Isolation of polyphenols from spent coffee grounds and silverskin by mild hydrothermal pretreatment.
Conde, Teresa; Mussatto, Solange I
2016-05-18
In this study, a new method for isolation of polyphenols (PP) from spent coffee grounds (SCG) and coffee silverskin (CS) is described. The method consisted of a mild hydrothermal pretreatment at 120°C, for 20 min, using a liquid-to-solid ratio of 20 mL/g. PP (determined as gallic acid equivalents, GAE) were the most abundant components in the extracts produced by this method, corresponding to 32.92 mgGAE/gSCG and 19.17 mgGAE/gCS, among which flavonoids corresponded to 8.29 and 2.73 mg quercetin equivalents/g of SCG and CS, respectively. Both extracts presented antioxidant activity but the results were higher for SCG extract, probably due to the highest content of PP present. Negligible effects (less than 1% solubilization) were caused by the hydrothermal pretreatment on cellulose, hemicellulose, and protein fractions of these materials. Some mineral elements were present in the extracts, with potassium being the most abundant. Hydrothermal pretreatment under mild conditions was demonstrated to be an efficient method to recover antioxidant PP from coffee residues.
NASA Astrophysics Data System (ADS)
Liang, Yan-Yu; Bao, Shu-Juan; Li, Hu-Lin
2006-07-01
A series of spinel-structured materials have been prepared by a simple hydrothermal procedure in an aqueous medium. The new synthetic method is time and energy saving i.e., no further thermal treatment and extended grinding. The main experimental process involved the insertion of lithium into electrolytic manganese dioxide with glucose as a mild reductant in an autoclave. Both the hydrothermal temperature and the presence of glucose play the critical roles in determining the final spinel integrity. Particular electrochemical performance has also been systematically explored, and the results show that Al 3+, F - co-substituted spinels have the best combination of initial capacity and capacity retention among all these samples, exhibited the initial capacity of 115 mAh/g and maintained more than 90% of the initial value at the 50th cycle.
Hydrothermal modification and recycling of nonmetallic particles from waste print circuit boards.
Gao, Xuehua; Li, Qisheng; Qiu, Jun
2018-04-01
Nonmetallic particles recycled from waste print circuit boards (NPRPs) were modified by a hydrothermal treatment method and the catalysts, solvents, temperature and time were investigated, which affected the modification effect of NPRPs. The mild hydrothermal treatment method does not need high temperature, and would not cause secondary pollution. Further, the modified NPRPs were used as the raw materials for the epoxy resin and glass fibers/epoxy resin composites, which were prepared by pouring and hot-pressing method. The mechanical properties and morphology of the composites were discussed. The results showed that relative intensity of the hydroxyl bonds on the surface of NPRPs increased 58.9% after modification. The mechanical tests revealed that both flexural and impact properties of the composites can be significantly improved by adding the modified NPRPs. Particularly, the maximum increment of flexural strength, flexural modulus and impact strength of the epoxy matrix composites with 30% modified NPRPs is 40.1%, 80.0% and 79.0%, respectively. Hydrothermal treatment can modify surface of NPRPs successfully and modified NPRPs can not only improve the properties of the composites, but also reduce the production cost of the composites and environmental pollution. Thus, we develop a new way to recycle nonmetallic materials of waste print circuit boards and the highest level of waste material recycling with the raw materials-products-raw materials closed cycle can be realized through the hydrothermal modification and reuse of NPRPs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents
NASA Astrophysics Data System (ADS)
Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua
2017-12-01
Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.
Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents.
Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua
2017-12-01
Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H 2 and CO 2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.
NASA Astrophysics Data System (ADS)
ben Rguiga, N.; Álvarez-Serrano, I.; López, M. L.; Chérif, W.; Alonso, J. A.
2018-02-01
A mild hydrothermal method was adapted to prepare the SrMn_{1-x}CoxO_{3-δ} (0 ≤ x ≤ 0.2) compounds. They showed hexagonal-4H perovskite-type structure with space group P63/mmc, and cell parameters a ˜ 5.45 and c ˜ 9.08 Å, as deduced from X-ray and neutron diffraction data. The mean atomic concentrations indicated global stoichiometries close to the nominal ones whereas electron microscopy analyses pointed out to heterogeneity at the nanoscale. The characterization of the electrical response by means of impedance measurements, suggested a semiconductor behavior mainly ascribed to bulk contributions. Relaxation and conduction processes were analyzed. The materials showed mixed electronic-ionic conduction above ˜ 400 K, when ionic conduction between intergrains becomes favored. Microstructural homogeneity was revealed as the key factor controlling the electrical response.
Diez-Garcia, Marta; Gaitero, Juan J; Dolado, Jorge S; Aymonier, Cyril
2017-03-13
Tobermorite is a fibrillar mineral of the family of calcium silicates. In spite of not being abundant in nature, its structure and properties are reasonably well known because of its interest in the construction industry. Currently, tobermorite is synthesized by hydrothermal methods at mild temperatures. The problem is that such processes are very slow (>5 h) and temperature cannot be increased to speed them up because tobermorite is metastable over 130 °C. Furthermore the product obtained is generally foil-like and not very crystalline. Herein we propose an alternative synthesis method based on the use of a continuous flow reactor and supercritical water. In spite of the high temperature, the transformation of tobermorite to more stable phases can be prevented by accurately controlling the reaction time. As a result, highly crystalline fibrillar tobermorite can be obtained in just a few seconds under thermodynamically metastable conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S.
We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemicalmore » experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.« less
Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties.
Wang, Liang; Wang, Yanli; Xu, Tao; Liao, Haobo; Yao, Chenjie; Liu, Yuan; Li, Zhen; Chen, Zhiwen; Pan, Dengyu; Sun, Litao; Wu, Minghong
2014-10-28
Graphene quantum dots (GQDs) have various alluring properties and potential applications, but their large-scale applications are limited by current synthetic methods that commonly produce GQDs in small amounts. Moreover, GQDs usually exhibit polycrystalline or highly defective structures and thus poor optical properties. Here we report the gram-scale synthesis of single-crystalline GQDs by a facile molecular fusion route under mild and green hydrothermal conditions. The synthesis involves the nitration of pyrene followed by hydrothermal treatment in alkaline aqueous solutions, where alkaline species play a crucial role in tuning their size, functionalization and optical properties. The single-crystalline GQDs are bestowed with excellent optical properties such as bright excitonic fluorescence, strong excitonic absorption bands extending to the visible region, large molar extinction coefficients and long-term photostability. These high-quality GQDs can find a large array of novel applications in bioimaging, biosensing, light emitting diodes, solar cells, hydrogen production, fuel cells and supercapacitors.
Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions.
Chimentão, R J; Lorente, E; Gispert-Guirado, F; Medina, F; López, F
2014-10-13
The hydrolysis of dilute acid-pretreated cellulose was investigated in a conventional oven and under microwave heating. Two acids--sulfuric and oxalic--were studied. For both hydrothermal conditions (oven and microwave) the resultant total organic carbon (TOC) values obtained by the hydrolysis of the cellulose pretreated with sulfuric acid were higher than those obtained by the hydrolysis of the cellulose pretreated with oxalic acid. However, the dicarboxylic acid exhibited higher hydrolytic efficiency towards glucose. The hydrolysis of cellulose was greatly promoted by microwave heating. The Rietveld method was applied to fit the X-ray patterns of the resultant cellulose after hydrolysis. Oxalic acid preferentially removed the amorphous region of the cellulose and left the crystalline region untouched. On the other hand, sulfuric acid treatment decreased the ordering of the cellulose by partially disrupting its crystalline structure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Suryanto, Bryan H R; Chen, Sheng; Duan, Jingjing; Zhao, Chuan
2016-12-28
The role of carbon nanotubes in the advancement of energy conversion and storage technologies is undeniable. In particular, carbon nanotubes have attracted significant applications for electrocatalysis. However, one central issue related to the use of carbon nanotubes is the required oxidative pretreatment that often leads to significant damage of graphitic structures which deteriorates their electrochemical properties. Traditionally, the oxidized carbon nanomaterials are treated at high temperature under an inert atmosphere to repair the oxidation-induced defect sites, which simultaneously removes a significant number of oxygen functional groups. Nevertheless, recent studies have shown that oxygen functional groups on the surface of MWCNT are the essential active centers for a number of important electrocatalytic reactions such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Herein we first show that hydrothermal treatment as a mild method to improve the electrochemical properties and activities of surface-oxidized MWCNT for OER, HER, and ORR without significantly altering the oxygen content. The results indicate that hydrothermal treatment could potentially repair the defects without significantly reducing the pre-existing oxygen content, which has never been achieved before with conventional high-temperature annealing treatment.
Hydrothermal pretreatment of wood by mild steam explosion and hot water extraction.
Wojtasz-Mucha, Joanna; Hasani, Merima; Theliander, Hans
2017-10-01
The aim of this work was to compare the two most common hydrothermal pre-treatments for wood - mild steam explosion and hot water extraction - both with the prospect of enabling extraction of hemicelluloses and facilitating further processing. Although both involve autohydrolysis of the lignocellulosic tissue, they are performed under different conditions: the most prominent difference is the rapid, disintegrating, discharge employed in the steam explosion opening up the structure. In this comparative study, the emphasis was placed on local composition of the pre-treated wood chips (of industrially relevant size). The results show that short hot water extraction treatments lead to significant variations in the local composition within the wood chips, while steam explosion accomplishes a comparably more even removal of hemicelluloses due to the advective mass transport during the explosion step. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Romeiro, Fernanda C.; Rodrigues, Mônica A.; Silva, Luiz A. J.; Catto, Ariadne C.; da Silva, Luis F.; Longo, Elson; Nossol, Edson; Lima, Renata C.
2017-11-01
Reduced graphene oxide-zinc oxide (rGO-ZnO) nanocomposites were successfully synthesized using a facile microwave-hydrothermal method under mild conditions, and their electrocatalytic properties towards O2 evolution were investigated. The microwave radiation played an important role in obtainment of well dispersed ZnO nanoparticles directly on reduced graphene oxide sheets without any additional reducing reagents or passivation agent. X-ray diffraction (XRD), Raman and infrared spectroscopies indicated the reduction of GO as well as the successful synthesis of rGO-ZnO nanocomposites. The chemical states of the samples were shown by XPS analyses. Due to the synergic effect, the resulting nanocomposites exhibited high electronic interaction between ZnO and rGO sheets, which improved the electrocatalytic oxidation of water with low onset potential of 0.48 V (vs. Ag/AgCl) in neutral pH and long-term stability, with high current density during electrolysis. The overpotential for water oxidation decreased in alkaline pH, suggesting useful insight on the catalytic mechanism for O2 evolution.
Immobilization of radioiodine in synthetic boracite
Babad, H.; Strachan, D.M.
1982-09-23
A nuclear waste storage product is disclosed in which radioiodine is incorporated in a synthetic boracite. The boracite may be prepared by reacting a transition metal iodide with an alkali horate under mild hydrothermal conditions, drying the reaction product, and then hot pressing.
NASA Astrophysics Data System (ADS)
Brown, J. William; Ramesh, P. S.; Geetha, D.
2018-02-01
We report fabrication of mesoporous Fe doped CuS nanocomposites with uniform mesoporous spherical structures via a mild hydrothermal method employing copper nitrate trihydrate (Cu (NO3).3H2O), Thiourea (Tu,Sc(NH2)2 and Iron tri nitrate (Fe(No3)3) as initial materials with cationic surfactant cetyltrimethylamoniame bromide (CTAB) as stabilizer/size controller and Ethylene glycol as solvent at 130 °C temperature. The products were characterized by XRD, SEM/EDX, TEM, FTIR and UV analysis. X-ray diffraction (XRD) spectra confirmed the Fe doped CuS nanocomposites which are crystalline in nature. EDX and XRD pattern confirmed that the product is hexagonal CuS phase. Fe doped spherical structure of CuS with grain size of 21 nm was confirmed by XRD pattern. Fe doping was identified by energy dispersive spectrometry (EDS). The Fourier-transform infrared (FTIR) spectroscopy results revealed the occurrence of active functional groups required for the reduction of copper ions. Studies showed that after a definite time relining on the chosen copper source, the obtained Fe-CuS nanocomposite shows a tendency towards self-assembly and creating mesoporous like nano and submicro structures by TEM/SAED. The achievable mechanism of producing this nanocomposite was primarily discussed. The electrochemical study confirms the pseudocapacitive nature of the CuS and Fe-CuS electrodes. The CuS and Fe-CuS electrode shows a specific capacitance of about 328.26 and 516.39 Fg-1 at a scan rate of 5 mVs-1. As the electrode in a supercapacitor, the mesoporous nanostructured Fe-CuS shows excellent capacitance characteristics.
NASA Astrophysics Data System (ADS)
Niu, Jinfen; Dai, Peixuan; Zhang, Qian; Yao, Binghua; Yu, Xiaojiao
2018-02-01
In the present paper, a novel composite of BiOI/rGO with excellent visible-light photocatalytic activity was successfully fabricated via very different simple, fast and mild rapid microwave hydrothermal method. The BiOI/rGO -1(BG-1) was donated as a simple chemical mechanical and the BiOI/rGO -2(BG-2) was donated as one-step rapid microwave hydrothermal method. The BG-1 were composed of the BiOI microspheres with a diameter of about 1 μm and mixed heterogeneously with graphene. While, the BG-2 were consist of the BiOI nanoplates with the thickness of approximately 20 nm dispersed heterogeneously on the surface of rGO. The degradation of 40 mg/L methylene blue (MB) and 20 mg/L levofloxacin (LEV) under visible light irradiation can reach about 11 and 3 times than that of P25, respectively. Furthermore, the reactive species of hole was determined to dominant the photodegradation process. The intensive photocatlytic could ascribe to more effective electron transportation and separations, this conclusion was different with other studies. A possible photocatalytic mechanism of BG-2 was also proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Wenjuan; Li Danzhen, E-mail: dzli@fzu.edu.c; Sun Meng
2010-10-15
AgIn{sub 5}S{sub 8} powders were successfully synthesized by a microwave hydrothermal method for the first time. This method is a mild and highly efficient route involves no templates, catalysts, or surfactants. Therefore, it is very promising for the low-cost and large-scale industrial production. The samples were characterized by X-ray diffraction, UV-vis spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The photocatalytic activity of AgIn{sub 5}S{sub 8} nanoparticles was investigated through the degradation of methyl orange under visible light irradiation. Compared with TiO{sub 2-x}N{sub x}, AgIn{sub 5}S{sub 8} has exhibited a superior activity under the same condition. A liquid chromatogram-mass spectrometermore » was used to separate and identify the dye and degradation products generated during the reaction. According to the experiment results, a possible mechanism for the degradation of organic pollutant over AgIn{sub 5}S{sub 8} was proposed. - Graphical abstract: Compared with TiO{sub 2-x}N{sub x}, AgIn{sub 5}S{sub 8} has exhibited a superior activity under the same condition.« less
NASA Astrophysics Data System (ADS)
Zhen, Fangchen; Ran, Maofei; Chu, Wei; Jiang, Chengfa; Sun, Wenjing
2018-03-01
Pd-Fe3O4 hybrid nanostructures were prepared using a simple one-pot hydrothermal method. The prepared materials were characterized by Fourier transform-infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma, N2 adsorption-desorption, and vibrating sample magnetometry. This self-assembled nanosystem acted as an efficient magnetically recyclable noble metal-based multi-functional nanocatalyst. It showed excellent catalytic activity and stability for the Heck reaction of iodobenzene and styrene under mild conditions. The methods used to prepare the Pd-Fe3O4 catalysts were simple and low-cost, which will be useful for the large-scale development and application of a magnetically recoverable Pd catalyst.
NASA Technical Reports Server (NTRS)
Mautner, M. N.; Leonard, R. L.; Deamer, D. W.
1995-01-01
Up to 50% of the organics in the Murchison meteorite, possibly including some of the polymer, is released in high temperature and pressure aqueous environments, to 350 degrees C and 250 bar, that simulate submarine volcanic, hydrothermal or impact-induced conditions. Meteorite organics of prebiotic significance, such as nonanoic acid, glycine, and pyrene survive the hydrothermal conditions. The released material is surface active with surface pressures up to 19.8 x 10(-3) N m-1, and exhibits an extended surface tension isotherm which suggests a mixture of amphiphilic components. One component, nonanoic acid, is shown to form vesicles. The materials extracted under mild conditions, at 120 degrees C, are nutrients for the humic acid bacterium Pseudomonas maltophilia and efficient nutrients for the oligotroph Flavobacterium oryzihabitans, demonstrating the capability of microorganisms to metabolize extraterrestrial organics.
NASA Astrophysics Data System (ADS)
Wang, Qi; Qiao, Zhi; Jiang, Peng; Kuang, Jianlei; Liu, Wenxiu; Cao, Wenbin
2018-03-01
In this study, mixed-phase TiO2 powders were novelly synthesized via a facile and mild hydrothermal method without any post-heat treatment. TiOSO4 and peroxide titanic acid (PTA) were used as inorganic titanium sources, while no special solvent or additive were introduced. The XRD and TEM results showed the mixed-phase TiO2 powders were composed of anatase and rutile phases, and the PTA sol played an important role on forming the rutile nucleus. The proportion of rutile in the mixed-phase TiO2 could be easily controlled in the range of 0%-70.5% by changing the amount of PTA sol used in the synthesis process. The UV-Visible absorption spectra indicated the prepared mixed-phase TiO2 showed enhanced visible light absorption with the increase of rutile ratio. The photodegradation experiments revealed the mixed-phase TiO2 exhibited the best photocatalytic activity at the rutile ratio of 41.5%, while a higher or lower rutile ratio both resulted in the decrease of photocatalytic activity.
Cell-wall structural changes in wheat straw pretreated for bioethanol production
Jan B. Kristensen; G. Thygesen Lisbeth; Claus Felby; Henning Jorgensen; Thomas Elder
2008-01-01
Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw...
Shivaraju, H P; Byrappa, K
2012-07-01
This work deals with the non-biodegradable micro-pollutants degradation by supported photocatalyst based heterogeneous photocatalytic reaction. TiO2 based supported photocatalyst was prepared by the hydrothermal technique to improve the photocatalytic performance along with easy recovery of suspended photocatalyst from aqueous medium after photoreaction. TO2 deposited calcium alumino-silicate beads (CASB) supports were prepared under mild hydrothermal conditions (Temparature-200 degrees C, Duration-24 h). In the present study, industrial dyes such as Amaranth and Brilliant Yellow were used as model micro-pollutants in aqueous solution. A real time pesticide industrial effluent was tested for its photocatalytic removal of organic pollutants using TO2 deposited CASB supported photocatalytic composite as an effective photocatalyst. Photocatalytic degradation of micro-pollutants present in aqueous medium was carried out in a batch photoreactor, at atmospheric pressure and temperature (28 degrees C). The influence of different light sources, irradiation time, catalyst load and catalytic performance is discussed. The photocatalytic degradation of micro-pollutants in aqueous medium was evaluated by determination of COD and %T. Easy separation and recovery of suspended photocatalysts from aqueous solution is the major advantage of hydrothermally prepared supported photocatalytic composite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Jinyong; Gao, Feng; Kamasamudram, Krishna
In this work we investigated an unusual acidity feature of a Cu/SSZ-13 catalyst used in selective catalytic reduction of NOx with NH3 (NH3-SCR). In particular, this catalyst showed two distinct NH3 desorption peaks in NH3-TPD measurements, in contrast to single, unresolved desorption peaks observed for other Cu-exchanged zeolites conventionally used in the SCR studies, including its isostructural but chemically different analogue Cu/SAPO-34. We further observed that the intensities of the two TPD peaks, which represented the amount of stored NH3, changed in opposite directions in response to progressive mild hydrothermal aging, while the total storage capacity was preserved. We proposedmore » an explanation for this remarkable behavior, by using model reference samples and additional characterization techniques. At least three NH3 storage sites were identified: two distinct populations of Cu sites responsible for low-temperature NH3 storage, and Brønsted acid sites responsible for high-temperature NH3 storage. Contrary to the commonly accepted mechanism that Brønsted acid site loss during hydrothermal aging is driven by dealumination, we concluded that the decline in the number of Brønsted acid sites upon mild hydrothermal aging for Cu/SSZ-13 was not due to dealumination, but rather transformation of Cu sites, i.e., gradual conversion of ZCuOH (Cu2+ singly coordinated with Zeolite) to Z2Cu (Cu2+ doubly coordinated with Zeolite). This transformation was responsible for the increased low-temperature desorption peak in NH3-TPD since each ZCuOH adsorbed ~1 NH3 molecule while each Z2Cu adsorbed ~2 NH3 molecules under the conditions used here. These findings were used in Part II of this series of studies to develop a method for quantifying hydrothermal ageing of industrial Cu/SSZ-13 SCR catalysts. Authors would like to thank Randall Jines for his help with collecting the reactor data, Nancy W. Washton for measuring the NMR data and Tamas Varga for in-situ XRD measurements. FG and CHFP gratefully acknowledge supports from the United States Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Part of the research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo Yuanyuan; Duan Guotao; Li Guanghai
Flower-like Ni(OH){sub 2} nanoarchitectures have been synthesized through a one-step mild hydrothermal reaction with the aid of ethylenediamine in NiCl{sub 2} aqueous solution. The flower with the size of several micrometers in diameter is composed of the ultra-thin nanosheets of several nanometers in thickness. It was found the ethylenediamine is vital to the formation of the flower-like nanoarchitectures. The influence of the concentration of the ethylenediamine and the reaction temperature on the formation of the flowers was analyzed and the formation mechanism of the flowers was proposed. Such flower-like {beta}-Ni(OH){sub 2} nanoarchitectures will find potential applications in the fields, suchmore » as electrode, or will be used as a starting material to produce NiO, which is widely used in the magnetic, catalysts, sensor and electrochromic devices. - Graphical abstract: Flower-like Ni(OH){sub 2} nanoarchitectures were synthesized by a one-step mild hydrothermal reaction with the aid of ethylenediamine in NiCl{sub 2} aqueous solution. The flower with the size of several micrometers in diameter is composed of the ultra-thin nanosheets of several nanometers in thickness. The flowers could be in catalysts, sensor and electrochromic devices, and alkaline rechargeable batteries.« less
NASA Astrophysics Data System (ADS)
Chen, Zhongtao; Du, Yi; Li, Zhongfu; Yang, Kai; Lv, Xingjie
2017-03-01
Well-defined Fe3O4 particles were successfully fabricated by a facile triethanolamine (TEA)-assisted method under mild hydrothermal conditions. Hydrated ferric salt was employed as the single iron precursor. TEA was used as the complexing agent and/or alkaline source. The crystalline phases of the as-obtained samples were characterized by X-ray diffraction (XRD). Furthermore, the morphology as well as the compositions of the samples were investigated by scanning electron microscopy (SEM) equipped with an energy dispersion spectroscopy (EDS). The results indicated that the products were Fe3O4 crystal phase, and the morphology and powder size of the particles were varied with adding different amount of NaOAc and keeping the content of TEA unchanged. On the basis of these results, the possible formation mechanism of Fe3O4 was discussed. It was observed that TEA and NaOAc affected the growth rate of crystal planes and nucleation. Besides, the magnetic property tested by a vibrating sample magnetometer (VSM) showed that the products exhibited a ferromagnetic behavior and possessed the excellent saturation magnetization (Ms) at room temperature.
Fabrication Method Study of ZnO Nanocoated Cellulose Film and Its Piezoelectric Property
Ko, Hyun-U; Kim, Hyun Chan; Kim, Jung Woong; Zhai, Lindong; Kim, Jaehwan
2017-01-01
Recently, a cellulose-based composite material with a thin ZnO nanolayer—namely, ZnO nanocoated cellulose film (ZONCE)—was fabricated to increase its piezoelectric charge constant. However, the fabrication method has limitations to its application in mass production. In this paper, a hydrothermal synthesis method suitable for the mass production of ZONCE (HZONCE) is proposed. A simple hydrothermal synthesis which includes a hydrothermal reaction is used for the production, and the reaction time is controlled. To improve the piezoelectric charge constant, the hydrothermal reaction is conducted twice. HZONCE fabricated by twice-hydrothermal reaction shows approximately 1.6-times improved piezoelectric charge constant compared to HZONCE fabricated by single hydrothermal reaction. Since the fabricated HZONCE has high transparency, dielectric constant, and piezoelectric constant, the proposed method can be applied for continuous mass production. PMID:28772971
NASA Astrophysics Data System (ADS)
Tang, Xue Qian; Xiao, Bo Wen; Li, Chun Mei; Wang, Dong Mei; Huang, Cheng Zhi; Li, Yuan Fang
2017-03-01
Cation exchange-mediated transformation from Zn-metallogels (MOGs), which was a mild facile strategy relative to the demanding hydrothermal method, was employed to develop Co2 + metal-organic frameworks (Co-MOFs) at room temperature. The obtained Co-MOFs was of uniform octahedral morphology and possessed high activity to catalyze luminol chemiluminescence without extra oxidants. By adding cysteine, the CL emission of luminol-Co-MOFs system was further enhanced. Based on this phenomenon, Co-MOFs was utilized to build a practical sensing platform for cysteine determination. Under the optimized conditions, the relative CL intensity (ΔI) was proportional to the concentration of cysteine in the range of 2-10 μM, and the detection limit was 0.49 μM (3S/N). Moreover, the established method was applied to the determination of cysteine in commercially available pharmaceutical injections.
Grimaldi, Maira Prearo; Marques, Marina Paganini; Laluce, Cecília; Cilli, Eduardo Maffud; Sponchiado, Sandra Regina Pombeiro
2015-01-01
Ethanol production from sugarcane bagasse requires a pretreatment step to disrupt the cellulose-hemicellulose-lignin complex and to increase biomass digestibility, thus allowing the obtaining of high yields of fermentable sugars for the subsequent fermentation. Hydrothermal and lime pretreatments have emerged as effective methods in preparing the lignocellulosic biomass for bioconversion. These pretreatments are advantageous because they can be performed under mild temperature and pressure conditions, resulting in less sugar degradation compared with other pretreatments, and also are cost-effective and environmentally sustainable. In this study, we evaluated the effect of these pretreatments on the efficiency of enzymatic hydrolysis of raw sugarcane bagasse obtained directly from mill without prior screening. In addition, we evaluated the structure and composition modifications of this bagasse after lime and hydrothermal pretreatments. The highest cellulose hydrolysis rate (70 % digestion) was obtained for raw sugarcane bagasse pretreated with lime [0.1 g Ca(OH)2/g raw] for 60 min at 120 °C compared with hydrothermally pretreated bagasse (21 % digestion) under the same time and temperature conditions. Chemical composition analyses showed that the lime pretreatment of bagasse promoted high solubilization of lignin (30 %) and hemicellulose (5 %) accompanied by a cellulose accumulation (11 %). Analysis of pretreated bagasse structure revealed that lime pretreatment caused considerable damage to the bagasse fibers, including rupture of the cell wall, exposing the cellulose-rich areas to enzymatic action. We showed that lime pretreatment is effective in improving enzymatic digestibility of raw sugarcane bagasse, even at low lime loading and over a short pretreatment period. It was also demonstrated that this pretreatment caused alterations in the structure and composition of raw bagasse, which had a pronounced effect on the enzymes accessibility to the substrate, resulting in an increase of cellulose hydrolysis rate. These results indicate that the use of raw sugarcane bagasse (without prior screening) pretreated with lime (cheaper and environmentally friendly reagent) may represent a cost reduction in the cellulosic ethanol production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhe; Cao, Minhua, E-mail: caomh@bit.edu.cn; Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081
Research highlights: {yields} Novel Bi{sub 2}S{sub 3} hierarchical nanostructures self-assembled by nanorods are successfully synthesized in mild benzyl alcohol system under hydrothermal conditions. {yields} The hierarchical nanostructures exhibit a flower-like shape. {yields} PVP plays an important role for the formation of the hierarchical nanostructures. {yields} Bi{sub 2}S{sub 3} film prepared from the flower-like hierarchical nanostructures exhibits good hydrophobic properties. -- Abstract: Novel Bi{sub 2}S{sub 3} hierarchical nanostructures self-assembled by nanorods are successfully synthesized in mild benzyl alcohol system under hydrothermal conditions. The hierarchical nanostructures exhibit a flower-like shape. X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), transmissionmore » electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) were used to characterize the as-synthesized samples. Meanwhile, the effect of various experimental parameters including the concentration of reagents and reaction time on final product has been investigated. In our experiment, PVP plays an important role for the formation of the hierarchical nanostructures and the possible mechanism was proposed. In addition, Bi{sub 2}S{sub 3} film prepared from the flower-like hierarchical nanostructures exhibits good hydrophobic properties, which may bring nontrivial functionalities and may have some promising applications in the future.« less
Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor
NASA Astrophysics Data System (ADS)
Shimpi, Navinchandra G.; Jain, Shilpa; Karmakar, Narayan; Shah, Akshara; Kothari, D. C.; Mishra, Satyendra
2016-12-01
ZnO nanopencils (NPCs) were prepared by a novel wet chemical process, using triethanolamine (TEA) as a mild base, which is relatively simple and cost effective method as compared to hydrothermal method. ZnO NPCs were characterized using powder X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy in mid-IR and far-IR regions, X-ray Photoelectron Spectroscopy (XPS), UV-vis (UV-vis) absorption spectroscopy, room temperature Photoluminescence (PL) spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). ZnO NPCs obtained, were highly pure, uniform and monodispersed.XRD pattern indicated hexagonal unit cell structure with preferred orientation along the c-axis. Sensing behaviour of ZnO NPCs was studied towards Liquefied Petroleum Gas (LPG) at different operating temperatures. The study shows that ZnO NPCs were most sensitive and promising candidate for detection of LPG at 250 °C with gas sensitivity > 60%. The high response towards LPG is due to high surface area of ZnO NPCs and their parallel alignment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xin-Yu; Zhu, Ying-Jie, E-mail: y.j.zhu@mail.sic.ac.cn; Lu, Bing-Qiang
Graphical abstract: Hydroxyapatite nanorods are synthesized using biocompatible biomolecule pyridoxal-5′-phosphate as a new organic phosphorus source by the hydrothermal method. - Highlights: • Hydrothermal synthesis of hydroxyapatite nanorods is reported. • Biocompatible pyridoxal-5′-phosphate is used as an organic phosphorus source. • This method is simple, surfactant-free and environmentally friendly. - Abstract: Hydroxyapatite nanorods are synthesized by the hydrothermal method using biocompatible biomolecule pyridoxal-5′-phosphate (PLP) as a new organic phosphorus source. In this method, PLP biomolecules are hydrolyzed to produce phosphate ions under hydrothermal conditions, and these phosphate ions react with pre-existing calcium ions to form hydroxyapatite nanorods. The effects ofmore » experimental conditions including hydrothermal temperature and time on the morphology and crystal phase of the products are investigated. This method is simple, surfactant-free and environmentally friendly. The products are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis.« less
NASA Astrophysics Data System (ADS)
Shafiah Shazali, Siti; Amiri, Ahmad; Zubir, Mohd. Nashrul Mohd; Rozali, Shaifulazuar; Zakuan Zabri, Mohd; Sabri, Mohd Faizul Mohd
2018-03-01
A simple and green approach has been developed to synthesize nitrogen-doped graphene nanoplatelets (N-doped GNPs) for mass production with a very high stability in different solvents e.g. water, ethylene glycol, methanol, ethanol, and 1-hexanol. The strategy is based on mild oxidation of GNPs using hydrogen peroxide and doping with nitrogen using hydrothermal process. The modification of N-doped GNPs was demonstrated by FTIR, TGA, XPS, Raman spectroscopy and high resolution-transmission electron microscope (HRTEM). Further study was carried out by using N-doped GNPs as an additive to prepare different colloidal dispersions. Water-based N-doped GNPs, methanol-based N-doped GNPs, ethanol-based N-doped GNPs, ethylene-glycol based N-doped GNPs and 1-hexanol-based N-doped GNPs dispersions at 0.01 wt.% shown great colloidal stabilities, indicating 17%, 29%, 33%, 18%, and 43% sedimentations after a 15-days period, respectively. The thermophysical properties e.g., viscosity and thermal conductivity of water-based N-doped GNP nanofluids were also evaluated for different weight concentrations of 0.100, 0.075, 0.050, and 0.025 wt.%. Through this, it is found that the obtained dispersions have great potential to be used as working fluids for industrial thermal systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xue; Jing, Yan; Yang, Jia
Graphical abstract: - Highlights: • MNb{sub 2}O{sub 6} was prepared by a mild two-step hydrothermal method. • Their flower-like nanostructure morphology was studied by SEM and TEM. • High BET surface areas for MnNb{sub 2}O{sub 6} (∼50 m{sup 2}/g) and ZnNb{sub 2}O{sub 6} (∼100 m{sup 2}/g). • Band gap energies were estimated by UV–vis diffuse reflectance spectra. • Photocatalytic activities were evaluated under UV-light irradiation. - Abstract: Nano-scaled MNb{sub 2}O{sub 6} (M = Mn, Zn) was successfully synthesized via a two-step hydrothermal method. It is important to control the exact pH of the reaction solution in order to obtain puremore » products. The as-prepared samples both crystallize in the columbite structure. Interestingly, the products possess a flower-like morphology in a pseudo-six-fold symmetry, which is in fact arrayed by two-dimensional nanosheets. Their surface areas (51 m{sup 2}/g for MnNb{sub 2}O{sub 6} and 103 m{sup 2}/g for ZnNb{sub 2}O{sub 6}) are about 25–50 times of those prepared by solid state reaction. UV–vis diffuse reflectance spectra show the nano-scaled sample has a stronger absorption and a narrower band gap than its bulk form. The estimated band gap energies are 2.70 eV (MnNb{sub 2}O{sub 6}) and 3.77 eV (ZnNb{sub 2}O{sub 6}), respectively. The nano-scaled ZnNb{sub 2}O{sub 6} exhibits a double enhancement of photocatalytic activity in the decolorization of methylene blue than bulk ZnNb{sub 2}O{sub 6}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovarik, Libor; Washton, Nancy M.; Kukkadapu, Ravi
Fe/SSZ-13 catalysts (Si/Al = 12, Fe loadings 0.37% and 1.20%) were prepared via solution ion-exchange, and hydrothermally aged at 600, 700 and 800 C. The fresh and aged catalysts were characterized with surface area/pore volume analysis, Mössbauer, solid-state MAS NMR, NO titration FTIR spectroscopies, and TEM and APT imaging. Hydrothermal aging causes dealumination of the catalysts, and transformation of various Fe sites. The latter include conversion of free Fe2+ ions to dimeric Fe(III) species, the agglomeration of isolated Fe-ions to Fe-oxide clusters, and incorporation of Al into the Fe-oxide species. These changes result in complex influences on standard SCR andmore » NO/NH3 oxidation reactions. In brief, mild aging causes catalyst performance enhancement for SCR, while harsh aging at 800 C deteriorates SCR performance. In comparison to Fe/zeolites more prone to hydrothermal degradation, this study demonstrates that via the utilization of highly hydrothermally stable Fe/SSZ-13 catalysts, more accurate correlations between various Fe species and their roles in SCR related chemistries can be made. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less
Shape-controlled synthesis and properties of dandelion-like manganese sulfide hollow spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Wei; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083; Chen, Gen
2012-09-15
Graphical abstract: Dandelion-like MnS hollow spheres assembled with nanorods could be successfully synthesized in large quantities through a simple and convenient hydrothermal synthetic method under mild conditions using soluble hydrated manganese chloride as Mn source, L-cysteine as both a precipitator and complexing reagent. The dandelion-like MnS hollow spheres might have potential applications in microdevices and magnetic cells. Highlights: ► MnS hollow spheres assembled with nanorods could be synthesized. ► The morphologies and sizes of final products could be controlled. ► Possible formation mechanism of MnS hollow spheres is proposed. -- Abstract: Dandelion-like gamma-manganese (II) sulfide (MnS) hollow spheres assembled withmore » nanorods have been prepared via a hydrothermal process in the presence of L-cysteine and polyvinylpyrrolidone (PVP). L-cysteine was employed as not only sulfur source, but also coordinating reagent for the synthesis of dandelion-like MnS hollow spheres. The morphology, structure and properties of as-prepared products have been investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM) and photoluminescence spectra (PL). The probable formation mechanism of as-prepared MnS hollow spheres was discussed on the basis of the experimental results. This strategy may provide an effective method for the fabrication of other metal sulfides hollow spheres.« less
Fabrication of malachite with a hierarchical sphere-like architecture.
Xu, Jiasheng; Xue, Dongfeng
2005-09-15
Malachite (Cu2(OH)2CO3) with a hierarchical sphere-like architecture has been successfully synthesized via a simple and mild hydrothermal route in the absence of any external inorganic additives or organic structure-directing templates. Powder X-ray diffraction, scanning electron microscopy, and Fourier transmission infrared spectrometry are used to characterize various properties of the obtained malachite samples. The hierarchical malachite particles are uniform spheres with a diameter of 10-20 microm, which are comprised of numerous two-dimensional microplatelets paralleling the sphere surface. The initial concentration of reagents, the hydrothermal reaction time, and temperature are important factors which dominantly affect the evolution of crystal morphologies. The growth of the hierarchical architecture is believed to be a layer-by-layer growth process. Further, copper oxide with the similar morphology can be easily obtained from the as-prepared malachite.
Magnetic and thermal behavior of a family of compositionally related zero-dimensional fluorides
NASA Astrophysics Data System (ADS)
Felder, Justin B.; Smith, Mark D.; Sefat, Athena; zur Loye, Hans-Conrad
2018-07-01
The mild hydrothermal crystal growth technique has been leveraged to synthesize four new zero-dimensional transition metal fluorides. Their structures were determined by single crystal X-ray diffraction and confirmed by powder X-ray diffraction. The thermal, optical, and magnetic properties were investigated and the presence of thermal polymorphism and antiferromagnetism were observed. In addition, the potential application of these materials as precursors for advanced functional materials was explored.
Ohta, Kanako; Isobe, Gaku; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi
2013-04-01
The hydrothermal method utilizes a solution-based chemical reaction to synthesize piezoelectric thin films and powders. This method has a number of advantages, such as low-temperature synthesis, and high purity and high quality of the product. In order to promote hydrothermal reactions, we developed an ultrasonic assisted hydrothermal method and confirmed that it produces dense and thick lead-zirconate-titanate (PZT) films. In the hydrothermal method, a crystal growth process follows the nucleation process. In this study, we verified that ultrasonic irradiation is effective for the nucleation process, and there is an optimum irradiation period to obtain thicker PZT films. With this optimization, a 9.2-μm-thick PZT polycrystalline film was obtained in a single deposition process. For this film, ultrasonic irradiation was carried out from the beginning of the reaction for 18 h, followed by a 6 h deposition without ultrasonic irradiation. These results indicate that the ultrasonic irradiation mainly promotes the nucleation process. Copyright © 2012 Elsevier B.V. All rights reserved.
Cell-wall structural changes in wheat straw pretreated for bioethanol production
Kristensen, Jan B; Thygesen, Lisbeth G; Felby, Claus; Jørgensen, Henning; Elder, Thomas
2008-01-01
Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of the pretreatment on the straw cell-wall matrix and its components are characterised microscopically (atomic force microscopy and scanning electron microscopy) and spectroscopically (attenuated total reflectance Fourier transform infrared spectroscopy) in order to understand this increase in digestibility. Results The hydrothermal pretreatment does not degrade the fibrillar structure of cellulose but causes profound lignin re-localisation. Results from the current work indicate that wax has been removed and hemicellulose has been partially removed. Similar changes were found in wheat straw pretreated by steam explosion. Conclusion Results indicate that hydrothermal pretreatment increases the digestibility by increasing the accessibility of the cellulose through a re-localisation of lignin and a partial removal of hemicellulose, rather than by disruption of the cell wall. PMID:18471316
Biomass torrefaction: A promising pretreatment technology for biomass utilization
NASA Astrophysics Data System (ADS)
Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen
2018-02-01
Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.
NASA Astrophysics Data System (ADS)
Yeon, Jeongho; Smith, Mark D.; Tapp, Joshua; Möller, Angela; zur Loye, Hans-Conrad
2016-04-01
Two new uranium(IV) fluorides, Na3.13Mg1.43U6F30 (1) and Na2.50Mn1.75U6F30 (2), were synthesized through an in situ mild hydrothermal route, and were structurally characterized by single crystal X-ray diffraction. The compounds exhibit complex crystal structures composed of corner- or edge-shared UF9 and MF6 (M=Mg, Mn) polyhedra, forming hexagonal channels in the three-dimensional framework, in which ordered or disordered divalent metal and sodium atoms reside. The large hexagonal voids contain the nearly regular M(II)F6 octahedra and sodium ions, whereas the small hexagonal cavities include M(II) and sodium ions on a mixed-occupied site. Magnetic susceptibility measurements yielded effective magnetic moments of 8.36 and 11.6 μB for 1 and 2, respectively, confirming the presence and oxidation states of U(IV) and Mn(II). The large negative Weiss constants indicate the spin gap between a triplet and a singlet state in the U(IV). Magnetization data as a function of applied fields revealed that 2 exhibits paramagnetic behavior due to the nonmagnetic singlet ground state of U(IV) at low temperature. UV-vis diffuse reflectance and X-ray photoelectron spectroscopy data were also analyzed.
Frouin, Eléonore; Bes, Méline; Ollivier, Bernard; Quéméneur, Marianne; Postec, Anne; Debroas, Didier; Armougom, Fabrice; Erauso, Gaël
2018-01-01
The Bay of Prony, South of New Caledonia, represents a unique serpentinite-hosted hydrothermal field due to its coastal situation. It harbors both submarine and intertidal active sites, discharging hydrogen- and methane-rich alkaline fluids of low salinity and mild temperature through porous carbonate edifices. In this study, we have extensively investigated the bacterial and archaeal communities inhabiting the hydrothermal chimneys from one intertidal and three submarine sites by 16S rRNA gene amplicon sequencing. We show that the bacterial community of the intertidal site is clearly distinct from that of the submarine sites with species distribution patterns driven by only a few abundant populations, affiliated to the Chloroflexi and Proteobacteria phyla. In contrast, the distribution of archaeal taxa seems less site-dependent, as exemplified by the co-occurrence, in both submarine and intertidal sites, of two dominant phylotypes of Methanosarcinales previously thought to be restricted to serpentinizing systems, either marine (Lost City Hydrothermal Field) or terrestrial (The Cedars ultrabasic springs). Over 70% of the phylotypes were rare and included, among others, all those affiliated to candidate divisions. We finally compared the distribution of bacterial and archaeal phylotypes of Prony Hydrothermal Field with those of five previously studied serpentinizing systems of geographically distant sites. Although sensu stricto no core microbial community was identified, a few uncultivated lineages, notably within the archaeal order Methanosarcinales and the bacterial class Dehalococcoidia (the candidate division MSBL5) were exclusively found in a few serpentinizing systems while other operational taxonomic units belonging to the orders Clostridiales, Thermoanaerobacterales , or the genus Hydrogenophaga , were abundantly distributed in several sites. These lineages may represent taxonomic signatures of serpentinizing ecosystems. These findings extend our current knowledge of the microbial diversity inhabiting serpentinizing systems and their biogeography.
Chen, Yongxing; Ren, Xiulian; Wei, Qifeng; Guo, Jingjing
2016-12-01
This study investigated the effect of trimethylamine (TMA) on the hydrothermal liquefaction (HTL) process and the recycle of TMA. The results suggest that the peeling reaction occurred on the surface and the cleavage of cellulose leading to water-soluble substances and bio-oil. The highest content of organic acids was found in the water-soluble phase. Model compounds, different glucides with TMA were used to investigate the mechanism of the HTL. Results suggest that the OH - appeared to selectively interact with C-O-C bonds, and thus causing the key linkages of cellulose to become much easier to be cleaved under mild conditions. In addition, the conditions for TMA recovery were optimized and the highest TMA recovery rate reached 98.89%. The recovered TMA had the same properties as the original compound, and it was perfectly re-usable in the conversion process of HTL. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tang, Xue Qian; Xiao, Bo Wen; Li, Chun Mei; Wang, Dong Mei; Huang, Cheng Zhi; Li, Yuan Fang
2017-03-15
Cation exchange-mediated transformation from Zn-metallogels (MOGs), which was a mild facile strategy relative to the demanding hydrothermal method, was employed to develop Co 2+ metal-organic frameworks (Co-MOFs) at room temperature. The obtained Co-MOFs was of uniform octahedral morphology and possessed high activity to catalyze luminol chemiluminescence without extra oxidants. By adding cysteine, the CL emission of luminol-Co-MOFs system was further enhanced. Based on this phenomenon, Co-MOFs was utilized to build a practical sensing platform for cysteine determination. Under the optimized conditions, the relative CL intensity (ΔI) was proportional to the concentration of cysteine in the range of 2-10μM, and the detection limit was 0.49μM (3S/N). Moreover, the established method was applied to the determination of cysteine in commercially available pharmaceutical injections. Copyright © 2016 Elsevier B.V. All rights reserved.
Methods to enhance the characteristics of hydrothermally prepared slurry fuels
Anderson, Chris M.; Musich, Mark A.; Mann, Michael D.; DeWall, Raymond A.; Richter, John J.; Potas, Todd A.; Willson, Warrack G.
2000-01-01
Methods for enhancing the flow behavior and stability of hydrothermally treated slurry fuels. A mechanical high-shear dispersion and homogenization device is used to shear the slurry fuel. Other improvements include blending the carbonaceous material with a form of coal to reduce or eliminate the flocculation of the slurry, and maintaining the temperature of the hydrothermal treatment between approximately 300.degree. to 350.degree. C.
NASA Astrophysics Data System (ADS)
Liu, Hui; Zhao, Qingshan; Liu, Jingyan; Ma, Xiao; Rao, Yuan; Shao, Xiaodong; Li, Zhongtao; Wu, Wenting; Ning, Hui; Wu, Mingbo
2017-11-01
With rapid dissociative adsorption of oxygen, nitrogen-doped carbon nanomaterials have been demonstrated to be efficient alternative catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we developed a mild hydrothermal strategy to construct nitrogen-doped carbon dots/graphene (NCDs-NG) composites towards ORR. Carbon dots (CDs) were derived from petroleum coke via acid oxidation while graphene oxide (GO) was obtained from graphite by modified Hummer's method. Graphene was employed as a conductive substrate to disperse CDs during hydrothermal reducing reaction while ammonia was utilized as N source to dope both graphene and CDs. The synergistic effects, i.e. CDs as pillars for graphene and catalytic sites for ORR, the high conductivity of graphene, the quick O2 adsorption on doped pyridinic nitrogen endow the NCDs-NG composites with enhanced ORR catalytic performance in alkaline electrolyte. The onset potential of -95 mV and kinetic current density of 12.7 mA cm-2 at -0.7 V (vs. Ag/AgCl) can be compared to those of the commercial 20 wt% Pt/C catalyst. The electron transfer number is about 3.9, revealing a four-electron pathway for ORR. The optimal NCDs-NG catalyst shows superior durability and methanol tolerance than 20 wt% Pt/C. This work demonstrates a feasible and effective strategy to prepare metal-free efficient ORR electrocatalysts for fuel cell applications.
NASA Astrophysics Data System (ADS)
Han, C.; Wu, G.; Qin, H.; Wang, Z.
2012-12-01
Investigation of active hydrothermal mound as well as non-active massive sulfide mound are studied recently. However, there is still lack of in-situ detection method for the non-active massive sulfide mound. Even though Transient ElectroMagnetic (TEM) and Electric Self-potential (SP) methods are good, they both are labour, time and money cost work. We proposed a new multiparameter chemical sensor method to study the seafloor active hydrothermal mound as well as non-active massive sulfide mound. This sensor integrates Eh, S2- ions concentration and pH electrochemical electrodes together, and could found chemical change caused by the active hydrothermal vent, even weak chemical abnormalities by non-active massive sulfide hydrothermal mound which MARP and CTD sometimes cannot detect. In 2012, the 1st Leg of the Chinese 26th cruise, the multiparameter chemical sensor was carried out with the deepsea camera system over the Carlsberg Ridge in Indian Ocean by R/V DAYANGYIHAO. It was shown small Eh and S2- ions concentration abnormal around a site at Northwest Indian ridge. This site was also evidenced by the TV grab. In the 2nd Leg of the same cruise in June, this chemical sensor was carried out with TEM and SP survey system. The chemical abnormalities are matched very well with both TEM and SP survey results. The results show that the multiparameter chemical sensor method not only can detect active hydrothermal mound, but also can find the non-active massive sulfide hydrothermal mound.
NASA Astrophysics Data System (ADS)
Tao, W.; Tao, C.; Li, H.; Zhaocai, W.; Jinhui, Z.; Qinzhu, C.; Shili, L.
2014-12-01
Mid-ocean ridges, largely present far from the continental plates, are characterized by complex geological structures and numerous hydrothermal systems with complex controlling factors. Exploring seafloor sulfide resources for industrial and scientific applications is a challenge. With the advent of geophysical surveys for seabed investigation, near-bottom magnetic prospecting, which yields shallow geological structure, is an efficient method for investigating active and inactive hydrothermal fields and for researching the structure of hydrothermal systems (Tivey et al., 1993, 1996;German et al., 2008). We collected near-bottom magnetic data in the Longqi hydrothermal area, located in the southwest Indian ridge (49.6° E; Zhu et al., 2010; Tao et al., 2014), using the autonomous benthic explorer, an autonomous underwater vehicle, during the second leg of the Chinese cruise DY115-19 on board R/V DaYangYiHao. Based on the results of the intensity of the spatial differential vector method (Seaman et al., 1993), we outline the hydrothermal alternation zone. By building models, we subsequently infer a fault along the discovered hydrothermal vents; this fault line may be connected to a detachment fault (Zhao et al., 2013). In addition, we discuss the channels of the hydrothermal circulation system (Figure 1), and presume that heat was conducted to the sea subsurface by the detachment fault; the aqueous fluid that infiltrated the fault is heated and conveyed to the seafloor, promoting the circulation of the hydrothermal system.
NASA Astrophysics Data System (ADS)
Zhang, Xiaosheng; Xu, Hong; Dong, Jinxiang
2018-03-01
Nickel-ion-exchanged α-zirconium phosphate (Ni-α-ZrP) was synthesized by a mild hydrothermal synthesis method. Different raw material ratios (NaF/H3PO4/Ni(CH3COO)2·4H2O) influence the particle size of the Ni-α-ZrP samples. The grain size could be controlled and distributed from 20 to 600 nm. Ni-α-ZrP was evaluated as an additive in lithium grease in a four-ball test. A 3.0 wt.% addition of Ni-α-ZrP to lithium grease yielded maximum non-seizure load values of 1235 N, and the wear scar diameter on the lower balls is 0.42 mm at 294 N. Compared with smaller particles, the addition of Ni-α-ZrP with a larger particle size to grease yields a better load-carrying capacity.
Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles
Fulton, John L.; Hoffmann, Markus M.
2003-12-23
A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.
Rare earth oxide fluoride nanoparticles and hydrothermal method for forming nanoparticles
Fulton, John L [Richland, WA; Hoffmann, Markus M [Richland, WA
2001-11-13
A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.
NASA Astrophysics Data System (ADS)
Asadi Haroni, Hooshang; Hassan Tabatabaei, Seyed
2016-04-01
Muteh gold mining area is located in 160 km NW of Isfahan town. Gold mineralization is meso-thermal type and associated with silisic, seresitic and carbonate alterations as well as with hematite and goethite. Image processing and interpretation were applied on the ASTER satellite imagery data of about 400 km2 at the Muteh gold mining area to identify hydrothermal alterations and iron oxides associated with gold mineralization. After applying preprocessing methods such as radiometric and geometric corrections, image processing methods of Principal Components Analysis (PCA), Least Square Fit (Ls-Fit) and Spectral Angle Mapper (SAM) were applied on the ASTER data to identify hydrothermal alterations and iron oxides. In this research reference spectra of minerals such as chlorite, hematite, clay minerals and phengite identified from laboratory spectral analysis of collected samples were used to map the hydrothermal alterations. Finally, identified hydrothermal alteration and iron oxides were validated by visiting and sampling some of the mapped hydrothermal alterations.
Yin, Jun; Wang, Kun; Yang, Yuqiang; Shen, Dongsheng; Wang, Meizhen; Mo, Han
2014-11-01
Food waste (FW) was pretreated by a hydrothermal method and then fermented for volatile fatty acid (VFAs) production. The soluble substance in FW increased after hydrothermal pretreatment (⩽200 °C). Higher hydrothermal temperature would lead to mineralization of the organic compounds. The optimal temperature for organic dissolution was 180 °C, at which FW dissolved 42.5% more soluble chemical oxygen demand than the control. VFA production from pretreated FW fermentation was significantly enhanced compared with the control. The optimal hydrothermal temperature was 160 °C with a VFA yield of 0.908 g/g VSremoval. Butyrate and acetate were the prevalent VFAs followed by propionate and valerate. FW fermentation was inhibited after 200 °C pretreatment. The VFAs were extracted from the fermentation broth by liquid-liquid extraction. The VFA recovery was 50-70%. Thus, 0.294-0.411 g VFAs could be obtained per gram of hydrothermally pretreated FW (in dry weight) by this method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.
2015-01-01
This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.
Hydrothermal synthesis and shape-reactivity correlation study of automotive three-way nanocatalysts.
DOT National Transportation Integrated Search
2014-02-01
In this project, we have shown that the hydrothermal method can be used to tune : the shape/size of CeO2 nanocrystals. CeO2 nanorods and nanocubes have been successfully : prepared at low and high hydrothermal reaction temperature, respectively. The ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.
1997-08-01
A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS datamore » from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U{sup VI} to U{sup IV}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeon, Jeongho; Smith, Mark D.; Tapp, Joshua
Two new uranium(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} (1) and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} (2), were synthesized through an in situ mild hydrothermal route, and were structurally characterized by single crystal X-ray diffraction. The compounds exhibit complex crystal structures composed of corner- or edge-shared UF{sub 9} and MF{sub 6} (M=Mg, Mn) polyhedra, forming hexagonal channels in the three-dimensional framework, in which ordered or disordered divalent metal and sodium atoms reside. The large hexagonal voids contain the nearly regular M(II)F{sub 6} octahedra and sodium ions, whereas the small hexagonal cavities include M(II) and sodium ions on a mixed-occupied site.more » Magnetic susceptibility measurements yielded effective magnetic moments of 8.36 and 11.6 µ{sub B} for 1 and 2, respectively, confirming the presence and oxidation states of U(IV) and Mn(II). The large negative Weiss constants indicate the spin gap between a triplet and a singlet state in the U(IV). Magnetization data as a function of applied fields revealed that 2 exhibits paramagnetic behavior due to the nonmagnetic singlet ground state of U(IV) at low temperature. UV–vis diffuse reflectance and X-ray photoelectron spectroscopy data were also analyzed. - Graphical abstract: Two new quaternary U(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30}, were crystallized via an in situ reduction step of U(VI) to U(IV) under mild hydrothermal conditions. The compounds show complex crystal structures based on the 3-D building block of U{sub 6}F{sub 30}. Magnetic property measurements revealed that the U(IV) exhibits a nonmagnetic singlet ground state at low temperature with a spin gap. - Highlights: • Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} have been synthesized and characterized. • The U(IV) fluorides exhibit complex three-dimensional crystal structures. • The optical properties were investigated. • Magnetic susceptibility data were collected.« less
Dating of barite and anhydrite in sea-floor hydrothermal deposits in the Okinawa Trough
NASA Astrophysics Data System (ADS)
Taisei, F.; Toyoda, S.; Uchida, A.; Ishibashi, J. I.; Totsuka, S.; Shimada, K.; Nakai, S.
2016-12-01
Dating of submarine hydrothermal activities has been an important issue in the aspect of the ore formation (Urabe, 1995) and biological systems sustained by the chemical species arising from hydrothermal activities (Macdonald et al., 1980). For this purpose, dating methods using radioactive disequilibrium such as U-Th method (e.g. You and Bickle, 1998) for sulfide, 226Ra-210Pb and 228Ra-228Th (e.g. Noguchi et al., 2011), Ra/Ba, and ESR (Electron Spin Resonance) methods for barite (Okumura et al., 2010) have been employed. In this study, firstly, we will report the first successful dating results on anhydrite using 226Ra-210Pb and 228Ra-228Th methods. The anhydrite samples were taken from the Daiyon-Yonaguni knoll field and the Hatoma knoll field and the Iheya North Knoll field of the Okinawa Trough by research cruises operated by JAMSTEC. The anhydrite crystals were physically scratched out of the samples. 226Ra, 228Ra and daughter nuclei were measured in the same samples for the ESR method by the low background gamma ray spectrometry. From the activity ratios, disequilibrium ages were obtained to be about 7.3 years by 226Ra-210Pb method, and to be 0.6-2.5 years by 228Ra-228Th method. Secondly, the ESR ages of barite taken from hydrothermal areas in the Okinawa trough range from 4.1 to 16000 years, filling the age gap of the maximum age, 150 years, of 226Ra-210Pb method and the minimum age, several thousand years of U-Th method, being the most appropriate age range to discuss the evolution of the hydrothermal systems. Interestingly, the 226Ra-210Pb and 228Ra-228Th ages for the same samples are the same or younger than the ESR ages. As for the latter samples, the reason has already been discussed (Uchida et al., 2015) as the deposits had been formed by two or more hydrothermal events. In the present paper, the disequilibrium and ESR ages will be simulated with these multiple hydrothermal events so that the differences in the ages are explained.
Conventional hydrothermal synthesis of Na-A zeolite from cupola slag and aluminum sludge.
Anuwattana, Rewadee; Khummongkol, Pojanie
2009-07-15
Na-A type zeolites were prepared from two industrial wastes: the solid by-product of cupola slag and aluminum sludge from an aluminum plating plant. Two preparation methods using the same starting material compositions were carried out. In the first method, alkaline fusion was introduced, followed by the hydrothermal treatment to obtain sodium aluminosilicate which was then crystallized in NaOH solution under the condition of 90+/-3 degrees C for 1-9h with different H(2)O/SiO2 ratios. The result shows that higher H(2)O/SiO2 ratio increases the rate of crystallization. The largest amount of crystallinity for Na-A was found at 3h. In the second method, alkaline hydrothermal treatment without fusion was carried out in the same condition as the first method. No Na-A zeolite was obtained by this method. The changes of the dissolved amounts of Si(4+) and Al(3+) in 3M NaOH were investigated during the hydrothermal reaction.
Werpy, Todd [West Richland, WA; Wang, Yong [Richland, WA
2003-12-30
A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.
NASA Astrophysics Data System (ADS)
Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.
2018-04-01
In this study, hydrothermal and salt-occlusion processes were used to make chlorosodalite through reactions with a high-LiCl salt simulating a waste stream generated from pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and to aid in densification. Hydrothermal processes included reaction of the salt simulant in an autoclave with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.
Huang, Hua-Jun; Yuan, Xing-Zhong
2016-01-01
Various hydrothermal treatment methods, including hydrothermal carbonization, liquefaction and sub/super-critical water gasification, have been applied to the disposal of sewage sludge for producing bio-materials or bio-fuels. It has become a research hotspot whether the heavy metals contained in sewage sludge can be well treated/stabilized after the hydrothermal treatments. This review firstly summarized the methods of assessing heavy metals' contamination level/risk and then discussed the migration and transformation behaviors of heavy metals from the following aspects: the effect of reaction temperature, the effect of additives (catalysts and other biomass), the effect of the type of solvent and the effect of reaction time. This review can provide an important reference for the further study of the migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Yunling; College of Science, Civil Aviation University of China, Tianjin 300300; Tan, Xin
Highlights: • Flower-like brookite TiO{sub 2} structures were prepared by hydrothermal method. • PVP not only acted as a dispersant but also stabilized the layered structure. • The resulted brookite TiO{sub 2} showed high photocatalytic activity under UV irradiation. - Abstract: Flower-like brookite TiO{sub 2} nanostructures were controllable prepared by a one-step hydrothermal method by changing experimental conditions, such as hydrothermal temperature, reaction time and the amount of polyvinylpyrrolidone. The photocatalytic activities of the samples were investigated by degradation of methylene blue (MB) in aqueous solution under UV light irradiation. It was found that the formation of brookite TiO{sub 2}more » nanostructures with various morphologies could be well controlled by the adjustment of hydrothermal temperature, reaction time and the amount of surfactant, and the morphology of the products changed from spindle-like structures to flower-like structures with the increase of hydrothermal temperature, reaction time and the amount of surfactant. The photocatalytic tests indicate that the flower-like brookite TiO{sub 2} nanostructures shows high photocatalytic activity in degradation of methylene blue (MB) under UV light irradiation. The formation mechanism of flower-like brookite TiO{sub 2} nanostructures was also discussed in detail based on the above investigations.« less
NASA Astrophysics Data System (ADS)
Chen, Zhixin; Li, Danzhen; Xiao, Guangcan; He, Yunhui; Xu, Yi-Jun
2012-02-01
Marigold-like ZnIn2S4 microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 °C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn2S4, which shows that the ZnIn2S4 sample synthesized at 195 °C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment.
Xu, Hongxiu; Jiang, Lijing; Li, Shaoneng; Zhong, Tianhua; Lai, Qiliang; Shao, Zongze
2016-01-04
To investigate the diversity of culturable sulfur-oxidizing bacteria in hydrothermal vent environments of the South Atlantic, and analyze their characteristics of sulfur oxidation. We enriched and isolated sulfur-oxidizing bacteria from hydrothermal vent samples collected from the South Atlantic. The microbial diversity in enrichment cultures was analyzed using the Denatural Gradient Gel Electrophoresis method. Sulfur-oxidizing characteristics of the isolates was further studied by using ion chromatography. A total of 48 isolates were obtained from the deep-sea hydrothermal vent samples, which belonged to 23 genera and mainly grouped into alpha-Proteobacteria (58.3%), Actinobacteria (22.9%) and gama-Proteobacteria (18.8%). Among them, the genus Thalassospira, Martelella and Microbacterium were dominant. About 60% of the isolates exibited sulfur-oxidizing ability and strain L6M1-5 had a higher sulfur oxidation rate by comparison analysis. The diversity of sulfur-oxidizing bacteria in hydrothermal environments of the South Atlantic was reported for the first time based on culture-dependent methods. The result will help understand the biogechemical process of sulfur compounds in the deep-sea hydrothermal environments.
Hydrothermal method of synthesis of rare-earth tantalates and niobates
Nyman, May D; Rohwer, Lauren E.S.; Martin, James E
2012-10-16
A hydrothermal method of synthesis of a family of rare-earth Group 5 oxides, where the Group 5 oxide is a niobate or tantalate. The rare-earth Group 5 oxides can be doped with suitable emitter ions to form nanophosphors.
Hydrothermal pretreatment of palm oil empty fruit bunch
NASA Astrophysics Data System (ADS)
Simanungkalit, Sabar Pangihutan; Mansur, Dieni; Nurhakim, Boby; Agustin, Astrid; Rinaldi, Nino; Muryanto, Fitriady, Muhammad Ariffudin
2017-01-01
Hydrothermal pretreatment methods in 2nd generation bioethanol production more profitable to be developed, since the conventional pretreatment, by using acids or alkalis, is associated with the serious economic and environmental constraints. The current studies investigate hydrothermal pretreatment of palm oil empty fruit bunch (EFB) in a batch tube reactor system with temperature and time range from 160 to 240 C and 15 to 30 min, respectively. The EFB were grinded and separated into 3 different particles sizes i.e. 10 mesh, 18 mesh and 40 mesh, prior to hydrothermal pretreatment. Solid yield and pH of the treated EFB slurries changed over treatment severities. The chemical composition of EFB was greatly affected by the hydrothermal pretreatment especially hemicellulose which decreased at higher severity factor as determined by HPLC. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused negatively affect for enzymatic hydrolysis. This studies provided important factors for maximizing hydrothermal pretreatment of EFB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Zhixin, E-mail: czx@fzu.edu.cn; Analysis and Test Center, Fuzhou University, Fuzhou 350002; Li Danzhen
Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 Degree-Sign C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn{sub 2}S{sub 4}, which shows that the ZnIn{sub 2}S{submore » 4} sample synthesized at 195 Degree-Sign C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a fast microwave-assisted hydrothermal method at 80-195 Degree-Sign C with a very short reaction time of 10 min. The as-prepared ZnIn{sub 2}S{sub 4} sample can be used as visible light photocatalyst for degradation of organic dyes. Highlights: Black-Right-Pointing-Pointer ZnIn{sub 2}S{sub 4} microspheres were synthesized by microwave-assisted hydrothermal method. Black-Right-Pointing-Pointer The crystal structure and optical property of the products were almost the same. Black-Right-Pointing-Pointer Increment of the temperature renders high surface area due to the bubbling effect. Black-Right-Pointing-Pointer The ZnIn{sub 2}S{sub 4} synthesized at 195 Degree-Sign C shows the best visible catalytic activity for MO.« less
Wang, Liping; Li, Aimin; Chang, Yuzhi
2017-04-01
Hydrothermal treatment is an effective method to enhance the deep dewaterability of excess sludge with low energy consumption. In this study, an insight into the relationship between enhanced dewaterability and structural properties of the produced hydrothermal sludge was presented, aiming at better understanding the effect of hydrothermal process on excess sludge dewatering performance. The results indicated that hydrothermal effect induced the transformation of surface water to interstitial and free water by lowering the binding strength between adjacent water and solid particles and that free water became the main form for moisture existence in hydrothermal sludge as temperature was higher than 180 °C. Increase in temperature of hydrothermal treatment generated a significant size reduction of sludge flocs but treated sludge with a higher rigidity, which not only strengthened the network of hydrothermal sludge but also destroyed the binding of EPS with water. Hydrothermal process caused crevice and pore structures of excess sludge to disappear gradually, which was a main driving force of water removal as temperature was below 150 °C. With the temperature of hydrothermal treatment exceeding 180 °C, the morphology of hydrothermal sludge became rough which linked closely to the solid precipitation of condensation polymerization, and further became smooth at higher temperature (210 °C) due to the coal-like structures with higher aromaticities, indicating that hydrothermal reaction pathways began to play a main role in enhanced dewaterability. Hydrothermal treatment led to more alkyl and aromatic carbon, but lower O-alkyl, carboxyl and carbonyl carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hydrothermal synthesis of thiol-capped CdTe nanoparticles and their optical properties.
Bu, Hang-Beom; Kikunaga, Hayato; Shimura, Kunio; Takahasi, Kohji; Taniguchi, Taichi; Kim, DaeGwi
2013-02-28
Water soluble nanoparticles (NPs) with a high emission property were synthesized via hydrothermal routes. In this report, we chose thiol ligand N-acetyl-L-cysteine as the ideal stabilizer and have successfully employed it to synthesize readily size-controllable CdTe NPs in a reaction of only one step. Hydrothermal synthesis of CdTe NPs has been carried out in neutral or basic conditions so far. We found out that the pH value of precursor solutions plays an important role in the uniformity of the particle size. Actually, high quality CdTe NPs were synthesized under mild acidic conditions of pH 5. The resultant NPs indicated good visible light-emitting properties and stability. Further, the experimental results showed that the reaction temperature influenced significantly the growth rate and the maximum size of the NPs. The CdTe NPs with a high photoluminescence quantum yield (the highest value: 57%) and narrower half width at half maximum (the narrowest value: 33 nm) were attained in very short time, within 40 minutes, reaching diameters of 2.3 to 4.3 nm. The PL intensity was increased with an increase in the reaction time, reflecting the suppression of nonradiative recombination processes. Furthermore, the formation of CdTe/CdS core-shell structures was discussed from the viewpoint of PL dynamics and X-ray diffraction studies.
A microbiological survey of Montserrat Island hydrothermal biotopes.
Atkinson, T; Cairns, S; Cowan, D A; Danson, M J; Hough, D W; Johnson, D B; Norris, P R; Raven, N; Robinson, C; Robson, R; Sharp, R J
2000-10-01
In March 1996, a survey of hydrothermal sites on the island of Montserrat was carried out. Six sites (Galway's Soufrière. Gages Upper and Lower Soufrières, Hot Water Pond, Hot River, and Tar River Soufrière) were mapped and sampled for chemical, ATP, and microbial analyses. The hydrothermal Soufrière sites on the slopes of the active Chances Peak volcano exhibited temperatures up to almost 100 degrees C and were generally either mildly acidic at pH 5-7 or strongly acidic at pH 1.5-3, but with some hot streams and pools of low redox potential at pH 7-8. Hot Water Pond sites, comprising a series of heated pools near the western shoreline of the island. were neutral and saline, consistent with subsurface heating of entrained seawater. Biological activity shown by ATP analyses was greatest in near-neutral pH samples and generally decreased as acidity increased. A variety of heterotrophic and chemolithotrophic thermophilic organisms were isolated or observed in enrichment cultures. Most of the bacteria that were obtained in pure culture were familiar acidophiles and neutrophiles, but novel, iron-oxidizing species of Sulfobacillus were revealed. These species included the first mesophilic iron-oxidizing Sulfobacillus strains to be isolated and a strain with a higher maximum growth temperature (65 degrees C) than the previously described moderately thermophilic Sulfobacillus species.
Elastomer liners for geothermal tubulars Y267 EPDM Liner Program:
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirasuna, A.R.; Davis, D.L.; Flickinger, J.E.
1987-12-01
The elastomer, Y267 EPDM, has been identified as a hydrothermally stable material which can operate at temperatures in excess of 320/sup 0/C. The goal of the Y267 Liner Program was to demonstrate the feasibility of using this material as a liner for mild steel tubulars to prevent or mitigate corrosion. If successful, the usage of EPDM lined pipe by the geothermal community may have a significant impact on operating costs and serve as a viable alternative to the use of alloyed tubulars. Tooling procedures were developed under this program to mold a 0.64 cm (0.25'') thick Y267 EPDM liner intomore » a tubular test section 61 cm (2') in length and 19.1 cm (7.5'') in diameter (ID). A successful effort was made to identify a potential coupling agent to be used to bond the elastomer to the steel tubular wall. This agent was found to withstand the processing conditions associated with curing the elastomer at 288/sup 0/C and to retain a significant level of adhesive strength following hydrothermal testing in a synthetic brine at 260/sup 0/C for a period of 166 hours. Bonding tests were conducted on specimens of mild carbon steel and several alloys including Hastelloy C-276. An objective of the program was to field test the lined section of pipe mentioned above at a geothermal facility in the Imperial Valley. Though a test was conducted, problems encountered during the lining operation precluded an encouraging outcome. The results of the field demonstration were inconclusive. 6 refs., 13 figs., 13 tabs« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.
In this study, salt occlusion and hydrothermal processes were used to make chlorosodalite through reaction with a high-LiCl salt simulating a waste stream following pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and aide in densification. Hydrothermal processes included reaction of the salt simulant in an acid digestion vessel with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% formore » the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.« less
NASA Astrophysics Data System (ADS)
Yamaya, Y.; Alanis, P. K. B.; Takeuchi, A.; Cordon, J. M.; Mogi, T.; Hashimoto, T.; Sasai, Y.; Nagao, T.
2013-07-01
Taal Volcano, located in the southwestern part of Luzon Island, Philippines, has frequently experienced catastrophic eruptions from both the Main Crater on Volcano Island and flank eruptions. These eruptions have been magmatic, phreatomagmatic, and hydrothermal, with the latter implying the existence of a large-scale hydrothermal system beneath the volcano. We conducted an electrical resistivity survey using the magnetotelluric method in order to identify the location and geometry of the hydrothermal reservoir and sealing cap rock. Two-dimensional inversion using the observed data indicates four similar resistivity sections. The structure at shallow depths corresponds to volcanic deposits and an aquifer. Below 1 km, the structure features a relatively resistive zone beneath the main crater surrounded by a conductive shell. We interpreted these to be a large hydrothermal reservoir with an impermeable cap rock sealing it. Recent ground deformation detected by GPS measurements suggests that the hydrothermal reservoir is active. The interpreted cap rock thins just beneath the main crater and could easily be destroyed by an imbalance in the hydrothermal system. We conclude that this hydrothermal reservoir plays a significant role in driving catastrophic eruptions that begin with a hydrothermal explosion at the main crater.
