophysics Data System (ADS)

    Silverberg, Steven M.; Kuchner, Marc J.; Wisniewski, John P.; Gagné, Jonathan; Bans, Alissa S.; Bhattacharjee, Shambo; Currie, Thayne R.; Debes, John R.; Biggs, Joseph R.; Bosch, Milton; Doll, Katharina; Durantini-Luca, Hugo A.; Enachioaie, Alexandru; Griffith, Philip, Sr.; Hyogo, Michiharu; Piñiero, Fernanda; Disk Detective Collaboration

    2016-10-01

    We used the Disk Detective citizen science project and the BANYAN II Bayesian analysis tool to identify a new candidate member of a nearby young association with infrared excess. WISE J080822.18-644357.3, an M5.5-type debris disk system with significant excess at both 12 and 22 μm, is a likely member (∼ 90 % BANYAN II probability) of the ∼45 Myr old Carina association. Since this would be the oldest M dwarf debris disk detected in a moving group, this discovery could be an important constraint on our understanding of M dwarf debris disk evolution.

  10. A New M Dwarf Debris Disk Candidate in a Young Moving Group Discovered with Disk Detective

    NASA Technical Reports Server (NTRS)

    Silverberg, Steven M.; Kuchner, Marc J.; Wisniewski, John P.; Gagne, Jonathan; Bans, Alissa S.; Bhattacharjee, Shambo; Currie, Thayne R.; Debes, John R.; Biggs, Joseph R; Bosch, Milton

    2016-01-01

    We used the Disk Detective citizen science project and the BANYAN II Bayesian analysis tool to identify a new candidate member of a nearby young association with infrared excess. WISE J080822.18-644357.3, an M5.5-type debris disk system with significant excess at both 12 and 22 microns, is a likely member (approx.90% BANYAN II probability) of the approx.45 Myr old Carina association. Since this would be the oldest M dwarf debris disk detected in a moving group, this discovery could be an important constraint on our understanding of M dwarf debris disk evolution.

  11. Modeling sgB[e] Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kurfürst, P.; Feldmeier, A.; Krtička, J.

    2017-02-01

    During their evolution, massive stars are characterized by a significant loss of mass either via spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around these objects is still under debate. Is it a viscous disk or an ouftlowing disk-forming wind or some other mechanism? It is also unclear how various physical mechanisms that act on the circumstellar environment of the stars affect its shape, density, kinematic, and thermal structure. We assume that the disk-forming mechanism is a viscous transport within an equatorial outflowing disk of a rapidly or even critically rotating star. We study the hydrodynamic and thermal structure of optically thick dense parts of outflowing circumstellar disks that may form around, e.g., Be stars, sgB[e] stars, or Pop III stars. We calculate self-consistent time-dependent models of the inner dense region of the disk that is strongly affected either by irradiation from the central star and by contributions of viscous heating effects. We also simulate the dynamic effects of collision between expanding ejecta of supernovae and circumstellar disks that may be form in sgB[e] stars and, e.g., LBVs or Pop III stars.

  12. Lightcurves of Extreme Debris Disks

    NASA Astrophysics Data System (ADS)

    Rieke, George; Meng, Huan; Su, Kate

    2012-12-01

    We have recently discovered that some planetary debris disks with extreme fractional luminosities are variable on the timescale of a few years. This behavior opens a new possibility to understand planet building. Two of the known variable disks are around solar-like stars in the age range of 30 to 100+ Myr, which is the expected era of the final stages of terrestrial planet building. Such variability can be attributed to violent collisions (up to ones on the scale of the Moon-forming event between the proto-Earth and another proto-planet). The collisional cascades that are the aftermaths of these events can produce large clouds of tiny dust grains, possibly even condensed from silica vapor. A Spitzer pilot program has obtained the lightcurve of such a debris disk and caught two minor outbursts. Here we propose to continue the lightcurve monitoring with higher sampling rates and to expand it to more disks. The proposed time domain observations are a new dimension of debris disk studies that can bring unique insight to their evolution, providing important constraints on the collisional and dynamical models of terrestrial planet formation.

  13. Grain Growth in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Perez Munoz, Laura Maria

    disks. Furthermore, I compared these observational constraints with simple physical models of grain evolution that include collisional coagulation, fragmentation, and the interaction of these grains with the gaseous disk (the radial drift problem). For the parameters explored, these observational constraints are in agreement with a population of grains limited in size by radial drift. Finally, I also discuss future endeavors with forthcoming ALMA observations.

  14. Application of Gas Dynamical Friction for Planetesimals. I. Evolution of Single Planetesimals

    NASA Astrophysics Data System (ADS)

    Grishin, Evgeni; Perets, Hagai B.

    2015-09-01

    The growth of small planetesimals into large planetary embryos occurs far before the dispersal of the gas from the protoplanetary disk. The planetesimal-gaseous disk interactions give rise to migration and orbital evolution of the planetesimals/planets. Small planetesimals are dominated by aerodynamic gas drag. Large protoplanets, m˜ 0.1{M}\\oplus , are dominated by type I migration differential torque. There is an additional mass range m˜ {10}21-{10}25 {{g}} of intermediate-mass planetesimals (IMPs), where gravitational interactions with the disk dominate over aerodynamic gas drag, but for which such interactions were typically neglected. Here, we model these interactions using the gas dynamical friction (GDF) approach, previously used to study the disk-planet interactions at the planetary mass range. We find the critical size where GDF dominates over gas drag, and then we study the implications of GDF on single IMPs. We find that planetesimals with small inclinations rapidly become co-planar. Eccentric orbits circularize within a few Myr, provided the the planetesimal mass is large, m≳ {10}23 {{g}}, and that the initial eccentricity is low, e≲ 0.1. Planetesimals of higher masses, m˜ {10}24-{10}25 {{g}}, inspiral on a timescale of a few Myr, leading to an embryonic migration to the inner disk. This can lead to an overabundance of rocky material (in the form of IMPs) in the inner protoplanetary disk (\\lt 1 {AU}) and induce rapid planetary growth. This can explain the origin of super-Earth planets. In addition, GDF damps the velocities of IMPs, thereby cooling the planetesimal disk and affecting its collisional evolution through quenching the effects of viscous stirring by the large bodies.

  15. ON THE FORMATION OF GALACTIC THICK DISKS

    SciTech Connect

    Minchev, I.; Streich, D.; Scannapieco, C.; De Jong, R. S.; Steinmetz, M.; Martig, M.

    2015-05-01

    Recent spectroscopic observations in the Milky Way suggest that the chemically defined thick disk (stars that have high [α/Fe] ratios and are thus old) has a significantly smaller scale-length than the thin disk. This is in apparent contradiction with observations of external edge-on galaxies, where the thin and thick components have comparable scale-lengths. Moreover, while observed disks do not flare (scale-height does not increase with radius), numerical simulations suggest that disk flaring is unavoidable, resulting from both environmental effects and secular evolution. Here we address these problems by studying two different suites of simulated galactic disks formed in the cosmological context. We show that the scale-heights of coeval populations always increase with radius. However, the total population can be decomposed morphologically into thin and thick disks, which do not flare. We relate this to the disk inside-out formation, where younger populations have increasingly larger scale-lengths and flare at progressively larger radii. In this new picture, thick disks are composed of the imbedded flares of mono-age stellar populations. Assuming that disks form inside out, we predict that morphologically defined thick disks must show a decrease in age (or [α/Fe] ratios) with radius and that coeval populations should always flare. This also explains the observed inversion in the metallicity and [α/Fe] gradients for stars away from the disk midplane in the Milky Way. The results of this work are directly linked to, and can be seen as evidence of, inside-out disk growth.

  16. Molecular Gas in Young Debris Disks

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Juhasz, A.; Kiss, Cs.; Pascucci, I.; Kospal, A.; Apai, D.; Henning, T.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old > or approx.8 Myr), gaseous dust disks. From our results, neither primordia1 origin nor steady secondary production from icy planetesima1s can unequivocally explain the presence of CO gas in the disk ofHD21997.

  17. Structure and Evolution of an Undular Bore on the High Plains and Its Effects on Migrating Birds.

    NASA Astrophysics Data System (ADS)

    Locatelli, John D.; Stoelinga, Mark T.; Hobbs, Peter V.; Johnson, Jim

    1998-06-01

    On 18 September 1992 a series of thunderstorms in Nebraska and eastern Colorado, which formed south of a synoptic-scale cold front and north of a Rocky Mountain lee trough, produced a cold outflow gust front that moved southeastward into Kansas, southeastern Colorado, and Oklahoma around sunset. When this cold outflow reached the vicinity of the lee trough, an undular bore developed on a nocturnally produced stable layer and moved through the range of the Dodge City WSR-88D Doppler radar. The radar data revealed that the undular bore, in the leading portion of a region of northwesterly winds about 45 km wide by 4 km high directly abutting the cold outflow, developed five undulations over the course of 3 h. Contrary to laboratory tank experiments, observations indicated that the solitary waves that composed the bore probably did not form from the enveloping of the head of the cold air outflow by the stable layer and the breaking off of the head of the cold air outflow. The synoptic-scale cold front subsequently intruded on the surface layer of air produced by the cold outflow, but there was no evidence for the formation of another bore.Profiler winds, in the region affected by the cold air outflow and the undular bore, contained signals from nocturnally, southward-migrating birds (most likely waterfowl) that took off in nonfavorable southerly winds and remained aloft for several hours longer than usual, thereby staying ahead of the turbulence associated with the undular bore.

