Sample records for mild osteogenesis imperfecta

  1. Osteogenesis imperfecta.

    PubMed

    Marini, Joan C; Forlino, Antonella; Bächinger, Hans Peter; Bishop, Nick J; Byers, Peter H; Paepe, Anne De; Fassier, Francois; Fratzl-Zelman, Nadja; Kozloff, Kenneth M; Krakow, Deborah; Montpetit, Kathleen; Semler, Oliver

    2017-08-18

    Skeletal deformity and bone fragility are the hallmarks of the brittle bone dysplasia osteogenesis imperfecta. The diagnosis of osteogenesis imperfecta usually depends on family history and clinical presentation characterized by a fracture (or fractures) during the prenatal period, at birth or in early childhood; genetic tests can confirm diagnosis. Osteogenesis imperfecta is caused by dominant autosomal mutations in the type I collagen coding genes (COL1A1 and COL1A2) in about 85% of individuals, affecting collagen quantity or structure. In the past decade, (mostly) recessive, dominant and X-linked defects in a wide variety of genes encoding proteins involved in type I collagen synthesis, processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells have been shown to cause osteogenesis imperfecta. The large number of causative genes has complicated the classic classification of the disease, and although a new genetic classification system is widely used, it is still debated. Phenotypic manifestations in many organs, in addition to bone, are reported, such as abnormalities in the cardiovascular and pulmonary systems, skin fragility, muscle weakness, hearing loss and dentinogenesis imperfecta. Management involves surgical and medical treatment of skeletal abnormalities, and treatment of other complications. More innovative approaches based on gene and cell therapy, and signalling pathway alterations, are under investigation.

  2. Osteogenesis imperfecta: diagnosis and treatment.

    PubMed

    Palomo, Telma; Vilaça, Tatiane; Lazaretti-Castro, Marise

    2017-12-01

    Here we summarize the diagnosis of osteogenesis imperfecta, discuss newly discovered genes involved in osteogenesis imperfecta, and review the management of this disease in children and adults. Mutations in the two genes coding for collagen type I, COL1A1 and COL1A2, are the most common cause of osteogenesis imperfecta. In the past 10 years, defects in at least 17 other genes have been identified as responsible for osteogenesis imperfecta phenotypes, with either dominant or recessive transmission. Intravenous bisphosphonate infusions are the most widely used medical treatment. This has a marked effect on vertebra in growing children and can lead to vertebral reshaping after compression fractures. However, bisphosphonates are less effective for preventing long-bone fractures. At the moment, new therapies are under investigation. Despite advances in the diagnosis and treatment of osteogenesis imperfecta, more research is needed. Bisphosphonate treatment decreases long-bone fracture rates, but such fractures are still frequent. New antiresorptive and anabolic agents are being investigated but efficacy and safety of these drugs, especially in children, need to be better established before they can be used in clinical practice.

  3. The Spine in Patients With Osteogenesis Imperfecta.

    PubMed

    Wallace, Maegen J; Kruse, Richard W; Shah, Suken A

    2017-02-01

    Osteogenesis imperfecta is a genetic disorder of type I collagen. Although multiple genotypes and phenotypes are associated with osteogenesis imperfecta, approximately 90% of the mutations are in the COL1A1 and COL1A2 genes. Osteogenesis imperfecta is characterized by bone fragility. Patients typically have multiple fractures or limb deformity; however, the spine can also be affected. Spinal manifestations include scoliosis, kyphosis, craniocervical junction abnormalities, and lumbosacral pathology. The incidence of lumbosacral spondylolysis and spondylolisthesis is higher in patients with osteogenesis imperfecta than in the general population. Use of diphosphonates has been found to decrease the rate of progression of scoliosis in patients with osteogenesis imperfecta. A lateral cervical radiograph is recommended in patients with this condition before age 6 years for surveillance of craniocervical junction abnormalities, such as basilar impression. Intraoperative and anesthetic considerations in patients with osteogenesis imperfecta include challenges related to fracture risk, airway management, pulmonary function, and blood loss.

  4. Osteogenesis imperfecta.

    PubMed

    Forlino, Antonella; Marini, Joan C

    2016-04-16

    Osteogenesis imperfecta is a phenotypically and molecularly heterogeneous group of inherited connective tissue disorders that share similar skeletal abnormalities causing bone fragility and deformity. Previously, the disorder was thought to be an autosomal dominant bone dysplasia caused by defects in type I collagen, but in the past 10 years discoveries of novel (mainly recessive) causative genes have lent support to a predominantly collagen-related pathophysiology and have contributed to an improved understanding of normal bone development. Defects in proteins with very different functions, ranging from structural to enzymatic and from intracellular transport to chaperones, have been described in patients with osteogenesis imperfecta. Knowledge of the specific molecular basis of each form of the disorder will advance clinical diagnosis and potentially stimulate targeted therapeutic approaches. In this Seminar, together with diagnosis, management, and treatment, we describe the defects causing osteogenesis imperfecta and their mechanism and interrelations, and classify them into five groups on the basis of the metabolic pathway compromised, specifically those related to collagen synthesis, structure, and processing; post-translational modification; folding and cross-linking; mineralisation; and osteoblast differentiation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Successful bone-anchored hearing aid implantation in a patient with osteogenesis imperfecta.

    PubMed

    Coutinho, M B; Marques, C; Mendes, G J; Gonçalves, C

    2015-11-01

    To report a case of successful bone-anchored hearing aid implantation in an adult patient with type III osteogenesis imperfecta, which is commonly regarded as a contraindication to this procedure. A 45-year-old man with type III osteogenesis imperfecta presented with mixed hearing loss. There was a mild sensorineural component in both ears, with an air-bone gap between 45 and 50 dB HL. He was implanted with a bone-anchored hearing aid. The audiological outcome was good, with no complications and good implant stability (as measured by resonance frequency analysis). To our knowledge, this is the first recorded case of bone-anchored hearing aid implantation in a patient with osteogenesis imperfecta.

  6. Behavior of scoliosis during growth in children with osteogenesis imperfecta.

    PubMed

    Anissipour, Alireza K; Hammerberg, Kim W; Caudill, Angela; Kostiuk, Theodore; Tarima, Sergey; Zhao, Heather Shi; Krzak, Joseph J; Smith, Peter A

    2014-02-05

    Spinal deformities are common in patients with osteogenesis imperfecta, a heritable disorder that causes bone fragility. The purpose of this study was to describe the behavior of spinal curvature during growth in patients with osteogenesis imperfecta and establish its relationship to disease severity and medical treatment with bisphosphonates. The medical records and radiographs of 316 patients with osteogenesis imperfecta were retrospectively reviewed. The severity of osteogenesis imperfecta was classified with the modified Sillence classification. Serial curve measurements were recorded throughout the follow-up period for each patient with scoliosis. Regression analysis was used to determine the effect of disease severity (Sillence type), patient age, and bisphosphonate treatment on the progression of scoliosis as measured with the Cobb method. Of the 316 patients with osteogenesis imperfecta, 157 had associated scoliosis, a prevalence of 50%. Scoliosis prevalence (68%) and mean progression rate (6° per year) were the highest in the group of patients with the most severe osteogenesis imperfecta (modified Sillence type III). A group with intermediate osteogenesis imperfecta severity, modified Sillence type IV, demonstrated intermediate scoliosis values (54%, 4° per year). The patient group with the mildest form of osteogenesis imperfecta, modified Sillence type I, had the lowest scoliosis prevalence (39%) and rate of progression (1° per year). Early treatment-before the patient reached the age of six years-of type-III osteogenesis imperfecta with bisphosphonate therapy decreased the curve progression rate by 3.8° per year, which was a significant decrease. Bisphosphonate treatment had no demonstrated beneficial effect on curve behavior in patients with other types of osteogenesis imperfecta or in patients of older age. The prevalence of scoliosis in association with osteogenesis imperfecta is high. Progression rates of scoliosis in children with osteogenesis

  7. Osteogenesis imperfecta with right renal artery occlusion

    PubMed Central

    Vaish, Arvind Kumar; Kumar, Nitin; Jain, Nirdesh; Agarwal, Abhishek

    2012-01-01

    We here report a case of osteogenesis imperfecta who presented with severe hypertension and left ventricular failure and had right renal artery occlusion. The case is very interesting as renal artery occlusion has not been reported earlier in osteogenesis imperfecta. PMID:22962392

  8. Osteogenesis imperfecta with ectopic mineralizations in dentin and cementum and a COL1A2 mutation.

    PubMed

    Kantaputra, Piranit Nik; Sirirungruangsarn, Yuddhasert; Intachai, Worrachet; Ngamphiw, Chumpol; Tongsima, Sissades; Dejkhamron, Prapai

    2018-04-10

    We report a Thai father (patient 1) and his daughter (patient 2) affected with osteogenesis imperfecta type IV and dentinogenesis imperfecta. Both were heterozygous for the c.1451G>A (p.Gly484Glu) mutation in COL1A2. The father, a Thai boxer, had very mild osteogenesis imperfecta with no history of low-trauma bone fractures. Scanning electron micrography of the primary teeth with DI of the patient 2, and the primary teeth with DI of another OI patient with OI showed newly recognized dental manifestations of teeth with DI. Normal dentin and cementum might have small areas of ectopic mineralizations. Teeth affected with DI have well-organized ectopic mineralizations in dentin and cementum. The "French-fries-appearance" of the crystals at the cemento-dentinal junction and abnormal cementum have never been reported to be associated with dentinogenesis imperfecta, either isolated or osteogenesis imperfecta-associated. Our study shows for the first time that abnormal collagen fibers can lead to ectopic mineralization in dentin and cementum and abnormal cementum can be a part of osteogenesis imperfecta.

  9. Osteogenesis imperfecta: diagnosis and treatment.

    PubMed

    Burnei, Gheorghe; Vlad, Costel; Georgescu, Ileana; Gavriliu, Traian Stefan; Dan, Daniela

    2008-06-01

    Osteogenesis imperfecta is a heritable disorder characterized by extremely fragile bones, blue sclerae, dentinogenesis imperfecta, hearing loss, and scoliosis. In 1979, Sillence classified the condition into four types based on genetic and clinical criteria. Three more classifications have subsequently been added. Diagnosis of osteogenesis imperfecta may be done prenatally (in severe cases), clinically, radiographically, or via biochemical or genetic examination. Medical treatment consists of bisphosphonate use, even in patients younger than age 2 years. Surgical treatment consists of internal splinting of long bones. Research is currently being done on the use of smart intramedullary rods (ie, composed of nitinol shape-memory alloy) for correction of bone deformity and on the use of bone marrow transplantation to increase osteoblast density, thereby reducing fracture frequency.

  10. [Osteogenesis imperfecta in monozygotic twins in Burundi].

    PubMed

    Armstrong, O; Karayuba, R; Ngendahayo, L; Habonimana, E

    1994-01-01

    Little data is available about osteogenesis imperfecta in Black African children. This defect was diagnosed in monozygotic twins from Rwanda who presented multiple fractures, in particular of the femur, when they began to walk. Osteogenesis imperfecta was confirmed by lower limb deformity, presence of wormian bones in the skull, blue sclera, and tooth defects. In addition to the fact that it is uncommon to encounter this condition in monozygotic twins, this case is interesting for several reasons. Was osteogenesis imperfecta in these patients type I, frequent, or type III, exceptional? More importantly, this case stresses the high prevalence of type III in Black Africa which could constitute a hot-bed in the world.

  11. Challenges of Fracture Management for Adults With Osteogenesis Imperfecta.

    PubMed

    Gil, Joseph A; DeFroda, Steven F; Sindhu, Kunal; Cruz, Aristides I; Daniels, Alan H

    2017-01-01

    Osteogenesis imperfecta is caused by qualitative or quantitative defects in type I collagen. Although often considered a disease with primarily pediatric manifestations, more than 25% of lifetime fractures are reported to occur in adulthood. General care of adults with osteogenesis imperfecta involves measures to preserve bone density, regular monitoring of hearing and dentition, and maintenance of muscle strength through physical therapy. Surgical stabilization of fractures in these patients can be challenging because of low bone mineral density, preexisting skeletal deformities, or obstruction by instrumentation from previous surgeries. Additionally, unique perioperative considerations exist when operatively managing fractures in patients with osteogenesis imperfecta. To date, there is little high-quality literature to help guide the optimal treatment of fractures in adult patients with osteogenesis imperfecta. [Orthopedics. 2017; 40(1):e17-e22.]. Copyright 2016, SLACK Incorporated.

  12. Osteogenesis Imperfecta

    PubMed Central

    Sam, Justin Easow; Dharmalingam, Mala

    2017-01-01

    Osteogenesis imperfecta is a common heritable connective tissue disorder. Nearly ninety percent are due to Type I collagen mutations. Type I-IV are autosomal dominant, and Type VI–XIII are autosomal recessive. They are Graded 1-5 based on severity. Genomic testing is done by collagen analysis from fibroblasts. The mainstay of treatment is bisphosphonate therapy. The prognosis is variable. PMID:29285457

  13. Single Molecule Effects of Osteogenesis Imperfecta Mutations in Tropocollagen Protein Domains

    DTIC Science & Technology

    2008-12-02

    Single molecule effects of osteogenesis imperfecta mutations in tropocollagen protein domains Alfonso Gautieri,1,2 Simone Vesentini,2 Alberto...2008 proteinscience.org Abstract: Osteogenesis imperfecta (OI) is a genetic disease characterized by fragile bones, skeletal deformities and, in severe...diagnosis and treatment, an effort referred to as materiomics. Keywords: steered molecular dynamics; osteogenesis imperfecta ; Young’s modulus; collagen

  14. What Is Osteogenesis Imperfecta?

    MedlinePlus

    ... About Osteogenesis Imperfecta and Other Related Conditions: NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 ... approved drug products. Last Reviewed 2014-11 NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 ...

