Sample records for migration inhibitory factor

  1. Macrophage migration inhibitory factor as an incriminating agent in vitiligo.

    PubMed

    Farag, Azza Gaber Antar; Hammam, Mostafa Ahmed; Habib, Mona SalahEldeen; Elnaidany, Nada Farag; Kamh, Mona Eaid

    2018-03-01

    Vitiligo is an autoimmune skin disorder in which the loss of melanocytes is mainly attributed to defective autoimmune mechanisms and, lately, there has been more emphasis on autoinflammatory mediators. Among these is the macrophage migration inhibitory factor, which is involved in many autoimmune skin diseases. However, little is known about the contribution of this factor to vitiligo vulgaris. To determine the hypothesized role of migration inhibitory factor in vitiligo via estimation of serum migration inhibitory factor levels and migration inhibitory factor mRNA concentrations in patients with vitiligo compared with healthy controls. We also aimed to assess whether there is a relationship between the values of serum migration inhibitory factor and/or migration inhibitory factor mRNA with disease duration, clinical type and severity in vitiligo patients. Evaluation of migration inhibitory factor serum level and migration inhibitory factor mRNA expression by ELISA and real-time PCR, respectively, were performed for 50 patients with different degrees of vitiligo severity and compared to 15 age- and gender-matched healthy volunteers as controls. There was a highly significant increase in serum migration inhibitory factor and migration inhibitory factor mRNA levels in vitiligo cases when compared to controls (p<0.001). There was a significant positive correlation between both serum migration inhibitory factor and migration inhibitory factor mRNA concentrations in vitiligo patients, and each of them with duration and severity of vitiligo. In addition, patients with generalized vitiligo have significantly elevated serum migration inhibitory factor and mRNA levels than control subjects. Small number of investigated subjects. Migration inhibitory factor may have an active role in the development of vitiligo, and it may also be a useful index of disease severity. Consequently, migration inhibitory factor may be a new treatment target for vitiligo patients.

  2. Expression of macrophage migration inhibitory factor and CD74 in the inner ear and middle ear in lipopolysaccharide-induced otitis media.

    PubMed

    Ishihara, Hisashi; Kariya, Shin; Okano, Mitsuhiro; Zhao, Pengfei; Maeda, Yukihide; Nishizaki, Kazunori

    2016-10-01

    Significant expression of macrophage migration inhibitory factor and its receptor (CD74) was observed in both the middle ear and inner ear in experimental otitis media in mice. Modulation of macrophage migration inhibitory factor and its signaling pathway might be useful in the management of inner ear inflammation due to otitis media. Inner ear dysfunction secondary to otitis media has been reported. However, the specific mechanisms involved are not clearly understood. The aim of this study is to investigate the expression of macrophage migration inhibitory factor and CD74 in the middle ear and inner ear in lipopolysaccharide-induced otitis media. BALB/c mice received a transtympanic injection of either lipopolysaccharide or phosphate-buffered saline (PBS). The mice were sacrificed 24 h after injection, and temporal bones were processed for polymerase chain reaction (PCR) analysis, histologic examination, and immunohistochemistry. PCR examination revealed that the lipopolysaccharide-injected mice showed a significant up-regulation of macrophage migration inhibitory factor in both the middle ear and inner ear as compared with the PBS-injected control mice. The immunohistochemical study showed positive reactions for macrophage migration inhibitory factor and CD74 in infiltrating inflammatory cells, middle ear mucosa, and inner ear in the lipopolysaccharide-injected mice.

  3. Production of migration inhibitory factor in response to bacterial and fungal antigens in patients with untreated Graves' disease

    PubMed Central

    Wall, Jack R.; Ryan, E. Ann

    1980-01-01

    Tests for the production of migration inhibitory factor by peripheral blood leukocytes in response to ubiquitous bacterial and fungal antigens were carried out in patients with untreated Graves' disease and in healthy control subjects. Dose-response studies, tests for the production of this factor after 72 hours' stimulation with phytohemagglutinin as a test for reserve, and tests before and after 24 hours' preculture to deplete suppressor cells were also performed in some patients. The antigens used were Candida, Trichophyton-Oidiomyces-Epidermophyton, mumps live attenuated virus and purified protein derivative of tuberculin. The production of migration inhibitory factor was measured by the agarose microdroplet method. The production of migration inhibitory factor in response to all the antigens except mumps virus was slightly greater in the patients than in the control subjects, although the differences were not significant. The dose-response characteristics and the production of migration inhibitory factor after stimulation with phytohemagglutinin were similar in the two groups. The production of migration inhibitory factor in response to suboptimal concentrations of Candida, Trichophyton-Oidiomyces-Epidermophyton and mumps virus was not enhanced in either group after 24 hours' preculture apart from a slight increase in response to mumps virus in the patients. These results fail to support the suggestion that patients with Graves' disease have a deficiency of suppressor cells. PMID:6446374

  4. Expression of macrophage migration inhibitory factor in footpad skin lesions with diabetic neuropathy.

    PubMed

    Up Noh, Sun; Lee, Won-Young; Kim, Won-Serk; Lee, Yong-Taek; Jae Yoon, Kyung

    2018-01-01

    Background Diabetic neuropathy originating in distal lower extremities is associated with pain early in the disease course, overwhelming in the feet. However, the pathogenesis of diabetic neuropathy remains unclear. Macrophage migration inhibitory factor has been implicated in the onset of neuropathic pain and the development of diabetes. Objective of this study was to observe pain syndromes elicited in the footpad of diabetic neuropathy rat model and to assess the contributory role of migration inhibitory factor in the pathogenesis of diabetic neuropathy. Methods Diabetic neuropathy was made in Sprague Dawley rats by streptozotocin. Pain threshold was evaluated using von Frey monofilaments for 24 weeks. On comparable experiment time after streptozotocin injection, all footpads were prepared for following procedures; glutathione assay, terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling staining, immunohistochemistry staining, real-time reverse transcription polymerase chain reaction, and Western blot. Additionally, human HaCaT skin keratinocytes were treated with methylglyoxal, transfected with migration inhibitory factor/control small interfering RNA, and prepared for real-time reverse transcription polymerase chain reaction and Western blot. Results As compared to sham group, pain threshold was significantly reduced in diabetic neuropathy group, and glutathione was decreased in footpad skin, simultaneously, cell death was increased. Over-expression of migration inhibitory factor, accompanied by low expression of glyoxalase-I and intraepidermal nerve fibers, was shown on the footpad skin lesions of diabetic neuropathy. But, there was no significance in expression of neurotransmitters and inflammatory mediators such as transient receptor potential vanilloid 1, mas-related G protein coupled receptor D, nuclear factor kappa B, tumor necrosis factor-alpha, and interleukin-6 between diabetic neuropathy group and sham group. Intriguingly, small interfering RNA-transfected knockdown of the migration inhibitory factor gene in methylglyoxal-treated skin keratinocytes increased expression of glyoxalase-I and intraepidermal nerve fibers in comparison with control small interfering RNA-transfected cells, which was decreased by induction of methylglyoxal. Conclusions Our findings suggest that migration inhibitory factor can aggravate diabetic neuropathy by suppressing glyoxalase-I and intraepidermal nerve fibers on the footpad skin lesions and provoke pain. Taken together, migration inhibitory factor might offer a pharmacological approach to alleviate pain syndromes in diabetic neuropathy.

  5. Macrophage Migration Inhibitory Factor (MIF) of the protozoan parasite Eimeria influences the components of the immune system of its host, the chicken

    USDA-ARS?s Scientific Manuscript database

    Macrophage migration inhibitory factor (MIF) is a soluble factor produced by sensitized T lymphocytes that inhibits the random migration of macrophages. Homologues of MIF from invertebrates have been identified making it an interesting molecule from a functional perspective. In the present study, ...

  6. Functional characterization of the turkey macrophage migration inhibitory factor

    USDA-ARS?s Scientific Manuscript database

    Macrophage migration inhibitory factor (MIF) is a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. The aim of this study was to clone the turkey MIF (TkMIF) gene, express the active protein, and characte...

  7. Characterization of Neospora caninum macrophage migration inhibitory factor

    USDA-ARS?s Scientific Manuscript database

    The present study is the first characterization of Neospora caninum macrophage migration inhibitory factor (NcMIF). BLAST-N analysis of NcMIF revealed high similarity (87%) to the Toxoplasma gondii MIF. NcMIF was cloned and expressed in Escherichia coli in three forms, NcMIF (mature protein), NcMI...

  8. Inhibitory effect of D3 dopamine receptors on neuropeptide Y‑induced migration in vascular smooth muscle cells.

    PubMed

    Xia, Xue-Wei; Zhou, Yong-Qiao; Luo, Hao; Zeng, Chunyu

    2017-10-01

    Abnormal migration of vascular smooth muscle cells (VSMCs) serves an important role in hypertension, atherosclerosis and restenosis following angioplasty, which is regulated numerous hormonal and humoral factors, including neuropeptide Y (NPY) and dopamine. Dopamine and NPY are both sympathetic neurotransmitters, and a previous study reported that NPY increased VSMC proliferation, while dopamine receptor inhibited it. Therefore, the authors wondered whether or not there is an inhibitory effect of dopamine receptor on NPY‑mediated VSMC migration. The present study demonstrated that stimulation with NPY dose‑dependence (10‑10‑10‑7M, 24 h) increased VSMC migration, the stimulatory effect of NPY was via the Y1 receptor. This is because, in the presence of the Y1 receptor antagonist, BIBP3226 (10‑7 M), the stimulatory effect of NPY on VSMC migration was blocked. Activation of the D3 receptor by PD128907 dose‑dependence (10‑11‑10‑8 M) reduced the stimulatory effect of NPY on VSMC migration. The effect of PD128907 was via the D3 receptor, because the inhibitory effect of PD128907 on NPY‑mediated migration was blocked by the D3 receptor antagonist, U99194. The authors' further study suggested that the inhibitory effect of the D3 receptor was via the PKA signaling pathway, in the presence of the PKA inhibitor, 14‑22 (10‑6 M), the inhibitory effect of PD128907 on VSMC migration was blocked. Moreover, the inhibitory effect of PD128907 was imitated by PKA activator, Sp‑cAMP [S], in the presence of Sp‑cAMP [S], the NPY‑mediated stimulatory effect on VSMC migration was abolished. The present study indicated that activation of the D3 receptor inhibits NPY Y1‑mediated migration on VSMCs, PKA is involved in the signaling pathway.

  9. Both host and parasite MIF molecules bind to chicken macrophages via CD74 surface receptor

    USDA-ARS?s Scientific Manuscript database

    Macrophage migration inhibitory factor (MIF) is recognized as a soluble factor that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. Our group has identified both chicken and Eimeria MIFs, and characterized their function in...

  10. Roles of macrophage migration inhibitory factor in Guillain-Barré syndrome and experimental autoimmune neuritis: beneficial or harmful?

    PubMed

    Shen, Donghui; Lang, Yue; Chu, Fengna; Wu, Xiujuan; Wang, Ying; Zheng, Xiangyu; Zhang, Hong-Liang; Zhu, Jie; Liu, Kangding

    2018-06-11

    Macrophage migration inhibitory factor (MIF) plays an important role in the pathogenesis of Guillain-Barré syndrome (GBS) and its animal model experimental autoimmune neuritis (EAN), which may offer an opportunity for the development of the novel therapeutic strategies for GBS. Areas covered: 'macrophage migration inhibitory factor' and 'Guillain-Barré syndrome' were used as keywords to search for related publications on Pub-Med, National Center for Biotechnology Information (NCBI), USA. MIF is involved in the etiology of various inflammatory and autoimmune disorders. However, the roles of MIF in GBS and EAN have not been summarized in the publications we identified. Therefore, in this review, we described and analyzed the major roles of MIF in GBS/EAN. Primarily, this molecule aggravates the inflammatory responses in this disorder. However, multiple studies indicated a protective role of MIF in GBS. The potential of MIF as a therapeutic target in GBS has been recently demonstrated in experimental and clinical studies, although clinical trials have been unavailable to date. Expert opinion: MIF plays a critical role in the initiation and progression of GBS and EAN, and it may represent a potential therapeutic target for GBS.

  11. Role of macrophage migration inhibitory factor in age-related lung disease

    PubMed Central

    Sauler, Maor; Bucala, Richard

    2015-01-01

    The prevalence of many common respiratory disorders, including pneumonia, chronic obstructive lung disease, pulmonary fibrosis, and lung cancer, increases with age. Little is known of the host factors that may predispose individuals to such diseases. Macrophage migration inhibitory factor (MIF) is a potent upstream regulator of the immune system. MIF is encoded by variant alleles that occur commonly in the population. In addition to its role as a proinflammatory cytokine, a growing body of literature demonstrates that MIF influences diverse molecular processes important for the maintenance of cellular homeostasis and may influence the incidence or clinical manifestations of a variety of chronic lung diseases. This review highlights the biological properties of MIF and its implication in age-related lung disease. PMID:25957294

  12. UV-B Radiation Induces Macrophage Migration Inhibitory Factor–Mediated Melanogenesis through Activation of Protease-Activated Receptor-2 and Stem Cell Factor in Keratinocytes

    PubMed Central

    Enomoto, Akiko; Yoshihisa, Yoko; Yamakoshi, Takako; Ur Rehman, Mati; Norisugi, Osamu; Hara, Hiroshi; Matsunaga, Kenji; Makino, Teruhiko; Nishihira, Jun; Shimizu, Tadamichi

    2011-01-01

    UV radiation indirectly regulates melanogenesis in melanocytes through a paracrine regulatory mechanism involving keratinocytes. Protease-activated receptor (PAR)-2 activation induces melanosome transfer by increasing phagocytosis of melanosomes by keratinocytes. This study demonstrated that macrophage migration inhibitory factor (MIF) stimulated PAR-2 expression in human keratinocytes. In addition, we showed that MIF stimulated stem cell factor (SCF) release in keratinocytes; however, MIF had no effect on the release of endothelin-1 or prostaglandin E2 in keratinocytes. In addition, MIF had no direct effect on melanin and tyrosinase synthesis in cultured human melanocytes. The effect of MIF on melanogenesis was also examined using a three-dimensional reconstituted human epidermal culture model, which is a novel, commercially available, cultured human epidermis containing functional melanocytes. Migration inhibitory factor induced an increase in melanin content in the epidermis after a 9-day culture period. Moreover, melanin synthesis induced by UV-B stimulation was significantly down-regulated by anti-MIF antibody treatment. An in vivo study showed that the back skin of MIF transgenic mice had a higher melanin content than that of wild-type mice after 12 weeks of UV-B exposure. Therefore, MIF-mediated melanogenesis occurs mainly through the activation of PAR-2 and SCF expression in keratinocytes after exposure to UV-B radiation. PMID:21281800

  13. Absolute Measurements of Macrophage Migration Inhibitory Factor and Interleukin-1-β mRNA Levels Accurately Predict Treatment Response in Depressed Patients.

    PubMed

    Cattaneo, Annamaria; Ferrari, Clarissa; Uher, Rudolf; Bocchio-Chiavetto, Luisella; Riva, Marco Andrea; Pariante, Carmine M

    2016-10-01

    Increased levels of inflammation have been associated with a poorer response to antidepressants in several clinical samples, but these findings have had been limited by low reproducibility of biomarker assays across laboratories, difficulty in predicting response probability on an individual basis, and unclear molecular mechanisms. Here we measured absolute mRNA values (a reliable quantitation of number of molecules) of Macrophage Migration Inhibitory Factor and interleukin-1β in a previously published sample from a randomized controlled trial comparing escitalopram vs nortriptyline (GENDEP) as well as in an independent, naturalistic replication sample. We then used linear discriminant analysis to calculate mRNA values cutoffs that best discriminated between responders and nonresponders after 12 weeks of antidepressants. As Macrophage Migration Inhibitory Factor and interleukin-1β might be involved in different pathways, we constructed a protein-protein interaction network by the Search Tool for the Retrieval of Interacting Genes/Proteins. We identified cutoff values for the absolute mRNA measures that accurately predicted response probability on an individual basis, with positive predictive values and specificity for nonresponders of 100% in both samples (negative predictive value=82% to 85%, sensitivity=52% to 61%). Using network analysis, we identified different clusters of targets for these 2 cytokines, with Macrophage Migration Inhibitory Factor interacting predominantly with pathways involved in neurogenesis, neuroplasticity, and cell proliferation, and interleukin-1β interacting predominantly with pathways involved in the inflammasome complex, oxidative stress, and neurodegeneration. We believe that these data provide a clinically suitable approach to the personalization of antidepressant therapy: patients who have absolute mRNA values above the suggested cutoffs could be directed toward earlier access to more assertive antidepressant strategies, including the addition of other antidepressants or antiinflammatory drugs. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  14. UV-B radiation induces macrophage migration inhibitory factor-mediated melanogenesis through activation of protease-activated receptor-2 and stem cell factor in keratinocytes.

    PubMed

    Enomoto, Akiko; Yoshihisa, Yoko; Yamakoshi, Takako; Ur Rehman, Mati; Norisugi, Osamu; Hara, Hiroshi; Matsunaga, Kenji; Makino, Teruhiko; Nishihira, Jun; Shimizu, Tadamichi

    2011-02-01

    UV radiation indirectly regulates melanogenesis in melanocytes through a paracrine regulatory mechanism involving keratinocytes. Protease-activated receptor (PAR)-2 activation induces melanosome transfer by increasing phagocytosis of melanosomes by keratinocytes. This study demonstrated that macrophage migration inhibitory factor (MIF) stimulated PAR-2 expression in human keratinocytes. In addition, we showed that MIF stimulated stem cell factor (SCF) release in keratinocytes; however, MIF had no effect on the release of endothelin-1 or prostaglandin E2 in keratinocytes. In addition, MIF had no direct effect on melanin and tyrosinase synthesis in cultured human melanocytes. The effect of MIF on melanogenesis was also examined using a three-dimensional reconstituted human epidermal culture model, which is a novel, commercially available, cultured human epidermis containing functional melanocytes. Migration inhibitory factor induced an increase in melanin content in the epidermis after a 9-day culture period. Moreover, melanin synthesis induced by UV-B stimulation was significantly down-regulated by anti-MIF antibody treatment. An in vivo study showed that the back skin of MIF transgenic mice had a higher melanin content than that of wild-type mice after 12 weeks of UV-B exposure. Therefore, MIF-mediated melanogenesis occurs mainly through the activation of PAR-2 and SCF expression in keratinocytes after exposure to UV-B radiation. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses.

    PubMed

    Twu, Olivia; Dessí, Daniele; Vu, Anh; Mercer, Frances; Stevens, Grant C; de Miguel, Natalia; Rappelli, Paola; Cocco, Anna Rita; Clubb, Robert T; Fiori, Pier Luigi; Johnson, Patricia J

    2014-06-03

    The human-infective parasite Trichomonas vaginalis causes the most prevalent nonviral sexually transmitted infection worldwide. Infections in men may result in colonization of the prostate and are correlated with increased risk of aggressive prostate cancer. We have found that T. vaginalis secretes a protein, T. vaginalis macrophage migration inhibitory factor (TvMIF), that is 47% similar to human macrophage migration inhibitory factor (HuMIF), a proinflammatory cytokine. Because HuMIF is reported to be elevated in prostate cancer and inflammation plays an important role in the initiation and progression of cancers, we have explored a role for TvMIF in prostate cancer. Here, we show that TvMIF has tautomerase activity, inhibits macrophage migration, and is proinflammatory. We also demonstrate that TvMIF binds the human CD74 MIF receptor with high affinity, comparable to that of HuMIF, which triggers activation of ERK, Akt, and Bcl-2-associated death promoter phosphorylation at a physiologically relevant concentration (1 ng/mL, 80 pM). TvMIF increases the in vitro growth and invasion through Matrigel of benign and prostate cancer cells. Sera from patients infected with T. vaginalis are reactive to TvMIF, especially in males. The presence of anti-TvMIF antibodies indicates that TvMIF is released by the parasite and elicits host immune responses during infection. Together, these data indicate that chronic T. vaginalis infections may result in TvMIF-driven inflammation and cell proliferation, thus triggering pathways that contribute to the promotion and progression of prostate cancer.

  16. Raf Kinase Inhibitory Protein protects cells against locostatin-mediated inhibition of migration.

    PubMed

    Shemon, Anne N; Eves, Eva M; Clark, Matthew C; Heil, Gary; Granovsky, Alexey; Zeng, Lingchun; Imamoto, Akira; Koide, Shohei; Rosner, Marsha Rich

    2009-06-24

    Raf Kinase Inhibitory Protein (RKIP, also PEBP1), a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function. We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP(-/-)) mouse embryonic fibroblasts (MEFs) to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP(-/-) MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle. These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells.

  17. The production of migration inhibitory factor and reproductive capacity in allogeneic pregnancies.

    PubMed Central

    Tofoski, J. G.; Gill, T. J.

    1977-01-01

    Migration inhibitory factor (MIF) is produced during allogeneic pregnancies but not during syngeneic pregnancies. Removal of the paraaortic or paraaortic and renal lymph nodes significantly decreased MIF production whereas splenectomy did not. Removal of these regional lymph nodes decreased the mean litter size and increased the variance in the weights of the offspring, with the greatest changes occurring when both the paraaortic and renal lymph nodes were removed; splenectomy did not alter either parameter. None of the surgical procedures affected the gestation period significantly, but removal of the paraaortic and renal lymph nodes greatly reduced the rate of conception and increased the incidence of stillbirths. These findings support the proposition that a vigorous immune response occurs during allogeneic pregnancies and that this response provides reproductive advantages to the offspring. PMID:327826

  18. Jin Fu Kang Oral Liquid Inhibits Lymphatic Endothelial Cells Formation and Migration

    PubMed Central

    Wang, Dan; Tang, Jie

    2016-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Jin Fu Kang (JFK), an oral liquid prescription of Chinese herbal drugs, has been clinically available for the treatment of non-small cell lung cancer (NSCLC). Lymphangiogenesis is a primary event in the process of cancer development and metastasis, and the formation and migration of lymphatic endothelial cells (LECs) play a key role in the lymphangiogenesis. To assess the activity of stromal cell-derived factor-1 (SDF-1) and the coeffect of SDF-1 and vascular endothelial growth factor-C (VEGF-C) on the formation and migration of LECs and clarify the inhibitory effects of JFK on the LECs, the LECs were differentiated from CD34+/VEGFR-3+ endothelial progenitor cells (EPCs), and JFK-containing serums were prepared from rats. SDF-1 and VEGF-C both induced the differentiation of CD34+/VEGFR-3+ EPCs towards LECs and enhanced the LECs migration. Couse of SDF-1 and VEGF-C displayed an additive effect on the LECs formation but not on their migration. JFK inhibited the formation and migration of LECs, and the inhibitory effects were most probably via regulation of the SDF-1/CXCR4 and VEGF-C/VEGFR-3 axes. The current finding suggested that JFK might inhibit NSCLC through antilymphangiogenesis and also provided a potential to discover antilymphangiogenesis agents from natural resources. PMID:27698675

  19. Jin Fu Kang Oral Liquid Inhibits Lymphatic Endothelial Cells Formation and Migration.

    PubMed

    He, Hai-Lang; Wang, Dan; Tang, Jie; Zhou, Xian-Mei; Li, Jian-Xin; Xu, Ling

    2016-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Jin Fu Kang (JFK), an oral liquid prescription of Chinese herbal drugs, has been clinically available for the treatment of non-small cell lung cancer (NSCLC). Lymphangiogenesis is a primary event in the process of cancer development and metastasis, and the formation and migration of lymphatic endothelial cells (LECs) play a key role in the lymphangiogenesis. To assess the activity of stromal cell-derived factor-1 (SDF-1) and the coeffect of SDF-1 and vascular endothelial growth factor-C (VEGF-C) on the formation and migration of LECs and clarify the inhibitory effects of JFK on the LECs, the LECs were differentiated from CD34 + /VEGFR-3 + endothelial progenitor cells (EPCs), and JFK-containing serums were prepared from rats. SDF-1 and VEGF-C both induced the differentiation of CD34 + /VEGFR-3 + EPCs towards LECs and enhanced the LECs migration. Couse of SDF-1 and VEGF-C displayed an additive effect on the LECs formation but not on their migration. JFK inhibited the formation and migration of LECs, and the inhibitory effects were most probably via regulation of the SDF-1/CXCR4 and VEGF-C/VEGFR-3 axes. The current finding suggested that JFK might inhibit NSCLC through antilymphangiogenesis and also provided a potential to discover antilymphangiogenesis agents from natural resources.

  20. Production of Macrophage Inhibitory Factor (MIF) by Primary Sertoli Cells; Its Possible Involvement in Migration of Spermatogonial Cells.

    PubMed

    Huleihel, Mahmoud; Abofoul-Azab, Maram; Abarbanel, Yael; Einav, Iris; Levitas, Elyahu; Lunenfeld, Eitan

    2017-10-01

    Macrophage migration inhibitory factor (MIF) is a multifunctional molecule. MIF was originally identified as a T-cell-derived factor responsible for the inhibition of macrophage migration. In testicular tissue of adult rats, MIF is constitutively expressed by Leydig cells under physiological conditions. The aim of this study was to examine MIF levels in testicular homogenates from different aged mice, and the capacity of Sertoli cells to produce it. We also examined MIF involvement in spermatogonial cell migration. Similar levels of MIF protein were detected in testicular homogenates of mice of different ages (1-8-week-old). However, the RNA expression levels of MIF were high in 1-week-old mice and significantly decreased with age compared to 1-week-old mice. MIF was stained in Sertoli, Leydig cells, and developed germ cells in the seminiferous tubules. Isolated Sertoli cells from 1-week-old mice stained to MIF. Cultures of Sertoli cells from 1-week-old mice produced and expressed high levels of MIF which significantly decreased with age. MIF was localized in the cytoplasm and nucleus of Sertoli cell cultures isolated from 1-week-old mice; however, it was localized only in the cytoplasm and branches of cultures isolated from 8-week-old mice. MIFR was detected in GFRα1 and Sertoli cells. MIF could induce migration of spermatogonial cells, and this effect was synergistic with glial cell-line neurotrophic factor. Our results show, for the first time, the capacity of Sertoli cells to produce MIF under normal conditions and that MIFR expressed in GFRα1 and Sertoli cells. We also showed that MIF induced spermatogonial cell migration. J. Cell. Physiol. 232: 2869-2877, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Raf Kinase Inhibitory Protein Protects Cells against Locostatin-Mediated Inhibition of Migration

    PubMed Central

    Shemon, Anne N.; Eves, Eva M.; Clark, Matthew C.; Heil, Gary; Granovsky, Alexey; Zeng, Lingchun; Imamoto, Akira

    2009-01-01

    Background Raf Kinase Inhibitory Protein (RKIP, also PEBP1), a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function. Methods/Findings We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP−/−) mouse embryonic fibroblasts (MEFs) to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP−/− MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle. Conclusions/Significance These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells. PMID:19551145

  2. The inhibitory effect of dexamethasone on platelet-derived growth factor-induced vascular smooth muscle cell migration through up-regulating PGC-1{alpha} expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wei; Department of cardiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin 150081; Guo, Ting

    2011-05-01

    Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPAR{gamma}) coactivator-1 alpha (PGC-1{alpha}) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1{alpha} in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1{alpha} expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1{alpha} mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1{alpha} expression while stimulating VSMC migration.more » Mechanistic study showed that suppression of PGC-1{alpha} by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1{alpha} had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1{alpha} decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPAR{gamma} activation by a PPAR{gamma} antagonist GW9662 abolished the suppressive effects of PGC-1{alpha} on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1{alpha} were enhanced by a PPAR{gamma} agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1{alpha} expression. PGC-1{alpha} suppresses PDGF-induced VSMC migration through PPAR{gamma} coactivation and, consequently, p38 MAPK inhibition.« less

  3. Combined Knockdown of D-dopachrome Tautomerase and Migration Inhibitory Factor Inhibits the Proliferation, Migration, and Invasion in Human Cervical Cancer.

    PubMed

    Wang, Qingying; Wei, Yingze; Zhang, Jiawen

    2017-05-01

    D-dopachrome tautomerase (D-DT) is a homologue of macrophage migration inhibitory factor (MIF) with similar functions. However, the possible biological roles of D-DT in cervical cancer remain unknown so far. D-dopachrome tautomerase was assessed by immunohistochemistry in 83 cervical cancer and 31 normal cervix tissues. The stable knockdown of D-DT and MIF by lentivirus-delivered short hairpin RNA was established, and tumor growth was examined in vitro and in vivo. The effects of D-DT and MIF on the migration and invasion were further detected by wound healing assay and transwell assay. Western blot was used to explore the mechanism of D-DT and MIF in cervical cancer pathogenesis. We found that D-DT was significantly high in cervical cancer, which correlated with lymph node metastasis. The knockdown of D-DT and MIF, individually and additively, inhibited the proliferation, migration, and invasion in HeLa and SiHa cells and restrained the growth of xenograft tumor. The ablation of D-DT and MIF rescued the expression of E-cadherin and inhibited the expression of PCNA, cyclin D1, gankyrin, Sam68, and vimentin, as well as phospho-Akt and phospho-glycogen synthase kinase 3-β. The inhibition of D-DT and MIF in combination may represent a potential therapeutic strategy for cervical cancer.

  4. Gremlin-1 inhibits macrophage migration inhibitory factor-dependent monocyte function and survival.

    PubMed

    Müller, Iris I; Chatterjee, Madhumita; Schneider, Martina; Borst, Oliver; Seizer, Peter; Schönberger, Tanja; Vogel, Sebastian; Müller, Karin A L; Geisler, Tobias; Lang, Florian; Langer, Harald; Gawaz, Meinrad

    2014-10-20

    Monocyte migration and their differentiation into macrophages critically regulate vascular inflammation and atherogenesis and are governed by macrophage migration inhibitory factor (MIF). Gremlin-1 binds to MIF. Current experimental evidences present Gremlin-1 as a potential physiological agent that might counter-regulate the inflammatory attributes of MIF. We found that Gremlin-1 inhibited MIF-dependent monocyte migration and adhesion to activated endothelial cells in flow chamber perfusion assay in vitro and to the injured carotid artery of WT and ApoE-/- mice in vivo as deciphered by intravital microscopy. Intravenous administration of Gremlin-1, but not of control protein, significantly reduced leukocyte recruitment towards the inflamed carotid artery of ApoE-/- mice. Besides, leukocytes from MIF-/- when administered into ApoE-/- mice showed lesser adhesion as compared to wild type. In the presence of Gremlin-1 however, adhesion of wild type, but not of MIF-/- leukocytes, to the carotid artery was significantly inhibited as compared to control. Gremlin-1 also inhibited the MIF-induced differentiation of monocytes into macrophages. Gremlin-1 substantially inhibited the anti-apoptotic impact of MIF on monocytes against BH3 mimetic ABT-737-induced apoptosis as verified by Annexin V-binding, caspase 3 activity, and mitochondrial depolarization. Therefore Gremlin-1 can modulate MIF dependent monocyte adhesion, migration, differentiation and survival. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Macrophage migration inhibitory factor acts as a neurotrophin in the developing inner ear.

    PubMed

    Bank, Lisa M; Bianchi, Lynne M; Ebisu, Fumi; Lerman-Sinkoff, Dov; Smiley, Elizabeth C; Shen, Yu-chi; Ramamurthy, Poornapriya; Thompson, Deborah L; Roth, Therese M; Beck, Christine R; Flynn, Matthew; Teller, Ryan S; Feng, Luming; Llewellyn, G Nicholas; Holmes, Brandon; Sharples, Cyrrene; Coutinho-Budd, Jaeda; Linn, Stephanie A; Chervenak, Andrew P; Dolan, David F; Benson, Jennifer; Kanicki, Ariane; Martin, Catherine A; Altschuler, Richard; Koch, Alisa E; Koch, Alicia E; Jewett, Ethan M; Germiller, John A; Barald, Kate F

    2012-12-01

    This study is the first to demonstrate that macrophage migration inhibitory factor (MIF), an immune system 'inflammatory' cytokine that is released by the developing otocyst, plays a role in regulating early innervation of the mouse and chick inner ear. We demonstrate that MIF is a major bioactive component of the previously uncharacterized otocyst-derived factor, which directs initial neurite outgrowth from the statoacoustic ganglion (SAG) to the developing inner ear. Recombinant MIF acts as a neurotrophin in promoting both SAG directional neurite outgrowth and neuronal survival and is expressed in both the developing and mature inner ear of chick and mouse. A MIF receptor, CD74, is found on both embryonic SAG neurons and adult mouse spiral ganglion neurons. Mif knockout mice are hearing impaired and demonstrate altered innervation to the organ of Corti, as well as fewer sensory hair cells. Furthermore, mouse embryonic stem cells become neuron-like when exposed to picomolar levels of MIF, suggesting the general importance of this cytokine in neural development.

  6. Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages.

    PubMed

    Lee, Jacinta P W; Foote, Andrew; Fan, Huapeng; Peral de Castro, Celia; Lang, Tali; Jones, Sarah A; Gavrilescu, Nichita; Mills, Kingston H G; Leech, Michelle; Morand, Eric F; Harris, James

    2016-06-02

    MIF (macrophage migration inhibitory factor [glycosylation-inhibiting factor]) is a pro-inflammatory cytokine expressed in multiple cells types, including macrophages. MIF plays a pathogenic role in a number of inflammatory diseases and has been linked to tumor progression in some cancers. Previous work has demonstrated that loss of autophagy in macrophages enhances secretion of IL1 family cytokines. Here, we demonstrate that loss of autophagy, by pharmacological inhibition or siRNA silencing of Atg5, enhances MIF secretion by monocytes and macrophages. We further demonstrate that this is dependent on mitochondrial reactive oxygen species (ROS). Induction of autophagy with MTOR inhibitors had no effect on MIF secretion, but amino acid starvation increased secretion. This was unaffected by Atg5 siRNA but was again dependent on mitochondrial ROS. Our data demonstrate that autophagic regulation of mitochondrial ROS plays a pivotal role in the regulation of inflammatory cytokine secretion in macrophages, with potential implications for the pathogenesis of inflammatory diseases and cancers.

  7. Pathogenic role for macrophage migration inhibitory factor in glioblastoma and its targeting with specific inhibitors as novel tailored therapeutic approach

    PubMed Central

    Mangano, Katia; Mazzon, Emanuela; Basile, Maria Sofia; Di Marco, Roberto; Bramanti, Placido; Mammana, Santa; Petralia, Maria Cristina; Fagone, Paolo; Nicoletti, Ferdinando

    2018-01-01

    Macrophage Migration Inhibitory Factor (MIF) is a pro-inflammatory cytokine expressed by a variety of cell types. Although MIF has been primarily studied for its role in the pathogenesis of autoimmune diseases, it has also been shown to promote tumorigenesis and it is over expressed in various malignant tumors. MIF is able to induce angiogenesis, cell cycle progression, and to block apoptosis. As tailored therapeutic approaches for the inhibition of endogenous MIF are being developed, it is important to evaluate the role of MIF in individual neoplastic conditions that may benefit from specific MIF inhibitors. Along with this line, in this paper, we have reviewed the evidence of the involvement of MIF in the etiopathogenesis and progression of glioblastoma and the preclinical data suggesting the possible use of specific MIF inhibition as a potential novel therapeutic strategy for brain tumors. PMID:29707160

  8. Macrophage Migration Inhibitory Factor is subjected to glucose modification and oxidation in Alzheimer’s Disease

    PubMed Central

    Kassaar, Omar; Pereira Morais, Marta; Xu, Suying; Adam, Emily L.; Chamberlain, Rosemary C.; Jenkins, Bryony; James, Tony; Francis, Paul T.; Ward, Stephen; Williams, Robert J.; van den Elsen, Jean

    2017-01-01

    Glucose and glucose metabolites are able to adversely modify proteins through a non-enzymatic reaction called glycation, which is associated with the pathology of Alzheimer’s Disease (AD) and is a characteristic of the hyperglycaemia induced by diabetes. However, the precise protein glycation profile that characterises AD is poorly defined and the molecular link between hyperglycaemia and AD is unknown. In this study, we define an early glycation profile of human brain using fluorescent phenylboronate gel electrophoresis and identify early glycation and oxidation of macrophage migration inhibitory factor (MIF) in AD brain. This modification inhibits MIF enzyme activity and ability to stimulate glial cells. MIF is involved in immune response and insulin regulation, hyperglycaemia, oxidative stress and glycation are all implicated in AD. Our study indicates that glucose modified and oxidised MIF could be a molecular link between hyperglycaemia and the dysregulation of the innate immune system in AD. PMID:28230058

  9. The cytokine macrophage migration inhibitory factor (MIF) acts as a neurotrophin in the developing inner ear of the zebrafish, Danio rerio

    PubMed Central

    Shen, Yu-chi; Thompson, Deborah L.; Kuah, Meng-Kiat; Wong, Kah-Loon; Wu, Karen L.; Linn, Stephanie A.; Jewett, Ethan M.; Shu-Chien, Alexander Chong; Barald, Kate F.

    2012-01-01

    Macrophage migration inhibitory factor (MIF) plays versatile roles in the immune system. MIF is also widely expressed during embryonic development, particularly in the nervous system, although its roles in neural development are only beginning to be understood. Evidence from frogs, mice and zebrafish suggests that MIF has a major role as a neurotrophin in the early development of sensory systems, including the auditory system. Here we show that the zebrafish mif pathway is required for both sensory hair cell (HC) and sensory neuronal cell survival in the ear, for HC differentiation, semicircular canal formation, statoacoustic ganglion (SAG) development, and lateral line HC differentiation. This is consistent with our findings that MIF is expressed in the developing mammalian and avian auditory systems and promotes mouse and chick SAG neurite outgrowth and neuronal survival, demonstrating key instructional roles for MIF in vertebrate otic development. PMID:22210003

  10. Pin1 promotes transforming growth factor-beta-induced migration and invasion.

    PubMed

    Matsuura, Isao; Chiang, Keng-Nan; Lai, Chen-Yu; He, Dongming; Wang, Guannan; Ramkumar, Romila; Uchida, Takafumi; Ryo, Akihide; Lu, Kunping; Liu, Fang

    2010-01-15

    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells.

  11. Macrophage migration inhibitory factor deficiency is associated with impaired killing of gram-negative bacteria by macrophages and increased susceptibility to Klebsiella pneumoniae sepsis.

    PubMed

    Roger, Thierry; Delaloye, Julie; Chanson, Anne-Laure; Giddey, Marlyse; Le Roy, Didier; Calandra, Thierry

    2013-01-15

    The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.

  12. c-Met and its ligand hepatocyte growth factor/scatter factor regulate mature B cell survival in a pathway induced by CD74.

    PubMed

    Gordin, Maya; Tesio, Melania; Cohen, Sivan; Gore, Yael; Lantner, Frida; Leng, Lin; Bucala, Richard; Shachar, Idit

    2010-08-15

    The signals regulating the survival of mature splenic B cells have become a major focus in recent studies of B cell immunology. Durable B cell persistence in the periphery is dependent on survival signals that are transduced by cell surface receptors. In this study, we describe a novel biological mechanism involved in mature B cell homeostasis, the hepatocyte growth factor/scatter factor (HGF)/c-Met pathway. We demonstrate that c-Met activation by HGF leads to a survival cascade, whereas its blockade results in induction of mature B cell death. Our results emphasize a unique and critical function for c-Met signaling in the previously described macrophage migration inhibitory factor/CD74-induced survival pathway. Macrophage migration inhibitory factor recruits c-Met to the CD74/CD44 complex and thereby enables the induction of a signaling cascade within the cell. This signal results in HGF secretion, which stimulates the survival of the mature B cell population in an autocrine manner. Thus, the CD74-HGF/c-Met axis defines a novel physiologic survival pathway in mature B cells, resulting in the control of the humoral immune response.

  13. Taspine derivative TAS9 regulates cell growth and metastasis of human hepatocellular carcinoma.

    PubMed

    Liu, Rui; Wang, Wenjie; Dai, Bingling; Liu, Yanping; Zhang, Yanmin

    2015-11-01

    Taspine has been indicated to be a potential anti‑carcinogenic agent. The present study investigated the effects of TAS9, a modified taspine derivative, on the proliferation and migration of the SMMC‑7721 human liver cancer cell line. First, the effects of TAS9 on SMMC‑7721 cell growth were examined using MTT and colony formation assaya. In vivo Transwell and wound healing assays were then performed to assess the inhibitory effects of TAS9 on cell invasion and migration, respectively. The expression of cell proliferation‑ and migration‑associated signaling molecules was investigated by western blot analysis. The results indicated that TAS9 inhibited SMMC‑7721 cell growth by downregulating the signaling molecules protein kinase Cβ (PKCβ), Akt, mammalian target of rapamycin, mitogen‑activated protein kinase kinase 2, RAF and c‑Jun N‑terminal kinase‑1, and inhibiting SMMC‑7721 cell migration by suppressing the expression of matrix metalloproteinase (MMP)‑2, MMP‑9, chemokine (C‑X‑C motif) receptor 4, nuclear factor κB, p38 and p53. Small interfering RNA‑mediated knockdown of PKCβ in the SMMC‑7721 cells significantly attenuated the tumor inhibitory effects of TAS9. In conclusion, the results of the present study suggested that TAS9 may have inhibitory effects on the proliferation and migration of SMMC‑7721 cells, and may serve as a potential candidate for cancer treatment.

  14. Vitamin D binding protein-macrophage activating factor directly inhibits proliferation, migration, and uPAR expression of prostate cancer cells.

    PubMed

    Gregory, Kalvin J; Zhao, Bing; Bielenberg, Diane R; Dridi, Sami; Wu, Jason; Jiang, Weihua; Huang, Bin; Pirie-Shepherd, Steven; Fannon, Michael

    2010-10-18

    Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors. In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis. These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation.

  15. Vitamin D Binding Protein-Macrophage Activating Factor Directly Inhibits Proliferation, Migration, and uPAR Expression of Prostate Cancer Cells

    PubMed Central

    Bielenberg, Diane R.; Dridi, Sami; Wu, Jason; Jiang, Weihua; Huang, Bin; Pirie-Shepherd, Steven; Fannon, Michael

    2010-01-01

    Background Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors. Methods and Findings In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis. Conclusions These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation. PMID:20976141

  16. Functional characterization of the turkey macrophage migration inhibitory factor.

    PubMed

    Park, Myeongseon; Kim, Sungwon; Fetterer, Raymond H; Dalloul, Rami A

    2016-08-01

    Macrophage migration inhibitory factor (MIF) is a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. The aim of this study was to clone the turkey MIF (TkMIF) gene, express the active protein, and characterize its basic function. The full-length TkMIF gene was amplified from total RNA extracted from turkey spleen, followed by cloning into a prokaryotic (pET11a) expression vector. Sequence analysis revealed that TkMIF consists of 115 amino acids with 12.5 kDa molecular weight. Multiple sequence alignment revealed 100%, 65%, 95% and 92% identity with chicken, duck, eagle and zebra finch MIFs, respectively. Recombinant TkMIF (rTkMIF) was expressed in Escherichia coli and purified through HPLC and endotoxin removal. SDS-PAGE analysis revealed an approximately 13.5 kDa of rTkMIF monomer containing T7 tag in soluble form. Western blot analysis showed that anti-chicken MIF (ChMIF) polyclonal antisera detected a monomer form of TkMIF at approximately 13.5 kDa size. Further functional analysis revealed that rTkMIF inhibits migration of both mononuclear cells and splenocytes in a dose-dependent manner, but was abolished by the addition of anti-ChMIF polyclonal antisera. qRT-PCR analysis revealed elevated transcripts of pro-inflammatory cytokines by rTkMIF in LPS-stimulated monocytes. rTkMIF also led to increased levels of IFN-γ and IL-17F transcripts in Con A-activated splenocytes, while IL-10 and IL-13 transcripts were decreased. Overall, the sequences of both the turkey and chicken MIF have high similarity and comparable biological functions with respect to migration inhibitory activities of macrophages and enhancement of pro-inflammatory cytokine expression, suggesting that turkey and chicken MIFs would be biologically cross-reactive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Macrophage migration inhibitory factor promotes osteosarcoma growth and lung metastasis through activating the RAS/MAPK pathway.

    PubMed

    Wang, Chen; Zhou, Xing; Li, Wentao; Li, Mingyue; Tu, Tingyue; Ba, Ximing; Wu, Yinyu; Huang, Zhen; Fan, Gentao; Zhou, Guangxin; Wu, Sujia; Zhao, Jianning; Zhang, Junfeng; Chen, Jiangning

    2017-09-10

    Emerging evidence suggests that the tumour microenvironment plays a critical role in osteosarcoma (OS) development. Thus, cytokine immunotherapy could be a novel strategy for OS treatment. In this study, we explored the role of macrophage migration inhibitory factor (MIF), an important cytokine in OS progression, and investigated the anti-tumour effects of targeting MIF in OS. The results showed that MIF significantly increased in the tissue and serum samples of OS patients and was associated with tumour size, pulmonary metastasis and the survival rate of OS patients. We verified a positive correlation between MIF and p-ERK1/2 in OS patients. The in vitro results indicated that MIF could activate the RAS/MAPK pathway in a time- and dose-dependent manner, thereby promoting cell proliferation and migration. Furthermore, shRNA targeting MIF significantly inhibited tumour growth and lung metastasis in a mouse xenograft model and orthotopic model of OS. Additionally, inhibition of MIF significantly enhanced the sensitivity of OS cells to cisplatin and doxorubicin. Our findings suggest that immunotherapy targeting MIF to block the RAS/MAPK kinase cascade may represent a feasible and promising approach for OS treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Serum levels of macrophage migration inhibitory factor are associated with rheumatoid arthritis course.

    PubMed

    Llamas-Covarrubias, Mara Anaís; Valle, Yeminia; Navarro-Hernández, Rosa Elena; Guzmán-Guzmán, Iris Paola; Ramírez-Dueñas, María Guadalupe; Rangel-Villalobos, Héctor; Estrada-Chávez, Ciro; Muñoz-Valle, José Francisco

    2012-08-01

    Rheumatoid arthritis (RA) is an inflammatory autoimmune disease of unknown etiology. Many cytokines have been found to be associated with RA pathogenesis and among them is macrophage migration inhibitory factor (MIF). The aim of this study was to determine whether MIF serum levels are associated with RA course, clinical activity, and clinical biomarkers of the disease. MIF levels were determined in serum samples of 54 RA patients and 78 healthy subjects (HS) by enzyme-linked immunosorbent assay (ELISA). Disease activity was evaluated using the DAS28 score. Patients were subgrouped according to disease activity and years of evolution of disease. Statistical analysis was carried out by SPSS 10.0 and GraphPad Prism 5 software. RA patients presented increased levels of MIF as compared to HS. MIF levels were raised on early stages of RA and tend to decrease according to years of evolution. Moreover, MIF levels positively correlated with rheumatoid factor in RA patients and with C reactive protein in all individuals studied. Our findings suggest that MIF plays a role in early stages of RA.

  19. Marked elevation of serum macrophage migration inhibitory factor levels in patients with pemphigus vulgaris.

    PubMed

    Namazi, Mohammad Reza; Fallahzadeh, Mohammad Kazem; Shaghelani, Hassan; Kamali-Sarvestani, Eskandar

    2010-02-01

    There is ample evidence for involvement of macrophage migration inhibitory factor (MIF) in autoimmune and inflammatory diseases. The aim of this study was to determine whether MIF levels were raised in the sera of patients with pemphigus vulgaris (PV). Serum MIF levels were measured using ELISA method in 22 patients with active PV and 21 age- and sex-matched healthy controls and the results were compared with each other. The mean serum MIF levels was significantly higher in PV patients than in control subjects (11.99 +/- 1.63 pg/m vs. 1.83 +/- 0.22 pg/ml; P-value = 0.0001). Elevated MIF levels in the sera of PV patients could participate in disease induction by activation of T cells as well as induction of autoantibody production by B cells. Given that MIF counter-regulates the effects of steroids, MIF antagonists may prove to be very effective, novel steroid-sparing agents for this life-threatening conundrum.

  20. Prenatal stress delays inhibitory neuron progenitor migration in the developing neocortex

    PubMed Central

    Stevens, Hanna E.; Su, Tina; Yanagawa, Yuchio; Vaccarino, Flora M.

    2012-01-01

    Summary Prenatal stress has been widely demonstrated to have links with behavioral problems in clinical populations and animal models, however, few investigations have examined the immediate developmental events that are affected by prenatal stress. Here, we utilize GAD67GFP transgenic mice in which GABAergic progenitors express green fluorescent protein (GFP) to examine the impact of prenatal stress on the development of these precursors to inhibitory neurons. Pregnant female mice were exposed to restraint stress three times daily from embryonic day 12 (E12) onwards. Their offspring demonstrated changes in the distribution of GFP-positive (GFP+) GABAergic progenitors in the telencephalon as early as E13 and persisting until postnatal day 0. Changes in distribution reflected alterations in tangential migration and radial integration of GFP+ cells into the developing cortical plate. Fate mapping of GAD67GFP+progenitors with bromodeoxyuridine injected at E13 demonstrated a significant increase of these cells at P0 in anterior white matter. An overall decrease in GAD67GFP+ progenitors at P0 in medial frontal cortex could not be attributed to a reduction in cell proliferation. Significant changes in dlx2, nkx2.1 and their downstream target erbb4, transcription factors which regulate interneuron migration, were found within the prenatally-stressed developing forebrain, while no differences were seen in mash1, a determinant of interneuron fate, bdnf, a maturation factor for GABAergic cells or fgf2, an early growth/differentiation factor. These results demonstrate that early disruption in GABAergic progenitor migration caused by prenatal stress may be responsible for neuronal defects in disorders with GABAergic abnormalities like schizophrenia. PMID:22910687

  1. Structural and Functional Characterization of a Secreted Hookworm Macrophage Migration Inhibitory Factor (MIF) that Interacts with the Human MIF Receptor CD74

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho,Y.; Jones, B.; Vermeire, J.

    2007-01-01

    Hookworms, parasitic nematodes that infect nearly one billion people worldwide, are a major cause of anemia and malnutrition. We hypothesize that hookworms actively manipulate the host immune response through the production of specific molecules designed to facilitate infection by larval stages and adult worm survival within the intestine. A full-length cDNA encoding a secreted orthologue of the human cytokine, Macrophage Migration Inhibitory Factor (MIF) has been cloned from the hookworm Ancylostoma ceylanicum. Elucidation of the three-dimensional crystal structure of recombinant AceMIF (rAceMIF) revealed an overall structural homology with significant differences in the tautomerase sites of the human and hookworm proteins.more » The relative bioactivities of human and hookworm MIF proteins were compared using in vitro assays of tautomerase activity, macrophage migration, and binding to MIF receptor CD74. The activity of rAceMIF was not inhibited by the ligand ISO-1, which was previously determined to be an inhibitor of the catalytic site of human MIF. These data define unique immunological, structural, and functional characteristics of AceMIF, thereby establishing the potential for selectively inhibiting the hookworm cytokine as a means of reducing parasite survival and disease pathogenesis.« less

  2. PDGFBB promotes PDGFR{alpha}-positive cell migration into artificial bone in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Shigeyuki; Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582; Iwasaki, Ryotaro

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We examined effects of PDGFBB in PDGFR{alpha} positive cell migration in artificial bones. Black-Right-Pointing-Pointer PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. Black-Right-Pointing-Pointer PDGFBB promoted PDGFR{alpha} positive cell migration into artificial bones but not osteoblast proliferation. Black-Right-Pointing-Pointer PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure.more » Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor {alpha} (PDGFR{alpha})-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGF{beta}) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.« less

  3. HSPA6 augments garlic extract-induced inhibition of proliferation, migration, and invasion of bladder cancer EJ cells; Implication for cell cycle dysregulation, signaling pathway alteration, and transcription factor-associated MMP-9 regulation

    PubMed Central

    Hwang, Byungdoo; Noh, Dae-Hwa; Park, Sung Lyea; Kim, Won Tae; Park, Sung-Soo; Kim, Wun-Jae; Moon, Sung-Kwon

    2017-01-01

    Although recent studies have demonstrated the anti-tumor effects of garlic extract (GE), the exact molecular mechanism is still unclear. In this study, we investigated the molecular mechanism associated with the inhibitory action of GE against bladder cancer EJ cell responses. Treatment with GE significantly inhibited proliferation of EJ cells dose-dependently through G2/M-phase cell cycle arrest. This G2/M-phase cell cycle arrest by GE was due to the activation of ATM and CHK2, which appears to inhibit phosphorylation of Cdc25C (Ser216) and Cdc2 (Thr14/Tyr15), this in turn was accompanied by down-regulation of cyclin B1 and up-regulation of p21WAF1. Furthermore, GE treatment was also found to induce phosphorylation of MAPK (ERK1/2, p38MAPK, and JNK) and AKT. In addition, GE impeded the migration and invasion of EJ cells via inhibition of MMP-9 expression followed by decreased binding activities of AP-1, Sp-1, and NF-κB motifs. Based on microarray datasets, we selected Heat shock protein A6 (HSPA6) as the most up-regulated gene responsible for the inhibitory effects of GE. Interestingly, overexpression of HSPA6 gene resulted in an augmentation effect with GE inhibiting proliferation, migration, and invasion of EJ cells. The augmentation effect of HSPA6 was verified by enhancing the induction of G2/M-phase-mediated ATM-CHK2-Cdc25C-p21WAF1-Cdc2 cascade, phosphorylation of MAPK and AKT signaling, and suppression of transcription factor-associated MMP-9 regulation in response to GE in EJ cells. Overall, our novel results indicate that HSPA6 reinforces the GE-mediated inhibitory effects of proliferation, migration, and invasion of EJ cells and may provide a new approach for therapeutic treatment of malignancies. PMID:28187175

  4. IDENTIFICATION AND EXPRESSION OF MACROPHAGE MIGRATION INHIBITORY FACTOR IN SARCOPTES SCABIEI

    PubMed Central

    COTE’, N.M.; JAWORSKI, D.C.; WASALA, N.B.; MORGAN, M.S.; ARLIAN, L. G.

    2013-01-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine produced by many mammalian tissues including skin. It is also found in many invertebrate parasites of mammals including ticks and may function to aid the parasite to evade the innate and adaptive immune responses in the host. In this study, the cDNA for a MIF gene was sequenced from Sarcoptes scabiei, the scabies mite, using RT-PCR and RACE molecular techniques. The resulting nucleotide sequence had a length of 405 base pairs and the putative amino acid sequences for the mite and tick (Dermacentor variabilis) proteins were identical. The initial steps for the project resulted in the production of expressed scabies mite cDNAs. A real time (qPCR) assay was performed with MIF from scabies mites and various tick species. Results show that mRNA encoding MIF homologues was three times more abundant in the mite samples when compared to RNA prepared from D. variabilis salivary glands and 1.3 times more abundant when compared with RNA prepared from D. variabilis midgut. PMID:23831036

  5. Negative regulation of AMP-activated protein kinase (AMPK) activity by macrophage migration inhibitory factor (MIF) family members in non-small cell lung carcinomas.

    PubMed

    Brock, Stephanie E; Rendon, Beatriz E; Yaddanapudi, Kavitha; Mitchell, Robert A

    2012-11-02

    AMP-activated protein kinase (AMPK) is a nutrient- and metabolic stress-sensing enzyme activated by the tumor suppressor kinase, LKB1. Because macrophage migration inhibitory factor (MIF) and its functional homolog, d-dopachrome tautomerase (d-DT), have protumorigenic functions in non-small cell lung carcinomas (NSCLCs) but have AMPK-activating properties in nonmalignant cell types, we set out to investigate this apparent paradox. Our data now suggest that, in contrast to MIF and d-DTs AMPK-activating properties in nontransformed cells, MIF and d-DT act cooperatively to inhibit steady-state phosphorylation and activation of AMPK in LKB1 wild type and LKB1 mutant human NSCLC cell lines. Our data further indicate that MIF and d-DT, acting through their shared cell surface receptor, CD74, antagonize NSCLC AMPK activation by maintaining glucose uptake, ATP production, and redox balance, resulting in reduced Ca(2+)/calmodulin-dependent kinase kinase β-dependent AMPK activation. Combined, these studies indicate that MIF and d-DT cooperate to inhibit AMPK activation in an LKB1-independent manner.

  6. A role for NRAGE in NF-κB activation through the non-canonical BMP pathway

    PubMed Central

    2010-01-01

    Background Previous studies have linked neurotrophin receptor-interacting MAGE protein to the bone morphogenic protein signaling pathway and its effect on p38 mediated apoptosis of neural progenitor cells via the XIAP-Tak1-Tab1 complex. Its effect on NF-κB has yet to be explored. Results Herein we report that NRAGE, via the same XIAP-Tak1-Tab1 complex, is required for the phosphorylation of IKK -α/β and subsequent transcriptional activation of the p65 subunit of NF-κB. Ablation of endogenous NRAGE by siRNA inhibited NF-κB pathway activation, while ablation of Tak1 and Tab1 by morpholino inhibited overexpression of NRAGE from activating NF-κB. Finally, cytokine profiling of an NRAGE over-expressing stable line revealed the expression of macrophage migration inhibitory factor. Conclusion Modulation of NRAGE expression revealed novel roles in regulating NF-κB activity in the non-canonical bone morphogenic protein signaling pathway. The expression of macrophage migration inhibitory factor by bone morphogenic protein -4 reveals novel crosstalk between an immune cytokine and a developmental pathway. PMID:20100315

  7. Macrophage Migration Inhibitory Factor Deletion Exacerbates Pressure Overload-Induced Cardiac Hypertrophy through Mitigating Autophagy

    PubMed Central

    Xu, Xihui; Hua, Yinan; Nair, Sreejayan; Bucala, Richard; Ren, Jun

    2014-01-01

    The proinflammatory cytokine macrophage migration inhibitory factor (MIF) has been shown to be cardioprotective in various pathological conditions. However, the underlying mechanisms still remain elusive. In this study, we revealed that MIF deficiency overtly exacerbated abdominal aorta constriction (AAC)-induced cardiac hypertrophy and contractile anomalies. MIF deficiency interrupted myocardial autophagy in hypertrophied hearts. Rapamycin administration mitigated the exacerbated hypertrophic responses in MIF−/− mice. Using the phenylephrine-induced hypertrophy in vitro model in H9C2 myoblasts, we confirmed that MIF governed activation of AMPK-mTOR-autophagy cascade. Confocal microscopic examination demonstrated that MIF depletion prevented phenylephrine-induced mitophagy in H9C2 myoblasts. Myocardial Parkin, an E3 ubiquitin ligase and a marker for mitophagy, was significantly upregulated following sustained pressure overload, the effect of which was prevented by MIF knockout. Moreover, our data exhibited that levels of MIF, AMPK activation and autophagy were elevated concurrently in human failing hearts. These data indicate that endogenous MIF regulates the mTOR signaling to activate autophagy to preserve cardiac geometry and protect against hypertrophic responses. PMID:24366076

  8. Rescue of neuronal migration deficits in a mouse model of fetal Minamata disease by increasing neuronal Ca2+ spike frequency.

    PubMed

    Fahrion, Jennifer K; Komuro, Yutaro; Li, Ying; Ohno, Nobuhiko; Littner, Yoav; Raoult, Emilie; Galas, Ludovic; Vaudry, David; Komuro, Hitoshi

    2012-03-27

    In the brains of patients with fetal Minamata disease (FMD), which is caused by exposure to methylmercury (MeHg) during development, many neurons are hypoplastic, ectopic, and disoriented, indicating disrupted migration, maturation, and growth. MeHg affects a myriad of signaling molecules, but little is known about which signals are primary targets for MeHg-induced deficits in neuronal development. In this study, using a mouse model of FMD, we examined how MeHg affects the migration of cerebellar granule cells during early postnatal development. The cerebellum is one of the most susceptible brain regions to MeHg exposure, and profound loss of cerebellar granule cells is detected in the brains of patients with FMD. We show that MeHg inhibits granule cell migration by reducing the frequency of somal Ca(2+) spikes through alterations in Ca(2+), cAMP, and insulin-like growth factor 1 (IGF1) signaling. First, MeHg slows the speed of granule cell migration in a dose-dependent manner, independent of the mode of migration. Second, MeHg reduces the frequency of spontaneous Ca(2+) spikes in granule cell somata in a dose-dependent manner. Third, a unique in vivo live-imaging system for cell migration reveals that reducing the inhibitory effects of MeHg on somal Ca(2+) spike frequency by stimulating internal Ca(2+) release and Ca(2+) influxes, inhibiting cAMP activity, or activating IGF1 receptors ameliorates the inhibitory effects of MeHg on granule cell migration. These results suggest that alteration of Ca(2+) spike frequency and Ca(2+), cAMP, and IGF1 signaling could be potential therapeutic targets for infants with MeHg intoxication.

  9. Rescue of neuronal migration deficits in a mouse model of fetal Minamata disease by increasing neuronal Ca2+ spike frequency

    PubMed Central

    Fahrion, Jennifer K.; Ohno, Nobuhiko; Littner, Yoav; Raoult, Emilie; Galas, Ludovic; Vaudry, David; Komuro, Hitoshi

    2012-01-01

    In the brains of patients with fetal Minamata disease (FMD), which is caused by exposure to methylmercury (MeHg) during development, many neurons are hypoplastic, ectopic, and disoriented, indicating disrupted migration, maturation, and growth. MeHg affects a myriad of signaling molecules, but little is known about which signals are primary targets for MeHg-induced deficits in neuronal development. In this study, using a mouse model of FMD, we examined how MeHg affects the migration of cerebellar granule cells during early postnatal development. The cerebellum is one of the most susceptible brain regions to MeHg exposure, and profound loss of cerebellar granule cells is detected in the brains of patients with FMD. We show that MeHg inhibits granule cell migration by reducing the frequency of somal Ca2+ spikes through alterations in Ca2+, cAMP, and insulin-like growth factor 1 (IGF1) signaling. First, MeHg slows the speed of granule cell migration in a dose-dependent manner, independent of the mode of migration. Second, MeHg reduces the frequency of spontaneous Ca2+ spikes in granule cell somata in a dose-dependent manner. Third, a unique in vivo live-imaging system for cell migration reveals that reducing the inhibitory effects of MeHg on somal Ca2+ spike frequency by stimulating internal Ca2+ release and Ca2+ influxes, inhibiting cAMP activity, or activating IGF1 receptors ameliorates the inhibitory effects of MeHg on granule cell migration. These results suggest that alteration of Ca2+ spike frequency and Ca2+, cAMP, and IGF1 signaling could be potential therapeutic targets for infants with MeHg intoxication. PMID:22411806

  10. Leukemia inhibitory factor promote trophoblast invasion via urokinase-type plasminogen activator receptor in preeclampsia.

    PubMed

    Zheng, Qin; Dai, Kuixing; Cui, Xinyuan; Yu, Ming; Yang, Xuesong; Yan, Bin; Liu, Shuai; Yan, Qiu

    2016-05-01

    Preeclampsia is a pregnancy-related syndrome which can cause perinatal mortality and morbidity. Inadequate invasion by trophoblast cells may lead to poor perfusion of the placenta, even result in preeclampsia. Understanding the molecular mechanisms underlying placentation facilitates the better intervention of preeclampsia. Urokinase-type plasminogen activator receptor (uPAR) is involved in the physiological and pathological processes. Leukemia inhibitory factor (LIF) is an important regulator in the establishment of pregnancy. However, the expression of uPAR in preeclamptic patients and its relationship with LIF remains unclear. In the current study, we found that the level of uPAR was relatively lower in the placentas from preeclamptic patients as compared with normal pregnant women. LIF promoted trophoblast cell outgrowth by upregulating uPAR in an explants culture, and LIF also enhanced migration and invasion potential through uPAR in trophoblast JAR and JEG-3 cell lines, and with increased gelatinolytic activities of matrix metalloproteinase 2 (MMP-2). The effect of LIF and uPAR on trophoblast migration and invasion was mediated by PI3K/AKT signaling pathway. Our data indicates the roles of LIF in promoting trophoblast migration and invasion through uPAR and suggest that abnormal expression of uPAR might be associated with the etiology of preeclampsia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor.

    PubMed

    Lee, Hae Kyung; Bier, Ariel; Cazacu, Simona; Finniss, Susan; Xiang, Cunli; Twito, Hodaya; Poisson, Laila M; Mikkelsen, Tom; Slavin, Shimon; Jacoby, Elad; Yalon, Michal; Toren, Amos; Rempel, Sandra A; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM), the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs) compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF) as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3'-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3'-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.

  12. Exendin-4 ameliorates oxidized-LDL-induced inhibition of macrophage migration in vitro via the NF-κB pathway

    PubMed Central

    Ma, Ge-fei; Chen, Song; Yin, Lei; Gao, Xiang-dong; Yao, Wen-bing

    2014-01-01

    Aim: To investigate the effects of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 on oxidized low-density lipoprotein (ox-LDL)-induced inhibition of macrophage migration and the mechanisms underlying the effects of exendin-4. Methods: Primary peritoneal macrophages were extracted from the peritoneal cavity of mice treated with 3% thioglycollate (2 mL, ip). Migration of the macrophages was examined using a cell migration assay. Macrophage migration-related factors including leptin-like ox-LDL receptor (LOX-1), cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin-1 (IL-1)β, matrix metalloproteinase-2 (MMP-2), intercellular adhesion molecule (ICAM)-1 and macrophage migration inhibitory factor (MIF) were measured using semi-quantitative RT-PCR. Expression of MIF and ICAM-1 proteins was examined with ELISA. Gelatin zymography was used to evaluate the activity of MMP-9. Activation of the NF-κB pathway was determined by confocal laser scanning microscopy. Results: Treatment of the macrophages with ox-LDL (50 μg/mL) markedly suppressed the macrophage migration. Furthermore, ox-LDL treatment substantially increased the expression of the macrophage migration-related factors, the activity of MMP-9 and the translocation of the NF-κB p65 subunit. These effects of ox-LDL were significantly ameliorated by pretreatment with the specific NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (100 μmol/L). These effects of ox-LDL were also significantly ameliorated by pretreatment with exendin-4 (25 and 50 nmol/L). Conclusion: Exendin-4 ameliorates the inhibition of ox-LDL on macrophage migration in vitro, via suppressing ox-LDL-induced expression of ICAM-1 and MIF, which is probably mediated by the NF-κB pathway. PMID:24335838

  13. Exendin-4 ameliorates oxidized-LDL-induced inhibition of macrophage migration in vitro via the NF-κB pathway.

    PubMed

    Ma, Ge-fei; Chen, Song; Yin, Lei; Gao, Xiang-dong; Yao, Wen-bing

    2014-02-01

    To investigate the effects of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 on oxidized low-density lipoprotein (ox-LDL)-induced inhibition of macrophage migration and the mechanisms underlying the effects of exendin-4. Primary peritoneal macrophages were extracted from the peritoneal cavity of mice treated with 3% thioglycollate (2 mL, ip). Migration of the macrophages was examined using a cell migration assay. Macrophage migration-related factors including leptin-like ox-LDL receptor (LOX-1), cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin-1 (IL-1)β, matrix metalloproteinase-2 (MMP-2), intercellular adhesion molecule (ICAM)-1 and macrophage migration inhibitory factor (MIF) were measured using semi-quantitative RT-PCR. Expression of MIF and ICAM-1 proteins was examined with ELISA. Gelatin zymography was used to evaluate the activity of MMP-9. Activation of the NF-κB pathway was determined by confocal laser scanning microscopy. Treatment of the macrophages with ox-LDL (50 μg/mL) markedly suppressed the macrophage migration. Furthermore, ox-LDL treatment substantially increased the expression of the macrophage migration-related factors, the activity of MMP-9 and the translocation of the NF-κB p65 subunit. These effects of ox-LDL were significantly ameliorated by pretreatment with the specific NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (100 μmol/L). These effects of ox-LDL were also significantly ameliorated by pretreatment with exendin-4 (25 and 50 nmol/L). Exendin-4 ameliorates the inhibition of ox-LDL on macrophage migration in vitro, via suppressing ox-LDL-induced expression of ICAM-1 and MIF, which is probably mediated by the NF-κB pathway.

  14. Time-lapse cinematography of the capillary tube cell migration inhibition test.

    PubMed

    Bray, M A

    1980-01-01

    The kinetics of human and guinea pig cell migration inhibition have been studied using time-lapse cinematography of cells migrating from capillary tubes. Guinea pig and human cells exhibit markedly different kinetics in the absence of inhibitors. Specific antigen causes a dose-related inhibition of migration for up to 60 h using guinea pig cells and a peak of inhibition after 18 h using the human leucocyte system. The timing of measurement of maximum activity more critical for the latter test. The kinetics of lymphokine generation have been examined and the migration inhibitory activity of the plant mitogen (PHA), a Kurloff cell product and a continuous cell line supernatant have been compared with the inhibitory profiles of lymphokine preparations and specific antigen.

  15. Modulation of human endothelial cell proliferation and migration by fucoidan and heparin.

    PubMed

    Giraux, J L; Matou, S; Bros, A; Tapon-Bretaudière, J; Letourneur, D; Fischer, A M

    1998-12-01

    Fucoidan is a sulfated polysaccharide extracted from brown seaweeds. It has anticoagulant and antithrombotic properties and inhibits, as well as heparin, vascular smooth muscle cell growth. In this study, we investigated, in the presence of serum and human recombinant growth factors, the effects of fucoidan and heparin on the growth and migration of human umbilical vein endothelial cells (HUVEC) in culture. We found that fucoidan stimulated fetal bovine serum-induced HUVEC proliferation, whereas heparin inhibited it. In the presence of fibroblast growth factor-1 (FGF-1), both fucoidan and heparin potentiated HUVEC growth. In contrast, fucoidan and heparin inhibited HUVEC proliferation induced by FGF-2, but did not influence the mitogenic activity of vascular endothelial growth factor (VEGF). In the in vitro migration assay from a denuded area of confluent cells, the two sulfated polysaccharides markedly enhanced the migration of endothelial cells in the presence of FGF-1. Finally, a weak inhibitory effect on cell migration was found only with the two polysaccharides at high concentrations (> or = 100 micro/ml) in presence of serum or combined with FGF-2. All together, the results indicated that heparin and fucoidan can be used as tools to further investigate the cellular mechanisms regulating the proliferation and migration of human vascular cells. Moreover, the data already suggest a potential role of fucoidan as a new therapeutic agent of vegetal origin in the vascular endothelium wound repair.

  16. MIF Drives Pancreatic Cancer Aggressiveness by Downregulating NR3C2 | Center for Cancer Research

    Cancer.gov

    Pancreatic cancer, while relatively rare, is an aggressive disease ranked as the fourth leading cause of cancer-related death in the US. Because most patients are diagnosed at an advanced stage and their tumors resist available treatments, novel therapeutic targets are urgently needed. Macrophage Migration Inhibitory Factor (MIF) is a proinflammatory cytokine that is elevated

  17. Immunohistochemical study of macrophage migration inhibitory factor in rat liver fibrosis induced by thioacetamide.

    PubMed

    Hori, Y; Sato, S; Yamate, J; Kurasaki, M; Nishihira, J; Hosokawa, T; Fujita, H; Saito, T

    2003-01-01

    Macrophage migration inhibitory factor (MIF) is a molecule known to regulate macrophage accumulation at sites of inflammation. To elucidate the role of MIF in progression of liver fibrosis, the immunohistochemical localization of MIF and macrophages in the liver were examined. Male Wistar rats received thioacetamide (TA) injections (200 mg/kg, i.p.) for 1 or 6 weeks. In biochemical and histological tests, it was confirmed that liver fibrosis was induced. In immunohistochemical analyses, the expression of MIF protein was seen in hepatocytes in the areas extending out from the central veins to the portal tracts. In particular, at 6 weeks, immunoreactivity was detected in degenerated hepatocytes adjacent to the fibrotic areas but hardly observed in the fibrotic areas. On the other hand, a number of exudate macrophages stained by antibody ED1 were seen in the areas from the central veins to the portal tracts at 1 week and in the fibrotic areas at 6 weeks. Macrophages also showed a significant increase in number as compared with controls. These results revealed that there was a close relationship between the appearance of MIF expression and ED1-positive exudate macrophages in degenerated hepatocytes during the progression of TA-induced liver fibrosis.

  18. Macrophage migration inhibitory factor in lung tissue of idiopathic pulmonary fibrosis patients.

    PubMed

    Olivieri, Carmela; Bargagli, Elena; Inghilleri, Simona; Campo, Ilaria; Cintorino, Marcella; Rottoli, Paola

    2016-06-01

    Idiopathic pulmonary fibrosis (IPF) is a severe interstitial lung disorder characterized by a pattern of Usual Interstitial Pneumonia where the presence of fibroblastic foci is the hallmark of the disease. In the present study, we analyzed the migration inhibitory factor (MIF) expression in lung tissue of IPF patients compared with healthy controls and organizing pneumonia (OP) patients focusing into MIF potential role in fibroblastic foci development. The immunohistochemical analysis was performed in 10 IPF patients (7 male), 3 OP patients (2 male), and 3 healthy controls (all male) using the streptavidin-biotin method (Dako). In IPF samples, MIF resulted overexpressed in the areas of active fibrosis and, in particular, in the alveolar epithelium, bronchiolar epithelium, and in the peripheral zones of fibroblastic foci. Bronchiolar epithelium from organizing pneumonia patients resulted only weakly positive for MIF while no evidence of MIF expression was reported for alveolar epithelium. In the control subject group, MIF was unexpressed except for a weak presence in the bronchiolar epithelium. In conclusion, MIF is a pleiotropic cytokine involved in the pathogenesis of IPF being mainly expressed in the areas of remodeling and active fibrosis, in bronchiolar and alveolar epithelium, and in the peripheral zone of fibroblastic foci.

  19. Elevated plasma migration inhibitory factor in hypertension–hyperlipidemia patients correlates with impaired endothelial function

    PubMed Central

    Zhou, Boda; Ren, Chuan; Zu, Lingyun; Zheng, Lemin; Guo, Lijun; Gao, Wei

    2016-01-01

    Abstract Migration inhibitory factor (MIF) has been shown to be critical in the pathology of early artherosclerosis; this article aim to investigate the plasma levels of MIF in hypertension plus hyperlipidemia patients. A total of 39 hypertension plus hyperlipidemia patients without any previous treatment were enrolled (HTN-HLP). Twenty-five healthy subjects were enrolled as the healthy control group (HEALTHY). Plasma MIF was measured by ELISA; laboratory and clinical characteristics were analyzed. HUVECs were treated with pooled plasma from HTN-HLP and HEALTHY groups, and the protein levels of adhesion molecules VCAM-1 and ICAM-1 were determined by ELISA. We found that plasma MIF was significantly elevated in the HTN-HLP group. Serum NO and eNOS levels were significantly lower; serum ET-1 (endothelin) levels were significantly higher in the HTN-HLP group. Furthermore, blood pressure, baPWV (brachial–ankle pulse wave velocity), and serum ET-1 level were significantly positively; serum NO and eNOS levels were negatively correlated with plasma MIF levels. Plasma from HTN-HLP significantly stimulated VCAM-1 and ICAM-1 protein expression on the surface of HUVECs. Plasma MIF was elevated in HTN-HLP patients and correlates with impaired endothelial function. PMID:27787379

  20. Restoration of miR-1305 relieves the inhibitory effect of nicotine on periodontal ligament-derived stem cell proliferation, migration, and osteogenic differentiation.

    PubMed

    Chen, Zhuo; Liu, Hui-Li

    2017-04-01

    Nicotine hinders the regenerative potentials of human periodontal ligament-derived stem cells (PDLSCs) and delays the healing process of periodontal diseases, but the underlying mechanism remains unclear. miR-1305 upregulation and its potential target RUNX2 downregulation exist in the PDLSCs exposed to nicotine. In this study, we aimed to investigate whether nicotine inhibits PDLSC proliferation, migration, and osteogenic differentiation by increasing miR-1305 level and decreasing RUNX2 level. Quantitative real-time PCR (qRT-PCR) and Western blot assays were performed to detect the expression levels of miR-1305 and RUNX2 in the PDLSCs exposed to nicotine, respectively. PDLSCs with miR-1305 overexpression, low expression, or RUNX2 overexpression were constructed by lipofectin transfection. MTT, migration, and Western blot assays were applied to assess the effect of miR-1305 on PDLSC proliferation, migration, and osteogenic differentiation, respectively. Target prediction and luciferase reporter assays were performed to investigate the targets of miR-1305. Nicotine promoted miR-1305 expression and inhibited RUNX2 expression in PDLSCs. Cell proliferation, migration, and differentiation detection showed that nicotine suppressed proliferation, migration, and osteogenic differentiation of PDLSCs, and restoration of miR-1305 relieved the inhibitory effect of nicotine on PDLSCs. Moreover, we identified and validated that RUNX2 was a direct target of miR-1305, and upregulation of RUNX2 had similar effects with the downregulation of miR-1305 on relieving the inhibitory effect of nicotine on PDLSCs. Nicotine suppresses proliferation, migration, and osteogenic differentiation of PDLSCs, and restoration of miR-1305 relieves the inhibitory effect of nicotine on PDLSCs depending on its target RUNX2. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Annexin 1 Modulates Monocyte-Endothelial Cell Interaction In Vitro and Cell Migration In Vivo in the Human SCID Mouse Transplantation Model1

    PubMed Central

    Perretti, Mauro; Ingegnoli, Francesca; Wheller, Samantha K.; Blades, Mark C.; Solito, Egle; Pitzalis, Costantino

    2015-01-01

    The effect of the glucocorticoid inducible protein annexin 1 (ANXA1) on the process of monocytic cell migration was studied using transfected U937 cells expressing variable protein levels. An antisense (AS) (36.4AS; ~50% less ANXA1) and a sense (S) clone (15S; overexpressing the bioactive 24-kDa fragment) together with the empty plasmid CMV clone were obtained and compared with wild-type U937 cells in various models of cell migration in vitro and in vivo. 15S-transfected U937 cells displayed a reduced (50%) degree of trans-endothelial migration in response to stromal cell-derived factor-1α (CXC chemokine ligand 12 (CXCL12)). In addition, the inhibitory role of endogenous ANXA1 on U937 cell migration in vitro was confirmed by the potentiating effect of a neutralizing anti-ANXA1 serum. Importantly, overexpression of ANXA1 in clone 15S inhibited the extent of cell migration into rheumatoid synovial grafts transplanted into SCID mice. ANXA1 inhibitory effects were not due to modifications in adhesion molecule or CXCL12 receptor (CXCR4) expression as shown by the similar amounts of surface molecules found in transfected and wild-type U937 cells. Likewise, an equal chemotactic response to CXCL12 in vitro excluded an intrinsic defect in cell motility in clones 15S and 36.4AS. These data strongly support the notion that ANXA1 critically interferes with a leukocyte endothelial step essential for U937 cell, and possibly monocyte, transmigration both in vitro and in vivo. PMID:12165536

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Dong-Wook; Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752; Lim, Hye Ryeon

    The abnormal growth of vascular smooth muscle cells (VSMCs) plays an important role in vascular diseases, including atherosclerosis and restenosis after angioplasty. Although (-)-epigallocatechin-3-O-gallate (EGCG) has antiproliferative effects on various cells, relatively a little is known about precise mechanisms of the inhibitory effects of EGCG on SMCs. In this study, the inhibitory effects of EGCG on attachment, proliferation, migration, and cell cycle of rat aortic SMCs (RASMCs) with serum stimulation were investigated. Also, the involvement of nuclear factor-{kappa}B (NF-{kappa}B) during these inhibitions by EGCG was examined. EGCG treatment resulted in significant (p < 0.05) inhibition in attachment and proliferation ofmore » RASMCs induced by serum. While non-treated RASMCs migrated into denuded area in response to serum and showed essentially complete closure after 36 h, EGCG-treated cells covered only 31% of the area even after 48 h of incubation. Furthermore, EGCG treatment resulted in an appreciable cell cycle arrest at both G0/G1- and G2/M-phases. The immunoblot analysis revealed that the constitutive expression of NF-{kappa}B/p65 nuclear protein in RASMCs was lowered by EGCG in both the cytosol and the nucleus in a dose-dependent manner. These results suggest that the EGCG-caused inhibitory effects on RASMCs may be mediated through NF-{kappa}B down-modulation.« less

  3. miR-379 Inhibits Cell Proliferation, Invasion, and Migration of Vascular Smooth Muscle Cells by Targeting Insulin-Like Factor-1.

    PubMed

    Li, Kai; Wang, Yong; Zhang, Anji; Liu, Baixue; Jia, Li

    2017-01-01

    MicroRNAs are small non-coding RNAs that play important roles in vascular smooth muscle cell (VSMC) function. This study investigated the role of miR-379 on proliferation, invasion, and migration of VSMCs and explored underlying mechanisms thereof. MicroRNA, mRNA, and protein levels were determined by quantitative real-time PCR and western blot. The proliferative, invasive, and migratory abilities of VSMCs were measured by CCK-8, invasion, and wound healing assay, respectively. Luciferase reporter assay was used to confirm the target of miR-379. Platelet-derived growth factor-bb was found to promote cell proliferation and suppress miR-379 expression in VSMCs. Functional assays demonstrated that miR-379 inhibited cell proliferation, cell invasion, and migration. Flow cytometry results further showed that miR-379 induced apoptosis in VSMCs. TargetScan analysis and luciferase report assay confirmed that insulin-like growth factor-1 (IGF-1) 3'UTR is a direct target of miR-379, and mRNA and protein levels of miR-379 and IGF-1 were inversely correlated. Rescue experiments showed that enforced expression of IGF-1 sufficiently overcomes the inhibitory effect of miR-379 on cell proliferation, invasion, and migration in VSMCs. Our results suggest that miR-379 plays an important role in regulating VSMCs proliferation, invasion, and migration by targeting IGF-1.

  4. Biochemical and structural characterization of a novel cooperative binding mode by Pit-1 with CATT repeats in the macrophage migration inhibitory factor promoter

    PubMed Central

    Agarwal, Sorabh

    2018-01-01

    Abstract Overexpression of the proinflammatory cytokine macrophage migration inhibitory factor (MIF) is linked to a number of autoimmune diseases and cancer. MIF production has been correlated to the number of CATT repeats in a microsatellite region upstream of the MIF gene. We have characterized the interaction of pituitary-specific positive transcription factor 1 (Pit-1) with a portion of the MIF promoter region flanking a microsatellite polymorphism (−794 CATT5–8). Using fluorescence anisotropy, we quantified tight complex formation between Pit-1 and an oligonucleotide consisting of eight consecutive CATT repeats (8xCATT) with an apparent Kd of 35 nM. Using competition experiments we found a 23 base pair oligonucleotide with 4xCATT repeats to be the minimum DNA sequence necessary for high affinity interaction with Pit-1. The stoichiometry of the Pit-1 DNA interaction was determined to be 2:1 and binding is cooperative in nature. We subsequently structurally characterized the complex and discovered a completely novel binding mode for Pit-1 in contrast to previously described Pit-1 complex structures. The affinity of Pit-1 for the CATT target sequence was found to be highly dependent on cooperativity. This work lays the groundwork for understanding transcriptional regulation of MIF and pursuing Pit-1 as a therapeutic target to treat MIF-mediated inflammatory disorders. PMID:29186613

  5. Expression and function of macrophage migration inhibitory factor in the pathogenesis of UV-induced cutaneous nonmelanoma skin cancer.

    PubMed

    Heise, Ruth; Vetter-Kauczok, Claudia S; Skazik, Claudia; Czaja, Katharina; Marquardt, Yvonne; Lue, Hongqi; Merk, Hans F; Bernhagen, Jürgen; Baron, Jens M

    2012-01-01

    Chronic skin exposure to ultraviolet light stimulates the production of cytokines known to be involved in the initiation of skin cancer. Recent studies in mouse models suggested a role for macrophage migration inhibitory factor (MIF) in the UVB-induced pathogenesis of nonmelanoma skin cancer (NMSC). Our studies aimed at defining the pathophysiological function of MIF in cutaneous inflammatory reactions and in the development and progression of NMSC. Immunohistochemical analysis revealed a moderate expression of MIF in normal human skin samples but an enhanced expression of this cytokine in lesional skin of patients with actinic keratosis or cutaneous SCC. Enzyme-linked immunosorbent assay studies showed a time-dependent increase in MIF secretion after a moderate single-dose UVB irradiation in NHEKs and SCC tumor cells. MIF is known to interact with CXCR2, CXCR4 and CD74. These receptors are not constitutively expressed in keratinocytes and HaCaT cells and their expression is not induced by UVB irradiation either. However, stimulation with IFNγ upregulated CD74 surface expression in these cells. Affymetrix(®) Gene Chip analysis revealed that only keratinocytes prestimulated with IFNγ are responsive to MIF. These findings indicate that MIF may be an important factor in the pathogenesis of NMSC tumorigenesis and progression in an inflammatory environment. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  6. Unraveling the role of hypoxia-inducible factor (HIF)-1α and HIF-2α in the adaption process of human microvascular endothelial cells (HMEC-1) to hypoxia: Redundant HIF-dependent regulation of macrophage migration inhibitory factor.

    PubMed

    Hahne, Martin; Schumann, Peggy; Mursell, Mathias; Strehl, Cindy; Hoff, Paula; Buttgereit, Frank; Gaber, Timo

    2018-03-01

    Hypoxia driven angiogenesis is a prominent feature of tissue regeneration, inflammation and tumor growth and is regulated by hypoxia-inducible factor (HIF)-1 and -2. The distinct functions of HIFs in the hypoxia-induced angiogenesis and metabolic switch of endothelial cells are still unknown and therefore aim of this study. We investigated the role of HIF-1 and -2 in the adaptation of immortalized human microvascular endothelial cells (HMEC-1) to hypoxic conditions (1% O 2 ) in terms of angiogenesis, cytokine secretion, gene expression and ATP/ADP-ratio using shRNA-mediated reduction of the oxygen sensitive α-subunits of either HIF-1 or HIF-2 or the combination of both. Reduction of HIF-1α diminished cellular energy, hypoxia-induced glycolytic gene expression, and angiogenesis not altering pro-angiogenic factors. Reduction of HIF-2α diminished hypoxia-induced pro-angiogenic factors, enhanced anti-angiogenic factors and attenuated angiogenesis not altering glycolytic gene expression. Reduction of both HIFs reduced cell survival, gene expression of glycolytic enzymes and pro-angiogenic factors as compared to the corresponding control. Finally, we identified the macrophage migration inhibitory factor (MIF) to be redundantly regulated by HIF-1 and HIF-2 and to be essential in the process of hypoxia-driven angiogenesis. Our results demonstrate a major impact of HIF-1 and HIF-2 on hypoxia-induced angiogenesis indicating distinct but also overlapping functions of HIF-1 and HIF-2. These findings open new possibilities for therapeutic approaches by specifically targeting the HIF-1 and HIF-2 or their target MIF. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Identification of Iguratimod as an Inhibitor of Macrophage Migration Inhibitory Factor (MIF) with Steroid-sparing Potential*

    PubMed Central

    Bloom, Joshua; Metz, Christine; Nalawade, Saisha; Casabar, Julian; Cheng, Kai Fan; He, Mingzhu; Sherry, Barbara; Coleman, Thomas; Forsthuber, Thomas; Al-Abed, Yousef

    2016-01-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been implicated in a broad range of inflammatory and oncologic diseases. MIF is unique among cytokines in terms of its release profile and inflammatory role, notably as an endogenous counter-regulator of the anti-inflammatory effects of glucocorticoids. In addition, it exhibits a catalytic tautomerase activity amenable to the design of high affinity small molecule inhibitors. Although several classes of these compounds have been identified, biologic characterization of these molecules remains a topic of active investigation. In this study, we used in vitro LPS-driven assays to characterize representative molecules from several classes of MIF inhibitors. We determined that MIF inhibitors exhibit distinct profiles of anti-inflammatory activity, especially with regard to TNFα. We further investigated a molecule with relatively low anti-inflammatory activity, compound T-614 (also known as the anti-rheumatic drug iguratimod), and found that, in addition to exhibiting selective MIF inhibition in vitro and in vivo, iguratimod also has additive effects with glucocorticoids. Furthermore, we found that iguratimod synergizes with glucocorticoids in attenuating experimental autoimmune encephalitis, a model of multiple sclerosis. Our work identifies iguratimod as a valuable new candidate for drug repurposing to MIF-relevant diseases, including multiple sclerosis. PMID:27793992

  8. Design, synthesis, and protein crystallography of biaryltriazoles as potent tautomerase inhibitors of macrophage migration inhibitory factor.

    PubMed

    Dziedzic, Pawel; Cisneros, José A; Robertson, Michael J; Hare, Alissa A; Danford, Nadia E; Baxter, Richard H G; Jorgensen, William L

    2015-03-04

    Optimization is reported for biaryltriazoles as inhibitors of the tautomerase activity of human macrophage migration inhibitory factor (MIF), a proinflammatory cytokine associated with numerous inflammatory diseases and cancer. A combined approach was taken featuring organic synthesis, enzymatic assaying, crystallography, and modeling including free-energy perturbation (FEP) calculations. X-ray crystal structures for 3a and 3b bound to MIF are reported and provided a basis for the modeling efforts. The accommodation of the inhibitors in the binding site is striking with multiple hydrogen bonds and aryl-aryl interactions. Additional modeling encouraged pursuit of 5-phenoxyquinolinyl analogues, which led to the very potent compound 3s. Activity was further enhanced by addition of a fluorine atom adjacent to the phenolic hydroxyl group as in 3w, 3z, 3aa, and 3bb to strengthen a key hydrogen bond. It is also shown that physical properties of the compounds can be modulated by variation of solvent-exposed substituents. Several of the compounds are likely the most potent known MIF tautomerase inhibitors; the most active ones are more than 1000-fold more active than the well-studied (R)-ISO-1 and more than 200-fold more active than the chromen-4-one Orita-13.

  9. Direct association of thioredoxin-1 (TRX) with macrophage migration inhibitory factor (MIF): regulatory role of TRX on MIF internalization and signaling.

    PubMed

    Son, Aoi; Kato, Noriko; Horibe, Tomohisa; Matsuo, Yoshiyuki; Mochizuki, Michika; Mitsui, Akira; Kawakami, Koji; Nakamura, Hajime; Yodoi, Junji

    2009-10-01

    Thioredoxin-1 (TRX) is a small (14 kDa) multifunctional protein with the redox-active site Cys-Gly-Pro-Cys. Macrophage migration inhibitory factor (MIF) is a 12 kDa cytokine belonging to the TRX family. Historically, when we purified TRX from the supernatant of ATL-2 cells, a 12 kDa protein was identified along with TRX, which was later proved to be MIF. Here, we show that TRX and MIF form a complex in the cell and the culture supernatant of ATL-2 cells. Using a BIAcore assay, we confirmed that TRX has a specific affinity with MIF. We also found that extracellular MIF was more effectively internalized into the ATL-2 cells expressing TRX on the cell surface, than the Jurkat T cells which do not express surface TRX. Moreover, anti-TRX antibody blocked the MIF internalization, suggesting that the cell surface TRX is involved in MIF internalization into the cells. Furthermore, anti-TRX antibody inhibited MIF-mediated enhancement of TNF-alpha production from macrophage RAW264.7 cells. These results suggest that the cell surface TRX serves as one of the MIF binding molecules or MIF receptor component and inhibits MIF-mediated inflammatory signals.

  10. Evidence for a role of macrophage migration inhibitory factor in vascular disease.

    PubMed

    Chen, Zhiping; Sakuma, Masashi; Zago, Alexandre C; Zhang, Xiaobin; Shi, Can; Leng, Lin; Mizue, Yuka; Bucala, Richard; Simon, Daniel

    2004-04-01

    Inflammation plays an essential role in atherosclerosis and restenosis. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is widely expressed in vascular cells. However, there is no in vivo evidence that MIF participates directly in vascular injury and repair. Therefore, we investigated the effect of MIF blockade on the response to experimental angioplasty in atherosclerosis-susceptible mice. Carotid artery dilation (2.5 atm) and complete endothelial denudation were performed in male C57BL/6J LDL receptor-deficient mice treated with a neutralizing anti-MIF or isotype control monoclonal antibody. After 7 days and 28 days, intimal and medial sizes were measured and intima/media area ratio (I/M) was calculated. Intimal thickening and I/M were reduced significantly by anti-MIF compared with control antibody. Vascular injury was accompanied by progressive vessel enlargement or "positive remodeling" that was comparable in both treatment groups. MIF blockade was associated with reduced inflammation and cellular proliferation and increased apoptosis after injury. Neutralizing MIF bioactivity after experimental angioplasty in atherosclerosis-susceptible mice reduces vascular inflammation, cellular proliferation, and neointimal thickening. Although the molecular mechanisms responsible for these effects are not yet established, these data prompt further research directed at understanding the role of MIF in vascular disease and suggest novel therapeutic interventions for preventing atherosclerosis and restenosis.

  11. Oxidized macrophage migration inhibitory factor is a potential new tissue marker and drug target in cancer.

    PubMed

    Schinagl, Alexander; Thiele, Michael; Douillard, Patrice; Völkel, Dirk; Kenner, Lukas; Kazemi, Zahra; Freissmuth, Michael; Scheiflinger, Friedrich; Kerschbaumer, Randolf J

    2016-11-08

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine, which was shown to be upregulated in cancers and to exhibit tumor promoting properties. Unlike other cytokines, MIF is ubiquitously present in the circulation and tissue of healthy subjects. We recently described a previously unrecognized, disease-related isoform of MIF, designated oxMIF, which is present in the circulation of patients with different inflammatory diseases. In this article, we report that oxMIF is also linked to different solid tumors as it is specifically expressed in tumor tissue from patients with colorectal, pancreatic, ovarian and lung cancer. Furthermore, oxMIF can be specifically targeted by a subset of phage display-derived fully human, monoclonal anti-MIF antibodies (mAbs) that were shown to neutralize pro-tumorigenic activities of MIF in vivo. We further demonstrate that anti-oxMIF mAbs sensitize human cancer cell lines (LNCaP, PC3, A2780 and A2780ADR) to the action of cytotoxic drugs (mitoxantrone, cisplatin and doxorubicin) in vitro and in an A2780 xenograft mouse model of ovarian cancer. We conclude that oxMIF is the disease related isoform of MIF in solid tumors and a potential new diagnostic marker and drug target in cancer.