  18. Modeling Gas Distribution in Protoplanetary Accretion Disks

    NASA Astrophysics Data System (ADS)

    Kronberg, Martin; Lewis, Josiah; Brittain, Sean

    2010-07-01

    Protoplanetary accretion disks are disks of dust and gas which surround and feed material onto a forming star in the earliest stages of its evolution. One of the most useful methods for studying these disks is near infrared spectroscopy of rovibrational CO emission. This paper presents the methods in which synthetically generated spectra are modeled and fit to spectral data gathered from protoplanetary disks. This paper also discussed the methods in which this code can be improved by modifying the code to run a Monte Carlo analysis of best fit across the CONDOR cluster at Clemson University, thereby allowing for the creation of a catalog of protoplanetary disks with detailed information about them as gathered from the model.

  19. Observational constraints on black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1994-01-01

    We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.

  20. Probing for Exoplanets Hiding in Dusty Debris Disks: Inner {<10 AU} Disk Imaging, Characterization, and Exploration

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn

    2010-09-01

    We propose new visible-light observations of a well-selected sample of circumstellar {CS} debris disks, all with HST pedigree, using STIS PSF-subtracted multi-roll coronagraphic imaging. Our new observations will probe the interior CS regions of these debris systems {with inner working distances of < approximately 8 AU for half the stars in this sample}, corresponding to the giant planet and Kuiper belt regions within our own solar system. These new images will enable us to directly inter-compare the architectures of these exoplanetary debris systems in the context of our own Solar System. These observations will also permit us, for the first time, to characterize the material in these regions at high spatial resolution and to look for sub-structures within the disks that are the sign posts of planetary formation and evolution; in particular, asymmetries and non-uniform debris structures signal the presence of co-orbiting perturbing planets. Additionally, all of our objects have been observed previously at longer wavelengths {but much lower spatial resolution and imaging efficacy} with NICMOS, but with an inner working angle comparable to STIS multi-roll coronagraphy. The combination of new optical and existing near-IR imaging will strongly constrain the dust properties, thus enabling an assessment of grain processing and planetesimal populations. These results will directly inform upon the posited planet formation mechanisms that occur after the 10 My epoch of gas depletion, at a time in our solar system when giant planets were migrating and the terrestrial planets were forming, and directly test theoretical models of these processes. The outer reaches {only} of most of these systems were previously observed with a much larger { 6x on average}, spatially limiting, effective inner working angle of the ACS coronagraph. The previous ACS images are therefore completely inadequate to address our science goals of imaging the inner structures of these CS disks. Our

  1. Dynamics of gas disks in triaxial galaxies

    SciTech Connect

    Steiman-Cameron, T.Y.

    1984-01-01

    Increasing evidence has accumulated since the mid 1970's arguing that many, if not all, undisturbed galaxies may have triaxial mass distributions. The steady state configurations (preferred planes) of gas disks in triaxial galaxies with static and rotating surface figures is determined. In addition, the evolution of a gas disk as it settles into the steady state is followed for both axisymmetric and triaxial galaxies. Observational tests are provided for triaxial galactic geometry and give more accurate measures of settling times than those previously published. The preferred planes for gas disks in static and tumbling triaxial galaxies are determined using an analytic method derived from celestial mechanics. The evolution of gas disks which are not in the steady state is followed using numerical methods.

  2. Wind-accretion Disks in Wide Binaries, Second-generation Protoplanetary Disks, and Accretion onto White Dwarfs

    NASA Astrophysics Data System (ADS)

    Perets, Hagai B.; Kenyon, Scott J.

    2013-02-01

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10-5-10-3 M ⊙, with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M ⊙. When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  3. Formation waters from Mississippian-Pennsylvanian reservoirs, Illinois basin, USA: Chemical and isotopic constraints on evolution and migration

    NASA Astrophysics Data System (ADS)

    Stueber, Alan M.; Walter, Lynn M.; Huston, Ted J.; Pushkar, Paul

    1993-02-01

    We have analyzed a suite of seventy-four formation-water samples from Mississippian and Pennsylvanian carbonate and siliciclastic strata in the Illinois basin for major, minor, and trace element concentrations and for strontium isotopic composition. A subset of these samples was also analyzed for boron isotopic composition. Data are used to interpret origin of salinity and chemical and Sr isotopic evolution of the brines and in comparison with a similar data set from an earlier study of basin formation waters from Silurian-Devonian reservoirs. Systematics of Cl-Br-Na show that present Mississippian-Pennsylvanian brine salinity can be explained by a combination of subaerial seawater evaporation short of halite saturation and subsurface dissolution of halite from an evaporite zone in the middle Mississippian St. Louis Limestone, along with extensive dilution by mixing with meteoric waters. Additional diagenetic modifications in the subsurface interpreted from cation/Br ratios include K depletion through interaction with clay minerals, Ca enrichment, and Mg depletion by dolomitization, and Sr enrichment through CaCO 3 recrystallization and dolomitization. Ste. Genevieve Limestone (middle Mississippian) formation waters show 87Sr /86Sr ratios in the range 0.70782-0.70900, whereas waters from the siliciclastic reservoirs are in the range 0.70900-0.71052. Inverse correlations between 87Sr /86Sr and B, Li, and Mg concentrations suggest that the brines acquired radiogenic 87Sr through interaction with siliciclastic minerals. Completely unsystematic relations between 87Sr /86Sr and 1/Sr are observed; Sr concentrations in Ste. Genevieve and Aux Vases (middle Mississippian) waters appear to be buffered by equilibrium with respect to SrSO 4. Although there are many similarities in their origin and evolution, these formation waters are distinguished from Silurian-Devonian brines in the basin by elevated Cl/Br and Na/Br ratios and by unsystematic Sr isotope relationships. Thus

  4. Fluid flow, element migration, and petrotectonic evolution of the Early Mesozoic central Klamath Island arc, northwesternmost California. Progress report

    SciTech Connect

    Ernst, W.G.

    1992-12-11

    Investigations in the central Klamath Mountains (KM) have documented the presence of a polymetamorphosed suite of highly magnesian basaltic rocks, the Yellow Dog greenstones, in the Sawyers Bar (SB) terrane of the western Triassic and Paleozoic belt. The assemblage was laid down, altered and metasomatized during the hypothesized collapse of a Phillipine Sea-type back-arc basin which brought the westerly SB oceanic arc terrane into juxtaposition with the inboard, pre-existing Stuart Fork subduction complex, and more easterly KM terranes in an immature island arc setting. Supporting research has concentrated on elucidating the areal extent and structural/stratigraphic relations of these mafic/ultramafic Yellow Dog metavolcanic units, and has documented the insignificant degree of crustal contamination of the melts by associated terrigenous metasediments. The thermal structure and its evolution in the central KM evidently reflects surfaceward advective transport of magmatic energy derived from the partly fused downgoing oceanic slab, as well as hydrothermal fluid circulation. Clarification of the thermal evolution of this crust-constructional event in the immature basaltic island arc are the goals of the research now underway, emptying both field and geochemical methods. Continuing work is documenting the flow and P-T history of aqueous fluids through the evolving KM arc, utilizing electron microprobe and oxygen isotopic data. The authors have nearly finished a regional reconnaissance map showing the distribution of the lavas throughout the California part of the KM. Application of the terrane concept to the central KM has also been reevaluated in the light of regional petrotectonic relationships. Investigations of the regional and contact metamorphism/metasomatism of the SB metasedimentary pile are in progress.

  5. On the Evolution of the Inner Disk Radius with Flux in the Neutron Star Low-mass X-Ray Binary Serpens X-1

    NASA Astrophysics Data System (ADS)

    Chiang, Chia-Ying; Morgan, Robert A.; Cackett, Edward M.; Miller, Jon M.; Bhattacharyya, Sudip; Strohmayer, Tod E.

    2016-11-01

    We analyze the latest Suzaku observation of the bright neutron star (NS) low-mass X-ray binary Serpens X-1 taken in 2013 October and 2014 April. The observation was taken using the burst mode and only suffered mild pile-up effects. A broad iron line is clearly detected in the X-ray spectrum. We test different models and find that the iron line is asymmetric and best interpreted by relativistic reflection. The relativistically broadened iron line is generally believed to originate from the innermost regions of the accretion disk, where strong gravity causes a series of special and general relativistic effects. The iron line profile indicates an inner radius of ˜8 R G, which gives an upper limit on the size of the NS. The asymmetric iron line has been observed in a number of previous observations, which gives several inner radius measurements at different flux states. We find that the inner radius of Serpens X-1 does not evolve significantly over the range of L/L Edd ˜ 0.4-0.6, and the lack of flux dependence of the inner radius implies that the accretion disk may be truncated outside of the innermost stable circular orbit by the boundary layer, rather than the stellar magnetic field.

  6. Constraining the Giant Planets’ Initial Configuration from Their Evolution: Implications for the Timing of the Planetary Instability

    NASA Astrophysics Data System (ADS)

    Deienno, Rogerio; Morbidelli, Alessandro; Gomes, Rodney S.; Nesvorný, David

    2017-04-01

    Recent works on planetary migration show that the orbital structure of the Kuiper Belt can be very well reproduced if, before the onset of planetary instability, Neptune underwent a long-range planetesimal-driven migration up to ∼28 au. However, considering that all giant planets should have been captured in mean motion resonances among themselves during the gas-disk phase, it is not clear whether such a very specific evolution for Neptune is possible, or whether the instability could have happened at late times. Here, we first investigate which initial resonant configuration of the giant planets can be compatible with Neptune being extracted from the resonant chain and migrating to ∼28 au before planetary instability. We address the late instability issue by investigating the conditions where the planets can stay in resonance for about 400 Myr. Our results indicate that this can happen only in the case where the planetesimal disk is beyond a specific minimum distance δ stab from Neptune. Then, if there is a sufficient amount of dust produced in the planetesimal disk, which drifts inwards, Neptune can enter a slow dust-driven migration phase for hundreds of Myr until it reaches a critical distance {δ }{mig} from the disk. From that point, faster planetesimal-driven migration takes over and Neptune continues migrating outward until the instability happens. We conclude that although an early instability more easily reproduces the evolution of Neptune required to explain the structure of the Kuiper Belt, such evolution is also compatible with a late instability.