  15. Orthotic treatment of positional brachycephaly associated with osteogenesis imperfecta.

    PubMed

    Matarazzo, Carolina G; Schreen, Gerd; Lago-Rizzardi, Camilla D do; Peccin, Maria Stella; Pinto, Fernando Cg

    2017-12-01

    Osteogenesis imperfecta is an inherited disorder of the connective tissue characterized primarily by fractures with no or small causal antecedents and extremely variable clinical presentation. The disorder requires a global and, therefore, multidisciplinary therapeutic approach that should aim, among other aspects, at the prevention and treatment of deformities resulting from osteogenesis imperfecta. Due to limitations related to bony deformities, it can be difficult to place these infants in a variety of positions that would help remediate skull deformities, so a cranial orthosis becomes the therapy of choice. The aim of this study was to demonstrate the results obtained during treatment with a cranial remolding orthosis (helmet) in babies with osteogenesis imperfecta. Case Description and Methods: For the first time in the scientific literature, this study describes the use of a cranial orthosis for the treatment of infants with osteogenesis imperfecta. Both children had severe asymmetrical brachycephaly documented by laser digital scanning and were submitted to treatment with a cranial remolding orthosis. Outcomes and Conclusion: The study showed that there was a significant improvement in cranial proportion and symmetry, with a reduction in the cephalic index at reevaluation. It is concluded that the orthotic therapy is an effective therapeutic modality to improve the proportion and minimize the asymmetry in children with osteogenesis imperfecta. Clinical relevance The clinical relevance of such a description is that children with osteogenesis imperfecta may have numerous deformities and minimizing them can be an important factor. This report showed a beneficial result as the orthotic therapy modality improved the proportions and minimized the asymmetry. This treatment offers too high levels of satisfaction to parents and brings these children closer to normal indices.

  16. Psychosocial aspects of osteogenesis imperfecta.

    PubMed Central

    Shea-Landry, G L; Cole, D E

    1986-01-01

    Osteogenesis imperfecta is a heterogeneous group of inherited disorders characterized by bone fragility and recurrent fractures. It is currently classified into four types on clinical grounds and appears to arise from different disorders of bone collagen synthesis. The biochemical identification of disturbances in collagen metabolism and the genetic delineation of new mutations of collagen genes have made prenatal diagnosis by molecular methods feasible in some cases. Most people with osteogenesis imperfecta suffer frequent fractures (and sometimes consequent serious disability), for which there are few effective preventive measures. This disorder may have a profound psychosocial influence on patients and their families. In this report the extent of this influence is reviewed and aspects important to the medical community are highlighted; these include the emotional burdens imposed by unfounded suspicions of child abuse, the social and financial costs of repeated hospitalization and immobility, and the frustrations generated by the lack of helpful, practical information for families and health care workers. An important social outcome has been the rise of self-help organizations, exemplified by the Canadian Osteogenesis Imperfecta Society. For Canadian families the society has been an important vehicle for exchange of information and an active, positive response to a lifelong, often severely disabling disorder. PMID:3756737

  17. Osteogenesis imperfecta types I-XI: implications for the neonatal nurse.

    PubMed

    Womack, Jody

    2014-10-01

    Osteogenesis imperfecta (OI), also called "brittle bone disease," is a rare heterozygous connective tissue disorder that is caused by mutations of genes that affect collagen. Osteogenesis imperfecta is characterized by decreased bone mass, bone fragility, and skin hyperlaxity. The phenotype present is determined according to the mutation on the affected gene as well as the type and location of the mutation. Osteogenesis imperfecta is neither preventable nor treatable. Osteogenesis imperfecta is classified into 11 types to date, on the basis of their clinical symptoms and genetic components. This article discusses the definition of the disease, the classifications on the basis of its clinical features, incidence, etiology, and pathogenesis. In addition, phenotype, natural history, diagnosis and management of this disease, recurrence risk, and, most importantly, the implications for the neonatal nurse and management for the family are discussed.

  18. [Postoperative radiation therapy for a patient with osteogenesis imperfecta: case report].

    PubMed

    Ducournau, A; Lagarde, P; Henriques de Figueiredo, B; Antoine, M; Breton-Callu, C; Petit, A; Dallaudière, B; Sargos, P

    2014-03-01

    Osteogenesis imperfecta is an unusual disease also called Lobstein disease. Characterized by abnormalities of collagen biosynthesis, a possible mutation on 17th chromosome is described. On the other hand, 29% of breast cancers present a mutation on the same chromosome. Nevertheless, the association of osteogenesis imperfecta and breast cancer is at the moment unknown. Therapeutic management is very difficult because of a loss in dihydropyrimidine dehydrogenase for patients having osteogenesis imperfecta, generating some toxicity by default in catabolism of 5-fluorouracil. We report the case of a 49-year-old woman with a breast cancer in the context of osteogenesis imperfecta. Dosimetric considerations permitting to reduce chess dose level have been performed for this patient. With a follow-up of 6 months, no imaging fracture has been revealed after radiotherapy. No evident conclusion about radiation injury from a case report could be described in case of osteogenesis imperfecta. To our knowledge, this is the first case which take into account potential radiation induced toxicities. Copyright © 2014. Published by Elsevier SAS.

  19. Cardiovascular Involvement in Children with Osteogenesis Imperfecta

    PubMed Central

    Karamifar, Hamdollah; Ilkhanipoor, Homa; Ajami, Gholamhossein; Karamizadeh, Zohreh; Amirhakimi, Gholamhossein; Shakiba, Ali-Mohammad

    2013-01-01

    Objective Osteogenesis imperfecta is a hereditary disease resulting from mutation in type I procollagen genes. One of the extra skeletal manifestations of this disease is cardiac involvement. The prevalence of cardiac involvement is still unknown in the children with osteogenesis imperfecta. The present study aimed to investigate the prevalence of cardiovascular abnormalities in these patients. Methods 24 children with osteogenesis imperfecta and 24 normal children who were matched with the patients regarding sex and age were studied. In both groups, standard echocardiography was performed, and heart valves were investigated. Dimensions of left ventricle, aorta annulus, sinotubular junction, ascending and descending aorta were measured and compared between the two groups. Findings The results revealed no significant difference between the two groups regarding age, sex, ejection fraction, shortening fraction, mean of aorta annulus, sinotubular junction, ascending and descending aorta, but after correction based on the body surface area, dimensions of aorta annulus, sinotubular junction, ascending and descending aorta in the patients were significantly higher than those in the control group (P<0.05). Two (8.3%) patients had aortic insufficiency and five (20%) patients had tricuspid regurgitation, three of whom had gradient >25 mmHg and one patient had pulmonary insufficiency with indirect evidence of pulmonary hypertension. According to Z scores of aorta annulus, sinotubular junction and ascending aorta, 5, 3, and 1 out of 24 patients had Z scores >2 respectively. Conclusion The prevalence of valvular heart diseases and aortic root dilation was higher in children with osteogenesis imperfecta. In conclusion, cardiovascular investigation is recommended in these children. PMID:24800009

  20. A rare combination of amniotic constriction band with osteogenesis imperfecta.

    PubMed

    Shah, Krupa Hitesh; Shah, Hitesh

    2015-11-11

    Amniotic constriction bands and osteogenesis imperfecta are disorders arising from a collagen defect. We report a rare association of amniotic bands with osteogenesis imperfecta in a child. The child was born with multiple amniotic bands involving the right leg, both hands and both feet. Multiple fractures of long bones of lower limbs occurred in childhood due to trivial trauma. Deformities of the femur and tibia due to malunion with osteopenia and blue sclerae were present. The patient was treated with z plasty of constriction band of the right tibia and bisphosphonate for osteogenesis imperfecta. This rare association of both collagen diseases may provide further insight for the pathogenesis of these diseases. 2015 BMJ Publishing Group Ltd.

  1. Lack of cyclophilin B in osteogenesis imperfecta with normal collagen folding.

    PubMed

    Barnes, Aileen M; Carter, Erin M; Cabral, Wayne A; Weis, MaryAnn; Chang, Weizhong; Makareeva, Elena; Leikin, Sergey; Rotimi, Charles N; Eyre, David R; Raggio, Cathleen L; Marini, Joan C

    2010-02-11

    Osteogenesis imperfecta is a heritable disorder that causes bone fragility. Mutations in type I collagen result in autosomal dominant osteogenesis imperfecta, whereas mutations in either of two components of the collagen prolyl 3-hydroxylation complex (cartilage-associated protein [CRTAP] and prolyl 3-hydroxylase 1 [P3H1]) cause autosomal recessive osteogenesis imperfecta with rhizomelia (shortening of proximal segments of upper and lower limbs) and delayed collagen folding. We identified two siblings who had recessive osteogenesis imperfecta without rhizomelia. They had a homozygous start-codon mutation in the peptidyl-prolyl isomerase B gene (PPIB), which results in a lack of cyclophilin B (CyPB), the third component of the complex. The proband's collagen had normal collagen folding and normal prolyl 3-hydroxylation, suggesting that CyPB is not the exclusive peptidyl-prolyl cis-trans isomerase that catalyzes the rate-limiting step in collagen folding, as is currently thought. 2010 Massachusetts Medical Society

  2. Lack of Cyclophilin B in Osteogenesis Imperfecta with Normal Collagen Folding

    PubMed Central

    Barnes, Aileen M.; Carter, Erin M.; Cabral, Wayne A.; Weis, MaryAnn; Chang, Weizhong; Makareeva, Elena; Leikin, Sergey; Rotimi, Charles N.; Eyre, David R.; Raggio, Cathleen L.; Marini, Joan C.

    2011-01-01

    SUMMARY Osteogenesis imperfecta is a heritable disorder that causes bone fragility. Mutations in type I collagen result in autosomal dominant osteogenesis imperfecta, whereas mutations in either of two components of the collagen prolyl 3-hydroxylation complex (cartilage-associated protein [CRTAP] and prolyl 3-hydroxylase 1 [P3H1]) cause autosomal recessive osteogenesis imperfecta with rhizomelia (shortening of proximal segments of upper and lower limbs) and delayed collagen folding. We identified two siblings who had recessive osteogenesis imperfecta without rhizomelia. They had a homozygous start-codon mutation in the peptidyl-prolyl isomerase B gene (PPIB), which results in a lack of cyclophilin B (CyPB), the third component of the complex. The proband’s collagen had normal collagen folding and normal prolyl 3-hydroxylation, suggesting that CyPB is not the exclusive peptidyl-prolyl cis–trans isomerase that catalyzes the rate-limiting step in collagen folding, as is currently thought. PMID:20089953

  3. Minimally invasive mitral valve repair in osteogenesis imperfecta.

    PubMed

    Tagliasacchi, Isabella; Martinelli, Luigi; Bardaro, Leopoldo; Chierchia, Sergio

    2017-10-01

    Osteogenesis imperfecta is a disorder of the connective tissue that affects several structures including heart valves. However, cardiac surgery is associated with high mortality and morbidity rates. In a 48-year-old man with osteogenesis imperfecta and mitral valve prolapse, we performed the first successful mitral valve repair by right anterior mini-thoracotomy. At the 1-year follow-up, he was asymptomatic and echocardiography confirmed the initial success. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  4. Dentinogenesis imperfecta associated with osteogenesis imperfecta

    PubMed Central

    Biria, Mina; Abbas, Fatemeh Mashhadi; Mozaffar, Sedighe; Ahmadi, Rahil

    2012-01-01

    This paper presents a case with dentinogenesis imperfecta (DI) associated with osteogenesis imperfecta. Systemic and dental manifestations of OI and its medical and dental treatments are discussed in this paper. A 5-year-old child with the diagnosis of OI was referred to the Dental School of Shaid Beheshti University of Medical Sciences. On clinical examination yellow/brown discoloration of primary teeth with the attrition of the exposed dentin and class III malocclusion was observed. Enamel of first permanent molars was hypoplastic. Radiographic examinations confirmed the diagnosis of DI. A histological study was performed on one of the exfoliating teeth, which showed abnormal dentin. Primary teeth with DI were more severely affected compared to permanent teeth; enamel disintegration occurred in teeth with DI, demonstrating the need for restricts recalls for these patients. PMID:23162594

  5. Genetics Home Reference: osteogenesis imperfecta

    MedlinePlus

    ... particular ethnic groups? Genetic Changes Mutations in the COL1A1 , COL1A2 , CRTAP , and P3H1 genes cause osteogenesis imperfecta . Mutations in the COL1A1 and COL1A2 genes are responsible for more than ...

  6. Update on the evaluation and treatment of osteogenesis imperfecta.

    PubMed

    Harrington, Jennifer; Sochett, Etienne; Howard, Andrew

    2014-12-01

    Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that presents with a wide clinical phenotype spectrum: from perinatal lethality and severe deformities to very mild forms without fractures. Most cases of OI are due to autosomal dominant mutations of the type I collagen genes. A multidisciplinary approach with rehabilitation, orthopedic surgery, and consideration of medical therapy with bisphosphonates underpins current management. Greater understanding of the pathogenesis of OI may lead to novel, therapeutic approaches to help improve clinical symptoms of children with OI in the future. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Children with Osteogenesis Imperfecta and Their Life Situation. Report and Documentation.