  12. Macrophage Migration Inhibitory Factor-Induced Autophagy Contributes to Thrombin-Triggered Endothelial Hyperpermeability in Sepsis.

    PubMed

    Chao, Chiao-Hsuan; Chen, Hong-Ru; Chuang, Yung-Chun; Yeh, Trai-Ming

    2018-07-01

    Vascular leakage contributes to the high morbidity and mortality associated with sepsis. Exposure of the endothelium to inflammatory mediators, such as thrombin and cytokines, during sepsis leads to hyperpermeability. We recently observed that autophagy, a cellular process for protein turnover, is involved in macrophage migration inhibitory factor (MIF)-induced endothelial hyperpermeability. Even though it is known that thrombin induces endothelial cells to secrete MIF and to increase vascular permeability, the possible role of autophagy in this process is unknown. In this study, we proposed and tested the hypothesis that MIF-induced autophagy plays an important role in thrombin-induced endothelial hyperpermeability. We evaluated the effects of thrombin on endothelial permeability, autophagy induction, and MIF secretion in vitro using the human microvascular endothelial cell line-1 and human umbilical vein endothelial cells. Several mechanisms/read outs of endothelial permeability and autophagy formation were examined. We observed that blocking autophagy attenuated thrombin-induced endothelial hyperpermeability. Furthermore, thrombin-induced MIF secretion was involved in this process because MIF inhibition reduced thrombin-induced autophagy and hyperpermeability. Finally, we showed that blocking MIF or autophagy effectively alleviated vascular leakage and mortality in endotoxemic mice. Thus, MIF-induced autophagy may represent a common mechanism causing vascular leakage in sepsis.

  13. Design, Synthesis, and Protein Crystallography of Biaryltriazoles as Potent Tautomerase Inhibitors of Macrophage Migration Inhibitory Factor

    DOE PAGES

    Dziedzic, Pawel; Cisneros, José A.; Robertson, Michael J.; ...

    2015-02-20

    Optimization is reported for biaryltriazoles as inhibitors of the tautomerase activity of human macrophage migration inhibitory factor (MIF), a proinflammatory cytokine associated with numerous inflammatory diseases and cancer. A combined approach was taken featuring organic synthesis, enzymatic assaying, crystallography, and modeling including free-energy perturbation (FEP) calculations. X-ray crystal structures for 3a and 3b bound to MIF are reported and provided a basis for the modeling efforts. The accommodation of the inhibitors in the binding site is striking with multiple hydrogen bonds and aryl–aryl interactions. Additional modeling encouraged pursuit of 5-phenoxyquinolinyl analogues, which led to the very potent compound 3s. Activitymore » was further enhanced by addition of a fluorine atom adjacent to the phenolic hydroxyl group as in 3w, 3z, 3aa, and 3bb to strengthen a key hydrogen bond. We also show that physical properties of the compounds can be modulated by variation of solvent-exposed substituents. Several of the compounds are likely the most potent known MIF tautomerase inhibitors; the most active ones are more than 1000-fold more active than the well-studied (R)-ISO-1 and more than 200-fold more active than the chromen-4-one Orita-13.« less

  14. Association between macrophage migration inhibitory factor in the endometrium and estrogen in endometriosis

    PubMed Central

    ZHANG, XIAO; MU, LIN

    2015-01-01

    Recent studies have shown that macrophage migration inhibitory factor (MIF) has a possible role in endometriosis-related pain and infertility, yet it has not been explored whether the mRNA level of MIF is altered in endometrial tissues from patients with endometriosis. The aim of the present study was to compare the expression of MIF in endometrial tissues from women with and without endometriosis, and to analyze the association between endometrial MIF expression and 17β-estradiol (E2). The protein and mRNA expression of MIF in the human endometrial tissue was assessed by western blotting and reverse transcription-polymerase chain reaction analysis, respectively. The MIF expression of women with endometriosis was found to be significantly higher than that of the controls. A positive correlation was noted between the serum E2 level and MIF expression. In endometrial cells from women with endometriosis, the level of E2-induced MIF upregulation was significantly higher than that in cells from women without endometriosis. In conclusion, this study demonstrated a significant increase in MIF expression in the endometrial tissues of women with endometriosis and an association between MIF expression and E2 level. MIF expression in endometrial cells from patients with endometriosis showed an increased sensitivity to stimulation by E2. PMID:26622394

  15. Resveratrol Inhibits the Epidermal Growth Factor-Induced Migration of Osteoblasts: the Suppression of SAPK/JNK and Akt.

    PubMed

    Kawabata, Tetsu; Tokuda, Haruhiko; Fujita, Kazuhiko; Kainuma, Shingo; Sakai, Go; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Otsuka, Takanobu

    2017-01-01

    Resveratrol is a polyphenol enriched in the skins of grapes and berries, that shows various beneficial effects for human health. In the present study, we investigated the mechanism behind the epidermal growth factor (EGF)-induced migration of osteoblast-like MC3T3-E1 cells, and the effect of resveratrol on this cell migration. The cell migration was examined using Boyden chamber, and phosphorylation of each kinase was analyzed by Western blotting. The EGF-induced migration was suppressed by PD98059, an inhibitor of MEK1/2, as well as SB203580, an inhibitor of p38 MAP kinase, SP600125, an inhibitor of SAPK/JNK, and deguelin, an inhibitor of Akt. In contrast, rapamycin, an inhibitor of upstream kinase of p70 S6 kinase, and fasudil, an inhibitor of Rho-kinase, hardly affected the migration. Resveratrol significantly reduced the EGF-induced migration in a dose-dependent manner. SRT1720, an SIRT1 activator, suppressed the migration by EGF. In addition, resveratrol markedly attenuated the EGF-induced phosphorylation of SAPK/JNK and Akt without affecting the phosphorylation of p44/p42 MAP kinase or p38 MAP kinase. The phosphorylation of SAPK/JNK and Akt induced by EGF was down-regulated by SRT1720. Our results strongly suggest that resveratrol reduces the EGF-stimulated migration of osteoblasts via suppression of SAPK and Akt, and that the inhibitory effect of resveratrol is mediated in part via SIRT1. © 2017 The Author(s). Published by S. Karger AG, Basel.

  16. Proteoglycans and neuronal migration in the cerebral cortex during development and disease

    PubMed Central

    Maeda, Nobuaki

    2015-01-01

    Chondroitin sulfate proteoglycans and heparan sulfate proteoglycans are major constituents of the extracellular matrix and the cell surface in the brain. Proteoglycans bind with many proteins including growth factors, chemokines, axon guidance molecules, and cell adhesion molecules through both the glycosaminoglycan and the core protein portions. The functions of proteoglycans are flexibly regulated due to the structural variability of glycosaminoglycans, which are generated by multiple glycosaminoglycan synthesis and modifying enzymes. Neuronal cell surface proteoglycans such as PTPζ, neuroglycan C and syndecan-3 function as direct receptors for heparin-binding growth factors that induce neuronal migration. The lectican family, secreted chondroitin sulfate proteoglycans, forms large aggregates with hyaluronic acid and tenascins, in which many signaling molecules and enzymes including matrix proteases are preserved. In the developing cerebrum, secreted chondroitin sulfate proteoglycans such as neurocan, versican and phosphacan are richly expressed in the areas that are strategically important for neuronal migration such as the striatum, marginal zone, subplate and subventricular zone in the neocortex. These proteoglycans may anchor various attractive and/or repulsive cues, regulating the migration routes of inhibitory neurons. Recent studies demonstrated that the genes encoding proteoglycan core proteins and glycosaminoglycan synthesis and modifying enzymes are associated with various psychiatric and intellectual disorders, which may be related to the defects of neuronal migration. PMID:25852466

  17. Aloe emodin inhibits colon cancer cell migration/angiogenesis by downregulating MMP-2/9, RhoB and VEGF via reduced DNA binding activity of NF-κB.

    PubMed

    Suboj, Priya; Babykutty, Suboj; Valiyaparambil Gopi, Deepak Roshan; Nair, Rakesh S; Srinivas, Priya; Gopala, Srinivas

    2012-04-11

    Aloe emodin (AE), a natural anthraquinone, is reported to have antiproliferative activity in various cancer cell lines. In this study we analyzed molecular mechanisms involved in the antimigratory and antiangiogenic activity of this hydroxy anthraquinone in colon cancer cell, WiDr. Our results show that a relatively non toxic concentration of AE suppressed the phorbol-12-myristyl-13-acetate (PMA) induced migration and invasion of tumor cells. On analysis for the molecules involved in the migration/invasion, we found AE downregulated mRNA expression and promoter/gelatinolytic activity of Matrix Metalloproteinase (MMP)-2/9, as well as the RhoB expression at gene and protein level. It was also a strong inhibitor of Vascular Endothelial Growth Factor (VEGF) expression, promoter activity and endothelial cell migration/invasion and in vitro angiogenesis. AE suppressed the nuclear translocation and DNA binding of NF-κB, which is an important transcription factor for controlling MMP-2/9 and VEGF gene expression. Taken together these data indicate that AE target multiple molecules responsible for cellular invasion, migration and angiogenesis. Inhibitory effect on angiogenic and metastatic regulatory processes make AE a sensible candidate as a specific blocker of tumor associated events. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. 4'-Acetoamido-4-hydroxychalcone, a chalcone derivative, inhibits glioma growth and invasion through regulation of the tropomyosin 1 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, Bo Mi; Ryu, Hyung Won; Lee, Yeon Kyung

    2010-11-19

    Research highlights: {yields} 4'-Acetoamido-4-hydroxychalcone (AHC) has anti-cancer property for glioma. {yields} 4'-Acetoamido-4-hydroxychalcone (AHC) increased tropomyosin expreesion through activattion of PKA signaling. {yields} 4'-Acetoamido-4-hydroxychalcone (AHC) inhibits glioma cell migration and invasion. {yields} In vivo administration of 4'-acetoamido-4-hydroxychalcone (AHC) reduced tumor growth. -- Abstract: Chalcones are precursors of flavonoids and have been shown to have anti-cancer activity. Here, we identify the synthetic chalcone derivative 4'-acetoamido-4-hydroxychalcone (AHC) as a potential therapeutic agent for the treatment of glioma. Treatment with AHC reduced glioma cell invasion, migration, and colony formation in a concentration-dependent manner. In addition, AHC inhibited vascular endothelial growth factor-induced migration, invasion, andmore » tube formation in HUVECs. To determine the mechanism underlying the inhibitory effect of AHC on glioma cell invasion and migration, we investigated the effect of AHC on the gene expression change and found that AHC affects actin dynamics in U87MG glioma cells. In actin cytoskeleton regulating system, AHC increased tropomyosin expression and stress fiber formation, probably through activation of PKA. Suppression of tropomyosin expression by siRNA or treatment with the PKA inhibitor H89 reduced the inhibitory effects of AHC on glioma cell invasion and migration. In vivo experiments also showed that AHC inhibited tumor growth in a xenograft mouse tumor model. Together, these data suggest that the synthetic chalcone derivative AHC has potent anti-cancer activity through inhibition of glioma proliferation, invasion, and angiogenesis and is therefore a potential chemotherapeutic candidate for the treatment of glioma.« less

  19. MIIP, a cytoskeleton regulator that blocks cell migration and invasion, delays mitosis, and suppresses tumorogenesis.

    PubMed

    Wang, Yingmei; Wen, Jing; Zhang, Wei

    2011-02-01

    The migration and invasion inhibitory protein (MIIP) was initially discovered in a yeast two-hybrid screen for proteins that interact and inhibit the migration and invasion-promoting protein insulin-like growth factor binding protein 2 (IGFBP2). Recent studies have shown that MIIP not only modulates IGFBP2 but also regulates microtubule by binding to and inhibiting HDAC6, a class 2 histone deacetylase that deacetylates α-tubulin, heat-shock protein 90 (HSP90), and cortactin. In addition, MIIP also regulates the mitosis checkpoint, another microtubule-associated process. The location of the MIIP gene in chromosomal region 1p36, a commonly deleted region in a broad spectrum of human cancers, and the observation that MIIP attenuates tumorigenesis in a mouse model suggest that it functions as a tumor-suppressor gene. This review summarizes the recent progress in characterizing this novel protein, which regulates cell migration and mitosis, two processes that rely on the highly coordinated dynamics of the microtubule and cytoskeleton systems.

  20. Anethole and eugenol reduce in vitro and in vivo leukocyte migration induced by fMLP, LTB4, and carrageenan.

    PubMed

    Estevão-Silva, Camila Fernanda; Kummer, Raquel; Fachini-Queiroz, Fernanda Carolina; Grespan, Renata; Nogueira de Melo, Gessilda Alcântara; Baroni, Silmara; Cuman, Roberto Kenji Nakamura; Bersani-Amado, Ciomar Aparecida

    2014-07-01

    The aim of this study was to investigate the effect of anethole (AN) and eugenol (EUG) on leukocyte migration using in vitro chemotaxis and in situ microcirculation assays. BALB/c mice were used for the in vitro chemotaxis assay, and Wistar rats for the in situ microcirculation assay. We evaluated (a) the in vitro leukocyte migration in response to chemotactic factors (formyl-methionyl-leucyl-phenylalanine [fMLP] and leukotriene B4 [LTB4]) and (b) the rolling, adhesion, and migration of leukocytes induced by an injection of carrageenan (100 µg/cavity) into the scrotum of the animal. In the in vitro chemotaxis assay, AN and EUG at doses of 1, 3, 9, and 27 µg/ml significantly inhibited leukocyte migration when stimulated by the chemotactic agents fMLP and LTB4. In the in situ microcirculation assay, AN at doses of 125 and 250 mg/kg and EUG at a dose of 250 mg/kg significantly decreased the number of leukocytes that rolled, adhered, and migrated to perivascular tissue. The results indicate that AN and EUG exert inhibitory effects on leukocyte migration, highlighting their possible use to diminish excessive leukocyte migration in the inflammatory process.

  1. Effect of Macrophage Migration Inhibitory Factor on Corneal Sensitivity after Laser In Situ Keratomileusis in Rabbit

    PubMed Central

    Hose, Stacey; Gongora, Celine; Sinha, Debasish; O'Brien, Terrence

    2014-01-01

    Purpose To investigate the effect of macrophage migration inhibitory factor (MIF) on corneal sensitivity after laser in situ keratomileusis (LASIK) surgery. Methods New Zealand white rabbits were used in this study. A hinged corneal flap (160-µm thick) was created with a microkeratome, and -3.0 diopter excimer laser ablation was performed. Expressions of MIF mRNA in the corneal epithelial cells and surrounding inflammatory cells were analyzed using reverse transcription polymerase chain reaction at 48 hours after LASIK. After LASIK surgery, the rabbits were topically given either 1) a balanced salt solution (BSS), 2) MIF (100 ng/mL) alone, or 3) a combination of nerve growth factor (NGF, 100 ug/mL), neurotrophine-3 (NT-3, 100 ng/mL), interleukin-6 (IL-6, 5 ng/mL), and leukemia inhibitory factor (LIF, 5 ng/mL) four times a day for three days. Preoperative and postoperative corneal sensitivity at two weeks and at 10 weeks were assessed using the Cochet-Bonnet esthesiometer. Results Expression of MIF mRNA was 2.5-fold upregulated in the corneal epithelium and 1.5-fold upregulated in the surrounding inflammatory cells as compared with the control eyes. Preoperative baseline corneal sensitivity was 40.56 ± 2.36 mm. At two weeks after LASIK, corneal sensitivity was 9.17 ± 5.57 mm in the BSS treated group, 21.92 ± 2.44 mm in the MIF treated group, and 22.42 ± 1.59 mm in the neuronal growth factors-treated group (MIF vs. BSS, p < 0.0001; neuronal growth factors vs. BSS, p < 0.0001; MIF vs. neuronal growth factors, p = 0.815). At 10 weeks after LASIK, corneal sensitivity was 15.00 ± 9.65, 35.00 ± 5.48, and 29.58 ± 4.31 mm respectively (MIF vs. BSS, p = 0.0001; neuronal growth factors vs. BSS, p = 0.002; MIF vs. neuronal growth factors, p = 0.192). Treatment with MIF alone could achieve as much of an effect on recovery of corneal sensation as treatment with combination of NGF, NT-3, IL-6, and LIF. Conclusions Topically administered MIF plays a significant role in the early recovery of corneal sensitivity after LASIK in the experimental animal model. PMID:24688261

  2. Effect of macrophage migration inhibitory factor on corneal sensitivity after laser in situ keratomileusis in rabbit.

    PubMed

    Hyon, Joon Young; Hose, Stacey; Gongora, Celine; Sinha, Debasish; O'Brien, Terrence

    2014-04-01

    To investigate the effect of macrophage migration inhibitory factor (MIF) on corneal sensitivity after laser in situ keratomileusis (LASIK) surgery. New Zealand white rabbits were used in this study. A hinged corneal flap (160-µm thick) was created with a microkeratome, and -3.0 diopter excimer laser ablation was performed. Expressions of MIF mRNA in the corneal epithelial cells and surrounding inflammatory cells were analyzed using reverse transcription polymerase chain reaction at 48 hours after LASIK. After LASIK surgery, the rabbits were topically given either 1) a balanced salt solution (BSS), 2) MIF (100 ng/mL) alone, or 3) a combination of nerve growth factor (NGF, 100 ug/mL), neurotrophine-3 (NT-3, 100 ng/mL), interleukin-6 (IL-6, 5 ng/mL), and leukemia inhibitory factor (LIF, 5 ng/mL) four times a day for three days. Preoperative and postoperative corneal sensitivity at two weeks and at 10 weeks were assessed using the Cochet-Bonnet esthesiometer. Expression of MIF mRNA was 2.5-fold upregulated in the corneal epithelium and 1.5-fold upregulated in the surrounding inflammatory cells as compared with the control eyes. Preoperative baseline corneal sensitivity was 40.56 ± 2.36 mm. At two weeks after LASIK, corneal sensitivity was 9.17 ± 5.57 mm in the BSS treated group, 21.92 ± 2.44 mm in the MIF treated group, and 22.42 ± 1.59 mm in the neuronal growth factors-treated group (MIF vs. BSS, p < 0.0001; neuronal growth factors vs. BSS, p < 0.0001; MIF vs. neuronal growth factors, p = 0.815). At 10 weeks after LASIK, corneal sensitivity was 15.00 ± 9.65, 35.00 ± 5.48, and 29.58 ± 4.31 mm respectively (MIF vs. BSS, p = 0.0001; neuronal growth factors vs. BSS, p = 0.002; MIF vs. neuronal growth factors, p = 0.192). Treatment with MIF alone could achieve as much of an effect on recovery of corneal sensation as treatment with combination of NGF, NT-3, IL-6, and LIF. Topically administered MIF plays a significant role in the early recovery of corneal sensitivity after LASIK in the experimental animal model.

  3. Macrophage Migration Inhibitory Factor Induces Inflammation and Predicts Spinal Progression in Ankylosing Spondylitis.

    PubMed

    Ranganathan, Vidya; Ciccia, Francesco; Zeng, Fanxing; Sari, Ismail; Guggino, Guiliana; Muralitharan, Janogini; Gracey, Eric; Haroon, Nigil

    2017-09-01

    To investigate the role of macrophage migration inhibitory factor (MIF) in the pathogenesis of ankylosing spondylitis (AS). Patients who met the modified New York criteria for AS were recruited for the study. Healthy volunteers, rheumatoid arthritis patients, and osteoarthritis patients were included as controls. Based on the annual rate of increase in modified Stoke AS Spine Score (mSASSS), AS patients were classified as progressors or nonprogressors. MIF levels in serum and synovial fluid were quantitated by enzyme-linked immunosorbent assay. Predictors of AS progression were evaluated using logistic regression analysis. Immunohistochemical analysis of ileal tissue was performed to identify MIF-producing cells. Flow cytometry was used to identify MIF-producing subsets, expression patterns of the MIF receptor (CD74), and MIF-induced tumor necrosis factor (TNF) production in the peripheral blood. MIF-induced mineralization of osteoblast cells (SaOS-2) was analyzed by alizarin red S staining, and Western blotting was used to quantify active β-catenin levels. Baseline serum MIF levels were significantly elevated in AS patients compared to healthy controls and were found to independently predict AS progression. MIF levels were higher in the synovial fluid of AS patients, and MIF-producing macrophages and Paneth cells were enriched in their gut. MIF induced TNF production in monocytes, activated β-catenin in osteoblasts, and promoted the mineralization of osteoblasts. Our findings indicate an unexplored pathogenic role of MIF in AS and a link between inflammation and new bone formation. © 2017, American College of Rheumatology.

  4. Putting on the brakes: Bacterial impediment of wound healing

    PubMed Central

    Brothers, Kimberly M.; Stella, Nicholas A.; Hunt, Kristin M.; Romanowski, Eric G.; Liu, Xinyu; Klarlund, Jes K.; Shanks, Robert M. Q.

    2015-01-01

    The epithelium provides a crucial barrier to infection, and its integrity requires efficient wound healing. Bacterial cells and secretomes from a subset of tested species of bacteria inhibited human and porcine corneal epithelial cell migration in vitro and ex vivo. Secretomes from 95% of Serratia marcescens, 71% of Pseudomonas aeruginosa, 29% of Staphylococcus aureus strains, and other bacterial species inhibited epithelial cell migration. Migration of human foreskin fibroblasts was also inhibited by S. marcescens secretomes indicating that the effect is not cornea specific. Transposon mutagenesis implicated lipopolysaccharide (LPS) core biosynthetic genes as being required to inhibit corneal epithelial cell migration. LPS depletion of S. marcescens secretomes with polymyxin B agarose rendered secretomes unable to inhibit epithelial cell migration. Purified LPS from S. marcescens, but not from Escherichia coli or S. marcescens strains with mutations in the waaG and waaC genes, inhibited epithelial cell migration in vitro and wound healing ex vivo. Together these data suggest that S. marcescens LPS is sufficient for inhibition of epithelial wound healing. This study presents a novel host-pathogen interaction with implications for infections where bacteria impact wound healing and provides evidence that secreted LPS is a key factor in the inhibitory mechanism. PMID:26365869

  5. Macrophage Migration Inhibitory Factor Release by Macrophages after Ingestion of Plasmodium chabaudi-Infected Erythrocytes: Possible Role in the Pathogenesis of Malarial Anemia

    PubMed Central

    Martiney, James A.; Sherry, Barbara; Metz, Christine N.; Espinoza, Marisol; Ferrer, Angel S.; Calandra, Thierry; Broxmeyer, Hal E.; Bucala, Richard

    2000-01-01

    Human falciparum malaria, caused by Plasmodium falciparum infection, results in 1 to 2 million deaths per year, mostly children under the age of 5 years. The two main causes of death are severe anemia and cerebral malaria. Malarial anemia is characterized by parasite red blood cell (RBC) destruction and suppression of erythropoiesis (the mechanism of which is unknown) in the presence of a robust host erythropoietin response. The production of a host-derived erythropoiesis inhibitor in response to parasite products has been implicated in the pathogenesis of malarial anemia. The identity of this putative host factor is unknown, but antibody neutralization studies have ruled out interleukin-1β, tumor necrosis factor alpha, and gamma interferon while injection of interleukin-12 protects susceptible mice against lethal P. chabaudi infection. In this study, we report that ingestion of P. chabaudi-infected erythrocytes or malarial pigment (hemozoin) induces the release of macrophage migration inhibitory factor (MIF) from macrophages. MIF, a proinflammatory mediator and counter-regulator of glucocorticoid action, inhibits erythroid (BFU-E), multipotential (CFU-GEMM), and granulocyte-macrophage (CFU-GM) progenitor-derived colony formation. MIF was detected in the sera of P. chabaudi-infected BALB/c mice, and circulating levels correlated with disease severity. Liver MIF immunoreactivity increased concomitant with extensive pigment and parasitized RBC deposition. Finally, MIF was elevated three- to fourfold in the spleen and bone marrow of P. chabaudi-infected mice with active disease, as compared to early disease, or of uninfected controls. In summary, the present results suggest that MIF may be a host-derived factor involved in the pathophysiology of malaria anemia. PMID:10722628

  6. Novel Anti-inflammatory Activity of Epoxyazadiradione against Macrophage Migration Inhibitory Factor

    PubMed Central

    Alam, Athar; Haldar, Saikat; Thulasiram, Hirekodathakallu V.; Kumar, Rahul; Goyal, Manish; Iqbal, Mohd Shameel; Pal, Chinmay; Dey, Sumanta; Bindu, Samik; Sarkar, Souvik; Pal, Uttam; Maiti, Nakul C.; Bandyopadhyay, Uday

    2012-01-01

    Macrophage migration inhibitory factor (MIF) is responsible for proinflammatory reactions in various infectious and non-infectious diseases. We have investigated the mechanism of anti-inflammatory activity of epoxyazadiradione, a limonoid purified from neem (Azadirachta indica) fruits, against MIF. Epoxyazadiradione inhibited the tautomerase activity of MIF of both human (huMIF) and malaria parasites (Plasmodium falciparum (PfMIF) and Plasmodium yoelii (PyMIF)) non-competitively in a reversible fashion (Ki, 2.11–5.23 μm). Epoxyazadiradione also significantly inhibited MIF (huMIF, PyMIF, and PfMIF)-mediated proinflammatory activities in RAW 264.7 cells. It prevented MIF-induced macrophage chemotactic migration, NF-κB translocation to the nucleus, up-regulation of inducible nitric-oxide synthase, and nitric oxide production in RAW 264.7 cells. Epoxyazadiradione not only exhibited anti-inflammatory activity in vitro but also in vivo. We tested the anti-inflammatory activity of epoxyazadiradione in vivo after co-administering LPS and MIF in mice to mimic the disease state of sepsis or bacterial infection. Epoxyazadiradione prevented the release of proinflammatory cytokines such as IL-1α, IL-1β, IL-6, and TNF-α when LPS and PyMIF were co-administered to BALB/c mice. The molecular basis of interaction of epoxyazadiradione with MIFs was explored with the help of computational chemistry tools and a biological knowledgebase. Docking simulation indicated that the binding was highly specific and allosteric in nature. The well known MIF inhibitor (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) inhibited huMIF but not MIF of parasitic origin. In contrast, epoxyazadiradione inhibited both huMIF and plasmodial MIF, thus bearing an immense therapeutic potential against proinflammatory reactions induced by MIF of both malaria parasites and human. PMID:22645149

  7. Pirfenidone inhibits transforming growth factor β1-induced extracellular matrix production in nasal polyp-derived fibroblasts.

    PubMed

    Shin, Jae-Min; Park, Joo-Hoo; Park, Il-Ho; Lee, Heung-Man

    2015-01-01

    Pirfenidone has been shown to have antifibrotic and anti-inflammatory effects in the lungs. The purpose of this study was to evaluate the inhibitory effects of pirfenidone on transforming growth factor (TGF)-β1-induced myofibroblast differentiation and extracellular matrix accumulation. We also determined the molecular mechanisms of pirfenidone in nasal polyp-derived fibroblasts (NPDF). NPDFs were isolated from nasal polyps from eight patients who had chronic rhinosinusitis with nasal polyp. Pirfenidone was used to treat TGF-β1-induced NPDFs. Cytotoxicity was evaluated by using a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Fibroblast migration was evaluated with scratch assays. Expression levels of α-smooth muscle actin (SMA), fibronectin, and phosphorylated Smad2/3 were determined by Western blot and/or reverse transcription-polymerase chain reaction and immunofluorescent staining. Total collagen production was analyzed with the Sircol collagen assay and contractile activity was measured by a collagen gel contraction assay. Pirfenidone (0-2 mg/mL) has no significant cytotoxic effects in TGF-β1-induced NPDFs. Migration of NPDFs was significantly inhibited by pirfenidone treatment. The expression levels of α-SMA and fibronectin were significantly reduced in pirfenidone-treated NPDFs. Collagen contraction and production were also significantly decreased by pirfenidone treatment. Finally, pirfenidone significantly inhibited phosphorylation of the Smad2/3 pathway in TGF-β1-induced NPDFs. Pirfenidone has an inhibitory effect on TGF-β1-induced migration, myofibroblast differentiation (α-SMA), extracellular matrix accumulation, and collagen contraction by blocking the phosphorylation of Smad2/3 pathways in NPDFs. Thus, pirfenidone may inhibit TGF-β1-induced extracellular matrix by regulating Smad2/3.

  8. Effect of perineoplasm perinephric adipose tissues on migration of clear cell renal cell carcinoma cells: a potential role of WNT signaling.

    PubMed

    Zi, Xiaolin; Lusch, Achim; Blair, Christopher A; Okhunov, Zhamshid; Yokoyama, Noriko N; Liu, Shuman; Baker, Molly; Huynh, Victor; Landman, Jaime

    2016-08-16

    To investigate the cellular and molecular interactions between clear-cell renal cell carcinoma (ccRCC) and perinephric adipose tissue (PAT), perineoplasm PAT, PAT away from the neoplasm, renal sinus and subcutaneous adipose tissues were collected at the time of renal surgery for renal masses and conditioned medium (CM) was generated from 62 patients. Perineoplasm PAT CMs from 44 out of 62 (about 71%) of patients with ccRCC or benign renal diseases (e.g. oncocytomas, angiomyolipomas, multicystic kidney, interstitial fibrosis, etc.) enhanced the migration of CaKi-2 cells. Perineoplasm PAT CMs from ccRCC significantly increased migration of ACHN and CaKi-2 cells by ~8.2 and ~2.4 folds, respectively, relative to those from benign renal diseases, whereas there is no significant difference in migration between ccRCC and benign renal diseases in CMs collected from culturing PAT away from neoplasm, renal sinus and subcutaneous adipose tissues. High Fuhrman Grade was associated with increased migration of Caki-2 cells by perineoplasm PAT CMs. Perineoplasm PATs from pT3 RCCs overexpressed multiple WNTs and their CMs exhibited higher WNT/ß-catenin activity and increased the migration of Caki-2 cells compared to CMs from benign neoplasms. Addition of secreted WNT inhibitory factor-1 recombinant protein into perineoplasm PAT CMs completely blocked the cell migration. These results indicate that WNT related factors from perineoplasm PAT may promote progression of local ccRCC to locally advanced (pT3) disease by increasing ccRCC cell mobility.

  9. Macrophage migration inhibitory factor in obese and non obese women with polycystic ovary syndrome.

    PubMed

    Mejia-Montilla, Jorly; Álvarez-Mon, Melchor; Reyna-Villasmil, Eduardo; Torres-Cepeda, Duly; Santos-Bolívar, Joel; Reyna-Villasmil, Nadia; Suarez-Torres, Ismael; Bravo-Henríquez, Alfonso

    2015-01-01

    To measure macrophage migration inhibitory factor (MIF) concentrations in obese and non-obese women diagnosed with polycystic ovary syndrome (PCOS). Women diagnosed with PCOS and age-matched healthy controls with regular menses and normal ovaries on ultrasound examination were selected and divided into 4 groups (group A, PCOS and obese; group B, PCOS and non-obese; group C, obese controls; and group D, non-obese controls) based on body mass index (obese >30 kg/m2 and non-obese <25 kg/m2). Luteinizing hormone, follicle-stimulating hormone, androstenedione, testosterone, sex hormone-binding globulin, serum glucose, insulin and MIF levels were measured. Obese and non-obese women with PCOS had higher luteinizing hormone, follicle-stimulating hormone, androstenedione, testosterone, and insulin levels as compared to the obese and non-obese control groups, respectively (P < .0001). Women with PCOS had significantly higher MIF levels (group A, 48.6 ± 9.9 mg/ml; group B, 35.2 ± 6.0 ng/ml) as compared to controls (group C, 13.5 ± 6.0 ng/ml; group D, 12.0 ± 4.3 ng/dl; P < .0001). A weak, positive and significant correlation was seen between fasting blood glucose and insulin levels in women with PCOS (P < .05). Significant differences exist in plasma MIF levels between obese and non-obese women with and without PCOS. Copyright © 2014 SEEN. Published by Elsevier Espana. All rights reserved.

  10. Macrophage Migration Inhibitory Factor (MIF) Deficiency Exacerbates Aging-Induced Cardiac Remodeling and Dysfunction Despite Improved Inflammation: Role of Autophagy Regulation.

    PubMed

    Xu, Xihui; Pang, Jiaojiao; Chen, Yuguo; Bucala, Richard; Zhang, Yingmei; Ren, Jun

    2016-03-04

    Aging leads to unfavorable geometric and functional sequelae in the heart. The proinflammatory cytokine macrophage migration inhibitory factor (MIF) plays a role in the maintenance of cardiac homeostasis under stress conditions although its impact in cardiac aging remains elusive. This study was designed to evaluate the role of MIF in aging-induced cardiac anomalies and the underlying mechanism involved. Cardiac geometry, contractile and intracellular Ca(2+) properties were examined in young (3-4 mo) or old (24 mo) wild type and MIF knockout (MIF(-/-)) mice. Our data revealed that MIF knockout exacerbated aging-induced unfavorable structural and functional changes in the heart. The detrimental effect of MIF knockout was associated with accentuated loss in cardiac autophagy with aging. Aging promoted cardiac inflammation, the effect was attenuated by MIF knockout. Intriguingly, aging-induced unfavorable responses were reversed by treatment with the autophagy inducer rapamycin, with improved myocardial ATP availability in aged WT and MIF(-/-) mice. Using an in vitro model of senescence, MIF knockdown exacerbated doxorubicin-induced premature senescence in H9C2 myoblasts, the effect was ablated by MIF replenishment. Our data indicated that MIF knockout exacerbates aging-induced cardiac remodeling and functional anomalies despite improved inflammation, probably through attenuating loss of autophagy and ATP availability in the heart.

  11. Comparative levels of macrophage migration inhibitory factor, procalcitonin, osteoprotegerin, interleukin-8, hs-C reactive protein, D-dimer in febrile neutropenia, newly diagnosed cancer patients, and infectious fever.

    PubMed

    Bilgir, Oktay; Bilgir, Ferda; Kebapcilar, Levent; Bozkaya, Giray; Çalan, Mehmet; Kırbıyık, Halil; Avci, Meltem; Sari, İsmail; Yuksel, Arif; Isikyakar, Tolgay

    2012-02-01

    The purpose of this study is to determine the levels of procalcitonin (PCT), IL-8 (interleukin-8), MIF (macrophage migration inhibitory factor), osteoprotegerin (OPG), hs-CRP and D-dimer during fever above 38.3°C due to various causes. Blood samples taken from a total of consecutive 65 hospitalized patients during fever were prospectively tested for hsCRP, PCT, IL-8, OPG, MIF and D-dimer. Of these patients, there were 26 patients presenting with chemotherapy-induced neutropenia who had no infectious agents found; 23 patients, who had a malignancy with a febrile episode which was neither a microbiologically documented infection nor a chemotherapy-induced neutropenia, and 16 patients who did not have a malignancy and were considered to have a clinically and microbiologically documented infection. IL-8 and D-dimer levels were higher in patients with febrile neutropenia than in the other two groups. Although MIF and OPG were higher in patients with newly diagnosed cancers, there were no differences among the three groups regarding PCT and hs-CRP values. High serum IL-8 and D-dimer levels can be useful markers to identify hospitalized chemotherapy-induced neutropenia patients. MIF and OPG were found to be higher in patients with newly diagnosed cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Macrophage Migration Inhibitory Factor-CXCR4 Receptor Interactions

    PubMed Central

    Rajasekaran, Deepa; Gröning, Sabine; Schmitz, Corinna; Zierow, Swen; Drucker, Natalie; Bakou, Maria; Kohl, Kristian; Mertens, André; Lue, Hongqi; Weber, Christian; Xiao, Annie; Luker, Gary; Kapurniotu, Aphrodite; Lolis, Elias; Bernhagen, Jürgen

    2016-01-01

    An emerging number of non-chemokine mediators are found to bind to classical chemokine receptors and to elicit critical biological responses. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that exhibits chemokine-like activities through non-cognate interactions with the chemokine receptors CXCR2 and CXCR4, in addition to activating the type II receptor CD74. Activation of the MIF-CXCR2 and -CXCR4 axes promotes leukocyte recruitment, mediating the exacerbating role of MIF in atherosclerosis and contributing to the wealth of other MIF biological activities. Although the structural basis of the MIF-CXCR2 interaction has been well studied and was found to engage a pseudo-ELR and an N-like loop motif, nothing is known about the regions of CXCR4 and MIF that are involved in binding to each other. Using a genetic strain of Saccharomyces cerevisiae that expresses a functional CXCR4 receptor, site-specific mutagenesis, hybrid CXCR3/CXCR4 receptors, pharmacological reagents, peptide array analysis, chemotaxis, fluorescence spectroscopy, and circular dichroism, we provide novel molecular information about the structural elements that govern the interaction between MIF and CXCR4. The data identify similarities with classical chemokine-receptor interactions but also provide evidence for a partial allosteric agonist compared with CXCL12 that is possible due to the two binding sites of CXCR4. PMID:27226569

  13. Non-Brownian dynamics and strategy of amoeboid cell locomotion.

    PubMed

    Nishimura, Shin I; Ueda, Masahiro; Sasai, Masaki

    2012-04-01

    Amoeboid cells such as Dictyostelium discoideum and Madin-Darby canine kidney cells show the non-Brownian dynamics of migration characterized by the superdiffusive increase of mean-squared displacement. In order to elucidate the physical mechanism of this non-Brownian dynamics, a computational model is developed which highlights a group of inhibitory molecules for actin polymerization. Based on this model, we propose a hypothesis that inhibitory molecules are sent backward in the moving cell to accumulate at the rear of cell. The accumulated inhibitory molecules at the rear further promote cell locomotion to form a slow positive feedback loop of the whole-cell scale. The persistent straightforward migration is stabilized with this feedback mechanism, but the fluctuation in the distribution of inhibitory molecules and the cell shape deformation concurrently interrupt the persistent motion to turn the cell into a new direction. A sequence of switching behaviors between persistent motions and random turns gives rise to the superdiffusive migration in the absence of the external guidance signal. In the complex environment with obstacles, this combined process of persistent motions and random turns drives the simulated amoebae to solve the maze problem in a highly efficient way, which suggests the biological advantage for cells to bear the non-Brownian dynamics.

  14. Differential role of PTEN in transforming growth factor β (TGF-β) effects on proliferation and migration in prostate cancer cells.

    PubMed

    Kimbrough-Allah, Mawiyah N; Millena, Ana C; Khan, Shafiq A

    2018-04-01

    Transforming growth factor-β (TGF-β) acts as a tumor suppressor in normal epithelial cells but as a tumor promoter in advanced prostate cancer cells. PI3-kinase pathway mediates TGF-β effects on prostate cancer cell migration and invasion. PTEN inhibits PI3-kinase pathway and is frequently mutated in prostate cancers. We investigated possible role(s) of PTEN in TGF-β effects on proliferation and migration in prostate cancer cells. Expression of PTEN mRNA and proteins were determined using RT-PCR and Western blotting in RWPE1 and DU145 cells. We also studied the role of PTEN in TGF-β effects on cell proliferation and migration in DU145 cells after transient silencing of endogenous PTEN. Conversely, we determined the role of PTEN in cell proliferation and migration after over-expression of PTEN in PC3 cells which lack endogenous PTEN. TGF-β1 and TGF-β3 had no effect on PTEN mRNA levels but both isoforms increased PTEN protein levels in DU145 and RWPE1 cells indicating that PTEN may mediate TGF-β effects on cell proliferation. Knockdown of PTEN in DU145 cells resulted in significant increase in cell proliferation which was not affected by TGF-β isoforms. PTEN overexpression in PC3 cells inhibited cell proliferation. Knockdown of endogenous PTEN enhanced cell migration in DU145 cells, whereas PTEN overexpression reduced migration in PC3 cells and reduced phosphorylation of AKT in response to TGF-β. We conclude that PTEN plays a role in inhibitory effects of TGF-β on cell proliferation whereas its absence may enhance TGF-β effects on activation of PI3-kinase pathway and cell migration. © 2018 Wiley Periodicals, Inc.

  15. Overexpression of microRNA-375 impedes platelet-derived growth factor-induced proliferation and migration of human fetal airway smooth muscle cells by targeting Janus kinase 2.

    PubMed

    Ji, Yamei; Yang, Xin; Su, Huixia

    2018-02-01

    The abnormal proliferation and migration of airway smooth muscle (ASM) cells play a critical role in airway remodeling during the development of asthma. MicroRNAs (miRNAs) have emerged as critical regulators of ASM cell proliferation and migration in airway remodeling. In this study, we aimed to investigate the potential role of miR-375 in the regulation of platelet-derived growth factor (PDGF)-induced fetal ASM cell proliferation and migration. Our results showed that miR-375 expression was significantly decreased in fetal ASM cells that were treated with PDGF. Functional data showed that overexpression of miR-375 inhibited the proliferation and migration of fetal ASM cells, whereas inhibition of miR-375 enhanced the proliferation and migration of fetal ASM cells. The results of bioinformatics analysis and a dual-luciferase reporter assay showed that miR-375 binds directly to the 3'-untranslated region of Janus kinase 2 (JAK2). Further data confirmed that miR-375 negatively regulates the expression of JAK2 in fetal ASM cells. Moreover, miR-375 also impeded the PDGF-induced activation of signal transducer and activator of transcription 3 (STAT3) in fetal ASM cells. However, restoration of JAK2 expression partially reversed the inhibitory effect of miR-375 on fetal ASM cell proliferation and migration. Overall, our results demonstrate that miR-375 inhibits fetal ASM cell proliferation and migration by targeting JAK2/STAT3 signaling. Our study provides a potential therapeutic target for the development of novel treatment strategies for pediatric asthma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Delphinidin inhibits BDNF-induced migration and invasion in SKOV3 ovarian cancer cells.

    PubMed

    Lim, Won-Chul; Kim, Hyunhee; Kim, Young-Joo; Park, Seung-Ho; Song, Ji-Hye; Lee, Ki Heon; Lee, In Ho; Lee, Yoo-Kyung; So, Kyeong A; Choi, Kyung-Chul; Ko, Hyeonseok

    2017-12-01

    Brain-derived neurotrophic factor (BDNF), the TrkB ligand, is associated with aggressive malignant behavior, including migration and invasion, in tumor cells and a poor prognosis in patients with various types of cancer. Delphinidin is a diphenylpropane-based polyphenolic ring structure-harboring compound, which exhibits a wide range of pharmacological activities, anti-tumor, anti-oxidant, anti-inflammatory, anti-angiogenic and anti-mutagenic activity. However, the possible role of delphinidin in the cancer migration and invasion is unclear. We investigated the suppressive effect of delphinidin on the cancer migration and invasion. Thus, we found that BDNF enhanced cancer migration and invasion in SKOV3 ovarian cancer cell. To exam the inhibitory role of delphinidin in SKOV3 ovarian cancer migration and invasion, we investigated the use of delphinidin as inhibitors of BDNF-induced motility and invasiveness in SKOV3 ovarian cancer cells in vitro. Here, we found that delphinidin prominently inhibited the BDNF-induced increase in cell migration and invasion of SKOV3 ovarian cancer cells. Furthermore, delphinidin remarkably inhibited BDNF-stimulated expression of MMP-2 and MMP-9. Also, delphinidin antagonized the phosphorylation of Akt and nuclear translocation of NF-κB permitted by the BDNF in SKOV3 ovarian cancer cells. Taken together, our findings provide new evidence that delphinidin suppressed the BDNF-induced ovarian cancer migration and invasion through decreasing of Akt activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via geranylgeranylation and RhoA activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Haidari, Amr A.; Syk, Ingvar; Thorlacius, Henrik, E-mail: henrik.thorlacius@med.lu.se

    2014-03-28

    Highlights: • Simvastatin blocked CCL17-induced and CCR4-dependent RhoA activation in HT29 cells. • CCL17/CCR4-mediated migration of colon cancer cells was antagonised by simvastatin. • Cell migration recovered by adding Mevalonate and geranylgeranyl pyrophosphate. • Targeting HMG-CoA reductase might be useful to inhibit colon cancer metastasis. - Abstract: Background: Simvastatin is widely used to lower cholesterol levels in patients with cardiovascular diseases, although accumulating evidence suggests that statins, such as simvastatin, also exert numerous anti-tumoral effects. Aim: The aim of this study was to examine the effect of simvastatin on colon cancer cell migration. Methods: Migration assays were performed to evaluatemore » CCL17-induced colon cancer cell (HT-29) chemotaxis. In vitro tumor growth and apoptosis were assessed using a proliferation assay and annexin V assay, respectively. Active RhoA protein levels in CCL17-stimulated colon cancer cells were quantified using a G-LISA assay. Results: We found that simvastatin dose-dependently decreased CCL17-induced colon cancer cell migration. Simvastatin had no effect on colon cancer cell proliferation or apoptosis. Inhibition of beta chemokine receptor 4, CCR4, reduced CCL17-evoked activation of RhoA in colon cancer cells. Moreover, administration of mevalonate reversed the inhibitory effect of simvastatin on CCL17-induced colon cancer cell migration. Interestingly, co-incubation with geranylgeranyl pyrophosphate (GGPP) antagonized the inhibitory impact of simvastatin on colon cancer cell migration triggered by CCL17. Moreover, we observed that simvastatin decreased CCL17-induced activation of RhoA in colon cancer cells. Administration of mevalonate and GGPP reversed the inhibitory effect of simvastatin on CCL17-provoked RhoA activation in colon cancer cells. Conclusions: Taken together, our findings show for the first time that HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via inhibition of geranylgeranylation and RhoA activation. Thus, statins, such as simvastatin, might be effective tools to antagonize CCL17-dependent migration and metastasis of colon cancer cells.« less

  18. Enhanced Inflammation without Impairment of Insulin Signaling in the Visceral Adipose Tissue of 5α-Dihydrotestosterone-Induced Animal Model of Polycystic Ovary Syndrome.

    PubMed

    Milutinović, Danijela Vojnović; Nikolić, Marina; Veličković, Nataša; Djordjevic, Ana; Bursać, Biljana; Nestorov, Jelena; Teofilović, Ana; Antić, Ivana Božić; Macut, Jelica Bjekić; Zidane, Abdulbaset Shirif; Matić, Gordana; Macut, Djuro

    2017-09-01

    Polycystic ovary syndrome is a heterogeneous endocrine and metabolic disorder associated with abdominal obesity, dyslipidemia and insulin resistance. Since abdominal obesity is characterized by low-grade inflammation, the aim of the study was to investigate whether visceral adipose tissue inflammation linked to abdominal obesity and dyslipidemia could lead to impaired insulin sensitivity in the animal model of polycystic ovary syndrome.Female Wistar rats were treated with nonaromatizable 5α-dihydrotestosterone pellets in order to induce reproductive and metabolic characteristics of polycystic ovary syndrome. Glucose, triglycerides, non-esterified fatty acids and insulin were determined in blood plasma. Visceral adipose tissue inflammation was evaluated by the nuclear factor kappa B intracellular distribution, macrophage migration inhibitory factor protein level, as well as TNFα, IL6 and IL1β mRNA levels. Insulin sensitivity was assessed by intraperitoneal glucose tolerance test and homeostasis model assessment index, and through analysis of insulin signaling pathway in the visceral adipose tissue.Dihydrotestosterone treatment led to increased body weight, abdominal obesity and elevated triglycerides and non-esterified fatty acids, which were accompanied by the activation of nuclear factor kappa B and increase in macrophage migration inhibitory factor, IL6 and IL1β levels in the visceral adipose tissue. In parallel, insulin sensitivity was affected in 5α-dihydrotestosterone-treated animals only at the systemic and not at the level of visceral adipose tissue.The results showed that abdominal obesity and dyslipidemia in the animal model of polycystic ovary syndrome were accompanied with low-grade inflammation in the visceral adipose tissue. However, these metabolic disturbances did not result in decreased tissue insulin sensitivity. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Involvement of macrophage migration inhibitory factor and its receptor (CD74) in human breast cancer.

    PubMed

    Richard, Vincent; Kindt, Nadège; Decaestecker, Christine; Gabius, Hans-Joachim; Laurent, Guy; Noël, Jean-Christophe; Saussez, Sven

    2014-08-01

    Macrophage migration inhibitory factor (MIF) and its receptor CD74 appear to be involved in tumorigenesis. We evaluated, by immunohistochemical staining, the tissue expression and distribution of MIF and CD74 in serial sections of human invasive breast cancer tumor specimens. The serum MIF level was also determined in breast cancer patients. We showed a significant increase in serum MIF average levels in breast cancer patients compared to healthy individuals. MIF tissue expression, quantified by a modified Allred score, was strongly increased in carcinoma compared to tumor-free specimens, in the cancer cells and in the peritumoral stroma, with fibroblasts the most intensely stained. We did not find any significant correlation with histoprognostic factors, except for a significant inverse correlation between tumor size and MIF stromal positivity. CD74 staining was heterogeneous and significantly decreased in cancer cells but increased in the surrounding stroma, namely in lymphocytes, macrophages and vessel endothelium. There was no significant variation according to classical histoprognostic factors, except that CD74 stromal expression was significantly correlated with triple-negative receptor (TRN) status and the absence of estrogen receptors. In conclusion, our data support the concept of a functional role of MIF in human breast cancer. In addition to auto- and paracrine effects on cancer cells, MIF could contribute to shape the tumor microenvironment leading to immunomodulation and angiogenesis. Interfering with MIF effects in breast tumors in a therapeutic perspective remains an attractive but complex challenge. Level of co-expression of MIF and CD74 could be a surrogate marker for efficacy of anti-angiogenic drugs, particularly in TRN breast cancer tumor.

  20. Roles of macrophage migration inhibitory factor in cartilage tissue engineering.

    PubMed

    Fujihara, Yuko; Hikita, Atsuhiko; Takato, Tsuyoshi; Hoshi, Kazuto

    2018-02-01

    To obtain stable outcomes in regenerative medicine, understanding and controlling immunological responses in transplanted tissues are of great importance. In our previous study, auricular chondrocytes in tissue-engineered cartilage transplanted in mice were shown to express immunological factors, including macrophage migration inhibitory factor (MIF). Since MIF exerts pleiotropic functions, in this study, we examined the roles of MIF in cartilage regenerative medicine. We made tissue-engineered cartilage consisting of auricular chondrocytes of C57BL/6J mouse, atellocollagen gel and a PLLA scaffold, and transplanted the construct subcutaneously in a syngeneic manner. Localization of MIF was prominent in cartilage areas of tissue-engineered cartilage at 2 weeks after transplantation, though it became less apparent by 8 weeks. Co-culture with RAW264 significantly increased the expression of MIF in chondrocytes, suggesting that the transplanted chondrocytes in tissue-engineered cartilage could enhance the expression of MIF by stimulation of surrounding macrophages. When MIF was added in the culture of chondrocytes, the expression of type II collagen was increased, indicating that MIF could promote the maturation of chondrocytes. Meanwhile, toluidine blue staining of constructs containing wild type (Mif+/+) chondrocytes showed increased metachromasia compared to MIF-knockout (Mif-/-) constructs at 2 weeks. However, this tendency was reversed by 8 weeks, suggesting that the initial increase in cartilage maturation in Mif+/+ constructs deteriorated by 8 weeks. Since the Mif+/+ constructs included more iNOS-positive inflammatory macrophages at 2 weeks, MIF might induce an M1 macrophage-polarized environment, which may eventually worsen the maturation of tissue-engineered cartilage in the long term. © 2017 Wiley Periodicals, Inc.

  1. Leptin Aggravates Reflux Esophagitis by Increasing Tissue Levels of Macrophage Migration Inhibitory Factor in Rats.

    PubMed

    Murata, Tsugihiro; Asanuma, Kiyotaka; Ara, Nobuyuki; Iijima, Katsunori; Hatta, Waku; Hamada, Shin; Asano, Naoki; Koike, Tomoyuki; Imatani, Akira; Masamune, Atsushi; Shimosegawa, Tooru

    2018-05-01

    Leptin, produced primarily by the adipose tissue, acts as a pro-inflammatory modulator, thereby contributing to the development of obesity-related disease. Although high levels of leptin in the obese are closely related to gastroesophageal reflux disease, the mechanism by which leptin influences esophageal inflammation remains unknown. Macrophage migration inhibitory factor (MIF) is produced by immune cells, such as T lymphocytes and macrophages, and MIF is known to induce the production of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6). We therefore investigated the mechanism whereby leptin aggravates reflux esophagitis, by focusing on esophageal tissue levels of MIF and CD3+ T lymphocytes, both of which are crucial for the reflux-induced epithelial damage. Esophageal inflammation was surgically induced in male Wistar rats by ligating the forestomach and narrowing the duodenum to facilitate gastroesophageal reflux, followed by administration of leptin or vehicle with an osmotic pump system for 1 week. We demonstrated that the administration of leptin exacerbated the reflux esophagitis with the apparent infiltration of CD3+ T lymphocytes and caused the significant increase in the esophageal tissue levels of MIF. Moreover, the leptin caused increases in the esophageal tissue levels of TNF-α, IL-1β and IL-6, downstream targets of MIF. Importantly, the increases in these pro-inflammatory cytokines were accompanied by increased protein levels of phospho-STAT3 and phospho-AKT, pivotal molecules of leptin signaling pathways. In conclusion, through enhancing the MIF-induced inflammatory signaling, leptin could contribute to the development of gastroesophageal reflux disease.

  2. PPARdelta inhibits IL-1beta-stimulated proliferation and migration of vascular smooth muscle cells via up-regulation of IL-1Ra.

    PubMed

    Kim, H J; Kim, M Y; Hwang, J S; Kim, H J; Lee, J H; Chang, K C; Kim, J-H; Han, C W; Kim, J-H; Seo, H G

    2010-06-01

    Activation of peroxisome proliferator-activated receptor (PPAR) delta by GW501516, a specific PPARdelta ligand, significantly inhibited interleukin (IL)-1beta-induced proliferation and migration of vascular smooth muscle cells (VSMCs). This effect of GW501516 was dependent on transforming growth factor-beta, and was mediated through the up-regulation of IL-1 receptor antagonist. The inhibitory effect of GW501516 on VSMC proliferation was associated with cell cycle arrest at the G1 to S phase transition, which was accompanied by the induction of p21 and p53 along with decreased cyclin-dependent kinase 4 expression. Inhibition of cell migration by GW501516 was associated with the down-regulation of matrix metalloproteinase (MMP)-2 and MMP-9 in IL-1beta-treated VSMCs. Inhibition of extracellular signal-regulated kinase significantly reduced the GW501516-mediated inhibition of IL-1beta-stimulated VSMC proliferation. These results suggest that PPARdelta plays an important role in the pathophysiology of diseases associated with the proliferation and migration of VSMCs.

  3. WIF1 re-expression in glioblastoma inhibits migration through attenuation of non-canonical WNT signaling by downregulating the lncRNA MALAT1.

    PubMed

    Vassallo, I; Zinn, P; Lai, M; Rajakannu, P; Hamou, M-F; Hegi, M E

    2016-01-07

    Glioblastoma is the most aggressive primary brain tumor in adults and due to the invasive nature cannot be completely removed. The WNT inhibitory factor 1 (WIF1), a secreted inhibitor of WNTs, is systematically downregulated in glioblastoma and acts as strong tumor suppressor. The aim of this study was the dissection of WIF1-associated tumor-suppressing effects mediated by canonical and non-canonical WNT signaling. We found that WIF1 besides inhibiting the canonical WNT pathway selectively downregulates the WNT/calcium pathway associated with significant reduction of p38-MAPK (p38-mitogen-activated protein kinase) phosphorylation. Knockdown of WNT5A, the only WNT ligand overexpressed in glioblastoma, phenocopied this inhibitory effect. WIF1 expression inhibited cell migration in vitro and in an orthotopic brain tumor model, in accordance with the known regulatory function of the WNT/Ca(2+) pathway on migration and invasion. In search of a mediator for this function differential gene expression profiles of WIF1-expressing cells were performed. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNA and key positive regulator of invasion, emerged as the top downregulated gene. Indeed, knockdown of MALAT1 reduced migration in glioblastoma cells, without effect on proliferation. Hence, loss of WIF1 enhances the migratory potential of glioblastoma through WNT5A that activates the WNT/Ca(2+) pathway and MALAT1. These data suggest the involvement of canonical and non-canonical WNT pathways in glioblastoma promoting key features associated with this deadly disease, proliferation on one hand and invasion on the other. Successful targeting will require a dual strategy affecting both canonical and non-canonical WNT pathways.

  4. Isochlorogenic Acid C Reverses Epithelial-Mesenchymal Transition via Down-regulation of EGFR Pathway in MDA-MB-231 cells.

    PubMed

    Yu, Ji-Kuen; Yue, Chia-Herng; Pan, Ying-Ru; Chiu, Yung-Wei; Liu, Jer-Yuh; Lin, Kun-I; Lee, Chia-Jen

    2018-04-01

    Epidermal growth factor receptor (EGFR) has been suggested to play an important role in survival, proliferation, migration, differentiation, and tumorigenesis of many cell types. Breast cancer patients with high EGFR expression have a poor prognosis. In this study, we investigated the molecular mechanism of the inhibitory effect of isochlorogenic acid c (ICAC) extracted from Lonicera japonica on elevated EGFR levels of the triple-negative breast cancer (TNBC) cell line, MDA-MB-231. The cell viability and cell-cycle analysis were evaluated using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay and flow cytometry, respectively. The migration ability and invasiveness of ICAC-treated MDA-MB-231 were examined by migration and Matrigel invasion assay. The epithelial-mesenchymal-transition (EMT)-related protein expression was examined by western blotting and reverse transcriptase-polymerase chain reaction (RT-PCR). ICAC led to significant morphological changes and suppressed migration and invasion capacities of highly metastatic MDA-MB-231 cells. Western blot analysis for EGFR/EMT-associated proteins suggested that ICAC attenuated the mesenchymal traits as observed by up-regulation of epithelial markers and down-regulation of mesenchymal markers as well as decreased activities of matrix metalloproteinase-9 (MMP-9). These results suggested that the inhibitory effects of ICAC against EGFR-induced EMT and MDA-MB-231 cell invasion were dependent on the EGFR/ phospholipase Cγ (PLCγ)/extracellular regulated protein kinase ½ (ERK½)/slug signaling pathway. Therefore, the obtained results could provide us clues for the next therapeutic strategy in the treatment of TNBC. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. A novel derivative of decursin, CSL-32, blocks migration and production of inflammatory mediators and modulates PI3K and NF-κB activities in HT1080 cells.

    PubMed

    Lee, Seung-Hee; Lee, Jee Hyun; Kim, Eun-Ju; Kim, Won-Jung; Suk, Kyoungho; Kim, Joo-Hwan; Song, Gyu Yong; Lee, Won-Ha

    2012-07-01

    Decursin and related coumarin compounds in herbal extracts have a number of biological activities against inflammation, angiogenesis and cancer. We have analysed a derivative of decursin (CSL-32) for activity against inflammatory activation of cancer cells, such as migration, invasion and expression of pro-inflammatory mediators. The human fibrosarcoma cell line, HT1080, was treated with TNFα (tumour necrosis factor α) in the presence or absence of CSL-32. The cellular responses and modification of signalling adapters were analysed with respect to the production of pro-inflammatory mediators, as also migration, adhesion and invasion. Treatment of HT1080 cells with CSL-32 inhibited their proliferation, without affecting cell viability, and TNFα-induced expression of pro-inflammatory mediators, such as MMP-9 (matrix metalloproteinase-9) and IL-8 (interleukin-8). CSL-32 also suppressed phosphorylation and degradation of IκB (inhibitory κB), phosphorylation of p65 subunit of NF-κB (nuclear factor-κB) and nuclear translocation of NF-κB, which are required for the expression of pro-inflammatory mediators. In addition, CSL-32 inhibited invasion and migration of HT1080 cells, as also cellular adhesion to fibronectin, an ECM (extracellular matrix) protein. CSL-32 treatment resulted in a dose-dependent inhibition of PI3K (phosphoinositide 3-kinase) activity, required for the cellular migration. The analyses show that CSL-32 inhibits processes associated with inflammation, such as the production of pro-inflammatory mediators, as well as adhesion, migration and invasion in HT1080 cells.

  6. [Regulation of microRNA-199a on adhesion, migration and invasion ability of human endometrial stromal cells].

    PubMed

    Dai, Lan; Gu, Li-ying; Zhu, Jie; Shi, Jun; Wang, Yao; Ji, Fang; Di, Wen

    2011-11-01

    To study the regulation of microRNA 199a (miR-199a) on adhesion, migration and invasion ability of human eutopic endometrial stromal cells (ESC) from patients with endometriosis. ESC were transfected with miR-199a mimics or negative control (NC) RNA by lipofectamine 2000. The adhesion, migration and invasion ability of ESC were detected by cell adhesion assay, scratch assay, cell migration assay and matrigel invasion assay, respectively. Luciferase reporter assay was used to evaluate whether IKKβ was the target gene of miR-199a. The expression of ikappa B kinase beta (IKKβ), inhibitory kappa B alpha (IκB-α), phospho-IκB-α(p-IκB-α) and nuclear factor-kappa B (NF-κB) protein were measured by western blot. (1) Adhesion potential: the adhesion inhibitory rates were (14 ± 4)% in miR-199a group and 0 in control group, which showed significant difference (P < 0.01). (2) Migration and invasion: in the scratch assay, ESC transfected with miR-199a exhibited a lower scratch closure rate than that of controls. In migration and invasion assays, the migration and invasion ability of miR-199a group were significantly decreased compared with those of NC group [130 ± 31 vs. 247 ± 36 (P < 0.01); 63 ± 15 vs. 133 ± 17 (P < 0.01), respectively]. (3) The luciferase activity of miR-199a group was significantly lowered than that of control group [0.160 ± 0.006 vs. 0.383 ± 0.083 (P < 0.01)]. The protein levels of IKKβ, p-IκB-α, IκB-α and NF-κB of 0.350 ± 0.195, 0.443 ± 0.076, 1.970 ± 0.486 and 0.454 ± 0.147 in miR-199a group were significantly different compared with the NC group in which the protein levels were set at 1.000 (P < 0.01). miR-199a can inhibit the adhesion, migration and invasion of the ESC. IKKβ is the target gene of miR-199a in ESC. One of the mechanisms of the inhibition effect is probably that miR-199a inhibits the activation of NF-κB signaling pathway by targeting IKKβ gene.

  7. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crichlow, G.; Lubetsky, J; Leng, L

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic datamore » indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.« less

  8. Relationship Between Serum Macrophage Migration Inhibitory Factor Level and Insulin Resistance, High-Sensitivity C-Reactive Protein and Visceral Fat Mass in Prediabetes.

    PubMed

    Bilgir, Oktay; Gökçen, Belma; Bilgir, Ferda; Guler, Aslı; Calan, Mehmet; Yuksel, Arif; Aslanıpour, Behnaz; Akşit, Murat; Bozkaya, Giray

    2018-01-01

    Growing evidence suggest that macrophage migration inhibitory factor (MIF) plays a vital role in glucose metabolism. We aimed to ascertain whether MIF levels are altered in subjects with prediabetes and also to determine the relationship between MIF and metabolic parameters as well as visceral fat mass. This cross-sectional study included 40 subjects with prediabetes and 40 age-, body mass index (BMI)- and sex-matched subjects with normal glucose tolerance. Circulating MIF levels were measured using enzyme-linked immunosorbent assay. Metabolic parameters of recruited subjects were evaluated. Visceral fat mass was measured using bioelectrical impedance method. Circulating MIF levels were found to be elevated in subjects with prediabetes compared to controls (26.46 ± 16.98 versus 17.44 ± 11.80 ng/mL, P = 0.007). MIF positively correlated with BMI, visceral fat mass and indirect indices of homeostasis model assessment of insulin resistance. In linear regression model, an independent association was found between MIF levels and metabolic parameters, including BMI, visceral fat mass and homeostasis model assessment of insulin resistance. Multivariate logistic regression analyses revealed that the odds ratio for prediabetes was higher in subjects in the highest quartile of MIF compared to those in the lowest quartile, after adjusting for potential confounders. Increased MIF levels are associated with the elevation of prediabetic risk. Copyright © 2018 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  9. Macrophage migration inhibitory factor plays a permissive role in the maintenance of cardiac contractile function under starvation through regulation of autophagy.

    PubMed

    Xu, Xihui; Pacheco, Benjamin D; Leng, Lin; Bucala, Richard; Ren, Jun

    2013-08-01

    The cytokine macrophage migration inhibitory factor (MIF) protects the heart through AMPK activation. Autophagy, a conserved pathway for bulk degradation of intracellular proteins and organelles, helps preserve and recycle energy and nutrients for cells to survive under starvation. This study was designed to examine the role of MIF in cardiac homeostasis and autophagy regulation following an acute starvation challenge. Wild-type (WT) and MIF knockout mice were starved for 48 h. Echocardiographic data revealed little effect of starvation on cardiac geometry, contractile and intracellular Ca²⁺ properties. MIF deficiency unmasked an increase in left ventricular end-systolic diameter, a drop in fractional shortening associated with cardiomyocyte contractile and intracellular Ca²⁺ anomalies following starvation. Interestingly, the unfavourable effect of MIF deficiency was associated with interruption of starvation-induced autophagy. Furthermore, restoration of autophagy using rapamycin partially protected against starvation-induced cardiomyocyte contractile defects. In our in vitro model of starvation, neonatal mouse cardiomyocytes from WT and MIF-/- mice and H9C2 cells were treated with serum free-glucose free DMEM for 2 h. MIF depletion dramatically attenuated starvation-induced autophagic vacuole formation in neonatal mouse cardiomyocytes and exacerbated starvation-induced cell death in H9C2 cells. In summary, these results indicate that MIF plays a permissive role in the maintenance of cardiac contractile function under starvation by regulation of autophagy.

  10. Macrophage migration inhibitory factor (MIF) gene is associated with adolescents' cortisol reactivity and anxiety.

    PubMed

    Lipschutz, Rebecca; Bick, Johanna; Nguyen, Victoria; Lee, Maria; Leng, Lin; Grigorenko, Elena; Bucala, Richard; Mayes, Linda C; Crowley, Michael J

    2018-05-26

    Emerging evidence points to interactions between inflammatory markers and stress reactivity in predicting mental health risk, but underlying mechanisms are not well understood. Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine involved in inflammatory signaling and Hypothalamus Pituitary Adrenal (HPA) axis stress-response, and has recently been identified as a candidate biomarker for depression and anxiety risk. We examined polymorphic variations of the MIF gene in association with baseline MIF levels, HPA axis reactivity, and self-reported anxiety responses to a social stressor in 74 adolescents, ages 10-14 years. Genotyping was performed for two polymorphisms, the -794 CATT5-8 tetranucleotide repeat and the -173*G/C single nucleotide polymorphism (SNP). Youth carrying the MIF-173*C and CATT7 alleles displayed attenuated cortisol reactivity when compared with non-carriers. Children with the CATT7-173*C haplotype displayed lower cortisol reactivity to the stressor compared to those without this haplotype. Additionally, the CATT5-173*C and CATT6-173*C haplotypes were associated with lower self-reported anxiety ratings across the stressor. Results extend prior work pointing to the influence of MIF signaling on neuroendocrine response to stress and suggest a potential pathophysiological pathway underlying risk for stress-related physical and mental health disorders. To our knowledge, these are the first data showing associations between the MIF gene, HPA axis reactivity, and anxiety symptoms during adolescence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Macrophage Migration Inhibitory Factor Stimulates Angiogenic Factor Expression and Correlates With Differentiation and Lymph Node Status in Patients With Esophageal Squamous Cell Carcinoma

    PubMed Central

    Ren, Yi; Law, Simon; Huang, Xin; Lee, Ping Yin; Bacher, Michael; Srivastava, Gopesh; Wong, John

    2005-01-01

    Objective: The objectives of this study were: 1) to examine the expression of macrophage migration inhibitory factor (MIF) in esophageal squamous cell carcinoma (ESCC); 2) to see if a relationship exists between MIF expression, clinicopathologic features, and long-term prognosis; and 3) to ascertain the possible biologic function of MIF in angiogenesis. Summary Background Data: MIF has been linked to fundamental processes such as those controlling cell proliferation, cell survival, angiogenesis, and tumor progression. Its role in ESCC, and the correlation of MIF expression and tumor pathologic features in patients, has not been elucidated. Methods: The expression of MIF in tumor and nontumor tissues was examined by immunohistochemical staining. Concentrations of MIF, vascular endothelial growth factor (VEGF), and interleukin-8 (IL-8) in patients’ sera and in the supernatant of tumor cells culture were examined by ELISA. Correlations with clinicopathologic factors were made. Results: In 72 patients with ESCC, intracellular MIF was overexpressed in esophagectomy specimens. The expression of MIF correlated with both tumor differentiation and lymph node status. The median survival in the low-MIF expression group (<50% positively stained cancer cells on immunohistochemistry) and high expression group (≥50% positively stained cancer cells) was 28.3 months and 15.8 months, respectively (P = 0.03). The 3-year survival rates for the 2 groups were 37.7% and 12.1%, respectively. MIF expression was related to microvessel density; increased MIF serum levels also correlated with higher serum levels of VEGF. In addition, in vitro MIF stimulation of esophageal cancer cell lines induced a dose-dependent increase in VEGF and IL-8 secretion. Conclusions: These results demonstrate, for the first time, that human esophageal carcinomas express and secrete large amounts of MIF. Through its effects on VEGF and IL-8, MIF may serve as an autocrine factor in angiogenesis and thus play an important role in the pathogenesis of ESCC. PMID:15973102

  12. In vitro inhibitory effects of Moringa oleifera leaf extract and its major components on chemiluminescence and chemotactic activity of phagocytes.

    PubMed

    Vongsak, Boonyadist; Gritsanapan, Wandee; Wongkrajang, Yuvadee; Jantan, Ibrahim

    2013-11-01

    The ethanol extract of Moringa oleifera Lam. leaves and its major constituents, crypto-chlorogenic acid, quercetin 3-O-glucoside and kaempferol 3-O-glucoside, were investigated on the respiratory burst of human whole blood and isolated human polymorphonuclear leukocytes (PMNs) using a luminol-based chemiluminescence assay. The chemotactic migration of PMNs was also investigated using the Boyden chamber technique. The ethanol extract demonstrated inhibitory activities on the oxidative burst and the chemotactic migration of PMNs. Quercetin 3-O-glucoside, crypto-chlorogenic acid, and kaempferol 3-O-glucoside, isolated from the extract, expressed relatively strong inhibitory activity on the oxidative burst of PMNs with IC50 values of 4.1, 6.7 and 7.0 microM, respectively, comparable with that of aspirin. They also demonstrated strong inhibition of chemotatic migration of PMNs with IC50 values of 9.5, 15.9 and 18.2 microM, respectively. The results suggest that M. oleifera leaves could modulate the immune response of human phagocytes, linking to its ethnopharmacological use as an anti-inflammatory agent. The immunomodulating activity of the plant was mainly due to its major components.

  13. Stimulation of phagocytosis by sulforaphane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suganuma, Hiroyuki, E-mail: hsuganu1@jhmi.edu; Fahey, Jed W., E-mail: jfahey@jhmi.edu; Bryan, Kelley E., E-mail: kbryanm1@jhmi.edu

    2011-02-04

    Research highlights: {yields} Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. {yields} This effect does not require Nrf2-dependent induction of phase 2 genes. {yields} Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatorymore » and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-{mu}m diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2{sup -/-} mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.« less

  14. Macrophage Migration Inhibitory Factor Enzymatic Activity, Lung Inflammation, and Cystic Fibrosis

    PubMed Central

    Adamali, Huzaifa; Armstrong, Michelle E.; McLaughlin, Anne Marie; Cooke, Gordon; McKone, Edward; Costello, Christine M.; Gallagher, Charles G.; Leng, Lin; Baugh, John A.; Fingerle-Rowson, Günter; Bucala, Richard J.; McLoughlin, Paul

    2012-01-01

    Rationale: Macrophage migration inhibitory factor (MIF) is a proinflammatory mediator with unique tautomerase enzymatic activity; the precise function has not been clearly defined. We previously demonstrated that individual patients with cystic fibrosis (CF) who are genetically predisposed to be high MIF producers develop accelerated end-organ injury. Objectives: To characterize the effects of the MIF-CATT polymorphism in patients with CF ex vivo. To investigate the role of MIF’s tautomerase activity in a murine model of Pseudomonas aeruginosa infection. Methods: MIF and tumor necrosis factor (TNF)-α protein levels were assessed in plasma or peripheral blood mononuclear cell (PBMC) supernatants by ELISA. A murine pulmonary model of chronic Pseudomonas infection was used in MIF wild-type mice (mif+/+) and in tautomerase-null, MIF gene knockin mice (mif P1G/P1G). Measurements and Main Results: MIF protein was measured in plasma and PBMCs from 5- and 6-CATT patients with CF; LPS-induced TNF-α production from PBMCs was also assessed. The effect of a specific inhibitor of MIF-tautomerase activity, ISO-1, was investigated in PBMCs. In the murine infection model, total weight loss, differential cell counts, bacterial load, and intraacinar airspace/tissue volume were measured. MIF and TNF-α levels were increased in 6-CATT compared with 5-CATT patients with CF. LPS-induced TNF-α production from PBMCs was attenuated in the presence of ISO-1. In a murine model of Pseudomonas infection, significantly less pulmonary inflammation and bacterial load was observed in mifP1G/P1G compared with mif+/+ mice. Conclusions: MIF-tautomerase activity may provide a novel therapeutic target in patients with chronic inflammatory diseases such as CF, particularly those patients who are genetically predisposed to produce increased levels of this cytokine. PMID:22592805

  15. Characterization of Molecular Determinants of the Conformational Stability of Macrophage Migration Inhibitory Factor: Leucine 46 Hydrophobic Pocket

    PubMed Central

    El-Turk, Farah; Fauvet, Bruno; Ashrafi, Amer; Ouertatani-Sakouhi, Hajer; Cho, Min-Kyu; Neri, Marilisa; Cascella, Michele; Rothlisberger, Ursula; Pojer, Florence; Zweckstetter, Markus; Lashuel, Hilal

    2012-01-01

    Macrophage Migration Inhibitory Factor (MIF) is a key mediator of inflammatory responses and innate immunity and has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. The oligomerization of MIF, more specifically trimer formation, is essential for its keto-enol tautomerase activity and probably mediates several of its interactions and biological activities, including its binding to its receptor CD74 and activation of certain signaling pathways. Therefore, understanding the molecular factors governing the oligomerization of MIF and the role of quaternary structure in modulating its structural stability and multifunctional properties is crucial for understanding the function of MIF in health and disease. Herein, we describe highly conserved intersubunit interactions involving the hydrophobic packing of the side chain of Leu46 onto the β-strand β3 of one monomer within a hydrophobic pocket from the adjacent monomer constituted by residues Arg11, Val14, Phe18, Leu19, Val39, His40, Val41, Val42, and Pro43. To elucidate the structural significance of these intersubunit interactions and their relative contribution to MIF’s trimerization, structural stability and catalytic activity, we generated three point mutations where Leu46 was replaced by glycine (L46G), alanine (L46A) and phenylalanine (L46F), and their structural properties, stability, oligomerization state, and catalytic activity were characterized using a battery of biophysical methods and X-ray crystallography. Our findings provide new insights into the role of the Leu46 hydrophobic pocket in stabilizing the conformational state of MIF in solution. Disrupting the Leu46 hydrophobic interaction perturbs the secondary and tertiary structure of the protein but has no effect on its oligomerization state. PMID:23028743

  16. Characterization of molecular determinants of the conformational stability of macrophage migration inhibitory factor: leucine 46 hydrophobic pocket.

    PubMed

    El-Turk, Farah; Fauvet, Bruno; Ashrafi, Amer; Ouertatani-Sakouhi, Hajer; Cho, Min-Kyu; Neri, Marilisa; Cascella, Michele; Rothlisberger, Ursula; Pojer, Florence; Zweckstetter, Markus; Lashuel, Hilal

    2012-01-01

    Macrophage Migration Inhibitory Factor (MIF) is a key mediator of inflammatory responses and innate immunity and has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. The oligomerization of MIF, more specifically trimer formation, is essential for its keto-enol tautomerase activity and probably mediates several of its interactions and biological activities, including its binding to its receptor CD74 and activation of certain signaling pathways. Therefore, understanding the molecular factors governing the oligomerization of MIF and the role of quaternary structure in modulating its structural stability and multifunctional properties is crucial for understanding the function of MIF in health and disease. Herein, we describe highly conserved intersubunit interactions involving the hydrophobic packing of the side chain of Leu46 onto the β-strand β3 of one monomer within a hydrophobic pocket from the adjacent monomer constituted by residues Arg11, Val14, Phe18, Leu19, Val39, His40, Val41, Val42, and Pro43. To elucidate the structural significance of these intersubunit interactions and their relative contribution to MIF's trimerization, structural stability and catalytic activity, we generated three point mutations where Leu46 was replaced by glycine (L46G), alanine (L46A) and phenylalanine (L46F), and their structural properties, stability, oligomerization state, and catalytic activity were characterized using a battery of biophysical methods and X-ray crystallography. Our findings provide new insights into the role of the Leu46 hydrophobic pocket in stabilizing the conformational state of MIF in solution. Disrupting the Leu46 hydrophobic interaction perturbs the secondary and tertiary structure of the protein but has no effect on its oligomerization state.

  17. In Vitro, Ex Vivo and In Vivo Techniques to Study Neuronal Migration in the Developing Cerebral Cortex

    PubMed Central

    Azzarelli, Roberta; Oleari, Roberto; Lettieri, Antonella; Andre', Valentina; Cariboni, Anna

    2017-01-01

    Neuronal migration is a fundamental biological process that underlies proper brain development and neuronal circuit formation. In the developing cerebral cortex, distinct neuronal populations, producing excitatory, inhibitory and modulatory neurotransmitters, are generated in different germinative areas and migrate along various routes to reach their final positions within the cortex. Different technical approaches and experimental models have been adopted to study the mechanisms regulating neuronal migration in the cortex. In this review, we will discuss the most common in vitro, ex vivo and in vivo techniques to visualize and study cortical neuronal migration. PMID:28448448

  18. Different Effects of Human Umbilical Cord Mesenchymal Stem Cells on Glioblastoma Stem Cells by Direct Cell Interaction or Via Released Soluble Factors

    PubMed Central

    Bajetto, Adriana; Pattarozzi, Alessandra; Corsaro, Alessandro; Barbieri, Federica; Daga, Antonio; Bosio, Alessia; Gatti, Monica; Pisaturo, Valerio; Sirito, Rodolfo; Florio, Tullio

    2017-01-01

    Glioblastoma (GBM), the most common primary brain tumor in adults, is an aggressive, fast-growing and highly vascularized tumor, characterized by extensive invasiveness and local recurrence. In GBM and other malignancies, cancer stem cells (CSCs) are believed to drive invasive tumor growth and recurrence, being responsible for radio- and chemo-therapy resistance. Mesenchymal stem cells (MSCs) are multipotent progenitors that exhibit tropism for tumor microenvironment mediated by cytokines, chemokines and growth factors. Initial studies proposed that MSCs might exert inhibitory effects on tumor development, although, to date, contrasting evidence has been provided. Different studies reported either MSC anti-tumor activity or their support to tumor growth. Here, we examined the effects of umbilical cord (UC)-MSCs on in vitro GBM-derived CSC growth, by direct cell-to-cell interaction or indirect modulation, via the release of soluble factors. We demonstrate that UC-MSCs and CSCs exhibit reciprocal tropism when co-cultured as 3D spheroids and their direct cell interaction reduces the proliferation of both cell types. Contrasting effects were obtained by UC-MSC released factors: CSCs, cultured in the presence of conditioned medium (CM) collected from UC-MSCs, increased proliferation rate through transient ERK1/2 and Akt phosphorylation/activation. Analysis of the profile of the cytokines released by UC-MSCs in the CM revealed a strong production of molecules involved in inflammation, angiogenesis, cell migration and proliferation, such as IL-8, GRO, ENA-78 and IL-6. Since CXC chemokine receptor 2 (CXCR2), a receptor shared by several of these ligands, is expressed in GBM CSCs, we evaluated its involvement in CSC proliferation induced by UC-MSC-CM. Using the CXCR2 antagonist SB225002, we observed a partial but statistically significant inhibition of CSC proliferation and migration induced by the UC-MSC-released cytokines. Conversely, CXCR2 blockade did not reduce the reciprocal tropism between CSCs and UC-MSCs grown as spheroids. In conclusion, we show that direct (cell-to-cell contact) or indirect (via the release of soluble factors) interactions between GBM CSCs and UC-MSCs in co-culture produce divergent effects on cell growth, invasion and migration, with the former mainly causing an inhibitory response and the latter a stimulatory one, involving a paracrine activation of CXCR2. PMID:29081734

  19. Different Effects of Human Umbilical Cord Mesenchymal Stem Cells on Glioblastoma Stem Cells by Direct Cell Interaction or Via Released Soluble Factors.

    PubMed

    Bajetto, Adriana; Pattarozzi, Alessandra; Corsaro, Alessandro; Barbieri, Federica; Daga, Antonio; Bosio, Alessia; Gatti, Monica; Pisaturo, Valerio; Sirito, Rodolfo; Florio, Tullio

    2017-01-01

    Glioblastoma (GBM), the most common primary brain tumor in adults, is an aggressive, fast-growing and highly vascularized tumor, characterized by extensive invasiveness and local recurrence. In GBM and other malignancies, cancer stem cells (CSCs) are believed to drive invasive tumor growth and recurrence, being responsible for radio- and chemo-therapy resistance. Mesenchymal stem cells (MSCs) are multipotent progenitors that exhibit tropism for tumor microenvironment mediated by cytokines, chemokines and growth factors. Initial studies proposed that MSCs might exert inhibitory effects on tumor development, although, to date, contrasting evidence has been provided. Different studies reported either MSC anti-tumor activity or their support to tumor growth. Here, we examined the effects of umbilical cord (UC)-MSCs on in vitro GBM-derived CSC growth, by direct cell-to-cell interaction or indirect modulation, via the release of soluble factors. We demonstrate that UC-MSCs and CSCs exhibit reciprocal tropism when co-cultured as 3D spheroids and their direct cell interaction reduces the proliferation of both cell types. Contrasting effects were obtained by UC-MSC released factors: CSCs, cultured in the presence of conditioned medium (CM) collected from UC-MSCs, increased proliferation rate through transient ERK1/2 and Akt phosphorylation/activation. Analysis of the profile of the cytokines released by UC-MSCs in the CM revealed a strong production of molecules involved in inflammation, angiogenesis, cell migration and proliferation, such as IL-8, GRO, ENA-78 and IL-6. Since CXC chemokine receptor 2 (CXCR2), a receptor shared by several of these ligands, is expressed in GBM CSCs, we evaluated its involvement in CSC proliferation induced by UC-MSC-CM. Using the CXCR2 antagonist SB225002, we observed a partial but statistically significant inhibition of CSC proliferation and migration induced by the UC-MSC-released cytokines. Conversely, CXCR2 blockade did not reduce the reciprocal tropism between CSCs and UC-MSCs grown as spheroids. In conclusion, we show that direct (cell-to-cell contact) or indirect (via the release of soluble factors) interactions between GBM CSCs and UC-MSCs in co-culture produce divergent effects on cell growth, invasion and migration, with the former mainly causing an inhibitory response and the latter a stimulatory one, involving a paracrine activation of CXCR2.

  20. MIF Drives Pancreatic Cancer Aggressiveness by Downregulating NR3C2 | Center for Cancer Research

    Cancer.gov

    Pancreatic cancer, while relatively rare, is an aggressive disease ranked as the fourth leading cause of cancer-related death in the US. Because most patients are diagnosed at an advanced stage and their tumors resist available treatments, novel therapeutic targets are urgently needed. Macrophage Migration Inhibitory Factor (MIF) is a proinflammatory cytokine that is elevated in pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, and may provide a molecular link between inflammation and cancer, though the mechanism is unknown.

  1. Generation and Characterization of Inhibitory Antibodies Specific to Guinea Pig CXCR1 and CXCR2.

    PubMed

    Tanaka, Kento; Yoshimura, Chigusa; Shiina, Tetsuo; Terauchi, Tomoko; Yoshitomi, Tomomi; Hirahara, Kazuki

    2017-04-01

    CXCR1 and CXCR2 are chemokine receptors that have different selectivity of chemokine ligands, but the distinct role of each receptor is not clearly understood. This is due to the absence of specific inhibitors in guinea pigs, which are the appropriate species for investigation of CXCR1 and CXCR2 because of their functional similarity to humans. In this study, we generated and evaluated monoclonal antibodies that specifically bound to guinea pig CXCR1 (gpCXCR1) and guinea pig CXCR2 (gpCXCR2) for acquisition of specific inhibitors. To assess the activity of antibodies, we established CHO-K1 cells stably expressing either gpCXCR1 or gpCXCR2 (CHO/gpCXCR1 or CHO/gpCXCR2). CHO/gpCXCR1 showed migration in response to guinea pig interleukin (IL)-8, and CHO/gpCXCR2 showed migration in response to both guinea pig IL-8 and guinea pig growth-regulated oncogene α. The receptor selectivities of the chemokines of guinea pigs were the same as the human orthologs. The inhibitory activities of the anti-gpCXCR1 and anti-gpCXCR2 monoclonal antibodies on cell migration were observed in a concentration-dependent manner. In conclusion, we successfully obtained inhibitory antibodies specific to gpCXCR1 and gpCXCR2. These inhibitory antibodies will be useful to clarify the physiological roles of CXCR1 and CXCR2 in guinea pigs.

  2. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation andmore » migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt antagonize the proliferating and migrating effects of PDGF-BB on human ASMCs through opening K{sub ATP} channels. Altogether, our results highlighted a novel profile of Ipt as a potent option against the airway remodeling in chronic airway diseases. - Highlights: Iptakalim is a novel ATP-sensitive potassium channel opener. Iptakalim showed anti-proliferation and anti-migration effects on PDGF-BB-induced human airway smooth muscle cells. Inhibitory effects of Iptakalim could be abolished by glibenclamide, a selective K{sub ATP} channel antagonist. Inhibitory effects of Iptakalim involved the signaling pathways of CaMKII, ERK1/2 and Akt, as well as their downstream, CREB.« less

  3. Dexamethasone Inhibits TGF-β1–Induced Cell Migration by Regulating the ERK and AKT Pathways in Human Colon Cancer Cells Via CYR61

    PubMed Central

    Han, Sanghoon; Bui, Ngoc Thuy; Ho, Manh Tin; Kim, Young Mee; Cho, Moonjae; Shin, Dong Bok

    2016-01-01

    Purpose One of the features in cancer development is the migration of cancer cells to form metastatic lesions. CYR61 protein promotes migration and the epithelial-mesenchymal transition in several cancer cell types. Evidence suggests that CYR61 and dexamethasone are relevant to colorectal cancer. However, relationships between them and colorectal cancer are still unclear. Understanding the molecular mechanism of colorectal cancer progression related with CYR61 and dexamethasone, which is widely used for combination chemotherapy, is necessary for improved therapy. Materials and Methods We used colorectal cancer cells, HCT116, co-treated with transforming growth factor β1 (TGF-β1) and dexamethasone to examine the inhibitory migration effect of dexamethasone by migratory assay. Alternatively, both migratory pathways, expression of AKT and ERK, and the target factor CYR61 was also tested by co-treatment with TGF-β1 and dexamethasone. Results We report that dexamethasone significantly inhibited TGF-β1–induced cell migration, without affecting cell proliferation. Importantly, we observed that TGF-β1 promoted the epithelial-mesenchymal transition process and that dexamethasone co-treatment abolished this effect. ERK and AKT signaling pathways were found to mediate TGF-β1–induced migration, which was inhibited by dexamethasone. In addition, TGF-β1 treatment induced CYR61 expression whereas dexamethasone reduced it. These observations were compatible with the modulation of migration observed following treatment of HCT116 cells with human recombinant CYR61 and anti-CYR61 antibody. Our results also indicated that TGF-β1 enhanced collagen I and reduced matrix metalloproteinase 1 expression, which was reversed by dexamethasone treatment. Conclusion These findings suggested that dexamethasone inhibits AKT and ERK phosphorylation, leading to decreased CYR61 expression, which in turn blocks TGF-β1–induced migration. PMID:26693911

  4. Up-Regulation of PAI-1 and Down-Regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine.

    PubMed

    Wang, Xuanbin; Wang, Ning; Li, Hongliang; Liu, Ming; Cao, Fengjun; Yu, Xianjun; Zhang, Jingxuan; Tan, Yan; Xiang, Longchao; Feng, Yibin

    2016-04-16

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death and its prognosis remains poor due to the high risk of tumor recurrence and metastasis. Berberine (BBR) is a natural compound derived from some medicinal plants, and accumulating evidence has shown its potent anti-tumor activity with diverse action on tumor cells, including inducing cancer cell death and blocking cell cycle and migration. Molecular targets of berberine involved in its inhibitory effect on the invasiveness remains not yet clear. In this study, we identified that berberine exhibits a potent inhibition on the invasion and migration of HCC cells. This was accompanied by a dose-dependent down-regulation of expression of Cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP)-9 in berberine-treated HCC cells. Furthermore, berberine inactivated p38 and Erk1/2 signaling pathway in HCC cells. Primarily, this may be attributed to the up-regulation of plasminogen activator inhibitor-1 (PAI-1), a tumor suppressor that can antagonize uPA receptor and down-regulation of uPA. Blockade of uPA receptor-associated pathways leads to reduced invasiveness and motility of berberine-treated HCC cells. In conclusion, our findings identified for the first time that inactivation of uPA receptor by up-regulation of PAI-1 and down-regulation of uPA is involved in the inhibitory effect of berberine on HCC cell invasion and migration.

  5. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Israr; Muneer, Kashiff M.; Tamimi, Iman A.

    2013-07-01

    The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both humanmore » and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma. - Highlights: • Thymoquinone causes inhibition of migration of melanoma cells. • Thymoquinone causes inhibition of metastasis in vivo. • Thymoquinone causes inhibition of migration by activation of NLRP3 inflammasome.« less

  6. 17β-Estradiol inhibits TNF-α-induced proliferation and migration of vascular smooth muscle cells via suppression of TRAIL.

    PubMed

    Li, Hengchang; Cheng, Yang; Simoncini, Tommaso; Xu, Shiyuan

    2016-07-01

    Atherosclerosis is an inflammatory disease and involves migration of vascular smooth muscle cells (VSMCs). Estrogen inhibits VSMCs migration, while the underlying mechanism remains to be revealed. Recent years, there is emerging evidence showing that TNF-related apoptosis-inducing ligand (TRAIL) increases proliferation and migration of VSMCs. In this study, we investigated the regulatory effect of estrogen on TRAIL expression in VSMCs. TNF-α greatly enhanced TRAIL protein expression and stimulated VSMCs proliferation and migration. This effect was partially inhibited by the addition of TRAIL neutralizing antibody, suggesting that TRAIL is important in TNF-α-induced migration. 17β-estradiol (E2) inhibited TRAIL expression under TNF-α stimulation in a time- and concentration-dependent manner. This effect was was mimicked by ERα agonist 4',4″,4‴-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), but not ERβ agonist 2,3-bis-(4-hydroxyphenyl)-propionitrile (DPN), indicating that ERα is involved in this action. TNF-α led to nuclear factor kappa B (NF-κB) p65 phosphorylation and the inhibitor pyrrolidine dithiocarbama (PDTC) inhibited TRAIL expression, suggesting that NF-κB signaling is crucial for TARIL production. E2 suppressed p65 phosphorylation in VSMCs and the overexpression of p65 subunit reversed the inhibitory effect of E2 on TRAIL expression and cell proliferation and migration. Taken together, our results indicate that E2 inhibits VSMCs proliferation and migration by downregulation of TRAIL expression via suppression of NF-κB pathway.

  7. Macrophage Migration Inhibitory Factor Mediates Proliferative GN via CD74

    PubMed Central

    Djudjaj, Sonja; Lue, Hongqi; Rong, Song; Papasotiriou, Marios; Klinkhammer, Barbara M.; Zok, Stephanie; Klaener, Ole; Braun, Gerald S.; Lindenmeyer, Maja T.; Cohen, Clemens D.; Bucala, Richard; Tittel, Andre P.; Kurts, Christian; Moeller, Marcus J.; Floege, Juergen; Ostendorf, Tammo

    2016-01-01

    Pathologic proliferation of mesangial and parietal epithelial cells (PECs) is a hallmark of various glomerulonephritides. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that mediates inflammation by engagement of a receptor complex involving the components CD74, CD44, CXCR2, and CXCR4. The proliferative effects of MIF may involve CD74 together with the coreceptor and PEC activation marker CD44. Herein, we analyzed the effects of local glomerular MIF/CD74/CD44 signaling in proliferative glomerulonephritides. MIF, CD74, and CD44 were upregulated in the glomeruli of patients and mice with proliferative glomerulonephritides. During disease, CD74 and CD44 were expressed de novo in PECs and colocalized in both PECs and mesangial cells. Stress stimuli induced MIF secretion from glomerular cells in vitro and in vivo, in particular from podocytes, and MIF stimulation induced proliferation of PECs and mesangial cells via CD74. In murine crescentic GN, Mif-deficient mice were almost completely protected from glomerular injury, the development of cellular crescents, and the activation and proliferation of PECs and mesangial cells, whereas wild-type mice were not. Bone marrow reconstitution studies showed that deficiency of both nonmyeloid and bone marrow–derived Mif reduced glomerular cell proliferation and injury. In contrast to wild-type mice, Cd74-deficient mice also were protected from glomerular injury and ensuing activation and proliferation of PECs and mesangial cells. Our data suggest a novel molecular mechanism and glomerular cell crosstalk by which local upregulation of MIF and its receptor complex CD74/CD44 mediate glomerular injury and pathologic proliferation in GN. PMID:26453615

  8. Expression of macrophage migration-inhibitory factor in duodenal ulcer and its relation to Helicobacter pylori infection.