  7. Dust Coagulation in Protoplanetary Accretion Disks

    NASA Technical Reports Server (NTRS)

    Schmitt, W.; Henning, Th.; Mucha, R.

    1996-01-01

    The time evolution of dust particles in circumstellar disk-like structures around protostars and young stellar objects is discussed. In particular, we consider the coagulation of grains due to collisional aggregation. The coagulation of the particles is calculated by solving numerically the non-linear Smoluchowski equation. The different physical processes leading to relative velocities between the grains are investigated. The relative velocities may be induced by Brownian motion, turbulence and drift motion. Starting from different regimes which can be identified during the grain growth we also discuss the evolution of dust opacities. These opacities are important for both the derivation of the circumstellar dust mass from submillimeter/millimeter continuum observations and the dynamical behavior of the disks. We present results of our numerical studies of the coagulation of dust grains in a turbulent protoplanetary accretion disk described by a time-dependent one-dimensional (radial) alpha-model. For several periods and disk radii, mass distributions of coagulated grains have been calculated. From these mass spectra, we determined the corresponding Rosseland mean dust opacities. The influence of grain opacity changes due to dust coagulation on the dynamical evolution of a protostellar disk is considered. Significant changes in the thermal structure of the protoplanetary nebula are observed. A 'gap' in the accretion disk forms at the very frontier of the coagulation, i.e., behind the sublimation boundary in the region between 1 and 5 AU.

  8. ALMA observations of protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Hogerheijde, Michiel

    2015-08-01

    The Universe is filled with planetary systems, as recent detections of exo-planets have shown. Such systems grow out of disks of gas and dust that surround newly formed stars. The ground work for our understanding of the structure, composition, and evolution of such disks has been laid with infrared telescopes in the 1980's, 1990's, and 2000's, as well as with millimeter interferometers operating in the United States, France, and Japan. With the construction of the Atacama Large Millimeter / submillimeter Array, a new era of studying planet-forming disks has started. The unprecedented leap in sensitivity and angular resolution that ALMA offers, has truely revolutionized our understanding of disks. No longer featureless objects consisting of gas and smalll dust, they are now seen to harbor a rich structure and chemistry. The ongoing planet-formation process sculpts many disks into systems of rings and arcs; grains grown to millimeter-sizes collect in high-pressure areas where they could grow out to asteroids or comets or further generations of planets. This wealth of new information directly addresses bottlenecks in our theoretical understanding of planet formation, such as the question how grains can grow past the 'meter-sized' barrier or overcome the 'drift barrier', and how gas and ice evolve together and ultimately determine the elemental compositions of both giant and terrestrial planets. I will review the recent ALMA results on protoplanetary disks, presenting results on individual objects and from the first populations studies. I will conclude with a forward look, on what we might expect from ALMA in this area for the years and decades to come.

  9. The Stability of Galaxy Disks

    NASA Astrophysics Data System (ADS)

    Westfall, Kyle B.; Andersen, D. R.; Bershady, M. A.; Martinsson, T.; Swaters, R. A.; Verheijen, M. A.

    2013-01-01

    Using measurements of velocity dispersion and mass surface density for both the gas and stellar components, we calculate the multi-component stability (Q) for 30 galaxy disks observed by the DiskMass Survey. Despite their sub-maximality (Bershady et al. 2011, ApJL, 739, 47), we find all disks to be stable with roughly 85% falling in the range 1disk stability and other galaxy properties such as star-formation rate, gas mass fraction, disk maximality, and Hubble type to understand their interdependencies within the context of the secular evolution of galaxy disks. We acknowledge support for this work from the National Science Foundation (AST-0307417, AST-0607516, OISE-0754437, AST-1009491), The Netherlands Organisation for Scientific Research (grant 614.000.807), the UW Graduate School (PRJ13SL, 050167, and the Vilas Associate award), the Leids Kerkhoven-Bosscha Fonds, and NASA/JPL/Spitzer (GO-30894).

  10. Snow Line Localization in Classical Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Blevins, S.

    2014-04-01

    Protoplanetary disks are volatile-rich environments capable of producing the essential conditions that make planet formation viable. Establishing a molecular inventory of dominant volatile species, such as water, in the planet-forming zones surrounding young, solar-type stars elevates our understanding of the chemistry involved with planet formation, composition and disk evolution. For this study we measure the water vapor content and determine the location of the condensation front, or snow line, for four classical disks selected for the strong water emission present in their mid-infrared spectra. To accomplish this we combine deep Herschel PACS observations with high resolution Spitzer IRS spectra to create molecular maps comprised of water lines with excitation temperatures that trace the disks' surfaces from 1-100 AU. We use two-dimensional, axisymmetric radiative transfer modeling to retrieve the disks' dust structures and the RADLite raytracer to render model spectra for each disk. A simple step function is used to define the abundance structure and the model spectra are fit to the observed water lines. Preliminary results will be discussed, including the inner disk chemical content, snow line radius and fractional water vapor abundances for the classical disk RNO 90.

  11. Formation waters from Mississippian-Pennsylvanian reservoirs, Illinois basin, USA: Chemical and isotopic constraints on evolution and migration

    SciTech Connect

    Stueber, A.M. ); Walter, L.M.; Huston, T.J. ); Pushkar, P. )

    1993-02-01

    We have analyzed a suite of seventy-four formation-water samples from Mississippian and Pennsylvanian carbonate and siliciclastic strata in the Illinois basin for major, minor, and trace element concentrations and for strontium isotopic composition. A subset of these samples was also analyzed for boron isotopic composition. Data are used to interpret origin of salinity and chemical and Sr isotopic evolution of the brines and in comparison with a similar data set from an earlier study of basin formation waters from Silurian-Devonian reservoirs. Systematics of Cl-Br-Na show that present Mississippian-Pennsylvanian brine salinity can be explained by a combination of subaerial seawater evaporation short of halite saturation and subsurface dissolution of halite from an evaporite zone in the middle Mississippian St. Louis Limestone, along with extensive dilution by mixing with meteoric waters. Additional diagenetic modifications in the subsurface interpreted from cation/Br ratios include K depletion through interaction with clay minerals, Ca enrichment, and Mg depletion by dolomitization, and Sr enrichment through CaCO[sub 3] recrystallization and dolomitization. Ste. Genevieve Limestone (middle Mississippian) formation waters show [sup 87]Sr/[sup 86]Sr ratios in the range 0.70782-0.70900, whereas waters from the siliciclastic reservoirs are in the rante 0.70900-0.71052. Inverse correlations between [sup 87]Sr/[sup 86]Sr and B,Li, and Mg concentrations suggest that the brines acquired radiogenic [sup 87]Sr through interaction with siliciclastic minerals. Completely unsystematic relations between [sup 87]Fr/[sup 86]Sr and 1/Sr are observed; Sr concentrations in Ste. Genevieve and Aux Vases (middle Mississippian) waters appear to be buffered by equilibrium with respect to SrSo[sub 4]. These formation waters are distinguished from Silurian-Devonian brines in the basin by elevated Cl/Br and Na/Br ratios and by unsystematic Sr isotope relationships.

  12. Origins of the thick disk of the Milky Way Galaxy as traced by the elemental abundances of metal-poor stars

    NASA Astrophysics Data System (ADS)

    Ruchti, Gregory Randal

    2010-12-01

    Understanding the formation and evolution of disks in galaxies in the early universe is very important for understanding the forms of galaxies today. Recent studies of the Milky Way Galaxy, an ideal galaxy for analyzing individual stars within its disk, indicate that the formation of the Galactic disk is very complex. Most of these studies, however, contain very few stars at low metallicities. Metal-poor stars are important, because they are potential survivors of the earliest star formation in the disk of the Milky Way Galaxy. I therefore measured elemental abundances of a statistically significant sample of metal-poor ([Fe/H] ≲ - 1.0) stars in the disk of the Galaxy, chosen from the RAVE survey in order to study the early formation history of the Galactic disk. I report on a sample of 214 red giant branch, 31 red clump/horizontal branch, and 74 dwarf/sub-giant metal-poor thick-disk candidate stars. I found that the [alpha/Fe] ratios are enhanced implying that enrichment proceeded by purely core-collapse supernovae. This requires that star formation in each star forming region had a short duration. The relative lack of scatter in the [alpha/Fe] ratios implies good mixing in the interstellar medium prior to star formation. In addition, the ratios resemble that of the halo, indicating that the halo and thick disk share a similar massive star initial mass function. I further looked for radial or vertical gradients in metallicity or alpha-enhancement for the metal-poor thick disk, never before done for such a sample. I found no radial gradient and a moderate vertical gradient in my derived iron abundance, and only minimal-amplitude gradients in [alpha/Fe]. In addition, I show that the distribution of orbital eccentricities for my metal-poor thick-disk stars requires that the thick disk was formed primarily in situ, with direct accretion being extremely minimal. I conclude that the alpha-enhancement of the metal-poor thick disk, and the lack of obvious radial or

  13. DISK PUMP FEASIBILITY INVESTIGATION,

    DTIC Science & Technology

    The disk pump was investigated at the Air Force Rocket Propulsion Laboratory (AFRPL) to determine the feasibility of using a novel viscous pumping... pump primarily for application as an inducer. The disk pump differs drastically from conventional pumps because of the following major factors: (1) The...The pump inlet relative velocity is equal only to the through flow velocity between the disks. Therefore, there is good indication that the disk pump will

  14. Accretion disk electrodynamics

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.