    ERIC Educational Resources Information Center

    Brodin, Jane

    Children with osteogenesis imperfecta form a small and relatively unknown group, with 5 to 10 children diagnosed in Sweden each year and a total of around 200 people under the age of 17 having the condition. A questionnaire was completed by families of 24 Swedish children with osteogenesis imperfecta, and three families were interviewed. The…

  8. Transcatheter mitral valve repair in osteogenesis imperfecta associated mitral valve regurgitation.

    PubMed

    van der Kley, Frank; Delgado, Victoria; Ajmone Marsan, Nina; Schalij, Martin J

    2014-08-01

    Osteogenesis imperfecta is associated with increased prevalence of significant mitral valve regurgitation. Surgical mitral valve repair and replacement are feasible but are associated with increased risk of bleeding and dehiscence of implanted valves may occur more frequently. The present case report describes the outcomes of transcatheter mitral valve repair in a patient with osteogenesis imperfecta. A 60 year-old patient with osteogenesis imperfecta and associated symptomatic moderate to severe mitral regurgitation underwent transthoracic echocardiography which showed a nondilated left ventricle with preserved systolic function and moderate to severe mitral regurgitation. On transoesophageal echocardiography the regurgitant jet originated between the anterolateral scallops of the anterior and posterior leaflets (A1-P1). Considering the comorbidities associated with osteogenesis imperfecta the patient was accepted for transcatheter mitral valve repair using the Mitraclip device (Abbott vascular, Menlo, CA). Under fluoroscopy and 3D transoesophageal echocardiography guidance, a Mitraclip device was implanted between the anterolateral and central scallops with significant reduction of mitral regurgitation. The postoperative evolution was uneventful. At one month follow-up, transthoracic echocardiography showed a stable position of the Mitraclip device with no mitral regurgitation. Transcatheter mitral valve repair is feasible and safe in patients with osteogenesis imperfecta and associated symptomatic significant mitral regurgitation. Copyright © 2014 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  9. Osteogenesis imperfecta type I: A case report

    PubMed Central

    REN, JIANMIN; XU, XIAOJIE; JIAN, XIANGDONG; WANG, JIERU

    2014-01-01

    A 15-year-old male patient was admitted to hospital having experienced repeated fractures over the previous three years, predominantly due to falling down or overexertion. The clinical signs and radiological features, such as recurrent fractures, blue sclera and low bone mineral density (BMD) level, all led to the diagnosis of a mild form of osteogenesis imperfecta (OI) type I. The patient began treatment with a regular intake of calcium (1,000 mg/day), an adequate intake of vitamin D (800 U/day) and intravenous pamidronate (60 mg). Following four months of treatment, the symptoms and quality of life of the patient improved. This patient appears to be a rare case of OI type I. PMID:24926339

  10. Bisphosphonate therapy for osteogenesis imperfecta.

    PubMed

    Dwan, Kerry; Phillipi, Carrie A; Steiner, Robert D; Basel, Donald

    2016-10-19

    Osteogenesis imperfecta is caused by a genetic defect resulting in an abnormal type I collagen bone matrix which typically results in multiple fractures with little or no trauma. Bisphosphonates are used in an attempt to increase bone mineral density and reduce these fractures in people with osteogenesis imperfecta. This is an update of a previously published Cochrane Review. To assess the effectiveness and safety of bisphosphonates in increasing bone mineral density, reducing fractures and improving clinical function in people with osteogenesis imperfecta. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Inborn Errors of Metabolism Trials Register which comprises references identified from comprehensive electronic database searches, handsearches of journals and conference proceedings. We additionally searched PubMed and major conference proceedings.Date of the most recent search of the Cochrane Cystic Fibrosis and Genetic Disorders Group's Inborn Errors of Metabolism Register: 28 April 2016. Randomised and quasi-randomised controlled trials comparing bisphosphonates to placebo, no treatment, or comparator interventions in all types of osteogenesis imperfecta. Two authors independently extracted data and assessed the risk of bias of the included trials. Fourteen trials (819 participants) were included. Overall, the trials were mainly at a low risk of bias, although selective reporting was an issue in several of the trials. Data for oral bisphosphonates versus placebo could not be aggregated; a statistically significant difference favouring oral bisphosphonates in fracture risk reduction and number of fractures was noted in two trials. No differences were reported in the remaining three trials which commented on fracture incidence. Five trials reported data for spine bone mineral density; all found statistically significant increased lumbar spine density z scores for at least one time point studied. For intravenous bisphosphonates versus placebo

  11. Bisphosphonate therapy for osteogenesis imperfecta.

    PubMed

    Dwan, Kerry; Phillipi, Carrie A; Steiner, Robert D; Basel, Donald

    2014-07-23

    Osteogenesis imperfecta is caused by a genetic defect resulting in an abnormal type I collagen bone matrix which typically results in multiple fractures with little or no trauma. Bisphosphonates are used in an attempt to increase bone mineral density and reduce these fractures in people with osteogenesis imperfecta. To assess the effectiveness and safety of bisphosphonates in increasing bone mineral density, reducing fractures and improving clinical function in people with osteogenesis imperfecta. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Inborn Errors of Metabolism Trials Register which comprises references identified from comprehensive electronic database searches, handsearches of journals and conference proceedings. We additionally searched PubMed and major conference proceedings.Date of the most recent search: 07 April 2014. Randomised and quasi-randomised controlled trials comparing bisphosphonates to placebo, no treatment, or comparator interventions in all types of osteogenesis imperfecta. Two authors independently extracted data and assessed the risk of bias of the included trials. Fourteen trials (819 participants) were included. Overall, the trials were mainly at a low risk of bias, although selective reporting was an issue in several of the trials. Data for oral bisphosphonates versus placebo could not be aggregated; a statistically significant difference favouring oral bisphosphonates in fracture risk reduction and number of fractures was noted in two trials. No differences were reported in the remaining three trials which commented on fracture incidence. Five trials reported data for spine bone mineral density; all found statistically significant increased lumbar spine density z scores for at least one time point studied. For intravenous bisphosphonates versus placebo, aggregated data from two trials showed no statistically significant difference for the number of participants with at least one fracture, risk ratio 0.56 (95

  12. Developmental charts for children with osteogenesis imperfecta, type I (body height, body weight and BMI).

    PubMed

    Graff, Krzysztof; Syczewska, Malgorzata

    2017-03-01

    Osteogenesis imperfecta (OI) is a rare genetic disorder of type I collagen. Type I is the most common, which is called a non-deforming type of OI, as in this condition, there are no major bone deformities. This type is characterised by blue sclera and vertebral fractures, leading to mild scoliosis. The body height of these patients is regarded as normal, or only slightly reduced, but there are no data proving this in the literature. The aim of this study is the preparation of the developmental charts of children with OI type I. The anthropometric data of 117 patients with osteogenesis imperfecta were used in this study (61 boys and 56 girls). All measurements were pooled together into one database (823 measurements in total). To overcome the problem of the limited number of data being available in certain age classes and gender groups, the method called reverse transformation was used. The body height of the youngest children, aged 2 and 3 years, is less than that of their healthy peers. Children between 4 and 7 years old catch up slightly, but at later ages, development slows down, and in adults, the median body height shows an SDS of -2.7. These results show that children with type I OI are smaller from the beginning than their healthy counterparts, their development slows down from 8 years old, and, ultimately, their body height is impaired. What is Known: • The body height of patients with osteogenesis imperfecta type I is regarded as normal, or only slightly reduced, but in the known literature, there is no measurement data supporting this opinion. What is New: • Children with type I osteogenesis imperfecta are smaller from the beginning than their healthy counterparts, their development slows down from 8 years old and, ultimately, their final body height is impaired. • The developmental charts for the body height, body weight and BMI of children with type I osteogenesis imperfecta are shown.

  13. Clinical application of antenatal genetic diagnosis of osteogenesis imperfecta type IV.

    PubMed

    Yuan, Jing; Li, Song; Xu, YeYe; Cong, Lin

    2015-04-02

    Clinical analysis and genetic testing of a family with osteogenesis imperfecta type IV were conducted, aiming to discuss antenatal genetic diagnosis of osteogenesis imperfecta type IV. Preliminary genotyping was performed based on clinical characteristics of the family members and then high-throughput sequencing was applied to rapidly and accurately detect the changes in candidate genes. Genetic testing of the III5 fetus and other family members revealed missense mutation in c.2746G>A, pGly916Arg in COL1A2 gene coding region and missense and synonymous mutation in COL1A1 gene coding region. Application of antenatal genetic diagnosis provides fast and accurate genetic counseling and eugenics suggestions for patients with osteogenesis imperfecta type IV and their families.

  14. [Osteogenesis imperfecta--operative treatment on lower extremities in children with osteogenesis imperfecta].

    PubMed

    Sułko, Jerzy; Radło, Wojciech

    2005-01-01

    The group of 141 children with osteogenesis imperfecta was treated in Orthopaedic Department of the University Children Hospital in Krakow, Poland. In 77 (54.6%) children from this group, we operated on lower extremities. Prophylactic operations, that were intramedullary Rush rodding, we performed in 19 cases (14 femurs and 11 tibias). Sofield-Millar procedures we performed in 58 children. We operated 321 times - there are 4 operations on average in one child. Average follow-up period was 6.7 years. We operated 473 long bones: 234 femurs and 239 tibias. We did 479 osteotomies. First operations were done at the age of 9 years on average (1.5-21 years). Further operations, 3 in each patient on average, we performed in period 37 months from one to another on tibias and 49 months on femurs. In all operated children we achieved full axis correction and their activity after operation improved. In order to assess that, we used the Bleck scale. In general, before operation, 54 (70%) children did not walk, and, in contrast, after operations 53 (69%) started walking. Operative treatment of the lower extremities in children with osteogenesis imperfecta improves their clinical physical abilities, quality of life and allows increase in activities.

  15. Osteogenesis imperfecta due to mutations in non-collagenous genes: lessons in the biology of bone formation.

    PubMed

    Marini, Joan C; Reich, Adi; Smith, Simone M

    2014-08-01

    Osteogenesis imperfecta or 'brittle bone disease' has mainly been considered a bone disorder caused by collagen mutations. Within the last decade, however, a surge of genetic discoveries has created a new paradigm for osteogenesis imperfecta as a collagen-related disorder, where most cases are due to autosomal dominant type I collagen defects, while rare, mostly recessive, forms are due to defects in genes whose protein products interact with collagen protein. This review is both timely and relevant in outlining the genesis, development, and future of this paradigm shift in the understanding of osteogenesis imperfecta. Bone-restricted interferon-induced transmembrane (IFITM)-like protein (BRIL) and pigment epithelium-derived factor (PEDF) defects cause types V and VI osteogenesis imperfecta via defective bone mineralization, while defects in cartilage-associated protein (CRTAP), prolyl 3-hydroxylase 1 (P3H1), and cyclophilin B (CYPB) cause types VII-IX osteogenesis imperfecta via defective collagen post-translational modification. Heat shock protein 47 (HSP47) and FK506-binding protein-65 (FKBP65) defects cause types X and XI osteogenesis imperfecta via aberrant collagen crosslinking, folding, and chaperoning, while defects in SP7 transcription factor, wingless-type MMTV integration site family member 1 (WNT1), trimeric intracellular cation channel type b (TRIC-B), and old astrocyte specifically induced substance (OASIS) disrupt osteoblast development. Finally, absence of the type I collagen C-propeptidase bone morphogenetic protein 1 (BMP1) causes type XII osteogenesis imperfecta due to altered collagen maturation/processing. Identification of these multiple causative defects has provided crucial information for accurate genetic counseling, inspired a recently proposed functional grouping of osteogenesis imperfecta types by shared mechanism to simplify current nosology, and has prodded investigations into common pathways in osteogenesis imperfecta. Such

  16. The prognosis for walking in osteogenesis imperfecta.

    PubMed

    Daly, K; Wisbeach, A; Sanpera, I; Fixsen, J A

    1996-05-01

    We report a postal survey of 59 families of children with osteogenesis imperfecta. From the 51 replies we collected data on developmental milestones and walking ability and related them to the Sillence and the Shapiro classifications of osteogenesis imperfecta. Twenty-four of the patients had been treated by intramedullary rodding. Both classifications helped to predict eventual walking ability. We found that independent sitting by the age of ten months was a predictor for the use of walking as the main means of mobility with 76% attaining this. Of the patients who did not achieve sitting by ten months, walking became the main means of mobility in only 18%. The developmental pattern of mobility was similar in the rodded and non-rodded patients.

  17. Osteogenesis Imperfecta

    MedlinePlus

    ... imperfecta (OI) is a genetic disorder in which bones break easily. Sometimes the bones break for no known reason. OI can also ... you make collagen, a protein that helps make bones strong. OI can range from mild to severe, ...

  18. Successful anterior cruciate ligament reconstruction and meniscal repair in osteogenesis imperfecta.

    PubMed

    Park, Jae-Young; Cho, Tae-Joon; Lee, Myung Chul; Han, Hyuk-Soo

    2018-03-20

    A case of anterior cruciate ligament (ACL) reconstruction with meniscal repair in an osteogenesis imperfecta patient is reported. A 24-year-old female with osteogenesis imperfecta type 1a suffered from a valgus extension injury resulting in tear of ACL and medial meniscus. She underwent an arthroscopic-assisted ACL reconstruction and medial meniscus repair. Meniscal tear at the menisco-capsular junction of the posterior horn of medial meniscus was repaired with three absorbable sutures via inside-out technique. ACL reconstruction was then performed with a bone-patellar tendon-bone allograft. The patient was followed up for 1 year with intact ACL grafts and healed medial meniscus. This case report showed that successful ACL reconstruction and meniscal repair is possible in an osteogenesis imperfecta patient.Level of evidence V.