ESR dating of submarine hydrothermal activities using barite in sulfide deposition
NASA Astrophysics Data System (ADS)
Toyoda, S.; Fujiwara, T.; Ishibashi, J.; Isono, Y.; Uchida, A.; Takamasa, A.; Nakai, S.
2012-12-01
The temporal change of submarine hydrothermal activities has been an important issue in the aspect of the evolution of hydrothermal systems which is related with ore formation (Urabe, 1995) and biological systems sustained by the chemical species arising from hydrothermal activities (Macdonald et al., 1980). Determining the ages of the hydrothermal deposit will provide essential information on such studies. Dating methods using disequilibrium between radioisotopes such as U-Th method (e.g. You and Bickle, 1998), 226}Ra-{210Pb and 228}Ra-{228Th method (e.g. Noguchi et al., 2011) have been applied to date submarine hydrothermal deposits. ESR (electron spin resonance) dating method is commonly applied to fossil teeth, shells, and quartz of Quaternay period where the natural accumulated dose is obtained from the intensities of the ESR signals which are created by natural radiation. The natural dose is divided by the dose rate to the mineral/sample to deduce the age. Okumura et al., (2010) made the first practical application of ESR (electron spin resonance) dating technique to a sample of submarine hydrothermal barite (BaSO4) to obtain preliminary ages, where Kasuya et al. (1991) first pointed out that barite can be used for ESR dating. Knowing that ESR dating of barite is promising, in this paper, we will present how we have investigated each factor that contributes ESR dating of barite in submarine hydrothermal sulfide deposition. (1) The best ESR condition for measuring the SO3- signal in barite is with the microwave power of 1mW and modulation amplitude of 0.1mT. (2) As results of heating experiments, the signal was found to be stable for the dating age range of several thousands. (3) 226Ra replacing Ba in barite is the source of the radiation. The amount of radioactive elements in sulfide mineral surrounding barite is negligible. (4) The external radiation from the sea water is negligible even in the submarine hydrothermal area where the radiation level is much higher than usual sea water. (5) The decay of 226Ra has to be considered. (6) Major terms of dose rate are the internal alpha dose rate and the external beta and gamma dose rates. (7) The alpha effectiveness, the ratio of forming the radical by internal alpha particles to by beta and gamma rays, was obtained to be 0.043±0.018. (8) The shape of the chimney sample should be considered for gamma ray dose. Examples of dating results for submarine hydrothermal deposits from South Mariana and Okinawa Trough will be presented.
Qiu, Peiyu; Sun, Rongjin; Gao, Guo; Zhang, Chunlei; Chen, Bin; Yan, Naishun; Yin, Ting; Liu, Yanlei; Zhang, Jingjing; Yang, Yao; Cui, Daxiang
2015-01-01
Rare-earth (RE)-doped upconversion nanocrystals (UCNCs) are deemed as the promising candidates of luminescent nanoprobe for biological imaging and labeling. A number of methods have been used for the fabrication of UCNCs, but their assembly into porous architectures with desired size, shape and crystallographic phase remains a long-term challenging task. Here we report a facile, anion-induced hydrothermal oriented-explosive method to simultaneously control size, shape and phase of porous UCNCs. Our results confirmed the anion-induced hydrothermal oriented-explosion porous structure, size and phase transition for the cubic/hexagonal phase of NaLuF4 and NaGdF4 nanocrystals with various sizes and shapes. This general method is very important not only for successfully preparing lanthanide doped porous UCNCs, but also for clarifying the formation process of porous UCNCs in the hydrothermal system. The synthesized UCNCs were used for in vitro and in vivo CT imaging, and could be acted as the potential CT contrast agents. PMID:25767613
Feng, Xiaoqian; Li, Hongmo; Zhang, Qing; Zhang, Peng; Song, Xuefeng; Liu, Jing; Zhao, Liping; Gao, Lian
2016-11-11
SiO 2 -Ag-SiO 2 , a sandwiched core/shell structure with a layer of Ag nanoparticles (∼4 nm) encapsulated between a shallow SiO 2 surface layer and a SiO 2 submicrosphere substrate (∼200 nm), has been synthesized from [Formula: see text] and SiO 2 spheres by a facile one-pot hydrothermal method. The composite is proposed to result from the dynamic balance between the [Formula: see text] reduction and the dissolution-redeposition of SiO 2 in mild basic media. The synthetic mechanism and the roles of the reaction time, temperature, and the amount of ammonia in the formation of this unique structure are investigated and discussed. The composite structure shows superior catalytic performance in CO oxidation to the control Ag/SiO 2 structure prepared by impregnation. Pre-treatment by O 2 at 600 °C significantly improves the catalytic performance of the composite structure and preserves the nanocomposite structure well.
Interface-mediated fabrication of bowl-like and deflated ballon-like hollow carbon nanospheres.
Zhang, Haijiao; Li, Xia
2015-08-15
In our work, two kinds of hollow carbon nanospheres with controlled morphologies have been successfully prepared from low-cost and nontoxic glucose as the sole carbon precursor under neutral aqueous medium via a simple hydrothermal route. During the process, sodium dodecylbenzene sulfonate (SDBS) and triblock copolymer P123 ((EO)20(PO)70(EO)20) was skillfully selected as the structure-directing agent, respectively. SEM, TEM and AFM results revealed that the two products showed bowl-like and deflated-balloon-like morphology with uniform particle sizes, respectively. Based on the experimental observations, a possible formation mechanism was also discussed, in which the growth of the carbon nanospheres involved an interface-medicated assembly process. The present method was easy, green and mild. Apart from the unique nanostructure, the obtained bowl-like hollow carbon nanospheres exhibited excellent biocompatibility. In particular, it should be mentioned that the open window formed by the bowl-like morphology can facilitate ion transport, thus improving their performances. Copyright © 2015 Elsevier Inc. All rights reserved.
Hydrothermal Alteration in an Acid-Sulphate Geothermal Field: Sulphur Springs, Saint Lucia
NASA Astrophysics Data System (ADS)
Joseph, E. P.; Barrett, T. J.
2017-12-01
Sulphur Springs is a vigorous geothermal field associated with the Soufrière Volcanic Centre in southern Saint Lucia. Bubbling hydrothermal pools are rich in sodium-calcium sulphate, with pHs of 3-7 and temperatures of 41-97ºC. Fumaroles have temperatures up to, and at times above, 100°C. Gases from bubbling pools and fumaroles have high contents of CO2 (601-993 mmol/mol) and H2S (3-190 mmol/mol). To investigate the nature and extent of hydrothermal alteration, detailed chemical analysis was carried out on 25 altered rocks, 10 sediments from pools and creeks in the main discharge area, and 15 little-altered rocks up to 2 km away from geothermal field. Eight altered samples were also analysed for stable isotope compositions, with mineralogy determined by X-ray diffraction and mineral liberation analysis. Least-altered host rocks comprise calc-alkaline feldspar-quartz-porphyritic dacites of near-uniform composition that form massive domes and volcaniclastic units. These rocks were emplaced 10-30 Ka ago (Lindsay et al. 2013). Within the geothermal field, the dacites have been highly altered to kaolinite, quartz, cristobalite, alunite, natroalunite, smectite, native sulphur, jarosite, gypsum and amorphous compounds. Muds from grey to blackish hydrothermal pools additionally contain iron sulphides, mainly pyrite. Despite intense alteration of the original dacites, Zr and Ti have remained essentially immobile, allowing the calculation of mass changes. Major depletions of Fe, Mg, Ca, Na and commonly Si occur over an area of at least 200 x 400 m. The most altered rocks also show losses of Al, light REE and Y, implying leaching by highly acidic waters. A few altered rocks have, however, gained Al together with Si and P. Also present are m-scale zones of silica + native sulphur, wherein the silica appears to represent a residue from the leaching of dacite, rather than a hydrothermal addition. Delta-34S values of samples containing mixtures of sulphates, native sulphur and iron sulphides are all notably negative (-5 to -16 ‰), consistent with derivation of sulphur from acidic magmatic gases that reacted with oxidized groundwater. Despite the strongly acidic alteration of the host rocks, most hydrothermal pools are neutral or only mildly acidic, suggesting that they contain a notable component of meteoric water.
The hydrothermal exploration system on the 'Qianlong2' AUV
NASA Astrophysics Data System (ADS)
Tao, W.; Tao, C.; Jinhui, Z.; Cai, L.; Guoyin, Z.
2016-12-01
ABSTRACT: Qianlong2, is a fully Autonomous Underwater Vehicle (AUV) designed for submarine resources research, especially for polymetallic sulphides, and the survey depths of is up to 4500 m. Qianlong2 had successfully explored hydrothermal vent field on the Southwest Indian Ridge (SWIR), and collected conductance, temperature and depth (CTD), turbidity, and Oxidation-Reduction Potential (ORP) data. It also had mapped precise topography by high resolution side scan sonar (HRBSSS) during every dive; and obtained photographs of sulfide deposits during some dives. Here, we detailedly described the implementation of investigation, data administration, and fast mapping of hydrothermal exploration system by Qianlong2. Giving a description of how to remove the platform magnetic interference by using magnetic data during Qianlong2 spin. Based on comprehensive hydrochemical anomalies, we get a rapid method for finding the localization of hydrothermal vents. Taking one dive as an example, we systemically showed the process about how to analyse hydrothermal survey data and acquire the location results of hydrothermal vents. Considering that this method is effective and can be used in other deep-submergence assets such as human occupied vehicles (HOVs) and remotely operated vehicles (ROVs) during further studies. Finally, we discussed how to promote and optimize the installation and application of those sensors and how to improve Qianlong2's autonomy of investigation.
Kim, Young Jin; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S
2011-08-15
Recently, we have shown silver vanadium phosphorous oxide (Ag(2)VO(2)PO(4), SVPO) to be a promising cathode material for lithium based batteries. Whereas the first reported preparation of SVPO employed an elevated pressure, hydrothermal approach, we report herein a novel ambient pressure synthesis method to prepare SVPO, where our chimie douce preparation is readily scalable and provides material with a smaller, more consistent particle size and higher surface area relative to SVPO prepared via the hydrothermal method. Lithium electrochemical cells utilizing SVPO cathodes made by our new process show improved power capability under constant current and pulse conditions over cells containing cathode from SVPO prepared via the hydrothermal method.
NASA Astrophysics Data System (ADS)
Dhafina, Wan Almaz; Salleh, Hasiah; Daud, Mohd Zalani; Ghazali, Mohd Sabri Mohd; Ghazali, Salmah Mohd
2017-09-01
ZnO is an wide direct band gap semiconductor and possess rich family of nanostructures which turned to be a key role in the nanotechnology field of applications. Hydrothermal method was proven to be simple, robust and low cost among the reported methods to synthesize ZnO nanostructures. In this work, the properties of ZnO nanostructures were altered by varying temperatures of hydrothermal process. The changes in term of morphological, crystal structures, optical properties and electrical conductivity were investigated. A drastic change of ZnO nanostructures morphology and decreases of 002 diffraction peak were observed as the hydrothermal temperature increased. The band gap of samples decreased as the size of ZnO nanostructure increased, whereas the electrical conductivity had no influence on the band gap value but more on the morphology of ZnO nanostructures instead.
Hydrothermal contamination of public supply wells in Napa and Sonoma Valleys, California
Forrest, Matthew J.; Kulongoski, Justin T.; Edwards, Matthew S.; Farrar, Christopher D.; Belitz, Kenneth; Norris, Richard D.
2013-01-01
Groundwater chemistry and isotope data from 44 public supply wells in the Napa and Sonoma Valleys, California were determined to investigate mixing of relatively shallow groundwater with deeper hydrothermal fluids. Multivariate analyses including Cluster Analyses, Multidimensional Scaling (MDS), Principal Components Analyses (PCA), Analysis of Similarities (ANOSIM), and Similarity Percentage Analyses (SIMPER) were used to elucidate constituent distribution patterns, determine which constituents are significantly associated with these hydrothermal systems, and investigate hydrothermal contamination of local groundwater used for drinking water. Multivariate statistical analyses were essential to this study because traditional methods, such as mixing tests involving single species (e.g. Cl or SiO2) were incapable of quantifying component proportions due to mixing of multiple water types. Based on these analyses, water samples collected from the wells were broadly classified as fresh groundwater, saline waters, hydrothermal fluids, or mixed hydrothermal fluids/meteoric water wells. The Multivariate Mixing and Mass-balance (M3) model was applied in order to determine the proportion of hydrothermal fluids, saline water, and fresh groundwater in each sample. Major ions, isotopes, and physical parameters of the waters were used to characterize the hydrothermal fluids as Na–Cl type, with significant enrichment in the trace elements As, B, F and Li. Five of the wells from this study were classified as hydrothermal, 28 as fresh groundwater, two as saline water, and nine as mixed hydrothermal fluids/meteoric water wells. The M3 mixing-model results indicated that the nine mixed wells contained between 14% and 30% hydrothermal fluids. Further, the chemical analyses show that several of these mixed-water wells have concentrations of As, F and B that exceed drinking-water standards or notification levels due to contamination by hydrothermal fluids.
NASA Astrophysics Data System (ADS)
Holbrook, W. S.; Carr, B.; Pasquet, S.; Sims, K. W. W.; Dickey, K.
2016-12-01
Despite the prominence of Yellowstone as the world's most active hydrothermal province, relatively little is known about the plumbing systems that link deeper hydrothermal fluids to the charismatic hot springs, geysers and mud pots at the surface. We present the results of a multi-method, multi-scale geophysical investigation of the Obsidian Pool Thermal Area (OPTA) in Yellowstone National Park. OPTA hosts acid-sulfate hot springs and mud pots with relatively low pH. We present the results of seismic refraction, electrical resistivity, time-domain EM (TEM), soil conductivity meter (EMI), and GPR data acquired in July 2016. There is a strong contrast in physical properties in the upper 50 m of the subsurface between the low-lying hydrothermal area and surrounding hills: the hydrothermal area has much lower seismic velocities ( 1 km/s vs 3 km/s) and electrical resistivity ( 20 ohm-m vs 300 ohm-m). A prominent zone of very low resistivity (<10 ohm-m) exists at about 20 m depth beneath all hydrothermal features. Poisson's ratio, calculated from P-wave refraction tomography and surface wave inversions, shows low values beneath the "frying pan," where gas is emerging in small fumaroles, suggesting that Poisson's ratio is an effective "gas detector" in hydrothermal areas. Near-surface resistivity mapped from EMI shows a strong correlation with hydrothermal areas previously mapped by heat flow, with areas of high heat flow generally having low resistivity near the surface. Two exceptions are (1) the "frying pan," which shows a central area of high resistivity (corresponding to escaping gas) surrounding by a halo of low resistivity, and (2) a broad area of low resistivity connecting the hydrothermal centers to the lake, which may be clay deposits. TEM data penetrate up to 200 m in depth and suggest that a reservoir of hydrothermal fluids may underlie the entire area, including beneath the forested hills, at depths greater than 100 m, but that they rise toward the surface in a 100-m-wide area just west of the frying pan. Our results show that synoptic, multi-scale geophysical measurements can place important constraints on the subsurface pathways of hydrothermal waters and gas.
Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process
NASA Astrophysics Data System (ADS)
Wang, Libo; Zhang, Heng; Wang, Bo; Shen, Changjie; Zhang, Chuanxiang; Hu, Qianku; Zhou, Aiguo; Liu, Baozhong
2016-09-01
In this study, a simple hydrothermal method has been developed to prepare Ti3C2Tx from Ti3AlC2 as a high-performance electrode material for supercapacitors. This method is environmentally friendly and has a low level of danger. The morphology and structure of the Ti3C2Tx can be controlled by hydrothermal reaction time, temperature and NH4F amounts. The prepared Ti3C2Tx was characterized by X-ray diffraction, field emission scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and Brunauer-Emmet-Teller. The results show that the prepared Ti3C2Tx is terminated by O, OH, and F groups. The electrochemical properties of the Ti3C2Tx sample exhibit specific capacitance up to 141 Fcm-3 in 3 M KOH aqueous electrolyte, and even after 1000 cycles, no significant degradation of the volumetric capacitance was observed. These results indicate that the Ti3C2Tx material prepared by this hydrothermal method can be used in high performance supercapacitors.
230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Yang, Weifang; Tao, Chunhui; Li, Huaiming; Liang, Jin; Liao, Shili; Long, Jiangping; Ma, Zhibang; Wang, Lisheng
2017-06-01
Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones at the central volcano, at 50°28'E in the ultraslow-spreading Southwest Indian Ridge (SWIR). Twenty-eight subsamples from a relict chimney and massive sulfides were dated using the 230Th/238U method. Four main episodes of hydrothermal activity were determined according to the restricted results: 68.9-84.3, 43.9-48.4, 25.3-34.8, and 0.7-17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. The periodic character of hydrothermal activity may be related to the heat source provided by the interaction of local magmatism and tectonism. The estimated mean growth rate of the sulfide chimney is <0.02 mm/yr. This study is the first to estimate the growth rate of chimneys in the SWIR. The maximum age of the relict chimney in Duanqiao hydrothermal filed is close to that of the chimneys from Mt. Jourdanne (70 kyrs). The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. The preliminarily estimated reserves of sulfide ores of Duanqiao are approximately 0.5-2.9 million tons.
Zhao, Yufeng; Chen, Zhaoyang; Xiong, Ding-Bang; Qiao, Yuqing; Tang, Yongfu; Gao, Faming
2016-01-01
A novel hybridized phosphate is developed through a mild hydrothermal method to construct high performance asymmetric supercapacitor. Single layered (Ni,Co)3(PO4)2·8H2O nanoslices (∼1 nm) and single crystal (NH4)(Ni,Co)PO4·0.67H2O microplatelets are obtained through a template sacrificial method and dissolution recrystallization approach respectively in one step. This unique hybridized structure delivers a maximum specific capacitance of 1128 F g−1 at current density of 0.5 A g−1. The asymmetric supercapacitor (ASC) based on the hybrid exhibits a high energy density of 35.3 Wh kg−1 at low power density, and still holds 30.9 Wh kg−1 at 4400 W kg−1. Significantly, the ASC manifests very high cycling stability with 95.6% capacitance retention after 5000 cycles. Such excellent electrochemical performance could be attributed to the synergistic effect of the surface redox reaction from the ultrathin nanoslices and ion intercalation from the single crystal bulk structure. This material represents a novel kind of electrode material for the potential application in supercapacitors. PMID:26833204
NASA Astrophysics Data System (ADS)
Zhao, Yufeng; Chen, Zhaoyang; Xiong, Ding-Bang; Qiao, Yuqing; Tang, Yongfu; Gao, Faming
2016-02-01
A novel hybridized phosphate is developed through a mild hydrothermal method to construct high performance asymmetric supercapacitor. Single layered (Ni,Co)3(PO4)2·8H2O nanoslices (˜1 nm) and single crystal (NH4)(Ni,Co)PO4·0.67H2O microplatelets are obtained through a template sacrificial method and dissolution recrystallization approach respectively in one step. This unique hybridized structure delivers a maximum specific capacitance of 1128 F g-1 at current density of 0.5 A g-1. The asymmetric supercapacitor (ASC) based on the hybrid exhibits a high energy density of 35.3 Wh kg-1 at low power density, and still holds 30.9 Wh kg-1 at 4400 W kg-1. Significantly, the ASC manifests very high cycling stability with 95.6% capacitance retention after 5000 cycles. Such excellent electrochemical performance could be attributed to the synergistic effect of the surface redox reaction from the ultrathin nanoslices and ion intercalation from the single crystal bulk structure. This material represents a novel kind of electrode material for the potential application in supercapacitors.
2011-01-01
Background Biomass use for the production of bioethanol or platform chemicals requires efficient breakdown of biomass to fermentable monosaccharides. Lignocellulosic feedstocks often require physicochemical pretreatment before enzymatic hydrolysis can begin. The optimal pretreatment can be different for different feedstocks, and should not lead to biomass destruction or formation of toxic products. Methods We examined the influence of six mild sulfuric acid or water pretreatments at different temperatures on the enzymatic degradability of sugar-beet pulp (SBP). Results We found that optimal pretreatment at 140°C of 15 minutes in water was able to solubilize 60% w/w of the total carbohydrates present, mainly pectins. More severe treatments led to the destruction of the solubilized sugars, and the subsequent production of the sugar-degradation products furfural, hydroxymethylfurfural, acetic acid and formic acid. The pretreated samples were successfully degraded enzymatically with an experimental cellulase preparation. Conclusions In this study, we found that pretreatment of SBP greatly facilitated the subsequent enzymatic degradation within economically feasible time ranges and enzyme levels. In addition, pretreatment of SBP can be useful to fractionate functional ingredients such as arabinans and pectins from cellulose. We found that the optimal combined severity factor to enhance the enzymatic degradation of SBP was between log R'0 = -2.0 and log R'0 = -1.5. The optimal pretreatment and enzyme treatment solubilized up to 80% of all sugars present in the SBP, including ≥90% of the cellulose. PMID:21627804
Hydrothermal Synthesis and Electrochemical Properties of Spherical α-MnO2 for Supercapacitors.
Chen, Ya; Qin, Wenqing; Fan, Ruijuan; Wang, Jiawei; Chen, Baizhen
2015-12-01
In the present work, spherical α-MnO2 with a high specific capacitance was synthesized by a two-step hydrothermal route. MnCO3 precursors were first prepared by a common hydrothermal method, and then converted to α-MnO2 via a hydrothermal reaction between the precursors and KMnO4 solutions. The effects of hydrothermal temperature on the morphology, crystal structure and specific area of the MnO2 were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET measurements. The electrochemical capacitive properties of the manganese dioxides with different morphologies and structures were evaluated by cyclic voltammetry and galvonostatic charge-discharge tests. The results showed that the temperature in the second hydrothermal step had prominent impact on the capacitive properties of a-MnO2. The MnO2 synthesized at 150 *C exhibited a highest specific capacitance of 328.4 Fx g(-1) at a charge-discharge current density of 100 mA x g(-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Pengfei; Zhang, Jiachi, E-mail: zhangjch@lzu.edu.cn; Qin, Qingsong
2014-02-01
Highlights: • We designed a novel afterglow labeling material SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} for the first time. • Hollow SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} spheres with afterglow were prepared by hydrothermal method. • Hollow SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} is a potential afterglow labeling medium for drug delivery. - Abstract: A novel afterglow labeling material SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} with hollow sphere shape and intense afterglow luminescence is prepared by hydrothermal method at 180 °C for the first time. The morphology and the sphere growth process of this material are investigated by scanning electron microscopy in detail. The afterglow measurement shows thatmore » this hydrothermal obtained material exhibits obvious red afterglow luminescence (550–700 nm) of Sm{sup 3+} which can last for 542 s (0.32 mcd/m{sup 2}). The depth of traps in this hydrothermal obtained material is calculated to be as shallow as 0.58 eV. The results demonstrate that although it is necessary to further improve the afterglow performance of the hydrothermal derived hollow SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} spheres, it still can be regarded as a potential afterglow labeling medium for drug delivery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preda, Silviu, E-mail: predas01@yahoo.co.uk; Rutar, Melita; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana
2015-11-15
Highlights: • The microwave-assisted hydrothermal route was used for titanate nanotubes synthesis. • Conversion to single-phase nanotube morphology completes after 8 h reaction time. • The nanotube morphology is stable up to 600 °C, as determined by in-situ XRD and SEM. • Sodium ions migrate to the surface due to thermal motion and structure condensation. - Abstract: Sodium titanate nanotubes (NaTiNTs) were synthesized by microwave-assisted hydrothermal treatment of commercial TiO{sub 2}, at constant temperature (135 °C) and different irradiation times (15 min, 1, 4, 8 and 16 h). The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electronmore » microscopy, differential scanning calorimetry and specific surface area measurements. The irradiation time turned out to be the key parameter for morphological control of the material. Nanotubes were observed already after 15 min of microwave irradiation. The analyses of the products irradiated for 8 and 16 h confirm the complete transformation of the starting TiO{sub 2} powder to NaTiNTs. The nanotubes are open ended with multi-wall structures, with the average outer diameter of 8 nm and specific surface area up to 210 m{sup 2}/g. The morphology, surface area and crystal structure of the sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method were similar to those obtained by conventional hydrothermal method.« less
Exploration Method Development for hydrothermal plume hunting by XCTD
NASA Astrophysics Data System (ADS)
Kitagawa, Y.; Ikeda, M.; Kadoshima, K.; Koizumi, Y.; Nakano, J.; Asakawa, E.; Sumi, T.
2017-12-01
J-MARES (Research and Development Partnership for Next Generation Technology of Marine Resources Survey, JAPAN) has been designing a low-cost and high-efficiency exploration system for seafloor hydrothermal massive sulfide deposits in "Cross-ministerial Strategic Innovation Promotion Program (SIP)" granted by the Cabinet Office, Government of Japan since 2014. We proposed hydrothermal plume hunting by XCTD (eXpendables Conductivity, Temperature and Depth). We applied this method to an area of interest more than 100km x 100km over Okinawa Trough, including some known seafloor massive sulfide deposits. Generally, hydrothermal plume exploration has been by ship mounted with MBES (Multi Beam Echo Sounder) or AUV with sound anomaly observation. However, these methods have to charter the sophisticated ship costly. On the other hand, throw-in type water quality meters (eg. XCTD and XBT) can be low-cost and easily operable. Moreover, that can make a quick look at seawater temperature and conductivity even in rough waters.Firstly, we confirmed XCTD probes position on the seafloor by ROV mounted deep-sea high vision camera. As a result of the test, probes swept downstream about 40 m in horizontal distance from throwing positions with about 1,600m in water depth. Following the previous test results, we had performed to the next test that confirmed detection range of hydrothermal plume at the chimney of North Mound in Izena Cauldron, so we had caught anomaly of seawater temperature and conductivity successfully which could be possibly derived from hydrothermal activities. Although averaged seawater temperature at a depth of 1500 m or more was about 3.95 degrees C, near the chimney was about 4.93 degrees C. The temperature anomalies originated from the hydrothermal plumes could be distributed at most 30m in horizontal distance and became smaller away from the chimney. Moreover, temperature anomaly mass of sea water tended to move upward in depth with distance away from the chimney.
Preparation of ultrasmall porous carbon nanospheres by reverse microemulsion-hydrothermal method
NASA Astrophysics Data System (ADS)
Wang, Jiasheng; Zhao, Yahong; Wang, Wan-Hui; Bao, Ming
Porous carbon nanospheres (CNSs) have wide applications. A big challenge in materials science is synthesis of discrete ultrasmall porous carbon nanospheres. Herein, we report a facile reverse microemulsion-hydrothermal method to prepare discrete porous CNSs. The obtained CNSs possess an average diameter of 20nm and pores of 0.7nm and 3.4nm. Our work has provided a convenient method for the controllable synthesis of ultrasmall porous CNSs with potential applications.
Mechano-hydrothermal preparation of Li-Al-OH layered double hydroxides
NASA Astrophysics Data System (ADS)
Zhang, Fengrong; Hou, Wanguo
2018-05-01
A mechano-hydrothermal (MHT) method was used to synthesize Li-Al-OH layered double hydroxides (LDHs) from LiOH·H2O, Al(OH)3 and H2O as starting materials. A two-step synthesis was conducted, that is, Al(OH)3 was milled for 1 h, followed by hydrothermal treatment with LiOH·H2O solution. Effects of the LiOH/Al(OH)3 molar ratio (RLi/Al) and hydrothermal temperature (Tht) on the crystallinity, morphology, and composition of the product were examined. The resulting LDHs were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared, and elemental analyses. The results showed that pre-milling plays a key role in the LDH formation during subsequent hydrothermal treatment. The Li/Al molar ratio of the obtained LDHs keeps constant at 0.5, independent from theRLi/Al (0.5-5.0) in the starting materials. An increase in the Tht (20-80 °C) can enhance the crystallinity and morphology regularity of the products. The so-obtained Li-Al-OH LDHs exhibit high crystallinity and well-dispersity, which may have wider applications than the aggregate ones obtained using conventional mechanochemical and Li+-imbibition methods.
Ion/proton-conducting apparatus and method
Yates, Matthew; Xue, Wei
2014-12-23
A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors. Additional high-density and gas-tight HAP film compositions may be deposited using a two-step deposition method that includes an electrochemical deposition method followed by a hydrothermal deposition method. The two-step method uses a single hydrothermal deposition solution composition. The method may be used to deposit HAP films including but not limited to at least doped HAP films, and more particularly including carbonated HAP films. In addition, the high-density and gas-tight HAP films may be used in proton exchange membrane fuel cells.
NASA Astrophysics Data System (ADS)
White, S. M.
2018-05-01
New AUV-based mapping technology coupled with machine-learning methods for detecting individual vents and vent fields at the local-scale raise the possibility of understanding the geologic controls on hydrothermal venting.
Phosphorus reclamation through hydrothermal carbonization of animal manures
USDA-ARS?s Scientific Manuscript database
Projected shortages of global phosphate have prompted investigation of methods that could be employed to capture and recycle phosphate, rather than continue to allow the resource to be essentially irreversibly lost through dilution in surface waters. Hydrothermal carbonization of animal manures from...
Mohtor, Nur Hamizah; Othman, Mohd Hafiz Dzarfan; Bakar, Suriani Abu; Kurniawan, Tonni Agustiono; Dzinun, Hazlini; Norddin, Muhammad Noorul Anam Mohd; Rajis, Zanariah
2018-05-28
Hydrothermal method has been proven to be an effective method to synthesise the nanostructured titanium dioxide (TiO 2 ) with good morphology and uniform distribution at low temperature. Despite of employing a well-known and commonly used glass substrate as the support to hydrothermally synthesise the nanostructured TiO 2 , this study emphasised on the application of kaolin hollow fibre membrane as the support for the fabrication of kaolin/TiO 2 nanorods (TNR) membrane. By varying the hydrothermal reaction times (2 h, 6 h, and 10 h), the different morphology, distribution, and properties of TiO 2 nanorods on kaolin support were observed by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscope (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). It was found that the well-dispersed of TiO 2 nanorods have improved the surface affinity of kaolin/TNR membrane towards water, allowing kaolin/TNR membrane prepared from 10 h of hydrothermal reaction to exhibit the highest water permeation of 165 L/h.m 2 .bar. In addition, this prepared membrane also showed the highest photocatalytic activity of 80.3% in the decolourisation of reactive black 5 (RB5) under UV irradiation. On top of that, the kaolin/TNR membrane prepared from 10 h of hydrothermal reaction also exhibited a good resistance towards photocorrosion, enabling the reuse of this membrane for three consecutive cycles of photocatalytic degradation of RB5 without showing significant reduction in photocatalytic efficiency towards the decolourisation of RB5. Copyright © 2018 Elsevier Ltd. All rights reserved.
Simulating Electrochemistry of Hydrothermal Vents on Enceladus and Other Ocean Worlds
NASA Astrophysics Data System (ADS)
Barge, L. M.; Krause, F. C.; Jones, J. P.; Billings, K.; Sobron, P.
2017-12-01
Gradients generated in hydrothermal systems provide a significant source of free energy for chemosynthetic life, and may play a role in present-day habitability on ocean worlds such as Enceladus that are thought to host hydrothermal activity. Hydrothermal vents are similar in some ways to typical fuel cell devices: redox/pH gradients between seawater and hydrothermal fluid are analogous to the oxidant and fuel reservoirs; conductive natural mineral deposits are analogous to electrodes; and, in hydrothermal chimneys, the porous chimney wall can function as a separator or ion-exchange membrane. Electrochemistry, founded on quantitative study of redox and other chemical disequilibria as well as the chemistry of interfaces, is uniquely suited to studying these systems. We have performed electrochemical studies to better understand the catalytic potential of seafloor minerals and vent chimneys, using samples from a black smoker vent chimney as an initial demonstration. Fuel cell experiments with electrodes made from black smoker chimney material accurately simulated the redox reactions that occur in a geological setting with this particular catalyst. Similar methods with other geo-catalysts (natural or synthetic) could be utilized to test which redox reactions or metabolisms could be driven in other hydrothermal systems, including putative vent systems on other worlds.
NASA Astrophysics Data System (ADS)
Takasaki, Rikiya; Yuan, Lee Chang; Kamahara, Hirotsugu; Atsuta, Youichi; Daimon, Hiroyuki
2017-10-01
Hydrothermal treatment is one of the pre-treatment method for anaerobic digestion. The application of hydrothermal treatment to sewage sludge of wastewater treatment plant has been succeeded to enhance the biogas production. The purpose of this study is to quantitatively clarify the effect of hydrothermal treatment on anaerobic digestion process focusing on acid detergent fiber (ADF) in sewage sludge, which is low biodegradability. The hydrothermal treatment experiment was carried out for 15 minutes between 160 °C and 200 °C respectively. The ADF content was decreased after hydrothermal treatment compared with untreated sludge. However, ADF content was increased when raising the treatment temperature from 160 °C to 200 °C. During batch anaerobic digestion experiment, untreated and treated sludge were examined for 10 days under 38 °C, and all samples were fed once based on volatile solids of samples. From batch anaerobic digestion experiment, as ADF content in sewage sludge increased, the total biogas production decreased. It was found that ADF content in sewage sludge influence on anaerobic digestion. Therefore, ADF could be one of the indicator to evaluate the effect of hydrothermal treatment to sewage sludge on anaerobic digestion.
NASA Astrophysics Data System (ADS)
Currin Sala, A. M.; Koepke, J.; Almeev, R. R.; Teagle, D. A. H.; Zihlmann, B.; Wolff, P. E.
2017-12-01
Evidence of high temperature brine/rock interaction is found in hydrothermal veins and dykelets that cross-cut layered olivine gabbros in the deep palaeocrust of the Sumail Ophiolite, Sultanate of Oman. Here we present petrological and geochemical data from these samples, and an experimental attempt to simulate brine/gabbro interaction using externally heated cold seal pressure vessels. The studied natural veins and dykelets contain pargasite, hornblende, actinolite, and Cl-rich pargasite with up to 5 wt% Cl, showing a range of formation conditions from magmatic to metamorphic (hydrothermal) and thus a complex history of brine/rock interaction. In addition, the isotopic study of the radiogenic 87/86Sr and stable 18O in different amphibole types provide an estimate for the extent of seawater influence as alteration agent in the veins of the studied samples. Experiments performed at 750 °C and 200 MPa with different starting materials (chlorine-free amphibole, olivine gabbro powder) and 20 wt% NaCl aqueous brine, illustrate the process by which gabbro-hosted amphibole-rich veins evolve at subsolidus temperatures in the presence of a seawater-derived fluid. Our results demonstrate a decrease in olivine, plagioclase and magnetite content in favour of hastingsite, pargasite and magnesiohornblende, a decrease of IVAl and Ti in the starting amphibole, and an increase in Cl in amphibole, up to 0.2 Cl wt%. Our experiments show the change of magmatic pargasite towards more magnesium and silica-rich end members with results comparable to mildly chlorine-rich pargasites and hornblendes found in the natural samples studied. However, the experimental setup also presents limitations in the attainment of very high-chlorine amphibole (up to 5 wt%). Our analytical and experimental results provide further evidence for the existence of a hydrothermal cooling system in the deep oceanic crust.
Synthesis of Silver-Strontium Titanate Hybrid Nanoparticles by Sol-Gel-Hydrothermal Method.
Ueno, Shintaro; Nakashima, Kouichi; Sakamoto, Yasunao; Wada, Satoshi
2015-03-24
Silver (Ag) nanoparticle-loaded strontium titanate (SrTiO₃) nanoparticles were attempted to be synthesized by a sol-gel-hydrothermal method. We prepared the titanium oxide precursor gels incorporated with Ag⁺ and Sr 2+ ions with various molar ratios, and they were successfully converted into the Ag-SrTiO₃ hybrid nanoparticles by the hydrothermal treatment at 230 °C in strontium hydroxide aqueous solutions. The morphology of the SrTiO₃ nanoparticles is dendritic in the presence and absence of Ag⁺ ions. The precursor gels, which act as the high reactive precursor, give rise to high nucleation and growth rates under the hydrothermal conditions, and the resultant diffusion-limited aggregation phenomena facilitate the dendritic growth of SrTiO₃. From the field-emission transmission electron microscope observation of these Ag-SrTiO₃ hybrid nanoparticles, the Ag nanoparticles with a size of a few tens of nanometers are distributed without severe agglomeration, owing to the competitive formation reactions of Ag and SrTiO₃.
NASA Astrophysics Data System (ADS)
Wang, Wei; Ding, Zui; Zhao, Xiruo; Wu, Sizhu; Li, Feng; Yue, Ming; Liu, J. Ping
2015-05-01
Three kinds of spinel ferrite nanocrystals, MFe2O4 (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH4) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modes at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (Ms). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.
Song, Sangho; Kim, Hyun Chan; Kim, Jung Woong; Kim, Debora
2017-01-01
Miniaturized accelerometers are necessary for evaluating the performance of small devices, such as haptics, robotics and simulators. In this study, we fabricated miniaturized accelerometers using well-aligned ZnO nanowires. The layer of ZnO nanowires is used for active piezoelectric layer of the accelerometer, and copper was chosen as a head mass. Seedless and refresh hydrothermal synthesis methods were conducted to grow ZnO nanowires on the copper substrate and the effect of ZnO nanowire length on the accelerometer performance was investigated. The refresh hydrothermal synthesis exhibits longer ZnO nanowires, 12 µm, than the seedless hydrothermal synthesis, 6 µm. Performance of the fabricated accelerometers was verified by comparing with a commercial accelerometer. The sensitivity of the fabricated accelerometer by the refresh hydrothermal synthesis is shown to be 37.7 pA g−1, which is about 30 times larger than the previous result. PMID:28989760
NASA Astrophysics Data System (ADS)
Purwaningsih, Hariyati; Pratiwi, Vania Mitha; Purwana, Siti Annisa Bani; Nurdiansyah, Haniffudin; Rahmawati, Yenny; Susanti, Diah
2018-04-01
Rice husk is an agricultural waste that is potentially used as natural silica resources. Natural silica claimed to be safe in handling, cheap and can be generate from cheap resource. In this study mesoporous silica was synthesized using sodium silicate extracted from rice husk ash. This research's aim are to study the optimization of silica extraction from rice husk, characterizing mesoporous silica from sol-gel method and surfactant templating from rice husk and the effect of hydrothermal temperature on mesoporous silica nanoparticle (MSNp) formation. In this research, rice husk was extracted with sol-gel method and was followed by hydrothermal treatment; several of hydrothermal temperatures were 85°C, 100°C, 115°C, 130°C and 145° for 24 hours. X-ray diffraction analysis was identified of α-SiO2 phase and NaCl compound impurities. Scherer's analysis method for crystallite size have resulted 6.27-40.3 nm. FTIR results of silica from extraction and MSNp indicated Si-O-Si bonds on the sample. SEM result showed the morphology of the sample that has spherical shape and smooth surface. TEM result showed particle size ranged between 69,69-84,42 nm. BET showed that the pore size classified as mesoporous with pore diameter size is 19,29 nm.
NASA Astrophysics Data System (ADS)
Chung, Youngmin
Transition metal phosphate materials have been researched as candidates for lithium-ion battery cathodes for about two decades. Among them, vanadium phosphate compounds are attractive due to their higher free energy of reaction than the corresponding iron compounds, and the greater possible change of oxidation state from V5+ to V3+. This thesis work firstly focuses on the chemical and electrochemical lithiation of epsilon--VOPO4 investigating the possibility of multi-electron intercalation. The second focus is on hydrothermal synthesis and characterization of epsilon--LiVOPO4. The hydrothermal synthesis method developed in this work produces pure epsilon-LiVOPO 4 at high temperature hydrothermal reaction and pure LiVOPO4˙2H 2O at low temperature. The first charge capacity of hydrothermal epsilon-LiVOPO 4 is around 308 mAh/g, which is almost 97% of the theoretical capacity. It also shows good reversibility in the first five cycles after which capacity fading occurs. For more detailed structural analysis of hydrothermal epsilon-LiVOPO 4, we used in-situ synchrotron XRD and EXAFS upon heating combined with TGA-MS. These techniques have revealed intercalated protons that are removed at about 350 °C, and a reversible symmetry change from triclinic to monoclinic at high temperature. Furthermore, we have used chemical lithiation with BuLi to produce and characterize epsilon-Li2VOPO 4 phase. Finally, we have modified the hydrothermal method to produce Cr-substituted epsilon--LiVOPO4 by changing the amount LiOH and adding Cr precursor. Cr substitution is found to modify the stoichiometry of the compound and to improve its cyclability at both high and low current densities.
NASA Astrophysics Data System (ADS)
Kitada, K.; Kasaya, T.; Iwamoto, H.; Nogi, Y.
2017-12-01
The Okinawa Trough is an active back-arc basin formed by the rifting associated with extension of the continental margin behind the Ryukyu trench. New hydrothermal sites were recently discovered off Kumejima Island in the Mid-Okinawa Trough and the hydrothermal mineral deposits were identified by seafloor surveys and rock samplings by ROV (e.g., JOGMEC, 2015). In order to characterize the sub-seafloor structures and the spatial distribution of the magmatic activity around the sites, we conducted the dense magnetic, gravity and bathymetric surveys with a line spacing of 0.5 nmi aboard the R/Vs Yokosuka and Kairei, operated by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) in 2016. The geophysical data collected during the previous cruises in the area by JAMSTEC were additionally used for this study. Magnetic anomaly was calculated by subtracting the IGRF model and the magnetization intensity was estimated by the method of Parker and Huestis (1974). Free-air gravity anomaly was calculated with subtracting the normal gravity field and with corrections of the drift and of the Eötvös effect. Bouguer gravity anomaly was calculated based on the method of Parker (1972). The magnetization intensity and the Bouguer gravity anomaly reveal three characteristics of the hydrothermal area off Kumejima Island: 1) The distribution of magnetization around the hydrothermal sites shows two different types of sub-seafloor magnetic features. One is corresponded to the submarine knolls with a relatively high magnetization of 4 A/M. The other is an ENE-WSW trending magnetization distribution with relatively high and low intensities, which is consistent with the trend of the bathymetric lineament. These features are considered to be formed by magmatism associated with submarine volcanoes and back-arc rifting. 2) The reduced magnetization zone corresponding to the hydrothermal area probably attributes to hydrothermal alteration of the host rock. 3) The hydrothermal site is located on the area where the Bouguer gravity anomaly is steeply changed from 10 to 30 mGal, suggesting that the hydrothermal activity can be related to the change in crustal thickness associated with back-arc rifting.
Rapid-synthesis of zeolite T via sonochemical-assisted hydrothermal growth method.
Jusoh, Norwahyu; Yeong, Yin Fong; Mohamad, Maisarah; Lau, Kok Keong; M Shariff, Azmi
2017-01-01
Sonochemical-assisted method has been identified as one of the potential pre-treatment methods which could reduce the formation duration of zeolite as well as other microporous and mesoporous materials. In the present work, zeolite T was synthesized via sonochemical-assisted pre-treatment prior to hydrothermal growth. The durations for sonochemical-assisted pre-treatment were varied from 30min to 90min. Meanwhile, the hydrothermal growth durations were ranged from 0.5 to 3days. The physicochemical properties of the resulting samples were characterized using XRD, FESEM, FTIR and BET. As verified by XRD, the samples synthesized via hydrothermal growth durations of 1, 2 and 3days and sonochemical-assisted pre-treatment durations of 60min and 90min demonstrated zeolite T structure. The samples which underwent sonochemical-assisted pre-treatment duration of 60min yielded higher crystallinity with negligible change of zeolite T morphology. Overall, the lengthy synthesis duration of zeolite T has been successfully reduced from 7days to 1day by applying sonochemical-assisted pre-treatment of 60min, while synthesis duration of 0.5days via sonochemical-assisted pre-treatment of 60min was not sufficient to produce zeolite T structure. Copyright © 2016 Elsevier B.V. All rights reserved.
Reactivity improvement of cellulolytic enzyme lignin via mild hydrothermal modification.
Ma, Zhuoming; Tang, Jiafa; Li, Shujun; Suo, Enxiang
2017-12-01
Isolated by the cellulolytic enzyme lignin (CEL) process, water-alcohol (1:1, v/v) was introduced as co-solvent in the process of the hydrothermal treatment. The modification parameters such as reaction temperature and time, solid-to-liquid ratio, and catalysts (NaOH and NaOAlO 2 ) have been investigated in terms of the specific lignin properties, such as the phenolic hydroxyl content (OH phen ), DPPH free radical scavenging rate, and formaldehyde value. The CELs were also characterized by GPC, FT-IR and 1 H NMR spectroscopy, and Py-GC/MS. The key data are under optimal lignin modification conditions (solid-to-liquid ratio of 1:10 (w/v) and a temperature of 250°C for 60min) are: OH phen content: 2.50mmol/g; half maximal inhibitory concentration (IC 50 ) towards DPPH free radicals: 88.2mg/L; formaldehyde value: 446.9g/kg). Both base catalysts decrease the residue rate, but phenol reactivities of the products were also detracted. Py-GC/MS results revealed that modified lignin had a higher phenolic composition than the CEL did, especially the modified lignin without catalyst (ML), which represented 74.51% phenolic content. Copyright © 2017. Published by Elsevier Inc.
Cui, Xianjin; Yu, Shu-Hong; Li, Lingling; Biao, Liu; Li, Huabin; Mo, Maosong; Liu, Xian-Ming
2004-01-05
Selective synthesis of uniform single crystalline silver molybdate/tungstate nanorods/nanowires in large scale can be easily realized by a facile hydrothermal recrystallization technique. The synthesis is strongly dependent on the pH conditions, temperature, and reaction time. The phase transformation was examined in details. Pure Ag(2)MoO(4) and Ag(6)Mo(10)O(33) can be easily obtained under neutral condition and pH 2, respectively, whereas other mixed phases of Mo(17)O(47), Ag(2)Mo(2)O(7,) Ag(6)Mo(10)O(33) were observed under different pH conditions. Ag(6)Mo(10)O(33) nanowires with uniform diameter 50-60 nm and length up to several hundred micrometers were synthesized in large scale for the first time at 140 degrees C. The melting point of Ag(6)Mo(10)O(33) nanowires were found to be about 238 degrees C. Similarly, Ag(2)WO(4), and Ag(2)W(2)O(7) nanorods/nanowires can be selectively synthesized by controlling pH value. The results demonstrated that this route could be a potential mild way to selectively synthesize various molybdate nanowires with various phases in large scale.
NASA Astrophysics Data System (ADS)
Malligavathy, M.; Iyyapushpam, S.; Nishanthi, S. T.; Padiyan, D. Pathinettam
2018-04-01
TiO2 nanoparticles were synthesised by hydrothermal method. The degree of crystallinity and phase purity were confirmed from the Raman spectra and X-ray diffraction. By increasing the hydrothermal temperature, crystallinity and AC conductivity of the TiO2 nanoparticles increase. Nitrogen adsorption-desorption measurements confirmed that the samples were mesoporous with an average pore diameter of 4.4-7.45 nm. Photocatalytic activity of TiO2 nanoparticles was evaluated and the sample hydrothermally treated at 160°C has the highest photocatalytic activity. In gas sensing measurements, sensitivity increases as a function of concentration and the response to ethanol vapour was better compared to other gases for the sample synthesised at 160°C.
NASA Astrophysics Data System (ADS)
Boyadjiev, Stefan I.; Nagy-Kovács, Teodóra; Lukács, István; Szilágyi, Imre M.
2016-03-01
In the present study, two different methods for preparing hexagonal WO3 (h-WO3) photocatalysts were used - controlled thermal decomposition and hydrothermal synthesis. WO3 nanoparticles with hexagonal structure were obtained by annealing (NH4)xWO3-y at 500 °C in air. WO3 nanorods were prepared by a hydrothermal method using sodium tungstate Na2WO4, HCl, (COOH)2 and NaSO4 precursors at 200 °C. The formation, morphology, structure and composition of the as-prepared nanoparticles and nanorods were studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX). The photocatalytic activity of the h-WO3 nanoparticles and nanorods was studied by decomposing methyl orange in aqueous solution under UV light irradiation.
NASA Astrophysics Data System (ADS)
Endo, Akito; Kawashima, Norimichi; Takeuchi, Shinichi; Ishikawa, Mutsuo; Kurosawa, Minoru Kuribayashi
2007-07-01
We deposited a lead zirconate titanete (PZT) polycrystalline film on a titanium substrate by the hydrothermal method and fabricated a transducer using the PZT film for use as an ultrasound probe. A 10 MHz miniature one-dimensional-array medical ultrasound probe containing the PZT film was developed. After sputtering titanium on the surface of a hydroxyapatite substrate, the titanium film on the substrate was etched by the photolithography to form a one-dimensional titanium film electrode array. We could thus fabricate a miniature one-dimensional-array ultrasound probe by the hydrothermal method. Transmitted ultrasound pulses from a 10 MHz commercial ultrasound probe were received by the newly fabricated one-dimensional-array ultrasound probe. The fabrication process of the probe and the results of experiments on receiving waveforms were reported in this paper.
Nested seaweed cellulose fiber deposited with cuprous oxide nanorods for antimicrobial activity.
Bhutiya, Priyank L; Misra, Nirendra; Abdul Rasheed, M; Zaheer Hasan, S
2018-05-30
Bird's nest type architectural network of cellulosic nanofibers was extracted, with nearly 34% yield, from green filamentous seaweed Chaetomorpha antennina using mild bleaching agent. Nanorods of cuprous oxide (Cu 2 O) were grown over the porous sheet, prepared from the seaweed cellulose, by one step hydrothermal method. The seaweed cellulose and Cu 2 O nanorods deposited seaweed cellulose sheets, were characterized by XRD, SEM-EDX, FT-IR, TGA and tensile test. XRD revealed that seaweed cellulose acted as reducing agent, reducing CuO to Cu 2 O. Morphology showed that the average diameter of seaweed cellulose and deposited Cu 2 O nanorods were 30 nm and 90 nm, respectively. Cuprous oxide nanorods deposited seaweed cellulose sheet gave very good antibacterial activity towards gram-positive (Staphylococcus aureus, Streptococcus thermophilis) and gram-negative (Pseudomonas aeruginous, Escherichia coli) microbes. The Cu 2 O nanorods deposited seaweed cellulose sheet can be viewed to have great potential in biomedical, packaging, biotechnological, textile, water treatment and pharmaceutical applications. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kaichen; Zhao, Baijun; Gao, Lu, E-mail: gaolu@jlu.edu.cn
2016-06-15
Graphical abstract: The influence on the photoluminescent performance due to the electronic structure change in Eu-doped CaTiO{sub 3} of the specific core-level and valence band spectrum via X-ray photoemission spectroscopy were characterized. - Highlights: • Single phase CaTiO{sub 3} and CaTiO{sub 3}: Eu crystals were prepared under mild hydrothermal method. • Crystal structure, doping level and the relations to their luminescent property were discussed. • Charge compensation mechanism was discussed via valance band spectrum by XPS. - Abstract: Charge compensation of on-site Eu 4f–5d transition that determines the luminescent performance was confirmed with valance band spectrum. Influence of photoelectrons frommore » CaTiO{sub 3}: Eu to the corresponding luminescent performance was discussed based on the crystal structure, doping level and the relations to their luminescent property. This paper is important to further optimize the luminescent performance for improving the efficiency and reducing the cost in light emitting diode industry.« less
Rare Earth Element and Trace Element Data Associated with Hydrothermal Spring Reservoir Rock, Idaho
Quillinan, Scott; Bagdonas, Davin
2017-06-22
These data represent rock samples collected in Idaho that correspond with naturally occurring hydrothermal samples that were collected and analyzed by INL (Idaho Falls, ID). Representative samples of type rocks were selected to best represent the various regions of Idaho in which naturally occurring hydrothermal waters occur. This includes the Snake River Plain (SRP), Basin and Range type structures east of the SRP, and large scale/deep seated orogenic uplift of the Sawtooth Mountains, ID. Analysis includes ICP-OES and ICP-MS methods for Major, Trace, and REE concentrations.
Hydrothermal synthesis of porous triphasic hydroxyapatite/(alpha and beta) tricalcium phosphate.
Vani, R; Girija, E K; Elayaraja, K; Prakash Parthiban, S; Kesavamoorthy, R; Narayana Kalkura, S
2009-12-01
A novel, porous triphasic calcium phosphate composed of nonresorbable hydroxyapatite (HAp) and resorbable tricalcium phosphate (alpha- and beta-TCP) has been synthesized hydrothermally at a relatively low temperature. The calcium phosphate precursor for hydrothermal treatment was prepared by gel method in the presence of ascorbic acid. XRD, FT-IR, Raman analyses confirmed the presence of HAp/TCP. The surface area and average pore size of the samples were found to be 28 m2/g and 20 nm, respectively. The samples were found to be bioactive in simulated body fluid (SBF).
Zhang, Hongyan; Sun, Pan; Liu, Chang; Gao, Huanyu; Xu, Linru; Fang, Jin; Wang, Meng; Liu, Jinling; Xu, Shukun
2011-01-01
Functionalized CdTe-CdS core-shell quantum dots (QDs) were synthesized in aqueous solution via water-bathing combined hydrothermal method using L-cysteine (L-Cys) as a stabilizer. This method possesses both the advantages of water-bathing and hydrothermal methods for preparing high-quality QDs with markedly reduced synthesis time, and better stability than a lone hydrothermal method. The QDs were characterized by transmission electronic microscopy and powder X-ray diffraction and X-ray photoelectron spectroscopy. The CdTe-CdS QDs with core-shell structure showed both enhanced fluorescence and better photo stability than nude CdTe QDs. After conjugating with antibody rabbit anti-CEACAM8 (CD67), the as-prepared l-Cys capped CdTe-CdS QDs were successfully used as fluorescent probes for the direct immuno-labeling and imaging of HeLa cells. It was indicated that this kind of QD would have application potential in bio-labeling and cell imaging. Copyright © 2009 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Lassoued, Abdelmajid; Lassoued, Mohamed Saber; Dkhil, Brahim; Ammar, Salah; Gadri, Abdellatif
2018-07-01
In this work the iron oxide (α-Fe2O3) nanoparticles are synthesized using two different methods: precipitation and hydrothermal. Size, structural, optical and magnetic properties were determined and compared using X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR), Raman spectroscopy, Differential Thermal Analysis (DTA), Thermogravimetric Analysis (TGA), Ultraviolet-Visible (UV-Vis) analysis, Superconducting QUantum Interference Device (SQUID) magnetometer and Photoluminescence (PL). XRD data further revealed a rhombohedral (hexagonal) structure with the space group (R-3c) and showed an average size of 21 nm for hydrothermal samples and 33 nm for precipitation samples which concorded with TEM and SEM images. FT-IR confirms the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we have synthesized pure α-Fe2O3 but also to identify their phonon modes. The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. The decrease in the particle size of hematite of 33 nm for precipitation samples to 21 nm for hydrothermal samples is responsible for increasing the optical band gap of 1.94-2.10 eV where, the relation between them is inverse relationship. The products exhibited the attractive magnetic properties with good saturation magnetization, which were examined by a SQUID magnetometer. Photoluminescence measurements showed a strong emission band at 450 nm. Pure hematite prepared by hydrothermal method has smallest size, best crystallinity, highest band gap and best value of saturation magnetization compared to the hematite elaborated by the precipitation method.
NASA Astrophysics Data System (ADS)
Bolós, X.; Cifuentes-Nava, G.; Macias, J. L.; Sosa-Ceballos, G.; García-Tenorio, F.; Albor, M., III; Juarez, M.; Gamez, V.
2017-12-01
Hydrothermal activity in volcanic calderas is the consequence of energy transfer between deep magmatic chambers and subsurface layers saturated in water. This hydrothermal system is generated by convection of the groundwater supplied by meteoric water recharged and the ascent of hot volcanic gasses exsolved from deep magma reservoirs. Calderas are heterogeneous geological structures that due to their formation and evolution produced a complex stratigraphy. All of these heterogeneities can be affected by deformation and also by the presence of fractures and faults which constitute the main pathways whereby hydrothermal fluids can move easily through the surface as spring discharges and fumarolic activity. Geophysical methods have been used in the last decades to investigate the relationship between structural geology and hydrothermal systems in different volcanic areas around the world. In this work, we have focused on the role of subsurface structures to understand and localize the pathways of fluids related to the hydrothermal system of the Cerritos Colorados geothermal field. We focused in the central area of the caldera (P12 well and Cerritos Colorados graben), where active hydrothermal activity is evidenced by fumaroles, thermal anomalies, CO2 diffuse emission, and sulfur precipitation. We have applied a self-potential method (SP) that combined with temperature measurements that allowed to identify the main infiltration and ascending fluid zones in the area, and their specific surface temperature coinciding with fumarolic activity. From this data we an applied Electrical Resistivity Tomography (ERT) survey in two selected places. One ERT profile (1.2 km in length) was located in the P12 well area. A 3D resistivity model used with the equatorial method was carried out on the Cerritos Colorados graben area. Combining the results of the SP, TºC, and ERT data with a detailed structural map we identified the main degassing zones (i.e. fumaroles) that correspond to higher permeability zones located along normal and strike-slip faults. In conclusion, a strong structural control of the surface manifestation of these hydrothermal systems is deduced from our new data. Then, our results emphasize the importance of old structural boundaries that are controlled by intra-caldera tectonic structures.
Sulfide geochronlogy along the Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Yang, W.; Tao, C.; Li, H.; Liang, J.; Liao, S.
2017-12-01
Dragon Flag and Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones in the ultraslow-spreading Southwest Indian Ridge (SWIR). Ten subsamples from active and inactive vents of Dragon Flag hydrothermal field and twenty-eight subsamples from Duanqiao hydrothermal field were dated using the 230Th/238U method. Four main episodes of hydrothermal activity of Duanqiao were determined according to the restricted results: 68.9-84.3, 43.9-48.4, 25.3-34.8, and 0.7-17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. And sulfide samples from the nearby Dragon Flag filed at the same time and the results show that the ages of most sulfides from Dragon Flag field range from 1.496(±0.176) to 5.416 (±0.116) kyrs with the oldest age estimated at 15.997 (±0.155) kyrs Münch et al. (2001) reconstructed the evolution history of Mt. Jourdanne hydrothermal field. The age dating results indicate activity in two episodes, at 70-40 and 27-13 kyrs. The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. All these results suggest that hydrothermal activity of Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. Mt. Jourdanne is situated on an axial volcanic ridge which has both volcanic and tectonic activity. This is necessary to develop the heat source and pathways for the fluid convection, which enables the hydrothermal circulation. Hydrothermal activity in Dragon Flag Field is located next to the detachment fault termination. The detachment fault system provides a pathway for hydrothermal convection. Such style of heat source can contribute to continuous hydrothermal activity for over 1000 years. Duanqiao field is located near the central volcano and there is a hot mantle and/or fertile melt beneath Duanqiao field. The crust thickness is 9.5 km, suggesting the existence of AMC (Axial Magma Chamber) which provides magma source to the field (Li et al. 2015; Mendel et al. 2003). The periodic hydrothermal activity at Duanqiao may be related to the heat source provided by the local interaction of magmatism and tectonism.
Synthesis, characterization, and properties of low-dimensional nanostructured materials
NASA Astrophysics Data System (ADS)
Hu, Xianluo
2007-05-01
Nanometer scale structures represent an exciting and rapidly expanding area of research. Studies on new physical/chemical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology, crystal and microstructure, and composition. Thus, controlled synthesis of nanomaterials is the essential aspect of nanotechnology. This thesis describes the development of simple and versatile solution-based approaches to synthesize low-dimensional nanostructures. The first major goal of this research is to design and fabricate morphology-controlled alpha-Fe 2O3 nanoarchitectures in aqueous solution through a programmed microwave-assisted hydrothermal route, taking advantage of microwave irradiation and hydrothermal effects. Free-standing alpha-Fe2O3 nanorings are prepared by hydrolysis of FeCl3 in the presence of phosphate ions. The as-formed architecture of alpha-Fe2O 3 nanorings is an exciting new member in the family of iron oxide nanostructures. Our preliminary results demonstrate that sensors made of the alpha-Fe 2O3 nanorings exhibit high sensitivity not only for bio-sensing of hydrogen peroxide in a physiological solution but also for gas-sensing of alcohol vapor at room temperature. Moreover, monodisperse alpha-Fe 2O3 nanocrystals with continuous aspect-ratio tuning and fine shape control are achieved by controlling the experimental conditions. The as-formed alpha-Fe2O3 exhibits shape-dependent infrared optical properties. The growth process of colloidal alpha-Fe 2O3 crystals in the presence of phosphate ions is discussed. In addition, through an efficient microwave-assisted hydrothermal process, self-assembled hierarchical alpha-Fe2O3 nanoarchitectures are synthesized on a large scale. The second major goal of this research is to develop convenient microwave-hydrothermal approaches for the fabrication of carbon-based nanocomposites: (1) A one-pot solution-phase route, namely microwave-assisted hydrothermal reduction/carbonization (MAHRC), is developed to prepare coaxial Ag/amorphous-carbon (a-C) nanocables. The as-grown Ag/C nanocables can self-assemble in an end-to-end fashion. (2) A novel Se/C nanocomposite with core-shell structures is prepared. The new material consists of a trigonal-Se (t-Se) core and an amorphous-C (a-C) shell. The Se/C composite can be converted to hollow carbon capsules by thermal treatment. (3) A Fe 3O4/C nanocomposite is synthesized by a green wet-chemical approach. The product possesses porous microstructures and exhibits superparamagnetic behavior. The third major goal of this research is develop facile solution-based methods for preparing carbonaceous nano test tubes, thin films of metal iodides, and spherical selenium spheres: (1) Carbonaceous nano test tubes are fabricated by a facile "decoring" route using a core-sheath Te carbon nanocomposite as the precursor. The as-formed carbonaceous material looks like a "test tube" with an average diameter of about 120 nm and lengths up to 5 mum. (2) Tetrahedral-shaped CuI crystals were formed on a variety of copper substrates (e.g. grids, flat/porous foils, and macro-/nano- wires) via an interfacial reaction between a copper substrate and iodine in water at room temperature. This preparation approach can also be used to grow PbI2 and AgI nano- and micro-crystals with different morphologies on corresponding substrates. (3) Colloidal trigonal selenium (t-Se) microspheres are synthesized through a mild hydrothermal reduction reaction, using glucose as a reducing regent and water as an environmentally friendly solvent. Importantly, the resulting t-Se microspheres inherit functional groups from the starting materials and possess hydrophilic and biocompatible surfaces.
Synthesis of porous and nonporous ZnO nanobelt, multipod, and hierarchical nanostructure from Zn-HDS
NASA Astrophysics Data System (ADS)
Jang, Eue-Soon; Won, Jung-Hee; Kim, Young-Woon; Cheng, Zhen; Choy, Jin-Ho
2010-08-01
Zn based hydroxide double salts (Zn-HDS) with an interlayer spacing of 20 Å was produced by dissolving dumbbell-like ZnO crystal. The resulting Zn-HDS with a ribbon-like shape has a suitable morphology to explore the remarkably mild procedure for synthesis of ZnO nanobelts. We found that the intercalated water molecules into the Zn-HDS could play a key role in the ZnO nanobelts porosity. The nonporous ZnO nanobelts were successfully synthesized from the Zn-HDS by soft-solution process at 95 °C through mild dehydration agent as Na 2CO 3. As-synthesized ZnO nanobelts were grown along not only the [0 1 -1 0], but also the [2 -1 -1 0]. On the other hand, the porous ZnO nanobelts were obtained from the Zn-HDS by calcinations at 200 and 400 °C. In addition, flower-like ZnO multipod and hierarchical nanostructures were produced from the Zn-HDS by using of strong dehydration agent (NaOH) through hydrothermal reaction at 150 and 230 °C.
Zhao, Xuyuan; Zhan, Lu; Xie, Bing; Gao, Bin
2018-09-01
In this study, hydrothermal method was applied for the treatment of five typical waste plastics (PC, HIPS, ABS, PP and PA6). The hydrothermal products of oils and solid residues were analyzed for the product slate and combustion behaviors. Some predominant chemical feedstock were detected in the oils, such as phenolic compounds and bisphenol A (BPA) in PC oils, single-ringed aromatic compounds and diphenyl-sketetons compounds in HIPS and ABS oils, alkanes in PP oils, and caprolactam (CPL) in PA6 oils. The hydrothermal solid residues were subjected to DSC analysis. Except the solid residues of PA6, all the solid residues had enormous improvement on the enthalpy of combustion. The solid residues of PC had the maximum promotion up to 576.03% compared to the raw material. The hydrothermal treatment significantly improved the energy density and facilitated effective combustion. Meanwhile, the glass fiber was recovered from the PA6 plastics. In addition, the combustion behaviors of the uplifting residues were investigated to provide the theoretical foundation for further study of combustion optimization. All the results indicated that the oils of waste plastics after hydrothermal treatment could be used as chemical feedstock; the solid residues of waste plastics after hydrothermal treatment could be used as potentially clean and efficient solid fuels. The hydrothermal treatment for various waste plastics was verified as a novel waste-to-energy technique. Copyright © 2018 Elsevier Ltd. All rights reserved.
Electron microscopy study of microbial mat in the North Fiji basin hydrothermal vent
NASA Astrophysics Data System (ADS)
Park, H.; Kim, J. W.; Lee, J. W.
2017-12-01
Hydrothermal vent systems consisting of hydrothermal vent, hydrothermal sediment and microbial mat are widely spread around the ocean, particularly spreading axis, continental margin and back-arc basin. Scientists have perceived that the hydrothermal systems, which reflect the primeval earth environment, are one of the best places to reveal the origin of life and extensive biogeochemical process of microbe-mineral interaction. In the present study multiline of analytical methods (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)) were utilized to investigate the mineralogy/chemistry of microbe-mineral interaction in hydrothermal microbial mat. Microbial mat samples were recovered by Canadian scientific submersible ROPOS on South Pacific North Fiji basin KIOST hydrothermal vent expedition 1602. XRD analysis showed that red-colored microbial mat contains Fe-oxides and Fe-oxyhydroxides. Various morphologies of minerals in the red-colored microbial mat observed by SEM are mainly showed sheath shaped, resembled with Leptothrix microbial structure, stalks shaped, similar with Marioprofundus microbial structure and globule shaped microbial structures. They are also detected with DNA analysis. The cross sectional observation of microbial structures encrusted with Fe-oxide and Fe-oxyhydroxide at a nano scale by Transmission Electron Microscopy (TEM) and Focused Ion Beam (FIB) technique was developed to verify the structural/biogeochemical properties in the microbe-mineral interaction. Systematic nano-scale measurements on the biomineralization in the microbial mat leads the understandings of biogeochemical environments around the hydrothermal vent.
Biomass-Derived Porous Carbonaceous Aerogel as Sorbent for Oil-Spill Remediation.
Wang, Zhuqing; Jin, Pengxiang; Wang, Min; Wu, Genhua; Dong, Chen; Wu, Aiguo
2016-12-07
We prepared a cost-effective, environmentally friendly carbonaceuous oil sorbent with a lotus effect structure using a simple one-pot hydrothermal reaction and a mild modification process. The carbonaceous oil sorbent can rapidly, efficiently, and continuously collect oil in situ from a water surface. This sorbent was unlike traditional sorbents because it was not dependent on the weight and volume of the sorption material. The sorbent was also successfully used to separate and collect crude oil from the water surface and can collect organic solvents underwater. This novel oil sorbent and oil-collection device can be used in case of emergency for organic solvent leakages, as well as leakages in tankers and offshore drilling platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trent, D.S.; Eyler, L.L.
TEMPEST offers simulation capabilities over a wide range of hydrothermal problems that are definable by input instructions. These capabilities are summarized by categories as follows: modeling capabilities; program control; and I/O control. 10 refs., 22 figs., 2 tabs. (LSP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei, E-mail: wangwei@mail.buct.edu.cn; Ding, Zui; Zhao, Xiruo
2015-05-07
Three kinds of spinel ferrite nanocrystals, MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH{sub 4}) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modesmore » at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (M{sub s}). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.« less
Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization
NASA Astrophysics Data System (ADS)
Hoai, Tran Thanh; Nga, Nguyen Kim; Giang, Luu Truong; Huy, Tran Quang; Tuan, Phan Nguyen Minh; Binh, Bui Thi Thanh
2017-08-01
Hydroxyapatite (HAp) is an excellent biomaterial for bone repair and regeneration. The biological functions of HAp particles, such as biomineralization, cell adhesion, and cell proliferation, can be enhanced when their size is reduced to the nanoscale. In this work, HAp nanoparticles were synthesized by the hydrothermal technique with addition of cetyltrimethylammonium bromide (CTAB). These particles were also characterized, and their size controlled by modifying the CTAB concentration and hydrothermal duration. The results show that most HAp nanoparticles were rod-like in shape, exhibiting the most uniform and smallest size (mean diameter and length of 39 nm and 125 nm, respectively) at optimal conditions of 0.64 g CTAB and hydrothermal duration of 12 h. Moreover, good biomineralization capability of the HAp nanorods was confirmed through in vitro tests in simulated body fluid. A bone-like mineral layer of synthesized HAp nanorods formed rapidly after 7 days. This study shows that highly bioactive HAp nanorods can be easily prepared by the hydrothermal method, being a potential nanomaterial for bone regeneration.
Hydrothermal Synthesized of CoMoO4 Microspheres as Excellent Electrode Material for Supercapacitor.
Li, Weixia; Wang, Xianwei; Hu, Yanchun; Sun, Lingyun; Gao, Chang; Zhang, Cuicui; Liu, Han; Duan, Meng
2018-04-24
The single-phase CoMoO 4 was prepared via a facile hydrothermal method coupled with calcination treatment at 400 °C. The structures, morphologies, and electrochemical properties of samples with different hydrothermal reaction times were investigated. The microsphere structure, which consisted of nanoflakes, was observed in samples. The specific capacitances at 1 A g -1 are 151, 182, 243, 384, and 186 F g -1 for samples with the hydrothermal times of 1, 4, 8, 12, and 24 h, respectively. In addition, the sample with the hydrothermal time of 12 h shows a good rate capability, and there is 45% retention of initial capacitance when the current density increases from 1 to 8 A g -1 . The high retain capacitances of samples show the fine long-cycle stability after 1000 charge-discharge cycles at current density of 8 A g -1 . The results indicate that CoMoO 4 samples could be a choice of excellent electrode materials for supercapacitor.
Hydrothermal Synthesized of CoMoO4 Microspheres as Excellent Electrode Material for Supercapacitor
NASA Astrophysics Data System (ADS)
Li, Weixia; Wang, Xianwei; Hu, Yanchun; Sun, Lingyun; Gao, Chang; Zhang, Cuicui; Liu, Han; Duan, Meng
2018-04-01
The single-phase CoMoO4 was prepared via a facile hydrothermal method coupled with calcination treatment at 400 °C. The structures, morphologies, and electrochemical properties of samples with different hydrothermal reaction times were investigated. The microsphere structure, which consisted of nanoflakes, was observed in samples. The specific capacitances at 1 A g-1 are 151, 182, 243, 384, and 186 F g-1 for samples with the hydrothermal times of 1, 4, 8, 12, and 24 h, respectively. In addition, the sample with the hydrothermal time of 12 h shows a good rate capability, and there is 45% retention of initial capacitance when the current density increases from 1 to 8 A g-1. The high retain capacitances of samples show the fine long-cycle stability after 1000 charge-discharge cycles at current density of 8 A g-1. The results indicate that CoMoO4 samples could be a choice of excellent electrode materials for supercapacitor.