    1985-01-01

    Accretion disk electrodynamic phenomena are separable into two classes: (1) disks and coronas with turbulent magnetic fields; (2) disks and black holes which are connected to a large-scale external magnetic field. Turbulent fields may originate in an alpha-omega dynamo, provide anomalous viscous transport, and sustain an active corona by magnetic buoyancy. The large-scale field can extract energy and angular momentum from the disk and black hole, and be dynamically configured into a collimated relativistic jet.

  15. Understanding Floppy Disks.

    ERIC Educational Resources Information Center

    Valentine, Pamela

    1980-01-01

    The author describes the floppy disk with an analogy to the phonograph record, and discusses the advantages, disadvantages, and capabilities of hard-sectored and soft-sectored floppy disks. She concludes that, at present, the floppy disk will continue to be the primary choice of personal computer manufacturers and their customers. (KC)

  16. Modeling collisions in circumstellar debris disks

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika

    2015-10-01

    Observations of resolved debris disks show a spectacular variety of features and asymmetries, including inner cavities and gaps, inclined secondary disks or warps, and eccentric, sharp-edged rings. Embedded exoplanets could create many of these features via gravitational perturbations, which sculpt the disk directly and by generating planetesimal collisions. In this thesis, I present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. I show that SMACK is stable to numerical viscosity and numerical heating over 107 yr, and that it can reproduce analytic models of disk evolution. As an example of the algorithm's capabilities, I use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit and demonstrate that differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring. To demonstrate SMACK's utility in studying debris disk physics, I apply SMACK to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (alpha = 2/7). I find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index alpha of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by alpha = 0.32(t/ tcoll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion

  17. Les questions de migrations internationales (Questions of International Migrations).

    ERIC Educational Resources Information Center

    Samman, Mouna Liliane

    1993-01-01

    Education about international migration should (1) utilize a framework of historical evolution; (2) stress the growing interdependence of nations; (3) emphasize universal moral values and the role of the individual in human rights; and (4) consider the complementary or competing portraits of international migration presented by the media. (DMM)

  18. Vertical Structure of Magnetized Accretion Disks around Young Stars

    NASA Astrophysics Data System (ADS)

    Lizano, S.; Tapia, C.; Boehler, Y.; D'Alessio, P.

    2016-01-01

    We model the vertical structure of the magnetized accretion disks that are subject to viscous and resistive heating and irradiation by the central star. We apply our formalism to the radial structure of the magnetized accretion disks that are threaded by the poloidal magnetic field dragged during the process of star formation, which was developed by Shu and coworkers. We consider disks around low-mass protostars, T Tauri, and FU Orionis stars, as well as two levels of disk magnetization: {λ }{sys}=4 (strongly magnetized disks) and {λ }{sys}=12 (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk, and the T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7% of the viscous heating. In these models, the T Tauri disk has a larger aspect ratio, which is consistent with that inferred from observations. All the disks have spatially extended hot atmospheres where the irradiation flux is absorbed, although most of the mass (˜90%-95%) is in the disk midplane. With the advent of ALMA one expects direct measurements of magnetic fields and their morphology at disk scales. It will then be possible to determine the mass-to-flux ratio of magnetized accretion disks around young stars, an essential parameter for their structure and evolution. Our models contribute to the understanding of the vertical structure and emission of these disks.

  19. Floppy disk utility user's guide

    NASA Technical Reports Server (NTRS)

    Akers, J. W.

    1981-01-01

    The Floppy Disk Utility Program transfers programs between files on the hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System (RDOS).

  20. Floppy disk utility user's guide

    NASA Technical Reports Server (NTRS)

    Akers, J. W.

    1980-01-01

    A floppy disk utility program is described which transfers programs between files on a hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System. Sample operations are given.

  1. Modeling Dust Emission of HL Tau Disk Based on Planet-Disk Interactions

    SciTech Connect

    Jin, Sheng; Li, Shengtai; Isella, Andrea; Li, Hui; Ji, Jianghui

    2016-02-09

    In this paper, we use extensive global two-dimensional hydrodynamic disk gas+dust simulations with embedded planets, coupled with three-dimensional radiative transfer calculations, to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We include the self-gravity of disk gas and dust components and make reasonable choices of disk parameters, assuming an already settled dust distribution and no planet migration. We can obtain quite adequate fits to the observed dust emission using three planets with masses of 0.35, 0.17, and 0.26 MJup at 13.1, 33.0, and 68.6 AU, respectively. Finally, implications for the planet formation as well as the limitations of this scenario are discussed.

  2. Modeling Dust Emission of HL Tau Disk Based on Planet-Disk Interactions

    DOE PAGES

    Jin, Sheng; Li, Shengtai; Isella, Andrea; ...

    2016-02-09

    In this paper, we use extensive global two-dimensional hydrodynamic disk gas+dust simulations with embedded planets, coupled with three-dimensional radiative transfer calculations, to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We include the self-gravity of disk gas and dust components and make reasonable choices of disk parameters, assuming an already settled dust distribution and no planet migration. We can obtain quite adequate fits to the observed dust emission using three planets with masses of 0.35, 0.17, and 0.26 MJup at 13.1, 33.0, and 68.6 AU, respectively. Finally,more » implications for the planet formation as well as the limitations of this scenario are discussed.« less

  3. MODELING DUST EMISSION OF HL TAU DISK BASED ON PLANET–DISK INTERACTIONS

    SciTech Connect

    Jin, Sheng; Ji, Jianghui; Li, Shengtai; Li, Hui; Isella, Andrea

    2016-02-10

    We use extensive global two-dimensional hydrodynamic disk gas+dust simulations with embedded planets, coupled with three-dimensional radiative transfer calculations, to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We include the self-gravity of disk gas and dust components and make reasonable choices of disk parameters, assuming an already settled dust distribution and no planet migration. We can obtain quite adequate fits to the observed dust emission using three planets with masses of 0.35, 0.17, and 0.26 M{sub Jup} at 13.1, 33.0, and 68.6 AU, respectively. Implications for the planet formation as well as the limitations of this scenario are discussed.

  4. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS. II. PREDICTIONS FOR OUTER EXTRASOLAR PLANETARY SYSTEMS

    SciTech Connect

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2010-03-10

    We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ('planetesimals'). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M{sub +} from 10 to 20 AU. For large planet masses (M {approx}> M{sub Sat}), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a {approx}< 3 AU) is consistent with isolated planet-planet scattering. We explain the observed mass dependence-which is in the opposite sense from that predicted by the simplest scattering models-as a consequence of strong correlations between planet masses in the same system. At somewhat larger radii, initial planetary mass correlations and disk effects can yield similar modest changes to the eccentricity distribution. Nonetheless, strong damping of eccentricity for low-mass planets at large radii appears to be a secure signature of the dynamical influence of disks. Radial velocity

  5. Metallicity Structure in the Milky Way Disk

    NASA Astrophysics Data System (ADS)

    Wenger, Trey; Balser, Dana S.; Anderson, Loren D.; Bania, Thomas M.

    2017-01-01

    Elemental abundances are an important constraint on theories of the formation and evolution of the Milky Way. We use HII regions as a probe of the Milky Way's metallicity structure. HII regions are the brightest objects in the Galaxy at radio wavelengths and are detected across the entire Galactic disk. In thermal equilibrium, metal abundances are expected to set the nebular electron temperature with high abundances producing low temperatures. We derive the metallicity of HII regions using an empirical relation between an HII region's radio recombination line-to-continuum ratio and nebular metallicity. Our previous studies have revealed azimuthal metallicity structure in the Galactic disk, indicating that the disk may not be as well mixed as expected. To extend this work, we obtained high quality radio recombination line and radio continuum measurements of 120 HII regions across the Galactic disk using the Jansky Very Large Array. Here we describe the observations, data reduction pipeline, and preliminary results from this study.

  6. HNC IN PROTOPLANETARY DISKS

    SciTech Connect

    Graninger, Dawn; Öberg, Karin I.; Qi, Chunhua; Kastner, Joel

    2015-07-01

    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling.

  7. Three steps toward understanding the dynamical structure of the Kuiper belt (and what it means for Neptune's migration)

    NASA Astrophysics Data System (ADS)

    Nesvorny, David

    2015-11-01

    Much of the dynamical structure of the Kuiper belt can be explained if Neptune migrated over several AU, and/or if Neptune was scattered to an eccentric orbit during planetary instability.Step 1: An outstanding problem with the previous migration/instability models is that the distribution of orbital inclinations they predict is narrower than the one inferred from observations. Here we perform numerical simulations of the Kuiper belt formation starting from an initial state with Neptune at 20disk extending from beyond a_N to 30 AU. Neptune's orbit is migrated into the disk on an e-folding timescale 1 < tau < 100 Myr. A small fraction of the disk planetesimals become implanted into the Kuiper belt in the simulations. We find that the inclination constraint implies that Neptune's migration was slow (tau > 10 Myr) and long range (a_N < 25 AU).Step 2: A particularly puzzling and up-to-now unexplained feature of the Kuiper belt is the so-called `kernel', a concentration of orbits with semimajor axes a=44 AU, eccentricities e=0.05, and inclinations i<5 deg. Here we show that the Kuiper belt kernel can be explained if Neptune's migration was interrupted by a discontinuous change of Neptune's semimajor axis when Neptune reached 28 AU (jumping-Neptune model).Step 3: The existing migration/instability models invariably predict an excessively large resonant population, while observations show that the non-resonant orbits are in fact more common (e.g., Plutinos in the 3:2 resonance represent only ~1/3 of the main belt population). Here we show that the observed population statistic implies that Neptune's migration was grainy, as expected from scattering encounters of Neptune with massive planetesimals. Our preferred fit to observations suggests that the outer planetesimal disk below 30 AU contained ~2000 bodies with mass comparable to that of Pluto.Together, these results imply that Neptune's migration was slow, long-range and grainy

  8. Are all flaring Herbig disks transitional?

    NASA Astrophysics Data System (ADS)

    Maaskant, K. M.; Honda, M.; Waters, L. B. F. M.; Tielens, A. G. G. M.; Dominik, Carsten; Min, M.; Verhoeff, A.; Meeus, G.; Ancker, M. E.