  19. Intravenous pamidronate treatment of infants with severe osteogenesis imperfecta.

    PubMed

    Aström, Eva; Jorulf, Håkan; Söderhäll, Stefan

    2007-04-01

    Children with the severe forms of osteogenesis imperfecta have in several studies been treated with intravenous pamidronate, but there are only few reports of the effect of early treatment. To evaluate the effect of treatment started in infancy. In a prospective observational study, with a historic control group, intravenous disodium pamidronate (APD) was given as monthly infusions to 11 children with osteogenesis imperfecta aged 3-13 (median 3.6) months, who had severe osteogenesis imperfecta with congenital bowing of the femora and vertebral compression fractures. During treatment of children aged between 3 and 6 (median 4.5) years, dual-energy x ray absorptiometry measurements of the lumbar spine showed a gradual increase in bone density. Bone metabolism parameters in serum (alkaline phosphatase, osteocalcin, procollagen 1 carboxy-terminal peptide, collagen 1 teleopeptide) and in urine (deoxypyridinoline) indicated a decrease in bone turnover. An improvement of mobility was seen and at the latest recording, at the age of 3.3-6.5 (median 4.8) years, the children could all walk. Vertebral remodelling was seen, with increased vertebral height, and no child developed scoliosis, kyphosis or basilar impression. All children required femoral intramedullar rods for fractures, and five needed tibial rodding for extreme curvatures that prevented functional standing and walking. No adverse effects were seen on growth, fracture healing or blood chemistry. APD is an efficient symptomatic treatment for infants with severe osteogenesis imperfecta, but additional orthopaedic surgery is often needed. Early treatment may prevent scoliosis and basilar impression. Long-term follow-up is important.

  20. Evaluation of the severity of malocclusions in children affected by osteogenesis imperfecta with the peer assessment rating and discrepancy indexes.

    PubMed

    Rizkallah, Jean; Schwartz, Stephane; Rauch, Frank; Glorieux, Francis; Vu, Duy-Dat; Muller, Katia; Retrouvey, Jean-Marc

    2013-03-01

    Osteogenesis imperfecta is a heritable disorder affecting bone and tooth development. Malocclusion is frequent in those affected by osteogenesis imperfecta, but this has not been studied in detail. The purpose of this study was to describe and quantify the severity of malocclusions in patients with osteogenesis imperfecta. Articulated dental casts were obtained from 49 patients diagnosed with osteogenesis imperfecta (ages 5-19 years; 28 female) and 49 age- and sex-matched control subjects who did not have osteogenesis imperfecta. Both groups were seeking orthodontic treatment. Malocclusions were scored by using the peer assessment rating (PAR) and the discrepancy index (DI). The average United Kingdom weighted PAR scores were 31.1 (SD, 14.5) for the osteogenesis imperfecta group and 22.7 (SD, 10.7) for the control group (P <0.05). The mean United States weighted PAR scores were 32.2 (SD, 15.0) for patients with osteogenesis imperfecta and 21.6 (SD, 9.6) for the controls (P <0.05). The average modified DI scores were 29.8 (SD, 20.2) for the osteogenesis imperfecta group and 12.4 (SD, 6.8) for the control group (P <0.05). Group differences were greatest for lateral open bite (osteogenesis imperfecta group, 7.1; control group, 0.3) for the DI parameters and anterior crossbite (osteogenesis imperfecta group, 13.0; control group, 3.8 [United Kingdom]) for the PAR. Both the PAR and the DI showed that malocclusions were significantly more severe in patients with osteogenesis imperfecta than in the control group. There was a higher incidence of Class III malocclusion associated with anterior and lateral open bites in patients affected by osteogenesis imperfecta. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  1. Osteogenesis imperfecta: from diagnosis and multidisciplinary treatment to future perspectives.

    PubMed

    Bregou Bourgeois, Aline; Aubry-Rozier, Bérengère; Bonafé, Luisa; Laurent-Applegate, Lee; Pioletti, Dominique P; Zambelli, Pierre-Yves

    2016-01-01

    Osteogenesis imperfecta is an inherited connective tissue disorder with wide phenotypic and molecular heterogeneity. A common issue associated with the molecular abnormality is a disturbance in bone matrix synthesis and homeostasis inducing bone fragility. In very early life, this can lead to multiple fractures and progressive bone deformities, including long bone bowing and scoliosis. Multidisciplinary management improves quality of life for patients with osteogenesis imperfecta. It consists of physical therapy, medical treatment and orthopaedic surgery as necessary. Medical treatment consists of bone-remodelling drug therapy. Bisphosphonates are widely used in the treatment of moderate to severe osteogenesis imperfecta, from infancy to adulthood. Other more recent drug therapies include teriparatide and denosumab. All these therapies target the symptoms and have effects on the mechanical properties of bone due to modification of bone remodelling, therefore influencing skeletal outcome and orthopaedic surgery. Innovative therapies, such as progenitor and mesenchymal stem cell transplantation, targeting the specific altered pathway rather than the symptoms, are in the process of development.

  2. In-toeing in children with type I osteogenesis imperfecta: an observational descriptive study.

    PubMed

    Losa Iglesias, Marta Elena; Becerro de Bengoa Vallejo, Ricardo; Salvadores Fuentes, Paloma

    2009-01-01

    Osteogenesis imperfecta is an autosomal-dominant disorder of the connective tissue. Also known as brittle bone disease, it renders those affected susceptible to fractures after minimal trauma. Therefore, it is important to minimize the risk of falls and subsequent fractures in patients with this disease. In-toeing is a common condition in children that can result from various pathologic entities, including anteversion, internal tibial torsion, and metatarsus adductus. These conditions can result in frequent tripping and other functional problems. A descriptive study was undertaken to determine the prevalence of in-toeing gait attributable to tibial or femoral torsion or metatarsus adductus in children with type I osteogenesis imperfecta. The study involved orthopedic and biomechanical examination of 15 children (9 girls and 6 boys) aged 4 to 9 years with confirmed type I osteogenesis imperfecta. Patients who used assistive ambulatory devices, such as canes, crutches, and wheelchairs, were excluded from the study. Of the 15 children studied, 12 (80%) demonstrated previously undiagnosed in-toeing gait attributable to torsional deformity or metatarsus adductus in all but one child. Many children with confirmed type I osteogenesis imperfecta have in-toeing gait caused by torsional deformity or metatarsus adductus. Detection and control of in-toeing gait in children with osteogenesis imperfecta is important to prevent fractures resulting from trauma directly related to these conditions.

  3. Pamidronate treatment for osteogenesis imperfecta in black South Africans.

    PubMed

    Henderson, B D; Isaac, N; Mabele, O; Khiba, S; Nkayi, A; Mokoena, T

    2016-05-25

    Osteogenesis imperfecta is a heritable disorder of bone connective tissue. Type III has a high incidence in the black pop-ulation of South Africa. Affected people experience numerous fractures, bone pain and progressive disability. Until the introduction of bisphosphonates to reduce fracture incidence, treatment revolved around orthopaedic and supportive care. Objective. To assess the subjective attitude of patients towards pamidronate treatment. Thirty black patients with osteogenesis imperfecta type III treated at Universitas Hospital were approached and 26 were included in this study. Patients or their parents were interviewed using a standardised researcher-administered questionnaire, either in person or by telephone. Most patients reported a reduction in symptoms, a feeling of increased wellbeing, increased strength and rated the pamidronate treatment highly. The intravenous route of administration and the side-effects experienced were bearable. Overall all patients would recommend this treatment to other affected persons. This is first study to look at bisphosphonate treatment for osteogenesis imperfecta type III in black South Africans. The treatment is well tolerated and highly rated by the patients. Reported improvements and side-effects are similar to those reported in other populations. Using this form of treatment in this population is supported by these findings.

  4. How Do Health Care Providers Diagnose Osteogenesis Imperfecta?

    MedlinePlus

    ... Share Facebook Twitter Pinterest Email Print How do health care providers diagnose osteogenesis imperfecta (OI)? If OI is moderate or severe, health care providers usually diagnose it during prenatal ultrasound at ...

  5. CLINICAL FEATURES AND PATTERN OF FRACTURES AT THE TIME OF DIAGNOSIS OF OSTEOGENESIS IMPERFECTA IN CHILDREN.

    PubMed

    Brizola, Evelise; Zambrano, Marina Bauer; Pinheiro, Bruna de Souza; Vanz, Ana Paula; Félix, Têmis Maria

    2017-01-01

    To characterize the fracture pattern and the clinical history at the time of diagnosis of osteogenesis imperfecta. In this retrospective study, all patients with osteogenesis imperfecta, of both genders, aged 0-18 years, who were treated between 2002 and 2014 were included. Medical records were assessed to collect clinical data, including the presence of blue sclerae, dentinogenesis imperfecta, positive familial history of osteogenesis imperfecta, and the site of the fractures. In addition, radiographic findings at the time of the diagnosis were reviewed. Seventy-six patients (42 females) were included in the study. Individuals' age ranged from 0 to 114 months, with a median (interquartile range) age of 38 (6-96) months. Blue sclerae were present in 93.4% of patients, dentinogenesis imperfecta was observed in 27.6% of patients, and wormian bones in 29.4% of them. The number of fractures at diagnosis ranged from 0 to 17, with a median of 3 (2-8) fractures. Forty (57%) patients had fractures of the upper and lower extremities, and 9 patients also had spinal fractures. The diagnosis was performed at birth in 85.7% of patients with type 3, and 39.3% of those with type 4/5 of the disorder. Osteogenesis imperfecta is a genetic disorder with distinctive clinical features such as bone fragility, recurrent fractures, blue sclerae, and dentinogenesis imperfecta. It is important to know how to identify these characteristics in order to facilitate the diagnosis, optimize the treatment, and differentiate osteogenesis imperfecta from other disorders that also can lead to fractures.

  6. CLINICAL FEATURES AND PATTERN OF FRACTURES AT THE TIME OF DIAGNOSIS OF OSTEOGENESIS IMPERFECTA IN CHILDREN

    PubMed Central

    Brizola, Evelise; Zambrano, Marina Bauer; Pinheiro, Bruna de Souza; Vanz, Ana Paula; Félix, Têmis Maria

    2017-01-01

    ABSTRACT Objective: To characterize the fracture pattern and the clinical history at the time of diagnosis of osteogenesis imperfecta. Methods: In this retrospective study, all patients with osteogenesis imperfecta, of both genders, aged 0-18 years, who were treated between 2002 and 2014 were included. Medical records were assessed to collect clinical data, including the presence of blue sclerae, dentinogenesis imperfecta, positive familial history of osteogenesis imperfecta, and the site of the fractures. In addition, radiographic findings at the time of the diagnosis were reviewed. Results: Seventy-six patients (42 females) were included in the study. Individuals’ age ranged from 0 to 114 months, with a median (interquartile range) age of 38 (6-96) months. Blue sclerae were present in 93.4% of patients, dentinogenesis imperfecta was observed in 27.6% of patients, and wormian bones in 29.4% of them. The number of fractures at diagnosis ranged from 0 to 17, with a median of 3 (2-8) fractures. Forty (57%) patients had fractures of the upper and lower extremities, and 9 patients also had spinal fractures. The diagnosis was performed at birth in 85.7% of patients with type 3, and 39.3% of those with type 4/5 of the disorder. Conclusions: Osteogenesis imperfecta is a genetic disorder with distinctive clinical features such as bone fragility, recurrent fractures, blue sclerae, and dentinogenesis imperfecta. It is important to know how to identify these characteristics in order to facilitate the diagnosis, optimize the treatment, and differentiate osteogenesis imperfecta from other disorders that also can lead to fractures. PMID:28977334

  7. [Genetic mutation and clinical features of osteogenesis imperfecta type V].

    PubMed

    Guan, Shizhen; Bai, Xue; Wang, Yi; Liu, Zhigang; Ren, Xiuzhi; Zhang, Tianke; Ju, Mingyan; Li, Keqiu; Li, Guang

    2017-12-10

    To explore genetic mutations and clinical features of osteogenesis imperfecta type V. Clinical record of five patients (including one familial case) with osteogenesis imperfecta type V were retrospectively analyzed. Peripheral blood samples of the patients, one family member, as well as healthy controls were collected. Mutation of IFITM5 gene was identified by PCR amplification and Sanger sequencing. A heterozygous mutation (c.-14C>T) in the 5-UTR of the IFITM5 gene was identified in all of the patients and one mother. The clinical findings included frequent fractures and spine and/or extremities deformities, absence of dentinogenesis imperfecta, absence of hearing impairment, and blue sclera in 1 case. Radiographic findings revealed calcification of the interosseous membrane between the radius-ulna in all cases. Hyperplastic callus formation was found in 3 cases. Four had radial-head dislocation. A single heterozygous mutation c.-14C>T was found in the 5-UTR of the IFITM5 gene in 5 patients with osteogensis imperfecta type V. The patients showed specific radiological features including calcification of interosseous membrane, hyperplastic callus formation, and radial-head dislocation.

  8. Suspect osteogenesis imperfecta in a male kitten

    PubMed Central

    Evason, Michelle D.; Taylor, Susan M.; Bebchuk, Trevor N.