    PubMed

    Yu, X H; Zhang, Q; Yang, X P; Yang, W; Dai, F; Qian, Z; Wang, Z L; Wu, C F; Zhao, H Z; Wang, G H

    2015-10-30

    The aim of this study was to examine the expression of macrophage migration-inhibitory factor (MIF) in duodenal ulcer epithelial cells and its relation to Helicobacter pylori (Hp) infection, and to discuss the pathogenic roles of MIF expression and Hp infection in duodenal ulcer. MIF protein and mRNA expression was examined in samples from patients with duodenal ulcer with and without Hp infection (N = 40 each, experimental group), and in normal duodenal bulb mucosal tissue (N = 40, control group) using immunohistochemistry and in situ hybridization. Patients without Hp infection received routine treatment, and treatment was provided to the patients positive for Hp to eradicate Hp infection. Hp and MIF expression levels before treatment and after the ulcer had been cured were compared. The positive rates of MIF protein and mRNA in patients with Hp infection before treatment were 67.5 and 65%, respectively, and were 18.9 and 21.6% in the 37 patients from whom Hp was eliminated. These were statistically different both before and after treatment compared with controls (P < 0.05). In the patients without Hp infection, the positive rates of MIF protein and mRNA expression before (45 and 47.5%, respectively) and after (32.5 and 30%) treatment were not significantly different (P > 0.05). The results of this study suggested that MIF is related to the development of duodenal ulcer, and that the presence of Hp is closely related with the expression of MIF in the duodenal mucosa and the development of duodenal ulcer.

  9. Inactivation of tautomerase activity of macrophage migration inhibitory factor by sulforaphane: a potential biomarker for anti-inflammatory intervention.

    PubMed

    Healy, Zachary R; Liu, Hua; Holtzclaw, W David; Talalay, Paul

    2011-07-01

    Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine with keto-enol tautomerase activity, rises rapidly in response to inflammation and is elevated in many chronic diseases. Isothiocyanates, such as sulforaphane from broccoli, are very potent inactivators of MIF tautomerase activity. A simple rapid method for determining this activity in tissues and body fluids may therefore be valuable for assessing severity of inflammation and efficacy of intervention. Existing spectrophotometric assays of MIF, based on conversion of methyl L-dopachrome to methyl 5,6-dihydroxyindole-2-carboxylate and associated loss of absorption at 475 nm, lack sensitivity. Assay sensitivity and efficiency were markedly improved by reducing the nonenzymatic rate, by lowering pH to 6.2, replacing phosphate (which catalyzes the reaction) with Bis-Tris buffer, and converting to a microtiter plate format. A structure-potency study of MIF tautomerase inactivation by isothiocyanates showed that sulforaphane, benzyl, n-hexyl, and phenethyl isothiocyanates were especially potent. MIF tautomerase could be readily quantified in human urine concentrated by ultrafiltration. This activity comprised: (i) a heat-labile, sulforaphane-inactivated macromolecular fraction (presumably MIF) that was concentrated during ultrafiltration; (ii) a flow-through fraction, with constant activity during filtration, that was heat stable and insensitive to sulforaphane. Administration of the sulforaphane precursor glucoraphanin to human volunteers almost completely abolished urinary tautomerase activity, which recovered over many hours. A simple, rapid, quantitative MIF tautomerase assay has been developed as a potential biomarker for assessing inflammatory severity and effectiveness of intervention. An improved assay for measuring MIF tautomerase activity and its applications are described. ©2011 AACR

  10. Modulating glioma-mediated myeloid-derived suppressor cell development with sulforaphane

    PubMed Central

    Kumar, Ravi; de Mooij, Tristan; Peterson, Timothy E.; Kaptzan, Tatiana; Johnson, Aaron J.; Daniels, David J.; Parney, Ian F.

    2017-01-01

    Glioblastoma is the most common primary tumor of the brain and has few long-term survivors. The local and systemic immunosuppressive environment created by glioblastoma allows it to evade immunosurveillance. Myeloid-derived suppressor cells (MDSCs) are a critical component of this immunosuppression. Understanding mechanisms of MDSC formation and function are key to developing effective immunotherapies. In this study, we developed a novel model to reliably generate human MDSCs from healthy-donor CD14+ monocytes by culture in human glioma-conditioned media. Monocytic MDSC frequency was assessed by flow cytometry and confocal microscopy. The resulting MDSCs robustly inhibited T cell proliferation. A cytokine array identified multiple components of the GCM potentially contributing to MDSC generation, including Monocyte Chemoattractive Protein-1, interleukin-6, interleukin-8, and Macrophage Migration Inhibitory Factor (MIF). Of these, Macrophage Migration Inhibitory Factor is a particularly attractive therapeutic target as sulforaphane, a naturally occurring MIF inhibitor derived from broccoli sprouts, has excellent oral bioavailability. Sulforaphane inhibits the transformation of normal monocytes to MDSCs by glioma-conditioned media in vitro at pharmacologically relevant concentrations that are non-toxic to normal leukocytes. This is associated with a corresponding increase in mature dendritic cells. Interestingly, sulforaphane treatment had similar pro-inflammatory effects on normal monocytes in fresh media but specifically increased immature dendritic cells. Thus, we have used a simple in vitro model system to identify a novel contributor to glioblastoma immunosuppression for which a natural inhibitor exists that increases mature dendritic cell development at the expense of myeloid-derived suppressor cells when normal monocytes are exposed to glioma conditioned media. PMID:28666020

  11. Macrophage Migration Inhibitory Factor (MIF) Gene Promotor Polymorphism Is Associated with Increased Fibrosis in Biliary Atresia Patients, but Not with Disease Susceptibility.

    PubMed

    Sadek, Khaled H; Ezzat, Sameera; Abdel-Aziz, Samira A; Alaraby, Hanaa; Mosbeh, Asmaa; Abdel-Rahman, Mohamed H

    2017-09-01

    Two polymorphisms, rs755622 and rs5844572, in the promoter region of the macrophage migration inhibitory factor (MIF) gene influence the basal and/or induced transcriptional activity and have been linked to several inflammatory and autoimmune diseases. The aim of this study was to investigate the association between these two polymorphisms and disease susceptibility in patients with biliary atresia (BA). Allele frequencies of rs755622 and rs5844572 were assessed in 60 Egyptian infants with a confirmed diagnosis of BA. DNA was extracted from archival material. For the rs755622, samples were tested using Taqman real-time PCR, and for the rs5844572, samples were tested using fluorescence-based genotyping. The allele frequency in the general population was assessed in 141 healthy adults from the same geographical location. No statistical differences were observed in the allele frequencies of either rs755622 or rs5844572 between BA patients and controls. The homozygous and heterozygous short repeats (5/5, or 5/X) of rs5844572 were observed more frequently (16/28, 57.1%) in BA patients with mild to moderate fibrosis compared with those with marked fibrosis (10/32, 31.3%). The difference was statistically significant (P  =  0.032). In conclusion, we observed no association between MIF rs755622 and rs5844572 polymorphisms and susceptibility to BA; however, the rs5844572 could be linked to the rate of progression of the disease and extent of fibrosis. © 2017 John Wiley & Sons Ltd/University College London.

  12. Predictive potential of macrophage migration inhibitory factor (MIF) in patients with heart failure with preserved ejection fraction (HFpEF).

    PubMed

    Luedike, Peter; Alatzides, Georgios; Papathanasiou, Maria; Heisler, Martin; Pohl, Julia; Lehmann, Nils; Rassaf, Tienush

    2018-05-04

    Prognostication in heart failure with preserved ejection fraction (HFpEF) is challenging and novel biomarkers are urgently needed. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that plays a crucial role in cardiovascular and various inflammatory diseases. Whether MIF is involved in HFpEF is unknown. Sixty-two patients with HFpEF were enrolled and followed up for 180 days. MIF plasma levels as well as natriuretic peptide (NP) levels were assessed. High MIF levels significantly predicted the combined end-point of all-cause death or hospitalization at 180 days in the univariate analysis (HR 2.41, 95% CI 1.12-5.19, p = 0.025) and after adjustment for relevant covariates in a Cox proportional hazard regression model (HR 2.35, 95% CI 1.05-5.27, p = 0.0374). Furthermore, MIF levels above the median were associated with higher pulmonary artery systolic pressure (PASP) as assessed by echocardiography (PASP 31 mmHg vs 48 mmHg in the low- and high-MIF group, respectively, p = 0.017). NPs significantly correlated with MIF in HFpEF patients (BNP p = 0.011; r = 0.32; NT-proBNP p = 0.027; r = 0.28). MIF was associated with clinical outcomes and might be involved in the pathophysiology of pulmonary hypertension in patients with HFpEF. These first data on MIF in HFpEF should stimulate further research to elucidate the role of this cytokine in heart failure. Trial registration NCT03232671.

  13. High expression levels of macrophage migration inhibitory factor sustain the innate immune responses of neonates.

    PubMed

    Roger, Thierry; Schneider, Anina; Weier, Manuela; Sweep, Fred C G J; Le Roy, Didier; Bernhagen, Jürgen; Calandra, Thierry; Giannoni, Eric

    2016-02-23

    The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis.

  14. Structural characterization and chromosomal location of the mouse macrophage migration inhibitory factor gene and pseudogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozza, M.; Gerard, C.; Kolakowski, L.F. Jr.

    1995-06-10

    Macrophage migration inhibitory factor, MIF, is a cytokine released by T-lymphocytes, macrophages, and the pituitary gland that serves to integrate peripheral and central inflammatory responses. Ubiquitous expression and developmental regulation suggest that MIF may have additional roles outside of the immune system. Here we report the structure and chromosomal location of the mouse Mif gene and the partial characterization of five Mif pseudogenes. The mouse Mif gene spans less than 0.7 kb of chromosomal DNA and is composed of three exons. A comparison between the mouse and the human genes shows a similar gene structure and common regulatory elements inmore » both promoter regions. The mouse Mif gene maps to the middle region of chromosome 10, between Bcr and S100b, which have been mapped to human chromosomes 22q11 and 21q22.3, respectively. The entire sequence of two pseudogenes demonstrates the absence of introns, the presence of the 5{prime} untranslated region of the cDNA, a 3{prime} poly(A) tail, and the lack of sequence similarity with untranscribed regions of the gene. The five pseudogenes are highly homologous to the cDNA, but contain a variable number of mutations that would produce mutated or truncated MIF-like proteins. Phylogenetic analyses of MIF genes and pseudogenes indicate several independent genetic events that can account for multiple genomic integrations. Three of the Mif pseudogenes were also mapped by interspecific backcross to chromosomes 1, 9, and 17. These results suggest that Mif pseudogenes originated by retrotransposition. 46 refs., 5 figs., 1 tab.« less

  15. Stromal-dependent tumor promotion by MIF family members.

    PubMed

    Mitchell, Robert A; Yaddanapudi, Kavitha

    2014-12-01

    Solid tumors are composed of a heterogeneous population of cells that interact with each other and with soluble and insoluble factors that, when combined, strongly influence the relative proliferation, differentiation, motility, matrix remodeling, metabolism and microvessel density of malignant lesions. One family of soluble factors that is becoming increasingly associated with pro-tumoral phenotypes within tumor microenvironments is that of the migration inhibitory factor family which includes its namesake, MIF, and its only known family member, D-dopachrome tautomerase (D-DT). This review seeks to highlight our current understanding of the relative contributions of a variety of immune and non-immune tumor stromal cell populations and, within those contexts, will summarize the literature associated with MIF and/or D-DT. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    PubMed

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Kaempferol Suppresses Transforming Growth Factor-β1–Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-1791

    PubMed Central

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-01-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non–small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1–induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1–mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1–mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1–induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1–mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1–induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1–induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. PMID:26297431

  18. MiR-137 inhibited cell proliferation and migration of vascular smooth muscle cells via targeting IGFBP-5 and modulating the mTOR/STAT3 signaling

    PubMed Central

    Li, Kai; Huang, Wei; Zhang, Xiaoqing

    2017-01-01

    Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of cardiovascular diseases. Studies have shown the great impact of microRNAs (miRNAs) on the cell proliferation of VSMCs. This study examined the effects of miR-137 on the cell proliferation and migration of VSMCs and also explored the underlying molecular mechanisms. The mRNA and protein expression levels were determined by qRT-PCR and western blot assays, respectively. The CCK-8 assay, wound healing assay and transwell migration assay were performed to measure cell proliferation and migration of VSMCs. The miR-137-targeted 3’untranslated region of insulin-like growth factor-binding protein-5 (IGFBP-5) was confirmed by luciferase reporter assay. Platelet-derived growth factor-bb (PDGF-bb) treatment enhanced cell proliferation and suppressed the expression of miR-137 in VSMCs. The gain-of-function and loss-of-function assays showed that overexpression of miR-137 suppressed the cell proliferation and migration, and also inhibited the expression of matrix genes of VSMCs; down-regulation of miR-137 had the opposite effects on VSMCs. Bioinformatics analysis and luciferase report assay results showed that IGFBP-5 was a direct target of miR-137, and miR-137 overexpression suppressed the IGFBP-5 expression and down-regulation of miR-137 increased the IGFBP-5 expression in VSMCs. PDGF-bb treatment also increased the IGFBP-5 mRNA expression. In addition, enforced expression of IGFBP-5 reversed the inhibitory effects of miR-137 on cell proliferation and migration of VSMCs. More importantly, overexpression of miR-137 also suppressed the activity of mTOR/STAT3 signaling in VSMCs. Taken together, the results suggest that miR-137 may suppress cell proliferation and migration of VSMCs via targeting IGFBP-5 and modulating mTOR/STAT3 signaling pathway. PMID:29016699

  19. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1.

    PubMed

    Li, Shoushan; Yan, Ting; Deng, Rong; Jiang, Xuesong; Xiong, Huaping; Wang, Yuan; Yu, Qiao; Wang, Xiaohua; Chen, Cheng; Zhu, Yichao

    2017-01-01

    Triple-negative breast cancer (TNBC) is an especially aggressive and hard-to-treat disease. Although the anticancer role of kaempferol has been reported in breast cancer, the effect of kaempferol on TNBC remains unclear. This experiment investigated the migration-suppressive role of a low dose of kaempferol in TNBC cells. Wound-healing assays and cell invasion assays were used to confirm the migration and invasion of cells treated with kaempferol or transfected indicated constructs. We evaluated the activations of RhoA, Rac1 and Cdc42 in TNBC cells with a Rho activation assay. A panel of inhibitors of estrogen receptor/progesterone receptor/human epidermal growth factor receptor 2 (ER/PR/HER2) treated non-TNBC (SK-BR-3 and MCF-7) cells and blocked the ER/PR/HER2 activity. Wound-healing assays and Rho activation assays were employed to measure the effect of kaempferol and ER/PR/HER2 inhibitors on Rho activation and cell migration rates. A low dose of kaempferol (20 μmol/L) had a potent inhibitory effect on the migration and invasion of TNBC cells, but not on the migration of non-TNBC (SK-BR-3 and MCF-7) cells. The low dose of kaempferol downregulated the activations of RhoA and Rac1 in TNBC cells. Moreover, the low dose of kaempferol also inhibited the migration and RhoA activations of HER2-silence SK-BR-3 and ER/PR-silence MCF-7 cells. Overexpressed HER2 rescued the cell migration and RhoA and Rac1 activations of kaempferol-treated MDA-MB-231 cells. The low dose of kaempferol inhibits the migration and invasion of TNBC cells via blocking RhoA and Rac1 signaling pathway.

  20. Macrophage migration inhibitory factor polymorphisms do not predict therapeutic response to glucocorticoids or to tumour necrosis factor alpha-neutralising treatments in rheumatoid arthritis.

    PubMed

    Radstake, Timothy R D J; Fransen, Jaap; Toonen, Erik J M; Coenen, Marieke J H; Eijsbouts, Agnes E; Donn, Rachelle; van den Hoogen, Frank H J; van Riel, Piet L C M

    2007-11-01

    Macrophage migration inhibitory factor (MIF) is an inflammatory mediator associated with RA severity. In various diseases, MIF polymorphisms are associated with clinical response glucocorticoid (GC) treatment. It is unclear whether MIF polymorphisms determine GC response in rheumatoid arthritis (RA) and to other RA treatments. Therefore, the question of whether two functional variants in MIF are associated with the response to tumour necrosis factor (TNF)alpha-neutralising and GC treatments in RA was investigated. Data from two cohorts of an RA registry were used. For patients who started with TNFalpha-neutralising (infliximab) or GC treatment, courses with a duration of at least 3 months were included and response to TNFalpha blockers or GC was calculated according to the European League Against Rheumatism response criteria. MIF -173G-->C genotyping was achieved using an assay-on-demand allelic discrimination assay, and alleles of the CATT repeat element were identified using a fluorescently labelled PCR primer and capillary electrophoresis. Logistic-regression modelling was used for the statistical analysis. In total, 192 courses of oral prednisone or methylprednisolone injections in 98 patients with RA and 90 patients with RA who were on TNFalpha-neutralising treatments were documented. In all, 27% of the patients with RA were found to be heterozygous for seven CATT repeats (CATT(7)) and 31% were heterozygous for -173C. Respectively, 4% and 6% of the patients with RA were homozygous for the MIF CATT(7) repeat or the MIF -173C allele. Carrier status and homozygosity for CATT(7 )repeat and the MIF -173C allele were not associated with response to GC (odds ratios (ORs) close to 1) or to TNFalpha-neutralising treatment (ORs close to 2). The MIF-CATT(7) repeat and the MIF-173G-->C functional variant are not strongly associated with a decreased clinical response to TNFalpha-neutralising or GC treatment in RA.

  1. Impact of a Low-Glucose Peritoneal Dialysis Regimen on Fibrosis and Inflammation Biomarkers

    PubMed Central

    Yung, Susan; Lui, Sing Leung; Ng, Chris K.F.; Yim, Andrew; Ma, Maggie K.M.; Lo, Kin Yee; Chow, Chik Cheung; Chu, Kwok Hong; Chak, Wai Leung; Lam, Man Fai; Yung, Chun Yu; Yip, Terence P.S.; Wong, Sunny; Tang, Colin S.O.; Ng, Flora S.K.; Chan, Tak Mao

    2015-01-01

    ♦ Background: The impact of a low-glucose peritoneal dialysis (PD) regimen on biomarkers of peritoneal inflammation, fibrosis and membrane integrity remains to be investigated. ♦ Methods: In a randomized, prospective study, 80 incident PD patients received either a low-glucose regimen comprising Physioneal (P), Extraneal (E) and Nutrineal (N) (Baxter Healthcare Corporation, Deerfield, IL, USA) (PEN group), or Dianeal (control group) for 12 months, after which both groups continued with Dianeal dialysis for 6 months. Serum and dialysate levels of vascular endothelial growth factor (VEGF), decorin, hepatocyte growth factor (HGF), interleukin-6 (IL-6), macrophage migration inhibitory factor (MIF), hyaluronan (HA), adiponectin, soluble-intracellular adhesion molecule (s-ICAM), vascular cell adhesion molecule-1 (VCAM-1) and P-selectin, and dialysate cancer antigen 125 (CA125), were measured after 12 and 18 months. This paper focuses on results after 12 months, when patients in the PEN group changed to glucose-based PD fluid (PDF). ♦ Results: At the end of 12 months, effluent dialysate levels of CA125, decorin, HGF, IL-6, adiponectin and adhesion molecules were significantly higher in the PEN group compared to controls, but all decreased after patients switched to glucose-based PDF. Macrophage migration inhibitory factor level was lower in the PEN group but increased after changing to glucose-based PDF and was similar to controls at 18 months. Serum adiponectin level was higher in the PEN group at 12 months, but was similar in the 2 groups at 18 months. Body weight, residual renal function, ultrafiltration volume and total Kt/V did not differ between both groups. Dialysate-to-plasma creatinine ratio at 4 h was higher in the PEN group at 12 months and remained so after switching to glucose-based PDF. ♦ Conclusion: Changes in the biomarkers suggest that the PEN PD regimen may be associated with better preservation of peritoneal membrane integrity and reduced systemic vascular endothelial injury. PMID:25904773

  2. Keratinocyte response to immobilized growth factors for enhanced dermal wound healing

    NASA Astrophysics Data System (ADS)

    Stefonek-Puccinelli, Tracy Jane

    Chronic wounds cost billions of dollars per year to treat and wound care is limited to ineffective and/or expensive options. Chronic wounds are characterized by a failure to reepithelialize, as well as deficiencies in growth factors, such as epidermal growth factor (EGF) and insulin-like growth factor-1 (IGF-1), normally present during wound healing. Our system described herein begins to tackle the problems associated with designing bioactive materials for chronic wound healing applications. We show that we can induce accelerated keratinocyte migration with photo-immobilized EGF and further control migration speed through the culture of cells on different types of gradient patterns of EGF. We also successfully immobilized IGF-1 while retaining its bioactivity, and further showed it induces directed keratinocyte migration, although not as potently as immobilized EGF. Potential synergy between co-immobilized IGF-1 and EGF was also investigated, although EGF continued to dominate the cellular response, and no significant increase in cell migration was achieved via the addition of IGF-1 to the system. To further understand cellular response to our immobilized growth factors, we investigated keratinocyte signaling and function in response to changes in EGF presentation. It was found that immobilized and soluble EGF can play different, yet complementary, roles in regulating keratinocyte function. Specifically, keratinocytes responded to immobilized EGF with high EGF receptor (EGFR) activation, accompanied by low proliferation and high migratory activity. In contrast, keratinocytes treated with soluble EGF displayed a highly proliferative, rather than migratory, phenotype. We then transitioned our photo-immobilization techniques to materials that may be more suitable as a wound dressing, such as silk fibroin films. Silk fibroin is a natural fiber with many desirable qualities for a biomaterial including high strength and elasticity, biocompatibility, a beta-keratin structure which closely mimics human keratin, and ease of fabrication and modification. These silk films can also provide topographical cues via simple cast molding of any feature on the micron scale. This system allowed simultaneous presentation of topographic cues, inhibitory and/or synergistic, with our chemotactic cues. Our preliminary data suggest keratinocytes remain viable on silk fibroin films, and that these films can be patterned with immobilized EGF to induce keratinocyte migration.

  3. Vascular-Derived Vegfa Promotes Cortical Interneuron Migration and Proximity to the Vasculature in the Developing Forebrain

    PubMed Central

    Barber, Melissa; Andrews, William D; Memi, Fani; Gardener, Phillip; Ciantar, Daniel; Tata, Mathew; Ruhrberg, Christiana; Parnavelas, John G

    2018-01-01

    Abstract Vascular endothelial growth factor (Vegfa) is essential for promoting the vascularization of the embryonic murine forebrain. In addition, it directly influences neural development, although its role in the forming forebrain is less well elucidated. It was recently suggested that Vegfa may influence the development of GABAergic interneurons, inhibitory cells with crucial signaling roles in cortical neuronal circuits. However, the mechanism by which it affects interneuron development remains unknown. Here we investigated the developmental processes by which Vegfa may influence cortical interneuron development by analyzing transgenic mice that ubiquitously express the Vegfa120 isoform to perturb its signaling gradient. We found that interneurons reach the dorsal cortex at mid phases of corticogenesis despite an aberrant vascular network. Instead, endothelial ablation of Vegfa alters cortical interneuron numbers, their intracortical distribution and spatial proximity to blood vessels. We show for the first time that vascular-secreted guidance factors promote early-migrating interneurons in the intact forebrain in vivo and identify a novel role for vascular-Vegfa in this process. PMID:29901792

  4. Curcumin exhibits anti-tumor effect and attenuates cellular migration via Slit-2 mediated down-regulation of SDF-1 and CXCR4 in endometrial adenocarcinoma cells.

    PubMed

    Sirohi, Vijay Kumar; Popli, Pooja; Sankhwar, Pushplata; Kaushal, Jyoti Bala; Gupta, Kanchan; Manohar, Murli; Dwivedi, Anila

    2017-06-01

    Although curcumin shows anti-proliferative and anti-inflammatory activities in various cancers, the effect of curcumin on cellular migration in endometrial adenocarcinoma cells remains to be understood. The current investigation was aimed to explore the anti-proliferative and anti-migratory effects of curcumin and its mechanism of action in endometrial cancer cells. Our in-vitro and in-vivo experimental studies showed that curcumin inhibited the proliferation of endometrial cancer cells and suppressed the tumor growth in Ishikawa xenograft mouse model. Curcumin induced ROS-mediated apoptosis in endometrial cancer cells. Curcumin suppressed the migration rate of Ishikawa and Hec-1B cells as analyzed by scratch wound assay. In transwell migration studies, knock down of Slit-2 reversed the anti-migratory effect of curcumin in these cell lines. Curcumin significantly up-regulated the expression of Slit-2 in Ishikawa, Hec-1B and primary endometrial cancer cells while it down-regulated the expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 which in turn, suppressed the expression of matrix metallopeptidases (MMP) 2 and 9, thus attenuating the migration of endometrial cancer cells. In summary, we have demonstrated that curcumin has inhibitory effect on cellular migration via Slit-2 mediated down-regulation of CXCR4, SDF-1, and MMP2/MMP9 in endometrial carcinoma cells. These findings helped explore the role of Slit-2 in endometrial cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The role of MIF in type 1 and type 2 diabetes mellitus.

    PubMed

    Sánchez-Zamora, Yuriko I; Rodriguez-Sosa, Miriam

    2014-01-01

    Autoimmunity and chronic low-grade inflammation are hallmarks of diabetes mellitus type one (T1DM) and type two (T2DM), respectively. Both processes are orchestrated by inflammatory cytokines, including the macrophage migration inhibitory factor (MIF). To date, MIF has been implicated in both types of diabetes; therefore, understanding the role of MIF could affect our understanding of the autoimmune or inflammatory responses that influence diabetic pathology. This review highlights our current knowledge about the involvement of MIF in both types of diabetes in the clinical environment and in experimental disease models.

  6. Investigations of FAK inhibitors: a combination of 3D-QSAR, docking, and molecular dynamics simulations studies.

    PubMed

    Cheng, Peng; Li, Jiaojiao; Wang, Juan; Zhang, Xiaoyun; Zhai, Honglin

    2018-05-01

    Focal adhesion kinase (FAK) is one kind of tyrosine kinases that modulates integrin and growth factor signaling pathways, which is a promising therapeutic target because of involving in cancer cell migration, proliferation, and survival. To investigate the mechanism between FAK and triazinic inhibitors and design high activity inhibitors, a molecular modeling integrated with 3D-QSAR, molecular docking, molecular dynamics simulations, and binding free energy calculations was performed. The optimum CoMFA and CoMSIA models showed good reliability and satisfactory predictability (with Q 2  = 0.663, R 2  = 0.987, [Formula: see text] = 0.921 and Q 2  = 0.670, R 2  = 0.981, [Formula: see text] = 0.953). Its contour maps could provide structural features to improve inhibitory activity. Furthermore, a good consistency between contour maps, docking, and molecular dynamics simulations strongly demonstrates that the molecular modeling is reliable. Based on it, we designed several new compounds and their inhibitory activities were validated by the molecular models. We expect our studies could bring new ideas to promote the development of novel inhibitors with higher inhibitory activity for FAK.

  7. PPARδ agonist GW501516 inhibits PDGF-stimulated pulmonary arterial smooth muscle cell function related to pathological vascular remodeling.

    PubMed

    Liu, Guangjie; Li, Xuan; Li, Yan; Tang, Xin; Xu, Jie; Li, Ran; Hao, Peng; Sun, Yongchang

    2013-01-01

    Pulmonary arterial hypertension (PAH) is a severe and progressive disease, a key feature of which is pulmonary vascular remodeling. Growth factors, cytokines, and lipid mediators are involved in this remodeling process. Recent reports suggest that the peroxisome proliferator-activated receptors (PPARs) play important roles in the regulation of cell growth and differentiation as well as tissue wounding and repair. In this study, we examined the role of PPAR δ in the regulation of proliferation, migration, collagen synthesis, and chemokine production in human pulmonary arterial smooth muscle cells (HPASMCs). The data showed that PPAR δ was the most abundant isoform in HPASMCs. PPAR δ was upregulated in HPASMCs treated with PDGF, which is the major mediator in pulmonary vascular remodeling. Activation of PPAR δ by GW501516, a specific PPAR δ ligand, significantly inhibited PDGF-induced proliferation in HPASMCs. The inhibitory effect of GW501516 on HPASMCs was associated with decreased expression of cyclin D1, cyclin D3, CDK2, and CDK4 as well as increased expression of the cell cycle inhibitory genes G0S2 and P27(kip1). Pretreatment of HPASMCs with GW501516 significantly inhibited PDGF-induced cell migration and collagen synthesis. GW501516 also significantly attenuated TNF-mediated expression of MCP-1. These results suggest that PPAR δ may be a potential therapeutic target against the progression of vascular remodeling in PAH.

  8. PPARδ Agonist GW501516 Inhibits PDGF-Stimulated Pulmonary Arterial Smooth Muscle Cell Function Related to Pathological Vascular Remodeling

    PubMed Central

    Liu, Guangjie; Li, Xuan; Li, Yan; Tang, Xin; Xu, Jie; Li, Ran; Hao, Peng; Sun, Yongchang

    2013-01-01

    Pulmonary arterial hypertension (PAH) is a severe and progressive disease, a key feature of which is pulmonary vascular remodeling. Growth factors, cytokines, and lipid mediators are involved in this remodeling process. Recent reports suggest that the peroxisome proliferator-activated receptors (PPARs) play important roles in the regulation of cell growth and differentiation as well as tissue wounding and repair. In this study, we examined the role of PPARδ in the regulation of proliferation, migration, collagen synthesis, and chemokine production in human pulmonary arterial smooth muscle cells (HPASMCs). The data showed that PPARδ was the most abundant isoform in HPASMCs. PPARδ was upregulated in HPASMCs treated with PDGF, which is the major mediator in pulmonary vascular remodeling. Activation of PPARδ by GW501516, a specific PPARδ ligand, significantly inhibited PDGF-induced proliferation in HPASMCs. The inhibitory effect of GW501516 on HPASMCs was associated with decreased expression of cyclin D1, cyclin D3, CDK2, and CDK4 as well as increased expression of the cell cycle inhibitory genes G0S2 and P27kip1. Pretreatment of HPASMCs with GW501516 significantly inhibited PDGF-induced cell migration and collagen synthesis. GW501516 also significantly attenuated TNF-mediated expression of MCP-1. These results suggest that PPARδ may be a potential therapeutic target against the progression of vascular remodeling in PAH. PMID:23607100

  9. Early Life Cognitive Abilities and Body Weight: Cross-Sectional Study of the Association of Inhibitory Control, Cognitive Flexibility, and Sustained Attention with BMI Percentiles in Primary School Children

    PubMed Central

    Wirt, Tamara; Schreiber, Anja; Kesztyüs, Dorothea; Steinacker, Jürgen M.

    2015-01-01

    The objective of this study was to investigate the association of different cognitive abilities with children's body weight adjusted for further weight influencing sociodemographic, family, and lifestyle factors. Cross-sectional data of 498 primary school children (7.0 ± 0.6 years; 49.8% boys) participating in a health promotion programme in southwest Germany were used. Children performed a computer-based test battery (KiTAP) including an inhibitory control task (Go-Nogo paradigm), a cognitive flexibility task, and a sustained attention task. Height and weight were measured in a standardized manner and converted to BMI percentiles based on national standards. Sociodemographic features (migration background and parental education), family characteristics (parental body weight), and children's lifestyle (TV consumption, physical activity, consumption of sugar-sweetened beverages and breakfast habits) were assessed via parental questionnaire. A hierarchical regression analysis revealed inhibitory control and cognitive flexibility to be significant cognitive predictors for children's body weight. There was no association concerning sustained attention. The findings suggest that especially cognitive abilities known as executive functions (inhibitory control and cognitive flexibility) are associated with children's body weight. Future longitudinal and intervention studies are necessary to investigate the directionality of the association and the potential of integrating cognitive training in obesity prevention strategies. This trial is registered with ClinicalTrials.gov DRKS00000494. PMID:25874122

  10. Early life cognitive abilities and body weight: cross-sectional study of the association of inhibitory control, cognitive flexibility, and sustained attention with BMI percentiles in primary school children.

    PubMed

    Wirt, Tamara; Schreiber, Anja; Kesztyüs, Dorothea; Steinacker, Jürgen M

    2015-01-01

    The objective of this study was to investigate the association of different cognitive abilities with children's body weight adjusted for further weight influencing sociodemographic, family, and lifestyle factors. Cross-sectional data of 498 primary school children (7.0 ± 0.6 years; 49.8% boys) participating in a health promotion programme in southwest Germany were used. Children performed a computer-based test battery (KiTAP) including an inhibitory control task (Go-Nogo paradigm), a cognitive flexibility task, and a sustained attention task. Height and weight were measured in a standardized manner and converted to BMI percentiles based on national standards. Sociodemographic features (migration background and parental education), family characteristics (parental body weight), and children's lifestyle (TV consumption, physical activity, consumption of sugar-sweetened beverages and breakfast habits) were assessed via parental questionnaire. A hierarchical regression analysis revealed inhibitory control and cognitive flexibility to be significant cognitive predictors for children's body weight. There was no association concerning sustained attention. The findings suggest that especially cognitive abilities known as executive functions (inhibitory control and cognitive flexibility) are associated with children's body weight. Future longitudinal and intervention studies are necessary to investigate the directionality of the association and the potential of integrating cognitive training in obesity prevention strategies. This trial is registered with ClinicalTrials.gov DRKS00000494.

  11. [Inhibitory effect of Mig-7 silencing by retrovirus-mediated shRNA on vasculogenic mimicry, invasion and metastasis of human hepatocellular carcinoma cells in vitro].

    PubMed

    Qu, Bo; Sheng, Guan-Nan; Yu, Fei; Chen, Guan-Nan; Lv, Qi; Mao, Zhong-Peng; Guo, Long; Lv, Yi

    2016-11-20

    To explore the inhibitory effect of migration-inducing gene 7 (Mig-7) gene silencing induced by retroviral-mediated small hairpin RNA (shRNA) on vasculogenic mimicry (VM), invasion and metastasis of human hepatocellular carcinoma (HCC) cells in vitro. Two target sequences (Mig-7 shRNA-1 and Mig-7 shRNA-2) and one negative control sequence (Mig-7 shRNA-N) were synthesized. The recombinant retroviral vectors carrying Mig-7 shRNA were constructed, and HCC cell line MHCC-97H were transfected with Mig-7 shRNA-1, Mig-7 shRNA-2, Mig-7 shRNA-N, or the empty vector, or treated with 125 µg/mL recombinant human endostatin (ES). Mig-7 expression in the treated cells was detected using semi-quantitative PCR and Western blotting. The inhibitory effect of Mig-7 silencing on VM formation was investigated in a 3-dimensional cell culture system; the changes in cell adhesion, invasion and migration were assessed with intercellular adhesion assay, Transwell invasion assay and Transwell migration assay, respectively. The expression of Mig-7 at both mRNA and protein levels decreased significantly, VM formation, invasion and metastasis were suppressed, while intercellular adhesion increased significantly in MHCC-97H cells in Mig-7 shRNA-1 and Mig-7 shRNA-2 groups (P<0.05); such changes were not observed in cells transfected with Mig-7 shRNA-N or the empty vector, nor in cells treated with ES. Mig-7 silencing by retroviral-mediated shRNA significantly inhibits VM formation, invasion and metastasis and increases the intercellular adhesion of the HCC cells, while ES does not have such inhibitory effects.

  12. Decorin inhibits cell migration through a process requiring its glycosaminoglycan side chain.

    PubMed

    Merle, B; Durussel, L; Delmas, P D; Clézardin, P

    1999-12-01

    Several studies overwhelmingly support the notion that decorin (DCN) is involved in matrix assembly, and in the control of cell adhesion and proliferation. However, nothing is known about the role of DCN during cell migration. Cell migration is a tightly regulated process which requires both adhesion (at the leading edge of the cell) and de-adhesion (at the trailing edge of the cell) from the substratum. We have determined in this study the effect of DCN on MG-63 osteosarcoma cell migration and have analyzed whether its effect is mediated by the protein core and/or the glycosaminoglycan side chain. DCN impeded the migration-promoting effect of matrix molecules (fibronectin, collagen type I) known to interact with the proteoglycan. Conversely, DCN did not counteract the migration-promoting effect of fibrinogen lacking proteoglycan affinity. DCN bearing dermatan-sulfate chains (i.e., skin and cartilage DCN) was about 20-fold more effective in inhibiting cell migration than DCN bearing chondroitin-sulfate chains (i.e., bone DCN). In addition, chondroitinase AC-treatment of cartilage DCN (which specifically removes chondroitin-sulfate chains) did not attenuate the inhibitory effect of this proteoglycan, while cartilage DCN deprived of both chondroitin- and dermatan-sulfate chains failed to alter cell migration promoted by either fibronectin or its heparin- and cell-binding domains. These data assert that the dermatan-sulfate chains of DCN are responsible for a negative influence on cell migration. However, isolated glycosaminoglycans failed to alter cell migration promoted by fibronectin, indicating that strongly negatively charged glycosaminoglycans alone cannot account for the impaired cell motility seen with DCN. Overall, these results show that the inhibitory action of DCN is dependent of substratum binding, is differentially mediated by its glycosaminoglycan side chains (chondroitin-sulfate vs. dermatan-sulfate chains), and is independent of a steric hindrance effect exerted by its glycosaminoglycan side chains. Copyright 1999 Wiley-Liss, Inc.

  13. Induction of autocrine factor inhibiting cell motility from murine B16-BL6 melanoma cells by alpha-melanocyte stimulating hormone.

    PubMed

    Murata, J; Ayukawa, K; Ogasawara, M; Watanabe, H; Saiki, I

    1999-03-15

    We have previously reported that neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) successfully inhibited Matrigel invasion and haptotactic migration of B16-BL6 melanoma cells towards both fibronectin and laminin without affecting their growth. In the present study, we investigated the inhibitory mechanism of tumor cell motility by alpha-MSH. Alpha-MSH significantly blocked the autocrine motility factor (AMF)-enhanced cell motility. However, alpha-MSH did neither prevent the secretion of AMF from B16-BL6 cells nor alter the expression level of AMF receptor (gp78). On the other hand, alpha-MSH induced the secretion of the motility inhibitory factor(s) from B16-BL6 cells in a concentration- and time-dependent manner. The induction of the motility inhibitor(s) was proportional to increasing levels of intracellular cAMP induced by alpha-MSH as well as forskolin, and the activity was abolished by an adenylate cyclase inhibitor, 2',5'-dideoxyadenosine (DDA). The motility-inhibiting activity in conditioned medium (CM) from alpha-MSH-treated B16-BL6 cells was found to have a m.w. below 3 kDa after fractionation. This activity was abolished by boiling but insensitive to trypsin. The treatment of tumor cells with cycloheximide reduced the activity in alpha-MSH-stimulated CM. Our results suggest that alpha-MSH inhibited the motility of B16-BL6 cells through induction of autocrine factor(s).

  14. Macrophage migration inhibitory factor limits activation-induced apoptosis of platelets via CXCR7-dependent Akt signaling.

    PubMed

    Chatterjee, Madhumita; Borst, Oliver; Walker, Britta; Fotinos, Anna; Vogel, Sebastian; Seizer, Peter; Mack, Andreas; Alampour-Rajabi, Setareh; Rath, Dominik; Geisler, Tobias; Lang, Florian; Langer, Harald F; Bernhagen, Jürgen; Gawaz, Meinrad

    2014-11-07

    Macrophage migration inhibitory factor (MIF) is released on platelet activation. Circulating MIF could potentially regulate platelets and thereby platelet-mediated inflammatory and regenerative mechanisms. However, the effect of MIF on platelets is unknown. The present study evaluated MIF in regulating platelet survival and thrombotic potential. MIF interacted with CXCR4-CXCR7 on platelets, defining CXCR7 as a hitherto unrecognized receptor for MIF on platelets. MIF internalized CXCR4, but unlike CXCL12 (SDF-1α), it did not phosphorylate Erk1/2 after CXCR4 ligation because of the lack of CD74 and failed in subsequent CXCR7 externalization. MIF did not alter the activation status of platelets. However, MIF rescued platelets from activation and BH3 mimetic ABT-737-induced apoptosis in vitro via CXCR7 and enhanced circulating platelet survival when administered in vivo. The antiapoptotic effect of MIF was absent in Cxcr7(-/-) murine embryonic cells but pronounced in CXCR7-transfected Madin-Darby canine kidney cells. This prosurvival effect was attributed to the MIF-CXCR7-initiated PI3K-Akt pathway. MIF induced CXCR7-Akt-dependent phosphorylation of BCL-2 antagonist of cell death (BAD) both in vitro and in vivo. Consequentially, MIF failed to rescue Akt(-/-) platelets from thrombin-induced apoptosis when challenged ex vivo, also in prolonging platelet survival and in inducing BAD phosphorylation among Akt(-/-) mice in vivo. MIF reduced thrombus formation under arterial flow conditions in vitro and retarded thrombotic occlusion after FeCl3-induced arterial injury in vivo, an effect mediated through CXCR7. MIF interaction with CXCR7 modulates platelet survival and thrombotic potential both in vitro and in vivo and thus could regulate thrombosis and inflammation. © 2014 American Heart Association, Inc.

  15. Neural control of Substance P-induced upregulation and release of macrophage migration inhibitory factor in the rat bladder

    PubMed Central

    Vera, Pedro L.; Wang, Xihai; Meyer-Siegler, Katherine L.

    2009-01-01

    OBJECTIVE Macrophage migration inhibitory factor (MIF) is increased in the intraluminal fluid after experimental inflammation and mediates pro-inflammatory effects on the bladder. We examined the contribution of nerve activity and of specific neurotransmitter systems on the mechanism of MIF release from the bladder during inflammation. MATERIALS & METHODS Male Sprague-Dawley rats were anesthetized, bladders were emptied and filled with saline. Rats received saline (s.c.; control; 0.1 ml/100 g bodyweight) or substance P (40 μg/kg in saline; s.c.; 0.1 ml/100 g bodyweight) and also received hexamethonium (50 mg/kg;i.p.; in saline; 0.1 ml/100 g body weight); intravesical lidocaine (2%; 0.3 ml), atropine (3 mg/kg in saline; i.v.; 0.1 ml/100 g body weight), propranolol (3 mg/kg in saline; i.v.; 0.1 ml/100 g body weight) or phentolamine (10 mg/kg in saline; i.v.; 0.1 ml/100 g body weight). After of 1 hour, the intravesical fluid was removed and the bladder was excised. MIF levels in the intraluminal fluid were measured by ELISA and Western-blotting. MIF expression in bladder homogenates was examined using RT-PCR. RESULTS Either intravesical lidocaine or ganglionic blockage with hexamethonium prevented Substance P-induced MIF release. In addition, pretreatment with atropine and phentolamine, but not propranolol, also prevented MIF release. MIF upregulation in the bladder, while increased with Substance P treatment, was only prevented by intravesical lidocaine. CONCLUSION Substance P-induced MIF release in the bladder is mediated through nerve activation. Post-ganglionic parasympathetic (via muscarinic receptors) and sympathetic (via alpha-adrenergic receptors) fibers mediate MIF release while activation of bladder afferent nerve terminals upregulate MIF. PMID:18499160

  16. Inactivation of Tautomerase Activity of Macrophage Migration Inhibitory Factor by Sulforaphane: A Potential Biomarker for Anti-inflammatory Intervention

    PubMed Central

    Healy, Zachary R.; Liu, Hua; Holtzclaw, W. David; Talalay, Paul

    2011-01-01

    Background Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine with keto-enol tautomerase activity, rises rapidly in response to inflammation, and is elevated in many chronic diseases. Isothiocyanates, such as sulforaphane from broccoli, are very potent inactivators of MIF tautomerase activity. A simple rapid method for determining this activity in tissues and body fluids may therefore be valuable for assessing severity of inflammation and efficacy of intervention. Methods Existing spectrophotometric assays of MIF, based on conversion of methyl L-dopachrome to methyl 5,6-dihydroxyindole-2-carboxylate and associated loss of absorption at 475 nm, lack sensitivity. Assay sensitivity and efficiency were markedly improved by reducing the nonenzymatic rate, by lowering pH to 6.2, replacing phosphate (which catalyzes the reaction) with Bis-Tris buffer, and converting to a microtiter plate format. Results A structure-potency study of MIF tautomerase inactivation by isothiocyanates showed that sulforaphane, benzyl, n-hexyl, and phenethyl isothiocyanates were especially potent. MIF tautomerase could be readily quantified in human urine concentrated by ultrafiltration. This activity comprised: (i) a heat-labile, sulforaphane-inactivated macromolecular fraction (presumably MIF) that was concentrated during ultrafiltration; (ii) a flow-through fraction, with constant activity during filtration, that was heat-stable, and insensitive to sulforaphane. Administration of the sulforaphane precursor glucoraphanin to human volunteers almost completely abolished urinary tautomerase activity, which was recovered over many hours. Conclusions A simple, rapid, quantitative MIF tautomerase assay has been developed as a potential biomarker for assessing inflammatory severity and effectiveness of intervention. Impact An improved assay for measuring MIF tautomerase activity and its applications are described. PMID:21602309

  17. Effects of glucose ingestion on circulating inflammatory mediators: Influence of sex and weight excess.

    PubMed

    Escobar-Morreale, Héctor F; Martínez-García, M Ángeles; Montes-Nieto, Rafael; Fernández-Durán, Elena; Temprano-Carazo, Sara; Luque-Ramírez, Manuel

    2017-04-01

    Low-grade chronic inflammation is involved in the pathophysiology of obesity. However, little is known about the influence of sex and sex hormones on surrogate inflammatory markers and mediators, particularly after glucose ingestion. Observational study. We measured the circulating concentrations of interleukin-6, interleukin-18, macrophage migration inhibitory factor, matrix metallopeptidase-9, monocyte chemotactic protein-1 and pentraxin-3, in the fasting state and during a 75 g oral glucose tolerance test, in 24 women and 25 men. Eleven men and 11 women were lean whereas 14 men and 13 women had weight excess. Anti-inflammatory cytokines (interleukin-6 and interleukin-18) were increased in the fasting state and/or decreased in some women during the oral glucose tolerance test, as opposed to inflammatory mediators such as macrophage migration inhibitory factor and matrix metallopeptidase-9 that increased during the oral glucose tolerance test especially in subjects with weight excess. Body mass index and waist circumference were the main determinants of these changes. Fasting pentraxin-3 levels were especially increased in lean women in parallel to a decrease in free testosterone levels, and decreased during the oral glucose tolerance test as opposed to the increase in insulin concentrations. The circulating concentrations of markers of low-grade chronic inflammation in young healthy adults are not only influenced by obesity but also by abdominal adiposity, fasting and glucose ingestion and, in some cases, by sex and sex hormones. These influences should be considered when these markers are used as surrogate markers of the inflammatory milieu associated with obesity. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  18. Compound C inhibits macrophage chemotaxis through an AMPK-independent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Youngyi; Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896; Park, Byung-Hyun, E-mail: bhpark@jbnu.ac.kr

    Macrophage infiltration in adipose tissue is a well-established cause of obesity-linked insulin resistance. AMP-activated protein kinase (AMPK) activation in peripheral tissues such as adipose tissue has beneficial effects on the protection against obesity-induced insulin resistance, which is mainly mediated by prevention of adipose tissue macrophage infiltration and inflammation. In examining the role of AMPK on adipose tissue inflammation, we unexpectedly found that compound C (CC), despite its inhibition of AMPK, robustly inhibited macrophage chemotaxis in RAW 264.7 cells when adipocyte conditioned medium (CM) was used as a chemoattractant. Here, we report that CC inhibition of macrophage migration occurred independently ofmore » AMPK. Mechanistically, this inhibitory effect of cell migration by CC was mediated by inhibition of the focal adhesion kinase, AKT, nuclear factor κB pathways. Moreover, the expression of chemokine monocyte chemoattractant protein-1 and pro-inflammatory genes such as tumor necrosis factor α and inducible nitric oxide synthase were prevented by CC treatment in RAW 264.7 cells stimulated with either adipocyte CM or lipopolysaccharide. Lastly, in accord with the findings of the anti-inflammatory effect of CC, we demonstrated that CC functioned as a repressor of macrophage CM-mediated insulin resistance in adipocytes. Taken together, our results suggest that CC serves as a useful inhibitory molecule against macrophage chemotaxis into adipose tissue and thus might have therapeutic potential for the treatment of obesity-linked adipose inflammation. - Highlights: • Compound C (CC) inhibits macrophage chemotaxis regardless of AMPK suppression. • CC enhances insulin sensitivity in adipocytes. • CC inhibits focal adhesion kinase, AKT, and NF-κB signaling in RAW 264.7 cells.« less

  19. Role of macrophage migration inhibitory factor in the regulatory T cell response of tumor-bearing mice.

    PubMed

    Choi, Susanna; Kim, Hang-Rae; Leng, Lin; Kang, Insoo; Jorgensen, William L; Cho, Chul-Soo; Bucala, Richard; Kim, Wan-Uk

    2012-10-15

    Macrophage migration inhibitory factor (MIF) is involved in tumorigenesis by facilitating tumor proliferation and evasion of apoptosis; however, its role in tumor immunity is unclear. In this study, we investigated the effect of MIF on the progression of the syngenic, CT26 colon carcinoma and the generation of tumor regulatory T cells (Tregs). The results showed that the tumor growth rate was significantly lower in MIF knockout (MIF(-/-)) mice than in wild-type (MIF(+/+)) mice. Flow cytometric analysis of both spleen and tumor cells revealed that MIF(-/-) mice had significantly lower levels of tumor-associated CD4(+)Tregs than MIF(+/+) mice. The splenic cells of MIF(-/-) mice also showed a decrease in CD8(+)Tregs, which was accompanied by an increase in CD8-induced tumor cytotoxicity. Interestingly, the inducible Treg response in spleen cells to anti-CD3/CD28 plus IL-2 plus TGF-β was greater in MIF(-/-) mice than in MIF(+/+) mice. Spleen cells of MIF(-/-) mice, stimulated with anti-CD3/CD28, produced lower levels of IL-2, but not TGF-β, than those of MIF(+/+) mice, which was recovered by the addition of recombinant MIF. Conversely, a neutralizing anti-MIF Ab blocked anti-CD3-induced IL-2 production by splenocytes of MIF(+/+) mice and suppressed the inducible Treg generation. Moreover, the administration of IL-2 into tumor-bearing MIF(-/-) mice restored the generation of Tregs and tumor growth. Taken together, our data suggest that MIF promotes tumor growth by increasing Treg generation through the modulation of IL-2 production. Thus, anti-MIF treatment might be useful in enhancing the adaptive immune response to colon cancers.

  20. Macrophage Migration Inhibitory Factor for the Early Prediction of Infarct Size

    PubMed Central

    Chan, William; White, David A.; Wang, Xin‐Yu; Bai, Ru‐Feng; Liu, Yang; Yu, Hai‐Yi; Zhang, You‐Yi; Fan, Fenling; Schneider, Hans G.; Duffy, Stephen J.; Taylor, Andrew J.; Du, Xiao‐Jun; Gao, Wei; Gao, Xiao‐Ming; Dart, Anthony M.

    2013-01-01

    Background Early diagnosis and knowledge of infarct size is critical for the management of acute myocardial infarction (MI). We evaluated whether early elevated plasma level of macrophage migration inhibitory factor (MIF) is useful for these purposes in patients with ST‐elevation MI (STEMI). Methods and Results We first studied MIF level in plasma and the myocardium in mice and determined infarct size. MI for 15 or 60 minutes resulted in 2.5‐fold increase over control values in plasma MIF levels while MIF content in the ischemic myocardium reduced by 50% and plasma MIF levels correlated with myocardium‐at‐risk and infarct size at both time‐points (P<0.01). In patients with STEMI, we obtained admission plasma samples and measured MIF, conventional troponins (TnI, TnT), high sensitive TnI (hsTnI), creatine kinase (CK), CK‐MB, and myoglobin. Infarct size was assessed by cardiac magnetic resonance (CMR) imaging. Patients with chronic stable angina and healthy volunteers were studied as controls. Of 374 STEMI patients, 68% had elevated admission MIF levels above the highest value in healthy controls (>41.6 ng/mL), a proportion similar to hsTnI (75%) and TnI (50%), but greater than other biomarkers studied (20% to 31%, all P<0.05 versus MIF). Only admission MIF levels correlated with CMR‐derived infarct size, ventricular volumes and ejection fraction (n=42, r=0.46 to 0.77, all P<0.01) at 3 day and 3 months post‐MI. Conclusion Plasma MIF levels are elevated in a high proportion of STEMI patients at the first obtainable sample and these levels are predictive of final infarct size and the extent of cardiac remodeling. PMID:24096574

  1. Macrophage Migration Inhibitory Factor and Stearoyl-CoA Desaturase 1: Potential Prognostic Markers for Soft Tissue Sarcomas Based on Bioinformatics Analyses

    PubMed Central

    Takahashi, Hiro; Nakayama, Robert; Hayashi, Shuhei; Nemoto, Takeshi; Murase, Yasuyuki; Nomura, Koji; Takahashi, Teruyoshi; Kubo, Kenji; Marui, Shigetaka; Yasuhara, Koji; Nakamura, Tetsuro; Sueo, Takuya; Takahashi, Anna; Tsutsumiuchi, Kaname; Ohta, Tsutomu; Kawai, Akira; Sugita, Shintaro; Yamamoto, Shinjiro; Kobayashi, Takeshi; Honda, Hiroyuki; Yoshida, Teruhiko; Hasegawa, Tadashi

    2013-01-01

    The diagnosis and treatment of soft tissue sarcomas (STSs) has been particularly difficult, because STSs are a group of highly heterogeneous tumors in terms of histopathology, histological grade, and primary site. Recent advances in genome technologies have provided an excellent opportunity to determine the complete biological characteristics of neoplastic tissues, resulting in improved diagnosis, treatment selection, and investigation of therapeutic targets. We had previously developed a novel bioinformatics method for marker gene selection and applied this method to gene expression data from STS patients. This previous analysis revealed that the extracted gene combination of macrophage migration inhibitory factor (MIF) and stearoyl-CoA desaturase 1 (SCD1) is an effective diagnostic marker to discriminate between subtypes of STSs with highly different outcomes. In the present study, we hypothesize that the combination of MIF and SCD1 is also a prognostic marker for the overall outcome of STSs. To prove this hypothesis, we first analyzed microarray data from 88 STS patients and their outcomes. Our results show that the survival rates for MIF- and SCD1-positive groups were lower than those for negative groups, and the p values of the log-rank test are 0.0146 and 0.00606, respectively. In addition, survival rates are more significantly different (p = 0.000116) between groups that are double-positive and double-negative for MIF and SCD1. Furthermore, in vitro cell growth inhibition experiments by MIF and SCD1 inhibitors support the hypothesis. These results suggest that the gene set is useful as a prognostic marker associated with tumor progression. PMID:24167613

  2. Macrophage migration inhibitory factor counter-regulates dexamethasone-induced annexin 1 expression and influences the release of eicosanoids in murine macrophages.

    PubMed

    Sun, Yu; Wang, Yu; Li, Jia-Hui; Zhu, Shi-Hui; Tang, Hong-Tai; Xia, Zhao-Fan

    2013-10-01

    Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine and glucocorticoid (GC) counter-regulator, has emerged as an important modulator of inflammatory responses. However, the molecular mechanisms of MIF counter-regulation of GC still remain incomplete. In the present study, we investigated whether MIF mediated the counter-regulation of the anti-inflammatory effect of GC by affecting annexin 1 in RAW 264.7 macrophages. We found that stimulation of RAW 264.7 macrophages with lipopolysaccharide (LPS) resulted in down-regulation of annexin 1, while GC dexamethasone (Dex) or Dex plus LPS led to significant up-regulation of annexin 1 expression. RNA interference-mediated knockdown of intracellular MIF increased annexin 1 expression with or without incubation of Dex, whereas Dex-induced annexin 1 expression was counter-regulated by the exogenous application of recombinant MIF. Moreover, recombinant MIF counter-regulated, in a dose-dependent manner, inhibition of cytosolic phospholipase A2α (cPLA2α) activation and prostaglandin E2 (PGE2 ) and leukotriene B4 (LTB4 ) release by Dex in RAW 264.7 macrophages stimulated with LPS. Endogenous depletion of MIF enhanced the effects of Dex, reflected by further decease of cPLA2α expression and lower PGE2 and LTB4 release in RAW 264.7 macrophages. Based on these data, we suggest that MIF counter-regulates Dex-induced annexin 1 expression, further influencing the activation of cPLA2α and the release of eicosanoids. These findings will add new insights into the mechanisms of MIF counter-regulation of GC. © 2013 John Wiley & Sons Ltd.

  3. Structural basis for decreased induction of class IB PI3-kinases expression by MIF inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Abhay Kumar; Pantouris, Georgios; Borosch, Sebastian

    Macrophage migration inhibitory factor (MIF) is a master regulator of proinflammatory cytokines and plays pathological roles when not properly regulated in rheumatoid arthritis, lupus, atherosclerosis, asthma and cancer. Unlike canonical cytokines, MIF has vestigial keto-enol tautomerase activity. Most of the current MIF inhibitors were screened for the inhibition of this enzymatic activity. However, only some of the enzymatic inhibitors inhibit receptor-mediated biological functions of MIF, such as cell recruitment, through an unknown molecular mechanism. The goal of this study was to understand the molecular basis underlying the pharmacological inhibition of biological functions of MIF. Here, we demonstrate how the structuralmore » changes caused upon inhibitor binding translate into the alteration of MIF-induced downstream signalling. Macrophage migration inhibitory factor activates phosphoinositide 3-kinases (PI3Ks) that play a pivotal role in immune cell recruitment in health and disease. There are several different PI3K isoforms, but little is known about how they respond to MIF. We demonstrate that MIF up-regulates the expression of Class IB PI3Ks in leucocytes. We also demonstrate that MIF tautomerase active site inhibitors down-regulate the expression of Class IB PI3Ks as well as leucocyte recruitment in vitro and in vivo. Finally, based on our MIF:inhibitor complex crystal structures, we hypothesize that the reduction in Class IB PI3K expression occurs because of the displacement of Pro1 towards the second loop of MIF upon inhibitor binding, which results in increased flexibility of the loop 2 and sub-optimal MIF binding to its receptors. These results will provide molecular insights for fine-tuning the biological functions of MIF.« less

  4. Functional polymorphisms of macrophage migration inhibitory factor as predictors of morbidity and mortality of pneumococcal meningitis

    PubMed Central

    Savva, Athina; Brouwer, Matthijs C.; Valls Serón, Mercedes; Le Roy, Didier; Ferwerda, Bart; van der Ende, Arie; Bochud, Pierre-Yves; van de Beek, Diederik; Calandra, Thierry

    2016-01-01

    Pneumococcal meningitis is the most frequent and critical type of bacterial meningitis. Because cytokines play an important role in the pathogenesis of bacterial meningitis, we examined whether functional polymorphisms of the proinflammatory cytokine macrophage migration inhibitory factor (MIF) were associated with morbidity and mortality of pneumococcal meningitis. Two functional MIF promoter polymorphisms, a microsatellite (−794 CATT5–8; rs5844572) and a single-nucleotide polymorphism (−173 G/C; rs755622) were genotyped in a prospective, nationwide cohort of 405 patients with pneumococcal meningitis and in 329 controls matched for age, gender, and ethnicity. Carriages of the CATT7 and −173 C high-expression MIF alleles were associated with unfavorable outcome (P = 0.005 and 0.003) and death (P = 0.03 and 0.01). In a multivariate logistic regression model, shock [odds ratio (OR) 26.0, P = 0.02] and carriage of the CATT7 allele (OR 5.12, P = 0.04) were the main predictors of mortality. MIF levels in the cerebrospinal fluid were associated with systemic complications and death (P = 0.0002). Streptococcus pneumoniae strongly up-regulated MIF production in whole blood and transcription activity of high-expression MIF promoter Luciferase reporter constructs in THP-1 monocytes. Consistent with these findings, treatment with anti-MIF immunoglogulin G (IgG) antibodies reduced bacterial loads and improved survival in a mouse model of pneumococcal pneumonia and sepsis. The present study provides strong evidence that carriage of high-expression MIF alleles is a genetic marker of morbidity and mortality of pneumococcal meningitis and also suggests a potential role for MIF as a target of immune-modulating adjunctive therapy. PMID:26976591

  5. Burn Eschar Stimulates Fibroblast and Adipose Mesenchymal Stromal Cell Proliferation and Migration but Inhibits Endothelial Cell Sprouting

    PubMed Central

    Monsuur, Hanneke N.; van den Broek, Lenie J.; Jhingoerie, Renushka L.; Vloemans, Adrianus F. P. M.

    2017-01-01

    The majority of full-thickness burn wounds heal with hypertrophic scar formation. Burn eschar most probably influences early burn wound healing, since granulation tissue only forms after escharotomy. In order to investigate the effect of burn eschar on delayed granulation tissue formation, burn wound extract (BWE) was isolated from the interface between non-viable eschar and viable tissue. The influence of BWE on the activity of endothelial cells derived from dermis and adipose tissue, dermal fibroblasts and adipose tissue-derived mesenchymal stromal cells (ASC) was determined. It was found that BWE stimulated endothelial cell inflammatory cytokine (CXCL8, IL-6 and CCL2) secretion and migration. However, BWE had no effect on endothelial cell proliferation or angiogenic sprouting. Indeed, BWE inhibited basic Fibroblast Growth Factor (bFGF) induced endothelial cell proliferation and sprouting. In contrast, BWE stimulated fibroblast and ASC proliferation and migration. No difference was observed between cells isolated from dermis or adipose tissue. The inhibitory effect of BWE on bFGF-induced endothelial proliferation and sprouting would explain why excessive granulation tissue formation is prevented in full-thickness burn wounds as long as the eschar is still present. Identifying the eschar factors responsible for this might give indications for therapeutic targets aimed at reducing hypertrophic scar formation which is initiated by excessive granulation tissue formation once eschar is removed. PMID:28820426

  6. Nobiletin inhibits human osteosarcoma cells metastasis by blocking ERK and JNK-mediated MMPs expression

    PubMed Central

    Cheng, Hsin-Lin; Hsieh, Ming-Ju; Yang, Jia-Sin; Lin, Chiao-Wen; Lue, Ko-Haung; Lu, Ko-Hsiu; Yang, Shun-Fa

    2016-01-01

    Nobiletin, a polymethoxyflavone, has a few pharmacological activities, including anti-inflammation and anti-cancer effects. However, its effect on human osteosarcoma progression remains uninvestigated. Therefore, we examined the effectiveness of nobiletin against cellular metastasis of human osteosarcoma and the underlying mechanisms. Nobiletin, up to 100 μM without cytotoxicity, significantly decreased motility, migration and invasion as well as enzymatic activities, protein levels and mRNA expressions of matrix metalloproteinase (MMP)-2 and MMP-9 in U2OS and HOS cells. In addition to inhibition of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), the inhibitory effect of nobiletin on the DNA-binding activity of the transcription factor nuclear factor-kappa B (NF-κB), cAMP response element-binding protein (CREB), and specificity protein 1 (SP-1) in U2OS and HOS cells. Co-treatment with ERK and JNK inhibitors and nobiletin further reduced U2OS cells migration and invasion. These results indicated that nobiletin inhibits human osteosarcoma U2OS and HOS cells motility, migration and invasion by down-regulating MMP-2 and MMP-9 expressions via ERK and JNK pathways and through the inactivation of downstream NF-κB, CREB, and SP-1. Nobiletin has the potential to serve as an anti-metastatic agent for treating osteosarcoma. PMID:27144433

  7. MicroRNA‑10b suppresses the migration and invasion of chondrosarcoma cells by targeting brain‑derived neurotrophic factor.

    PubMed

    Aili, Abudunaibi; Chen, Yong; Zhang, Hongqi

    2016-01-01

    MicroRNAs (miRs) can lead to mRNA degradation or inhibit protein translation through directly binding to the 3'‑untranslational region (UTR) of their target mRNAs. Deregulation of miR‑10b has been reported to be associated with chondrosarcoma. However, the role of miR‑10b in chondrosarcoma cell migration and invasion, as well as the underlying mechanisms, has not been investigated. In the present study, it was demonstrated that miR‑10b was notably downregulated in the JJ012 and SW1353 chondrosarcoma cell lines compared with the TC28a2 normal chondrocyte line. Treatment with DNA demethylating agent 5‑aza‑2'‑deoxycytidine and histone deacetylase inhibitor 4‑phenylbutyric acid, or transfection with miR‑10b mimics promoted the expression of miR‑10b, which further suppressed the migratory and invasive capacities of JJ012 chondrosarcoma cells. Moreover, brain‑derived neurotrophic factor (BDNF) was identified as a novel target of miR‑10b, and its protein expression level was negatively regulated by miR‑10b in JJ012 cells. Furthermore, overexpression of BDNF reversed the inhibitory effect of miR‑10b upregulation on the migration and invasion of JJ012 cells. In addition, the data suggest that matrix metalloproteinase 1 (MMP1) may be involved in the miR‑10b/BDNF‑mediated chondrosarcoma cell migration and invasion in JJ012 cells. In conclusion, these findings suggest that miR‑10b/BDNF may serve as a potential therapeutic target for chondrosarcoma.

  8. MicroRNA-99a inhibits insulin-induced proliferation, migration, dedifferentiation, and rapamycin resistance of vascular smooth muscle cells by inhibiting insulin-like growth factor-1 receptor and mammalian target of rapamycin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zi-wei; Department of Cardiology, Kunming General Hospital of Chengdu Military Area; Guo, Rui-wei

    Patients with type 2 diabetes mellitus (T2DM) are characterized by insulin resistance and are subsequently at high risk for atherosclerosis. Hyperinsulinemia has been associated with proliferation, migration, and dedifferentiation of vascular smooth muscle cells (VSMCs) during the pathogenesis of atherosclerosis. Moreover, insulin-like growth factor-1 receptor (IGF-1R) and mammalian target of rapamycin (mTOR) have been demonstrated to be the underlying signaling pathways. Recently, microRNA-99a (miR-99a) has been suggested to regulate the phenotypic changes of VSMCs in cancer cells. However, whether it is involved in insulin-induced changes of VSCMs has not been determined. In this study, we found that insulin induced proliferation,more » migration, and dedifferentiation of mouse VSMCs in a dose-dependent manner. Furthermore, the stimulating effects of high-dose insulin on proliferation, migration, and dedifferentiation of mouse VSMCs were found to be associated with the attenuation of the inhibitory effects of miR-99a on IGF-1R and mTOR signaling activities. Finally, we found that the inducing effect of high-dose insulin on proliferation, migration, and dedifferentiation of VSMCs was partially inhibited by an active mimic of miR-99a. Taken together, these results suggest that miR-99a plays a key regulatory role in the pathogenesis of insulin-induced proliferation, migration, and phenotype conversion of VSMCs at least partly via inhibition of IGF-1R and mTOR signaling. Our results provide evidence that miR-99a may be a novel target for the treatment of hyperinsulinemia-induced atherosclerosis. - Highlights: • Suggesting a new mechanism of insulin-triggered VSMC functions. • Providing a new therapeutic strategies that target atherosclerosis in T2DM patients. • Providing a new strategies that target in-stent restenosis in T2DM patients.« less

  9. A Novel Herbal Medicine KIOM-MA Exerts an Anti-Inflammatory Effect in LPS-Stimulated RAW 264.7 Macrophage Cells.

    PubMed

    Oh, You-Chang; Cho, Won-Kyung; Jeong, Yun Hee; Im, Ga Young; Kim, Aeyung; Hwang, Youn-Hwan; Kim, Taesoo; Song, Kwang Hoon; Ma, Jin Yeul

    2012-01-01

    KIOM-MA was recently reported as a novel herbal medicine effective for atopic dermatitis and asthma. In this study, we have demonstrated the inhibitory effect of KIOM-MA on proinflammatory mediator produced in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. KIOM-MA significantly inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as nitric oxide (NO) and prostaglandin E(2) (PGE(2)). Consistent with the inhibitory effect on PGE(2), KIOM-MA suppresses the LPS-induced migration of macrophages and gelatinase activity and the expression of matrix metalloprotease-9 (MMP-9) in a dose-dependent manner. Additionally, KIOM-MA showed a strong suppressive effect on the inflammatory cytokines production such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). We also found that KIOM-MA inhibits the activation of nuclear factor-κB (NF-κB) and represses the activity of extracellular signal-regulated kinase (ERK), p38, and c-Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs). Taken together, we elucidated the mechanism of anti-inflammatory effect of KIOM-MA using RAW 264.7 cells stimulated by LPS.

  10. A Novel Herbal Medicine KIOM-MA Exerts an Anti-Inflammatory Effect in LPS-Stimulated RAW 264.7 Macrophage Cells

    PubMed Central

    Oh, You-Chang; Cho, Won-Kyung; Jeong, Yun Hee; Im, Ga Young; Kim, Aeyung; Hwang, Youn-Hwan; Kim, Taesoo; Song, Kwang Hoon; Ma, Jin Yeul

    2012-01-01

    KIOM-MA was recently reported as a novel herbal medicine effective for atopic dermatitis and asthma. In this study, we have demonstrated the inhibitory effect of KIOM-MA on proinflammatory mediator produced in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. KIOM-MA significantly inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as nitric oxide (NO) and prostaglandin E2 (PGE2). Consistent with the inhibitory effect on PGE2, KIOM-MA suppresses the LPS-induced migration of macrophages and gelatinase activity and the expression of matrix metalloprotease-9 (MMP-9) in a dose-dependent manner. Additionally, KIOM-MA showed a strong suppressive effect on the inflammatory cytokines production such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). We also found that KIOM-MA inhibits the activation of nuclear factor-κB (NF-κB) and represses the activity of extracellular signal-regulated kinase (ERK), p38, and c-Jun NH2-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs). Taken together, we elucidated the mechanism of anti-inflammatory effect of KIOM-MA using RAW 264.7 cells stimulated by LPS. PMID:23243447

  11. Plasma Levels of Macrophage Migration Inhibitory Factor and d-Dopachrome Tautomerase Show a Highly Specific Profile in Early Life

    PubMed Central

    Roger, Thierry; Schlapbach, Luregn J.; Schneider, Anina; Weier, Manuela; Wellmann, Sven; Marquis, Patrick; Vermijlen, David; Sweep, Fred C. G. J.; Leng, Lin; Bucala, Richard; Calandra, Thierry; Giannoni, Eric

    2017-01-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic, constitutively expressed, pro-inflammatory cytokine and an important regulator of immune responses. d-dopachrome tautomerase (DDT), a newly described member of the MIF protein superfamily, shares sequence homology and biological activities with MIF. We recently reported that high expression levels of MIF sustain innate immune responses in newborns. Here, we elected to further characterize age-dependent MIF expression and to define whether DDT shares a similar expression profile with MIF. Therefore, we delineated the circulating concentrations of MIF and DDT throughout life using a large cohort of 307 subjects including fetuses, newborns, infants, children, and adults. Compared to levels measured in healthy adults (median: 5.7 ng/ml for MIF and 16.8 ng/ml for DDT), MIF and DDT plasma concentrations were higher in fetuses (median: 48.9 and 29.6 ng/ml), increased further at birth (median: 82.6 and 52.0 ng/ml), reached strikingly elevated levels on postnatal day 4 (median: 109.5 and 121.6 ng/ml), and decreased to adult levels during the first months of life. A strong correlation was observed between MIF and DDT concentrations in all age groups (R = 0.91, P < 0.0001). MIF and DDT levels correlated with concentrations of vascular endothelial growth factor, a protein upregulated under low oxygen tension and implicated in vascular and lung development (R = 0.70, P < 0.0001 for MIF and R = 0.65, P < 0.0001 for DDT). In very preterm infants, lower levels of MIF and DDT on postnatal day 6 were associated with an increased risk of developing bronchopulmonary dysplasia and late-onset neonatal sepsis. Thus, MIF and DDT plasma levels show a highly specific developmental profile in early life, supporting an important role for these cytokines during the neonatal period. PMID:28179905

  12. Serum Levels of Migration Inhibitory Factor (MIF) and In Situ Expression of MIF and Its Receptor CD74 in Lepromatous Leprosy Patients: A Preliminary Report

    PubMed Central

    Martinez-Guzman, Marco Alonso; Alvarado-Navarro, Anabell; Delgado-Rizo, Vidal; Garcia-Orozco, Alejandra; Mayorga-Rodríguez, Jorge Arturo; Pereira-Suarez, Ana Laura; Fafutis-Morris, Mary

    2018-01-01

    Leprosy is a chronic disease caused by Mycobacterium leprae that affects the skin and peripheral nerves. It may present as one of two distinct poles: the self-limiting tuberculoid leprosy and the highly infectious lepromatous leprosy (LL) characterized by M. leprae-specific absence of cellular immune response. The pro-inflammatory cytokine macrophage migration inhibitory factor (MIF) enhance the bactericide activities of macrophages after interaction with its receptor, CD74. Importantly, MIF also possesses chemoattractant properties, and it is a key factor in situ for the activation of macrophages and in blood to promote leukocytes migration. MIF-mediated activation of macrophages is a key process for the elimination of pathogens such as Mycobacterium tuberculosis; however, its participation for the clearance of M. leprae is unclear. The aim of this study was to evaluate the serum levels of MIF as well as MIF and CD74 expression in skin lesions of LL and compare it with healthy skin (HSk) taken from subjects attending to dermatological consult. Samples of serum and skin biopsies were taken from 39 LL patients and compared with 36 serum samples of healthy subjects (HS) and 10 biopsies of HSk. Serum samples were analyzed by ELISA and skin biopsies by immunohistochemistry (IHC). IHC smears were observed in 12 100× microscopic fields, in which percentage of stained cells and staining intensity were evaluated. Both variables were used to calculate a semi-quantitative expression score that ranged from 0 to 3+. We found no differences in MIF levels between LL patients and HS in sera. In addition, MIF was observed in over 75% of cells with high intensity in the skin of patients and HSk. Although we found no differences in MIF expression between the groups, a CD74 score statistically higher was found in LL skin than HSk (p < 0.001); this was the result of a higher percentage of cells positive for CD74 (p < 0.001). As a conclusion, we found that CD74-positive cells are intensely recruited to the skin with LL lesions. In this manner, MIF signaling may be enhanced in the skin of LL patients due to increased expression of its receptor, but further studies are required. PMID:29487601

  13. Effect of doxycycline on epithelial-mesenchymal transition via the p38/Smad pathway in respiratory epithelial cells.

    PubMed

    Shin, Jae-Min; Kang, Ju-Hyung; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2017-03-01

    Doxycycline has antibacterial and anti-inflammatory effects, and it also suppresses collagen biosynthesis. This study aimed to confirm the effects and mechanism of doxycycline on transforming growth factor (TGF) beta 1 induced epithelial-mesenchymal transition and cell migration in A549 and primary nasal epithelial cells. A 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay and phalloidin-fluorescein isothiocyanate staining were used to evaluate cytotoxicity and cellular morphologic changes. Western blot and immunofluorescence staining were used to determine the expression levels of E-cadherin, vimentin, alpha-smooth muscle actin, fibronectin, phosphorylated Smad2/3, and mitogen-activated protein kinases. Scratch and transwell migration assays were used to assess cellular migration ability. Doxycycline (0-10 μg/mL) had no significant cytotoxic effects in A549 and primary nasal epithelial cells. Increased expression of mesenchymal markers, including vimentin, alpha-smooth muscle actin, and fibronectin in TGF beta 1 induced A549 cells were downregulated by doxycycline treatment. In contrast, E-cadherin expression was upregulated in TGF beta 1 induced A549 cells. An in vitro cell migration assay showed that doxycycline also inhibited the ability of TGF beta 1 induced migration. Doxycycline treatment suppressed the activation of Smad2/3 and p38, whereas its inhibitory effects were similar to each element-specific inhibitor in A549 and primary nasal epithelial cells. Doxycycline inhibited TGF beta 1 induced epithelial-to-mesenchymal transition and migration by targeting Smad2/3 and p38 signal pathways in respiratory epithelial cells.

  14. Initial description of primate-specific cystine-knot Prometheus genes and differential gene expansions of D-dopachrome tautomerase genes

    PubMed Central

    Premzl, Marko

    2015-01-01

    Using eutherian comparative genomic analysis protocol and public genomic sequence data sets, the present work attempted to update and revise two gene data sets. The most comprehensive third party annotation gene data sets of eutherian adenohypophysis cystine-knot genes (128 complete coding sequences), and d-dopachrome tautomerases and macrophage migration inhibitory factor genes (30 complete coding sequences) were annotated. For example, the present study first described primate-specific cystine-knot Prometheus genes, as well as differential gene expansions of D-dopachrome tautomerase genes. Furthermore, new frameworks of future experiments of two eutherian gene data sets were proposed. PMID:25941635

  15. Regulation of Phagocyte Migration by Signal Regulatory Protein-Alpha Signaling.

    PubMed

    Alvarez-Zarate, Julian; Matlung, Hanke L; Matozaki, Takashi; Kuijpers, Taco W; Maridonneau-Parini, Isabelle; van den Berg, Timo K

    2015-01-01

    Signaling through the inhibitory receptor signal regulatory protein-alpha (SIRPα) controls effector functions in phagocytes. However, there are also indications that interactions between SIRPα and its ligand CD47 are involved in phagocyte transendothelial migration. We have investigated the involvement of SIRPα signaling in phagocyte migration in vitro and in vivo using mice that lack the SIRPα cytoplasmic tail. During thioglycolate-induced peritonitis in SIRPα mutant mice, both neutrophil and macrophage influx were found to occur, but to be significantly delayed. SIRPα signaling appeared to be essential for an optimal transendothelial migration and chemotaxis, and for the amoeboid type of phagocyte migration in 3-dimensional environments. These findings demonstrate, for the first time, that SIRPα signaling can directly control phagocyte migration, and this may contribute to the impaired inflammatory phenotype that has been observed in the absence of SIRPα signaling.

  16. Inhibition of angiogenesis by S-adenosylmethionine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahin, Mehmet, E-mail: msahin@akdeniz.edu.tr; Sahin, Emel; Guemueslue, Saadet

    2011-04-29

    Highlights: {yields} Effects of S-adenosylmethionine (SAM) were investigated in endothelial cells. {yields} Our results showed that SAM decreased proliferation of endothelial cells. {yields} SAM influentially inhibited the percentage of cell migration. {yields} SAM probably stopped migration as independent from its effects on proliferation. {yields} SAM was shown to suppress in vitro angiogenesis. -- Abstract: Metastasis is a leading cause of mortality and morbidity in cancer. One of the steps in metastasis process is the formation of new blood vessels. Aberrant DNA methylation patterns are common in cancer cells. In recent studies, S-adenosylmethionine (SAM), which is a DNA methylating agent, hasmore » been found to have inhibitory effects on some carcinoma cells in vivo and in vitro. In the present study, we have used SAM to investigate whether it is effective against angiogenesis in vitro. Our results have shown that SAM can reduce the formation and organization of capillary-like structures of endothelial cells in tumoral environment. Besides, we have found SAM can block endothelial cell proliferation and the migration of cells towards growth factors-rich media. In conclusion, our study suggests that SAM may be used against angiogenesis as a natural bio-product.« less

  17. Smad4 disruption accelerates keratinocyte reepithelialization in murine cutaneous wound repair.

    PubMed

    Yang, Leilei; Li, Wenlong; Wang, Shaoxia; Wang, Lijuan; Li, Yang; Yang, Xiao; Peng, Ruiyun

    2012-10-01

    Keratinocyte reepithelialization is a rate-limiting event in cutaneous wound repair, which involves the migration and proliferation of keratinocytes to cover the denuded dermal surface. Transforming growth factor-β1 (TGF-β1) has the ability to induce epithelial cell migration while inhibiting proliferation, and controversial results have been generated regarding the effect of TGF-β signaling on reepithelialization. In this study, full-thickness skin wounds were made in keratinocyte-specific Smad4 knockout and the control mice. The wound closure, reepithelialization, keratinocyte proliferation, myofibroblast numbers and collagen deposition of were assessed. The results showed that the proliferation of keratinocytes increased, which accelerated the reepithelialization, and led to faster wound repair in the epidermis of Smad4 mutant mice. Upregulation of keratin 17, 14-3-3 sigma and phosphorylated AKT in the hyperproliferative epidermis may be correlated with the accelerated reepithelialization. We conclude that Smad4 plays an inhibitory role in the keratinocyte-mediated reepithelialization of wound healing.

  18. PHA665752, a small-molecule inhibitor of c-Met, inhibits hepatocyte growth factor-stimulated migration and proliferation of c-Met-positive neuroblastoma cells.

    PubMed

    Crosswell, Hal E; Dasgupta, Anindya; Alvarado, Carlos S; Watt, Tanya; Christensen, James G; De, Pradip; Durden, Donald L; Findley, Harry W

    2009-11-25

    c-Met is a tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF), and both c-Met and its ligand are expressed in a variety of tissues. C-Met/HGF/SF signaling is essential for normal embryogenesis, organogenesis, and tissue regeneration. Abnormal c-Met/HGF/SF signaling has been demonstrated in different tumors and linked to aggressive and metastatic tumor phenotypes. In vitro and in vivo studies have demonstrated inhibition of c-Met/HGF/SF signaling by the small-molecule inhibitor PHA665752. This study investigated c-Met and HGF expression in two neuroblastoma (NBL) cell lines and tumor tissue from patients with NBL, as well as the effects of PHA665752 on growth and motility of NBL cell lines. The effect of the tumor suppressor protein PTEN on migration and proliferation of tumor cells treated with PHA665752 was also evaluated. Expression of c-Met and HGF in NBL cell lines SH-EP and SH-SY5Y and primary tumor tissue was assessed by immunohistochemistry and quantitative RT-PCR. The effect of PHA665752 on c-Met/HGF signaling involved in NBL cell proliferation and migration was evaluated in c-Met-positive cells and c-Met-transfected cells. The transwell chemotaxis assay and the MTT assay were used to measure migration and proliferation/cell-survival of tumor cells, respectively. The PPAR-gamma agonist rosiglitazone was used to assess the effect of PTEN on PHA665752-induced inhibition of NBL cell proliferation/cell-survival and migration High c-Met expression was detected in SH-EP cells and primary tumors from patients with advanced-stage disease. C-Met/HGF signaling induced both migration and proliferation of SH-EP cells. Migration and proliferation/cell-survival were inhibited by PHA665752 in a dose-dependent manner. We also found that induced overexpression of PTEN following treatment with rosiglitazone significantly enhanced the inhibitory effect of PHA665752 on NBL-cell migration and proliferation. c-Met is highly expressed in most tumors from patients with advanced-stage, metastatic NBL. Furthermore, using the NBL cell line SH-EP as a model, PHA665752 was shown to inhibit cMet/HGF/SF signaling in vitro, suggesting c-Met inhibitors may have efficacy for blocking local progression and/or metastatic spread of c-Met-positive NBL in vivo. These are novel findings for this disease and suggest that further studies of agents targeting the c-Met/HGF axis in NBL are warranted.

  19. Proliferation of NS0 cells in protein-free medium: the role of cell-derived proteins, known growth factors and cellular receptors.

    PubMed

    Spens, Erika; Häggström, Lena

    2009-05-20

    NS0 cells proliferate without external supply of growth factors in protein-free media. We hypothesize that the cells produce their own factors to support proliferation. Understanding the mechanisms behind this autocrine regulation of proliferation may open for the novel approaches to improve animal cell processes. The following proteins were identified in NS0 conditioned medium (CM): cyclophilin A, cyclophilin B (CypB), cystatin C, D-dopachrome tautomerase, IL-25, isopentenyl-diphosphate delta-isomerase, macrophage migration inhibitory factor (MIF), beta(2)-microglobulin, Niemann pick type C2, secretory leukocyte protease inhibitor, thioredoxin-1, TNF-alpha, tumour protein translationally controlled 1 and ubiquitin. Further, cDNA microarray analysis indicated that the genes for IL-11, TNF receptor 6, TGF-beta receptor 1 and the IFN-gamma receptor were transcribed. CypB, IFN-alpha/beta/gamma, IL-11, IL-25, MIF, TGF-beta and TNF-alpha as well as the known growth factors EGF, IGF-I/II, IL-6, leukaemia inhibitory factor and oncostatin M (OSM) were excluded as involved in autocrine regulation of NS0 cell proliferation. The receptors for TGF-beta, IGF and OSM are however present in NS0 cell membranes since TGF-beta(1) caused cell death, and IGF-I/II and OSM improved cell growth. Even though no ligand was found, the receptor subunit gp130, active in signal transduction of the IL-6 like proteins, was shown to be essential for NS0 cells as demonstrated by siRNA gene silencing.

  20. Melatonin prevents human pancreatic carcinoma cell PANC-1-induced human umbilical vein endothelial cell proliferation and migration by inhibiting vascular endothelial growth factor expression.

    PubMed

    Cui, Peilin; Yu, Minghua; Peng, Xingchun; Dong, Lv; Yang, Zhaoxu

    2012-03-01

    Melatonin is an important natural oncostatic agent, and our previous studies have found its inhibitory action on tumor angiogenesis, but the mechanism remains unclear. It is well known that vascular endothelial growth factor (VEGF) plays key roles in tumor angiogenesis and has become an important target for antitumor therapy. Pancreatic cancer is a representative of the most highly vascularized and angiogenic solid tumors, which responds poorly to chemotherapy and radiation. Thus, seeking new treatment strategies targeting which have anti-angiogenic capability is urgent in clinical practice. In this study, a co-culture system between human umbilical vein endothelial cells (HUVECs) and pancreatic carcinoma cells (PANC-1) was used to investigate the direct effect of melatonin on the tumor angiogenesis and its possible action on VEGF expression. We found HUVECs exhibited an increased cell proliferation and cell migration when co-cultured with PANC-1 cells, but the process was prevented when melatonin added to the incubation medium. Melatonin at concentrations of 1 μm and 1 mm inhibited the cell proliferation and migration of HUVECs and also decreased both the VEGF protein secreted to the cultured medium and the protein produced by the PANC-1 cells. In addition, the VEGF mRNA expression was also down-regulated by melatonin. Taken together, our present study shows that melatonin at pharmacological concentrations inhibited the elevated cell proliferation and cell migration of HUVECs stimulated by co-culturing them with PANC-1 cells; this was associated with a suppression of VEGF expression in PANC-1 cells. © 2011 John Wiley & Sons A/S.

  1. The effects of small interfering RNA–targeting tissue factor on an in vitro model of neovascularization

    PubMed Central

    Peng, Wenyan; Yu, Ying; Li, Tiejun; Zhu, Yuanyuan

    2013-01-01

    Purpose Tissue factor (TF) plays an important role in neovascularization (NV). This study aimed to determine whether small interfering RNA–targeting TF (TF-siRNA) could knock down TF expression and inhibit cell proliferation, cell migration, and tube formation in an in vitro model of NV. Methods Lipopolysaccharide (LPS) was used to stimulate human umbilical vein endothelial cell (HUVEC) lines to express TF and mimic certain phenotypes of NV in vitro. HUVECs were transfected with TF-siRNAs and control siRNAs using LipofectamineTM 2000. The inhibitory effect of the siRNAs on the expression of TF mRNA and protein was evaluated by quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) and western blot analysis. The effects on the cell viability, migration, and tube formation of siRNA-treated cells were examined by MTT assay, wound-healing assay, and Matrigel-induced capillary tube formation. Results Lipopolysaccharide treatment increased the expression of TF. TF-siRNAs effectively knocked down TF expression, with the most efficient TF-siRNA reducing 78.9% of TF expression. TF protein was also notably curtailed by TF-siRNA. The MTT and wound-healing assays showed that the TF-siRNA substantially inhibited the proliferation and migration of HUVECs. Tube formation was decreased by 47.4% and 59.4% in cells treated with the TF-siRNA and vascular endothelial growth factor–siRNA, respectively, compared with the blank control. Conclusions TF-siRNA can knockdown TF expression and inhibit cell proliferation, migration, and tube formation in vitro. TF-siRNA may provide a novel therapeutic candidate for NV-related diseases. PMID:23805036

  2. Nociceptin/orphanin FQ antagonizes lipopolysaccharide-stimulated proliferation, migration and inflammatory signaling in human glioblastoma U87 cells.

    PubMed

    Bedini, Andrea; Baiula, Monica; Vincelli, Gabriele; Formaggio, Francesco; Lombardi, Sara; Caprini, Marco; Spampinato, Santi

    2017-09-15

    Glioblastoma is among the most aggressive brain tumors and has an exceedingly poor prognosis. Recently, the importance of the tumor microenvironment in glioblastoma cell growth and progression has been emphasized. Toll-like receptor 4 (TLR4) recognizes bacterial lipopolysaccharide (LPS) and endogenous ligands originating from dying cells or the extracellular matrix involved in host defense and in inflammation. G-protein coupled receptors (GPCRs) have gained interest in anti-tumor drug discovery due to the role that they directly or indirectly play by transactivating other receptors, causing cell migration and proliferation. A proteomic analysis showed that the nociceptin receptor (NOPr) is among the GPCRs significantly expressed in glioblastoma cells, including U87 cells. We describe a novel role of the peptide nociceptin (N/OFQ), the endogenous ligand of the NOPr that counteracts cell migration, proliferation and increase in IL-1β mRNA elicited by LPS via TLR4 in U87 glioblastoma cells. Signaling pathways through which N/OFQ inhibits LPS-mediated cell migration and elevation of [Ca 2+ ] i require β-arrestin 2 and are sensitive to TNFR-associated factor 6, c-Src and protein kinase C (PKC). LPS-induced cell proliferation and increase in IL-1β mRNA are counteracted by N/OFQ via β-arrestin 2, PKC and extracellular signal-regulated kinase 1/2; furthermore, the contributions of the transcription factors NF-kB and AP-1 were investigated. Independent of LPS, N/OFQ induces a significant increase in cell apoptosis. Contrary to what was observed in other cell models, a prolonged exposure to this endotoxin did not promote any tolerance of the cellular effects above described, including NOPr down-regulation while N/OFQ loses its inhibitory role. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Optimization of interneuron function by direct coupling of cell migration and axonal targeting.

    PubMed

    Lim, Lynette; Pakan, Janelle M P; Selten, Martijn M; Marques-Smith, André; Llorca, Alfredo; Bae, Sung Eun; Rochefort, Nathalie L; Marín, Oscar

    2018-06-18

    Neural circuit assembly relies on the precise synchronization of developmental processes, such as cell migration and axon targeting, but the cell-autonomous mechanisms coordinating these events remain largely unknown. Here we found that different classes of interneurons use distinct routes of migration to reach the embryonic cerebral cortex. Somatostatin-expressing interneurons that migrate through the marginal zone develop into Martinotti cells, one of the most distinctive classes of cortical interneurons. For these cells, migration through the marginal zone is linked to the development of their characteristic layer 1 axonal arborization. Altering the normal migratory route of Martinotti cells by conditional deletion of Mafb-a gene that is preferentially expressed by these cells-cell-autonomously disrupts axonal development and impairs the function of these cells in vivo. Our results suggest that migration and axon targeting programs are coupled to optimize the assembly of inhibitory circuits in the cerebral cortex.

  4. Regulation of Phagocyte Migration by Signal Regulatory Protein-Alpha Signaling

    PubMed Central

    Alvarez-Zarate, Julian; Matlung, Hanke L.; Matozaki, Takashi; Kuijpers, Taco W.; Maridonneau-Parini, Isabelle; van den Berg, Timo K.

    2015-01-01

    Signaling through the inhibitory receptor signal regulatory protein-alpha (SIRPα) controls effector functions in phagocytes. However, there are also indications that interactions between SIRPα and its ligand CD47 are involved in phagocyte transendothelial migration. We have investigated the involvement of SIRPα signaling in phagocyte migration in vitro and in vivo using mice that lack the SIRPα cytoplasmic tail. During thioglycolate-induced peritonitis in SIRPα mutant mice, both neutrophil and macrophage influx were found to occur, but to be significantly delayed. SIRPα signaling appeared to be essential for an optimal transendothelial migration and chemotaxis, and for the amoeboid type of phagocyte migration in 3-dimensional environments. These findings demonstrate, for the first time, that SIRPα signaling can directly control phagocyte migration, and this may contribute to the impaired inflammatory phenotype that has been observed in the absence of SIRPα signaling. PMID:26057870

  5. Saponins extracted from by-product of Asparagus officinalis L. suppress tumour cell migration and invasion through targeting Rho GTPase signalling pathway.

    PubMed

    Wang, Jieqiong; Liu, Yali; Zhao, Jingjing; Zhang, Wen; Pang, Xiufeng

    2013-04-01

    The inedible bottom part (~30-40%) of asparagus (Asparagus officinalis L.) spears is usually discarded as waste. However, since this by-product has been reported to be rich in many bioactive phytochemicals, it might be utilisable as a supplement in foods or natural drugs for its therapeutic effects. In this study it was identifed that saponins from old stems of asparagus (SSA) exerted potential inhibitory activity on tumour growth and metastasis. SSA suppressed cell viability of breast, colon and pancreatic cancers in a concentration-dependent manner, with half-maximum inhibitory concentrations ranging from 809.42 to 1829.96 µg mL(-1). However, SSA was more functional in blocking cell migration and invasion as compared with its cytotoxic effect, with an effective inhibitory concentration of 400 µg mL(-1). A mechanistic study showed that SSA markedly increased the activities of Cdc42 and Rac1 and decreased the activity of RhoA in cancer cells. SSA inhibits tumour cell motility through modulating the Rho GTPase signalling pathway, suggesting a promising use of SSA as a supplement in healthcare foods and natural drugs for cancer prevention and treatment. © 2012 Society of Chemical Industry.