Two steps hydrothermal growth and characterisations of BaTiO3 films composed of nanowires
NASA Astrophysics Data System (ADS)
Zawawi, Che Zaheerah Najeehah Che Mohd; Salleh, Shahril; Oon Jew, Lee; Tufail Chaudhary, Kashif; Helmi, Mohamad; Safwan Aziz, Muhammad; Haider, Zuhaib; Ali, Jalil
2018-05-01
Barium titanate (BaTiO3) films composed of nanowires have gained considerable research interest due to their lead-free composition and strong energy conversion efficiency. BaTiO3 films can be developed with a simple two steps hydrothermal reactions, which are low cost effective. In this research, BaTiO3 films were fabricated on titanium foil through two steps hydrothermal method namely, the growth of TiO2 and followed by BaTiO3 films. The structural evolutions and the dielectric properties of the films were investigated as well. The structural evolutions of titanium dioxide (TiO2) and BaTiO3 nanowires were characterized using X-ray diffraction and scanning electron microscopy. First step of hydrothermal reaction, TiO2 nanowires were prepared in varied temperatures of 160 °C, 200 °C and 250 °C respectively. Second step of hydrothermal reaction was performed to produce a layer of BaTiO3 films.
Lead recovery from scrap cathode ray tube funnel glass by hydrothermal sulphidisation.
Yuan, Wenyi; Meng, Wen; Li, Jinhui; Zhang, Chenglong; Song, Qingbin; Bai, Jianfeng; Wang, Jingwei; Li, Yingshun
2015-10-01
This research focused on the application of the hydrothermal sulphidisation method to separate lead from scrap cathode ray tube funnel glass. Prior to hydrothermal treatment, the cathode ray tube funnel glass was pretreated by mechanical activation. Under hydrothermal conditions, hydroxyl ions (OH(-)) were generated through an ion exchange reaction between metal ions in mechanically activated funnel glass and water, to accelerate sulphur disproportionation; no additional alkaline compound was needed. Lead contained in funnel glass was converted to lead sulphide with high efficiency. Temperature had a significant effect on the sulphidisation rate of lead in funnel glass, which increased from 25% to 90% as the temperature increased from 100 °C to 300 °C. A sulphidisation rate of 100% was achieved at a duration of 8 h at 300 °C. This process of mechanical activation and hydrothermal sulphidisation is efficient and promising for the treatment of leaded glass. © The Author(s) 2015.
Strong hydrothermal eruption 600 BP inside Golovnin caldera, Kunashir Island, Kurile arc
NASA Astrophysics Data System (ADS)
Belousov, Alexander; Belousova, Marina; Kozlov, Dmitry
2017-04-01
Hydrothermal explosions are difficult to predict and thus they pose serious hazard to visitors of hydrothermal areas. Here we present results of mapping of airfall deposit of strong prehistoric hydrothermal eruption that was the latest eruptive event in the limits of Golovnin caldera in the southern part of Kunashir Island, Kurile arc. This caldera was formed 30 Ka BP (Razhigaeva et al. 1998) that was followed by extrusion of two dacitic lava domes in the central part of the caldera. The studied hydrothermal eruption occurred at active hydrothermal area located at the southern foot of the Vostochny (Eastern) lava dome. This eruption formed a 350-m wide and 40 m deep crater surrounded by low-profile ring of the ejected material. Part of the crater is occupied by 17-m-deep Kipiashee Lake having intensive hydrothermal discharge on its bottom. The ejected material is represented by yellow-white and yellow-brown poorly sorted sandy gravels and sands with admixture of clay. This clastic material was formed by fragmentation of hydrothermally altered pumice tuffs (former sediments of the intracaldera lake). The airfall deposit has nearly circular distribution around the crater. The deposit thickness decreases from 5-7 m at the crater rim to 5 cm on the distances 2-3 km; thickness half-distance (bt) is estimated as 4.1. Volume of the deposit calculated by the method of Fierstein and Nathenson (1992) is 0.007 cub.km. Radiocarbon dating of soil buried directly under the deposit provided calibrated age 1300-1420 AD. This eruption can be considered as a model for future hydrothermal explosions inside the Golovnin caldera. This study was supported by grant of Russian Science Foundation #15-17-20011.
Extraction of valuable compounds from mangosteen pericarps by hydrothermal assisted sonication
NASA Astrophysics Data System (ADS)
Machmudah, Siti; Lestari, Sarah Duta; Shiddiqi, Qifni Yasa'Ash; Widiyastuti, Winardi, Sugeng; Wahyudiono, Kanda, Hideki; Goto, Motonobu
2015-12-01
Valuable compounds, such as xanthone and phenolic compounds, from mangosteen pericarps was extracted by hydrothermal treatment at temperatures of 120-160 °C and pressures of 5 MPa using batch and semi-batch extractor. This method is a simple and environmentally friendly extraction method requiring no chemicals other than water. Under these conditions, there is possibility for the formation of phenolic compounds from mangosteen pericarps from decomposition of bounds between lignin, cellulose, and hemicellulose via autohydrolysis. In order to increase the amount of extracted valuable compounds, sonication pre-treament was performed prior to the hydrothermal extraction process. 30 min of sonication pre-treatment could increase significantly the amount of xanthone and phenolic compounds mangosteen pericarps extraction. In batch-system, the xanthone recovery approach to 100 % at 160 °C with 30 min sonication pre-treatment for 150 min extraction time. Under semi-batch process, the total phenolic compounds in the extract was 217 mg/g sample at 160 °C with 30 min sonication pre-treatment for 150 min total extraction time. The results revealed that hydrothermal extraction assisted sonication pre-treatment is applicable method for the isolation of polyphenolic compounds from other types of biomass and may lead to an advanced plant biomass components extraction technology.
Hydrothermal systems on Mars: an assessment of present evidence
NASA Technical Reports Server (NTRS)
Farmer, J. D.
1996-01-01
Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of Martian channels formed by discharges of subsurface water near potential magmatic heat sources, and hydrothermal processes have also been proposed as a mechanism for aquifer recharge needed to sustain long term erosion of sapping channels. The following geological settings have been identified as targets for ancient hydrothermal systems on Mars: channels located along the margins of impact crater melt sheets and on the slopes of ancient volcanoes; chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice; and the floors of calderas and rifted basins (e.g. chasmata). On Earth, such geological environments are often a locus for hydrothermal mineralization. But we presently lack the mineralogical information needed for a definitive evaluation of hypotheses. A preferred tool for identifying minerals by remote sensing methods on Earth is high spatial resolution, hyperspectral, near-infrared spectroscopy, a technique that has been extensively developed by mineral explorationists. Future efforts to explore Mars for ancient hydrothermal systems would benefit from the application of methods developed by the mining industry to look for similar deposits on Earth. But Earth-based exploration models must be adapted to account for the large differences in the climatic and geological history of Mars. For example, it is likely that the early surface environment of Mars was cool, perhaps consistently below freezing, with the shallow portions of hydrothermal systems being dominated by magma-cryosphere interactions. Given the smaller gravitational field, declining atmospheric pressure, and widespread, permeable megaregolith on Mars, volatile outgassing and magmatic cooling would have been more effective than on Earth. Thus, hydrothermal systems are likely to have had much lower average surface temperatures than comparable geological settings on Earth. The likely predominance of basaltic crust on Mars suggests that hydrothermal fluids and associated deposits should be enriched in Fe, Mg, Si and Ca, with surficial deposits being dominated by lower temperature, mixed iron oxide and carbonate mineralogies.
Hydrothermal systems on Mars: an assessment of present evidence.
Farmer, J D
1996-01-01
Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of Martian channels formed by discharges of subsurface water near potential magmatic heat sources, and hydrothermal processes have also been proposed as a mechanism for aquifer recharge needed to sustain long term erosion of sapping channels. The following geological settings have been identified as targets for ancient hydrothermal systems on Mars: channels located along the margins of impact crater melt sheets and on the slopes of ancient volcanoes; chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice; and the floors of calderas and rifted basins (e.g. chasmata). On Earth, such geological environments are often a locus for hydrothermal mineralization. But we presently lack the mineralogical information needed for a definitive evaluation of hypotheses. A preferred tool for identifying minerals by remote sensing methods on Earth is high spatial resolution, hyperspectral, near-infrared spectroscopy, a technique that has been extensively developed by mineral explorationists. Future efforts to explore Mars for ancient hydrothermal systems would benefit from the application of methods developed by the mining industry to look for similar deposits on Earth. But Earth-based exploration models must be adapted to account for the large differences in the climatic and geological history of Mars. For example, it is likely that the early surface environment of Mars was cool, perhaps consistently below freezing, with the shallow portions of hydrothermal systems being dominated by magma-cryosphere interactions. Given the smaller gravitational field, declining atmospheric pressure, and widespread, permeable megaregolith on Mars, volatile outgassing and magmatic cooling would have been more effective than on Earth. Thus, hydrothermal systems are likely to have had much lower average surface temperatures than comparable geological settings on Earth. The likely predominance of basaltic crust on Mars suggests that hydrothermal fluids and associated deposits should be enriched in Fe, Mg, Si and Ca, with surficial deposits being dominated by lower temperature, mixed iron oxide and carbonate mineralogies.
NASA Astrophysics Data System (ADS)
Neveu, Marc Francois Laurent
Finding habitable worlds is a key driver of solar system exploration. Many solar system missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life. Such environments include hydrothermal systems, spatially-confined systems where hot aqueous fluid circulates through rock by convection. I sought to characterize hydrothermal microbial communities, collected in hot spring sediments and mats at Yellowstone National Park, USA, by measuring their bulk elemental composition. To do so, one must minimize the contribution of non-biological material to the samples analyzed. I demonstrate that this can be achieved using a separation method that takes advantage of the density contrast between cells and sediment and preserves cellular elemental contents. Using this method, I show that in spite of the tremendous physical, chemical, and taxonomic diversity of Yellowstone hot springs, the composition of microorganisms there is surprisingly ordinary. This suggests the existence of a stoichiometric envelope common to all life as we know it. Thus, future planetary investigations could use elemental fingerprints to assess the astrobiological potential of hydrothermal settings beyond Earth. Indeed, hydrothermal activity may be widespread in the solar system. Most solar system worlds larger than 200 km in radius are dwarf planets, likely composed of an icy, cometary mantle surrounding a rocky, chondritic core. I enhance a dwarf planet evolution code, including the effects of core fracturing and hydrothermal circulation, to demonstrate that dwarf planets likely have undergone extensive water-rock interaction. This supports observations of aqueous products on their surfaces. I simulate the alteration of chondritic rock by pure water or cometary fluid to show that aqueous alteration feeds back on geophysical evolution: it modifies the fluid antifreeze content, affecting its persistence over geological timescales; and the distribution of radionuclides, whose decay is a chief heat source on dwarf planets. Interaction products can be observed if transported to the surface. I simulate numerically how cryovolcanic transport is enabled by primordial and hydrothermal volatile exsolution. Cryovolcanism seems plausible on dwarf planets in light of images recently returned by spacecrafts. Thus, these coupled geophysical-geochemical models provide a comprehensive picture of dwarf planet evolution, processes, and habitability.
NASA Astrophysics Data System (ADS)
Hager, K. W.; Fullerton, H.; Moyer, C. L.
2015-12-01
Hydrothermal vents along the Mariana Arc and back-arc represent a hotspot of microbial diversity that has not yet been fully recognized. The Mariana Arc and back-arc contain hydrothermal vents with varied vent effluent chemistry and temperature, which translates to diverse community composition. We have focused on iron-rich sites where the dominant primary producers are iron oxidizing bacteria. Because microbes from these environments have proven elusive in culturing efforts, we performed culture independent analysis among different microbial communities found at these hydrothermal vents. Terminal-restriction fragment length polymorphism (T-RFLP) and Illumina sequencing of small subunit ribosomal gene amplicons were used to characterize community members and identify samples for shotgun metagenomics. Used in combination, these methods will better elucidate the composition and characteristics of the bacterial communities at these hydrothermal vent systems. The overarching goal of this study is to evaluate and compare taxonomic and metabolic diversity among different communities of microbial mats. We compared communities collected on a fine scale to analyze the bacterial community based on gross mat morphology, geography, and nearby vent effluent chemistry. Taxa richness and evenness are compared with rarefaction curves to visualize diversity. As well as providing a survey of diversity this study also presents a juxtaposition of three methods in which ribosomal small subunit diversity is compared with T-RFLP, next generation amplicon sequencing, and metagenomic shotgun sequencing.
NASA Astrophysics Data System (ADS)
Pour, Amin Beiranvand; Hashim, Mazlan
2012-02-01
This study investigates the application of spectral image processing methods to ASTER data for mapping hydrothermal alteration zones associated with porphyry copper mineralization and related host rock. The study area is located in the southeastern segment of the Urumieh-Dokhtar Volcanic Belt of Iran. This area has been selected because it is a potential zone for exploration of new porphyry copper deposits. Spectral transform approaches, namely principal component analysis, band ratio and minimum noise fraction were used for mapping hydrothermally altered rocks and lithological units at regional scale. Spectral mapping methods, including spectral angle mapper, linear spectral unmixing, matched filtering and mixture tuned matched filtering were applied to differentiate hydrothermal alteration zones associated with porphyry copper mineralization such as phyllic, argillic and propylitic mineral assemblages.Spectral transform methods enhanced hydrothermally altered rocks associated with the known porphyry copper deposits and new identified prospects using shortwave infrared (SWIR) bands of ASTER. These methods showed the discrimination of quartz rich igneous rocks from the magmatic background and the boundary between igneous and sedimentary rocks using the thermal infrared (TIR) bands of ASTER at regional scale. Spectral mapping methods distinguished the sericitically- and argillically-altered rocks (the phyllic and argillic alteration zones) that surrounded by discontinuous to extensive zones of propylitized rocks (the propylitic alteration zone) using SWIR bands of ASTER at both regional and district scales. Linear spectral unmixing method can be best suited for distinguishing specific high economic-potential hydrothermal alteration zone (the phyllic zone) and mineral assemblages using SWIR bands of ASTER. Results have proven to be effective, and in accordance with the results of field surveying, spectral reflectance measurements and X-ray diffraction (XRD) analysis. In conclusion, the image processing methods used can provide cost-effective information to discover possible locations of porphyry copper and epithermal gold mineralization prior to detailed and costly ground investigations. The extraction of spectral information from ASTER data can produce comprehensive and accurate information for copper and gold resource investigations around the world, including those yet to be discovered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulton, John L.; Darab, John G.; Hoffmann, Markus M.
2001-04-01
Hydrothermal synthesis is an important route to novel materials. Hydrothermal chemistry is also an important aspect of geochemistry and a variety of waste remediation technologies. There is a significant lack of information about the speciation of inorganic compounds under hydrothermal conditions. For these reasons we describe a high-temperature, high-pressure cell that allows one to acquire both x-ray absorption fine structure (XAFS) spectra and x-ray transmission and absorption images of heterogeneous hydrothermal mixtures. We demonstrate the utility of the method by measuring the Cu(I) speciation in a solution containing both solid and dissolved Cu phases at temperatures up to 325{sup o}C.more » X-ray imaging of the various hydrothermal phases allows micro-XAFS to be collected from different phases within the heterogeneous mixture. The complete structural characterization of a soluble bichloro-cuprous species was determined. In situ XAFS measurements were used to define the oxidation state and the first-shell coordination structure. The Cu--Cl distance was determined to be 2.12 Aa for the CuCl{sub 2}{sup -} species and the complete loss of tightly bound waters of hydration in the first shell was observed. The microreactor cell described here can be used to test thermodynamic models of solubility and redox chemistry of a variety of different hydrothermal mixtures.« less
Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system.
Anderson, Rika E; Beltrán, Mónica Torres; Hallam, Steven J; Baross, John A
2013-02-01
Physical and chemical gradients are dominant factors in shaping hydrothermal vent microbial ecology, where archaeal and bacterial habitats encompass a range between hot, reduced hydrothermal fluid and cold, oxidized seawater. To determine the impact of these fluid gradients on microbial communities inhabiting these systems, we surveyed bacterial and archaeal community structure among and between hydrothermal plumes, diffuse flow fluids, and background seawater in several hydrothermal vent sites on the Juan de Fuca Ridge using 16S rRNA gene diversity screening (clone libraries and terminal restriction length polymorphisms) and quantitative polymerase chain reaction methods. Community structure was similar between hydrothermal plumes and background seawater, where a number of taxa usually associated with low-oxygen zones were observed, whereas high-temperature diffuse fluids exhibited a distinct phylogenetic profile. SUP05 and Arctic96BD-19 sulfur-oxidizing bacteria were prevalent in all three mixing regimes where they exhibited overlapping but not identical abundance patterns. Taken together, these results indicate conserved patterns of redox-driven niche partitioning between hydrothermal mixing regimes and microbial communities associated with sinking particles and oxygen-deficient waters. Moreover, the prevalence of SUP05 and Arctic96BD-19 in plume and diffuse flow fluids indicates a more cosmopolitan role for these groups in the ecology and biogeochemistry of the dark ocean. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Transient ElectroMagnetic and Electric Self-Potential survey in the TAG hydrothermal field in MAR
NASA Astrophysics Data System (ADS)
Tao, C.; Deng, X.; Wu, G.; Xi, Z.; Zhou, D.; Zuo, L.
2012-12-01
The TAG hydrothermal field is one of the most studied hydrothermal fields. This field covers an area of 5km×5km, which includes low-temperature Mn- and Fe-oxides and nontronites zone, relict massive sulfide mounds as well as active hydrothermal mound(TAG mound) [Thompson, 1985, Rona, 1993]. Drilling program was performed in the ODP (Ocean Drilling Program) Leg 158 in the TAG mound [Humphris, 1996]. In 1996, electrical resistivity survey in the TAG mound was conducted using innovative transient electric dipole-dipole instruments which was carried by DSV 'Alvin' [Cairns et al., 1996, Von Herzen et al., 1996]. In June 2012, the 2nd Leg of the Chinese 26th cruise was carried out in the TAG hydrothermal field at Mid Atlantic Ridge by R/V DAYANGYIHAO. Six TEM (Transient ElectroMagnetic) survey lines were deployed, with four of which across the ODP Leg 158 drilling area. Besides, two SP (Electric Self-Potential) survey lines were across the ODP drilling area. The survey results of TEM preliminary revealed the vertical structure of the TAG hydrothermal field. The survey results of both TEM and SP are consistent with the ODP drilling result, and also agree well with the temperature and water-column anomalies obtained in this leg. Preliminary results show that the TEM and SP methods are capable of revealing the horizontal and vertical distribution of the hydrothermal sulfide fields.
Optimization of Large-Scale Daily Hydrothermal System Operations With Multiple Objectives
NASA Astrophysics Data System (ADS)
Wang, Jian; Cheng, Chuntian; Shen, Jianjian; Cao, Rui; Yeh, William W.-G.
2018-04-01
This paper proposes a practical procedure for optimizing the daily operation of a large-scale hydrothermal system. The overall procedure optimizes a monthly model over a period of 1 year and a daily model over a period of up to 1 month. The outputs from the monthly model are used as inputs and boundary conditions for the daily model. The models iterate and update when new information becomes available. The monthly hydrothermal model uses nonlinear programing (NLP) to minimize fuel costs, while maximizing hydropower production. The daily model consists of a hydro model, a thermal model, and a combined hydrothermal model. The hydro model and thermal model generate the initial feasible solutions for the hydrothermal model. The two competing objectives considered in the daily hydrothermal model are minimizing fuel costs and minimizing thermal emissions. We use the constraint method to develop the trade-off curve (Pareto front) between these two objectives. We apply the proposed methodology on the Yunnan hydrothermal system in China. The system consists of 163 individual hydropower plants with an installed capacity of 48,477 MW and 11 individual thermal plants with an installed capacity of 12,400 MW. We use historical operational records to verify the correctness of the model and to test the robustness of the methodology. The results demonstrate the practicability and validity of the proposed procedure.
Chen, Y-C; Lo, S-L; Ou, H-H; Chen, C-H
2011-01-01
CdS/Titanate nanotubes (TNTs) were successfully synthesised by a simple, rapid, and reliable microwave hydrothermal method. The CdS nanoparticles synthesised using a 140-W microwave irradiation power at 423 K photodegraded 26% ammonia in water, while the photocatalytic efficiency increased to 52.3% using the synthesised CdS/TNTs composites. The results indicated that the CdS/TNTs photocatalysts possess improved photocatalytic activity than that of CdS or TNTs materials alone.
NASA Astrophysics Data System (ADS)
Dickey, K.; Holbrook, W. S.; Finn, C.; Auken, E.; Carr, B.; Sims, K. W. W.; Bedrosian, P.; Lowenstern, J. B.; Hurwitz, S.; Pedersen, J. B. B.
2017-12-01
Yellowstone National Park hosts over 10,000 thermal features (e.g. geysers, fumaroles, mud pots, and hot springs), yet little is known about the circulation depth of meteoric water feeding these features, nor the lithological and structural bounds on the pathways that guide deep, hot fluids to the surface. Previous near-surface geophysical studies have been effective in imaging shallow hydrothermal pathways in some areas of the park, but these methods are difficult to conduct over the large areas needed to characterize entire hydrothermal systems. Transient electromagnetic (TEM) soundings and 2D direct current (DC) resistivity profiles show that hydrothermal fluids at active sites have a higher electrical conductivity than the surrounding hydrothermally inactive areas. For that reason, airborne TEM is an effective method to characterize large areas and identify hydrothermally active and inactive zones using electrical conductivity. Aeromagnetic data have been useful in mapping faults that localize hot springs, making the integration of aeromagnetic and EM data effective for structurally characterizing fluid pathways. Here we present the preliminary results from an airborne transient electromagnetic (TEM) and magnetic survey acquired jointly by the U.S. Geological Survey (USGS) and the University of Wyoming (UW) in November 2016. We integrate the EM and magnetic data for the purpose of edge detection of rhyolite flow boundaries as well as source depth of hydrothermal features. The maximum horizontal gradient technique applied on magnetic data is a useful tool that used to estimate source depth as well as indicate faults and fractures. The integration of EM with magnetics allows us to distinguish hydrothermally altered fault systems that guide fluids in the subsurface. We have used preliminary 2D inversions of EM from Aarhus Workbench to delineate rhyolite flow edges in the upper 300-600 meters and cross-checked those boundaries with the aeromagnetic map.
Discovery of a new hydrothermal vent based on an underwater, high-resolution geophysical survey
NASA Astrophysics Data System (ADS)
Nakamura, Kentaro; Toki, Tomohiro; Mochizuki, Nobutatsu; Asada, Miho; Ishibashi, Jun-ichiro; Nogi, Yoshifumi; Yoshikawa, Shuro; Miyazaki, Jun-ichi; Okino, Kyoko
2013-04-01
A new hydrothermal vent site in the Southern Mariana Trough has been discovered using acoustic and magnetic surveys conducted by the Japan Agency for Marine-Earth Science and Technology's (JAMSTEC) autonomous underwater vehicle (AUV), Urashima. The high-resolution magnetic survey, part of a near-bottom geophysical mapping around a previously known hydrothermal vent site, the Pika site, during the YK09-08 cruise in June-July 2009, found that a clear magnetization low extends ˜500 m north from the Pika site. Acoustic signals, suggesting hydrothermal plumes, and 10 m-scale chimney-like topographic highs were detected within this low magnetization zone by a 120 kHz side-scan sonar and a 400 kHz multibeam echo sounder. In order to confirm the seafloor sources of the geophysical signals, seafloor observations were carried out using the deep-sea manned submersible Shinkai 6500 during the YK 10-10 cruise in August 2010. This discovered a new hydrothermal vent site (12°55.30'N, 143°38.89'E; at a depth of 2922 m), which we have named the Urashima site. This hydrothermal vent site covers an area of approximately 300 m×300 m and consists of black and clear smoker chimneys, brownish-colored shimmering chimneys, and inactive chimneys. All of the fluids sampled from the Urashima and Pika sites have chlorinity greater than local ambient seawater, suggesting subseafloor phase separation or leaching from rocks in the hydrothermal reaction zone. End-member compositions of the Urashima and Pika fluids suggest that fluids from two different sources feed the two sites, even though they are located on the same knoll and separated by only ˜500 m. We demonstrate that investigations on hydrothermal vent sites located in close proximity to one another can provide important insights into subseafloor hydrothermal fluid flow, and also that, while such hydrothermal sites are difficult to detect by conventional plume survey methods, high-resolution underwater geophysical surveys provide an effective means.
Gas-sensing enhancement methods for hydrothermal synthesized SnO2-based sensors
NASA Astrophysics Data System (ADS)
Zhao, Yalei; Zhang, Wenlong; Yang, Bin; Liu, Jingquan; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng
2017-11-01
Gas sensing for hydrothermal synthesized SnO2-based gas sensors can be enhanced in three ways: structural improvement, composition optimization, and processing improvement. There have been zero-dimensional, one-dimensional, and three-dimensional structures reported in the literature. Controllable synthesis of different structures has been deployed to increase specific surface area. Change of composition would intensively tailor the SnO2 structure, which affected the gas-sensing performance. Furthermore, doping and compounding methods have been adopted to promote gas-sensing performance by adjusting surface conditions of SnO2 crystals and constructing heterojunctions. As for processing area, it is very important to find the optimal reaction time and temperature. In this paper, a gas-solid reaction rate constant was proposed to evaluate gas-sensing properties and find an excellent hydrothermal synthesized SnO2-based gas sensor.
Cl-rich hydrous mafic mineral assemblages in the Highiș massif, Apuseni Mountains, Romania
NASA Astrophysics Data System (ADS)
Bonin, Bernard; Tatu, Mihai
2016-08-01
The Guadalupian (Mid-Permian) Highiș massif (Apuseni Mountains, Romania) displays a bimodal igneous suite of mafic (gabbro, diorite) and A-type felsic (alkali feldspar granite, albite granite, and hybrid granodiorite) rocks. Amphibole is widespread throughout the suite, and yields markedly high chlorine contents. Three groups are identified: Cl-rich potassic hastingsite (2.60-3.40 wt% Cl) within A-type felsic rocks and diorite, mildly Cl-rich pargasite to hornblende (0.80-1.90 wt% Cl) within gabbro, and low F-Cl hornblende within gabbro and hybrid granodiorite. Coexisting biotite is either Cl-rich within diorite, or F-Cl-poor to F-rich within A-type felsic rocks. Chlorine and fluorine are distributed in both mafic phases, according to the F-Fe and Cl-Mg avoidance rules. The low-Ti contents suggest subsolidus compositions. Cl-rich amphibole within diorite and A-type felsic rocks yields a restricted temperature range - from 575 °C down to 400 °C, whereas mildly Cl-rich amphibole within gabbro displays the highest range - from 675 to 360 °C. Temperatures recorded by Cl-rich biotite within diorite range from 590 to 410 °C. Biotite within A-type felsic rocks yields higher temperatures than amphibole: the highest values- from 640 to 540 °C - are recorded in low-F-Cl varieties, whereas the lowest values- from 535 to 500 °C - are displayed by F-rich varieties. All data point to halogen-rich hydrothermal fluids at upper greenschist facies conditions percolating through fractures and shear zones and pervasively permeating the whole Highiș massif, with F precipitating as interstitial fluorite and Cl incorporating into amphibole, during one, or possibly several, hydrothermal episodes that would have occurred during a ~ 150 My-long period of time extending from the Guadalupian (Mid-Permian) to the Albian (Mid-Cretaceous).
Elucidation of reaction mechanism involved in the formation of LaNiO3 from XRD and TG analysis
NASA Astrophysics Data System (ADS)
Dharmadhikari, Dipti V.; Athawale, Anjali A.
2013-06-01
The present work is focused on the synthesis and elucidation of reaction mechanism involved in the formation of LaNiO3 with the help of X-ray diffraction (XRD) and thermogravimetric (TG) analysis. LaNiO3 was synthesized by hydrothermal method by heating at 160°C under autogenous pressure for 6h. Pure phase product was obtained after calcining the hydrothermally activated product for 6h at 700°C. The various phases of the product obtained after hydrothermal treatment and calcination followed by the formation of pure phase nanocrystalline lanthanum nickel oxide could be determined from XRD analysis of the samples. The reaction mechanism and phase formation temperature has been interpreted by thermogravimetric analysis of the hydrothermally synthesized product and XRD analysis.
NASA Astrophysics Data System (ADS)
Wang, Yong; Li, Tie Gang; Wang, Meng Ying; Lai, Qi Liang; Li, Jiang Tao; Gao, Zhao Ming; Shao, Zong Ze; Qian, Pei-Yuan
2016-11-01
In deep-sea sediment, the microbes present in anhydrite crystals are potential markers of the past environment. In the Atlantis II Deep, anhydrite veins were produced by mild mixture of calcium-rich hydrothermal solutions and sulfate in the bottom water, which had probably preserved microbial inhabitants in the past seafloor of the Red Sea. In this study, this hypothesis was tested by analyzing the metagenome of an anhydrite crystal sample from the Atlantis II Deep. The estimated age of the anhydrite layer was between 750 and 770 years, which might span the event of hydrothermal eruption into the benthic floor. The 16S/18S rRNA genes in the metagenome were assigned to bacteria, archaea, fungi and even invertebrate species. The dominant species in the crystals was an oil-degrading Alcanivorax borkumensis bacterium, which was not detected in the adjacent sediment layer. Fluorescence microscopy using 16S rRNA and marker gene probes revealed intact cells of the Alcanivorax bacterium in the crystals. A draft genome of A. borkumensis was binned from the metagenome. It contained all functional genes for alkane utilization and the reduction of nitrogen oxides. Moreover, the metagenomes of the anhydrites and control sediment contained aromatic degradation pathways, which were mostly derived from Ochrobactrum sp. Altogether, these results indicate an oxic, oil-spilling benthic environment in the Atlantis II basin of the Red Sea in approximately the 14th century. The original microbial inhabitants probably underwent a dramatic selection process via drastic environmental changes following the formation of an overlying anoxic brine pool in the basin due to hydrothermal activities.
NASA Astrophysics Data System (ADS)
García-Aguilar, José Manuel; Guerra-Merchán, Antonio; Serrano, Francisco; Palmqvist, Paul; Flores-Moya, Antonio; Martínez-Navarro, Bienvenido
2014-07-01
The continental sedimentary record of the Baza Basin (Guadix-Baza Depression, Betic Cordillera, SE Spain) shows six sedimentary units of lacustrine origin deposited from the latest Miocene to the Middle Pleistocene. Depending on the interval considered, the lacustrine deposits are mainly composed of marls, carbonates or gypsiferous evaporites, showing lithological, mineralogical and geochemical features (i.e., magnesium, strontium and sulfur contents, celestine deposits and travertine growths) that are evidence of intense, tectonically-induced hydrothermal activity. According to the high concentrations of strontium and sulfur as well as the abundance of travertines and magnesium clays, the supply of hot waters was greater during the Zanclean, the Gelasian and the Calabrian, as a result of tectonic activity. Hydrothermal activity has continued until the present time and is responsible of the hot springs that are nowadays active in the Guadix-Baza Depression. The paleoenvironmental consequences of these sublacustrine hot springs were that during some intervals the lakes maintained a relatively permanent water table, not subject to periodic desiccations in the dry season, and warmer temperatures throughout the year. This resulted in a high level of organic productivity, especially for the Calabrian, which allowed the development of a rich and well diversified mammalian community, similar to those of modern African savannas with tree patches. In this mild environment, the permanent water sheet favored the presence of drought intolerant megaherbivores such as the giant extinct hippo Hippopotamus antiquus. The high standing crop biomass of ungulates resulted in the availability of abundant carcasses for scavengers such as hyenas and hominins, which explains the very high densities of skeletal remains preserved in the sediments distributed along the lake surroundings.
Hirano, Masanori; Ito, Takaharu
2006-12-01
New anatase-type titania solid solutions co-doped with niobium and aluminum (Til-2xNbxAIlxO2 (X = 0 -0.20)) were synthesized as nanoparticles from precursor solutions of TiOSO4, NbCl5, and Al(NO3)3 under mild hydrothermal conditions at 180 degrees C for 5 h using the hydrolysis of urea. The lattice parameters a0 and c0 of anatase slightly and gradually increased, when the content of niobium and aluminum increased from X = 0 to 0.20. The crystallite size of anatase increased from 12 to 28 nm with increasing the value of X from 0 to 0.20. Their photocatalytic activity and adsorptivity were evaluated separately by the measurement of the concentration of methylene blue (MB) remained in the solution in the dark or under UV-light irradiation. The adsorptivity of TiO2 was improved by the formation of anatase-type Til-2xNbxAlxO2 solid solutions. The photocatalytic activity of anatase-type Til-2xNbxAlxO2 solid solutions was superior to that of commercially available anatase-type pure TiO2 (ST-01) and anatase-type pure TiO2 hydrothermally prepared. The new anatase phase of Til-2xNbxAlxO2 (X = 0-0.20) solid solutions existed stably up to 850 0C during heat treatment in air. In comparison with hydrothermal pure TiO2, the starting temperature of anatase-to-rutile phase transformation was delayed by the formation of Ti1-2xNbxAlxO, (X = 0-0.20) solid solutions, although its completing temperature was accelerated.
NASA Astrophysics Data System (ADS)
Macdonald, Ray; Bagiński, Bogusław; Zozulya, Dmitry
2017-09-01
A quartzolite from the Rova occurrence, Keivy alkali granite province, Kola Peninsula, Russia, is used to examine the differing responses of certain rare-metal minerals during interaction with hydrothermal fluids. The minerals are two silicates [chevkinite-(Ce) and zircon], a phosphate [monazite-(Ce)] and an oxide [fergusonite-(Y)]. Textural evidence is taken to show that the dominant alteration mechanism was interface-coupled dissolution-reprecipitation. Zircon was the most pervasively altered, possibly by broadening of cleavage planes or fractures; the other minerals were altered mainly on their rims and along cracks. The importance of cracks in promoting fluid access is stressed. The compositional effects of the alteration of each phase are documented. The hydrothermal fluids carried few ligands capable of transporting significant amounts of rare-earth elements (REE), high field strength elements (HFSE) and actinides; alteration is inferred to have been promoted by mildly alkaline, Ca-bearing fluids. Expansion cracks emanating from fergusonite-(Y) are filled with unidentified material containing up to 35 wt% UO2 and 25 wt% REE2O3, indicating late-stage, short-distance mobility of these elements. Electron microprobe chemical dating of monazite yielded an age of 1665 ± 22 Ma, much younger than the formation age of the Keivy province (2.65-2.67 Ga) but comparable to that of the Svecofennian metamorphic event which affected the area (1.9-1.7 Ga) or during fluid-thermal activation of the region during rapakivi granite magmatism (1.66-1.56 Ga). Dates for altered monazite range from 2592 ± 244 Ma to 773 ± 88 Ma and reflect disturbance of the U-Th-Pb system during alteration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malik, Ritu; Kumar, Ashok; Rana, Pawan S., E-mail: drpawansrana.phy@dcrustm.org
2015-08-28
This work deals with the synthesis of TiO{sub 2} nanostructures using sol-gel and hydrothermal method for evaluating their photodegradation performance towards decolorization of Rose Bengal (RB). A combination of characterization techniques including X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and UV–Vis spectroscopy were utilized to evaluate the structural, morphological and optical properties of the obtained nanostructures. It was observed that the TiO{sub 2} nanoparticles prepared using hydrothermal method were highly crystalline and possess higher band gap value, even when same conditions of temperature, pressure, precursor ratios and solvent amount was kept constant while synthesizing TiO{sub 2} nanostructures viamore » sol-gel method. The obvious effect of porous morphology exhibited by TiO{sub 2} nanoparticles prepared using hydrothermal route is reflected in its decolorization performance whereby 92.5% of the RB dye solution was degraded in 70 min of irradiation time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hai; Zhang, Youjin, E-mail: zyj@ustc.edu.cn; Zhou, Maozhong
Highlights: • Gd(OH){sub 3} large single crystals were prepared by solid KOH assisted hydrothermal method. • The possible growth mechanism of Gd(OH){sub 3} large single crystals was proposed. • The Gd(OH){sub 3} samples emitted a strong narrow-band ultraviolet B (NB-UVB) light. • The Gd(OH){sub 3} samples showed good paramagnetic properties. - Abstract: Large single crystals of gadolinium hydroxide [Gd(OH){sub 3}] in the length of several millimeters were successfully prepared by using solid KOH assisted hydrothermal method. Gd(OH){sub 3} samples were characterized by X-ray diffraction (XRD), 4-circle single-crystal diffraction, Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). FESEM imagemore » shows hexagonal prism morphology for the Gd(OH){sub 3} large crystals. The possible growth mechanism of Gd(OH){sub 3} large single crystals was proposed. The photoluminescence and magnetic properties of Gd(OH){sub 3} species were investigated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Landeros, J.; Departamento de Ingenieria Metalurgica, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, IPN, UPALM, Av. Instituto Politecnico Nacional s/n, CP 07738, Mexico DF; Contreras-Garcia, M.E.
Lithium metasilicate (Li{sub 2}SiO{sub 3}) was successfully synthesized using a hydrothermal process in the presence of different surfactants with cationic, non-ionic and anionic characters. The samples obtained were compared to a sample prepared by the conventional solid-state reaction method. The structural and microstructural characterizations of different Li{sub 2}SiO{sub 3} powders were performed using various techniques. Diffraction analyses revealed the successful crystallization of pure Li{sub 2}SiO{sub 3} single phase by hydrothermal technique, even without further heat-treatments and independent of the surfactant used. Electron microscopy analyses revealed that Li{sub 2}SiO{sub 3} powders were composed of uniform micrometric particles with a hollow spheremore » morphology and nanostructured walls. Finally, different thermal analyses showed that Li{sub 2}SiO{sub 3} samples preserved their structure and microstructure after further thermal treatments. Specific aspects regarding the formation mechanism of the spherical aggregates under hydrothermal conditions are discussed, and there is a special emphasis on the effect of the synthesis pathway on the morphological characteristics. -- Graphical abstract: Li{sub 2}SiO{sub 3} was synthesized using a hydrothermal process in the presence of different surfactants. Li{sub 2}SiO{sub 3} powders were composed of uniform micrometric particles with a hollow sphere morphology and nanostructured walls. Display Omitted Highlights: {yields} Pure Li{sub 2}SiO{sub 3} was synthesized by the hydrothermal method. {yields} Surfactant addition produced microstructural and morphological variations. {yields} TEM reveled the generation of nanostructured hollow spheres.« less
NASA Astrophysics Data System (ADS)
Wu, Xinhe; Chen, Fengyun; Wang, Xuefei; Yu, Huogen
2018-01-01
Surface modification of g-C3N4 is one of the most effective strategies to boost its photocatalytic H2-evolution performance via promoting the interfacial catalytic reactions. In this study, an in situ one-step hydrothermal method was developed to prepare the oxygen-containing groups-modified g-C3N4 (OG/g-C3N4) by a facile and green hydrothermal treatment of bulk g-C3N4 in pure water without any additives. It was found that the hydrothermal treatment (180 °C) not only could greatly increase the specific surface area (from 2.3 to 69.8 m2 g-1), but also caused the formation of oxygen-containing groups (sbnd OH and Cdbnd O) on the OG/g-C3N4 surface, via the interlayer delamination and intralayer depolymerization of bulk g-C3N4. Photocatalytic experimental results indicated that after hydrothermal treatment, the resultant OG/g-C3N4 samples showed an obviously improved H2-evolution performance. Especially, when the hydrothermal time was 6 h, the resultant OG/g-C3N4(6 h) exhibited the highest photocatalytic activity, which was clearly higher than that of the bulk g-C3N4 by a factor of ca. 7. In addition to the higher specific surface area, the enhanced H2-evolution rate of OG/g-C3N4 photocatalysts can be mainly attributed to the formation of oxygen-containing groups, which possibly works as the effective H2-evolution active sites. Considering the facie and green synthesis method, the present work may provide a new insight for the development of highly efficient photocatalytic materials.
NASA Astrophysics Data System (ADS)
Mittelstaedt, Eric; Davaille, Anne; van Keken, Peter E.; Gracias, Nuno; Escartin, Javier
2010-10-01
Diffuse flow velocimetry (DFV) is introduced as a new, noninvasive, optical technique for measuring the velocity of diffuse hydrothermal flow. The technique uses images of a motionless, random medium (e.g., rocks) obtained through the lens of a moving refraction index anomaly (e.g., a hot upwelling). The method works in two stages. First, the changes in apparent background deformation are calculated using particle image velocimetry (PIV). The deformation vectors are determined by a cross correlation of pixel intensities across consecutive images. Second, the 2-D velocity field is calculated by cross correlating the deformation vectors between consecutive PIV calculations. The accuracy of the method is tested with laboratory and numerical experiments of a laminar, axisymmetric plume in fluids with both constant and temperature-dependent viscosity. Results show that average RMS errors are ˜5%-7% and are most accurate in regions of pervasive apparent background deformation which is commonly encountered in regions of diffuse hydrothermal flow. The method is applied to a 25 s video sequence of diffuse flow from a small fracture captured during the Bathyluck'09 cruise to the Lucky Strike hydrothermal field (September 2009). The velocities of the ˜10°C-15°C effluent reach ˜5.5 cm/s, in strong agreement with previous measurements of diffuse flow. DFV is found to be most accurate for approximately 2-D flows where background objects have a small spatial scale, such as sand or gravel.
Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvaraj, Mahalakshmi; Department of Material Science, School of Chemistry, Madurai Kamaraj University, Tamilnadu Madurai-625 021; Venkatachalapathy, V.
2015-11-15
Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO{sub 3}) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl{sub 2}) and titanium tetrachloride (TiCl{sub 4}) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO{sub 3} nanopowders. The as-prepared BaTiO{sub 3} powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phasemore » directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO{sub 3} nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO{sub 3} nanopowders can be stabilized by the sol-hydrothermal method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghahari, M., E-mail: maghahari@icrc.ac.ir; Mostafavi, K.
2016-05-15
Highlights: • Mg{sub 2}SiO{sub 4}:Dy{sup 3+} nanoparticles have been prepared by hydrothermal and combustion methods. • Thermo and photo luminescent behavior of Mg{sub 2}SiO{sub 4}:Dy{sup 3+} was studied. • The effect of synthesis method on TL properties of Mg{sub 2}SiO{sub 4}:Dy{sup 3+} was investigated. • The optimal dopant concentration for thermo-luminescent property was obtained. - Abstract: In this study, photo and thermo-luminescent properties of Nano crystalline Mg{sub 2}SiO{sub 4}:Dy{sup 3+} prepared by a hydrothermal method were studied and compared to those of nanoparticles prepared by combustion method. The synthesized sample was characterized by X-ray diffraction, transmission electron microscopy, scanning electronmore » microscopy and photoluminescence spectroscopy. The effect of Dy concentration on photo and thermoluminescent intensities was studied. The X-ray diffraction (XRD) patterns of the samples revealed that forsterite was formed as a major phase for all the samples. The crystallite size was found to be in the range of 20–50 nm. The thermo luminescent glow curve indicated that the hydrothermal sample was more efficient than the combustion sample. Two prominent TL bands located at 200 nm and 320 nm were recorded. The prepared nanoparticles exhibited a roughly linear dose response to absorbed dose of 1000 Gy received from 60Co gamma source, suggesting that nanomaterial could be a good candidate for high dose dosimetry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei; College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600; Hua, Ruinian, E-mail: rnhua@dlnu.edu.cn
2014-12-15
Graphical abstract: Rice-shaped BaAlF{sub 5}:Eu{sup 2+} nanophosphors were synthesized via one-pot hydrothermal process. The as-prepared BaAlF{sub 5}:Eu{sup 2+} are composed of many particles with an average diameter of 40 nm. When excited at 260 nm, the sharp line emission located at 361 nm of Eu{sup 2+} was observed. The optimum doping concentration of Eu{sup 2+} was confirmed to be 5 mol%. The strong ultraviolet emission of Eu{sup 2+} ions in BaAlF{sub 5}:Eu{sup 2+} nanoparticles suggests that these nanoparticles may have potential applications for sensing, solid-state lasers and spectrometer calibration. - Highlights: • BaAlF{sub 5}:Eu{sup 2+} nanophosphors were synthesized via amore » mild hydrothermal process. • The Van and Huang models were used to research the mechanism of concentration quenching. • The optimum doping concentration of Eu2+ was confirmed to be 5 mol%. - Abstract: Eu{sup 2+}-doped BaAlF{sub 5} nanophosphors were synthesized via a facile one-pot hydrothermal method. The final products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. XRD results showed that the prepared samples are single-phase. The FE-SEM and TEM images indicated that the prepared BaAlF{sub 5}:Eu{sup 2+} nanophosphors are composed of many rice-shaped particles with an average diameter of 40 nm. When excited at 260 nm, BaAlF{sub 5}:Eu{sup 2+} nanophosphors exhibit the sharp line emissions of Eu{sup 2+} at room temperature. The optimum doping concentration of Eu{sup 2+} was confirmed to be 5 mol%. The Van and Huang models were used to study the mechanism of concentration quenching and the electric dipole–dipole interaction between Eu{sup 2+} can be deduced to be a dominant for quenching fluorescence in BaAlF{sub 5}:Eu{sup 2+} nanophosphors. The strong ultraviolet emission of Eu{sup 2+} in BaAlF{sub 5}:Eu{sup 2+} nanophosphors suggests that these nanoparticles may have potential applications for sensing, spectrometer calibration and solid-state lasers.« less
NASA Astrophysics Data System (ADS)
Brothelande, E.; Lénat, J.-F.; Chaput, M.; Gailler, L.; Finizola, A.; Dumont, S.; Peltier, A.; Bachèlery, P.; Barde-Cabusson, S.; Byrdina, S.; Menny, P.; Colonge, J.; Douillet, G. A.; Letort, J.; Letourneur, L.; Merle, O.; Di Gangi, F.; Nakedau, D.; Garaebiti, E.
2016-08-01
In this contribution, we focus on one of the most active resurgences on Earth, that of the Yenkahe dome in the Siwi caldera (Tanna Island, Vanuatu), which is associated with the persistently active Yasur volcano. Gravity and magnetic surveys have been carried out over the past few years in the area, as well as electrical methods including electrical resistivity tomography (ERT), time domain electro-magnetics (TDEM) and self-potential (SP). These investigations were completed by thermometry, CO2 soil gas measurements, field observations and sampling. This multi-method approach allows geological structures within the caldera to be identified, as well as associated hydrothermal features. The global structure of the caldera is deduced from gravity data, which shows the caldera rim as a high density structure. Large lava fields, emplaced before and after the onset of resurgence, are evidenced by combined gravity, magnetic and resistivity signals. In the middle of the caldera, the Yenkahe dome apparently results from a combination of volcanic and tectonic events, showing that lava extrusion and resurgence have been operating simultaneously or alternately during the Siwi caldera post-collapse history. There is a clear distinction between the western and eastern parts of the dome. The western part is older and records the growth of an initial volcanic cone and the formation of a small caldera. This small caldera (paleo-Yasur caldera), partially filled with lava flows, is the present-day focus of volcanic activity and associated fluid circulation and alteration. The eastern part of the dome is presumably younger, and is characterized by intense, extensive hydrothermal alteration and activity. Its northern part is covered by lava flow piles and exhibits a shallow hydrothermal zone in ERT. The southern part has hydrothermal alteration and activity extending at least down to the base of the resurgent dome. This part of the dome is built up of low cohesion rock and is thus potentially prone to gravitational landslides. Lastly, while self-potential and temperature data suggest that widespread hydrothermal circulation occurs throughout almost all of the caldera, and possibly beyond, the most active parts of this hydrothermal system are associated with the dome. The presence of this active hydrothermal system is the clearest indicator that these methods can provide of a potential shallow magmatic body underneath the dome.
NASA Astrophysics Data System (ADS)
Larson, P. B.; Nichols, H. J.; Wolff, J. A.; Marti, J.
2001-12-01
As part of an ongoing project investigating assimilation in ocean island magmas, we are measuring stable isotope ratios of hydrothermally altered lithic fragments in phonolitic pyroclastic deposits from Tenerife, Canary Islands. Nepheline syenite blocks occur in the 0.196 Ma El Abrigo ignimbrite of the Diego Hernandez Formation (DHF). The DHF is the most recent of at least three caldera-forming magmatic cycles on Tenerife. The blocks are fragments of evolved plutons that are chemically similar to phonolites but extend to more strongly differentiated compositions. Distinct major and trace element concentrations suggest that the blocks derive from two intrusions, here referred to as A and B. The B syenites have chemical affinities with the El Abrigo phonolite, and some blocks contain small pockets of residual glass, suggesting that the B pluton may have been coeval with the El Abrigo magma. O isotope ratios of the B syenites lie within the range 4.8 to 7.0 per mil. The B samples are mostly fresh, and their higher O isotope ratios are near pristine magmatic values. Lower values occur in rocks with mild hydrothermal mineralogic alteration, and their values reflect limited high-temperature water-rock isotope exchange. O isotope ratios for A blocks are lower (0.1 to 6.3 per mil, most less than 2.0 per mil), and some samples show extensive mineral alteration. Near-ubiquitous alteration among the A samples, distinct major and trace element compositions, and lack of glass show that this syenite was older than, and unrelated to, the El Abrigo magma. Syenite D/H ratios range from -90 to -120 per mil. O vs H isotope relations indicate that an 18O-depleted meteoric water was the most important reservoir for the high-temperature hydrothermal fluid. Assimilation of altered syenite should provide a distinct stable isotope fingerprint that would be inherited by the product magma. DHF phonolites yield O ratios in the range 5.5 to 7.0 per mil, which may be this fingerprint. Assimilation of variably altered syenites, with accompanying fractionation, is a viable mechanism for producing this stable isotope variability in the magmas.
Quantitative characterization of the aqueous fraction from hydrothermal liquefaction of algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddi, Balakrishna; Panisko, Ellen; Wietsma, Thomas
Aqueous streams generated from hydrothermal liquefaction contain approximately 30% of the total carbon present from the algal feed. Hence, this aqueous carbon must be utilized to produce liquid fuels and/or specialty chemicals for economic sustainability of hydrothermal liquefaction on industrial scale. In this study, aqueous fractions produced from the hydrothermal liquefaction of fresh water and saline water algal cultures were analyzed using a wide variety of analytical instruments to determine their compositional characteristics. This study will also inform researchers designing catalysts for down-stream processing such as high-pressure catalytic conversion of organics in aqueous phase, catalytic hydrothermal gasification, and biological conversions.more » Organic chemical compounds present in all eight aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compounds include organic acids, nitrogen compounds and aldehydes/ketones. Conventional gas chromatography and liquid chromatography methods were utilized to quantify the identified compounds. Inorganic species in the aqueous stream of hydrothermal liquefaction of algae were identified using ion chromatography and inductively coupled plasma optical emission spectrometer. The concentrations of organic chemical compounds and inorganic species are reported. The amount quantified carbon ranged from 45 to 72 % of total carbon in the aqueous fractions.« less
Experimentally Testing Hydrothermal Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds.
Barge, Laura M; White, Lauren M
2017-09-01
We review various laboratory strategies and methods that can be utilized to simulate prebiotic processes and origin of life in hydrothermal vent systems on icy/ocean worlds. Crucial steps that could be simulated in the laboratory include simulations of water-rock chemistry (e.g., serpentinization) to produce hydrothermal fluids, the types of mineral catalysts and energy gradients produced in vent interfaces where hydrothermal fluids interface with the surrounding seawater, and simulations of biologically relevant chemistry in flow-through gradient systems (i.e., far-from-equilibrium experiments). We describe some examples of experimental designs in detail, which are adaptable and could be used to test particular hypotheses about ocean world energetics or mineral/organic chemistry. Enceladus among the ocean worlds provides an ideal test case, since the pressure at the ocean floor is more easily simulated in the lab. Results for Enceladus could be extrapolated with further experiments and modeling to understand other ocean worlds. Key Words: Enceladus-Ocean worlds-Icy worlds-Hydrothermal vent-Iron sulfide-Gradient. Astrobiology 17, 820-833.
Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst.
Li, Huiling; Deng, Aojie; Ren, Junli; Liu, Changyu; Lu, Qi; Zhong, Linjie; Peng, Feng; Sun, Runcang
2014-04-01
Selectively catalytic hydrothermal pretreatment of corncob into xylose and furfural has been developed in this work using solid acid catalyst (SO4(2-)/TiO2-ZrO2/La(3+)). The effects of corncob-to-water ratio, reaction temperature and residence time on the performance of catalytic hydrothermal pretreatment were investigated. Results showed that the solid residues contained mainly lignin and cellulose, which was indicative of the efficient removal of hemicelluloses from corncob by hydrothermal method. The prepared catalyst with high thermal stability and strong acid sites originated from the acid functional groups was confirmed to contribute to the hydrolysis of polysaccharides into monosaccharides followed by dehydration into furfural. Highest furfural yield (6.18 g/100g) could be obtained at 180°C for 120 min with 6.80 g/100g xylose yield when the corncob/water ratio of was 10:100. Therefore, selectively catalytic hydrothermal pretreatment of lignocellulosic biomass into important platform chemicals by solid acids is considered to be a potential treatment for biodiesel and chemical production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Iyyappan, E; Wilson, P; Sheela, K; Ramya, R
2016-06-01
Hydroxyapatite (HA) particles were synthesized using Ca(NO3)2·4H2O and (NH4)2HPO4 as precursors with varying contents of non-ionic surfactant viz., triton X-100 (organic modifier) via co-precipitation method followed by hydrothermal treatment. The prepared HA particles have been characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Energy Dispersive X-ray Analysis (EDX), High Resolution Scanning Electron Microscopy (HRSEM), High Resolution Transmission Electron Microscopy (HRTEM) and Nitrogen adsorption-desorption experiments. The XRD and FTIR studies indicate the formation of HA phase in all the synthesized samples. The specific roles of triton X-100 and hydrothermal treatment in dispersing and in directing the crystal growth respectively have been discussed by comparing the observations from individual experiments using triton X-100 and hydrothermal treatment with that of combined protocol involving both. The plausible mechanism for the individual roles of both triton X-100 and hydrothermal treatment have been proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kurniati, M.; Nurhayati, D.; Maddu, A.
2017-03-01
The important part of fuel cell is the gas diffusion layer who made from carbon based material porous and conductive. The main goal of this research is to obtain carbon material from sugarcane bagasse with hydrothermal carbonization and chemical-physics activation. There were two step methods in this research. The first step was sample preparation which consisted of prepare the materials, hydrothermal carbonization and chemical-physics activation. The second one was analyze character of carbon using EDS, SEM, XRD, and LCR meter. The amount of carbon in sugarcane bagasse-carbon was about 85%-91.47% with pore morphology that already form. The degree of crystallinity of sugarcane bagasse carbon was about 13.06%-20.89%, leaving the remain as the amorphous phase. Electrical conductivity was about 5.36 x 10-2 Sm-1 - 1.11 Sm-1. Sugarcane bagasse-carbon has porous characteristic with electrical conductivity property as semiconductor. Sugarcane bagasse-carbon with hydrothermal carbonization potentially can be used as based material for fuel cell if only time of hydrothermal carbonization hold is increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Xiaoli; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096; Lu, Haiqiang
2015-08-15
Highlights: • Sodalite/NaTaO{sub 3} composite is prepared by a one-pot hydrothermal synthesis. • Enhanced photodegradation is achieved due to the heterogeneous doping effect. • Structure distortion is found for NaTaO{sub 3} after removing sodalite by acid washing. - Abstract: Sodalite/NaTaO{sub 3} composite was prepared by a one-pot hydrothermal synthesis method. Sodalite and NaTaO{sub 3} grow interpenetrated, and the resulting composites have similar morphology as the pure sodalite. The sodalite/NaTaO{sub 3} composite has a lower band gap of 3.35 eV due to the heterogeneous doping effect, and exhibits an enhanced photodegradation of methyl orange under UV irradiation as compared to themore » pure NaTaO{sub 3}. A slight structure distortion is found for NaTaO{sub 3} after removing sodalite by acid washing the sodalite/NaTaO{sub 3} composite, and such result further confirms the co-growth of the two crystals. This one-pot hydrothermal method opens up new avenues for the preparation of photocatalytic composites.« less
Ferdov, Stanislav; Reis, Mario S; Lin, Zhi; Ferreira, Rute A Sá
2008-11-03
A new vanadium(III) phosphate, Na3V(OH)(HPO4)(PO4), has been synthesized by using mild hydrothermal conditions under autogeneous pressure. This material represents a very rare example of sodium vanadium(III) phosphate with a chain structure. The crystal structure has been determined by refinement of powder X-ray diffraction data, starting from the atomic coordinates of an isotypic compound, Na3Al(OH)(HPO4)(PO4), which was obtained under high temperature and high pressure. The phase crystallizes in monoclinic space group C2/m (No. 12) with lattice parameters a = 15.423(9) A, b = 7.280(0) A, c = 7.070(9) A, beta = 96.79(7) degrees, V = 788.3(9) A(3), and Z = 4. The structure consists of one-dimensional chains composed of corner-sharing VO5(OH) octahedra running along the b direction. They are decorated by isolated PO4 and HPO4 tetrahedra sharing two of their corners with the ones of the vanadium octahedra. The interconnection between the chains is assured by three crystallographically distinct Na(+) cations. Magnetic investigation confirms the 3+ oxidation state of the vanadium ions and reveals an antiferromagnetic arrangement between those ions through the chain.
Microwave mediated synthesis of ZnS spherical nanoparticles for IR optical ceramics
NASA Astrophysics Data System (ADS)
Ravichandran, D.; Wharton, T.; Devan, B.; Korenstein, R.; Tustison, R.; Komarneni, S.
2011-06-01
The existing material choice for long-wave infrared (LWIR) and semi-active laser domes is multispectral zinc sulfide (ZnS), made by chemical vapor deposition. An alternative route to make more erosion-resistant ZnS could be through hot pressing ZnS nanoparticles into small-grain material. We have attempted to produce ZnS nanoparticles both by microwave and microwave-hydrothermal methods. Microwave route produced ultrahigh purity, homogeneous, well dispersed, and uniformly spherical ZnS nanoparticles. Microwave-hydrothermal route produced equiaxed cubic-faceted nanoparticles. The powder X-ray diffraction patterns of ZnS shows the presence of broad reflections corresponding to the (1 1 1), (2 2 0), and (3 1 1) planes of the cubic crystalline ZnS material. The domain size of the particles estimated from the Debye-Scherrer formula for the main reflection (111) gives a value of 2.9 and 2.5 for the microwave and microwave-hydrothermal methods respectively.
NASA Astrophysics Data System (ADS)
Wang, Dandan; Li, Xiuyan; Liu, Zuohua; Shi, Xue; Zhou, Guowei
2017-01-01
Hollow silica nanospheres with wrinkled or smooth surfaces were successfully fabricated through a hydrothermal method. In this method, oil-in-water microemulsion (composed of cyclohexane, water, ethanol, and cetyltrimethylammonium bromide), and polyvinylpyrrolidone were utilized as template and capping agent, respectively. In such a facile synthesis, we can well realize the morphological transformation of spheres with radially oriented mesochannels to hollow structures of silica nanoparticle only by regulating the hydrothermal temperature from 100 °C to 200 °C. Synthesized samples with different mesostructures were then used as supports to immobilize Candida rugosa lipase (CRL). The immobilized CRL was employed as a new biocatalyst for biodiesel production through the esterification of heptanoic acid with ethanol. The conversion ratio of heptanoic acid with ethanol catalyzed by the immobilized CRL was also evaluated. Results of this study suggest that the prepared samples have potential applications in biocatalysis.
Subramanian, Vaidyanathan; Murugesan, Sankaran
2014-04-29
The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.
NASA Astrophysics Data System (ADS)
Muldoon, F. H.
2018-04-01
Hydrothermal waves in flows driven by thermocapillary and buoyancy effects are suppressed by applying a predictive control method. Hydrothermal waves arise in the manufacturing of crystals, including the "open boat" crystal growth process, and lead to undesirable impurities in crystals. The open boat process is modeled using the two-dimensional unsteady incompressible Navier-Stokes equations under the Boussinesq approximation and the linear approximation of the surface thermocapillary force. The flow is controlled by a spatially and temporally varying heat flux density through the free surface. The heat flux density is determined by a conjugate gradient optimization algorithm. The gradient of the objective function with respect to the heat flux density is found by solving adjoint equations derived from the Navier-Stokes ones in the Boussinesq approximation. Special attention is given to heat flux density distributions over small free-surface areas and to the maximum admissible heat flux density.
Quesada-Cabrera, Raul; Weng, Xiaole; Hyett, Geoff; Clark, Robin J H; Wang, Xue Z; Darr, Jawwad A
2013-09-09
High-throughput continuous hydrothermal flow synthesis was used to manufacture 66 unique nanostructured oxide samples in the Ce-Zr-Y-O system. This synthesis approach resulted in a significant increase in throughput compared to that of conventional batch or continuous hydrothermal synthesis methods. The as-prepared library samples were placed into a wellplate for both automated high-throughput powder X-ray diffraction and Raman spectroscopy data collection, which allowed comprehensive structural characterization and phase mapping. The data suggested that a continuous cubic-like phase field connects all three Ce-Zr-O, Ce-Y-O, and Y-Zr-O binary systems together with a smooth and steady transition between the structures of neighboring compositions. The continuous hydrothermal process led to as-prepared crystallite sizes in the range of 2-7 nm (as determined by using the Scherrer equation).
Process characteristics for microwave assisted hydrothermal carbonization of cellulose.
Zhang, Junting; An, Ying; Borrion, Aiduan; He, Wenzhi; Wang, Nan; Chen, Yirong; Li, Guangming
2018-07-01
The process characteristics of microwave assisted hydrothermal carbonization of cellulose was investigated and a first order kinetics model based on carbon concentration was developed. Chemical properties analysis showed that comparing to conventional hydrothermal carbonization, hydrochar with comparable energy properties can be obtained with 5-10 times decrease in reaction time with assistance of microwave heating. Results from kinetics study was in great agreement with experimental analysis, that they both illustrated the predominant mechanism of the reaction depend on variations in the reaction rates of two co-existent pathways. Particularly, the pyrolysis-like intramolecular dehydration reaction was proved to be the predominant mechanism for hydrochar generation under high temperatures. Finally, the enhancement effects of microwave heating were reflected under both soluble and solid pathways in this research, suggesting microwave-assisted hydrothermal carbonization as a more attracting method for carbon-enriched hydrochar recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars
NASA Technical Reports Server (NTRS)
Sutter, Brad; Golden, D. C.; Ming, Douglas W.; Niles, P. B.
2011-01-01
The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars has been used to suggest that neutral to mildly alkaline conditions prevailed during the early history of Mars. However, if early Mars was neutral to moderately alkaline with a denser CO2 atmosphere than today, then large carbonates deposits should be more widely detected in Noachian terrain. The critical question is: Why have so few carbonate deposits been detected compared to Fe/Mg smectites? We suggest that Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would inhibit the extensive formation of carbonate deposits. The goal of this work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions. The stability of smectites under mildly acidic conditions is attributed to elevated Fe/Mg activities that inhibit smectite dissolution. Beidelite and saponite have been shown to form from hydrothermal alteration of basaltic glass at pH 3.5-4.0 in seawater solutions. Nontronite is also known to be stable in mildly acidic systems associated with mafic and ultramafic rock. Nontronite was shown to form in acid sulfate soils in the Bangkok Plain, Thailand due to oxidation of Fe-sulfides that transformed saponite to nontronite. Smectite is known to transform to kaolinite in naturally acid soils due to selective leaching of Mg. However, if Mg removal is limited, then based on equilibrium relationships, the dissolution of smectite should be minimized. If Fe and Mg solution activities are sufficiently high, such as might be found in a low water/rock ratio system that is poorly drained, smectite could form and remain stable under mildly acidic conditions on Mars. The sources of mild acidity on early Mars includes elevated atmospheric CO2 levels, Fe-hydrolysis reactions, and the presence of volcanic SO2 aerosols. Equilibrium calculations dictate that water equilibrated with an early Mars CO2 atmosphere at 1 to 4 bar yields a pH of 3.6 to 3.9. Fe hydrolysis reactions on Mars is another source of protons that would have contributed to acidity. The presence of SO2 from volcanic processes could also have contributed to geochemical acidification. These sources of acidity competed with base-forming cations that resulted in mildly acidic solutions that were not favorable for carbonate formation but may have allowed for Fe/Mg smectite formation. Noachian to early Hesperian Mars could have been mildly acidic, allowing Fe/Mg smectite formation but preventing widespread carbonate deposition. This paradigm shift from an early Mars that was neutral-alkaline to mildly acidic may possibly explain why there is a disparity between the occurrence of carbonate and Fe/Mg smectites. Potential microbiological activity would not be eliminated under a mildly acidic Mars; however, there could be tighter constraints as to the type and species of microbiology that could exist.
NASA Astrophysics Data System (ADS)
Nie, Qiulin; Yuan, Qiuli; Chen, Weixiang; Xu, Zhude
2004-05-01
CdS nanocrystallites were synthesized by the hydrothermal method and characterized by XRD, TEM, and XPS, respectively. Different coordination agents were chosen as the template to investigate their effects on the product morphology. It was found that the CdS nanocrystallites displayed a rod-like shape when ethylenediamine or methylamine were employed as the template. In contrast, only nanoparticles of CdS were observed when ammonia or pyridine were used. Based on our experimental results, a complex structure-controlling mechanism is proposed.
Sun, Shaoni; Cao, Xuefei; Sun, Shaolong; Xu, Feng; Song, Xianliang; Sun, Run-Cang; Jones, Gwynn Lloyd
2014-01-01
The recalcitrance of lignocellulosic biomass is a major limitation for its conversion into biofuels by enzymatic hydrolysis. The use of a pretreatment technology is an essential step to diminish biomass recalcitrance for bioethanol production. In this study, a two-step pretreatment using hydrothermal pretreatment at various temperatures and alkali fractionation was performed on eucalyptus fiber. The detailed chemical composition, physicochemical characteristics, and morphology of the pretreated fibers in each of the fractions were evaluated to advance the performance of eucalyptus fiber in enzymatic digestibility. The hydrothermal pretreatment (100 to 220°C) significantly degraded hemicelluloses, resulting in an increased crystallinity of the pretreated fibers. However, as the pretreatment temperature reached 240°C, partial cellulose was degraded, resulting in a reduced crystallinity of cellulose. As compared to the hydrothermal pretreatment alone, a combination of hydrothermal and alkali treatments significantly removed hemicelluloses and lignin, resulting in an improved enzymatic hydrolysis of the cellulose-rich fractions. As compared with the raw fiber, the enzymatic hydrolysis rate increased 1.1 to 8.5 times as the hydrothermal pretreatment temperature increased from 100 to 240°C. Interestingly, after a combination of hydrothermal pretreatment and alkali fractionation, the enzymatic hydrolysis rate increased 3.7 to 9.2 times. Taking into consideration the consumption of energy and the production of xylo-oligosaccharides and lignin, an optimum pretreatment condition was found to be hydrothermal pretreatment at 180°C for 30 min and alkali fractionation with 2% NaOH at 90°C for 2.5 h, in which 66.3% cellulose was converted into glucose by enzymatic hydrolysis. The combination of hydrothermal pretreatment and alkali fractionation was a promising method to remove hemicelluloses and lignin as well as overcome the biomass recalcitrance for enzymatic hydrolysis from eucalyptus fiber. In addition, the various techniques applied in this work constituted an efficient approach to understand the underlying chemical and morphological changes of the cellulose-rich fractions.
Manganese Oxidizing Bacteria in Guaymas Basin Hydrothermal Fluids, Sediments, and Plumes
NASA Astrophysics Data System (ADS)
Dick, G. J.; Tebo, B. M.
2002-12-01
The active seafloor hydrothermal system at Guaymas Basin in the Gulf of California is unique in that spreading centers are covered with thick sediments, and hydrothermal fluids are injected into a semi-enclosed basin. This hydrothermal activity is the source of a large input of dissolved manganese [Mn(II)] into Guaymas Basin, and the presence of a large standing stock of particulate manganese in this basin has been taken as evidence for a short residence time of dissolved Mn(II) with respect to oxidation, suggestive of bacterial catalysis. During a recent Atlantis/Alvin expedition (R/V Atlantis Cruise #7, Leg 11, Jim Cowen Chief Scientist), large amounts of particulate manganese oxides were again observed in Guaymas Basin hydrothermal plumes. The goal of the work presented here was to identify bacteria involved in the oxidation of Mn(II) in Guaymas Basin, and to determine what molecular mechanisms drive this process. Culture-based methods were employed to isolate Mn(II)-oxidizing bacteria from Guaymas Basin hydrothermal fluids, sediments, and plumes, and numerous Mn(II)-oxidizing bacteria were identified based on the formation of orange, brown, or black manganese oxides on bacterial colonies on agar plates. The Mn(II)-oxidizing bacteria were able to grow at temperatures from 12 to 50°C, and a selection of the isolates were chosen for phylogenetic (16S rRNA genes) and microscopic characterization. Endospore-forming Bacillus species accounted for many of the Mn(II)-oxidizing isolates obtained from both hydrothermal sediments and plumes, while members of the alpha- and gamma-proteobacteria were also found. Mn(II)-oxidizing enzymes from previously characterized Bacillus spores are known to be active at temperatures greater than 50°C. The presence of Mn(II)-oxidizing spores - some of which are capable of growing at elevated temperatures - in hydrothermal fluids and sediments at Guaymas Basin suggests that Mn(II) oxidation may be occurring immediately or very soon after hydrothermal fluids emerge from the seafloor.
Fracture distribution and porosity in a fault-bound hydrothermal system (Grimsel Pass, Swiss Alps)
NASA Astrophysics Data System (ADS)
Egli, Daniel; Küng, Sulamith; Baumann, Rahel; Berger, Alfons; Baron, Ludovic; Herwegh, Marco
2017-04-01
The spatial distribution, orientation and continuity of brittle and ductile structures strongly control fluid pathways in a rock mass by joining existing pores and creating new pore space (fractures, joints) but can also act as seals to fluid flow (e.g. ductile shear zones, clay-rich fault gouges). In long-lived hydrothermal systems, permeability and the related fluid flow paths are therefore dynamic in space and time. Understanding the evolution and behaviour of naturally porous and permeable rock masses is critical for the successful exploration and sustainable exploitation of hydrothermal systems and can advance methods for planning and implementation of enhanced geothermal systems. This study focuses on an active fault-bound hydrothermal system in the crystalline basement of the Aar Massif (hydrothermal field Grimsel Pass, Swiss Alps) that has been exhumed from few kilometres depth and which documents at least 3 Ma of hydrothermal activity. The explored rock unit of the Aar massif is part of the External Crystalline Massifs that hosts a multitude of thermal springs on its southern border in the Swiss Rhône valley and furthermore represents the exhumed equivalent of potentially exploitable geothermal reservoirs in the deep crystalline subsurface of the northern Alpine foreland basin. This study combines structural data collected from a 125 m long drillhole across the hydrothermal zone, the corresponding drill core and surface mapping. Different methods are applied to estimate the porosity and the structural evolution with regard to porosity, permeability and fracture distribution. Analyses are carried out from the micrometre to decametre scale with main focus on the flow path evolution with time. This includes a large variety of porosity-types including fracture-porosity with up to cm-sized aperture down to grain-scale porosity. Main rock types are granitoid host rocks, mylonites, paleo-breccia and recent breccias. The porosity of the host rock as well as the cemented paleo-hydrothermal breccia is typically very low with values <1%. The high volume of mineralized fractures in the paleo-breccia indicates high porosity in former times, which is today closed by newly developed cements. The preservation of such paleo-breccias allow the investigation of contrasts between the fossil porosity/permeability and the present day active flow path, which is defined by fracture porosity that generally follows the regional deformation pattern and forms a wide network of interconnected fractures of variable orientation.