    2013-07-01

    Context: The evolution of young massive protoplanetary disks toward planetary systems is expected to correspond to structural changes in observational appearance, which includes the formation of gaps and the depletion of dust and gas. Aims. A special group of disks around Herbig Ae/Be stars do not show prominent silicate emission features, although they still bear signs of flaring disks, the presence of gas, and small grains. We focus our attention on four key Herbig Ae/Be stars to understand the structural properties responsible for the absence of silicate feature emission. Methods: We investigate Q- and N-band images taken with Subaru/COMICS, Gemini South/T-ReCS, and VLT/VISIR. We perform radiative transfer modeling to examine the radial distribution of dust and polycyclic aromatic hydrocarbons (PAHs). Our solutions require a separation of inner- and outer- disks by a large gap. From this, we characterize the radial density structure of dust and PAHs in the disk. Results: The inner edge of the outer disk has a high surface brightness and a typical temperature between ˜100-150 K and therefore, dominates the emission in the Q-band. All four disks are characterized by large gaps. We derive radii of the inner edge of the outer disk of 34+4 , 23+3 , 30+5 and 63+4 AU for HD 97048, HD 169142, HD 135344 B, and Oph IRS 48, respectively. For HD 97048 this is the first -4 -5 -3 -4 detection of a disk gap. The large gaps deplete the entire population of silicate particles with temperatures suitable for prominent mid- infrared feature emission, while small carbonaceous grains and PAHs can still show prominent emission at mid-infrared wavelengths. The continuum emission in the N-band is not due to emission in the wings of PAHs. This continuum emission can be due to very small grains or to thermal emission from the inner disk. We find that PAH emission is not always dominated by PAHs on the surface of the outer disk. Conclusions: The absence of silicate emission features is

  9. MAGNETIC FIELDS IN EARLY PROTOSTELLAR DISK FORMATION

    SciTech Connect

    González-Casanova, Diego F.; Lazarian, Alexander; Santos-Lima, Reinaldo

    2016-03-10

    We consider formation of accretion disks from a realistically turbulent molecular gas using 3D MHD simulations. In particular, we analyze the effect of the fast turbulent reconnection described by the Lazarian and Vishniac model for the removal of magnetic flux from a disk. With our numerical simulations we demonstrate how the fast reconnection enables protostellar disk formation resolving the so-called “magnetic braking catastrophe.” In particular, we provide a detailed study of the dynamics of a 0.5 M{sub ⊙} protostar and the formation of its disk for up to several thousands years. We measure the evolution of the mass, angular momentum, magnetic field, and turbulence around the star. We consider effects of two processes that strongly affect the magnetic transfer of angular momentum, both of which are based on turbulent reconnection: the first, “reconnection diffusion,” removes the magnetic flux from the disk; the other involves the change of the magnetic field's topology, but does not change the absolute value of the magnetic flux through the disk. We demonstrate that for the first mechanism, turbulence causes a magnetic flux transport outward from the inner disk to the ambient medium, thus decreasing the coupling of the disk to the ambient material. A similar effect is achieved through the change of the magnetic field's topology from a split monopole configuration to a dipole configuration. We explore how both mechanisms prevent the catastrophic loss of disk angular momentum and compare both above turbulent reconnection mechanisms with alternative mechanisms from the literature.

  10. Magnetic Fields in Early Protostellar Disk Formation

    NASA Astrophysics Data System (ADS)

    González-Casanova, Diego F.; Lazarian, Alexander; Santos-Lima, Reinaldo

    2016-03-01

    We consider formation of accretion disks from a realistically turbulent molecular gas using 3D MHD simulations. In particular, we analyze the effect of the fast turbulent reconnection described by the Lazarian & Vishniac model for the removal of magnetic flux from a disk. With our numerical simulations we demonstrate how the fast reconnection enables protostellar disk formation resolving the so-called “magnetic braking catastrophe.” In particular, we provide a detailed study of the dynamics of a 0.5 M⊙ protostar and the formation of its disk for up to several thousands years. We measure the evolution of the mass, angular momentum, magnetic field, and turbulence around the star. We consider effects of two processes that strongly affect the magnetic transfer of angular momentum, both of which are based on turbulent reconnection: the first, “reconnection diffusion,” removes the magnetic flux from the disk; the other involves the change of the magnetic field's topology, but does not change the absolute value of the magnetic flux through the disk. We demonstrate that for the first mechanism, turbulence causes a magnetic flux transport outward from the inner disk to the ambient medium, thus decreasing the coupling of the disk to the ambient material. A similar effect is achieved through the change of the magnetic field's topology from a split monopole configuration to a dipole configuration. We explore how both mechanisms prevent the catastrophic loss of disk angular momentum and compare both above turbulent reconnection mechanisms with alternative mechanisms from the literature.

  11. THE EXTENDED OPTICAL DISK OF M101

    SciTech Connect

    Mihos, J. Christopher; Harding, Paul; Spengler, Chelsea E.; Rudick, Craig S.; Feldmeier, John J. E-mail: paul.harding@case.edu E-mail: craig.rudick@phys.ethz.ch

    2013-01-10

    We have used deep, wide-field optical imaging to study the faint outskirts of the luminous spiral galaxy M101 (NGC 5457) as well as its surrounding environment. Over 6 deg{sup 2}, our imaging has a limiting surface brightness of {mu} {sub B} {approx} 29.5 mag arcsec{sup -2}, and has revealed the stellar structure of M101's disk out to nearly 25' (50 kpc), 3 times our measured R {sub 25} isophotal size of the optical disk. At these radii, the well-known asymmetry of the inner disk slews 180 Degree-Sign , resulting in an asymmetric plume of light at large radius which follows the very extended H I disk to the northeast of M101. This plume has very blue colors (B - V {approx} 0.2), suggesting that it is the somewhat more evolved (few hundred Myr to {approx}1 Gyr) counterpart of the young far-ultraviolet emitting population traced by Galaxy Evolution Explorer imaging. We also detect another, redder spur of extended light to the east of the disk, and both structures are reminiscent of features produced during fly-by galaxy interactions. However, we see no evidence of very extended tidal tails around M101 or any of its companions which might be expected from a recent encounter with a massive companion. We consider the properties of M101's outer disk in light of possible past interactions with the nearby companion galaxies NGC 5477 and NGC 5474. The detection of optical starlight at such large radii gives us the ability to study star formation histories and stellar populations in outer disks over longer timescales than those traced by the UV or H{alpha} emitting populations. Our data suggest an ongoing buildup of M101's outer disk due to encounters in the group environment triggering extended star formation and tidal heating of existing disk populations.

  12. Planetary Torque in 3D Isentropic Disks

    NASA Astrophysics Data System (ADS)

    Fung, Jeffrey; Masset, Frédéric; Lega, Elena; Velasco, David

    2017-03-01

    Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk–planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential (r s), and that it has a weak dependence on the adiabatic index of the gaseous disk (γ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ, up to supersonic speeds for the smallest r s and γ in our study.

  13. SUPERMASSIVE BLACK HOLES IN A STAR-FORMING GASEOUS CIRCUMNUCLEAR DISK

    SciTech Connect

    Del Valle, L.; Escala, A.; Molina, J.; Maureira-Fredes, C.; Amaro-Seoane, P.; Cuadra, J.

    2015-09-20

    Using N-body/smoothed particle hydrodynamics simulations we study the evolution of the separation of a pair of supermassive black holes (SMBHs) embedded in a star-forming circumnuclear disk (CND). This type of disk is expected to be formed in the central kiloparsec of the remnant of gas-rich galaxy mergers. Our simulations indicate that orbital decay of the SMBHs occurs more quickly when the mean density of the CND is higher, due to increased dynamical friction. However, in simulations where the CND is fragmented in high-density gaseous clumps (clumpy CND), the orbits of the SMBHs are erratically perturbed by the gravitational interaction with these clumps, delaying, in some cases, the orbital decay of the SMBHs. The densities of these gaseous clumps in our simulations and in recent studies of clumpy CNDs are two orders of magnitude higher than the observed density of molecular clouds in isolated galaxies or ultraluminous infrared galaxies (ULIRGs), thus, we expect that SMBH orbits are perturbed less in real CNDs than in the simulated CNDs of this study and other recent studies. We also find that the migration timescale has a weak dependence on the star formation rate of the CND. Furthermore, the migration timescale of an SMBH pair in a star-forming clumpy CND is at most a factor of three longer than the migration timescale of a pair of SMBHs in a CND modeled with more simple gas physics. Therefore, we estimate that the migration timescale of the SMBHs in a clumpy CND is on the order of 10{sup 7} years.

  14. Supermassive Black Holes in a Star-forming Gaseous Circumnuclear Disk

    NASA Astrophysics Data System (ADS)

    del Valle, L.; Escala, A.; Maureira-Fredes, C.; Molina, J.; Cuadra, J.; Amaro-Seoane, P.