  6. Berberine inhibits the proliferation and migration of breast cancer ZR-75-30 cells by targeting Ephrin-B2.

    PubMed

    Ma, Weina; Zhu, Man; Zhang, Dongdong; Yang, Liu; Yang, Tianfeng; Li, Xin; Zhang, Yanmin

    2017-02-15

    Berberine, a plant-derived compound isolated from Coptis chinensis used in traditional Chinese medicine, has been shown to possess anti-cancer properties. However, no study has shown that berberine could target ephrin-B2, which plays a critical role in cell proliferation and migration. The aim of this study is to investigate the effect of berberine on cancer cell growth and migration, through the regulation of ephrin-B2 and downstream signaling molecules. In this study, a high ephrin-B2-expressing cell membrane chromatography method was developed to investigate 48 crude extracts from traditional Chinese medicine that could act on ephrin-B2. Cell proliferative and wound-healing assays were used to study the effect of berberine on cancer cell growth and migration. The mechanism of berberine was investigated using western blot. Berberine was isolated from C. chinensis extracts and showed activity on the HEK293/ephrin-B2 cell membrane chromatography column. Berberine showed a greater inhibitory effect in high-expressing ephrin-B2 cells (HEK293/ephrin-B2 cells) than in normal HEK293 cells, and decreased the expression of ephrin-B2 and its PDZ binding proteins, which indicates that ephrin-B2 is a target of berberine. Furthermore, berberine downregulates the phosphorylation of VEGFR2 and downstream signaling members (AKT and Erk1/2), which in turn downregulates the expression of MMP2 and MMP9. The above data confirm the inhibitory effects of berberine on ZR-75-30 cell proliferation and cell migration. Overall, our studies demonstrate that berberine inhibits cell growth and migration by targeting ephrin-B2. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. A potential inhibitory function of draxin in regulating mouse trunk neural crest migration.

    PubMed

    Zhang, Sanbing; Su, Yuhong; Gao, Jinbao; Zhang, Chenbing; Tanaka, Hideaki

    2017-01-01

    Draxin is a repulsive axon guidance protein that plays important roles in the formation of three commissures in the central nervous system and dorsal interneuron 3 (dI3) in the chick spinal cord. In the present study, we report the expression pattern of mouse draxin in the embryonic mouse trunk spinal cord. In the presence of draxin, the longest net migration length of a migrating mouse trunk neural crest cell was significantly reduced. In addition, the relative number of apolar neural crest cells increased as the draxin treatment time increased. Draxin caused actin cytoskeleton rearrangement in the migrating trunk neural crest cells. Our data suggest that draxin may regulate mouse trunk neural crest cell migration by the rearrangement of cell actin cytoskeleton and by reducing the polarization activity of these cells subsequently.

  8. Cancer-suppressive potential of extracts of endemic plant Helichrysum zivojinii: effects on cell migration, invasion and angiogenesis.

    PubMed

    Matić, Ivana Z; Aljancić, Ivana; Vajs, Vlatka; Jadranin, Milka; Gligorijević, Nevenka; Milosavljević, Slobodan; Juranić, Zorica D

    2013-09-01

    Helichrysum zivojinii Cernjavski & Soska is an endemic plant species that grows in the National Park Galicica in Macedonia. Five extracts were isolated as fractions from the aerial parts of the plant: a n-hexane extract (1), a dichloromethane extract (2), an ethyl-acetate extract (3), a n-butanol extract (4) and a methanol extract (5). A dose-dependent cytotoxic activity of the extracts on MDA-MB-231 and EA.hy926 cells was observed. Extracts exhibited more pronounced cytotoxic actions on MDA-MB-231 cells than on EA.hy926 cells. The n-hexane extract (1), at a non-toxic concentration, exhibited an inhibitory effect on the migration as well the invasiveness of MDA-MB-231 cells. The dichloromethane extract (2), at a non-toxic concentration, demonstrated inhibition of MDA-MB-231 cells invasion. Each of the five extracts applied at non-toxic concentrations inhibited migration of EA.hy926 cells. The prominent inhibitory effect of the n-hexane extract on EA.hy926 cells migration was associated with a notable anti-angiogenic action of this extract. The other four tested extracts demonstrated mild anti-angiogenic activity. Our data highlight the prominent anticancer potential of n-hexane (1) and dichloromethane (2) extracts, which could be attributed to their very pronounced and selective cytotoxic activities as well as their anti-invasive and anti-angiogenic properties.

  9. Activation of GPER suppresses migration and angiogenesis of triple negative breast cancer via inhibition of NF-κB/IL-6 signals.

    PubMed

    Liang, Shuwei; Chen, Zhuojia; Jiang, Guanmin; Zhou, Yan; Liu, Qiao; Su, Qiao; Wei, Weidong; Du, Jun; Wang, Hongsheng

    2017-02-01

    Triple-negative breast cancer (TNBC) is characterized by high vascularity and frequent metastasis. Here, we found that activation of G protein-coupled estrogen receptor (GPER) by its specific agonist G-1 can significantly inhibit interleukin 6 (IL-6) and vascular endothelial growth factor A (VEGF-A). TNBC tissue microarrays from 100 TNBC patients revealed GPER is negatively associated with IL-6 levels and higher grade and stage. Activation of GPER or anti-IL-6 antibody can inhibit both in vitro tube formation of human umbilical vein endothelial cells (HUVECs) and migration of TNBC cells. While recombinant IL-6 supplementary can significantly reverse the inhibitory effects of G-1, suggesting the essential role of IL-6 in G-1 induced suppression of angiogenesis and invasiveness of TNBC cells. G-1 treatment decreased the phosphorylation, nuclear localization, transcriptional activities of NF-κB and suppressed its binding with IL-6 promoter. BAY11-7028, the inhibitor of NF-κB, can mimic the effect of G-1 to suppression of IL-6 and VEGF-A. While over expression of p65 can attenuate the inhibitory effects of G-1 on IL-6 and VEGF expression. The suppression of IL-6 by G-1 can further inhibit HIF-1α and STAT3 signals in TNBC cells by inhibition their expression, phosphorylation and/or nuclear localization. Moreover, G-1 also inhibited the in vivo NF-κB/IL-6 signals and angiogenesis and metastasis of MDA-MB-231 xenograft tumors. In conclusion, our study demonstrated that activation of GPER can suppress migration and angiogenesis of TNBC via inhibition of NF-κB/IL-6 signals, therefore it maybe act as an important target for TNBC treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Anti-inflammatory cytokine interleukin-19 inhibits smooth muscle cell migration and activation of cytoskeletal regulators of VSMC motility

    PubMed Central

    Gabunia, Khatuna; Jain, Surbhi; England, Ross N.

    2011-01-01

    Vascular smooth muscle cell (VSMC) migration is an important cellular event in multiple vascular diseases, including atherosclerosis, restenosis, and transplant vasculopathy. Little is known regarding the effects of anti-inflammatory interleukins on VSMC migration. This study tested the hypothesis that an anti-inflammatory Th2 interleukin, interleukin-19 (IL-19), could decrease VSMC motility. IL-19 significantly decreased platelet-derived growth factor (PDGF)-stimulated VSMC chemotaxis in Boyden chambers and migration in scratch wound assays. IL-19 significantly decreased VSMC spreading in response to PDGF. To determine the molecular mechanism(s) for these cellular effects, we examined the effect of IL-19 on activation of proteins that regulate VSMC cytoskeletal dynamics and locomotion. IL-19 decreased PDGF-driven activation of several cytoskeletal regulatory proteins that play an important role in smooth muscle cell motility, including heat shock protein-27 (HSP27), myosin light chain (MLC), and cofilin. IL-19 decreased PDGF activation of the Rac1 and RhoA GTPases, important integrators of migratory signals. IL-19 was unable to inhibit VSMC migration nor was able to inhibit activation of cytoskeletal regulatory proteins in VSMC transduced with a constitutively active Rac1 mutant (RacV14), suggesting that IL-19 inhibits events proximal to Rac1 activation. Together, these data are the first to indicate that IL-19 can have important inhibitory effects on VSMC motility and activation of cytoskeletal regulatory proteins. This has important implications for the use of anti-inflammatory cytokines in the treatment of vascular occlusive disease. PMID:21209363

  11. Development of chronic colitis is dependent on the cytokine MIF.

    PubMed

    de Jong, Y P; Abadia-Molina, A C; Satoskar, A R; Clarke, K; Rietdijk, S T; Faubion, W A; Mizoguchi, E; Metz, C N; Alsahli, M; ten Hove, T; Keates, A C; Lubetsky, J B; Farrell, R J; Michetti, P; van Deventer, S J; Lolis, E; David, J R; Bhan, A K; Terhorst, C; Sahli, M A

    2001-11-01

    The cytokine macrophage-migration inhibitory factor (MIF) is secreted by a number of cell types upon induction by lipopolysaccharide (LPS). Because colitis is dependent on interplay between the mucosal immune system and intestinal bacteria, we investigated the role of MIF in experimental colitis. MIF-deficient mice failed to develop disease, but reconstitution of MIF-deficient mice with wild-type innate immune cells restored colitis. In addition, established colitis could be treated with anti-MIF immunoglobulins. Thus, murine colitis is dependent on continuous MIF production by the innate immune system. Because we found increased plasma MIF concentrations in patients with Crohn's disease, these data suggested that MIF is a new target for intervention in Crohn's disease.

  12. The effect of granulocyte factor and grass pollen allergen on T-lymphocytes from atopic patients in vitro.

    PubMed

    Kocur, E; Zeman, K; Tchorzewski, H

    1993-01-01

    In allergy the immune response is significantly modified by inflammatory processes. Polymorphonuclear leukocytes (PMNLs) are involved in inflammatory processes. Activated PMNLs release many substances, including granulocyte factor (GF), which exerts immunomodulating effects. The present study was performed to determine the effects of allergens and/or GF on the expression of lymphocyte differentiation antigens in short-term cultures and to evaluate the production of migration inhibitory factor (MIF) under the influence of these substances. The studies were carried out on peripheral blood mononuclear cells isolated from patients with type I hypersensitivity, before and after the grass pollen season, and from healthy subjects. GF and allergens were found to increase the CD8 cell number, particularly in 7-day cultures and in patients before exposure to allergens, which correlated with MIF release in these patients under the influence of these factors. The results suggest that the PMNLs may participate in allergic inflammatory reactions.

  13. Self-rated health among pregnant women: associations with objective health indicators, psychological functioning, and serum inflammatory markers.

    PubMed

    Christian, Lisa M; Iams, Jay; Porter, Kyle; Leblebicioglu, Binnaz

    2013-12-01

    Biobehavioral correlates of self-rated health in pregnancy are largely unknown. The goals of this study were to examine, in pregnant women, associations of self-rated health with (1) demographics, objective health status, health behaviors, and psychological factors, and (2) serum inflammatory markers. In the second trimester of pregnancy, 101 women provided a blood sample, completed measures of psychosocial stress, health status, and health behaviors, and received a comprehensive periodontal examination. The following independently predicted poorer self-rated health: (1) greater psychological stress, (2) greater objective health diagnoses, (3) higher body mass index, and (4) past smoking (versus never smoking). Poorer self-rated health was associated with higher serum interleukin-1β (p = 0.02) and marginally higher macrophage migration inhibitory factor (p = 0.06). These relationships were not fully accounted for by behavioral/psychological factors. This study provides novel data regarding factors influencing subjective ratings of health and the association of self-rated health with serum inflammatory markers in pregnant women.

  14. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis.

    PubMed

    Dean, Richard A; Butler, Georgina S; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R; Courty, José; Overall, Christopher M

    2007-12-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2-/- mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2-/- cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis.

  15. Identification of Candidate Angiogenic Inhibitors Processed by Matrix Metalloproteinase 2 (MMP-2) in Cell-Based Proteomic Screens: Disruption of Vascular Endothelial Growth Factor (VEGF)/Heparin Affin Regulatory Peptide (Pleiotrophin) and VEGF/Connective Tissue Growth Factor Angiogenic Inhibitory Complexes by MMP-2 Proteolysis▿ †

    PubMed Central

    Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.

    2007-01-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800

  16. Discovery of potent HDAC inhibitors based on chlamydocin with inhibitory effects on cell migration.

    PubMed

    Wang, Shimiao; Li, Xiaohui; Wei, Yingdong; Xiu, Zhilong; Nishino, Norikazu

    2014-03-01

    The histone deacetylase (HDAC) family is a promising drug target class owing to the importance of these enzymes in a variety of cellular processes. Docking studies were conducted to identify novel HDAC inhibitors. Subtle modifications in the recognition domain were introduced into a series of chlamydocin analogues, and the resulting scaffolds were combined with various zinc binding domains. Remarkably, cyclo(L-Asu(NHOH)-L-A3mc6c-L-Phe-D-Pro, compound 1 b), with a methyl group at positions 3 or 5 on the aliphatic ring, exhibited better antiproliferative effects than trichostatin A (TSA) against MCF-7 and K562 cell lines. In addition to cell-cycle arrest and apoptosis, cell migration inhibition was observed in cells treated with compound 1 b. Subsequent western blot analysis revealed that the balance between matrix metalloproteinase 2 (MMP2) and tissue inhibitors of metalloproteinase 1 (TIMP1) determines the degree of metalloproteinase activity in MCF-7 cells, thereby regulating cell migration. The improved inhibitory activity imparted by altering the hydrophobic substitution pattern at the bulky cap group is a valuable approach in the development of novel HDAC inhibitors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Vitisin B, a resveratrol tetramer, inhibits migration through inhibition of PDGF signaling and enhancement of cell adhesiveness in cultured vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Eng-Thaim; Hwang, Tsong-Long; Huang, Yu-Ling

    2011-10-15

    Vascular smooth muscle cells (VSMCs) play an important role in normal vessel formation and in the development and progression of cardiovascular diseases. Grape plants contain resveratrol monomer and oligomers and drinking of wine made from grape has been linked to 'French Paradox'. In this study we evaluated the effect of vitisin B, a resveratrol tetramer, on VSMC behaviors. Vitisin B inhibited basal and PDGF-induced VSMC migration. Strikingly, it did not inhibit VSMC proliferation but inversely enhanced cell cycle progression and proliferation. Among the tested resveratrol oligomers, vitisin B showed an excellent inhibitory activity and selectivity on PDGF signaling. The anti-migratorymore » effect by vitisin B was due to direct inhibition on PDGF signaling but was independent of interference with PDGF binding to VSMCs. Moreover, the enhanced VSMC adhesiveness to matrix contributed to the anti-migratory effect by vitisin B. Fluorescence microscopy revealed an enhanced reorganization of actin cytoskeleton and redistribution of activated focal adhesion proteins from cytosol to the peripheral edge of the cell membrane. This was confirmed by the observation that enhanced adhesiveness was repressed by the Src inhibitor. Finally, among the effects elicited by vitisin B, only the inhibitory effect toward basal migration was partially through estrogen receptor activation. We have demonstrated here that a resveratrol tetramer exhibited dual but opposite actions on VSMCs, one is to inhibit VSMC migration and the other is to promote VSMC proliferation. The anti-migratory effect was through a potent inhibition on PDGF signaling and novel enhancement on cell adhesion. - Highlights: > Several resveratrol oligomers from grape plants are examined on VSMC behaviors. > Tetraoligomer vitisin B shows excellent inhibitory activity and selectivity. > It exerts dual but opposing actions: anti-migratory and pro-proliferative effects. > The anti-migratory effect results from anti-PDGF signaling and pro-adhesiveness. > The more resveratrols oligomerize, the more potent effects they exert.« less

  18. Early Developmental Disturbances of Cortical Inhibitory Neurons: Contribution to Cognitive Deficits in Schizophrenia

    PubMed Central

    Volk, David W.; Lewis, David A.

    2014-01-01

    Cognitive dysfunction is a disabling and core feature of schizophrenia. Cognitive impairments have been linked to disturbances in inhibitory (gamma-aminobutyric acid [GABA]) neurons in the prefrontal cortex. Cognitive deficits are present well before the onset of psychotic symptoms and have been detected in early childhood with developmental delays reported during the first year of life. These data suggest that the pathogenetic process that produces dysfunction of prefrontal GABA neurons in schizophrenia may be related to altered prenatal development. Interestingly, adult postmortem schizophrenia brain tissue studies have provided evidence consistent with a disease process that affects different stages of prenatal development of specific subpopulations of prefrontal GABA neurons. Prenatal ontogeny (ie, birth, proliferation, migration, and phenotypic specification) of distinct subpopulations of cortical GABA neurons is differentially regulated by a host of transcription factors, chemokine receptors, and other molecular markers. In this review article, we propose a strategy to investigate how alterations in the expression of these developmental regulators of subpopulations of cortical GABA neurons may contribute to the pathogenesis of cortical GABA neuron dysfunction and consequently cognitive impairments in schizophrenia. PMID:25053651

  19. Uridine adenosine tetraphosphate (Up{sub 4}A) is a strong inductor of smooth muscle cell migration via activation of the P2Y{sub 2} receptor and cross-communication to the PDGF receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedon, Annette; Toelle, Markus; Bastine, Joschika

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Up{sub 4}A induces VSMC migration. Black-Right-Pointing-Pointer VSMC migration towards Up{sub 4}A involves P2Y{sub 2} activation. Black-Right-Pointing-Pointer Up{sub 4}A-induced VSMC migration is OPN-dependent. Black-Right-Pointing-Pointer Activation of ERK1/2 pathway is necessary for VSMC migration towards Up{sub 4}A. Black-Right-Pointing-Pointer Up{sub 4}A-directed VSMC migration cross-communicates with the PDGFR. -- Abstract: The recently discovered dinucleotide uridine adenosine tetraphosphate (Up{sub 4}A) was found in human plasma and characterized as endothelium-derived vasoconstrictive factor (EDCF). A further study revealed a positive correlation between Up{sub 4}A and vascular smooth muscle cell (VSMC) proliferation. Due to the dominant role of migration in the formation of atherosclerotic lesions ourmore » aim was to investigate the migration stimulating potential of Up{sub 4}A. Indeed, we found a strong chemoattractant effect of Up{sub 4}A on VSMC by using a modified Boyden chamber. This migration dramatically depends on osteopontin secretion (OPN) revealed by the reduction of the migration signal down to 23% during simultaneous incubation with an OPN-blocking antibody. Due to inhibitory patterns using specific and unspecific purinoreceptor inhibitors, Up{sub 4}A mediates it's migratory signal mainly via the P2Y{sub 2}. The signaling behind the receptor was investigated with luminex technique and revealed an activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway. By use of the specific PDGF receptor (PDGFR) inhibitor AG1296 and siRNA technique against PDGFR-{beta} we found a strongly reduced migration signal after Up{sub 4}A stimulation in the PDGFR-{beta} knockdown cells compared to control cells. In this study, we present substantiate data that Up{sub 4}A exhibits migration stimulating potential probably involving the signaling cascade of MEK1 and ERK1/2 as well as the matrix protein OPN. We further suggest that the initiation of the migration process occurs predominant through direct activation of the P2Y{sub 2} by Up{sub 4}A and via transactivation of the PDGFR.« less

  20. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer.

    PubMed

    Zhang, Le; Xu, Liang; Zhang, Fengchun; Vlashi, Erina

    2017-04-18

    Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic.

  1. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer

    PubMed Central

    Xu, Liang; Zhang, Fengchun; Vlashi, Erina

    2017-01-01

    ABSTRACT Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic. PMID:27753527

  2. The increased concentration of macrophage migration inhibitory factor in serum and cerebrospinal fluid of patients with tick-borne encephalitis.

    PubMed

    Grygorczuk, Sambor; Parczewski, Miłosz; Świerzbińska, Renata; Czupryna, Piotr; Moniuszko, Anna; Dunaj, Justyna; Kondrusik, Maciej; Pancewicz, Sławomir

    2017-06-24

    Host factors determining the clinical presentation of tick-borne encephalitis (TBE) are not fully elucidated. The peripheral inflammatory response to TBE virus is hypothesized to facilitate its entry into central nervous system by disrupting the blood-brain barrier with the involvement of a signaling route including Toll-like receptor 3 (TLR3) and pro-inflammatory cytokines macrophage migration inhibitory factor (MIF), tumor necrosis factor-α (TNFα), and interleukin-1 beta (IL-1β). Concentrations of MIF, TNFα, and IL-1β were measured with commercial ELISA in serum and cerebrospinal fluid (CSF) from 36 hospitalized TBE patients, 7 patients with non-TBE meningitis, and 6 controls. The CSF albumin quotient (AQ) was used as a marker of blood-brain barrier permeability. Single nucleotide polymorphisms rs3775291, rs5743305 (associated with TLR3 expression), and rs755622 (associated with MIF expression) were assessed in blood samples from 108 TBE patients and 72 non-TBE controls. The data were analyzed with non-parametric tests, and p < 0.05 was considered significant. The median serum and CSF concentrations of MIF and IL-1β were significantly increased in TBE group compared to controls. MIF concentration in serum tended to correlate with AQ in TBE, but not in non-TBE meningitis. The serum concentration of TNFα was increased in TBE patients bearing a high-expression TLR3 rs5743305 TT genotype, which also associated with the increased risk of TBE. The low-expression rs3775291 TLR3 genotype TT associated with a prolonged increase of CSF protein concentration. The high-expression MIF rs755622 genotype CC tended to correlate with an increased risk of TBE, and within TBE group, it was associated with a mild presentation. The results point to the signaling route involving TLR3, MIF, and TNFα being active in TBE virus infection and contributing to the risk of an overt neuroinvasive disease. The same factors may play a protective role intrathecally contributing to the milder course of neuroinfection. This suggests that the individual variability of the risk and clinical presentation of TBE might be traced to the variable peripheral and intrathecal expression of the mediators of the inflammatory response, which in turn associates with the host genetic background.

  3. Macrophage migration inhibitory factor (MIF) knockout preserves cardiac homeostasis through alleviating Akt-mediated myocardial autophagy suppression in high-fat diet-induced obesity.

    PubMed

    Xu, X; Ren, J

    2015-03-01

    Macrophage migration inhibitory factor (MIF) has a role in the development of obesity and diabetes. However, whether MIF has a role in fat diet-induced obesity and associated cardiac anomalies still remains unknown. The aim of this study was to examine the impact of MIF knockout on high-fat diet-induced obesity, obesity-associated cardiac anomalies and the underlying mechanisms involved with a focus on Akt-mediated autophagy. Adult male wild-type (WT) and MIF knockout (MIF(-/-)) mice were placed on 45% high-fat diet for 5 months. Oxygen consumption, CO2 production, respiratory exchange ratio, locomotor activity and heat generation were measured using energy calorimeter. Echocardiographic, cardiomyocyte mechanical and intracellular Ca2+ properties were assessed. Apoptosis was examined using terminal dUTP nick end labeling staining and western blot analysis. Akt signaling pathway and autophagy markers were evaluated. Cardiomyocytes isolated from WT and MIF(-/-) mice were treated with recombinant mouse MIF (rmMIF). High-fat diet feeding elicited increased body weight gain, insulin resistance and caloric disturbance in WT and MIF(-/-) mice. High-fat diet induced unfavorable geometric, contractile and histological changes in the heart, the effects of which were alleviated by MIF knockout. In addition, fat diet-induced cardiac anomalies were associated with Akt activation and autophagy suppression, which were nullified by MIF deficiency. In cardiomyocytes from WT mice, autophagy was inhibited by exogenous rmMIF through Akt activation. In addition, MIF knockout rescued palmitic acid-induced suppression of cardiomyocyte autophagy, the effect of which was nullified by rmMIF. These results indicate that MIF knockout preserved obesity-associated cardiac anomalies without affecting fat diet-induced obesity, probably through restoring myocardial autophagy in an Akt-dependent manner. Our findings provide new insights for the role of MIF in obesity and associated cardiac anomalies.

  4. Human Leukocyte Antigen-Presented Macrophage Migration Inhibitory Factor is a Surface Biomarker and Potential Therapeutic Target for Ovarian Cancer

    PubMed Central

    Patterson, Andrea M; Kaabinejadian, Saghar; McMurtrey, Curtis P; Bardet, Wilfried; Jackson, Ken W; Zuna, Rosemary E; Husain, Sanam; Adams, Gregory P; MacDonald, Glen; Dillon, Rachelle L.; Ames, Harold; Buchli, Rico; Hawkins, Oriana E; Weidanz, Jon A; Hildebrand, William H

    2015-01-01

    T cells recognize cancer cells via human leukocyte antigen (HLA)/peptide complexes and, when disease overtakes these immune mechanisms, immunotherapy can exogenously target these same HLA/peptide surface markers. We previously identified an HLA-A2-presented peptide derived from macrophage migration inhibitory factor (MIF) and generated antibody RL21A against this HLA-A2/MIF complex. The objective of the current study was to assess the potential for targeting the HLA-A2/MIF complex in ovarian cancer. First, MIF peptide FLSELTQQL was eluted from the HLA-A2 of the human cancerous ovarian cell lines SKOV3, A2780, OV90, and FHIOSE118hi and detected by mass spectrometry. By flow cytometry, RL21A was shown to specifically stain these four cell lines in the context of HLA-A2. Next, partially matched HLA-A*02:01+ ovarian cancer (n=27) and normal fallopian tube (n=24) tissues were stained with RL21A by immunohistochemistry to assess differential HLA-A2/MIF complex expression. Ovarian tumor tissues revealed significantly increased RL21A staining compared to normal fallopian tube epithelium (p<0.0001), with minimal staining of normal stroma and blood vessels (p<0.0001 and p<0.001 compared to tumor cells) suggesting a therapeutic window. We then demonstrated the anti-cancer activity of toxin-bound RL21A via the dose-dependent killing of ovarian cancer cells. In summary, MIF-derived peptide FLSELTQQL is HLA-A2-presented and recognized by RL21A on ovarian cancer cell lines and patient tumor tissues, and targeting of this HLA-A2/MIF complex with toxin-bound RL21A can induce ovarian cancer cell death. These results suggest that the HLA-A2/MIF complex should be further explored as a cell-surface target for ovarian cancer immunotherapy. PMID:26719579

  5. Macrophage migration inhibitory factor (MIF) family in arthropods: Cloning and expression analysis of two MIF and one D-dopachrome tautomerase (DDT) homologues in mud crabs, Scylla paramamosain.

    PubMed

    Huang, Wen-Shu; Duan, Li-Peng; Huang, Bei; Wang, Ke-Jian; Zhang, Cai-Liang; Jia, Qin-Qin; Nie, Pin; Wang, Tiehui

    2016-03-01

    The macrophage migration inhibitory factor (MIF) family, consisting of MIF and D-dopachrome tautomerase (DDT) in vertebrates, is evolutionarily ancient and has been found across Kingdoms including vertebrates, invertebrates, plants and bacteria. The mammalian MIF family are chemokines at the top of the inflammatory cascade in combating infections. They also possess enzymatic activities, e.g. DDT catalysis results in the production of 5,6-dihydroxyindole (DHI), a precursor of eumelanin. MIF-like genes are widely distributed, but DDT-like genes have only been described in vertebrates and a nematode. In this report, we cloned a DDT-like gene, for the first time in arthropods, and a second MIF in mud crab. The mud crab MIF family have a three exon/two intron structure as seen in vertebrates. The identification of a DDT-like gene in mud crab and other arthropods suggests that the separation of MIF and DDT preceded the divergence of protostomes and deuterostomes. The MIF family is differentially expressed in tissues of adults and during embryonic development and early life. The high level expression of the MIF family in immune tissues, such as intestine and hepatopancreas, suggests an important role in mud crab innate immunity. Mud crab DDT is highly expressed in early embryos, in megalops and crablets and this coincides with the requirement for melanisation in egg chorion tanning and cuticular hardening in arthropods, suggesting a potential novel role of DDT in melanogenesis via its tautomerase activity to produce DHI in mud crab. The clarification of the presence of both MIF and DDT in this report paves the way for further investigation of their functional roles in immunity and in melanogenesis in mud crab and other arthropods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Comparison of macrophage migration inhibitory factor and neutrophil gelatinase-associated lipocalin-2 to predict acute kidney injury after liver transplantation: An observational pilot study

    PubMed Central

    Schiefer, Judith; Miller, Edmund J.; Berlakovich, Gabriela A.

    2017-01-01

    Introduction Several biomarkers have been suggested as early predictors of acute kidney injury (AKI) after orthotopic liver transplantation (OLT). Neutrophil gelatinase-associated lipocalin-2 (NGAL) appears to be a promising predictor of AKI after OLT, but the clinical benefit remains to be proven. Recently, systemic macrophage migration inhibitory factor (MIF) has been proposed as early indicator for requirement of renal replacement therapy after OLT. The aim of this prospective, observational pilot study was to compare the predictive values of serum and urinary MIF for severe AKI after OLT to those of serum and urinary NGAL. Methods Concentrations of MIF and NGAL were measured in serum and urine samples collected from patients undergoing OLT. Acute kidney injury was classified according to the KDIGO criteria, with stages 2 and 3 summarized as severe AKI. Areas under the receiver operating curves (AUC) were calculated to assess predictive values of MIF and NGAL for the development of severe AKI. Results Forty-five patients (mean age 55±8 years) were included. Nineteen patients (38%) developed severe AKI within 48 hours after reperfusion. At the end of OLT, serum MIF was predictive of severe AKI (AUC 0.73; 95% confidence intervals, CI 0.55–0.90; P = 0.03), whereas urinary MIF, serum NGAL, and urinary NGAL were not. On the first postoperative day, serum MIF (AUC 0.78; CI 0.62–0.93; P = 0.006), urinary MIF (AUC 0.71; CI 0.53–0.88; P = 0.03), and urinary NGAL (AUC 0.79; CI 0.64–0.93; P = 0.02) were predictive for severe AKI, while serum NGAL was not. Conclusion In the setting of OLT, MIF and NGAL had similar predictive values for the development of severe AKI. PMID:28813470

  7. Crystal structure of a macrophage migration inhibitory factor from Giardia lamblia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchko, Garry W.; Abendroth, Jan; Robinson, Howard

    2013-06-15

    Macrophage migration inhibitory factor (MIF) is a eukaryotic cytokine that affects a broad spectrum of immune responses and its activation/inactivation is associated with numerous diseases. During protozoan infections MIF is not only expressed by the host, but, has also been observed to be expressed by some parasites and released into the host. To better understand the biological role of parasitic MIF proteins, the crystal structure of the MIF protein from Giardia lamblia (Gl-MIF), the etiological agent responsible for giardiasis, has been determined at 2.30 Å resolution. The 114-residue protein adopts an α/β fold consisting of a four-stranded β-sheet with twomore » anti-parallel α-helices packed against a face of the β-sheet. An additional short β-strand aligns anti-parallel to β4 of the β-sheet in the adjacent protein unit to help stabilize a trimer, the biologically relevant unit observed in all solved MIF crystal structures to date, and form a discontinuous β-barrel. The structure of Gl-MIF is compared to the MIF structures from humans (Hs-MIF) and three Plasmodium species (falciparum, berghei, and yoelii). The structure of all five MIF proteins are generally similar with the exception of a channel that runs through the center of each trimer complex. Relative to Hs-MIF, there are differences in solvent accessibility and electrostatic potential distribution in the channel of Gl-MIF and the Plasmodium-MIFs due primarily to two “gate-keeper” residues in the parasitic MIFs. For the Plasmodium MIFs the gate-keeper residues are at positions 44 (Y==>R) and 100 (V==>D) and for Gl-MIF it is at position 100 (V==>R). If these gate-keeper residues have a biological function and contribute to the progression of parasitemia they may also form the basis for structure-based drug design targeting parasitic MIF proteins.« less

  8. Elevated Urine Levels of Macrophage Migration Inhibitory Factor in Inflammatory Bladder Conditions: A Potential Biomarker for a Subgroup of Interstitial Cystitis/Bladder Pain Syndrome Patients.

    PubMed

    Vera, Pedro L; Preston, David M; Moldwin, Robert M; Erickson, Deborah R; Mowlazadeh, Behzad; Ma, Fei; Kouzoukas, Dimitrios E; Meyer-Siegler, Katherine L; Fall, Magnus

    2018-06-01

    To investigate whether urinary levels of macrophage migration inhibitory factor (MIF) are elevated in interstitial cystitis/bladder pain syndrome (IC/BPS) patients with Hunner lesions and also whether urine MIF is elevated in other forms of inflammatory cystitis. Urine samples were assayed for MIF by enzyme-linked immunosorbent assay. Urine samples from 3 female groups were examined: IC/BPS patients without (N = 55) and with Hunner lesions (N = 43), and non-IC/BPS patients (N = 100; control group; no history of IC/BPS; cancer or recent bacterial cystitis). Urine samples from 3 male groups were examined: patients with bacterial cystitis (N = 50), radiation cystitis (N = 18) and noncystitis patients (N = 119; control group; negative for bacterial cystitis). Urine MIF (mean MIF pg/mL ±  standard error of the mean) was increased in female IC/BPS patients with Hunner lesions (2159 ± 435.3) compared with IC/BPS patients without Hunner lesions (460 ± 114.5) or non-IC/BPS patients (414 ± 47.6). Receiver operating curve analyses showed that urine MIF levels discriminated between the 2 IC groups (area under the curve = 72%; confidence interval 61%-82%). Male patients with bacterial and radiation cystitis had elevated urine MIF levels (2839 ± 757.1 and 4404 ± 1548.1, respectively) compared with noncystitis patients (681 ± 75.2). Urine MIF is elevated in IC/BPS patients with Hunner lesions and also in patients with other bladder inflammatory and painful conditions. MIF may also serve as a noninvasive biomarker to select IC/BPS patients more accurately for endoscopic evaluation and possible anti-inflammatory treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. sequence of Gl-MIF and the other Crystal structure of a macrophage migration inhibitory factor from Giardia lamblia

    PubMed Central

    Abendroth, Jan; Robinson, Howard; Zhang, Yanfeng; Hewitt, Stephen N.; Edwards, Thomas E.; Van Voorhis, Wesley C.; Myler, Peter J.

    2013-01-01

    Macrophage migration inhibitory factor (MIF) is a eukaryotic cytokine that affects a broad spectrum of immune responses and its activation/inactivation is associated with numerous diseases. During protozoan infections MIF is not only expressed by the host, but, has also been observed to be expressed by some parasites and released into the host. To better understand the biological role of parasitic MIF proteins, the crystal structure of the MIF protein from Giardia lamblia (Gl-MIF), the etiological agent responsible for giardiasis, has been determined at 2.30 Å resolution. The 114-residue protein adopts an α/β fold consisting of a four-stranded β-sheet with two anti-parallel α-helices packed against a face of the β-sheet. An additional short β-strand aligns anti-parallel to β4 of the β-sheet in the adjacent protein unit to help stabilize a trimer, the biologically relevant unit observed in all solved MIF crystal structures to date, and form a discontinuous β-barrel. The structure of Gl-MIF is compared to the MIF structures from humans (Hs-MIF) and three Plasmodium species (falciparum, berghei, and yoelii). The structure of all five MIF proteins are generally similar with the exception of a channel that runs through the center of each trimer complex. Relative to Hs-MIF, there are differences in solvent accessibility and electrostatic potential distribution in the channel of Gl-MIF and the Plasmodium-MIFs due primarily to two “gate-keeper” residues in the parasitic MIFs. For the Plasmodium MIFs the gate-keeper residues are at positions 44 (Y⇒R) and 100 (V⇒D) and for Gl-MIF it is at position 100 (V⇒R). If these gate-keeper residues have a biological function and contribute to the progression of parasitemia they may also form the basis for structure-based drug design targeting parasitic MIF proteins. PMID:23709284

  10. The regulatory role of heparin on c-Met signaling in hepatocellular carcinoma cells.

    PubMed

    İşcan, Evin; Güneş, Aysim; Korhan, Peyda; Yılmaz, Yeliz; Erdal, Esra; Atabey, Neşe

    2017-06-01

    The role of heparin as an anticoagulant is well defined; however, its role in tumorigenesis and tumor progression is not clear yet. Some studies have shown that anticoagulant treatment in cancer patients improve overall survival, however, recent clinical trials have not shown a survival benefit in cancer patients receiving heparin treatment. In our previous studies we have shown the inhibitory effects of heparin on Hepatocyte Growth Factor (HGF)-induced invasion and migration in hepatocellular carcinoma (HCC) cells. In this study, we showed the differential effects of heparin on the behaviors of HCC cells based on the presence or absence of HGF. In the absence of HGF, heparin activated HGF/c-Met signaling and promoted motility and invasion in HCC cells. Heparin treatment led to c-Met receptor dimerization and activated c-Met signaling in an HGF independent manner. Heparin-induced c-Met activation increased migration and invasion through ERK1/2, early growth response factor 1 (EGR1) and Matrix Metalloproteinases (MMP) axis. Interestingly, heparin modestly decreased the proliferation of HCC cells by inhibiting activatory phosphorylation of Akt. The inhibition of c-Met signaling reversed heparin-induced increase in motility and invasion and, proliferation inhibition. Our study provides a new perspective into the role of heparin on c-Met signaling in HCC.

  11. Suppression of tumor-induced angiogenesis by taspine isolated from Radix et Rhizoma Leonticis and its mechanism of action in vitro.

    PubMed

    Zhang, Yanmin; He, Langchong; Meng, Liang; Luo, Wenjuan; Xu, Xuemei

    2008-04-08

    The present study was to demonstrate the effect of taspine isolated from Radix et Rhizoma Leonticis on tumor angiogenesis and its mechanism of action. The anti-angiogenic effect in vivo was evaluated on chicken chorioallantoic membrane (CAM) neovascularisation model and CAM transplantation tumor model. Taspine exerted inhibitory influence on CAM angiogenesis and the growth and microvessel density (MVD) of CAM transplantation tumor at concentrations of 0.5-2μg/egg. The mechanism was demonstrated through detecting vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) protein secretion by enzyme-linked immunosorbent assay (ELISA), as well as mRNA expression of VEGF, Flt-1 and Flk-1/KDR by reverse transcription-polymerase chain reaction (RT-PCR). The results showed that taspine down-regulated the VEGF and bFGF secretion in human non-small cell lung cancer cell (A549 cell) and human umbilical vein endothelial cell (HUVEC), and the VEGF and Flk-1/KDR mRNA expression in HUVEC. Additionally, the effect of taspine on HUVEC migration was detected with the method of cell scrape. The result indicated that taspine inhibited HUVEC migration in a dose-dependent manner. These findings suggest that taspine might be a promising candidate as angiogenesis inhibitors.

  12. Prostate stromal cells express the progesterone receptor to control cancer cell mobility.

    PubMed

    Yu, Yue; Lee, Jennifer Suehyun; Xie, Ning; Li, Estelle; Hurtado-Coll, Antonio; Fazli, Ladan; Cox, Michael; Plymate, Stephen; Gleave, Martin; Dong, Xuesen

    2014-01-01

    Reciprocal interactions between epithelium and stroma play vital roles for prostate cancer development and progression. Enhanced secretions of cytokines and growth factors by cancer associated fibroblasts in prostate tumors create a favorable microenvironment for cancer cells to grow and metastasize. Our previous work showed that the progesterone receptor (PR) was expressed specifically in prostate stromal fibroblasts and smooth muscle cells. However, the expression levels of PR and its impact to tumor microenvironment in prostate tumors are poorly understood. Immunohistochemistry assays are applied to human prostate tissue biopsies. Cell migration, invasion and proliferation assays are performed using human prostate cells. Real-time PCR and ELISA are applied to measure gene expression at molecular levels. Immunohistochemistry assays showed that PR protein levels were decreased in cancer associated stroma when compared with paired normal prostate stroma. Using in vitro prostate stromal cell models, we showed that conditioned media collected from PR positive stromal cells inhibited prostate cancer cell migration and invasion, but had minor suppressive impacts on cancer cell proliferation. PR suppressed the secretion of stromal derived factor-1 (SDF-1) and interlukin-6 (IL-6) by stromal cells independent to PR ligands. Blocking PR expression by siRNA or supplementation of exogenous SDF-1 or IL-6 to conditioned media from PR positive stromal cells counteracted the inhibitory effects of PR to cancer cell migration and invasion. Decreased expression of the PR in cancer associated stroma may contribute to the elevated SDF-1 and IL-6 levels in prostate tumors and enhance prostate tumor progression.

  13. Differential Impact of Adenosine Nucleotides Released by Osteocytes on Breast Cancer Growth and Bone Metastasis

    PubMed Central

    Zhou, Jade Z.; Riquelme, Manuel A.; Gao, Xiaoli; Ellies, Lesley G.; Sun, Lu-Zhe; Jiang, Jean X.

    2015-01-01

    Extracellular ATP has been shown to either inhibit or promote cancer growth and migration; however the mechanism underlying this discrepancy remained elusive. Here, we demonstrate the divergent roles of ATP and adenosine released by bone osteocytes in breast cancers. We showed that conditioned media (CM) collected from osteocytes treated with alendronate (AD), a bisphosphonate drug, inhibited the migration of human breast cancer MDA-MB-231 cells. Removal of the extracellular ATP by apyrase in CM abolished this effect, suggesting the involvement of ATP. ATP exerted its inhibitory effect through the activation of purinergic P2X receptor signaling in breast cancer cells evidenced by the attenuation of the inhibition by an antagonist, oxidized ATP, as well as knocking down P2X07 with siRNA, and the inhibition by an agonist, BzATP. Intriguingly, ATP had a biphasic effect on breast cancer cell behavior–lower dosage inhibited, but higher dosage promoted its migration. The stimulatory effect on migration was blocked by an adenosine receptor antagonist, MRS1754, ARL67156, an ecto-ATPase inhibitor, and A2A receptor siRNA, suggesting that in contrast to the action of ATP, adenosine, a metabolic product of ATP, promoted migration of breast cancer cells. Consistently, non-hydrolyzable ATP, ATPγS, only inhibited, but did not promote cancer cell migration. ATP also had a similar inhibitory effect on the Py8119 mouse mammary carcinoma cells; however, adenosine had no effect due to the absence of the A2A receptor. Consistent with the results of cancer cell migration, ATPγS inhibited, while adenosine promoted anchorage-independent growth of breast cancer cells. Our in vivo xenograft study showed a significant delay of tumor growth with the treatment of ATPγS. Moreover, the extent of bone metastasis in a mouse intratibial model was significantly reduced with the treatment of ATPγS. Together, our results suggest the distinct roles of ATP and adenosine released by osteocytes, and the activation of corresponding receptors P2X7 and A2A signaling on breast cancer cell growth, migration and bone metastasis. PMID:24837364

  14. Role of EG-VEGF in human placentation: Physiological and pathological implications.

    PubMed

    Hoffmann, Pascale; Saoudi, Yasmina; Benharouga, Mohamed; Graham, Charles H; Schaal, Jean-Patrick; Mazouni, Chafika; Feige, Jean-Jacques; Alfaidy, Nadia

    2009-08-01

    Pre-eclampsia (PE), the major cause of maternal morbidity and mortality, is thought to be caused by shallow invasion of the maternal decidua by extravillous trophoblasts (EVT). Data suggest that a fine balance between the expressions of pro- and anti-invasive factors might regulate EVT invasiveness. Recently, we showed that the expression of the new growth factor endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is high in early pregnancy but falls after 11 weeks, suggesting an essential role for this factor in early pregnancy. Using human villous explants and HTR-8/SVneo, a first trimester extravillous trophoblast cell line, we showed differential expression of EG-VEGF receptors, PKR1 and PKR2, in the placenta and demonstrated that EG-VEGF inhibits EVT migration, invasion and tube-like organisation. EG-VEGF inhibitory effect on invasion was supported by a decrease in matrix metalloproteinase (MMP)-2 and MMP-9 production. Interference with PKR2 expression, using specific siRNAs, reversed the EG-VEGF-induced inhibitory effects. Furthermore, we determined EG-VEGF circulating levels in normal and PE patients. Our results showed that EG-VEGF levels were highest during the first trimester of pregnancy and decreased thereafter to non-pregnant levels. More important, EG-VEGF levels were significantly elevated in PE patients compared with age-matched controls. These findings identify EG-VEGF as a novel paracrine regulator of trophoblast invasion. We speculate that a failure to correctly down-regulate placental expression of EG-VEGF at the end of the first trimester of pregnancy might lead to PE.

  15. The triterpenoids of Hibiscus syriacus induce apoptosis and inhibit cell migration in breast cancer cells.

    PubMed

    Hsu, Ren-Jun; Hsu, Yao-Chin; Chen, Shu-Pin; Fu, Chia-Lynn; Yu, Jyh-Cherng; Chang, Fung-Wei; Chen, Ying-Hsin; Liu, Jui-Ming; Ho, Jar-Yi; Yu, Cheng-Ping

    2015-03-14

    Breast cancer-related mortality increases annually. The efficacy of current breast cancer treatments is limited, and they have numerous side effects and permit high recurrence. Patients with estrogen receptor (ER)-negative or triple-negative breast cancer are particularly difficult to treat. Treatment for this type of cancer is lacking, and its prognosis is poor, necessitating the search for alternative treatments. This study screened Chinese herb Hibiscus syriacus extracts and identified a novel anti-cancer drug for patients with ER-negative breast cancer. The inhibitory effects on cell viability and migration were evaluated for each compound, and the molecular regulatory effects were evaluated on both mRNA and protein levels. We found several triterpenoids including betulin (K02) and its derivatives (K03, K04, and K06) from H. syriacus inhibited human triple-negative breast cancer cell viability and migration but revealed smaller cytotoxic effects on normal mammalian epithelial cells. Betulin and its derivatives induced apoptosis by activating apoptosis-related genes. In addition, they activated p21 expression, which induced cell cycle arrest in breast cancer cells. Betulin (K02) and betulinic acid (K06) had stronger inhibitory effects on cell viability and migration than K03 and K04. H. syriacus extracts might inhibit breast cancer cell viability and induce apoptosis by activating p53 family regulated pathways and inhibiting AKT activation. H. syriacus extracts may provide important insight into the development of novel alternative therapies for breast cancer.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashuel, Hilal A.; Aljabari, Bayan; Sigurdsson, Einar M.

    We demonstrate herein that human macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine expressed in the brain and not previously considered to be amyloidogenic, forms amyloid fibrils similar to those derived from the disease associated amyloidogenic proteins {beta}-amyloid and {alpha}-synuclein. Acid denaturing conditions were found to readily induce MIF to undergo amyloid fibril formation. MIF aggregates to form amyloid-like structures with a morphology that is highly dependent on pH. The mechanism of MIF amyloid formation was probed by electron microscopy, turbidity, Thioflavin T binding, circular dichroism spectroscopy, and analytical ultracentrifugation. The fibrillar structures formed by MIF bind Congo red andmore » exhibit the characteristic green birefringence under polarized light. These results are consistent with the notion that amyloid fibril formation is not an exclusive property of a select group of amyloidogenic proteins, and contribute to a better understanding of the factors which govern protein conformational changes and amyloid fibril formation in vivo.« less

  17. Smad4 re-expression increases the sensitivity to parthenolide in colorectal cancer.

    PubMed

    Li, Xuemei; Yang, Huike; Ke, Jia; Liu, Baoquan; Lv, Xiaohong; Li, Xinlei; Zhang, Yafang

    2017-10-01

    Parthenolide (PT), a sesquiterpene lactone extracted from the plant feverfew, has been demonstrated to have anti-inflammatory and anticancer properties. Although PT has been revealed to markedly inhibit colorectal cancer cell proliferation, the inhibitory effects decrease with administration time. These findings revealed that colorectal cancer cells develop resistance to PT. However, the underlying mechanism is unclear. In the present study we observed significantly low expression of Smad4 in 3 PT-resistant cell lines (HCT‑116/PT, HT-29/PT and Caco-2/PT), which were obtained using in vitro concentration gradient-increased induction, but not in their parental cells. In the present study we used the lentiviral‑mediated transfection method to upregulate Smad4 in resistant colorectal cancer cell lines. Flow cytometry assay was used to assess cell apoptosis. Cell migration was detected using a QCM™ 24-well Fluorimetric Cell Migration Assay kit. Our study showed that Smad4 overexpression notably decreased the half maximal inhibitory concentration (IC50) values for PT in the 3 PT-resistant cell lines, and improved the inhibitory effects of PT on cell migration and enhanced apoptosis in vitro as well as suppressed xenografted tumors in a PT-resistant colorectal cancer mouse model. Further study by western blotting into the underlying mechanism demonstrated that Smad4 overexpression suppressed the expression of MDR1 in the resistant cells, and resulted in the accumulation of PT, which in turn promoted the expession of caspase-3 and Bax and inhibited the expression of Bcl-2 and the phosphorylation of NF-κB p65. In short, Smad4 re-expression may be crucial for enhancing the sensitivity and reversing the resistance to PT in PT-resistant colorectal cancer cells.

  18. The antimicrobial peptide derived from insulin-like growth factor-binding protein 5, AMP-IBP5, regulates keratinocyte functions through Mas-related gene X receptors.

    PubMed

    Chieosilapatham, Panjit; Niyonsaba, François; Kiatsurayanon, Chanisa; Okumura, Ko; Ikeda, Shigaku; Ogawa, Hideoki

    2017-10-01

    In addition to their microbicidal properties, host defense peptides (HDPs) display various immunomodulatory functions, including keratinocyte production of cytokines/chemokines, proliferation, migration and wound healing. Recently, a novel HDP named AMP-IBP5 (antimicrobial peptide derived from insulin-like growth factor-binding protein 5) was shown to exhibit antimicrobial activity against numerous pathogens, even at concentrations comparable to those of human β-defensins and LL-37. However, the immunomodulatory role of AMP-IBP5 in cutaneous tissue remains unknown. To investigate whether AMP-IBP5 triggers keratinocyte activation and to clarify its mechanism. Production of cytokines/chemokines and growth factors was determined by appropriate ELISA kits. Cell migration was assessed by in vitro wound closure assay, whereas cell proliferation was analyzed using BrdU incorporation assay complimented with XTT assay. MAPK and NF-κB activation was determined by Western blotting. Intracellular cAMP levels were assessed using cAMP enzyme immunoassay kit. Among various cytokines/chemokines and growth factors tested, AMP-IBP5 selectively increased the production of IL-8 and VEGF. Moreover, AMP-IBP5 markedly enhanced keratinocyte migration and proliferation. AMP-IBP5-induced keratinocyte activation was mediated by Mrg X1-X4 receptors with MAPK and NF-κB pathways working downstream, as evidenced by the inhibitory effects of MrgX1-X4 siRNAs and ERK-, JNK-, p38- and NF-κB-specific inhibitors. We confirmed that AMP-IBP5 indeed induced MAPK and NF-κB activation. Furthermore, AMP-IBP5-induced VEGF but not IL-8 production correlated with an increase in intracellular cAMP. Our findings suggest that in addition to its antimicrobial function, AMP-IBP5 might contribute to wound healing process through activation of keratinocytes. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  19. Adenylyl cyclase 3/adenylyl cyclase-associated protein 1 (CAP1) complex mediates the anti-migratory effect of forskolin in pancreatic cancer cells.

    PubMed

    Quinn, Sierra N; Graves, Sarai H; Dains-McGahee, Clayton; Friedman, Emilee M; Hassan, Humma; Witkowski, Piotr; Sabbatini, Maria E

    2017-04-01

    Pancreatic cancer is one of the most lethal human malignancies. A better understanding of the intracellular mechanism of migration and invasion is urgently needed to develop treatment that will suppress metastases and improve overall survival. Cyclic adenosine monophosphate (cyclic AMP) is a second messenger that has shown to regulate migration and invasion of pancreatic cancer cells. The rise of cyclic AMP suppressed migration and invasion of pancreatic ductal adenocarcinoma cells. Cyclic AMP is formed from cytosolic ATP by the enzyme adenylyl cyclase (AC). There are ten isoforms of ACs; nine are anchored in the plasma membrane and one is soluble. What remains unknown is the extent to which the expression of transmembrane AC isoforms is both modified in pancreatic cancer and mediates the inhibitory effect of forskolin on cell motility. Using real-time PCR analysis, ADCY3 was found to be highly expressed in pancreatic tumor tissues, resulting in a constitutive increase in cyclic AMP levels. On the other hand, ADCY2 was down-regulated. Migration, invasion, and filopodia formation in two different pancreatic adenocarcinoma cell lines, HPAC and PANC-1 deficient in AC1 or AC3, were studied. We found that AC3, upon stimulation with forskolin, enhanced cyclic AMP levels and inhibited cell migration and invasion. Unlikely to be due to a cytotoxic effect, the inhibitory effects of forskolin involved the quick formation of AC3/adenylyl cyclase-associated protein 1 (CAP1)/G-actin complex, which inhibited filopodia formation and cell motility. Using Western blotting analysis, forskolin, through AC3 activation, caused phosphorylation of CREB, but not ERK. The effect of CREB phosphorylation is likely to be associated with long-term signaling changes. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. HA-1077 inhibits cell migration/invasion of oral squamous cell carcinoma.

    PubMed

    Moreira Carboni, Simone de Sales Costa; Rodrigues Lima, Nathália Alves; Pinheiro, Nanci Mendes; Tavares-Murta, Beatriz Martins; Crema, Virgínia Oliveira

    2015-10-01

    Oral squamous cell carcinoma (OSCC) is the most malignant lesion occurring in the head and neck. The Rho-kinases (ROCKs), effectors of Rho proteins, are involved in actin cytoskeletal organization, cell migration, and maintenance cortex. The HA-1077 inhibits the ROCKs. This study aimed to evaluate the effect of treatment with HA-1077 on cell motility in SCC-4 cells, a cell line originating from human OSCC. F-actin of SCC-4 cells treated or not with HA-1077 (1, 50 and 100 μmol/l), and also HA-1077 50 μmol/l and/or inhibitors Y-27632 30 μmol/l was stained with rhodamine-conjugated phalloidin and analyzed by confocal microscopy. Approximately 1×10 cells/well, control and treated with HA-1077 (25, 50, and 100 μmol/l) were added to the migration plate assay. In addition, 1×10 cells/well, control and treated with HA-1077 50 μmol/l, were tested by invasion assays (plate coated with Matrigel). The inhibition of ROCKs with HA-1077 and/or Y-27632 leads to morphological changes, affecting the organization of the actin. The inhibitory effect of HA-1077 (P<0.0001) was dose dependent as the number of cells migrated at 100 μmol/l was statistically different: 25 μmol/l (P<0.0001) and 50 μmol/l (P<0.01). The number of cells treated with HA-1077 50 μmol/l decreased compared with control cells that invaded through Matrigel (P<0.0001). This study shows an inhibitory effect of HA-1077 on cell migration and invasion, suggesting that the use of HA-1077 can be a potential therapy for OSCC.

  1. Control of cortical neuronal migration by glutamate and GABA

    PubMed Central

    Luhmann, Heiko J.; Fukuda, A.; Kilb, W.

    2015-01-01

    Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca2+ transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis. PMID:25688185

  2. The Acute Liver Injury in Mice Caused by Nano-Anatase TiO2

    NASA Astrophysics Data System (ADS)

    Ma, Linglan; Zhao, Jinfang; Wang, Jue; Liu, Jie; Duan, Yanmei; Liu, Huiting; Li, Na; Yan, Jingying; Ruan, Jie; Wang, Han; Hong, Fashui

    2009-11-01

    Although it is known that nano-TiO2 or other nanoparticles can induce liver toxicities, the mechanisms and the molecular pathogenesis are still unclear. In this study, nano-anatase TiO2 (5 nm) was injected into the abdominal cavity of ICR mice for consecutive 14 days, and the inflammatory responses of liver of mice was investigated. The results showed the obvious titanium accumulation in liver DNA, histopathological changes and hepatocytes apoptosis of mice liver, and the liver function damaged by higher doses nano-anatase TiO2. The real-time quantitative RT-PCR and ELISA analyses showed that nano-anatase TiO2 can significantly alter the mRNA and protein expressions of several inflammatory cytokines, including nucleic factor-κB, macrophage migration inhibitory factor, tumor necrosis factor-α, interleukin-6, interleukin-1β, cross-reaction protein, interleukin-4, and interleukin-10. Our results also implied that the inflammatory responses and liver injury may be involved in nano-anatase TiO2-induced liver toxicity.

  3. Gold-Catalyzed Cycloisomerization and Diels-Alder Reaction of 1,4,9-Dienyne Esters to 3 a,6-Methanoisoindole Esters with Pro-Inflammatory Cytokine Antagonist Activity.

    PubMed

    Susanti, Dewi; Liu, Li-Juan; Rao, Weidong; Lin, Sheng; Ma, Dik-Lung; Leung, Chung-Hang; Chan, Philip Wai Hong

    2015-06-15

    A synthetic method to prepare 3a,6-methanoisoindole esters efficiently by gold(I)-catalyzed tandem 1,2-acyloxy migration/Nazarov cyclization followed by Diels-Alder reaction of 1,4,9-dienyne esters is described. We also report the ability of one example to inhibit binding of tumor necrosis factor-α (TNF-α) to the tumor necrosis factor receptor 1 (TNFR1) site and TNF-α-induced nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activation in cell at a half-maximal inhibitory concentration (IC50 ) value of 6.6 μM. Along with this is a study showing the isoindolyl derivative to exhibit low toxicity toward human hepatocellular liver carcinoma (HepG2) cells and its possible mode of activity based on molecular modeling analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Optimization of N-benzyl-benzoxazol-2-ones as receptor antagonists of macrophage migration inhibitory factor (MIF)

    PubMed Central

    Hare, Alissa A.; Leng, Lin; Gandavadi, Sunilkumar; Du, Xin; Cournia, Zoe; Bucala, Richard; Jorgensen, William L.

    2010-01-01

    The cytokine MIF is involved in inflammation and cell proliferation via pathways initiated by its binding to the transmembrane receptor CD74. MIF also exhibits keto-enol tautomerase activity, believed to be vestigial in mammals. Starting from a 1-μM hit from virtual screening, substituted benzoxazol-2-ones have been discovered as antagonists with IC50 values as low as 7.5 nM in a tautomerase assay and 80 nM in a MIF-CD74 binding assay. Additional studies for one of the potent inhibitors demonstrated that it is not a covalent inhibitor of MIF and that it attenuates MIF-dependent ERK1/2 phosphorylation in human synovial fibroblasts. PMID:20728358

  5. Prenatal stress and inhibitory neuron systems: implications for neuropsychiatric disorders

    PubMed Central

    Fine, Rebecca; Zhang, Jie; Stevens, Hanna E.

    2014-01-01

    Prenatal stress is a risk factor for several psychiatric disorders in which inhibitory neuron pathology is implicated. A growing body of research demonstrates that inhibitory circuitry in the brain is directly and persistently affected by prenatal stress. This review synthesizes research that elucidates how this early, developmental risk factor impacts inhibitory neurons and how these findings intersect with research on risk factors and inhibitory neuron pathophysiology in schizophrenia, anxiety, autism and Tourette syndrome. The specific impact of prenatal stress on inhibitory neurons, particularly developmental mechanisms, may elucidate further the pathophysiology of these disorders. PMID:24751963

  6. The occurrence and properties of E rosette inhibitory substance in the sera of malnourished children.

    PubMed Central

    Salimonu, L S; Johnson, A O; Williams, A I; Adeleye, G I; Osunkoya, B O

    1982-01-01

    In vitro sheep erythrocyte (E) rosette inhibitory activity was observed in the sera of nine out of 22 (41%) children with kwashiorkor, three of 15 (20%) marasmic children, neither of the two children with marasmic-kwashiorkor and in one of 42 (2%) well nourished control children. Sera of children with kwashiorkor containing the E rosette inhibitory substance did not inhibit in vitro rosette formations by autologous lymphocytes whereas rosette formations by homologous lymphocytes were inhibited. Inhibition of E rosette formation occurred when lymphocytes were pretreated with serum having the inhibitory substance before incubation with sheep red cells, but there was no such inhibition when sheep red cells were pretreated with the same serum before incubation with lymphocytes. The inhibitory substance was observed to be stable at 4 degrees C up to about 1 week and migrated electrophoretically with the alpha-2 globulins. It was digested by papain. It is probable that the E rosette inhibitory substance demonstrated in the present study is attached to markers on T lymphocyte surfaces in some malnourished children thereby making the lymphocytes unreactive in vitro and presumably in vivo as well. PMID:6805988

  7. Repurposing the anti-malarial drug dihydroartemisinin suppresses metastasis of non-small-cell lung cancer via inhibiting NF-κB/GLUT1 axis

    PubMed Central

    Jiang, Jie; Geng, Guojun; Yu, Xiuyi; Liu, Hongming; Gao, Jing; An, Hanxiang; Cai, Chengfu; Li, Ning; Shen, Dongyan; Wu, Xiaoqiang; Zheng, Lisheng; Mi, Yanjun; Yang, Shuyu

    2016-01-01

    Non-small-cell lung cancer (NSCLC) is an aggressive malignancy and long-term survival remains unsatisfactory for patients with metastatic and recurrent disease. Repurposing the anti-malarial drug dihydroartemisinin (DHA) has been proved to possess potent antitumor effect on various cancers. However, the effects of DHA in preventing the invasion of NSCLC cells have not been studied. In the present study, we determined the inhibitory effects of DHA on invasion and migration and the possible mechanisms involved using A549 and H1975 cells. DHA inhibited in vitro migration and invasion of NSCLC cells even in low concentration with little cytotoxicity. Additionally, low concentration DHA also inhibited Warburg effect in NSCLC cells. Mechanically, DHA negatively regulates NF-κB signaling to inhibit the GLUT1 translocation. Blocking the NF-κB signaling largely abolishes the inhibitory effects of DHA on the translocation of GLUT1 to the plasma membrane and the Warburg effect. Furthermore, GLUT1 knockdown significantly decreased the inhibition of invasion, and migration by DHA. Our results suggested that DHA can inhibit metastasis of NSCLC by targeting glucose metabolism via inhibiting NF-κB signaling pathway and DHA may deserve further investigation in NSCLC treatment. PMID:27895313

  8. Role of inflammatory mediators in patients with recurrent pregnancy loss.

    PubMed

    Comba, Cihan; Bastu, Ercan; Dural, Ozlem; Yasa, Cenk; Keskin, Gulsah; Ozsurmeli, Mehmet; Buyru, Faruk; Serdaroglu, Hasan

    2015-12-01

    To examine interleukin-12 (IL-12), IL-18, IFN-γ, intracellular adhesion molecule-1 (ICAM-1), leukemia inhibitory factor (LIF), and migration inhibitory factor (MIF) levels in precisely-timed blood and endometrial tissue samples from women with idiopathic recurrent pregnancy loss (RPL). Case-control study. University hospital. Twenty-one women with RPL and 20 women with proven fertility (controls). Primary endometrial cells and blood samples during the midsecretory phase (days 19-23). Detection of IL-12, IL-18, IFN-γ, ICAM-1, LIF, and MIF via enzyme-linked immunosorbent assay in both blood and endometrial tissue samples. The blood and tissue levels of IL-12, IL-18, and IFN-γ were statistically significantly higher, and the blood and tissue levels of LIF and MIF were statistically significantly lower in patients with RPL. Only the level of tissue ICAM-1 was higher in patients with RPL. There was a strong correlation between blood and tissue level measurements of IL-12, IL-18, LIF, and MIF. Our findings support the hypothesis that inflammatory processes may contribute to pregnancy loss, possibly through their role in implantation. We found that blood and tissue levels of IL-18, LIF, and MIF, and tissue levels of IL-12, IFN-γ, and ICAM-1 have statistically significant prognostic relevance. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Effects of specific and prolonged expression of zebrafish growth factors, Fgf2 and Lif in primordial germ cells in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Ten-Tsao, E-mail: wong20@purdue.edu; Collodi, Paul

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer We discovered that nanos3 3 Prime UTR prolonged PGC-specific protein expression up to 26 days. Black-Right-Pointing-Pointer Expression of Fgf2 in PGCs significantly increased PGC number at later developmental stages. Black-Right-Pointing-Pointer Expression of Lif in PGCs resulted in a significant disruption of PGC migration. Black-Right-Pointing-Pointer Lif illicited its effect on PGC migration through Lif receptor a. Black-Right-Pointing-Pointer Our approach could be used to achieve prolonged PGC-specific expression of other proteins. -- Abstract: Primordial germ cells (PGCs), specified early in development, proliferate and migrate to the developing gonad before sexual differentiation occurs in the embryo and eventually give rise tomore » spermatogonia or oogonia. In this study, we discovered that nanos3 3 Prime UTR, a common method used to label PGCs, not only directed PGC-specific expression of DsRed but also prolonged this expression up to 26 days post fertilization (dpf) when DsRed-nanos3 3 Prime UTR hybrid mRNAs were introduced into 1- to 2-cell-stage embryos. As such, we employed this knowledge to express zebrafish leukemia inhibitory factor (Lif), basic fibroblast growth factor (Fgf2) and bone morphogenetic protein 4 (Bmp4) in the PGCs and evaluate their effects on PGC development in vivo for over a period of 3 weeks. The results show that expression of Fgf2 significantly increased PGC number at 14- and 21-dpf while Bmp4 resulted in severe ventralization and death of the embryos by 3 days. Expression of Lif resulted in a significant disruption of PGC migration. Mopholino knockdown experiments indicated that Lif illicited its effect on PGC migration through Lif receptor a (Lifra) but not Lifrb. The general approach described in this study could be used to achieve prolonged PGC-specific expression of other proteins to investigate their roles in germ cell and gonad development. The results also indicate that zebrafish PGCs have a mechanism to stabilize and prolong the expression of mRNA that carries nanos3 3 Prime UTR. Understanding this mechanism may make it possible to achieve prolonged RNA expression in other cell types.« less

  10. BMP9 inhibits the bone metastasis of breast cancer cells by downregulating CCN2 (connective tissue growth factor, CTGF) expression.

    PubMed

    Ren, Wei; Sun, Xiaoxiao; Wang, Ke; Feng, Honglei; Liu, Yuehong; Fei, Chang; Wan, Shaoheng; Wang, Wei; Luo, Jinyong; Shi, Qiong; Tang, Min; Zuo, Guowei; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-03-01

    Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-β superfamily, regulate a wide range of cellular responses including cell proliferation, differentiation, adhesion, migration, and apoptosis. BMP9, the latest BMP to be discovered, is reportedly expressed in a variety of human carcinoma cell lines, but the role of BMP9 in breast cancer has not been fully clarified. In a previous study, BMP9 was found to inhibit the growth, migration, and invasiveness of MDA-MB-231 breast cancer cells. In the current study, the effect of BMP9 on the bone metastasis of breast cancer cells was investigated. After absent or low expression of BMP9 was detected in the MDA-MB-231 breast cancer cells and breast non-tumor adjacent tissues using Western blot and immunohistochemistry, In our previous study, BMP9 could inhibit the proliferation and invasiveness of breast cancer cells MDA-MB-231 in vitro and in vivo. This paper shows that BMP9 inhibit the bone metastasis of breast cancer cells by activating the BMP/Smad signaling pathway and downregulating connective tissue growth factor (CTGF); however, when CTGF expression was maintained, the inhibitory effect of BMP9 on the MDA-MB-231 cells was abolished. Together, these observations indicate that BMP9 is an important mediator of breast cancer bone metastasis and a potential therapeutic target for treating this deadly disease.

  11. Rac regulates vascular endothelial growth factor stimulated motility.

    PubMed

    Soga, N; Connolly, J O; Chellaiah, M; Kawamura, J; Hruska, K A

    2001-01-01

    During angiogenesis endothelial cells migrate towards a chemotactic stimulus. Understanding the mechanism of endothelial cell migration is critical to the therapeutic manipulation of angiogenesis and ultimately cancer prevention. Vascular endothelial growth factor (VEGF) is a potent chemotactic stimulus of endothelial cells during angiogenesis. The endothelial cell signal transduction pathway of VEGF represents a potential target for cancer therapy, but the mechanisms of post-receptor signal transduction including the roles of rho family GTPases in regulating the cytoskeletal effects of VEGF in endothelial cells are not understood. Here we analyze the mechanisms of cell migration in the mouse brain endothelial cell line (bEND3). Stable transfectants containing a tetracycline repressible expression vector were used to induce expression of Rac mutants. Endothelial cell haptotaxis was stimulated by constitutively active V12Rac on collagen and vitronectin coated supports, and chemotaxis was further stimulated by VEGF. Osteopontin coated supports were the most stimulatory to bEND3 haptotaxis, but VEGF was not effective in further increasing migration on osteopontin coated supports. Haptotaxis on support coated with collagen, vitronectin, and to a lesser degree osteopontin was inhibited by N17 Rac. N17 Rac expression blocked stimulation of endothelial cell chemotaxis by VEGF. As part of the chemotactic stimulation, VEGF caused a loss of actin organization at areas of cell-cell contact and increased stress fiber expression in endothelial cells which were directed towards pores in the transwell membrane. N17 Rac prevented the stimulation of cell-cell contact disruption and the stress fiber stimulation by VEGF. These data demonstrate two pathways of regulating endothelial cell motility, one in which Rac is activated by matrix/integrin stimulation and is a crucial modulator of endothelial cell haptotaxis. The other pathway, in the presence of osteopontin, is Rac independent. VEGF stimulated chemotaxis, is critically dependent on Rac activation. Osteopontin was a potent matrix activator of motility, and perhaps one explanation for the absence of a VEGF plus osteopontin effect is that osteopontin stimulated motility was inhibitory to the Rac pathway.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Niamh M.; Joyce, Myles R.; Murphy, J. Mary

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factorsmore » was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the significant functional impact of Mesenchymal Stem Cell-secreted PAI-1 on colon cancer cells.« less

  13. Laminin-5γ-2 (LAMC2) Is Highly Expressed in Anaplastic Thyroid Carcinoma and Is Associated With Tumor Progression, Migration, and Invasion by Modulating Signaling of EGFR

    PubMed Central

    Kanojia, Deepika; Okamoto, Ryoko; Jain, Saket; Madan, Vikas; Chien, Wenwen; Sampath, Abhishek; Ding, Ling-Wen; Xuan, Meng; Said, Jonathan W.; Doan, Ngan B.; Liu, Li-Zhen; Yang, Henry; Gery, Sigal; Braunstein, Glenn D.; Koeffler, H. Phillip

    2014-01-01

    Context: Anaplastic thyroid carcinoma (ATC) is an aggressive malignancy having no effective treatment. Laminin subunit-γ-2 (LAMC2) is an epithelial basement membrane protein involved in cell migration and tumor invasion and might represent an ideal target for the development of novel therapeutic approaches for ATC. Objective: The objective of the investigation was to study the role of LAMC2 in ATC tumorigenesis. Design: LAMC2 expression was evaluated by RT-PCR, Western blotting, and immunohistochemistry in tumor specimens, adjacent noncancerous tissues, and cell lines. The short hairpin RNA (shRNA) approach was used to investigate the effect of LAMC2 knockdown on the tumorigenesis of ATC. Results: LAMC2 was highly expressed in ATC samples and cell lines compared with normal thyroid tissues. Silencing LAMC2 by shRNA in ATC cells moderately inhibited cell growth in liquid culture and dramatically decreased growth in soft agar and in xenografts growing in immunodeficient mice. Silencing LAMC2 caused cell cycle arrest and significantly suppressed the migration, invasion, and wound healing of ATC cells. Rescue experiments by overexpressing LAMC2 in LAMC2 knockdown cells reversed the inhibitory effects as shown by increased cell proliferation and colony formation. Microarray data demonstrated that LAMC2 shRNA significantly altered the expression of genes associated with migration, invasion, proliferation, and survival. Immunoprecipitation studies showed that LAMC2 bound to epidermal growth factor receptor (EGFR) in the ATC cells. Silencing LAMC2 partially blocked epidermal growth factor-mediated activation of EGFR and its downstream pathway. Interestingly, cetuximab (an EGFR blocking antibody) or EGFR small interfering RNA additively enhanced the antiproliferative activity of the LAMC2 knockdown ATC cells compared with the control cells. Conclusions: To our knowledge, this is the first report investigating the effect of LAMC2 on cell growth, cell cycle, migration, invasion, and EGFR signaling in ATC cells, suggesting that LAMC2 may be a potential therapeutic target for the treatment of ATC. PMID:24170107

  14. Emodin Inhibits Breast Cancer Growth by Blocking the Tumor-Promoting Feedforward Loop between Cancer Cells and Macrophages.

    PubMed

    Iwanowycz, Stephen; Wang, Junfeng; Hodge, Johnie; Wang, Yuzhen; Yu, Fang; Fan, Daping

    2016-08-01

    Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing antitumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration. Thus, tumor cells and macrophages interact to create a feedforward loop supporting tumor growth and metastasis. In this study, we tested the ability of emodin, a Chinese herb-derived compound, to inhibit breast cancer growth in mice and examined the underlying mechanisms. Emodin was used to treat mice bearing EO771 or 4T1 breast tumors. It was shown that emodin attenuated tumor growth by inhibiting macrophage infiltration and M2-like polarization, accompanied by increased T-cell activation and reduced angiogenesis in tumors. The tumor inhibitory effects of emodin were lost in tumor-bearing mice with macrophage depletion. Emodin inhibited IRF4, STAT6, and C/EBPβ signaling and increased inhibitory histone H3 lysine 27 tri-methylation (H3K27m3) on the promoters of M2-related genes in tumor-associated macrophages. In addition, emodin inhibited tumor cell secretion of MCP1 and CSF1, as well as expression of surface anchoring molecule Thy-1, thus suppressing macrophage migration toward and adhesion to tumor cells. These results suggest that emodin acts on both breast cancer cells and macrophages and effectively blocks the tumor-promoting feedforward loop between the two cell types, thereby inhibiting breast cancer growth and metastasis. Mol Cancer Ther; 15(8); 1931-42. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. Emodin inhibits breast cancer growth by blocking the tumor-promoting feedforward loop between cancer cells and macrophages

    PubMed Central

    Iwanowycz, Stephen; Wang, Junfeng; Hodge, Johnie; Wang, Yuzhen; Yu, Fang; Fan, Daping

    2016-01-01

    Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing anti-tumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration. Thus tumor cells and macrophages interact to create a feedforward loop supporting tumor growth and metastasis. In this study, we tested the ability of emodin, a Chinese herb-derived compound, to inhibit breast cancer growth in mice and examined the underlying mechanisms. Emodin was used to treat mice bearing EO771 or 4T1 breast tumors. It was shown that emodin attenuated tumor growth by inhibiting macrophage infiltration and M2-like polarization, accompanied by increased T cell activation and reduced angiogenesis in tumors. The tumor inhibitory effects of emodin were lost in tumor-bearing mice with macrophage depletion. Emodin inhibited IRF4, STAT6, and C/EBPβ signaling and increased inhibitory histone H3 lysine 27 tri-methylation (H3K27m3) on the promoters of M2 related genes in tumor-associated macrophages. In addition, emodin inhibited tumor cell secretion of MCP1and CSF1, as well as expression of surface anchoring molecule Thy-1, thus suppressing macrophage migration towards and adhesion to tumor cells. These results suggest that emodin acts on both breast cancer cells and macrophages and effectively blocks the tumor-promoting feedforward loop between the two cell types, thereby inhibiting breast cancer growth and metastasis. PMID:27196773

  16. A Multi-targeted Approach to Suppress Tumor-Promoting Inflammation

    PubMed Central

    Samadi, Abbas K.; Georgakilas, Alexandros G.; Amedei, Amedeo; Amin, Amr; Bishayee, Anupam; Lokeshwar, Bal L.; Grue, Brendan; Panis, Carolina; Boosani, Chandra S.; Poudyal, Deepak; Stafforini, Diana M.; Bhakta, Dipita; Niccolai, Elena; Guha, Gunjan; Rupasinghe, H.P. Vasantha; Fujii, Hiromasa; Honoki, Kanya; Mehta, Kapil; Aquilano, Katia; Lowe, Leroy; Hofseth, Lorne J.; Ricciardiello, Luigi; Ciriolo, Maria Rosa; Singh, Neetu; Whelan, Richard L.; Chaturvedi, Rupesh; Ashraf, S. Salman; Kumara, HMC Shantha; Nowsheen, Somaira; Mohammed, Sulma I.; Helferich, William G.; Yang, Xujuan

    2015-01-01

    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-kappaB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes. PMID:25951989

  17. Self-rated Health among Pregnant Women: Associations with Objective Health Indicators, Psychological Functioning, and Serum Inflammatory Markers

    PubMed Central

    Christian, Lisa M.; Iams, Jay; Porter, Kyle; Leblebicioglu, Binnaz

    2013-01-01

    Background Biobehavioral correlates of self-rated health in pregnancy are largely unknown. Purpose The goals of this study were to examine, in pregnant women, associations of self-rated health with 1) demographics, objective health status, health behaviors and psychological factors and 2) serum inflammatory markers. Methods In the 2nd trimester of pregnancy, 101 women provided a blood sample, completed measures of psychosocial stress, health status, and health behaviors, and received a comprehensive periodontal examination. Results The following independently predicted poorer self-rated health: 1) greater psychological stress, 2) greater objective health diagnoses, 3) higher body mass index, and 4) past smoking (versus never smoking). Poorer self-rated health was associated with higher serum interleukin-1β (p = .02) and marginally higher macrophage migration inhibitory factor (p = .06). These relationships were not fully accounted for by behavioral/psychological factors. Conclusions This study provides novel data regarding factors influencing subjective ratings of health and the association of self-rated health with serum inflammatory markers in pregnant women. PMID:23765366

  18. Regulation of endotoxin-induced inhibition of macrophage migration by fresh serum.

    PubMed Central

    Heilman, D H

    1977-01-01

    Purified endotoxin (LPS) caused macrophage migration inhibition (MMI) in capillary tube cultures of guinea pig peritoneal macrophages in medium prepared with 15% fresh-frozen guinea pig serum. The inactivation of serum by heating at 56 degrees C for 30 min or by zymosan absorption prevented LPS-induced MMI. LPS was fully inhibitory in fresh C4-deficient guinea pig serum. Heat treatment of normal serum at 50 to 52 degrees C for 30 min to inactivate the alternate complement (C) pathway prevented or significantly decreased LPS-induced MMI, but heating C4-deficient serum at 50 to 52 degrees C for 30 min prevented LPS-MMI in all instances. These results suggest that the reaction was effected via the alternate C pathway but that some inhibition of migration was permitted via the classical C pathway, presumably due to antibodies for LPS in some normal sera. Pretreatment of normal serum with cobra venom factor decreased or prevented LPS-MMI in most instances, but similar results were obtained with C4-deficient serum. Experiments with chelated sera were unsuccessful because of the immobilization of macrophages by 10 mM ethylenediamine-tetraacetic acid and by 10 mM Mg-ethyleneglycol-bis (beta-aminoethyl)-N,N-tetraacetic acid. Low doses of concanavalin A and staphylococcal enterotoxin B and large doses of pokeweed mitogen caused MMI in "inactivated serum" medium, but MMI was enhanced in fresh serum. PMID:330407

  19. Anti-fibrotic effects of pirfenidone and rapamycin in primary IPF fibroblasts and human alveolar epithelial cells.

    PubMed

    Molina-Molina, M; Machahua-Huamani, C; Vicens-Zygmunt, V; Llatjós, R; Escobar, I; Sala-Llinas, E; Luburich-Hernaiz, P; Dorca, J; Montes-Worboys, A

    2018-04-27

    Pirfenidone, a pleiotropic anti-fibrotic treatment, has been shown to slow down disease progression of idiopathic pulmonary fibrosis (IPF), a fatal and devastating lung disease. Rapamycin, an inhibitor of fibroblast proliferation could be a potential anti-fibrotic drug to improve the effects of pirfenidone. Primary lung fibroblasts from IPF patients and human alveolar epithelial cells (A549) were treated in vitro with pirfenidone and rapamycin in the presence or absence of transforming growth factor β1 (TGF-β). Extracellular matrix protein and gene expression of markers involved in lung fibrosis (tenascin-c, fibronectin, collagen I [COL1A1], collagen III [COL3A1] and α-smooth muscle actin [α-SMA]) were analyzed. A cell migration assay in pirfenidone, rapamycin and TGF-β-containing media was performed. Gene and protein expression of tenascin-c and fibronectin of fibrotic fibroblasts were reduced by pirfenidone or rapamycin treatment. Pirfenidone-rapamycin treatment did not revert the epithelial to mesenchymal transition pathway activated by TGF-β. However, the drug combination significantly abrogated fibroblast to myofibroblast transition. The inhibitory effect of pirfenidone on fibroblast migration in the scratch-wound assay was potentiated by rapamycin combination. These findings indicate that the combination of pirfenidone and rapamycin widen the inhibition range of fibrogenic markers and prevents fibroblast migration. These results would open a new line of research for an anti-fibrotic combination therapeutic approach.

  20. Distinctive and selective route of PI3K/PKCα-PKCδ/RhoA-Rac1 signaling in osteoclastic cell migration.

    PubMed

    Kim, Jin-Man; Kim, Mi Yeong; Lee, Kyunghee; Jeong, Daewon

    2016-12-05

    Cell migration during specialized stages of osteoclast precursors, mononuclear preosteoclasts, and multinucleated mature osteoclasts remain uncertain. M-CSF- and osteopontin-induced osteoclastic cell migration was inhibited by function-blocking monoclonal antibodies specific to the integrin αv and β3 subunits, suggesting that integrin αvβ3 mediates migratory signaling induced by M-CSF and osteopontin. M-CSF and osteopontin stimulation was shown to regulate two branched signaling processes, PI3K/PKCα/RhoA axis and PI3K/PKCδ/Rac1 axis. Interestingly, inactivation of RhoA or Rac1 blocked preosteoclast and mature osteoclast migration but not osteoclast precursor migration in a transwell-based cell migration assay. Moreover, the inhibitory effect on preosteoclast and mature osteoclast migration induced by Rac1 inactivation was more effective than that by RhoA inactivation. Collectively, our findings suggest that osteoclast precursor migration depends on PI3K/PKCα-PKCδ signaling mediated via integrin αvβ3 bypassing RhoA and Rac1, whereas preosteoclast and mature osteoclast migration relies on PI3K/PKCα-PKCδ/RhoA-Rac1 axis signaling mediated via integrin αvβ3 with increased dependency on PKCδ/Rac1 signaling route as differentiation progresses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Inhibition of urokinase-type plasminogen activator expression by dihydroartemisinin in breast cancer cells

    PubMed Central

    ZHANG, SHUQUN; MA, YINAN; JIANG, JIANTAO; DAI, ZHIJUN; GAO, XIAOYAN; YIN, XIAORAN; XI, WENTAO; MIN, WEILI

    2014-01-01

    The aim of the present study was to investigate the inhibitory effects of dihydroartemisinin (DHA) on the primary tumor growth and metastasis of the human breast cancer cell line, MDA-MB-231, in vitro. The expression levels of urokinase-type plasminogen activator (uPA) were detected by immunocytochemistry in two cell lines (MCF-7 and MDA-MB-231). The MDA-MB-231 cell activity was inhibited by various concentration gradients of DHA. The inhibitory rate, cell growth curve and apoptotic morphological observations were obtained using the MTT assay at 0, 24, 48 and 72 h. Cell scratch migration was performed at various time-points to test the cell proliferation and migration capacity. Reverse transcription-polymerase chain reaction was used to analyze the effect of DHA on uPA mRNA expression in breast cancer cells. The human breast cancer cell line, MDA-MB-231, possesses higher metastatic potential and relatively higher expression of uPA when compared with the MCF-7 cell line. DHA was found to inhibit the proliferation and migration capacity of the cell line, MDA-MB-231, in vitro. The growth inhibition occurred in a time- and dose-dependent manner, with IC50 values of 117.76±0.04, 60.26±0.12 and 52.96±0.07 μmol/l following 24, 48 and 72 h, respectively. The inhibition of uPA was observed to decrease breast cancer cell growth and migration. Thus, results of the present study indicate that DHA may be used for further studies with regard to breast cancer therapy. PMID:24765140

  2. Shikonin inhibits the cell viability, adhesion, invasion and migration of the human gastric cancer cell line MGC-803 via the Toll-like receptor 2/nuclear factor-kappa B pathway.

    PubMed

    Liu, Ji Ping; Liu, Dan; Gu, Jun Fei; Zhu, Mao Mao; Cui, Li

    2015-08-01

    Shikonin is an active naphthoquinone pigment isolated from the root of Lithospermum erythrorhizon. This study was designed to explore the inhibition of Shikonin on cell viability, adhesion, migration and invasion ability of gastric cancer (GC) and its possible mechanism. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed for cell viability and adhesion ability of MGC-803 cells. Cell scratch repair experiments were conducted for the determination of migration ability while transwell assay for cell invasion ability. Western blot analysis and real-time polymerase chain reaction assay were used for the detection of protein and mRNA expressions. Fifty per cent inhibitory concentration of Shikonin on MGC-803 cells was 1.854 μm. Shikonin (1 μm) inhibited significantly the adhesion, invasion and migratory ability of MGC-803 cells. Interestingly, Shikonin in the presence or absence of anti-Toll-like receptor 2 (TLR2) antibody (2 μg) and nuclear factor-kappa B (NF-κB) inhibitor MG-132 (10 μm) could decrease these ability of MGC-803 cells markedly, as well as the expression levels of matrix metalloproteinases (MMP)-2, MMP-7, TLR2 and p65 NF-κB. In addition, the co-incubation of Shikonin and anti-TLR2/MG-132 has a significant stronger activity than anti-TLR2 or MG-132 alone. The results indicated that Shikonin could suppress the cell viability, adhesion, invasion and migratory ability of MGC-803 cells through TLR2- or NF-κB-mediated pathway. Our findings provide novel information for the treatment of Shikonin on GC. © 2015 Royal Pharmaceutical Society.

  3. Vascular endothelial growth factor A (VEGF-A) decreases expression and secretion of pleiotrophin in a VEGF receptor-independent manner.

    PubMed

    Poimenidi, Evangelia; Theodoropoulou, Christina; Koutsioumpa, Marina; Skondra, Lamprini; Droggiti, Eirini; van den Broek, Marloes; Koolwijk, Pieter; Papadimitriou, Evangelia

    2016-05-01

    Vascular endothelial growth factor A (VEGF-A) is a key molecule in angiogenesis acting through VEGF receptors (VEGFRs), ανβ3 integrin, receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) and cell surface nucleolin (NCL). Pleiotrophin (PTN) stimulates endothelial cell migration and limits the angiogenic effects of VEGF-A165 to the levels of its own effect, possibly acting as a VEGF-A165 modifier. Since PTN and VEGF-A165 share receptors and actions on endothelial cells, in the present work we studied whether and how VEGF-A165 affects PTN expression or secretion. VEGF-A165 decreased PTN mRNA and protein levels acting at the transcriptional level. Bevacizumab, a selective VEGFR2 tyrosine kinase inhibitor and down-regulation of VEGFR2 expression by siRNA did not affect this decrease, suggesting that it is VEGFR-independent. VEGF-A121 also decreased PTN mRNA and protein levels, suggesting that heparin binding of VEGF-A165 is not involved. Blockage of cell surface NCL, lack of expression or mutation of β3 integrin and down-regulation of RPTPβ/ζ abolished the inhibitory effect of VEGF-A165 on PTN expression and secretion. Down-regulation of endogenous PTN in endothelial cells enhanced VEGF-A165-induced increase in migration and tube formation on matrigel. Collectively, these data suggest that VEGF-A down-regulates PTN expression and secretion through the RPTPβ/ζ-ανβ3-NCL axis to enhance its own effect on cell migration and further highlight the role of RPTPβ/ζ in VEGF-A actions. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. GPR120 in adipocytes has differential roles in the production of pro-inflammatory adipocytokines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Arif Ul, E-mail: ahasan@med.kagawa-u.ac.jp; Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793; Ohmori, Koji

    How nutritional excess leads to inflammatory responses in metabolic syndrome is not well characterized. Here, we evaluated the effects of ω-3 polyunsaturated fatty acid specific G-protein coupled receptor 120 (GPR120) activation on inflammatory pathways in adipocytes, and the influence of this process on macrophage migration. Using 3T3-L1 adipocytes, we found that agonizing GPR120 using its synthetic ligand, GSK137647, attenuated both basal and lipopolysaccharide-induced production of interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2). Moreover, the intervention reduced the phosphorylation of nuclear factor kappa B inhibitor alpha (IκBα) and nuclear translocation of nuclear factor kappa-B p65 subunit (p65). Furthermore, themore » silencing of GPR120 itself reduced IL-6 and CCL2 mRNA expression. Inhibition of protein kinase C (PKC) augmented the down-regulatory effect of GSK137647 on IL-6 and CCL2 mRNA. Using a luciferase assay to measure promoter activity of the IL-6 gene in mouse embryonic fibroblasts, we demonstrated that exogenous transfection of GPR120 alone reduced the promoter activity, which was augmented by GSK137647. Inhibition of PKC further reduced the promoter activity. Nevertheless, RAW 264.7 macrophages grown in conditioned medium collected from GSK137647-treated adipocytes attenuated the expressions of matrix metalloproteinases-9 and -3, and tissue inhibitor of metalloproteinase-1. Conditioned medium also inhibited the lipopolysaccharide-induced migration of these macrophages. Taken together, these findings provide critical evidence that although GPR120 is associated with a PKC-mediated pro-inflammatory pathway, the direct inhibitory effects of GPR120 on the nuclear factor kappa B pathway are anti-inflammatory. Moreover, GPR120 activity can attenuate the adipocyte-mediated enhanced production of extracellular matrix-modulating factors in macrophages and can reduce their migration by a paracrine mechanism. - Highlights: • Agonizing GPR120 differentially regulates the pro-inflammatory adipocytokines. • Agonizing GPR120 in adipocytes attenuates NF-κB mediated IL-6 and CCL2 production. • Agonizing GPR120 concomitantly triggers a PKC mediated pro-inflammatory pathway. • However, the resulted effect in adipocytes remains anti-inflammatory. • Agonizing GPR120 in adipocytes reduces macrophage migration in a paracrine manner.« less

  5. Transforming Growth Factor β Inhibits Platelet Derived Growth Factor-Induced Vascular Smooth Muscle Cell Proliferation via Akt-Independent, Smad-Mediated Cyclin D1 Downregulation

    PubMed Central

    Martin-Garrido, Abel; Williams, Holly C.; Lee, Minyoung; Seidel-Rogol, Bonnie; Ci, Xinpei; Dong, Jin-Tang; Lassègue, Bernard; Martín, Alejandra San; Griendling, Kathy K.

    2013-01-01

    In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle. PMID:24236150

  6. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    PubMed

    Martin-Garrido, Abel; Williams, Holly C; Lee, Minyoung; Seidel-Rogol, Bonnie; Ci, Xinpei; Dong, Jin-Tang; Lassègue, Bernard; Martín, Alejandra San; Griendling, Kathy K

    2013-01-01

    In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  7. A Novel High-Throughput 3D Screening System for EMT Inhibitors: A Pilot Screening Discovered the EMT Inhibitory Activity of CDK2 Inhibitor SU9516.

    PubMed

    Arai, Kazuya; Eguchi, Takanori; Rahman, M Mamunur; Sakamoto, Ruriko; Masuda, Norio; Nakatsura, Tetsuya; Calderwood, Stuart K; Kozaki, Ken-Ichi; Itoh, Manabu

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is a crucial pathological event in cancer, particularly in tumor cell budding and metastasis. Therefore, control of EMT can represent a novel therapeutic strategy in cancer. Here, we introduce an innovative three-dimensional (3D) high-throughput screening (HTS) system that leads to an identification of EMT inhibitors. For the establishment of the novel 3D-HTS system, we chose NanoCulture Plates (NCP) that provided a gel-free micro-patterned scaffold for cells and were independent of other spheroid formation systems using soft-agar. In the NCP-based 3D cell culture system, A549 lung cancer cells migrated, gathered, and then formed multiple spheroids within 7 days. Live cell imaging experiments showed that an established EMT-inducer TGF-β promoted peripheral cells around the core of spheroids to acquire mesenchymal spindle shapes, loss of intercellular adhesion, and migration from the spheroids. Along with such morphological change, EMT-related gene expression signatures were altered, particularly alteration of mRNA levels of ECAD/CDH1, NCAD/CDH2, VIM and ZEB1/TCF8. These EMT-related phenotypic changes were blocked by SB431542, a TGF-βreceptor I (TGFβR1) inhibitor. Inside of the spheroids were highly hypoxic; in contrast, spheroid-derived peripheral migrating cells were normoxic, revealed by visualization and quantification using Hypoxia Probe. Thus, TGF-β-triggered EMT caused spheroid hypoplasia and loss of hypoxia. Spheroid EMT inhibitory (SEMTIN) activity of SB431542 was calculated from fluorescence intensities of the Hypoxia Probe, and then was utilized in a drug screening of EMT-inhibitory small molecule compounds. In a pilot screening, 9 of 1,330 compounds were above the thresholds of the SEMTIN activity and cell viability. Finally, two compounds SB-525334 and SU9516 showed SEMTIN activities in a dose dependent manner. SB-525334 was a known TGFβR1 inhibitor. SU9516 was a cyclin-dependent kinase 2 (CDK2) inhibitor, which we showed also had an EMT-inhibitory activity. The half maximal inhibitory concentration (IC50) of SB-525334 and SU9516 were 0.31 μM and 1.21 μM, respectively, while IC50 of SB431542 was 2.38 μM. Taken together, it was shown that this 3D NCP-based HTS system was useful for screening of EMT-regulatory drugs.