Maleki, Afshin; Safari, Mahdi; Shahmoradi, Behzad; Zandsalimi, Yahya; Daraei, Hiua; Gharibi, Fardin
2015-11-01
In this study, Cu-doped ZnO nanoparticles were investigated as an efficient synthesized catalyst for photodegradation of humic substances in aqueous solution under natural sunlight irradiation. Cu-doped ZnO nanocatalyst was prepared through mild hydrothermal method and was characterized using FT-IR, powder XRD and SEM techniques. The effect of operating parameters such as doping ratio, initial pH, catalyst dosage, initial concentrations of humic substances and sunlight illuminance were studied on humic substances degradation efficiency. The results of characterization analyses of samples confirmed the proper synthesis of Cu-doped ZnO nanocatalyst. The experimental results indicated the highest degradation efficiency of HS (99.2%) observed using 1.5% Cu-doped ZnO nanoparticles at reaction time of 120 min. Photocatalytic degradation efficiency of HS in a neutral and acidic pH was much higher than that at alkaline pH. Photocatalytic degradation of HS was enhanced with increasing the catalyst dosage and sunlight illuminance, while increasing the initial HS concentration led to decrease in the degradation efficiency of HS. Conclusively, Cu-doped ZnO nanoparticles can be used as a promising and efficient catalyst for degradation of HS under natural sunlight irradiation.
Tang, Yiming; Pan, Zhaoqi; Li, Laisheng
2017-12-15
Mesoporous siliceous MCM-41 immobilized with Co and Mn metal ions (Co-Mn-MCM-41) was synthesized using a hydrothermal method. The structural regularity and the valence states of the metal species were measured by X-ray diffractometer and X-ray photoelectron spectrometer. The resultant bimetallic Co-Mn-MCM-41 catalyst was tested for the degradation of dimethyl phthalate (DMP) via a catalytic ozonation mechanism, demonstrating that the catalytic properties of Co-Mn-MCM-41 catalyst significantly accelerated the ozonation process. Total organic carbon (TOC) and DMP removal efficiency reached 94% and 99.7% at 15min under the optimal conditions. The oxidation pathways were proposed after identifying the intermediate products from ozonation using a gas chromatography-mass spectrometer. The enhanced catalytic reactivity was attributed to the highly-dispersive cobalt and manganese species in MCM-41 scaffolds, which promoted the ozone decomposition and hydroxyl radicals' generation in catalytic ozonation and accelerated the degradation of DMP. Bimetallic Co-Mn-MCM-41 catalyst remained stable in mild acidic conditions and continued to show high activity after repeated runs. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Yu; Lei, Jixue; Yin, Bing
2014-03-17
A simple two-step hydrothermal process was proposed for enhancing the performance of the nanogenerator on flexible and wearable terylene-fabric substrate. With this method, a significant enhancement in output voltage of the nanogenerator from ∼10 mV to 7 V was achieved, comparing with the one by conventional one-step process. In addition, another advantage with the devices synthesized by two-step hydrothermal process was that their output voltages are only sensitive to strain rather than strain rate. The devices with a high output voltage have the ability to power common electric devices and will have important applications in flexible electronics and wearable devices.
Hydrothermal Fabrication of WO3 Hierarchical Architectures: Structure, Growth and Response
Wu, Chuan-Sheng
2015-01-01
Recently hierarchical architectures, consisting of two-dimensional (2D) nanostructures, are of great interest for potential applications in energy and environmental. Here, novel rose-like WO3 hierarchical architectures were successfully synthesized via a facile hydrothermal method. The as-prepared WO3 hierarchical architectures were in fact assembled by numerous nanosheets with an average thickness of ~30 nm. We found that the oxalic acid played a significant role in governing morphologies of WO3 during hydrothermal process. Based on comparative studies, a possible formation mechanism was also proposed in detail. Furthermore, gas-sensing measurement showed that the well-defined 3D WO3 hierarchical architectures exhibited the excellent gas sensing properties towards CO. PMID:28347062
NASA Astrophysics Data System (ADS)
Zhang, Zhifang; Wang, Wenbo; Wang, Aiqin
2015-02-01
Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic-inorganic hybrid pigment.
2012-01-01
The analysis of the dissolved organic fraction of hydrothermal fluids has been considered a real challenge due to sampling difficulties, complexity of the matrix, numerous interferences and the assumed ppb concentration levels. The present study shows, in a qualitative approach, that Stir Bar Sorptive Extraction (SBSE) followed by Thermal Desorption – Gas Chromatography – Mass Spectrometry (TD-GC-MS) is suitable for extraction of small sample volumes and detection of a wide range of volatile and semivolatile organic compounds dissolved in hydrothermal fluids. In a case study, the technique was successfully applied to fluids from the Rainbow ultramafic-hosted hydrothermal field located at 36°14’N on the Mid-Atlantic Ridge (MAR). We show that n-alkanes, mono- and poly- aromatic hydrocarbons as well as fatty acids can be easily identified and their retention times determined. Our results demonstrate the excellent repeatability of the method as well as the possibility of storing stir bars for at least three years without significant changes in the composition of the recovered organic matter. A preliminary comparative investigation of the organic composition of the Rainbow fluids showed the great potential of the method to be used for assessing intrafield variations and carrying out time series studies. All together our results demonstrate that SBSE-TD-GC-MS analyses of hydrothermal fluids will make important contributions to the understanding of geochemical processes, geomicrobiological interactions and formation of mineral deposits. PMID:23134621
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Lijuan; Xu, Haiyan; Zhang, Dingke
2014-07-01
Highlights: • Hexagonal phase of MoS{sub 2} nanosheets was synthesized by a facile hydrothermal method. • FE-SEM and TEM images show the sheets-like morphology of MoS{sub 2}. • Bilayer MoS{sub 2} can be grown under the optimized mole ratio of 2:1 of S:Mo at 180 °C for 50 h. • The MoS{sub 2} nanosheets possess high methyl orange adsorption capacity due to the large surface area. - Abstract: Molybdenum disulfide (MoS{sub 2}) nanosheets have received significant attention recently due to the potential applications for exciting physics and technology. Here we show that MoS{sub 2} nanosheets can be prepared by amore » facile hydrothermal method. The study of the properties of the MoS{sub 2} nanosheets prepared at different conditions suggests that the mole ratio of precursors and hydrothermal time significantly influences the purity, crystalline quality and thermal stability of MoS{sub 2}. X-ray diffraction, Raman spectra and transmission electron microscopy results indicate that bilayer MoS{sub 2} can be grown under an optimized mole ratio of 2:1 of S:Mo at 180 °C for 50 h. Moreover, such ultrathin nanosheets exhibit a prominent photoluminescence and possess high methyl orange adsorption capacity due to the large surface area, which can be potentially used in photodevice and photochemical catalyst.« less
NASA Astrophysics Data System (ADS)
Lv, Wei; Wei, Bo; Xu, Lingling; Zhao, Yan; Gao, Hong; Liu, Jia
2012-10-01
In this work, hierarchical ZnO flowers were synthesized via a sucrose-assisted urea hydrothermal method. The thermogravimetric analysis/differential thermal analysis (TGA-DTA) and Fourier transform infrared spectra (FTIR) showed that sucrose acted as a complexing agent in the synthesis process and assisted combustion during annealing. Photocatalytic activity was evaluated using the degradation of organic dye methyl orange. The sucrose added ZnO flowers showed improved activity, which was mainly attributed to the better crystallinity as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The effect of sucrose amount on photocatalytic activity was also studied.
Boehmite nanostructures preparation by hydrothermal method from anodic aluminium oxide membrane.
Yang, X; Wang, J Y; Pan, H Y
2009-02-01
Boehmite nanostructures were successfully synthesized from porous anodic aluminium oxide (AAO) membrane by a simple and efficient hydro-thermal method. The experiment used high purity alumina as raw material, and the whole reaction process avoided superfluous impurities to be introduced. Thus, the purity of Boehmite products was ensured. The examinations of the morphology and structure were carried out by atomic force microscope (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Composition of the specimens was analyzed using energy dispersive X-ray spectroscope (EDX) and X-ray diffraction (XRD). Based on these observations the growth process was analyzed.
Hinkley, T.K.; Seeley, J.L.; Tatsumoto, M.
1988-01-01
Three distinct types of solid material are associated with each sample of the hydrothermal fluid that was collected from the vents of the Southern Juan de Fuca Ridge. The solid materials appear to be representative of deposits on ocean floors near mid-ocean ridges, and interpretation of the chemistry of the hydrothermal solutions requires understanding of them. Sr isotopic evidence indicates that at least two and probably all three of these solid materials were removed from the solution with which they are associated, by precipitation or adsorption. This occurred after the "pure" hydrothermal fluid was diluted and thoroughly mixed with ambient seawater. The three types of solid materials, are, respectively, a coarse Zn- and Fe-rich material with small amounts of Na and Ca; a finer material also rich in Zn and Fe, but with alkali and alkaline-earth metals; and a scum composed of Ba or Zn, with either considerable Fe or Si, and Sr. Mineral identification is uncertain because of uncertain anion composition. Only in the cases of Ba and Zn were metal masses greater in solid materials than in the associated fluids. For all other metals measured, masses in fluids dwarf those in solids. The fluids themselves contain greater concentrations of all metals measured, except Mg, than seawater. We discuss in detail the relative merits of two methods of determining the mixing proportions of "pure" hydrothermal solution and seawater in the fluids, one based on Sr isotopes, and another previously used method based on Mg concentrations. Comparison of solute concentrations in the several samples shows that degree of dilution of "pure" hydrothermal solutions by seawater, and amounts of original solutes that were removed from it as solid materials, are not related. There is no clear evidence that appreciable amounts of solid materials were not conserved (lost) either during or prior to sample collection. ?? 1988.
Simple mass production of zinc oxide nanostructures via low-temperature hydrothermal synthesis
NASA Astrophysics Data System (ADS)
Ghasaban, Samaneh; Atai, Mohammad; Imani, Mohammad
2017-03-01
The specific properties of zinc oxide (ZnO) nanoparticles have attracted much attention within the scientific community as a useful material for biomedical applications. Hydrothermal synthesis is known as a useful method to produce nanostructures with certain particle size and morphology however, scaling up the reaction is still a challenging task. In this research, large scale hydrothermal synthesis of ZnO nanostructures (60 g) was performed in a 5 l stainless steel autoclave by reaction between anionic (ammonia or sodium hydroxide) and cationic (zinc acetate dehydrate) precursors in low temperature. Hydrothermal reaction temperature and time were decreased to 115 °C and 2 or 6 h. In batch repetitions, the same morphologies (plate- and needle-like) with reproducible particle size were obtained. The nanostructures formed were analyzed by powder x-ray diffraction, Fourier-transform infrared spectroscopy, energy dispersive x-ray analysis, scanning electron microscopy and BET analysis. The nanostructures formed were antibacterially active against Staphylococcus aureus.
Mesophilic-hydrothermal-thermophilic (M-H-T) digestion of green corn straw.
Li, Dong; Wang, Qingjing; Li, Jiang; Li, Zhidong; Yuan, Yuexiang; Yan, Zhiying; Mei, Zili; Liu, Xiaofeng
2016-02-01
Mesophilic-hydrothermal (80-160 °C, 30 min)-thermophilic (M-H-T) digestion and control tests of mesophilic (M), thermophilic (T), hydrothermal-mesophilic (H-M), and mesophilic-thermophilic digestion (M-T) of green corn straw were conducted for a 20-day fermentation period. The results indicate that M-H-T is an efficient method to improve methane production. A maximum methane yield of 371.74 mL/g volatile solid was obtained by the M (3 days)-H (140 °C)-T (17 days) process, which was 20.44%, 16.55%, 31.44%, and 14.31% higher than the yields of the M, T, 140-M, and M-T processes. The enhanced methane production was attributed to (1) the improved hemicellulose degradation and lignin disorganization; (2) prevention of the degradation of soluble sugar, easily hydrolyzed hemicellulose and cellulose into furfural and methylfurfural; and (3) lack of formation of Maillard reaction products during initial hydrothermal treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Togashi, Takanari; Umetsu, Mitsuo; Naka, Takashi; Ohara, Satoshi; Hatakeyama, Yoshiharu; Adschiri, Tadafumi
2011-09-01
The assembly of metal oxide nanoparticles (NPs) on a biomolecular template by a one-pot hydrothermal synthesis method is achieved for the first time. Magnetite (Fe3O4) nanoneedles (length: 100 nm; width: 10 nm) were assembled on cyclic-diphenylalanine (cFF) nanorods (length: 2-10 μm; width: 200 nm). The Fe3O4 nanoneedles and cFF nanorods were simultaneously synthesized from FeSO4 and l-phenylalanine by hydrothermal synthesis (220 °C and 22 MPa), respectively. The samples were analyzed by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. Experimental results indicate that Fe3O4 nanoneedles were assembled on cFF nanorods during the hydrothermal reaction. The composite contained 3.3 wt% Fe3O4 nanoneedles without any loss of the original magnetic properties of Fe3O4.
Photocatalytic degradation of RhB with microwave prepared PbMoO4.
Hernández-Uresti, Diana B; Aguilar-Garib, Juan A; Martínez-de la Cruz, Azael
2012-01-01
Synthesized PbMoO4 from H2MoO4 and Pb(NO3)2 with microwaves was compared, in terms of its photocatalytic activity as catalyzer for decomposing rhodamine B (RhB), against samples prepared by hydrothermal and sonochemical methods from the same precursors. Microwave synthesis lasted 20 minutes; hydrothermal, 10 minutes and sonochemical method, 1 hour. Xrays diffraction patterns show that PbMoO4 prepared by these three routes is compounded by the same phase. It is found that microwave synthesized PbMoO4 particles are rounder, in an intermediate size (250 nm), compared to sonochemical (100 nm) and hydrothermal (500 nm) routes; microwave particles also exhibit higher photocatalytic activity for degradation of RhB under a xenon lamp. This difference is not explicable in terms of surface area measurements, but could be explained by UV Light scattering by the rounder particles produced by means of the microwave processing, which are about one half size compared to the wavelength.
NASA Astrophysics Data System (ADS)
Sholehah, Amalia; Achmad, NurSumiati; Dimyati, Arbi; Dwiyanti, Yanyan; Partuti, Tri
2017-05-01
ZnO thin layer has a broad potential application in optoelectronic devices. In the present study, vertically align ZnO layers on ITO glass were synthesized using wet chemical method. The seed layers were prepared using electrodeposition method at 3°C. After that, the growing process was carried out using chemical bath deposition (CBD) at 90°C. To improve the structural property of the ZnO layers, hydrothermal technique was used subsequently. Results showed that seeding layer has a great influence on the physical properties of the ZnO layers. Moreover, hydrothermal process conducted after the ZnO growth can enhance the morphological property of the layers. From the experiments, it is found that the ZnO layers has diameter of ∼60 nm with increasing thickness from ∼0.8 to 1.2 μm and band-gap energies of ∼3.2 eV.
Hydrothermal growth of ZnO nanowire arrays: fine tuning by precursor supersaturation
Yan, Danhua; Cen, Jiajie; Zhang, Wenrui; ...
2016-12-20
In this paper, we develop a technique that fine tunes the hydrothermal growth of ZnO nanowires to address the difficulties in controlling their growth in a conventional one-pot hydrothermal method. In our technique, precursors are separately and slowly supplied with the assistance of a syringe pump, through the entire course of the growth. Compared to the one-pot method, the significantly lowered supersaturation of precursors helps eliminating competitive homogeneous nucleation and improves the reproducibility. The supersaturation degree can be readily tuned by the precursor quantity and injection rate, thus forming ZnO nanowire arrays of various geometries and packing densities in amore » highly controllable fashion. The precise control of ZnO nanowire growth enables systematic studies on the correlation between the material's properties and its morphology. Finally, in this work, ZnO nanowire arrays of various morphologies are studied as photoelectrochemical (PEC) water splitting photoanodes, in which we establish clear correlations between the water splitting performance and the nanowires' size, shape, and packing density.« less
NASA Astrophysics Data System (ADS)
Yamagishi, A.
Microbial community in hydrothermal area at seafloor has been analyzed by culture-independent methods. Hydrothermal fluid from natural vents and vent chimneys have been analyzed by PCR (1-2). Hyperthermophilic microbes have been isolated from these environments (3-4). Though the analysis of these samples can provide the window to penetrate the microbial community under the seafloor, more direct analysis is desired for better understanding of the sub-seafloor microbial community In the ``Archaean Park Project'' supported by Special Coordination Fund, several holes were drilled and the holes were supported by casing pipes in the crater of the Suiyo seamount on the Izu-Bonin arc, West Pacific Ocean (about 1,400 m depth) in 2001 and 2002. Hydrothermal fluids were sampled from cased holes. The fluids were filtered to collect the microbial cells. The DNA was extracted and used to amplify 16S rDNA fragments by PCR (polymerase chain reaction) using a bacteria and an archaea specific primer sets. The PCR fragments were cloned and sequenced. FISH analysis revealed from 6 x103 to 2.5 x 106 bactrerial cells/ml in these hydrothermal fluids. PCR clone-analysis showed significant variation in bacterial sequences found in these samples. The species-patterns suggest that the contamination of ambient seawater to hydrothermal fluid samples is negligible. Difference in the dominant species depending on the location was found, suggesting that the bacterial community at sub-sea floor is not monotonous but has gradual shift from the hydrothermal center to peripheral area. The results suggest that there is chemo-autotrophic microbe-dependent biota under the hydrothermal system. References 1) Takai et al. Genetics 152: 1285-1297 (1999) 2) Takai et al. Appl. Environ. Microbioi. 67: 3618-3629 (2001) 3) Summit et al. Proc. Natl. Acad. Sci. 98: 2158-2163 (2001) 4) Amend, J. P. and Shodk, E. L. FEMS Microbiol. Rev. 25: 175-243 (2002)
Church, S.E.; Fey, D. L.; Klein, T.L.; Schmidt, T.S.; Wanty, R.B.; deWitt, E.H.; Rockwell, B.W.; San, Juan C.A.
2009-01-01
The U.S. Geological Survey conducted an environmental assessment of 198 catchments in a 54,000-km2 area of central Colorado, much of which is on Federal land. The Colorado Mineral Belt, a northeast-trending zone of historical base- and precious-metal mining, cuts diagonally across the study area. The investigation was intended to test the hypothesis that degraded water and sediment quality are restricted to catchments in which historical mining has occurred. Water, streambed sediment, and aquatic insects were collected from (1) catchments underlain by single lithogeochemical units, some of which were hydrothermally altered, that had not been prospected or mined; (2) catchments that contained evidence of prospecting, most of which contain hydrothermally altered rock, but no historical mining; and (3) catchments, all of which contain hydrothermally altered rock, where historical but now inactive mines occur. Geochemical data determined from catchments that did not contain hydrothermal alteration or historical mines met water quality criteria and sediment quality guidelines. Base-metal concentrations from these types of catchments showed small geochemical variations that reflect host lithology. Hydrothermal alteration and mineralization typically are associated with igneous rocks that have intruded older bedrock in a catchment. This alteration was regionally mapped and characterized primarily through the analysis of remote sensing data acquired by the ASTER satellite sensor. Base-metal concentrations among unaltered rock types showed small geochemical variations that reflect host lithology. Base-metal concentrations were elevated in sediment from catchments underlain by hydrothermally altered rock. Classification of catchments on the basis of mineral deposit types proved to be an efficient and accurate method for discriminating catchments that have degraded water and sediment quality. Only about 4.5 percent of the study area has been affected by historical mining, whereas a larger part of the study area is underlain by hydrothermally altered rock that has weathered to produce water and sediment with naturally elevated geochemical baselines.
NASA Astrophysics Data System (ADS)
Wang, P.; Yang, L.; Dai, B.; Yang, Z.; Guo, S.; Zhu, J.
2017-07-01
Vertically-aligned WO3 nanoplates on transparent conducting fluorine-doped tin oxide (FTO) glass were prepared by a facile template-free crystal-seed-assisted hydrothermal method. The effects of the hydrothermal temperature and reaction time on the crystal structure and morphology of the products were investigated by XRD and SEM. The XRD results showed that the as-prepared thin films obtained below 150∘C comprised orthorhombic WO3 ṡ H2O and completely converted to monoclinic WO3 at 180∘C. It was also noted that there was a phase transformation from orthorhombic to monoclinic by increasing the reaction time from 1 to 12 h. SEM analysis revealed that WO3 thin films are composed of plate-like nanostructures.
Converting sugars to sugar alcohols by aqueous phase catalytic hydrogenation
Elliott, Douglas C [Richland, WA; Werpy, Todd A [West Richland, WA; Wang, Yong [Richland, WA; Frye, Jr., John G.
2003-05-27
The present invention provides a method of converting sugars to their corresponding sugar alcohols by catalytic hydrogenation in the aqueous phase. It has been found that surprisingly superior results can be obtained by utilizing a relatively low temperature (less than 120.degree. C.), selected hydrogenation conditions, and a hydrothermally stable catalyst. These results include excellent sugar conversion to the desired sugar alcohol, in combination with long life under hydrothermal conditions.
NASA Astrophysics Data System (ADS)
Jia, Hong-Bin; Yu, Jie-Hui; Xu, Ji-Qing; Ye, Ling; Ding, Hong; Jing, Wei-Jie; Wang, Tie-Gang; Xu, Jia-Ning; Li, Zeng-Chun
2002-10-01
By hydrothermal method, a novel supramolecular compound, Co(NIA) 2(H 2O) 4 was synthesized and its structure was characterized with elemental analysis, FT-IR spectrum, TGA and X-ray diffractometer, indicating that it is a novel polyporous supramolecule with molecular ladder hydrogen-bonded chains. TGA curve shows its thermal stability up to 520 °C.
NASA Astrophysics Data System (ADS)
Jamieson, J. W.; Clague, D. A.; Petersen, S.; Yeo, I. A.; Escartin, J.; Kwasnitschka, T.
2016-12-01
High-resolution, autonomous underwater vehicle (AUV)-derived multibeam bathymetry is increasingly being used as an exploration tool for delineating the size and extent of hydrothermal vent fields and associated seafloor massive sulfide deposits. However, because of the limited amount of seafloor that can be surveyed during a single dive, and the challenges associated with distinguishing hydrothermal chimneys and mounds from other volcanic and tectonic features using solely bathymetric data, AUV mapping surveys have largely been employed as a secondary exploration tool once hydrothermal sites have been discovered using other exploration methods such as plume, self-potential and TV surveys, or ROV and submersible dives. Visual ground-truthing is often required to attain an acceptable level of confidence in the hydrothermal origin of features identified in AUV-derived bathymetry. Here, we present examples of high-resolution bathymetric surveys of vent fields from a variety of tectonic environments, including slow- and intermediate-rate mid-ocean ridges, oceanic core complexes and back arc basins. Results illustrate the diversity of sulfide deposit morphologies, and the challenges associated with identifying hydrothermal features in different tectonic environments. We present a developing set of criteria that can be used to distinguish hydrothermal deposits in bathymetric data, and how AUV surveys can be used either on their own or in conjunction with other exploration techniques as a primary exploration tool.
Part II. Hydrothermal steel slag valorization: hydrogen and nano-magnetite production
NASA Astrophysics Data System (ADS)
Crouzet, Camille; Brunet, Fabrice; Recham, Nadir; Auzende, Anne-Line; Findling, Nathaniel; Magnin, Valérie; Ferrasse, Jean-Henry; Goffé, Bruno
2017-10-01
The effect of acidic conditions (in a pH range of 3 to 6) and temperature on the kinetics of the hydrothermal oxidation of ferrous iron contained in BOF steel slag has been tested in the 150 – 350°C range for acid acetic concentrations from 0 to 4M. Reaction progress was monitored with the amount of produced H2. Higher temperature and lower pH are found to enhance the hydrothermal oxidation kinetics of the slag. These two parameters are believed to increase iron dissolution rate which has already been identified as the rate limiting step of the hydrothermal oxidation of pure FeO. An activation energy of 28 × 4 kJ/mole is found for the hydrothermal oxidation of the steel slag which compares very well with that of pure FeO under similar conditions. In the case of the slag run in water at 300°C for 70.5 hours, magnetite product has been separated magnetically and characterized. Particles were found to fall in three size ranges: 10 – 30 nm, 100 – 300 nm and 1 – 10 µm. The smallest fraction (10 – 30 nm) is comparable to the 10 – 20 nm size range that is achieved when nanomagnetite are synthesized by co-precipitation methods. Obviously, the production of nanomagnetite enhances the economic interest of the hydrothermal processing of steel slags, which has already proven its capacity to produce high-purity H2.
NASA Astrophysics Data System (ADS)
Yu-Xiang, Qin; Cheng, Liu; Wei-Wei, Xie; Meng-Yang, Cui
2016-02-01
Ultrathin VO2 nanobelts with rough alignment features are prepared on the induction layer-coated substrates by an ethylenediaminetetraacetic acid (EDTA)-mediated hydrothermal process. EDTA acts as a chelating reagent and capping agent to facilitate the one-dimensional (1D) preferential growth of ultrathin VO2 nanobelts with high crystallinities and good uniformities. The annealed induction layer and concentration of EDTA are found to play crucial roles in the formation of aligned and ultrathin nanobelts. Variation in EDTA concentration can change the VO2 morphology of ultrathin nanobelts into that of thick nanoplates. Mild annealing of ultrathin VO2 nanobelts at 350 °C in air results in the formation of V2O5 nanobelts with a nearly unchanged ultrathin structure. The nucleation and growth mechanism involved in the formations of nanobelts and nanoplates are proposed. The ethanol gas sensing properties of the V2O5 nanobelt networks-based sensor are investigated in a temperature range from 100 °C to 300 °C over ethanol concentrations ranging from 3 ppm to 500 ppm. The results indicate that the V2O5 nanobelt network sensor exhibits high sensitivity, good reversibility, and fast response-recovery characteristics with an optimal working temperature of 250 °C. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274074, 61271070, and 61574100).
Detecting deep sea hydrothermal vents with a split-beam echosounder
NASA Astrophysics Data System (ADS)
Gray, L. M.; Jerram, K.
2016-12-01
In May 2016, the NOAA Office of Exploration and Research exploration vessel, Okeanos Explorer, conducted a remotely operated vehicle (ROV) dive on a series of active `black smoker' hydrothermal vents at 3,300 m depth in the western Pacific Ocean near the Mariana Trench. The ROV system traversed 800 m along the seafloor and detected three distinct vent sites. The vent chimneys ranged in heights from 5 m to 30 m above the seafloor and vent fluid temperatures were measured as high as 337 °C. Immediately following the ROV dive, the Okeanos Explorer mapped the vent field with an 18 kHz split-beam echosounder traditionally used for fishery research and a 30 kHz multibeam echosounder with midwater capability. Six passes were made over the field, transiting at 4-5 knots on various headings. There was a clear and repeatable signal in the split-beam echogram from the venting but less obvious indication in the multibeam data. `Black smokers' have traditionally been detected using repeat conductivity-temperature-depth (CTD) `tow-yo' casts. Our field observations suggest an alternative, and potentially more efficient, method of detecting hydrothermal vent plumes within the beamwidth of the split-beam echosounder to inform ROV dive plans. Methods previously applied for locating marine gas seeps on the seafloor with split-beam echosounders can be applied to estimate the hydrothermal vent positions in this dataset and compared to the recorded ROV positions at each site. Additionally, assuming relatively stable venting and ambient conditions, the ROV position and CTD data recorded from the vehicles can be used to better understand the observed midwater acoustic backscatter signatures of the hydrothermal vent plumes.
NASA Astrophysics Data System (ADS)
Rejas, J. G.; Martínez-Frías, J.; Bonatti, J.; Martínez, R.; Marchamalo, M.
2012-07-01
The aim of this work is the comparative study of the presence of hydrothermal alteration materials in the Turrialba volcano (Costa Rica) in relation with computed spectral anomalies from multitemporal and multisensor data adquired in spectral ranges of the visible (VIS), short wave infrared (SWIR) and thermal infrared (TIR). We used for this purposes hyperspectral and multispectral images from the HyMAP and MASTER airborne sensors, and ASTER and Hyperion scenes in a period between 2002 and 2010. Field radiometry was applied in order to remove the atmospheric contribution in an empirical line method. HyMAP and MASTER images were georeferenced directly thanks to positioning and orientation data that were measured at the same time in the acquisition campaign from an inertial system based on GPS/IMU. These two important steps were allowed the identification of spectral diagnostic bands of hydrothermal alteration minerals and the accuracy spatial correlation. Enviromental impact of the volcano activity has been studied through different vegetation indexes and soil patterns. Have been mapped hydrothermal materials in the crater of the volcano, in fact currently active, and their surrounding carrying out a principal components analysis differentiated for a high and low absorption bands to characterize accumulations of kaolinite, illite, alunite and kaolinite+smectite, delimitating zones with the presence of these minerals. Spectral anomalies have been calculated on a comparative study of methods pixel and subpixel focused in thermal bands fused with high-resolution images. Results are presented as an approach based on expert whose main interest lies in the automated identification of patterns of hydrothermal altered materials without prior knowledge or poor information on the area.
Hydrothermal stability of SAPO-34 for refrigeration and air conditioning applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haijun; Cui, Qun, E-mail: cuiqun@njtech.edu.cn; Wu, Juan
Graphical abstract: The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%. - Highlights: • Water adsorption strength on SAPO-34 is between thatmore » on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. • SAPO-34 with diethylamine as the template shows no significant reduced cyclic water uptake over 60 cycles, and most of the initial SAPO-34 phase is well maintained. • SAPO-34 has an excellent adsorption performance and a good hydrothermal stability, thus is promising for application in adsorption refrigeration. - Abstract: Hydrothermal stability is one of the crucial factors in applying SAPO-34 molecular sieve to adsorption refrigration. The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Both a vacuum gravimetric method and an intelligent gravimetric analyzer were applied to analyze the water adsorption performance of SAPO-34. Cyclic hydrothermal performance was determined on the modified simulation adsorption refrigeration test rig. Crystal phase, morphology, and porosity of SAPO-34 were characterized by X-ray diffraction, scanning electron microscopy, and N{sub 2} sorption, respectively. The results show that, water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%.« less
Cu2ZnSnS4 Nanoparticles Synthesized by a Novel Diethylenetriamine-Assisted Hydrothermal Method
NASA Astrophysics Data System (ADS)
Liang, Feng; Gao, Juan; Zou, Changwei; Shao, Lexi
2018-05-01
A diethylenetriamine (DETA)-assisted hydrothermal method was explored for the synthesis of kesterite Cu2ZnSnS4 (CZTS) nanoparticles. As complexing agent, DETA was employed to dissolve sulfur and to form complex with metal ions. By introducing DETA to the system, pure CZTS nanoparticles with bandgap of 1.54 eV could be successfully obtained and the agglomeration of samples could be restrained by increasing the concentration of DETA. From the discussion about the experimental results, the formation mechanism of CZTS nanoparticles was proposed. As the reagents used in this experiment is low-toxic and inexpensive, this method was considered as an effective and green route for the synthesis of CZTS nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlazan, P.; Ursu, D.H.; Irina-Moisescu, C.
TiO{sub 2}/ZnO core–shell nanoparticles were successfully synthesized by hydrothermal method in two stages: first stage is the hydrothermal synthesis of ZnO nanoparticles and second stage the obtained ZnO nanoparticles are encapsulated in TiO{sub 2}. The obtained ZnO, TiO{sub 2} and TiO{sub 2}/ZnO core–shell nanoparticles were investigated by means of X-ray diffraction, transmission electron microscopy, Brunauer, Emmett, Teller and resistance measurements. X-ray diffraction analysis revealed the presence of both, TiO{sub 2} and ZnO phases in TiO{sub 2}/ZnO core–shell nanoparticles. According to transmission electron microscopy images, ZnO nanoparticles have hexagonal shapes, TiO{sub 2} nanoparticles have a spherical shape, and TiO{sub 2}/ZnO core–shellmore » nanoparticles present agglomerates and the shape of particles is not well defined. The activation energy of TiO{sub 2}/ZnO core–shell nanoparticles was about 101 meV. - Graphical abstract: Display Omitted - Highlights: • TiO{sub 2}/ZnO core–shell nanoparticles were synthesized by hydrothermal method. • TiO{sub 2}/ZnO core–shell nanoparticles were investigated by means of XRD, TEM and BET. • Electrical properties of TiO{sub 2}/ZnO core–shell nanoparticles were investigated. • The activation energy of TiO{sub 2}/ZnO core–shell nanoparticles was about E{sub a} = 101 meV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Mi; Shanghai Institute of Ceramics; Gao Yanfeng, E-mail: yfgao@mail.sic.ac.cn
2012-05-15
Nanoscaled SnO{sub 2} with different morphologies has been synthesized via a simple hydrothermal process at 180 Degree-Sign C using polyvinylpyrrolidone (PVP), sodium dodecyl sulfonate (SDS), cetyl trimethyl ammonium bromide (CTAB) or tetrapropyl ammonium bromide (TPAB) as surfactant. All the prepared SnO{sub 2} are of a tetragonal crystal structure. Nanocubes, nanorods, nanosheets, nanobelts and nanoparticles were prepared when changing the type and dosage of organic surfactants. It is shown that anionic surfactant (SDS) and cationic surfactant (CTAB or TPAB) at their suitable addition amounts can largely influence the morphologies of SnO{sub 2} nanocrystals. The effect is significantly dependent on the solventmore » types: water or ethanol. The non-ionic surfactant (PVP) can also change the morphologies like SDS but the impacts are less obvious. The effect of surfactants on the shape and size of SnO{sub 2} nanoparticles was discussed in detail. The particle growth mechanism is described based on the electrostatic interactions and Van der Waals' forces. - Graphical abstract: SnO{sub 2} nanocrystals with controllable morphologies were prepared via a hydrothermal method with surfactants. Highlights: Black-Right-Pointing-Pointer SnO{sub 2} nanocrystals were prepared via a hydrothermal method with surfactants. Black-Right-Pointing-Pointer SnO{sub 2} morphologies changed with the type and the dosage of surfactants. Black-Right-Pointing-Pointer The effect of surfactants on the growth of crystal planes was studied. Black-Right-Pointing-Pointer The controlling mechanisms of surfactants on SnO{sub 2} morphologies were discussed.« less
Defects in ZnO nanorods prepared by a hydrothermal method.
Tam, K H; Cheung, C K; Leung, Y H; Djurisić, A B; Ling, C C; Beling, C D; Fung, S; Kwok, W M; Chan, W K; Phillips, D L; Ding, L; Ge, W K
2006-10-26
ZnO nanorod arrays were fabricated using a hydrothermal method. The nanorods were studied by scanning electron microscopy, photoluminescence (PL), time-resolved PL, X-ray photoelectron spectroscopy, and positron annihilation spectroscopy before and after annealing in different environments and at different temperatures. Annealing atmosphere and temperature had significant effects on the PL spectrum, while in all cases the positron diffusion length and PL decay times were increased. We found that, while the defect emission can be significantly reduced by annealing at 200 degrees C, the rods still have large defect concentrations as confirmed by their low positron diffusion length and short PL decay time constants.
CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyson, D.; Laboratorio de Ensino de Ciencias, DME Universidade Federal da Paraiba, PB; Volanti, D.P.
This letter reports the synthesis of CuO urchin-nanostructures by a simple and novel hydrothermal microwave method. The formation and growth of urchin-nanostructures is mainly affected by the addition of polyethylene glycol (PEG). The hierarchical malachite particles are uniform spheres with a diameter of 0.7-1.9 {mu}m. CuO urchin-nanostructures were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FEG-SEM) and nitrogen adsorption (BET). The specific surface area of the CuO nanostructured microspheres was about 170.5 m{sup 2}/g. A possible mechanism for the formation of such CuO urchin-nanostructures is proposed.
NASA Astrophysics Data System (ADS)
Yan, Junbin; Zhang, Hexuan; Xie, Zhengzheng; Liu, Jianyun
2017-08-01
Biomass carbon materials were prepared by hydrothermal method using Lentinus edodes, followed by activation by ZnCl2 at high carbonization temperature. SEM and contact angle test show that ZnCl2 has a significant effect on the surface morphology and properties of porous carbon materials. Using the porous carbon as electrodes of the capacitor, the specific capacitance of the porous carbon material was found to be 247.6 F/g. The desalination amount of porous carbon material in capacitor cell was 12.9 mg/g, being the 1.9 times of that of the commercial activated carbon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azzez, Shrook A., E-mail: shurouq44@yahoo.com; Hassan, Z.; Alimanesh, M.
Highly oriented zinc oxide nanorod were successfully grown on seeded p-type silicon substrate by hydrothermal methode. The morphology and the crystallinty of ZnO c-axis (002) arrays were systematically studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) methods. The effect of seed layer pre-annealing on nanorods properties was explained according to the nucleation site of ZnO nanoparticles on silicon substrate. In addition, the variation of the equal molarity of zinc nitrate hexahydrate and hexamine concentrations in the reaction vessel play a crucial role related to the ZnO nanorods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trent, D.S.; Eyler, L.L.; Budden, M.J.
This document describes the numerical methods, current capabilities, and the use of the TEMPEST (Version L, MOD 2) computer program. TEMPEST is a transient, three-dimensional, hydrothermal computer program that is designed to analyze a broad range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. 10 refs., 22 figs., 2 tabs.
Preparation and visible light photocatalytic activity of Bi2O3/Bi2WO6 heterojunction photocatalysts
NASA Astrophysics Data System (ADS)
Yan, C. Y.; Yi, W. T.; Xiong, J.; Ma, J.
2018-03-01
The Bi2O3 nanorods, flower-like Bi2WO6 and Bi2O3/Bi2WO6 heterojunction composites with the molar ratio of nBi:nW from 2:1, 2.5:1, to 3:1 have been synthesized via one-step hydrothermal method and two-step hydrothermal method, respectively. The products are characterized by powder X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (UV-vis DRS), and scanning electron microscopy (SEM). Photocatalytic experiments indicate that such Bi2O3/Bi2WO6 composite possesses higher photocatalytic activity for RhB degradation under visible-light irradiation in comparison with pure Bi2O3 and Bi2WO6. The enhancement of the photocatalytic activity of the Bi2O3/Bi2WO6 heterojunction catalysts can be ascribed to the reduced recombination of the photoexcited electrons and holes during the photocatalytic reaction. The effect of the molar ratio of nBi:nW on the catalytic performance of the heterojunction catalysts was also investigated. And the optimal molar ratio of nBi:nW is 2.5:1 which was synthesized by one-step hydrothermal method.
NASA Astrophysics Data System (ADS)
Mozdbar, Afsaneh; Nouralishahi, Amideddin; Fatemi, Shohreh; Mirakhori, Ghazaleh
2018-01-01
In the recent decade, Carbon Quantum Dots (CQDs) have attracted lots of attention due to their excellent properties such as tunable photoluminescence, high chemical stability, low toxicity, and biocompatibility. Among all synthesis methods, the hydrothermal/solvothermal rout has been considered as one of the most common and simplest method. The type of precursors can affect the size of CQDs and determine their surface functional groups, the essential properties that deeply influence the optical specifications. In this work, the effect of different precursors on the final properties of carbon quantum dots is investigated. The carbon quantum dots were synthesized by hydrothermal/solvothermal rout using citric acid, thiourea, ethylamine and monoethanolamine as precursors in almost the same conditions of time and temperature. Resultant CQDs were characterized by using FTIR, UV-Visible Spectroscopy and Photoluminescence (PL) analysis. The results of UV-Vis spectroscopy showed that quantum dots synthesized from monoethanolamine have wider absorption band rather than the CQDs from other precursors and the absorption edge shifted from about 270 nm for ethylamine to about 470 nm in monoethanolamine. Furthermore, the results demonstrate that using citric acid and monoethanolamine as precursor improved production efficiency and emission quantum yield of the carbon dots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noerochim, Lukman, E-mail: lukman@mat-eng.its.ac.id; Sapputra, Gede Panca Ady; Widodo, Amien
2016-04-19
Lumpur Sidoarjo is one of geothermal fluid types which has a great potential as source of lithium. Adsorption method with Lithium Manganese Oxide (LiMn{sub 2}O{sub 4}) as an adsorbent has been chosen for lithium recovery process due to low production cost and environmental friendly. LiMn{sub 2}O{sub 4} was synthesized by hydrothermal method at 200 °C for 24 hrs, 48 hrs, and 72 hrs. As prepared LiMn{sub 2}O{sub 4} powder is treated by acid treatment with 0.5 M HCl solution for 24 hrs. XRD test result reveals that all of as-prepared samples are indexed as spinel structure of LiMn{sub 2}O{sub 4}more » (JCPDS card no 35-0782) with no impurity peaks detected. SEM images show that LiMn{sub 2}O{sub 4} has nanoparticles morphology with particle size around 25 nm. The highest adsorption efficiency of adsorbent is obtained by sample hydrothermal for 72 hrs with 42.76%.« less
Mahpeykar, S M; Koohsorkhi, J; Ghafoori-Fard, H
2012-04-27
Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200 nm min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Li-Ping; Zhang, Qiang; Yan, Bing, E-mail: byan@tongji.edu.cn
Graphical abstract: A hydrothermal system is developed to prepare one new polymorph of (C{sub 2}N{sub 2}H{sub 10}){sub 0.5}RE{sub 3}F{sub 10}·xH{sub 2}O and known rare earth fluorides involving REF{sub 3} nanocrystals under mild condition. Highlights: ► A new polymorph of (C{sub 2}N{sub 2}H{sub 10}){sub 0.5}RE{sub 3}F{sub 10}·xH{sub 2}O has been synthesized. ► The RE{sup 3+} radius decides the shape evolution and phase control for REF{sub 3} NCs. ► The RE{sup 3+} radius has influence on the microstructure and morphology of REF{sub 3} NCs. -- Abstract: In this paper, a solvents-thermal system is developed to prepare one new polymorph of (C{sub 2}N{submore » 2}H{sub 10}){sub 0.5}Ho{sub 3}F{sub 10}·xH{sub 2}O and rare earth fluorides REF{sub 3} nanocrystals under mild condition. It is found that the ionic radius of RE{sup 3+} is the key factor responsible for the shape evolution and phase control for rare earth fluorides nanocrystals at selected temperatures, which has an influence on the microstructure and morphology of the products to some extent. With the increase of the atomic number, the shape of fluoride changes from hexagonal REF{sub 3} phase (RE = La, Sm) to orthorhombic REF{sub 3} phase (RE = Eu-Dy), and finally to diamond structure (C{sub 2}N{sub 2}H{sub 10}){sub 0.5}Ho{sub 3}F{sub 10}·xH{sub 2}O (RE = Ho, Er, Tm, Yb, Lu, Y). In addition, the characteristic energy level transition {sup 5}D{sub 0}–{sup 7}F{sub 1} of Eu{sup 3+} splits into 585 and 591 nm emission peaks, and the dominant peak is the orange emission at 591 nm.« less
Liu, Porun; Wang, Yun; Zhang, Haimin; An, Taicheng; Yang, Huagui; Tang, Zhiyong; Cai, Weiping; Zhao, Huijun
2012-12-07
For the first time, a facile, one-pot hydrofluoric acid vapor-phase hydrothermal (HF-VPH) method is demonstrated to directly grow single-crystalline anatase TiO(2) nanosheets with 98.2% of exposed {001} faceted surfaces on the Ti substrate via a distinctive two-stage formation mechanism. The first stage produces a new intermediate crystal (orthorhombic HTiOF(3) ) that is transformed into anatase TiO(2) nanosheets during the second stage. The findings reveal that the HF-VPH reaction environment is unique and differs remarkably from that of liquid-phase hydrothermal processes. The uniqueness of the HF-VPH conditions can be readily used to effectively control the nanostructure growth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Zhiguo; Zu, Yuangang; Fu, Yujie; Meng, Ronghua; Guo, Songling; Xing, Zhimin; Tan, Shengnan
2010-03-01
L-Histidine capped single-crystalline gold nanoparticles have been synthesized by a hydrothermal process under a basic condition at temperature between 65 and 150 degrees C. The produced gold nanoparticles were spherical with average diameter of 11.5+/-2.9nm. The synthesized gold colloidal solution was very stable and can be stored at room temperature for more than 6 months. The color of the colloidal solution can change from wine red to mauve, purple and blue during the acidifying process. This color changing phenomenon is attributed to the aggregation of gold nanoparticles resulted from hydrogen bond formation between the histidines adsorbed on the gold nanoparticles surfaces. This hydrothermal synthetic method is expected to be used for synthesizing some other amino acid functionalized gold nanomaterials.
Nitsos, Christos; Matsakas, Leonidas; Triantafyllidis, Kostas; Rova, Ulrika; Christakopoulos, Paul
2015-01-01
Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones.
Nitsos, Christos; Triantafyllidis, Kostas
2015-01-01
Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones. PMID:26609521
Calcite phase determination of CaCO3 nanoparticles synthesized by one step drying method
NASA Astrophysics Data System (ADS)
Sulimai, N. H.; Rani, Rozina Abdul; Khusaimi, Z.; Abdullah, S.; Salifairus, M. J.; Alrokayan, Salman; Khan, Haseeb; Rusop, M.
2018-05-01
Calcium Carbonate (CaCO3) is a type of carbonic salt. It exist naturally as white odourless solid and may also be synthesized by chemical reactions. This work studies one-step precipitation of CaCO3 that was prepared by novel method of one-step precipitation method. The method was then proceeded by different types of drying. The first type is by normal drying in oven whereas the second type is with the presence of hydrothermal influence. From the results, precipitated CaCO3 dried by normal drying method produces CaCO3 with two polymorphs present; calcite and vaterite. Normal drying at 500°C has no vaterite phase left. Drying by hydrothermal precipitated CaCO3 has Nitrogen (N) left on the surfaces of the precipitated CaCO3. This work successfully identified calcite phase in the precipitated CaCO3.
Hydrothermal activity lowers trophic diversity in Antarctic hydrothermal sediments
NASA Astrophysics Data System (ADS)
Bell, James B.; Reid, William D. K.; Pearce, David A.; Glover, Adrian G.; Sweeting, Christopher J.; Newton, Jason; Woulds, Clare
2017-12-01
Hydrothermal sediments are those in which hydrothermal fluid is discharged through sediments and are one of the least studied deep-sea ecosystems. We present a combination of microbial and biochemical data to assess trophodynamics between and within hydrothermal and background areas of the Bransfield Strait (1050-1647 m of depth). Microbial composition, biomass, and fatty acid signatures varied widely between and within hydrothermally active and background sites, providing evidence of diverse metabolic activity. Several species had different feeding strategies and trophic positions between hydrothermally active and inactive areas, and the stable isotope values of consumers were not consistent with feeding morphology. Niche area and the diversity of microbial fatty acids was lowest at the most hydrothermally active site, reflecting trends in species diversity. Faunal uptake of chemosynthetically produced organics was relatively limited but was detected at both hydrothermal and non-hydrothermal sites, potentially suggesting that hydrothermal activity can affect trophodynamics over a much wider area than previously thought.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Zhen-Hua; Wei, Kaya; Lewis, Hutton
A hydrothermal approach was employed to efficiently synthesize SnSe nanorods. The nanorods were consolidated into polycrystalline SnSe by spark plasma sintering for low temperature electrical and thermal properties characterization. The low temperature transport properties indicate semiconducting behavior with a typical dielectric temperature dependence of the thermal conductivity. The transport properties are discussed in light of the recent interest in this material for thermoelectric applications. The nanorod growth mechanism is also discussed in detail. - Graphical abstract: SnSe nanorods were synthesized by a simple hydrothermal method through a bottom-up approach. Micron sized flower-like crystals changed to nanorods with increasing hydrothermal temperature.more » Low temperature transport properties of polycrystalline SnSe, after SPS densification, were reported for the first time. This bottom-up synthetic approach can be used to produce phase-pure dense polycrystalline materials for thermoelectrics applications. - Highlights: • SnSe nanorods were synthesized by a simple and efficient hydrothermal approach. • The role of temperature, time and NaOH content was investigated. • SPS densification allowed for low temperature transport properties measurements. • Transport measurements indicate semiconducting behavior.« less
Confined-Pyrolysis as an Experimental Method for Hydrothermal Organic Synthesis
NASA Technical Reports Server (NTRS)
Leif, Roald N.; Simoneit, Bernd R. T.
1995-01-01
A closed pyrolysis system has been developed as a tool for studying the reactions of organic compounds under extreme hydrothermal conditions. Small high pressure stainless steel vessels in which the ratio of sediment or sample to water has been adjusted to eliminate the headspace at peak experimental conditions confines the organic components to the bulk solid matrix and eliminates the partitioning of the organic compounds away from the inorganic components during the experiment. Confined pyrolysis experiments were performed to simulate thermally driven catagenetic changes in sedimentary organic matter using a solids to water ratio of 3.4 to 1. The extent of alteration was measured by monitoring the steroid and triterpenoid biomarkers and polycyclic aromatic hydrocarbon distributions. These pyrolysis experiments duplicated the hydrothermal transformations observed in nature. Molecular probe experiments using alkadienes, alkenes and alkanes in H2O and D2O elucidated the isomerization and hydrogenation reactions of aliphatic and the competing oxidative reactions occurring under hydrothermal conditions. This confined pyrolysis technique is being applied to test experiments on organic synthesis of relevance to chemical evolution for the origin of life.
NASA Astrophysics Data System (ADS)
Zhao, Haiqiang; Qi, Weihong; Ji, Wenhai; Wang, Tianran; Peng, Hongcheng; Wang, Qi; Jia, Yanlin; He, Jieting
2017-05-01
Fivefold symmetry appears only in small particles and quasicrystals because internal stress in the particles increases with the particle size. However, a typical Marks decahedron with five re-entrant grooves located at the ends of the twin boundaries can further reduce the strain energy. During hydrothermal synthesis, it is difficult to stir the reaction solution contained in a digestion high-pressure tank because of the relatively small size and high-temperature and high-pressure sealed environment. In this work, we optimized a hydrothermal reaction system by replacing the conventional drying oven with a homogeneous reactor to shift the original static reaction solution into a full mixing state. Large Marks-decahedral Pd nanoparticles ( 90 nm) have been successfully synthesized in the optimized hydrothermal synthesis system. Additionally, in the products, round Marks-decahedral Pd particles were also found for the first time. While it remains a challenge to understand the growth mechanism of the fivefold twinned structure, we proposed a plausible growth-mediated mechanism for Marks-decahedral Pd nanoparticles based on observations of the synthesis process.
1990-02-01
niobia-zirconia powder from freshly precipitated hydrous zirconia and niobium- Different ceria stabilized TZP ceram- ammonium oxalate . Zirconia powders...C :1RCONIA, Chen-Feng Kao and Tsu-Meng BY HYDROTHERMAL PRECIPITATION METHOD, S. P Fueng, Dept of Chemical Engineering, Somiya*, Nishi-Tokyo Univ...under Y increased with an increase of pH values. hydrothermal condition. Mixed solutions of b Drain size decreased and sintering density ZrOCl2, YCl 3
High-pressure hydrogen respiration in hydrothermal vent samples from the deep biosphere
NASA Astrophysics Data System (ADS)
Morgan-Smith, D.; Schrenk, M. O.
2013-12-01
Cultivation of organisms from the deep biosphere has met with many challenges, chief among them the ability to replicate this extreme environment in a laboratory setting. The maintenance of in situ pressure levels, carbon sources, and gas concentrations are important, intertwined factors which may all affect the growth of subsurface microorganisms. Hydrogen in particular is of great importance in hydrothermal systems, but in situ hydrogen concentrations are largely disregarded in attempts to culture from these sites. Using modified Hungate-type culture tubes (Bowles et al. 2011) within pressure-retaining vessels, which allow for the dissolution of higher concentrations of gas than is possible with other culturing methods, we have incubated hydrothermal chimney and hydrothermally-altered rock samples from the Lost City and Mid-Cayman Rise hydrothermal vent fields. Hydrogen concentrations up to 15 mmol/kg have been reported from Lost City (Kelley et al. 2005), but data are not yet available from the recently-discovered Mid-Cayman site, and the elevated concentration of 30 mmol/kg is being used in all incubations. We are using a variety of media types to enrich for various metabolic pathways including iron and sulfur reduction under anoxic or microaerophilic conditions. Incubations are being carried out at atmospheric (0.1 MPa), in situ (9, 23, or 50 MPa, depending on site), and elevated (50 MPa) pressure levels. Microbial cell concentrations, taxonomic diversity, and metabolic activities are being monitored during the course of these experiments. These experiments will provide insight into the relationships between microbial activities, pressure, and gas concentrations typical of deep biosphere environments. Results will inform further culturing studies from both fresh and archived samples. References cited: Bowles, M.W., Samarkin, V.A., Joye, S.B. 2011. Improved measurement of microbial activity in deep-sea sediments at in situ pressure and methane concentration. Limnology and Oceanography Methods 9:499-506 Kelley, D.S., Karson, J.A., Früh-Green, G.L., Yoerger, D.R., Shank, T.M., et al. 2005. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field. Science 307:1428-1434
NASA Astrophysics Data System (ADS)
Zhao, Feng; Xu, Kuidong
2016-10-01
In comparison with the macrobenthos and prokaryotes, patterns of diversity and distribution of microbial eukaryotes in deep-sea hydrothermal vents are poorly known. The widely used high-throughput sequencing of 18S rDNA has revealed a high diversity of microeukaryotes yielded from both living organisms and buried DNA in marine sediments. More recently, cDNA surveys have been utilized to uncover the diversity of active organisms. However, both methods have never been used to evaluate the diversity of ciliates in hydrothermal vents. By using high-throughput DNA and cDNA sequencing of 18S rDNA, we evaluated the molecular diversity of ciliates, a representative group of microbial eukaryotes, from the sediments of deep-sea hydrothermal vents in the Okinawa Trough and compared it with that of an adjacent deep-sea area about 15 km away and that of an offshore area of the Yellow Sea about 500 km away. The results of DNA sequencing showed that Spirotrichea and Oligohymenophorea were the most diverse and abundant groups in all the three habitats. The proportion of sequences of Oligohymenophorea was the highest in the hydrothermal vents whereas Spirotrichea was the most diverse group at all three habitats. Plagiopyleans were found only in the hydrothermal vents but with low diversity and abundance. By contrast, the cDNA sequencing showed that Plagiopylea was the most diverse and most abundant group in the hydrothermal vents, followed by Spirotrichea in terms of diversity and Oligohymenophorea in terms of relative abundance. A novel group of ciliates, distinctly separate from the 12 known classes, was detected in the hydrothermal vents, indicating undescribed, possibly highly divergent ciliates may inhabit this environment. Statistical analyses showed that: (i) the three habitats differed significantly from one another in terms of diversity of both the rare and the total ciliate taxa, and; (ii) the adjacent deep sea was more similar to the offshore area than to the hydrothermal vents. In terms of the diversity of abundant taxa, however, there was no significant difference between the hydrothermal vents and the adjacent deep sea, both of which differed significantly from the offshore area. As abundant ciliate taxa can be found in several sampling sites, they are likely adapted to large environmental variations, while rare taxa are found in specific habitat and thus are potentially more sensitive to varying environmental conditions.
NASA Astrophysics Data System (ADS)
Xing, Weinan; Ni, Liang; Huo, Pengwei; Lu, Ziyang; Liu, Xinlin; Luo, Yingying; Yan, Yongsheng
2012-10-01
A novel nanocatalyst CdS/halloysite nanotubes (HNTs) was synthesized by hydrothermal method with direct growth of CdS nanoparticles on the surface of HNTs. The as-prepared photocatalysts had been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), Fourier transform infrared (FT-IR) and the thermo gravimetric analysis (TGA). The photocatalytic activity of the sample was evaluated by the degradation of tetracycline (TC) under visible light irradiation. Benefit from the excellent properties of CdS and HNTs, the photocatalyst exhibited good photocatalytic activity and stability. In order to find out the optimum synthesis condition to obtain the best photocatalytic activity, a series of experiments were performed with different CdS loading capacity, different sources of sulfide and different hydrothermal temperatures, etc. The best photodegradation rate could reach 93% in 60 min under visible light irradiation. Therefore, the combination of CdS nanoparticles with HNTs endowed this material with a potential use in environmental treatments in industries.
Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington
Reid, M.E.; Sisson, T.W.; Brien, D.L.
2001-01-01
Catastrophic collapses of steep volcano flanks threaten many populated regions, and understanding factors that promote collapse could save lives and property. Large collapses of hydrothermally altered parts of Mount Rainier have generated far-traveled debris flows; future flows would threaten densely populated parts of the Puget Sound region. We evaluate edifice collapse hazards at Mount Rainier using a new three-dimensional slope stability method incorporating detailed geologic mapping and subsurface geophysical imaging to determine distributions of strong (fresh) and weak (altered) rock. Quantitative three-dimensional slope stability calculations reveal that sizeable flank collapse (>0.1 km3) is promoted by voluminous, weak, hydrothermally altered rock situated high on steep slopes. These conditions exist only on Mount Rainier's upper west slope, consistent with the Holocene debris-flow history. Widespread alteration on lower flanks or concealed in regions of gentle slope high on the edifice does not greatly facilitate collapse. Our quantitative stability assessment method can also provide useful hazard predictions using reconnaissance geologic information and is a potentially rapid and inexpensive new tool for aiding volcano hazard assessments.
Xu, Guangyu; Di Iorio, Daniela
2011-10-01
Acoustic methods are applied to the investigation and monitoring of a vigorous hydrothermal plume within the Main Endeavor vent field at the Endeavor segment of the Juan de Fuca Ridge. Forward propagation and scattering from suspended particulates using Rayleigh scattering theory is shown to be negligible (log-amplitude variance σ(χ) (2)~10(-7)) compared to turbulence induced by temperature fluctuations (σ(χ) (2)~0.1). The backscattering from turbulence is then quantified using the forward scattering derived turbulence level, which gives a volume backscattering strength of s(V)=6.5 × 10(-8) m(-1). The volume backscattering cross section from particulates can range from s(V)=3.3 × 10(-6) to 7.2 × 10(-10) m(-1) depending on the particle size. These results show that forward scatter acoustic methods in hydrothermal vent applications can be used to quantify turbulence and its effect on backscatter measurements, which can be a dominant factor depending on the particle size and its location within the plume. © 2011 Acoustical Society of America
Photo-induced self-cleaning and sterilizing activity of Sm3+ doped ZnO nanomaterials.
Saif, M; Hafez, H; Nabeel, A I
2013-01-01
Highly active samarium doped zinc oxide self-cleaning and biocidal surfaces (x mol% Sm(3+)/ZnO where x=0, 1, 2 and 4 mol%) with crystalline porous structures were synthesized by hydrothermal method. Sm(3+)/ZnO thin films were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive spectroscopic (EDS), UV-visible diffuse reflectance and fluorescence (FL) spectroscopy. The combination between doping and hydrothermal treatments significantly altered the morphology of ZnO into rod and plate-like nanoshapes structure and enhanced its absorption and emission of ultraviolet radiation. The photo-activity in term of quantitative determination of the active oxidative species (()OH) produced on the thin film surfaces was evaluated using fluorescent probe method. The results showed that, the hydrothermally treated 2.0 mol% Sm(3+)/ZnO film (S2) is the highly active one. The optical, structural, morphology and photo-activity properties of the highly active thin film (S2) make it promising surface for self-cleaning and sterilizing applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Crystal structure of (NH4)2[Fe(II) 5(HPO3)6], a new open-framework phosphite.
Berrocal, Teresa; Mesa, Jose Luis; Larrea, Edurne; Arrieta, Juan Manuel
2014-11-01
Di-ammonium hexa-phosphito-penta-ferrate(II), (NH4)2[Fe5(HPO3)6], was synthesized under mild hydro-thermal conditions and autogeneous pressure, yielding twinned crystals. The crystal structure exhibits an [Fe(II) 5(HPO3)6](2-) open framework with NH4 (+) groups as counter-cations. The anionic skeleton is based on (001) sheets of [FeO6] octa-hedra (one with point-group symmetry 3.. and one with .2.) linked along [001] through [HPO3](2-) oxoanions. Each sheet is constructed from 12-membered rings of edge-sharing [FeO6] octa-hedra, giving rise to channels with a radius of ca 3.1 Å in which the disordered NH4 (+) cations are located. The IR spectrum shows vibrational bands typical for phosphite and ammonium groups.
Loiola, A R; Andrade, J C R A; Sasaki, J M; da Silva, L R D
2012-02-01
Zeolite 4A (LTA) has been successfully synthesized by a hydrothermal method, where kaolin was used as silica and alumina source. The synthesized zeolite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser granulometry, and FTIR spectroscopy. XRD data from the Rietveld refinement method confirmed only one crystallographic phase. Zeolite A morphology was observed by SEM analysis, and it showed well-defined crystals with slightly different sizes but with the same cubic shape. Particle size distribution of the crystals was confirmed by laser granulometry, whereas FTIR spectroscopy revealed significant structural differences between the starting material and the final zeolite product used as water softener. Copyright © 2010 Elsevier Inc. All rights reserved.
Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method.
Prakash Parthiban, S; Elayaraja, K; Girija, E K; Yokogawa, Y; Kesavamoorthy, R; Palanichamy, M; Asokan, K; Narayana Kalkura, S
2009-12-01
Thermally stable hydroxyapatite (HAp) was synthesized by hydrothermal method in the presence of malic acid. X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), differential thermal analysis (DTA), thermogravimetric analysis (TGA) was done on the synthesized powders. These analyses confirmed the sample to be free from impurities and other phases of calcium phosphates, and were of rhombus morphology along with nanosized particles. IR and Raman analyses indicated the adsorption of malic acid on HAp. Thermal stability of the synthesized HAp was confirmed by DTA and TGA. The synthesized powders were thermally stable upto 1,400 degrees C and showed no phase change. The proposed method might be useful for producing thermally stable HAp which is a necessity for high temperature coating applications.
On the fate of arsenic in the Menez Gwen hydrothermal system, Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Breuer, C.; Ruiz Chancho, M.; Pichler, T.
2011-12-01
Samples of hydrothermal fluids and on-site associated mussels (Bathymodiolus azoricus) were collected during the M 82/3 cruise of RV Meteor at the Menez Gwen hydrothermal field (37° 50' N, MAR) and analyzed for total and arsenic species (arsenite, arsenate and organorarsenicals) with ICP-(HR)MS and HPLC-ICP-(HR)MS respectively. Fluids emitting with temperatures of up to 280 °C and at 840 - 865 m depth contained total endmember As concentrations between 9.5 and 19.23 μg L-1 while local seawater concentrations varied around 1.5 μg L-1. The most important factors controlling the amount of As in these fluids are the E-MORB host rock composition and temperature of the fluids leading to phase separation or not. Regarding arsenic speciation in the fluids, there is discrepancy about the best method of preservation for water samples when speciation analysis of arsenic species must be carried out and a lack of information is especially relevant when marine hydrothermal vent samples have to be preserved. For this, one of the objectives of the present study was the comparison of different preservation methods of fluid samples collected at the Menez Gwen hydrothermal field. The methods used in the present study were: freezing at -20 °C, acidification with HCl and addition of EDTA. Most of these have been used by different authors for the preservation of inorganic arsenic species but organic arsenic species have not been taken into account and particularly hydrothermal fluids were not investigated. The results show very different proportions of arsenite and arsenate depending on the preservation procedure but the presence of methylated arsenic species or arsenosugars was not detected. The highest proportions of arsenite were found in the samples preserved with HCl. The presence of thio-arsenic species was tested with the addition of hydrogen peroxide. Moreover, mass balance calculations showed the presence of one or more species, which could not be detected with the chromatographic separation used in the present study. It was also observed that there was a strong T and pH dependence with arsenite, especially in the flash frozen samples. From this study it can be clearly stated that sample preservation is a critical point and further studies related with preservation of marine hydrothermal vent fluids for arsenic speciation must be carried out. Although arsenic has been extensively investigated in marine organisms, there is still little information about the metabolism of this element in organisms habiting the deep see, with only one publication so far. Bathymodiolus azoricus has never been studied regarding arsenic speciation and the fact that it is exposed to arsenic concentrations higher than other marine organisms makes it very interesting from the metabolism point of view. The mussels collected near the vents were dissected in gill, muscle and digestive gland and analyzed for total and arsenic species. Results are discussed taking into account the exposure and possible metabolism paths taking place in deep-sea hydrothermal systems.
Template-directed synthesis of MS (M=Cd, Zn) hollow microsphere via hydrothermal method
NASA Astrophysics Data System (ADS)
Wang, Shi-Ming; Wang, Qiong-Sheng; Wan, Qing-Li
2008-05-01
CdS, ZnS hollow microspheres were prepared with chitosan as the synthesis template at 140 and 150 °C, respectively, by hydrothermal method. The resultant products were characterized by X-ray diffraction (XRD) measurements in order to determine the crystalline phase of the products. The structural and morphological features of the nanoparticles were investigated by transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflection spectroscopy (DRS). The experimental results indicated that all the nanoparticles aggregated into hollow microspheres and chitosan as a template played an important role in the formation of hollow microspheres. In addition, an intermediate complex structure-controlling possible reaction mechanism was proposed in this paper.
NASA Astrophysics Data System (ADS)
Sholehah, Amalia; Mulyadi, Rendi; Haryono, Didied; Muttakin, Imamul; Rusbana, Tb Bahtiar; Mardiyanto
2018-04-01
ZnO thin layer has a broad potential application in electronic and optoelectronic devices. In this study, vertically align ZnO layers were deposited on ITO glass using wet chemistry method. The seed layers were prepared using electrodeposition technique at 3°C. The growing process was carried out using chemical bath deposition at 90°C. To improve the structural properties, two different hydrothermal treatment variations were applied separately. From the experiment, it is shown that the hydrothermal process using N2 gas has given the best result, with average diameter, crystallite size, and band-gap energy of 68.83 nm; 56.37 nm; and 3.16 eV, respectively.
In situ carbon coated LiFePO4/C microrods with improved lithium intercalation behavior.
Bhuvaneswari, D; Kalaiselvi, N
2014-01-28
LiFePO4/C microrods consisting of building blocks of interconnected nanoparticles surrounded by a thin and amorphous coating of carbon have been prepared by a customized hydrothermal method. Appreciable discharge capacity values of 168 mA h g(-1) at 0.1 C and 130 mA h g(-1) at 5 C rates have been exhibited by the currently synthesized LiFePO4/C cathode. The study enumerates the feasibility of exploiting the hydrothermal method to prepare an in situ carbon coated LiFePO4/C compound with tunable morphological properties and desirable electrochemical properties observed for up to 100 cycles at a 5 C rate.
NASA Astrophysics Data System (ADS)
Jang, Hae-Won; Kim, Yong-Hoe; Lee, Ki-Wook; Kim, Yoon-Mi; Kim, Jin-Yeol
2017-08-01
We synthesized ultra-thin Ag nanowire (Ag NWs) with sub-15 nm diameters and aspect ratios of 1000 through a water-based high-pressure hydrothermal method in the presence of a tetrabutylammonium dichlorobromide organic salt and glucose reducing agent. In the crystal growth stage, the diameter of the NWs could be controlled by adjusting the pressure, and 15-nm diameter wires were obtained at a pressure of 190 psi. These 2D conductive Ag NW network films showed an excellent optical performance with low haze value of ≤1.0% and 94.5% transmittance at a low sheet resistance of 20 Ω/sq.
Single and couple doping ZnO nanocrystals characterized by positron techniques
NASA Astrophysics Data System (ADS)
Pasang, Tenzin; Namratha, Keerthiraj; Guagliardo, Paul; Byrappa, Kullaiah; Ranganathaiah, Chikkakuntappa; Samarin, S.; Williams, J. F.
2015-04-01
Zinc oxide (ZnO) nanocrystals have been synthesized using a mild hydrothermal process using low temperatures and pressures with the advantages of free growth catalyst, low cost and alternative technology. Positron annihilation lifetime spectroscopy and coincidence Doppler broadening (CDB) spectroscopic methods have been used to investigate the roles of single- and co-dopants and native defects of the ZnO nanocrystals controlled by the synthesis process. It is shown that single Ag1+ and Pd2+ dopants occupy interstitial sites of the ZnO lattice and single Ru3+ doping replaces Zn vacancies substitutionally with a significant effect on the CDB momentum ratio curves when compared using ZnO as the reference spectrum. The co-doping of the ZnO lattice with (Sn4+ + Co2+) shows similar CDB ratios as Ru3+ single-doping. Also co-doping with (Ag1+ + Pd2+) or (Ag1+ + W6+) shows significant decreases in the band gap energy up to about 12.6% compared to single doping. The momentum ratio curves, referenced to undoped ZnO, indicate dopants in interstitial and substitutional sites. The presence of transition metal ions interstitially will trap electrons which resist the recombination of electrons and in turn affect the conductivity of the material.
NASA Astrophysics Data System (ADS)
Emslie, Steven D.; Brasso, Rebecka; Patterson, William P.; Carlos Valera, António; McKenzie, Ashley; Maria Silva, Ana; Gleason, James D.; Blum, Joel D.
2015-10-01
Cinnabar is a natural mercury sulfide (HgS) mineral of volcanic or hydrothermal origin that is found worldwide. It has been mined prehistorically and historically in China, Japan, Europe, and the Americas to extract metallic mercury (Hg0) for use in metallurgy, as a medicinal, a preservative, and as a red pigment for body paint and ceramics. Processing cinnabar via combustion releases Hg0 vapor that can be toxic if inhaled. Mercury from cinnabar can also be absorbed through the gut and skin, where it can accumulate in organs and bone. Here, we report moderate to high levels of total mercury (THg) in human bone from three Late Neolithic/Chalcolithic (5400-4100 B.P.) sites in southern Portugal that were likely caused by cultural use of cinnabar. We use light stable isotope and Hg stable isotope tracking to test three hypotheses on the origin of mercury in this prehistoric human bone. We traced Hg in two individuals to cinnabar deposits near Almadén, Spain, and conclude that use of this mineral likely caused mild to severe mercury poisoning in the prehistoric population. Our methods have applications to bioarchaeological investigations worldwide, and for tracking trade routes and mobility of prehistoric populations where cinnabar use is documented.
NASA Astrophysics Data System (ADS)
Ansari, S. M.; Bhor, R. D.; Pai, K. R.; Sen, D.; Mazumder, S.; Ghosh, Kartik; Kolekar, Y. D.; Ramana, C. V.
2017-08-01
Cobalt (Co) nanoparticles (NPs) were produced by a simple, one step hydrothermal method with the capping of oleic acid. Intrinsic structural, physiochemical and magnetic properties of Co NPs were investigated and demonstrated their applicability in biomedicine. X-ray diffraction, Raman spectroscopy and infrared (IR) spectroscopic studies confirm the single phase Co NPs with a high structural quality. The IR data revealed the capping of oleic acid via monodentate interaction. Small angle scattering studies suggest the existence of sticky hard sphere type of interaction among the Co NPs because of magnetic interaction which is further evidenced by electron microscopy imaging analyses. The Co NPs exhibit a ferromagnetic character over a wide range of temperature (20-300 K). The temperature dependence of magnetic parameters namely, saturation magnetization, remanent magnetization, coercivity and reduced remanent magnetization were determined and correlated with structure of Co NPs. The Cytotoxicity studies demonstrate that these Co NPs exhibit the mild anti-proliferative character against the cancer cells (cisplatin resistant ovarian cancer (A2780/CP70)) and safe nature towards the normal cells. Haemolytic behavior of human red blood cells (RBC) revealed (<5%) haemolysis signifying the compatibility of Co NPs with human RBC which is an essential feature in vivo biomedical applications without creating any harmful effects in the human blood stream.
Eco-synthesis of graphene and its use in dihydronicotinamide adenine dinucleotide sensing.
Amouzadeh Tabrizi, Mahmoud; Jalilzadeh Azar, Somayeh; Nadali Varkani, Javad
2014-09-01
In this paper, we report a green and eco-friendly approach to synthesize reduced graphene oxide (rGO) via a mild hydrothermal process using malt as a reduced agent. The proposed method is based on the reduction of graphene oxide (GO) in malt solution by making use of the reducing capability of phenolic compounds contained in malt solution. The obtained rGO was characterized by atomic force microscopy (AFM), ultraviolet-visible (UV-vis) absorption spectroscopy, X-ray diffraction spectroscopy (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Electrochemical impedance spectroscopy analysis revealed that the charge transfer resistance of rGO modified glassy carbon (GC) electrode was much lower than that of the GC electrode. The electrochemical behavior of dihydronicotinamide adenine dinucleotide (NADH) on rGO modified GC electrode was investigated by cyclic voltammetry and amperometry. Electrochemical experiments indicated that rGO/GC electrode exhibited excellent electrocatalytic activity toward the NADH, which can be attributed to excellent electrical conductivity and high specific surface area of the rGO composite. The resulting biosensor showed highly sensitive amperometric response to NADH with a low detection limit (0.33μM). Copyright © 2014 Elsevier Inc. All rights reserved.
Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T
2017-06-01
Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Jilin; Shi Jianxin, E-mail: chemshijx@163.co; Gong Menglian
2009-08-15
Nickel ferrite nanospheres were successfully synthesized by a reverse emulsion-assisted hydrothermal method. The reverse emulsion was composed of water, cetyltrimethyl ammonium bromide, polyoxyethylene(10)nonyl phenyl ether, iso-amyl alcohol and hexane. During the hydrothermal process, beta-FeO(OH) and Ni{sub 0.75}Fe{sub 0.25}(CO{sub 3}){sub 0.125}(OH){sub 2}.0.38H{sub 2}O (INCHH) nanorods formed first and then transformed into nickel spinel ferrite nanospheres. The phase transformation mechanism is proposed based on the results of X-ray powder diffraction, transmission electron microscopy and energy-dispersive X-ray spectroscopy, etc. Nickel ferrite may form at the end of the INCHH nanorods or from the solution accompanied by the dissolution of beta-FeO(OH) and INCHH nanorods.more » The X-ray photoelectron spectroscopy analysis shows that a few Fe{sup 3+} ions have been reduced to Fe{sup 2+} ions during the formation of nickel ferrite. The maximum magnetization of the nickel ferrite nanospheres obtained after hydrothermal reaction for 30 h is 55.01 emu/g, which is close to that of bulk NiFe{sub 2}O{sub 4}. - Graphical abstract: Nickel ferrite nanospheres were obtained through a reverse emulsion-assisted hydrothermal process. The phase transformation as a function of reaction time was studied based on the XRD, TEM and EDS analyses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jyothi, M.S.; D’Souza Laveena, P.; Shwetharani, R.
2016-02-15
Highlights: • Novel method to synthesize N, F doped TiO{sub 2} via hydrothermal method is discussed. • Change in bandgap of TiO{sub 2} upon doping makes a photocatalyst visible active. • 94% of degradation of EtBr was achieved within a less time of 90 min. • The doped titania also showed good efficiency as photo anodic material for solar cell. - Abstract: A novel and an efficient hydrothermal method for the preparation of an effective doped titania photocatalyst is reported. The crystal phase, binding energy, elemental composition, morphology, optical and electronic structure analyses were done by various techniques. The dopedmore » titania proved as an efficient electrode material and photocatalyst for solar cells and water treatment respectively. The photocatalyst is able to degrade the most potent mutagen ethidium bromide under sunlight with an enhancement of 1.6 times over its undoped analogue. As photo-anode material, showed an improved open circuit potential and fill factor. The created electron states in the doped sample act as charge carrier traps suppressing recombination which later detraps the same to the surface of the catalyst causing enhanced interfacial charge transfer. Surface acidity caused by F induction and lowered band gap energy that can respond to visible light facilitates improved energy harvesting and energy transfer leading to better photo activity.« less
NASA Astrophysics Data System (ADS)
Sizaret, Stanislas; Chen, Yan; Chauvet, Alain; Marcoux, Eric; Touray, Jean Claude
2003-02-01
This study presents a possible use of anisotropy of magnetic susceptibility (AMS) to describe the mineralizing process in hydrothermal systems. Ba-F-Fe-rich deposits within the Chaillac Basin are on the southern border of the Paris Basin. In these deposits hydrothermal textures and tectonic structures have been described in veins, sinters, and sandstone cemented by hydrothermal goethite. 278 oriented cores from 24 sites have been collected in these formations. In addition, a lateritic duricrust superimposed on the hydrothermal formation has been sampled. Rock magnetic investigations show that the principal magnetic carrier is goethite for the hydrothermal mineralization and for the laterite level. The AMS measurements show distinguishable behaviors in the different mineralogical and geological contexts. The K1 magnetic lineation (maximum axis) is strongly inclined for the vertical veins. For the horizontally mineralized sinters, the magnetic lineation is almost horizontal with an azimuth similar to the sedimentary flow direction. The AMS of goethite-rich sandstone close to the veins shows strongly inclined K1 as they are probably influenced by the vertical veins; however, when the distance from the vein is larger than 1 m, the AMS presents rather horizontal K1 directions, parallel to the sedimentary flow. The laterite has a foliation dominance of AMS with vertically well-grouped K3 axes and scattered K1 and K2 axes. Field structural observations suggest that the ore deposit is mainly controlled by EW extension tectonics associated with NS trending normal faults. Combining the AMS results on the deposit with vein textures and field data a model is proposed in which AMS results are interpreted in terms of hydrothermal fluid flow. This work opens a new investigation field to constrain hydrodynamic models using the AMS method. Textural study combined with efficient AMS fabric measurements should be used for systematic investigation to trace flow direction in fissures and in sand porosity.
Holm, Nils G; Andersson, Eva
2005-08-01
The potential of life's origin in submarine hydrothermal systems has been evaluated by a number of investigators by conducting high temperature-high pressure experiments involving organic compounds. In the majority of these experiments little attention has been paid to the importance of constraining important parameters, such as the pH and the redox state of the system. This is particularly revealed in the apparent difficulties in interpreting experimental data from hydrothermal organic synthesis and stability studies. However, in those cases where common mineral assemblages have been used in an attempt to buffer the pH and redox conditions to geologically and geochemically realistic values, theoretical and experimental data seem to converge. The use of mineral buffer assemblages provides a convenient way by which to constrain the experimental conditions. Studies at high temperatures and pressure in the laboratory have revealed a number of reactions that proceed rapidly in hydrothermal fluids, including the Strecker synthesis of amino acids. In other cases, the verification of postulated abiotic reaction mechanisms has not been possible, at least for large molecules such as large fatty acids and hydrocarbons. This includes the Fischer-Tropsch synthesis reaction. High temperature-high pressure experimental methods have been developed and used successfully for a long time in, for example, mineral solubility studies under hydrothermal conditions. By taking advantage of this experimental experience new and, at times, unexpected directions can be taken in bioorganic geochemistry, one being, for instance, primitive two-dimensional information coding. This article critically reviews some of the organic synthesis and stability experiments that have been conducted under simulated submarine hydrothermal conditions. We also discuss some of the theoretical and practical considerations that apply to hydrothermal laboratory studies of organic molecules related to the origin of life on Earth and probably also to the other terrestrial planets.
Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres
NASA Astrophysics Data System (ADS)
Yu, Changlin; Yu, Jimmy C.; Chan, Mui
2009-05-01
A sonochemical-hydrothermal method for preparing fluorinated mesoporous TiO 2 microspheres was developed. Formation of mesoporous TiO 2 and doping of fluorine was achieved by sonication and then hydrothermal treatment of a solution containing titanium isopropoxide, template, and sodium fluoride. The as-synthesized TiO 2 microspheres were characterized by X-ray diffraction (XRD), Fourier translation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, photoluminescence spectroscopy (PL), and BET surface areas. The P123 template was removed completely during the hydrothermal and washing steps, which was different from the conventional calcination treatment. The as- synthesized TiO 2 microspheres had good crystallinity and high stability. Results from the photocatalytic degradation of methylene blue (MB) showed that fluorination could remarkably improve the photocatalytic activity of titanium dioxide.
Advantage of low-temperature hydrothermal synthesis to grow stoichiometric crednerite crystals
NASA Astrophysics Data System (ADS)
Poienar, Maria; Martin, Christine; Lebedev, Oleg I.; Maignan, Antoine
2018-06-01
This work reports a new approach for the growth of stoichiometric crednerite CuMnO2 crystals. The hydrothermal reaction, starting from soluble metal sulphates as precursors, is assisted by ethylene glycol and the formation of crednerite is found to depend strongly on pH and temperature. This method allows obtaining small hexagonal platelets with the larger dimension about 1.0-1.5 μm and with a composition characterized by a Cu/Mn ratio of 1. Thus, these crystals differ from the needle-like millimetric ones obtained by the flux technique for which the composition departs from the expected one and is close to Cu1.04Mn0.96. This monitoring of the cationic composition in crednerite, using hydrothermal synthesis, is important as the Cu/Mn ratio controls the low temperature antiferromagnetic ground-state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Xuemei, E-mail: qixuemei@shiep.edu.cn; School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090; Zhu, Xinyuan
2014-11-15
Graphical abstract: BiVO{sub 4} samples with various morphologies were synthesized via a simple ethylenediamine (EN) assisted hydrothermal route. One of the mixed crystal phase with spherical and porous morphology showed excellent photocatalytic activity and about 90% Rhodamine B was degraded after 140 min visible light irradiation. - Highlights: • BiVO{sub 4} samples with various morphologies were synthesized by hydrothermal method. • Ethylenediamine mainly acts as alkaline source to adjust pH values of precursor. • BiVO{sub 4} with spherical morphology has excellent photocatalytic activity. - Abstract: In this work, BiVO{sub 4} particles with different crystal structures and morphologies including hexahedral, sphericalmore » porous and hyperbranched ones were fabricated in the presence of ethylenediamine by hydrothermal process. The as-fabricated samples were well characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and ultraviolet–visible absorption spectroscopy. The results showed that the morphology and crystal structure of BiVO{sub 4} particles could be well controlled by only changing the ethylenediamine content in the deionized water solution. Photocatalytic activity of the samples was evaluated by the degradation of Rhodamine B under visible-light irradiation. It was shown that BiVO{sub 4} sample with spherical porous morphology and mixed crystal phase exhibited the best photocatalytic performance after optimizing the ethylenediamine content. The best degradation ratio of Rhodamine B could reach about 87% after 140 min visible-light irradiation.« less
Gieskes, J.M.; Simoneit, B.R.T.; Shanks, Wayne C.; Goodfellow, W.D.; James, R.H.; Baker, P.A.; Ishibashi, J.-I.
2002-01-01
Geochemical and isotopic studies of pore fluids and solid phases recovered from the Dead Dog and Bent Hill hydrothermal sites in Middle Valley (Ocean Drilling Program Leg 169) have been compared with similar data obtained previously from these sites during Ocean Drilling Program Leg 139. Although generally the hydrothermal systems reflect non-steady state conditions, the data allow an assessment of the history of the hydrothermal processes. Sediment K/A1 ratios as well as the distribution of anhydrite in the sediments suggest that the Dead Dog hydrothermal field has been, and still is, active. In contrast, similar data in the Bent Hill hydrothermal field indicate a waning of hydrothermal activity. Pore fluid and hydrothermal vent data in the Dead Dog hydrothermal field are similar in nature to the data collected during ODP Leg 139. In the area of the Bent Hill sulfide deposit, however, the pore water data indicate that recent wholesale flushing of the sediment column with relatively unaltered seawater has obliterated a previous record of hydrothermal activity in the pore fluids. Data from the deepest part of Hole 1035A in the Bent Hill locality show the presence of hydrothermal fluids at greater depths in this area. This suggests the origin of the hydrothermal fluids found to be emanating from Hole 1035F, which constitutes one of the first man made hydrothermal vents in the Middle Valley hydrothermal system. Similarly, CORKed Hole 858G, because of seal failures, has acted as a hydrothermal vent, with sulfide deposits forming inside the CORK. ?? 2002 Elsevier Science Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirino, M.R.; Oliveira, M.J.C.; Keyson, D.
Highlights: • ZnAl{sub 2}O{sub 4} spinel was synthesized by the microwave hydrothermal method in only 15 or 30 min. • The powders show high specific surface area. • ZAT{sub b}15 showed activity of 52.22% for the conversion of soybean oil into biodiesel. - Abstract: Zinc aluminate is a material with high thermal stability and high mechanical strength that, owing to these properties, is used as a catalyst or support. In this work, zinc aluminate spinel was synthesized by the microwave hydrothermal method in only 15 or 30 min at a low temperature (150 °C) without templates, using only Al(NO{sub 3}){submore » 3}·9H{sub 2}O, Zn(NO{sub 3}){sub 2}·6H{sub 2}O, and urea as precursors and applied in the transesterification of soybean oil. X-ray diffraction analysis showed that ZnAl{sub 2}O{sub 4} had a cubic structure without secondary phases. The nitrogen adsorption measurements (BET) revealed a high surface area (266.57 m{sup 2} g{sup −1}) for the nanopowder synthesized in 15 min. This powder showed activity of 52.22% for the catalytic conversion of soybean oil into biodiesel by transesterification.« less
Fractures, Faults, and Hydrothermal Systems of Puna, Hawaii, and Montserrat, Lesser Antilles
NASA Astrophysics Data System (ADS)
Kenedi, Catherine Lewis
The focus of this work is to use geologic and geophysical methods to better understand the faults and fracture systems at Puna, in southeastern Hawaii, and southern Montserrat, in the Lesser Antilles. The particular interest is understanding and locating the deep fracture networks that are necessary for fluid circulation in hydrothermal systems. The dissertation first presents a study in which identification of large scale faulting places Montserrat into a tectonic context. Then follow studies of Puna and Montserrat that focus on faults and fractures of the deep hydrothermal systems. The first chapter consists of the results of the SEA-CALIPSO experiment seismic reflection data, recorded on a 48 channel streamer with the active source as a 2600 in3 airgun. This chapter discusses volcaniclastic debris fans off the east coast of Montserrat and faults off the west coast. The work places Montserrat in a transtensional environment (influenced by oblique subduction) as well as in a complex local stress regime. One conclusion is that the stress regime is inconsistent with the larger arc due to the influence of local magmatism and stress. The second chapter is a seismic study of the Puna hydrothermal system (PHS) along the Kilauea Lower East Rift Zone. The PHS occurs at a left step in the rift, where a fracture network has been formed between fault segments. It is a productive geothermal field, extracting steam and reinjecting cooled, condensed fluids. A network of eight borehole seismometers recorded >6000 earthquakes. Most of the earthquakes are very small (< M.2), and shallow (1-3 km depth), likely the result of hydrothermal fluid reinjection. Deeper earthquakes occur along the rift as well as along the south-dipping fault plane that originates from the rift zone. Seismic methods applied to the PHS data set, after the initial recording, picking, and locating earthquakes, include a tomographic inversion of the P-wave first arrival data. This model indicates a high seismic velocity under the field that is thought to be an intrusion and the heat source of the hydrothermal system. A shear wave splitting study suggested the PHS fracture system is largely oriented rift-parallel with some orthogonal fractures. Shear wave splitting data also were used in a tomographic inversion for fracture density. The fracture density is high in the PHS, which indicates high permeability and potential for extensive fluid circulation. This has been confirmed by high fluid flow and energy generation. The high fracture density is consistent with the interpretation of a transfer zone between the rift segments where a fracture mesh would be expected. In Puna the transfer zone is a relay ramp. The results from the PHS are used as an example to examine the proposed hydrothermal system at St. George's Hill, Montserrat. In southern Montserrat, hot springs and fumaroles suggest a deep hydrothermal system heated by local magmatism. A magnetotelluric study obtained resistivity data that suggest focused alteration under southeastern Montserrat that is likely to be along fault segments. Several faults intersect under SGH, making it the probable center of the hydrothermal system. At Puna, and also Krafla, Iceland, where faults interact is an area of increased permeability, acting as a model to be applied to southern Montserrat. The conclusion is that in both Puna and Montserrat large faults interact to produce local areas of stress transfer that lead to fracturing and permeable networks; these networks allow for high-temperature hydrothermal circulation.
Methods of making textured catalysts
Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA
2010-08-17
A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.
Park, Jin Woo; Subramanian, Arunprabaharan; Mahadik, Mahadeo A; Lee, Su Yong; Choi, Sun Hee; Jang, Jum Suk
2018-03-28
In this paper, we focus on the controlled growth mechanism of α-Fe 2 O 3 nanostructures via the hydrothermal method. The field emission scanning electron microscopy (FESEM) results reveal that at a lower hydrothermal time, the initial nucleation involves the formation of short and thin β-FeOOH nanorods. The subsequent increase in the hydrothermal time leads β-FeOOH to form thicker and longer nanorods. However, high-temperature quenching (HTQ) at 800 °C for 10 min causes the conversion of akaganeite to the hematite phase and activation of hematite by Sn 4+ diffusion from a FTO substrate. Sn 4+ diffusion from the FTO substrate to the hematite nanostructure was elaborated by X-ray photoelectron spectroscopy (XPS). An α-Fe 2 O 3 nanorod photoanode prepared by a hydrothermal reaction for 3 h and HTQ exhibits the highest photocurrent density of 1.04 mA cm -2 . The excellent photoelectrochemical performance could be ascribed to the synergistic effect of the optimum growth of α-Fe 2 O 3 nanorod arrays and Sn 4+ diffusion. Intensity modulated photovoltage spectroscopy (IMVS) studies revealed that the α-Fe 2 O 3 photoanodes prepared at 3 h and HTQ exhibited a long electron lifetime (132.69 ms), and contribute to the enhanced PEC performance. The results confirmed that the controlled growth of the β-FeOOH nanorods, as well as Sn 4+ diffusion, played a key role in charge transfer during the photoelectrochemical application. The charge transfer mechanisms in α-Fe 2 O 3 nanostructure photoanodes prepared at different hydrothermal times and high-temperature quenching are also investigated.
NASA Astrophysics Data System (ADS)
Keith, Manuel; Haase, Karsten M.; Klemd, Reiner; Smith, Daniel J.; Schwarz-Schampera, Ulrich; Bach, Wolfgang
2018-05-01
Most magmatic-hydrothermal Cu deposits are genetically linked to arc magmas. However, most continental or oceanic arc magmas are barren, and hence new methods have to be developed to distinguish between barren and mineralised arc systems. Source composition, melting conditions, the timing of S saturation and an initial chalcophile element-enrichment represent important parameters that control the potential of a subduction setting to host an economically valuable deposit. Brothers volcano in the Kermadec island arc is one of the best-studied examples of arc-related submarine magmatic-hydrothermal activity. This study, for the first time, compares the chemical and mineralogical composition of the Brothers seafloor massive sulphides and the associated dacitic to rhyolitic lavas that host the hydrothermal system. Incompatible trace element ratios, such as La/Sm and Ce/Pb, indicate that the basaltic melts from L'Esperance volcano may represent a parental analogue to the more evolved Brothers lavas. Copper-rich magmatic sulphides (Cu > 2 wt%) identified in fresh volcanic glass and phenocryst phases, such as clinopyroxene, plagioclase and Fe-Ti oxide suggest that the surrounding lavas that host the Brothers hydrothermal system represent a potential Cu source for the sulphide ores at the seafloor. Thermodynamic calculations reveal that the Brothers melts reached volatile saturation during their evolution. Melt inclusion data and the occurrence of sulphides along vesicle margins indicate that an exsolving volatile phase extracted Cu from the silicate melt and probably contributed it to the overlying hydrothermal system. Hence, the formation of the Cu-rich seafloor massive sulphides (up to 35.6 wt%) is probably due to the contribution of Cu from a bimodal source including wall rock leaching and magmatic degassing, in a mineralisation style that is hybrid between Cyprus-type volcanic-hosted massive sulphide and subaerial epithermal-porphyry deposits.
NASA Astrophysics Data System (ADS)
Braddock, Mathilde; Biggs, Juliet; Watson, Iain M.; Hutchison, William; Pyle, David M.; Mather, Tamsin A.
2017-07-01
Fumaroles are the surface manifestation of hydrothermal circulation and can be influenced by magmatic, hydrothermal, hydrological and tectonic processes. This study investigates the temporal changes in fumarole temperatures and spatial extent on Aluto, a restless volcano in the Main Ethiopian Rift (MER), in order to better understand the controls on fluid circulation and the interaction between the magmatic and hydrothermal systems. Thermal infrared (TIR) satellite images, acquired by the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) over the period of 2004 to 2016, are used to generate time series of the fumarole temperatures and areas. The thermal anomalies identified in the ASTER images coincide with known fumaroles with temperatures > 80 °C and are located on or close to fault structures, which provide a pathway for the rising fluids. Most of the fumaroles, including those along the major zone of hydrothermal upwelling, the Artu Jawe Fault Zone, have pixel-integrated temperature variations of only 2 ± 1.5 °C. The exception are the Bobesa fumaroles located on a hypothesised caldera ring fault which show pixel-integrated temperature changes of up to 9 °C consistent with a delayed response of the hydrothermal system to precipitation. We conclude that fumaroles along major faults are strongly coupled to the magmatic-hydrothermal system and are relatively stable with time, whereas those along shallower structures close to the rift flank are more strongly influenced by seasonal variations in groundwater flow. The use of remote sensing data to monitor the thermal activity of Aluto provides an important contribution towards understanding the behaviour of this actively deforming volcano. This method could be used at other volcanoes around the world for monitoring and geothermal exploration.
NASA Astrophysics Data System (ADS)
Borhade, A. V.; Wakchaure, S. G.; Dholi, A. G.; Kshirsagar, T. A.
2017-07-01
First time we report the synthesis, structural characterization and thermal behavior of an unusual N3 - containing alumino-silicate sodalite mineral. Azide sodalite, Na8[AlSiO4]6(N3)2 has been synthesized under hydrothermal conditions at 433 K in steel lined Teflon autoclave. The structural and microstructural properties of azide sodalite mineral was characterized by various methods including FT-IR, XRD, SEM, TGA, and MAS NMR. Crystal structure have been refined by Rietveld method in P\\bar 43n space group, indicating that the N3 - sodalite has cubic in lattice. High temperature study was carried out to see the effect of thermal expansion on cell dimension ( a o) of azide sodalite. Thermal behavior of sodalite was also assessed by thermogravimetric method.
NASA Astrophysics Data System (ADS)
Geiger, S.; Driesner, T.; Matthai, S.; Heinrich, C.
2002-12-01
Realistic modelling of multi-phase fluid flow, energy and component transport in magmatic-hydrothermal systems is very challenging because hydrological properties of fluids and rocks vary over many orders of magnitude and the geometric complexities of such systems. Furthermore, density dependent component transport and transient permeability variations due to P-T changes and fluid-rock interactions introduce additional difficulties. As a result, the governing equations for the hydrodynamics, energy and component transport, and thermodynamics in magmatic hydrothermal systems are highly non-linear and strongly coupled. Essential requirements of a numerical formulation for such a system are: (1) a treatment of the hydrodynamics that can accurately resolve complex geological structures and represent the highly variable fluid velocities herein, (2) a realistic thermodynamic representation of the fluid properties including the wide P-T-X range of liquid+vapour coexistence for the highly saline fluids, and (3) an accurate handling of the highly contrasting transport properties of the two fluids. We are combining higher order finite-element (FE) methods with total variation diminishing finite volume (TVDFV) methods to model the hydrodynamics and energy and component transport of magmatic hydrothermal systems. Combined FE and TVDFV methods are mass and shock preserving, yield great geometric flexibility in 2D and 3D [2]. Furthermore, efficient matrix solvers can be employed to model fluid flow in geologically realistic structures [5]. The governing equations are linearized by operator-splitting and solved sequentially using a Picard iteration scheme. We chose the system water-NaCl as a realistic proxy for natural fluids occurring in magmatic-hydrothermal systems. An in-depth evaluation of the available experimental and theoretical data led to a consistent and accurate set of formulations for the PVTXH relations that are valid from 0 to 800 C, 0 to 500 MPa, and 0 to 1 XNaCl. Dynamic viscosities are currently approximated by the approach of Palliser and McKibbin [4]. The numerical solutions of the governing equations and the equation of state are embedded in our object-oriented C++ code CSP3D4.0 [6]. Comparisons of the numerical solutions carried out with CSP for solute transport with analytical solutions and classical test cases for density dependent flow (i.e., Elder problem [1]) show very good agreement. The numerical solutions carried out with CSP and the established United States Geological Survey code HYDROTHERM [3] for multi-phase flow and energy transport also yield a very good agreement. Fluid inclusion data can be used to constrain the PTX properties of the hydrothermal fluids in numerical solutions. [1] Journal of Fluid Mechanics 27, 609-623 [2] ANU Mathematical Research Report, MRR01-023 [3] USGS Water Investigations Report 94-4045 [4] Transport in Porous Media 33, 155-171 [5] AAPG Bulletin 80, 1763-1779 [6] CSP User's Guide, Dept. of Earth Sciences ETH Zurich
NASA Astrophysics Data System (ADS)
Shao, Jie; Li, Xinyong; Qu, Qunting; Zheng, Honghe
2012-12-01
Homogenous hexangular starfruit-like vanadium oxide was prepared for the first time by a one-step hydrothermal method. The assembly process of hexangular starfruit-like structure was observed from TEM images. The electrochemical performance of starfruit-like vanadium oxide was examined by cyclic voltammetry and galvanostatic charge/discharge. The obtained starfruit-like vanadium oxide exhibits a high power capability (19 Wh kg-1 at the specific power of 3.4 kW kg-1) and good cycling stability for supercapacitors application.
Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals
NASA Astrophysics Data System (ADS)
Zhou, Cailong; Li, Yufeng; Chen, Yiwen; Lin, Jing
2018-01-01
Tungsten doped tin dioxide (WTO) nanocrystals were synthesized through a one-step hydrothermal method. The structure, composition and morphology of WTO nanocrystals were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, UV-vis diffuse reflectance spectra, zeta potential analysis and high-resolution transmission electron microscopy. Results show that the as-prepared WTO nanocrystals were rutile-type structure with the size near 13 nm. Compared with the undoped tin dioxide nanocrystals, the WTO nanocrystals possessed better dispersity in ethanol phase and formed transparent sol.
Hydrothermal synthesis of MnO2 thin film for supercapacitor application
NASA Astrophysics Data System (ADS)
Tarwate, Soni B.; Wahule, Swati S.; Gattu, Ketan P.; Ghule, Anil V.; Sharma, Ramphal
2018-05-01
MnO2 thin films were directly grown on stainless steel mesh via a facile hydrothermal method. The structural properties revealed the formation of delta MnO2. The capacitive performance of the as-obtained MnO2 electrode was evaluated by cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. The synthesized electrode showed a high specific capacitance of 321 F g-1 at 5 A g-1. The excellent electrochemical performance identifies the MnO2 as a promising electrode material for next-generation energy storage devices.
Hydrothermal synthesis of bismuth germanium oxide
Boyle, Timothy J.
2016-12-13
A method for the hydrothermal synthesis of bismuth germanium oxide comprises dissolving a bismuth precursor (e.g., bismuth nitrate pentahydrate) and a germanium precursor (e.g., germanium dioxide) in water and heating the aqueous solution to an elevated reaction temperature for a length of time sufficient to produce the eulytite phase of bismuth germanium oxide (E-BGO) with high yield. The E-BGO produced can be used as a scintillator material. For example, the air stability and radioluminescence response suggest that the E-BGO can be employed for medical applications.
Forecasting Electricity Prices in an Optimization Hydrothermal Problem
NASA Astrophysics Data System (ADS)
Matías, J. M.; Bayón, L.; Suárez, P.; Argüelles, A.; Taboada, J.
2007-12-01
This paper presents an economic dispatch algorithm in a hydrothermal system within the framework of a competitive and deregulated electricity market. The optimization problem of one firm is described, whose objective function can be defined as its profit maximization. Since next-day price forecasting is an aspect crucial, this paper proposes an efficient yet highly accurate next-day price new forecasting method using a functional time series approach trying to exploit the daily seasonal structure of the series of prices. For the optimization problem, an optimal control technique is applied and Pontryagin's theorem is employed.
NASA Astrophysics Data System (ADS)
Medialdea, T.; Somoza, L.; González, F. J.; Vázquez, J. T.; de Ignacio, C.; Sumino, H.; Sánchez-Guillamón, O.; Orihashi, Y.; León, R.; Palomino, D.
2017-08-01
New seismic profiles, bathymetric data, and sediment-rock sampling document for the first time the discovery of hydrothermal vent complexes and volcanic cones at 4800-5200 m depth related to recent volcanic and intrusive activity in an unexplored area of the Canary Basin (Eastern Atlantic Ocean, 500 km west of the Canary Islands). A complex of sill intrusions is imaged on seismic profiles showing saucer-shaped, parallel, or inclined geometries. Three main types of structures are related to these intrusions. Type I consists of cone-shaped depressions developed above inclined sills interpreted as hydrothermal vents. Type II is the most abundant and is represented by isolated or clustered hydrothermal domes bounded by faults rooted at the tips of saucer-shaped sills. Domes are interpreted as seabed expressions of reservoirs of CH4 and CO2-rich fluids formed by degassing and contact metamorphism of organic-rich sediments around sill intrusions. Type III are hydrothermal-volcanic complexes originated above stratified or branched inclined sills connected by a chimney to the seabed volcanic edifice. Parallel sills sourced from the magmatic chimney formed also domes surrounding the volcanic cones. Core and dredges revealed that these volcanoes, which must be among the deepest in the world, are constituted by OIB-type, basanites with an outer ring of blue-green hydrothermal Al-rich smectite muds. Magmatic activity is dated, based on lava samples, at 0.78 ± 0.05 and 1.61 ± 0.09 Ma (K/Ar methods) and on tephra layers within cores at 25-237 ky. The Subvent hydrothermal-volcanic complex constitutes the first modern system reported in deep water oceanic basins related to intraplate hotspot activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balboni, Enrica; Burns, Peter C., E-mail: pburns@nd.edu; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
2014-05-01
The isotypical compounds (UO{sub 2}){sub 3}(WO{sub 6})(H{sub 2}O){sub 5} (1), Ag(UO{sub 2}){sub 3}(WO{sub 6})(OH)(H{sub 2}O){sub 3} (2), K(UO{sub 2}){sub 3}(WO{sub 6})OH(H{sub 2}O){sub 4} (3), Rb(UO{sub 2}){sub 3}(WO{sub 6})(OH)(H{sub 2}O){sub 3.5} (4), and Cs(UO{sub 2}){sub 3}(WO{sub 6})OH(H{sub 2}O){sub 3} (5) were synthesized, characterized, and their structures determined. Each crystallizes in space group Cc. (1): a=12.979 (3), b=10.238 (2), c=11.302 (2), β=102.044 (2); (2): a=13.148 (2), b=9.520 (1), c=11.083 (2), β=101.568 (2); (3): a=13.111 (8), b=9.930 (6), c=11.242 (7), β=101.024 (7); (4): a=12.940 (2), b=10.231 (2), c=11.259(2), β=102.205 (2); (5): a=12.983 (3), b=10.191 (3), c=11.263 (4), β=101.661 (4). Compounds 1–5 are amore » framework of uranyl and tungsten polyhedra containing cation–cation interactions. The framework has three symmetrically distinct U(VI) cations, one tungsten, sixteen to eighteen oxygen atoms, and in 2–5, one monovalent cation. Each atom occupies a general position. Each U(VI) cation is present as a typical (UO{sub 2}){sup 2+} uranyl ion in an overall pentagonal bipyramidal coordination environment. Each pentagonal bipyramid shares two equatorial edges with two other pentagonal bipyramids, forming a trimer. Trimers are connected into chains by edge-sharing with WO{sub 6} octahedra. Chains are linked through cation–cation interactions between two symmetrically independent uranyl ions. This yields a remarkably complex system of intersecting channels that extend along [0 0 1] and [−1 1 0]. The cation exchange properties of 2 and 3 were characterized at room temperature and at 140 °C. - Graphical abstract: Chains of uranium and tungsten polyhedra are connected into a three dimensional framework by cation–cation interactions occurring between two symmetrically independent uranyl pentagonal bipyramids. Monovalent cations present in channels within the structure can be exchanged by room temperature or mild hydrothermal treatments. The framework of these compounds is robust to cation exchange and heat. (yellow polyhedra=uranium pentagonal bipyramids; blue polyhedra=tungsten octahedral, purple balls=K; yellow balls=Na; grey balls=Tl). - Highlights: • Five isostructural uranyl tungstates compounds were synthesized hydrothermally. • The structures consist of a chains of uranium and tungstate polyhedral. • Chains are connected into a framework by cation–cation interactions. • Cation exchange does not alter the structural integrity of the compounds. • Cation exchange was successful at room temperature and mild hydrothermal conditions.« less
Template-free synthesis of ZnWO{sub 4} powders via hydrothermal process in a wide pH range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hojamberdiev, Mirabbos, E-mail: mirabbos_uz@yahoo.com; Zhu, Gangqiang; Xu, Yunhua
ZnWO{sub 4} powders with different morphologies were fabricated through a template-free hydrothermal method at 180 {sup o}C for 8 h in a wide pH range. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible and luminescence spectrophotometers were applied to study the effects of pH values on crystallinity, morphology, optical and luminescence properties. The XRD results showed that the WO{sub 3} + ZnWO{sub 4}, ZnWO{sub 4}, and ZnO phases could form after hydrothermal processing at 180 {sup o}C for 8 h with the pH values of 1, 3-11, and 13, respectively. The SEM and TEM observation revealedmore » that the morphological transformation of ZnWO{sub 4} powders occurred with an increase in pH values as follows: star anise-, peony-, and desert rose-like microstructures and soya bean- and rod-like nanostructures. The highest luminescence intensity was found to be in sample consisting of star anise-like crystallites among all the samples due to the presence of larger particles with high crystallinity resulted from the favorable pH under the current hydrothermal conditions.« less
NASA Astrophysics Data System (ADS)
Fujii, M.; Okino, K.; Honsho, C.; Mochizuki, N.; Szitkar, F.; Dyment, J.
2013-12-01
Near-bottom magnetic profiling using submersible, deep-tow, Remotely Operated Vehicle (ROV) and Autonomous Underwater Vehicle (AUV) make possible to conduct high-resolution surveys and depict detailed magnetic features reflecting, for instance, the presence of fresh lavas or hydrothermal alteration, or geomagnetic paleo-intensity variations. We conducted near-bottom three component magnetic measurements onboard submersible Shinkai 6500 in the Southern Mariana Trough, where five active hydrothermal vent fields (Snail, Yamanaka, Archean, Pica, and Urashima sites) have been found in both on- and off-axis areas of the active back-arc spreading center, to detect signals from hydrothermally altered rock and to distinguish old and new submarine lava flows. Fourteen dives were carried out at an altitude of 1-40 m during the R/V Yokosuka YK10-10 and YK10-11 cruises in 2010. We carefully corrected the effect of the induced and permanent magnetizations of the submersible by applying the correction method for the shipboard three-component magnetometer measurement modified for deep-sea measurement, and subtracted the IGRF values from the corrected data to obtain geomagnetic vector anomalies along the dive tracks. We then calculated the synthetic magnetic vector field produced by seafloor, assumed to be uniformly magnetized, using three dimensional forward modeling. Finally, values of the absolute magnetizations were estimated by using a linear transfer function in the Fourier domain from the observed and synthetic magnetic anomalies. The distribution of estimated absolute magnetization generally shows low values around the five hydrothermal vent sites. This result is consistent with the equivalent magnetization distribution obtained from previous AUV survey data. The areas of low magnetization are also consistent with hydrothermal deposits identified in video records. These results suggest that low magnetic signals are due to hydrothermal alteration zones where host rocks are demagnetized by hydrothermal circulation. The low magnetization zones around the off-axis vent sites are about ten times wider than those surrounding the on-axis sites, possibly reflecting the longer duration of hydrothermal circulation at these sites. Another interesting result is that the absolute magnetization shows extremely high intensities (>80 A/m) at the neo volcanic zones (NVZ) and relatively low intensities (<10 A/m) two to five kilometers away from the NVZ. These variations are quite consistent with those of the Natural Remanent Magnetization measured on basalt samples, suggesting that the low-temperature oxidation of host rock due to the reaction with seawater has completed within a few kilometers distance from the spreading axis. We conclude that the magnetization of the uppermost oceanic crust decreases with age due to the combination of the both hydrothermal rapid alteration and the low-temperature gradual alteration processes.
Microbiology of ancient and modern hydrothermal systems.
Reysenbach, A L; Cady, S L
2001-02-01
Hydrothermal systems have prevailed throughout geological history on earth, and ancient ARCHAEAN hydrothermal deposits could provide clues to understanding earth's earliest biosphere. Modern hydrothermal systems support a plethora of microorganisms and macroorganisms, and provide good comparisons for paleontological interpretation of ancient hydrothermal systems. However, all of the microfossils associated with ancient hydrothermal deposits reported to date are filamentous, and limited STABLE ISOTOPE analysis suggests that these microfossils were probably autotrophs. Therefore, the morphology and mode of carbon metabolism are attributes of microorganisms from modern hydrothermal systems that provide valuable information for interpreting the geological record using morphological and isotopic signatures.
Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results
NASA Technical Reports Server (NTRS)
Plumlee, Geoffrey S.; Ridley, W. Ian
1992-01-01
Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.
Hydrothermal synthesis of PEDOT/rGO composite for supercapacitor applications
NASA Astrophysics Data System (ADS)
Ahmed, Sultan; Rafat, M.
2018-01-01
In this study, PEDOT/rGO composite has been successfully synthesized using hydrothermal method. Precursor solution of EDOT monomer was mixed with a predetermined solution of graphene oxide (GO). The resultant mixture was then hydrothermally treated. Surface morphology, crystal structure vibrational response and thermal stability have been studied using standard characterization techniques: field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and thermo-gravimetric analysis. The observed results confirm that the required composite of PEDOT/rGO has indeed been synthesized. Electrochemical properties of the synthesized product were studied in 6 M KOH aqueous solution, using characterization techniques such as: cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge measurements. The results show a high value of specific capacitance (102.8 F g-1) at 10 mV s-1, indicating that the composite can be profitably used for energy storage devices.
Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability.
Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan
2015-04-14
Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V 4+ and Fe 3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48.
Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability
Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan
2015-01-01
Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V4+ and Fe3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48. PMID:28788030
Textured catalysts and methods of making textured catalysts
Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA
2007-03-06
A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.
NASA Astrophysics Data System (ADS)
Stancin, Andrea M.; Gleason, James D.; Owen, Robert M.; Rea, David K.; Blum, Joel D.
2008-03-01
A large diameter piston core containing 8.35 m of metalliferous sediment has been recovered from a small abyssal valley in the remote Southwest Pacific Basin (31° 42.194'S, 143° 30° 331'W; 5082 m water depth), providing unique insight into hydrothermal activity and eolian sedimentation there since the early Oligocene. A combination of fish-teeth Sr-isotope stratigraphy and INAA geochemical data reveals an exponentially decreasing hydrothermal flux 31 Ma to the present. Although hydrothermal sedimentation related to seafloor spreading explains this trend, a complex history of late Eocene/early Oligocene ridge jumps, propagating rifts and plate tectonic reorganization of South Pacific seafloor could have also played a role. A possible hiatus in deposition, as recorded by changes in core composition just below 2 m depth, is beyond the resolution of the fish teeth Sr isotope dating method employed here; however, the timing of this interval may be coincident with extinction of the Pacific-Farallon Ridge at ˜20 Ma. A low flux eolian component accumulating at this site shows an increase relative to the hydrothermal component above 2 m depth, consistent with dust-generating continental sources far to the west (Australia/New Zealand). This is the first long-term paleoceanographic record obtained from within the South Pacific "bare zone" (Rea et al., 2006), an anomalous region where Pacific seafloor has largely escaped sediment accumulation since the Late Cretaceous.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edalati, Khatereh, E-mail: kh_ed834@stu.um.ac.ir; Shakiba, Atefeh; Vahdati-Khaki, Jalil
2016-02-15
Highlights: • We synthesized ZnO nanorods by a simple hydrothermal process at 60 °C. • Effects of zinc salt concentration, solvent and alkaline mineralizer was studied. • Increasing concentration of zinc salt changed ZnO nucleation system. • NaOH yielded better results in the production of nanorods in both solvents. • Methanol performed better in the formation of nanorods using the two mineralizers. - Abstract: ZnO has been produced using various methods in the solid, gaseous, and liquid states, and the hydrothermal synthesis at low temperatures has been shown to be an environmentally-friendly one. The current work utilizes a low reactionmore » temperature (60 °C) for the simple hydrothermal synthesis of ZnO nanorod morphologies. Furthermore, the effects of zinc salt concentration, solvent type and alkaline mineralizer type on ZnO nanorods synthesis at a low reaction temperature by hydrothermal processing was studied. Obtained samples were analyzed using X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Increasing the concentration of the starting zinc salt from 0.02 to 0.2 M changed ZnO nucleation system from the homogeneous to the heterogeneous state. The XRD results confirmed the production hexagonal ZnO nanostructures of with a crystallite size of 40.4 nm. Varying the experimental parameters (mineralizer and solvent) yielded ZnO nanorods with diameters ranging from 90–250 nm and lengths of 1–2 μm.« less
One-step synthesis of hydrothermally stable mesoporous aluminosilicates with strong acidity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Dongjiang; School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD 4001; Xu Yao
2008-09-15
Using tetraethylorthosilicate (TEOS), polymethylhydrosiloxane (PMHS) and aluminium isopropoxide (AIP) as the reactants, through a one-step nonsurfactant route based on PMHS-TEOS-AIP co-polycondensation, hydrothermally stable mesoporous aluminosilicates with different Si/Al molar ratios were successfully prepared. All samples exclusively showed narrow pore size distribution centered at 3.6 nm. To assess the hydrothermal stability, samples were subjected to 100 deg. C distilled water for 300 h. The boiled mesoporous aluminosilicates have nearly the same N{sub 2} adsorption-desorption isotherms and the same pore size distributions as those newly synthesized ones, indicating excellent hydrothermal stability. The {sup 29}Si MAS NMR spectra confirmed that PMHS and TEOSmore » have jointly condensed and CH{sub 3} groups have been introduced into the materials. The {sup 27}Al MAS NMR spectra indicated that Al atoms have been incorporated in the mesopore frameworks. The NH{sub 3} temperature-programmed desorption showed strong acidity. Due to the existence of large amount of CH{sub 3} groups, the mesoporous aluminosilicates obtained good hydrophobicity. Owing to the relatively large pore and the strong acidity provided by the uniform four-coordinated Al atoms, the excellent catalytic performance for 1,3,5-triisopropylbenzene cracking was acquired easily. The materials may be a profitable complement for the synthesis of solid acid catalysts. - Graphical abstract: Based on the nonsurfactant method, a facile one-step synthesis route has been developed to prepare methyl-modified mesoporous aluminosilicates that possessed hydrothermal stability and strong acidity.« less
Al-Shiekh Khalil, Wael; Shanableh, Abdullah; Rigby, Portia; Kokot, Serge
2005-04-01
The effectiveness of hydrothermal treatment for the destruction of the organic content of sludge waste was investigated. The sludge sampled in this study contained approximately 2% solids. The experimental program consisted of hydrothermal treatment experiments conducted in a batch reactor at temperatures between 100 and 250 degrees C, with the addition of an oxidant (hydrogen peroxide) in the range of 0-150% with reference to TCOD, and reaction times of up to 60 min. The results suggested that the availability of oxidant, reaction temperature and reaction time were the determining factors for COD removal. A significant fraction of the COD remaining after treatment consisted of the dissolved COD. The results confirmed that hydrothermal treatment proceeds through hydrolysis resulting in the production of dissolved organic products followed by COD removal through oxidation. Two MCDM chemometrics methods, PROMETHEE and GAIA, were applied to process the large data matrix so as to facilitate the selection of the most suitable hydrothermal conditions for sludge destruction. Two possible scenarios were produced from this analysis-one depended on the use of high temperatures and no oxidant, while the second offered a choice of compromise solutions at lower temperatures but with the use of at least some oxidant. Thus, for the final choice of operating conditions, the decision maker needs local knowledge of the costs and available infrastructure. In principle, such information could be added as further criteria to the data matrix and new rankings obtained.
[Ag2M(Te2O5)2]SO4 (M = CeIV or ThIV): A New Purely Inorganic d/f-Heterometallic Cationic Material.
Poe, Todd N; White, Frankie D; Proust, Vanessa; Villa, Eric M; Polinski, Matthew J
2018-05-07
Two new isotypic d/f-heterometallic purely inorganic cationic materials, [Ag 2 M(Te 2 O 5 ) 2 ]SO 4 (M = Ce IV or Th IV ), were synthesized using the metal oxides (MO 2 and TeO 2 ), silver nitrate, and sulfuric acid under mild hydrothermal conditions. The prepared materials were characterized via single-crystal X-ray diffraction, which revealed that the materials possess a 3D framework of corner-sharing Te 2 O 5 2- units. The tellurite framework creates four unique pores, three of which are occupied by the M IV and Ag I metal centers. The tellurite network, metal coordination, and total charge yield a cationic framework, which is charge-balanced by electrostatically bound sulfate anions residing in the largest of the four framework pores. These materials also possess Ag I in a ligand-imposed linear geometry.
Minimalistic Liquid-Assisted Route to Highly Crystalline α-Zirconium Phosphate.
Cheng, Yu; Wang, Xiaodong Tony; Jaenicke, Stephan; Chuah, Gaik-Khuan
2017-08-24
Zirconium phosphates have potential applications in areas of ion exchange, catalysis, photochemistry, and biotechnology. However, synthesis methodologies to form crystalline α-zirconium phosphate (Zr(HPO 4 ) 2 ⋅H 2 O) typically involve the use of excess phosphoric acid, addition of HF or oxalic acid and long reflux times or hydrothermal conditions. A minimalistic sustainable route to its synthesis has been developed by using only zirconium oxychloride and concentrated phosphoric acid to form highly crystalline α-zirconium phosphate within hours. The morphology can be changed from platelets to rod-shaped particles by fluoride addition. By varying the temperature and time, α-zirconium phosphate with particle sizes from nanometers to microns can be obtained. Key features of this minimal solvent synthesis are the excellent yields obtained with high atom economy under mild conditions and ease of scalability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Liang; Liu, Qiang; Zhao, Wen; Li, Guochun; Wang, Limei; Shi, Weidong; Chen, Long
2017-02-10
Lithiation modification of VO 2 (B) has been carried out by a facile hydrothermal process, and the compact and locally ordered VO 2 (B) raft-like nanobelt arrays have been prepared. The synthesis route provides a new approach to elaborate a VO 2 (B) nanostructure under a mild environment condition. It is found that the growth mechanism of VO 2 (B) raft-like nanobelt arrays is different from the traditional nucleation-growth process. A novel chemical lithiating-exfoliating-splitting model is proposed. Compared with the bulk counterpart, the lithiated VO 2 (B) raft-like nanobelt arrays as cathodes exhibit a higher discharge capacity and an enhanced high-rate performance owing to their increased structural anisotropy and decreased polarization. This work indicates that VO 2 (B) raft-like nanobelt arrays have great potential applications as cathode materials for lithium ion batteries.
NASA Astrophysics Data System (ADS)
Liu, Liang; Liu, Qiang; Zhao, Wen; Li, Guochun; Wang, Limei; Shi, Weidong; Chen, Long
2017-02-01
Lithiation modification of VO2(B) has been carried out by a facile hydrothermal process, and the compact and locally ordered VO2(B) raft-like nanobelt arrays have been prepared. The synthesis route provides a new approach to elaborate a VO2(B) nanostructure under a mild environment condition. It is found that the growth mechanism of VO2(B) raft-like nanobelt arrays is different from the traditional nucleation-growth process. A novel chemical lithiating-exfoliating-splitting model is proposed. Compared with the bulk counterpart, the lithiated VO2(B) raft-like nanobelt arrays as cathodes exhibit a higher discharge capacity and an enhanced high-rate performance owing to their increased structural anisotropy and decreased polarization. This work indicates that VO2(B) raft-like nanobelt arrays have great potential applications as cathode materials for lithium ion batteries.
NASA Astrophysics Data System (ADS)
Abd Rashid, Amirul; Hayati Saad, Nor; Bien Chia Sheng, Daniel; Yee, Lee Wai
2014-06-01
PH value is one of the important variables for tungsten trioxide (WO3) nanostructure hydrothermal synthesis process. The morphology of the synthesized nanostructure can be properly controlled by measuring and controlling the pH value of the solution used in this facile synthesis route. Therefore, it is very crucial to ensure the gauge used for pH measurement is reliable in order to achieve the expected result. In this study, gauge repeatability and reproducibility (GR&R) method was used to assess the repeatability and reproducibility of the pH tester. Based on ANOVA method, the design of experimental metrics as well as the result of the experiment was analyzed using Minitab software. It was found that the initial GR&R value for the tester was at 17.55 % which considered as acceptable. To further improve the GR&R level, a new pH measuring procedure was introduced. With the new procedure, the GR&R value was able to be reduced to 2.05%, which means the tester is statistically very ideal to measure the pH of the solution prepared for WO3 hydrothermal synthesis process.
NASA Astrophysics Data System (ADS)
Hakuta, Y.; Nagai, N.; Suzuki, Y.-H.; Kodaira, T.; Bando, K. K.; Takashima, H.; Mizukami, F.
2013-12-01
Alumina (Al2O3) fine particles are widely used as industrial materials including fillers for metal or plastics, paints, polisher, cosmetics and electric substrates, due to its high hardness, chemical stability, and high thermal conductivity. The performance of those industrial products is closely related to the particle size or shape of the alumina particles used, and thus a new synthetic method to control size, shape, and crystal structure of the aluminum oxide is desired for the improvement of the performance. Hydrothermal phase transformation using various aluminum compounds such as oxide, hydroxide, and salt as a staring material, is known as one of the synthetic methods for producing alumina fine particles; however, the influence about the size and shape of the starting aluminum compounds has been little mentioned, although they strongly affect the size and shape of the final products. In this study, we investigated the influence of the shape, size and crystal structure of the starting aluminum compounds on those of the products, and newly succeeded in the production of rod-like α-Al2O3 nanoparticles from fibrous boehmite nanoparticles using hydrothermal phase transformation under supercritical water conditions.
Shi, Xixi; Pan, Lingling; Chen, Shuoping; Xiao, Yong; Liu, Qiaoyun; Yuan, Liangjie; Sun, Jutang; Cai, Lintao
2009-05-19
Hexagonal ZnO micronuts (HZMNs) have been successfully synthesized with the assistance of poly(ethylene glycol) (PEG) 300 via a hydrothermal method. The structure and morphology of the HZMNs were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). An individual ZnO micronut is revealed as twinned crystals. Time-dependent investigation shows that the growth of HZMNs involves a dissolution-recrystallization process followed by Ostwald ripening, in which is the first formed solid ZnO particles dissolve and transform to HZMNs with hollow structure. PEG 300 has been found to play a crucial role in the growth of this unique hollow structure. TEM observations show that the PEG chains aggregate to globules in water, which then have interaction with the dissolved zinc species to form the globules in a coiled state under hydrothermal conditions. These Zn(II)-PEG 300 globules act as soft template for the growth of HZMNs, and the possible growth mechanism is proposed. The room-temperature photoluminescence (PL) spectrum shows red emission around 612 nm with a full width at half-maximum (fwhm) only about 13 nm.
Impact Crater Hydrothermal Niches for Life on Mars: Question of Scale
NASA Technical Reports Server (NTRS)
Pope, K. O.; Ames, D. E.; Kieffer, S. W.; Ocampo, A. C.
2000-01-01
A major focus in the search for fossil life on Mars is on ancient hydrothermal deposits. Nevertheless, remote sensing efforts have not found mineral assemblages characteristic of hydrothermal activity. Future remote sensing work, including missions with higher spatial resolution, may detect localized hydrothermal deposits, but it is possible that dust mantles will prohibit detection from orbit and lander missions will be required. In anticipation of such missions, it is critical to develop a strategy for selecting potential hydrothermal sites on Mars. Such a strategy is being developed for volcanogenic hydrothermal systems, and a similar strategy is needed for impact hydrothermal systems.
An experimental study of symmetry lowering of analcime
NASA Astrophysics Data System (ADS)
Sugano, Neo; Kyono, Atsushi
2018-04-01
Single crystals of analcime were hydrothermally synthesized from a gel of analcime composition at 200 °C for 24 h. They were grown up to 100 μm in size with typical deltoidal icositetrahedron habit. The chemical composition determined by EPMA and TG analyses was Na0.84(Al0.89Si2.12)O6·1.04H2O. The single-crystal X-ray diffraction method was used to determine the symmetry and crystal structure of analcime. The analcime grown from a gel crystallized in cubic space group Ia3 d with lattice parameter a = 13.713(3) Å. In the cubic analcime, Si and Al cations were totally disordered over the framework T sites with site occupancy of Si:Al = 0.6871:0.3129(14). The single crystals of analcime with cubic symmetry were hydrothermally reheated at 200 °C in ultrapure water. After the hydrothermal treatment for 24 h, forbidden reflections for the cubic Ia3 d symmetry were observed. The reflection conditions led to an orthorhombic space group Ibca with lattice parameters a = 13.727(2) Å, b = 13.707(2) Å, and c = 13.707(2) Å. The unit-cell showed a slight distortion with ( a + b)/2 > c, yielding a flattened cell along c. In the orthorhombic analcime, Al exhibited a site preference for T11 site, which indicates that the Si/Al ordering over the framework T sites lowers the symmetry from cubic Ia3 d to orthorhombic Ibca. After the hydrothermal treatment for 48 h, reflections corresponding to orthorhombic space group Ibca were observed as well. The lattice parameters were a = 13.705(2) Å, b = 13.717(2) Å, and c = 13.706(2) Å, retaining the flattened cell shape with ( a + b)/2 > c. The Si and Al cations were further ordered among the framework T sites than the case of the hydrothermal treatment for 24 h. As a consequence, the Si/Al ordering was slightly but significantly accelerated with increasing the hydrothermal treatment time. During the hydrothermal reaction, however, chemical compositions were almost unchanged. The site occupancies of Na over the extra-framework sites remained unaffected with the heating time; thus, the hydrothermal heating influences the degree of ordering of Si and Al over the framework T sites rather than that of Na among the extra-framework sites.
Madsen, René Bjerregaard; Jensen, Mads Mørk; Mørup, Anders Juul; Houlberg, Kasper; Christensen, Per Sigaard; Klemmer, Maika; Becker, Jacob; Iversen, Bo Brummerstedt; Glasius, Marianne
2016-03-01
Hydrothermal liquefaction is a promising technique for the production of bio-oil. The process produces an oil phase, a gas phase, a solid residue, and an aqueous phase. Gas chromatography coupled with mass spectrometry is used to analyze the complex aqueous phase. Especially small organic acids and nitrogen-containing compounds are of interest. The efficient derivatization reagent methyl chloroformate was used to make analysis of the complex aqueous phase from hydrothermal liquefaction of dried distillers grains with solubles possible. A circumscribed central composite design was used to optimize the responses of both derivatized and nonderivatized analytes, which included small organic acids, pyrazines, phenol, and cyclic ketones. Response surface methodology was used to visualize significant factors and identify optimized derivatization conditions (volumes of methyl chloroformate, NaOH solution, methanol, and pyridine). Twenty-nine analytes of small organic acids, pyrazines, phenol, and cyclic ketones were quantified. An additional three analytes were pseudoquantified with use of standards with similar mass spectra. Calibration curves with high correlation coefficients were obtained, in most cases R (2) > 0.991. Method validation was evaluated with repeatability, and spike recoveries of all 29 analytes were obtained. The 32 analytes were quantified in samples from the commissioning of a continuous flow reactor and in samples from recirculation experiments involving the aqueous phase. The results indicated when the steady-state condition of the flow reactor was obtained and the effects of recirculation. The validated method will be especially useful for investigations of the effect of small organic acids on the hydrothermal liquefaction process.
NASA Astrophysics Data System (ADS)
Sannakashappanavar, Basavaraj S.; Byrareddy, C. R.; Kumar, Pesala Sudheer; Yadav, Aniruddh Bahadur
2018-05-01
Hydrothermally grown one dimensional ZnO nanostructures are among the most widely used semiconductor materials to build high-efficiency electronic devices for various applications. Few researchers have addressed the growth mechanism and effect of ZnO seed layer on different properties of ZnO nanorods grown by hydrothermal method, instead, no one has synthesized ZnO nanorod over SiO2/p-Si substrate. The aim of this study is to study the effect of ZnO seed layer and the growth mechanism of ZnO nanorods over SiO2/p-Si substrate. To achieve the goal, we have synthesized ZnO nanorods over different thickness ZnO seed layers by using the hydrothermal method on SiO2/p-Si substrate. The effects of c-plane area ratio were identified for the growth rate of c-plane, reaction rate constant and stagnant layer thickness also calculated by using a modified rate growth equation. We have identified maximum seed layer thickness for the growth of vertical ZnO nanorod. A step dislocation in the ZnO nanorods grown on 150and 200 nm thick seed layers was observed, the magnitude of Burges vector was calculated for this disorder. The seed layer and ZnO nanorods were characterized by AFM, XPS, UV-visible, XRD (X-ray diffraction, and SEM(scanning electron microscope). To justify the application of the grown ZnO nanorods Ti/Au was deposited over ZnO nanorods grown over all seed layers for the fabrication of photoconductor type UV detector.
NASA Astrophysics Data System (ADS)
Gilg, H. Albert; Frei, Robert
1994-05-01
Various geochronological methods ( U/Pb, Rb/Sr, and K/Ar) have been applied to constrain the timing of magmatism and polymetallic mineralization in the Kassandra mining district, northern Greece. These data provide the first geochronological evidence that porphyry copper mineralization, proximal copper skarns, and distal high-temperature carbonate-hosted Pb-Zn-Ag-Au replacement ores formed contemporaneously and probably within less than 2 million years. Polymetallic mineralization is temporally related to the emplacement of granodioritic to quartz dioritic porphyries (24-25 Ma) that postdate the largest post-tectonic intrusion of the area, the Stratoni granodiorite (27.9 ± 1.2 Ma). Andesite porphyry dikes, which crosscut the Pb-Zn-Ag-Au ores and associated alterations, represent the last magmatic phase in the area (19.1 ± 0.6 Ma) and did not contribute to metal concentration. The combination of K/Ar, Rb/Sr, and oxygen isotope studies of hydrothermal illite-rich clays and careful granulometric analysis constrains the reliability of these geochronological methods and emphasizes the importance of characterizing the post-formational history of the sample. We identify various processes which partly disturbed the K/Ar and Rb/Sr system of some clays, such as retrograde alteration by heated meteoric waters, superimposed supergene illitization, and resetting of both isotopic systems due to a hydrothermal overprint related to the intrusion of the andesite porphyry. Our data, however, suggest that diffusive Ar loss from the finest clay fractions (< 0.6 μm) during cooling of the hydrothermal system probably played the most important role in the disturbance of the K/Ar system. Conventional K/Ar ages of < 2 μm fractions from high-temperature illites (> 200°C), therefore, do not give reliable formation ages. The loss of Ar may be used to model the cooling history of the hydrothermal system applying the concept of closure temperatures ( DODSON, 1973). 40K- 40Ar rad isochrons of natural, coarser grained (> 0.6 μm) size fractions of illites from single samples, even when slightly contaminated with feldspars, may yield meaningful ages either of the formation or of a reheating event. The Rb/Sr dating of hydrothermal clays is sensitive to contamination by adsorbed strontium, which may not be cogenetic with the clay, as well as feldspars, which may not have been homogenized isotopically by the illitization process.
Morgan, L.A.; Shanks, Wayne C.; Lovalvo, D.A.; Johnson, S.Y.; Stephenson, W.J.; Pierce, K.L.; Harlan, S.S.; Finn, C.A.; Lee, G.; Webring, M.; Schulze, B.; Duhn, J.; Sweeney, R.; Balistrieri, L.
2003-01-01
Discoveries from multi-beam sonar mapping and seismic reflection surveys of the northern, central, and West Thumb basins of Yellowstone Lake provide new insight into the extent of post-collapse volcanism and active hydrothermal processes occurring in a large lake environment above a large magma chamber. Yellowstone Lake has an irregular bottom covered with dozens of features directly related to hydrothermal, tectonic, volcanic, and sedimentary processes. Detailed bathymetric, seismic reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and exert fundamental control on lake bathymetry and localization of hydrothermal activity. Many previously unknown features have been identified and include over 250 hydrothermal vents, several very large (>500 m diameter) hydrothermal explosion craters, many small hydrothermal vent craters (???1-200 m diameter), domed lacustrine sediments related to hydrothermal activity, elongate fissures cutting post-glacial sediments, siliceous hydrothermal spire structures, sublacustrine landslide deposits, submerged former shorelines, and a recently active graben. Sampling and observations with a submersible remotely operated vehicle confirm and extend our understanding of the identified features. Faults, fissures, hydrothermally inflated domal structures, hydrothermal explosion craters, and sublacustrine landslides constitute potentially significant geologic hazards. Toxic elements derived from hydrothermal processes also may significantly affect the Yellowstone ecosystem. Published by Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Ram Kumar, J.; Ananthakumar, S.; Moorthy Babu, S.
2017-01-01
A facile route to synthesize copper indium diselenide (CuInSe2) nanoparticles in aqueous medium was developed using mercaptoacetic acid (MAA) as capping agent. Two different mole ratios (5 and 10) of MAA were used to synthesize CuInSe2 nanoparticles at room temperature, as well as hydrothermal (high temperature) method. Powder x-ray diffraction analysis reveals that the nanoparticles exhibit chalcopyrite phase and the crystallinity increases with increasing the capping ratio. Raman analysis shows a strong band at 233 cm-1 due to the combination of B2 (E) modes. Broad absorption spectra were observed for the synthesized CuInSe2 nanoparticles. The effective surface capping by MAA on the nanoparticles surface was confirmed through attenuated total reflection-Fourier transform infrared spectral analysis. The thermal stability of the synthesized samples was analyzed through thermogravimetric analysis-differential scanning calorimetry. The change in morphology of the synthesized samples was analyzed through scanning electron microscope and it shows that the samples prepared at room temperature are spherical in shape, whereas hydrothermally synthesized samples were found to have nanorod- and nanoflake-like structures. Transmission electron microscope analysis further indicates larger grains for the hydrothermally prepared samples with 10 mol ratio of MAA. Comparative analyses were made for synthesizing CuInSe2 nanoparticles by two different methods to explore the role of ligand and influence of temperature.
Morphology-controlled synthesis of Co{sub 3}O{sub 4} by one step template-free hydrothermal method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Keqing; Liu, Jiajia; Wen, Panyue
2015-07-15
Highlights: • Co{sub 3}O{sub 4} crystals had been synthesized by one step template-free hydrothermal method. • The H{sub 2}O{sub 2} plays a crucial role in morphological control of Co{sub 3}O{sub 4} nanostructures. • The morphology has significant effect on the optical property of Co{sub 3}O{sub 4}. - Abstract: We had developed a facile synthetic route of Co{sub 3}O{sub 4} crystals with different morphologies via one step template-free hydrothermal method. The phase and composition of the Co{sub 3}O{sub 4} were investigated by X-ray powder diffraction and Raman spectrum. The morphology and structure of the synthesized samples were characterized by scanning electronmore » microscopy and transmission electron microscopy. The H{sub 2}O{sub 2} played a crucial role in morphological control of Co{sub 3}O{sub 4} nanostructures. It only obtained Co-based precursor in the absence of H{sub 2}O{sub 2}. On the contrary, the Co{sub 3}O{sub 4} with different morphologies including nanoparticles, nano-discs and well-defined octahedral nanostructures were synthesized in the presence of H{sub 2}O{sub 2}. In addition, the optical property of the obtained Co{sub 3}O{sub 4} samples was investigated by UV–vis spectra.« less
NASA Astrophysics Data System (ADS)
Biswas, Sayari; Kar, Asit Kumar
2018-02-01
Titanium dioxide (TiO2) thin films were synthesized by hydrothermal assisted sol-gel dip coating method on quartz substrate. The sol was prepared by hydrothermal method at 90 °C. Dip coating method was used to deposit the thin films. Later films were annealed at four different temperatures -600 °C, 800 °C, 1000 °C and 1200 °C. XRD study showed samples annealed at 600 °C are almost amorphous. At 800 °C, film turns into anatase phase and with further increment of annealing temperature they turn into rutile phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60% was observed in the visible region for the sample annealed at the lowest temperature. Band gap of the prepared films varies from 2.9 eV to 3.5 eV.
Organic matter in hydrothermal metal ores and hydrothermal fluids
Orem, W.H.; Spiker, E. C.; Kotra, R.K.
1990-01-01
Massive polymetallic sulfides are currently being deposited around active submarine hydrothermal vents associated with spreading centers. Chemoautolithotrophic bacteria are responsible for the high production of organic matter also associated with modern submarine hydrothermal activity. Thus, there is a significant potential for organic matter/metal interactions in these systems. We have studied modern and ancient hydrothermal metal ores and modern hydrothermal fluids in order to establish the amounts and origin of the organic matter associated with the metal ores. Twenty-six samples from modern and ancient hydrothermal systems were surveyed for their total organic C contents. Organic C values ranged from 0.01% to nearly 4.0% in these samples. Metal ores from modern and ancient sediment-covered hydrothermal systems had higher organic C values than those from modern and ancient hydrothermal systems lacking appreciable sedimentary cover. One massive pyrite sample from the Galapagos spreading center (3% organic C) had stable isotope values of -27.4% (??13C) and 2.1% (??15N), similar to those in benthic siphonophors from active vents and distinct from seep sea sedimentary organic matter. This result coupled with other analyses (e.g. 13C NMR, pyrolysis/GC, SEM) of this and other samples suggests that much of the organic matter may originate from chemoautolithotrophic bacteria at the vents. However, the organic matter in hydrothermal metal ores from sediment covered vents probably arises from complex sedimentary organic matter by hydrothermal pyrolysis. The dissolved organic C concentrations of hydrothermal fluids from one site (Juan de Fuca Ridge) were found to be the same as that of background seawater. This result may indicate that dissolved organic C is effectively scavenged from hydrothermal fluids by biological activity or by co-precipitation with metal ores. ?? 1990.
van de Flierdt, T.; Frank, M.; Halliday, A.N.; Hein, J.R.; Hattendorf, B.; Gunther, D.; Kubik, P.W.
2004-01-01
Secular variations in the Pb isotopic composition of a mixed hydrogenous-hydrothermal ferromanganese crust from the Bauer Basin in the eastern Equatorial Pacific provide clear evidence for changes in hydrothermal contributions during the past 7 Myr. The nearby Galapagos Rise spreading center provided a strong hydrothermal flux prior to 6.5 Ma. After 6.5 Ma, the Pb became stepwise more radiogenic and more similar to Equatorial Pacific seawater, reflecting the westward shift of spreading to the presently active East Pacific Rise (EPR). A second, previously unrecognized enhanced hydrothermal period occurred between 4.4 and 2.9 Ma, which reflects either off-axis hydrothermal activity in the Bauer Basin or a late-stage pulse of hydrothermal Pb from the then active, but waning Galapagos Rise spreading center. Hafnium isotope time-series of the same mixed hydrogenous-hydrothermal crust show invariant values over the past 7 Myr. Hafnium isotope ratios, as well as Nd isotope ratios obtained for this crust, are identical to that of hydrogenous Equatorial Pacific deep water crusts and clearly indicate that hydrothermal Hf, similar to Nd, does not travel far from submarine vents. Therefore, we suggest that hydrothermal Hf fluxes do not contribute significantly to the global marine Hf budget. ?? 2004 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Morgan, L. A.; Shanks, W. C.; Lovalvo, D. A.; Johnson, S. Y.; Stephenson, W. J.; Pierce, K. L.; Harlan, S. S.; Finn, C. A.; Lee, G.; Webring, M.; Schulze, B.; Dühn, J.; Sweeney, R.; Balistrieri, L.
2003-04-01
'No portion of the American continent is perhaps so rich in wonders as the Yellow Stone' (F.V. Hayden, September 2, 1874) Discoveries from multi-beam sonar mapping and seismic reflection surveys of the northern, central, and West Thumb basins of Yellowstone Lake provide new insight into the extent of post-collapse volcanism and active hydrothermal processes occurring in a large lake environment above a large magma chamber. Yellowstone Lake has an irregular bottom covered with dozens of features directly related to hydrothermal, tectonic, volcanic, and sedimentary processes. Detailed bathymetric, seismic reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and exert fundamental control on lake bathymetry and localization of hydrothermal activity. Many previously unknown features have been identified and include over 250 hydrothermal vents, several very large (>500 m diameter) hydrothermal explosion craters, many small hydrothermal vent craters (˜1-200 m diameter), domed lacustrine sediments related to hydrothermal activity, elongate fissures cutting post-glacial sediments, siliceous hydrothermal spire structures, sublacustrine landslide deposits, submerged former shorelines, and a recently active graben. Sampling and observations with a submersible remotely operated vehicle confirm and extend our understanding of the identified features. Faults, fissures, hydrothermally inflated domal structures, hydrothermal explosion craters, and sublacustrine landslides constitute potentially significant geologic hazards. Toxic elements derived from hydrothermal processes also may significantly affect the Yellowstone ecosystem.
Vertical Cable Seismic Survey for Hydrothermal Deposit
NASA Astrophysics Data System (ADS)
Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.
2012-04-01
The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have, however, also confirmed that the uncertainty in the locations of the source and of the hydrophones could lower the quality of subsurface image. It is, therefore, strongly necessary to develop a total survey system that assures a accurate positioning and a deployment techniques. We have carried out two field surveys in FY2011. One is a 3D survey with a boomer for a high-resolution surface source and the other one for an actual field survey in the Izena Cauldron an active hydrothermal area in the Okinawa Trough. Through these surveys, the VCS will become a practical exploration tool for the exploration of seafloor hydrothermal deposits.
Fungal colonization of an Ordovician impact-induced hydrothermal system
Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan
2013-01-01
Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641
Fungal colonization of an Ordovician impact-induced hydrothermal system
NASA Astrophysics Data System (ADS)
Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan
2013-12-01
Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.
Fungal colonization of an Ordovician impact-induced hydrothermal system.
Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan
2013-12-16
Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.
Andjelkovic, Ivan; Jovic, Bojan; Jovic, Milica; Markovic, Marijana; Stankovic, Dalibor; Manojlovic, Dragan; Roglic, Goran
2016-01-01
Composite material Zr-doped TiO2, suitable for the removal of arsenic from water, was synthetized with fast and simple microwave-hydrothermal method. Obtained material, Zr-TiO2, had uniform size and composition with zirconium ions incorporated into crystal structure of titanium dioxide. Synthetized composite material had large specific surface area and well-developed micropore and mesopore structure that was responsible for fast adsorption of As(III) and As(V) from water. The influence of pH on the adsorption capacity of arsenic was studied. The kinetics and isotherm experiments were also performed. The treatment of natural water sample containing high concentration of arsenic with composite material Zr-TiO2 was efficient. The concentration of arsenic was reduced to the value recommended by WHO.
Yang, Huawei; Yan, Xueyu; Ling, Min; Xiong, Zuquan; Ou, Caiwen; Lu, Wei
2015-03-17
We report here the successful fabrication of nano-whisker hydroxyapatite (nHA) coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries.
NASA Astrophysics Data System (ADS)
Xue, Caibao; Chen, Yingzhi; Huang, Yongzhuo; Zhu, Peizhi
2015-08-01
Highly crystalline carbonated hydroxyapatite (CHA) nanorods with different carbonate contents were synthesized by a novel hydrothermal method. The crystallinity and chemical structure of synthesized nanorods were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electronic spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The biocompatibility of synthesized CHA nanorods was evaluated by cell viability and alkaline phosphatase (ALP) activity of MG-63 cell line. The biocompatibility evaluation results show that these CHA nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopedic application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Gun-Hee; Shin, Yongsoon; Arey, Bruce W.
An eco-friendly and economical method for the formation of uniform-sized carbon spheres by hydrothermal dehydration/condensation of a commercial carbonated beverage at 200 oC is reported. CO2 dissolved in the beverage accelerates the dehydration kinetics of the dissolved sugar molecules leading to production of homogeneous carbon spheres having a diameter less than 850 nm. In the presence of CO2, the rough surface of these carbon spheres likely results from continuous Ostwald ripening of constituent microscopic carbon-containing spheres that are formed by subsequent polymerization of intermediate HMF molecules.