    2007-01-01

    A 4.5-month-old, male domestic shorthair was presented with bilateral femoral fractures after falling from a low height. Radiographs revealed reduced radio-opacity and thin cortices of all long bones. A presumptive diagnosis of osteodystrophy, secondary to osteogenesis imperfecta, was made on postmortem examination. PMID:17436908

  9. Osteogenesis imperfecta: recent findings shed new light on this once well-understood condition.

    PubMed

    Basel, Donald; Steiner, Robert D

    2009-06-01

    Osteogenesis imperfecta is a systemic heritable disorder of connective tissue whose cardinal manifestation is bone fragility. In approximately 90% of individuals with osteogenesis imperfecta, mutations in either of the genes encoding the pro-alpha1 or pro-alpha2 chains of type I collagen (COL1A1 or COL1A2) can be identified. Of those without collagen mutations, a number of them will have mutations involving the enzyme complex responsible for posttranslational hydroxylation of the position 3 proline residue of COL1A1. Two of the genes encoding proteins involved in that enzyme complex, LEPRE1 and cartilage-associated protein, when mutated have been shown to cause autosomal recessive osteogenesis imperfecta, which has a moderate to severe clinical phenotype, often indistinguishable from osteogenesis imperfecta types II or III. Mutations in COL1A1 or COL1A2 which result in an abnormal protein still capable of forming a triple helix cause a more severe phenotype than mutations that lead to decreased collagen production as a result of the dominant negative effect mediated by continuous protein turnover. The current standard of care includes a multidisciplinary approach with surgical intervention when necessary, proactive physiotherapy, and consideration for the use of bisphosphonates all in attempts to improve quality of life.

  10. Phase angle and World Health Organization criteria for the assessment of nutritional status in children with osteogenesis imperfecta

    PubMed Central

    Pileggi, Vicky Nogueira; Scalize, Antonio Rodolpho Hakime; Camelo, José Simon

    2016-01-01

    Abstract Objective: To compare the phase angle of patients with osteogenesis imperfecta treated at a tertiary university hospital with patients in a control group of healthy children, and to assess the nutritional status of these patients through the body mass index proposed by the World Health Organization. Methods: Cross-sectional study carried out in a university hospital that included seven patients with osteogenesis imperfecta and a control group of 17 healthy children of the same gender and age. Weight and height were measured and bioelectrical impedance was performed. Subsequently, the phase angle was calculated based on resistance and reactance values. Results: The phase angle of the group of children with osteogenesis imperfecta was significantly lower than that of the control group (p<0.05). The body mass index criterion for age of the World Health Organization showed no difference between groups. Conclusions: Children with osteogenesis imperfecta have a nutritional risk detected by the phase angle, which is a useful tool for nutritional screening. The calculation result could help in the diet therapy of patients with osteogenesis imperfecta. PMID:27102998

  11. Ruptured intracranial aneurysm in patients with osteogenesis imperfecta: 2 familial cases and a systematic review of the literature.

    PubMed

    Gaberel, T; Rochey, A; di Palma, C; Lucas, F; Touze, E; Emery, E

    2016-12-01

    Osteogenesis imperfecta is an inherited connective tissue disorder that causes bone fragility. Vascular complications have been described, but only few cases of ruptured intracranial aneurysm have been reported. We first described 2 familial cases of ruptured intracranial aneurysm and then conducted a systematic review of the literature. A mother and her daughter with a typical history of osteogenesis imperfecta presented with subarachnoid hemorrhage, which was related to a posterior communicating artery aneurysm in both cases. The mother had early rebleeding and died. The aneurysm was excluded by coiling in the daughter. Despite occurrence of hydrocephalus and delayed cerebral ischemia, she had an excellent functional outcome. A systematic review of the literature identified seven additional cases. None of the cases were in fact familial. All patients had a previous medical history of multiple fractures. Seven aneurysms were resolved, three by surgical clipping and four by endovascular procedure. No periprocedural complication was reported. One patient died prematurely and 6 experienced good functional outcome. We report the first familial cases of aneurysmal subarachnoid hemorrhage in osteogenesis imperfecta patients. Intracranial aneurysms are probably linked to a collagen pathology, which is at the origin of osteogenesis imperfecta. In cases of aneurysmal subarachnoid hemorrhage in an osteogenesis imperfecta family, intracranial aneurysm screenings in the relatives showing osteogenesis imperfecta should be considered. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. A Guide to Education for Children with Osteogenesis Imperfecta. What Is OIF? Care of an Osteogenesis Imperfecta Baby and Child.

    ERIC Educational Resources Information Center

    Ostegenesis Imperfecta Foundation, Inc., Manchester, NH.

    Three pamphlets provide basic information on the care and education of children with osteogenesis imperfecta (OI) a lifelong liability to fractures due to imperfectly formed "brittle bones." The first brochure, a guide to education for children with OI, addresses the importance of attitudes, the value of early education, public school…

  13. Phase angle and World Health Organization criteria for the assessment of nutritional status in children with osteogenesis imperfecta.

    PubMed

    Pileggi, Vicky Nogueira; Scalize, Antonio Rodolpho Hakime; Camelo Junior, José Simon

    2016-12-01

    To compare the phase angle of patients with osteogenesis imperfecta treated at a tertiary university hospital with patients in a control group of healthy children, and to assess the nutritional status of these patients through the body mass index proposed by the World Health Organization. Cross-sectional study carried out in a university hospital that included seven patients with osteogenesis imperfecta and a control group of 17 healthy children of the same gender and age. Weight and height were measured and bioelectrical impedance was performed. Subsequently, the phase angle was calculated based on resistance and reactance values. The phase angle of the group of children with osteogenesis imperfecta was significantly lower than that of the control group (p<0.05). The body mass index criterion for age of the World Health Organization showed no difference between groups. Children with osteogenesis imperfecta have a nutritional risk detected by the phase angle, which is a useful tool for nutritional screening. The calculation result could help in the diet therapy of patients with osteogenesis imperfecta. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  14. Rehabilitation of infants with osteogenesis imperfecta.

    PubMed

    Binder, H

    1995-01-01

    Experience gained over twelve years of treating infants with Osteogenesis Imperfecta is described. Emphasized are the facts that no child, including those with OI Sillence II, is too severely involved to not benefit at least from positioning to prevent severe secondary deformities; the Sillence classification does not predict functional ability, particularly regarding patiens with type III OI; disuse weakness and osteoporosis due to immobilization may be more handicapping than the underlying disease itself.

  15. Orthognathic bimaxillary surgery in two patients with osteogenesis imperfecta and a review of the literature.

    PubMed

    Rosén, A; Modig, M; Larson, O

    2011-08-01

    Orthognathic surgery in patients with osteogenesis imperfecta is rare. Most cases result in a successful outcome with stable and good occlusion. Two patients with, probably severe types III and IV, and malocclusion class III with retrognathic maxilla and prognathic mandible, were treated with orthodontic treatment and bimaxillary surgical correction. The surgical outcome and follow up are presented together with a review of published cases of orthognathic surgery in patients with different types of osteogenesis imperfecta. The authors conclude that it is possible to perform combined orthodontic and orthognathic surgery in patients with osteogenesis imperfecta despite the greater risk of complications. The treatments were successful with follow up times of 5-6 years. Copyright © 2011 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Orthopaedic Considerations for the Adult With Osteogenesis Imperfecta.

    PubMed

    Roberts, Timothy T; Cepela, Daniel J; Uhl, Richard L; Lozman, Jeffery

    2016-05-01

    Osteogenesis imperfecta is a heritable group of collagen-related disorders that affects up to 50,000 people in the United States. Although the disease is most symptomatic in childhood, adults with osteogenesis imperfecta also are affected by the sequelae of the disease. Orthopaedic manifestations include posttraumatic and accelerated degenerative joint disease, kyphoscoliosis, and spondylolisthesis. Other manifestations of abnormal collagen include brittle dentition, hearing loss, cardiac valve abnormalities, and basilar invagination. In general, nonsurgical treatment is preferred for management of acute fractures. High rates of malunion, nonunion, and subsequent deformity have been reported with both closed and open treatment. When surgery is necessary, surgeons should opt for load-sharing intramedullary devices that span the entire length of the bone; locking plates and excessively rigid fixation generally should be avoided. Arthroplasty may be considered for active patients, but the procedure frequently is associated with complications in this patient population. Underlying deformities, such as malunion, bowing, rotational malalignment, coxa vara, and acetabular protrusio, pose specific surgical challenges and underscore the importance of preoperative planning.

  17. Recent developments in osteogenesis imperfecta

    PubMed Central

    Shaker, Joseph L.; Albert, Carolyne; Fritz, Jessica; Harris, Gerald

    2015-01-01

    Osteogenesis imperfecta (OI) is an uncommon genetic bone disease associated with brittle bones and fractures in children and adults. Although OI is most commonly associated with mutations of the genes for type I collagen, many other genes (some associated with type I collagen processing) have now been identified. The genetics of OI and advances in our understanding of the biomechanical properties of OI bone are reviewed in this article. Treatment includes physiotherapy, fall prevention, and sometimes orthopedic procedures. In this brief review, we will also discuss current understanding of pharmacologic therapies for treatment of OI. PMID:26401268

  18. Stapedotomy in osteogenesis imperfecta: a prospective study of 32 consecutive cases.

    PubMed

    Vincent, Robert; Wegner, Inge; Stegeman, Inge; Grolman, Wilko

    2014-12-01

    To prospectively evaluate hearing outcomes in patients with osteogenesis imperfecta undergoing primary stapes surgery and to isolate prognostic factors for success. A nonrandomized, open, prospective case series. A tertiary referral center. Twenty-five consecutive patients who underwent 32 primary stapedotomies for osteogenesis imperfecta with evidence of stapes fixation and available postoperative pure-tone audiometry. Primary stapedotomy with vein graft interposition and reconstruction with a regular Teflon piston or bucket handle-type piston. Preoperative and postoperative audiometric evaluation using conventional 4-frequency (0.5, 1, 2, and 4 kHz) audiometry. Air-conduction thresholds, bone-conduction thresholds, and air-bone gap were measured. The overall audiometric results as well as the results of audiometric evaluation at 3 months and at least 1 year after surgery were used. Overall, postoperative air-bone gap closure to within 10 dB was achieved in 88% of cases. Mean (standard deviation) gain in air-conduction threshold was 22 (9.4) dB for the entire case series, and mean (standard deviation) air-bone gap closure was 22 (9.0) dB. Backward multivariate logistic regression showed that a model with preoperative air-bone gap closure and intraoperatively established incus length accurately predicts success after primary stapes surgery. Stapes surgery is a feasible and safe treatment option in patients with osteogenesis imperfecta. Success is associated with preoperative air-bone gap and intraoperatively established incus length.

  19. Impact of three genetic musculoskeletal diseases: a comparative synthesis of achondroplasia, Duchenne muscular dystrophy and osteogenesis imperfecta.

    PubMed

    Dogba, Maman Joyce; Rauch, Frank; Douglas, Erin; Bedos, Christophe

    2014-10-25

    Achondroplasia, Duchenne muscular dystrophy, and osteogenesis imperfecta are among the most frequent rare genetic disorders affecting the musculoskeletal system in children. Rare genetic disorders are severely disabling and can have substantial impacts on families, children, and on healthcare systems. This literature review aims to classify, summarize and compare these non-medical impacts of achondroplasia, Duchenne muscular dystrophy and osteogenesis imperfecta.

  20. Osteogenesis imperfecta in childhood: treatment strategies.

    PubMed

    Engelbert, R H; Pruijs, H E; Beemer, F A; Helders, P J

    1998-12-01

    Osteogenesis imperfecta (OI) is a skeletal disorder of remarkable clinical variability characterized by bone fragility, osteopenia, variable degrees of short stature, and progressive skeletal deformities. Additional clinical manifestations such as blue sclerae, dentinogenesis imperfecta, joint laxity, and maturity onset deafness are described in the literature. OI occurs in about 1 in 20,000 births and is caused by quantitative and qualitative defects in the synthesis of collagen I. Depending on the severity of the disease, a large impact on motor development, range of joint motion, muscle strength, and functional ability may occur. Treatment strategies should primarily focus on the improvement of functional ability and the adoption of compensatory strategies, rather than merely improving range of joint motion and muscle strength. Surgical treatment of the extremities may be indicated to stabilize the long bones to optimize functional ability and walking capacity. Surgical treatment of the spine may be indicated in patients with progressive spinal deformity and in those with symptomatic basilar impression.

  1. Skeletal muscle weakness in osteogenesis imperfecta mice.

    PubMed

    Gentry, Bettina A; Ferreira, J Andries; McCambridge, Amanda J; Brown, Marybeth; Phillips, Charlotte L

    2010-09-01

    Exercise intolerance, muscle fatigue and weakness are often-reported, little-investigated concerns of patients with osteogenesis imperfecta (OI). OI is a heritable connective tissue disorder hallmarked by bone fragility resulting primarily from dominant mutations in the proα1(I) or proα2(I) collagen genes and the recently discovered recessive mutations in post-translational modifying proteins of type I collagen. In this study we examined the soleus (S), plantaris (P), gastrocnemius (G), tibialis anterior (TA) and quadriceps (Q) muscles of mice expressing mild (+/oim) and moderately severe (oim/oim) OI for evidence of inherent muscle pathology. In particular, muscle weight, fiber cross-sectional area (CSA), fiber type, fiber histomorphology, fibrillar collagen content, absolute, relative and specific peak tetanic force (P(o), P(o)/mg and P(o)/CSA respectively) of individual muscles were evaluated. Oim/oim mouse muscles were generally smaller, contained less fibrillar collagen, had decreased P(o) and an inability to sustain P(o) for the 300-ms testing duration for specific muscles; +/oim mice had a similar but milder skeletal muscle phenotype. +/oim mice had mild weakness of specific muscles but were less affected than their oim/oim counterparts which demonstrated readily apparent skeletal muscle pathology. Therefore muscle weakness in oim mice reflects inherent skeletal muscle pathology. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Bisphosphonates for the prevention of fractures in osteogenesis imperfecta: meta-analysis of placebo-controlled trials.