  8. Platelet concentration in platelet-rich plasma affects tenocyte behavior in vitro.

    PubMed

    Giusti, Ilaria; D'Ascenzo, Sandra; Mancò, Annalisa; Di Stefano, Gabriella; Di Francesco, Marianna; Rughetti, Anna; Dal Mas, Antonella; Properzi, Gianfranco; Calvisi, Vittorio; Dolo, Vincenza

    2014-01-01

    Since tendon injuries and tendinopathy are a growing problem, sometimes requiring surgery, new strategies that improve conservative therapies are needed. Platelet-rich plasma (PRP) seems to be a good candidate by virtue of its high content of growth factors, most of which are involved in tendon healing. This study aimed to evaluate if different concentrations of platelets in PRP have different effects on the biological features of normal human tenocytes that are usually required during tendon healing. The different platelet concentrations tested (up to 5 × 10(6) plt/µL) stimulated differently tenocytes behavior; intermediate concentrations (0.5 × 10(6), 1 × 10(6) plt/µL) strongly induced all tested processes (proliferation, migration, collagen, and MMPs production) if compared to untreated cells; on the contrary, the highest concentration had inhibitory effects on proliferation and strongly reduced migration abilities and overall collagen production but, at the same time, induced increasing MMP production, which could be counterproductive because excessive proteolysis could impair tendon mechanical stability. Thus, these in vitro data strongly suggest the need for a compromise between extremely high and low platelet concentrations to obtain an optimal global effect when inducing in vivo tendon healing.

  9. Platelet Concentration in Platelet-Rich Plasma Affects Tenocyte Behavior In Vitro

    PubMed Central

    Rughetti, Anna; Dal Mas, Antonella; Properzi, Gianfranco; Calvisi, Vittorio

    2014-01-01

    Since tendon injuries and tendinopathy are a growing problem, sometimes requiring surgery, new strategies that improve conservative therapies are needed. Platelet-rich plasma (PRP) seems to be a good candidate by virtue of its high content of growth factors, most of which are involved in tendon healing. This study aimed to evaluate if different concentrations of platelets in PRP have different effects on the biological features of normal human tenocytes that are usually required during tendon healing. The different platelet concentrations tested (up to 5 × 106 plt/µL) stimulated differently tenocytes behavior; intermediate concentrations (0.5 × 106, 1 × 106 plt/µL) strongly induced all tested processes (proliferation, migration, collagen, and MMPs production) if compared to untreated cells; on the contrary, the highest concentration had inhibitory effects on proliferation and strongly reduced migration abilities and overall collagen production but, at the same time, induced increasing MMP production, which could be counterproductive because excessive proteolysis could impair tendon mechanical stability. Thus, these in vitro data strongly suggest the need for a compromise between extremely high and low platelet concentrations to obtain an optimal global effect when inducing in vivo tendon healing. PMID:25147809

  10. The conformational flexibility of the carboxy terminal residues 105–114 is a key modulator of the catalytic activity and stability of Macrophage Migration Inhibitory Factor (MIF)†

    PubMed Central

    El-Turk, Farah; Cascella, Michele; Ouertatani-Sakouhi, Hajer; Narayanan, Raghavendran Lakshmi; Leng, Lin; Bucala, Richard; Hweckstetter, Markus; Rothlisberger, Ursula; Lashuel, Hilal A.

    2013-01-01

    Macrophage migration inhibitory factor (MIF) is a multifunctional protein and a major mediator of innate immunity. Although X-ray crystallography revealed that MIF exists as a homotrimer, its oligomerization state in vivo as well as the factors governing its oligomerization and stability remain poorly understood. The C-terminal region of MIF is highly conserved and participates in several intramolecular interactions that suggest a role in modulating the stability and biochemical activity of MIF. To determine the importance of these interactions, point mutations (A48P, L46A), insertions (P107) at the monomer-monomer interfaces, and C-terminal deletion (Δ110-114NSTFA and Δ105–114NVGWNNSTFA) variants were designed and their structural properties, thermodynamic stability, oligomerization state, catalytic activity and receptor binding were characterized using a battery of biophysical methods. The C-terminal deletion mutants ΔC5 huMIF1-109 and ΔC10 huMIF1-104 were enzymatically inactive and thermodynamically less stable than wild type MIF. Analytical ultracentrifugation studies demonstrate that both C-terminal mutants sediment as trimers and exhibit similar binding to CD74 as the wild type protein. Disrupting the conformation of the C-terminal region 105–114 and increasing its conformational flexibility through the insertion of a proline residue at position 107 was sufficient to reproduce the structural, biochemical and thermodynamic properties of the deletion mutants. P107 MIF forms an enzymatically inactive trimer and exhibits reduced thermodynamic stability relative to the wild type protein. To provide a rationale for the changes induced by these mutations at the molecular level, we also performed molecular dynamics simulations on these mutants in comparison to the wild type MIF. Together, our studies demonstrate that inter-subunit interactions involving the C-terminal region 105–114, including a salt-bridge interaction between Arg73 of one monomer and the carboxy terminus of a neighbouring monomer, play critical roles in modulating tertiary structure stabilization, enzymatic activity, and thermodynamic stability of MIF, but not its oligomerization state and receptor binding properties. Our results suggest that targeting the C-terminal region could provide new strategies for allosteric modulation of MIF enzymatic activity and the development of novel inhibitors of MIF tautomerase activity. PMID:18795803

  11. Gene polymorphisms associated with functional dyspepsia.

    PubMed

    Kourikou, Anastasia; Karamanolis, George P; Dimitriadis, George D; Triantafyllou, Konstantinos

    2015-07-07

    Functional dyspepsia (FD) is a constellation of functional upper abdominal complaints with poorly elucidated pathophysiology. However, there is increasing evidence that susceptibility to FD is influenced by hereditary factors. Genetic association studies in FD have examined genotypes related to gastrointestinal motility or sensation, as well as those related to inflammation or immune response. G-protein b3 subunit gene polymorphisms were first reported as being associated with FD. Thereafter, several gene polymorphisms including serotonin transporter promoter, interlukin-17F, migration inhibitory factor, cholecystocynine-1 intron 1, cyclooxygenase-1, catechol-o-methyltransferase, transient receptor potential vanilloid 1 receptor, regulated upon activation normal T cell expressed and secreted, p22PHOX, Toll like receptor 2, SCN10A, CD14 and adrenoreceptors have been investigated in relation to FD; however, the results are contradictory. Several limitations underscore the value of current studies. Among others, inconsistencies in the definitions of FD and controls, subject composition differences regarding FD subtypes, inadequate samples, geographical and ethnical differences, as well as unadjusted environmental factors. Further well-designed studies are necessary to determine how targeted genes polymorphisms, influence the clinical manifestations and potentially the therapeutic response in FD.

  12. Effects of oleanolic acid on pulmonary morphofunctional and biochemical variables in experimental acute lung injury.

    PubMed

    Santos, Raquel S; Silva, Pedro L; Oliveira, Gisele P; Cruz, Fernanda F; Ornellas, Débora S; Morales, Marcelo M; Fernandes, Janaina; Lanzetti, Manuella; Valença, Samuel S; Pelosi, Paolo; Gattass, Cerli R; Rocco, Patricia R M

    2011-12-15

    We analysed the effects of oleanolic acid (OA) on lung mechanics and histology and its possible mechanisms of action in experimental acute lung injury (ALI). BALB/c mice were randomly divided into Control (saline, ip) and ALI (paraquat, 25 mg/kg, ip) groups. At 1 h, both groups were treated with saline (SAL, 50 μl ip), OA (10 mg/kg ip), or dexamethasone (DEXA, 1 mg/kg ip). At 24 h, lung static elastance, viscoelastic pressure, and alveolar collapse reduced more after OA compared to DEXA administration. Tumour necrosis factor-α, macrophage migration inhibitory factor, interleukin-6, interferon-γ, and transforming growth factor-β mRNA expressions in lung tissue diminished similarly after OA or DEXA. Conversely, only OA avoided reactive oxygen species generation and yielded a significant decrease in nitrite concentration. OA and DEXA restored the reduced glutathione/oxidized glutathione ratio and catalase activity while increasing glutathione peroxidase induced by paraquat. In conclusion, OA improved lung morphofunction by modulating the release of inflammatory mediators and oxidative stress. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Impact of ER520, a candidate of selective estrogen receptor modulators, on in vitro cell growth, migration, invasion, angiogenesis and in vivo tumor xenograft of human breast cancer cells.

    PubMed

    Wang, Lijun; Wang, Ying; Du, Huaqing; Jiang, Yao; Tang, Zhichao; Liu, Hongyi; Xiang, Hua; Xiao, Hong

    2015-12-01

    ER520, a derivative of indenoisoquinoline, is a patented compound. This study was designed to screen its biological properties and to evaluate its antineoplastic and antiangiogenic effect. Western blot was employed to monitor the ERα and ERβ protein expression in human breast cancer MCF-7 cells and endometrial carcinoma Ishikawa cells. MTT assay was employed to determine cell proliferation. Cell adhesion, scratch and Transwell assay were utilized to estimate the ability of cellular adhesion, migration and invasion. ELISA kit was applied to detect the VEGF products in culture medium. In addition, the inhibitory effect of ER520 on the vessel-like construction of HUVEC cells and the angiogenesis of chicken embryos was investigated. The efficiency of ER520 on tumor growth in nude mice was also assessed. ER520 inhibited the expression of ERα in MCF-7 and Ishikawa cells, while it increased ERβ protein level. ER520 also suppressed the proliferation of MCF-7 and Ishikawa cells. Due to its remarkably negative role in cell adhesion, migration and invasion, ER520 showed a potential ability of inhibiting tumor metastasis. Meanwhile, ER520 reduced the VEGF secretion of MCF-7 and Ishikawa cells, prevented the formation of VEGF-stimulated tubular structure and the cell migration of HUVEC cells, and inhibited the angiogenesis of chicken chorioallantoic membrane. Animal experiment also demonstrated that ER520 could frustrate the in vivo tumor growth and the inhibitory ratio was 48.5 % compared with control group. Our findings indicate that ER520 possesses the competence to be a candidate against breast cancer and angiogenesis.

  14. Inhibitory effects of polysaccharide extract from Spirulina platensis on corneal neovascularization

    PubMed Central

    Yang, Lingling; Wang, Yao; Zhou, Qingjun; Chen, Peng; Wang, Yiqiang; Wang, Ye; Liu, Ting

    2009-01-01

    Purpose To assess the effects of polysaccharide extract from Spirulina platensis (PSP) on corneal neovascularization (CNV) in vivo and in vitro. Methods PSP was extracted from dry powder of Spirulina platensis. Its anti-angiogenic activity was evaluated in the mouse corneal alkali burn model after topical administration of PSP four times daily for up to seven days. Corneal samples were processed for histochemical, immunohistochemical, and gene expression analyses. The effects of PSP on proliferation, migration, tube formation, and serine threonine kinase (AKT) and extracellular regulated kinase1/2 (ERK1/2) signaling levels in vascular endothelial cells were determined using 3-(4,5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) and carboxyfluorescein succinimidyl ester (CFSE) labeling assays, wound healing assay, Matrigel tube formation assay, and western blot. Results Topical application of PSP significantly inhibited CNV caused by alkali burn. Corneas treated with PSP showed reduced levels of platelet endothelial cell adhesion molecule (CD31) and stromal cell-derived factor 1 (SDF1) proteins, reduced levels of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9), SDF1, and tumor necrosis factor-alpha (TNF-α) mRNAs, and an increased level of pigment epithelium-derived factor (PEDF) mRNA. These are parameters that have all been related to CNV and/or inflammation. In human vascular endothelial cells, PSP significantly inhibited proliferation, migration, and tube formation in a dose-dependent manner. Furthermore, PSP also decreased the levels of activated AKT and ERK 1/2. Conclusions These data suggest that polysaccharide extract from Spirulina platensis is a potent inhibitor of CNV and that it may be of benefit in the therapy of corneal diseases involving neovascularization and inflammation. PMID:19784394

  15. Wogonin suppresses TNF-{alpha}-induced MMP-9 expression by blocking the NF-{kappa}B activation via MAPK signaling pathways in human aortic smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Syng-Ook; Jeong, Yun-Jeong; Yu, Mi Hee

    2006-12-08

    Matrix metalloproteinase-9 (MMP-9) plays a major role in the pathogenesis of atherosclerosis and restenosis by regulating both migration and proliferation of vascular smooth muscle cells (VSMC) after an arterial injury. In this study, we examined the inhibitory effect of three major flavonoids in Scutellariae Radix, baicalin, baicalein, and wogonin, on TNF-{alpha}-induced MMP-9 expression in human aortic smooth muscle cells (HASMC). Wogonin, but not baicalin and baicalein, significantly and selectively suppressed TNF-{alpha}-induced MMP-9 expression in HASMC. Reporter gene, electrophoretic mobility shift, and Western blotting assays showed that wogonin inhibits MMP-9 gene transcriptional activity by blocking the activation of NF-{kappa}B via MAPKmore » signaling pathways. Moreover, the Matrigel migration assay showed that wogonin reduced TNF-{alpha}-induced HASMC migration. These results suggest that wogonin effectively suppresses TNF-{alpha}-induced HASMC migration through the selective inhibition of MMP-9 expression and represents a potential agent for the prevention of vascular disorders related to the migration of VSMC.« less

  16. Selective matrix metalloproteinase inhibitor, N-biphenyl sulfonyl phenylalanine hydroxamic acid, inhibits the migration of CD4+ T lymphocytes in patients with HTLV-I-associated myelopathy.

    PubMed

    Ikegami, Mayumi; Umehara, Fujio; Ikegami, Naohito; Maekawa, Ryuji; Osame, Mitsuhiro

    2002-06-01

    Matrix metalloproteinases (MMPs) have been reported to be involved in various inflammatory disorders. Previous studies revealed that MMP-2 and MMP-9 might play important roles in the breakdown of the blood-brain barrier (BBB) in the central nervous system (CNS) of patients with HTLV-I-associated myelopathy (HAM)/tropical spastic paraparesis (TSP). N-Biphenyl sulfonyl-phenylalanine hydroxamic acid (BPHA) selectively inhibits MMP-2, -9 and -14, but not MMP-1, -3 and -7. In the present study, we examined whether or not the selective MMP inhibitor BPHA could inhibit the heightened migrating activity of CD4+ T cells in HAM/TSP patients. The migration assay using an invasion chamber showed that migration of CD4+ T cells in HAM/TSP patients was inhibited by 25 microM BPHA. In addition, the inhibitory ratio of migrating CD4+ lymphocytes was higher in HAM patients compared to normal controls. These results suggest that the selective MMP inhibitor BPHA has therapeutic potential for HAM/TSP.

  17. Phytochemicals potently inhibit migration of metastatic breast cancer cells†

    PubMed Central

    Ham, Stephanie Lemmo; Nasrollahi, Samila; Shah, Kush N.; Soltisz, Andrew; Paruchuri, Sailaja; Yun, Yang H.; Luker, Gary D.; Bishayee, Anupam; Tavana, Hossein

    2017-01-01

    Cell migration is a major process that drives metastatic progression of cancers, the major cause of cancer death. Existing chemotherapeutic drugs have limited efficacy to prevent and/or treat metastasis, emphasizing the need for new treatments. We focus on triple negative breast cancer (TNBC), the subtype of breast cancer with worst prognosis and no standard chemotherapy protocols. Here we demonstrate that a group of natural compounds, known as phytochemicals, effectively block migration of metastatic TNBC cells. Using a novel cell micropatterning technology, we generate consistent migration niches in standard 96-well plates where each well contains a cell-excluded gap within a uniform monolayer of cells. Over time, cells migrate into and occupy the gap. Treating TNBC cells with non-toxic concentrations of phytochemicals significantly blocks motility of cells. Using a molecular analysis approach, we show that anti-migratory property of phytochemicals is partly due to their inhibitory effects on phosphorylation of ERK1/2. This study provides a framework for future studies to understand molecular targets of phytochemicals and evaluate their effectiveness in inhibiting metastasis in animal models of cancer. PMID:26120051

  18. Upregulation and biological function of transmembrane protein 119 in osteosarcoma

    PubMed Central

    Jiang, Zhen-Huan; Peng, Jun; Yang, Hui-Lin; Fu, Xing-Li; Wang, Jin-Zhi; Liu, Lei; Jiang, Jian-Nong; Tan, Yong-Fei; Ge, Zhi-Jun

    2017-01-01

    Osteosarcoma is suggested to be caused by genetic and molecular alterations that disrupt osteoblast differentiation. Recent studies have reported that transmembrane protein 119 (TMEM119) contributes to osteoblast differentiation and bone development. However, the level of TMEM119 expression and its roles in osteosarcoma have not yet been elucidated. In the present study, TMEM119 mRNA and protein expression was found to be up-regulated in osteosarcoma compared with normal bone cyst tissues. The level of TMEM119 protein expression was strongly associated with tumor size, clinical stage, distant metastasis and overall survival time. Moreover, gene set enrichment analysis (GSEA) of the Gene Expression Omnibus (GEO) GSE42352 dataset revealed TMEM119 expression in osteosarcoma tissues to be positively correlated with cell cycle, apoptosis, metastasis and TGF-β signaling. We then knocked down TMEM119 expression in U2OS and MG63 cells using small interfering RNA, which revealed that downregulation of TMEM119 could inhibit the proliferation of osteosarcoma cells by inducing cell cycle arrest in G0/G1 phase and apoptosis. We also found that TMEM119 knockdown significantly inhibited cell migration and invasion, and decreased the expression of TGF-β pathway-related factors (BMP2, BMP7 and TGF-β). TGF-β application rescued the inhibitory effects of TMEM119 knockdown on osteosarcoma cell migration and invasion. Further in vitro experiments with a TGF-β inhibitor (SB431542) or BMP inhibitor (dorsomorphin) suggested that TMEM119 significantly promotes cell migration and invasion, partly through TGF-β/BMP signaling. In conclusion, our data support the notion that TMEM119 contributes to the proliferation, migration and invasion of osteosarcoma cells, and functions as an oncogene in osteosarcoma. PMID:28496199

  19. Expression of long noncoding RNA MALAT1 correlates with increased levels of Nischarin and inhibits oncogenic cell functions in breast cancer.

    PubMed

    Eastlack, Steven C; Dong, Shengli; Mo, Yin Y; Alahari, Suresh K

    2018-01-01

    Malat1 is a long noncoding RNA with a wide array of functions, including roles in regulating cancer cell migration and metastasis. However, the nature of its involvement in control of these oncogenic processes is incompletely understood. In the present study, we investigate the role of Malat1 and the effects of Malat1 KO in a breast cancer cell model. Our selection of Malat1 as the subject of inquiry followed initial screening experiments seeking to identify lncRNAs which are altered in the presence or absence of Nischarin, a gene of interest previously discovered by our lab. Nischarin is a well characterized tumor suppressor protein and actively represses cell proliferation, migration, and invasion in breast cancer. Our microarray screen for lncRNAs revealed multiple lncRNAs to be significantly elevated in cells ectopically expressing Nischarin compared to control cancer cells, which have only marginal Nisch expression. Using these cells, we assess how the link between Nischarin and Malat1 affects cancer cell function, finding that Malat1 confers an inhibitory effect on cell growth and migration which is lost following Malat1 KO, but in a Nisch-dependent context. Specifically, Malat1 KO in the background of low Nischarin expression had a limited effect on cell functions, while Malat1 KO in cells with high levels of Nischarin led to significant increases in cell proliferation and migration. In summary, this project provides further clarity concerning the function of Malat1, specifically in breast cancer, while also indicating that the Nischarin expression context is an important factor in the determining how Malat1 activity is governed in breast cancer.

  20. Cdc42 is required in a genetically distinct subset of cardiac cells during Drosophila dorsal vessel closure

    PubMed Central

    Swope, David; Kramer, Joseph; King, Tiffany R.; Cheng, Yi-Shan; Kramer, Sunita G.

    2017-01-01

    The embryonic heart tube is formed by the migration and subsequent midline convergence of two bilateral heart fields. In Drosophila the heart fields are organized into two rows of cardioblasts (CBs). While morphogenesis of the dorsal ectoderm, which lies directly above the Drosophila dorsal vessel (DV), has been extensively characterized, the migration and concomitant fundamental factors facilitating DV formation remain poorly understood. Here we provide evidence that DV closure occurs at multiple independent points along the A-P axis of the embryo in a “buttoning” pattern, divergent from the zippering mechanism observed in the overlying epidermis during dorsal closure. Moreover, we demonstrate that a genetically distinct subset of CBs is programmed to make initial contact with the opposing row. To elucidate the cellular mechanisms underlying this process, we examined the role of Rho GTPases during cardiac migration using inhibitory and overexpression approaches. We found that Cdc42 shows striking cell-type specificity during DV formation. Disruption of Cdc42 function specifically prevents CBs that express the homeobox gene tinman from completing their dorsal migration, resulting in a failure to make connections with their partnering CBs. Conversely, neighboring CBs that express the orphan nuclear receptor, seven-up, are not sensitive to Cdc42 inhibition. Furthermore, this phenotype was specific to Cdc42 and was not observed upon perturbation of Rac or Rho function. Together with the observation that DV closure occurs through the initial contralateral pairing of tinman-expressing CBs, our studies suggest that the distinct buttoning mechanism we propose for DV closure is elaborated through signaling pathways regulating Cdc42 activity in this cell type. PMID:24949939

  1. Astragaloside IV inhibits pathological functions of gastric cancer-associated fibroblasts.

    PubMed

    Wang, Zhen-Fei; Ma, Da-Guang; Zhu, Zhe; Mu, Yong-Ping; Yang, Yong-Yan; Feng, Li; Yang, Hao; Liang, Jun-Qing; Liu, Yong-Yan; Liu, Li; Lu, Hai-Wen

    2017-12-28

    To investigate the inhibitory effect of astragaloside IV on the pathological functions of cancer-associated fibroblasts, and to explore the underlying mechanism. Paired gastric normal fibroblast (GNF) and gastric cancer-associated fibroblast (GCAF) cultures were established from resected tissues. GCAFs were treated with vehicle control or different concentrations of astragaloside IV. Conditioned media were prepared from GNFs, GCAFs, control-treated GCAFs, and astragaloside IV-treated GCAFs, and used to culture BGC-823 human gastric cancer cells. Proliferation, migration and invasion capacities of BGC-823 cells were determined by MTT, wound healing, and Transwell invasion assays, respectively. The action mechanism of astragaloside IV was investigated by detecting the expression of microRNAs and the expression and secretion of the oncogenic factor, macrophage colony-stimulating factor (M-CSF), and the tumor suppressive factor, tissue inhibitor of metalloproteinase 2 (TIMP2), in different groups of GCAFs. The expression of the oncogenic pluripotency factors SOX2 and NANOG in BGC-823 cells cultured with different conditioned media was also examined. GCAFs displayed higher capacities to induce BGC-823 cell proliferation, migration, and invasion than GNFs ( P < 0.01). Astragaloside IV treatment strongly inhibited the proliferation-, migration- and invasion-promoting capacities of GCAFs ( P < 0.05 for 10 μmol/L, P < 0.01 for 20 μmol/L and 40 μmol/L). Compared with GNFs, GCAFs expressed a lower level of microRNA-214 ( P < 0.01) and a higher level of microRNA-301a ( P < 0.01). Astragaloside IV treatment significantly up-regulated microRNA-214 expression ( P < 0.01) and down-regulated microRNA-301a expression ( P < 0.01) in GCAFs. Reestablishing the microRNA expression balance subsequently suppressed M-CSF production ( P < 0.01) and secretion ( P < 0.05), and elevated TIMP2 production ( P < 0.01) and secretion ( P < 0.05). Consequently, the ability of GCAFs to increase SOX2 and NANOG expression in BGC-823 cells was abolished by astragaloside IV. Astragaloside IV can inhibit the pathological functions of GCAFs by correcting their dysregulation of microRNA expression, and it is promisingly a potent therapeutic agent regulating tumor microenvironment.

  2. Astragaloside IV inhibits pathological functions of gastric cancer-associated fibroblasts

    PubMed Central

    Wang, Zhen-Fei; Ma, Da-Guang; Zhu, Zhe; Mu, Yong-Ping; Yang, Yong-Yan; Feng, Li; Yang, Hao; Liang, Jun-Qing; Liu, Yong-Yan; Liu, Li; Lu, Hai-Wen

    2017-01-01

    AIM To investigate the inhibitory effect of astragaloside IV on the pathological functions of cancer-associated fibroblasts, and to explore the underlying mechanism. METHODS Paired gastric normal fibroblast (GNF) and gastric cancer-associated fibroblast (GCAF) cultures were established from resected tissues. GCAFs were treated with vehicle control or different concentrations of astragaloside IV. Conditioned media were prepared from GNFs, GCAFs, control-treated GCAFs, and astragaloside IV-treated GCAFs, and used to culture BGC-823 human gastric cancer cells. Proliferation, migration and invasion capacities of BGC-823 cells were determined by MTT, wound healing, and Transwell invasion assays, respectively. The action mechanism of astragaloside IV was investigated by detecting the expression of microRNAs and the expression and secretion of the oncogenic factor, macrophage colony-stimulating factor (M-CSF), and the tumor suppressive factor, tissue inhibitor of metalloproteinase 2 (TIMP2), in different groups of GCAFs. The expression of the oncogenic pluripotency factors SOX2 and NANOG in BGC-823 cells cultured with different conditioned media was also examined. RESULTS GCAFs displayed higher capacities to induce BGC-823 cell proliferation, migration, and invasion than GNFs (P < 0.01). Astragaloside IV treatment strongly inhibited the proliferation-, migration- and invasion-promoting capacities of GCAFs (P < 0.05 for 10 μmol/L, P < 0.01 for 20 μmol/L and 40 μmol/L). Compared with GNFs, GCAFs expressed a lower level of microRNA-214 (P < 0.01) and a higher level of microRNA-301a (P < 0.01). Astragaloside IV treatment significantly up-regulated microRNA-214 expression (P < 0.01) and down-regulated microRNA-301a expression (P < 0.01) in GCAFs. Reestablishing the microRNA expression balance subsequently suppressed M-CSF production (P < 0.01) and secretion (P < 0.05), and elevated TIMP2 production (P < 0.01) and secretion (P < 0.05). Consequently, the ability of GCAFs to increase SOX2 and NANOG expression in BGC-823 cells was abolished by astragaloside IV. CONCLUSION Astragaloside IV can inhibit the pathological functions of GCAFs by correcting their dysregulation of microRNA expression, and it is promisingly a potent therapeutic agent regulating tumor microenvironment. PMID:29358859

  3. Decorin-Mediated Inhibition of Human Trophoblast Cells Proliferation, Migration, and Invasion and Promotion of Apoptosis In Vitro

    PubMed Central

    Zou, Yanfen; Yu, Xiang; Lu, Jing; Jiang, Ziyan; Zuo, Qing; Fan, Mingsong; Huang, Shiyun

    2015-01-01

    Preeclampsia (PE) is a unique complication of pregnancy, the pathogenesis of which has been generally accepted to be associated with the dysfunctions of extravillous trophoblast (EVT) including proliferation, apoptosis, and migration and invasion. Decorin (DCN) has been proved to be a decidua-derived TGF-binding proteoglycan, which negatively regulates proliferation, migration, and invasiveness of human extravillous trophoblast cells. In this study, we identified a higher expression level of decorin in severe PE placentas by both real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). And an inhibitory effect of decorin on proliferation, migration, and invasion and an enhanced effect on apoptosis in trophoblast cells HTR-8/SVneo and JEG-3 were validated in vitro. Also the modulations of decorin on trophoblast cells' metastasis and invasion functions were detected through regulating the matrix metalloproteinases (MMP2 and MMP9). Thus, we suggested that the contribution of decorin to the modulation of trophoblast cells might have implications for the pathogenesis of preeclampsia. PMID:26357650

  4. Platelets Inhibit Migration of Canine Osteosarcoma Cells.

    PubMed

    Bulla, S C; Badial, P R; Silva, R C; Lunsford, K; Bulla, C

    2017-01-01

    The interaction between platelets and tumour cells is important for tumour growth and metastasis. Thrombocytopenia or antiplatelet treatment negatively impact on cancer metastasis, demonstrating potentially important roles for platelets in tumour progression. To our knowledge, there is no information regarding the role of platelets in cancer progression in dogs. This study was designed to test whether canine platelets affected the migratory behaviour of three canine osteosarcoma cell lines and to give insights of molecular mechanisms. Intact platelets, platelet lysate and platelet releasate inhibited the migration of canine osteosarcoma cell lines. Addition of blood leucocytes to the platelet samples did not alter the inhibitory effect on migration. Platelet treatment also significantly downregulated the transcriptional levels of SNAI2 and TWIST1 genes. The interaction between canine platelets or molecules released during platelet activation and these tumour cell lines inhibits their migration, which suggests that canine platelets might antagonize metastasis of canine osteosarcoma. This effect is probably due to, at least in part, downregulation of genes related to epithelial-mesenchymal transition. Copyright © 2016. Published by Elsevier Ltd.

  5. Attention problems, inhibitory control, and intelligence index overlapping genetic factors: a study in 9-, 12-, and 18-year-old twins.

    PubMed

    Polderman, Tinca J C; de Geus, Eco J C; Hoekstra, Rosa A; Bartels, Meike; van Leeuwen, Marieke; Verhulst, Frank C; Posthuma, Danielle; Boomsma, Dorret I

    2009-05-01

    It is assumed that attention problems (AP) are related to impaired executive functioning. We investigated the association between AP and inhibitory control and tested to what extent the association was due to genetic factors shared with IQ. Data were available from 3 independent samples of 9-, 12-, and 18-year-old twins and their siblings (1,209 participants). AP were assessed with checklists completed by multiple informants. Inhibitory control was measured with the Stroop Color Word Task (Stroop, 1935), and IQ with the Wechsler Intelligence Scale for Children (Wechsler et al., 2002) or Wechsler Adult Intelligence Scale (Wechsler, 1997). AP and inhibitory control were only correlated in the 12-year-old cohort (r = .18), but appeared non-significant after controlling for IQ. Significant correlations existed between AP and IQ in 9- and 12-year olds (r = -.26/-.34). Inhibitory control and IQ were correlated in all cohorts (r = -.16, -.24 and -.35, respectively). Genetic factors that influenced IQ also influenced inhibitory control. We conclude that the association between AP and inhibitory control as reported in the literature may largely derive from genetic factors that are shared with IQ.

  6. Aloe-emodin inhibits HER-2 expression through the downregulation of Y-box binding protein-1 in HER-2-overexpressing human breast cancer cells.

    PubMed

    Ma, Jui-Wen; Hung, Chao-Ming; Lin, Ying-Chao; Ho, Chi-Tang; Kao, Jung-Yie; Way, Tzong-Der

    2016-09-13

    Human epidermal growth factor receptor-2 (HER-2)-positive breast cancer tends to be aggressive, highly metastatic, and drug resistant and spreads rapidly. Studies have indicated that emodin inhibits HER-2 expression. This study compared the HER-2-inhibitory effects of two compounds extracted from rhubarb roots: aloe-emodin (AE) and rhein. Our results indicated that AE exerted the most potent inhibitory effect on HER-2 expression. Treatment of HER-2-overexpressing breast cancer cells with AE reduced tumor initiation, cell migration, and cell invasion. AE was able to suppress YB-1 expression, further suppressing downstream HER-2 expression. AE suppressed YB-1 expression through the inhibition of Twist in HER-2-overexpressing breast cancer cells. Our data also found that AE inhibited cancer metastasis and cancer stem cells through the inhibition of EMT. Interestingly, AE suppressed YB-1 expression through the downregulation of the intracellular integrin-linked kinase (ILK)/protein kinase B (Akt)/mTOR signaling pathway in HER-2-overexpressing breast cancer cells. In vivo study showed the positive result of antitumor activity of AE in nude mice injected with human HER-2-overexpressing breast cancer cells. These findings suggest the possible application of AE in the treatment of HER-2-positive breast cancer.

  7. Emerging Phytochemicals for the Prevention and Treatment of Head and Neck Cancer.

    PubMed

    Katiyar, Santosh K

    2016-11-24

    Despite the development of more advanced medical therapies, cancer management remains a problem. Head and neck squamous cell carcinoma (HNSCC) is a particularly challenging malignancy and requires more effective treatment strategies and a reduction in the debilitating morbidities associated with the therapies. Phytochemicals have long been used in ancient systems of medicine, and non-toxic phytochemicals are being considered as new options for the effective management of cancer. Here, we discuss the growth inhibitory and anti-cell migratory actions of proanthocyanidins from grape seeds (GSPs), polyphenols in green tea and honokiol, derived from the Magnolia species. Studies of these phytochemicals using human HNSCC cell lines from different sub-sites have demonstrated significant protective effects against HNSCC in both in vitro and in vivo models. Treatment of human HNSCC cell lines with GSPs, (-)-epigallocatechin-3-gallate (EGCG), a polyphenolic component of green tea or honokiol reduced cell viability and induced apoptosis. These effects have been associated with inhibitory effects of the phytochemicals on the epidermal growth factor receptor (EGFR), and cell cycle regulatory proteins, as well as other major tumor-associated pathways. Similarly, the cell migration capacity of HNSCC cell lines was inhibited. Thus, GSPs, honokiol and EGCG appear to be promising bioactive phytochemicals for the management of head and neck cancer.

  8. Characterization of neurons in the cortical white matter in human temporal lobe epilepsy.

    PubMed

    Richter, Zsófia; Janszky, József; Sétáló, György; Horváth, Réka; Horváth, Zsolt; Dóczi, Tamás; Seress, László; Ábrahám, Hajnalka

    2016-10-01

    The aim of the present work was to characterize neurons in the archi- and neocortical white matter, and to investigate their distribution in mesial temporal sclerosis. Immunohistochemistry and quantification of neurons were performed on surgically resected tissue sections of patients with therapy-resistant temporal lobe epilepsy. Temporal lobe tissues of patients with tumor but without epilepsy and that from autopsy were used as controls. Neurons were identified with immunohistochemistry using antibodies against NeuN, calcium-binding proteins, transcription factor Tbr1 and neurofilaments. We found significantly higher density of neurons in the archi- and neocortical white matter of patients with temporal lobe epilepsy than in that of controls. Based on their morphology and neurochemical content, both excitatory and inhibitory cells were present among these neurons. A subset of neurons in the white matter was Tbr-1-immunoreactive and these neurons coexpressed NeuN and neurofilament marker SMI311R. No colocalization of Tbr1 was observed with the inhibitory neuronal markers, calcium-binding proteins. We suggest that a large population of white matter neurons comprises remnants of the subplate. Furthermore, we propose that a subset of white matter neurons was arrested during migration, highlighting the role of cortical maldevelopment in epilepsy associated with mesial temporal sclerosis. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Mechanistic Study of Inhibitory Effects of Metformin and Atorvastatin in Combination on Prostate Cancer Cells in Vitro and in Vivo.

    PubMed

    Wang, Zhen-Shi; Huang, Hua-Rong; Zhang, Lan-Yue; Kim, Seungkee; He, Yan; Li, Dong-Li; Farischon, Chelsea; Zhang, Kun; Zheng, Xi; Du, Zhi-Yun; Goodin, Susan

    2017-01-01

    Metformin is a commonly used drug for the treatment of type II diabetes and atorvastatin is the most prescribed cholesterol-lowering statin. The present study investigated the effects and mechanisms of metformin and atorvastatin in combination on human prostate cancer cells cultured in vitro and grown as xenograft tumor in vivo. Metformin in combination with atorvastatin had stronger effects on growth inhibition and apoptosis in PC-3 cells than either drug alone. The combination also potently inhibited cell migration and the formation of tumorspheres. Metformin and atorvastatin in combination had a potent inhibitory effect on nuclear factor-kappaB (NF-κB) activity and caused strong decreases in the expression of its downstream anti-apoptotic gene Survivin. Moreover, strong decreases in the levels of phospho-Akt and phosphor-extracellular signal-regulated kinase (Erk)1/2 were found in the cells treated with the combination. The in vivo study showed that treatment of severe combined immunodeficient (SCID) mice with metformin or atorvastatin alone resulted in moderate inhibition of tumor growth while the combination strongly inhibited the growth of the tumors. Results of the present study indicate the combination of metformin and atorvastatin may be an effective strategy for inhibiting the growth of prostate cancer and should be evaluated clinically.

  10. Antigen induced inhibition of autoimmune response to rat male accessory glands: role of thymocytes on the efferent phase of the suppression.

    PubMed

    Ferro, M E; Romero-Piffiguer, M; Rivero, V; Yranzo-Volonte, N; Correa, S; Riera, C M

    1991-01-01

    In the present study, we report that Cy-sensitive, MRAG-adherent spleen mononuclear (SpM) inductor-phase T suppressor (Ts) cells obtained from rats pretreated with low doses of a purified fraction (FI) of rat male accessory gland antigens (RAG) are mainly OX19+ and W3/25+. Furthermore, thymocytes from rats pretreated with FI of RAG restore the suppression of the autoimmune response to RAG autoantigens in irradiated recipients of SpM inductor-phase Ts cells. In contrast, thymocytes from rats pretreated with rat heart saline extract (unrelated antigen) did not recuperate the suppression of the autoimmune response detected by macrophage migration inhibitory factor (MIF) and delayed-type hypersensitivity. The suppressor thymocytes did not directly exert their inhibitory effect because they were not effective to suppress the autoimmune response to RAG autoantigens when irradiated recipients did not receive SpM inductor-phase Ts cells. The effect of these thymocytes was found in PNA--but not in PNA+ thymic cell population. The perithymic injection of Toxoplasma gondii did block their suppressor activity. The present report clearly shows an active participation of thymus in the efferent phase of the suppressor circuit that controls the autoimmune response to MRAG. The implications of these findings are discussed.

  11. Selective Modulation of Integrin-mediated Cell Migration by Distinct ADAM Family MembersV⃞

    PubMed Central

    Huang, Jing; Bridges, Lance C.; White, Judith M.

    2005-01-01

    A disintegrin and a metalloprotease (ADAM) family members have been implicated in many biological processes. Although it is recognized that recombinant ADAM disintegrin domains can interact with integrins, little is known about ADAM-integrin interactions in cellular context. Here, we tested whether ADAMs can selectively regulate integrin-mediated cell migration. ADAMs were expressed in Chinese hamster ovary cells that express defined integrins (α4β1, α5β1, or both), and cell migration on full-length fibronectin or on its α4β1 or α5β1 binding fragments was studied. We found that ADAMs inhibit integrin-mediated cell migration in patterns dictated by the integrin binding profiles of their isolated disintegrin domains. ADAM12 inhibited cell migration mediated by the α4β1 but not the α5β1 integrin. ADAM17 had the reciprocal effect; it inhibited α5β1- but not α4β1-mediated cell migration. ADAM19 and ADAM33 inhibited migration mediated by both α4β1 and α5β1 integrins. A point mutation in the ADAM12 disintegrin loop partially reduced the inhibitory effect of ADAM12 on cell migration on the α4β1 binding fragment of fibronectin, whereas mutations that block metalloprotease activity had no effect. Our results indicate that distinct ADAMs can modulate cell migration mediated by specific integrins in a pattern dictated, at least in part, by their disintegrin domains. PMID:16079176

  12. MicroRNA-300 targets hypoxia inducible factor-3 alpha to inhibit tumorigenesis of human non-small cell lung cancer.

    PubMed

    Zhang, Y; Guo, Y; Yang, C; Zhang, S; Zhu, X; Cao, L; Nie, W; Yu, H

    2017-01-01

    Non-small cell lung cancer (NSCLC) is one of the most deadly human cancers. MicroRNA-300 acts as both tumor promoter and suppressor in different types of cancer. Here, we try to identify the function of microRNA-300 in human NSCLC. We compared MicroRNA-300 levels between tumor tissues versus paired adjacent non-tumor lung tissues from NSCLC patients, and in NSCLC versus normal lung cell lines. Effects of microRNA-300 on cell proliferation, invasion and migration were examined in vitro, and on tumor growth in vivo using a xenograft mouse model. Potential mRNA targets of microRNA-300 were predicted and underlying mechanism was explored. MicroRNA-300 expression was lower in both NSCLC tissues and cell lines. Overexpression of microRNA-300 inhibited proliferation, invasion and migration of NSCLC cells in vitro, and tumor growth in vivo. MicroRNA-300 could directly bind to the 3'-UTR of hypoxia inducible factor-3 alpha (HIF3α) mRNA, and inhibit both its mRNA and protein expressions. Restoring HIF3α expression could rescue the inhibitory effects of microRNA-300 on tumorigenesis of NSCLC both in vitro and in vivo. MicroRNA-300 is a tumor suppressor microRNA in NSCLC by downregulating HIF3α expression. Both microRNA-300 and HIF3α may serve as potential therapeutic targets in NSCLC treatment.

  13. Structure of lipid kinase p110β/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism.

    PubMed

    Zhang, Xuxiao; Vadas, Oscar; Perisic, Olga; Anderson, Karen E; Clark, Jonathan; Hawkins, Phillip T; Stephens, Len R; Williams, Roger L

    2011-03-04

    Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. The structure of a p110β/p85β complex identifies an inhibitory function for the C-terminal SH2 domain (cSH2) of the p85 regulatory subunit. Mutagenesis of a cSH2 contact residue activates downstream signaling in cells. This inhibitory contact ties up the C-terminal region of the p110β catalytic subunit, which is essential for lipid kinase activity. In vitro, p110β basal activity is tightly restrained by contacts with three p85 domains: the cSH2, nSH2, and iSH2. RTK phosphopeptides relieve inhibition by nSH2 and cSH2 using completely different mechanisms. The binding site for the RTK's pYXXM motif is exposed on the cSH2, requiring an extended RTK motif to reach and disrupt the inhibitory contact with p110β. This contrasts with the nSH2 where the pY-binding site itself forms the inhibitory contact. This establishes an unusual mechanism by which p85 SH2 domains contribute to RTK signaling specificities. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Berberine Suppresses Cell Motility Through Downregulation of TGF-β1 in Triple Negative Breast Cancer Cells.

    PubMed

    Kim, Sangmin; Lee, Jeongmin; You, Daeun; Jeong, Yisun; Jeon, Myeongjin; Yu, Jonghan; Kim, Seok Won; Nam, Seok Jin; Lee, Jeong Eon

    2018-01-01

    Transforming growth factor-beta proteins (TGF-βs) are multifunctional growth factors and powerful modulators of the epithelial-mesenchymal transition (EMT) in a variety of cancer types including breast and lung cancer cells. Here, we demonstrated the inhibitory effect of berberine (BBR) on tumor growth and metastasis of triple negative breast cancer (TNBC) cells via suppression of TGF-β1 expression. The levels of mRNA expression were analyzed by real-time PCR. The levels of MMP-2, MMP-9 and TGF-β1 protein expression were analyzed by zymography and confocal microscopy, respectively. Cell migration was analyzed by wound healing assay. Tumorigenicity of TNBC cells such as tumor growth and metastasis was analyzed using xenograft models. In a clinical data set, aberrant TGF-β1 expression was associated with poor prognosis of breast cancer patients. Our in vitro results using TNBC cells showed that the expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 and the capacity for cell migration were increased by TGF-β1 treatment. In contrast, basal levels of MMP-2 and MMP-9 were suppressed by a specific TGF-β receptor I inhibitor, SB431542. In addition, TGF-β1-induced MMP-2 and MMP-9 expression and cell migration were decreased by SB431542. Interestingly, we showed for the first time that BBR decreased the level of TGF-β1, but not TGF-β2, in TNBC cells. Furthermore, BBR significantly decreased the level of MMP-2 expression as well as the capacity for cell migration in TNBC cells. Finally, we examined the effect of BBR on in vivo tumor growth and lung metastasis in MDA-MB231 and 4T1 breast cancer xenograft models and showed that both were significantly decreased following BBR treatment. BBR suppresses tumorigenicity of TNBC cells through inhibition of TGF-β1 expression. Therefore, we demonstrate that BBR could be a promising drug for treatment of TNBC. © 2018 The Author(s). Published by S. Karger AG, Basel.

  15. Modular control of endothelial sheet migration

    PubMed Central

    Vitorino, Philip; Meyer, Tobias

    2008-01-01

    Growth factor-induced migration of endothelial cell monolayers enables embryonic development, wound healing, and angiogenesis. Although collective migration is widespread and therapeutically relevant, the underlying mechanism by which cell monolayers respond to growth factor, sense directional signals, induce motility, and coordinate individual cell movements is only partially understood. Here we used RNAi to identify 100 regulatory proteins that enhance or suppress endothelial sheet migration into cell-free space. We measured multiple live-cell migration parameters for all siRNA perturbations and found that each targeted protein primarily regulates one of four functional outputs: cell motility, directed migration, cell–cell coordination, or cell density. We demonstrate that cell motility regulators drive random, growth factor-independent motility in the presence or absence of open space. In contrast, directed migration regulators selectively transduce growth factor signals to direct cells along the monolayer boundary toward open space. Lastly, we found that regulators of cell–cell coordination are growth factor-independent and reorient randomly migrating cells inside the sheet when boundary cells begin to migrate. Thus, cells transition from random to collective migration through a modular control system, whereby growth factor signals convert boundary cells into pioneers, while cells inside the monolayer reorient and follow pioneers through growth factor-independent migration and cell–cell coordination. PMID:19056882

  16. Effect of Aconitum coreanum polysaccharide and its sulphated derivative on the migration of human breast cancer MDA-MB-435s cell.

    PubMed

    Zhang, Yandong; Wu, Wei; Kang, Lihua; Yu, Dehai; Liu, Chunshui

    2017-10-01

    Polysaccharides extracted from medicinal plants possess multiple functions. However, the inhibitory capacity of polysaccharides on the metastasis of breast cancer remains unclear. In the present study, we investigated the inhibitory activity of Aconitum coreanum polysaccharide (ACP1) and its sulphated derivative ACP1-s on migratory behaviour of human breast cancer cells MDA-MB-435s and evaluated the underlying molecular mechanism. The data from Transwell assay indicated that ACP1 and ACP1-s caused a significant inhibition of MDA-MB-435s cell migration in vitro. ACP1 and ACP1-s significantly impaired MDA-MB-435s cell migratory behaviour, and the accumulated distance and average velocity of ACP1- and ACP1-s-treated cells were reduced markedly. We also found ACP1 and ACP1-s treatment could affect dynamic remodeling of actin cytoskeleton, and suppress phosphorylation and activation of signalling molecules, attributing to anti-metastatic role of ACP1 and ACP1-s. These findings reveal a novel therapeutic potential of A. coreanum polysaccharide and its sulphated derivative for breast cancer metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of leukemia inhibitory factor and basic fibroblast growth factor on free radicals and endogenous stem cell proliferation in a mouse model of cerebral infarction.

    PubMed

    Huang, Weihui; Li, Yadan; Lin, Yufeng; Ye, Xue; Zang, Dawei

    2012-07-05

    The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion, and monitored the effect of 25 μg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor administration 2 hours after model establishment. Results showed that following administration, the number of endogenous neural stem cells in the infarct area significantly increased, malondialdehyde content in brain tissue homogenates significantly decreased, nitric oxide content, glutathione peroxidase and superoxide dismutase activity significantly elevated, and mouse motor function significantly improved as confirmed by the rotarod and bar grab tests. In particular, the effect of leukemia inhibitory factor in combination with basic fibroblast growth factor was the most significant. Results indicate that leukemia inhibitory factor and basic fibroblast growth factor can improve the microenvironment after cerebral infarction by altering free radical levels, improving the quantity of endogenous neural stem cells, and promoting neurological function of mice with cerebral infarction.

  18. [Curcumine inhibits migration and invasion of hepatic stellate cells by reducing MMP-2 expression and activity].

    PubMed

    Huang, Jian-xian; Zhu, Bao-he; He, De; Huang, Lin; Hu, Ke; Huang, Bo

    2009-11-01

    To investigate the molecular mechanism of the inhibitory effect of curcumine on the migration and invasion of hepatic stellate cells (HSC). Rat hepatic stellate cells were cultured and activated with ConA. Matrix metalloproteinase-2 (MMP-2) expression and activity was determined by Western blot and gelatin zymography. Migration and invasion of HSC was assessed by wound healing assay and modified Boyden chamber assay. Curcumine reduced the level and activity of MMP-2 expression in activated HSC in a dose-dependent manner. When treated with 25, 50 or 100 micromol/L curcumine, the expression of MMP-2 was reduced by 21.8%+/-5.1%, 65.5%+/-9.2% or 87.9%+/-11.5% (P < 0.05), and the activity of MMP-2 was also significantly reduced by curcumine. Migration and invasion of activated HSC was also inhibited by curcumine in a dose-dependent way. When treated with 25, 50 or 100 micromol/L curcumine, the migration of activated HSC was reduced by 27.5%+/-5.8%, 54.4%+/-7.6% or 67.1%+/-9.3% (P < 0.05), and the invasion of activated HSC was also significantly reduced by curcumine. Curcumine inhibits migration and invasion of activated HSC by reducing MMP-2 expression and activity.

  19. Elucidation of Distinct Roles of Guinea Pig CXCR1 and CXCR2 in Neutrophil Migration toward IL-8 and GROα by Specific Antibodies.

    PubMed

    Tanaka, Kento; Yoshitomi, Tomomi; Hirahara, Kazuki

    2017-01-01

    Chemokine receptors CXCR1 and CXCR2 are conserved between guinea pigs and humans, but the distinct role of each receptor in chemotactic responses of neutrophils against chemokine ligands has not been elucidated due in part to the lack of specific inhibitors against these receptors in guinea pigs. In this study, we investigated the roles of guinea pig CXCR1 and CXCR2 on neutrophils in chemotactic responses to guinea pig interleukin (IL)-8 and growth-regulated oncogene (GRO)α by using specific inhibitory antibodies against these receptors. Neutrophil migration induced by IL-8 was partially inhibited by either anti-CXCR1 antibody or anti-CXCR2 antibody. In addition, the migration was inhibited completely when both anti-CXCR1 and anti-CXCR2 antibodies were combined. On the other hand, neutrophil migration induced by GROα was not inhibited by anti-CXCR1 antibody while inhibited profoundly by anti-CXCR2 antibody. These results indicated that CXCR1 and CXCR2 mediated migration induced by the IL-8 synergistically and only CXCR2 mediated migration induced by GROα in guinea pig neutrophils. Our findings on ligand selectivity of CXCR1 and CXCR2 in guinea pigs are consistent with those in humans.

  20. Relationship between substances in seminal plasma and Acrobeads Test results.

    PubMed

    Komori, Kazuhiko; Tsujimura, Akira; Okamoto, Yoshio; Matsuoka, Yasuhiro; Takao, Tetsuya; Miyagawa, Yasushi; Takada, Shingo; Nonomura, Norio; Okuyama, Akihiko

    2009-01-01

    To asses the effects of seminal plasma on sperm function. Retrospective case-control study. University hospital. One hundred fourteen infertile men. Acrobeads Test scores (0-4) and measurement of interleukin (IL)-6, soluble IL-6 receptor, epidermal growth factor, insulin-like growth factor-I (IGF-I), transforming growth factor-beta I, superoxide dismutase, calcitonin, and macrophage migration inhibitory factor (MIF) levels in seminal plasma. Kruskal-Wallis test to compare the concentrations of substances as a nonparametric test for differences among Acrobeads Test scores and a multivariable logistic regression model to find independent risk factors associated with abnormal Acrobeads Test results. The Acrobeads Test score was 0 for 7 samples, 1 for 20 samples, 2 for 18 samples, 3 for 28 samples, and 4 for 41 samples. Age, abstinence period, and semen parameters, except for sperm motility and percentage of sperm with abnormal morphology, had no effect on the Acrobeads Test results. Concentrations of IGF-I and MIF were significantly higher in patients with abnormal Acrobeads Test results. Multivariate analysis indicated that MIF and IGF-I were significantly associated with abnormal Acrobeads Test results (scores 0 to 1). Although further studies are needed, IGF-I and MIF in seminal plasma may have negative effects on sperm function.

  1. Traditional Chinese medicine Astragalus polysaccharide enhanced antitumor effects of the angiogenesis inhibitor apatinib in pancreatic cancer cells on proliferation, invasiveness, and apoptosis

    PubMed Central

    Wu, Jun; Wang, Jing; Su, Qiang; Ding, Wei; Li, Teng; Yu, Junxian; Cao, Bangwei

    2018-01-01

    Background Traditional chemotherapy and molecular targeted therapy have shown modest effects on the survival of patients with pancreatic cancer. The current study aimed to investigate the antitumor effects of apatinib, Astragalus polysaccharide (APS), and the combination of both the drugs in pancreatic cancer cells and further explore the molecular mechanisms in vitro. Materials and methods Expression of vascular endothelial growth factor receptor-2 (VEGFR-2) in human pancreatic cancer cell lines ASPC-1, PANC-1, and SW1990 was detected by Western blotting. Cell proliferation was measured by MTS, and migration and invasion were detected by wound-healing and Transwell assays, respectively. Cell apoptosis rate was determined by flow cytometry and cellular autophagy level affected by apatinib, and APS was analyzed by Western blotting. Results Human pancreatic cancer cell lines ASPC-1 and PANC-1 expressed VEGFR-2, but VEGFR-2 was not detected in SW1990. Either apatinib or APS inhibited cell proliferation in a dose-dependent manner in ASPC-1 and PANC-1. APS in combination with apatinib showed enhanced inhibitory effects on cell migration and invasion compared with apatinib monotherapy in ASPC-1 and PANC-1. Meanwhile, APS combined with apatinib strongly increased cell apoptosis percentage. Western blotting showed that the combination of APS and apatinib significantly enhanced the downregulation of phosphorylated protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) (p-AKT and p-ERK) as well as matrix metalloproteinases-9 (MMP-9) expression. In addition, both apatinib and APS induced cellular autophagy. However, the expression of autophagy-related proteins was not further elevated in the combination group. Conclusion The study first demonstrated that apatinib showed potentially inhibitory effects in pancreatic cancer cells and that APS enhanced the antitumor effects of apatinib through further downregulating the expression of phosphorylation of AKT and ERK as well as MMP-9. PMID:29785118

  2. Traditional Chinese medicine Astragalus polysaccharide enhanced antitumor effects of the angiogenesis inhibitor apatinib in pancreatic cancer cells on proliferation, invasiveness, and apoptosis.

    PubMed

    Wu, Jun; Wang, Jing; Su, Qiang; Ding, Wei; Li, Teng; Yu, Junxian; Cao, Bangwei

    2018-01-01

    Traditional chemotherapy and molecular targeted therapy have shown modest effects on the survival of patients with pancreatic cancer. The current study aimed to investigate the antitumor effects of apatinib, Astragalus polysaccharide (APS), and the combination of both the drugs in pancreatic cancer cells and further explore the molecular mechanisms in vitro. Expression of vascular endothelial growth factor receptor-2 (VEGFR-2) in human pancreatic cancer cell lines ASPC-1, PANC-1, and SW1990 was detected by Western blotting. Cell proliferation was measured by MTS, and migration and invasion were detected by wound-healing and Transwell assays, respectively. Cell apoptosis rate was determined by flow cytometry and cellular autophagy level affected by apatinib, and APS was analyzed by Western blotting. Human pancreatic cancer cell lines ASPC-1 and PANC-1 expressed VEGFR-2, but VEGFR-2 was not detected in SW1990. Either apatinib or APS inhibited cell proliferation in a dose-dependent manner in ASPC-1 and PANC-1. APS in combination with apatinib showed enhanced inhibitory effects on cell migration and invasion compared with apatinib monotherapy in ASPC-1 and PANC-1. Meanwhile, APS combined with apatinib strongly increased cell apoptosis percentage. Western blotting showed that the combination of APS and apatinib significantly enhanced the downregulation of phosphorylated protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) (p-AKT and p-ERK) as well as matrix metalloproteinases-9 (MMP-9) expression. In addition, both apatinib and APS induced cellular autophagy. However, the expression of autophagy-related proteins was not further elevated in the combination group. The study first demonstrated that apatinib showed potentially inhibitory effects in pancreatic cancer cells and that APS enhanced the antitumor effects of apatinib through further downregulating the expression of phosphorylation of AKT and ERK as well as MMP-9.

  3. Stereotactic core needle breast biopsy marker migration: An analysis of factors contributing to immediate marker migration.

    PubMed

    Jain, Ashali; Khalid, Maria; Qureshi, Muhammad M; Georgian-Smith, Dianne; Kaplan, Jonah A; Buch, Karen; Grinstaff, Mark W; Hirsch, Ariel E; Hines, Neely L; Anderson, Stephan W; Gallagher, Katherine M; Bates, David D B; Bloch, B Nicolas

    2017-11-01

    To evaluate breast biopsy marker migration in stereotactic core needle biopsy procedures and identify contributing factors. This retrospective study analyzed 268 stereotactic biopsy markers placed in 263 consecutive patients undergoing stereotactic biopsies using 9G vacuum-assisted devices from August 2010-July 2013. Mammograms were reviewed and factors contributing to marker migration were evaluated. Basic descriptive statistics were calculated and comparisons were performed based on radiographically-confirmed marker migration. Of the 268 placed stereotactic biopsy markers, 35 (13.1%) migrated ≥1 cm from their biopsy cavity. Range: 1-6 cm; mean (± SD): 2.35 ± 1.22 cm. Of the 35 migrated biopsy markers, 9 (25.7%) migrated ≥3.5 cm. Patient age, biopsy pathology, number of cores, and left versus right breast were not associated with migration status (P> 0.10). Global fatty breast density (P= 0.025) and biopsy in the inner region of breast (P = 0.031) were associated with marker migration. Superior biopsy approach (P= 0.025), locally heterogeneous breast density, and t-shaped biopsy markers (P= 0.035) were significant for no marker migration. Multiple factors were found to influence marker migration. An overall migration rate of 13% supports endeavors of research groups actively developing new biopsy marker designs for improved resistance to migration. • Breast biopsy marker migration is documented in 13% of 268 procedures. • Marker migration is affected by physical, biological, and pathological factors. • Breast density, marker shape, needle approach etc. affect migration. • Study demonstrates marker migration prevalence; marker design improvements are needed.

  4. Mammalian target of rapamycin inhibitors, temsirolimus and torin 1, attenuate stemness-associated properties and expression of mesenchymal markers promoted by phorbol-myristate-acetate and oncostatin-M in glioblastoma cells.

    PubMed

    Chandrika, Goparaju; Natesh, Kumar; Ranade, Deepak; Chugh, Ashish; Shastry, Padma

    2017-03-01

    The phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling pathway is crucial for tumor survival, proliferation, and progression, making it an attractive target for therapeutic intervention. In glioblastoma, activated mammalian target of rapamycin promotes invasive phenotype and correlates with poor patient survival. A wide range of mammalian target of rapamycin inhibitors are currently being evaluated for cytotoxicity and anti-proliferative activity in various tumor types but are not explored sufficiently for controlling tumor invasion and recurrence. We recently reported that mammalian target of rapamycin inhibitors-rapamycin, temsirolimus, torin 1, and PP242-suppressed invasion and migration promoted by tumor necrosis factor-alpha and phorbol-myristate-acetate in glioblastoma cells. As aggressive invasion and migration of tumors are associated with mesenchymal and stem-like cell properties, this study aimed to examine the effect of mammalian target of rapamycin inhibitors on these features in glioblastoma cells. We demonstrate that temsirolimus and torin 1 effectively reduced the constitutive as well as phorbol-myristate-acetate/oncostatin-M-induced expression of mesenchymal markers (fibronectin, vimentin, and YKL40) and neural stem cell markers (Sox2, Oct4, nestin, and mushashi1). The inhibitors significantly abrogated the neurosphere-forming capacity induced by phorbol-myristate-acetate and oncostatin-M. Furthermore, we demonstrate that the drugs dephosphorylated signal transducer and activator transcription factor 3, a major regulator of mesenchymal and neural stem cell markers implicating the role of signal transducer and activator transcription factor 3 in the inhibitory action of these drugs. The findings demonstrate the potential of mammalian target of rapamycin inhibitors as "stemness-inhibiting drugs" and a promising therapeutic approach to target glioma stem cells.

  5. Migration as a form of workforce attrition: a nine-country study of pharmacists

    PubMed Central

    Wuliji, Tana; Carter, Sarah; Bates, Ian

    2009-01-01

    Background There is a lack of evidence to inform policy development on the reasons why health professionals migrate. Few studies have sought to empirically determine factors influencing the intention to migrate and none have explored the relationship between factors. This paper reports on the first international attempt to investigate the migration intentions of pharmacy students and identify migration factors and their relationships. Methods Responses were gathered from 791 final-year pharmacy students from nine countries: Australia, Bangladesh, Croatia, Egypt, Portugal, Nepal, Singapore, Slovenia and Zimbabwe. Data were analysed by means of Principal Components Analysis (PCA) and two-step cluster analysis to determine the relationships between factors influencing migration and the characteristics of subpopulations most likely and least likely to migrate. Results Results showed a significant difference in attitudes towards the professional and sociopolitical environment of the home country and perceptions of opportunities abroad between those who have no intention of migrating and those who intend to migrate on a long-term basis. Attitudes of students planning short-term migration were not significantly different from those of students who did not intend to migrate. These attitudes, together with gender, knowledge of other migrant pharmacists and past experiences abroad, are associated with an increased propensity for migration. Conclusion Given the influence of the country context and environment on migration intentions, research and policy should frame the issue of migration in the context of the wider human resource agenda, thus viewing migration as one form of attrition and a symptom of other root causes. Remuneration is not an independent stand-alone factor influencing migration intentions and cannot be decoupled from professional development factors. Comprehensive human resource policy development that takes into account the issues of both remuneration and professional development are necessary to encourage retention. PMID:19358704

  6. β-Escin Effectively Modulates HUVECS Proliferation and Tube Formation.

    PubMed

    Varinská, Lenka; Fáber, Lenka; Kello, Martin; Petrovová, Eva; Balážová, Ľudmila; Solár, Peter; Čoma, Matúš; Urdzík, Peter; Mojžiš, Ján; Švajdlenka, Emil; Mučaji, Pavel; Gál, Peter

    2018-01-17

    In the present study we evaluated the anti-angiogenic activities of β-escin (the major active compound of Aesculus hippocastanum L. seeds). Human umbilical-vein endothelial cells (HUVECs) were used as an in vitro model for studying the molecular mechanism underlying the anti-angiogenic effect of β-escin. We investigated the in vitro effects on proliferation, migration, and tube formation of HUVECs and in vivo anti-angiogenic activity was evaluated in a chick chorioallantoic membrane (CAM) angiogenesis assay. Moreover, the effect on gene expressions was determined by the RT2 ProfilerTM human angiogenesis PCR Array. It was found that β-escin exerts inhibitory effect on the basic fibroblast growth factor (bFGF)-induced proliferation, migration and tube formation, as well as CAM angiogenesis in vivo. The inhibition of critical steps of angiogenic process observed with β-escin could be partially explained by suppression of Akt activation in response to bFGF. Moreover, the anti-angiogenic effects of β-escin could also be mediated via inhibition of EFNB2 and FGF-1 gene expressions in endothelial cells. In conclusion, β-escin affects endothelial cells as a negative mediator of angiogenesis in vitro and in vivo and may therefore be considered as a promising candidate for further research elucidating its underlying mechanism of action.

  7. Codonolactone, a sesquiterpene lactone isolated from Chloranthus henryi Hemsl, inhibits breast cancer cell invasion, migration and metastasis by downregulating the transcriptional activity of Runx2.

    PubMed

    Wang, Wei; Chen, Bin; Zou, Ruolan; Tu, Xiuying; Tan, Songlin; Lu, Hong; Liu, Zhaojie; Fu, Jianjiang

    2014-11-01

    Metastasis is the most insidious aspect of breast cancer, but effective strategies to control this malignant process are still lacking. In previous studies, we screened over 200 extracts from plants of genus Chloranthaceae by bioactivity-guided fractionation, and found that Codonolactone (CLT) exhibited potential antimetastatic properties in breast cancer cells. This sesquiterpene lactone was isolated from Chloranthus henryi Hemsl, and is also found in other medical herbs, such as Codonopsis pilosula, Atractylodes macrocephala Koidz and others. Here, we report that CLT inhibited the ability of invasion and migration in metastatic breast cancer cells. Furthermore, CLT exhibited significant suppression on formation of lung metastatic foci of breast cancer in vivo. We next investigated the mechanism of CLT-induced metastasis inhibitory effects in breast cancer cells. A significant inhibition on activity and expression of MMP-9 and MMP-13 was observed. Moreover, data from western blotting, Runx2 transcription factor assay and chromatin immunoprecipitation assay showed that binding ability of Runx2 to sequences of the mmp-13 promoter was inhibited by CLT. Collectively, these findings suggested that the antimetastatic properties of CLT in breast cancer were due to the inhibition of MMPs, which might be associated with a downregulation of Runx2 transcriptional activity.

  8. Evidences that beta1 integrin and Rac1 are involved in the overriding effect of laminin on myelin-associated glycoprotein inhibitory activity on neuronal cells.

    PubMed

    Laforest, Sullivan; Milanini, Julie; Parat, Fabrice; Thimonier, Jean; Lehmann, Maxime

    2005-11-01

    During neurite elongation, migrating growth cones encounter both permissive and inhibitory substrates, such as laminin and MAG (myelin-associated glycoprotein), respectively. Here, we demonstrated on two neuronal cell lines (PC12 and N1E-115), that laminin and collagen hampered, in a dose-dependent manner, MAG inhibitory activity on several integrin functions, i.e., neurite growth, cell adhesion and cell spreading. Using a function blocking antibody, in PC12 cells, we showed that alpha1beta1 integrin is required in these phenomena. In parallel, we observed that MAG perturbs actin dynamics and lamellipodia formation during early steps of cell spreading. This seemed to be independent of RhoA activation, but dependent of Rac-1 inhibition by MAG. Laminin overrode MAG activity on actin and prevented MAG inhibition NGF-induced Rac1 activation. In conclusion, we evidenced antagonistic signaling between MAG receptors and beta1 integrins, in which Rac-1 may have a central function.

  9. Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB

    PubMed Central

    2011-01-01

    Introduction Heat shock proteins (HSPs) are normally induced under environmental stress to serve as chaperones for maintenance of correct protein folding but they are often overexpressed in many cancers, including breast cancer. The expression of Hsp27, an ATP-independent small HSP, is associated with cell migration and drug resistance of breast cancer cells. Breast cancer stem cells (BCSCs) have been identified as a subpopulation of breast cancer cells with markers of CD24-CD44+ or high intracellular aldehyde dehydrogenase activity (ALDH+) and proved to be associated with radiation resistance and metastasis. However, the involvement of Hsp27 in the maintenance of BCSC is largely unknown. Methods Mitogen-activated protein kinase antibody array and Western blot were used to discover the expression of Hsp27 and its phosphorylation in ALDH + BCSCs. To study the involvement of Hsp27 in BCSC biology, siRNA mediated gene silencing and quercetin treatment were used to inhibit Hsp27 expression and the characters of BCSCs, which include ALDH+ population, mammosphere formation and cell migration, were analyzed simultaneously. The tumorigenicity of breast cancer cells after knockdown of Hsp27 was analyzed by xenograftment assay in NOD/SCID mice. The epithelial-mesenchymal transition (EMT) of breast cancer cells was analyzed by wound-healing assay and Western blot of snail, vimentin and E-cadherin expression. The activation of nuclear factor kappa B (NF-κB) was analyzed by luciferase-based reporter assay and nuclear translocation. Results Hsp27 and its phosphorylation were increased in ALDH+ BCSCs in comparison with ALDH- non-BCSCs. Knockdown of Hsp27 in breast cancer cells decreased characters of BCSCs, such as ALDH+ population, mammosphere formation and cell migration. In addition, the in vivo CSC frequency could be diminished in Hsp27 knockdown breast cancer cells. The inhibitory effects could also be observed in cells treated with quercetin, a plant flavonoid inhibitor of Hsp27, and it could be reversed by overexpression of Hsp27. Knockdown of Hsp27 also suppressed EMT signatures, such as decreasing the expression of snail and vimentin and increasing the expression of E-cadherin. Furthermore, knockdown of Hsp27 decreased the nuclear translocation as well as the activity of NF-κB in ALDH + BCSCs, which resulted from increasing expression of IκBα. Restored activation of NF-κB by knockdown of IκBα could reverse the inhibitory effect of Hsp27 siRNA in suppression of ALDH+ cells. Conclusions Our data suggest that Hsp27 regulates the EMT process and NF-κB activity to contribute the maintenance of BCSCs. Targeting Hsp27 may be considered as a novel strategy in breast cancer therapy. PMID:22023707

  10. MicroRNA-34a targets epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion

    PubMed Central

    Fu, Shangyi; Yang, Luquan; Tania, Mousumi; Zhang, Xianqin; Xiao, Xiuli; Zhang, Xianning; Fu, Junjiang

    2017-01-01

    MicroRNA-34a (miR-34a) plays an essential role against tumorigenesis and progression of cancer metastasis. Here, we analyzed the expression, targets and functional effects of miR-34a on epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs), such as TWIST1, SLUG and ZEB1/2, and an EMT-inducing protein NOTCH1 in breast cancer (BC) cell migration and invasion and its correlation with tumorigenesis and clinical outcomes. Expression of miR-34a is downregulated in human metastatic breast cancers (MBC) compared to normal breast tissues and is negatively correlated with clinicopathological features of MBC patients. Ectopic expression of miR-34a in MBC cell-line BT-549 significantly inhibits cell migration and invasion, but exhibits no clear effect on BC cell growth. We found that miR-34a is able to inactivate EMT signaling pathway with mediatory of NOTCH1, TWIST1, and ZEB1 upon 3′-UTR activity in MBC cell lines, but has no inhibitory effects on SLUG and ZEB2. Furthermore, we investigated the synergistic effects of Thymoquinone (TQ) and miR-34a together on the expression of EMT-associated proteins. Results showed that co-delivery of miR-34a and TQ is able to inactivate EMT signaling pathway by directly targeting TWIST1 and ZEB1 in BT-549 cell line, indicating that they might be a promising therapeutic combination against breast cancer metastasis. Epigenetic inactivation of the EMT-TFs/miR-34a pathway can potentially alter the equilibrium of these regulations, facilitating EMT and metastasis in BC. Altogether, our findings suggest that miR-34a alone could serve as a potential therapeutic agent for MBC, and together with TQ, their therapeutic potential is synergistically enhanced. PMID:28423483

  11. MicroRNA-34a targets epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion.

    PubMed

    Imani, Saber; Wei, Chunli; Cheng, Jingliang; Khan, Md Asaduzzaman; Fu, Shangyi; Yang, Luquan; Tania, Mousumi; Zhang, Xianqin; Xiao, Xiuli; Zhang, Xianning; Fu, Junjiang

    2017-03-28

    MicroRNA-34a (miR-34a) plays an essential role against tumorigenesis and progression of cancer metastasis. Here, we analyzed the expression, targets and functional effects of miR-34a on epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs), such as TWIST1, SLUG and ZEB1/2, and an EMT-inducing protein NOTCH1 in breast cancer (BC) cell migration and invasion and its correlation with tumorigenesis and clinical outcomes. Expression of miR-34a is downregulated in human metastatic breast cancers (MBC) compared to normal breast tissues and is negatively correlated with clinicopathological features of MBC patients. Ectopic expression of miR-34a in MBC cell-line BT-549 significantly inhibits cell migration and invasion, but exhibits no clear effect on BC cell growth. We found that miR-34a is able to inactivate EMT signaling pathway with mediatory of NOTCH1, TWIST1, and ZEB1 upon 3'-UTR activity in MBC cell lines, but has no inhibitory effects on SLUG and ZEB2. Furthermore, we investigated the synergistic effects of Thymoquinone (TQ) and miR-34a together on the expression of EMT-associated proteins. Results showed that co-delivery of miR-34a and TQ is able to inactivate EMT signaling pathway by directly targeting TWIST1 and ZEB1 in BT-549 cell line, indicating that they might be a promising therapeutic combination against breast cancer metastasis. Epigenetic inactivation of the EMT-TFs/miR-34a pathway can potentially alter the equilibrium of these regulations, facilitating EMT and metastasis in BC. Altogether, our findings suggest that miR-34a alone could serve as a potential therapeutic agent for MBC, and together with TQ, their therapeutic potential is synergistically enhanced.

  12. Interrelationship of Cytokines, Hypothalamic-Pituitary-Adrenal Axis Hormones, and Psychosocial Variables in the Prediction of Preterm Birth

    PubMed Central

    Pearce, B.D.; Grove, J.; Bonney, E.A.; Bliwise, N.; Dudley, D.J.; Schendel, D.E.; Thorsen, P.

    2010-01-01

    Background/Aims To examine the relationship of biological mediators (cytokines, stress hormones), psychosocial, obstetric history, and demographic factors in the early prediction of preterm birth (PTB) using a comprehensive logistic regression model incorporating diverse risk factors. Methods In this prospective case-control study, maternal serum biomarkers were quantified at 9–23 weeks’ gestation in 60 women delivering at <37 weeks compared to 123 women delivering at term. Biomarker data were combined with maternal sociodemographic factors and stress data into regression models encompassing 22 preterm risk factors and 1st-order interactions. Results Among individual biomarkers, we found that macrophage migration inhibitory factor (MIF), interleukin-10, C-reactive protein (CRP), and tumor necrosis factor-α were statistically significant predictors of PTB at all cutoff levels tested (75th, 85th, and 90th percentiles). We fit multifactor models for PTB prediction at each biomarker cutoff. Our best models revealed that MIF, CRP, risk-taking behavior, and low educational attainment were consistent predictors of PTB at all biomarker cutoffs. The 75th percentile cutoff yielded the best predicting model with an area under the ROC curve of 0.808 (95% CI 0.743–0.874). Conclusion Our comprehensive models highlight the prominence of behavioral risk factors for PTB and point to MIF as a possible psychobiological mediator. PMID:20160447

  13. Interrelationship of cytokines, hypothalamic-pituitary-adrenal axis hormones, and psychosocial variables in the prediction of preterm birth.

    PubMed

    Pearce, B D; Grove, J; Bonney, E A; Bliwise, N; Dudley, D J; Schendel, D E; Thorsen, P

    2010-01-01

    To examine the relationship of biological mediators (cytokines, stress hormones), psychosocial, obstetric history, and demographic factors in the early prediction of preterm birth (PTB) using a comprehensive logistic regression model incorporating diverse risk factors. In this prospective case-control study, maternal serum biomarkers were quantified at 9-23 weeks' gestation in 60 women delivering at <37 weeks compared to 123 women delivering at term. Biomarker data were combined with maternal sociodemographic factors and stress data into regression models encompassing 22 preterm risk factors and 1st-order interactions. Among individual biomarkers, we found that macrophage migration inhibitory factor (MIF), interleukin-10, C-reactive protein (CRP), and tumor necrosis factor-alpha were statistically significant predictors of PTB at all cutoff levels tested (75th, 85th, and 90th percentiles). We fit multifactor models for PTB prediction at each biomarker cutoff. Our best models revealed that MIF, CRP, risk-taking behavior, and low educational attainment were consistent predictors of PTB at all biomarker cutoffs. The 75th percentile cutoff yielded the best predicting model with an area under the ROC curve of 0.808 (95% CI 0.743-0.874). Our comprehensive models highlight the prominence of behavioral risk factors for PTB and point to MIF as a possible psychobiological mediator. Copyright (c) 2010 S. Karger AG, Basel.

  14. Anti-inflammatory effects of theophylline, cromolyn and salbutamol in a murine model of pleurisy.

    PubMed Central

    Saleh, T. S.; Calixto, J. B.; Medeiros, Y. S.

    1996-01-01

    1. The aim of this study was to examine the effect of theophylline, cromolyn and salbutamol, three well-known anti-asthmatic drugs, on the early (4 h) and late (48 h) phases of cell migration and fluid leakage induced by carrageenin in the pleural cavity of mice. 2. In the first set of experiments, animals were pretreated (30 min) with different doses of theophylline (0.5-50 mg kg-1, i.p.), cromolyn (0.02-0.2 mg per pleural cavity) or salbutamol (0.05-50 mg kg-1, i.p.); the total and differential cell content, and also the exudate were analysed 4 h after carrageenin (1%) administration. Afterwards, in order to evaluate the time course effects of these drugs on both phases of the inflammatory reaction, one dose employed in the above protocol was chosen, to pretreat (0.5-24 h) different groups of animals. The studied parameters were evaluated 4 and 48 h after pleurisy induction. 3. Acute administration of theophylline (1-50 mg kg-1, i.p.) cromolyn (0.02-0.2 mg per pleural cavity) and salbutamol (0.5-50 mg kg-1, i.p.), 30 min prior to carrageenin, caused significant inhibition of total cell and fluid leakage in the pleural cavity at 4 h (P < 0.01). All drugs exerted a long-lasting inhibitory effect on both exudation and cell migration (P < 0.01) when administered 0.5-8 h before pleurisy induction. However, the temporal profile of the inhibitory effect induced by these drugs on the first phase of the inflammatory reaction was clearly different. Thus, the inhibitory effect induced by theophylline and cromolyn on exudation was significantly longer (up to 24 h) in comparison to their effects on cell migration (only up to 8 h). In contrast, although salbutamol when administered 30 min before pleurisy induction abolished fluid leakage (P < 0.01), this effect was not sustained in the groups pretreated for 4-8 h. In these latter groups, a significant but much smaller reduction of exudation was observed (P < 0.01), whereas the magnitude of cell migration inhibition did not vary. 4. The second phase (48 h) of the inflammatory reaction induced by carrageenin (1%) was significantly inhibited by cromolyn (0.02 mg per pleural cavity) when this drug was administered 0.5-24 h before pleurisy induction (P < 0.01). Similar results were observed when theophylline (50 mg kg-1, i.p.) was administered 0.5-4 h before the injection of the phlogistic agent (P < 0.01). Treatment of the animals with salbutamol (5 mg kg-1, i.p.), 0.5-24 h before pleurisy induction, did not inhibit either cell migration or fluid leakage. In this condition, a significant increase of these parameters was observed in the group pretreated with salbutamol 8-24 h before pleurisy induction (P < 0.01). 5. These results indicate that theophylline and cromolyn were able to inhibit the early (4 h) and late (48 h) phases of the inflammatory reaction induced by carrageenin in a murine model of pleurisy. Salbutamol was effective only against the early phase. The inhibitory effects of theophylline, cromolyn and salbutamol on the early phase of this inflammatory reaction were long-lasting, although a distinct profile of inhibition was observed among them. These findings confirm and extend previous results described in other models of asthma and support both clinical and experimental evidence suggesting that these anti-asthmatic agents exhibit marked anti-inflammatory properties. PMID:8762112

  15. The cyclin-dependent kinase inhibitor p57Kip2 regulates cell cycle exit, differentiation, and migration of embryonic cerebral cortical precursors.

    PubMed

    Tury, Anna; Mairet-Coello, Georges; DiCicco-Bloom, Emanuel

    2011-08-01

    Mounting evidence indicates cyclin-dependent kinase (CDK) inhibitors (CKIs) of the Cip/Kip family, including p57(Kip2) and p27(Kip1), control not only cell cycle exit but also corticogenesis. Nevertheless, distinct activities of p57(Kip2) remain poorly defined. Using in vivo and culture approaches, we show p57(Kip2) overexpression at E14.5-15.5 elicits precursor cell cycle exit, promotes transition from proliferation to neuronal differentiation, and enhances process outgrowth, while opposite effects occur in p57(Kip2)-deficient precursors. Studies at later ages indicate p57(Kip2) overexpression also induces precocious glial differentiation, suggesting stage-dependent effects. In embryonic cortex, p57(Kip2) overexpression advances cell radial migration and alters postnatal laminar positioning. While both CKIs induce differentiation, p57(Kip2) was twice as effective as p27(Kip1) in inducing neuronal differentiation and was not permissive to astrogliogenic effects of ciliary neurotrophic factor, suggesting that the CKIs differentially modulate cell fate decisions. At molecular levels, although highly conserved N-terminal regions of both CKIs elicit cycle withdrawal and differentiation, the C-terminal region of p57(Kip2) alone inhibits in vivo migration. Furthermore, p57(Kip2) effects on neurogenesis and gliogenesis require the N-terminal cyclin/CDK binding/inhibitory domains, while previous p27(Kip1) studies report cell cycle-independent functions. These observations suggest p57(Kip2) coordinates multiple stages of corticogenesis and exhibits distinct and common activities compared with related family member p27(Kip1).

  16. Smolt physiology and endocrinology: Chapter 5

    USGS Publications Warehouse

    McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2012-01-01

    The parr-smolt transformation of anadromous salmonids is a suite of behavioral, morphological, and physiological changes that are preparatory for downstream migration and seawater entry. The timing of smolt development varies among species, occurring soon after hatching in pink and chum salmon and after one to several years in Atlantic salmon. In many species the transformation is size dependent and occurs in spring, mediated through photoperiod and temperature cues. Smolt development is stimulated by several hormones including growth hormone, insulin-like growth factor-1, cortisol, and thyroid hormones, whereas prolactin is generally inhibitory. Increased salinity tolerance is one of the most important and tractable changes, and is caused by alteration in the function of the major osmoregulatory organs, the gill, gut, and kidney. Increased abundance of specific ion transporters (Na+/K+-ATPase, Na+/K+/Cl− cotransporter and apical Cl− channel) in gill ionocytes results in increased salt secretory capacity, increased growth and swimming performance in seawater, and higher marine survival.

  17. Identification of distinct telencephalic progenitor pools for neuronal diversity in the amygdala

    PubMed Central

    Hirata, Tsutomu; Li, Peijun; Lanuza, Guillermo M.; Cocas, Laura A.; Huntsman, Molly M.; Corbin, Joshua G.

    2009-01-01

    Development of the amygdala, a central structure of the limbic system, remains poorly understood. Using mouse as a model, our studies reveal that two spatially distinct and early specified telencephalic progenitor pools marked by the homeodomain transcription factor Dbx1 are major sources of neuronal cell diversity in the mature amygdala. We find that Dbx1+ cells of the ventral pallium (VP) generate excitatory neurons of the basolateral complex and cortical amygdala nuclei. Moreover, Dbx1-derived cells comprise a novel migratory stream that emanates from the preoptic area (POA), a ventral telencephalic domain adjacent to the diencephalic border. The Dbx1+ POA-derived population migrates specifically to the amygdala, and as defined by both immunochemical and electrophysiological criteria, generates a unique subclass of inhibitory neurons in the medial amygdala nucleus. Thus, this POA-derived population represents a novel progenitor pool dedicated to the limbic system. PMID:19136974

  18. Identification of distinct telencephalic progenitor pools for neuronal diversity in the amygdala.

    PubMed

    Hirata, Tsutomu; Li, Peijun; Lanuza, Guillermo M; Cocas, Laura A; Huntsman, Molly M; Corbin, Joshua G

    2009-02-01

    The development of the amygdala, a central structure of the limbic system, remains poorly understood. We found that two spatially distinct and early-specified telencephalic progenitor pools marked by the homeodomain transcription factor Dbx1 are major sources of neuronal cell diversity in the mature mouse amygdala. We found that Dbx1-positive cells of the ventral pallium generate the excitatory neurons of the basolateral complex and cortical amygdala nuclei. Moreover, Dbx1-derived cells comprise a previously unknown migratory stream that emanates from the preoptic area (POA), a ventral telencephalic domain adjacent to the diencephalic border. The Dbx1-positive, POA-derived population migrated specifically to the amygdala and, as defined by both immunochemical and electrophysiological criteria, generated a unique subclass of inhibitory neurons in the medial amygdala nucleus. Thus, this POA-derived population represents a previously unknown progenitor pool dedicated to the limbic system.

  19. Environmental endocrinology of salmon smoltification

    USGS Publications Warehouse

    Bjornsson, Bjorn Thrandur; Stefansson, S.O.; McCormick, S.D.

    2011-01-01

    Smolting is a hormone-driven developmental process that is adaptive for downstream migration and ocean survival and growth in anadromous salmonids. Smolting includes increased salinity tolerance, increased metabolism, downstream migratory and schooling behavior, silvering and darkened fin margins, and olfactory imprinting. These changes are promoted by growth hormone, insulin-like growth factor I, cortisol, thyroid hormones, whereas prolactin is inhibitory. Photoperiod and temperature are critical environmental cues for smolt development, and their relative importance will be critical in determining responses to future climate change. Most of our knowledge of the environmental control and endocrine mediation of smolting is based on laboratory and hatchery studies, yet there is emerging information on fish in the wild that indicates substantial differences. Such differences may arise from differences in environmental stimuli in artificial rearing environments, and may be critical to ocean survival and population sustainability. Endocrine disruptors, acidification and other contaminants can perturb smolt development, resulting in poor survival after seawater entry. ?? 2010.

  20. Soluble lymphocytic mediators

    PubMed Central

    Pick, E.

    1974-01-01

    The effect of a number of drugs on the production of macrophage migration inhibitory factor (MIF) by antigen-stimulated sensitized guinea-pig lymph node cells was studied. The drugs were present during the entire culture period and eliminated from supernatants by dialysis. It was found that MIF secretion is inhibited by exogenous dibutyryl cyclic AMP and by theophylline and chlorphenesin, two agents raising the endogenous level of cyclic AMP. On the other hand, isoproterenol, which stimulates cyclic AMP generation in several tissues, did not block MIF production. The formation of the mediator was also suppressed by the microfilament-affecting drug, cytochalasin B. The microtubular disruptive agents, colchicine and vinblastine sulphate, did not influence MIF production. It is concluded that: (a) endogenous cyclic AMP may act as a regulator of MIF production; (b) the activity of contractile microfilaments is probably required for MIF formation; and (c) microtubules are not involved in the secretory process. PMID:4369184

  1. Human interleukin for DA cells or leukemia inhibitory factor is released by Vero cells in human embryo coculture.

    PubMed

    Papaxanthos-Roche, A; Taupin, J L; Mayer, G; Daniel, J Y; Moreau, J F

    1994-09-01

    In the light of the newly discovered implications of human interleukin for DA cells and leukemia inhibitory factor in embryology, we searched for the presence of this soluble cytokine in the supernatant of Vero cell coculture systems. Using a bioassay as well as a specific ELISA, we demonstrated that Vero cells are able to release large quantities of human interleukin for DA cells and leukemia inhibitory factor in the embryo-growing medium of such cocultures.

  2. An Anti-Inflammatory Role of VEGFR2/Src Kinase Inhibitor in Herpes Simplex Virus 1-Induced Immunopathology▿

    PubMed Central

    Sharma, Shalini; Mulik, Sachin; Kumar, Naveen; Suryawanshi, Amol; Rouse, Barry T.

    2011-01-01

    Corneal neovascularization represents a key step in the blinding inflammatory stromal keratitis (SK) lesion caused by ocular infection with herpes simplex virus (HSV). In this report, we describe a novel approach for limiting the angiogenesis caused by HSV infection of the mouse eye. We show that topical or systemic administration of the Src kinase inhibitor (TG100572) that inhibits downstream molecules involved in the vascular endothelial growth factor (VEGF) signaling pathway resulted in markedly diminished levels of HSV-induced angiogenesis and significantly reduced the severity of SK lesions. Multiple mechanisms were involved in the inhibitory effects. These included blockade of IL-8/CXCL1 involved in inflammatory cells recruitment that are a source of VEGF, diminished cellular infiltration in the cornea, and reduced proliferation and migration of CD4+ T cells into the corneas. As multiple angiogenic factors (VEGF and basic fibroblast growth factor [bFGF]) play a role in promoting angiogenesis during SK and since Src kinases are involved in signaling by many of them, the use of Src kinase inhibition represents a promising way of limiting the severity of SK lesions the most common cause of infectious blindness in the Western world. PMID:21471229

  3. Lack of inhibitory effects of the anti-fibrotic drug imatinib on endothelial cell functions in vitro and in vivo.

    PubMed

    Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg H W

    2009-10-01

    Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc.

  4. Lack of inhibitory effects of the anti-fibrotic drug imatinib on endothelial cell functions in vitro and in vivo

    PubMed Central

    Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg HW

    2009-01-01

    Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc. PMID:18774958

  5. Tumor cell cholesterol depletion and V-ATPase inhibition as an inhibitory mechanism to prevent cell migration and invasiveness in melanoma.

    PubMed

    Costa, Gildeíde Aparecida; de Souza, Sávio Bastos; da Silva Teixeira, Layz Ribeiro; Okorokov, Lev A; Arnholdt, Andrea Cristina Vetö; Okorokova-Façanha, Anna L; Façanha, Arnoldo Rocha

    2018-03-01

    V-ATPase interactions with cholesterol enriched membrane microdomains have been related to metastasis in a variety of cancers, but the underlying mechanism remains at its beginnings. It has recently been reported that the inhibition of this H + pump affects cholesterol mobilization to the plasma membrane. Inhibition of melanoma cell migration and invasiveness was assessed by wound healing and Transwell assays in murine cell lines (B16F10 and Melan-A). V-ATPase activity was measured in vitro by ATP hydrolysis and H + transport in membrane vesicles, and intact cell H + fluxes were measured by using a non-invasive Scanning Ion-selective Electrode Technique (SIET). Cholesterol depletion by 5mM MβCD was found to be inhibitory to the hydrolytic and H + pumping activities of the V-ATPase of melanoma cell lines, as well as to the migration and invasiveness capacities of these cells. Nearly the same effects were obtained using concanamycin A, a specific inhibitor of V-ATPase, which also promoted a decrease of the H + efflux in live cells at the same extent of MβCD. We found that cholesterol depletion significantly affects the V-ATPase activity and the initial metastatic processes following a profile similar to those observed in the presence of the V-ATPase specific inhibitor, concanamycin. The results shed new light on the functional role of the interactions between V-ATPases and cholesterol-enriched microdomains of cell membranes that contribute with malignant phenotypes in melanoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Loss of Either Rac1 or Rac3 GTPase Differentially Affects the Behavior of Mutant Mice and the Development of Functional GABAergic Networks

    PubMed Central

    Pennucci, Roberta; Talpo, Francesca; Astro, Veronica; Montinaro, Valentina; Morè, Lorenzo; Cursi, Marco; Castoldi, Valerio; Chiaretti, Sara; Bianchi, Veronica; Marenna, Silvia; Cambiaghi, Marco; Tonoli, Diletta; Leocani, Letizia; Biella, Gerardo; D'Adamo, Patrizia; de Curtis, Ivan

    2016-01-01

    Rac GTPases regulate the development of cortical/hippocampal GABAergic interneurons by affecting the early development and migration of GABAergic precursors. We have addressed the function of Rac1 and Rac3 proteins during the late maturation of hippocampal interneurons. We observed specific phenotypic differences between conditional Rac1 and full Rac3 knockout mice. Rac1 deletion caused greater generalized hyperactivity and cognitive impairment compared with Rac3 deletion. This phenotype matched with a more evident functional impairment of the inhibitory circuits in Rac1 mutants, showing higher excitability and reduced spontaneous inhibitory currents in the CA hippocampal pyramidal neurons. Morphological analysis confirmed a differential modification of the inhibitory circuits: deletion of either Rac caused a similar reduction of parvalbumin-positive inhibitory terminals in the pyramidal layer. Intriguingly, cannabinoid receptor-1-positive terminals were strongly increased only in the CA1 of Rac1-depleted mice. This increase may underlie the stronger electrophysiological defects in this mutant. Accordingly, incubation with an antagonist for cannabinoid receptors partially rescued the reduction of spontaneous inhibitory currents in the pyramidal cells of Rac1 mutants. Our results show that Rac1 and Rac3 have independent roles in the formation of GABAergic circuits, as highlighted by the differential effects of their deletion on the late maturation of specific populations of interneurons. PMID:26582364

  7. Negative regulation of retrovirus expression in embryonal carcinoma cells mediated by an intragenic domain.

    PubMed

    Loh, T P; Sievert, L L; Scott, R W

    1988-11-01

    An intragenic region spanning the tRNA primer binding site of a Moloney murine leukemia virus recombinant retrovirus was found to restrict expression specifically in embryonal carcinoma (EC) cells. When the inhibitory domain was present, the levels of steady-state RNA synthesized from integrated recombinant templates in stable cotransformation assays were reduced 20-fold in EC cells but not in C2 myoblast cells. Transient-cotransfection assays showed that repression of a template containing the EC-specific inhibitory component was relieved by an excess of specific competitor DNA. In addition, repression mediated by the inhibitory component was orientation independent. This evidence demonstrates the presence of a saturable, trans-acting negative regulatory factor(s) in EC cells and suggests that the interaction of the factor(s) with the intragenic inhibitory component occurs at the DNA level.

  8. Growth regulation of the mammalian ocular lens by vitreous humor.

    PubMed

    Banerjee, A; Parafina, J; Bagchi, M

    1992-05-01

    Experiments were performed in our laboratory to study the effects of a mammalian 8 kD vitreous humor (VH) factor on the DNA synthesis and mitosis of the epithelial cells of organ cultured rabbit lens. The 8 kD polypeptide factor was purified from mature rabbit vitreous humor by liquid chromatography. Proliferative activities of the epithelial cells of organ cultured lenses were stimulated by 3% rabbit serum. The data from our experiments depicted that the 8 kD VH factor effectively inhibits DNA synthesis and mitosis by the epithelial cells of the organ cultured lens. Our experiments also showed that this 8 kD VH factor can maintain its growth inhibitory activity even when heated for 3 min at 95 degrees C. The growth inhibitory effect of the 8 kD VH factor was dose dependent. Using iodinated vitreal proteins it was demonstrated that the VH proteins are able to enter or bind to lens epithelial cells. The growth inhibitory effect of the 8 kD VH factor was also tested on tissue cultured lens epithelial cells. These experiments showed that the 8 kD VH factor has no growth inhibitory effect on the tissue cultured lens epithelial cells. This experiment has been repeated many times using different concentrations of the factor. These observations suggest that the 8 kD VH factor may have receptors in the lens capsular material (extracellular matrix) and the factor-receptor binding is essential for the growth inhibitory effect.

  9. Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation.