One-Step Hydrothermal-Electrochemical Route to Carbon-Stabilized Anatase Powders
NASA Astrophysics Data System (ADS)
Tao, Ying; Yi, Danqing; Zhu, Baojun
2013-04-01
Black carbon-stabilized anatase particles were prepared by a simple one-step hydrothermal-electrochemical method using glucose and titanium citrate as the carbon and titanium source, respectively. Morphological, chemical, structural, and electrochemical characterizations of these powders were carried out by Raman spectroscopy, Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy, and cyclic voltammetry. It was revealed that 200-nm carbon/anatase TiO2 was homogeneously dispersed, and the powders exhibited excellent cyclic performance at high current rates of 0.05 V/s. The powders are interesting potential materials that could be used as anodes for lithium-ion batteries.
Yang, Huawei; Yan, Xueyu; Ling, Min; Xiong, Zuquan; Ou, Caiwen; Lu, Wei
2015-01-01
We report here the successful fabrication of nano-whisker hydroxyapatite (nHA) coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries. PMID:25789500
Unravelling Some of the Key Transformations in the Hydrothermal Liquefaction of Lignin.
Lui, Matthew Y; Chan, Bun; Yuen, Alexander K L; Masters, Anthony F; Montoya, Alejandro; Maschmeyer, Thomas
2017-05-22
Using both experimental and computational methods, focusing on intermediates and model compounds, some of the main features of the reaction mechanisms that operate during the hydrothermal processing of lignin were elucidated. Key reaction pathways and their connection to different structural features of lignin were proposed. Under neutral conditions, subcritical water was demonstrated to act as a bifunctional acid/base catalyst for the dissection of lignin structures. In a complex web of mutually dependent interactions, guaiacyl units within lignin were shown to significantly affect overall lignin reactivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul
2015-01-01
The increase in environmental problems and the shortage of fossil fuels have led to the need for action in the development of sustainable and renewable fuels. Methane is produced through anaerobic digestion of organic materials and is a biofuel with very promising characteristics. The success in using methane as a biofuel has resulted in the operation of several commercial-scale plants and the need to exploit novel materials to be used. Forest biomass can serve as an excellent candidate for use as raw material for anaerobic digestion. During this work, both hardwood and softwood species—which are representative of the forests of Sweden—were used for the production of methane. Initially, when untreated forest materials were used for the anaerobic digestion, the yields obtained were very low, even with the addition of enzymes, reaching a maximum of only 40 mL CH4/g VS when birch was used. When hydrothermal pretreatment was applied, the enzymatic digestibility improved up to 6.7 times relative to that without pretreatment, and the yield of methane reached up to 254 mL CH4/g VS. Then the effect of chemical/enzymatic detoxification was examined, where laccase treatment improved the methane yield from the more harshly pretreated materials while it had no effect on the more mildly pretreated material. Finally, addition of cellulolytic enzymes during the digestion improved the methane yields from spruce and pine, whereas for birch separate saccharification was more beneficial. To achieve high yields in spruce 30 filter paper units (FPU)/g was necessary, whereas 15 FPU/g was enough when pine and birch were used. During this work, the highest methane yields obtained from pine and birch were 179.9 mL CH4/g VS and 304.8 mL CH4/g VS, respectively. For mildly and severely pretreated spruce, the methane yields reached 259.4 mL CH4/g VS and 276.3 mL CH4/g VS, respectively. We have shown that forest material can serve as raw material for efficient production of methane. The initially low yields from the untreated materials were significantly improved by the introduction of a hydrothermal pretreatment. Moreover, enzymatic detoxification was beneficial, but mainly for severely pretreated materials. Finally, enzymatic saccharification increased the methane yields even further. PMID:26539186
TlBr purification and single crystal growth for the detector applications
NASA Astrophysics Data System (ADS)
Kozlov, Vasilij; Heikkilä, Mikko; Kostamo, Pasi; Lipsanen, Harri; Leskelä, Markku
2011-05-01
The combination of distillation, Bridgman-Stockbarger, hydrothermal recrystallisation and travelling molten zone (TMZ) methods were used for TlBr purification. Grown crystals were characterised by XRD rocking curve and FTIR spectroscopy methods, and by electrical measurements made from 200 to 300 K.
Zhou, Ying; Engler, Nils; Nelles, Michael
2018-07-01
Food waste (FW) is traditionally disposed through landfills and incineration in China. Nowadays, there are some promising methods, such as anaerobic digestion (AD) or feeding and composting, which are being applied in pilot cities. However, the inherent characteristics of Chinese FW may be regarded as a double-edged sword in the practical applications of these disposal methods. To overcome these challenges, two modes of the hydrothermal carbonization (HTC) process were reviewed as innovative strategies in this article. Meanwhile, the "symbiotic relationship" between Chinese FW and HTC technologies was highlighted. To improve treatment efficiency of FW, we should not only try different methods and develop existing technologies, but also pay more attention to the utilization and "1 + 1 > 2" synergistic effect of their combinations, such as the combination of HTC and AD as a co-treatment method for saving on the construction cost and avoiding redistribution of social resources. Copyright © 2018 Elsevier Ltd. All rights reserved.
Health hazards and disaster potential of ground gas emissions at Furnas volcano, São Miguel, Azores
NASA Astrophysics Data System (ADS)
Baxter, Peter J.; Baubron, Jean-Claude; Coutinho, Rui
1999-09-01
A health hazard assessment of exposure to soil gases (carbon dioxide and radon) was undertaken in the village of Furnas, located in the caldera of an active volcano. A soil survey to map the area of soil gas flow was undertaken, gas emissions were monitored at fumaroles and in eight houses, and a preliminary radon survey of 23 houses in the main anomaly area was performed. Potential volcanic sources of toxic contamination of air, food, and water were also investigated, and ambient air quality was evaluated. About one-third (41 ha) of the houses were located in areas of elevated carbon dioxide soil degassing. Unventilated, confined spaces in some houses contained levels of carbon dioxide which could cause asphyxiation. Mean indoor radon levels exceeded UK and US action levels in the winter months. A tenfold increase in radon levels in one house over 2 h indicated that large and potentially lethal surges of carbon dioxide could occur without warning. Toxic exposures from the gaseous emissions and from contamination of soil and water were minimal, but sulphur dioxide levels were mildly elevated close to fumaroles. In contrast, evidence of dental fluorosis was manifested in the population of the nearby fishing village of Ribeira Quente where drinking water in the past had contained elevated levels of fluoride. The disaster potential of volcanic carbon dioxide in the area could also be associated with the hydrothermal system storing dissolved carbon dioxide beneath the village. Felt, or unfelt, seismic activity, or magma unrest, especially with a reawakening of explosive volcanic activity (30% probability in the next 100 years) could result in an increase in gas flow or even a gas burst from the hydrothermal system. A survey of all houses in Furnas is advised as structural measures to prevent the ingress of soil gases, including radon, were needed in some of the study houses. Evaluations of the human hazards of volcanic gases should be undertaken in all settlements in volcanic and hydrothermal areas associated with soil gas emissions.
NASA Astrophysics Data System (ADS)
Runyon, Simone E.; Steele-MacInnis, Matthew; Seedorff, Eric; Lecumberri-Sanchez, Pilar; Mazdab, Frank K.
2017-04-01
Veins and pervasive wall-rock alteration composed of coarse muscovite±quartz±pyrite are documented for the first time in a porphyritic granite at Luhr Hill in the Yerington District, Nevada. Coarse muscovite at Luhr Hill occurs at paleodepths of 6-7 km in the roots of a porphyry copper system and crops out on the scale of tens to hundreds of meters, surrounded by rock that is unaltered or variably altered to sodic-calcic assemblages. Coarse muscovite veins exhibit a consistent orientation, subvertical and N-S striking, which structurally restores to subhorizontal at the time of formation. Along strike, coarse muscovite veins swell from distal, millimeter-thick muscovite-only veinlets to proximal, centimeter-thick quartz-sulfide-bearing muscovite veins. Crosscutting relationships between coarse muscovite veins, pegmatite dikes, and sodic-calcic veins indicate that muscovite veins are late-stage magmatic-hydrothermal features predating final solidification of the Luhr Hill porphyritic granite. Fluid inclusions in the muscovite-quartz veins are high-density aqueous inclusions of 3-9 wt% NaCl eq. and <1 mol% CO2 that homogenize between 150 and 200 °C, similar to fluid inclusions from greisen veins in Sn-W-Mo vein systems. Our results indicate that muscovite-forming fluids at Luhr Hill were mildly acidic, of low to moderate salinity and sulfur content and low CO2 content, and that muscovite in deep veins and alteration differs in texture, composition, and process of formation from sericite at shallower levels of the hydrothermal system. Although the definition of greisen is controversial, we suggest that coarse muscovite alteration is more similar to alteration in greisen-type Sn-W-Mo districts worldwide than to sericitic alteration at higher levels of porphyry copper systems. The fluids that form coarse muscovite veins and alteration in the roots of porphyry copper systems are distinct from fluids that formed copper ore or widespread, shallower, acidic alteration. We propose that this style of veins and alteration at Luhr Hill represents degassing of moderate volumes of overpressured hydrothermal fluid during late crystallization of deep levels of the Yerington batholith.
Influence of hydrothermal processing on functional properties and grain morphology of finger millet.
Dharmaraj, Usha; Meera, M S; Reddy, S Yella; Malleshi, Nagappa G
2015-03-01
Finger millet was hydrothermally processed followed by decortication. Changes in color, diameter, density, sphericity, thermal and textural characteristics and also some of the functional properties of the millet along with the grain morphology of the kernels after hydrothermal processing and decortication were studied. It was observed that, the millet turned dark after hydrothermal processing and color improved over native millet after decortication. A slight decrease in grain diameter was observed but sphericity of the grains increased on decortication. The soft and fragile endosperm turned into a hard texture and grain hardness increased by about 6 fold. Hydrothermal processing increased solubility and swelling power of the millet at ambient temperature. Pasting profile indicated that, peak viscosity decreased significantly on hydrothermal processing and both hydrothermally processed and decorticated millet exhibited zero breakdown viscosity. Enthalpy was negative for hydrothermally processed millet and positive for decorticated grains. Microscopic studies revealed that the orderly structure of endosperm changed to a coherent mass after hydrothermal processing and the different layers of seed coat get fused with the endosperm.
Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.
2010-01-01
Dissolved noble gas concentrations in springs are used to investigate boiling of hydrothermal water and mixing of hydrothermal and shallow cool water in the Norris Geyser Basin area. Noble gas concentrations in water are modeled for single stage and continuous steam removal. Limitations on boiling using noble gas concentrations are then used to estimate the isotopic effect of boiling on hydrothermal water, allowing the isotopic composition of the parent hydrothermal water to be determined from that measured in spring. In neutral chloride springs of the Norris Geyser Basin, steam loss since the last addition of noble gas charged water is less than 30% of the total hydrothermal discharge, which results in an isotopic shift due to boiling of ?? 2.5% ??D. Noble gas concentrations in water rapidly and predictably change in dual phase systems, making them invaluable tracers of gas-liquid interaction in hydrothermal systems. By combining traditional tracers of hydrothermal flow such as deuterium with dissolved noble gas measurements, more complex hydrothermal processes can be interpreted. ?? 2010 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Li, Li; Wang, Lili; Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi; Dong, Xue
2014-12-01
A series of urchin-like CdS/ZrO2 nanocomposites with different mole ratios of Cd/Zr were prepared by a two-step method combining the microwave-assisted hydrothermal and ion exchange methods. The products were characterized by X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N2 adsorption-desorption measurements. The results of the study revealed that the CdS/ZrO2 nanocomposites had mixed phases of tetragonal ZrO2 and hexagonal CdS. Moreover, the samples prepared by the microwave-assisted hydrothermal method possessed the urchin-like structure with a surface composed of protrude-like nanoparticles in large quantities. The absorption in the visible region changed slightly with increasing mole ratio of Cd/Zr. Moreover, compared to the nanocomposites prepared by the conventional heating, the nanocomposites prepared by the microwave-assisted hydrothermal synthesis showed significantly different Brunauer-Emmett-Teller values, and the urchin-like CdS/ZrO2 structures were obtained. The photocatalytic degradation of methyl orange under ultraviolet (UV) light irradiation indicated that the photocatalytic activity of the CdS/ZrO2 nanocomposite with CdS/ZrO2 molar ratio of 30 % was higher than those of CdS, ZrO2, and other different ratios of CdS/ZrO2 nanocomposites. Moreover, under UV light, visible light, and microwave-assisted multimode photocatalytic degradation, the urchin-like CdS/ZrO2 nanocomposites significantly affected the photodegradation of various dyes. To understand the possible reaction mechanism of the photocatalysis by the CdS/ZrO2 nanocomposites, a series of controlled experiments were performed, and the stability and reusability of the CdS/ZrO2 nanocomposites were further investigated by the photocatalytic reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Gao; Yu, Lin, E-mail: gych@gdut.edu.cn; Lin, Ting
2014-09-15
Branched β-MnO{sub 2} bipods with novel nanopincer morphology were prepared by a facile one-pot hydrothermal method via a redox reaction between NaClO{sub 3} and MnSO{sub 4} in sulfuric acid solution without using any surfactants or templates. The products were characterized in detail by various techniques including X-ray powder diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, surface area analyzer, field emission scanning electron microscopy and transmission electron microscopy. Results show that the obtained β-MnO{sub 2} nanopincers consist of two sharp nanorods with a diameter of 100–200 nm and a length of 1–2 μm. The concentration of H{sub 2}SO{sub 4} solution plays anmore » important role in controlling the crystal phase and morphology of the final product. A possible formation mechanism for the β-MnO{sub 2} nanopincers was proposed. Moreover, these β-MnO{sub 2} nanostructures exhibited better catalytic performance than the commercial MnO{sub 2} particles to decompose methyl blue (MB) in the presence of H{sub 2}O{sub 2}. - Graphical abstract: Branched β-MnO{sub 2} bipods with novel nanopincer morphology were prepared by a facile one-pot hydrothermal method through oxidizing MnSO{sub 4} with NaClO{sub 3} in H2SO{sub 4} condition without using any surfactants or templates. - Highlights: {sup •} Branched β-MnO{sub 2} nanopincers were prepared by a facile one-pot hydrothermal method. {sup •} Morphology and crystal phase of MnO{sub 2} were controlled by the H{sub 2}SO{sub 4} concentration. {sup •} A possible formation mechanism for the obtained β-MnO{sub 2} nanopincers was proposed. {sup •} The products showed great catalytic performance in degradation of methylene blue.« less
Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.
2009-01-01
Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing and vein-fi lling; and (5) areal dimensions of many large hydrothermal explosion craters in Yellowstone are similar to those of its active geyser basins and thermal areas. For Yellowstone, our knowledge of hydrothermal craters and ejecta is generally limited to after the Yellowstone Plateau emerged from beneath a late Pleistocene icecap that was roughly a kilometer thick. Large hydrothermal explosions may have occurred earlier as indicated by multiple episodes of cementation and brecciation commonly observed in hydrothermal ejecta clasts. Critical components for large, explosive hydrothermal systems include a watersaturated system at or near boiling temperatures and an interconnected system of well-developed joints and fractures along which hydrothermal fluids flow. Active deformation of the Yellowstone caldera, active faulting and moderate local seismicity, high heat flow, rapid changes in climate, and regional stresses are factors that have strong infl uences on the type of hydrothermal system developed. Ascending hydrothermal fluids flow along fractures that have developed in response to active caldera deformation and along edges of low-permeability rhyolitic lava flows. Alteration of the area affected, self-sealing leading to development of a caprock for the hydrothermal system, and dissolution of silica-rich rocks are additional factors that may constrain the distribution and development of hydrothermal fields. A partial lowpermeability layer that acts as a cap to the hydrothermal system may produce some over-pressurization, thought to be small in most systems. Any abrupt drop in pressure initiates steam fl ashing and is rapidly transmitted through interconnected fractures that result in a series of multiple large-scale explosions contributing to the excavation of a larger explosion crater. Similarities between the size and dimensions of large hydrothermal explosion craters and thermal fields in Yellowstone may indicate that catastrophic events which result in l
Mineralogical and chemical characteristics of some natural jarosites
Desborough, G.A.; Smith, K.S.; Lowers, H.A.; Swayze, G.A.; Hammarstrom, J.M.; Diehl, S.F.; Leinz, R.W.; Driscoll, R.L.
2010-01-01
This paper presents a detailed study of the mineralogical, microscopic, thermal, and spectral characteristics of jarosite and natrojarosite minerals. Systematic mineralogic and chemical examination of a suite of 32 natural stoichiometric jarosite and natrojarosite samples from diverse supergene and hydrothermal environments indicates that there is only limited solid solution between Na and K at low temperatures, which suggests the presence of a solvus in the jarosite-natrojarosite system at temperatures below about 140 ??C. The samples examined in this study consist of either end members or coexisting end-member pairs of jarosite and natrojarosite. Quantitative electron-probe microanalysis data for several natural hydrothermal samples show only end-member compositions for individual grains or zones, and no detectable alkali-site deficiencies, which indicates that there is no hydronium substitution within the analytical uncertainty of the method. In addition, there is no evidence of Fe deficiencies in the natural hydrothermal samples. Hydronium-bearing jarosite was detected in only one relatively young supergene sample suggesting that terrestrial hydronium-bearing jarosites generally are unstable over geologic timescales. Unit-cell parameters of the 20 natural stoichiometric jarosites and 12 natural stoichiometric natrojarosites examined in this study have distinct and narrow ranges in the a- and c-cell dimensions. There is no overlap of these parameters at the 1?? level for the two end-member compositions. Several hydrothermal samples consist of fine-scale (2-10 ??m) intimate intergrowths of jarosite and natrojarosite, which could have resulted from solid-state diffusion segregation or growth zoning due to variations in the Na/K activity ratio of hydrothermal solutions.
In Situ Materials Study in Hot Hydrothermal Vent Fluid
NASA Astrophysics Data System (ADS)
Holland, P. M.; Schindele, W. J.; Holland, C. E.; Lilley, M. D.; Olson, E. J.
2004-12-01
We are developing methods and technology for in situ sampling and analysis of volatiles from hot hydrothermal vent fluids inside the mixing boundary. These fluids can reach temperatures of up to 400° C and are known to be corrosive to most materials. While titanium has been the material of choice for contact with these fluids, we wanted to assess whether other materials, such as Hastelloy or nickel might be suitable for in situ sampling from hydrothermal vents. For the present study, small (1/16" o.d.) tubes of chemically pure titanium, Hastelloy C, and Nickel 200 were prepared, using 316 stainless steel as a control. These were placed in an assembly with other test items, and inserted into the hydrothermal vent Sully in the Main Endeavor Field on the Juan de Fuca Plate in June 2003 by the Jason II ROV operated from the R/V Thompson. The assembly was retrieved 46 days later after exposure to approximately 360° C hydrothermal vent fluid at a depth of 2200 m. Inspection showed the stainless steel to be completely eroded away and nickel to be extensively corroded, however both the Hastelloy and titanium tubes were in excellent condition with the 0.030" i.d. passages in the tubes remaining open. Other test items included a miniature titanium filtered inlet fitting containing an 80 mesh titanium screen made of 0.004" (0.1 mm) chemically pure titanium wire, an Inconel washer and a sapphire ball. Apart from some discoloration, there appeared to be no significant degradation in these materials apart from signs of etching on the sapphire.
NASA Astrophysics Data System (ADS)
Maucourant, Samuel; Giammanco, Salvatore; Greco, Filippo; Dorizon, Sophie; Del Negro, Ciro
2014-06-01
A multidisciplinary approach integrating self-potential, soil temperature, heat flux, CO2 efflux and gravity gradiometry signals was used to investigate a relatively small fissure-related hydrothermal system near the summit of Mt. Etna volcano (Italy). Measurements were performed through two different surveys carried out at the beginning and at the end of July 2009, right after the end of the long-lived 2008-2009 flank eruption and in coincidence with an increase in diffuse flank degassing related to a reactivation of the volcano, leading to the opening of a new summit vent (NSEC). The main goal was to use a multidisciplinary approach to the detection of hidden fractures in an area of evident near-surface hydrothermal activity. Despite the different methodologies used and the different geometry of the sampling grid between the surveys, all parameters concurred in confirming that the study area is crossed by faults related with the main fracture systems of the south flank of the volcano, where a continuous hydrothermal circulation is established. Results also highlighted that hydrothermal activity in this area changed both in space and in time. These changes were a clear response to variations in the magmatic system, notably to migration of magma at various depth within the main feeder system of the volcano. The results suggest that this specific area, initially chosen as the optimal test-site for the proposed approach, can be useful in order to get information on the potential reactivation of the summit craters of Mt. Etna.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jinxue; Zhou, Xiaoyu; Lu, Yibin
2012-12-15
Monodisperse FeWO{sub 4} nanoparticles with specific spindle-like morphology have been synthesized in the presence of citric acid through hydrothermal process. In the synthesis route, citric acid played four roles such as the reducing agent, chelating regents, structure-directing agent and stabilizing agents. In addition, the morphology of FeWO{sub 4} was dramatically tuned by the pH value of the precursor medium. The optical properties of FeWO{sub 4} were investigated with UV-Vis spectra and photoluminescence spectroscopy. The photocatalytic experiments demonstrated that the decomposition efficiency of the monodisperse spindle-like FeWO{sub 4} nanoparticles is 74% after 30 min of UV irradiation, which displayed remarkable enhancedmore » photodegradation activity compared with ordinary FeWO{sub 4} sample (57%) and normal TiO{sub 2} photocatalysts P-25 (56%). - Monodisperse spindle-like FeWO{sub 4} nanoparticles with enhanced photocatalytic activities. Highlights: Black-Right-Pointing-Pointer Monodisperse spindle-like FeWO{sub 4} were synthesized with hydrothermal method. Black-Right-Pointing-Pointer Citric acid plays key roles in the hydrothermal synthesis. Black-Right-Pointing-Pointer Their morphology can be tuned with pH value of the precursor medium. Black-Right-Pointing-Pointer They show enhanced photocatalytic activities with irradiation of UV light.« less
Enhanced photovoltaic performance of dye sensitized solar cell using SnO2 nanoflowers
NASA Astrophysics Data System (ADS)
Arote, Sandeep A.; Tabhane, Vilas A.; Pathan, Habib M.
2018-01-01
The study highlighted enhanced performance of SnO2 based DSSC using photoanode with nanostructured morphology. The simple organic surfactant free hydrothermal synthesis method was used for preparation of SnO2 nanoflowers for dye sensitized solar cell (DSSC) application. The hydrothermal reaction time was varied to obtain different SnO2 nanostructures. The hydrothermal reaction time showed considerable effect on optical and structural properties of the prepared samples. The results indicated that the prepared samples were pure rutile SnO2. The band gap of prepared samples was greater than bulk SnO2 and varied from 3.64 to 3.81 eV with increase in hydrothermal reaction time. With increase in reaction time from 4 to 24 h, the microstructure of SnO2 changed from agglomerated nanoparticles to nanopetals and finally to self-assembled nanoflowers. Flower-like SnO2 nanostructures showed size around 300-700 nm, and composed of large numbers of 3 dimensional petals connected with each other forming 3D nanoflowers by self-assembly. Consequently, the DSSC with flower-like SnO2 nanostructures exhibited good photovoltaic performance with Voc, Jsc and η about 0.43 V, 4.36 mA/cm2 and 1.11%, respectively.
Sun, Qing-lei; Wang, Ming-qing; Sun, Li
2015-12-01
In this study, different culture-dependent methods were used to examine the cultivable heterotrophic bacteria in the sediments associated with two deep-sea hydrothermal vents (named HV1 and HV2) located at Iheya Ridge and Iheya North in Okinawa Trough. The two vents differed in morphology, with HV1 exhibiting diffuse flows while HV2 being a black smoker with a chimney-like structure. A total of 213 isolates were identified by near full-length 16S rRNA gene sequence analysis. Of these isolates, 128 were from HV1 and 85 were from HV2. The bacterial community structures were, in large parts, similar between HV1 and HV2. Nevertheless, differences between HV1 and HV2 were observed in one phylum, one class, 4 orders, 10 families, and 20 genera. Bioactivity analysis revealed that 25 isolates belonging to 9 different genera exhibited extracellular protease activities, 21 isolates from 11 genera exhibited extracellular lipase activities, and 13 isolates of 8 genera displayed antimicrobial activities. This is the first observation of a large population of bacteria with extracellular bioactivities existing in deep-sea hydrothermal vents. Taken together, the results of this study provide new insights into the characteristics of the cultivable heterotrophic bacteria in deep-sea hydrothermal ecosystems.
Positron Spectroscopy of Hydrothermally Grown Actinide Oxides
2014-03-27
POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS Edward C. Schneider...United States Government. AFIT-ENP-14-M-33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS...33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES Edward C. Schneider, BS Captain, USAF Approved
Geochemistry of pyrite and chalcopyrite from an active black smoker in 49.6°E Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Yuan, Bo; Yang, Yaomin; Yu, Hongjun; Zhao, Yuexia; Ding, Qingfeng; Yang, Jichao; Tang, Xin
2017-06-01
Active hydrothermal chimneys, as the product of submarine hydrothermal activity, can be used to determine the fluid evolution and formation process of potential volcanic-hosted massive sulfide deposits. A hard-won specimen from an active hydrothermal chimney was collected in the 49.6°E ultraslow-spreading Southwest Indian Ridge (SWIR) field through a television-guided grab. A geochemical study of prominent sulfide (e.g., pyrite and chalcopyrite) included in this sample was performed using laser ablation inductively coupled plasma mass spectroscopy. The early sulfides produced at low temperature are of disseminated fine-grained anhedral morphology, whereas the late ones with massive, coarse euhedral features precipitated in a high-temperature setting. The systematic variations in the contents of minor and trace elements are apparently related to the crystallization sequence, as well as to texture. Micro-disseminated anhedral sulfides rich in Pb, As, Ni, Ba, Mn, Mo, U, and V were formed during the initial chimney wall growth, whereas those rich in Sn, Se, and Co with massive, coarse euhedral morphology were formed within the late metallogenic stage. The hydrothermal fluid composition has experienced a great change during the chimney growth. Such a conclusion is consistent with that indicated by using principal component analysis, which is a powerful statistical analysis method widely used to project multidimensional datasets (e.g., element contents in different mineral phases) into a few directions. This distribution pattern points to crystallographic controls on minor and trace element uptake during chimney growth, occurring with concomitant variations in the fluid composition evolutionary history. In this pyrite-chalcopyrite-bearing active hydrothermal chimney at the SWIR, the metal concentration and precipitation of sulfides largely occurred at the seafloor as a result of mixing between the upwelling hot hydrothermal fluid and cold seawater. Over the course of mixing, significant variations in metal solubility were caused by changes in temperature, pH, and redox conditions in the parental fluid phase.
NASA Astrophysics Data System (ADS)
Yang, Zixin; Shen, Min; Dai, Ke; Zhang, Xuehao; Chen, Hao
2018-02-01
Bi2MoO6 nanosheets with exposed {010} facets were selectively synthesized through hydrothermal method by adjusting the pH value in the presence of cetyltrimethyl ammonium bromide (CTAB) as the templates. The effects of CTAB content and hydrothermal conditions on the morphologies and crystal phases of the products were determined by using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy (FTIR), Raman spectrometry, and Brunauer-Emmett-Teller surface area analyses. It is found that Bi2MoO6 nanosheets with relatively large particle sizes (plate length 0.5-3 μm) and special anisotropic growth along the {010} plane can be obtained from an alkaline hydrothermal environment. The band gap of Bi2MoO6 can be fine-tuned from 2.30 to 2.57 eV by adjusting the pH value of hydrothermal solution. The pH value has a significant effect on the composition of hydrothermal precursors, which results in Bi2MoO6 nanosheets with different ratio of {010} faces, especially the formation of Bi2O3 in the primary stage of the hydrothermal treatment is a key factor for the exposure of {010} facets. The visible-light-driven photocatalytic activities of the Bi2MoO6 products with different ratio of {010} facets exposed are investigated through the degradation of Rhodamine B, oxytetracycline, and tetracycline. Bi2MoO6 nanosheets synthesized at pH 10.0 with highest {010} facet exposed ratio exhibited highly efficient visible light photocatalytic activity for pollutant decomposition, which can be mainly attributed to the flake structures, the crystallinity and most importantly, the exposed {010} facet which generate high concentration of rad O2-.
Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3
Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.
2008-01-01
The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined ground-water flow is presented in detail. It illustrates the use of HTI with the combination precipitation-recharge and seepage-surface boundary condition, and functions as a tutorial example problem for the new user.
NASA Astrophysics Data System (ADS)
Tchesunov, Alexei V.
2015-12-01
Morphological descriptions of seven free-living nematode species from hydrothermal sites of the Mid-Atlantic Ridge are presented. Four of them are new for science: Paracanthonchus olgae sp. n. (Chromadorida, Cyatholaimidae), Prochromadora helenae sp. n. (Chromadorida, Chromadoridae), Prochaetosoma ventriverruca sp. n. (Desmodorida, Draconematidae) and Leptolaimus hydrothermalis sp. n. (Plectida, Leptolaimidae). Two species have been previously recorded in hydrothermal habitats, and one species is recorded for the first time in such an environment. Oncholaimus scanicus (Enoplida, Oncholaimidae) was formerly known from only the type locality in non-hydrothermal shallow milieu of the Norway Sea. O. scanicus is a very abundant species in Menez Gwen, Lucky Strike and Lost City hydrothermal sites, and population of the last locality differs from other two in some morphometric characteristics. Desmodora marci (Desmodorida, Desmodoridae) was previously known from other remote deep-sea hydrothermal localities in south-western and north-eastern Pacific. Halomonhystera vandoverae (Monhysterida, Monhysteridae) was described and repeatedly found in mass in Snake Pit hydrothermal site. The whole hydrothermal nematode assemblages are featured by low diversity in comparison with either shelf or deep-sea non-hydrothermal communities. The nematode species list of the Atlantic hydrothermal vents consists of representatives of common shallow-water genera; the new species are also related to some shelf species. On the average, the hydrothermal species differ from those of slope and abyssal plains of comparable depths by larger sizes, diversity of buccal structures, presence of food content in the gut and ripe eggs in uteri.
Biogeochemistry of hydrothermally and adjacent non-altered soils
USDA-ARS?s Scientific Manuscript database
As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized seven pedons, developed in hydrothermally and adjacent non-hydrothermally altered andesitic parent material near Reno, NV. Hydrothermally altered soils had considerably lo...
Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Tivey, Margaret K.; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.
2016-01-01
The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032
Abbas, Mohamed; Zhang, Juan; Lin, Ke; Chen, Jiangang
2018-04-01
In this study, Fe 3 O 4 nanocubes (NCs) decorated on RGO nanosheets (NSs) structures were successfully synthesized through an innovative and environmentally-friendly rapid sonochemical method. More importantly, iron(II) sulfate heptahydrate and GO were employed as precursors and water as reaction medium, meanwhile, NaOH within the generated free radicals from the high intensity ultrasound were sufficient as reducing and base agent in our clean synthesis. Moreover, the hydrothermal method as a conventional approach was employed to synthesize the same catalysts for the comparison with the ultrasonocation technique. The as-synthesized Fe 3 O 4 and RGO/Fe 3 O 4 NSs catalysts were exposed to industrially relevant Fischer-tropsch synthesis (FTS) conditions at various reaction temperatures (250-290 °C), and they subjected to fully characterization before and after FTS reaction using XRD, TEM, HRTEM, EDS mapping, XPS, FTIR, BET, H 2 -TPR, H 2 -TPD and CO-TPD to understand the structure-performance relationships. Notably, the catalysts produced using the sonochemical method had a better CO conversion rate [Fe 3 O 4 (80%), RGO/Fe 3 O 4 (82%)] than the hydrothermally synthesized catalysts. However, compared to the naked-Fe 3 O 4 catalysts, the sonochemically and hydrothermally synthesized RGO-supported Fe 3 O 4 catalysts had higher long chain hydrocarbon (C5+) selectivity values (72% and 67%) and C 2 -C 4 olefin/paraffin selectivity ratio (3.2 and 2) and low CH4 selectivity values (6% and 8.5%), respectively. This can be attributed to their high surface area, the degree of reducibility, and content of Hägg iron carbide (χ-Fe 5 C 2 ) as the most active phase of the FTS reaction. Proposed reaction mechanisms for the sonochemical and hydrothermal reaction synthesis of Fe 3 O 4 and RGO/Fe 3 O 4 nanoparticles are discussed. In conclusion, our developed surfactantless-sonochemical method holds promise for the eco-friendly synthesis of highly efficient catalysts materials for FTS reaction. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhong, Qiwei; Li, Wenhua; Su, Xiuping; Li, Geng; Zhou, Ying; Kundu, Subhas C; Yao, Juming; Cai, Yurong
2016-07-01
Despite superior clinical handling, excellent biocompatibility, biodegradation property of calcium phosphate needs to be improved to coincide with the rate of new bone formation. In this study, spherical CaCO3 are fabricated in the presence of the silk sericin and then transformed into porous hydroxyapatite (HAP) microspheres via hydrothermal method. The degradation behavior of obtained CaCO3, HAP and their mixture is first investigated in vitro. The result demonstrates that the weight loss of HAP microspheres are almost 24.3% after immersing in pH 7.40 Tris-HCl buffer solution for 12 weeks, which is far slower than that of spherical CaCO3 (97.5%). The degradation speed of the mixtures depends on the proportion of CaCO3 and HAP. The mixture with higher content of CaCO3 possesses a quicker degradation speed. The obtained CaCO3 and HAP microspheres are injected into subcutaneous tissue of ICR mice with the assistance of sodium alginate. The result in vivo also shows an obvious difference of degradation speed between the obtained CaCO3 and HAP microspheres, implying it is feasible to modulate the degradation property of the mixture through changing the proportion of CaCO3 and HAP The good cytocompatibility of the two kinds of microspheres is proved and a mild inflammation response is observed only at early stage of implantation. The job offers a simple method to modify the degradation properties of biomaterial for potential use in bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.
First hydrothermal active vent discovered on the Galapagos Microplate
NASA Astrophysics Data System (ADS)
Tao, C.; Li, H.; Wu, G.; Su, X.; Zhang, G.; Chinese DY115-21 Leg 3 Scientific Party
2011-12-01
The Galapagos Microplate (GM) lies on the western Gaplapagos Spreading Center (GSC), representing one of the classic Ridge-Ridge-Ridge (R-R-R) plate boundaries of the Nazca, Cocos, and Pacific plates. The presence of the 'black smoke' and hydrothermal vent community were firstly confirmed on the GSC. Lots of hydrothermal fields were discovered on the center and eastern GSC, while the western GSC has not been well investigated. During 17th Oct. to 9th Nov. 2009, the 3rd leg of Chinese DY115-21 cruise with R/V Dayangyihao has been launched along 2°N-5°S near equatorial East Pacific Rise (EPR). Two new hydrothermal fields were confirmed. One is named 'Precious Stone Mountain', which is the first hydrothermal field on the GM. The other is found at 101.47°W, 0.84°S EPR. The 'Precious Stone Mountain' hydrothermal field (at 101.49°W, 1.22°N) is located at an off-axial seamount on the southern GM boundary, with a depth from 1,450 to 1,700m. Hydrothermal fluids emitting from the fissures and hydrothermal fauna were captured by deep-tow video. Few mineral clasts of pyrite and chalcopyrite were separated from one sediment sample, but no sulfide chimney was found yet. Hydrothermal fauna such as alive mussels, crabs, shrimps, tubeworms, giant clams, as well as rock samples were collected by TV-Grab. The study of the seafloor classification with Simrad EM120 multi-beam echosounder has been conducted on the 'Precious Stone Mountain' hydrothermal field. The result indicates that seafloor materials around the hydrothermal field can be characterized into three types, such as the fresh lava, hydrothermal sediment, and altered rock.
NASA Astrophysics Data System (ADS)
Anantharaman, K.; Breier, J. A., Jr.; Jain, S.; Reed, D. C.; Dick, G.
2015-12-01
Deep-sea hydrothermal plumes occur when hot fluids from hydrothermal vents replete with chemically reduced elements and compounds like sulfide, methane, hydrogen, ammonia, iron and manganese mix with cold, oxic seawater. Chemosynthetic microbes use these reduced chemicals to power primary production and are pervasive throughout the deep sea, even at sites far removed from hydrothermal vents. Although neutrally-buoyant hydrothermal plumes have been well-studied, rising hydrothermal plumes have received little attention even though they represent an important interface in the deep-sea where microbial metabolism and particle formation processes control the transformation of important elements and impact global biogeochemical cycles. In this study, we used genome-resolved metagenomic analyses and thermodynamic-bioenergetic modeling to study the microbial ecology of rising hydrothermal plumes at five different hydrothermal vents spanning a range of geochemical gradients at the Eastern Lau Spreading Center (ELSC) in the Western Pacific Ocean. Our analyses show that differences in the geochemistry of hydrothermal vents do not manifest in microbial diversity and community composition, both of which display only minor variance across ELSC hydrothermal plumes. Microbial metabolism is dominated by oxidation of reduced sulfur species and supports a diversity of bacteria, archaea and viruses that provide intriguing insights into metabolic plasticity and virus-mediated horizontal gene transfer in the microbial community. The manifestation of sulfur oxidation genes in hydrogen and methane oxidizing organisms hints at metabolic opportunism in deep-sea microbes that would enable them to respond to varying redox conditions in hydrothermal plumes. Finally, we infer that the abundance, diversity and metabolic versatility of microbes associated with sulfur oxidation impart functional redundancy that could allow it to persist in the dynamic settings of hydrothermal plumes.
Facile hydrothermal growth graphene/ZnO nanocomposite for development of enhanced biosensor.
Low, Sze Shin; Tan, Michelle T T; Loh, Hwei-San; Khiew, Poi Sim; Chiu, Wee Siong
2016-01-15
Graphene/zinc oxide nanocomposite was synthesised via a facile, green and efficient approach consisted of novel liquid phase exfoliation and solvothermal growth for sensing application. Highly pristine graphene was synthesised through mild sonication treatment of graphite in a mixture of ethanol and water at an optimum ratio. The X-ray diffractometry (XRD) affirmed the hydrothermal growth of pure zinc oxide nanoparticles from zinc nitrate hexahydrate precursor. The as-prepared graphene/zinc oxide (G/ZnO) nanocomposite was characterised comprehensively to evaluate its morphology, crystallinity, composition and purity. All results clearly indicate that zinc oxide particles were homogenously distributed on graphene sheets, without any severe aggregation. The electrochemical performance of graphene/zinc oxide nanocomposite-modified screen-printed carbon electrode (SPCE) was evaluated using cyclic voltammetry (CV) and amperometry analysis. The resulting electrode exhibited excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) in a linear range of 1-15 mM with a correlation coefficient of 0.9977. The sensitivity of the graphene/zinc oxide nanocomposite-modified hydrogen peroxide sensor was 3.2580 μAmM(-1) with a limit of detection of 7.4357 μM. An electrochemical DNA sensor platform was then fabricated for the detection of Avian Influenza H5 gene based on graphene/zinc oxide nanocomposite. The results obtained from amperometry study indicate that the graphene/zinc oxide nanocomposite-enhanced electrochemical DNA biosensor is significantly more sensitive (P < 0.05) and efficient than the conventional agarose gel electrophoresis. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Otake, Tsubasa; Wesolowski, David J.; Anovitz, Lawrence M.; Allard, Lawrence F.; Ohmoto, Hiroshi
2007-05-01
Transformations of magnetite (Fe IIFe 2IIIO 4) to hematite (Fe 2IIIO 3) (and vice versa) have been thought by many scientists and engineers to require molecular O 2 and/or H 2. Thus, the presence of magnetite and/or hematite in rocks has been linked to a specific oxidation environment. However, the availability of reductants or oxidants in many geologic and industrial environments appears to have been too low to account for the transformations of iron oxides through redox reactions. Here, we report the results of hydrothermal experiments in mildly acidic and H 2-rich aqueous solutions at 150 °C, which demonstrate that transformations of magnetite to hematite, and hematite to magnetite, occur rapidly without involving molecular O 2 or H 2: Fe3O 4(Mt) + 2H (aq)+ ↔ Fe 2O 3(Hm) + Fe (aq)2+ + H 2O. The transformation products are chemically and structurally homogeneous, and typically occur as euhedral single crystals much larger than the precursor minerals. This suggests that, in addition to the expected release of aqueous ferrous species to solution, the transformations involve release of aqueous ferric species from the precursor oxides to the solution, which reprecipitate without being reduced by H 2. These redox-independent transformations may have been responsible for the formation of some iron oxides in natural systems, such as high-grade hematite ores that developed from Banded Iron Formations (BIFs), hematite-rich deposits formed on Mars, corrosion products in power plants and other industrial systems.
NASA Astrophysics Data System (ADS)
Black, S.; Hynek, B. M.; Kierein-Young, K. S.; Avard, G.; Alvarado-Induni, G.
2015-12-01
Proper characterization of mineralogy is an essential part of geologic interpretation. This process becomes even more critical when attempting to interpret the history of a region remotely, via satellites and/or landed spacecraft. Orbiters and landed missions to Mars carry with them a wide range of analytical tools to aid in the interpretation of Mars' geologic history. However, many instruments make a single type of measurement (e.g., APXS: elemental chemistry; XRD: mineralogy), and multiple data sets must be utilized to develop a comprehensive understanding of a sample. Hydrothermal alteration products often exist in intimate mixtures, and vary widely across a site due to changing pH, temperature, and fluid/gas chemistries. These characteristics require that we develop a detailed understanding regarding the possible mineral mixtures that may exist, and their detectability in different instrument data sets. This comparative analysis study utilized several analytical methods on existing or planned Mars rovers (XRD Raman, LIBS, Mössbauer, and APXS) combined with additional characterization (thin section, VNIR, XRF, SEM-EMP) to develop a comprehensive suite of data for hydrothermal alteration products collected from Poás and Turrialba volcanoes in Costa Rica. Analyzing the same samples across a wide range of instruments allows for direct comparisons of results, and identification of instrumentation "blind spots." This provides insight into the ability of in-situ analyses to comprehensively characterize sites on Mars exhibiting putative hydrothermal characteristics, such as the silica and sulfate deposits at Gusev crater [eg: Squyres et al., 2008], as well as valuable information for future mission planning and data interpretation. References: Squyres et al. (2008), Detection of Silica-Rich Deposits on Mars, Science, 320, 1063-1067, doi:10.1126/science.1155429.
Ray, Jessica; Dondrup, Michael; Modha, Sejal; Steen, Ida Helene; Sandaa, Ruth-Anne; Clokie, Martha
2012-01-01
Viruses are ubiquitous in the oceans and critical components of marine microbial communities, regulating nutrient transfer to higher trophic levels or to the dissolved organic pool through lysis of host cells. Hydrothermal vent systems are oases of biological activity in the deep oceans, for which knowledge of biodiversity and its impact on global ocean biogeochemical cycling is still in its infancy. In order to gain biological insight into viral communities present in hydrothermal vent systems, we developed a method based on deep-sequencing of pulsed field gel electrophoretic bands representing key viral fractions present in seawater within and surrounding a hydrothermal plume derived from Loki's Castle vent field at the Arctic Mid-Ocean Ridge. The reduction in virus community complexity afforded by this novel approach enabled the near-complete reconstruction of a lambda-like phage genome from the virus fraction of the plume. Phylogenetic examination of distinct gene regions in this lambdoid phage genome unveiled diversity at loci encoding superinfection exclusion- and integrase-like proteins. This suggests the importance of fine-tuning lyosgenic conversion as a viral survival strategy, and provides insights into the nature of host-virus and virus-virus interactions, within hydrothermal plumes. By reducing the complexity of the viral community through targeted sequencing of prominent dsDNA viral fractions, this method has selectively mimicked virus dominance approaching that hitherto achieved only through culturing, thus enabling bioinformatic analysis to locate a lambdoid viral "needle" within the greater viral community "haystack". Such targeted analyses have great potential for accelerating the extraction of biological knowledge from diverse and poorly understood environmental viral communities.
Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran
NASA Astrophysics Data System (ADS)
Azizi, H.; Tarverdi, M. A.; Akbarpour, A.
2010-07-01
The use of satellite images for mineral exploration has been very successful in pointing out the presence of minerals such as smectite and kaolinite which are important in the identification of hydrothermal alterations. Shortwave infrared (SWIR) bands from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with the wavelength of ASTER SWIR bands between 1.65 and 2.43 μm has a good potential for mapping a hydrothermal alteration minerals such as alunite, pyrophyllite, kaolinite, illite-muscovite-sericite, and carbonate. In this range, hydroxide minerals which have been produced by hydrothermal alteration exhibit good absorption compared to shorter or longer wavelengths. In this research which aims to remove atmospheric and topographic effects from ASTER SWIR data, the authors used the log-residual method (LRM) with the minimum noise fraction (MNF) transformation to create a pixel purity index (PPI) which was used to extract the most spectrally pure pixels from multispectral images. Spectral analyses of the clay mineralogy of the study area (east Zanjan, in northern Iran) were obtained by matching the unknown spectra of the purest pixels to the U.S. Geological Survey (USGS) mineral library. Three methods, spectral feature fitting (SFF), spectral angle mapping (SAM), and binary encoding (BE) were used to generate a score between 0 and 1, where a value of 1 indicates a perfect match showing the exact mineral type. In this way, it was possible to identify certain mineral classes, including chlorite, carbonate, calcite-dolomite-magnesite, kaolinite-smectite, alunite, and illite. In this research, two main propylitic and phyllic-argillic zones could be separated using their compositions of these minerals. These two alteration zones are important for porphyry copper deposits and gold mineralization in this part of Iran.
VO2 nanorods for efficient performance in thermal fluids and sensors
NASA Astrophysics Data System (ADS)
Dey, Kajal Kumar; Bhatnagar, Divyanshu; Srivastava, Avanish Kumar; Wan, Meher; Singh, Satyendra; Yadav, Raja Ram; Yadav, Bal Chandra; Deepa, Melepurath
2015-03-01
VO2 (B) nanorods with average width ranging between 50-100 nm are synthesized via a hydrothermal method and the post hydrothermal treatment drying temperature is found to be influential in their overall phase and growth morphology evolution. The nanorods with unusually high optical bandgap for a VO2 material are effective in enhancing the thermal performance of ethylene glycol nanofluids over a wide temperature range as is indicated by the temperature dependent thermal conductivity measurements. Humidity and LPG sensors fabricated using the VO2 (B) nanorods bear testament to their efficient sensing performance, which can be partially attributed to the mesoporous nature of the nanorods.VO2 (B) nanorods with average width ranging between 50-100 nm are synthesized via a hydrothermal method and the post hydrothermal treatment drying temperature is found to be influential in their overall phase and growth morphology evolution. The nanorods with unusually high optical bandgap for a VO2 material are effective in enhancing the thermal performance of ethylene glycol nanofluids over a wide temperature range as is indicated by the temperature dependent thermal conductivity measurements. Humidity and LPG sensors fabricated using the VO2 (B) nanorods bear testament to their efficient sensing performance, which can be partially attributed to the mesoporous nature of the nanorods. Electronic supplementary information (ESI) available: Plots representing the actual ratio Knf/KEG (Knf is the thermal conductivity of the nanofluid and KEG being thermal conductivity of the base fluid) across the entire experimental temperature range of 20 to 80 °C, table representing a comparison of performance of the VO2 sensor towards different gases. See DOI: 10.1039/c4nr06032f
Near-Seafloor Magnetic Exploration of Submarine Hydrothermal Systems in the Kermadec Arc
NASA Astrophysics Data System (ADS)
Caratori Tontini, F.; de Ronde, C. E. J.; Tivey, M.; Kinsey, J. C.
2014-12-01
Magnetic data can provide important information about hydrothermal systems because hydrothermal alteration can drastically reduce the magnetization of the host volcanic rocks. Near-seafloor data (≤70 m altitude) are required to map hydrothermal systems in detail; Autonomous Underwater Vehicles (AUVs) are the ideal platform to provide this level of resolution. Here, we show the results of high-resolution magnetic surveys by the ABE and Sentry AUVs for selected submarine volcanoes of the Kermadec arc. 3-D magnetization models derived from the inversion of magnetic data, when combined with high resolution seafloor bathymetry derived from multibeam surveys, provide important constraints on the subseafloor geometry of hydrothermal upflow zones and the structural control on the development of seafloor hydrothermal vent sites as well as being a tool for the discovery of previously unknown hydrothermal sites. Significant differences exist between the magnetic expressions of hydrothermal sites at caldera volcanoes ("donut" pattern) and cones ("Swiss cheese" pattern), respectively. Subseafloor 3-D magnetization models also highlight structural differences between focused and diffuse vent sites.
NASA Astrophysics Data System (ADS)
Kurian, Jessyamma; Mathew, M. Jacob
2018-04-01
In this paper we report the structural, optical and magnetic studies of three spinel ferrites namely CuFe2O4, MgFe2O4 and ZnFe2O4 prepared in an autoclave under the same physical conditions but with two different liquid medium and different surfactant. We use water as the medium and trisodium citrate as the surfactant for one method (Hydrothermal method) and ethylene glycol as the medium and poly ethylene glycol as the surfactant for the second method (solvothermal method). The phase identification and structural characterization are done using XRD and morphological studies are carried out by TEM. Cubical and porous spherical morphologies are obtained for hydrothermal and solvothermal process respectively without any impurity phase. The optical studies are carried out using FTIR and UV-Vis reflectance spectra. In order to elucidate the nonlinear optical behaviour of the prepared nanomaterial, open aperture z-scan technique is used. From the fitted z-scan curves nonlinear absorption coefficient and the saturation intensity are determined. The magnetic characterization of the samples is performed at room temperature using vibrating sample magnetometer measurements. The M-H curves obtained are fitted using theoretical equation and the different components of magnetization are determined. Nanoparticles with high saturation magnetization are obtained for MgFe2O4 and ZnFe2O4 prepared under solvothermal reaction. The magnetic hyperfine parameters and the cation distribution of the prepared materials are determined using room temperature Mössbauer spectroscopy. The fitted spectra reveal the difference in the magnetic hyperfine parameters owing to the change in size and morphology.
Hydrothermal synthesis of nanostructured Y2O3 and (Y0.75Gd0.25)2O3 based phosphors
NASA Astrophysics Data System (ADS)
Mančić, Lidija; Lojpur, Vesna; Marinković, Bojan A.; Dramićanin, Miroslav D.; Milošević, Olivera
2013-08-01
Examples of (Y2O3-Gd2O3):Eu3+ and Y2O3:(Yb3+/Er3+) rare earth oxide-based phosphors are presented to highlight the controlled synthesis of 1D and 2D nanostructures through simple hydrothermal method. Conversion of the starting nitrates mixture into carbonate hydrate phase is performed with the help of ammonium hydrogen carbonate solution during hydrothermal treatment at 200 °C/3 h. Morphological architectures of rare earth oxides obtained after subsequent powders thermal treatment at 600 and 1100 °C for 3 and 12 h and their correlation with the optical characteristics are discussed based on X-ray powder diffractometry, field emission scanning electron microscopy, infrared spectroscopy and photoluminescence measurements. Strong red and green emission followed by the superior decay times are attributed to the high powders purity and homogeneous dopants distribution over the host lattice matrix.
Chen, Ru; Miao, Lei; Liu, Chengyan; Zhou, Jianhua; Cheng, Haoliang; Asaka, Toru; Iwamoto, Yuji; Tanemura, Sakae
2015-01-01
Monoclinic VO2(M) in nanostructure is a prototype material for interpreting correlation effects in solids with fully reversible phase transition and for the advanced applications to smart devices. Here, we report a facile one-step hydrothermal method for the controlled growth of single crystalline VO2(M/R) nanorods. Through tuning the hydrothermal temperature, duration of the hydrothermal time and W-doped level, single crystalline VO2(M/R) nanorods with controlled aspect ratio can be synthesized in large quantities, and the crucial parameter for the shape-controlled synthesis is the W-doped content. The dopant greatly promotes the preferential growth of (110) to form pure phase VO2(R) nanorods with high aspect ratio for the W-doped level = 2.0 at% sample. The shape-controlled process of VO2(M/R) nanorods upon W-doping are systematically studied. Moreover, the phase transition temperature (Tc) of VO2 depending on oxygen nonstoichiometry is investigated in detail. PMID:26373612
Li, Yang; Li, Xiaotong; Shen, Fei; Wang, Zhanghong; Yang, Gang; Lin, Lili; Zhang, Yanzong; Zeng, Yongmei; Deng, Shihuai
2014-01-01
Although lignocellulosic biomass has been extensively regarded as the most important resource for bioethanol, the wide application was seriously restricted by the high transportation cost of biomass. Currently, biomass densification is regarded as an acceptable solution to this issue. Herein, briquettes, pellets and their corresponding undensified biomass were pretreated by diluted-NaOH and hydrothermal method to investigate the responses of biomass densification to these typical water-involved pretreatments and subsequent enzymatic hydrolysis. The densified biomass auto-swelling was initially investigated before pretreatment. Results indicated pellets could be totally auto-swollen in an hour, while it took about 24 h for briquettes. When diluted-NaOH pretreatment was performed, biomass briquetting and pelleting improved sugar conversion rate by 20.1% and 5.5% comparing with their corresponding undensified biomass. Pelleting improved sugar conversion rate by 7.0% after hydrothermal pretreatment comparing with the undensified biomass. However, briquetting disturbed hydrothermal pretreatment resulting in the decrease of sugar conversion rate by 15.0%. Copyright © 2013 Elsevier Ltd. All rights reserved.
Accelerated Removal of Fe-Antisite Defects while Nanosizing Hydrothermal LiFePO4 with Ca(2).
Paolella, Andrea; Turner, Stuart; Bertoni, Giovanni; Hovington, Pierre; Flacau, Roxana; Boyer, Chad; Feng, Zimin; Colombo, Massimo; Marras, Sergio; Prato, Mirko; Manna, Liberato; Guerfi, Abdelbast; Demopoulos, George P; Armand, Michel; Zaghib, Karim
2016-04-13
Based on neutron powder diffraction (NPD) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), we show that calcium ions help eliminate the Fe-antisite defects by controlling the nucleation and evolution of the LiFePO4 particles during their hydrothermal synthesis. This Ca-regulated formation of LiFePO4 particles has an overwhelming impact on the removal of their iron antisite defects during the subsequent carbon-coating step since (i) almost all the Fe-antisite defects aggregate at the surface of the LiFePO4 crystal when the crystals are small enough and (ii) the concomitant increase of the surface area, which further exposes the Fe-antisite defects. Our results not only justify a low-cost, efficient and reliable hydrothermal synthesis method for LiFePO4 but also provide a promising alternative viewpoint on the mechanism controlling the nanosizing of LiFePO4, which leads to improved electrochemical performances.
NASA Astrophysics Data System (ADS)
Liu, Qing; Wen, Dafen; Yang, Yanran; Fei, Zhaoyang; Zhang, Zhuxiu; Chen, Xian; Tang, Jihai; Cui, Mifen; Qiao, Xu
2018-03-01
Hierarchical porous ZSM-5 (HP-ZSM-5) zeolites were synthesized by hydrothermal crystallization method adding triethoxyvinylsilane as the growth-inhibitor at different hydrothermal crystallized temperatures. The properties of the obtained samples were characterized by XRD, SEM, N2-sorption, uptake of ethylene, 27Al MAS NMR, NH3-TPD, and Py-IR. It was found that the mesopore was introduced and the acidity was adjusted over HP-ZSM-5 samples successfully. The hydrothermal crystallized temperature had an important influence on the porous structure and surface properties. The catalytic performance for chloromethane to light-olefins (CMTO) were also investigated. Compared with ZSM-5 samples, HP-ZSM-5 samples exhibited enhanced stability and increased selectivity of light-olefins for CMTO reaction because of the introduction of the abundant mesopore and appropriate acidity. The lifetime (the duration of chloromethane conversion >98%) and selectivity of light-olefins reached 115 h and 69.3%, respectively.
Urea controlled hydrothermal synthesis of ammonium aluminum carbonate hydroxide rods
NASA Astrophysics Data System (ADS)
Wang, Fang; Zhu, Jianfeng; Liu, Hui
2018-03-01
In this study, ammonium aluminum carbonate hydroxide (AACH) rods were controllably prepared using the hydrothermal method by manipulating the amount of urea in the reaction system. The experimental results showed that AACH in rod shape was able to be gradually transformed from γ-AlOOH in cluster shape during the molar ratios of urea to Al in the reactants were ranged from 8 to 10, and the yield of AACH has increased accordingly. When the molar ratio of urea to Al reaches 11, pure AACH rods with a diameter of 500 nm and a length of 10 μm approximately was able to be produced. Due to the slow decomposition of urea during the hydrothermal reaction, the nucleation and growth of AACH crystal proceed step by step. Therefore, the crystal can fully grow on each crystal plane and eventually produce a highly crystalline rod-shaped product. The role of urea in controlling the morphology and yield of AACH was also discussed in this paper systematically.
Electricity generation from rapeseed straw hydrolysates using microbial fuel cells.
Jablonska, Milena A; Rybarczyk, Maria K; Lieder, Marek
2016-05-01
Rapeseed straw is an attractive fuel material for microbial fuel cells (MFCs) due to its high content of carbohydrates (more than 60% carbohydrates). This study has demonstrated that reducing sugars can be efficiently extracted from raw rapeseed straw by combination of hydrothermal pretreatment and enzymatic hydrolysis followed by utilization as a fuel in two-chamber MFCs for electrical power generation. The most efficient method of saccharification of this lignocellulosic biomass (17%) turned out hydrothermal pretreatment followed by enzymatic hydrolysis. Electricity was produced using hydrolysate concentrations up to 150 mg/dm(3). The power density reached 54 mW/m(2), while CEs ranged from 60% to 10%, corresponding to the initial reducing sugar concentrations of 10-150 mg/dm(3). The COD degradation rates based on charge calculation increased from 0.445 g COD/m(2)/d for the hydrolysate obtained with the microwave treatment to 0.602 g COD/m(2)/d for the most efficient combination of hydrothermal treatment followed by enzymatic hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydrothermal preparation of hierarchical ZIF-L nanostructures for enhanced CO2 capture.
Ding, Bing; Wang, Xianbiao; Xu, Yongfei; Feng, Shaojie; Ding, Yi; Pan, Yang; Xu, Weifan; Wang, Huanting
2018-06-01
A zeolitic imidazolate framework (ZIF-L) with hierarchical morphology was synthesized through hydrothermal method. The hierarchical product consists of ZIF-L leaves with length of several micrometers, width of 1 ∼ 2 μm and thickness of ∼300 nm cross connected symmetrically. It was found that the hydrothermal temperature is crucial for the formation of such hierarchical nanostructure. The formation mechanism was investigated to be a secondary crystal growth process. The hierarchical ZIF-L has larger surface area compared with the two-dimensional (2D) ZIF-L leaves. Subsequently, the hierarchical ZIF-L exhibited enhanced CO 2 adsorption capacity (1.56 mmol·g -1 ) as compared with that of the reported two-dimensional ZIF-L leaves (0.94 mmol·g -1 ). This work not only reveals a new strategy for the formation of hierarchical ZIF-L nanostructures, but also supplies a potential material for CO 2 capture. Copyright © 2018 Elsevier Inc. All rights reserved.
In, Jung Bin; Kwon, Hyuk-Jun; Lee, Daeho; Ko, Seung Hwan; Grigoropoulos, Costas P
2014-02-26
The laser-assisted hydrothermal growth kinetics of a cluster of ZnO nanowires are studied based on optical in situ growth monitoring. The growth yields are orders of magnitude higher than those of conventional hydrothermal methods that use bulk heating. This remarkable improvement is attributed to suppression of precursor depletion occurring by homogeneous growth reactions, as well as to enhanced mass transport. The obtained in situ data show gradually decaying growth kinetics even with negligible precursor consumption. It is revealed that the growth deceleration is caused by thermal deactivation resulting from heat dissipation through the growing nanowires. Finally, it is demonstrated that the tailored temporal modulation of the input power enables sustained growth to extended dimensions. These results provide a key to highly efficient use of growth precursors that has been pursued for industrial use of this functional metal oxide semiconductor. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of transparent dispersions of aluminium hydroxide nanoparticles
NASA Astrophysics Data System (ADS)
Chen, Bo; Wang, Jie-Xin; Wang, Dan; Zeng, Xiao-Fei; Clarke, Stuart M.; Chen, Jian-Feng
2018-07-01
Transparent dispersions of inorganic nanoparticles are attractive materials in many fields. However, a facile method for preparing such dispersions of aluminium hydroxide nanoparticles is yet to be realized. Here, we report a direct reactive method to prepare transparent dispersions of pseudo-boehmite nanoparticles (1 wt%) without any surface modification, and with an average particle size of 80 nm in length and 10 nm in width, as well as excellent optical transparency over 94% in the visible range. Furthermore, transparent dispersions of boehmite nanoparticles (1.5 wt%) were also achieved after an additional hydrothermal treatment. However, the optical transparency of dispersions decreased with the rise of hydrothermal temperature and the shape of particles changed from rhombs to hexagons. In particular, monodisperse hexagonal boehmite nanoplates with an average lateral size of 58 nm and a thickness of 12.5 nm were obtained at a hydrothermal temperature of 220 °C. The selectivity of crystal growth direction was speculated as the possible formation mechanism of these as-prepared aluminium hydroxide nanoparticles. Besides, two values of 19.6 wt% and 14.64 wt% were separately measured for the weight loss of pseudo-boehmite and boehmite nanoparticles after a continuous heating, indicating their potential flame-resistant applications in the fabrication of plastic electronics and optical devices with high transparency.
Lim, HN; Huang, NM; Lim, SS; Harrison, I; Chia, CH
2011-01-01
Background Three-dimensional assembly of graphene hydrogel is rapidly attracting the interest of researchers because of its wide range of applications in energy storage, electronics, electrochemistry, and waste water treatment. Information on the use of graphene hydrogel for biological purposes is lacking, so we conducted a preliminary study to determine the suitability of graphene hydrogel as a substrate for cell growth, which could potentially be used as building blocks for biomolecules and tissue engineering applications. Methods A three-dimensional structure of graphene hydrogel was prepared via a simple hydrothermal method using two-dimensional large-area graphene oxide nanosheets as a precursor. Results The concentration and lateral size of the graphene oxide nanosheets influenced the structure of the hydrogel. With larger-area graphene oxide nanosheets, the graphene hydrogel could be formed at a lower concentration. X-ray diffraction patterns revealed that the oxide functional groups on the graphene oxide nanosheets were reduced after hydrothermal treatment. The three-dimensional graphene hydrogel matrix was used as a scaffold for proliferation of a MG63 cell line. Conclusion Guided filopodia protrusions of MG63 on the hydrogel were observed on the third day of cell culture, demonstrating compatibility of the graphene hydrogel structure for bioapplications. PMID:21931479
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velasco-Davalos, Ivan; Ambriz-Vargas, Fabian; Kolhatkar, Gitanjali
We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO{sub 3} (111) substrates and the deposition of ferroelectric BiFeO{sub 3} thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO{sub 3}){sup 4−} or Ti{sup 4+} layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d{sub 111}) and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO{sub 3} single crystal substrates. Multiferroic BiFeO{sub 3} thinmore » films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO{sub 3} (111) substrates. Bi(NO{sub 3}){sub 3} and Fe(NO{sub 3}){sub 3} along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO{sub 3} films on Nb : SrTiO{sub 3} (100) substrates was verified by piezoresponse force microscopy.« less
NASA Astrophysics Data System (ADS)
Moradiyan, Eshagh; Halladj, Rouein; Askari, Sima; Moghimpour Bijani, Parisa
2017-08-01
SAPO-34 as a catalyst has high selectivity and hydrothermal stability, but it is rapidly deactivated by the formation of coke in its micropores. Evaluating the natural Clinoptilolite capability as a binder in nanocomposite catalysts is of interest because of its low cost, and accelerating the reaction. The SAPO-34/Clinoptilolite (S/C) nanocomposite catalysts were synthesized via ultrasonic-assisted hydrothermal method using Clinoptilolite as a binder. Subsequent performance of the catalyst was investigated in the methanol to olefins (MTO) reaction. The structures of synthesized nanocomposite were characterized with several methods such as XRD, XRF, FESEM, TEM, NH3-TPD, FT-IR, and nitrogen adsorption techniques. The modified Clinoptilolite was attained using nitric acid treatment. Although the physicochemical analysis indicated that HNO3-treatment decreases the crystallinity of the Clinoptilolite, the specific surface area of natural zeolite enhances considerably from 20.07 to 187.8 m2/g. The nanocomposite catalysts showed high selectivity toward light olefins with 100% conversion and 90% selectivity to light olefins as desired products at 450 °C. Nanocomposite with the additional diffusion paths for mass transfer provided by binder-filled space ascend to higher catalytic lifetimes in compare with free SAPO-34 catalyst.
NASA Astrophysics Data System (ADS)
Ursu, Daniel; Miclau, Nicolae; Miclau, Marinela
2018-03-01
We report for the first time in situ hydrothermal synthesis of n-type Cu2O thin film using strong alkaline solution. The use of copper foil as substrate and precursor material, low synthesis temperature and short reaction time represent the arguments of a new, simple, inexpensive and high field synthesis method for the preparation of n-type Cu2O thin film. The donor concentration of n-type Cu2O thin film obtained at 2 h of reaction time has increased two orders of magnitude than previous reported values. We have demonstrated n-type conduction in Cu2O thin film prepared in strong alkaline solution, in the contradiction with the previous works. Based on experimental results, the synthesis mechanism and the origin of n-type photo-responsive behavior of Cu2O thin film were discussed. We have proposed that the unexpected n-type character could be explained by H doping of Cu2O thin film in during of the hydrothermal synthesis that caused the p-to-n conductivity-type conversion. Also, this work raises new questions about the origin of n-type conduction in Cu2O thin film, the influence of the synthesis method on the nature of the intrinsic defects and the electrical conduction behavior.
NASA Astrophysics Data System (ADS)
Saritha Devi, H. V.; Swapna, M. S.; Raj, Vimal; Ambadas, G.; Sankararaman, S.
2018-01-01
Boron carbide (B4C) is an excellent covalent carbide that finds applications in industries and nuclear power plants. The present synthesis methods of boron carbide are expensive and involve the use of toxic chemicals that adversely affect environment. In the present work, we report for the first time the use of the hydrothermal method for converting the cellulose from cotton as the carbon precursor for B4C. The carbon precursor is converted into functionalized porous carbonaceous material by hydrothermal treatment followed by sodium borohydride. It is further treated with boric acid to make it a B4C precursor. The precursor is characterized by UV-visible diffuse reflectance, Raman, Fourier transform infrared, photoluminescent and energy dispersive spectroscopy. The morphology and structure analysis is carried out using field emission scanning electron microscopy and x-ray diffraction techniques. The results of structural and optical characterization of the sample synthesized are compared with the commercial B4C. The thermal stability of the sample is studied by thermogravimetric analysis. The sample annealed at 700 °C is found to be B4C devoid of amorphous carbon with a yield of 44.7%. The analysis reveals the formation of boron carbide from the sample.
Synthesis of transparent dispersions of aluminium hydroxide nanoparticles.
Chen, Bo; Wang, Jie-Xin; Wang, Dan; Zeng, Xiao-Fei; Clarke, Stuart M; Chen, Jian-Feng
2018-07-27
Transparent dispersions of inorganic nanoparticles are attractive materials in many fields. However, a facile method for preparing such dispersions of aluminium hydroxide nanoparticles is yet to be realized. Here, we report a direct reactive method to prepare transparent dispersions of pseudo-boehmite nanoparticles (1 wt%) without any surface modification, and with an average particle size of 80 nm in length and 10 nm in width, as well as excellent optical transparency over 94% in the visible range. Furthermore, transparent dispersions of boehmite nanoparticles (1.5 wt%) were also achieved after an additional hydrothermal treatment. However, the optical transparency of dispersions decreased with the rise of hydrothermal temperature and the shape of particles changed from rhombs to hexagons. In particular, monodisperse hexagonal boehmite nanoplates with an average lateral size of 58 nm and a thickness of 12.5 nm were obtained at a hydrothermal temperature of 220 °C. The selectivity of crystal growth direction was speculated as the possible formation mechanism of these as-prepared aluminium hydroxide nanoparticles. Besides, two values of 19.6 wt% and 14.64 wt% were separately measured for the weight loss of pseudo-boehmite and boehmite nanoparticles after a continuous heating, indicating their potential flame-resistant applications in the fabrication of plastic electronics and optical devices with high transparency.
NASA Astrophysics Data System (ADS)
Lellala, Kashinath; Namratha, K.; Sudhakar, K.; Byrappa, K.
2016-05-01
In the present work, undoped and doped Aluminum/Zinc Oxide - graphene oxide (Al/ZnO-GO) nanocomposite have been successfully synthesized by hydrothermal method from zinc acetate and aluminum nitrate solutions without using of any surfactant/stabilizing agents. The results show that the composites of GO nanosheets are decorated densely by Al/ZnO nanoparticles, which displays a good morphology and blend between GO and Al/ZnO. Hybrid composites exhibit an enhanced photocatalytic performance in reduction of dyes under UV-Vis radiation better than bare ZnO-GO and GO for methylene blue dye. The hydrothermal method leads to particles with a higher crystalline due to ambient temperature of the reaction and autogenously pressure conditions, which alters the phases and crystallizations of the nanocomposite. The optical band gap is narrowed to lower energy values due to controlled addition of aluminum and GO in the composite. The improved optical property in Al-doped ZnO flower decorated on GO can be attributed to the decrease in oxygen deficiency after Al doping. XRD, FTIR, UV-Vis spectroscopy, Raman, and Field Emission Scanning Electron Microscopy characterized the effects of Al doping on the structural characteristics and optical properties on the ZnO-GO.
NASA Astrophysics Data System (ADS)
Pál, Edit; Hornok, Viktória; Kun, Robert; Chernyshev, Vladimir; Seemann, Torben; Dékány, Imre; Busse, Matthias
2012-08-01
Zinc oxide particles with different morphologies were prepared by hydrothermal method at 60-90 °C. The structure formation was controlled by the addition rate and temperature of hydrolyzing agent, while the particles size (10 nm-2.5 μm) was influenced by the preparation (hydrothermal) temperature. Scanning electron microscopy studies showed that raspberry-, prism- and flower-like ZnO particles were prepared, whose average size decreased with increasing reaction temperature. X-ray diffraction investigations confirmed that ZnO particles with hexagonal crystal structure formed in all syntheses. The raspberry-, prism- and flower-like ZnO particles showed a weak UV-emission in the range of 390-395 nm and strong visible emission with a maximum at 586, 593 and 598 nm, respectively. Morphology effect on electrical and water vapour sensing properties of ZnO samples was investigated by impedance spectroscopy and quartz crystal microbalance, respectively. The absolute impedance of raspberry-, prism- and flower-like ZnO particles was found to be strong dependent on the morphology. Space-charge-limited conductivity transport mechanism was proved by the oscillatory behaviour of impedance. Humidity sensor tests also revealed morphology and specific surface area dependency on the sensitivity and water vapour adsorption property.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lellala, Kashinath; Namratha, K.; Byrappa, K., E-mail: kashinathlellala@gmail.com, E-mail: kbyrappa@gmail.com
In the present work, undoped and doped Aluminum/Zinc Oxide - graphene oxide (Al/ZnO-GO) nanocomposite have been successfully synthesized by hydrothermal method from zinc acetate and aluminum nitrate solutions without using of any surfactant/stabilizing agents. The results show that the composites of GO nanosheets are decorated densely by Al/ZnO nanoparticles, which displays a good morphology and blend between GO and Al/ZnO. Hybrid composites exhibit an enhanced photocatalytic performance in reduction of dyes under UV-Vis radiation better than bare ZnO-GO and GO for methylene blue dye. The hydrothermal method leads to particles with a higher crystalline due to ambient temperature of themore » reaction and autogenously pressure conditions, which alters the phases and crystallizations of the nanocomposite. The optical band gap is narrowed to lower energy values due to controlled addition of aluminum and GO in the composite. The improved optical property in Al-doped ZnO flower decorated on GO can be attributed to the decrease in oxygen deficiency after Al doping. XRD, FTIR, UV-Vis spectroscopy, Raman, and Field Emission Scanning Electron Microscopy characterized the effects of Al doping on the structural characteristics and optical properties on the ZnO-GO.« less
NASA Astrophysics Data System (ADS)
Theiss, Frederick L.; Ayoko, Godwin A.; Frost, Ray L.