    2015-09-01

    Using N-body/smoothed particle hydrodynamics simulations we study the evolution of the separation of a pair of supermassive black holes (SMBHs) embedded in a star-forming circumnuclear disk (CND). This type of disk is expected to be formed in the central kiloparsec of the remnant of gas-rich galaxy mergers. Our simulations indicate that orbital decay of the SMBHs occurs more quickly when the mean density of the CND is higher, due to increased dynamical friction. However, in simulations where the CND is fragmented in high-density gaseous clumps (clumpy CND), the orbits of the SMBHs are erratically perturbed by the gravitational interaction with these clumps, delaying, in some cases, the orbital decay of the SMBHs. The densities of these gaseous clumps in our simulations and in recent studies of clumpy CNDs are two orders of magnitude higher than the observed density of molecular clouds in isolated galaxies or ultraluminous infrared galaxies (ULIRGs), thus, we expect that SMBH orbits are perturbed less in real CNDs than in the simulated CNDs of this study and other recent studies. We also find that the migration timescale has a weak dependence on the star formation rate of the CND. Furthermore, the migration timescale of an SMBH pair in a star-forming clumpy CND is at most a factor of three longer than the migration timescale of a pair of SMBHs in a CND modeled with more simple gas physics. Therefore, we estimate that the migration timescale of the SMBHs in a clumpy CND is on the order of 107 years.

  15. THE THICK DISKS OF SPIRAL GALAXIES AS RELICS FROM GAS-RICH, TURBULENT, CLUMPY DISKS AT HIGH REDSHIFT

    SciTech Connect

    Bournaud, Frederic; Martig, Marie; Elmegreen, Bruce G.

    2009-12-10

    The formation of thick stellar disks in spiral galaxies is studied. Simulations of gas-rich young galaxies show formation of internal clumps by gravitational instabilities, clump coalescence into a bulge, and disk thickening by strong stellar scattering. The bulge and thick disks of modern galaxies may form this way. Simulations of minor mergers make thick disks too, but there is an important difference. Thick disks made by internal processes have a constant scale height with galactocentric radius, but thick disks made by mergers flare. The difference arises because in the first case, perpendicular forcing and disk-gravity resistance are both proportional to the disk column density, so the resulting scale height is independent of this density. In the case of mergers, perpendicular forcing is independent of the column density and the low-density regions get thicker; the resulting flaring is inconsistent with observations. Late-stage gas accretion and thin-disk growth are shown to preserve the constant scale heights of thick disks formed by internal evolution. These results reinforce the idea that disk galaxies accrete most of their mass smoothly and acquire their structure by internal processes, in particular through turbulent and clumpy phases at high redshift.

  16. Formation of giant planets by fragmentation of protoplanetary disks.

    PubMed

    Mayer, Lucio; Quinn, Thomas; Wadsley, James; Stadel, Joachim

    2002-11-29

    The evolution of gravitationally unstable protoplanetary gaseous disks has been studied with the use of three-dimensional smoothed particle hydrodynamics simulations with unprecedented resolution. We have considered disks with initial masses and temperature profiles consistent with those inferred for the protosolar nebula and for other protoplanetary disks. We show that long-lasting, self-gravitating protoplanets arise after a few disk orbital periods if cooling is efficient enough to maintain the temperature close to 50 K. The resulting bodies have masses and orbital eccentricities similar to those of detected extrasolar planets.

  17. Organic Molecules in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Gibb, Erika; Horne, David; Shenoy, Sachindev; Blake, Daniel; van Brunt, Kari; Brittain, Sean; Rettig, Terrence

    2008-08-01

    We propose to use NIRSPEC to search for organic molecules in circumstellar disks toward nearly edge-on T Tauri stars. The feasibility of this study has been recently illustrated by the NIRSPEC detection of HCN toward two edge-on T Tauri stars, GV Tau (Gibb et al. 2007) and IRS 46 (Lahuis et al. 2006), and Spitzer detections of C_2H_2, HCN, and CO_2 toward IRS 46 (Lahuis et al. 2006) and AA Tau (Carr & Najita 2008). We have selected 10 molecules that are predicted to be abundant based on chemical models, observations of high and low mass star forming regions, and comet comae. We will investigate compositional variations among the T Tauri population and compare that to comets and chemical models of disk chemistry. Through this, we can explore the chemistry occurring in the planet-forming regions of protoplanetary disks and investigate the evolution of organic volatiles, which can help establish the mechanism and timescale for planet formation.

  18. Age-dependent metallicity gradients of the MilkyWay disk from main sequence turn-off stars in LSS-GAC

    NASA Astrophysics Data System (ADS)

    Xiang, Maosheng; Liu, Xiaowei

    2015-08-01

    The stellar metallicity gradient plays an important role on constraining the formation and assemblage history of the Galactic disk. We use 297, 042 main sequence turn-off stars from LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC) to study the radial metallicity gradient, [Fe/H]/R, and the vertical metallicity gradient, [Fe/H]/|Z|, of the Galactic disk in the anti-center direction. We carry out age determination for these turnoff stars via isochrone fitting and study the age-dependent metallicity gradients. We have implemented a detailed analysis on the sample selection effect to account for the target selection in the color - magnitude diagram (CMD) and the potential bias on metallicity gradients of a magnitude limited sample. Our results show that both the radial and vertical gradients have strong spatial and temporal evolution. The radial gradients of the oldest (age > 11Gyr) stars are almost zero at all heights above the Galactic disk plane, while those of the younger stars are always negative. The vertical gradients of the oldest stars are negative and show very weak evolution with the Galactocentric distance in the disk plane, R, while those of the younger stars show strong evolution with R. At the early epoch, the radial gradient steepens as the age becomes younger, with a maximum occurs at 7 - 8Gyr, after then it becomes flatter. Similar trend with age is also presented in the vertical gradients. We infer that the formation of the Galactic disk has experienced at least two phases. The earlier phase is probably a slow, pressure-supported collapse of gas, where the gas settle down to the disk from the vertical direction. In the later phase, there is significant radial flow of gas. Transition of the gas behaviors between the two phases occurs between 8 and 11Gyr. The two phases are responsible for the formation of the Galactic thick and thin disks, respectively, and consequently, we recommend that the age is a natural, physical criterion to

  19. DISK-PLANETS INTERACTIONS AND THE DIVERSITY OF PERIOD RATIOS IN KEPLER'S MULTI-PLANETARY SYSTEMS

    SciTech Connect

    Baruteau, Clement; Papaloizou, John C. B. E-mail: J.C.B.Papaloizou@damtp.cam.ac.uk

    2013-11-20

    The Kepler mission is dramatically increasing the number of planets known in multi-planetary systems. Many adjacent planets have orbital period ratios near resonant values, with a tendency to be larger than required for exact first-order mean-motion resonances. This feature has been shown to be a natural outcome of orbital circularization of resonant planetary pairs due to star-planet tidal interactions. However, this feature holds in multi-planetary systems with periods longer than 10 days, in which tidal circularization is unlikely to provide efficient divergent evolution of the planets' orbits to explain these orbital period ratios. Gravitational interactions between planets and their parent protoplanetary disk may instead provide efficient divergent evolution. For a planet pair embedded in a disk, we show that interactions between a planet and the wake of its companion can reverse convergent migration and significantly increase the period ratio from a near-resonant value. Divergent evolution due to wake-planet interactions is particularly efficient when at least one of the planets opens a partial gap around its orbit. This mechanism could help account for the diversity of period ratios in Kepler's multiple systems from super-Earth to sub-Jovian planets with periods greater than about 10 days. Diversity is also expected for pairs of planets massive enough to merge their gap. The efficiency of wake-planet interactions is then much reduced, but convergent migration may stall with a variety of period ratios depending on the density structure in the common gap. This is illustrated for the Kepler-46 system, for which we reproduce the period ratio of Kepler-46b and c.

  20. Neptune's Orbital Migration Was Grainy, Not Smooth

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Vokrouhlický, David

    2016-07-01

    The Kuiper Belt is a population of icy bodies beyond the orbit of Neptune. The complex orbital structure of the Kuiper Belt, including several categories of objects inside and outside of resonances with Neptune, emerged as a result of Neptune’s migration into an outer planetesimal disk. An outstanding problem with the existing migration models is that they invariably predict excessively large resonant populations, while observations show that the non-resonant orbits are in fact common (e.g., the main belt population is ≃2-4 times larger than Plutinos in the 3:2 resonance). Here we show that this problem can be resolved if it is assumed that Neptune’s migration was grainy, as expected from scattering encounters of Neptune with massive planetesimals. The grainy migration acts to destabilize resonant bodies with large libration amplitudes, a fraction of which ends up on stable non-resonant orbits. Thus, the non-resonant-to-resonant ratio obtained with the grainy migration is higher, up to ˜10 times higher for the range of parameters investigated here, than in a model with smooth migration. In addition, the grainy migration leads to a narrower distribution of the libration amplitudes in the 3:2 resonance. The best fit to observations is obtained when it is assumed that the outer planetesimal disk below 30 au contained 1000-4000 Plutos. We estimate that the combined mass of Pluto-class objects in the original disk represented 10%-40% of the estimated disk mass ({M}{{disk}}≃ 20 {M}{{Earth}}). This constraint can be used to better understand the accretion processes in the outer solar system.

  1. TOWARD CHEMICAL CONSTRAINTS ON HOT JUPITER MIGRATION

    SciTech Connect

    Madhusudhan, Nikku; Amin, Mustafa A.; Kennedy, Grant M.