    PubMed

    Holt, Andrew W; Martin, Danielle N; Shaver, Patti R; Adderley, Shaquria P; Stone, Joshua D; Joshi, Chintamani N; Francisco, Jake T; Lust, Robert M; Weidner, Douglas A; Shewchuk, Brian M; Tulis, David A

    2016-09-01

    Coronary artery disease (CAD) accounts for over half of all cardiovascular disease-related deaths. Uncontrolled arterial smooth muscle (ASM) cell migration is a major component of CAD pathogenesis and efforts aimed at attenuating its progression are clinically essential. Cyclic nucleotide signaling has long been studied for its growth-mitigating properties in the setting of CAD and other vascular disorders. Heme-containing soluble guanylyl cyclase (sGC) synthesizes cyclic guanosine monophosphate (cGMP) and maintains vascular homeostasis predominantly through cGMP-dependent protein kinase (PKG) signaling. Considering that reactive oxygen species (ROS) can interfere with appropriate sGC signaling by oxidizing the cyclase heme moiety and so are associated with several CVD pathologies, the current study was designed to test the hypothesis that heme-independent sGC activation by BAY 60-2770 (BAY60) maintains cGMP levels despite heme oxidation and inhibits ASM cell migration through phosphorylation of the PKG target and actin-binding vasodilator-stimulated phosphoprotein (VASP). First, using the heme oxidant ODQ, cGMP content was potentiated in the presence of BAY60. Using a rat model of arterial growth, BAY60 significantly reduced neointima formation and luminal narrowing compared to vehicle (VEH)-treated controls. In rat ASM cells BAY60 significantly attenuated cell migration, reduced G:F actin, and increased PKG activity and VASP Ser239 phosphorylation (pVASP·S239) compared to VEH controls. Site-directed mutagenesis was then used to generate overexpressing full-length wild type VASP (FL-VASP/WT), VASP Ser239 phosphorylation-mimetic (FL-VASP/239D) and VASP Ser239 phosphorylation-resistant (FL-VASP/239A) ASM cell mutants. Surprisingly, FL-VASP/239D negated the inhibitory effects of FL-VASP/WT and FL-VASP/239A cells on migration. Furthermore, when FL-VASP mutants were treated with BAY60, only the FL-VASP/239D group showed reduced migration compared to its VEH controls. Intriguingly, FL-VASP/239D abrogated the stimulatory effects of FL-VASP/WT and FL-VASP/239A cells on PKG activity. In turn, pharmacologic blockade of PKG in the presence of BAY60 reversed the inhibitory effect of BAY60 on naïve ASM cell migration. Taken together, we demonstrate for the first time that BAY60 inhibits ASM cell migration through cGMP/PKG/VASP signaling yet through mechanisms independent of pVASP·S239 and that FL-VASP overexpression regulates PKG activity in rat ASM cells. These findings implicate BAY60 as a potential pharmacotherapeutic agent against aberrant ASM growth disorders such as CAD and also establish a unique mechanism through which VASP controls PKG activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Inhibitory control and adaptive behaviour in children with mild intellectual disability.

    PubMed

    Gligorović, M; Buha Ðurović, N

    2014-03-01

    Inhibitory control, as one of the basic mechanisms of executive functions, is extremely important for adaptive behaviour. The relation between inhibitory control and adaptive behaviour is the most obvious in cases of behavioural disorders and psychopathology. Considering the lack of studies on this relation in children with disabilities, the aim of our research is to determine the relation between inhibitory control and adaptive behaviour in children with mild intellectual disability. The sample consists of 53 children with mild intellectual disability. Selection criteria were: IQ between 50 and 70, age between 10 and 14, absence of bilingualism, and with no medical history of neurological impairment, genetic and/or emotional problems. Modified Day-Night version of the Stroop task, and Go-no-Go Tapping task were used for the assessment of inhibitory control. Data on adaptive behaviour were obtained by applying the first part of AAMR (American Association on Mental Retardation) Adaptive Behaviour Scale-School, Second Edition (ABS-S:2). Significant relationships were determined between some aspects of inhibitory control and the most of assessed domains of adaptive behaviour. Inhibitory control measures, as a unitary inhibition model, significantly predict results on Independent Functioning, Economic Activity, Speech and Language Development, and Number and Times domains of the ABS-S:2. Inhibitory control, assessed by second part of the Stroop task, proved to be a significant factor in practical (Independent Functioning) and conceptual (Economic Activity, Speech and Language Development, and Numbers and Time) adaptive skills. The first part of the Stroop task, as a measure of selective attention, proved to be a significant factor in language and numerical demands, along with second one. Inhibitory control through motor responses proved to be a significant factor in independent functioning, economic activities, language and self-direction skills. We can conclude that inhibitory control represents a significant developmental factor of different adaptive behaviour domains in children with mild intellectual disability. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 John Wiley & Sons Ltd, MENCAP & IASSIDD.

  11. Alterations in the function of circulating mononuclear cells derived from patients with Crohn’s disease treated with mastic

    PubMed Central

    Kaliora, Andriana C; Stathopoulou, Maria G; Triantafillidis, John K; Dedoussis, George VZ; Andrikopoulos, Nikolaos K

    2007-01-01

    AIM: To assess the effects of mastic administration on cytokine production of circulating mononuclear cells of patients with active Crohn's disease (CD). METHODS: The study was conducted in patients with established mildly to moderately active CD, attending the outpatient clinics of the hospital, and in healthy controls. Recruited to a 4 wk treatment with mastic caps (6 caps/d,0.37 g/cap) were 10 patients and 8 controls, all of who successfully completed the protocol. Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), monocyte chemotactic protein-1 (MCP-1), macrophage migration inhibitory factor (MIF) and intracellular antioxidant glutathione (GSH) were evaluated in peripheral blood mononuclear cells (PBMC) before and after treatment. RESULTS: Treating CD patients with mastic resulted in the reduction of TNF-α secretion (2.1 ± 0.9 ng/mL vs 0.5 ± 0.4 ng/mL, P = 0.028). MIF release was significantly increased (1.2 ± 0.4 ng/mL vs 2.5 ± 0.7 ng/mL, P = 0.026) meaning that random migration and chemotaxis of monocytes/macrophages was inhibited. No significant changes were observed in IL-6, MCP-1 and GSH concentrations. CONCLUSION: This study shows that mastic acts as an immunomodulator on PBMC, acting as a TNF-α inhibitor and a MIF stimulator. Although further double-blind, placebo-controlled studies in a large number of patients is required to clarify the role of this natural product, this finding provides strong evidence that mastic might be an important regulator of immunity in CD. PMID:18023095

  12. Behavioural and neurobiological consequences of macrophage migration inhibitory factor gene deletion in mice.

    PubMed

    Bay-Richter, Cecilie; Janelidze, Shorena; Sauro, Analise; Bucala, Richard; Lipton, Jack; Deierborg, Tomas; Brundin, Lena

    2015-09-04

    Evidence from clinical studies and animal models show that inflammation can lead to the development of depression. Macrophage migration inhibitory factor (MIF) is an important multifunctional cytokine that is synthesized by several cell types in the brain. MIF can increase production of other cytokines, activates cyclooxygenase (COX)-2 and can counter-regulate anti-inflammatory effects of glucocorticoids. Increased plasma levels of MIF are associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation and depressive symptoms in patients. In contrast, MIF knockout (KO) mice have been found to exhibit increased depressive-like behaviour. The exact role for MIF in depression is therefore still controversial. To further understand the role of MIF in depression, we studied depressive-like behaviour in congenic male and female MIF KO mice and wild-type (WT) littermates and the associated neurobiological mechanisms underlying the behavioural outcome. MIF KO and WT mice were tested for spontaneous locomotor activity in the open-field test, anhedonia-like behaviour in the sucrose preference test (SPT), as well as behavioural despair in the forced swim test (FST) and tail suspension test (TST). Brain and serum levels of cytokines, the enzymes COX-2 and indoleamine-2,3-dioxygenase (IDO) and the glucocorticoid hormone corticosterone were measured by RT-qPCR and/or high-sensitivity electrochemiluminescence-based multiplex immunoassays. Monoamines and metabolites were examined using HPLC. We found that MIF KO mice of both sexes displayed decreased depressive-like behaviour as measured in the FST. In the TST, a similar, but non-significant, trend was also found. IFN-γ levels were decreased, and dopamine metabolism increased in MIF KO mice. Decreased brain IFN-γ levels predicted higher striatal dopamine levels, and high dopamine levels in turn were associated with reduced depressive-like behaviour. In the SPT, there was a sex-specific discrepancy, where male MIF KO mice showed reduced anhedonia-like behaviour whereas female KO mice displayed increased anhedonia-like behaviour. Our results suggest that this relates to the increased corticosterone levels detected in female, but not male, MIF KO mice. Our findings support that MIF is involved in the generation of depressive-like symptoms, potentially by the effects of IFN-γ on dopamine metabolism. Our data further suggests a sex-specific regulation of the involved mechanisms.

  13. Macrophage Migration Inhibitory Factor -173 G/C Polymorphism: A Global Meta-Analysis across the Disease Spectrum.

    PubMed

    Illescas, Oscar; Gomez-Verjan, Juan C; García-Velázquez, Lizbeth; Govezensky, Tzipe; Rodriguez-Sosa, Miriam

    2018-01-01

    Human macrophage migration inhibitory factor (MIF) is a cytokine that plays a role in several metabolic and inflammatory processes. Single nucleotide polymorphism (SNP) -173 G/C (rs755622) on MIF gene has been associated with numerous diseases, such as arthritis and cancer. However, most of the reports concerning the association of MIF with these and other pathologies are inconsistent and remain quite controversial. Therefore, we performed a meta-analysis from 96 case-control studies on -173 G/C MIF SNP and stratified the data according to the subjects geographic localization or the disease pathophysiology, in order to determine a more meaningful significance to this SNP. The polymorphism was strongly associated with an increased risk in autoimmune-inflammatory, infectious and age-related diseases on the dominant (OR: 0.74 [0.58-0.93], P < 0.01; OR: 0.81 [0.74-0.89], P < 0.0001; and OR: 0.81 [0.76-0.87], P < 0.0001, respectively) and the recessive models (OR: 0.74 [0.57-0.095], P < 0.01; OR: 0.66 [0.48-0.92], P < 0.0154; and OR: 0.70 [0.60-0.82], P < 0.0001, respectively). Also, significant association was found in the geographic localization setting for Asia, Europe and Latin America subdivisions in the dominant (OR: 0.76 [0.69-0.84], P < 0.0001; OR: 0.77 [0.72-0.83], P < 0.0001; OR: 0.61 [0.44-0.83], P -value: 0.0017, respectively) and overdominant models (OR: 0.85 [0.77-0.94], P < 0.0001; OR: 0.80 [0.75-0.86], P < 0.0001; OR: 0.73 [0.63-0.85], P -value: 0.0017, respectively). Afterwards, we implemented a network meta-analysis to compare the association of the polymorphism for two different subdivisions. We found a stronger association for autoimmune than for age-related or autoimmune-inflammatory diseases, and stronger association for infectious than for autoimmune-inflammatory diseases. We report for the first time a meta-analysis of rs755622 polymorphism with a variety of stratified diseases and populations. The study reveals a strong association of the polymorphism with autoimmune and infectious diseases. These results may help direct future research on MIF -173 G/C in diseases in which the relation is clearer and thus assist the search for more plausible applications.

  14. Role of macrophage migration inhibitory factor (MIF) in the effects of oxidative stress on human retinal pigment epithelial cells.

    PubMed

    Ko, Ji-Ae; Sotani, Yasuyuki; Ibrahim, Diah Gemala; Kiuchi, Yoshiaki

    2017-10-01

    Proliferative vitreoretinopathy (PVR) is the major cause of treatment failure in individuals who undergo surgery for retinal detachment. The epithelial-mesenchymal transition (EMT) in retinal pigment epithelium (RPE) cells contributes to the pathogenesis of PVR. Oxidative stress is thought to play a role in the progression of retinal diseases including PVR. We have now examined the effects of oxidative stress on the EMT and related processes in the human RPE cell line. We found that H 2 O 2 induced the contraction of RPE cells in a three-dimensional collagen gel. Analysis of a cytokine array revealed that H 2 O 2 specifically increased the release of macrophage migration inhibitory factor (MIF) from RPE cells. Reverse transcription-polymerase chain reaction and immunoblot analyses showed that H 2 O 2 increased the expression of MIF in RPE cells. Immunoblot and immunofluorescence analyses revealed that H 2 O 2 upregulated the expression of α-SMA and vimentin and downregulated that of ZO-1 and N-cadherin. Consistent with these observations, the transepithelial electrical resistance of cell was reduced by exposure to H 2 O 2 . The effects of oxidative stress on EMT-related and junctional protein expression as well as on transepithelial electrical resistance were inhibited by antibodies to MIF, but they were not mimicked by treatment with recombinant MIF. Finally, analysis with a profiling array for mitogen-activated protein kinase signalling revealed that H 2 O 2 specifically induced the phosphorylation of p38 mitogen-activated protein kinase. Our results thus suggest that MIF may play a role in induction of the EMT and related processes by oxidative stress in RPE cells and that it might thereby contribute to the pathogenesis of PVR. Proliferative vitreoretinopathy is a major complication of rhegmatogenous retinal detachment, and both oxidative stress and induction of the EMT in RPE cells are thought to contribute to the pathogenesis of this condition. We have now examined the effects of oxidative stress on the EMT and related processes in the human RPE cell line ARPE19. Our results thus implicate MIF in induction of the EMT and related processes by oxidative stress in RPE cells and the regulated expression of EMT markers. They further suggest that MIF may play an important role in the pathogenesis of PVR. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Macrophage migration inhibitory factor gene polymorphisms in inflammatory bowel disease: an association study in New Zealand Caucasians and meta-analysis.

    PubMed

    Falvey, James D; Bentley, Robert W; Merriman, Tony R; Hampton, Mark B; Barclay, Murray L; Gearry, Richard B; Roberts, Rebecca L

    2013-10-21

    To investigate the association of macrophage migration inhibitory factor (MIF) promoter polymorphisms with inflammatory bowel disease (IBD) risk. One thousand and six New Zealand Caucasian cases and 540 Caucasian controls were genotyped for the MIF SNP -173G > C (rs755622) and the repeat polymorphism CATT₅₋₈ (rs5844572) using a pre-designed TaqMan SNP assay and capillary electrophoresis, respectively. Data were analysed for single site and haplotype association with IBD risk and phenotype. Meta-analysis was employed, to assess cumulative evidence of association of MIF -173G > C with IBD. All published genotype data for MIF -173G > C in IBD were identified using PubMed and subsequently searching the references of all PubMed-identified studies. Imputed genotypes for MIF -173G > C were generated from the Wellcome Trust Case Control Consortium (and National Institute of Diabetes and Digestive and Kidney Diseases). Separate meta-analyses were performed on Caucasian Crohn's disease (CD) (3863 patients, 6031 controls), Caucasian ulcerative colitis (UC) (1260 patients, 1987 controls), and East Asian UC (416 patients and 789 controls) datasets using the Mantel-Haenszel method. The New Zealand dataset had 93% power, and the meta-analyses had 100% power to detect an effect size of OR = 1.40 at α = 0.05, respectively. In our New Zealand dataset, single-site analysis found no evidence of association of MIF polymorphisms with overall risk of CD, UC, and IBD or disease phenotype (all P values > 0.05). Haplotype analysis found the CATT₅/-173C haplotype occurred at a higher frequency in New Zealand controls compared to IBD patients (0.6 vs 0.01; P = 0.03, OR = 0.22; 95%CI: 0.05-0.99), but this association did not survive bonferroni correction. Meta-analysis of our New Zealand MIF -173G > C data with data from seven additional Caucasian datasets using a random effects model found no association of MIF polymorphisms with CD, UC, or overall IBD. Similarly, meta-analysis of all published MIF -173G > C data from East Asian datasets (416 UC patients, 789 controls) found no association of this promoter polymorphism with UC. We found no evidence of association of MIF promoter polymorphisms with IBD.

  16. Immune complexes stimulate CCR7-dependent dendritic cell migration to lymph nodes

    PubMed Central

    Clatworthy, Menna R.; Aronin, Caren E. Petrie; Mathews, Rebeccah J.; Morgan, Nicole; Smith, Kenneth G.C.; Germain, Ronald N.

    2014-01-01

    Antibodies are critical for defence against a variety of microbes but may also be pathogenic in some autoimmune diseases. Many effector functions of antibody are mediated by Fcγ receptors (FcγRs), which are found on most immune cells, including dendritic cells (DCs). DCs are important antigen presenting cells and play a central role in inducing antigen-specific tolerance or immunity1,2. Following antigen acquisition in peripheral tissues, DCs migrate to draining lymph nodes via lymphatics to present antigen to T cells. In this study we demonstrate that FcγR engagement by IgG immune complexes (IC) stimulates DC migration from peripheral tissues to the paracortex of draining lymph nodes. In vitro, IC-stimulated murine and human DCs showed enhanced directional migration in a CCL19 gradient and increased CCR7 expression. Using intravital two-photon microscopy, we observed that local administration of IC resulted in dermal DC mobilisation. We confirmed that dermal DC migration to lymph nodes was CCR7-dependent and increased in the absence of the inhibitory receptor, FcγRIIb. These observations have relevance to autoimmunity, because autoantibody-containing serum from mice and humans with SLE also increased dermal DC migration to lymph nodes in vivo, suggesting that this process may occur in lupus, potentially driving the inappropriate localisation of autoantigen-bearing DCs. PMID:25384086

  17. The role of migration in the development of depressive symptoms among Latino immigrant parents in the USA.

    PubMed

    Ornelas, India J; Perreira, Krista M

    2011-10-01

    Nearly one out of every four children in the US is a child of immigrants. Yet few studies have assessed how factors at various stages of migration contribute to the development of health problems in immigrant populations. Most focus only on post-migration factors influencing health. Using data from the Latino Adolescent Migration, Health, and Adaptation Project, this study assessed the extent to which pre-migration (e.g., major life events, high poverty), migration (e.g., unsafe and stressful migration experiences), post-migration (e.g., discrimination, neighborhood factors, family reunification, linguistic isolation), and social support factors contributed to depressive symptoms among a sample of Latino immigrant parents with children ages 12-18. Results indicated that high poverty levels prior to migration, stressful experiences during migration, as well as racial problems in the neighborhood and racial/ethnic discrimination upon settlement in the US most strongly contribute to the development of depressive symptoms among Latino immigrant parents. Family reunification, social support, and familism reduce the likelihood of depressive symptoms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The Role of Migration in the Development of Depressive Symptoms among Latino Immigrant Parents in the USA

    PubMed Central

    Ornelas, India J.; Perreira, Krista M.

    2011-01-01

    Nearly one out of every four children in the US is a child of immigrants. Yet few studies have assessed how factors at various stages of migration contribute to the development of health problems in immigrant populations. Most focus only on post-migration factors influencing health. Using data from the Latino Adolescent Migration, Health, and Adaptation Project, this study assessed the extent to which pre-migration (e.g., major life events, high poverty), migration (e.g., unsafe and stressful migration experiences), post-migration (e.g., discrimination, neighborhood factors, family reunification, linguistic isolation), and social support factors contributed to depressive symptoms among a sample of Latino immigrant parents with children ages 12-18. Results indicated that high poverty levels prior to migration, stressful experiences during migration, as well as racial problems in the neighborhood and racial/ethnic discrimination upon settlement in the US most strongly contribute to the development of depressive symptoms among Latino immigrant parents. Family reunification, social support, and familism reduce the likelihood of depressive symptoms. PMID:21908089

  19. Pleiotropic effects of bisphosphonates on osteosarcoma.

    PubMed

    Ohba, Tetsuro; Cates, Justin M M; Cole, Heather A; Slosky, David A; Haro, Hirotaka; Ichikawa, Jiro; Ando, Takashi; Schwartz, Herbert S; Schoenecker, Jonathan G

    2014-06-01

    Osteosarcoma is the most common primary malignant tumor of bone and accounts for half of all primary skeletal malignancies in children and teenagers. The prognosis for patients who fail or progress on first-line chemotherapy protocols is poor, therefore, additional adjuvant therapeutic strategies are needed. A recent feasibility study has demonstrated that the nitrogen-containing bisphosphonate zoledronic acid (ZOL) can be combined safely with conventional chemotherapy. However, the pharmacodynamics of bisphosphonate therapy is not well characterized. Osteosarcoma is a highly angiogenic tumor. Recent reports of the anti-angiogenic effects of bisphosphonates prompted us to determine whether nitrogen-containing bisphosphonate (ZOL and alendronate) treatment attenuates osteosarcoma growth by inhibition of osteoclast activity, tumor-mediated angiogenesis, or direct inhibitory effects on osteosarcoma. Here, we demonstrate that bisphosphonates directly inhibit VEGFR2 expression in endothelial cells, as well as endothelial cell proliferation and migration. Additionally, bisphosphonates also decrease VEGF-A expression in osteosarcoma (K7M3) cells, resulting in reduced stimulation of endothelial cell migration in co-culture assays. ZOL also decreases VEGFR1 expression in aggressive osteosarcoma cell lines (K7M3, 143B) and induces apoptosis of these cells, but has negligible effects on less aggressive osteosarcoma cell lines (K12 and TE85). In vivo ZOL treatment results in significant reduction in osteosarcoma-initiated angiogenesis and tumor growth in a murine model of osteosarcoma. In conclusion, bisphosphonates have diverse growth inhibitory effects on osteosarcoma through: (1) activation of apoptosis and inhibition of cell proliferation, (2) inhibition of VEGF-A and VEGFR1 expression by tumor cells, (3) inhibition of tumor-induced angiogenesis, and (4) direct inhibitory actions on endothelial cells. Published by Elsevier Inc.

  20. Pre-Treatment of Human Mesenchymal Stem Cells With Inflammatory Factors or Hypoxia Does Not Influence Migration to Osteoarthritic Cartilage and Synovium.

    PubMed

    Leijs, Maarten J C; van Buul, Gerben M; Verhaar, Jan A N; Hoogduijn, Martin J; Bos, Pieter K; van Osch, Gerjo J V M

    2017-04-01

    Mesenchymal stem cells (MSCs) are promising candidates as a cell-based therapy for osteoarthritis (OA), although current results are modest. Pre-treatment of MSCs before application might improve their therapeutic efficacy. Pre-treatment of MSCs with inflammatory factors or hypoxia will improve their migration and adhesion capacities toward OA-affected tissues. Controlled laboratory study. We used real-time polymerase chain reaction to determine the effects of different fetal calf serum (FCS) batches, platelet lysate (PL), hypoxia, inflammatory factors, factors secreted by OA tissues, and OA synovial fluid (SF) on the expression of 12 genes encoding chemokine or adhesion receptors. Migration of MSCs toward factors secreted by OA tissues was studied in vitro, and attachment of injected MSCs was evaluated in vivo in healthy and OA knees of male Wistar rats. Different FCS batches, PL, or hypoxia did not influence the expression of the migration and adhesion receptor genes. Exposure to inflammatory factors altered the expression of CCR1, CCR4, CD44, PDGFRα, and PDGFRβ. MSCs migrated toward factors secreted by OA tissues in vitro. Neither pre-treatment with inflammatory factors nor the presence of OA influenced MSC migration in vitro or adhesion in vivo. Factors secreted by OA tissues increase MSC migration in vitro. In vivo, no difference in MSC adhesion was found between OA and healthy knees. Pre-treatment with inflammatory factors influenced the expression of migration and adhesion receptors of MSCs but not their migration in vitro or adhesion in vivo. To improve the therapeutic capacity of intra-articular injection of MSCs, they need to remain intra-articular for a longer period of time. Pre-treatment of MSCs with hypoxia or inflammatory factors did not increase the migration or adhesion capacity of MSCs and will therefore not likely prolong their intra-articular longevity. Alternative approaches to prolong the intra-articular presence of MSCs should be developed to increase the therapeutic effect of MSCs in OA.

  1. Daucosterol Inhibits the Proliferation, Migration, and Invasion of Hepatocellular Carcinoma Cells via Wnt/β-Catenin Signaling.

    PubMed

    Zeng, Junquan; Liu, Xing; Li, Xiaofei; Zheng, Yongliang; Liu, Bin; Xiao, Youzhang

    2017-06-02

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. The purpose of this study was to determine the effects of daucosterol on HCC by investigating Wnt/β-catenin signaling. In this study, HepG2 and SMMC-7721 cells were treated with varying concentrations of daucosterol, and the corresponding inhibitory effects on HCC cells were examined via CCK-8 assays. Cell migration and invasion abilities were detected via transwell assays. β-Catenin and phospho (p)-β-catenin levels were analyzed via western blotting. Our results showed that daucosterol reduced the proliferation, migration, and invasion capacities of HCC cells in a concentration-dependent manner. In addition, daucosterol reduced the levels of β-catenin and p-β-catenin in HepG2 and SMMC-7721 cells. Furthermore, the Wnt signaling pathway inhibitor SB-216763 was used to treat HepG2 and SMMC-7721 cells with daucosterol. Our results showed that co-treatment with daucosterol and SB-216763 abolished the effects of daucosterol on cell inhibition ratios, cell migration, and cell invasion. These findings indicated that daucosterol inhibited cell migration and invasion in HCC cells via the Wnt/β-catenin signaling pathway. Therefore, our study highlights the use of daucosterol as a promising therapeutic strategy for HCC treatment.

  2. CXCL1 inhibits airway smooth muscle cell migration through the decoy receptor Duffy antigen receptor for chemokines.

    PubMed

    Al-Alwan, Laila A; Chang, Ying; Rousseau, Simon; Martin, James G; Eidelman, David H; Hamid, Qutayba

    2014-08-01

    Airway smooth muscle cell (ASMC) migration is an important mechanism postulated to play a role in airway remodeling in asthma. CXCL1 chemokine has been linked to tissue growth and metastasis. In this study, we present a detailed examination of the inhibitory effect of CXCL1 on human primary ASMC migration and the role of the decoy receptor, Duffy AgR for chemokines (DARC), in this inhibition. Western blots and pathway inhibitors showed that this phenomenon was mediated by activation of the ERK-1/2 MAPK pathway, but not p38 MAPK or PI3K, suggesting a biased selection in the signaling mechanism. Despite being known as a nonsignaling receptor, small interference RNA knockdown of DARC showed that ERK-1/2 MAPK activation was significantly dependent on DARC functionality, which, in turn, was dependent on the presence of heat shock protein 90 subunit α. Interestingly, DARC- or heat shock protein 90 subunit α-deficient ASMCs responded to CXCL1 stimulation by enhancing p38 MAPK activation and ASMC migration through the CXCR2 receptor. In conclusion, we demonstrated DARC's ability to facilitate CXCL1 inhibition of ASMC migration through modulation of the ERK-1/2 MAPK-signaling pathway. Copyright © 2014 by The American Association of Immunologists, Inc.

  3. Determinants of the Egyptian labour migration.

    PubMed

    Kandil, M; Metwally, M

    1992-03-01

    The objective is to summarize the pattern of Egyptian migration to Arab oil-producing countries (AOPC), to review some factors that are important determinants of labor movement based on theory, and to empirically model the migration rate to AOPC and to Saudi Arabia. Factors are differentiated as to their relative importance. Push factors are the low wages, high inflation rate, and high population density in Egypt; pull factors are higher wages. It is predicted that an increase in income from destination countries has a significant positive impact on the migration rate. An increase in population density stimulates migration. An increase in inflation acts to increase out-migration with a 2-year lag, which accommodates departure preparation. Egypt's experience with labor migration is described for the pre-oil boom, and the post-oil boom. Several estimates of labor migration are given. Government policy toward migration is positive. Theory postulates migration to be determined by differences in the availability of labor, labor rewards between destination and origin, and the cost of migration. In the empirical model, push factors are population density, the current inflation rate, and the ratio of income/capita in AOPC to Egypt. The results indicate that the ratio of income/capita had a strong pull impact and population density had a strong push impact. The inflation rate has a positive impact with a lag estimated at 2 years. Prior to the Camp David Accord, there was a significant decrease in the number of Egyptian migrants due to political tension. The findings support the classical theory of factor mobility. The consequences of migration on the Egyptian economy have been adverse. Future models should disaggregate data because chronic shortages exist in some parts of the labor market. Manpower needs assessment would be helpful for policy makers.

  4. Inhibitory spectrum of alpha 2-plasmin inhibitor.

    PubMed Central

    Saito, H; Goldsmith, G H; Moroi, M; Aoki, N

    1979-01-01

    alpha 2-Plasmin inhibitor (alpha 2PI) has been recently characterized as a fast-reacting inhibitor of plasmin in human plasma and appears to play an important role in the regulation of fibrinolysis in vivo. We have studied the effect of purified alpha 2PI upon various proteases participating in human blood coagulation and kinin generation. At physiological concentration (50 microgram/ml), alpha 2PI inhibited the clot-promoting and prekallikrein-activating activity of Hageman factor fragments, the amidolytic, kininogenase, and clot-promoting activities of plasma kallikrein, and the clot-promoting properties of activated plasma thromboplastin antecedent (PTA, Factor XIa) and thrombin. alpha 2PI had minimal inhibitory effect on surface-bound activated PTA and activated Stuart factor (Factor Xa). alpha 2PI did not inhibit the activity of activated Christmas factor (Factor IXa) or urinary kallikrein. Heparin (1.5-2.0 units/ml) did not enhance the inhibitory function of alpha 2PI. These results suggest that, like other plasma protease inhibitors, alpha 2PI possesses a broad in vitro spectrum of inhibitory properties. PMID:156364

  5. Antimelanogenic effect of c-phycocyanin through modulation of tyrosinase expression by upregulation of ERK and downregulation of p38 MAPK signaling pathways

    PubMed Central

    2011-01-01

    Background Pigmentation is one of the essential defense mechanisms against oxidative stress or UV irradiation; however, abnormal hyperpigmentation in human skin may pose a serious aesthetic problem. C-phycocyanin (Cpc) is a phycobiliprotein from spirulina and functions as an antioxidant and a light harvesting protein. Though it is known that spirulina has been used to reduce hyperpigmentation, little literature addresses the antimelanogenic mechanism of Cpc. Herein, we investigated the rationale for the Cpc-induced inhibitory mechanism on melanin synthesis in B16F10 melanoma cells. Methods Cpc-induced inhibitory effects on melanin synthesis and tyrosinase expression were evaluated. The activity of MAPK pathways-associated molecules such as MAPK/ERK and p38 MAPK, were also examined to explore Cpc-induced antimelanogenic mechanisms. Additionally, the intracellular localization of Cpc was investigated by confocal microscopic analysis to observe the migration of Cpc. Results Cpc significantly (P < 0.05) reduced both tyrosinase activity and melanin production in a dose-dependent manner. This phycobiliprotein elevated the abundance of intracellular cAMP leading to the promotion of downstream ERK1/2 phosphorylation and the subsequent MITF (the transcription factor of tyrosinase) degradation. Further, Cpc also suppressed the activation of p38 causing the consequent disturbed activation of CREB (the transcription factor of MITF). As a result, Cpc negatively regulated tyrosinase gene expression resulting in the suppression of melanin synthesis. Moreover, the entry of Cpc into B16F10 cells was revealed by confocal immunofluorescence localization and immunoblot analysis. Conclusions Cpc exerted dual antimelanogenic mechanisms by upregulation of MAPK/ERK-dependent degradation of MITF and downregulation of p38 MAPK-regulated CREB activation to modulate melanin formation. Cpc may have potential applications in biomedicine, food, and cosmetic industries. PMID:21988805

  6. Acteoside and Acyl-Migrated Acteoside, Compounds in Chinese Kudingcha Tea, Inhibit α-Amylase In Vitro.

    PubMed

    Lu, Yuqin; Zhou, Wenyu; Feng, Yue; Li, Yao; Liu, Ke; Liu, Lizhong; Lin, Dongxu; He, Zhendan; Wu, Xuli

    2017-06-01

    Acteoside, the predominant polyphenol of small-leaved kudingcha, the Chinese tea, has various biological activities. In this study, we examined the acyl migration of acteoside to isoacteoside with high-temperature treatment of acteoside. The inhibitory effects of acyl-migrated acteoside and acteoside on α-amylase were investigated, as were their binding interaction with α-amylase. The binding of acteoside and isoacteoside to α-amylase was investigated by using the fluorescence spectra assay, circular dichroism, and protein-ligand docking studies. Acteoside was more effective than preheated acteoside and isoacteoside in inhibiting α-amylase activity. Acteoside and isoacteoside binding to α-amylase may induce conformational changes to α-amylase, and the binding site of acteoside and isoacteoside being near the active site pocket of α-amylase may explain the decreased activity of α-amylase. The different affinities and binding sites of acteoside and isoacteoside for α-amylase resulted in different inhibition rates, which may be due to structural differences between acteoside and isoacteoside.

  7. Pharmacological Beta-Adrenergic Receptor Activation Attenuates Neutrophil Recruitment by a Mechanism Dependent on Nicotinic Receptor and the Spleen.

    PubMed

    Silva, Rangel L; Castanheira, Fernanda V; Figueiredo, Jozi G; Bassi, Gabriel S; Ferreira, Sérgio H; Cunha, Fernando Q; Cunha, Thiago M; Kanashiro, Alexandre

    2016-08-01

    The aim of this study was to identify the effect of beta-adrenergic receptor activation on neutrophil migration in experimental peritonitis elucidating the neuroimmune components involved such as nicotinic receptors and the spleen. Mice pre-treated with mecamylamine (nicotinic antagonist) and propranolol (beta-adrenergic antagonist) or splenectomized animals were treated with isoproterenol (beta-adrenergic agonist) prior to intraperitoneal injection of carrageenan. After 4 h, the infiltrating neutrophils and the local cytokine/chemokine levels were evaluated in the peritoneal lavage. The effect of isoproterenol on neutrophil chemotaxis was investigated in a Boyden chamber. Isoproterenol inhibited neutrophil trafficking, reducing the cytokine/chemokine release and neutrophil chemotaxis. Surprisingly, the isoproterenol effect on neutrophil migration was totally reverted by splenectomy and mecamylamine pre-treatment. In contrast, the inhibitory effect of nicotine on neutrophil migration was abrogated only by splenectomy but not by propranolol pre-treatment. Collectively, our data show that beta-adrenergic receptor activation regulates the acute neutrophil recruitment via splenic nicotinic receptor.

  8. Anticancer activity of polysaccharide from Glehnia littoralis on human lung cancer cell line A549.

    PubMed

    Wu, Jun; Gao, Weiping; Song, Zhuoyue; Xiong, Qingping; Xu, Yingtao; Han, Yun; Yuan, Jun; Zhang, Rong; Cheng, Yunbo; Fang, Jiansong; Li, Weirong; Wang, Qi

    2018-01-01

    The purpose of this study was to investigate the anticancer activity of polysaccharide (PGL) from Glehnia littoralis on human lung cancer cell line A549. Based on MTT assay, the results suggested that PGL could significantly reduce A549 cells proliferation in a time- and dose-dependent manner. In addition, PGL displayed an inhibitory activity for the A549 cells migration in Transwell migration assay. The results from both flow cytometry analysis and Hochst 3342 staining of apoptotic cells indicated that PGL could promote apoptosis, and induce cycle arrest of A549 cells. Moreover, immunofluorescence assay elucidated PGL could also down-regulate expression of proliferating cell nuclear antigen (PCNA). Overall, these results showed that PGL exerts a strong anticancer action through inhibiting the A549 cells migration, proliferation and inducing cell apoptosis. It could be a new source of natural anticancer agent against lung cancer with potential value in supplements and medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Antifibrotic effect of pirfenidone on human pterygium fibroblasts.

    PubMed

    Lee, Kihwang; Young Lee, Sun; Park, So Yean; Yang, Hongseok

    2014-07-01

    The effects of pirfenidone were investigated on cultured human pterygium fibroblasts (HPFs). HPFs were obtained from pterygium surgery and subjected to primary culture. After treatment with 0.5, 1.0 or 1.5 mg/mL pirfenidone, MTT and cell migration assays were performed, and procollagen secretion and TGF-β expression were measured by Western blotting and immunofluorescence analysis. Pirfenidone had a significant inhibitory effect on HPF proliferation, migration and collagen synthesis. There were no differences between the cells treated with 0.5, 1.0 and 1.5 mg/mL pirfenidone and the controls in the MTT assay. After 48 h of treatment with 1.0 or 1.5 mg/mL pirfenidone, TGF-β expression was significantly decreased. These findings demonstrate that pirfenidone inhibits the proliferation, migration and procollagen secretion of HPFs at nontoxic concentrations by decreasing TGF-β expression. Thus, pirfenidone may be considered as a safe adjuvant for pterygium surgery to prevent recurrence.

  10. Cell-cell interactions mediate cytoskeleton organization and collective endothelial cell chemotaxis.

    PubMed

    Shamloo, Amir

    2014-09-01

    This study investigates the role of cell-cell and cell-ligand interactions in cytoskeleton organization of endothelial cells (ECs) and their directional migration within a microfluidic device. The migration of ECs in response to a biochemical factor was studied. Mathematical analysis of the cell migration pathways and cellular cytoskeleton revealed that directional migration, migration persistence length, migration speed, and cytoskeletal stress fiber alignment can be mediated by the level of cell contacts as well as the presence or absence of a biochemical polarizing factor. It was shown that in the presence of a biochemical polarizing factor, higher cell density and more frequent cell contacts has a reinforcing effect on collective cell chemotaxis. In contrast, in the absence of a polarizing factor, high cell density can decrease or suppress the ability of the cells to migrate. Also, the correlation of actin stress fiber organization and alignment with directional migration of ECs was investigated. It was shown that in the presence of a biochemical polarizing factor, stress fibers within the cytoskeleton of ECs can be significantly aligned parallel to the gradient direction when the cells have higher level of contacts. The results also show that the organization and alignment of actin stress fibers is mediated by cell adhesion junctions during collective cell migration and introduce cell-cell interactions as a key factor during collective cell chemotaxis. © 2014 Wiley Periodicals, Inc.

  11. MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in cervical cancer

    PubMed Central

    Guo, Man; Zhao, Xinying; Yuan, Xiaolei; Jiang, Jing; Li, Peiling

    2017-01-01

    In recent decades, miRNA has been reported as a crucial modulator in some biology progressions. This work aims to assess the expression and role of miR-let-7a and pyruvate kinase muscle isozyme M2 (PKM2) in CC tissues and cell lines. Here, we identified that miR-let-7a expression was decreased in CC tissues, and SiHa and HeLa cells (all P < 0.001), however, PKM2 expression was increased in these samples. Statistically, miR-let-7a was inversely associated with PKM2 mRNA or protein (p = 0.013, p = 0.015, respectively). In-vitro assays revealed that ectopic miR-let-7a expression repressed SiHa and HeLa cell proliferation, migration and invasion, and enhanced SiHa and HeLa cell apoptosis. Furthermore, luciferase reporter assays revealed the 3′-UTR of PKM2 was identified a target of miR-let-7a, by which miR-let-7a affected the expression of PKM2 in SiHa and HeLa cells. Besides, PKM2 plasmids partially abrogated the inhibitory effects of miR-let-7a, while si-PKM2 enhanced the inhibitory effects of miR-let-7a. In vivo, miR-let-7a mimics indeed repressed tumor growth in mice xenograft model. In conclusion, our results demonstrated that miR-let-7a inhibits cell proliferation, migration and invasion by down-regulation of PKM2 in cervical cancer. miR-let-7a/PKM2 pathway may be a useful therapeutic target for CC patients. PMID:28415668

  12. Inhibitory effect of genistein on the invasive potential of human cervical cancer cells via modulation of matrix metalloproteinase-9 and tissue inhibitors of matrix metalloproteinase-1 expression.

    PubMed

    Hussain, Arif; Harish, Geetganga; Prabhu, Sathyen Alwin; Mohsin, Javeria; Khan, Munawwar Ali; Rizvi, Tahir A; Sharma, Chhavi

    2012-12-01

    One of the most challenging stumbling blocks for the treatment of cancer is the ability of cancer cells to break the natural barriers and spread from its site of origin to non-adjacent regional and distant sites, accounting for high cancer mortality rates. Gamut experimental and epidemiological data advocate the use of pharmacological or nutritional interventions to inhibit or delay various stage(s) of cancer such as invasion and metastasis. Genistein, a promising chemopreventive agent, has gained considerable attention for its powerful anti-carcinogenic, anti-angiogenic and chemosensitizing activities. In this study, the cytotoxic potential of genistein on HeLa cells by cell viability assay and the mode of cell death induced by genistein were determined by nuclear morphological examination, DNA laddering assay and cell cycle analysis. Moreover, to establish its inhibitory effect on migration of HeLa cells, scratch wound assay was performed and these results were correlated with the expression of genes involved in invasion and migration (MMP-9 and TIMP-1) by RT-PCR. The exposure of HeLa cells to genistein resulted in significant dose- and time-dependent growth inhibition, which was found to be mediated by apoptosis and cell cycle arrest at G(2)/M phase. In addition, it induced migration-inhibition in a time-dependent manner by modulating the expression of MMP-9 and TIMP-1. Our results signify that genistein may be an effective anti-neoplastic agent to prevent cancer cell growth and invasion and metastasis. Therefore therapeutic strategies utilizing genistein could be developed to substantially reduce cancer morbidity and mortality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The inhibitory effects of capillarisin on cell proliferation and invasion of prostate carcinoma cells.

    PubMed

    Tsui, Ke-Hung; Chang, Ying-Ling; Yang, Pei-Shan; Hou, Chen-Pang; Lin, Yu-Hsiang; Lin, Bing-Wei; Feng, Tsui-Hsia; Juang, Horng-Heng

    2018-04-01

    Capillarisin (Cap), an active component of Artemisia capillaris root extracts, is characterized by its anti-inflammatory, anti-oxidant and anti-cancer properties. Nevertheless, the functions of Cap in prostate cancer have not been fully explored. We evaluated the potential actions of Cap on the cell proliferation, migration and invasion of prostate carcinoma cells. Cell proliferation and cell cycle distribution were measured by water-soluble tetrazolium-1 and flow cytometry assays. The expression of cyclins, p21, p27, survivin, matrix metallopeptidase (MMP2 and MMP9) were assessed by immunoblotting assays. Effects of Cap on invasion and migration were determined by wound closure and matrigel transmigration assays. The constitutive and interlukin-6 (IL-6)-inducible STAT3 activation of prostate carcinoma cells were determined by immunoblotting and reporter assays. Capillarisin inhibited androgen-independent DU145 and androgen-dependent LNCaP cell growth through the induction of cell cycle arrest at the G0/G1 phase by upregulating p21 and p27 while downregulating expression of cyclin D1, cyclin A and cyclin B. Cap decreased protein expression of survivin, MMP-2, and MMP-9 and therefore blocked the migration and invasion of DU145 cells. Cap suppressed constitutive and IL-6-inducible STAT3 activation in DU145 and LNCaP cells. Our data indicate that Cap blocked cell growth by modulation of p21, p27 and cyclins. The inhibitory effects of Cap on survivin, MMP-2, MMP-9 and STAT3 activation may account for the suppression of invasion in prostate carcinoma cells. Our data suggest that Cap might be a therapeutic agent in treating advanced prostate cancer with constitutive STAT3 or IL-6-inducible STAT3 activation. © 2017 John Wiley & Sons Ltd.

  14. A review of the influence of growth factors and cytokines in in vitro human keratinocyte migration.

    PubMed

    Peplow, Philip V; Chatterjee, Marissa P

    2013-04-01

    Keratinocyte migration from the wound edge is a crucial step in the reepithelization of cutaneous wounds. Growth factors and cytokines, released from cells that invade the wound matrix, play an important role, and several in vitro assays have been performed to elucidate this. The purposes of this study were to review in vitro human studies on keratinocyte migration to identify those growth factors or cytokines that stimulate keratinocyte migration and whether these assays might serve as a screening procedure prior to testing combinations of growth factors or cytokines to promote wound closure in vivo. Research papers investigating effect of growth factors and cytokines on human keratinocyte migration in vitro were retrieved from library sources, PubMed databases, reference lists of papers, and searches of relevant journals. Fourteen different growth factors and cytokines enhanced migration in scratch wound assay and HGF together with TGF-β, and IGF-1 with EGF, were more stimulatory than either growth factor alone. HGF with TGF-β1 had a greater chemokinetic effect than either growth factor alone in transmigration assay. TGF-β1, FGF-7, FGF-2 and AGF were chemotactic to keratinocytes. EGF, TGF-α, IL-1α, IGF and MGSA enhanced cell migration on ECM proteins. Many growth factors and cytokines enhanced migration of keratinocytes in vitro, and certain combinations of growth factors were more stimulatory than either alone. These and other combinations that stimulate keratinocyte migration in vitro should be tested for effect on wound closure and repair in vivo. The scratch wound assay provides a useful, inexpensive and easy-to-perform screening method for testing individual or combinations of growth factors or cytokines, or growth factors combined with other modalities such as laser irradiation, prior to performing wound healing studies with laboratory animals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. International migration patterns of physicians to the United States: a cross-national panel analysis.

    PubMed

    Hussey, Peter S

    2007-12-01

    To analyze the dynamics of physician international migration patterns and identify the countries deviating most from expected migration rates. A negative binomial log-linear model of physician migration to the United States from every other country was constructed using a panel of country-level data for years 1994-2000. The model was used to identify factors associated with physician migration and to identify countries with higher or lower rates of physician migration than expected. Physician migration varied with a country's GDP per capita in an inverse-U pattern, with highest migration rates from middle-income countries. The absence of medical schools, immigrant networks in the United States, medical instruction in English, proximity to the United States, and the lack of political and civil liberties were also associated with higher migration rates. Countries with higher-than-predicted migration rates included Iceland, Albania, Armenia, Dominica, Lebanon, Syria, the United Arab Emirates, and Bulgaria. Countries with lower-than-predicted migration rates included Mexico, Japan, Brazil, Zimbabwe, Mauritania, Portugal, Senegal, and France. This analysis shows that many of the most powerful factors associated with physician migration are difficult or impossible for countries to change through public policy. GDP per capita and proximity to the U.S. are two of the most powerful predictors of physician migration. Networks of immigrants in the U.S. and fewer political and civil liberties also put countries at higher risk for physician emigration. Several other factors that were associated with physician migration might be more easily amenable to policy intervention. These factors include the absence of a medical school and medical instruction in English. Policies addressing these factors would involve making several difficult tradeoffs, however. Other examples of policies that are effective in minimizing physician migration might be found by examining countries with lower-than-expected migration rates.

  16. Expression of death decoy receptor-3 (DcR3) in human breast cancer and its functional effects on breast cancer cells in vitro.

    PubMed

    Ge, Zhicheng; Sanders, Andrew J; Ye, Lin; Wang, Yu; Jiang, Wen G

    2011-01-01

    Death Decoy Receptor-3 (DcR3), otherwise known as tumour necrosis factor receptor superfamily member 6b, is suggested to be involved in the progression and immune evasion of malignant tumours. Its ligands include FASL and LIGHT (Tumour necrosis factor ligand superfamily member 14). DcR3 has been found to be amplified in certain solid tumours. However, its role in breast tumours remains unclear. In the present study, we examined the role played by DcR3 in MCF7 and MDA-MB-231 cell lines. The expression of DcR3 was examined in MCF7 and MDA-MB-231 cell lines using immunocytochemical staining and RT-PCR. Anti-DcR3 hammerhead ribozyme transgenes were constructed and transfected into cells to create DcR3 knock-down cell sublines. The biological impact of modifying DcR3 expression in breast cancer cells was evaluated using a variety of in vitro assays, including growth, adhesion, migration and invasion models. MCF7 and MDA-MB-231 cells, usually expressing DcR3, were transfected with the anti-DcR3 ribozyme transgene. Stable transfectants containing the DcR3 ribozyme transgene (MCF7DcR3KO, MDA-MB-231DcR3KO) displayed a reduction of DcR3 expression at mRNA and protein levels. DcR3 knockdown in MCF7 cells was found to significantly reduce invasive capacity compared to pEF6 control cell lines (30.78 +/- 6.40 vs.151.67 +/- 17.67 P < 0.001). The rate of migration in MCF7DcR3KO was significantly lower than MCF7pEF6 (P < 0.001). In contrast, no such significant differences was seen between MDA-MB-231DcR3KO and MDA-MB-231pEF6. Suppressing DcR3 expression was found to have an inhibitory effect on cellular invasion and migration in MCF7 breast cancer cells. This suggests that the invasion and migration capacity of this breast cancer cell line may, at least partly, depend on DcR3. DcR3 may be regarded as a negative regulator for aggressiveness during the development and progression of certain types of breast cancer.

  17. Xenon triggers pro-inflammatory effects and suppresses the anti-inflammatory response compared to sevoflurane in patients undergoing cardiac surgery.

    PubMed

    Breuer, Thomas; Emontzpohl, Christoph; Coburn, Mark; Benstoem, Carina; Rossaint, Rolf; Marx, Gernot; Schälte, Gereon; Bernhagen, Juergen; Bruells, Christian S; Goetzenich, Andreas; Stoppe, Christian

    2015-10-15

    Cardiac surgery encompasses various stimuli that trigger pro-inflammatory mediators, reactive oxygen species and mobilization of leucocytes. The aim of this study was to evaluate the effect of xenon on the inflammatory response during cardiac surgery. This randomized trial enrolled 30 patients who underwent elective on-pump coronary-artery bypass grafting in balanced anaesthesia of either xenon or sevoflurane. For this secondary analysis, blood samples were drawn prior to the operation, intra-operatively and on the first post-operative day to measure the pro- and anti-inflammatory cytokines interleukin-6 (IL-6), interleukin-8/C-X-C motif ligand 8 (IL-8/CXCL8), and interleukin-10 (IL-10). Chemokines such as C-X-C motif ligand 12/ stromal cell-derived factor-1α (CXCL12/SDF-1α) and macrophage migration inhibitory factor (MIF) were measured to characterize xenon's perioperative inflammatory profile and its impact on migration of peripheral blood mononuclear cells (PBMC). Xenon enhanced the postoperative increase of IL-6 compared to sevoflurane (Xenon: 90.7 versus sevoflurane: 33.7 pg/ml; p = 0.035) and attenuated the increase of IL-10 (Xenon: 127.9 versus sevoflurane: 548.3 pg/ml; p = 0.028). Both groups demonstrated a comparable intraoperative increase of oxidative stress (intra-OP: p = 0.29; post-OP: p = 0.65). While both groups showed an intraoperative increase of the cardioprotective mediators MIF and CXCL12/SDF-1α, only MIF levels decreased in the xenon group on the first postoperative day (50.0 ng/ml compared to 23.3 ng/ml; p = 0.012), whereas it remained elevated after sevoflurane anaesthesia (58.3 ng/ml to 53.6 ng/ml). Effects of patients' serum on chemotactic migration of peripheral mononuclear blood cells taken from healthy volunteers indicated a tendency towards enhanced migration after sevoflurane anaesthesia (p = 0.07). Compared to sevoflurane, balanced xenon anaesthesia triggers pro-inflammatory effects and suppresses the anti-inflammatory response in cardiac surgery patients even though the clinical significance remains unknown. This clinical trial was approved by the European Medicines Agency (EudraCT-number: 2010-023942-63) and at ClinicalTrials.gov ( NCT01285271 ; first received: January 24, 2011).

  18. Delay of corneal epithelial wound healing and induction of keratocyte apoptosis by platelet-activating factor.

    PubMed

    Chandrasekher, Gudiseva; Ma, Xiang; Lallier, Thomas E; Bazan, Haydee E P

    2002-05-01

    To examine the role of the lipid mediator platelet-activating factor (PAF) in epithelial wound healing. A 7-mm central de-epithelializing wound was produced in rabbit corneas, and the tissue was incubated with 125 nM carbamyl PAF (cPAF), an analogue of PAF. Rabbit corneal epithelial and stromal cells were also cultured in the presence of cPAF. Cell adhesion, proliferation, and migration assays were conducted. Apoptosis was assayed by TUNEL staining on preparations of corneal tissue sections and in cells in culture. Twenty-four hours after injury, 50% of the wounded area was covered by new epithelium, whereas only 30% was covered in the presence of cPAF. At 48 hours, the epithelium completely closed the wound, but only 45% of the original wound was covered in corneas treated with cPAF. Similar inhibition of epithelial wound closure was found with human corneas incubated with PAF in organ culture. Moreover, addition of several growth factors involved in corneal wound healing, such as epidermal growth factor, hepatocyte growth factor, and keratinocyte growth factor, could not overcome the inhibitory action of PAF in wound closure. Three PAF antagonists, BN50727, BN50730, and BN50739, abolished the effect of PAF. A significant increase in TUNEL-positive staining occurred in corneal stromal cells (keratocytes), which was inhibited by preincubating the corneas with PAF antagonists. However, no TUNEL-positive staining was found in epithelial cells. TUNEL-staining results in cultured stromal cells (keratocytes) and epithelial cells in first-passage cell culture were similar to those in organ-cultured corneas. In addition, PAF caused 35% to 56% inhibition of adhesion of epithelial cells to proteins of the extracellular matrix: collagen I and IV, fibronectin, and laminin. There were no significant changes in proliferation or migration of epithelial cells induced by the lipid mediator. The results suggest PAF plays an important role in preventing corneal wound healing by affecting adhesion of epithelial cells and increasing apoptosis in stromal cells. PAF antagonists could be of therapeutic importance during prolonged ocular inflammation, helping to avoid loss of corneal transparency and visual acuity.

  19. Vinpocetine suppresses pathological vascular remodeling by inhibiting vascular smooth muscle cell proliferation and migration.

    PubMed

    Cai, Yujun; Knight, Walter E; Guo, Shujie; Li, Jian-Dong; Knight, Peter A; Yan, Chen

    2012-11-01

    Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders.

  20. Vinpocetine Suppresses Pathological Vascular Remodeling by Inhibiting Vascular Smooth Muscle Cell Proliferation and Migration

    PubMed Central

    Cai, Yujun; Knight, Walter E.; Guo, Shujie; Li, Jian-Dong; Knight, Peter A.

    2012-01-01

    Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders. PMID:22915768

  1. SDHB downregulation facilitates the proliferation and invasion of colorectal cancer through AMPK functions excluding those involved in the modulation of aerobic glycolysis.

    PubMed

    Xiao, Zhiming; Liu, Shaojun; Ai, Feiyan; Chen, Xiong; Li, Xiayu; Liu, Rui; Ren, Weiguo; Zhang, Xuemei; Shu, Peng; Zhang, Decai

    2018-01-01

    Loss-of-function of succinate dehydrogenase-B (SDHB) is a predisposing factor of aerobic glycolysis and cancer progression. Adenosine monophosphate activated protein kinase (AMPK) is involved in the regulation of aerobic glycolysis and the diverse hallmarks of cancer. The present study investigated whether AMPK mediated the regulatory effects of SDHB in aerobic glycolysis and cancer growth. The expression of SDHB and AMPK in colorectal cancer (CRC) and normal tissues was assessed by western blotting. HT-29 CRC cells were used to establish in vitro models of ectopic overexpression and knockdown of SDHB. SDHB was downregulated, while AMPK and phosphorylated-AMPK (Thr172) were upregulated in CRC tissues. Experiments involving the loss- or gain-of-function of SDHB, revealed that this protein negatively regulated AMPK by influencing its expression and activity. However, SDHB and AMPK were identified to suppress lactic acid production in CRC cells, indicating that each had an inhibitory effect on aerobic glycolysis. Therefore, the regulation of aerobic glycolysis by SDHB is unlikely to be mediated via AMPK. SDHB knockdown promoted the viability, migration and invasion of HT-29 cells, whereas inhibition of AMPK demonstrated the opposite effect. SDHB overexpression impaired cell migration and invasion, and this effect was reversed following AMPK activation. These results indicate that AMPK may mediate the effects of SDHB in CRC cell proliferation and migration. In conclusion, SDHB downregulation in CRC cells may increase AMPK activity, which may subsequently facilitate the proliferation and invasion of these cancer cells. However, the regulation of aerobic glycolysis by SDHB may be independent of AMPK. Further studies are warranted to elucidate the mechanism by which SDHB regulates aerobic glycolysis.

  2. Risk Factors for Migration, Fracture, and Dislocation of Pancreatic Stents

    PubMed Central

    Kawaguchi, Yoshiaki; Lin, Jung-Chun; Kawashima, Yohei; Maruno, Atsuko; Ito, Hiroyuki; Ogawa, Masami; Mine, Tetsuya

    2015-01-01

    Aim. To analyze the risk factors for pancreatic stent migration, dislocation, and fracture in chronic pancreatitis patients with pancreatic strictures. Materials and Methods. Endoscopic stent placements (total 386 times) were performed in 99 chronic pancreatitis patients with pancreatic duct stenosis at our institution between April 2006 and June 2014. We retrospectively examined the frequency of stent migration, dislocation, and fracture and analyzed the patient factors and stent factors. We also investigated the retrieval methods for migrated and fractured stents and their success rates. Results. The frequencies of stent migration, dislocation, and fracture were 1.5% (5/396), 0.8% (3/396), and 1.2% (4/396), respectively. No significant differences in the rates of migration, dislocation, or fracture were noted on the patient factors (etiology, cases undergoing endoscopic pancreatic sphincterotomy, location of pancreatic duct stenosis, existence of pancreatic stone, and approach from the main or minor papilla) and stent factors (duration of stent placement, numbers of stent placements, stent shape, diameter, and length). Stent retrieval was successful in all cases of migration. In cases of fractured stents, retrieval was successful in 2 of 4 cases. Conclusion. Stent migration, fracture, and dislocation are relatively rare, but possible complications. A good understanding of retrieval techniques is necessary. PMID:25945085

  3. Neuronal Migration Dynamics in the Developing Ferret Cortex.

    PubMed

    Gertz, Caitlyn C; Kriegstein, Arnold R

    2015-10-21

    During mammalian neocortical development, newborn excitatory and inhibitory neurons must migrate over long distances to reach their final positions within the cortical plate. In the lissencephalic rodent brain, pyramidal neurons are born in the ventricular and subventricular zones of the pallium and migrate along radial glia fibers to reach the appropriate cortical layer. Although much less is known about neuronal migration in species with a gyrencephalic cortex, retroviral studies in the ferret and primate suggest that, unlike the rodent, pyramidal neurons do not follow strict radial pathways and instead can disperse horizontally. However, the means by which pyramidal neurons laterally disperse remain unknown. In this study, we identified a viral labeling technique for visualizing neuronal migration in the ferret, a gyrencephalic carnivore, and found that migration was predominantly radial at early postnatal ages. In contrast, neurons displayed more tortuous migration routes with a decreased frequency of cortical plate-directed migration at later stages of neurogenesis concomitant with the start of brain folding. This was accompanied by neurons migrating sequentially along several different radial glial fibers, suggesting a mode by which pyramidal neurons may laterally disperse in a folded cortex. These findings provide insight into the migratory behavior of neurons in gyrencephalic species and provide a framework for using nonrodent model systems for studying neuronal migration disorders. Elucidating neuronal migration dynamics in the gyrencephalic, or folded, cortex is important for understanding neurodevelopmental disorders. Similar to the rodent, we found that neuronal migration was predominantly radial at early postnatal ages in the gyrencephalic ferret cortex. Interestingly, ferret neurons displayed more tortuous migration routes and a decreased frequency of radial migration at later ages coincident with the start of cortical folding. We found that ferret neurons use several different radial glial fibers as migratory guides, including those belonging to the recently described outer radial glia, suggesting a mechanism by which ferret neurons disperse laterally. It is likely that excitatory neurons horizontally disperse in other gyrencephalic mammals, including the primate, suggesting an important modification to the current model deduced primarily from the rodent. Copyright © 2015 the authors 0270-6474/15/3514307-09$15.00/0.

  4. Leishmania Uses Mincle to Target an Inhibitory ITAM Signaling Pathway in Dendritic Cells that Dampens Adaptive Immunity to Infection.

    PubMed

    Iborra, Salvador; Martínez-López, María; Cueto, Francisco J; Conde-Garrosa, Ruth; Del Fresno, Carlos; Izquierdo, Helena M; Abram, Clare L; Mori, Daiki; Campos-Martín, Yolanda; Reguera, Rosa María; Kemp, Benjamin; Yamasaki, Sho; Robinson, Matthew J; Soto, Manuel; Lowell, Clifford A; Sancho, David

    2016-10-18

    C-type lectin receptors sense a diversity of endogenous and exogenous ligands that may trigger differential responses. Here, we have found that human and mouse Mincle bind to a ligand released by Leishmania, a eukaryote parasite that evades an effective immune response. Mincle-deficient mice had milder dermal pathology and a tenth of the parasite burden compared to wild-type mice after Leishmania major intradermal ear infection. Mincle deficiency enhanced adaptive immunity against the parasite, correlating with increased activation, migration, and priming by Mincle-deficient dendritic cells (DCs). Leishmania triggered a Mincle-dependent inhibitory axis characterized by SHP1 coupling to the FcRγ chain. Selective loss of SHP1 in CD11c + cells phenocopies enhanced adaptive immunity to Leishmania. In conclusion, Leishmania shifts Mincle to an inhibitory ITAM (ITAMi) configuration that impairs DC activation. Thus, ITAMi can be exploited for immune evasion by a pathogen and may represent a paradigm for ITAM-coupled receptors sensing self and non-self. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Migration of grain boundaries and triple junctions in high-purity aluminum during annealing after slight cold rolling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Wenhong; School of Mechanical Engineering, Shandong University of Technology, Zibo 255049; Wang, Weiguo, E-mail: wang_weiguo@vip.163.com

    Grain orientations and grain boundary migrations near triple junctions in a high purity aluminum were analyzed by electron back scattered diffraction. The results indicate that there are good correlations between the Schmid factors or Taylor factors and the misorientation values of point to original point in grains near the triple junctions in a slightly deformed sample. Grains with higher Schmid factors or lower Taylor factors typically correspond to higher misorientation values near the triple junctions. In a subsequent annealing at 400 °C, both grain boundaries and triple junctions migrate, but the former leave ghost lines. During such migration, a grainmore » boundary grows from the grain with lower Schmid factor (higher Taylor factor) into the grain with higher Schmid factor (lower Taylor factor). Usually, the amount of migration of a grain boundary is considerably greater than that of a triple junction, and the grain boundary becomes more curved after migration. These observations indicate that the triple junctions have drag effects on grain boundary migration. - Highlights: • Polycrystalline aluminum with fine grains about 30 μm were used. • Off-line in situ EBSD was used to identify TJs before and after annealing. • Grains with higher SFs have higher misorientation values near TJs after deformation. • Grain boundaries grow from hard grains into soft grains during annealing. • Triple junctions have drag effects on grain boundaries migration.« less

  6. Rubus idaeus extract suppresses migration and invasion of human oral cancer by inhibiting MMP-2 through modulation of the Erk1/2 signaling pathway.

    PubMed

    Huang, Yi-Wen; Chuang, Chun-Yi; Hsieh, Yih-Shou; Chen, Pei-Ni; Yang, Shun-Fa; Shih-Hsuan-Lin; Chen, Yang-Yu; Lin, Chiao-Wen; Chang, Yu-Chao

    2017-03-01

    Raspberries (Rubus idaeus L.) have been extensively studies worldwide because of their beneficial effects on health. Recently reports indicate that crude extracts of Rubus idaeus (RIE) have antioxidant and anticancer ability. The aim of this study was to evaluate the mechanism of its antimetastatic ability in oral cancer cells. In this study, SCC-9 and SAS oral cancer cells were subjected to a treatment with RIE and then analyzed the effect of RIE on migration and invasion. The addition of RIE inhibited the migration and invasion ability of oral cancer cells. Real time PCR, western blot and zymography analysis demonstrated that mRNA, protein expression and enzyme activity of matrix metalloproteinases-2 (MMP-2) were down-regulated by RIE. Moreover, the phosphorylation of Focal adhesion kinase (FAK), src, and extracellular signal-regulated kinase (ERK) were inhibited after RIE treatment. In conclusion, these results demonstrated that RIE exerted an inhibitory effect of migration and invasion in oral cancer cells and alter metastasis by suppression of MMP-2 expression through FAK/Scr/ERK signaling pathway. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1037-1046, 2017. © 2016 Wiley Periodicals, Inc.

  7. Collagen 18 and agrin are secreted by neural crest cells to remodel their microenvironment and regulate their migration during enteric nervous system development.

    PubMed

    Nagy, Nandor; Barad, Csilla; Hotta, Ryo; Bhave, Sukhada; Arciero, Emily; Dora, David; Goldstein, Allan M

    2018-05-08

    The enteric nervous system (ENS) arises from neural crest cells that migrate, proliferate, and differentiate into enteric neurons and glia within the intestinal wall. Many extracellular matrix (ECM) components are present in the embryonic gut, but their role in regulating ENS development is largely unknown. Here, we identify heparan sulfate proteoglycan proteins, including collagen XVIII (Col18) and agrin, as important regulators of enteric neural crest-derived cell (ENCDC) development. In developing avian hindgut, Col18 is expressed at the ENCDC wavefront, while agrin expression occurs later. Both proteins are normally present around enteric ganglia, but are absent in aganglionic gut. Using chick-mouse intestinal chimeras and enteric neurospheres, we show that vagal- and sacral-derived ENCDCs from both species secrete Col18 and agrin. Whereas glia express Col18 and agrin, enteric neurons only express the latter. Functional studies demonstrate that Col18 is permissive whereas agrin is strongly inhibitory to ENCDC migration, consistent with the timing of their expression during ENS development. We conclude that ENCDCs govern their own migration by actively remodeling their microenvironment through secretion of ECM proteins. © 2018. Published by The Company of Biologists Ltd.

  8. The Role of TLR and Chemokine in Wear Particle-Induced Aseptic Loosening

    PubMed Central

    Gu, Qiaoli; Shi, Qin; Yang, Huilin

    2012-01-01

    Wear particle-induced periprosthetic osteolysis remains the principal cause of aseptic loosening of orthopaedic implants. Monocytes/macrophages phagocytose wear particles and release cytokines that induce inflammatory response. This response promotes osteoclast differentiation and osteolysis. The precise mechanisms by which wear particles are recognized and induce the accumulation of inflammatory cells in the periprosthetic tissue have not been fully elucidated. Recent studies have shown that toll-like receptors (TLRs) contribute to the cellular interaction with wear particles. Wear particles are recognized by monocytes/macrophages through TLRs coupled with the adaptor protein MyD88. After the initial interaction, wear particles induce both local and systemic migration of monocytes/macrophages to the periprosthetic region. The cellular migration is mediated through chemokines including interleukin-8, macrophage chemotactic protein-1, and macrophage inhibitory protein-1 in the periprosthetic tissues. Interfering with chemokine-receptor axis can inhibit cellular migration and inflammatory response. This paper highlights recent advances in TLR, and chemokine participated in the pathogenesis of aseptic loosening. A comprehensive understanding of the recognition and migration mechanism is critical to the development of measures that prevent wear particle-induced aseptic loosening of orthopaedic implants. PMID:23193363

  9. ISO-66, a novel inhibitor of macrophage migration, shows efficacy in melanoma and colon cancer models.

    PubMed

    Ioannou, Kyriaki; Cheng, Kai Fan; Crichlow, Gregg V; Birmpilis, Anastasios I; Lolis, Elias J; Tsitsilonis, Ourania E; Al-Abed, Yousef

    2014-10-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory cytokine, which possesses a contributing role in cancer progression and metastasis and, thus, is now considered a promising anticancer drug target. Many MIF-inactivating strategies have proven successful in delaying cancer growth. Here, we report on the synthesis of ISO-66, a novel, highly stable, small-molecule MIF inhibitor, an analog of ISO-1 with improved characteristics. The MIF:ISO-66 co-crystal structure demonstrated that ISO-66 ligates the tautomerase active site of MIF, which has previously been shown to play an important role in its biological functions. In vitro, ISO-66 enhanced specific and non-specific anticancer immune responses, whereas prolonged administration of ISO-66 in mice with established syngeneic melanoma or colon cancer was non-toxic and resulted in a significant decrease in tumor burden. Subsequent ex vivo analysis of mouse splenocytes revealed that the observed decrease in tumor growth rates was likely mediated by the selective in vivo expansion of antitumor-reactive effector cells induced by ISO-66. Compared to other MIF-inactivating strategies employed in vivo, the anticancer activity of ISO-66 is demonstrated to be of equal or better efficacy. Our findings suggest that targeting MIF, via highly specific and stable compounds, such as ISO-66, may be effective for cancer treatment and stimulation of anticancer immune responses.

  10. Interferon-gamma inhibits intestinal restitution by preventing gap junction communication between enterocytes.

    PubMed

    Leaphart, Cynthia L; Qureshi, Faisal; Cetin, Selma; Li, Jun; Dubowski, Theresa; Baty, Catherine; Batey, Catherine; Beer-Stolz, Donna; Guo, Fengli; Murray, Sandra A; Hackam, David J

    2007-06-01

    Necrotizing enterocolitis (NEC) is characterized by interferon-gamma (IFN-gamma) release and inadequate intestinal restitution. Because enterocytes migrate together, mucosal healing may require interenterocyte communication via connexin 43-mediated gap junctions. We hypothesize that enterocyte migration requires interenterocyte communication, that IFN impairs migration by impairing connexin 43, and that impaired healing during NEC is associated with reduced gap junctions. NEC was induced in Swiss-Webster or IFN(-/-) mice, and restitution was determined in the presence of the gap junction inhibitor oleamide, or via time-lapse microscopy of IEC-6 cells. Connexin 43 expression, trafficking, and localization were detected in cultured or primary enterocytes or mouse or human intestine by confocal microscopy and (35)S-labeling, and gap junction communication was assessed using live microscopy with oleamide or connexin 43 siRNA. Enterocytes expressed connexin 43 in vitro and in vivo, and exchanged fluorescent dye via gap junctions. Gap junction inhibition significantly reduced enterocyte migration in vitro and in vivo. NEC was associated with IFN release and loss of enterocyte connexin 43 expression. IFN inhibited enterocyte migration by reducing gap junction communication through the dephosphorylation and internalization of connexin 43. Gap junction inhibition significantly increased NEC severity, whereas reversal of the inhibitory effects of IFN on gap junction communication restored enterocyte migration after IFN exposure. Strikingly, IFN(-/-) mice were protected from the development of NEC, and showed restored connexin 43 expression and intestinal restitution. IFN inhibits enterocyte migration by preventing interenterocyte gap junction communication. Connexin 43 loss may provide insights into the development of NEC, in which restitution is impaired.

  11. Effect of acetaminophen on osteoblastic differentiation and migration of MC3T3-E1 cells.

    PubMed

    Nakatsu, Yoshihiro; Nakagawa, Fumio; Higashi, Sen; Ohsumi, Tomoko; Shiiba, Shunji; Watanabe, Seiji; Takeuchi, Hiroshi

    2018-02-01

    N-acetyl-p-aminophenol (APAP, acetaminophen, paracetamol) is a widely used analgesic/antipyretic with weak inhibitory effects on cyclooxygenase (COX) compared to non-steroidal anti-inflammatory drugs (NSAIDs). The mechanism of action of APAP is mediated by its metabolite that activates transient receptor potential channels, including transient receptor potential vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1) or the cannabinoid receptor type 1 (CB1). However, the exact molecular mechanism and target underlying the cellular actions of APAP remain unclear. Therefore, we investigated the effect of APAP on osteoblastic differentiation and cell migration, with a particular focus on TRP channels and CB1. Effects of APAP on osteoblastic differentiation and cell migration of MC3T3-E1, a mouse pre-osteoblast cell line, were assessed by the increase in alkaline phosphatase (ALP) activity, and both wound-healing and transwell-migration assays, respectively. APAP dose-dependently inhibited osteoblastic differentiation, which was well correlated with the effects on COX activity compared with other NSAIDs. In contrast, cell migration was promoted by APAP, and this effect was not correlated with COX inhibition. None of the agonists or antagonists of TRP channels and the CB receptor affected the APAP-induced cell migration, while the effect of APAP on cell migration was abolished by down-regulating TRPV4 gene expression. APAP inhibited osteoblastic differentiation via COX inactivation while it promoted cell migration independently of previously known targets such as COX, TRPV1, TRPA1 channels, and CB receptors, but through the mechanism involving TRPV4. APAP may have still unidentified molecular targets that modify cellular functions. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. Doxycycline inhibits leukemic cell migration via inhibition of matrix metalloproteinases and phosphorylation of focal adhesion kinase

    PubMed Central

    WANG, CHUNHUAI; XIANG, RU; ZHANG, XIANGZHONG; CHEN, YUNXIAN

    2015-01-01

    Doxycycline, a tetracycline-based antibiotic, has been reported to attenuate melanoma cell migration through inhibiting the focal adhesion kinase (FAK) signaling pathway. However, it remains to be elucidated whether doxycycline exerts this effect on leukemia cell migration. The present study aimed to examine the role of doxycycline in leukemia cell migration. The invasion capacities of the human leukemia cell lines KG1a (acute myelogenous leukemia) and K562 (chronic myelogenous leukemia) were evaluated using Matrigel® matrix-coated Transwell® chamber assays; leukemic cell lines treated with doxycycline (1 µg/ml) or anti-β1-integrin antibodies were added to the upper chamber, while untreated cells were included as controls. Reverse transcription quantitative polymerase chain reaction was performed in order to further understand the influence of doxycycline treatment on the expression of FAK and gelatinases in the KG1a and K562 leukemic cell lines. In addition, FAK protein expression and phosphorylation were determined using western blot analysis in order to investigate the mechanism by which doxycycline inhibited leukemic cell migration. The results revealed that doxycycline treatment significantly attenuated the migration of KG1a and K562 cells, which was demonstrated to be associated with inhibition of the expression and phosphorylation of FAK. In addition, doxycycline treatment inhibited matrix metalloproteinase (MMP)-2 and MMP-9 expression. Furthermore, incubation with blocking anti-β1-integrin antibodies had an analogous inhibitory effect on leukemic cell migration to that of doxycycline. In conclusion, the results of the present study suggested that doxycycline attenuated leukemic cell migration through inhibiting the FAK signaling pathway. Therefore, doxycycline may have potential for use as a novel strategy for the treatment of leukemia. PMID:26004127

  13. Endogenous timing factors in bird migration

    NASA Technical Reports Server (NTRS)

    Gwinner, E. G.

    1972-01-01

    Several species of warbler birds were observed in an effort to determine what initiates and terminates migration. Environmental and endogenous timing mechanisms were analyzed. The results indicate that endogenous stimuli are dominant factors for bird migration especially for long distances. It was concluded that environmental factors act as an assist mechanism.

  14. Inhibitory effect of blue light emitting diode on migration and invasion of cancer cells.

    PubMed

    Oh, Phil-Sun; Kim, Hyun-Soo; Kim, Eun-Mi; Hwang, Hyosook; Ryu, Hyang Hwa; Lim, SeokTae; Sohn, Myung-Hee; Jeong, Hwan-Jeong

    2017-12-01

    The aim of this study was to determine the effects and molecular mechanism of blue light emitting diode (LED) in tumor cells. A migration and invasion assay for the metastatic behavior of mouse colon cancer CT-26 and human fibrosarcoma HT-1080 cells was performed. Cancer cell migration-related proteins were identified by obtaining a 2-dimensional gel electrophoresis (2-DE) in total cellular protein profile of blue LED-irradiated cancer cells, followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis of proteins. Protein levels were examined by immunoblotting. Irradiation with blue LED inhibited CT-26 and HT-1080 cell migration and invasion. The anti-metastatic effects of blue LED irradiation were associated with inhibition of matrix metalloproteinase (MMP)-2 and MMP-9 expression. P38 MAPK phosphorylation was increased in blue LED-irradiated CT-26 and HT-1080 cells, but was inhibited after pretreatment with SB203580, a specific inhibitor of p38 MAPK. Inhibition of p38 MAPK phosphorylation by SB203580 treatment increased number of migratory cancer cells in CT-26 and HT-1080 cells, indicating that blue LED irradiation inhibited cancer cell migration via phosphorylation of p38 MAPK. Additionally blue LED irradiation of mice injected with CT-26 cells expressing luciferase decreased early stage lung metastasis compared to untreated control mice. These results indicate that blue LED irradiation inhibits cancer cell migration and invasion in vitro and in vivo. © 2017 Wiley Periodicals, Inc.

  15. [Effects of dihydroartiminisin on the adhesion, migration, and invasion of epithelial ovarian cancer cells].

    PubMed

    Tan, Xian-Jie; Lang, Jing-He; Plouet, Jean; Wu, Ming; Shen, Keng

    2008-10-14

    To investigate the effects of dihydroartiminisin (DHA) on the adhesion, migration, and invasion ovarian cancer cells. Human ovarian cancer cells of the lines SKOV3 and OVCAR3 were cultured. Suspensions of SKOV3 and OVCAR3 cells were treated with DHA of the concentrations of 0.5, 2.5, 12.5, and 62.5 micromol/L respectively, and then inoculated on the plate coated with Matrigel. MTT method was used to -determine the adhesion rate. Transwell membrane chamber model was used to evaluate the effect of DHA on the migration and invasion of the SKOV3 and OVCAR3 cells. Western blotting and reverse transcriptase polymerase chain reaction were used to detect the effect of DHA on the phosphorylation of focal adhesion kinase (FAK) and on the effect of expression of metal matrix proteinases (MMPs) and their tissue inhibitors (TIMPs) respectively. (1) Compared to the cells without DHA treatment, the cell adhesion ability levels of the SKOV3 and OVCAR3 cells treated with 12.5 micromol/L DHA decreased by 76.1% and 57.9% respectively (P < 0.05), while their migration ability levels decreased by 59.3% and 69.7% respectively (P < 0.05). (2) Both SKOV3 and OVCAR3 showed weak invasion ability, and DHA only showed a slight inhibitory effect on the cell invasion of these 2 lines (both P > 0.05). (3) Compared to the cells without DHA treatment, the phosphorylation level of FAK of the SKOV3 and OVCAR3 cells treated with 12.5 micromol/L DHA decreased by 42.9% and 44.8% respectively (both P < 0.05). (4) RT-PCR showed mRNA expression of MMP2, TIMP1, and TIMP2, but not mRNA expression of MMP9 in both SKOV3 and OVCAR3 cells. The mRNA expression levels of the SKOV3 and OVCAR3 cells treated with 12.5 micromol/L DHA increased by 1.5 and 2.6 times respectively (both P < 0.05). DHA has inhibitory effects on the adhesion and migration of epithelial ovarian cancer cells, which may be related to its down-regulation of the phosphorylation of FAK in these cells.

  16. A Pronounced Inflammatory Activity Characterizes the Early Fracture Healing Phase in Immunologically Restricted Patients

    PubMed Central

    Hoff, Paula; Gaber, Timo; Strehl, Cindy; Jakstadt, Manuela; Hoff, Holger; Schmidt-Bleek, Katharina; Lang, Annemarie; Röhner, Eric; Huscher, Dörte; Matziolis, Georg; Burmester, Gerd-Rüdiger; Schmidmaier, Gerhard; Perka, Carsten; Duda, Georg N.; Buttgereit, Frank

    2017-01-01

    Immunologically restricted patients such as those with autoimmune diseases or malignancies often suffer from delayed or insufficient fracture healing. In human fracture hematomas and the surrounding bone marrow obtained from immunologically restricted patients, we analyzed the initial inflammatory phase on cellular and humoral level via flow cytometry and multiplex suspension array. Compared with controls, we demonstrated higher numbers of immune cells like monocytes/macrophages, natural killer T (NKT) cells, and activated T helper cells within the fracture hematomas and/or the surrounding bone marrow. Also, several pro-inflammatory cytokines such as Interleukin (IL)-6 and Tumor necrosis factor α (TNFα), chemokines (e.g., Eotaxin and RANTES), pro-angiogenic factors (e.g., IL-8 and Macrophage migration inhibitory factor: MIF), and regulatory cytokines (e.g., IL-10) were found at higher levels within the fracture hematomas and/or the surrounding bone marrow of immunologically restricted patients when compared to controls. We conclude here that the inflammatory activity on cellular and humoral levels at fracture sites of immunologically restricted patients considerably exceeds that of control patients. The initial inflammatory phase profoundly differs between these patient groups and is probably one of the reasons for prolonged or insufficient fracture healing often occurring within immunologically restricted patients. PMID:28282868

  17. Exposure to 60% oxygen promotes migration and upregulates angiogenesis factor secretion in breast cancer cells.

    PubMed

    Crowley, Peter D; Stuttgen, Vivian; O'Carroll, Emma; Ash, Simon A; Buggy, Donal J; Gallagher, Helen C

    2017-01-01

    Peri-operative factors, including anaesthetic drugs and techniques, may affect cancer cell biology and clinical recurrence. In breast cancer cells, we demonstrated that sevoflurane promotes migration and angiogenesis in high fractional oxygen but not in air. Follow-up analysis of the peri-operative oxygen fraction trial found an association between high inspired oxygen during cancer surgery and reduced tumor-free survival. Here we evaluated effects of acute, high oxygen exposure on breast cancer cell viability, migration and secretion of angiogenesis factors in vitro . MDA-MB-231 and MCF-7 breast cancer cells were exposed to 21%, 30%, 60%, or 80% v/v O 2 for 3 hours. Cell viability at 24 hours was determined by MTT and migration at 24 hours with the Oris™ Cell Migration Assay. Secretion of angiogenesis factors at 24 hours was measured via membrane-based immunoarray. Exposure to 30%, 60% or 80% oxygen did not affect cell viability. Migration of MDA-MB-231 and MCF-7 cells was increased by 60% oxygen ( P = 0.012 and P = 0.007, respectively) while 30% oxygen increased migration in MCF-7 cells ( P = 0.011). These effects were reversed by dimethyloxaloylglycine. In MDA-MB-231 cells high fractional oxygen increased secretion of angiogenesis factors monocyte chemotactic protein 1, regulated on activation normal T-cell expressed and vascular endothelial growth factor. In MCF-7 cells, interleukin-8, angiogenin and vascular endothelial growth factor secretion was significantly increased by high fractional oxygen. High oxygen exposure stimulates migration and secretion of angiogenesis factors in breast cancer cells in vitro .

  18. Decursin inhibits retinal neovascularization via suppression of VEGFR-2 activation.

    PubMed

    Kim, Jeong Hun; Kim, Jin Hyoung; Lee, You Mie; Ahn, Eun-Mi; Kim, Kyu-Won; Yu, Young Suk

    2009-09-12

    Pathologic angiogenesis in the retina leads to the catastrophic loss of vision. Retinopathy of prematurity (ROP), a vasoproliferative retinopathy, is a leading cause of blindness in children. We evaluated the inhibitory effect of decursin on retinal neovascularization. Anti-angiogenic activity of decursin was evaluated by vascular endothelial growth factor (VEGF)-induced proliferation, migration, and in vitro tube formation assay of human retinal microvascular endothelial cells (HRMECs). We also used western blot analysis to assess inhibition of vascular endothelial growth factor receptor-2 (VEGFR-2) phosphorylation by decursin. After intravitreal injection of decursin in a mouse model of ROP, retinal neovascularization was examined by fluorescence angiography and vessel counting in cross-sections. The toxicity of decursin was evaluated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in HRMECs as well as histologic and immunohistochemistry examination for glial fibrillary acidic protein in the retina. Decursin significantly inhibited VEGF-induced proliferation, migration, and the formation of capillary-like networks of retinal endothelial cells in a dose-dependent manner. Decursin inhibited VEGF-induced phosphorylation of VEGFR-2, blocking the VEGFR-2 signaling pathway. When intravitreously injected, decursin dramatically suppressed retinal neovascularization in a mouse model of ROP. Even in a high concentration, decursin never induced any structural or inflammatory changes to cells in retinal or vitreous layers. Moreover, the upregulation of glial fibrillary acidic protein expression was not detected in Mueller cells. Our data suggest that decursin may be a potent anti-angiogenic agent targeting the VEGFR-2 signaling pathway, which significantly inhibits retinal neovascularization without retinal toxicity and may be applicable in various other vasoproliferative retinopathies as well.

  19. Decursin inhibits retinal neovascularization via suppression of VEGFR-2 activation

    PubMed Central

    Kim, Jeong Hun; Kim, Jin Hyoung; Lee, You Mie; Ahn, Eun-Mi; Kim, Kyu-Won

    2009-01-01

    Purpose Pathologic angiogenesis in the retina leads to the catastrophic loss of vision. Retinopathy of prematurity (ROP), a vasoproliferative retinopathy, is a leading cause of blindness in children. We evaluated the inhibitory effect of decursin on retinal neovascularization. Methods Anti-angiogenic activity of decursin was evaluated by vascular endothelial growth factor (VEGF)-induced proliferation, migration, and in vitro tube formation assay of human retinal microvascular endothelial cells (HRMECs). We also used western blot analysis to assess inhibition of vascular endothelial growth factor receptor-2 (VEGFR-2) phosphorylation by decursin. After intravitreal injection of decursin in a mouse model of ROP, retinal neovascularization was examined by fluorescence angiography and vessel counting in cross-sections. The toxicity of decursin was evaluated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in HRMECs as well as histologic and immunohistochemistry examination for glial fibrillary acidic protein in the retina. Results Decursin significantly inhibited VEGF-induced proliferation, migration, and the formation of capillary-like networks of retinal endothelial cells in a dose-dependent manner. Decursin inhibited VEGF-induced phosphorylation of VEGFR-2, blocking the VEGFR-2 signaling pathway. When intravitreously injected, decursin dramatically suppressed retinal neovascularization in a mouse model of ROP. Even in a high concentration, decursin never induced any structural or inflammatory changes to cells in retinal or vitreous layers. Moreover, the upregulation of glial fibrillary acidic protein expression was not detected in Mueller cells. Conclusions Our data suggest that decursin may be a potent anti-angiogenic agent targeting the VEGFR-2 signaling pathway, which significantly inhibits retinal neovascularization without retinal toxicity and may be applicable in various other vasoproliferative retinopathies as well. PMID:19756180

  20. Pirfenidone inhibits transforming growth factor-β1-induced fibrogenesis by blocking nuclear translocation of Smads in human retinal pigment epithelial cell line ARPE-19

    PubMed Central

    Choi, Kyungsun; Lee, Kihwang; Ryu, Seung-Wook; Im, Minju; Kook, Koung Hoon

    2012-01-01

    Purpose Transforming growth factor-β (TGF-β) plays a key role in transforming retinal pigment epithelial (RPE) cells into mesenchymal fibroblastic cells, which are implicated in proliferative vitreoretinopathy. Herein, we tested the effect of pirfenidone, a novel antifibrotic agent, on TGF-β1-mediated fibrogenesis in the human RPE cell line ARPE-19. Methods The effect of pirfenidone on the TGF-β1-induced phenotype in ARPE-19 cells was measured with immunocytochemistry as the change in F-actin. Fibronectin and collagen production was measured with enzyme-linked immunosorbent assay, and cell migration activity was investigated using a scratch assay. Immunoblot analyses of cofilin, sma and mad protein (smad) 2/3, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and extracellular signal-related kinase expression were conducted to elucidate the cell signaling networks that contribute to the antifibrotic effect of pirfenidone. Results Treatment with TGF-β1 induced typical phenotypic changes such as formation of stress fiber running parallel to the long axis of cells and enhanced migration and production of extracellular matrix components such as collagen type I and fibronectin. This fibroblast-like phenotype induced by TGF-β1 was significantly inhibited by pretreatment with pirfenidone in a dose-dependent manner. We also elucidated the TGF-β signaling pathways as the target of the inhibitory effect of pirfenidone. Pirfenidone inhibited TGF-β signaling by preventing nuclear accumulation of active Smad2/3 complexes rather than phosphorylation of Smad2/3. Conclusions These results collectively provide a rational background for future evaluation of pirfenidone as a potential antifibrotic agent for treating proliferative vitreoretinopathy and other fibrotic retinal disorders. PMID:22550395

  1. Empirical research on international environmental migration: a systematic review.

    PubMed

    Obokata, Reiko; Veronis, Luisa; McLeman, Robert

    2014-01-01

    This paper presents the findings of a systematic review of scholarly publications that report empirical findings from studies of environmentally-related international migration. There exists a small, but growing accumulation of empirical studies that consider environmentally-linked migration that spans international borders. These studies provide useful evidence for scholars and policymakers in understanding how environmental factors interact with political, economic and social factors to influence migration behavior and outcomes that are specific to international movements of people, in highlighting promising future research directions, and in raising important considerations for international policymaking. Our review identifies countries of migrant origin and destination that have so far been the subject of empirical research, the environmental factors believed to have influenced these migrations, the interactions of environmental and non-environmental factors as well as the role of context in influencing migration behavior, and the types of methods used by researchers. In reporting our findings, we identify the strengths and challenges associated with the main empirical approaches, highlight significant gaps and future opportunities for empirical work, and contribute to advancing understanding of environmental influences on international migration more generally. Specifically, we propose an exploratory framework to take into account the role of context in shaping environmental migration across borders, including the dynamic and complex interactions between environmental and non-environmental factors at a range of scales.

  2. Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling.

    PubMed

    Diniz, Luan Pereira; Tortelli, Vanessa; Garcia, Matheus Nunes; Araújo, Ana Paula Bérgamo; Melo, Helen M; Silva, Gisele S Seixas da; Felice, Fernanda G De; Alves-Leon, Soniza Vieira; Souza, Jorge Marcondes de; Romão, Luciana Ferreira; Castro, Newton Gonçalves; Gomes, Flávia Carvalho Alcantara

    2014-12-01

    The balance between excitatory and inhibitory synaptic inputs is critical for the control of brain function. Astrocytes play important role in the development and maintenance of neuronal circuitry. Whereas astrocytes-derived molecules involved in excitatory synapses are recognized, molecules and molecular mechanisms underlying astrocyte-induced inhibitory synapses remain unknown. Here, we identified transforming growth factor beta 1 (TGF-β1), derived from human and murine astrocytes, as regulator of inhibitory synapse in vitro and in vivo. Conditioned media derived from human and murine astrocytes induce inhibitory synapse formation in cerebral cortex neurons, an event inhibited by pharmacologic and genetic manipulation of the TGF-β pathway. TGF-β1-induction of inhibitory synapse depends on glutamatergic activity and activation of CaM kinase II, which thus induces localization and cluster formation of the synaptic adhesion protein, Neuroligin 2, in inhibitory postsynaptic terminals. Additionally, intraventricular injection of TGF-β1 enhanced inhibitory synapse number in the cerebral cortex. Our results identify TGF-β1/CaMKII pathway as a novel molecular mechanism underlying astrocyte control of inhibitory synapse formation. We propose here that the balance between excitatory and inhibitory inputs might be provided by astrocyte signals, at least partly achieved via TGF-β1 downstream pathways. Our work contributes to the understanding of the GABAergic synapse formation and may be of relevance to further the current knowledge on the mechanisms underlying the development of various neurological disorders, which commonly involve impairment of inhibitory synapse transmission. © 2014 Wiley Periodicals, Inc.

  3. RTVP-1 regulates glioma cell migration and invasion via interaction with N-WASP and hnRNPK

    PubMed Central

    Ziv-Av, Amotz; Giladi, Nissim David; Lee, Hae Kyung; Cazacu, Simona; Finniss, Susan; Xiang, Cunli; Pauker, Maor H.; Barda-Saad, Mira; Poisson, Laila; Brodie, Chaya

    2015-01-01

    Glioblastoma (GBM) are characterized by increased invasion into the surrounding normal brain tissue. RTVP-1 is highly expressed in GBM and regulates the migration and invasion of glioma cells. To further study RTVP-1 effects we performed a pull-down assay using His-tagged RTVP-1 followed by mass spectrometry and found that RTVP-1 was associated with the actin polymerization regulator, N-WASP. This association was further validated by co-immunoprecipitation and FRET analysis. We found that RTVP-1 increased cell spreading, migration and invasion and these effects were at least partly mediated by N-WASP. Another protein which was found by the pull-down assay to interact with RTVP-1 is hnRNPK. This protein has been recently reported to associate with and to inhibit the effect of N-WASP on cell spreading. hnRNPK decreased cell migration, spreading and invasion in glioma cells. Using co-immunoprecipitation we validated the interactions of hnRNPK with N-WASP and RTVP-1 in glioma cells. In addition, we found that overexpression of RTVP-1 decreased the association of N-WASP and hnRNPK. In summary, we report that RTVP-1 regulates glioma cell spreading, migration and invasion and that these effects are mediated via interaction with N-WASP and by interfering with the inhibitory effect of hnRNPK on the function of this protein. PMID:26305187

  4. Tetraspan TM4SF5-dependent direct activation of FAK and metastatic potential of hepatocarcinoma cells

    PubMed Central

    Jung, Oisun; Choi, Suyong; Jang, Sun-Bok; Lee, Sin-Ae; Lim, Ssang-Taek; Choi, Yoon-Ju; Kim, Hye-Jin; Kim, Do-Hee; Kwak, Tae Kyoung; Kim, Hyeonjung; Kang, Minkyung; Lee, Mi-Sook; Park, Sook Young; Ryu, Jihye; Jeong, Doyoung; Cheong, Hae-Kap; Kim, Hyun Jeong; Park, Ki Hun; Lee, Bong-Jin; Schlaepfer, David D.; Lee, Jung Weon

    2012-01-01

    Summary Transmembrane 4 L six family member 5 (TM4SF5) plays an important role in cell migration, and focal adhesion kinase (FAK) activity is essential for homeostatic and pathological migration of adherent cells. However, it is unclear how TM4SF5 signaling mediates the activation of cellular migration machinery, and how FAK is activated during cell adhesion. Here, we showed that direct and adhesion-dependent binding of TM4SF5 to FAK causes a structural alteration that may release the inhibitory intramolecular interaction in FAK. In turn, this may activate FAK at the cell's leading edge, to promote migration/invasion and in vivo metastasis. TM4SF5-mediated FAK activation occurred during integrin-mediated cell adhesion. TM4SF5 was localized at the leading edge of the cells, together with FAK and actin-organizing molecules, indicating a signaling link between TM4SF5/FAK and actin reorganization machinery. Impaired interactions between TM4SF5 and FAK resulted in an attenuated FAK phosphorylation (the signaling link to actin organization machinery) and the metastatic potential. Our findings demonstrate that TM4SF5 directly binds to and activates FAK in an adhesion-dependent manner, to regulate cell migration and invasion, suggesting that TM4SF5 is a promising target in the treatment of metastatic cancer. PMID:23077174

  5. Sociodemographic risk, parenting, and inhibitory control in early childhood: the role of respiratory sinus arrhythmia.