2016-10-01
Co-precipitation is a common method for the preparation of layered double hydroxides (LDHs) and related materials. This review article is aimed at providing newcomers to the field with some examples of the types of co-precipitation reactions that have been reported previously and to briefly investigate some of the properties of the products of these reactions. Due to the sheer volume of literature on the subject, the authors have had to limit this article to the synthesis of Mg/Al, Zn/Al and Ca/Al LDHs by co-precipitation and directly related methods. LDHs have been synthesised from various reagents including metal salts, oxides and hydroxides. Co-precipitation is also useful for the direct synthesis of LDHs with a wide range of interlayer anions and various bases have been successfully employed to prepare LDHs. Examples of other synthesis techniques including the urea method, hydrothermal synthesis and various mechanochemical methods that are undoubtedly related to co-precipitation have also been included in this review. The effect of post synthesis hydrothermal has also been summarised.
Genifuel Hydrothermal Processing Bench Scale Technology Evaluation Project (WE&RF Report LIFT6T14)
Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350◦C ...
Nunoura, Takuro; Kazama, Hiromi; Noguchi, Takuroh; Inoue, Kazuhiro; Akashi, Hironori; Yamanaka, Toshiro; Toki, Tomohiro; Yamamoto, Masahiro; Furushima, Yasuo; Ueno, Yuichiro; Yamamoto, Hiroyuki; Takai, Ken
2012-01-01
Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments. PMID:22210205
Criteria for Mitral Regurgitation Classification were inadequate for Dilated Cardiomyopathy
Mancuso, Frederico José Neves; Moisés, Valdir Ambrosio; Almeida, Dirceu Rodrigues; Oliveira, Wercules Antonio; Poyares, Dalva; Brito, Flavio Souza; de Paola, Angelo Amato Vincenzo; Carvalho, Antonio Carlos Camargo; Campos, Orlando
2013-01-01
Background Mitral regurgitation (MR) is common in patients with dilated cardiomyopathy (DCM). It is unknown whether the criteria for MR classification are inadequate for patients with DCM. Objective We aimed to evaluate the agreement among the four most common echocardiographic methods for MR classification. Methods Ninety patients with DCM were included. Functional MR was classified using four echocardiographic methods: color flow jet area (JA), vena contracta (VC), effective regurgitant orifice area (ERO) and regurgitant volume (RV). MR was classified as mild, moderate or important according to the American Society of Echocardiography criteria and by dividing the values into terciles. The Kappa test was used to evaluate whether the methods agreed, and the Pearson correlation coefficient was used to evaluate the correlation between the absolute values of each method. Results MR classification according to each method was as follows: JA: 26 mild, 44 moderate, 20 important; VC: 12 mild, 72 moderate, 6 important; ERO: 70 mild, 15 moderate, 5 important; RV: 70 mild, 16 moderate, 4 important. The agreement was poor among methods (kappa = 0.11; p < 0.001). It was observed a strong correlation between the absolute values of each method, ranging from 0.70 to 0.95 (p < 0.01) and the agreement was higher when values were divided into terciles (kappa = 0.44; p < 0.01) Conclusion The use of conventional echocardiographic criteria for MR classification seems inadequate in patients with DCM. It is necessary to establish new cutoff values for MR classification in these patients. PMID:24100692
Takai, Ken; Oida, Hanako; Suzuki, Yohey; Hirayama, Hisako; Nakagawa, Satoshi; Nunoura, Takuro; Inagaki, Fumio; Nealson, Kenneth H; Horikoshi, Koki
2004-04-01
Distribution profiles of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems were mapped with culture-independent molecular techniques. Planktonic samples were obtained from the waters surrounding two geographically and geologically distinct hydrothermal systems, and the abundance of marine crenarchaeota group I was examined by 16S ribosomal DNA clone analysis, quantitative PCR, and whole-cell fluorescence in situ hybridization. A much higher proportion of marine crenarchaeota group I within the microbial community was detected in deep-sea hydrothermal environments than in normal deep and surface seawaters. The highest proportion was always obtained from the ambient seawater adjacent to hydrothermal emissions and chimneys but not from the hydrothermal plumes. These profiles were markedly different from the profiles of epsilon-Proteobacteria, which are abundant in the low temperatures of deep-sea hydrothermal environments.
Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin
2017-06-15
To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH) 2 . The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH) 2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Muslimin, Masliana; Jumali, Mohammad Hafizuddin; Tee, Tan Sin; Beng, Lee Hock; Hui, Tan Chun; Chin, Yap Chi
2018-04-01
The aim of this work is to investigate the effect of Zr doping on TiO2 nanostructure. TiO2 nanorods thin films with different Zr-doping concentrations (6 × 10-3 M, 13 × 10-3 M and 25 × 10-3 M) were successfully prepared using a simple hydrothermal method. The structural and morphological properties of the samples were evaluated using XRD and FESEM respectively. The XRD results revealed that the TiO2 in all samples stabilized as rutile phase. The FESEM micrographs confirmed that TiO2 exist as square like nanorods with blunt tips. Although the crystallographic nature remains unchanged, the introduction of Zr has altered the surface density, structure and morphology of TiO2 which subsequently will have significant effect on its properties.
Tang, Bo; Zhuo, Linhai; Ge, Jiechao; Niu, Jinye; Shi, Zhiqiang
2005-04-18
Ultralong and single-crystalline Cd(OH)(2) nanowires were fabricated by a hydrothermal method using alkali salts as mineralizers. The morphology and size of the final products strongly depend on the effects of the alkali salts (e.g., KCl, KNO(3), and K(2)SO(4) or NaCl, NaNO(3), and Na(2)SO(4)). When the salt is absent, only nanoparticles are observed in TEM images of the products. The 1D nanostructure growth method presented herein offers an excellent tool for the design of other advanced materials with anisotropic properties. In addition, the Cd(OH)(2) nanowires might act as a template or precursor that is potentially converted into 1D cadmium oxide through dehydration or into 1D nanostructures of other functional materials (e.g., CdS, CdSe).
Hydroxyapatite-phosphonoformic acid hybrid compounds prepared by hydrothermal method
NASA Astrophysics Data System (ADS)
Turki, Thouraya; Othmani, Masseoud; Bantignies, Jean-Louis; Bouzouita, Khaled
2014-01-01
Hydroxyapatites were prepared in the presence of different amounts of phosphonoformic acid (PFA) via the hydrothermal method. The obtained powders were characterized through chemical analysis, XRD, IR, 31P MAS-NMR, TEM, and TG-TDA. The XRD showed that the PFA did not affect the apatite composition. Indeed, only a reduction of the crystallite size was noted. After grafting of PFA, the IR spectroscopy revealed the appearance of new bands belonging to HPO42- and carboxylate groups of the apatite and organic moiety, respectively. Moreover, the 31P MAS-NMR spectra exhibited a peak with a low intensity assigned to the terminal phosphonate group of the organic moiety in addition to that of the apatite. Based on these results, a reaction mechanism involving the surface hydroxyl groups (tbnd Casbnd OH) of the apatite and the carboxyl group of the acid was proposed.
Zheng, Tianxu; Hu, Yaobo; Zhang, Yuxin; Pan, Fusheng
2017-11-01
A hydrophobic coating was fabricated on the surface of magnesium alloy using a simple one-step hydrothermal method with the use of environmentally friendly agent. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle test were used to characterize the surfaces. Corrosion behavior in a 3.5wt.% NaCl solution was evaluated using OCP time curves test, potentiodynamic polarization test and EIS analysis. The findings show that the substrate is covered by the coating of magnesium hydroxide and magnesium stearate, reaching a contact angle of around 146°. Corrosion behavior show huge improvement, the progress with increase of treatment time could be related to the increased growth rate of coating. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Zhigang, E-mail: xh168688@126.com; State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083; Department of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, Duyun 558000
SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. Field-emission scanning electron microscopy and transmission electron microscopy images showed that the as-prepared flowerlike SnO{sub 2} nanorod bundles consist of tetragonal nanorods with size readily tunable. Their electrochemical properties and application as anode for lithium-ion battery were evaluated by galvanostatic discharge–charge testing and cycle voltammetry. SnO{sub 2} nanorod flowers possess improved discharge capacity of 694 mA h g{sup −1} up to 40th cycle at 0.1 C. - Highlights: ► The flowerlike SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. ► SnO{sub 2} nanorod bundles with tunable size by controlling concentrationmore » of SnCl{sub 4}. ► A probable formation mechanism of SnO{sub 2} nanorod bundles has been proposed.« less
Study on photocatalytic activity of nanosized Co0.3Zn0.7Fe2O4 synthesized by hydrothermal method
NASA Astrophysics Data System (ADS)
Mondal, R.; Sarkar, K.; Dey, S.; Bhattacharjee, S.; Ghosh, C. K.; Kumar, S.
2018-04-01
We have reported the photocatalytic activity of nanosized Co0.3Zn0.7Fe2O4 (CZM) synthesized by hydrothermal method. Powder x-ray diffraction (PXRD), field emission and transmission electron microscopic techniques have been employed for structural and microstructural characterization of the sample. The Rietveld refinement of the PXRD pattern of CZM reveals that the sample is a single phase spinel ferrite of F d 3 ¯m symmetry having crystallite size ˜ 20 nm. The average particle size is ˜ 23 nm. The photocatalytic study suggests that CZM can be suitably used as an efficient (rate constant and % degradation are 7.4×10-2 min-1, 95.76 % at 40 min, respectively), magnetically separable, recyclable photocatalyst for removal of Congo Red from its aqueous solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Linlin; Yang, Xingxing; Fu, Zuoling, E-mail: zlfu@jlu.edu.cn
2015-05-15
Highlights: • Near-spherical CaSiO{sub 3} nanocrystals were synthesized via a hydrothermal method. • The effect of calcination temperature on crystalline phase formation was discussed. • Optical properties of trivalent ions doped CaSiO{sub 3} nanocrystals were investigated. • Tunable luminescence of CaSiO{sub 3}:Tb{sup 3+}, Eu{sup 3+} can be achieved by a simple method. - Abstract: CaSiO{sub 3}:RE{sup 3+} (RE{sup 3+} = Eu{sup 3+}, Sm{sup 3+}, Tb{sup 3+}, Dy{sup 3+}) nanocrystals were prepared by facile hydrothermal method with further calcinations. The crystal structure and the effects of annealing temperature on phase transition have been characterized by X-ray diffraction (XRD). The photoluminescence (PL)more » and PL excitation (PLE) spectra were used to characterize the optical properties of all samples. The effect of Eu{sup 3+} and Sm{sup 3+} doping concentrations on the luminescent intensity were also investigated in details, respectively. Moreover, the luminescence colors of the Tb{sup 3+} and Eu{sup 3+} co-doped CaSiO{sub 3} samples can be tuned by simply adjusting the relative doping concentrations of the rare earth ions under a single wavelength excitation, which might find potential applications in the fields of light display systems and optoelectronic devices.« less
NASA Astrophysics Data System (ADS)
Nurfiani, D.; Bouvet de Maisonneuve, C.
2018-04-01
Volcanic ash morphology has been quantitatively investigated for various aims such as studying the settling velocity of ash for modelling purposes and understanding the fragmentation processes at the origin of explosive eruptions. In an attempt to investigate the usefulness of ash morphometry for monitoring purposes, we analyzed the shape of volcanic ash particles through a combination of (1) traditional shape descriptors such as solidity, convexity, axial ratio and form factor and (2) fractal analysis using the Euclidean Distance transform (EDT) method. We compare ash samples from the hydrothermal eruptions of Iwodake (Japan) in 2013, Tangkuban Perahu (Indonesia) in 2013 and Marapi (Sumatra, Indonesia) in 2015, the dome explosions of Merapi (Java, Indonesia) in 2013, the Vulcanian eruptions of Merapi in 2010 and Tavurvur (Rabaul, Papaua New Guinea) in 2014, and the Plinian eruption of Kelud (Indonesia) in 2014. Particle size and shape measurements were acquired from a Particle Size Analyzer with a microscope camera attached to the instrument. Clear differences between dense/blocky particles from hydrothermal or dome explosions and vesicular particles produced by the fragmentation of gas-bearing molten magma are well highlighted by conventional shape descriptors and the fractal method. In addition, subtle differences between dense/blocky particles produced by hydrothermal explosions, dome explosions, or quench granulation during phreatomagmatic eruptions can be evidenced with the fractal method. The combination of shape descriptors and fractal analysis is therefore potentially able to distinguish between juvenile and non-juvenile magma, which is of importance for eruption monitoring.
The magnetic signature of ultramafic-hosted hydrothermal systems (Invited)
NASA Astrophysics Data System (ADS)
Szitkar, F.; Dyment, J.; Honsho, C.; Horen, H.; Fouquet, Y.
2013-12-01
While the magnetic response of basalt-hosted hydrothermal sites is well known, that of ultramafic-hosted hydrothermal sites (UMHS) remains poorly documented. Here we present the magnetic signature of three of the six UMHS investigated to date on the Mid-Atlantic Ridge, i.e. sites Rainbow, Ashadze (1 and 2), and Logachev. Two magnetic signatures are observed. Sites Rainbow and Ashadze 1 are both characterized by a positive reduced-to-the-pole magnetic anomaly, i.e. a positive magnetization contrast. Conversely, sites Ashadze 2 and Logachev do not exhibit any clear magnetic signature. Rock-magnetic measurements on samples from site Rainbow reveal a strong magnetization (~30 A/m adding induced and remanent contributions) borne by sulfide-impregnated serpentinites; the magnetic carrier being magnetite. This observation can be explained by three (non exclusive) processes: (1) higher temperature serpentinization at the site resulting in the formation of more abundant / more strongly magnetized magnetite; (2) the reducing hydrothermal fluid protecting magnetite at the site from the oxidation which otherwise affects magnetite in contact with seawater; and (3) the formation of primary (hydrothermal) magnetite. We apply a new inversion method developed by Honsho et al. (2012) to the high-resolution magnetic anomalies acquired 10 m above seafloor at sites Rainbow and Ashadze 1. This method uses the Akaike Bayesian Information Criterion (ABIC) and takes full advantage of the near-seafloor measurements, avoiding the upward-continuation (i.e. loss of resolution) of other inversion schemes. This inversion reveals a difference in the intensity of equivalent magnetization obtained assuming a 100 m thick magnetic layer, ~30 A/m at site Rainbow and only 8A/m at site Ashadze, suggesting a thinner or less magnetized source for the latter. Hydrothermal sites at Ashadze 2 and Logachev are much smaller (of the order of 10 m) than the previous ones (several 100 m). These sites, known as "smoking craters", are episodically affected by explosions. The lack of any significant magnetic signature is explained by their small size and the random orientation of the (possibly magnetized) blocks spread out from the explosions. While basalt-hosted sites are characterized by a lack of magnetization, UMHS are characterized by a positive magnetization contrast, ranging from very strong (at site Rainbow) to negligible (at sites Ashadze 2 and Logachev) as a function of parameters such as the size of the deposit, the mode of discharge, and the fluid temperature, which effects remains to be carefully investigated.
Organic Dye Degradation Under Solar Irradiation by Hydrothermally Synthesized ZnS Nanospheres
NASA Astrophysics Data System (ADS)
Samanta, Dhrubajyoti; Chanu, T. Inakhunbi; Basnet, Parita; Chatterjee, Somenath
2018-02-01
The green synthesis of ZnS nanospheres using Citrus limetta (sweet lime) juice as a capping agent through a conventional hydrothermal method was studied. The particle size, morphology, chemical composition, band gap, and optical properties of the synthesized ZnS nanospheres were characterized using x-ray diffraction spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and ultraviolet-visible spectroscopy. The photocatalytic activity of the ZnS nanospheres was evaluated by degradation of rhodamine B (RhB) and methyl orange (MO) under solar irradiation. Upon 150 min of solar irradiation, the extent of degradation was 94% and 77% for RhB and MO, respectively.
NASA Astrophysics Data System (ADS)
Tavakoli Banizi, Zoha; Seifi, Majid
2017-10-01
TGA-capped CdS nanoparticles were obtained in the presence of thioglycolic acid (TGA) as capping agent via a facile hydrothermal method at relatively low temperature and over a short duration. As-synthesized TGA-capped CdS nanoparticles were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, photoluminescence spectroscopy, Ultraviolet-visible spectroscopy and energy-dispersive x-ray spectroscopy. The products had spherical shapes, although their crystalline size and phase was dependent on temperature and time of the reaction. Photoluminescence spectra showed that the fluorescence intensity decreased when increasing the reaction time and temperature.
Self-assembled graphene hydrogel via a one-step hydrothermal process.
Xu, Yuxi; Sheng, Kaixuan; Li, Chun; Shi, Gaoquan
2010-07-27
Self-assembly of two-dimensional graphene sheets is an important strategy for producing macroscopic graphene architectures for practical applications, such as thin films and layered paperlike materials. However, construction of graphene self-assembled macrostructures with three-dimensional networks has never been realized. In this paper, we prepared a self-assembled graphene hydrogel (SGH) via a convenient one-step hydrothermal method. The SGH is electrically conductive, mechanically strong, and thermally stable and exhibits a high specific capacitance. The high-performance SGH with inherent biocompatibility of carbon materials is attractive in the fields of biotechnology and electrochemistry, such as drug-delivery, tissue scaffolds, bionic nanocomposites, and supercapacitors.
Hydrothermal synthesis of uniform WO{sub 3} submicrospheres using thiourea as an assistant agent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, X.T.; Xiao, F.; Lin, J.L.
2010-08-15
Nearly monodisperse tungsten trioxide submicrospheres have been synthesized with tungsten acid and HCl as the starting materials and thiourea as a structure-directing agent through a facile hydrothermal method. The obtained products were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and energy dispersive X-ray, respectively. The results show that the WO{sub 3} submicrospheres are monodisperse with a diameter of about 800-1000 nm. The morphology of the products gradually evolutes from rods to spheres with increase of the reaction time. The formation mechanism of the WO{sub 3} submicrospheres is primarily discussed.
NASA Astrophysics Data System (ADS)
Gao, F.; Leng, S. L.; Zhu, Z.; Li, X. J.; Hu, X.; Song, H. Z.
2018-04-01
The nanopowders of Cu2Se were synthesized by the hydrothermal method, and then were hot-pressed into bulk pellets. The effects of different preparation conditions on the structure and thermoelectric properties of Cu2Se nanocrystalline bulk alloys were investigated. The resistivity and Seebeck coefficients increase with the increment of hot-pressing temperatures, while they decrease with the increment of hot-pressing time, except for the Seebeck coefficients of the sample hot-pressed for 30 min. Based on the power factors and dimensionless thermoelectric figure-of-merit ( ZT) values, the optimum hot-pressing parameters are 700°C and 30 min.
Frabicating hydroxyapatite nanorods using a biomacromolecule template
NASA Astrophysics Data System (ADS)
Zhu, Aiping; Lu, Yan; Si, Yunfeng; Dai, Sheng
2011-02-01
Rod-like hydroxyapatite (HAp) nanoparticles with various aspect ratios are synthesized by means of low-temperature hydrothermal method in the presence of a N-[(2-hydroxy-3-trimethylammonium) propyl]chitosan chloride (HTCC) template. The synthesized HAps were examined by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR) and transmission electron microscopy (TEM) techniques. The results reveal that HAps are rod-like monocrystals, where the size and morphology can be tailored by varying synthesis conditions, such as pH, hydrothermal synthesis temperature and the ratio of PO43- to the quaternary ammonium in HTCC. The mechanism of HTCC template on HAp nanorod preparation is analyzed.
Mars, John L.
2013-01-01
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Interactive Data Language (IDL) logical operator algorithms were used to map hydrothermally altered rocks in the central and southern parts of the Basin and Range province of the United States. The hydrothermally altered rocks mapped in this study include (1) hydrothermal silica-rich rocks (hydrous quartz, chalcedony, opal, and amorphous silica), (2) propylitic rocks (calcite-dolomite and epidote-chlorite mapped as separate mineral groups), (3) argillic rocks (alunite-pyrophyllite-kaolinite), and (4) phyllic rocks (sericite-muscovite). A series of hydrothermal alteration maps, which identify the potential locations of hydrothermal silica-rich, propylitic, argillic, and phyllic rocks on Landsat Thematic Mapper (TM) band 7 orthorectified images, and geographic information systems shape files of hydrothermal alteration units are provided in this study.
Living with the Heat. Submarine Ring of Fire--Grades 5-6. Hydrothermal Vent Ecology.
ERIC Educational Resources Information Center
National Oceanic and Atmospheric Administration (DOC), Rockville, MD.
This activity is designed to teach about hydrothermal vent ecology. Students are expected to describe how hydrothermal vents are formed and characterize the physical conditions at these sites, explain chemosynthesis and contrast this process with photosynthesis, identify autotrophic bacteria as the basis for food webs in hydrothermal vent…
Phenols in hydrothermal petroleums and sediment bitumen from Guaymas Basin, Gulf of California
NASA Technical Reports Server (NTRS)
Simoneit, B. R.; Leif, R. N.; Ishiwatari, R.
1996-01-01
The aliphatic, aromatic and polar (NSO) fractions of seabed petroleums and sediment bitumen extracts from the Guaymas Basin hydrothermal system have been analyzed by gas chromatography and gas chromatography-mass spectrometry (free and silylated). The oils were collected from the interiors and exteriors of high temperature hydrothermal vents and represent hydrothermal pyrolyzates that have migrated to the seafloor by hydrothermal fluid circulation. The downcore sediments are representative of both thermally unaltered and thermally altered sediments. The survey has revealed the presence of oxygenated compounds in samples with a high degree of thermal maturity. Phenols are one class of oxygenated compounds found in these samples. A group of methyl-, dimethyl- and trimethyl-isoprenoidyl phenols (C27-C29) is present in all of the seabed NSO fractions, with the methyl- and dimethyl-isoprenoidyl phenols occurring as major components, and a trimethyl-isoprenoidyl phenol as a minor component. A homologous series of n-alkylphenols (C13-C33) has also been found in the seabed petroleums. These phenols are most likely derived from the hydrothermal alteration of sedimentary organic matter. The n-alkylphenols are probably synthesized under hydrothermal conditions, but the isoprenoidyl phenols are probably hydrothermal alteration products of natural product precursors. The suites of phenols do not appear to be useful tracers of high temperature hydrothermal processes.
Hydrothermal systems as environments for the emergence of life
NASA Technical Reports Server (NTRS)
Shock, E. L.
1996-01-01
Analysis of the chemical disequilibrium provided by the mixing of hydrothermal fluids and seawater in present-day systems indicates that organic synthesis from CO2 or carbonic acid is thermodynamically favoured in the conditions in which hyperthermophilic microorganisms are known to live. These organisms lower the Gibbs free energy of the chemical mixture by synthesizing many of the components of their cells. Primary productivity is enormous in hydrothermal systems because it depends only on catalysis of thermodynamically favourable, exergonic reactions. It follows that hydrothermal systems may be the most favourable environments for life on Earth. This fact makes hydrothermal systems logical candidates for the location of the emergence of life, a speculation that is supported by genetic evidence that modern hyperthermophilic organisms are closer to a common ancestor than any other forms of life. The presence of hydrothermal systems on the early Earth would correspond to the presence of liquid water. Evidence that hydrothermal systems existed early in the history of Mars raises the possibility that life may have emerged on Mars as well. Redox reactions between water and rock establish the potential for organic synthesis in and around hydrothermal systems. Therefore, the single most important parameter for modelling the geochemical emergence of life on the early Earth or Mars is the composition of the rock which hosts the hydrothermal system.
Criteria for mitral regurgitation classification were inadequate for dilated cardiomyopathy.
Mancuso, Frederico José Neves; Moisés, Valdir Ambrosio; Almeida, Dirceu Rodrigues; Oliveira, Wercules Antonio; Poyares, Dalva; Brito, Flavio Souza; Paola, Angelo Amato Vincenzo de; Carvalho, Antonio Carlos Camargo; Campos, Orlando
2013-11-01
Mitral regurgitation (MR) is common in patients with dilated cardiomyopathy (DCM). It is unknown whether the criteria for MR classification are inadequate for patients with DCM. We aimed to evaluate the agreement among the four most common echocardiographic methods for MR classification. Ninety patients with DCM were included. Functional MR was classified using four echocardiographic methods: color flow jet area (JA), vena contracta (VC), effective regurgitant orifice area (ERO) and regurgitant volume (RV). MR was classified as mild, moderate or important according to the American Society of Echocardiography criteria and by dividing the values into terciles. The Kappa test was used to evaluate whether the methods agreed, and the Pearson correlation coefficient was used to evaluate the correlation between the absolute values of each method. MR classification according to each method was as follows: JA: 26 mild, 44 moderate, 20 important; VC: 12 mild, 72 moderate, 6 important; ERO: 70 mild, 15 moderate, 5 important; RV: 70 mild, 16 moderate, 4 important. The agreement was poor among methods (kappa=0.11; p<0.001). It was observed a strong correlation between the absolute values of each method, ranging from 0.70 to 0.95 (p<0.01) and the agreement was higher when values were divided into terciles (kappa = 0.44; p < 0.01) CONCLUSION: The use of conventional echocardiographic criteria for MR classification seems inadequate in patients with DCM. It is necessary to establish new cutoff values for MR classification in these patients.
NASA Astrophysics Data System (ADS)
Wang, Long; Yu, Min; Liu, Yan; Liu, Jiwen; Wu, Yonghua; Li, Li; Liu, Jihua; Wang, Min; Zhang, Xiao-Hua
2018-04-01
As an ideal place to study back-arc basins and hydrothermal eco-system, Okinawa Trough has attracted the interests of scientists for decades. However, there are still no in-depth studies targeting the bacterial community of the seafloor sediments and hydrothermal deposits in Okinawa Trough. In the present study, we reported the bacterial community of the surface deposits of a newly found hydrothermal field in the southern Okinawa Trough, and the horizontal and vertical variation of bacterial communities in the sediments of the northern Okinawa Trough. The hydrothermal deposits had a relatively high 16S rRNA gene abundance but low bacterial richness and diversity. Epsilonproteobacteria and Bacteroidetes were predominant in hydrothermal deposits whereas Deltaproteobacteria, Gammaproteobacteria and Chloroflexi were abundant across all samples. The bacterial distribution in the seafloor of Okinawa Trough was significantly correlated to the content of total nitrogen, and had consistent relationship with total carbon. Gradual changes of sulfur-oxidizing bacteria were found with the distance away from hydrothermal fields, while the hydrothermal activity did not influence the distribution of the major clades of sulfate-reducing bacteria. Higher abundance of the sulfur cycle related genes (aprA and dsrB), and lower abundance of the bacterial ammonia-oxidizing related gene (amoA) were quantified in hydrothermal deposits. In addition, the present study also compared the inter-field variation of Epsilonproteobacteria among multi-types of hydrothermal vents, revealing that the proportion and diversity of this clade were quite various.
Yang, Liyang; Zhuang, Wan-E; Chen, Chen-Tung Arthur; Wang, Bing-Jye; Kuo, Fu-Wen
2017-03-15
The submarine hydrothermal systems are extreme environments where active cycling of dissolved organic matter (DOM) may occur. However, little is known about the optical properties and bioavailability of hydrothermal DOM, which could provide valuable insights into its transformation processes and biogeochemical reactivity. The quantity, quality, and bioavailability of DOM were investigated for four very different hydrothermal vents east of Taiwan, using dissolved organic carbon (DOC), absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). The DOC and absorption coefficient a 280 were both lower in the two hydrothermal vents off the Orchid Island and on the Green Island than in the surrounding seawater and the two vents off the Kueishantao Island, indicating effective removals of DOM in the former two hydrothermal systems owing to possible adsorption/co-precipitation and thermal degradation respectively. The four hydrothermal DOM showed notable differences in the absorption spectral slope S 275-295 , humification index HIX, biological index BIX, EEM spectra, and the relative distributions of seven PARAFAC components. The results demonstrated a high diversity of chemical composition and transformation history of DOM under contrasting hydrothermal conditions. The little change in the hydrothermal DOC after 28-day microbial incubations indicated a low bioavailability of the bulk DOM, and different PARAFAC components showed contrasting bioavailability. The results have profound implications for understanding the biogeochemical cycling and environmental effects of hydrothermal DOM in the marine environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, James; Wang, Yilin; Walter, Eric D.
The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic level understanding of changes to the zeolite support and the Cu active sites during hydrothermal aging are still lacking. In this work, via the utilization of spectroscopic methods including solid-state 27Al and 29Si NMR, EPR, DRIFTS, and XPS, together with imaging and elemental mapping using STEM, detailed kinetic analyses, and theoretical calculations with DFT, various Cu species, including two types of isolated active sites and CuOx clusters, were precisely quantified for samples hydrothermally aged under varying conditions. This quantification convincingly confirms the exceptional hydrothermal stability of isolatedmore » Cu2+-2Z sites, and the gradual conversion of [Cu(OH)]+-Z to CuOx clusters with increasing aging severity. This stability difference is rationalized from the hydrolysis activation barrier difference between the two isolated sites via DFT. Discussions are provided on the nature of the CuOx clusters, and their possible detrimental roles on catalyst stability. Finally, a few rational design principles for Cu/SSZ-13 are derived rigorously from the atomic-level understanding of this catalyst obtained here. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. Computing time was granted by a user proposal at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). The experimental studies described in this paper were performed in the EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behdadfar, Behshid, E-mail: bbehdadfar@ma.iut.ac.ir; Kermanpur, Ahmad; Sadeghi-Aliabadi, Hojjat
Monodispersed aqueous ferrofluids of iron oxide nanoparticle were synthesized by hydrothermal-reduction route. They were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and dynamic light scattering. The results showed that certain concentrations of citric acid (CA) are required to obtain only magnetic iron oxides with mean particle sizes around 8 nm. CA acts as a modulator and reducing agent in iron oxide formation which controls nanoparticle size. The XRD, magnetic and heating measurements showed that the temperature and time of hydrothermal reaction can affect the magnetic properties of obtained ferrofluids. The synthesized ferrofluids weremore » stable at pH 7. Their mean hydrodynamic size was around 80 nm with polydispersity index (PDI) of 0.158. The calculated intrinsic loss power (ILP) was 9.4 nHm{sup 2}/kg. So this clean and cheap route is an efficient way to synthesize high ILP aqueous ferrofluids applicable in magnetic hyperthermia. - Graphical abstract: Monodispersed aqueous ferrofluids of iron oxide nanoparticles were synthesized by hydrothermal-reduction method with citric acid as reductant which is an efficient way to synthesize aqueous ferrofluids applicable in magnetic hyperthermia. Highlights: Black-Right-Pointing-Pointer Aqueous iron oxide ferrofluids were synthesized by hydrothermal-reduction route. Black-Right-Pointing-Pointer Citric acid acted as reducing agent and surfactant in the route. Black-Right-Pointing-Pointer This is a facile, low energy and environmental friendly route. Black-Right-Pointing-Pointer The aqueous iron oxide ferrofluids were monodispersed and stable at pH of 7. Black-Right-Pointing-Pointer The calculated intrinsic loss power of the synthesized ferrofluids was very high.« less
NASA Astrophysics Data System (ADS)
Whitley, S. Z.; Mittelstaedt, E. L.
2016-02-01
During expedition NA054 of the E/V Nautilus from 18 September to 9 October 2014 and as part of the TREET (Transforming Remotely Conducted Research through Ethnography, Education, and Rapidly Evolving Technologies) project, a series of photographic surveys along the shoulder of the Kick'em Jenny volcano were performed under direction of a remote research team located at the University of Rhode Island Inner Space Center. The primary goal of these surveys was to map the distribution and extent of active and extinct hydrothermal activity along a large collapse scar surrounding the current edifice of the Kick'em Jenny volcano. Photomosaic surveys cover a area of 3000 m2 and reveal extensive basalt alteration with areas of active diffuse hydrothermal outflow. The spatial extents of orange-colored alteration and white, bacterial mats, taken to indicate active outflow, are quantified using both manual identification and an automated, supervised classification scheme. Both methods find that alteration covers 7-8% and active outflow 1-3% of the survey region. It is unclear if the observed hydrothermal fluids are part of the fluid circulation network of the nearby Kick'em Jenny volcano or if a separate heat source is driving this flow. To test these two endmember cases, we use a 2D, finite-difference, marker-in-cell code to simulate hydrothermal circulation of a single-phase fluid within the oceanic crust. Parameters varied include the permeability structure (e.g., inclusion of a permeability barrier representing the collapse surface), the depth to the heat source beneath Kick'em Jenny, and the bathymetry. We will discuss results from the photomosaic analysis and our initial models.
Hydrothermal heat discharge in the Cascade Range, northwestern United States
Ingebritsen, S.E.; Mariner, R.H.
2010-01-01
Hydrothermal heat discharge in the Cascade Range includes the heat discharged by thermal springs, by "slightly thermal" springs that are only a few degrees warmer than ambient temperature, and by fumaroles. Thermal-spring heat discharge is calculated on the basis of chloride-flux measurements and geothermometer temperatures and totals ~ 240 MW in the U.S. part of the Cascade Range, excluding the transient post-1980 discharge at Mount St. Helens (~80 MW as of 2004-5). Heat discharge from "slightly thermal" springs is based on the degree of geothermal warming (after correction for gravitational potential energy effects) and totals ~. 660. MW. Fumarolic heat discharge is calculated by a variety of indirect and direct methods and totals ~160 MW, excluding the transient mid-1970s discharge at Mount Baker (~80 MW) and transient post-1980 discharge at Mount St. Helens (>. 230. MW as of 2005). Other than the pronounced transients at Mount St. Helens and Mount Baker, hydrothermal heat discharge in the Cascade Range appears to be fairly steady over a ~25-year period of measurement. Of the total of ~. 1050. MW of "steady" hydrothermal heat discharge identified in the U.S. part of the Cascade Range, less than 50. MW occurs north of latitude 45??15' N (~0.1 MW per km arc length from 45??15' to 49??N). Much greater rates of hydrothermal heat discharge south of 45??15'N (~1.7 MW per km arc length from 40?? to 45??15'N) may reflect the influence of Basin and Range-style extensional tectonics (faulting) that impinges on the Cascades as far north as Mount Jefferson but is not evident farther north. ?? 2010.
NASA Astrophysics Data System (ADS)
Rosas-Carbajal, M.; Marteau, J.; Tramontini, M.; de Bremond d Ars, J.; Le Gonidec, Y.; Carlus, B.; Ianigro, J. C.; Deroussi, S.; Komorowski, J. C.; Gibert, D.
2017-12-01
Muon imaging has recently emerged as a powerful method to complement standard geophysical tools in the study of the Earth's subsurface. Muon measurements yield a radiography of the average density along the muon path, allowing to image large volumes of a geological body from a single observation point. Long-term measurements allow to infer density changes by tracking the associated variations in the muon flux. In the context of volcanic hydrothermal systems, this approach helps to characterize zones of steam formation, condensation, water infiltration and storage. We present results of imaging the La Soufrière de Guadeloupe dome and shallow active hydrothermal system with a network of muon telescopes viewing the dome from different positions around its base. First, we jointly invert the muon radiographies of the different telescopes with gravity data to obtain a three-dimensional density model of the lava dome. The model reveals an extended low density region where the hydrothermal system is most active. We then analyze the dynamics of the hydrothermal system from long-term measurements (more than 2 years of almost non-interrupted acquisition) with 5 simultaneous muon telescopes. We identify a periodicity of 1-2 months in the density increase/decrease in the most active zones below fumaroles and acid boiling ponds. Our simultaneous-muon telescope strategy provides constraints on the three-dimensional location of the density changes and an improved quantification of the associated mass flux changes. We compare the temporal trends acquired by the different muon telescopes to time-series of rainfall on the summit recharge area as well as to ground temperature profiles in the vicinity of thermal anomalies and high-discharge summit fumaroles.
Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)
NASA Astrophysics Data System (ADS)
Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.
2015-02-01
Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla Valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal water, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3 type. It originates as recharge at Primavera caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal water is characterized by high salinity, temperature, Cl, Na, HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural practices. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Tritium method elucidated that practically all of the sampled groundwater contains at least a small fraction of modern water. The multivariate mixing model M3 indicates that the proportion of hydrothermal fluids in sampled well water is between 13 (local groundwater) and 87% (hydrothermal water), and the proportion of polluted water in wells ranges from 0 to 63%. This study may help local water authorities to identify and quantify groundwater contamination and act accordingly.
Dong, Bin; Li, Guang; Yang, Xiaogang; Chen, Luming; Chen, George Z
2018-04-01
(NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O samples with different morphology are successfully synthesized via two-step synthesis route - ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment (UIHT) method. The effects of the adoption of ultrasonic-intensified impinging stream pre-treatment, reagent concentration (C), pH value of solution and hydrothermal reaction time (T) on the physical and chemical properties of the synthesised (NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O composites and FePO 4 particles were systematically investigated. Nano-seeds were firstly synthesized using the ultrasonic-intensified T-mixer and these nano-seeds were then transferred into a hydrothermal reactor, heated at 170 °C for 4 h. The obtained samples were characterized by utilising XRD, BET, TG-DTA, SEM, TEM, Mastersizer 3000 and FTIR, respectively. The experimental results have indicated that the particle size and morphology of the obtained samples are remarkably affected by the use of ultrasonic-intensified impinging stream pre-treatment, hydrothermal reaction time, reagent concentration, and pH value of solution. When such (NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O precursor samples were transformed to FePO 4 products after sintering at 650 °C for 10 h, the SEM images have clearly shown that both the precursor and the final product still retain their monodispersed spherical microstructures with similar particle size of about 3 μm when the samples are synthesised at the optimised condition. Copyright © 2017 Elsevier B.V. All rights reserved.
Inactivation of Escherichia coli Endotoxin by Soft Hydrothermal Processing▿
Miyamoto, Toru; Okano, Shinya; Kasai, Noriyuki
2009-01-01
Bacterial endotoxins, also known as lipopolysaccharides, are a fever-producing by-product of gram-negative bacteria commonly known as pyrogens. It is essential to remove endotoxins from parenteral preparations since they have multiple injurious biological activities. Because of their strong heat resistance (e.g., requiring dry-heat sterilization at 250°C for 30 min) and the formation of various supramolecular aggregates, depyrogenation is more difficult than sterilization. We report here that soft hydrothermal processing, which has many advantages in safety and cost efficiency, is sufficient to assure complete depyrogenation by the inactivation of endotoxins. The endotoxin concentration in a sample was measured by using a chromogenic limulus method with an endotoxin-specific limulus reagent. The endotoxin concentration was calculated from a standard curve obtained using a serial dilution of a standard solution. We show that endotoxins were completely inactivated by soft hydrothermal processing at 130°C for 60 min or at 140°C for 30 min in the presence of a high steam saturation ratio or with a flow system. Moreover, it is easy to remove endotoxins from water by soft hydrothermal processing similarly at 130°C for 60 min or at 140°C for 30 min, without any requirement for ultrafiltration, nonselective adsorption with a hydrophobic adsorbent, or an anion exchanger. These findings indicate that soft hydrothermal processing, applied in the presence of a high steam saturation ratio or with a flow system, can inactivate endotoxins and may be useful for the depyrogenation of parenterals, including end products and medical devices that cannot be exposed to the high temperatures of dry heat treatments. PMID:19502435
Characteristics of Hydrothermal Mineralization in Ultraslow Spreading Ridges
NASA Astrophysics Data System (ADS)
Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.
2014-12-01
Hydrothermal activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of hydrothermal systems are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining hydrothermal activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of hydrothermal mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag hydrothermal field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in hydrothermal fields. Structures formed by lower temperature activities in active and dead hydrothermal fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in hydrothermal chimneys. Distribution of diverse low temperature hydrothermal activities is consistence with the deep heating mechanisms and hydrothermal circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the ultraslow spreading ridges is also presumable.
Organic synthesis during fluid mixing in hydrothermal systems
NASA Astrophysics Data System (ADS)
Shock, Everett L.; Schulte, Mitchell D.
1998-12-01
Hydrothermal circulation can lead to fluid mixing on any planet with liquid water and a source of heat. Aqueous fluids with differing compositions, especially different oxidation states, are likely to be far from thermodynamic equilibrium when they mix, and provide a source of free energy that can drive organic synthesis from CO2 and H2, and/or supply a source of geochemical energy to chemolithoautotrophic organisms. Results are presented that quantify the potential for organic synthesis during unbuffered fluid mixing in present submarine hydrothermal systems, as well as hypothetical systems that may have existed on the early Earth and Mars. Dissolved hydrogen, present in submarine hydrothermal fluids owing to the high-temperature reduction of H2O as seawater reacts with oceanic crustal rocks, provides the reduction potential and the thermodynamic drive for organic synthesis from CO2 (or bicarbonate) as hydrothermal fluids mix with seawater. The potential for organic synthesis is a strong function of the H2 content of the hydrothermal fluid, which is, in turn, a function of the prevailing oxidation state controlled by the composition of the rock that hosts the hydrothermal system. Hydrothermal fluids with initial oxidation states at or below those set by the fayalite-magnetite-quartz mineral assemblage show the greatest potential for driving organic synthesis. These calculations show that it is thermodynamically possible for 100% of the carbon in the mixed fluid to be reduced to a mixture of carboxylic acids, alcohols, and ketones in the range 250-50°C as cold seawater mixes with the hydrothermal fluid. As the temperature drops, larger organic molecules are favored, which implies that fluid mixing could drive the geochemical equivalent of a metabolic system. This enormous reduction potential probably drives a large portion of the primary productivity around present seafloor hydrothermal vents and would have been present in hydrothermal systems on the early Earth or Mars. The single largest control on the potential for organic synthesis is the composition of the rock that hosts the hydrothermal system.
Fluxes to sediments underlying the Rainbow hydrothermal plume at 36°14‧N on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Cave, R. R.; German, C. R.; Thomson, J.; Nesbitt, R. W.
2002-06-01
A geochemical investigation has been conducted of a suite of four sediment cores collected from directly beneath the hydrothermal plume at distances of 2 to 25 km from the Rainbow hydrothermal field. As well as a large biogenic component (>80% CaCO3) these sediments record clear enrichments of the elements Fe, Cu, Mn, V, P, and As from hydrothermal plume fallout but only minor detrital background material. Systematic variations in the abundances of ;hydrothermal; elements are observed at increasing distance from the vent site, consistent with chemical evolution of the dispersing plume. Further, pronounced Ni and Cr enrichments at specific levels within each of the two cores collected from closest to the vent site are indicative of discrete episodes of additional input of ultrabasic material at these two near-field locations. Radiocarbon dating reveals mean Holocene accumulation rates for all four cores of 2.7 to 3.7 cm.kyr-1, with surface mixed layers 7 to 10+ cm thick, from which a history of deposition from the Rainbow hydrothermal plume can be deduced. Deposition from the plume supplies elements to the underlying sediments that are either directly hydrothermally sourced (e.g., Fe, Mn, Cu) or scavenged from seawater via the hydrothermal plume (e.g., V, P, As). Holocene fluxes into to the cores' surface mixed layers are presented which, typically, are an order of magnitude greater than ;background; authigenic fluxes from the open North Atlantic. One core, collected closest to the vent site, indicates that both the concentration and flux of hydrothermally derived material increased significantly at some point between 8 and 12 14C kyr ago; the preferred explanation is that this variation reflects the initiation/intensification of hydrothermal venting at the Rainbow hydrothermal field at this time-perhaps linked to some specific tectonic event in this fault-controlled hydrothermal setting.
Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls
NASA Astrophysics Data System (ADS)
Escartin, Javier
2016-04-01
Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While less studied, similar hydrothermal systems are found elsewhere associated to other central volcanoes along the ridge axis (e.g., Menez Gwenn at the Mid-Atlantic Ridge and Soria Mornia or Troll Wall at the Arctic Ridges). Long-lived hydrothermal activity plays an important role in controlling the thermal structure of the lithosphere and its accretion at and near-axis, and also determining the distribution and biogeography of vent communities. Along slow-spreading segments, long-lived hydrothermal activity can be provided both by volcanic systems (e.g., Lucky Strike) and tectonic systems (oceanic detachment faults). While magmatic and hydrothermal activity is relatively well understood now in volcanic systems (e.g., Lucky Strike), tectonic systems (oceanic detachment faults) require further integrated studies to constrain the links between long-lived localization of deformation along oceanic detachment faults, hydrothermal activity, and origin and nature of off-axis heat sources animating hydrothermal circulation.
Mild Aphasia: Is This the Place for an Argument?
ERIC Educational Resources Information Center
Armstrong, Elizabeth; Fox, Sarah; Wilkinson, Ray
2013-01-01
Purpose: Individuals with mild aphasia often report significant disruption to their communication despite seemingly minor impairment. This study explored this phenomenon through examining conversations of a person with mild aphasia engaging in argumentation--a skill she felt had significantly deteriorated after her stroke. Method: A person with…
NASA Astrophysics Data System (ADS)
Susetyo, P.; Fauzia, V.; Sugihartono, I.
2017-04-01
ZnO nanorods is a low cost II-VI semiconductor compound with huge potential to be applied in optoelectronic devices i.e. light emitting diodes, solar cells, gas sensor, spintronic devices and lasers. In order to improve the electrical and optical properties, group II, III and IV elements were widely investigated as dopand elements on ZnO. In this work, magnesium (Mg) was doped into ZnO nanorods. Samples were prepared firstly by deposition of undoped ZnO seed layer on indium thin oxide coated glass substrates by ultrasonic spray pyrolysis method and then followed by the growth of ZnO nanorods doped by three different Mg concentrations by hydrothermal method. Based on the morphological, microstructural and optical characterizations results, it is concluded that the increase of magnesium concentration tends to reduce the diameter of ZnO nanorods, increases the bandgap energy and decreases the UV absorption the luminescence in UV and visible range.
Yeoh, Keat-Hor; Shafie, S A; Al-Attab, K A; Zainal, Z A
2018-06-15
In this study, three different methods for high quality solid fuel production were tested and compared experimentally. Oil palm empty fruit bunches, mesocarp fibers, palm kernel shells and rubber seeds shells were treated using thermal (TC), hydrothermal (HTC) and vapothermal (VTC) carbonization. All thermochemical methods were accomplished by using a custom made batch-type reactor. Utilization of novel single reactor equipped with suspended internal container provided efficient operation since both steam generator and raw materials were placed inside the same reactor. Highest energy densification was achieved by VTC process followed by TC and HTC processes. The heating value enhancement in VTC and TC was achieved by the increase in fixed carbon content and reduction in volatile matter. The formation of the spherical components in HTC hydrochar which gave a sharp peak at 340 °C in the DTG curves was suggested as the reason that led to the increment in energy content. Copyright © 2018 Elsevier Ltd. All rights reserved.
Microseismicity of Blawan hydrothermal complex, Bondowoso, East Java, Indonesia
NASA Astrophysics Data System (ADS)
Maryanto, S.
2018-03-01
Peak Ground Acceleration (PGA), hypocentre, and epicentre of Blawan hydrothermal complex have been analysed in order to investigate its seismicity. PGA has been determined based on Fukushima-Tanaka method and the source location of microseismic estimated using particle motion method. PGA ranged between 0.095-0.323 g and tends to be higher in the formation that containing not compacted rocks. The seismic vulnerability index region indicated that the zone with high PGA also has a high seismic vulnerability index. This was because the rocks making up these zones were inclined soft and low-density rocks. For seismic sources around the area, epicentre and hypocentre, have estimated base on seismic particle motion method of single station. The stations used in this study were mobile stations identified as BL01, BL02, BL03, BL05, BL06, BL07 and BL08. The results of the analysis particle motion obtained 44 points epicentre and the depth of the sources about 15 – 110 meters below ground surface.
Detection of nitrite based on fluorescent carbon dots by the hydrothermal method with folic acid
NASA Astrophysics Data System (ADS)
Lin, Haitao; Ding, Liyun; Zhang, Bingyu; Huang, Jun
2018-05-01
A fluorescent carbon dots probe for the detection of aqueous nitrite was fabricated by a one-pot hydrothermal method, and the transmission electron microscope, X-ray diffractometer, UV-Vis absorption spectrometer and fluorescence spectrophotometer were used to study the property of carbon dots. The fluorescent property of carbon dots influenced by the concentration of aqueous nitrite was studied. The interaction between the electron-donating functional groups and the electron-accepting nitrous acid could account for the quenching effect on carbon dots by adding aqueous nitrite. The products of the hydrolysis of aqueous nitrite performed a stronger quenching effect at lower pH. The relationship between the relative fluorescence intensity of carbon dots and the concentration of nitrite was described by the Stern-Volmer equation (I0/I - 1 = 0.046[Q]) with a fine linearity (R2 = 0.99). The carbon dots-based probe provides a convenient method for the detection of nitrite concentration.
Wikberg, Hanne; Grönqvist, Stina; Niemi, Piritta; Mikkelson, Atte; Siika-Aho, Matti; Kanerva, Heimo; Käsper, Andres; Tamminen, Tarja
2017-07-01
The suitability of several abundant but underutilized agro and forest based biomass residues for hydrothermal treatment followed by enzymatic hydrolysis as well as for hydrothermal carbonization was studied. The selected approaches represent simple biotechnical and thermochemical treatment routes suitable for wet biomass. Based on the results, the hydrothermal pre-treatment followed by enzymatic hydrolysis seemed to be most suitable for processing of carbohydrate rich corn leaves, corn stover, wheat straw and willow. High content of thermally stable components (i.e. lignin) and low content of ash in the biomass were advantageous for hydrothermal carbonization of grape pomace, coffee cake, Scots pine bark and willow. Copyright © 2017 Elsevier Ltd. All rights reserved.
Method of producing a carbon coated ceramic membrane and associated product
Liu, Paul K. T.; Gallaher, George R.; Wu, Jeffrey C. S.
1993-01-01
A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.
Imaging subsurface hydrothermal structure using a dense geophone array in Yellowstone
NASA Astrophysics Data System (ADS)
Wu, S. M.; Lin, F. C.; Farrell, J.; Smith, R. B.
2016-12-01
The recent development of ambient noise cross-correlation and the availability of large N seismic arrays allow for the study of detailed shallow crustal structure. In this study, we apply multi-component noise cross-correlation to explore shallow hydrothermal structure near Old Faithful geyser in Yellowstone National Park using a temporary geophone array. The array was composed of 133 three-component 5-Hz geophones and was deployed for two weeks during November 2015. The average station spacing is 50 meters and the full aperture of the array is around 1 km with good azimuthal and spatial coverage. The Upper Geyser Basin, where Old Faithful is located, has the largest concentration of geysers in the world. This unique active hydrothermal environment and hence the extremely inhomogeneous noise source distribution makes the construction of empirical Green's functions difficult based on the traditional noise cross-correlation method. In this presentation, we show examples of the constructed cross-correlation functions and demonstrate their spatial and temporal relationships with known hydrothermal activity. We also demonstrate how useful seismic signals can be extracted from these cross-correlation functions and used for subsurface imaging. In particular, we will discuss the existence of a recharge cavity beneath Old Faithful revealed by the noise cross-correlations. In addition, we also investigated the temporal structure variation based on time-lapse noise cross-correlations and these preliminary results will also be discussed.
NASA Astrophysics Data System (ADS)
Pearce, R.; Mitchell, T. M.; Moorkamp, M.; Araya, J.; Cembrano, J. M.; Yanez, G. A.; Hammond, J. O. S.
2017-12-01
At convergent plate boundaries, volcanic orogeny is largely controlled by major thrust fault systems that act as magmatic and hydrothermal fluid conduits through the crust. In the south-central Andes, the volcanically and seismically active Tinguiririca and Planchon-Peteroa volcanoes are considered to be tectonically related to the major El Fierro thrust fault system. These large scale reverse faults are characterized by 500 - 1000m wide hydrothermally altered fault cores, which possess a distinct conductive signature relative to surrounding lithology. In order to establish the subsurface architecture of these fault systems, such conductivity contrasts can be detected using the magnetotelluric method. In this study, LEMI fluxgate-magnetometer long-period and Metronix broadband MT data were collected at 21 sites in a 40km2 survey grid that surrounds this fault system and associated volcanic complexes. Multi-remote referencing techniques is used together with robust processing to obtain reliable impedance estimates between 100 Hz and 1,000s. Our preliminary inversion results provide evidence of structures within the 10 - 20 km depth range that are attributed to this fault system. Further inversions will be conducted to determine the approximate depth extent of these features, and ultimately provide constraints for future geophysical studies aimed to deduce the role of these faults in volcanic orogeny and hydrothermal fluid migration processes in this region of the Andes.
Zhu, Gang-Tian; Hu, Xiao-Li; He, Sheng; He, Xiao-Mei; Zhu, Shu-Kui; Feng, Yu-Qi
2018-06-05
Tailor-made chitosan fiber was prepared via hydrothermal treatment to serve as a micro-solid phase extraction (micro-SPE) sorbent for the analysis of petroleum acids (PAs) in crude oils. Chitosan fiber, which is commercial and cheap, has a diameter of about 10 μm and a length of a few centimeters. The fibrous property of the sorbent enables the micro-SPE to deal with viscous crude oil samples because of the low back-pressure during extraction, while the abundant hydroxyl groups and amino groups on the surface of chitosan fiber can provide high density of specific sites for adsorption of PAs. Moreover, it was found that hydrothermal treatment at certain conditions could tune the surface properties of chitosan fiber, leading to significant improvement of the capacity of the fiber in adsorption of PAs. Using hydrothermally treated chitosan fiber as sorbent, the micro-SPE was applied to the determination of PAs in crude oils, with the advantages of easy-operation, rapidness and high sensitivity (the limits of detection range from 0.7 ng/g to 5.4 ng/g). Furthermore, coupled with comprehensive two dimensional gas chromatography-mass spectrometry (GC × GCMS), the treated chitosan fiber packed micro-SPE method showed a great potential for comprehensive profiling of PAs in crude oils. Copyright © 2018 Elsevier B.V. All rights reserved.
Bleta, Rudina; Schiavo, Benedetto; Corsaro, Natale; Costa, Paula; Giaconia, Alberto; Interrante, Leonardo; Monflier, Eric; Pipitone, Giuseppe; Ponchel, Anne; Sau, Salvatore; Scialdone, Onofrio; Tilloy, Sébastien; Galia, Alessandro
2018-04-18
Hydrothermal liquefaction (HTL) is a promising technology for the production of biocrude oil from microalgae. Although this catalyst-free technology is efficient under high-temperature and high-pressure conditions, the biocrude yield and quality can be further improved by using heterogeneous catalysts. The design of robust catalysts that preserve their performance under hydrothermal conditions will be therefore very important in the development of biorefinery technologies. In this work, we describe two different synthetic routes (i.e., impregnation and cyclodextrin-assisted one-pot colloidal approach), for the preparation in aqueous phase of six high surface area CoMo/γ-Al 2 O 3 catalysts. Catalytic tests performed on the HTL of Nannochloropsis gaditana microalga indicate that solids prepared by the one-pot colloidal approach show higher hydrothermal stability and enhanced biocrude yield with respect to the catalyst-free test. The positive effect of the substitution of the block copolymer Tetronic T90R4 for Pluronic F127 in the preparation procedure was evidenced by diffuse reflectance UV-visible spectroscopy, X-ray diffraction, N 2 -adsorption-desorption, and H 2 -temperature-programmed reduction measurements and confirmed by the higher quality of the obtained biocrude, which exhibited lower oxygen content and higher-energy recovery equal to 62.5% of the initial biomass.
NASA Astrophysics Data System (ADS)
Byrdina, Svetlana; Revil, André; Gunawan, Hendra; Saing, Ugan B.; Grandis, Hendra
2017-07-01
Papandayan volcano in West Java, Indonesia, is characterized by intense hydrothermal activities manifested by numerous fumaroles at three craters or kawah, i.e. Mas, Manuk and Baru. The latter was created after November 2002 phreatic eruption. Since 2011, numerous volcano-tectonic B events are encountered and the volcano was set on alert status on several occasions. The purpose of the present study is to delineate the structure of the summital hydrothermal system from Self-Potential (SP), soil temperature and gas concentrations in the soil (CO2, SO2 and H2S) data. This combination of geophysical and geochemical methods allows identification of the weak permeable zones serving as preferential pathways for hydrothermal circulation and potential candidates to future landslides or flank collapses. This study is an on-going collaborative research project and we plan to conduct electrical resistivity tomography (ERT) and also Induced-Polarization (IP) surveys. Additional data would allow the 3D imaging of the studied area. The IP parameters will be used to characterise and to quantify the degree of alteration of the volcanic rocks as has been shown very recently in the laboratory studies. There are also rocks and soil samples that will undergo laboratory analyses at ISTerre for IP and complex resistivity parameters at the sample scale that will help to interpret the survey results.
The Third Dimension of an Active Back-arc Hydrothermal System: ODP Leg 193 at PACMANUS
NASA Astrophysics Data System (ADS)
Binns, R.; Barriga, F.; Miller, D.
2001-12-01
This first sub-seafloor examination of an active hydrothermal system hosted by felsic volcanics, at a convergent margin, obtained drill core from a high-T "smoker" site (penetrated to sim200 mbsf) and a low-T site of diffuse venting (~400mbsf). We aimed to delineate the lateral and vertical variability in mineralisation and alteration patterns, so as to understand links between volcanological, structural and hydrothermal phenomena and the sources of fluids, and to establish the nature and extent of microbial activity within the system. Technological breakthroughs included deployment of a new hard-rock re-entry system, and direct comparison in a hardrock environment of structural images obtained by wireline methods and logging-while-drilling. The PACMANUS hydrothermal site, at the 1700m-deep crest of a 500m-high layered sequence of dacitic lavas, is notable for baritic massive sulfide chimneys rich in Cu, Zn, Au and Ag. Below an extensive cap 5-40m thick of fresh dacite-rhyodacite, we found unexpectedly pervasive hydrothermal alteration of vesicular and flow-banded precursors, accompanied by variably intense fracturing and anhydrite-pyrite veining. Within what appears one major hydrothermal event affecting the entire drilled sequence, there is much overprinting and repetition of distinctly allochemical argillaceous (illite-chlorite), acid-sulfate (pyrophyllite-anhydrite) and siliceous assemblages. The alteration profiles include a transition from metastable cristobalite to quartz at depth, and are similar under low-T and high-T vent sites but are vertically condensed in a manner suggesting higher thermal gradients beneath the latter. The altered rocks are surprisingly porous (average 25%). Retention of intergranular pore spaces and open vesicles at depth implies elevated hydrothermal pressures, whereas evidence from fluid inclusions and hydrothermal brecciation denotes local or sporadic phase separation. A maximum measured temperature of 313 degC measured 8 days after drilling (360 mbsf at the diffuse venting site), if indicative of thermal gradient, suggests the presence of a very shallow ( ~1.5 km below seafloor) magmatic heat source. While isotopic characteristics of anhydrite suggest an irregularly varying component of magmatic fluid, the abundance of this mineral implies a substantial role for circulating seawater within the subsurface hydrothermal system. Other than the near-ubiquitous, fine grained disseminated pyrite in altered rocks, we found little sulfide mineralisation. Pyritic vein networks and breccias are extensive in the rapidly penetrated, but poorly recovered, interval down to 120 mbsf within our "high-T end-member" hole spudded on a mound surmounted by active (280 degC) chimneys. Anhydrite and open cavities possibly dominate this interval, from which a possible example of subhalative semi-massive sulfide containing chalcopyrite and some sphalerite was recovered near 30 mbsf. At the low-T and high-T vent sites respectively, anaerobic microbes were recorded by direct counting at depths down to 99 and 78 mbsf, and in 90 degC cultivation experiments at 69-107 and 99-129 mbsf. >http://www-odp.tamu.edu/publications/prelim/193
Calculation of unsteady transonic flows with mild separation by viscous-inviscid interaction
NASA Technical Reports Server (NTRS)
Howlett, James T.
1992-01-01
This paper presents a method for calculating viscous effects in two- and three-dimensional unsteady transonic flow fields. An integral boundary-layer method for turbulent viscous flow is coupled with the transonic small-disturbance potential equation in a quasi-steady manner. The viscous effects are modeled with Green's lag-entrainment equations for attached flow and an inverse boundary-layer method for flows that involve mild separation. The boundary-layer method is used stripwise to approximate three-dimensional effects. Applications are given for two-dimensional airfoils, aileron buzz, and a wing planform. Comparisons with inviscid calculations, other viscous calculation methods, and experimental data are presented. The results demonstrate that the present technique can economically and accurately calculate unsteady transonic flow fields that have viscous-inviscid interactions with mild flow separation.
NASA Astrophysics Data System (ADS)
Choudapur, V. H.; Bennal, A. S.; Raju, A. B.
2018-04-01
The ZnS nanomaterial is synthesized by hydrothermal method under optimized conditions using Zinc acetate and sodium sulphide as precursors. The Zinc Sulphide thin films are obtained by simple spin coating method with high optical transmittance. The prepared thin films are adhesive and uniform. The x-ray diffraction analysis showed that the films are polycrystalline in cubic phase with the preferred orientation along (111) direction. Current-voltage curves were recorded at room temperature using Keithley 617 programmable electrometer and conductivity is calculated for the film coated on ITO by two probe method. The pH of the solution is varied by using ammonia and hydrochloric acid. The comparative studies of effect of pH on the morphology, crystallanity and optoelectronic properties of the films are studied. It is observed that the pH of the solution has large influence on optoelectronic properties. The thin film prepared with neutral pH has higher crystallanity, bandgap and conductivity as compared to the samples prepared in acidic or basic solutions.
NASA Astrophysics Data System (ADS)
Stucker, Valerie K.; Walker, Sharon L.; de Ronde, Cornel E. J.; Caratori Tontini, Fabio; Tsuchida, Shinji
2017-10-01
The Hinepuia volcanic center is made up of two distinct edifices aligned northwest to southeast, with an active cone complex in the SE. Hinepuia is one of several active volcanoes in the northern segment of the Kermadec arc. Regional magnetic data show no evidence for large-scale hydrothermal alteration at Hinepuia, yet plume data confirm present-day hydrothermal discharge, suggesting that the hydrothermal system may be too young to have altered the host rocks with respect to measurable changes in magnetic signal. Gravity data are consistent with crustal thinning and shallow mantle under the volcanic center. Following the discovery of hydrothermal plumes over Hinepuia, the submersible Shinkai 6500 was used to explore the SE cone and sample hydrothermal fluids. The chemistry of hydrothermal fluids from submarine arc and backarc volcanoes is typically dominated by water-rock interactions and/or magmatic degassing. Chemical analyses of vent fluids show that Hinepuia does not quite fit either traditional model. Moreover, the Hinepuia samples fall between those typically ascribed to both end-member fluid types when plotted on a K-Mg-SO4 ternary diagram. Due to evidence of strong degassing, abundant native sulfur deposition, and H2S presence, the vent sampled at Hinepuia is ultimately classified as a magmatic-hydrothermal system with a water-rock influence. This vent is releasing water vapor and magmatic volatiles with a notable lack of salinity due to subcritical boiling and phase separation. Magmatic-hydrothermal fluid chemistry appears to be controlled by a combination of gas flux, phase separation processes, and volcano evolution and/or distance from the magma source.
Chang, Huazhen; Ma, Lei; Yang, Shijian; Li, Junhua; Chen, Liang; Wang, Wei; Hao, Jiming
2013-11-15
A series of CeO2 catalysts prepared with sulfate (S) and nitrate (N) precursors by hydrothermal (H) and precipitation (P) methods were investigated in selective catalytic reduction of NOx by NH3 (NH3-SCR). The catalytic activity of CeO2 was significantly affected by the preparation methods and the precursor type. CeO2-SH, which was prepared by hydrothermal method with cerium (IV) sulfate as a precursor, showed excellent SCR activity and high N2 selectivity in the temperature range of 230-450 °C. Based on the results obtained by temperature-programmed reduction (H2-TPR), transmission infrared spectra (IR) and thermal gravimetric analysis (TGA), the excellent performance of CeO2-SH was correlated with the surface sulfate species formed in the hydrothermal reaction. These results indicated that sulfate species bind with Ce(4+) on the CeO2-SH catalyst, and the specific sulfate species, such as Ce(SO4)2 or CeOSO4, were formed. The adsorption of NH3 was promoted by these sulfate species, and the probability of immediate oxidation of NH3 to N2O on Ce(4+) was reduced. Accordingly, the selective oxidation of NH3 was enhanced, which contributed to the high N2 selectivity in the SCR reaction. However, the location of sulfate on the CeO2-SP catalyst was different. Plenty of sulfate species were likely deposited on CeO2-SP surface, covering the active sites for NO oxidation, which resulted in poor SCR activity in the test temperature range. Moreover, the resistance to alkali metals, such as Na and K, was improved over the CeO2-SH catalyst. Copyright © 2013 Elsevier B.V. All rights reserved.
Liermann, Wendy; Berk, Andreas; Böschen, Verena; Dänicke, Sven
2015-01-01
Effects of grinding and hydro-thermal treatment of feed on growth performance, slaughter traits, nutrient digestibility, stomach content and stomach health were examined by using 96 crossbred fattening pigs. Pigs were fed a grain-soybean meal-based diet processed by various technical treatments. Feeding groups differed in particle size after grinding (finely vs. coarsely ground feed) and hydro-thermal treatment (without hydro-thermal treatment, pelleting, expanding, expanding and pelleting). Fine grinding and hydro-thermal treatment showed significant improvements on the digestibility of crude nutrients and content of metabolisable energy. Hydro-thermal treatment influenced average daily gain (ADG) and average daily feed intake (DFI) significantly. Finely ground pelleted feed without expanding enhanced performances by increasing ADG and decreasing feed-to-gain ratio (FGR) of fattening pigs. Coarsely ground feed without hydro-thermal treatment resulted in the highest ADG and DFI, however also in the highest FGR. Expanded feed decreased DFI and ADG. Slaughter traits were not affected by treatments. Coarsely ground feed without hydro-thermal treatment had protective effects on the health of gastric pars nonglandularis, however, pelleting increased gastric lesions. Hydro-thermal treatment, especially expanding, resulted in clumping of stomach content which possibly induced satiety by slower ingesta passage rate and thus decreased feed intake. Pigs fed pelleted feed showed less pronounced development of clumps in stomach content compared with expanded feed.
Vein networks in hydrothermal systems provide constraints for the monitoring of active volcanoes.
Cucci, Luigi; Di Luccio, Francesca; Esposito, Alessandra; Ventura, Guido
2017-03-10
Vein networks affect the hydrothermal systems of many volcanoes, and variations in their arrangement may precede hydrothermal and volcanic eruptions. However, the long-term evolution of vein networks is often unknown because data are lacking. We analyze two gypsum-filled vein networks affecting the hydrothermal field of the active Lipari volcanic Island (Italy) to reconstruct the dynamics of the hydrothermal processes. The older network (E1) consists of sub-vertical, N-S striking veins; the younger network (E2) consists of veins without a preferred strike and dip. E2 veins have larger aperture/length, fracture density, dilatancy, and finite extension than E1. The fluid overpressure of E2 is larger than that of E1 veins, whereas the hydraulic conductance is lower. The larger number of fracture intersections in E2 slows down the fluid movement, and favors fluid interference effects and pressurization. Depths of the E1 and E2 hydrothermal sources are 0.8 km and 4.6 km, respectively. The decrease in the fluid flux, depth of the hydrothermal source, and the pressurization increase in E2 are likely associated to a magma reservoir. The decrease of fluid discharge in hydrothermal fields may reflect pressurization at depth potentially preceding hydrothermal explosions. This has significant implications for the long-term monitoring strategy of volcanoes.
Hydrothermal signature in the axial-sediments from the Carlsberg Ridge in the northwest Indian Ocean
NASA Astrophysics Data System (ADS)
Yu, Zenghui; Li, Huaiming; Li, Mengxing; Zhai, Shikui
2018-04-01
30 sediments grabbed from 24 sites between the equator and 10°N along the Carlsberg Ridge (CR) in the northwest Indian Ocean has been analyzed for bulk chemical compositions. Hydrothermal components in the sediments are identified and characterized. They mainly occur at 6.3°N as sulfide debris and at 3.6°N as both sulfide and high temperature water-rock interaction products. The enrichment of chalcophile elements such as Zn, Cu, Pb and the depletion of alkalis metals such as K and Rb are the typical features of hydrothermal components. High U/Fe, low (Nd/Yb)N and negative Ce anomaly infer the uptake of seawater in the hydrothermal deposits by oxidizing after deposition. However, the general enrichment of Mn in hydrothermal plumed-derived materials is not found in the sediments, which may indicate the limited diffusion of fluids or plumes, at least in the direction along the Carlsberg spreading center. The hydrothermal components show their similarity to the hydrothermal deposits from the Indian Ocean Ridge. At 3.6°N ultramafic rocks or gabbroic intrusions, may be involved in the hydrothermal system.
The influence of sodium lauryl sulfate on the crystal phases of titania by hydrothermal method
NASA Astrophysics Data System (ADS)
Liu, Chaohong; Wang, Xin
2012-11-01
In this paper, we prepared TiO2 nanostructures by a hydrothermal method and investigated the influence of the SO4^{2-} ion and the effect of long alkyl chains of sodium dodecyl sulfate on the crystal phases of TiO2 by experiments and theoretical calculations. The results indicate that the absorption of the H+HSO4 fragment on rutile (110) is more stable than that of the 2H+SO4 fragment and more favorable to the formation of anatase. The absorption and steric effects of sodium dodecyl sulfate on the surfaces of TiO2 grains also have an important influence on the formation of mixed crystals by changing the speed and the way of octahedral TiO6 units combining. Based on the above facts, we revised the original reaction scheme for crystalline titania formation by previous authors.
Du, Yi; Cheng, Zhenxiang; Dou, Shixue; Wang, Xiaolin
2011-03-01
Bi2Fe4O9 nano and micron powders have been synthesized by a hydrothermal method. The as-obtained samples are pure phase and crystallize in the orthorhombic structure. Diverse particle morphologies, including nanoplates, nanospheres, microcubes, and microcylinders, are obtained under different synthesis conditions. The solvent N,N-Dimethylformamide (DMF), together with the mineralisers NaOH and NH4OH, are found to be the key factors for the formation of the particles with their diverse morphologies and sizes. The magnetization dependence of temperature (M-T), observed in a field of 1000 Oe from 10 to 340 K, and M-H loops measured at 10 K indicate that the Bi2Fe4O9 particles are paramagnetic at room temperature and undergo an antiferromagnetic transition at a Néel temperature (T(N)) of 250 K.
Continuous flow synthesis of VO2 nanoparticles or nanorods by using a microreactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jie; Sun, Yugang; Muehleisen, Ralph T.
The invention provides a method for producing composite nanoparticles, the method using a first compound capable of transitioning from a monoclinic to a tetragonal rutile crystal state upon heating, and having the steps of subjecting the first compound to a hydrothermal synthesis to create anisotropic crystals of the compound; encapsulating the first compound with a second compound to create a core-shell construct; and annealing the construct as needed. Also provided is a device for continuously synthesizing composite nanoparticles, the device having a first precursor supply and a second precursor supply; a mixer to homogeneously combine the first precursor and secondmore » precursor to create a liquor; a first microreactor to subject the liquor to hydrothermic conditions to create an\\isotropic particles in a continuous operation mode; and a second microreactor for coating the particles with a third precursor to create a core-shell construct.« less
NASA Astrophysics Data System (ADS)
Wasly, H. S.; El-Sadek, M. S. Abd; Henini, Mohamed
2018-01-01
Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV-visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30-40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90-3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles.