    2014-10-10

    The origin of hot Jupiters—gas giant exoplanets orbiting very close to their host stars—is a long-standing puzzle. Planet formation theories suggest that such planets are unlikely to have formed in situ but instead may have formed at large orbital separations beyond the snow line and migrated inward to their present orbits. Two competing hypotheses suggest that the planets migrated either through interaction with the protoplanetary disk during their formation, or by disk-free mechanisms such as gravitational interactions with a third body. Observations of eccentricities and spin-orbit misalignments of hot Jupiter systems have been unable to differentiate between the two hypotheses. In the present work, we suggest that chemical depletions in hot Jupiter atmospheres might be able to constrain their migration mechanisms. We find that sub-solar carbon and oxygen abundances in Jovian-mass hot Jupiters around Sun-like stars are hard to explain by disk migration. Instead, such abundances are more readily explained by giant planets forming at large orbital separations, either by core accretion or gravitational instability, and migrating to close-in orbits via disk-free mechanisms involving dynamical encounters. Such planets also contain solar or super-solar C/O ratios. On the contrary, hot Jupiters with super-solar O and C abundances can be explained by a variety of formation-migration pathways which, however, lead to solar or sub-solar C/O ratios. Current estimates of low oxygen abundances in hot Jupiter atmospheres may be indicative of disk-free migration mechanisms. We discuss open questions in this area which future studies will need to investigate.

  2. Disks in elliptical galaxies

    SciTech Connect

    Rix, H.; White, S.D.M. )

    1990-10-01

    The abundance and strength of disk components in elliptical galaxies are investigated by studying the photometric properties of models containing a spheroidal r exp 1/4-law bulge and a weak exponential disk. Pointed isophotes are observed in a substantial fraction of elliptical galaxies. If these isophote distortions are interpreted in the framework of the present models, then the statistics of observed samples suggest that almost all radio-weak ellipticals could have disks containing roughly 20 percent of the light. It is shown that the E5 galaxy NGC 4660 has the photometric signatures of a disk containing a third of the light. 30 refs.

  3. Astounding Jumping Disk.

    ERIC Educational Resources Information Center

    Guzdziol, Edward S.

    1991-01-01

    Activities involving concave rubber disks are utilized to illustrate the scientific principles of kinetic and potential energy. Provides teacher instructions and questions related to the activity. (MDH)

  4. Glass rupture disk

    DOEpatents

    Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.

    2002-01-01

    A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.

  5. Erosion of circumstellar particle disks by interstellar dust

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Griffith, Caitlin A.

    1989-01-01

    Circumstellar particle disks appear to be a common phenomenon; however, their properties vary greatly. Models of the evolution of such systems focus on internal mechanisms such as interparticle collisions and Poynting-Robertson drag. Herein it is shown that 'sandblasting' by interstellar dust can be an important and even dominant contributor to the evolution of circumstellar particle disks. Stars spend up to about 3 percent of their main-sequence lifetimes within atomic clouds. Among an IRAS sample of 21 nearby main-sequence A stars, beta Pictoris has the brightest disk; it also possesses the smallest random velocity and therefore the slowest predicted erosion rate.

  6. Age and speciation of iodine in groundwater and mudstones of the Horonobe area, Hokkaido, Japan: Implications for the origin and migration of iodine during basin evolution

    NASA Astrophysics Data System (ADS)

    Togo, Yoko S.; Takahashi, Yoshio; Amano, Yuki; Matsuzaki, Hiroyuki; Suzuki, Yohey; Terada, Yasuko; Muramatsu, Yasuyuki; Ito, Kazumasa; Iwatsuki, Teruki

    2016-10-01

    This paper reports the concentration, speciation and isotope ratio (129I/127I) of iodine from both groundwater and host rocks in the Horonobe area, northern Hokkaido, Japan, to clarify the origin and migration of iodine in sedimentary rocks. Cretaceous to Quaternary sedimentary rocks deposited nearly horizontally in Tenpoku Basin and in the Horonobe area were uplifted above sea level during active tectonics to form folds and faults in the Quaternary. Samples were collected from the Pliocene Koetoi and late Miocene Wakkanai formations (Fms), which include diatomaceous and siliceous mudstones. The iodine concentration in groundwater, up to 270 μmol/L, is significantly higher than that of seawater, with the iodine enrichment factor relative to seawater reaching 800-1500. The iodine concentration in the rocks decreases from the Koetoi to Wakkanai Fms, suggesting that iodine was released into the water from the rocks of deeper formations. The iodine concentration in the rocks is sufficiently high for forming iodine-rich groundwater as found in this area. X-ray absorption near edge structure (XANES) analysis shows that iodine exists as organic iodine and iodide (I-) in host rocks, whereas it exists mainly as I- in groundwater. The isotope ratio is nearly constant for iodine in the groundwater, at [0.11-0.23] × 10-12, and it is higher for iodine in rocks, at [0.29-1.1] × 10-12, giving iodine ages of 42-60 Ma and 7-38 Ma, respectively. Some iodine in groundwater must have originated from Paleogene and even late Cretaceous Fms, which are also considered as possible sources of oil and gas, in view of the old iodine ages of the groundwater. The iodine ages of the rocks are older than the depositional ages, implying that the rocks adsorbed some iodine from groundwater, which was sourced from greater depths. The iodine concentration in groundwater decreases with decreasing chlorine concentration due to mixing of iodine-rich connate water and meteoric water. A likely scenario

  7. Regular satellite formation and evolution in a dead zone

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Martin, Rebecca G.

    2017-01-01

    The dead zone in a circumplanetary disk is a non-turbulent region at the disk midplane that is an ideal location for regular satellite formation. The lower viscosity in the dead zone allows small objects to accrete and grow. We model the evolution of a circumplanetary disk with a dead zone for a range of disk and dead zone parameters. We investigate how these affect the formation and subsequent evolution of regular satellites that form in the disk.

  8. Disk Evaporation in Star Forming Regions

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Young stars produce sufficient ultraviolet photon luminosity and mechanical luminosity in their winds to significantly affect the structure and evolution of the accretion disks surrounding them. The Lyman continuum photons create a nearly static, ionized, isothermal 10(exp 4) K atmosphere forms above the neutral disk at small distances from the star. Further out, they create a photoevaporative flow which relatively rapidly destroys the disk. The resulting slow (10-50 km/s) ionized outflow, which persists for approx. greater than 10(exp 5) years for disk masses M(sub d) approx. 0.3M(sub *), may explain the observational characteristics of many ultracompact HII regions. We compare model results to the observed radio free-free spectra and luminosities of ultracompact HII regions and to the interesting source MWC349, which is observed to produce hydrogen masers. We apply the results to Ae and Be stars in order to determine the lifetimes of disks around such stars. We also apply the results to the early solar nebula to explain the the dispersal of the solar nebula and the differences in hydrogen content in the giant planets. Finally, we model the small bright objects ("proplyds") observed in the Orion Nebula as disks around young, low mass stars which are externally illuminated by the UV photons from the nearby massive star Theta(sup 1) C.

  9. Instability of counter-rotating stellar disks

    NASA Astrophysics Data System (ADS)

    Hohlfeld, R. G.; Lovelace, R. V. E.

    2015-09-01

    We use an N-body simulation, constructed using GADGET-2, to investigate an accretion flow onto an astrophysical disk that is in the opposite sense to the disk's rotation. In order to separate dynamics intrinsic to the counter-rotating flow from the impact of the flow onto the disk, we consider an initial condition in which the counter-rotating flow is in an annular region immediately exterior the main portion of the astrophysical disk. Such counter-rotating flows are seen in systems such as NGC 4826 (known as the "Evil Eye Galaxy"). Interaction between the rotating and counter-rotating components is due to two-stream instability in the boundary region. A multi-armed spiral density wave is excited in the astrophysical disk and a density distribution with high azimuthal mode number is excited in the counter-rotating flow. Density fluctuations in the counter-rotating flow aggregate into larger clumps and some of the material in the counter-rotating flow is scattered to large radii. Accretion flow processes such as this are increasingly seen to be of importance in the evolution of multi-component galactic disks.

  10. Fallback Disks, Magnetars and Other Neutron Stars

    NASA Astrophysics Data System (ADS)

    Alpar, M. Ali; Çalışkan, Ş.; Ertan, Ü.

    2013-02-01

    The presence of matter with angular momentum, in the form of a fallback disk around a young isolated neutron star will determine its evolution. This leads to an understanding of many properties of different classes of young neutron stars, in particular a natural explanation for the period clustering of AXPs, SGRs and XDINs. The spindown or spinup properties of a neutron star are determined by the dipole component of the magnetic field. The natural possibility that magnetars and other neutron stars may have different strengths of the dipole and higher multipole components of the magnetic field is now actually required by observations on the spindown rates of some magnetars. This talk gives a broad overview and some applications of the fallback disk model to particular neutron stars. Salient points are: (i) A fallback disk has already been observed around the AXP 4U 0142+61 some years ago. (ii) The low observed spindown rate of the SGR 0418+5729 provides direct evidence that the dipole component of the field is in the 1012 G range. All properties of the SGR 0418+5729 at its present age can be explained by spindown under torques from a fallback disk. (iii) The anomalous braking index of PSR J1734-3333 can also be explained by the fallback disk model which gives the luminosity, period, period derivative and the period second derivative at the present age. (iv) These and all applications to a variety of other sources employ the same disk physics and evolution, differing only in the initial conditions of the disk.