    PubMed

    Holochwost, Steven J; Volpe, Vanessa V; Gueron-Sela, Noa; Propper, Cathi B; Mills-Koonce, W Roger

    2018-03-13

    Deficits of inhibitory control in early childhood are linked to externalizing behaviors and attention problems. While environmental factors and physiological processes are associated with its etiology, few studies have examined how these factors jointly predict inhibitory control. This study examined whether respiratory sinus arrhythmia (RSA) functioned as a mediator or moderator of both cumulative sociodemographic risk and parenting behaviors on inhibitory control during early childhood. The sample included 206 children and their biological mothers. At 24, 30, and 36 months of child age dyads participated in a series of laboratory visits in which sociodemographic, parenting, and baseline RSA (RSAB) data were collected. Inhibitory control was assessed at 36 months using a gift-wrap delay task. A series of structural equation models yielded no evidence that RSAB mediated the relations of risk or parenting and inhibitory control. RSAB moderated the effects of risk, such that high-risk children with low RSAB performed more poorly on tasks of inhibitory control, while high-risk children with high RSAB did not. These results suggest that higher levels of RSAB may mitigate the influence of environmental risk on the development of inhibitory control early childhood. © 2018 Association for Child and Adolescent Mental Health.

  6. Migration and HIV prevention programmes: linking structural factors, culture, and individual behaviour--an Israeli experience.

    PubMed

    Soskolne, Varda; Shtarkshall, Ronny A

    2002-10-01

    Migration is one of the structural factors associated with HIV infections, but the dynamic and complex role of migrant situations as determinants of HIV-related vulnerability is still a major issue for social science research. Moreover, interventions to address the specific structural and contextual factors inherent in this association are limited and many do not take into account the cultural components. This paper presents a multi-level framework for analysis of the links between migration and HIV. It includes the association of migration with structural macro factors-lower socio-economic status and limited power in the new society; intermediate structural factors-limited social capital and bi-directional interaction of cultural norms; and individual-level factors-stressors unique to the migration context, depleted psychosocial resources, loss of cultural beliefs and low use of health services. All these factors affect risky sexual behaviour and transmission of HIV. The paper utilises those elements of the framework that are relevant to the specific needs of immigrant populations from the former Soviet Union and from Ethiopia in Israel. We demonstrate their application to integrated, multi-level HIV prevention interventions and propose several special principles for development of migration-related HIV prevention programmes.

  7. Ferulic Acid Exerts Anti-Angiogenic and Anti-Tumor Activity by Targeting Fibroblast Growth Factor Receptor 1-Mediated Angiogenesis.

    PubMed

    Yang, Guang-Wei; Jiang, Jin-Song; Lu, Wei-Qin

    2015-10-12

    Most anti-angiogenic therapies currently being evaluated target the vascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here, we identified ferulic acid as a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor and a novel agent with potential anti-angiogenic and anti-cancer activities. Ferulic acid demonstrated inhibition of endothelial cell proliferation, migration and tube formation in response to basic fibroblast growth factor 1 (FGF1). In ex vivo and in vivo angiogenesis assays, ferulic acid suppressed FGF1-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of ferulic acid on different molecular components and found that ferulic acid suppressed FGF1-triggered activation of FGFR1 and phosphatidyl inositol 3-kinase (PI3K)-protein kinase B (Akt) signaling. Moreover, ferulic acid directly inhibited proliferation and blocked the PI3K-Akt pathway in melanoma cell. In vivo, using a melanoma xenograft model, ferulic acid showed growth-inhibitory activity associated with inhibition of angiogenesis. Taken together, our results indicate that ferulic acid targets the FGFR1-mediated PI3K-Akt signaling pathway, leading to the suppression of melanoma growth and angiogenesis.

  8. A tick B-cell inhibitory protein from salivary glands of the hard tick, Hyalomma asiaticum asiaticum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Da; Department of Life Science and Technology, Changshu Institute of Technology, Changshu 215500; Liang Jiangguo

    2006-05-05

    Some studies done to date suggest that B-cell inhibitory factor occurred in tick saliva. In this study, a novel protein having B-cell inhibitory activity was purified and characterized from the salivary glands of the hard tick, Hyalomma asiaticum asiaticum. This protein was named B-cell inhibitory factor (BIF). The cDNA encoding BIF was cloned by cDNA library screening. The predicted protein from the cDNA sequence is composed of 138 amino acids including the mature BIF. No similarity was found by Blast search. The lipopolysaccharide-induced B-cell proliferation was inhibited by BIF. This is First report of the identification and characterization of B-cellmore » inhibitory protein from tick. The current study facilitates the study of identifying the interaction among tick, Borrelia burgdorferi, the causative agent of Lyme disease, and host.« less

  9. Characterization of synthetic lung surfactant activity against proinflammatory cytokines in human monocytes.

    PubMed

    Otsubo, Eiji; Irimajiri, Kiyohiro; Takei, Tsunetomo; Nomura, Masato

    2002-03-01

    Our previous study demonstrated that the smallest synthetic peptide with the sequence CPVHLKRLLLLLLLLLLLLLLLL, SP-CL16(6-28), admixed with phospholipid (synthetic lung surfactant, SLS) showed strong surface activity. In this study, we attempted to develop a dual-type surfactant with both anti inflammatory and surface activities. SP-CL16(6-28) was first chemically synthesized and then purified for use by centrifugal partition chromatography. A mixture of SP-CL16(6-28) and phospholipid complex was tested for anti inflammatory activity using the human monocyte cell line THP-1. Whether the suppression of tumor necrosis factor-alpha (TNF-a), interleukin (IL)-8, IL-6, IL-1beta, and macrophage migration inhibitory factor (MIF) was reduced by lipopolysaccharide (LPS) in monocytes was examined. Levels of these cytokines were measured by enzyme-linked immunosorbent assay. It was found that SLS significantly and dose dependently inhibited the secretion of TNF-alpha by THP-1 cells following stimulation with LPS. Dipalmitoylphosphatidylcoline did not inhibit the release of cytokines. These findings suggest that SLS has anti inflammatory activity. Therefore it should be possible to develop a SLS with both anti inflammatory activity and surface activity.

  10. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA.

    PubMed

    Zhang, Haiyang; Wang, Yi; Bai, Ming; Wang, Junyi; Zhu, Kegan; Liu, Rui; Ge, Shaohua; Li, JiaLu; Ning, Tao; Deng, Ting; Fan, Qian; Li, Hongli; Sun, Wu; Ying, Guoguang; Ba, Yi

    2018-03-01

    Exosomes derived from cells have been found to mediate signal transduction between cells and to act as efficient carriers to deliver drugs and small RNA. Hepatocyte growth factor (HGF) is known to promote the growth of both cancer cells and vascular cells, and the HGF-cMET pathway is a potential clinical target. Here, we characterized the inhibitory effect of HGF siRNA on tumor growth and angiogenesis in gastric cancer. In addition, we showed that HGF siRNA packed in exosomes can be transported into cancer cells, where it dramatically downregulates HGF expression. A cell co-culture model was used to show that exosomes loaded with HGF siRNA suppress proliferation and migration of both cancer cells and vascular cells. Moreover, exosomes were able to transfer HGF siRNA in vivo, decreasing the growth rates of tumors and blood vessels. The results of our study demonstrate that exosomes have potential for use in targeted cancer therapy by delivering siRNA. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. Cell mediated immune response of the Mediterranean sea urchin Paracentrotus lividus after PAMPs stimulation.

    PubMed

    Romero, A; Novoa, B; Figueras, A

    2016-09-01

    The Mediterranean sea urchin (Paracentrotus lividus) is of great ecological and economic importance for the European aquaculture. Yet, most of the studies regarding echinoderm's immunological defense mechanisms reported so far have used the sea urchin Strongylocentrotus purpuratus as a model, and information on the immunological defense mechanisms of Paracentrotus lividus and other sea urchins, is scarce. To remedy this gap in information, in this study, flow cytometry was used to evaluate several cellular immune mechanisms, such as phagocytosis, cell cooperation, and ROS production in P. lividus coelomocytes after PAMP stimulation. Two cell populations were described. Of the two, the amoeboid-phagocytes were responsible for the phagocytosis and ROS production. Cooperation between amoeboid-phagocytes and non-adherent cells resulted in an increased phagocytic response. Stimulation with several PAMPs modified the phagocytic activity and the production of ROS. The premise that the coelomocytes were activated by the bacterial components was confirmed by the expression levels of two cell mediated immune genes: LPS-Induced TNF-alpha Factor (LITAF) and macrophage migration inhibitory factor (MIF). These results have helped us understand the cellular immune mechanisms in P. lividus and their modulation after PAMP stimulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy

    PubMed Central

    de Freitas, Lucas Freitas; Hamblin, Michael R

    2016-01-01

    Photobiomodulation (PBM) also known as low-level laser (or light) therapy (LLLT), has been known for almost 50 years but still has not gained widespread acceptance, largely due to uncertainty about the molecular, cellular, and tissular mechanisms of action. However, in recent years, much knowledge has been gained in this area, which will be summarized in this review. One of the most important chromophores is cytochrome c oxidase (unit IV in the mitochondrial respiratory chain), which contains both heme and copper centers and absorbs light into the near-infra-red region. The leading hypothesis is that the photons dissociate inhibitory nitric oxide from the enzyme, leading to an increase in electron transport, mitochondrial membrane potential and ATP production. Another hypothesis concerns light-sensitive ion channels that can be activated allowing calcium to enter the cell. After the initial photon absorption events, numerous signaling pathways are activated via reactive oxygen species, cyclic AMP, NO and Ca2+, leading to activation of transcription factors. These transcription factors can lead to increased expression of genes related to protein synthesis, cell migration and proliferation, anti-inflammatory signaling, anti-apoptotic proteins, antioxidant enzymes. Stem cells and progenitor cells appear to be particularly susceptible to LLLT. PMID:28070154

  13. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy.

    PubMed

    de Freitas, Lucas Freitas; Hamblin, Michael R

    2016-01-01

    Photobiomodulation (PBM) also known as low-level laser (or light) therapy (LLLT), has been known for almost 50 years but still has not gained widespread acceptance, largely due to uncertainty about the molecular, cellular, and tissular mechanisms of action. However, in recent years, much knowledge has been gained in this area, which will be summarized in this review. One of the most important chromophores is cytochrome c oxidase (unit IV in the mitochondrial respiratory chain), which contains both heme and copper centers and absorbs light into the near-infra-red region. The leading hypothesis is that the photons dissociate inhibitory nitric oxide from the enzyme, leading to an increase in electron transport, mitochondrial membrane potential and ATP production. Another hypothesis concerns light-sensitive ion channels that can be activated allowing calcium to enter the cell. After the initial photon absorption events, numerous signaling pathways are activated via reactive oxygen species, cyclic AMP, NO and Ca2+, leading to activation of transcription factors. These transcription factors can lead to increased expression of genes related to protein synthesis, cell migration and proliferation, anti-inflammatory signaling, anti-apoptotic proteins, antioxidant enzymes. Stem cells and progenitor cells appear to be particularly susceptible to LLLT.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamir,D.; Zierow, S.; Leng, L.

    Parasitic organisms have evolved specialized strategies to evade immune defense mechanisms. We describe herein an ortholog of the cytokine, macrophage migration inhibitory factor (MIF), which is produced by the obligate intracellular parasite, Leishmania major. The Leishmania MIF protein, Lm1740MIF, shows significant structural homology with human MIF as revealed by a high-resolution x-ray crystal structure (1.03 A). Differences between the two proteins in the N-terminal tautomerization site are evident, and we provide evidence for the selective, species-specific inhibition of MIF by small-molecule antagonists that target this site. Lm1740MIF shows significant binding interaction with the MIF receptor, CD74 (K(d) = 2.9 xmore » 10(-8) M). Like its mammalian counterpart, Lm1740MIF induces ERK1/2 MAP kinase activation in a CD74-dependent manner and inhibits the activation-induced apoptosis of macrophages. The ability of Lm1740MIF to inhibit apoptosis may facilitate the persistence of Leishmania within the macrophage and contribute to its evasion from immune destruction.« less

  15. Melatonin Inhibits Reactive Oxygen Species-Driven Proliferation, Epithelial-Mesenchymal Transition, and Vasculogenic Mimicry in Oral Cancer

    PubMed Central

    Liu, Rui; Wang, Hui-li; Deng, Man-jing; Wen, Xiu-jie; Mo, Yuan-yuan; Chen, Fa-ming; Zou, Chun-li; Duan, Wei-feng

    2018-01-01

    Globally, oral cancer is the most common type of head and neck cancers. Melatonin elicits inhibitory effects on oral cancer; however, the biological function of melatonin and underlying mechanisms remain largely unknown. In this study, we found that melatonin impaired the proliferation and apoptosis resistance of oral cancer cells by inactivating ROS-dependent Akt signaling, involving in downregulation of cyclin D1, PCNA, and Bcl-2 and upregulation of Bax. Melatonin inhibited the migration and invasion of oral cancer cells by repressing ROS-activated Akt signaling, implicating with the reduction of Snail and Vimentin and the enhancement of E-cadherin. Moreover, melatonin hampered vasculogenic mimicry of oral cancer cells through blockage of ROS-activated extracellular-regulated protein kinases (ERKs) and Akt pathways involving the hypoxia-inducible factor 1α. Consistently, melatonin retarded tumorigenesis of oral cancer in vivo. Overall, these findings indicated that melatonin exerts antisurvival, antimotility, and antiangiogenesis effects on oral cancer partly by suppressing ROS-reliant Akt or ERK signaling. PMID:29725496

  16. The noni anthraquinone damnacanthal is a multi-kinase inhibitor with potent anti-angiogenic effects.

    PubMed

    García-Vilas, Javier A; Pino-Ángeles, Almudena; Martínez-Poveda, Beatriz; Quesada, Ana R; Medina, Miguel Ángel

    2017-01-28

    The natural bioactive compound damnacanthal inhibits several tyrosine kinases. Herein, we show that -in fact- damancanthal is a multi kinase inhibitor. A docking and molecular dynamics simulation approach allows getting further insight on the inhibitory effect of damnacanthal on three different kinases: vascular endothelial growth factor receptor-2, c-Met and focal adhesion kinase. Several of the kinases targeted and inhibited by damnacanthal are involved in angiogenesis. Ex vivo and in vivo experiments clearly demonstrate that, indeed, damnacanthal is a very potent inhibitor of angiogenesis. A number of in vitro assays contribute to determine the specific effects of damnacanthal on each of the steps of the angiogenic process, including inhibition of tubulogenesis, endothelial cell proliferation, survival, migration and production of extracellular matrix remodeling enzyme. Taken altogether, these results suggest that damancanthal could have potential interest for the treatment of cancer and other angiogenesis-dependent diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Melatonin Inhibits Reactive Oxygen Species-Driven Proliferation, Epithelial-Mesenchymal Transition, and Vasculogenic Mimicry in Oral Cancer.

    PubMed

    Liu, Rui; Wang, Hui-Li; Deng, Man-Jing; Wen, Xiu-Jie; Mo, Yuan-Yuan; Chen, Fa-Ming; Zou, Chun-Li; Duan, Wei-Feng; Li, Lei; Nie, Xin

    2018-01-01

    Globally, oral cancer is the most common type of head and neck cancers. Melatonin elicits inhibitory effects on oral cancer; however, the biological function of melatonin and underlying mechanisms remain largely unknown. In this study, we found that melatonin impaired the proliferation and apoptosis resistance of oral cancer cells by inactivating ROS-dependent Akt signaling, involving in downregulation of cyclin D1, PCNA, and Bcl-2 and upregulation of Bax. Melatonin inhibited the migration and invasion of oral cancer cells by repressing ROS-activated Akt signaling, implicating with the reduction of Snail and Vimentin and the enhancement of E-cadherin. Moreover, melatonin hampered vasculogenic mimicry of oral cancer cells through blockage of ROS-activated extracellular-regulated protein kinases (ERKs) and Akt pathways involving the hypoxia-inducible factor 1 α . Consistently, melatonin retarded tumorigenesis of oral cancer in vivo . Overall, these findings indicated that melatonin exerts antisurvival, antimotility, and antiangiogenesis effects on oral cancer partly by suppressing ROS-reliant Akt or ERK signaling.

  18. MECHANISMS IN THE SUPPRESSION OF DELAYED HYPERSENSITIVITY IN THE GUINEA PIG BY 6-MERCAPTOPURINE

    PubMed Central

    Phillips, S. Michael; Zweiman, Burton

    1973-01-01

    The mechanism of suppression, of delayed hypersensitivity to tuberculoprotein by 6-mercaptopurine (6-MP) was studied in guinea pigs. Under the conditions of the protocol, suppression of tuberculin delayed skin test reactivity was not associated with a significantly altered end-organ response to mediators of permeability. No significant alteration of in vivo lymphoid activity, as measured by reconstitution studies, was found. In addition, lymphoid cells from 6-MP-treated animals reacted in a fashion similar to those of placebo-treated animals with respect to (a) antigen-induced lymphocyte proliferation, (b) antigen-induced liberation of macrophage inhibitory factor activity, (c) direct inhibition by antigen of peritoneal exudate cell migration. Conversely, suppression was seen in levels of blood monocytes and in vitro function of macrophages from 6-MP-treated animals in several respects: (a) adherence to glass, (b) migratory rate, (c) phagocytic capacity. Therefore, it would appear that a ma]or mechanism of 6-MP-induced suppression of delayed hypersensitivity is through its action on effector cells. PMID:4196793

  19. Intraocular application of gold nanodisks optically tuned for optical coherence tomography: inhibitory effect on retinal neovascularization without unbearable toxicity.

    PubMed

    Song, Hyun Beom; Wi, Jung-Sub; Jo, Dong Hyun; Kim, Jin Hyoung; Lee, Sang-Won; Lee, Tae Geol; Kim, Jeong Hun

    2017-08-01

    Bare gold nanospheres have been shown to have anti-angiogenic effects but are optically unfavorable because their resonant wavelength lies in the visible spectrum. Here, we design gold nanodisks with a higher scattering capability than gold nanorods and with a resonant wavelength at near-infrared region - the area where the source of light utilized by optical coherence tomography (OCT) lies. With a physical synthesis system, we then fabricate 160-nm-sized gold nanodisks exhibiting resonant wavelength at 830 nm. The synthesized nanoparticles were successfully visualized in in vivo OCT at concentrations as low as 1 pM. After demonstrating their binding ability to vascular endothelial growth factor (VEGF), we show that they suppress VEGF-induced migration of endothelial cells. Finally, we demonstrate that intravitreally injected gold nanodisks attenuate neovascularization of oxygen-induced retinopathy in mice, in a dose dependent manner, such that they are cleared from the vitreous within 2 weeks without histologic or electrophysiologic toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Drug Repositioning and Pharmacophore Identification in the Discovery of Hookworm MIF Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Cho; J Vermeire; J Merkel

    The screening of bioactive compound libraries can be an effective approach for repositioning FDA-approved drugs or discovering new pharmacophores. Hookworms are blood-feeding, intestinal nematode parasites that infect up to 600 million people worldwide. Vaccination with recombinant Ancylostoma ceylanicum macrophage migration inhibitory factor (rAceMIF) provided partial protection from disease, thus establishing a 'proof-of-concept' for targeting AceMIF to prevent or treat infection. A high-throughput screen (HTS) against rAceMIF identified six AceMIF-specific inhibitors. A nonsteroidal anti-inflammatory drug (NSAID), sodium meclofenamate, could be tested in an animal model to assess the therapeutic efficacy in treating hookworm disease. Furosemide, an FDA-approved diuretic, exhibited submicromolar inhibitionmore » of rAceMIF tautomerase activity. Structure-activity relationships of a pharmacophore based on furosemide included one analog that binds similarly to the active site, yet does not inhibit the Na-K-Cl symporter (NKCC1) responsible for diuretic activity.« less

  1. Combined aspirin and apatinib treatment suppresses gastric cancer cell proliferation.

    PubMed

    Zhang, Wei; Tan, Yongsheng; Ma, Heping

    2017-11-01

    Gastric cancer (GC), one of the types of tumor most prone to malignancy, is characterized by high lethality. Numerous molecular mediators of GC have been identified, including transcription factors, signaling molecules and non-coding RNAs. Recently, inhibition of angiogenesis has emerged as a potential strategy for GC therapy. In the present study, the levels of vascular endothelial growth factor (VEGF), peroxisome proliferator-activated receptor-α (PPARα) and miR-21 in GC patients and individuals without cancer, and the correlation between VEGF and miR-21, and PPARα and miR-21 expression were analyzed. In addition, the GC MKN45 cell line was treated with apatinib (a tyrosine kinase inhibitor) and aspirin (an activator of the transcription factor, PPARα) to investigate the effects of these compounds on tumorigenesis. Furthermore, the present study attempted to elucidate the molecular mechanisms of alteration of GC tumorigenesis by aspirin and apatinib. The results of the current study demonstrated that there was a higher expression of VEGF and miR-21 in GC tissues compared with that in morphologically adjacent normal tissues whereas PPARα expression was decreased. These results were confirmed in vitro , as treatment of MKN45 cells with VEGF resulted in a significant increase in miR-21 expression and a significant reduction in PPARα protein expression. Furthermore, the inhibitory effects of VEGF on PPARα mRNA and protein expression were demonstrated to be mediated by miR-21. Suppression of PPARα protein expression attenuated the inhibitory effects of miR-21 on the level of PPARα mRNA, thereby enhancing tumorigenesis in gastric cancer. Treatment of MKN45 cells with aspirin reduced the levels of phosphorylated AKT by activating PPARα, whereas treatment with apatinib inhibited the phosphorylation of vascular endothelial growth factor receptor 2 and phosphoinositide-3 kinase in MKN45 cells. Finally, treatment of MKN45 cells with apatinib and aspirin suppressed tumorigenesis by inhibiting cell proliferation, migration, invasion and colony formation. Taken together, the results of the present study indicate that treatment with a combination of aspirin and apatinib may be a potential therapeutic strategy for GC treatment.

  2. Structure of the human factor VIII C2 domain in complex with the 3E6 inhibitory antibody

    DOE PAGES

    Wuerth, Michelle E.; Cragerud, Rebecca K.; Spiegel, P. Clint

    2015-11-24

    Blood coagulation factor VIII is a glycoprotein cofactor that is essential for the intrinsic pathway of the blood coagulation cascade. Inhibitory antibodies arise either spontaneously or in response to therapeutic infusion of functional factor VIII into hemophilia A patients, many of which are specific to the factor VIII C2 domain. The immune response is largely parsed into “classical” and “non-classical” inhibitory antibodies, which bind to opposing faces cooperatively. In this study, the 2.61 Å resolution structure of the C2 domain in complex with the antigen-binding fragment of the 3E6 classical inhibitory antibody is reported. The binding interface is largely conservedmore » when aligned with the previously determined structure of the C2 domain in complex with two antibodies simultaneously. Further inspection of the B factors for the C2 domain in various X-ray crystal structures indicates that 3E6 antibody binding decreases the thermal motion behavior of surface loops in the C2 domain on the opposing face, thereby suggesting that cooperative antibody binding is a dynamic effect. Furthermore, understanding the structural nature of the immune response to factor VIII following hemophilia A treatment will help lead to the development of better therapeutic reagents.« less

  3. Unripe Rubus coreanus Miquel suppresses migration and invasion of human prostate cancer cells by reducing matrix metalloproteinase expression.

    PubMed

    Kim, Yesl; Lee, Seung Min; Kim, Jung-Hyun

    2014-01-01

    Rubus coreanus Miquel (RCM) is used to promote prostate health and has been shown to have anti-oxidant and anti-carcinogenic activities. However, the effects and mechanisms of RCM on prostate cancer metastasis remain unclear. PC-3 and DU 145 cells were treated with ethanol or water extract of unripe or ripe RCM and examined for cell invasion, migration, and matrix metalloproteinases (MMPs) activity and expression. Phosphoinositide 3-kinase (PI3K) and Akt activities were examined. Unripe RCM extracts exerted significant inhibitory effects on cell migration, invasion, and MMPs activities. A significant reduction in MMPs activities by unripe RCM ethanol extract treatment (UE) was associated with reduction of MMPs expression and induction of tissue inhibitors of metalloproteinases (TIMPs) expression. Furthermore, PI3K/Akt activity was diminished by UE treatment. In this study, we demonstrated that UE decreased metastatic potential of prostate cancer cells by reducing MMPs expression through the suppression of PI3K/Akt phosphorylation, thereby decreasing MMP activity and enhancing TIMPs expression.

  4. 18β-glycyrrhetinic acid inhibits migration and invasion of human gastric cancer cells via the ROS/PKC-α/ERK pathway.

    PubMed

    Cai, Hongke; Chen, Xi; Zhang, Jianbo; Wang, Jijian

    2018-01-01

    18β-glycyrrhetinic acid (18β-GA) is a bioactive component of licorice root which exerts pharmacological activities including anti-inflammatory, antiviral, anti-oxidative and anti-cancer effects. The current study further investigated the molecular mechanisms associated with the inhibitory effects of 18β-GA on tumor metastasis in human gastric cancer cells. The results indicated that 18β-GA significantly reduced invasion and migration activities and suppressed MMP-2 and 9 activities on SGC-7901cells in a dose-dependent manner. Further study showed 18β-GA upregulated E-cadherin expression but downregulated vimentin expression. The results also showed that 18β-GA inhibited ROS formation, PKC-α expression and the phosphorylation of ERK in a dose-dependent manner. In conclusion, this study revealed that 18β-GA inhibits migration and invasion via the ROS/PKC-α/ERK signaling pathway in gastric cancer cells. This suggests that 18β-GA has the potential to be used as an effective chemopreventive agent for the prevention of gastric cancer metastasis.

  5. Integrin-mediated human glioblastoma cells adhesion, migration and invasion by native and recombinant phospholipases of Scorpio maurus venom glands.

    PubMed

    Krayem, Najeh; Abdelkefi-Koubaa, Zaineb; Gargouri, Youssef; Luis, José

    2018-05-01

    Integrins are a large family of cell surface receptors mediating the interaction of cells with their microenvironment and they play an important role in glioma biology. In the present work, we reported the anti-tumor effect of Sm-PLGV a phospholipase A 2 from Tunisian scorpion venom glands-as well as its recombinant forms expressed in Escherichia coli-through interference with integrin receptor function in malignant glioma cells U87. These phospholipases inhibited in a dose dependent manner the adhesion, migration and invasion onto fibrinogen and fibronectin without any cytotoxicity. We showed that Sm-PLGV and its recombinant constructs blocked U87 migration by reducing their velocity and directional persistence. The inhibitory effect was related to a blockage of the integrins αvβ3 and α5β1 function. Inactivation of the enzymatic activity of Sm-PLGV by chemical modification with p-bromophenacyl bromide did not affect its anti-tumor properties, suggesting the presence of 'pharmacological sites' distinct from the catalytic site in scorpion venom phospholipases A 2 . Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Zhi, Wenbing; Liu, Fang

    Pathogenesis of atherosclerosis is characterized by the proliferation and migration of vascular smooth muscle cells (VSMCs) and inflammatory lesions. The aim of this study is to elucidate the effect of atractylenolide I (AO-I) on smooth muscle cell inflammation, proliferation and migration induced by oxidized modified low density lipoprotein (Ox-LDL). Here, We found that atractylenolide I inhibited Ox-LDL-induced VSMCs proliferation and migration in a dose-dependent manner, and decreased the production of inflammatory cytokines and the expression of monocyte chemoattractant protein-1 (MCP-1) in VSMCs. The study also identified that AO-I prominently inhibited p38-MAPK and NF-κB activation. More importantly, the specific heme oxygenase-1more » (HO-1) inhibitor zinc protoporphyrin (ZnPP) IX partially abolished the beneficial effects of atractylenolide I on Ox-LDL-induced VSMCs. Furthermore, atractylenolide I blocked the foam cell formation in macrophages induced by Ox-LDL. In summary, inhibitory roles of AO-I in VSMCs proliferation and migration, lipid peroxidation and subsequent inflammatory responses might contribute to the anti-atherosclerotic property of AO-I. - Highlights: • AO-I inhibited Ox-LDL-induced VSMCs proliferation and migration. • AO-I alleviated inflammatory response via inhibiting TNF-α, IL-6 and NO production. • AO-I restored HO-1 expression and down-regulated PCNA expression. • MCP-1 overexpression is potentially regulated by NF-κB and p38 MAPK pathway. • AO-I possesses strong anti-lipid peroxidation effect.« less

  7. Bioactive Fraction of Geopropolis from Melipona scutellaris Decreases Neutrophils Migration in the Inflammatory Process: Involvement of Nitric Oxide Pathway

    PubMed Central

    Franchin, Marcelo; da Cunha, Marcos Guilherme; Denny, Carina; Napimoga, Marcelo Henrique; Cunha, Thiago Mattar; Bueno-Silva, Bruno; Matias de Alencar, Severino; Ikegaki, Masaharu; Luiz Rosalen, Pedro

    2013-01-01

    The aim of this study was to evaluate the activity of the ethanolic extract of geopropolis (EEGP) from Melipona scutellaris and its fractions on the modulation of neutrophil migration in the inflammatory process, and the participation of nitric oxide (NO) pathway, as well as to check the chemical profile of the bioactive fraction. EEGP and its aqueous fraction decreased neutrophil migration in the peritoneal cavity and also the interaction of leukocytes (rolling and adhesion) with endothelial cells. The levels of chemokines CXCL1/KC and CXCL2/MIP-2 were not altered after treatment with EEGP and the aqueous fraction. It was found that the injection of NO pathway antagonists abolished the EEGP and the aqueous fraction inhibitory activity on the neutrophil migration. The expression of intercellular adhesion molecule type 1 (ICAM-1) was reduced, and nitrite levels increased after treatment with EEGP and aqueous fraction. In the carrageenan-induced paw edema model, EEGP and the aqueous fraction showed antiedema activity. No pattern of flavonoid and phenolic acid commonly found in propolis samples of Apis mellifera could be detected in the aqueous fraction samples. These data indicate that the aqueous fraction found has promising bioactive substances with anti-inflammatory activity. PMID:23737853

  8. Bioactive Fraction of Geopropolis from Melipona scutellaris Decreases Neutrophils Migration in the Inflammatory Process: Involvement of Nitric Oxide Pathway.

    PubMed

    Franchin, Marcelo; da Cunha, Marcos Guilherme; Denny, Carina; Napimoga, Marcelo Henrique; Cunha, Thiago Mattar; Bueno-Silva, Bruno; Matias de Alencar, Severino; Ikegaki, Masaharu; Luiz Rosalen, Pedro

    2013-01-01

    The aim of this study was to evaluate the activity of the ethanolic extract of geopropolis (EEGP) from Melipona scutellaris and its fractions on the modulation of neutrophil migration in the inflammatory process, and the participation of nitric oxide (NO) pathway, as well as to check the chemical profile of the bioactive fraction. EEGP and its aqueous fraction decreased neutrophil migration in the peritoneal cavity and also the interaction of leukocytes (rolling and adhesion) with endothelial cells. The levels of chemokines CXCL1/KC and CXCL2/MIP-2 were not altered after treatment with EEGP and the aqueous fraction. It was found that the injection of NO pathway antagonists abolished the EEGP and the aqueous fraction inhibitory activity on the neutrophil migration. The expression of intercellular adhesion molecule type 1 (ICAM-1) was reduced, and nitrite levels increased after treatment with EEGP and aqueous fraction. In the carrageenan-induced paw edema model, EEGP and the aqueous fraction showed antiedema activity. No pattern of flavonoid and phenolic acid commonly found in propolis samples of Apis mellifera could be detected in the aqueous fraction samples. These data indicate that the aqueous fraction found has promising bioactive substances with anti-inflammatory activity.

  9. Macrophage Migration Inhibitory Factor -173 G/C Polymorphism: A Global Meta-Analysis across the Disease Spectrum

    PubMed Central

    Illescas, Oscar; Gomez-Verjan, Juan C.; García-Velázquez, Lizbeth; Govezensky, Tzipe; Rodriguez-Sosa, Miriam

    2018-01-01

    Human macrophage migration inhibitory factor (MIF) is a cytokine that plays a role in several metabolic and inflammatory processes. Single nucleotide polymorphism (SNP) -173 G/C (rs755622) on MIF gene has been associated with numerous diseases, such as arthritis and cancer. However, most of the reports concerning the association of MIF with these and other pathologies are inconsistent and remain quite controversial. Therefore, we performed a meta-analysis from 96 case-control studies on -173 G/C MIF SNP and stratified the data according to the subjects geographic localization or the disease pathophysiology, in order to determine a more meaningful significance to this SNP. The polymorphism was strongly associated with an increased risk in autoimmune-inflammatory, infectious and age-related diseases on the dominant (OR: 0.74 [0.58–0.93], P < 0.01; OR: 0.81 [0.74–0.89], P < 0.0001; and OR: 0.81 [0.76–0.87], P < 0.0001, respectively) and the recessive models (OR: 0.74 [0.57–0.095], P < 0.01; OR: 0.66 [0.48–0.92], P < 0.0154; and OR: 0.70 [0.60–0.82], P < 0.0001, respectively). Also, significant association was found in the geographic localization setting for Asia, Europe and Latin America subdivisions in the dominant (OR: 0.76 [0.69–0.84], P < 0.0001; OR: 0.77 [0.72–0.83], P < 0.0001; OR: 0.61 [0.44–0.83], P-value: 0.0017, respectively) and overdominant models (OR: 0.85 [0.77–0.94], P < 0.0001; OR: 0.80 [0.75–0.86], P < 0.0001; OR: 0.73 [0.63–0.85], P-value: 0.0017, respectively). Afterwards, we implemented a network meta-analysis to compare the association of the polymorphism for two different subdivisions. We found a stronger association for autoimmune than for age-related or autoimmune-inflammatory diseases, and stronger association for infectious than for autoimmune-inflammatory diseases. We report for the first time a meta-analysis of rs755622 polymorphism with a variety of stratified diseases and populations. The study reveals a strong association of the polymorphism with autoimmune and infectious diseases. These results may help direct future research on MIF-173 G/C in diseases in which the relation is clearer and thus assist the search for more plausible applications. PMID:29545822

  10. Piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine as orally-active adhesion molecule inhibitors.

    PubMed

    Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Ozaki, Fumihiro; Kawahara, Tetsuya; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Ohkuro, Masayoshi; Muramoto, Kenzo; Takenaka, Osamu; Kobayashi, Seiichi

    2004-06-01

    Novel piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine were prepared and evaluated for their inhibitory activity on the upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1). Replacement of the methanesulfonyl group on the piperidine ring of previously prepared derivatives with a carboxylic acid-containing moiety resulted in a number of potent adhesion molecule inhibitors. Of these, (anti) [3-(10H-pyrazino[2,3-b][1,4]benzothiazin-8-yl)methyl-3-azabicyclo[3.3.1]non-9-yl]acetic acid 2q (ER-49890), showed the most potent oral inhibitory activities against neutrophil migration in an interleukin-1 (IL-1) induced paw inflammation model using mice, and leukocyte accumulation in a carrageenan pleurisy model in the rat, and therapeutic effect on collagen-induced arthritis in rats.

  11. The spermicidal potency of Coca-Cola and Pepsi-Cola.

    PubMed

    Hong, C Y; Shieh, C C; Wu, P; Chiang, B N

    1987-09-01

    The inhibitory effect of Old Coke, caffeine-free New Coke, New Coke, Diet Coke and Pepsi-Cola on human sperm motility was studied with a trans-membrane migration method. None of them could decrease sperm motility to less than 70% of control within one hour. A previous study which claimed a marked variation of spermicidal potencies among different formulations of Coca-Cola could not be confirmed. Even if cola has a spermicidal effect, its potency is relatively weak as compared with other well-known spermicidal agents.

  12. Inhibitory Effects of Urothelium-related Factors.

    PubMed

    Guan, Na N; Gustafsson, Lars E; Svennersten, Karl

    2017-10-01

    The urothelium of the bladder has long been recognized as a protective barrier between detrusor and urine. In recent years, it has become more evident that the urothelium plays a role as an active source of mediators. The urothelium can release neurotransmitters and modulators such as acetylcholine, ATP, nitric oxide, prostaglandins and neuropeptides. They exert both excitatory and inhibitory effects in modulating urinary tract motility. In addition, several studies have reported the existence of an urothelium-derived unknown inhibitory factor in the urinary bladder. By the use of a new serial cascade superfusion bioassay on guinea pig ureter, recent studies confirm that the guinea pig bladder urothelium releases a substance with inhibitory bioactivity, which was resistant to treatment with nitric oxide synthase inhibitor and cyclooxygenase inhibitor and to adenosine A1/A2 receptor blockade. Lately, a marked and quickly inactivated novel release of PGD 2 from the bladder urothelium was discovered, together with localization of prostaglandin D synthase therein. PGD 2 was found to have an inhibitory influence on nerve-induced contractions in guinea pig urinary bladder and on spontaneous contractions in the out-flow region. An altered release of excitatory and inhibitory factors is likely to play an important part in bladder motility disturbances, of which the prostanoids are a notable group. Due to the fact that the bladder is relaxed 99% of the time, not only excitatory mechanisms in the bladder are necessary to study, but also inhibitory mechanisms need considerable attention, which will contribute to the discovery of new targets to treat bladder motility disorders. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  13. Chiapas' Delayed Entry into the International Labour Market: A Story of Peasant Isolation, Exploitation, and Coercion.

    PubMed

    Davis, Jason; Eakin, Hallie

    2013-06-01

    This manuscript presents a synthetic view of Chiapas' migration history over the last century through a thorough examination of relevant English and Spanish-language literature sources. Unlike most Mexican states, Chiapas did not heavily rely upon migration, especially international migration, as an economic strategy until very recently. The reasons that underlie Chiapas' late adoption of economic migration include socio-political and economic structural factors that shaped rural and agrarian policy and demographic trends. This paper evaluates these structural factors with regards to several migration theories to assist our understanding of how and why Chiapans were prevented or discouraged from leaving their native communities. The paper concludes by detailing the perfect cascade of climatic, demographic, economic and political factors that ultimately forced Chiapans to resort to international migration as a major economic diversification strategy.

  14. Chiapas’ Delayed Entry into the International Labour Market: A Story of Peasant Isolation, Exploitation, and Coercion

    PubMed Central

    Eakin, Hallie

    2015-01-01

    This manuscript presents a synthetic view of Chiapas’ migration history over the last century through a thorough examination of relevant English and Spanish-language literature sources. Unlike most Mexican states, Chiapas did not heavily rely upon migration, especially international migration, as an economic strategy until very recently. The reasons that underlie Chiapas’ late adoption of economic migration include socio-political and economic structural factors that shaped rural and agrarian policy and demographic trends. This paper evaluates these structural factors with regards to several migration theories to assist our understanding of how and why Chiapans were prevented or discouraged from leaving their native communities. The paper concludes by detailing the perfect cascade of climatic, demographic, economic and political factors that ultimately forced Chiapans to resort to international migration as a major economic diversification strategy. PMID:25685638

  15. Role of the extracellular matrix during neural crest cell migration.

    PubMed

    Perris, R; Perissinotto, D

    2000-07-01

    Once specified to become neural crest (NC), cells occupying the dorsal portion of the neural tube disrupt their cadherin-mediated cell-cell contacts, acquire motile properties, and embark upon an extensive migration through the embryo to reach their ultimate phenotype-specific sites. The understanding of how this movement is regulated is still rather fragmentary due to the complexity of the cellular and molecular interactions involved. An additional intricate aspect of the regulation of NC cell movement is that the timings, modes and patterns of NC cell migration are intimately associated with the concomitant phenotypic diversification that cells undergo during their migratory phase and the fact that these changes modulate the way that moving cells interact with their microenvironment. To date, two interplaying mechanisms appear central for the guidance of the migrating NC cells through the embryo: one involves secreted signalling molecules acting through their cognate protein kinase/phosphatase-type receptors and the other is contributed by the multivalent interactions of the cells with their surrounding extracellular matrix (ECM). The latter ones seem fundamental in light of the central morphogenetic role played by the intracellular signals transduced through the cytoskeleton upon integrin ligation, and the convergence of these signalling cascades with those triggered by cadherins, survival/growth factor receptors, gap junctional communications, and stretch-activated calcium channels. The elucidation of the importance of the ECM during NC cell movement is presently favoured by the augmenting knowledge about the macromolecular structure of the specific ECM assembled during NC development and the functional assaying of its individual constituents via molecular and genetic manipulations. Collectively, these data propose that NC cell migration may be governed by time- and space-dependent alterations in the expression of inhibitory ECM components; the relative ratio of permissive versus non-permissive ECM components; and the supramolecular assembly of permissive ECM components. Six multidomain ECM constituents encoded by a corresponding number of genes appear to date the master ECM molecules in the control of NC cell movement. These are fibronectin, laminin isoforms 1 and 8, aggrecan, and PG-M/version isoforms V0 and V1. This review revisits a number of original observations in amphibian and avian embryos and discusses them in light of more recent experimental data to explain how the interaction of moving NC cells with these ECM components may be coordinated to guide cells toward their final sites during the process of organogenesis.

  16. Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress GBM Tumor Growth.

    PubMed

    Lee, Jaehyun; Shin, Yong Jae; Lee, Kyoungmin; Cho, Hee Jin; Sa, Jason K; Lee, Sang-Yun; Kim, Seok-Hyung; Lee, Jeongwu; Yoon, Yeup; Nam, Do-Hyun

    2017-11-10

    Glioblastoma (GBM) is classified as one of the most aggressive and lethal brain tumor. Great strides have been made in understanding the genomic and molecular underpinnings of GBM, which translated into development of new therapeutic approaches to combat such deadly disease. However, there are only few therapeutic agents that can effectively inhibit GBM invasion in a clinical framework. In an effort to address such challenges, we have generated anti-SEMA3A monoclonal antibody as a potential therapeutic antibody against GBM progression. We employed public glioma datasets, Repository of Molecular Brain Neoplasia Data and The Cancer Genome Atlas, to analyze SEMA3A mRNA expression in human GBM specimens. We also evaluated for protein expression level of SEMA3A via tissue microarray (TMA) analysis. Cell migration and proliferation kinetics were assessed in various GBM patient-derived cells (PDCs) and U87-MG cell-line for SEMA3A antibody efficacy. GBM patient-derived xenograft (PDX) models were generated to evaluate tumor inhibitory effect of anti-SEMA3A antibody in vivo. By combining bioinformatics and TMA analysis, we discovered that SEMA3A is highly expressed in human GBM specimens compared to non-neoplastic tissues. We developed three different anti-SEMA3A antibodies, in fully human IgG form, through screening phage-displayed synthetic antibody library using a classical panning method. Neutralization of SEMA3A significantly reduced migration and proliferation capabilities of PDCs and U87-MG cell-line in vitro. In PDX models, treatment with anti-SEMA3A antibody exhibited notable tumor inhibitory effect through down-regulation of cellular proliferative kinetics and tumor-associated macrophages recruitment. In present study, we demonstrated tumor inhibitory effect of SEMA3A antibody in GBM progression and present its potential relevance as a therapeutic agent in a clinical framework.

  17. Brain-derived Neurotrophic Factor Promotes the Migration of Olfactory Ensheathing Cells Through TRPC Channels.

    PubMed

    Wang, Ying; Teng, Hong-Lin; Gao, Yuan; Zhang, Fan; Ding, Yu-Qiang; Huang, Zhi-Hui

    2016-12-01

    Olfactory ensheathing cells (OECs) are a unique type of glial cells with axonal growth-promoting properties in the olfactory system. Organized migration of OECs is essential for neural regeneration and olfactory development. However, the molecular mechanism of OEC migration remains unclear. In the present study, we examined the effects of brain-derived neurotrophic factor (BDNF) on OEC migration. Initially, the "scratch" migration assay, the inverted coverslip and Boyden chamber migration assays showed that BDNF could promote the migration of primary cultured OECs. Furthermore, BDNF gradient attracted the migration of OECs in single-cell migration assays. Mechanistically, TrkB receptor expressed in OECs mediated BDNF-induced OEC migration, and BDNF triggered calcium signals in OECs. Finally, transient receptor potential cation channels (TRPCs) highly expressed in OECs were responsible for BDNF-induced calcium signals, and required for BDNF-induced OEC migration. Taken together, these results demonstrate that BDNF promotes the migration of cultured OECs and an unexpected finding is that TRPCs are required for BDNF-induced OEC migration. GLIA 2016;64:2154-2165. © 2016 Wiley Periodicals, Inc.

  18. Migration of the population.

    PubMed

    Krasinets, E

    1998-03-01

    Two factors influence foreign migration balance of the Russian Federation. The first factor involves the migration process between Russia and former union republics. The influx of population to the Russian Federation from other republics of the former Soviet Union is considered as one of the largest in the world. The average annual migratory growth of Russia during the years 1991-94 as a result of this migration exchange has tripled as compared with 1986-90, with a total of 2.7 million Russians who migrated into Russia. However, from 1996 up to the present time, the number of persons arriving in Russia declined dramatically. Meanwhile, the second factor that determines the country's migration balance is emigration to the far abroad. The most significant trend in determining the development of internal migration in Russia is the outflow of population from northern and eastern regions. The directions of internal and external migratory flows have a large influence on the migration balance in Russia's rural areas. The reduction of migratory flows in rural areas is the direct result of processes in the economic sphere. It confirms the reconstruction of rural-urban migratory exchange.

  19. Epidemiological studies of migration and environmental risk factors in the inflammatory bowel diseases.

    PubMed

    Ko, Yanna; Butcher, Rhys; Leong, Rupert W

    2014-02-07

    Inflammatory bowel diseases (IBD) are idiopathic chronic diseases of the gastrointestinal tract well known to be associated with both genetic and environmental risk factors. Permissive genotypes may manifest into clinical phenotypes under certain environmental influences and these may be best studied from migratory studies. Exploring differences between first and second generation migrants may further highlight the contribution of environmental factors towards the development of IBD. There are few opportunities that have been offered so far. We aim to review the available migration studies on IBD, evaluate the known environmental factors associated with IBD, and explore modern migration patterns to identify new opportunities and candidate migrant groups in IBD migration research.

  20. Cathepsin B Expression and the Correlation with Clinical Aspects of Oral Squamous Cell Carcinoma.

    PubMed

    Yang, Wei-En; Ho, Chuan-Chen; Yang, Shun-Fa; Lin, Shu-Hui; Yeh, Kun-Tu; Lin, Chiao-Wen; Chen, Mu-Kuan

    2016-01-01

    Cathepsin B (CTSB), a member of the cathepsin family, is a cysteine protease that is widely distributed in the lysosomes of cells in various tissues. It is overexpressed in several human cancers and may be related to tumorigenesis. The main purpose of this study was to analyze CTSB expression in oral squamous cell carcinoma (OSCC) and its correlation with patient prognosis. Tissue microarrays were used to detect CTSB expression in 280 patients and to examine the association between CTSB expression and clinicopathological parameters. In addition, the metastatic effects of the CTSB knockdown on two oral cancer cell lines were investigated by transwell migration assay. Cytoplasmic CTSB expression was detected in 34.6% (97/280) of patients. CTSB expression was correlated with positive lymph node metastasis (p = 0.007) and higher tumor grade (p = 0.008) but not with tumor size and distant metastasis. In addition, multivariate analysis using a Cox proportional hazards model revealed a higher hazard ratio, demonstrating that CTSB expression was an independent unfavorable prognostic factor in buccal mucosa carcinoma patients. Furthermore, the Kaplan-Meier curve revealed that buccal mucosa OSCC patients with positive CTSB expression had significantly shorter overall survival. Moreover, treatment with the CTSB siRNA exerted an inhibitory effect on migration in OC2 and CAL27 oral cancer cells. We conclude that CTSB expression may be useful for determining OSCC prognosis, particularly for patients with lymph node metastasis, and may function as a biomarker of the survival of OSCC patients in Taiwan.

  1. A novel biphenyl urea derivate inhibits the invasion of breast cancer through the modulation of CXCR4

    PubMed Central

    Zhan, Yingzhuan; Zhang, Han; Li, Jing; Zhang, Yanmin; Zhang, Jie; He, Langchong

    2015-01-01

    The increased migration and invasion of breast carcinoma cells are key events in the development of metastasis to the lymph nodes and distant organs. CXCR4, the receptor for stromal-derived factor-1, is reportedly involved in breast carcinogenesis and invasion. In this study, we investigated a novel biphenyl urea derivate, TPD7 for its ability to affect CXCR4 expression as well as function in breast cancer cells. We demonstrated that TPD7 inhibited the breast cancer proliferation and down-regulated the CXCR4 expression on breast cancer cells both over-expressing and low-expressing HER2, an oncogene known to induce the chemokine receptor. Treatments with pharmacological proteasome inhibitors partial suppressed TPD7-induced decrease in CXCR4 expression. Real-time PCR analysis revealed that down-regulation of CXCR4 by TPD7 also occurred at the translational level. Inhibition of CXCR4 expression by TPD7 further correlated with the suppression of SDF-1α-induced migration and invasion in breast tumour cells, knockdown of CXCR4 attenuated TPD7-inhibitory effects. In addition, TPD7 treatment significantly suppressed matrix metalloproteinase (MMP)-2 and MMP-9 expression, the downstream targets of CXCR4, perhaps via inactivation of the ERK signaling pathway. Overall, our results showed that TPD7 exerted its anti-invasive effect through the down-regulation of CXCR4 expression and thus had the potential for the treatment of breast cancer. PMID:25753200

  2. Interaction between pre- and post-migration factors on depressive symptoms in new migrants to Hong Kong from Mainland China.

    PubMed

    Chou, Kee-Lee; Wong, Winky K F; Chow, Nelson W S

    2011-10-01

    The goal of the current study is to examine the role of poor migration planning as a moderator for the effects of two post-migration factors, namely acculturation stress and quality of life, on symptoms of depression. Using a random sample of 347 Hong Kong new migrants from a 1-year longitudinal study, we used multiple regression analyses to examine both the direct and interaction effects of poorly planned migration, acculturation stress, and quality of life on depressive symptoms. Although poorly planned migration did not predict depressive symptoms at 1-year follow-up, it did exacerbate the detrimental effect of the two post-migration factors, namely high stress or low quality of life (both also measured at baseline) on depressive symptoms at this stage. Our results indicate that preventive measures must be developed for new immigrants in Hong Kong, especially for those who were not well prepared for migration.

  3. Home on the Range: Factors Explaining Partial Migration of African Buffalo in a Tropical Environment

    PubMed Central

    Naidoo, Robin; Du Preez, Pierre; Stuart-Hill, Greg; Jago, Mark; Wegmann, Martin

    2012-01-01

    Partial migration (when only some individuals in a population undertake seasonal migrations) is common in many species and geographical contexts. Despite the development of modern statistical methods for analyzing partial migration, there have been no studies on what influences partial migration in tropical environments. We present research on factors affecting partial migration in African buffalo (Syncerus caffer) in northeastern Namibia. Our dataset is derived from 32 satellite tracking collars, spans 4 years and contains over 35,000 locations. We used remotely sensed data to quantify various factors that buffalo experience in the dry season when making decisions on whether and how far to migrate, including potential man-made and natural barriers, as well as spatial and temporal heterogeneity in environmental conditions. Using an information-theoretic, non-linear regression approach, our analyses showed that buffalo in this area can be divided into 4 migratory classes: migrants, non-migrants, dispersers, and a new class that we call “expanders”. Multimodel inference from least-squares regressions of wet season movements showed that environmental conditions (rainfall, fires, woodland cover, vegetation biomass), distance to the nearest barrier (river, fence, cultivated area) and social factors (age, size of herd at capture) were all important in explaining variation in migratory behaviour. The relative contributions of these variables to partial migration have not previously been assessed for ungulates in the tropics. Understanding the factors driving migratory decisions of wildlife will lead to better-informed conservation and land-use decisions in this area. PMID:22570722

  4. The contribution of ecosystem services to place utility as a determinant of migration decision-making

    NASA Astrophysics Data System (ADS)

    Adams, Helen; Adger, W. Neil

    2013-03-01

    Environment migration research has sought to provide an account of how environmental risks and resources affect migration and mobility. Part of that effort has focused on the role of the environment in providing secure livelihoods through provisioning ecosystem services. However, many of the models of environment migration linkages fail to acknowledge the importance of social and psychological factors in the decision to migrate. Here, we seek to provide a more comprehensive model of migration decision-making under environmental change by investigating the attachment people form to place, and the role of the environment in creating that attachment. We hypothesize that environmental factors enter the migration decision-making process through their contribution to place utility, defined as a function of both affective and instrumental bonds to location, and that ecosystem services, the aspects of ecosystems that create wellbeing, contribute to both components of place utility. We test these ideas in four rural highland settlements in Peru sampled along an altitudinal gradient. We find that non-economic ecosystem services are important in creating place attachment and that ecological place attachment exists independently of use of provisioning ecosystem services. Individuals’ attitudes to ecosystem services vary with the type of ecosystem services available at a location and the degree of rurality. While social and economic factors are the dominant drivers of migration in these locations, a loss of non-provisioning ecosystem services leads to a decrease in place utility and commitment to place, determining factors in the decision to migrate. The findings suggest that policy interventions encouraging migration as an adaptation to environmental change will have limited success if they only focus on provisioning services. A much wider set of individuals will experience a decrease in place utility, and migration will be unable to alleviate that decrease since the factors that create it are specific to place.

  5. [Inhibitory effect of migration-inducing gene-7-shRNA recombinant retrovirus combined with endostatin on growth and metastasis of hepatoma xenograft].

    PubMed

    Qu, B; Chen, G N; Sheng, G N; Yu, F; Lyu, Q; Gu, Y J; Guo, L; Lyu, Y

    2016-09-20

    Objective: To investigate the inhibitory effect of migration-inducing gene-7(Mig-7)interfered with retrovirus-mediated RNA(shRNA)combined with recombinant human endostatin(ES)on the growth and metastasis of subcutaneous xenograft of human hepatoma cells in nude mice. Methods: Two Mig-7-mRNA oligonucleotide sequences(Mig-7-shRNA-1 and Mig-7-shRNA-2)and one sequence as a negative control(Mig-7-shRNA-N)were designed. The specific Mig-7-shRNA recombinant retrovirus expression vector plasmid was constructed and used for the transfection of human hepatoma MHCC-97H cells with high expression of Mig-7. The subcutaneous xenograft tumor model of human hepatocellular carcinoma(HCC)in nude mice was established, and according to the condition of transfection and administration, the nude mice were divided into pSIREN-M1 group, pSIREN-MN group, ES group, and pSIREN-M1+ES group. The xenograft tumor volume, mass, and metastasis were compared between groups. Immunohistochemistry was used to observe the formation of vasculogenic mimicry(VM)in xenograft tumor and the difference in tumor microvascular density(MVD), and Western blot was used to measure the expression of Mig-7 and vascular endothelial growth factor(VEGF)in each group. A one-way analysis of variance was used for comparison between groups, and the Fisher's exact test was used for comparison of continuous data between groups. Results: Compared with the pSIREN-MN group, the pSIREN-M1 group had significantly lower xenograft tumor volume, mass, and metastasis rate, Mig-7 expression, and formation of VM( P < 0.05), as well as significantly higher VEGF expression and MVD( P < 0.05). Compared with the pSIREN-MN group, the ES group had significantly lower xenograft tumor volume, mass, and metastasis rate, VEGF expression, and MVD( P < 0.05), as well as significantly higher Mig-7 expression and formation of VM( P < 0.05). Compared with the pSIREN-M1 group and the ES group, the pSIREN-M1+ES group had significantly lower xenograft tumor volume, mass, and metastasis rate, Mig-7 expression, formation of VM, VEGF expression, and MVD( P < 0.05). Conclusion: Mig-7-shRNA recombinant retrovirus combined with ES has a better inhibitory effect on the growth and metastasis of HCC xenograft tumor than Mig-7-shRNA recombinant retrovirus or ES alone. The anti-tumor angiogenesis therapy alone, which targets vascular endothelial cells in vivo, has a limited effect, since it may promote the formation of VM.

  6. Separation of cell survival, growth, migration, and mesenchymal transdifferentiation effects of fibroblast secretome on tumor cells of head and neck squamous cell carcinoma.

    PubMed

    Metzler, Veronika Maria; Pritz, Christian; Riml, Anna; Romani, Angela; Tuertscher, Raphaela; Steinbichler, Teresa; Dejaco, Daniel; Riechelmann, Herbert; Dudás, József

    2017-11-01

    Fibroblasts play a central role in tumor invasion, recurrence, and metastasis in head and neck squamous cell carcinoma. The aim of this study was to investigate the influence of tumor cell self-produced factors and paracrine fibroblast-secreted factors in comparison to indirect co-culture on cancer cell survival, growth, migration, and epithelial-mesenchymal transition using the cell lines SCC-25 and human gingival fibroblasts. Thereby, we particularly focused on the participation of the fibroblast-secreted transforming growth factor beta-1.Tumor cell self-produced factors were sufficient to ensure tumor cell survival and basic cell growth, but fibroblast-secreted paracrine factors significantly increased cell proliferation, migration, and epithelial-mesenchymal transition-related phenotype changes in tumor cells. Transforming growth factor beta-1 generated individually migrating disseminating tumor cell groups or single cells separated from the tumor cell nest, which were characterized by reduced E-cadherin expression. At the same time, transforming growth factor beta-1 inhibited tumor cell proliferation under serum-starved conditions. Neutralizing transforming growth factor beta antibody reduced the cell migration support of fibroblast-conditioned medium. Transforming growth factor beta-1 as a single factor was sufficient for generation of disseminating tumor cells from epithelial tumor cell nests, while other fibroblast paracrine factors supported tumor nest outgrowth. Different fibroblast-released factors might support tumor cell proliferation and invasion, as two separate effects.

  7. Why do general practitioners from France choose to work in London practices? A qualitative study.

    PubMed

    Ballard, Karen D; Robinson, Susan I; Laurence, Priscilla B

    2004-10-01

    Growing concerns about the ability to maintain and increase the general practitioner (GP) workforce has led to active recruitment of GPs from overseas. However, little is known about why these GPs choose to leave their countries and come to work in London. To investigate the motivations and expectations of French GPs migrating to work in general practices in London. A qualitative study using semi-structured interviews. General practice induction programme in southeast London. Individual interviews with 31 French GPs, who attended an induction programme for international recruits, were taped, transcribed, and analysed using a categorical approach. Three factors led to the process of migration: instigating factors, creating the stimulus for migration; activating factors, based on the perception that English general practice offered greater opportunities; and facilitating factors, which make migration possible. Particular emphasis was placed on personal and professional instigating factors, with a desire for new cultural experiences and a widespread discontent surrounding the infrastructure of French general practice, playing crucial roles in the stimulus to migrate. Ease of travel and a paid induction programme facilitated the move to their chosen destination. French GPs' decisions were part of a process of migration influenced by a series of integrated factors. Consideration of these factors will not only enhance recruitment to English general practice, but will also facilitate foreign GPs' transition to work in the National Health Service (NHS) and, ultimately, maximise their retention.

  8. 3-Mercaptopyruvate Sulfurtransferase, Not Cystathionine β-Synthase Nor Cystathionine γ-Lyase, Mediates Hypoxia-Induced Migration of Vascular Endothelial Cells.

    PubMed

    Tao, Beibei; Wang, Rui; Sun, Chen; Zhu, Yichun

    2017-01-01

    Hypoxia-induced angiogenesis is a common phenomenon in many physiological and patho-physiological processes. However, the potential differential roles of three hydrogen sulfide producing systems cystathionine γ-lyase (CSE)/H 2 S, cystathionine β-synthase (CBS)/H 2 S, and 3-mercaptopyruvate sulfurtransferase (MPST)/H 2 S in hypoxia-induced angiogenesis are still unknown. We found that minor hypoxia (10% oxygen) significantly increased the migration of vascular endothelial cells while hypoxia (8% oxygen) significantly inhibited cell migration. The present study was performed using cells cultured in 10% oxygen. RNA interference was used to block the endogenous generation of hydrogen sulfide by CSE, CBS, or MPST in a vascular endothelial cell migration model in both normoxia and hypoxia. The results showed that CBS had a promoting effect on the migration of vascular endothelial cells cultured in both normoxic and hypoxic conditions. In contrast, CSE had an inhibitory effect on cell migration. MPST had a promoting effect on the migration of vascular endothelial cells cultured in hypoxia; however, it had no effect on the cells cultured in normoxia. Importantly, it was found that the hypoxia-induced increase in vascular endothelial cell migration was mediated by MPST, but not CSE or CBS. The western blot analyses showed that hypoxia significantly increased MPST protein levels, decreased CSE protein levels and did not change CBS levels, suggesting that these three hydrogen sulfide-producing systems respond differently to hypoxic conditions. Interestingly, MPST protein levels were elevated by hypoxia in a bi-phasic manner and MPST mRNA levels increased later than the first stage elevation of the protein levels, implying that the expression of MPST induced by hypoxia was also regulated at a post-transcriptional level. RNA pull-down assay showed that some candidate RNA binding proteins, such as nucleolin and Annexin A2, were dissociated from the 3'-UTR of MPST mRNA in hypoxia which implied their involvement in MPST mRNA regulation.

  9. Risk factors for venous port migration in a single institute in Taiwan.

    PubMed

    Fan, Wen-Chieh; Wu, Cheng-Han; Tsai, Ming-Ju; Tsai, Ying-Ming; Chang, Hsu-Liang; Hung, Jen-Yu; Chen, Pei-Huan; Yang, Chih-Jen

    2014-01-14

    An implantable port device provides an easily accessible central route for long-term chemotherapy. Venous catheter migration is one of the rare complications of venous port implantation. It can lead to side effects such as pain in the neck, shoulder, or ear, venous thrombosis, and even life-threatening neurologic problems. To date, there are few published studies that discuss such complications. This retrospective study of venous port implantation in a single center, a Taiwan hospital, was conducted from January 2011 to March 2013. Venous port migration was recorded along with demographic and characteristics of the patients. Of 298 patients with an implantable import device, venous port migration had occurred in seven, an incidence rate of 2.3%. All seven were male and had received the Bard port Fr 6.6 which had smaller size than TYCO port Fr 7.5 and is made of silicon. Significantly, migration occurred in male patients (P = 0.0006) and in those with lung cancer (P = 0.004). Multivariable logistic regression analysis revealed that lung cancer was a significant risk factor for port migration (odds ratio: 11.59; P = 0.0059). The migration rate of the Bard port Fr 6.6 was 6.7%. The median time between initial venous port implantation and port migration was 35.4 days (range, 7 to 135 days) and 71.4% (5/7) of patients had port migration within 30 days after initial port implantation. Male sex and lung cancer are risk factors for venous port migration. The type of venous port is also an important risk factor.

  10. Risk factors for covered metallic stent migration in patients with distal malignant biliary obstruction due to pancreatic cancer.

    PubMed

    Nakai, Yousuke; Isayama, Hiroyuki; Kogure, Hirofumi; Hamada, Tsuyoshi; Togawa, Osamu; Ito, Yukiko; Matsubara, Saburo; Arizumi, Toshihiko; Yagioka, Hiroshi; Mizuno, Suguru; Sasaki, Takashi; Yamamoto, Natsuyo; Hirano, Kenji; Tada, Minoru; Koike, Kazuhiko

    2014-09-01

    Covered metallic stents (CMSs) were developed to overcome tumor ingrowth in uncovered metallic stents (UMSs) for malignant biliary obstruction, but superiority of CMSs over UMSs is still controversial due to the high migration rate in CMS. Therefore, we conducted this retrospective analysis to clarify risk factors for stent migration, including mechanical properties of CMSs. Patients with unresectable pancreatic cancer, receiving CMS for distal malignant biliary obstruction in five tertiary care centers, were retrospectively studied. Univariate and multivariate analyses to identify prognostic factors for early (< 6 months) stent migration were performed using a proportional hazards model with death or stent occlusion without stent migration as a competing risk. Two mechanical properties were included in the analysis: axial force, the recovery force that leads to a CMS straightening, and radial force (RF), the expansion force against the stricture. Among 290 patients who received CMS placement for distal malignant biliary obstruction, stent migration rate was 15.2%. CMS migrated early (< 6 months) in 10.0% and distally in 11.7%, respectively. In the multivariate analysis, significant risk factors for early stent migration were chemotherapy (subdistribution hazard ratios [SHR] 4.46, P = 0.01), CMS with low RF (SHR 2.23, P = 0.03), and duodenal invasion (SHR 2.25, P = 0.02). CMS with low RF, chemotherapy, and duodenal invasion were associated with CMS migration from our study. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  11. Inflammation factors in hepatoblastoma and their clinical significance as diagnostic and prognostic biomarkers.

    PubMed

    Guo, Fei; Ru, Qin; Zhang, Junjie; He, Shen; Yu, Jiekai; Zheng, Shu; Wang, Jiaxiang

    2017-09-01

    The aims of this study were to identify inflammation factors in hepatoblastoma tissue that correlated with different clinical characteristics, and to explore the probability as predictive biomarkers for diagnosis and prognosis. SELDI-TOF-MS was performed to screen protein peaks that were significantly highly expressed in tumor tissue compared with adjacent liver tissue. After removing proteins larger than 30kDa, the targeted peaks were separated by solid phase extraction and tricine-SDS-PAGE. Protein fragments produced by in-gel digestion were identified by LC-MS/MS. Immunohistochemical assays further confirmed these results. Overall survival curves were graphed by Kaplan-Meier method and multivariate analysis was performed by Cox proportional hazards regression model. Three protein peaks (m/z 12,138, m/z 13,462, and m/z 15,120) that were significantly upregulated in the tumor tissue were identified as macrophage migration inhibitory factor (MIF), chemokine (C-X-C motif) ligand 7 (CXCL7), and interleukin 25 (IL-25). These factors were closely related to clinical stage, lymph node metastasis, vascular invasion and serum AFP level. High expression of each inflammatory marker indicated poor prognosis. Multivariate analysis suggested that MIF, CXCL7, and IL-25 were prognostic factors independent of patient sex, age and tumor histological type. MIF, CXCL7, and IL-25 might be considered as effective inflammation factors for diagnosis and prognosis of hepatoblastoma and as potential novel treatment targets through inhibition of inflammatory function. Prognosis study LEVEL OF EVIDENCE: Level I. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Regulation of FAK Ser-722 phosphorylation and kinase activity by GSK3 and PP1 during cell spreading and migration.

    PubMed

    Bianchi, Mariarita; De Lucchini, Stefania; Marin, Oriano; Turner, David L; Hanks, Steven K; Villa-Moruzzi, Emma

    2005-10-15

    In addition to tyrosine sites, FAK (focal adhesion kinase) is phosphorylated on multiple serine residues. In the present study, the regulation of two of these sites, Ser-722 (S1) and Ser-911 (S4), was investigated. Phosphorylation of S1 (but not S4) decreased in resuspended cells, and recovered during spreading on fibronectin, indicating adhesion-dependent regulation. GSK3 (glycogen synthase kinase 3) inhibitors decreased S1 phosphorylation, and siRNA (short interfering RNA) silencing indicated further the involvement of GSK3beta. Furthermore, GSK3beta was found to become activated during cell spreading on fibronectin, and to physically associate with FAK. S1 phosphorylation was observed to decrease in wounded cell monolayers, while GSK3beta underwent inactivation and later was observed to increase to the original level within 24 h. Direct phosphorylation of S1, requiring pre-phosphorylation of Ser-726 in the +4 position, was demonstrated using purified GSK3 and a synthetic peptide containing FAK residues 714-730. An inhibitory role for S1 phosphorylation in FAK signalling was indicated by findings that both alanine substitution for S1 and dephosphorylation of S1 by PP1 (serine/threonine protein phosphatase type-1) resulted in an increase in FAK kinase activity; likewise, this role was also shown by cell treatment with the GSK3 inhibitor LiCl. The inhibitory role was confirmed by the finding that cells expressing FAK with alanine substitution for S1 displayed improved cell spreading and faster migration in wound-healing and trans-well assays. Finally, the finding that S1 phosphorylation increased in cells treated with the PP1 inhibitor okadaic acid indicated targeting of this site by PP1. These results indicate an additional mechanism for regulation of FAK activity during cell spreading and migration, involving Ser-722 phosphorylation modulated through the competing actions of GSK3beta and PP1.

  13. Measurement Invariance and Latent Mean Differences in the Reynolds Intellectual Assessment Scales (RIAS): Does the German Version of the RIAS Allow a Valid Assessment of Individuals with a Migration Background?

    PubMed Central

    Gygi, Jasmin T.; Fux, Elodie; Grob, Alexander; Hagmann-von Arx, Priska

    2016-01-01

    This study examined measurement invariance and latent mean differences in the German version of the Reynolds Intellectual Assessment Scales (RIAS) for 316 individuals with a migration background (defined as speaking German as a second language) and 316 sex- and age-matched natives. The RIAS measures general intelligence (single-factor structure) and its two components, verbal and nonverbal intelligence (two-factor structure). Results of a multi-group confirmatory factor analysis showed scalar invariance for the two-factor and partial scalar invariance for the single-factor structure. We conclude that the two-factor structure of the RIAS is comparable across groups. Hence, verbal and nonverbal intelligence but not general intelligence should be considered when comparing RIAS test results of individuals with and without a migration background. Further, latent mean differences especially on the verbal, but also on the nonverbal intelligence index indicate language barriers for individuals with a migration background, as subtests corresponding to verbal intelligence require higher skills in German language. Moreover, cultural, environmental, and social factors that have to be taken into account when assessing individuals with a migration background are discussed. PMID:27846270

  14. A comparison inhibitory effects of cisplatin and MNPs-PEG-cisplatin on the adhesion capacity of bone metastatic breast cancer.

    PubMed

    Mokhtari, Mohammad Javad; Koohpeima, Fatemeh; Mohammadi, Hadi

    2017-10-01

    To date, high mortality in women due to malignancy breast cancer related to the metastasis to the bone is a significant challenge. As, magnetic nanoparticles (MNPs) conjugated with the biocompatible polymers was employed for the delivery of some hydrophobic anticancer agents, the main aim of the current research was to assess whether cisplatin-loaded MNPs enhanced the anticancer effect of free cisplatin in breast cancer cells. MNPs decorated with PEG were synthesized by an improved coprecipitation technique, and then cisplatin was loaded onto the MNPs via a simple mixing method. Afterward, its morphology, size, chemical structure, magnetic property, hydrodynamic diameter, zeta potential, and crystal structure were characterized by scanning and transmittance electron microscopy, Fourier transforms infrared spectroscopy, vibrating sample magnetometer, dynamic light scattering, and X-ray powder diffraction and flame atomic absorption spectroscopy respectively. Additionally, the effects of cisplatin and MNPs-PEG-cisplatin on viability, migration and adhesion capacity of T47D cells were investigated by evaluating α2-integrin and β1-integrin; mRNAs were assessed by real-time RT-PCR. Consequently, the in vitro assay results showed a considerable dose-dependent inhibitory effect of cisplatin and MNPs-PEG-cisplatin on proliferation, migration, and adhesion of T47D cells. Finally, current research was shown that MNPs-PEG-cisplatin strongly increased anticancer effects compared with free cisplatin in the T47D cell line. © 2017 John Wiley & Sons A/S.

  15. MIF and D-DT are potential disease severity modifiers in male MS subjects

    PubMed Central

    Benedek, Gil; Meza-Romero, Roberto; Jordan, Kelley; Zhang, Ying; Nguyen, Ha; Kent, Gail; Li, Jia; Siu, Edwin; Frazer, Jenny; Piecychna, Marta; Du, Xin; Sreih, Antoine; Leng, Lin; Wiedrick, Jack; Caillier, Stacy J.; Offner, Halina; Oksenberg, Jorge R.; Yadav, Vijayshree; Bourdette, Dennis; Bucala, Richard; Vandenbark, Arthur A.

    2017-01-01

    Little is known about mechanisms that drive the development of progressive multiple sclerosis (MS), although inflammatory factors, such as macrophage migration inhibitory factor (MIF), its homolog D-dopachrome tautomerase (D-DT), and their common receptor CD74 may contribute to disease worsening. Our findings demonstrate elevated MIF and D-DT levels in males with progressive disease compared with relapsing-remitting males (RRMS) and female MS subjects, with increased levels of CD74 in females vs. males with high MS disease severity. Furthermore, increased MIF and D-DT levels in males with progressive disease were significantly correlated with the presence of two high-expression promoter polymorphisms located in the MIF gene, a −794CATT5–8 microsatellite repeat and a −173 G/C SNP. Conversely, mice lacking MIF or D-DT developed less-severe signs of experimental autoimmune encephalomyelitis, a murine model of MS, thus implicating both homologs as copathogenic contributors. These findings indicate that genetically controlled high MIF expression (and D-DT) promotes MS progression in males, suggesting that these two factors are sex-specific disease modifiers and raising the possibility that aggressive anti-MIF treatment of clinically isolated syndrome or RRMS males with a high-expresser genotype might slow or prevent the onset of progressive MS. Additionally, selective targeting of MIF:CD74 signaling might provide an effective, trackable therapeutic approach for MS subjects of both sexes. PMID:28923927

  16. Fibroblast migration and proliferation during in vitro wound healing. A quantitative comparison between various growth factors and a low molecular weight blood dialysate used in the clinic to normalize impaired wound healing.

    PubMed

    Schreier, T; Degen, E; Baschong, W

    1993-01-01

    During the formation of granulation tissue in a dermal wound, platelets, monocytes and other cellular blood constituents release various peptide growth factors to stimulate fibroblasts to migrate into the wound site and proliferate, in order to reconstitute the various connective tissue components. The effect on fibroblast migration and proliferation of these growth factors, and of Solcoseryl (HD), a deproteinized fraction of calf blood used to normalize wound granulation and scar tissue formation, was quantified in vitro. The presence of basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-beta) and hemodialysate (HD) increased the number of cells in the denuded area, i.e., in the "wound space" of an artificially ruptured monolayer of LM-fibroblasts (mouse lung fibroblasts). When cell proliferation was blocked with Mitomycin C, in the first 24 h all factors, i.e., bFGF, PDGF, TGF-beta and HD, promoted cell migration, whereas after 48 h it became obvious that each factor stimulated both migration and proliferation, each in a characteristic way. The effects were significant and more distinct after 48 h, following the order: PDGF (46%) approximately bFGF (87%) > HD (45%) approximately TGF-beta (40%) > control (62%). The relative contributions of migration after inhibiting proliferation are given in brackets. The modulatory activity of HD was localized in its hydrophilic fraction. It was destroyed by acid hydrolysis. Furthermore, this activity could be blocked by protamine sulfate, an inhibitor blocking peptide growth factor receptor binding.

  17. Design and synthesis of formononetin-dithiocarbamate hybrids that inhibit growth and migration of PC-3 cells via MAPK/Wnt signaling pathways

    PubMed Central

    Fu, Dong-Jun; Zhang, Li; Song, Jian; Mao, Ruo-Wang; Zhao, Ruo-Han; Liu, Ying-Chao; Hou, Yu-Hui; Li, Jia-Huan; Yang, Jia-Jia; Jin, Cheng-Yun; Li, Ping; Zi, Xiao-Lin; Liu, Hong-Min; Zhang, Sai-Yang; Zhang, Yan-Bing

    2017-01-01

    A series of novel formononetin-dithiocarbamate derivatives were designed, synthesized and evaluated for antiproliferative activity against three selected cancer cell line (MGC-803, EC-109, PC-3). The first structure-activity relationship (SAR) for this formononetin-dithiocarbamate scaffold is explored in this report with evaluation of 14 variants of the structural class. Among these analogues, tert-butyl 4-(((3-((3-(4-methoxyphenyl)-4-oxo-4H–chromen-7-yl)oxy)propyl)thio)carbonothioyl)piperazine-1-carboxylate (8i) showed the best inhibitory activity against PC-3 cells (IC50 = 1. 97 µM). Cellular mechanism studies elucidated 8i arrests cell cycle at G1 phase and regulates the expression of G1 checkpoint-related proteins in concentration-dependent manners. Furthermore, 8i could inhibit cell growth via MAPK signaling pathway and inhibit migration via Wnt pathway in PC-3 cells. PMID:28038329

  18. The Social Determinants of Refugee Mental Health in the Post-Migration Context: A Critical Review.

    PubMed

    Hynie, Michaela

    2018-05-01

    With the global increase in the number of refugees and asylum seekers, mental health professionals have become more aware of the need to understand and respond to the mental health needs of forced migrants. This critical review summarizes the findings of recent systematic reviews and primary research on the impact of post-migration conditions on mental disorders and PTSD among refugees and asylum seekers. Historically, the focus of mental health research and interventions with these populations has been on the impact of pre-migration trauma. Pre-migration trauma does predict mental disorders and PTSD, but the post-migration context can be an equally powerful determinant of mental health. Moreover, post-migration factors may moderate the ability of refugees to recover from pre-migration trauma. The importance of post-migration stressors to refugee mental health suggests the need for therapeutic interventions with psychosocial elements that address the broader conditions of refugee and asylum seekers' lives. However, there are few studies of multimodal interventions with refugees, and even fewer with control conditions that allow for conclusions about their effectiveness. These findings are interpreted using a social determinants of health framework that connects the risk and protective factors in the material and social conditions of refugees' post-migration lives to broader social, economic and political factors.

  19. Risk factors for proximal migration of biliary tube stents.

    PubMed

    Kawaguchi, Yoshiaki; Ogawa, Masami; Kawashima, Yohei; Mizukami, Hajime; Maruno, Atsuko; Ito, Hiroyuki; Mine, Tetsuya

    2014-02-07

    To analyze the risk factors for biliary stent migration in patients with benign and malignant strictures. Endoscopic stent placement was performed in 396 patients with bile duct stenosis, at our institution, between June 2003 and March 2009. The indications for bile duct stent implantation included common bile duct stone in 190 patients, malignant lesions in 112, chronic pancreatitis in 62, autoimmune pancreatitis in 14, trauma in eight, surgical complications in six, and primary sclerosing cholangitis (PSC) in four. We retrospectively examined the frequency of stent migration, and analyzed the patient factors (disease, whether endoscopic sphincterotomy was performed, location of bile duct stenosis and diameter of the bile duct) and stent characteristics (duration of stent placement, stent type, diameter and length). Moreover, we investigated retrieval methods for migrated stents and their associated success rates. The frequency of tube stent migration in the total patient population was 3.5%. The cases in which tube stent migration occurred included those with common bile duct stones (3/190; 1.6%), malignant lesions (2/112; 1.8%), chronic pancreatitis (4/62; 6.5%), autoimmune pancreatitis (2/14; 14.3%), trauma (1/8; 12.5%), surgical complications (2/6; 33.3%), and PSC (0/4; 0%). The potential risk factors for migration included bile duct stenosis secondary to benign disease such as chronic pancreatitis and autoimmune pancreatitis (P = 0.030); stenosis of the lower bile duct (P = 0.031); bile duct diameter > 10 mm (P = 0.023); duration of stent placement > 1 mo (P = 0.007); use of straight-type stents (P < 0.001); and 10-Fr sized stents (P < 0.001). Retrieval of the migrated stents was successful in all cases. The grasping technique, using a basket or snare, was effective for pig-tailed or thin and straight stents, whereas the guidewire cannulation technique was effective for thick and straight stents. Migration of tube stents within the bile duct is rare but possible, and it is important to determine the risk factors involved in stent migration.

  20. GPR55 promotes migration and adhesion of colon cancer cells indicating a role in metastasis

    PubMed Central

    Andersen, L; Hasenöhrl, C; Feuersinger, D; Stančić, A; Fauland, A; Magnes, C; El‐Heliebi, A; Lax, S; Uranitsch, S; Haybaeck, J; Heinemann, A

    2015-01-01

    Background and Purpose Tumour cell migration and adhesion constitute essential features of metastasis. G‐protein coupled receptor 55 (GPR55), a lysophospholipid receptor, has been shown to play an important role in carcinogenesis. Here, we investigated the involvement of GPR55 in migration and metastasis of colon cancer cells. Experimental Approach Adhesion and migration assays using the highly metastatic colon cancer cell line HCT116 and an in vivo assay of liver metastasis were performed. The GPR55 antagonist CID16020046, cannabidiol, a putative GPR55 antagonist and GPR55 siRNA were used to block GPR55 activity in HCT116 colon cancer cells. Key Results HCT116 cells showed a significant decrease in adhesion to endothelial cells and in migration after blockade with CID16020046 or cannabidiol. The inhibitory effects of CID16020046 or cannabidiol were averted by GPR55 siRNA knock down in cancer cells. The integrity of endothelial cell monolayers was increased after pretreatment of HCT116 cells with the antagonists or after GPR55 siRNA knockdown while pretreatment with lysophosphatidylinositol (LPI), the endogenous ligand of GPR55, decreased integrity of the monolayers. LPI also induced migration in GPR55 overexpressing HCT116 cells that was blocked by GPR55 antagonists. In a mouse model of metastasis, the arrest of HCT116 cancer cells in the liver was reduced after treatment with CID16020046 or cannabidiol. Increased levels of LPI (18:0) were found in colon cancer patients when compared with healthy individuals. Conclusions and Implications GPR55 is involved in the migratory behaviour of colon carcinoma cells and may serve as a pharmacological target for the prevention of metastasis. © 2015 The British Pharmacological Society PMID:26436760

  1. Shikonin Inhibites Migration and Invasion of Thyroid Cancer Cells by Downregulating DNMT1

    PubMed Central

    Zhang, Yue; Sun, Bin; Huang, Zhi

    2018-01-01

    Background Shikonin is a component of Chinese herbal medicine. The aim of this study was to investigate the effects of shikonin on cell migration of papillary thyroid cancer cells of the TPC-1 cell line in vitro and expression levels of the phosphate and tensin homolog deleted on chromosome 10 (PTEN) and DNA methyltransferase 1 (DNMT1) genes. Material/Methods The Cell Counting Kit-8 (CCK-8) assay was performed to evaluate the proliferation of TPC-1 papillary thyroid cancer cells, and the normal thyroid cells, HTori-3, in vitro. A transwell motility assay was used to analyze the migration of TPC-1 cells. Western blot was performed to determine the expression levels of PTEN and DNMT1 genes. A methylation-specific polymerase chain reaction (PCR) (MSP) assay was used to evaluate the methylation of PTEN. Results Following treatment with shikonin, the cell survival rate of TPC-1 cells decreased in a dose-dependent manner; the inhibitory effects on HTori-3 cells were less marked. Shikonin inhibited TPC-1 cell migration and invasion in a dose-dependent manner. The methylation of PTEN was suppressed by shikonin, which also reduced the expression of DNMT1 in a dose-dependent manner, and increased the expression of PTEN. Overexpression of DNMT1 promoted the migration of TPC-1 cells and the methylation of PTEN. Levels of protein expression of PTEN in TPC-1 cells treated with shikonin decreased, and were increased by DNMT1 knockdown. Conclusions Shikonin suppressed the expression of DNMT1, reduced PTEN gene methylation, and increased PTEN protein expression, leading to the inhibition of TPC-1 cell migration. PMID:29389913

  2. Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamy, Sylvie; Akla, Naoufal; Ouanouki, Amira

    Several epidemiological studies have indicated that abundant consumption of foods from plant origin is associated with a reduced risk of developing several types of cancers. This chemopreventive effect is related to the high content of these foods in phytochemicals, such as polyphenols, that interfere with several processes involved in cancer progression including tumor cell growth, survival and angiogenesis. In addition to the low intake of plant-based foods, increased body mass and physical inactivity have recently emerged as other important lifestyle factors influencing cancer risk, leading to the generation of low-grade chronic inflammatory conditions which are a key process involved inmore » tumor progression. The objectives of the current study are to investigate the inhibitory effects of these polyphenols on angiogenesis triggered by an inflammatory cytokine (IL-6) and to determine the mechanisms underlying this action. We found that, among the tested polyphenols, apigenin and luteolin were the most potent angiogenesis inhibitors through their inhibitory effect on the inflammatory cytokine IL-6/STAT3 pathway. These effects resulted in modulation of the activation of extracellular signal-regulated kinase-1/2 signaling triggered by IL-6, as well as in a marked reduction in the proliferation, migration and morphogenic differentiation of endothelial cells. Interestingly, these polyphenols also modulated the expression of IL-6 signal transducing receptor (IL-6R{alpha}) and the secretion of the extracellular matrix degrading enzyme MMP-2 as well as the expression of suppressor of cytokine signaling (SOCS3) protein. Overall, these results may provide important new information on the role of diet in cancer prevention.« less

  3. Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway.

    PubMed

    Lamy, Sylvie; Akla, Naoufal; Ouanouki, Amira; Lord-Dufour, Simon; Béliveau, Richard

    2012-08-01

    Several epidemiological studies have indicated that abundant consumption of foods from plant origin is associated with a reduced risk of developing several types of cancers. This chemopreventive effect is related to the high content of these foods in phytochemicals, such as polyphenols, that interfere with several processes involved in cancer progression including tumor cell growth, survival and angiogenesis. In addition to the low intake of plant-based foods, increased body mass and physical inactivity have recently emerged as other important lifestyle factors influencing cancer risk, leading to the generation of low-grade chronic inflammatory conditions which are a key process involved in tumor progression. The objectives of the current study are to investigate the inhibitory effects of these polyphenols on angiogenesis triggered by an inflammatory cytokine (IL-6) and to determine the mechanisms underlying this action. We found that, among the tested polyphenols, apigenin and luteolin were the most potent angiogenesis inhibitors through their inhibitory effect on the inflammatory cytokine IL-6/STAT3 pathway. These effects resulted in modulation of the activation of extracellular signal-regulated kinase-1/2 signaling triggered by IL-6, as well as in a marked reduction in the proliferation, migration and morphogenic differentiation of endothelial cells. Interestingly, these polyphenols also modulated the expression of IL-6 signal transducing receptor (IL-6Rα) and the secretion of the extracellular matrix degrading enzyme MMP-2 as well as the expression of suppressor of cytokine signaling (SOCS3) protein. Overall, these results may provide important new information on the role of diet in cancer prevention. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Hibiscus sabdariffa Leaf Extract Inhibits Human Prostate Cancer Cell Invasion via Down-Regulation of Akt/NF-kB/MMP-9 Pathway.

    PubMed

    Chiu, Chun-Tang; Chen, Jing-Hsien; Chou, Fen-Pi; Lin, Hui-Hsuan

    2015-06-24

    Hibiscus sabdariffa leaf has been previously shown to possess hypoglycemic, hypolipidemic, and antioxidant effects, and induce tumor cell apoptosis. However, the molecular mechanisms involved in the anticancer activity of H. sabdariffa leaf extract (HLE) are poorly understood. The object of the study was to examine the anti-invasive potential of HLE. First, HLE was demonstrated to be rich in polyphenols. The results of wound-healing assay and in vitro transwell assay revealed that HLE dose-dependently inhibited the migration and invasion of human prostate cancer LNCaP (lymph node carcinoma of the prostate) cells under non-cytotoxic concentrations. Our results further showed that HLE exerted an inhibitory effect on the activity and expressions of matrix metalloproteinase-9 (MMP-9). The HLE-inhibited MMP-9 expression appeared to be a consequence of nuclear factor-kappaB (NF-κB) inactivation because its DNA-binding activity was suppressed by HLE. Molecular data showed all these influences of HLE might be mediated via inhibition of protein kinase B (PKB, also known as Akt)/NF-kB/MMP-9 cascade pathway, as demonstrated by the transfection of Akt1 overexpression vector. Finally, the inhibitory effect of HLE was proven by its inhibition on the growth of LNCaP cells and the expressions of metastasis-related molecular proteins in vivo. These findings suggested that the inhibition of MMP-9 expression by HLE may act through the suppression of the Akt/NF-kB signaling pathway, which in turn led to the reduced invasiveness of the cancer cells.

  5. Hibiscus sabdariffa Leaf Extract Inhibits Human Prostate Cancer Cell Invasion via Down-Regulation of Akt/NF-κB/MMP-9 Pathway

    PubMed Central

    Chiu, Chun-Tang; Chen, Jing-Hsien; Chou, Fen-Pi; Lin, Hui-Hsuan

    2015-01-01

    Hibiscus sabdariffa leaf has been previously shown to possess hypoglycemic, hypolipidemic, and antioxidant effects, and induce tumor cell apoptosis. However, the molecular mechanisms involved in the anticancer activity of H. sabdariffa leaf extract (HLE) are poorly understood. The object of the study was to examine the anti-invasive potential of HLE. First, HLE was demonstrated to be rich in polyphenols. The results of wound-healing assay and in vitro transwell assay revealed that HLE dose-dependently inhibited the migration and invasion of human prostate cancer LNCaP (lymph node carcinoma of the prostate) cells under non-cytotoxic concentrations. Our results further showed that HLE exerted an inhibitory effect on the activity and expressions of matrix metalloproteinase-9 (MMP-9). The HLE-inhibited MMP-9 expression appeared to be a consequence of nuclear factor-kappaB (NF-κB) inactivation because its DNA-binding activity was suppressed by HLE. Molecular data showed all these influences of HLE might be mediated via inhibition of protein kinase B (PKB, also known as Akt)/NF-κB/MMP-9 cascade pathway, as demonstrated by the transfection of Akt1 overexpression vector. Finally, the inhibitory effect of HLE was proven by its inhibition on the growth of LNCaP cells and the expressions of metastasis-related molecular proteins in vivo. These findings suggested that the inhibition of MMP-9 expression by HLE may act through the suppression of the Akt/NF-κB signaling pathway, which in turn led to the reduced invasiveness of the cancer cells. PMID:26115086

  6. Security and skills: the two key issues in health worker migration

    PubMed Central

    Bidwell, Posy; Laxmikanth, Pallavi; Blacklock, Claire; Hayward, Gail; Willcox, Merlin; Peersman, Wim; Moosa, Shabir; Mant, David

    2014-01-01

    Background Migration of health workers from Africa continues to undermine the universal provision of quality health care. South Africa is an epicentre for migration – it exports more health workers to high-income countries than any other African country and imports health workers from its lower-income neighbours to fill the gap. Although an inter-governmental agreement in 2003 reduced the very high numbers migrating from South Africa to the United Kingdom, migration continues to other high-income English-speaking countries and few workers seem to return although the financial incentive to work abroad has lessened. A deeper understanding of reasons for migration from South Africa and post-migration experiences is therefore needed to underpin policy which is developed in order to improve retention within source countries and encourage return. Methods Semi-structured interviews were conducted with 16 South African doctors and nurses who had migrated to the United Kingdom. Interviews explored factors influencing the decision to migrate and post-migration experiences. Results Salary, career progression, and poor working conditions were not major push factors for migration. Many health workers reported that they had previously overcome these issues within the South African healthcare system by migrating to the private sector. Overwhelmingly, the major push factors were insecurity, high levels of crime, and racial tension. Although the wish to work and train in what was perceived to be a first-class care system was a pull factor to migrate to the United Kingdom, many were disappointed by the experience. Instead of obtaining new skills, many (particularly nurses) felt they had become ‘de-skilled’. Many also felt that working conditions and opportunities for them in the UK National Health Service (NHS) compared unfavourably with the private sector in South Africa. Conclusions Migration from South Africa seems unlikely to diminish until the major concerns over security, crime, and racial tensions are resolved. However, good working conditions in the private sector in South Africa provide an occupational incentive to return if security did improve. Potential migrants should be made more aware of the risks of losing skills while working abroad that might prejudice return. In addition, re-skilling initiatives should be encouraged. PMID:25079286

  7. Security and skills: the two key issues in health worker migration.

    PubMed

    Bidwell, Posy; Laxmikanth, Pallavi; Blacklock, Claire; Hayward, Gail; Willcox, Merlin; Peersman, Wim; Moosa, Shabir; Mant, David

    2014-01-01

    Migration of health workers from Africa continues to undermine the universal provision of quality health care. South Africa is an epicentre for migration--it exports more health workers to high-income countries than any other African country and imports health workers from its lower-income neighbours to fill the gap. Although an inter-governmental agreement in 2003 reduced the very high numbers migrating from South Africa to the United Kingdom, migration continues to other high-income English-speaking countries and few workers seem to return although the financial incentive to work abroad has lessened. A deeper understanding of reasons for migration from South Africa and post-migration experiences is therefore needed to underpin policy which is developed in order to improve retention within source countries and encourage return. Semi-structured interviews were conducted with 16 South African doctors and nurses who had migrated to the United Kingdom. Interviews explored factors influencing the decision to migrate and post-migration experiences. Salary, career progression, and poor working conditions were not major push factors for migration. Many health workers reported that they had previously overcome these issues within the South African healthcare system by migrating to the private sector. Overwhelmingly, the major push factors were insecurity, high levels of crime, and racial tension. Although the wish to work and train in what was perceived to be a first-class care system was a pull factor to migrate to the United Kingdom, many were disappointed by the experience. Instead of obtaining new skills, many (particularly nurses) felt they had become 'de-skilled'. Many also felt that working conditions and opportunities for them in the UK National Health Service (NHS) compared unfavourably with the private sector in South Africa. Migration from South Africa seems unlikely to diminish until the major concerns over security, crime, and racial tensions are resolved. However, good working conditions in the private sector in South Africa provide an occupational incentive to return if security did improve. Potential migrants should be made more aware of the risks of losing skills while working abroad that might prejudice return. In addition, re-skilling initiatives should be encouraged.

  8. Networks Versus Need: Drivers of Urban Out-Migration in the Brazilian Amazon

    PubMed Central

    VanWey, Leah K.