    PubMed

    Hald, Jannie D; Evangelou, Evangelos; Langdahl, Bente L; Ralston, Stuart H

    2015-05-01

    Bisphosphonates are widely used off-label in the treatment of patients with osteogenesis imperfecta (OI) with the intention of reducing the risk of fracture. Although there is strong evidence that bisphosphonates increase bone mineral density in osteogenesis imperfecta, the effects on fracture occurrence have been inconsistent. The aim of this study was to gain a better insight into the effects of bisphosphonate therapy on fracture risk in patients with osteogenesis imperfecta by conducting a meta-analysis of randomized controlled trials in which fractures were a reported endpoint. We searched Medline, Embase, and the Cochrane Central Register of Controlled Trials in which the effects of bisphosphonates on fracture risk in osteogenesis imperfecta were compared with placebo and conducted a meta-analysis of these studies using standard methods. Heterogeneity was assessed using the I2 statistic. Six eligible studies were identified involving 424 subjects with 751 patient-years of follow-up. The proportion of patients who experienced a fracture was not significantly reduced by bisphosphonate therapy (Relative Risk [RR] = 0.83 [95% confidence interval 0.69-1.01], p = 0.06) with no heterogeneity between studies (I2  = 0). The fracture rate was reduced by bisphosphonate treatment when all studies were considered (RR = 0.71 [0.52-0.96], p = 0.02), but with considerable heterogeneity (I2  = 36%) explained by one study where a small number of patients in the placebo group experienced a large number of fractures. When this study was excluded, the effects of bisphosphonates on fracture rate was not significant (RR = 0.79 [0.61-1.02], p = 0.07, I2  = 0%). We conclude that the effects of bisphosphonates on fracture prevention in osteogenesis imperfecta are inconclusive. Adequately powered trials with a fracture endpoint are needed to further investigate the risks and benefits of bisphosphonates in this condition. © 2014 American Society for

  3. Successful operative rib fixation of traumatic flail chest in a patient with osteogenesis imperfecta.

    PubMed

    Kulaylat, Afif N; Chesnut, Charles H; Santos, Ariel P; Armen, Scott B

    2014-09-01

    Increasing attention has been directed towards operative rib fixation of traumatic flail chest; reported benefits include more rapid weaning from the ventilator, decreased intensive care unit stays, decreased complications and improved functional results. The outcomes of this surgical intervention in patients with osteogenesis imperfecta, a rare condition characterized by low bone density and bone fragility, are unknown. This case demonstrates that, in the management of traumatic flail chest in a patient with osteogenesis imperfecta, surgical fixation can be successful and should be considered early. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  4. Sandwich allografts for long-bone nonunions in patients with osteogenesis imperfecta: a retrospective study.

    PubMed

    Puvanesarajah, Varun; Shapiro, Jay R; Sponseller, Paul D

    2015-02-18

    Patients with osteogenesis imperfecta often develop nonunions, as internal fixation has limited applicability in this condition. We report the outcomes of a modified "sandwich technique" in the treatment of long-bone nonunions in patients with osteogenesis imperfecta; this technique brings circumferential stabilization and normal collagen to the nonunion site. From May 2003 through February 2012, twelve patients (eight females, four males; median age, 39.0 years; range, eleven to seventy-eight years) who had osteogenesis imperfecta (Sillence type I [three], type III [eight], and type IV [one]) and a combined total of thirteen nonunions (two humeral, two radial, three femoral, four tibial, and two ulnar; median duration, 15.0 months; range, six to 204 months) were treated at our institution with compressed sandwich allograft cortical struts. The struts were fashioned to be wide enough to allow for increased osteoconductive surface area and to approximate a hemicylindrical shape. Treatment history and demographics data were acquired through retrospective chart review. Follow-up radiographs were analyzed by two attending orthopaedic surgeons to determine radiographic findings. The median follow-up time was 4.6 years (range, 2.1 to 10.3 years). All thirteen nonunions, including one requiring a second graft procedure, healed with abundant, smooth allograft incorporation, resulting in an initial healing rate of 92% because of a refracture in one patient. This patient's nonunion ultimately healed with additional allograft struts and a new intramedullary rod. One patient required removal of prominent screws. The final follow-up examinations revealed no pain or refracture at the original nonunion site. All patients regained their prefracture level of function. Sandwich allograft struts constitute a durable, safe method for the stabilization and healing of persistent long-bone nonunions in patients with osteogenesis imperfecta. All patients showed incorporation of the

  5. Bone Plating in Patients with Type III Osteogenesis Imperfecta: Results and Complications

    PubMed Central

    Enright, William J; Noonan, Kenneth J

    2006-01-01

    The results of bone plating in four children (6 femurs, 2 tibias) with osteogenesis imperfecta type III were analyzed. Average age at time of operation was 44 months. In three of the femurs, multiple platings were performed for a total of 13 bone platings in the eight bones studied. Average time to revision following plating was 27 months. Indications for revision included fracture (6), deformity (3), hardware failure (3), and nonunion (1). Other complications included one case of compartment syndrome. All eight bones were ultimately revised to elongating intramedullary Bailey-Dubow rods. Bone plating in skeletally immature patients with osteogenesis imperfecta does not provide better outcome than elongating rods. Complications from bone plating leading to revision, such as refracture or hardware failure, are higher than in those children managed with elongating rods, as previously reported in the literature. PMID:16789446

  6. Hip and knee replacement in osteogenesis imperfecta.

    PubMed

    Papagelopoulos, P J; Morrey, B F

    1993-04-01

    Five total hip and three total knee arthroplasties were performed, from 1969 to 1990, in six patients who had osteogenesis imperfecta. The patients who had a hip arthroplasty were followed for a mean of seven years, and those who had a knee arthroplasty, for a mean of ten years. Postoperatively, all had relief of pain and were able to walk; one patient used a walker and two used a cane. The only postoperative complication was an intrapelvic protrusion of the acetabular component six years after a bipolar hip replacement.

  7. Muscle abnormalities in osteogenesis imperfecta

    PubMed Central

    Veilleux, L-N.; Trejo, P.; Rauch, F.

    2017-01-01

    Osteogenesis imperfecta (OI) is mainly characterized by bone fragility but muscle abnormalities have been reported both in OI mouse models and in children with OI. Muscle mass is decreased in OI, even when short stature is taken into account. Dynamic muscle tests aiming at maximal eccentric force production reveal functional deficits that can not be explained by low muscle mass alone. However, it appears that diaphyseal bone mass is normally adapted to muscle force. At present the determinants of muscle mass and function in OI have not been clearly defined. Physiotherapy interventions and bisphosphonate treatment appear to have some effect on muscle function in OI. Interventions targeting muscle mass have shown encouraging results in OI animal models and are an interesting area for further research. PMID:28574406

  8. Tissue-specific mosaicism for a lethal osteogenesis imperfecta COL1A1 mutation causes mild OI/EDS overlap syndrome.

    PubMed

    Symoens, Sofie; Steyaert, Wouter; Demuynck, Lynn; De Paepe, Anne; Diderich, Karin E M; Malfait, Fransiska; Coucke, Paul J

    2017-04-01

    Type I collagen is the predominant protein of connective tissues such as skin and bone. Mutations in the type I collagen genes (COL1A1 and COL1A2) mainly cause osteogenesis imperfecta (OI). We describe a patient with clinical signs of Ehlers-Danlos syndrome (EDS), including fragile skin, easy bruising, recurrent luxations, and fractures resembling mild OI. Biochemical collagen analysis of the patients' dermal fibroblasts showed faint overmodification of the type I collagen bands, a finding specific for structural defects in type I collagen. Bidirectional Sanger sequencing detected an in-frame deletion in exon 44 of COL1A1 (c.3150_3158del), resulting in the deletion of three amino acids (p.Ala1053_Gly1055del) in the collagen triple helix. This COL1A1 mutation was hitherto identified in four probands with lethal OI, and never in EDS patients. As the peaks on the electropherogram corresponding to the mutant allele were decreased in intensity, we performed next generation sequencing of COL1A1 to study mosaicism in skin and blood. While approximately 9% of the reads originating from fibroblast gDNA harbored the COL1A1 deletion, the deletion was not detected in gDNA from blood. Most likely, the mild clinical symptoms observed in our patient can be explained by the mosaic state of the mutation. © 2017 Wiley Periodicals, Inc.

  9. Evaluation of stomatognathic problems in children with osteogenesis imperfecta (osteogenesis imperfecta - oi) - preliminary study.

    PubMed

    Smoląg, Danuta; Kulesa-Mrowiecka, Małgorzata; Sułko, Jerzy

    2017-01-01

    According to epidemiological data, muscular dysfunctions of the masticatory system occur in 15-23% of the population. Preventive examinations of functional disorders of the stomatognathic system are, therefore, of particular importance. A distinct group of patients exposed to dysfunctions in the area of the masticatory organ locomotor apparatus comprises those with genetic diseases characterised by disorders in collagen formation. One of such diseases is osteogenesis imperfecta (OI) and dentinogenesis imperfecta that usually goes together with the former. The objective of this work was to evaluate the frequency with which particular disorders of the masticatory organ locomotor apparatus occur within the group of patients with osteogenesis imperfecta. The study was performed on patients of the Orthopaedic Clinic of the Polish-American Paediatric Institute in Kraków. The mean age of the children was 7.9 years. In all the cases, a genetic diagnosis of OI has been confirmed. The research methods were based on an in-depth interview on family diseases, pregnancy, postnatal period, feeding, subjective assessment of dysfunctions in the stomatognathic system. An examination of the deformations in the stomatognathic system and the skeleton was conducted, as well as an examination of the trauma and tone of the jaw. The relationship between breastfeeding and swallowing and speech disorders was also evaluated. The impact of intubation on mandibular ranges was investigated. The results obtained were subjected to statistical analysis on the basis of which conclusions were drawn concerning disorders in the stomatognathic system which tend to occur in children with OI. The renunciation of breastfeeding significantly contributes to sucking and swallowing disorders, rumen disorders, as well as biomechanical disorders in the temporomandibular joint. A significant dependence between breastfeeding and swallowing problems was found, whereas there was no such dependence with respect to

  10. Effect of lower limb Sofield procedure on ambulation in osteogenesis imperfecta.

    PubMed

    Khoshhal, K I; Ellis, R D

    2001-01-01

    Ambulation status was evaluated in 34 patients pre- and post-Sofield procedure in patients with osteogenesis imperfecta. Three percent had improved ambulation, 42.4% remained the same and 54.6% were worse. Only 41.2% were ambulating postoperatively compared to 73.5% preoperatively. The Sofield procedure did not improve ambulation status.

  11. Mutation in a gene for type I procollagen (COL1A2) in a woman with postmenopausal osteoporosis: Evidence for phenotypic and genotypic overlap with mild osteogenesis imperfecta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spotila, L.D.; Constantinou, C.D.; Sereda, L.

    Mutations in the two genes for type I collagen (COL1A1 or COL1A2) cause osteogenesis imperfecta (OI), a heritable disease characterized by moderate to extreme brittleness of bone early in life. Here, the authors show that a 52-year-old post menopausal woman with severe osteopenia and a compression fracture of a thoracic vertebra had a mutation in the gene for the {alpha}2(I) chain of type I collagen (COL1A2) similar to mutations that cause OI. cDNA was prepared from the woman's skin fibroblast RNA and assayed for the presence of a mutation by treating DNA heteroduplexes with carbodiimide. The results indicated a sequencemore » variation in the region encoding amino acid residues 660-667 of the {alpha}2(I) chain. Further analysis demonstrated a single-base mutation that caused a serine-for-glycine substitution at position 661 of the {alpha}2(I) triple-helical domain. The substitution produced posttranslational overmodification of the collagen triple helix, as is seen with most glycine substitutions that cause OI. The patient had a history of five previous fractures, slightly blue sclerae, and slight hearing loss. Therefore, the results suggest that there may be phenotypic and genotypic overlap between mild osteogenesis imperfecta and postmenopausal osteoporosis, and that a subset of women with postmenopausal osteoporosis may have mutations in the genes for type I procollagen.« less

  12. The clinical features of osteogenesis imperfecta in Vietnam.

    PubMed

    Binh, Ho Duy; Maasalu, Katre; Dung, Vu Chi; Ngoc, Can T Bich; Hung, Ton That; Nam, Tran V; Nhan, Le N Thanh; Prans, Ele; Reimann, Ene; Zhytnik, Lidiia; Kõks, Sulev; Märtson, Aare

    2017-01-01

    Osteogenesis imperfecta (OI) has not been studied in a Vietnamese population before. The aim of this study was to systematically collect epidemiological information, investigate clinical features and create a clinical database of OI patients in Vietnam for future research and treatment strategy development. Participants underwent clinical and physical examinations; also medical records were reviewed. Genealogical information was collected and family members' phenotypical manifestations recorded. Cases were classified according to the Sillence classification. In total, 146 OI patients from 120 families were studied: 46 with OI Type I, 46 with Type III and 54 with Type IV. Almost patients had skeletal deformations. One hundred and forty-two had a history of fractures, 117 blue sclera, 89 dentinogenesis imperfecta and 26 hearing loss. The total number of fractures was 1,932. Thirty-four patients had intra-uterine fractures and nine had perinatal fractures. Surgery was performed 163 times in 58 patients; 100 osteosyntheses and 63 osteotomies. Bisphosphonate treatment was used in 37 patients. The number of affected individuals and predominance of severe forms of OI indicate that the disease is under diagnosed in Vietnam, especially in cases without a family history or with mild form of OI. Deformities appeared in all patients with different severity and localisation, affecting mostly the lower limbs. OI medical and surgical treatment rates are low and in most cases surgery was performed due to fractures. Compared to previous studies, our results indicate a lower OI prevalence and greater severity of symptoms in the Vietnamese population when compared with other areas. Further investigation, improved diagnosis and treatment are needed to increase the patients' quality of life.