  11. Dynamo magnetic-field generation in turbulent accretion disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.

    1991-01-01

    Magnetic fields can play important roles in the dynamics and evolution of accretion disks. The presence of strong differential rotation and vertical density gradients in turbulent disks allows the alpha-omega dynamo mechanism to offset the turbulent dissipation and maintain strong magnetic fields. It is found that MHD dynamo magnetic-field normal modes in an accretion disk are highly localized to restricted regions of a disk. Implications for the character of real, dynamically constrained magnetic fields in accretion disks are discussed. The magnetic stress due to the mean magnetic field is found to be of the order of a viscous stress. The dominant stress, however, is likely to come from small-scale fluctuating magnetic fields. These fields may also give rise to energetic flares above the disk surface, providing a possible explanation for the highly variable hard X-ray emission from objects like Cyg X-l.

  12. A Dwarf Transitional Protoplanetary Disk around XZ Tau B

    NASA Astrophysics Data System (ADS)

    Osorio, Mayra; Macías, Enrique; Anglada, Guillem; Carrasco-González, Carlos; Galván-Madrid, Roberto; Zapata, Luis; Calvet, Nuria; Gómez, José F.; Nagel, Erick; Rodríguez, Luis F.; Torrelles, José M.; Zhu, Zhaohuan

    2016-07-01

    We report the discovery of a dwarf protoplanetary disk around the star XZ Tau B that shows all the features of a classical transitional disk but on a much smaller scale. The disk has been imaged with the Atacama Large Millimeter/submillimeter Array (ALMA), revealing that its dust emission has a quite small radius of ˜3.4 au and presents a central cavity of ˜1.3 au in radius that we attribute to clearing by a compact system of orbiting (proto)planets. Given the very small radii involved, evolution is expected to be much faster in this disk (observable changes in a few months) than in classical disks (observable changes requiring decades) and easy to monitor with observations in the near future. From our modeling we estimate that the mass of the disk is large enough to form a compact planetary system.

  13. Cell Migration

    PubMed Central

    Trepat, Xavier; Chen, Zaozao; Jacobson, Ken

    2015-01-01

    Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. PMID:23720251

  14. LATE ORBITAL INSTABILITIES IN THE OUTER PLANETS INDUCED BY INTERACTION WITH A SELF-GRAVITATING PLANETESIMAL DISK

    SciTech Connect

    Levison, Harold F.; Nesvorny, David; Morbidelli, Alessandro; Tsiganis, Kleomenis; Gomes, Rodney

    2011-11-15

    We revisit the issue of the cause of the dynamical instability during the so-called Nice model, which describes the early dynamical evolution of the giant planets. In particular, we address the problem of the interaction of planets with a distant planetesimal disk in the time interval between the dispersal of the proto-solar nebula and the instability. In contrast to previous works, we assume that the inner edge of the planetesimal disk is several AUs beyond the orbit of the outermost planet, so that no close encounters between planets and planetesimals occur. Moreover, we model the disk's viscous stirring, induced by the presence of embedded Pluto-sized objects. The four outer planets are assumed to be initially locked in a multi-resonant state that most likely resulted from a preceding phase of gas-driven migration. We show that viscous stirring leads to an irreversible exchange of energy between a planet and a planetesimal disk even in the absence of close encounters between the planet and disk particles. The process is mainly driven by the most eccentric planet, which is the inner ice giant in the case studied here. In isolation, this would cause this ice giant to migrate inward. However, because it is locked in resonance with Saturn, its eccentricity increases due to adiabatic invariance. During this process, the system crosses many weak secular resonances-many of which can disrupt the mean motion resonance and make the planetary system unstable. We argue that this basic dynamical process would work in many generic multi-resonant systems-forcing a good fraction of them to become unstable. Because the energy exchange proceeds at a very slow pace, the instability manifests itself late, on a timescale consistent with the epoch of the late heavy bombardment ({approx}700 Myr). In the migration mechanism presented here, the instability time is much less sensitive to the properties of the planetesimal disk (particularly the location of its inner edge) than in the

  15. Chemical cartography of the milky way disk with the SDSS-III/Apogee survey

    NASA Astrophysics Data System (ADS)

    Hayden, Michael R.

    In this thesis I discuss the chemical structure of the Milky Way disk. Much of our knowledge of the Milky Way is restricted to the solar neighborhood due to the significant dust extinction directly in the plane of the Galaxy. SDSS-III/APOGEE is a high-resolution spectroscopic survey of more than 100,000 giant stars operating in the infrared, where extinction is ~ 1/6 compared to visual wavelengths. Individual stars are useful tracers for studying the chemical and kinematic history of the Galaxy, as they contain the chemical imprint of the gas from which they formed. I develop a Bayesian method to determine distances to every star in the APOGEE survey by comparing the observed stellar parameters from APOGEE to theoretical stellar isochrones. Using observations taken during the first year of APOGEE operations, I made mean metallicity maps and characterized radial and vertical chemical abundance gradients across the entire disk of the Galaxy at a range of heights about the plane, from 0 < R < 15 kpc and 0 < ∣z∣ < 3 kpc. Different stellar populations can be separated using [ a/Fe] abundance, and I analyze the stellar distribution in the [ a/Fe] vs. [Fe/H] plane across the disk from 3 < R < 15 kpc and at a range of heights above the plane (∣z∣ < 2 kpc) using the full three years of APOGEE observations. The metallicity distribution function (MDF) is a primary constraint for chemical evolution models, and I measure the MDF across the disk of the Milky Way. I find that the peak metallicity and shape of the MDF is a strong function of location within the Galaxy. Close to the plane, the inner disk is peaked at super-solar metallicities with a long tail towards lower metallicities (negative skewness), while the outer disk is peaked at sub-solar metallicities and a tail towards higher metallicities (positive skewness). The change in skewness with radius is difficult to explain using traditional chemical evolution models, and I made a simple model of the dynamics of the

  16. Warm Disks from Giant Impacts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    In the process of searching for exoplanetary systems, weve discovered tens of debris disks close around distant stars that are especially bright in infrared wavelengths. New research suggests that we might be looking at the late stages of terrestrial planet formation in these systems.Forming Terrestrial PlanetsAccording to the widely-accepted formation model for our solar-system, protoplanets the size of Mars formed within a protoplanetary disk around our Sun. Eventually, the depletion of the gas in the disk led the orbits of these protoplanets to become chaotically unstable. Finally, in the giant impact stage, many of the protoplanets collided with each other ultimately leading to the formation of the terrestrial planets and their moons as we know them today.If giant impact stages occur in exoplanetary systems, too leading to the formation of terrestrial exoplanets how would we detect this process? According to a study led by Hidenori Genda of the Tokyo Institute of Technology, we might be already be witnessing this stage in observations of warm debris disks around other stars. To test this, Genda and collaborators model giant impact stages and determine what we would expect to see from a system undergoing this violent evolution.Modeling CollisionsSnapshots of a giant impact in one of the authors simulations. The collision causes roughly 0.05 Earth masses of protoplanetary material to be ejected from the system. Click for a closer look! [Genda et al. 2015]The collaborators run a series of simulations evolving protoplanetary bodies in a solar system. The simulations begin 10 Myr into the lifetime of the solar system, i.e., after the gas from the protoplanetary disk has had time to be cleared and the protoplanetary orbits begin to destabilize. The simulations end when the protoplanets are done smashing into each other and have again settled into stable orbits, typically after ~100 Myr.The authors find that, over an average giant impact stage, the total amount of

  17. Reprocessing in Luminous Disks

    NASA Technical Reports Server (NTRS)

    Bell, K. Robbins; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We develop and investigate a procedure that accounts for disk reprocessing of photons that originate in the disk itself. Surface temperatures and simple, black body spectral energy distributions (SEDs) of protostellar disks are calculated. In disks that flare with radius, reprocessing of stellar photons results in temperature profiles considerably shallower than r(sup -3/4). Including the disk as a radiation source (as in the case of actively secreting disks) along with the stellar source further flattens the temperature profile. Disks that flare strongly near the star and then smoothly curve over and become shadowed at some distance ("decreasing curvature" disks) exhibit nearly power-law temperature profiles which result in power-law infrared SEDs with slopes in agreement with typical observations of young stellar objects. Disk models in which the photospheric thickness is controlled by the local opacity and in which the temperature decreases with radius naturally show this shape. Uniformly flaring models do not match observations as well; progressively stronger reprocessing at larger radii leads to SEDs that flatten toward the infrared or even have a second peak at the wavelength corresponding (through the Wien law) to the temperature of the outer edge of the disk. In FU Orionis outbursting systems, the dominant source of energy is the disk itself. The details of the reprocessing depend sensitively on the assumed disk shape and emitted temperature profile. The thermal instability outburst models of Bell Lin reproduce trends in the observed SEDs of Fuors with T varies as r(sup -3/4) in the inner disk (r approx. less than 0.25au corresponding to lambda approx. less than 10 microns) and T varies as r(sup -1/2) in the outer disk. Surface irradiation during outburst and quiescence is compared in the region of planet formation (1 - 10 au). The contrast between the two phases is diminished by the importance of the reprocessing of photons from the relatively high mass

  18. Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes

    NASA Technical Reports Server (NTRS)

    Artymowicz, Pawel; Lubow, Stephen H.

    1994-01-01

    We investigate the gravitational interaction of a generally eccentric binary star system with circumbinary and circumstellar gaseous disks. The disks are assumed to be coplanar with the binary, geometrically thin, and primarily governed by gas pressure and (turbulent) viscosity but not self-gravity. Both ordinary and eccentric Lindblad resonances are primarily responsible for truncating the disks in binaries with arbitrary eccentricity and nonextreme mass ratio. Starting from a smooth disk configuration, after the gravitational field of the binary truncates the disk on the dynamical timescale, a quasi-equilibrium is achieved, in which the resonant and viscous torques balance each other and any changes in the structure of the disk