    2014-01-01

    As urbanization rates rise globally, it becomes increasingly important to understand the factors associated with urban out-migration. In this paper, we examine the drivers of urban out-migration among young adults in two medium-sized cities in the Brazilian Amazon—Altamira and Santarém—focusing on the roles of social capital, human capital, and socioeconomic deprivation. Using household survey data from 1,293 individuals in the two cities, we employ an event history model to assess factors associated with migration and a binary logit model to understand factors associated with remitting behavior. We find that in Altamira, migration tends to be an individual-level opportunistic strategy fostered by extra-local family networks, while in Santarém, migration tends to be a household-level strategy driven by socioeconomic deprivation and accompanied by remittances. These results indicate that urban out-migration in Brazil is a diverse social process, and that the relative roles of extra-local networks versus economic need can function quite differently between geographically proximate but historically and socioeconomically distinct cities. PMID:25419021

  9. Risk factors for venous port migration in a single institute in Taiwan

    PubMed Central

    2014-01-01

    Background An implantable port device provides an easily accessible central route for long-term chemotherapy. Venous catheter migration is one of the rare complications of venous port implantation. It can lead to side effects such as pain in the neck, shoulder, or ear, venous thrombosis, and even life-threatening neurologic problems. To date, there are few published studies that discuss such complications. Methods This retrospective study of venous port implantation in a single center, a Taiwan hospital, was conducted from January 2011 to March 2013. Venous port migration was recorded along with demographic and characteristics of the patients. Results Of 298 patients with an implantable import device, venous port migration had occurred in seven, an incidence rate of 2.3%. All seven were male and had received the Bard port Fr 6.6 which had smaller size than TYCO port Fr 7.5 and is made of silicon. Significantly, migration occurred in male patients (P = 0.0006) and in those with lung cancer (P = 0.004). Multivariable logistic regression analysis revealed that lung cancer was a significant risk factor for port migration (odds ratio: 11.59; P = 0.0059). The migration rate of the Bard port Fr 6.6 was 6.7%. The median time between initial venous port implantation and port migration was 35.4 days (range, 7 to 135 days) and 71.4% (5/7) of patients had port migration within 30 days after initial port implantation. Conclusions Male sex and lung cancer are risk factors for venous port migration. The type of venous port is also an important risk factor. PMID:24423026

  10. A preliminary study of international migration of the Chinese people.

    PubMed

    Zhu, G

    1994-01-01

    International Chinese migration has spanned five periods: 1) an initial period of random and short-term migration dating back to the Qing and Han dynasties; 2) a spontaneous period since the Sui and Tang dynasties along trade routes; 3) a transition period during the Ming dynasty and the early Qing dynasty with war, poverty, and population growth as push factors; 4) peak migration during the Opium War period due to economic depression, population pressure, and the "coolie" trade; and 5) continuous development between the 1920s and 1949. Migration tended to occur between Guangdong and Fujian provinces and other southeast Asian countries. Four factors were identified as necessary for international migration to occur: the origin of migration, the destination factor, the middle link factor, and the immigrant characteristics. The origins of early Chinese migration appeared in a country of political corruption, population pressure, a backward economy, and social chaos. The pull factors at destination end were demand for labor. The middle link was the short distance between Guangdong and Fujian provinces and southeast Asian countries and longstanding nongovernmental exchanges. Other links were the similarity of climate, similar racial features, cultural lifestyle similarities, and convenient transportation. The people in these two provinces had a history of migration and a personality suitable for the spirit of adventure. Peak migration occurred during the late Qing dynasty and during the continuous development period. Between 1840 and 1911 there were about 10 million Chinese immigrants and during 1911 and 1949 there were about 6 million. In general, over 20 million immigrated prior to 1949, of which about 50% migrated during the peak period, 33% during the continuous period, and 20% before 1840. This amounted to about 33% of European migration and two times African migration. 60% were from Guangdong, and 30% were from Fujian province, of whom most were from counties within the border of Jinjiang City, and counties in Putian City, in Longxi City, and in Xiamen Prefecture. Guangdong immigrants came from cities, places in the Pearl River Delta area and the Tan River Valley, counties in Xingmei hakka area, and Hainan Island. 90% of immigrants settled in southeast Asia (Thailand, Indonesia, Malaysia, Singapore, the Philippines, Burma, Vietnam, Kampuchea, and Laos), and 8% came to North America and Latin America. Most were men, young, not well educated, and unemployed.

  11. Beyond cultural factors to understand immigrant mental health: Neighborhood ethnic density and the moderating role of pre-migration and post-migration factors.

    PubMed

    Arévalo, Sandra P; Tucker, Katherine L; Falcón, Luis M

    2015-08-01

    Pre-migration and post-migration factors may influence the health of immigrants. Using a cross-national framework that considers the effects of the sending and receiving social contexts, we examined the extent to which pre-migration and post-migration factors, including individual and neighborhood level factors, influence depressive symptoms at a 2-year follow-up time point. Data come from the Boston Puerto Rican Health Study, a population-based prospective cohort of Puerto Ricans between the ages of 45 and 75 y. The association of neighborhood ethnic density with depressive symptomatology at follow-up was significantly modified by sex and level of language acculturation. Men, but not women, experienced protective effects of ethnic density. The interaction of neighborhood ethnic density with language acculturation had a non-linear effect on depressive symptomatology, with lowest depressive symptomatology in the second highest quartile of language acculturation, relative to the lowest and top two quartiles among residents of high ethnic density neighborhoods. Results from this study highlight the complexity, and interplay, of a number of factors that influence the health of immigrants, and emphasize the significance of moving beyond cultural variables to better understand why the health of some immigrant groups deteriorates at faster rates overtime. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Evidence for tension-based regulation of Drosophila MAL and SRF during invasive cell migration.

    PubMed

    Somogyi, Kálmán; Rørth, Pernille

    2004-07-01

    Cells migrating through a tissue exert force via their cytoskeleton and are themselves subject to tension, but the effects of physical forces on cell behavior in vivo are poorly understood. Border cell migration during Drosophila oogenesis is a useful model for invasive cell movement. We report that this migration requires the activity of the transcriptional factor serum response factor (SRF) and its cofactor MAL-D and present evidence that nuclear accumulation of MAL-D is induced by cell stretching. Border cells that cannot migrate lack nuclear MAL-D but can accumulate it if they are pulled by other migrating cells. Like mammalian MAL, MAL-D also responds to activated Diaphanous, which affects actin dynamics. MAL-D/SRF activity is required to build a robust actin cytoskeleton in the migrating cells; mutant cells break apart when initiating migration. Thus, tension-induced MAL-D activity may provide a feedback mechanism for enhancing cytoskeletal strength during invasive migration.

  13. Environmental concerns and international migration.

    PubMed

    Hugo, G

    1996-01-01

    "This article focuses on international migration occurring as a result of environmental changes and processes. It briefly reviews attempts to conceptualize environment-related migration and then considers the extent to which environmental factors have been and may be significant in initiating migration. Following is an examination of migration as an independent variable in the migration-environment relationship. Finally, ethical and policy dimensions are addressed."

  14. [Long-term implications of labor migration in Togo].

    PubMed

    De Haan, L

    1986-01-01

    Labor migration in Togo since 1900 is analyzed. The author examines factors affecting the demand for labor in areas of in-migration, the development of systems of production related to population growth in areas of out-migration, and state intervention. Consideration is given to both international and internal migration. The expansion of internal migration since independence is noted. (SUMMARY IN ENG)

  15. Leukemia inhibitory factor (LIF) enhances MAP2 + and HUC/D + neurons and influences neurite extension during differentiation of neural progenitors derived from human embryonic stem cells.

    EPA Science Inventory

    Leukemia Inhibitory Factor (L1F), a member of the Interleukin 6 cytokine family, has a role in differentiation of Human Neural Progenitor (hNP) cells in vitro. hNP cells, derived from Human Embryonic Stem (hES) cells, have an unlimited capacity for self-renewal in monolayer cultu...

  16. Characterizing the International Migration Barriers with a Probabilistic Multilateral Migration Model

    PubMed Central

    Li, Xiaomeng; Xu, Hongzhong; Chen, Jiawei; Chen, Qinghua; Zhang, Jiang; Di, Zengru

    2016-01-01

    Human migration is responsible for forming modern civilization and has had an important influence on the development of various countries. There are many issues worth researching, and “the reason to move” is the most basic one. The concept of migration cost in the classical self-selection theory, which was introduced by Roy and Borjas, is useful. However, migration cost cannot address global migration because of the limitations of deterministic and bilateral choice. Following the idea of migration cost, this paper developed a new probabilistic multilateral migration model by introducing the Boltzmann factor from statistical physics. After characterizing the underlying mechanism or driving force of human mobility, we reveal some interesting facts that have provided a deeper understanding of international migration, such as the negative correlation between migration costs for emigrants and immigrants and a global classification with clear regional and economic characteristics, based on clustering of migration cost vectors. In addition, we deconstruct the migration barriers using regression analysis and find that the influencing factors are complicated but can be partly (12.5%) described by several macro indexes, such as the GDP growth of the destination country, the GNI per capita and the HDI of both the source and destination countries. PMID:27597319

  17. Characterizing the International Migration Barriers with a Probabilistic Multilateral Migration Model

    NASA Astrophysics Data System (ADS)

    Li, Xiaomeng; Xu, Hongzhong; Chen, Jiawei; Chen, Qinghua; Zhang, Jiang; di, Zengru

    2016-09-01

    Human migration is responsible for forming modern civilization and has had an important influence on the development of various countries. There are many issues worth researching, and “the reason to move” is the most basic one. The concept of migration cost in the classical self-selection theory, which was introduced by Roy and Borjas, is useful. However, migration cost cannot address global migration because of the limitations of deterministic and bilateral choice. Following the idea of migration cost, this paper developed a new probabilistic multilateral migration model by introducing the Boltzmann factor from statistical physics. After characterizing the underlying mechanism or driving force of human mobility, we reveal some interesting facts that have provided a deeper understanding of international migration, such as the negative correlation between migration costs for emigrants and immigrants and a global classification with clear regional and economic characteristics, based on clustering of migration cost vectors. In addition, we deconstruct the migration barriers using regression analysis and find that the influencing factors are complicated but can be partly (12.5%) described by several macro indexes, such as the GDP growth of the destination country, the GNI per capita and the HDI of both the source and destination countries.

  18. Migration and Environmental Hazards

    PubMed Central

    Hunter, Lori M.

    2011-01-01

    Losses due to natural hazards (e.g., earthquakes, hurricanes) and technological hazards (e.g., nuclear waste facilities, chemical spills) are both on the rise. One response to hazard-related losses is migration, with this paper offering a review of research examining the association between migration and environmental hazards. Using examples from both developed and developing regional contexts, the overview demonstrates that the association between migration and environmental hazards varies by setting, hazard types, and household characteristics. In many cases, however, results demonstrate that environmental factors play a role in shaping migration decisions, particularly among those most vulnerable. Research also suggests that risk perception acts as a mediating factor. Classic migration theory is reviewed to offer a foundation for examination of these associations. PMID:21886366

  19. Effects of post-migration factors on PTSD outcomes among immigrant survivors of political violence.

    PubMed

    Chu, Tracy; Keller, Allen S; Rasmussen, Andrew

    2013-10-01

    This study examined the predictors of posttraumatic stress disorder (PTSD) in a clinical sample of 875 immigrant survivors of political violence resettled in the United States, with a specific aim of comparing the relative predictive power of pre-migration and post-migration experiences. Results from a hierarchical OLS regression indicated that pre-migration experiences such as rape/sexual assault were significantly associated with worse PTSD outcomes, as were post-migration factors such as measures of financial and legal insecurity. Post-migration variables, which included immigration status in the US, explained significantly more variance in PTSD outcomes than premigration variables alone. Discussion focused on the importance of looking at postmigration living conditions when treating trauma in this population.

  20. Inhibitory effects of Physalis angulata on tumor metastasis and angiogenesis.

    PubMed

    Hseu, You-Cheng; Wu, Chi-Rei; Chang, Hsueh-Wei; Kumar, K J Senthil; Lin, Ming-Kuem; Chen, Chih-Sheng; Cho, Hsin-Ju; Huang, Chun-Yin; Huang, Chih-Yang; Lee, Hong-Zin; Hsieh, Wen-Tsong; Chung, Jing-Gung; Wang, Hui-Min; Yang, Hsin-Ling

    2011-06-01

    ETHNOPHARMACOLOGICAL RELAVENCE: Physalis angulata is well-known in traditional Chinese medicine as a ingredient for various herbal formulation; also, it has been shown to exhibit anti-cancer and anti-inflammatory effects. In this study, the ability of P. angulata to inhibit tumor metastasis and angiogenesis was investigated. Anti-proliferative activity of ethyl acetate extracts of P. angulata (PA extracts), was determined against human oral squamous carcinoma (HSC-3) and human umbilical vein endothelial cells (HUVECs) by trypan blue exclusion method. Wound-healing migration, trans-well invasion, Western blotting and chick chorioallantoic membrane assay were carried out to determine the anti-metastatic and anti-angiogenic effects of PA extracts in vitro and in vivo. We demonstrated that at sub-cytotoxic concentrations of PA extracts (5-15 μg/mL) markedly inhibited the migration and invasion of highly metastatic HSC-3 cells as shown by wound-healing repair assay and trans-well assay. Gelatin zymography assay showed that PA extracts suppressed the activity of matrix metalloproteinase (MMP)-9 and -2, and urokinase plasminogen activator (u-PA) in HSC-3 cells. In addition, Western blot analysis confirmed that PA extracts significantly decreased MMP-2 and u-PA protein expression in HSC-3 cells. Notably, PA extracts significantly augmented the expression of their endogenous inhibitors, including tissue inhibitors of MMP (TIMP-1 and -2), and plasminogen activator inhibitors (PAI-1 and -2). Further investigations revealed that non-cytotoxic concentration of PA extracts (5-15 μg/mL) inhibited vascular endothelial growth factor (VEGF)-induced proliferation, and migration/invasion of HUVECs in vitro. PA extracts also suppressed the activity of MMP-9, but not MMP-2, in HUVECs. Further, we observed, PA extracts strongly suppressed neovessel formation in the chorioallantoic membrane of chick embryos in vivo. These results strongly support an anti-metastatic and anti-angiogenic activity of P. angulata that may contribute to the development of better chemopreventive agent for cancer and inflammation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. OTX2 exhibits cell-context-dependent effects on cellular and molecular properties of human embryonic neural precursors and medulloblastoma cells

    PubMed Central

    Kaur, Ravinder; Aiken, Christopher; Morrison, Ludivine Coudière; Rao, Radhika; Del Bigio, Marc R.; Rampalli, Shravanti; Werbowetski-Ogilvie, Tamra

    2015-01-01

    ABSTRACT Medulloblastoma (MB) is the most common malignant primary pediatric brain tumor and is currently divided into four subtypes based on different genomic alterations, gene expression profiles and response to treatment: WNT, Sonic Hedgehog (SHH), Group 3 and Group 4. This extensive heterogeneity has made it difficult to assess the functional relevance of genes to malignant progression. For example, expression of the transcription factor Orthodenticle homeobox2 (OTX2) is frequently dysregulated in multiple MB variants; however, its role may be subtype specific. We recently demonstrated that neural precursors derived from transformed human embryonic stem cells (trans-hENs), but not their normal counterparts (hENs), resemble Groups 3 and 4 MB in vitro and in vivo. Here, we tested the utility of this model system as a means of dissecting the role of OTX2 in MB using gain- and loss-of-function studies in hENs and trans-hENs, respectively. Parallel experiments with MB cells revealed that OTX2 exerts inhibitory effects on hEN and SHH MB cells by regulating growth, self-renewal and migration in vitro and tumor growth in vivo. This was accompanied by decreased expression of pluripotent genes, such as SOX2, and was supported by overexpression of SOX2 in OTX2+ SHH MB and hENs that resulted in significant rescue of self-renewal and cell migration. By contrast, OTX2 is oncogenic and promotes self-renewal of trans-hENs and Groups 3 and 4 MB independent of pluripotent gene expression. Our results demonstrate a novel role for OTX2 in self-renewal and migration of hENs and MB cells and reveal a cell-context-dependent link between OTX2 and pluripotent genes. Our study underscores the value of human embryonic stem cell derivatives as alternatives to cell lines and heterogeneous patient samples for investigating the contribution of key developmental regulators to MB progression. PMID:26398939

  2. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma

    PubMed Central

    Pivonello, Claudia; Negri, Mariarosaria; De Martino, Maria Cristina; Napolitano, Maria; de Angelis, Cristina; Provvisiero, Donatella Paola; Cuomo, Gaia; Auriemma, Renata Simona; Simeoli, Chiara; Izzo, Francesco; Colao, Annamaria; Hofland, Leo J.; Pivonello, Rosario

    2016-01-01

    Deregulation of mTOR and IGF pathways is frequent in hepatocellular carcinoma (HCC), thus mTOR and IGF1R represent suitable therapeutic targets in HCC. The aim of this study was to evaluate the effects of mTOR inhibitors (mTORi) and OSI-906, blocker of IGF1R/IR, on HCC cell proliferation, viability, migration and invasion, and alpha-fetoprotein (α-FP) secretion. In HepG2 and HuH-7 we evaluated, the expression of mTOR and IGF pathway components; the effects of Sirolimus, Everolimus, Temsirolimus and OSI-906 on cell proliferation; the effects of Sirolimus, OSI-906, and their combination, on cell secretion, proliferation, viability, cell cycle, apoptosis, invasion and migration. Moreover, intracellular mechanisms underlying these cell functions were evaluated in both cell lines. Our results show that HepG2 and HuH-7 present with the same mRNA expression profile with high levels of IGF2. OSI-906 inhibited cell proliferation at high concentration, while mTORi suppressed cell proliferation in a dose-time dependent manner in both cell lines. The co-treatment showed an additive inhibitory effect on cell proliferation and viability. This effect was not related to induction of apoptosis, but to G0/G1 phase block. Moreover, the co-treatment prevented the Sirolimus-induced AKT activation as escape mechanism. Both agents demonstrated to be differently effective in inhibiting α-FP secretion. Sirolimus, OSI-906, and their combination, blocked cell migration and invasion in HuH-7. These findings indicate that, co-targeting of IGF1R/IR and mTOR pathways could be a novel therapeutic approach in the management of HCC, in order to maximize antitumoral effect and to prevent the early development of resistance mechanisms. PMID:26756219

  3. In vitro evaluation of wound healing and antimicrobial potential of ozone therapy.

    PubMed

    Borges, Gabriel Álvares; Elias, Silvia Taveira; da Silva, Sandra Márcia Mazutti; Magalhães, Pérola Oliveira; Macedo, Sergio Bruzadelli; Ribeiro, Ana Paula Dias; Guerra, Eliete Neves Silva

    2017-03-01

    Although ozone therapy is extensively applied when wound repair and antimicrobial effect are necessary, little is known about cellular mechanisms regarding this process. Thus, this study aimed to evaluate ozone cytotoxicity in fibroblasts (L929) and keratinocytes (HaCaT) cell lines, its effects on cell migration and its antimicrobial activity. Cells were treated with ozonated phosphate-buffered saline (8, 4, 2, 1, 0.5 and 0.25 μg/mL ozone), chlorhexidine 0.2% or buffered-solution, and cell viability was determined through MTT assay. The effect of ozone on cell migration was evaluated through scratch wound healing and transwell migration assays. The minimum inhibitory concentrations for Candida albicans and Staphylococcus aureus were determined. Ozone showed no cytotoxicity for the cell lines, while chlorhexidine markedly reduced cell viability. Although no significant difference between control and ozone-treated cells was observed in the scratch assay, a considerable increase in fibroblasts migration was noticed on cells treated with 8 μg/mL ozonated solution. Ozone alone did not inhibit growth of microorganisms; however, its association with chlorhexidine resulted in antimicrobial activity. This study confirms the wound healing and antimicrobial potential of ozone therapy and presents the need for studies to elucidate the molecular mechanisms through which it exerts such biological effects. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Monitoring in real time the effect of TLX overexpression on proliferation and migration of C6 cells.

    PubMed

    Li, G L; Fang, S H; Xu, B

    2017-01-01

    Orphan nuclear receptor TLX has been shown to play an essential role in regulating the self-renewal and proliferation of neural stem cells (NSCs). However, TLX overexpression in NSCs induces long-term NSC expansion and further leads to glioma initiation in mouse when combined with p53 mutations. Whether overexpression of TLX plays a role in glioma stem cell (GSC) proliferation and migration still remains largely unknown. In this study, we infected C6 cells, a special glioma cell line which is mainly composed of cancer stem cells(CSCs), with lentiviruses expressing GFP(LV-GFP) or GFP-T2A-TLX(LV-TLX) and then monitored cell proliferation and migration using the real-time analyzer system (RTCA, xCELLigence, Roche). We found that the cell index (CI) observed for the TLX overexpressing C6 cells showed a lower value than that of the LV-GFP transduced cells. And the MTT results correlated highly with the RTCA proliferation assessments. Furthermore, the expression of p21 was decreased while other downstream genes PTEN and p53 were not significantly changed in TLX overexpressing C6 cells . These findings strongly indicate that TLX overexpression has the ability to decrease the proliferating and migratory properties of C6 cells by targeting p21. Further, our results suggest that TLX overexpression may also have a similar inhibitory effect on GSC proliferation and migration.

  5. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression

    NASA Astrophysics Data System (ADS)

    Li, Wei; Yu, K. N.; Bao, Lingzhi; Shen, Jie; Cheng, Cheng; Han, Wei

    2016-01-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis.

  6. Suppressive activities and mechanisms of ugonin J on vascular smooth muscle cells and balloon angioplasty-induced neointimal hyperplasia.

    PubMed

    Pan, Chun-Hsu; Li, Pei-Chuan; Chien, Yi-Chung; Yeh, Wan-Ting; Liaw, Chih-Chuang; Sheu, Ming-Jyh; Wu, Chieh-Hsi

    2018-02-01

    Neointimal hyperplasia (or restenosis) is primarily attributed to excessive proliferation and migration of vascular smooth muscle cells (VSMCs). In this study, we investigated the inhibitory effects and mechanisms of ugonin J on VSMC proliferation and migration as well as neointimal formation. Cell viability and the cell-cycle distribution were, respectively, analyzed using an MTT assay and flow cytometry. Cell migration was examined using a wound-healing analysis and a transwell assay. Protein expressions and gelatinase activities were, respectively, measured using Western blot and gelatin zymography. Balloon angioplasty-induced neointimal formation was induced in a rat carotid artery model and then examined using immunohistochemical staining. Ugonin J induced cell-cycle arrest at the G 0 /G 1 phase and apoptosis to inhibit VSMC growth. Ugonin J also exhibited marked suppressive activity on VSMC migration. Ugonin J significantly reduced activations of focal adhesion kinase, phosphoinositide 3-kinase, v-akt murine thymoma viral oncogene homolog 1, and extracellular signal-regulated kinase 1/2 proteins. Moreover, ugonin J obviously reduced expressions and activity levels of matrix metalloproteinase-2 and matrix metalloproteinase-9. In vivo data indicated that ugonin J prevented balloon angioplasty-induced neointimal hyperplasia. Our study suggested that ugonin J has the potential for application in the prevention of balloon injury-induced neointimal formation. Copyright © 2017 John Wiley & Sons, Ltd.

  7. N-Cadherin and Fibroblast Growth Factor Receptors crosstalk in the control of developmental and cancer cell migrations.

    PubMed

    Nguyen, Thao; Mège, René Marc

    2016-11-01

    Cell migrations are diverse. They constitutemajor morphogenetic driving forces during embryogenesis, but they contribute also to the loss of tissue homeostasis and cancer growth. Capabilities of cells to migrate as single cells or as collectives are controlled by internal and external signalling, leading to the reorganisation of their cytoskeleton as well as by the rebalancing of cell-matrix and cell-cell adhesions. Among the genes altered in numerous cancers, cadherins and growth factor receptors are of particular interest for cell migration regulation. In particular, cadherins such as N-cadherin and a class of growth factor receptors, namely FGFRs cooperate to regulate embryonic and cancer cell behaviours. In this review, we discuss on reciprocal crosstalk between N-cadherin and FGFRs during cell migration. Finally, we aim at clarifying the synergy between N-cadherin and FGFR signalling that ensure cellular reorganization during cell movements, mainly during cancer cell migration and metastasis but also during developmental processes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Physicians' Migration: Perceptions of Pakistani Medical Students.

    PubMed

    Hossain, Nazli; Shah, Nusrat; Shah, Tahira; Lateef, Sidra Binte

    2016-08-01

    To study the perceptions of medical students about factors responsible for physicians'migration. Cross-sectional survey. Dow Medical College and Civil Hospital, Karachi, from April to May 2015. Aself-administered structured questionnaire was used including demographic details, attitudes about push and pull factors of migration, and reasons for migrating or not migrating abroad. Final year students and interns were included. Likert scale from 1 to 4 (1=strongly disagree to 4=strongly agree) was used to assess attitudes. Data was analyzed by SPSS version 16. Atotal of 240 medical students, mostly females (n=181, 75%) (60% final year and 40% interns), participated in the study. Majority wished to go abroad (n=127; 54%) with United States being the favourite destination (n=80; 66.1%) and internal medicine fields being the preferred choice for specialization (n=126; 54%). The major pull factors were better quality of postgraduate education abroad (n=110; 48.2%) and economic prospects (80; 35.2%); while the push factors were a weak healthcare system (n=219; 94.3%), inadequate salary structure (n=205; 88.3%), insecurity (n=219; 93.9%) and increasing religious intolerance in Pakistan (n=183; 78.5%). This survey highlights the continuing trend of physician migration from Pakistan owing to an interplay of various push and pull factors. Majority of our medical students wish to migrate, mainly due to low salaries, poor job structure, and insecurity. Urgent interventions are required to reverse this trend of medical brain-drain.

  9. Epithelial-mesenchymal transition transcription factors control pluripotent adult stem cell migration in vivo in planarians

    PubMed Central

    Abnave, Prasad; Aboukhatwa, Ellen; Kosaka, Nobuyoshi; Thompson, James; Hill, Mark A.

    2017-01-01

    Migration of stem cells underpins the physiology of metazoan animals. For tissues to be maintained, stem cells and their progeny must migrate and differentiate in the correct positions. This need is even more acute after tissue damage by wounding or pathogenic infection. Inappropriate migration also underpins metastasis. Despite this, few mechanistic studies address stem cell migration during repair or homeostasis in adult tissues. Here, we present a shielded X-ray irradiation assay that allows us to follow stem cell migration in planarians. We demonstrate the use of this system to study the molecular control of stem cell migration and show that snail-1, snail-2 and zeb-1 EMT transcription factor homologs are necessary for cell migration to wound sites and for the establishment of migratory cell morphology. We also observed that stem cells undergo homeostatic migration to anterior regions that lack local stem cells, in the absence of injury, maintaining tissue homeostasis. This requires the polarity determinant notum. Our work establishes planarians as a suitable model for further in-depth study of the processes controlling stem cell migration in vivo. PMID:28893948

  10. Association between the -794 (CATT)5-8  MIF gene polymorphism and susceptibility to acute coronary syndrome in a western Mexican population.

    PubMed

    Valdés-Alvarado, Emmanuel; Muñoz-Valle, José Francisco; Valle, Yeminia; Sandoval-Pinto, Elena; García-González, Ilian Janet; Valdez-Haro, Angélica; De la Cruz-Mosso, Ulises; Flores-Salinas, Héctor Enrique; Padilla-Gutiérrez, Jorgé Ramón

    2014-01-01

    The macrophage migration inhibitory factor (MIF) is related to the progression of atherosclerosis, which, in turn, is a key factor in the development of acute coronary syndrome (ACS). MIF has a CATT short tandem repeat (STR) at position -794 that might be involved in its expression rate. The aim of this study was to investigate the association between the -794 (CATT)5-8  MIF gene polymorphism and susceptibility to ACS in a western Mexican population. This research included 200 ACS patients classified according to the criteria of the American College of Cardiology (ACC) and 200 healthy subjects (HS). The -794 (CATT)5-8  MIF gene polymorphism was analyzed using a conventional polymerase chain reaction (PCR) technique. The 6 allele was the most frequent in both groups (ACS: 54% and HS: 57%). The most common genotypes in ACS patients and HS were 6/7 and 6/6, respectively, and a significant association was found between the 6/7 genotype and susceptibility to ACS (68% versus 47% in ACS and HS, resp., P = 0.03). We conclude that the 6/7 genotype of the MIF -794 (CATT)5-8 polymorphism is associated with susceptibility to ACS in a western Mexican population.

  11. The Kmif (Kveim-induced macrophage migration inhibition factor) test in sarcoidosis

    PubMed Central

    Williams, W. Jones; Pioli, E.; Jones, D. J.; Dighero, M.

    1972-01-01

    Circulating lymphocytes from 30 patients with sarcoidosis when stimulated in vitro with Kveim-induced macrophage migration factor, the Kmif test, produced a guinea-pig macrophage migration inhibition factor in 21 of 30 cases (70%). In those patients not on steroids the results showed a good correlation with the cutaneous Kveim test. One positive test was found in 16 normal subjects. Our results suggest that the Kmif test may prove a useful rapid alternative to the Kveim test. PMID:4675181

  12. A model-based estimation of inter-prefectural migration of physicians within Japan and associated factors: A 20-year retrospective study.

    PubMed

    Okada, Naoki; Tanimoto, Tetsuya; Morita, Tomohiro; Higuchi, Asaka; Yoshida, Izumi; Kosugi, Kazuhiro; Maeda, Yuto; Nishikawa, Yoshitaka; Ozaki, Akihiko; Tsuda, Kenji; Mori, Jinichi; Ohnishi, Mutsuko; Ward, Larry Wesley; Narimatsu, Hiroto; Yuji, Koichiro; Kami, Masahiro

    2018-06-01

    Despite an increase in the number of physicians in Japan, misdistribution of physicians within the 47 prefectures remains a major issue. Migration of physicians among prefectures might partly explain the misdistribution. However, geographical differences and the magnitude of physicians' migration are unclear. The aim of this study was to estimate the extent of migration of physicians among prefectures and explore possible factors associated with physicians' migration patterns.Using a publicly available government database from 1995 to 2014, a quantitative estimation of physicians' migration after graduation from a medical school was performed. The inflow and outflow of physicians were ostensibly calculated in each prefecture based on the differences between the number of newly licensed physicians and the actual number of practicing physicians after an adjustment for the number of deceased or retired physicians. Simple and multiple linear regression analyses were conducted to examine socio-demographic background factors.During the 20-year study period, the mean annual numbers of newly licensed physicians, deceased or retired physicians, and increase in practicing physicians in the whole country were 7416, 3382, and 4034, respectively. Among the 47 prefectures, the median annual number of newly licensed physicians to 100,000 population ratio (PPR) was 6.4 (range 1.5-16.5), the median annual adjusted number of newly licensed physicians was 61 (range, -18 to 845; the negative and positive values denote outflow and inflow, respectively), whereas the median annual number of migrating physicians was 13 (range, -171 to 241). The minimum and maximum migration ratios observed were -68% and 245%, respectively. In the final regression model of the 8 variables examined, only "newly licensed PPR" remained significantly associated with physician's migration ratios.A significant inequality in the proportion of the migration of physicians among prefectures in Japan was observed. The multivariate analyses suggest that the newly licensed PPRs, and not from-rural-to-urban migration, might be one of the keys to explaining the migration ratios of physicians. The differences and magnitude of physicians' migration should be factored into mitigate misdistribution of physicians.

  13. Emerging role of ILK and ELMO2 in the integration of adhesion and migration pathways

    PubMed Central

    Ho, Ernest; Dagnino, Lina

    2012-01-01

    Integrins and their associated proteins are essential components of the cellular machinery that modulates adhesion and migration. In particular, integrin-linked kinase (ILK), which binds to the cytoplasmic tail of β1 integrins, is required for migration in a variety of cell types. We previously identified engulfment and motility 2 (ELMO2) as an ILK-binding protein in epidermal keratinocytes. Recently, we investigated the biological role of the ILK/ELMO2 complexes, and found that they exist in the cytoplasm. ILK/ELMO2 species are recruited by active RhoG to the plasma membrane, where they induce Rac1 activation and formation of lamellipodia at the leading edge of migrating cells. A large number of growth factors and cytokines induce keratinocyte migration. However, we found that formation of RhoG/ELMO2/ILK complexes occurs selectively upon stimulation by epidermal growth factor, but not by transforming growth factor-β1 or keratinocyte growth factor. Herein we discuss the relevance of these complexes to our understanding of the molecular mechanisms involved in cell migration, as well as their potential functions in morphogenesis and tissue regeneration following injury. PMID:22568984

  14. Emerging role of ILK and ELMO2 in the integration of adhesion and migration pathways.

    PubMed

    Ho, Ernest; Dagnino, Lina

    2012-01-01

    Integrins and their associated proteins are essential components of the cellular machinery that modulates adhesion and migration. In particular, integrin-linked kinase (ILK), which binds to the cytoplasmic tail of β1 integrins, is required for migration in a variety of cell types. We previously identified engulfment and motility 2 (ELMO2) as an ILK-binding protein in epidermal keratinocytes. Recently, we investigated the biological role of the ILK/ELMO2 complexes, and found that they exist in the cytoplasm. ILK/ELMO2 species are recruited by active RhoG to the plasma membrane, where they induce Rac1 activation and formation of lamellipodia at the leading edge of migrating cells. A large number of growth factors and cytokines induce keratinocyte migration. However, we found that formation of RhoG/ELMO2/ILK complexes occurs selectively upon stimulation by epidermal growth factor, but not by transforming growth factor-β1 or keratinocyte growth factor. Herein we discuss the relevance of these complexes to our understanding of the molecular mechanisms involved in cell migration, as well as their potential functions in morphogenesis and tissue regeneration following injury.

  15. Plasma rich in growth factors (PRGF-Endoret) stimulates tendon and synovial fibroblasts migration and improves the biological properties of hyaluronic acid.

    PubMed

    Anitua, E; Sanchez, M; De la Fuente, M; Zalduendo, M M; Orive, G

    2012-09-01

    Cell migration plays an essential role in development, wound healing, and tissue regeneration. Plasma rich in growth factors (PRGF-Endoret) technology offers a potential source of growth factors involved in tissue regeneration. Here, we evaluate the potential of PRGF-Endoret over tendon cells and synovial fibroblasts migration and study whether the combination of this autologous technology with hyaluronic acid (HA) improves the effect and potential of the biomaterials over the motility of both types of fibroblasts. Migration of primary tendon cells and synovial fibroblasts after culturing with either PRGF or PPGF (plasma poor in growth factors) at different doses was evaluated. Furthermore, the migratory capacity induced by the combination of PPGF and PRGF with HA was tested. PPGF stimulated migration of both types of cells but this effect was significantly higher when PRGF was used. Tendon cells showed an increase of 212% in migratory ability when HA was combined with PPGF and of 335% in the case of HA + PRGF treatment compared with HA alone. PRGF-Endoret stimulates migration of tendon cells and synovial fibroblasts and improves the biological properties of HA.

  16. Neural cell activation by phenolic compounds from the Siberian larch (Larix sibirica).

    PubMed

    Loers, Gabriele; Yashunsky, Dmitry V; Nifantiev, Nikolay E; Schachner, Melitta

    2014-07-25

    Small organic phenolic compounds from natural sources have attracted increasing attention due to their potential to ameliorate the serious consequences of acute and chronic traumata of the mammalian nervous system. In this contribution, it is reported that phenols from the knot zones of Siberian larch (Larix sibirica) wood, namely, the antioxidant flavonoid (+)-dihydroquercetin (1) and the lignans (-)-secoisolariciresinol (2) and (+)-isolariciresinol (3), affect migration and outgrowth of neurites/processes from cultured neurons and glial cells of embryonic and early postnatal mice. Compounds 1-3, which were available in preparative amounts, enhanced neurite outgrowth from cerebellar granule neurons, dorsal root ganglion neurons, and motoneurons, as well as process formation of Schwann cells in a dose-dependent manner in the low nanomolar range. Migration of cultured astrocytes was inhibited by 1-3, and migration of neurons out of cerebellar explants was enhanced by 1. These observations provide evidence for the neuroactive features of these phenolic compounds in enhancing the beneficial properties of neurons and reducing the inhibitory properties of activated astrocytes in an in vitro setting and encourage the further investigation of these effects in vivo, in animal models of acute and chronic neurological diseases.

  17. UPLC-PDA-QTOFMS-guided isolation of prenylated xanthones and benzoylphloroglucinols from the leaves of Garcinia oblongifolia and their migration-inhibitory activity

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Dan, Zheng; Ding, Zhi-Jie; Lao, Yuan-Zhi; Tan, Hong-Sheng; Xu, Hong-Xi

    2016-10-01

    A UPLC-PDA-QTOFMS-guided isolation strategy was employed to screen and track potentially new compounds from Garcinia oblongifolia. As a result, two new prenylated xanthones, oblongixanthones D and E (1-2), six new prenylated benzoylphloroglucinol derivatives, oblongifolins V-Z (3-7) and oblongifolin AA (8), as well as a known compound oblongifolin L (9), were isolated from the EtOAc-soluble fraction of an acetone extract of the leaves of Garcinia oblongifolia guided by UPLC-PDA-QTOFMS analysis. The structures of the new compounds were elucidated by 1D- and 2D-NMR spectroscopic analysis and mass spectrometry. Experimental and calculated ECD spectra were used to determine the absolute configurations. The results of wound healing and transwell migration assay showed that oblongixanthones D (1), E (2), and oblongifolin L (9) have the ability to inhibit cancer cell migration in lower cytotoxic concentrations. Western blotting results showed that these compounds exhibited an anti-metastasis effect mainly through downregulating RAF protein levels. In addition, 2 and 9 could inhibit phospho-MEK and phospho-ERK at downstream. Moreover, 1, 2, and 9 could inhibit snail protein level, suggesting that they could regulate the EMT pathway.

  18. Developing Hypothetical Inhibition Mechanism of Novel Urea Transporter B Inhibitor

    NASA Astrophysics Data System (ADS)

    Li, Min; Tou, Weng Ieong; Zhou, Hong; Li, Fei; Ren, Huiwen; Chen, Calvin Yu-Chian; Yang, Baoxue

    2014-07-01

    Urea transporter B (UT-B) is a membrane channel protein that specifically transports urea. UT-B null mouse exhibited urea selective urine concentrating ability deficiency, which suggests the potential clinical applications of the UT-B inhibitors as novel diuretics. Primary high-throughput virtual screening (HTVS) of 50000 small-molecular drug-like compounds identified 2319 hit compounds. These 2319 compounds were screened by high-throughput screening using an erythrocyte osmotic lysis assay. Based on the pharmacological data, putative UT-B binding sites were identified by structure-based drug design and validated by ligand-based and QSAR model. Additionally, UT-B structural and functional characteristics under inhibitors treated and untreated conditions were simulated by molecular dynamics (MD). As the result, we identified four classes of compounds with UT-B inhibitory activity and predicted a human UT-B model, based on which computative binding sites were identified and validated. A novel potential mechanism of UT-B inhibitory activity was discovered by comparing UT-B from different species. Results suggest residue PHE198 in rat and mouse UT-B might block the inhibitor migration pathway. Inhibitory mechanisms of UT-B inhibitors and the functions of key residues in UT-B were proposed. The binding site analysis provides a structural basis for lead identification and optimization of UT-B inhibitors.

  19. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, P.-L.; Hsieh, Y.-S.; Wang, C.-J.

    2006-07-01

    Berberine, a compound isolated from medicinal herbs, has been reported with many pharmacological effects related to anti-cancer and anti-inflammation capabilities. In this study, we observed that berberine exerted a dose- and time-dependent inhibitory effect on the motility and invasion ability of a highly metastatic A549 cells under non-cytotoxic concentrations. In cancer cell migration and invasion process, matrix-degrading proteinases are required. A549 cell treated with berberine at various concentrations showed reduced ECM proteinases including matrix metalloproteinase-2 (MMP2) and urokinase-plasminogen activator (u-PA) by gelatin and casein zymography analysis. The inhibitory effect is likely to be at the transcriptional level, since the reductionmore » in the transcripts levels was corresponding to the proteins. Moreover, berberine also exerted its action via regulating tissue inhibitor of metalloproteinase-2 (TIMP-2) and urokinase-plasminogen activator inhibitor (PAI). The upstream mediators of the effect involved c-jun, c-fos and NF-{kappa}B, as evidenced by reduced phosphorylation of the proteins. These findings suggest that berberine possesses an anti-metastatic effect in non-small lung cancer cell and may, therefore, be helpful in clinical treatment.« less

  20. Associations Between Sociodemographic Characteristics, Pre Migratory and Migratory Factors and Psychological Distress Just After Migration and After Resettlement: The Indian Migration Study.

    PubMed

    Agrawal, Sutapa; Taylor, Fiona C; Moser, Kath; Narayanan, Gitanjali; Kinra, Sanjay; Prabhakaran, Dorairaj; Reddy, Kolli Srinath; Davey Smith, George; Ebrahim, Shah

    2015-01-01

    Migration is suspected to increase the risk for psychological distress for those who enter a new cultural environment. We investigated the association between sociodemographic characteristics, premigratory and migratory factors and psychological distress in rural-to-urban migrants just after migration and after resettlement. Data from the cross-sectional sib-pair designed Indian Migration Study (IMS, 2005-2007) were used. The analysis focused on 2112 participants aged ≥18 years from the total IMS sample ( n = 7067) who reported being migrant. Psychological distress was assessed based on the responses of the 7-questions in a five-point scale, where the respondents were asked to report about their feelings now and also asked to recall these feelings when they first migrated. The associations were analyzed using multiple logistic regression models. High prevalence of psychological distress was found just after migration (7.3%; 95% confidence interval [CI]: 6.2-8.4) than after settlement (4.7%; 95% CI: 3.8-5.6). Push factors as a reason behind migration and not being able to adjust in the new environment were the main correlates of psychological distress among both the male and female migrants, just after migration. Rural-urban migration is a major phenomenon in India and given the impact of premigratory and migratory related stressors on mental health, early intervention could prevent the development of psychological distress among the migrants.

  1. Climate change as a driver for future human migration

    NASA Astrophysics Data System (ADS)

    Chen, M.; Ricke, K.; Caldeira, K.

    2016-12-01

    Human migration is driven by a multitude of factors, both socioeconomic and environmental. However, as impacts of anthropogenic climate change emerge and grow, it is widely conjectured that climate change will induce migration of human populations from areas that are adversely affected by climate change to areas that are less adversely or positively affected by climate change. Both low- and high-frequency climate changes have been empirically linked to migration in areas across the globe, but there has been little global-scale quantitative analysis projecting the scale and geography of climate-motivated migration. Considering temperature and precipitation in isolation from all other factors, here we project climate-driven impacts on the areal-density of human population. From this, we infer potential destinations and origins for the climate-motivated migration. Our results indicate that tropical and sub-tropical countries are the largest likely sources of migrants, with India being the country with the greatest number of potential climate emigrants. Global warming has the potential to motivate hundreds of millions of people to migrate in the coming decades, largely from warm tropical and subtropical countries to cooler temperate countries. Migration decisions will depend on many factors beyond climate; nevertheless our work establishes a foundation for quantifying future climate-motivated migration that can act as a starting point of more comprehensive assessments. The large number of potential climate migrants indicated by our analyses provides additional incentive to reduce greenhouse gas emissions, take adaptive measures, and carefully consider migration policy.

  2. Associations Between Sociodemographic Characteristics, Pre Migratory and Migratory Factors and Psychological Distress Just After Migration and After Resettlement: The Indian Migration Study

    PubMed Central

    Agrawal, Sutapa; Taylor, Fiona C; Moser, Kath; Narayanan, Gitanjali; Kinra, Sanjay; Prabhakaran, Dorairaj; Reddy, Kolli Srinath; Davey Smith, George; Ebrahim, Shah

    2017-01-01

    Background/Objectives Migration is suspected to increase the risk for psychological distress for those who enter a new cultural environment. We investigated the association between sociodemographic characteristics, premigratory and migratory factors and psychological distress in rural-to-urban migrants just after migration and after resettlement. Methods Data from the cross-sectional sib-pair designed Indian Migration Study (IMS, 2005–2007) were used. The analysis focused on 2112 participants aged ≥18 years from the total IMS sample (n = 7067) who reported being migrant. Psychological distress was assessed based on the responses of the 7-questions in a five-point scale, where the respondents were asked to report about their feelings now and also asked to recall these feelings when they first migrated. The associations were analyzed using multiple logistic regression models. Results High prevalence of psychological distress was found just after migration (7.3%; 95% confidence interval [CI]: 6.2–8.4) than after settlement (4.7%; 95% CI: 3.8–5.6). Push factors as a reason behind migration and not being able to adjust in the new environment were the main correlates of psychological distress among both the male and female migrants, just after migration. Conclusions Rural-urban migration is a major phenomenon in India and given the impact of premigratory and migratory related stressors on mental health, early intervention could prevent the development of psychological distress among the migrants. PMID:28856341

  3. The role of body size versus growth on the decision to migrate: a case study with Salmo trutta

    NASA Astrophysics Data System (ADS)

    Acolas, M. L.; Labonne, J.; Baglinière, J. L.; Roussel, J. M.

    2012-01-01

    In a population exhibiting partial migration (i.e. migration and residency tactics occur in the same population), the mechanisms underlying the tactical choice are still unclear. Empirical studies have highlighted a variety of factors that could influence the coexistence of resident and migratory individuals, with growth and body size considered to be key factors in the decision to migrate. Most studies suffer from at least one of the two following caveats: (1) survival and capture probabilities are not taken into account in the data analysis, and (2) body size is often used as a proxy for individual growth. We performed a capture-mark-recapture experiment to study partial migration among juvenile brown trout Salmo trutta at the end of their first year, when a portion of the population emigrate from the natal stream while others choose residency tactic. Bayesian multistate capture-recapture models accounting for survival and recaptures probabilities were used to investigate the relative role of body size and individual growth on survival and migration probabilities. Our results show that, despite an apparent effect of both size and growth on migration, growth is the better integrative parameter and acts directly on migration probability whereas body size acts more strongly on survival. Consequently, we recommend caution if size is used as a proxy for growth when studying the factors that drive partial migration in juvenile salmonid species.

  4. Rho GTPases and Regulation of Cell Migration and Polarization in Human Corneal Epithelial Cells

    PubMed Central

    Hou, Aihua; Toh, Li Xian; Gan, Kah Hui; Lee, Khee Jin Ryan; Manser, Edward; Tong, Louis

    2013-01-01

    Purpose Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. Methods Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. Results Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. Conclusion Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells. PMID:24130842

  5. CD74 in Kidney Disease

    PubMed Central

    Valiño-Rivas, Lara; Baeza-Bermejillo, Ciro; Gonzalez-Lafuente, Laura; Sanz, Ana Belen; Ortiz, Alberto; Sanchez-Niño, Maria Dolores

    2015-01-01

    CD74 (invariant MHC class II) regulates protein trafficking and is a receptor for macrophage migration inhibitory factor (MIF) and d-dopachrome tautomerase (d-DT/MIF-2). CD74 expression is increased in tubular cells and/or glomerular podocytes and parietal cells in human metabolic nephropathies, polycystic kidney disease, graft rejection and kidney cancer and in experimental diabetic nephropathy and glomerulonephritis. Stressors like abnormal metabolite (glucose, lyso-Gb3) levels and inflammatory cytokines increase kidney cell CD74. MIF activates CD74 to increase inflammatory cytokines in podocytes and tubular cells and proliferation in glomerular parietal epithelial cells and cyst cells. MIF overexpression promotes while MIF targeting protects from experimental glomerular injury and kidney cysts, and interference with MIF/CD74 signaling or CD74 deficiency protected from crescentic glomerulonephritis. However, CD74 may protect from interstitial kidney fibrosis. Furthermore, CD74 expression by stressed kidney cells raises questions about the kidney safety of cancer therapy strategies delivering lethal immunoconjugates to CD74-expressing cells. Thus, understanding CD74 biology in kidney cells is relevant for kidney therapeutics. PMID:26441987

  6. Endogenous Acetylcholine Controls the Severity of Polymicrobial Sepsisassociated Inflammatory Response in Mice.

    PubMed

    Amaral, Flávio Almeida; Fagundes, Caio Tavares; Miranda, Aline Silva; Costa, Vivian Vasconceios; Resende, Livia; Gloria de Souza, Danielle da; Prado, Vania Ferreira; Teixeira, Mauro Martins; Maximo Prado, Marco Antonio; Teixeira, Antonio Lucio

    2016-01-01

    Acetylcholine (ACh) is the main mediator associated with the anti-inflammatory cholinergic pathway. ACh plays an inhibitory role in several inflammatory conditions. Sepsis is a severe clinical syndrome characterized by bacterial dissemination and overproduction of inflammatory mediators. The aim of the current study was to investigate the participation of endogenous ACh in the modulation of inflammatory response induced by a model of polymicrobial sepsis. Wild type (WT) and vesicular acetylcholine transporter knockdown (VAChT(KD)) mice were exposed to cecal ligation and perforation- induced sepsis. Levels of Tumor Necrosis Factor Alpha (TNF-α) and bacterial growth in peritoneal cavity and serum, and neutrophil recruitment into peritoneal cavity were assessed. The concentration of TNF-α in both compartments was higher in VAChT(KD) in comparison with WT mice. VAChT(KD) mice presented elevated burden of bacteria in peritoneum and blood, and impairment of neutrophil migration to peritoneal cavity. This phenotype was reversed by treatment with nicotine salt. These findings suggest that endogenous ACh plays a major role in the control of sepsis-associated inflammatory response.

  7. Functional Motifs Responsible for Human Metapneumovirus M2-2-mediated Innate Immune Evasion

    PubMed Central

    Chen, Yu; Deng, Xiaoling; Deng, Junfang; Zhou, Jiehua; Ren, Yuping; Liu, Shengxuan; Prusak, Deborah J.; Wood, Thomas G.; Bao, Xiaoyong

    2016-01-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs. PMID:27743962

  8. Functional motifs responsible for human metapneumovirus M2-2-mediated innate immune evasion.

    PubMed

    Chen, Yu; Deng, Xiaoling; Deng, Junfang; Zhou, Jiehua; Ren, Yuping; Liu, Shengxuan; Prusak, Deborah J; Wood, Thomas G; Bao, Xiaoyong

    2016-12-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Migration to the Maya Biosphere Reserve, Guatemala: Why place matters.

    PubMed

    Carr, David L

    2008-01-01

    Virtually all migration research examines international migration or urbanization. Yet understudied rural migrants are of critical concern for environmental conservation and rural sustainable development. Despite the fact that a relatively small number of all migrants settle remote rural frontiers, these are the agents responsible for perhaps most of the tropical deforestation on the planet. Further, rural migrants are among the most destitute people worldwide in terms of economic and human development. While a host of research has investigated deforestation resulting from frontier migration, and a modest literature has emerged on frontier development, this article explores the necessary antecedent to tropical deforestation and poverty along agricultural frontiers: out-migration from origin areas. The data come from a 2000 survey with community leaders and key informants in 16 municipios of migrant origin to the Maya Biosphere Reserve (MBR), Petén, Guatemala. A common denominator among communities of migration origin to the Petén frontier was unequal resource access, usually land. Nevertheless, the factors driving resource scarcity were widely variable. Land degradation, land consolidation, and population growth prevailed in some communities but not in others. Despite similar exposure to community and regional level push factors, most people in the sampled communities did not out-migrate, suggesting that any one or combination of factors is not necessarily sufficient for out-migration.

  10. Migration to the Maya Biosphere Reserve, Guatemala: Why place matters

    PubMed Central

    Carr, David L.

    2009-01-01

    Virtually all migration research examines international migration or urbanization. Yet understudied rural migrants are of critical concern for environmental conservation and rural sustainable development. Despite the fact that a relatively small number of all migrants settle remote rural frontiers, these are the agents responsible for perhaps most of the tropical deforestation on the planet. Further, rural migrants are among the most destitute people worldwide in terms of economic and human development. While a host of research has investigated deforestation resulting from frontier migration, and a modest literature has emerged on frontier development, this article explores the necessary antecedent to tropical deforestation and poverty along agricultural frontiers: out-migration from origin areas. The data come from a 2000 survey with community leaders and key informants in 16 municipios of migrant origin to the Maya Biosphere Reserve (MBR), Petén, Guatemala. A common denominator among communities of migration origin to the Petén frontier was unequal resource access, usually land. Nevertheless, the factors driving resource scarcity were widely variable. Land degradation, land consolidation, and population growth prevailed in some communities but not in others. Despite similar exposure to community and regional level push factors, most people in the sampled communities did not out-migrate, suggesting that any one or combination of factors is not necessarily sufficient for out-migration. PMID:19657470

  11. Hemorrhage and blood loss-induced anemia associated with an acquired coagulation factor VIII inhibitor in a Thoroughbred mare.

    PubMed

    Winfield, Laramie S; Brooks, Marjory B

    2014-03-15

    A 23-year-old Thoroughbred mare was evaluated because of a coagulopathy causing hemoperitoneum, hematomas, and signs of blood loss-induced anemia. The mare had tachycardia, pallor, hypoperfusion, and a large mass in the right flank. The mass was further characterized ultrasonographically as an extensive hematoma in the body wall with associated hemoabdomen. Coagulation testing revealed persistent, specific prolongation of the activated partial thromboplastin time (> 100 seconds; reference interval, 24 to 44 seconds) attributable to severe factor VIII deficiency (12%; reference interval, 50% to 200%). On the basis of the horse's age, lack of previous signs of a bleeding diathesis, and subsequent quantification of plasma factor VIII inhibitory activity (Bethesda assay titer, 2.7 Bethesda units/mL), acquired hemophilia A was diagnosed. The medical history did not reveal risk factors or underlying diseases; thus, the development of inhibitory antibodies against factor VIII was considered to be idiopathic. The mare was treated with 2 transfusions of fresh whole blood and fresh-frozen plasma. Immunosuppressive treatment consisting of dexamethasone and azathioprine was initiated. Factor VIII deficiency and signs of coagulopathy resolved, and the inhibitory antibody titer decreased. The mare remained healthy with no relapse for at least 1 year after treatment. Horses may develop inhibitory antibodies against factor VIII that cause acquired hemophilia A. A treatment strategy combining transfusions of whole blood and fresh-frozen plasma and administration of immunosuppressive agents was effective and induced sustained remission for at least 1 year in the mare described here.

  12. Celastrol nanomicelles attenuate cytokine secretion in macrophages and inhibit macrophage-induced corneal neovascularization in rats.

    PubMed

    Li, Zhanrong; Li, Jingguo; Zhu, Lei; Zhang, Ying; Zhang, Junjie; Yao, Lin; Liang, Dan; Wang, Liya

    The aim of the present study was to investigate the inhibitory effects of celastrol-loaded nanomicelles (CNMs) on activated macrophage-induced corneal neovascularization (CNV) in rats and cytokine secretion in macrophages. Using an angiogenesis assay in vitro, we detected the effects of CNMs on human umbilical vein endothelial cell (HUVEC) migration and invasion. In addition, the expression levels of cytokines secreted from hypoxia-induced macrophages were assessed through cytokine array analysis. The expression of hypoxia-inducible factors-1α (HIF-1α), nuclear factor-kappa B p65 (NF-κB p65), phospho-nuclear factor-kappa B p65 (phospho-NF-κB p65), p38 mitogen-activated protein kinase (p38 MAPK), phospho-p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2), and phospho-ERK1/2 was analyzed by western blotting. Activated macrophages were elicited through mineral oil lumbar injection, labeled with 1,19-dioctadecyl-3-3-39,39-tetramethylindocarbocyanine (DiI) and implanted into the corneal micro-pocket to induce CNV and to assess the antiangiogenic effect in rats. CNV was morphometrically analyzed using ImageJ software. Histopathological features were evaluated by immunofluorescence immunostaining for vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) on day 2 after surgery. In the present study, the results indicated that CNMs significantly inhibited the migration and invasion of HUVECs; remarkably attenuated the expression of VEGF, tumor necrosis factor-α, interleukin-1α, monocyte chemoattractant protein 1, cytokine-induced neutrophil chemoattractant 3, and MMP-9 protein; and downregulated ERK1/2, p38 MAPK, NF-κB activation, and HIF-1α expression in macrophages. The peritoneal cells elicited using mineral oil were highly purified macrophages, and the length and area of CNV were significantly decreased in the CNMs group compared with the control group. There was a significant reduction in the expression of VEGF and MMP-9 in activated macrophages and corneal tissue after pretreatment with CNMs in this model. In conclusion, CNMs potently suppressed macrophage-induced CNV via the inhibition of VEGF and MMP-9 expression. This effect might be mediated through attenuating macrophages via HIF-1α, MAPK, and NF-κB signaling pathways.

  13. Rural-to-Urban Migration, Strain, and Juvenile Delinquency: A Study of Eighth-Grade Students in Guangzhou, China.

    PubMed

    Lo, Celia C; Cheng, Tyrone C; Bohm, Maggie; Zhong, Hua

    2018-02-01

    This examination of minor and serious delinquency among eighth graders in a large southern Chinese city, Guangzhou, also compared groups of these students, observing differences between the delinquency of migrants and that of urban natives. Data used were originally collected for the study "Stuck in the City: Migration and Delinquency Among Migrant Adolescents in Guangzhou." The present study asked whether and how various sources of strain and social control factors explained students' delinquency, questioning how meaningfully migration status moderated several of the observed delinquency relationships. Of students in the sample, 741 reported being natives of Guangzhou, and 497 reported migrating to Guangzhou from a rural area. The study conceptualized internal migration as a strain factor leading to delinquency, but the analyses did not suggest direct association between internal migration and delinquency. Results generally supported Agnew's theory, and, what's more, they tended to confirm that migration status moderated juvenile delinquency.

  14. Do Daphnia use metalimnetic organic matter in a north temperate lake? An analysis of vertical migration

    USGS Publications Warehouse

    Brosseau, Chase Julian; Cline, Timothy J.; Cole, Jonathan J.; Hodgson, James R.; Pace, Michael L.; Weidel, Brian C.

    2012-01-01

    Diel vertical migration of zooplankton is influenced by a variety of factors including predation, food, and temperature. Research has recently shifted from a focus on factors influencing migration to how migration affects nutrient cycling and habitat coupling. Here we evaluate the potential for Daphnia migrations to incorporate metalimnetic productivity in a well-studied northern Wisconsin lake. We use prior studies conducted between 1985 and 1990 and current diel migration data (2008) to compare day and night Daphnia vertical distributions with the depth of the metalimnion (between the thermocline and 1% light depth). Daphnia migrate from a daytime mean residence depth of between about 1.7 and 2.5 m to a nighttime mean residence depth of between 0 and 2.0 m. These migrations are consistent between the prior period and current measurements. Daytime residence depths of Daphnia are rarely deep enough to reach the metalimnion; hence, metalimnetic primary production is unlikely to be an important resource for Daphnia in this system.

  15. The Relationship Between Post-Migration Stress and Psychological Disorders in Refugees and Asylum Seekers.

    PubMed

    Li, Susan S Y; Liddell, Belinda J; Nickerson, Angela

    2016-09-01

    Refugees demonstrate high rates of post-traumatic stress disorder (PTSD) and other psychological disorders. The recent increase in forcible displacement internationally necessitates the understanding of factors associated with refugee mental health. While pre-migration trauma is recognized as a key predictor of mental health outcomes in refugees and asylum seekers, research has increasingly focused on the psychological effects of post-migration stressors in the settlement environment. This article reviews the research evidence linking post-migration factors and mental health outcomes in refugees and asylum seekers. Findings indicate that socioeconomic, social, and interpersonal factors, as well as factors relating to the asylum process and immigration policy affect the psychological functioning of refugees. Limitations of the existing literature and future directions for research are discussed, along with implications for treatment and policy.

  16. Migrant decision-making in a frontier landscape

    NASA Astrophysics Data System (ADS)

    Salerno, Jonathan

    2016-04-01

    Across the tropics, rural farmers and livestock keepers use mobility as an adaptive livelihood strategy. Continued migration to and within frontier areas is widely viewed as a driver of environmental decline and biodiversity loss. Recent scholarship advances our understanding of migration decision-making in the context of changing climate and environments, and in doing so it highlights the variation in migration responses to primarily economic and environmental factors. Building on these insights, this letter investigates past and future migration decisions in a frontier landscape of Tanzania, East Africa. Combining field observations and household data within a multilevel modeling framework, the letter analyzes the explicit importance of social factors relative to economic and environmental factors in driving decisions to migrate or remain. Results indeed suggest that local community ties and non-local social networks drive both immobility and anticipated migration, respectively. In addition, positive interactions with local protected natural resource areas promote longer-term residence. Findings shed new light on how frontier areas transition to human dominated landscapes. This highlights critical links between migration behavior and the conservation of biodiversity and management of natural resources, as well as how migrants evolve to become integrated into communities.

  17. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and {beta}4 integrin function in MDA-MB-231 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.-J.; Chen, W.-K.; Wang, C.-J.

    2008-01-15

    Hepatocyte growth factor (HGF) and its receptor, Met, known to control invasive growth program have recently been shown to play crucial roles in the survival of breast cancer patients. The diet-derived flavonoids have been reported to possess anti-invasion properties; however, knowledge on the pharmacological and molecular mechanisms in suppressing HGF/Met-mediated tumor invasion and metastasis is poorly understood. In our preliminary study, we use HGF as an invasive inducer to investigate the effect of flavonoids including apigenin, naringenin, genistein and kaempferol on HGF-dependent invasive growth of MDA-MB-231 human breast cancer cells. Results show that apigenin presents the most potent anti-migration andmore » anti-invasion properties by Boyden chamber assay. Furthermore, apigenin represses the HGF-induced cell motility and scattering and inhibits the HGF-promoted cell migration and invasion in a dose-dependent manner. The effect of apigenin on HGF-induced signaling activation involving invasive growth was evaluated by immunoblotting analysis, it shows that apigenin blocks the HGF-induced Akt phosphorylation but not Met, ERK, and JNK phosphorylation. In addition to MDA-MB-231 cells, apigenin exhibits inhibitory effect on HGF-induced Akt phosphorylation in hepatoma SK-Hep1 cells and lung carcinoma A549 cells. By indirect immunofluorescence microscopy assay, apigenin inhibits the HGF-induced clustering of {beta}4 integrin at actin-rich adhesive site and lamellipodia through PI3K-dependent manner. Treatment of apigenin inhibited HGF-stimulated integrin {beta}4 function including cell-matrix adhesion and cell-endothelial cells adhesion in MDA-MB-231 cells. By Akt-siRNA transfection analysis, it confirmed that apigenin inhibited HGF-promoted invasive growth involving blocking PI3K/Akt pathway. Finally, we evaluated the effect of apigenin on HGF-promoted metastasis by lung colonization of tumor cells in nude mice and organ metastasis of tumor cells in chick embryo. By histological and gross examination of mouse lung and real-time PCR analysis of human alu in host tissues, it showed that apigenin, wortmannin, as well as anti-{beta}4 antibody all inhibit HGF-promoted metastasis. These data support the inhibitory effect of apigenin on HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and integrin {beta}4 function.« less

  18. Structure-Based Virtual Screening of Protein Tyrosine Phosphatase Inhibitors: Significance, Challenges, and Solutions.

    PubMed

    Reddy, Rallabandi Harikrishna; Kim, Hackyoung; Cha, Seungbin; Lee, Bongsoo; Kim, Young Jun

    2017-05-28

    Phosphorylation, a critical mechanism in biological systems, is estimated to be indispensable for about 30% of key biological activities, such as cell cycle progression, migration, and division. It is synergistically balanced by kinases and phosphatases, and any deviation from this balance leads to disease conditions. Pathway or biological activity-based abnormalities in phosphorylation and the type of involved phosphatase influence the outcome, and cause diverse diseases ranging from diabetes, rheumatoid arthritis, and numerous cancers. Protein tyrosine phosphatases (PTPs) are of prime importance in the process of dephosphorylation and catalyze several biological functions. Abnormal PTP activities are reported to result in several human diseases. Consequently, there is an increased demand for potential PTP inhibitory small molecules. Several strategies in structure-based drug designing techniques for potential inhibitory small molecules of PTPs have been explored along with traditional drug designing methods in order to overcome the hurdles in PTP inhibitor discovery. In this review, we discuss druggable PTPs and structure-based virtual screening efforts for successful PTP inhibitor design.

  19. Bird species migration ratio in East Asia, Australia, and surrounding islands.

    PubMed

    Kuo, Yiliang; Lin, Da-Li; Chuang, Fu-Man; Lee, Pei-Fen; Ding, Tzung-Su

    2013-08-01

    Bird migration and its relationship with the contemporary environment have attracted long-term discussion. We calculated the avian migration ratio (the proportion of breeding species that migrate) in the areas from 70°E to 180°E and examined its relationship with the annual ranges of ambient temperature, primary productivity (estimated by the Enhanced Vegetation Index), and precipitation, along with island isolation and elevational range. The avian migration ratio increased with increasing latitude in general but varied greatly between the two hemispheres. Additionally, it showed minimal differences between continents and islands. Our analyses revealed that the seasonality of ambient temperature, which represents the energy expenditure of birds, is the dominant factor in determining bird species migration. Seasonality in primary productivity and other environmental factors play an indirect or limited role in bird species migration. The lower avian migration ratio in the Southern Hemisphere can be attributed to its paleogeographical isolation, stable paleoclimate, and warm contemporary environment. Under current trends of global warming, our findings should lead to further studies of the impact of warming on bird migration.

  20. Bird species migration ratio in East Asia, Australia, and surrounding islands

    NASA Astrophysics Data System (ADS)

    Kuo, Yiliang; Lin, Da-Li; Chuang, Fu-Man; Lee, Pei-Fen; Ding, Tzung-Su

    2013-08-01

    Bird migration and its relationship with the contemporary environment have attracted long-term discussion. We calculated the avian migration ratio (the proportion of breeding species that migrate) in the areas from 70°E to 180°E and examined its relationship with the annual ranges of ambient temperature, primary productivity (estimated by the Enhanced Vegetation Index), and precipitation, along with island isolation and elevational range. The avian migration ratio increased with increasing latitude in general but varied greatly between the two hemispheres. Additionally, it showed minimal differences between continents and islands. Our analyses revealed that the seasonality of ambient temperature, which represents the energy expenditure of birds, is the dominant factor in determining bird species migration. Seasonality in primary productivity and other environmental factors play an indirect or limited role in bird species migration. The lower avian migration ratio in the Southern Hemisphere can be attributed to its paleogeographical isolation, stable paleoclimate, and warm contemporary environment. Under current trends of global warming, our findings should lead to further studies of the impact of warming on bird migration.

  1. Cathepsin B Expression and the Correlation with Clinical Aspects of Oral Squamous Cell Carcinoma

    PubMed Central

    Yang, Wei-En; Ho, Chuan-Chen; Yang, Shun-Fa; Lin, Shu-Hui; Yeh, Kun-Tu; Lin, Chiao-Wen; Chen, Mu-Kuan

    2016-01-01

    Background Cathepsin B (CTSB), a member of the cathepsin family, is a cysteine protease that is widely distributed in the lysosomes of cells in various tissues. It is overexpressed in several human cancers and may be related to tumorigenesis. The main purpose of this study was to analyze CTSB expression in oral squamous cell carcinoma (OSCC) and its correlation with patient prognosis. Methodology/Principal Findings Tissue microarrays were used to detect CTSB expression in 280 patients and to examine the association between CTSB expression and clinicopathological parameters. In addition, the metastatic effects of the CTSB knockdown on two oral cancer cell lines were investigated by transwell migration assay. Cytoplasmic CTSB expression was detected in 34.6% (97/280) of patients. CTSB expression was correlated with positive lymph node metastasis (p = 0.007) and higher tumor grade (p = 0.008) but not with tumor size and distant metastasis. In addition, multivariate analysis using a Cox proportional hazards model revealed a higher hazard ratio, demonstrating that CTSB expression was an independent unfavorable prognostic factor in buccal mucosa carcinoma patients. Furthermore, the Kaplan–Meier curve revealed that buccal mucosa OSCC patients with positive CTSB expression had significantly shorter overall survival. Moreover, treatment with the CTSB siRNA exerted an inhibitory effect on migration in OC2 and CAL27 oral cancer cells. Conclusions We conclude that CTSB expression may be useful for determining OSCC prognosis, particularly for patients with lymph node metastasis, and may function as a biomarker of the survival of OSCC patients in Taiwan. PMID:27031837

  2. Risk factors for proximal migration of biliary tube stents

    PubMed Central

    Kawaguchi, Yoshiaki; Ogawa, Masami; Kawashima, Yohei; Mizukami, Hajime; Maruno, Atsuko; Ito, Hiroyuki; Mine, Tetsuya

    2014-01-01

    AIM: To analyze the risk factors for biliary stent migration in patients with benign and malignant strictures. METHODS: Endoscopic stent placement was performed in 396 patients with bile duct stenosis, at our institution, between June 2003 and March 2009. The indications for bile duct stent implantation included common bile duct stone in 190 patients, malignant lesions in 112, chronic pancreatitis in 62, autoimmune pancreatitis in 14, trauma in eight, surgical complications in six, and primary sclerosing cholangitis (PSC) in four. We retrospectively examined the frequency of stent migration, and analyzed the patient factors (disease, whether endoscopic sphincterotomy was performed, location of bile duct stenosis and diameter of the bile duct) and stent characteristics (duration of stent placement, stent type, diameter and length). Moreover, we investigated retrieval methods for migrated stents and their associated success rates. RESULTS: The frequency of tube stent migration in the total patient population was 3.5%. The cases in which tube stent migration occurred included those with common bile duct stones (3/190; 1.6%), malignant lesions (2/112; 1.8%), chronic pancreatitis (4/62; 6.5%), autoimmune pancreatitis (2/14; 14.3%), trauma (1/8; 12.5%), surgical complications (2/6; 33.3%), and PSC (0/4; 0%). The potential risk factors for migration included bile duct stenosis secondary to benign disease such as chronic pancreatitis and autoimmune pancreatitis (P = 0.030); stenosis of the lower bile duct (P = 0.031); bile duct diameter > 10 mm (P = 0.023); duration of stent placement > 1 mo (P = 0.007); use of straight-type stents (P < 0.001); and 10-Fr sized stents (P < 0.001). Retrieval of the migrated stents was successful in all cases. The grasping technique, using a basket or snare, was effective for pig-tailed or thin and straight stents, whereas the guidewire cannulation technique was effective for thick and straight stents. CONCLUSION: Migration of tube stents within the bile duct is rare but possible, and it is important to determine the risk factors involved in stent migration. PMID:24574806

  3. O-Linked β-N-Acetylglucosamine Modification of A20 Enhances the Inhibition of NF-κB (Nuclear Factor-κB) Activation and Elicits Vascular Protection After Acute Endoluminal Arterial Injury.

    PubMed

    Yao, Dan; Xu, Lijuan; Xu, Oufan; Li, Rujun; Chen, Mingxing; Shen, Hui; Zhu, Huajiang; Zhang, Fengyi; Yao, Deshang; Chen, Yiu-Fai; Oparil, Suzanne; Zhang, Zhengang; Gong, Kaizheng

    2018-06-01

    Recently, we have demonstrated that acute glucosamine-induced augmentation of protein O-linked β-N-acetylglucosamine (O-GlcNAc) levels inhibits inflammation in isolated vascular smooth muscle cells and neointimal formation in a rat model of carotid injury by interfering with NF-κB (nuclear factor-κB) signaling. However, the specific molecular target for O-GlcNAcylation that is responsible for glucosamine-induced vascular protection remains unclear. In this study, we test the hypothesis that increased A20 (also known as TNFAIP3 [tumor necrosis factor α-induced protein 3]) O-GlcNAcylation is required for glucosamine-mediated inhibition of inflammation and vascular protection. In cultured rat vascular smooth muscle cells, both glucosamine and the selective O-linked N-acetylglucosaminidase inhibitor thiamet G significantly increased A20 O-GlcNAcylation. Thiamet G treatment did not increase A20 protein expression but did significantly enhance binding to TAX1BP1 (Tax1-binding protein 1), a key regulatory protein for A20 activity. Adenovirus-mediated A20 overexpression further enhanced the effects of thiamet G on prevention of TNF-α (tumor necrosis factor-α)-induced IκB (inhibitor of κB) degradation, p65 phosphorylation, and increases in DNA-binding activity. A20 overexpression enhanced the inhibitory effects of thiamet G on TNF-α-induced proinflammatory cytokine expression and vascular smooth muscle cell migration and proliferation, whereas silencing endogenous A20 by transfection of specific A20 shRNA significantly attenuated these inhibitory effects. In balloon-injured rat carotid arteries, glucosamine treatment markedly inhibited neointimal formation and p65 activation compared with vehicle treatment. Adenoviral delivery of A20 shRNA to the injured arteries dramatically reduced balloon injury-induced A20 expression and inflammatory response compared with scramble shRNA and completely abolished the vascular protection of glucosamine. These results suggest that O-GlcNAcylation of A20 plays a key role in the negative regulation of NF-κB signaling cascades in TNF-α-treated vascular smooth muscle cells in culture and in acutely injured arteries, thus protecting against inflammation-induced vascular injury. © 2018 American Heart Association, Inc.

  4. Factors Influencing the Geographic Migration of New Entrants to the Labor Force from Area Vocational-Technical Institutes in Southwest Minnesota.

    ERIC Educational Resources Information Center

    Gutheil, Barbara M.; Copa, George H.

    Because of concern that too many graduates of seven postsecondary vocational institutes in southwestern Minnesota were migrating from the area to seek employment elsewhere, a study was conducted to determine who migrates, the reasons for migration, and the number of graduates migrating. Migrants were defined as vocational institute graduates who…

  5. Epithelial-mesenchymal transition transcription factors control pluripotent adult stem cell migration in vivo in planarians.

    PubMed

    Abnave, Prasad; Aboukhatwa, Ellen; Kosaka, Nobuyoshi; Thompson, James; Hill, Mark A; Aboobaker, A Aziz

    2017-10-01

    Migration of stem cells underpins the physiology of metazoan animals. For tissues to be maintained, stem cells and their progeny must migrate and differentiate in the correct positions. This need is even more acute after tissue damage by wounding or pathogenic infection. Inappropriate migration also underpins metastasis. Despite this, few mechanistic studies address stem cell migration during repair or homeostasis in adult tissues. Here, we present a shielded X-ray irradiation assay that allows us to follow stem cell migration in planarians. We demonstrate the use of this system to study the molecular control of stem cell migration and show that snail-1 , snail-2 and zeb-1 EMT transcription factor homologs are necessary for cell migration to wound sites and for the establishment of migratory cell morphology. We also observed that stem cells undergo homeostatic migration to anterior regions that lack local stem cells, in the absence of injury, maintaining tissue homeostasis. This requires the polarity determinant notum Our work establishes planarians as a suitable model for further in-depth study of the processes controlling stem cell migration in vivo . © 2017. Published by The Company of Biologists Ltd.

  6. Work ability of Chinese migrant workers: the influence of migration characteristics.

    PubMed

    Han, Lu; Shi, Leiyu; Lu, Liming; Ling, Li

    2014-04-13

    Migrant workers have become a vital labor supply to China's economy. Their migration process and work conditions may influence their health and work ability. The work ability of migrant workers in China and the influence of the migration process on work ability have not been explored extensively in previous studies. The objective of this study is to evaluate the association of migration characteristics and work-related factors with work ability among migrant workers in the Pearl River Delta. In this cross-sectional survey, the study population consisted of 907 migrant workers from ten factories in the Pearl River Delta who were exposed to organic solvents during work. The primary dependent variable of the study was work ability, measured by the Work Ability Index (WAI). The independent variables were individual characteristics, migration characteristics, and work-related factors. Logistic regression models were used to determine the influence of different factors on work ability and three dimensions of WAI. The result shows that among migration characteristics, social support was significantly associated with all three dimensions of the work ability index. Permanent migration intention and longer length of migration were negatively associated with the mental resource dimension of WAI. WAI was also influenced by individual and work-related factors. The findings of this study suggest that expanding migrants' social networks and social support systems in their work place or living community, (i.e. expanding the functions of labor unions) would be an effective way to improve migrant workers' work ability. Improving of migrant workers' physical and psychosocial related work environments would also increase their work ability.

  7. Surgeon migration between developing countries and the United States: train, retain, and gain from brain drain.

    PubMed

    Hagander, Lars E; Hughes, Christopher D; Nash, Katherine; Ganjawalla, Karan; Linden, Allison; Martins, Yolanda; Casey, Kathleen M; Meara, John G

    2013-01-01

    The critical shortage of surgeons in many low- and middle-income countries (LMICs) prevents adequate responses to surgical needs, but the factors that affect surgeon migration have remained incompletely understood. The goal of this study was to examine the importance of personal, professional, and infrastructural factors on surgeon migration from LMICs to the United States. We hypothesized that the main drivers of surgeon migration can be addressed by providing adequate domestic surgical infrastructure, surgical training programs, and viable surgical career paths. We conducted an internet-based nationwide survey of surgeons living in the US who originated from LMICs. 66 surgeons completed the survey. The most influential factors for primary migration were related to professional reasons (p ≤ 0.001). Nonprofessional factors, such as concern for remuneration, family, and security were significantly less important for the initial migration decisions, but adopted a more substantial role in deciding whether or not to return after training in the United States. Migration to the United States was initially considered temporary (44 %), and a majority of the surveyed surgeons have returned to their source countries in some capacity (56 %), often on multiple occasions (80 %), to contribute to clinical work, research, and education. This study suggests that surgically oriented medical graduates from LMICs migrate primarily for professional reasons. Initiatives to improve specialist education and surgical infrastructure in LMICs have the potential to promote retention of the surgical workforce. There may be formal ways for LMICs to gain from the international pool of relocated surgeons.

  8. Biliary stent migration: a brief review of potential complications and possible etiological factors.

    PubMed

    Cheruvu, Srinivas; Kennedy, Robert; Moshenyat, Yitzak; Momen, Mojdeh; Krishnaiah, Mahesh; Anand, Sury

    2014-01-01

    Biliary endoprostheses continue to demonstrate their utility and simplicity in daily therapeutic endoscopy. However, the transient nature of these foreign bodies also underscores their potential detrimental effects even after successful deployment. Stent related factors, such as type, length and caliber offer potential avenues to minimize the risk of migration. However, a patient related factor such as the presence of prior abdominal surgeries makes it paramount for endoscopists to ascertain the location of a migrated stent. There is a ripe niche for continued research and development in biodegradable stents.

  9. [Determinants of the rural exodus: the importance of place of origin factors, Chile, 1965-1970].

    PubMed

    Raczynski, D

    1982-07-01

    Trends in rural-urban migration in Chile during the period 1965-1970 are analyzed, with a focus on the impact of the combination of structural factors and socioeconomic processes in rural areas. Factors of population retention and expulsion are examined in terms of agrarian structure, the process of agrarian reform, urbanization of the countryside, and the availability of basic social services. Rural-urban migration rates in the central and southern areas of the country are compared, and migration rates of males and females are examined.

  10. Effects of Polyamidoamine Dendrimers on a 3-D Neurosphere System Using Human Neural Progenitor Cells.

    PubMed

    Zeng, Yang; Kurokawa, Yoshika; Zeng, Qin; Win-Shwe, Tin-Tin; Nansai, Hiroko; Zhang, Zhenya; Sone, Hideko

    2016-07-01

    The practical application of engineered nanomaterials or nanoparticles like polyamidoamine (PAMAM) dendrimers has been promoted in medical devices or industrial uses. The safety of PAMAM dendrimers needs to be assessed when used as a drug carrier to treat brain disease. However, the effects of PAMAM on the human nervous system remain unknown. In this study, human neural progenitor cells cultured as a 3D neurosphere model were used to study the effects of PAMAM dendrimers on the nervous system. Neurospheres were exposed to different G4-PAMAM dendrimers for 72 h at concentrations of 0.3, 1, 3, and 10 μg/ml. The biodistribution was investigated using fluorescence-labeled PAMAM dendrimers, and gene expression was evaluated using microarray analysis followed by pathway and network analysis. Results showed that PAMAM dendrimer nanoparticles can penetrate into neurospheres via superficial cells on them. PAMAM-NH2 but not PAMAM-SC can inhibit neurosphere growth. A reduced number of MAP2-positive cells in flare regions were inhibited after 10 days of differentiation, indicating an inhibitory effect of PAMAM-NH2 on cell proliferation and neuronal migration. A microarray assay showed 32 dendrimer toxicity-related genes, with network analysis showing 3 independent networks of the selected gene targets. Inducible immediate early gene early growth response gene 1 (Egr1), insulin-like growth factor-binding protein 3 (IGFBP3), tissue factor pathway inhibitor (TFPI2), and adrenomedullin (ADM) were the key genes in each network, and the expression of these genes was significantly down regulated. These findings suggest that exposure of neurospheres to PAMAM-NH2 dendrimers affects cell proliferation and migration through pathways regulated by Egr1, IGFBP3, TFPI2, and ADM. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. No Evidence for Inhibitory Deficits or Altered Reward Processing in ADHD: Data From a New Integrated Monetary Incentive Delay Go/No-Go Task.

    PubMed

    Demurie, Ellen; Roeyers, Herbert; Wiersema, Jan R; Sonuga-Barke, Edmund

    2016-04-01

    Cognitive and motivational factors differentially affect individuals with mental health problems such as ADHD. Here we introduce a new task to disentangle the relative contribution of inhibitory control and reward anticipation on task performance in children with ADHD and/or autism spectrum disorders (ASD). Typically developing children, children with ADHD,  ASD, or both disorders worked during separate sessions for monetary or social rewards in go/no-go tasks with varying inhibitory load levels. Participants also completed a monetary temporal discounting (TD) task. As predicted, task performance was sensitive to both the effects of anticipated reward amount and inhibitory load. Reward amount had different effects depending on inhibitory load level. TD correlated with inhibitory control in the ADHD group. The integration of the monetary incentive delay and go/no-go paradigms was successful. Surprisingly, there was no evidence of inhibitory control deficits or altered reward anticipation in the clinical groups. © The Author(s) 2013.

  12. Mental Health of Two-Way Migrants: From Puerto Rico to the United States and Return.

    ERIC Educational Resources Information Center

    Diaz, Joseph O. Prewitt; Draguns, Juris G.

    1990-01-01

    Reviews research on the factors that affect the mental health of Puerto Ricans who migrate to the United States. Three groups are discussed: (1) those who migrate; (2) those who migrate and return; and (3) those who migrate and return more than once. (EVL)

  13. Combination of two insulin-like growth factor-I receptor inhibitory antibodies targeting distinct epitopes leads to an enhanced antitumor response.

    PubMed

    Dong, Jianying; Demarest, Stephen J; Sereno, Arlene; Tamraz, Susan; Langley, Emma; Doern, Adam; Snipas, Tracey; Perron, Keli; Joseph, Ingrid; Glaser, Scott M; Ho, Steffan N; Reff, Mitchell E; Hariharan, Kandasamy

    2010-09-01

    The insulin-like growth factor-I receptor (IGF-IR) is a cell surface receptor tyrosine kinase that mediates cell survival signaling and supports tumor progression in multiple tumor types. We identified a spectrum of inhibitory IGF-IR antibodies with diverse binding epitopes and ligand-blocking properties. By binding distinct inhibitory epitopes, two of these antibodies, BIIB4 and BIIB5, block both IGF-I and IGF-II binding to IGF-IR using competitive and allosteric mechanisms, respectively. Here, we explored the inhibitory effects of combining BIIB4 and BIIB5. In biochemical assays, the combination of BIIB4 and BIIB5 improved both the potency and extent of IGF-I and IGF-II blockade compared with either antibody alone. In tumor cells, the combination of BIIB4 and BIIB5 accelerated IGF-IR downregulation and more efficiently inhibited IGF-IR activation as well as downstream signaling, particularly AKT phosphorylation. In several carcinoma cell lines, the antibody combination more effectively inhibited ligand-driven cell growth than either BIIB4 or BIIB5 alone. Notably, the enhanced tumor growth-inhibitory activity of the BIIB4 and BIIB5 combination was much more pronounced at high ligand concentrations, where the individual antibodies exhibited substantially reduced activity. Compared with single antibodies, the BIIB4 and BIIB5 combination also significantly further enhanced the antitumor activity of the epidermal growth factor receptor inhibitor erlotinib and the mTOR inhibitor rapamycin. Moreover, in osteosarcoma and hepatocellular carcinoma xenograft models, the BIIB4 and BIIB5 combination significantly reduced tumor growth to a greater degree than each single antibody. Taken together, our results suggest that targeting multiple distinct inhibitory epitopes on IGF-IR may be a more effective strategy of affecting the IGF-IR pathway in cancer.

  14. Proximate cues for a short-distance migratory species: An application of survival analysis

    USGS Publications Warehouse

    Meunier, J.; Song, R.; Lutz, R.S.; Andersen, D.E.; Doherty, K.E.; Bruggink, J.G.; Oppelt, E.

    2008-01-01

    Investigation of bird migration has often highlighted the importance of external factors in determining timing of migration However, little distinction has been made between short- and long-distance migrants and between local and flight birds (passage migrants) in describing migration chronology. In addition, measures of food abundance as a proximate factor influencing timing of migration are lacking in studies of migration chronology. To address the relationship between environmental variables and timing of migration we quantified the relative importance of proximate external factors on migration chronology of local American woodcock (Scolopax minor), a short distance migrant, using event-time analysis methods (survival analysis). We captured 1,094 woodcock local to our study sites in Michigan, Minnesota and Wisconsin (USA) during autumn 2002-2004 and documented 786 departure dates for these birds. Photoperiod appeared to provide an initial proximate cue for timing of departure. Moon phase was important in modifying timing of departure, which may serve as a navigational aid in piloting and possibly orientation. Local synoptic weather variables also contributed to timing of departure by changing the rate of departure from our study sites. We found no evidence that food availability influenced timing of woodcock departure. Our results suggest that woodcock use a conservative photoperiod-controlled strategy with proximate modifiers for timing of migration rather than relying on abundance of their primary food, earthworms. Managing harvest pressure on local birds by adjusting season lengths may be an effective management tool with consistent migration patterns from year to year based on photoperiod.

  15. Expression of Toll-like receptors, interleukin 8, macrophage migration inhibitory factor, and osteopontin in tissues from pigs challenged with Salmonella enterica serovar Typhimurium or serovar Choleraesuis.

    PubMed

    Burkey, T E; Skjolaas, K A; Dritz, S S; Minton, J E

    2007-02-15

    Two serovars of Salmonella enterica, namely serovar Typhimurium (ST) and serovar Choleraesuis (SC) account for the vast majority of clinical cases of swine salmonellosis worldwide. These serovars are thought to be transmitted among pigs in production settings mainly through fecal-oral routes. Yet, few studies have evaluated effects of these serovars on expression of innate immune targets when presented to pigs via repeated oral dosing in an attempt to model transmission in production settings. Thus, a primary objective of the current experiments was to evaluate expression of Toll-like receptors (TLR) and selected chemoattractive mediators (interleukin 8, IL8; macrophage migration inhibitory factor, MIF; osteopontin, OPN) in tissues from pigs exposed to ST or SC that had been transformed with kanamycin resistance and green (STG) or red (SCR) fluorescent protein to facilitate isolation from pen fecal samples. In vitro studies confirmed that STG and SCR largely (though not completely) retained their ability to upregulate IL8 and CC chemokine ligand 20 (CCL20) in cultured swine jejunal epithelial cells. Transformed bacteria were then fed to pigs in an in vivo study to determine tissue specific effects on mRNA relative expression. Pigs were fed cookie dough inoculated with bacteria on days 0, 3, 7, and 10 with 10(8)CFU STG (n=8) or SCR (n=8), while control (CTL) pigs (n=8) received dough without bacteria. Animals were sacrificed 14 days from the initial bacterial challenge and samples of tonsil, jejunum, ileum, colon, mesenteric lymph node (MLN), spleen, and liver were removed for subsequent RNA isolation. Expression of mRNA in tissues was determined using real-time quantitative PCR and expressed relative to 18S rRNA. Within CTL pigs, when expressed relative to the content in liver, mRNA for all targets demonstrated substantial tissue effects (P<0.001 for all TLR; MIF, and OPN; P<0.05 for IL8). Feeding STG and SCR resulted in significant (P

  16. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris

    PubMed Central

    Shobrak, Mohammed Y.; Abo-Amer, Aly E.

    2014-01-01

    Emergence and distribution of multi-drug resistant (MDR) bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor). Also, hemolysin production (a virulence factor) was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1–5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration. PMID:25763023

  17. CXCL5 is a Novel Mediator of Prostate Cancer Proliferation and Migration/Invasion

    DTIC Science & Technology

    2008-06-01

    such as Crohn disease , ulcerative colitis, and acute appendicitis, and by the exocrine tissue of the pancreas associated with chronic pancreatitis [9... disease , and may act as a previously unrecognized growth factor that promotes prostate cancer cell proliferation and migration/invasion. The major...proliferative prostatic disease , and may act as a previously unrecognized growth factor that promotes prostate cancer cell proliferation and migration

  18. Internal migration of physicians who graduated in Brazil between 1980 and 2014.

    PubMed

    Scheffer, Mario Cesar; Cassenote, Alex Jones Flores; Guilloux, Aline Gil Alves; Dal Poz, Mario Roberto

    2018-05-02

    The internal migration of physicians from one place to another in the same country can unbalance the supply and distribution of these professionals in national health systems. In addition to economic, social and demographic issues, there are individual and professional factors associated with a physician's decision to migrate. In Brazil, there is an ongoing debate as to whether opening medicine programmes in the interior of the country can induce physicians to stay in these locations. This article examines the migration of physicians in Brazil based on the location of the medical schools from which they graduated. A cross-sectional design based on secondary data of 275,801 physicians registered in the Regional Councils of Medicine (Conselhos Regionais de Medicina-CRMs) who graduated between 1980 and 2014. The evaluated outcome was migration, which was defined as moving away from the state where they completed the medicine programme to another state where they currently work or live. 57.3% of the physicians in the study migrated. The probability of migration ratio was greater in small grouped municipalities and lower in state capitals. 93.4% of the physicians who trained in schools located in cities with less than 100,000 inhabitants migrated. Fewer women (54.2%) migrated than men (60.0%). More than half of the physicians who graduated between 1980 and 2014 are in federative units different from the unit in which they graduated. Individual factors, such as age, gender, time of graduation and specialty, vary between the physicians who did or did not migrate. The probability of migration ratio was greater in small municipalities of the Southeast region and strong in the states of Tocantins, Acre and Santa Catarina. New studies are recommended to deepen understanding of the factors related to the internal migration and non-migration of physicians to improve human resource for health policies.

  19. Changes in gene expression in macrophages infected with Mycobacterium tuberculosis: a combined transcriptomic and proteomic approach

    PubMed Central

    Ragno, Silvia; Romano, Maria; Howell, Steven; Pappin, Darryl J C; Jenner, Peter J; Colston, Michael J

    2001-01-01

    We investigated the changes which occur in gene expression in the human macrophage cell line, THP1, at 1, 6 and 12 hr following infection with Mycobacterium tuberculosis. The analysis was carried out at the transcriptome level, using microarrays consisting of 375 human genes generally thought to be involved in immunoregulation, and at the proteomic level, using two-dimensional gel electrophoresis and mass spectrometry. The analysis of the transcriptome using microarrays revealed that many genes were up-regulated at 6 and 12 hr. Most of these genes encoded proteins involved in cell migration and homing, including the chemokines interleukin (IL)-8, osteopontin, monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), regulated on activation, normal, T-cell expressed and secreted (RANTES), MIP-1β, MIP-3α, myeloid progenitor inhibitory factor-1 (MPIF-1), pulmonary and activation regulated chemokine (PARC), growth regulated gene-β (GRO-β), GRO-γ, MCP-2, I-309, and the T helper 2 (Th2) and eosinophil-attracting chemokine, eotaxin. Other genes involved in cell migration which were up-regulated included the matrix metalloproteinase MMP-9, vascular endothelial growth factor (VEGF) and its receptor Flk-1, the chemokine receptor CCR3, and the cell adhesion molecules vesicular cell adhesion molecule-1 (VCAM-1) and integrin a3. In addition to the chemokine response, genes encoding the proinflammatory cytokines IL-1β (showing a 433-fold induction), IL-2 and tumour necrosis factor-α (TNF-α), were also found to be induced at 6 and/or 12 hr. It was more difficult to detect changes using the proteomic approach. Nevertheless, IL-1β was again shown to be strongly up-regulated. The enzyme manganese superoxide dismutase was also found to be strongly up-regulated; this enzyme was found to be macrophage-, rather than M. tuberculosis, derived. The heat-shock protein hsp27 was found to be down-regulated following infection. We also identified a mycobacterial protein, the product of the atpD gene (thought to be involved in the regulation of cytoplasmic pH) in the infected macrophage extracts. PMID:11576227

  20. Human neuroblastoma growth inhibitory factor (h-NGIF), derived from human astrocytoma conditioned medium, has neurotrophic properties.

    PubMed

    Eksioglu, Y Z; Iida, J; Asai, K; Ueki, T; Nakanishi, K; Isobe, I; Yamagata, K; Kato, T

    1994-05-02

    Investigations on the general characteristics of human astrocytoma cell line NAC-1 revealed neuroblastoma growth inhibitory activity in conditioned medium. Neuroblastoma growth inhibitory factor (NGIF) was partially purified by Econo Q, Econo CM, and Superose 12 column chromatography. The protein is weakly basic with an estimated M(r) of 120,000, possibly having an M(r) 60,000 dimeric structure. NGIF inhibits the growth of human neuroblastoma cell lines but has no effect on morphology nor does it produce any change in the growth of human glioblastoma cell lines. Interestingly, NGIF appears to promote survival and neurite outgrowth of embryonal rat cortical neurons. These neurotrophic properties suggest a role for NGIF in the development of the nervous system.

Top