  13. Burnei's technique of femoral neck variation and valgisation by using the intramedullary rod in Osteogenesis imperfecta.

    PubMed

    Georgescu, I; Gavriliu, Șt; Nepaliuc, I; Munteanu, L; Țiripa, I; Ghiță, R; Japie, E; Hamei, S; Dughilă, C; Macadon, M

    2014-01-01

    Varus or valgus deviations of the femoral neck in osteogenesis imperfecta have been an ignored chapter because the classic correction procedures were applied in medical practice with unsatisfying results. Until the use of telescopic rods, coronal deviations remained unsolved and the distal configuration of the proximal femoral extremity remained uncorrected or partially corrected, which required an extensive use of the wheel chair or bed immobilization of the patient. The concomitant correction of the complex deformities, coxa vara/valga and femoral integrated configuration, have been a progress which allowed the patients to walk with or without support. The purpose of this study is to present the Burnei's technique, a therapeutic alternative in deformity corrections of the varus or valgus hip in children with osteogenesis imperfecta. The paper is about a retrospective study done in a single center, which analyses Burnei technique and other procedures described in literature. The content of the article is based on a 12 years experience on a batch of 51 patients with osteogenesis imperfecta from which 10 patients (13 hips) presented frontal plane deviations of the femoral neck. All the patients with osteogenesis imperfecta who presented coxa vara or valga were submitted to investigations with the purpose of measuring blood loss, the possibility of extending the surgical intervention to the leg, the association of severe deformities of the proximal extremity of the femur and the necessity of postoperative intensive care. Burnei's technique: The operation was first performed in 2002. A subtrochanteric osteotomy was made in an oblique cut, from the internal side to the external side and from proximal to distal for coxa vara, or by using a cuneiform resection associated with muscular disinsertions. Only telescopic rods were used for osteosynthesis. There are a few articles in literature, which approach corrections of vara or valgus deviations in osteogenesis imperfecta

  14. Evidence for a Role for Nanoporosity and Pyridinoline Content in Human Mild Osteogenesis Imperfecta.

    PubMed

    Paschalis, Eleftherios P; Gamsjaeger, Sonja; Fratzl-Zelman, Nadja; Roschger, Paul; Masic, Admir; Brozek, Wolfgang; Hassler, Norbert; Glorieux, Francis H; Rauch, Frank; Klaushofer, Klaus; Fratzl, Peter

    2016-05-01

    Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility that arises from decreased bone mass and abnormalities in bone material quality. OI type I represents the milder form of the disease and according to the original Sillence classification is characterized by minimal skeletal deformities and near-normal stature. Raman microspectroscopy is a vibrational spectroscopic technique that allows the determination of bone material properties in bone biopsy blocks with a spatial resolution of ∼1 µm, as a function of tissue age. In the present study, we used Raman microspectroscopy to evaluate bone material quality in transiliac bone biopsies from children with a mild form of OI, either attributable to collagen haploinsufficiency OI type I (OI-Quant; n = 11) or aberrant collagen structure (OI-Qual; n = 5), as a function of tissue age, and compared it against the previously published values established in a cohort of biopsies from healthy children (n = 54, ages 1 to 23 years). The results indicated significant differences in bone material compositional characteristics between OI-Quant patients and healthy controls, whereas fewer were evident in the OI-Qual patients. Differences in both subgroups of OI compared with healthy children were evident for nanoporosity, mineral maturity/crystallinity as determined by maxima of the v1 PO4 Raman band, and pyridinoline (albeit in different direction) content. These alterations in bone material compositional properties most likely contribute to the bone fragility characterizing this disease. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  15. [Osteogenesis imperfecta. Clinical, functional and multidisciplinary evaluation of 65 patients].

    PubMed

    Fano, V; Rodríguez Celin, M; Del Pino, M; Buceta, S; Obregón, M G; Primomo, C; García, H; Miscione, H; Lejarraga, H

    2010-05-01

    Osteogenesis Imperfecta (OI) is a genetic disease, in which the main clinical features are increased bone fragility, pathological fractures, blue sclera, dentinogenesis imperfecta and conductive or mixed hearing loss. Clinical variability is wide. Although there is no curative treatment, there are several therapeutic tools capable of improving the course of the condition and patient quality of life. Sixty-five children seen in a Paediatric Hospital during six months in 2007 were evaluated. Thirty-five were type I OI, and thirty were types III-IV. Median age was 7.8 years (range 1.9-19.2); mean length of follow up was 4.7 years. The majority of children attended regular school for their corresponding age. Mean height was -1.4 sDS and -5.64 sDS in types I and III-IV respectively. Nineteen percent of patients were overweight and 11% were obese. Mean age at first orthopaedic surgery inserting telescopic rods was 6.5 years. Scoliosis was present in 44.6% of patients and was directly related to severity. Bleck's motor scale showed that 93% of patients with mild forms and 29% of severe forms had a sustainable walking ability. A wheelchair was used by 25% of patients. Family inheritance was confirmed in 65% of cases. Integral care using a multidisciplinary approach is required due to the complexity and clinical variability of the condition. Copyright 2009 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  16. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.

    PubMed

    Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L

    2016-01-01

    Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.

  17. Anesthetic Management in a Gravida with Type IV Osteogenesis Imperfecta

    PubMed Central

    Vue, Elizabeth; Davila, Juan

    2016-01-01

    Osteogenesis imperfecta (OI) is an inherited disorder of the connective tissues caused by abnormalities in collagen formation. OI may present many challenges to the anesthesiologist. A literature review reveals a wide range of implications, from basic positioning to management of the difficult airway. We present the anesthetic management of a 25-year-old gravid woman with OI, fetal demise, and possible uterine rupture, admitted for an exploratory laparotomy. PMID:27433164

  18. Osteogenesis imperfecta: Level of independence and of social, recreational and sports participation among adolescents and youth.

    PubMed

    Rodríguez Celin, Mercedes; Fano, Virginia

    2016-06-01

    Osteogenesis imperfecta is a group of hereditary connective tissue disorders that cause bone fragility, with a wide clinical variability resulting in varying degrees of motor disability. To describe the level of independence and of social, recreational and sports participation among adolescents with osteogenesis imperfecta. Descriptive, analytical and crosssectional study conducted in patients with osteogenesis imperfecta older than 15 years old attending the Skeletal Dysplasia Office of Hospital "Prof. Dr. Juan P. Garrahan" (May 2013 through December 2014). Self-administered survey. Short stature was an outcome measure that indicated severity. There were 18 patients; age: 19.17 (±3.4 sDE); 83% had moderate-severe forms of OI; median height: -7.9 sDE; 50% used a wheelchair. Average education years: 12.2; 56% participated in sporting activities; and 78% were involved in recreational and social activities. A high level of independence was observed. We found a correlation between short stature and use of wheelchair (r: -0.77) and between short stature and participation in sporting activities (r: 0.66). No correlation was observed with years of education (r: -0.15), participation in social activities (r: -0.22) or recreational activities (r: 0.35). Sociedad Argentina de Pediatría.

  19. Physical training in children with osteogenesis imperfecta.

    PubMed

    Van Brussel, Marco; Takken, Tim; Uiterwaal, Cuno S P M; Pruijs, Hans J; Van der Net, Janjaap; Helders, Paul J M; Engelbert, Raoul H H

    2008-01-01

    To study the effects of a physical training program on exercise capacity, muscle force, and subjective fatigue levels in patients with mild to moderate forms of osteogenesis imperfecta (OI). Thirty-four children with OI type I or IV were randomly assigned to either a 12-week graded exercise program or care as usual for 3 months. Exercise capacity and muscle force were studied; subjective fatigue, perceived competence, and health-related quality of life were secondary outcomes. All outcomes were measured at baseline (T = 0), after intervention (T = 1), and after 6 and 9 months (T = 2 and T = 3, respectively). After intervention (T = 1), peak oxygen consumption (VO2peak), relative VO2peak (VO2peak/kg), maximal working capacity (Wmax), and muscle force were significantly improved (17%, 18%, 10%, and 12%, respectively) compared with control values. Subjective fatigue decreased borderline statistically significantly. Follow-up at T = 2 showed a significant decrease of the improvements measured at T = 1 of VO2peak, but VO2peak/kg, Wmax, and subjective fatigue showed no significant difference. At T = 3, we found a further decrease of the gained improvements. A supervised training program can improve aerobic capacity and muscle force and reduces levels of subjective fatigue in children with OI type I and IV in a safe and effective manner.

  20. Reduced diaphyseal strength associated with high intracortical vascular porosity within long bones of children with Osteogenesis Imperfecta

    PubMed Central

    Jameson, John; Smith, Peter; Harris, Gerald

    2015-01-01

    Osteogenesis Imperfecta is a genetic disorder resulting in bone fragility. The mechanisms behind this fragility are not well understood. In addition to characteristic bone mass deficiencies, research suggests that bone material properties are compromised in individuals with this disorder. However, little data exists regarding bone properties beyond the microstructural scale in individuals with this disorder. Specimens were obtained from long bone diaphyses of nine children with osteogenesis imperfecta during routine osteotomy procedures. Small rectangular beams, oriented longitudinally and transversely to the diaphyseal axis, were machined from these specimens and elastic modulus, yield strength, and maximum strength were measured in three-point bending. Intracortical vascular porosity, bone volume fraction, osteocyte lacuna density, and volumetric tissue mineral density were determined by synchrotron micro-computed tomography, and relationships among these mechanical properties and structural parameters were explored. Modulus and strength were on average 64–68% lower in the transverse vs. longitudinal beams (P<0.001, linear mixed model). Vascular porosity ranged between 3–42% of total bone volume. Longitudinal properties were associated negatively with porosity (P≤0.006, linear regressions). Mechanical properties, however, were not associated with osteocyte lacuna density or volumetric tissue mineral density (P≥0.167). Bone properties and structural parameters were not associated significantly with donor age (p≥0.225, linear mixed models). This study presents novel data regarding bone material strength in children with osteogenesis imperfecta. Results confirm that these properties are anisotropic. Elevated vascular porosity was observed in most specimens, and this parameter was associated with reduced bone material strength. These results offer insight towards understanding bone fragility and the role of intracortical porosity on the strength of bone

  1. Reduced diaphyseal strength associated with high intracortical vascular porosity within long bones of children with osteogenesis imperfecta.

    PubMed

    Albert, Carolyne; Jameson, John; Smith, Peter; Harris, Gerald

    2014-09-01

    Osteogenesis imperfecta is a genetic disorder resulting in bone fragility. The mechanisms behind this fragility are not well understood. In addition to characteristic bone mass deficiencies, research suggests that bone material properties are compromised in individuals with this disorder. However, little data exists regarding bone properties beyond the microstructural scale in individuals with this disorder. Specimens were obtained from long bone diaphyses of nine children with osteogenesis imperfecta during routine osteotomy procedures. Small rectangular beams, oriented longitudinally and transversely to the diaphyseal axis, were machined from these specimens and elastic modulus, yield strength, and maximum strength were measured in three-point bending. Intracortical vascular porosity, bone volume fraction, osteocyte lacuna density, and volumetric tissue mineral density were determined by synchrotron micro-computed tomography, and relationships among these mechanical properties and structural parameters were explored. Modulus and strength were on average 64-68% lower in the transverse vs. longitudinal beams (P<0.001, linear mixed model). Vascular porosity ranged between 3 and 42% of total bone volume. Longitudinal properties were associated negatively with porosity (P≤0.006, linear regressions). Mechanical properties, however, were not associated with osteocyte lacuna density or volumetric tissue mineral density (P≥0.167). Bone properties and structural parameters were not associated significantly with donor age (P≥0.225, linear mixed models). This study presents novel data regarding bone material strength in children with osteogenesis imperfecta. Results confirm that these properties are anisotropic. Elevated vascular porosity was observed in most specimens, and this parameter was associated with reduced bone material strength. These results offer insight toward understanding bone fragility and the role of intracortical porosity on the strength of bone

  2. Orthotic management for children with osteogenesis imperfecta.

    PubMed

    Weintrob, J C

    1995-01-01

    Fitting children and infants who have osteogenesis imperfecta (OI) with braces has posed substantial problems of implementation and patient management For the past twelve years bracing has been an important component of a patient research and management program conducted at the National Institutes of Health. By using the smallest manufactured parts and developing a wealth of experience, functional and well-fitting braces have been provided to a number of tiny and small children. Bracing allows these children to stand and walk earlier than would have otherwise been possible. Braces are used in conjunction with standing frames and parapodiums to increase a child's mobility. Less involved children have become good household and short distance ambulators with the use of braces.