Jihong, Qu
2014-01-01
Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663
Ren, Kun; Jihong, Qu
2014-01-01
Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision.
NASA Astrophysics Data System (ADS)
Javed, Qurat-Ul-Ain; Baqi, Sabah; Abbas, Hussain; Bibi, Maryam
2017-02-01
Hydrothermal method was chosen as a convenient method to fabricate zinc selenide (ZnSe) nanoparticle materials. The prepared nanospheres were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), where its different properties were observed using UV-visible spectroscopy and LCR meter. It was found that the pure ZnSe nanoparticles have a Zinc blende structure with crystallite size 10.91 nm and in a spherical form with average diameter of 35 nm (before sonication) and 18 nm (after sonication) with wide band gap of 4.28 eV. It was observed that there is inverse relation of frequency with dielectric constant and dielectric loss while AC conductivity grows up by increasing frequency. Such nanostructures were determined to be effectively used in optoelectronic devices as UV detector and in those devices where high-dielectric constant materials are required.
Metal Catalyst for Low-Temperature Growth of Controlled Zinc Oxide Nanowires on Arbitrary Substrates
Kim, Baek Hyun; Kwon, Jae W.
2014-01-01
Zinc oxide nanowires generated by hydrothermal method present superior physical and chemical characteristics. Quality control of the growth has been very challenging and controlled growth is only achievable under very limited conditions using homogeneous seed layers with high temperature processes. Here we show the controlled ZnO nanowire growth on various organic and inorganic materials without the requirement of a homogeneous seed layer and a high temperature process. We also report the discovery of an important role of the electronegativity in the nanowire growth on arbitrary substrates. Using heterogeneous metal oxide interlayers with low-temperature hydrothermal methods, we demonstrate well-controlled ZnO nanowire arrays and single nanowires on flat or curved surfaces. A metal catalyst and heterogeneous metal oxide interlayers are found to determine lattice-match with ZnO and to largely influence the controlled alignment. These findings will contribute to the development of novel nanodevices using controlled nanowires. PMID:24625584
Cao, Leichang; Zhang, Cheng; Chen, Huihui; Tsang, Daniel C W; Luo, Gang; Zhang, Shicheng; Chen, Jianmin
2017-12-01
Hydrothermal liquefaction has been widely applied to obtain bioenergy and high-value chemicals from biomass in the presence of a solvent at moderate to high temperature (200-550°C) and pressure (5-25MPa). This article summarizes and discusses the conversion of agricultural and forestry wastes by hydrothermal liquefaction. The history and development of hydrothermal liquefaction technology for lignocellulosic biomass are briefly introduced. The research status in hydrothermal liquefaction of agricultural and forestry wastes is critically reviewed, particularly for the effects of liquefaction conditions on bio-oil yield and the decomposition mechanisms of main components in biomass. The limitations of hydrothermal liquefaction of agricultural and forestry wastes are discussed, and future research priorities are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, S.; Tao, C.; Li, H.; Zhou, J.; Deng, X.; Tao, W.; Zhang, G.; Liu, W.; He, Y.
2014-12-01
The Precious Stone Mountain hydrothermal field (PSMHF) is located on the southern rim of the Galapagos Microplate. It was found at the 3rd leg of the 2009 Chinese DY115-21 expedition on board R/V Dayangyihao. It is efficient to learn the distribution of hydrothermal plumes and locate the hydrothermal vents by detecting the anomalies of turbidity and temperature. Detecting seawater turbidity by MAPR based on deep-tow technology is established and improved during our cruises. We collected data recorded by MAPR and information from geological sampling, yielding the following results: (1)Strong hydrothermal turbidity and temperature anomalies were recorded at 1.23°N, southeast and northwest of PSMHF. According to the CTD data on the mooring system, significant temperature anomalies were observed over PSMHF at the depth of 1,470 m, with anomalies range from 0.2℃ to 0.4℃, which gave another evidence of the existence of hydrothermal plume. (2)At 1.23°N (101.4802°W/1.2305°N), the nose-shaped particle plume was concentrated at a depth interval of 1,400-1,600 m, with 200 m thickness and an east-west diffusion range of 500 m. The maximum turbidity anomaly (0.045 △NTU) was recorded at the depth of 1,500 m, while the background anomaly was about 0.01△NTU. A distinct temperature anomaly was also detected at the seafloor near 1.23°N. Deep-tow camera showed the area was piled up by hydrothermal sulfide sediments. (3) In the southeast (101.49°W/1.21°N), the thickness of hydrothermal plume was 300 m and it was spreading laterally at a depth of 1,500-1,800 m, for a distance about 800 m. The maximum turbidity anomaly of nose-shaped plume is about 0.04 △NTU at the depth of 1,600 m. Distinct temperature anomaly was also detected in the northwest (101.515°W/1.235°N). (4) Terrain and bottom current were the main factors controlling the distribution of hydrothermal plume. Different from the distribution of hydrothermal plumes on the mid-ocean ridges, which was mostly effected by seafloor topography, the terrain of the PSMHF was relatively flat, so the impact was negligible. Southwest direction bottom current at the speed of 0.05 m/s in PSMHF had a great influence on the distribution and spreading direction of hydrothermal plume. Keyword: hydrothermal plume, Precious Stone Mountain hydrothermal field, turbidity
Preparation and gasification of a Thailand coal-water fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, R.O. Jr.; Anderson, C.M.; Musich, M.A.
In response to an inquiry by the Department of Mineral Resources (DMR) in Thailand, the Energy and Environmental Research Center (EERC) prepared a four-task program to assess the responsiveness of Wiang Haeng coal to the temperature and pressure conditions of hot-water drying (HWD). The results indicate that HWD made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 37.4 wt% for the raw coal to about 20 wt% for the HWD coals. The energy density, determined at 500 cP, indicates an increasemore » from 4450 to 6650 Btu/lb by hydrothermal treatment. Raw and HWD coal were then gasified at various mild gasification conditions of 700 C and 30 psig. The tests indicated that the coal is probably similar to other low-rank coals and will produce high levels of hydrogen and be fairly reactive.« less
Alassali, Ayah; Cybulska, Iwona; Galvan, Alejandro Ríos; Thomsen, Mette Hedegaard
2017-02-01
In this study Salicornia sinus-persica, a succulent halophyte was assessed for its potential to be used as a feedstock for bioethanol production. For such succulent, salty, green biomasses, direct fractionation and fermentation allow for water preservation in the process. Fresh biomass of S. sinus-persica was collected and split into two fractions by wet fractionation; liquid (juice) and solid (pulp). Sugar contents were found to be 1.0-1.5% for the juice fraction and 50% (w/w) for the fresh pulp. Direct fermentation of the juice using Saccharomyces cerevisiae showed no salt inhibition of the yeast and ethanol yields of ~70% were achieved. A pretreatment study was carried out for the pulp fraction applying mild hydrothermal pretreatment. Cellulose convertibility was found to be significantly higher for severity factors above 2.00, and the highest ethanol yield (76.91 ± 3.03%) was found at process severity of 3.06 (170 °C, 10 min).
Rivas, Sandra; González-Muñoz, María Jesús; Santos, Valentín; Parajó, Juan Carlos
2014-06-01
Water soluble compounds were removed from Pinus pinaster wood by a mild aqueous extraction, and the treated wood was subjected to hydrothermal processing to convert most hemicelluloses into soluble saccharides (including low molecular weight polymers, oligomers and monosaccharides). The liquid phase containing hemicellulose-derived saccharides was acidified with sulfuric acid and heated up to 130-250°C to obtain furans and levulinic acid as major products. The concentration profiles of the major compounds participating in the reactions were interpreted by a kinetic model. A maximum conversion of pentoses into furfural near 80% was predicted at high temperature and short time, conditions leading to 24% conversion of hexoses into HMF. Production of levulinic acid was favored at low temperatures. Maximum molar conversion of hexoses into levulinic acid (66.7% at 130°C) needed a long reaction time (235 h). A value of 53.0% can be achieved at 170°C after 5 h. Copyright © 2014 Elsevier Ltd. All rights reserved.
[Physiotherapy strategies in osteoporosis--recommendations for daily practice].
Uhlemann, C; Lange, U
2006-09-01
Physiotherapy in osteoporosis essentially takes the form of stimulatory therapy tailored to the findings and the pathomechanism. The choice of therapy and its dosage depend on the desired result (prevention, cure, rehabilitation). Physical therapy applied in osteoporosis includes electrical, thermic (hydrothermic, high frequency thermic, light thermic) and mechanical (massage, physiotherapy) stimuli, which can be applied regionally, locally or hoistically. To be efficient, a pain therapy requires that the various painful states be differentiated between: whereas, for example, in the case of acute pain physiotherapy fulfils the function of immediate therapy (normally rest and "mild" cold applications), in chronic pain it has to fulfil the function of an adaptive performance therapy of neuronal structures (formative-adaptive physiotherapy, thermic therapy improving trophism, direct current, transcutaneous electric nerve stimulation/TENS). It is necessary and extremely important forday-to-day clinical practice that physiotherapy strategies that are tailored to each patient's needs and also economically justifiable be implemented. The article isintended to contribute to this.
NASA Astrophysics Data System (ADS)
Toki, T.; Otake, T.; Ishibashi, J. I.; Matsui, Y.; Kawagucci, S.; Kato, H.; Fuchida, S.; Miyahara, R.; Tsutsumi, A.; Kawakita, R.; Uza, H.; Uehara, R.; Shinjo, R.; Nozaki, T.; Kumagai, H.; Maeda, L.
2017-12-01
From 16th November to 15th December 2016, D/V Chikyu drilled the sea bottom around hydrothermal fields at HAKUREI site in the Izena Hole, Okinawa Trough. Site C9025, C9026, C9027, C9028, and C9032 are located along the transect line from the top of the northern mound of HAKUREI site to the eastward, and Site C9030 for the control site is located about 500 m northwest of the mound. Mg concentrations have generally been used to estimate mixing ratios between hydrothermal end-member and seawater in samples from hydrothermal vents. Higher Mg concentrations, however, were detected in the interstitial water than that of seawater, which could be due to artificially dissolution of Mg-bearing minerals that had formed in in-situ environments, when the cored sediments had become cool after their recovery on ship. Similar features were observed with regard to sulfate concentrations, and it suggests that these chemical species are not suitable to estimate quantitatively the contribution of hydrothermally-derived components. In some layers, chloride concentrations were different from that of seawater, indicating that hydrothermal fluids that had been suffered from phase separation flowed into the layers. The deviation, however, was positive or negative relative to that of seawater for an influence of brine or vapor phase, respectively. Therefore chloride concentrations are also not suitable to evaluate a quantitative contribution of hydrothermal end-member. On the other hand, K and B showed only enrichments relative to the seawater, and their highest concentrations are consistent with the reported hydrothermal end-members of each species at HAKUREI site. Using the concentrations of K and B can be evaluated for an influence of hydrothermal components. Furthermore, the headspace gas data are useful in the layers of sulfide minerals and silicified rocks, even though the interstitial waters could not be obtained because of their hardness. Based on these indices, hydrothermal fluids would be distributed in the upper and lower layers of the ore body. The hydrothermally altered sediment layers above the ore body contain relatively unstable minerals that dissociate immediately in a room temperature, which could play a role as a boundary between hydrothermal fluids and intruded seawater in in-situ environments.
NASA Astrophysics Data System (ADS)
Rai, A.; Wang, H.; Singh, S. C.; Crawford, W. C.; Escartin, J.; Cannat, M.
2010-12-01
Hydrothermal circulation at ocean spreading centres plays fundamental role in crustal accretion process, heat extraction from the earth and helps to maintain very rich ecosystem in deep Ocean. Recently, it has been suggested that hydrothermal circulation is mainly along the ridge axis at fast spreading centres above along axis melt lens (AMC). Using a combination of micro-earthquake and seismic reflection data, we show that the hydrothermal circulation at the Lucky Strike segment of slow spreading Mid-Atlantic Ridge is also along axis in a narrow (~1 km) zone above a wide (2-3 km) AMC. We find that the seismicity mainly lies above the seismically imaged 3 km wide 7 km long melt lens at 3.2 km depth. We observe a vertical plume of seismicity above a weak AMC reflection just north of the hydrothermal vent fields that initiates just above the AMC and continues to the seafloor. This zone is collocated with active rifting of the seafloor in the neo-volcanic zone. Beneath the hydrothermal vents sites, where a strong melt lens is imaged, the seismicity initiates at 500 m above the AMC and continues to the seafloor. Just south of the hydrothermal field, where the AMC is widest and strongest, the seismicity band lies 500 m above the melt lens in a 800 m thick zone, which does not continue to the seafloor. The presence the weak melt lens reflection could be due to a cooled and crystallised AMC (mush) that permits the penetration of hydrothermal fluids down to the top of the AMC indicated by seismicity plume and might be the in-flow zone for hydrothermal circulation. The strong AMC reflection could be due to fresh supply of melt in the AMC (pure melt), which has pushed the cracking front 500 m above the AMC. Beneath the hydrothermal fields, the strong AMC reflection and seismicity 500 above the AMC to the seafloor could represent cracking along the up-flow zone. The 800 m thick zone of seismicity above the pure melt zone could be the zone of hydrothermal cracking zone. We do not observe any seismicity along the main bounding faults. These results suggest that the hydrothermal flow is mainly along the ridge axis in a narrow zone above the AMC, even when the AMC only 7 km long.
NASA Astrophysics Data System (ADS)
Lacroix, B.; Hughes, J.; Lahfid, A.; Delchini, S.
2017-12-01
The thermal history of the Nacimiento block located within the Franciscan Complex (California, USA) has been previously proposed based on both vitrinite reflectance (Rm) and illite cristallinity methods (Underwood et al., 1995). These authors suggest that the Nacimiento block is locally perturbed by a thermal anomaly (up to 300ºC), probably caused by post-metamorphic hydrothermal activity linked to the emplacement of an Au-deposit: the Los Burros Gold deposit. Although both thermal anomaly and deposit seem spatially correlated, their relationship is still poorly constrained. Detailed geological and structural mapping within the Los Burros Mining District (LBMD) coupled with a thermal study was conducted to better understand processes responsible for the anomalous temperatures recorded near the deposit. The regional maximum temperature reached by metasediments from the Nacimiento block have been first investigated using the Raman Spectroscopy of Carbonaceous Materials (RSCM) method. In addition, through careful fluid-inclusion and stable isotopes (O and C) studies on the deposit, the temperature and the potential source of the fluid responsible for the Los Burros Au-deposit emplacement were investigated. RSCM technique confirms the presence of a thermal anomaly in the range 260-320ºC near LBMD. However, our structural and petrographic results suggest that the thermal anomaly is not correlated to a post-metamorphic hydrothermal overprint but rather to a late, transpressive deformation uplifting buried metamorphic rocks.
The feeding system of the Lusi eruption revealed by ambient noise tomography
NASA Astrophysics Data System (ADS)
Javad Fallahi, Mohammad; Obermann, Anne; Lupi, Matteo; Mazzini, Adriano
2017-04-01
Lusi is a clastic dominated geysering system located in the northeastern Java backarc basin in Indonesia. Based on fluid geochemistry it has been described as a newborn sedimentary-hosted hydrothermal system. The present study provides a 3D model of shear wave velocity anomaly beneath Lusi and the neighboring Arjuno-Welirang volcanic complex and aims to better understand the subsurface structures as well as the Lusi plumbing system. To date, our data represent the first image of a hydrothermal plume in the upper crust seen with geophysical methods. We use 10 months of ambient noise data recorded by 31 temporary seismic stations and use ambient noise tomography methods to obtain the shear wave velocity model. The obtained tomographic images reveal the presence of a low velocity zone that connects the Arjuno-Welirang volcanic complex at about 5 km depth and ultimately emerging at the Lusi eruption site. Magmatic reservoirs beneath volcanic systems are also identified. Low shear wave anomalies representing magmatic reservoirs are less pronounced for the Arjuno-Welirang volcanic complex (the oldest system investigated in this study), intermediate beneath the Penanggungan volcano and result much more pronounced beneath the newborn Lusi. The results obtained in this study are consistent with a scenario envisaging a magmatic intrusion at depth and/or hydrothermal fluids migrating from the volcanic complex and extending towards the sedimentary basin.
Li, Ming; Magdassi, Shlomo; Gao, Yanfeng; Long, Yi
2017-09-01
Vanadium dioxide (VO 2 ) is a widely studied inorganic phase change material, which has a reversible phase transition from semiconducting monoclinic to metallic rutile phase at a critical temperature of τ c ≈ 68 °C. The abrupt decrease of infrared transmittance in the metallic phase makes VO 2 a potential candidate for thermochromic energy efficient windows to cut down building energy consumption. However, there are three long-standing issues that hindered its application in energy efficient windows: high τ c , low luminous transmittance (T lum ), and undesirable solar modulation ability (ΔT sol ). Many approaches, including nano-thermochromism, porous films, biomimetic surface reconstruction, gridded structures, antireflective overcoatings, etc, have been proposed to tackle these issues. The first approach-nano-thermochromism-which is to integrate VO 2 nanoparticles in a transparent matrix, outperforms the rest; while the thermochromic performance is determined by particle size, stoichiometry, and crystallinity. A hydrothermal method is the most common method to fabricate high-quality VO 2 nanoparticles, and has its own advantages of large-scale synthesis and precise phase control of VO 2 . This Review focuses on hydrothermal synthesis, physical properties of VO 2 polymorphs, and their transformation to thermochromic VO 2 (M), and discusses the advantages, challenges, and prospects of VO 2 (M) in energy-efficient smart windows application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kalb, Julian; Dorman, James A.; Folger, Alena; Gerigk, Melanie; Knittel, Vanessa; Plüisch, Claudia S.; Trepka, Bastian; Lehr, Daniela; Chua, Emily; Goodge, Berit H.; Wittemann, Alexander; Scheu, Christina; Polarz, Sebastian; Schmidt-Mende, Lukas
2018-07-01
Rutile TiO2 nanorod arrays (NRAs) are applicable in various prospective technologies. Hydrothermal methods present a simple technique to fabricate such NRAs. In this report, we present the fabrication of seed layers for the hydrothermal growth of rutile TiO2 nanorods via sputter deposition, electron-beam evaporation, and sol-gel method and study the influence of each on the growth behavior. To satisfy the requirements of numerous applications, p-type silicon, platinum, levitating carbon membranes, a template made of polystyrene spheres, and commercial fluorine tin oxide (FTO) were employed as substrates. We document the structural properties of the TiO2 seed layers and describe the relationship between the characteristics of the seed crystals, the growth evolution, and the appearance of as-grown nanorods. Various growth stages of rutile TiO2 nanorods are compared depending on whether they are grown on polycrystalline TiO2 or FTO seed layers. In both cases, a homogenous TiO2 bottom layer is formed at the seed layer/substrate interface, which is essential for electronic applications such as hybrid solar cells. Detached NRAs illustrate the effect of rutile FTO and TiO2 on the porosity of this bottom layer. Further details about the formation process of this layer are obtained from the growth on confined seed layers fabricated by electron-beam lithography.
The Marine Biogeochemistry of Zinc Isotopes
2007-06-01
hydrothermal fluids and minerals, cultured marine phytoplankton, natural plankton, and seawater. By measuring Zn isotopes in a diverse array of...variations were discovered in hydrothermal fluids and minerals, with hydrothermal fluids ranging in 6 66Zn from 0.02 %o to +0.93 %o, and chimney minerals...drives much of the Zn isotope fractionation in hydrothermal systems. In cultured diatoms, a relationship was discovered between Zn transport by
Sun, Shaolong; Zhang, Lidan; Liu, Fang; Fan, Xiaolin; Sun, Run-Cang
2018-01-01
To increase the production of bioethanol, a two-step process based on hydrothermal and dilute alkaline treatment was applied to reduce the natural resistance of biomass. However, the process required a large amount of water and a long operation time due to the solid/liquid separation before the alkaline treatment, which led to decrease the pure economic profit for production of bioethanol. Therefore, four one-step processes based on order of hydrothermal and alkaline treatment have been developed to enhance concentration of glucose of wheat straw by enzymatic saccharification. The aim of the present study was to systematically evaluated effect for different one-step processes by analyzing the physicochemical properties (composition, structural change, crystallinity, surface morphology, and BET surface area) and enzymatic saccharification of the treated substrates. In this study, hemicelluloses and lignins were removed from wheat straw and the morphologic structures were destroyed to various extents during the four one-step processes, which were favorable for cellulase absorption on cellulose. A positive correlation was also observed between the crystallinity and enzymatic saccharification rate of the substrate under the conditions given. The surface area of the substrate was positively related to the concentration of glucose in this study. As compared to the control (3.0 g/L) and treated substrates (11.2-14.6 g/L) obtained by the other three one-step processes, the substrate treated by one-step process based on successively hydrothermal and alkaline treatment had a maximum glucose concentration of 18.6 g/L, which was due to the high cellulose concentration and surface area for the substrate, accompanying with removal of large amounts of lignins and hemicelluloses. The present study demonstrated that the order of hydrothermal and alkaline treatment had significant effects on the physicochemical properties and enzymatic saccharification of wheat straw. The one-step process based on successively hydrothermal and alkaline treatment is a simple operating and economical feasible method for the production of glucose, which will be further converted into bioethanol.
NASA Astrophysics Data System (ADS)
Chen, S.; Tao, C.; Baker, E. T.; Li, H.
2016-12-01
The Zouyu-1 (14.41°W, 13.25°S) and Zouyu-2 (14.41°W, 13.28°S) hydrothermal fields are located on the neovolcanic Zouyu ridge on axis of a symmetrical spreading ridge, which is on the eastern side of the S14 segment on the southern Mid-Atlantic ridge (the ridge segments were numbered by Chunhui Tao (2016) ). The two hydrothermal fields were found during Chinese 22nd cruise in 2011 and 21st cruise in 2009 on board R/V Dayang YiHao, respectively. We collected data recorded by light-scattering and temperature sensors (Miniature Autonomous Plume Recorder, short for MAPR), and H2S and ORP sensors (Electro-chemical sensor, short for ECS) in multiple years (2009, 2011), yielding the following results: (1) The turbidity anomalies were widely distributed in the Zouyu-1 and Zouyu-2 hydrothermal fields. And the highest turbidity anomalies were concentrated around Zouyu-2 hydrothermal field, with a maximum value of 0.094 △NTU south of Zouyu-2 vent. The horizontal scale of hydrothermal plume maximum was 2.5 km. The plume maximum is offset 500 m east of the Zouyu-2 vent location. (2) ORP anomalies were detected near Zouyu-2 in 2011. Sharp and substantial ORP ( 80 mV) and H2S (2.5 nmol/L) anomalies occurred near 14.412°W,13.28°S for 300 m along the track line 22II-L07. (3)Temperature along the track line 21IV-L04 in the Zouyu-2 field increased by as much as 0.03 ° even as the depth of MAPR was largely unchanged. With the evidence of concomitant fluctuations in turbidity, it showed the temperature increases were hydrothermally induced. Keywords: hydrothermal plume, Zouyu-1 hydrothermal field, Zouyu-2 hydrothermal field
Water column imaging on hydrothermal vent in Central Indian Ridge
NASA Astrophysics Data System (ADS)
Koh, J.; Park, Y.
2017-12-01
Water column imaging with Multibeam echosounder systems (MBES) is recently becoming of increasing interest for oceanographic studies. Especially gas bubbles and hot water exposed from hydrothermal vents make acoustic impedance anomalies in cold seawater, water column imaging is very useful for the researchers who want to detect some kinds of hydrothermal activity. We conducted a hydrothermal exploration program, called "INVENT17", using the MBES system, KONGBERG EM122 (12kHz, 1°×1°), mounted on R/V ISABU and we deployed other equipments including video guided hydraulic grab, tow-yo CTD and general CTD with MAPR (Miniature Autonomous Plume Recorder) in 2017. First, to evaluate its capabilities of detection of hydrothermal vent, the surveys using the MBES were conducted at the Solitaire Field, previously identified hydrothermal area of the Central Indian Ridge. The bathymetric data obtained from MBES provided information about detailed morphology of seafloor, but we were not able to achieve the information from the water column imaging data. But the clue of existence of active hydrothermal vent was detected through the values of ΔNTU, dEh/dt, and OPR gained from MAPR, the data means that the hydrothermal activity affects 100m from the seafloor. It could be the reason that we can't find the hydrothermal activity because the range resolution of water column imaging is pretty rough so that the size of 100m-scaled activity has low possibility to distinguish from seafloor. The other reason is there are no sufficient objects to cause strong scattering like as CO2 bubbles or droplets unlike in the mid-Okinawa Trough. And this suggests that can be a important standard to identify properties of hydrothermal vent sites depending on the presence of scattering objects in water mass. To justify this, we should perform more chemical analysis of hot water emanating from hydrothermal vent and collected several bottles of water sample to do that.
Hydrothermal systems are a sink for dissolved black carbon in the deep ocean
NASA Astrophysics Data System (ADS)
Niggemann, J.; Hawkes, J. A.; Rossel, P. E.; Stubbins, A.; Dittmar, T.
2016-02-01
Exposure to heat during fires on land or geothermal processes in Earth's crust induces modifications in the molecular structure of organic matter. The products of this thermogenesis are collectively termed black carbon. Dissolved black carbon (DBC) is a significant component of the oceanic dissolved organic carbon (DOC) pool. In the deep ocean, DBC accounts for 2% of DOC and has an apparent radiocarbon age of 18,000 years. Thus, DBC is much older than the bulk DOC pool, suggesting that DBC is highly refractory. Recently, it has been shown that recalcitrant deep-ocean DOC is efficiently removed during hydrothermal circulation. Here, we hypothesize that hydrothermal circulation is also a net sink for deep ocean DBC. We analyzed DBC in samples collected at different vent sites in the Atlantic, Pacific and Southern oceans. DBC was quantified in solid-phase extracts as benzenepolycarboxylic acids (BPCAs) following nitric acid digestion. Concentrations of DBC were much lower in hydrothermal fluids than in surrounding deep ocean seawater, confirming that hydrothermal circulation acts as a net sink for oceanic DBC. The relative contribution of DBC to bulk DOC did not change during hydrothermal circulation, indicating that DBC is removed at similar rates as bulk DOC. The ratio of the oxidation products benzenehexacarboxylic acid (B6CA) to benzenepentacarboxylic acid (B5CA) was significantly higher in hydrothermally altered samples compared to ratios typically found in the deep ocean, reflecting a higher degree of condensation of DBC molecules after hydrothermal circulation. Our study identified hydrothermal circulation as a quantitatively important sink for refractory DBC in the deep ocean. In contrast to photodegradation of DBC at the sea surface, which is more efficient for more condensed DBC, i.e. decreasing the B6CA/B5CA ratio, hydrothermal processing increases the B6CA/B5CA ratio, introducing a characteristic hydrothermal DBC signature.
Ma, Ming-Guo
2012-01-01
Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable hydrothermal route had been developed for the synthesis of hierarchically nanosized HA with flower-like structure assembled from nanosheets consisting of nanorod building blocks. The HA with the hierarchical nanostructure was formed via a soft-template assisted self-assembly mechanism. The hierarchically nanostructured HA has a good biocompatibility and essentially no in-vitro cytotoxicity. PMID:22619527
Ball, Jessica L.; Calder, Eliza S.; Hubbard, Bernard E.; Bernstein, Marc L.
2013-01-01
A combination of field mapping, geochemistry, and remote sensing methods has been employed to determine the extent of hydrothermal alteration and assess the potential for failure at the Santiaguito lava dome complex, Guatemala. The 90-year-old complex of four lava domes has only experienced relatively small and infrequent dome collapses in the past, which were associated with lava extrusion. However, existing evidence of an active hydrothermal system coupled with intense seasonal precipitation also presents ideal conditions for instability related to weakened clay-rich edifice rocks. Mapping of the Santiaguito dome complex identified structural features related to dome growth dynamics, potential areas of weakness related to erosion, and locations of fumarole fields. X-ray diffraction and backscattered electron images taken with scanning electron microscopy of dacite and ash samples collected from around fumaroles revealed only minor clay films, and little evidence of alteration. Mineral mapping using ASTER and Hyperion satellite images, however, suggest low-temperature (<150 °C) silicic alteration on erosional surfaces of the domes, but not the type of pervasive acid-sulfate alteration implicated in collapses of other altered edifices. To evaluate the possibility of internal alteration, we re-examined existing aqueous geochemical data from dome-fed hot springs. The data indicate significant water–rock interaction, but the Na–Mg–K geoindicator suggests only a short water residence time, and δ18O/δD ratios show only minor shifts from the meteoric water line with little precipitation of secondary (alteration) minerals. Based on available data, hydrothermal alteration on the dome complex appears to be restricted to surficial deposits of hydrous silica, but the study has highlighted, importantly, that the 1902 eruption crater headwall of Santa María does show more advanced argillic alteration. We also cannot rule out the possibility of advanced alteration within the dome complex interior that is not accessible to the methods used here. It may therefore be prudent to employ geophysical methods to make further assessments in the future.
LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.
Saji, Viswanathan S; Song, Hyun-Kon
2015-01-01
Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures.
The Synthesis and Photoluminescent Properties of CaMoO₄:Eu³⁺ Nanocrystals by a Soft Chemical Route.
Li, Fuhai; Yu, Lixin; Sun, Jiaju; Li, Songchu; Wei, Shuilin
2017-04-01
In this paper, the CaMoO4:Eu3+ phosphors were prepared by a simple hydrothermal method assisted by the citric acid as the surfactant, and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and fluorescent spectrophotometry. The results of XRD show that the as-prepared samples are single phase. The process of the Ostwald ripening is controlled by the content of the citric acid in the hydrothermal reaction. The pH value of the precursor affects the shift of the charge transition band (CTB) in the excitation spectra. The reaction condition can strongly affect the luminescent intensity of the samples.
Onoda, Hiroaki; Yamaguchi, Taisuke
2013-04-01
In this study, titanium phosphates were prepared from titanium chloride and phosphoric acid, sodium pyrophosphate and sodium triphosphate solutions with water retention compounds in hydrothermal process as a novel white pigment for cosmetics. Their chemical composition, powder properties, photo catalytic activity, water retention and smoothness were studied. The addition of glycerin in the preparation from sodium pyrophosphate has the useful method to obtain homogenized spherical particles of titanium phosphate pigments for the cosmetics. These titanium phosphates had less photo catalytic activity to protect the sebum on the skin. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Synthesis of carbon-coated TiO 2 nanotubes for high-power lithium-ion batteries
NASA Astrophysics Data System (ADS)
Park, Sang-Jun; Kim, Young-Jun; Lee, Hyukjae
Carbon-coated TiO 2 nanotubes are prepared by a simple one-step hydrothermal method with an addition of glucose in the starting powder, and are characterized by morphological analysis and electrochemical measurement. A thin carbon coating on the nanotube surface effectively suppresses severe agglomeration of TiO 2 nanotubes during hydrothermal reaction and post calcination. This action results in better ionic and electronic kinetics when applied to lithium-ion batteries. Consequently, carbon-coated TiO 2 nanotubes deliver a remarkable lithium-ion intercalation/deintercalation performance, such as reversible capacities of 286 and 150 mAh g -1 at 250 and 7500 mA g -1, respectively.
Hydrothermal Synthesis of PbTiO3 Nanocrystals with a pH-Adjusting Agent of Ammonia Solution
NASA Astrophysics Data System (ADS)
Li, Xinyi; Huang, Zhixiong; Zhang, Lianmeng; Guo, Dongyun
2018-05-01
The PbTiO3 nanocrystals were synthesized by a hydrothermal method, and ammonia solution was firstly used as a pH-adjusting agent. The effect of ammonia concentration on formation and morphologies of PbTiO3 nanocrystals was investigated. At low ammonia concentration (0-2.2 mol/L), no perovskite PbTiO3 phase was formed. When the ammonia concentration was 4.4 mol/L, the rod-like PbTiO3 nanocrystals with highly crystalline were successfully synthesized. As the ammonia concentration further increased to 13.2 mol/L, the flake-like PbTiO3 nanocrystals were formed.
Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires
Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus
2013-01-01
Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms. PMID:28348350
Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires.
Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus
2013-09-09
Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.
Method of producing a carbon coated ceramic membrane and associated product
Liu, P.K.T.; Gallaher, G.R.; Wu, J.C.S.
1993-11-16
A method is described for producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane. 12 figures.
600 kyr of Hydrothermal Activity on the Cleft Segment of the Juan de Fuca Ridge
NASA Astrophysics Data System (ADS)
Middleton, J. L.; Mukhopadhyay, S.; Langmuir, C. H.; Costa, K.; McManus, J. F.; Katz, R. F.; Huybers, P. J.; Winckler, G.; Li, Y.
2017-12-01
Pressure fluctuations caused by glacially driven variations in sea level may modulate magmatic and hydrothermal output at submarine volcanic centers, with falling sea level driving increased volcanic activity. In turn, glacially paced changes in submarine volcanism could induce globally synchronous variations in the delivery of bioavailable iron and CO2 from mid-ocean ridges and thus provide solid-Earth feedbacks into the climate system. While evaluation of submarine volcanic output on orbital-timescales is technically challenging, near-ridge sediment cores hosting hydrothermal plume precipitates provide continuous, spatially integrated, and datable records to investigate the long-term behavior of hydrothermal systems. We will present new sedimentary records of hydrothermal variability spanning the past 600 kyr on the Cleft Segment of the Juan de Fuca Ridge in the Northeast Pacific. As an intermediate spreading-rate ridge, the Juan de Fuca Ridge is hypothesized to be particularly sensitive to sea level forcing at the Milankovitch frequencies of Pleistocene glacial cycles. Thus, the new records can be used to examine the connection between sea level and hydrothermal activity over multiple glacial cycles. Hydrothermal input is determined from iron and copper, with a titanium-based correction for lithogenic contributions. Sedimentary fluxes are then constrained using excess thorium-230 and extraterrestrial helium-3 as constant flux proxies. Preliminary results indicate 10-fold changes in hydrothermal iron and copper fluxes over the past 600 kyr and suggest a quasiperiodic variability in hydrothermal deposition on 100 to 120 kyr cycles. Comparison of the Juan de Fuca record with model predictions for an intermediate spreading ridge forced by Pleistocene glacial cycles finds frequent coincidence between predicted positive anomalies in magmatic output and observed peaks in hydrothermal deposition. This work encourages the continued exploration of the relationship between glacial cycles and submarine volcanic activity.
NASA Astrophysics Data System (ADS)
Fujii, Masakazu; Okino, Kyoko; Sato, Taichi; Sato, Hiroshi; Nakamura, Kentaro
2016-05-01
High-resolution vector magnetic measurements were performed on an inactive ultramafic-hosted hydrothermal vent field, called Yokoniwa Hydrothermal Field (YHF), using a deep-sea manned submersible Shinkai6500 and an autonomous underwater vehicle r2D4. The YHF has developed at a non-transform offset massif of the Central Indian Ridge. Dead chimneys were widely observed around the YHF along with a very weak venting of low-temperature fluids so that hydrothermal activity of the YHF was almost finished. The distribution of crustal magnetization from the magnetic anomaly revealed that the YHF is associated with enhanced magnetization, as seen at the ultramafic-hosted Rainbow and Ashadze-1 hydrothermal sites of the Mid-Atlantic Ridge. The results of rock magnetic analysis on seafloor rock samples (including basalt, dolerite, gabbro, serpentinized peridotite, and hydrothermal sulfide) showed that only highly serpentinized peridotite carries high magnetic susceptibility and that the natural remanent magnetization intensity can explain the high magnetization of Yokoniwa. These observations reflect abundant and strongly magnetized magnetite grains within the highly serpentinized peridotite. Comparisons with the Rainbow and Ashadze-1 suggest that in ultramafic-hosted hydrothermal systems, strongly magnetized magnetite and pyrrhotite form during the progression of hydrothermal alteration of peridotite. After the completion of serpentinization and production of hydrogen, pyrrhotites convert into pyrite or nonmagnetic iron sulfides, which considerably reduces their levels of magnetization. Our results revealed origins of the magnetic high and the development of subsurface chemical processes in ultramafic-hosted hydrothermal systems. Furthermore, the results highlight the use of near-seafloor magnetic field measurements as a powerful tool for detecting and characterizing seafloor hydrothermal systems.
Lipid biomarker and microbial community of 49.6°E hydrothermal field at Southwest Indian Ocean Ridge
NASA Astrophysics Data System (ADS)
Lei, J.; Chu, F.; Yu, X.; Li, X.; Tao, C.
2012-12-01
In 2007, Chinese Research Cruises Discovered the First Active Hydrothermal Vent Field at the Ultraslow Spreading Southwest Indian Ridge. This study intent to get composition, evolution and origin information of lipid compounds in SWIR, and recognize the style of lipid biomarkers which have obviously indicative significance for community structure.Soluble organic matter were extracted from geological samples (including chimney sulfide, oxide, around hydrothermal vents) in Southwest Indian Ridge (SWIR), and divided into hydrocarbon, fatty acid component by column chromatography. GC, GC-MS, HPLC-MS were applied for composition and abundance analysis. Lipid in hydrothermal sulfide contains obvious isoprenoidal hydrocarbon biomarkers (Sq, IS40) and GDGTs (m/z=653) that associated with methanogenic archaea which belongs to Euryarchaeota, and iso /anti-iso fatty acid (iC15:0, aiC15:0, iC17:0, aiC17:0)which may originated from sulfate reducing bacteria (SRB).Lipids extracted from hydrothermal oxide lack isoprenoidal hydrocarbon, and Ph/C18 (0.57) is much lower than sulfide (1.22). Fatty acid compound of oxide include abundant saturated fatty (C16:0, C18:0) acid and mono-unsaturated fatty acids (C16:1n7, C18:1n7), but much less iso/anti-iso was detected. Lipid composition of hydrothermal oxide showed that archaea activity was seldom in hydrothermal oxide, and sulfur-oxidizing bacteria was the main microbial community.Study of Jaeschke (2010) showed that high temperature hydrothermal venting encompassed different microbial community from low temperature hydrothermal venting. Our study showed that in different stage of hydrothermal, microbial community structure may be distinct.
NASA Astrophysics Data System (ADS)
Zhou, Xun; Shi, Tiejun; Zhou, Haiou
2012-06-01
Hydrothermal method was utilized to prepare reduced graphene oxide (RGO) and fabricate ZnO-RGO hybrid (ZnO-RGO) with zinc nitrate hexahydrate and graphene oxide (GO) as raw materials under pH value of 11 adjusted by ammonia water. During the process of reduction of GO, hydrothermal condition with ammonia provided thermal and chemical factors to synthesize RGO. The retained functional groups on RGO planes played an important role in anchoring ZnO to RGO, which was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopy and photoluminescence spectra. The various mass ratios of zinc nitrate hexahydrate to GO used to prepare ZnO-RGO impacted significantly on the morphology of ZnO nanostructures such as nanoparticles and nanorods. And, the RGO sheets wrapped ZnO nanoparticles and nanorods very tightly. After the emission of photo electrons from ZnO, RGO in ZnO-RGO can effectively transfer the photo electrons to exhibit a high performance and reproducibility in photocatalytic degradation toward methylene blue (MB) absorbed on the surface of RGO through π-π conjugation.
NASA Astrophysics Data System (ADS)
Fan, Haowen; Zhang, He; Luo, Xiaolei; Liao, Maoying; Zhu, Xufei; Ma, Jing; Song, Ye
2017-07-01
Although TiO2 nanotube arrays (TNTAs) have shown great promise as supercapacitor materials, their specific capacitances are still not comparable with some typical materials. Here, TiO2 nanoparticles (NPs)/TNTAs hybrid structure has been derived from the anodized TNTAs by a facile hydrothermal solid-gas method (HSGM), which can avoid cracking or curling of the TNTAs from Ti substrate. The obtained NPs/TNTAs hybrid structure can exhibit a ∼4.90 times increase in surface area and a ∼5.49 times increase in areal specific capacitance compared to the TNTAs without HSGM treatment. Besides, the argon-atmosphere annealing can offer improved areal capacitance and cycling stability relative to the air-atmosphere annealing. The hydrothermal vapor pressure is a key factor for controlling microscopic morphologies of TNTAs, the morphology transformations of TNTAs during the HSGM treatment can be accelerated under enhanced vapor pressures. The highest areal capacitance of HSGM-treated TNTAs is up to 76.12 mF cm-2 at 0.5 mA cm-2, well above that of any TiO2 materials reported to date.
Zhou, Nan; Chen, Honggang; Xi, Junting; Yao, Denghui; Zhou, Zhi; Tian, Yun; Lu, Xiangyang
2017-05-01
Fresh and dehydrated banana peels were used as biomass feedstock to produce highly effective sorbent biochars through a facile one-step hydrothermal carbonization approach with 20%vol phosphoric acid as the reaction medium. The elemental ratio of oxygen content of the two as-prepared biochars were about 20%, and the FT-IR analysis confirmed the existence of abundant surface functional groups such as hydroxyl and carboxyl which greatly enhanced the adsorption performance. The sorbents showed excellent lead clarification capability of 359mg·g -1 and 193mg·g -1 for dehydrated and fresh banana peels based biochars, respectively. The change of the CO/OCO and the appearance of PbO/PbOC on the surface after adsorption confirmed that the ion exchange might be the dominant mechanism. The dehydration and pulverization pre-treatment and the addition of phosphoric acid can benefit the formation of those functional groups and hydrothermal carbonization can be a promising method to transfer biomass like fruit peels into biochars with excellent adsorption performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kwon, Young-Nam; Kim, In-Chul
2013-11-01
Hydrothermal stability of a porous nickel-supported silica membrane was successfully improved by deposition of titania multilayers on colloidal silica particles embedded in the porous nickel fiber support. Porous nickel-supported silica membranes were prepared by means of a dipping-freezing-fast drying (DFF) method. The titania layers were deposited on colloidal silica particles by repeating hydrolysis and condensation reactions of titanium isopropoxide on the silica particle surfaces. The deposition of thin titania layers on the nickel-supported silica membrane was verified by various analytical tools. The water flux and the solute rejection of the porous Ni fiber-supported silica membranes did not change after titania layer deposition, indicating that thickness of titania layers deposited on silica surface is enough thin not to affect the membrane performance. Moreover, improvement of the hydrothermal stability in the titania-deposited silica membranes was confirmed by stability tests, indicating that thin titania layers deposited on silica surface played an important role as a diffusion barrier against 90 degrees C water into silica particles.
CTAB-assisted hydrothermal synthesis of YVO 4:Eu 3+ powders in a wide pH range
NASA Astrophysics Data System (ADS)
Wang, Juan; Hojamberdiev, Mirabbos; Xu, Yunhua
2012-01-01
Rhombus-, rod-, soya bean- and aggregated soya bean-like YVO 4:Eu 3+ micro- and nanostructures were synthesized by a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method at 180 °C for 24 h in a wide pH range. The as-synthesized powders were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). The XRD results confirmed the formation of phase-pure YVO 4:Eu 3+ powders with tetragonal structure under hydrothermal process in a wide pH range. Electron microscopic observations evidenced the morphological transformation of YVO 4:Eu 3+ powders from rhombus-like microstructure to rod-, soya bean, and aggregated soya bean-like nanostructures with an increase in the pH of the synthesis solution. The results from the PL measurements revealed that the intensities of PL emission peaks were significantly affected by the morphologies and crystallinity of samples due to the absence of an inversion symmetry at the Eu 3+ lattice site, and the highest luminescence intensity was observed for rod-like YVO 4:Eu 3+ powders.
Wood, Brandon M; Jader, Lindsey R; Schendel, Frederick J; Hahn, Nicholas J; Valentas, Kenneth J; McNamara, Patrick J; Novak, Paige M; Heilmann, Steven M
2013-10-01
The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By substantially eliminating evaporation of water, reductions in downstream energy consumption from 65% to 73% were achieved while generating hydrochar, fatty acids, treated process water, and biogas co-products providing new opportunities for the industry. Processing whole stillage in this manner produced the four co-products, eliminated centrifugation and evaporation, and substantially reduced drying. With thin stillage, all four co-products were again produced, as well as a high quality animal feed. Anaerobic digestion of the aqueous product stream from the hydrothermal carbonization of thin stillage reduced chemical oxygen demand (COD) by more than 90% and converted 83% of the initial COD to methane. Internal use of this biogas could entirely fuel the HTC process and reduce overall natural gas usage. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chen, Ruizhi; Wang, Weixuan; Jiang, Dongmei; Chu, Xiaoxuan; Ma, Xueming; Zhan, Qingfeng
2018-06-01
BiVO4 photocatalysts with different Nd3+ doping content were prepared by a hydrothermal method with varied hydrothermal reaction time. The effects of Nd3+ doping on phase transformation, morphology, chemical valence, optical properties and photocatalytic activities were investigated. With different reaction time, phase transformation from tetragonal zircon (tz-BiVO4) to monoclinic scheelite (ms-BiVO4) could be found, and Nd3+ doping played a suppressive role in this process. Scanning electron microscopy showed the morphology evolved from irregular structure to rod-like shapes with phase transformation. The photoluminescence induced by Nd3+ doping could be confirmed by UV-vis diffuse reflectance spectra. Photocatalytic performance tests had been performed under simulated solar conditions and sample with 1 at% Nd3+ doping and 5 h reaction time showed the best performance (89% degradation rate in 90 min). The pH also showed great influence on morphology and phase transformation of samples. Finally, the phyotocatalytic mechanism and effects of Nd3+ in phase transformation were discussed.
NASA Astrophysics Data System (ADS)
Goutham, Cilaveni; Kandula, Kumara Raja; Raavi, Sai Santhosh Kumar; Asthana, Saket
2018-04-01
Nanocrystalline Pr3+ substituted NBT was synthesized using hydrothermal technique. Pr3+ modifies the ferroelectric NBT optically active and enhances the electrical properties with small structural changes. Aiming to the development of the bottom up optoelectronic devices this optimized nanoscale Na0.5Bi0.5-xPrxTiO3(x = 0.005) compound is synthesized hydrothermally. X-ray diffraction pattern shows that the system is stabilized in the Rhombohedral (space groupR3c) phase indicating the local strain inhomogeneity. PE loop shows that there is a decrement in the Ec value compared with compounds synthesized using conventional methods. The strong red emission assigned to prominent transition of the Pr3+ ions at 610nm was observed along with weak blue-green emission, indicating the potential use of the system. Energy transfer from host system to Pr3+ ions is responsible for red emission while blue green emission is due to quenching of 3P0 induced by intervalence charge transfer state.
NASA Astrophysics Data System (ADS)
Maréchal, J. C.; Perrochet, P.; Tacher, L.
1999-08-01
The use of hydrothermal simulation models to improve the prediction of water inflows in underground works during drilling is tested in the Mont Blanc tunnel, French and Italian Alps. The negative thermal anomaly that was observed during the drilling of this tunnel in 1960 is reproduced by long-term, transient hydrothermal simulations. Sensitivity analysis shows the great inertia of thermal phenomena at the massif scale. At the time of tunnel drilling, the massif had not reached thermal equilibrium. Therefore, a set of simulation scenarios, beginning at the end of the last glacial period, was designed to explain the anomaly encountered in the tunnel in 1960. The continuous cooling of alpine massifs due to infiltration of waters from the surface has occurred for 12,000 years and is expected to continue for about 100,000 years. Comparisons of water-discharge rates simulated in the tunnel with those observed indicate that this hydrothermal method is a useful tool for predicting water inflows in underground works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddi, Balakrishna; Panisko, Ellen; Wietsma, Thomas
Hydrothermal liquefaction (HTL) is a viable thermochemical process for converting wet solid wastes into biocrude which can be hydroprocessed to liquid transportation fuel blendstocks and specialty chemicals. The aqueous byproduct from HTL contains significant amounts (20 to 50%) of the feed carbon, which must be used to enhance economic sustainability of the process on an industrial scale. In this study, aqueous fractions produced from HTL of industrial and municipal waste were characterized using a wide variety of analytical approaches. Organic chemical compounds present in these aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compoundsmore » include organic acids, nitrogen compounds, alcohols, aldehydes, and ketones. Conventional gas chromatography and liquid chromatography methods were employed to quantify the identified compounds. Inorganic species, in the aqueous stream of hydrothermal liquefaction of these aqueous byproducts, also were quantified using ion chromatography and inductively coupled plasma optical emission spectroscopy. The concentrations of organic chemical compounds and inorganic species are reported, and the significance of these results is discussed in detail.« less
NASA Astrophysics Data System (ADS)
Zhu, Wancheng; Zhang, Xiao; Wang, Xiaoli; Zhang, Heng; Zhang, Qiang; Xiang, Lan
2011-10-01
Uniform high crystallinity short belt-like Ca 2B 2O 5·H 2O nanostructures (nanobelts) were facilely synthesized through a room temperature coprecipitation of CaCl 2, H 3BO 3, and NaOH solutions, followed by a mild hydrothermal treatment (180 °C, 12.0 h). By a preferential growth parallel to the (1 0 0) planes, Ca 2B 2O 5·H 2O nanobelts with a length of 1-5 μm, a width of 100-400 nm, and a thickness of 55-90 nm were obtained. The calcination of the nanobelts at 500 °C for 2.0 h led to short Ca 2B 2O 5 nanobelts with well preserved 1D morphology. Calcination at 800 °C led to a mixture of Ca 2B 2O 5 and Ca 3B 2O 6. The products were with belt-like and quasi-polyhedron morphology, while they turned into pore-free micro-rod like and polyhedron morphology when the calcination was taken in the presence of NaCl. NaCl assisted high temperature calcination at 900 °C promoted the formation of Ca 3B 2O 6 in the products. When dispersed in deionized water or absolute ethanol, the Ca 2B 2O 5·H 2O nanobelts and Ca 2B 2O 5 nanobelts showed good transparency from the ultraviolet to the visible region. The as-synthesized Ca 2B 2O 5·H 2O and Ca 2B 2O 5 nanobelts can be employed as novel metal borate nanomaterials for further potential applications in the area of glass fibers, antiwear additive, ceramic coatings, and so on.
de Souza-Barros, Fernando; Braz-Levigard, Raphael; Ching-San, Yonder; Monte, Marisa M B; Bonapace, José A P; Montezano, Viviane; Vieyra, Adalberto
2007-02-01
Phosphate (P(i)) sorption assays onto pyrite in media simulating primeval aquatic scenarios affected by hydrothermal emissions, reveal that acidic conditions favour P(i) sorption whereas mild alkaline media--as well as those simulating sulfur oxidation to SO(2-) (4)--revert this capture process. Several mechanisms relevant to P(i) availability in prebiotic eras are implicated in the modulation of these processes. Those favouring sorption are: (a) hydrophobic coating of molecules, such as acetate that could be formed in the vicinity of hydrothermal vents; (b) water and Mg(2+) bridging in the interface mineral-aqueous media; (c) surface charge neutralization by monovalent cations (Na+ and K+). The increase of both the medium pH and the SO(2-) (4) trapping by the mineral interface would provoke the release of sorbed P(i) due to charge polarization. Moreover it is shown that P(i) self-modulates its sorption, a mechanism that depends on the abundance of SO(2-) (4) in the interface. The relevance of the proposed mechanisms of P(i) capture, release and trapping arises from the need of abundant presence of this molecule for primitive phosphorylations, since--similarly to contemporary aqueous media--inorganic phosphate concentrations in primitive seas should have been low. It is proposed that the presence of sulphide minerals with high affinity to P(i) could have trapped this molecule in an efficient manner, allowing its concentration in specific niches. In these niches, the conditions studied in the present work would have been relevant for its availability in soluble form, specially in primitive insulated systems with pH gradients across the wall.
Ayuso, R.A.; Arth, Joseph G.
1992-01-01
Five Devonian plutons (West Charleston, Echo Pond, Nulhegan, Derby, and Willoughby) that constitute the Northeast Kingdom batholith in Vermont show wide ranges in elemental abundances and ratios consistent with major crustal contributions during their evolution. The batholith consists of metaluminous quartz gabbro, diorite and quartz monzodiorite, peraluminous granodiorite and granite, and strongly peraluminous leucogranite. Contents of major elements vary systematically with increasingSiO40) and have small negative Eu anomalies. The strongly peraluminous Willoughby leucogranite has unique trace-element abundances and ratios relative to the rest of the batholith, including low contents of Hf, Zr, Sr, and Ba, low values of K/Rb (80-164), Th/Ta (<9), Rb/Cs (7-40), K/Cs (0.1-0.5), Ce/Pb (0.5-4), high values of Rb/Sr (1-18) low to moderate REE contents and light-REE enriched patterns (with small negative Eu anomalies). Flat REE patterns (with large negative Eu anomalies) are found in a small, hydrothermally-altered area characterized by high abundances of Sn (up to 26 ppm), Rb (up to 670 ppm), Li (up to 310 ppm), Ta (up to 13.1 ppm), and U (up to 10 ppm). There is no single mixing trend, fractional crystallization assemblage, or assimilationscheme that accounts for all trace elementvariations from quartz gabbro to granite in the Northeast Kingdom batholith. The plutons originated by mixing mantle-derived components and crustal melts generated at different levels in the heterogeneous lithosphere in a continental collisional environment. Hybrid rocks in the batholith evolved by fractional crystallization and assimilation of country rocks (<50% by mass), and some of the leucogranitic rocks were subsequently disturbed by a mild hydrothermal event that resulted in the deposition of small amounts of sulfide minerals. ?? 1992 Springer-Verlag.
Self Consistent Bathymetric Mapping From Robotic Vehicles in the Deep Ocean
2005-06-01
that have been aligned in a consistent manner. Experimental results from the fully automated processing of a multibeam survey over the TAG hydrothermal structure at the Mid-Atlantic ridge are presented to validate the proposed method.
Useful Ingredients Recovery from Sewage Sludge by using Hydrothermal Reaction
NASA Astrophysics Data System (ADS)
Suzuki, Koichi; Moriyama, Mika; Yamasaki, Yuki; Takahashi, Yui; Inoue, Chihiro
2006-05-01
Hydrothermal treatment of sludge from a sewage treatment plant was conducted to obtain useful ingredients for culture of specific microbes which can reduce polysulfide ion into sulfide ion and/or hydrogen sulfide. Several additives such as acid, base, and oxidizer were added to the hydrothermal reaction of excess sludge to promote the production of useful materials. After hydrothermal treatment, reaction solution and precipitation were qualitatively and quantitatively analyzed and estimated the availability as nutrition in cultural medium. From the results of product analysis, most of organic solid in sewage was basically decomposed by hydrothermal hydrolysis and transformed into oily or water-soluble compounds. Bacterial culture of sulfate-reducing bacteria (SRB) showed the good results in multiplication with medium which was obtained from hydrothermal treatment of sewage sludge with magnesium or calcium hydroxide and hydrogen peroxide.
Hydrothermal deposition on the Juan de Fuca Ridge over multiple glacial-interglacial cycles
NASA Astrophysics Data System (ADS)
Costa, Kassandra M.; McManus, Jerry F.; Middleton, Jennifer L.; Langmuir, Charles H.; Huybers, Peter J.; Winckler, Gisela; Mukhopadhyay, Sujoy
2017-12-01
Hydrothermal systems play an important role in modern marine chemistry, but little is known about how they may have varied on 100,000 year timescales. Here we present high-resolution records of non-lithogenic metal fluxes within sediment cores covering the last 500,000 years of hydrothermal deposition on the flanks of the Juan de Fuca Ridge. Six adjacent, gridded cores were analyzed by x-ray fluorescence for Fe, Mn, and Cu concentrations, corrected for lithogenic inputs with Ti, and normalized to excess initial 230Th to generate non-lithogenic metal flux records that provide the longest orbitally resolved reconstructions of hydrothermal activity currently available. Fe fluxes vary with global sea level over the last two glacial cycles, suggesting higher hydrothermal deposition during interglacial periods. The observed negative relationship between Fe and Mn indicates variable sediment redox conditions and diagenetic remobilization of sedimentary Mn over time. Thus, Mn fluxes may not be a reliable indicator for hydrothermal activity in the Juan de Fuca Ridge sediment cores. Cu fluxes show substantial high-frequency variability that may be linked to changes in vent temperature related to increased magmatic production during glacial periods. Deglacial hydrothermal peaks on the Juan de Fuca Ridge are consistent with previously published records from the Mid-Atlantic Ridge and the East Pacific Rise. Moreover, on the Juan de Fuca Ridge, the deglacial peaks in hydrothermal activity are followed by relatively high hydrothermal fluxes throughout the ensuing interglacial periods relative to the previous glacial period.
Ishibashi, J.-I.; Sato, M.; Sano, Y.; Wakita, H.; Gamo, T.; Shanks, Wayne C.
2002-01-01
Ocean Drilling Program (ODP) Leg 169, which was conducted in 1996 provided an opportunity to study the gas geochemistry in the deeper part of the sediment-rich hydrothermal system in Escanaba Trough. Gas void samples obtained from the core liner were analyzed and their results were compared with analytical data of vent fluid samples collected by a submersible dive program in 1988. The gas geochemistry of the pore fluids consisted mostly of a hydrothermal component and was basically the same as that of the vent fluids. The He isotope ratios (R/RA = 5.6-6.6) indicated a significant mantle He contribution and the C isotopic compositions of the hydrocarbons [??13C(CH4) = -43???, ??13C(C2H6) = -20???] were characterized as a thermogenic origin caused by hydrothermal activity. On the other hand, the pore fluids in sedimentary layers away from the hydrothermal fields showed profiles which reflected lateral migration of the hydrothermal hydrocarbons and abundant biogenic CH4. Helium and C isotope systematics were shown to represent a hydrothermal component and useful as indicators for their distribution beneath the seafloor. Similarities in He and hydrocarbon signatures to that of the Escanaba Trough hydrothermal system were found in some terrestrial natural gases, which suggested that seafloor hydrothermal activity in sediment-rich environments would be one of the possible petroleum hydrocarbon generation scenarios in unconventional geological settings. ?? 2002 Elsevier Science Ltd. All rights reserved.
Leporace, Gustavo; Batista, Luiz Alberto; Serra Cruz, Raphael; Zeitoune, Gabriel; Cavalin, Gabriel Armondi; Metsavaht, Leonardo
2018-03-01
The purpose of this study was to test the validity of dynamic leg length discrepancy (DLLD) during gait as a radiation-free screening method for measuring anatomic leg length discrepancy (ALLD). Thirty-three subjects with mild leg length discrepancy walked along a walkway and the dynamic leg length discrepancy (DLLD) was calculated using a motion analysis system. Pearson correlation and paired Student t -tests were applied to calculate the correlation and compare the differences between DLLD and ALLD (α = 0.05). The results of our study showed DLLD is not a valid method to predict ALLD in subjects with mild limb discrepancy.
ERIC Educational Resources Information Center
Tenneij, Nienke; Didden, Robert; Koot, Hans M.
2011-01-01
Background: Little is known about client characteristics that are related to outcome during inpatient treatment of adults with mild intellectual disability (ID) and severe behavioural problems. Method: We explored variables that were related to a change in behavioural problems in 87 individuals with mild ID during inpatient treatment in facilities…
Fluid Flow and Sound Generation at Hydrothermal Vent Fields
1988-04-01
Pacific Rise The first evidence of vent sound generation came from data collected near hydrothermal vents at 21 N on the EPR where an array of ocean...associated with hydrothermal centers, one at 21 N on the East Pacific Rise (EPR) (Reidesel et al., 1982) and one on the Juan de Fuca Ridge (Bibee and Jacobson... East Pacific Rise at 210 N : the volcanic, tectonic and hydrothermal processes at
Influence of Hydrodynamics on the Larval Supply to Hydrothermal Vents on the East Pacific Rise
2007-06-01
field studies, this thesis first provides new morphological and genetic identifications for hydrothermal vent gastropod larvae along the northern East Pa...cific Rise. Daily and weekly variability in the supply of hydrothermal vent gastropod larvae to two hydrothermal vents, 1.6 km apart on the East...15 1.1 Thesis Organization ................................... 18 2 Morphological and molecular identification of gastropod larvae 23 2.1 Introduction
NASA Astrophysics Data System (ADS)
Noguchi, T.; Sunamura, M.; Yamamoto, H.; Fukuba, T.; Okino, K.; Sugiyama, T.; Okamura, K.
2009-12-01
Hydrothermal fluids contain high concentration of anoxic chemical species, i.e. methane and hydrogen sulfide, helium-3, and heavy metals derived from the rock-water interaction. During the hydothermal plume spreading, it is known that several chemical species are oxidized which include available energy source for microorganism, however, few results have been reported on the spatial variation of both of chemical and microbiological concentration and species. In the southern Mariana Trough, some site surveys have been conducted with CTD hydrocasts, the manned submersible, and ROVs since 2003. In this field, three hydrothermal vent sites were discovered within the small area, where the chemistry of each hydrothermal fluid was different from each other. These differences of chemistry are prospected to affect the individual plume evolution. In order to discuss the each hydrothermal plume evolution, we conducted high-resolution plume mapping by the AUV "URASHIMA" with some chemical sensors. Additionally, we loaded 24 bottles of water sampler for the geochemical and microbial analysis. During this cruise, we detected hydrothermal plume anomalies derived from each hydrothermal site with the highly precise topographic results. Based on the results, we will discuss the relationships between the spreading of hydrothermal plume (geochemical evolution) and the ecology of plume microbes.
NASA Astrophysics Data System (ADS)
Yuan, Jikang
Direct architecture of complex nanostructures is desirable and still remains a challenge in areas of materials science. Due to their size-, shape-dependent electronic and optical properties, much effort has been made to control morphologies of transition metal oxide nanoparticles and to organize them into complicated 3D structures using templates. In particular, manganese oxides have attracted much attention because they have extensive applications in many chemical processes due to their porous structures, acidity, ionexchange, separation, catalysis, and energy storage in secondary batteries. Using organic templates such as trimethylamine (TMA), manganese oxides have been successfully organized into macroscopic rings and helices via sol-gel processes. However, the methods mentioned above all need further purification, so impurities will be avoided. Subsequent procedures are needed to obtain pure products. Thus facile and template-free methods are highly desired for synthesis of manganese oxide nanaoparticles with complex 3D structures. Manganese oxide octahedral molecular sieves (OMS) are a class of microporous transition metallic oxides with various kinds of tunnel structures that can be synthesized via controlling synthetic conditions such as temperature, concentration, pH, and cations. Manganese oxide molecular sieves are semiconducting mixed-valence catalysts that utilize electron transport to catalyze reactions such as selective oxidation of alcohols. OMS has distinct advantages over aluminosilicate molecular sieve materials for applications in catalysis due to the mixed valence character. The synthesis of manganese oxide OMS materials will be much more complicated than those of main group metallic oxides because of different coordination numbers and oxidation states. OMS-type materials with desirable morphologies formed under mild synthetic conditions are highly desirable. Herein, we report a template-free, low temperature preparation of porous cryptomelane-type manganese oxide (OMS-2) 3D nanostructures. The objectives of this research include exploration of new methods to oxidize Mn2+ in aqueous solution either under low-temperature reflux or hydrothermal conditions. Various oxidants were used with precisely controlled synthetic parameters such as temperature, concentrations of starting materials, pH, and kinds of templates. A variety of techniques including powder X-ray diffraction and transmission electron microscopy (TEM) scanning electron microscopy are used to investigate the structures of synthesized materials. Atomic force microscopy (AFM) and scanning electron microscopy are utilized to studying the morphology and topography. The surface areas of the materials is measured by the BET method. Inductively coupled argon plasma atomic emission spectrometer (ICP-AES) are utilized to investigate the chemical composition of the materials. Thermal-stability of the materials is investigated by thermal gravimetric analysis (TGA). The objectives of this research includes exploring new synthetic approach such as oxidation of Mn2+ in aqueous solution by selecting suitable oxidants so as to control redox potential, varying pH of reaction systems, and controlling tunnel structures using hard templates (cations) under hydrothermal conditions.
NASA Astrophysics Data System (ADS)
Iro, Zaharaddeen S.; Subramani, C.; Kesavan, T.; Dash, S. S.; Sasidharan, M.; Sundramoorthy, Ashok K.
2017-12-01
A composite of MnO2/SiO2 sphere was coated on single-wall carbon nanotubes (MnO2/SiO2/SWCNT) using one-pot hydrothermal synthesis method. KMnO4 was used as an oxidizing agent for mild functionalization of single-wall carbon nanotubes (SWCNT), and also as a precursor of MnO2. A comparative study in the presence of SiO2 and SWCNT was carried out using bare MnO2 as a reference. After addition of SiO2, the composite obtained showed an increase in both the specific capacitance and cycle life which can be associated with spherical shape of SiO2 which offered reduction sites for MnO2. With the addition of SWCNT less than 5%, the composite further showed an increase in capacitance and cycle life, this is because of the good conductive nature, excellent mechanical property and chemical stability of SWCNT. The electrochemical behaviour was studied using cyclic voltammetry and galvanostatic charge/discharge method in 1 M Na2SO4 electrolyte. The specific capacitance of MnO2, MnO2/SiO2 and MnO2/SiO2/SWCNT composite is 73.6 F g-1, 108.7 F g-1 and 136 F g-1 at a current density of 1 A g-1, respectively. The MnO2/SiO2/SWCNT energy density was 68 Wh kg-1 with power density of 444.4 W kg-1. The MnO2/SiO2/SWCNT composite retained 88% of its specific capacitance after 500 cycles. We envisage that this hybrid material could be applied for preparation of supercapacitor electrode.
Can Life Begin on Enceladus? A Perspective from Hydrothermal Chemistry.
Deamer, David; Damer, Bruce
2017-09-01
Enceladus is a target of future missions designed to search for existing life or its precursors. Recent flybys of Enceladus by the Cassini probe have confirmed the existence of a long-lived global ocean laced with organic compounds and biologically available nitrogen. This immediately suggests the possibility that life could have begun and may still exist on Enceladus. Here we will compare the properties of two proposed sites for the origin of life on Earth-hydrothermal vents on the ocean floor and hydrothermal volcanic fields at the surface-and ask whether similar conditions could have fostered the origin of life on Enceladus. The answer depends on which of the two sites would be more conducive for the chemical evolution leading to life's origin. A hydrothermal vent origin would allow life to begin in the Enceladus ocean, but if the origin of life requires freshwater hydrothermal pools undergoing wet-dry cycles, the Enceladus ocean could be habitable but lifeless. These arguments also apply directly to Europa and indirectly to early Mars. Key Words: Enceladus-Hydrothermal vents-Hydrothermal fields-Origin of life. Astrobiology 17, 834-839.
Comparison on electrically pumped random laser actions of hydrothermal and sputtered ZnO films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Canxing; Jiang, Haotian; Li, Yunpeng
2013-10-07
Random lasing (RL) in polycrystalline ZnO films is an intriguing research subject. Here, we have comparatively investigated electrically pumped RL behaviors of two metal-insulator-semiconductor structured devices using the hydrothermal and sputtered ZnO films as the semiconductor components, i.e., the light-emitting layers, respectively. It is demonstrated that the device using the hydrothermal ZnO film exhibits smaller threshold current and larger output optical power of the electrically pumped RL. The morphological characterization shows that the hydrothermal ZnO film is somewhat porous and is much rougher than the sputtered one, suggesting that in the former stronger multiple light scattering can occur. Moreover, themore » photoluminescence characterization indicates that there are fewer defects in the hydrothermal ZnO film than in the sputtered one, which means that the photons can pick up larger optical gain through stimulated emission in the hydrothermal ZnO film. Therefore, it is believed that the stronger multiple light scattering and larger optical gain contribute to the improved performance of the electrically pumped RL from the device using the hydrothermal ZnO film.« less
Can Life Begin on Enceladus? A Perspective from Hydrothermal Chemistry
Damer, Bruce
2017-01-01
Abstract Enceladus is a target of future missions designed to search for existing life or its precursors. Recent flybys of Enceladus by the Cassini probe have confirmed the existence of a long-lived global ocean laced with organic compounds and biologically available nitrogen. This immediately suggests the possibility that life could have begun and may still exist on Enceladus. Here we will compare the properties of two proposed sites for the origin of life on Earth—hydrothermal vents on the ocean floor and hydrothermal volcanic fields at the surface—and ask whether similar conditions could have fostered the origin of life on Enceladus. The answer depends on which of the two sites would be more conducive for the chemical evolution leading to life's origin. A hydrothermal vent origin would allow life to begin in the Enceladus ocean, but if the origin of life requires freshwater hydrothermal pools undergoing wet-dry cycles, the Enceladus ocean could be habitable but lifeless. These arguments also apply directly to Europa and indirectly to early Mars. Key Words: Enceladus—Hydrothermal vents—Hydrothermal fields—Origin of life. Astrobiology 17, 834–839. PMID:28682665
Schrenk, Matthew O; Kelley, Deborah S; Bolton, Sheryl A; Baross, John A
2004-10-01
The recently discovered Lost City Hydrothermal Field (LCHF) represents a new type of submarine hydrothermal system driven primarily by exothermic serpentinization reactions in ultramafic oceanic crust. Highly reducing, alkaline hydrothermal environments at the LCHF produce considerable quantities of hydrogen, methane and organic molecules through chemo- and biosynthetic reactions. Here, we report the first analyses of microbial communities inhabiting carbonate chimneys awash in warm, high pH fluids at the LCHF and the predominance of a single group of methane-metabolizing Archaea. The predominant phylotype, related to the Methanosarcinales, formed tens of micrometre-thick biofilms in regions adjacent to hydrothermal flow. Exterior portions of active structures harboured a diverse microbial community composed primarily of filamentous Eubacteria that resembled sulphide-oxidizing species. Inactive samples, away from regions of hydrothermal flow, contained phylotypes related to pelagic microorganisms. The abundance of organisms linked to the volatile chemistry at the LCHF hints that similar metabolic processes may operate in the subseafloor. These results expand the range of known geological settings that support biological activity to include submarine hydrothermal systems that are not dependent upon magmatic heat sources.
NASA Astrophysics Data System (ADS)
iMOST Team; Campbell, K. A.; Farmer, J. D.; Van Kranendonk, M. J.; Fernandez-Remolar, D. C.; Czaja, A. D.; Altieri, F.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Benning, L. G.; Bishop, J. L.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Busemann, H.; Carrier, B. L.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Fogarty, J.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Harrington, A. D.; Hausrath, E. M.; Herd, C. D. K.; Horgan, B.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mangold, N.; Mackelprang, R.; Mayhew, L. E.; McCubbin, F. M.; McCoy, J. T.; McLennan, S. M.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Niles, P. B.; Ori, G. G.; Raulin, F.; Rettberg, P.; Rucker, M. A.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shaheen, R.; Shuster, D. L.; Siljestrom, S.; Smith, C. L.; Spry, J. A.; Steele, A.; Swindle, T. D.; ten Kate, I. L.; Tosca, N. J.; Usui, T.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.; Zorzano, M. P.
2018-04-01
The iMOST hydrothermal deposits sub-team has identified key samples and investigations required to delineate the character and preservational state of potential biosignatures in ancient hydrothermal deposits.
Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling
2008-09-01
ER D C/ CE R L TR -0 8 -1 3 Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling Gary L. Gerdes, Deborah...release; distribution is unlimited. ERDC/CERL TR-08-13 September 2008 Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling...a technology to process domestic solid waste using a unique hydrothermal system. The process was successfully demonstrated at Forts Benning and
Optimized Pyroelectric Vidicon Thermal Imager. Volume II. Improper Ferroelectric Crystal Growth.
1980-09-01
75 4.1 Hydrothermal Synthesis of Boracite Powders..... 75 4.2 Hydrothermal Growth of Boracite Crystals ......... 77...4.2.1 Apparatus .......................... 77 4.2.2 Growth from Acidic Media .................o 78 4.2.3 Hydrothermal Growth in Basic Media ...... 99...Calculated temperature dependence of p/cc for DSP under biasing fields of 0, 2 and 5 kV/cm... 74 11 LIST OF ILLUSTRATIONS (Cont’d) Page Fig. 44: Hydrothermal