  3. Eleven years of experience with bisphosphonate plus alfacalcidol treatment in a man with osteogenesis imperfecta type I

    PubMed Central

    Iwamoto, Jun; Sato, Yoshihiro; Uzawa, Mitsuyoshi; Matsumoto, Hideo

    2013-01-01

    We report the 11-year follow-up of a man with osteogenesis imperfecta type I who was treated with bisphosphonates and alfacalcidol. A 36-year-old Japanese man with osteogenesis imperfecta type I who had frequently experienced painful fragility fractures consulted our clinic because of chronic back pain. The patient had multiple morphometric vertebral fractures and a low bone mineral density (BMD) at the lumbar spine. The patient was treated with cyclical etidronate 200 mg, for 2 weeks every 3 months, plus alfacalcidol 1 μg daily, for 2 years; and alendronate 5 mg daily or 35 mg weekly, plus alfacalcidol 1 μg daily for 9 years. After 11 years of treatment, BMD at the lumbar spine increased by 6.4%, following a 20.3% reduction in serum alkaline phosphatase. Serum calcium, phosphorus, and intact parathyroid hormone levels remained within the normal ranges. Three clinical fractures occurred at two ribs and the metacarpus, and two morphometric vertebral fractures occurred at the thoracic spine during the 11-year treatment period, but the patient experienced no adverse effects. Thus, the present case report shows the long-term outcome and safety of bisphosphonate plus alfacalcidol treatment in a man with osteogenesis imperfecta type I. PMID:23293527

  4. Two novel mutations in the PPIB gene cause a rare pedigree of osteogenesis imperfecta type IX.

    PubMed

    Jiang, Yu; Pan, Jingxin; Guo, Dongwei; Zhang, Wei; Xie, Jie; Fang, Zishui; Guo, Chunmiao; Fang, Qun; Jiang, Weiying; Guo, Yibin

    2017-06-01

    Osteogenesis imperfecta (OI) is a rare genetic skeletal disorder characterized by increased bone fragility and vulnerability to fractures. PPIB is identified as a candidate gene for OI-IX, here we detect two pathogenic mutations in PPIB and analyze the genotype-phenotype correlation in a Chinese family with OI. Next-generation sequencing (NGS) was used to screen the whole exome of the parents of proband. Screening of variation frequency, evolutionary conservation comparisons, pathogenicity evaluation, and protein structure prediction were conducted to assess the pathogenicity of the novel mutations. Sanger sequencing was used to confirm the candidate variants. RTQ-PCR was used to analyze the PPIB gene expression. All mutant genes screened out by NGS were excluded except PPIB. Two novel heterozygous PPIB mutations (father, c.25A>G; mother, c.509G>A) were identified in relation to osteogenesis imperfecta type IX. Both mutations were predicted to be pathogenic by bioinformatics analysis and RTQ-PCR analysis revealed downregulated PPIB expression in the two carriers. We report a rare pedigree with an autosomal recessive osteogenesis imperfecta type IX (OI-IX) caused by two novel PPIB mutations identified for the first time in China. The current study expands our knowledge of PPIB mutations and their associated phenotypes, and provides new information on the genetic defects associated with this disease for clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Hearing Loss in Osteogenesis Imperfecta: Characteristics and Treatment Considerations

    PubMed Central

    Pillion, Joseph P.; Vernick, David; Shapiro, Jay

    2011-01-01

    Osteogenesis imperfecta (OI) is the most common heritable disorder of connective tissue. It is associated with fractures following relatively minor injury, blue sclerae, dentinogenesis imperfecta, increased joint mobility, short stature, and hearing loss. Structures in the otic capsule and inner ear share in the histologic features common to other skeletal tissues. OI is due to mutations involving several genes, the most commonly involved are the COL1A1 or COL1A2 genes which are responsible for the synthesis of the proalpha-1 and proalpha-2 polypeptide chains that form the type I collagen triple helix. A genotype/phenotype relationship to hearing loss has not been established in OI. Hearing loss is commonly found in OI with prevalence rates ranging from 50 to 92% in some studies. Hearing loss in OI may be conductive, mixed, or sensorineural and is more common by the second or third decade. Treatment options such as hearing aids, stapes surgery, and cochlear implants are discussed. PMID:22567374

  6. How tough is Brittle Bone? Investigating Osteogenesis Imperfecta in Mouse Bone††

    PubMed Central

    Carriero, A.; Zimmermann, E. A.; Paluszny, A.; Tang, S. Y.; Bale, H.; Busse, B.; Alliston, T.; Kazakia, G.

    2015-01-01

    The multiscale hierarchical structure of bone is naturally optimized to resist fractures. In osteogenesis imperfecta, or brittle bone disease, genetic mutations affect the quality and/or quantity of collagen, dramatically increasing bone fracture risk. Here we reveal how the collagen defect results in bone fragility in a mouse model of osteogenesis imperfecta (oim), which has homotrimeric α1(I) collagen. At the molecular level we attribute the loss in toughness to a decrease in the stabilizing enzymatic crosslinks and an increase in non-enzymatic crosslinks, which may break prematurely inhibiting plasticity. At the tissue level, high vascular canal density reduces the stable crack growth, and extensive woven bone limits the crack-deflection toughening during crack growth. This demonstrates how modifications at the bone molecular level have ramifications at larger length scales affecting the overall mechanical integrity of the bone; thus, treatment strategies have to address multiscale properties in order to regain bone toughness. In this regard, findings from the heterozygous oim bone, where defective as well as normal collagen are present, suggest that increasing the quantity of healthy collagen in these bones helps to recover toughness at the multiple length scales. PMID:24420672

  7. Current and emerging treatments for the management of osteogenesis imperfecta

    PubMed Central

    Monti, Elena; Mottes, Monica; Fraschini, Paolo; Brunelli, PierCarlo; Forlino, Antonella; Venturi, Giacomo; Doro, Francesco; Perlini, Silvia; Cavarzere, Paolo; Antoniazzi, Franco

    2010-01-01

    Osteogenesis imperfecta (OI) is the most common bone genetic disorder and it is characterized by bone brittleness and various degrees of growth disorder. Clinical severity varies widely; nowadays eight types are distinguished and two new forms have been recently described although not yet classified. The approach to such a variable and heterogeneous disease should be global and therefore multidisciplinary. For simplicity, the objectives of treatment can be reduced to three typical situations: the lethal perinatal form (type II), in which the problem is survival at birth; the severe and moderate forms (types III–IX), in which the objective is ‘autonomy’; and the mild form (type I), in which the aim is to reach ‘normal life’. Three types of treatment are available: non-surgical management (physical therapy, rehabilitation, bracing and splinting), surgical management (intramedullary rod positioning, spinal and basilar impression surgery) and medical-pharmacological management (drugs to increase the strength of bone and decrease the number of fractures as bisphosphonates or growth hormone, depending on the type of OI). Suggestions and guidelines for a therapeutic approach are indicated and updated with the most recent findings in OI diagnosis and treatment. PMID:20856683

  8. Osteogenesis imperfecta and hearing loss--description of three case reports.

    PubMed

    Pereira da Silva, Ana; Feliciano, Telma; Figueirinhas, Rosário; Almeida E Sousa, Cecília

    2013-01-01

    Osteogenesis imperfecta is the commonest connective tissue hereditary disease. Its clinical presentation has a wide spectrum of characteristics, which includes skeletal deformities and hearing loss. We describe three case reports of individuals carriers of this disease presenting with different patterns of hearing loss. Hearing loss prevalence and patterns are variable and have no clear relation with genotype. Its assessment at initial evaluation and posterior monitoring is essential to provide the best therapeutic alternatives. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  9. Three Preschool Children with Osteogenesis Imperfecta--Interviews with Parents. Handicap Research Group Report No. 5.

    ERIC Educational Resources Information Center

    Brodin, Jane; Millde, Kristina

    The report describes three preschool Swedish children with osteogenesis imperfecta (brittle bones) and the psychosocial support families require from society. Introductory sections explain the condition, review international research on brittle bones, consider the life situation of children with brittle bones, and examine societal support for…

  10. Osteogenesis Imperfecta: A Case Report and Review of Literature

    PubMed Central

    Edelu, BO; Ndu, IK; Asinobi, IN; Obu, HA; Adimora, GN

    2014-01-01

    Osteogenesis imperfecta (OI) is a group of rare inherited disorders of connective tissue with the common feature of excessive fragility of bones caused by mutations in collagen. Diagnosis is mainly based on the clinical features of the disorder. We report, the case of a male neonate delivered to a 33-year-old para 2 female at University of Nigeria Teaching Hospital, Enugu with no family history suggestive of OI. He had clinical features of a type II OI and severe birth asphyxia. Multidisciplinary management was instituted, but he died on the 7th day of life. PMID:25031897

  11. A cephalometric method to diagnosis the craniovertebral junction abnormalities in osteogenesis imperfecta patients.

    PubMed

    Ríos-Rodenas, Mercedes; de Nova, Joaquín; Gutiérrez-Díez, María-Pilar; Feijóo, Gonzalo; Mourelle, Maria-Rosa; Garcilazo, Mario; Ortega-Aranegui, Ricardo

    2015-02-01

    Osteogenesis imperfecta (OI) is a hereditary bone fragility disorder that in most patients is caused by mutations affecting collagen type I. Their typical oral and craneofacial characteristics (Dentinogenesis imperfecta type I and class III malocclusion), involve the dentist in the multidisciplinary team that treat these patients. It is usual to perform lateral skull radiographs for the orthodontic diagnosis. In addition, this radiograph is useful to analyse the junctional area between skull base and spine, that could be damaged in OI. Pathology in the craneovertebral junction (CVJ) is a serious complication of OI with a prevalence ranging from rare to 37%. To diagnosis early skull base anomalies in these patients, previously the neurological symptoms have been appear, we make a simple cephalometric analysis of the CVJ. This method has four measurements and one angle. Once we calculate the values of the OI patient, we compare the result with the mean and the standard deviations of an age-appropriate average in healthy controls. If the patient has a result more than 2,5 SDs above the age-appropriate average in healthy controls, we should to refer the patient to his/her pediatrician or neurologist. These doctors have to consider acquiring another diagnostic images to be used to determine cranial base measurements with more reliability. Thereby, dentists who treat these patients, must be aware of the normal radiological anatomy of the cervical spine on the lateral cephalogram. Key words:Osteogenesis imperfecta, craniovertebral junction, cephalometric.

  12. A cephalometric method to diagnosis the craniovertebral junction abnormalities in osteogenesis imperfecta patients

    PubMed Central

    Ríos-Rodenas, Mercedes; Gutiérrez-Díez, María-Pilar; Feijóo, Gonzalo; Mourelle, Maria-Rosa; Garcilazo, Mario; Ortega-Aranegui, Ricardo

    2015-01-01

    Osteogenesis imperfecta (OI) is a hereditary bone fragility disorder that in most patients is caused by mutations affecting collagen type I. Their typical oral and craneofacial characteristics (Dentinogenesis imperfecta type I and class III malocclusion), involve the dentist in the multidisciplinary team that treat these patients. It is usual to perform lateral skull radiographs for the orthodontic diagnosis. In addition, this radiograph is useful to analyse the junctional area between skull base and spine, that could be damaged in OI. Pathology in the craneovertebral junction (CVJ) is a serious complication of OI with a prevalence ranging from rare to 37%. To diagnosis early skull base anomalies in these patients, previously the neurological symptoms have been appear, we make a simple cephalometric analysis of the CVJ. This method has four measurements and one angle. Once we calculate the values of the OI patient, we compare the result with the mean and the standard deviations of an age-appropriate average in healthy controls. If the patient has a result more than 2,5 SDs above the age-appropriate average in healthy controls, we should to refer the patient to his/her pediatrician or neurologist. These doctors have to consider acquiring another diagnostic images to be used to determine cranial base measurements with more reliability. Thereby, dentists who treat these patients, must be aware of the normal radiological anatomy of the cervical spine on the lateral cephalogram. Key words:Osteogenesis imperfecta, craniovertebral junction, cephalometric. PMID:25810828

  13. Advances in the Classification and Treatment of Osteogenesis Imperfecta.

    PubMed

    Thomas, Inas H; DiMeglio, Linda A

    2016-02-01

    Osteogenesis imperfecta (OI) is a rare disorder of type 1 collagen with 13 currently identified types attributable to inherited abnormalities in type 1 collagen amount, structure, or processing. The disease is characterized by an increased susceptibility to bony fracture. In addition to the skeletal phenotype, common additional extraskeletal manifestations include blue sclerae, dentinogenesis imperfecta, vascular fragility, and hearing loss. Medical management is focused on minimizing the morbidity of fractures, pain, and bone deformities by maximizing bone health. Along with optimizing Vitamin D status and calcium intake and physical/occupational therapy, individualized surgical treatment may be indicated. Pharmacological therapy with bisphosphonate medications is now routinely utilized for moderate to severe forms and appears to have a good safety profile and bone health benefits. New therapies with other anti-resorptives as well as anabolic agents and transforming growth factor (TGF)β antibodies are in development. Other potential treatment modalities could include gene therapy or mesenchymal cell transplant. In the future, treatment choices will be further individualized in order to reduce disease morbidity and mortality.

  14. [PREPARATIONS OF PAMIDRONOVIC ACID IN COMPLEX TREATMENT ON OSTEOGENESIS IMPERFECTA].

    PubMed

    Zyma, A M; Guk, Yu M; Magomedov, O M; Gayko, O G; Kincha-Polishchuk, T A

    2015-07-01

    Modern view of drug therapy in the complex treatment of orthopedic manifestations of osteogenesis imperfecta (OI) was submitted. Developed and tested system of drug correction of structural and functional state of bone tissue (BT) using drugs pamidronovic acid, depending on osteoporosis severity and type of disease. Such therapy is appropriate to apply both independently and in conjunction with surgery to correct deformations of long bones of the lower extremities. Effectiveness and feasibility of the proposed methods of drug therapy was proved, most patients resume features walking and support.

  15. Severely impaired bone material quality in Chihuahua zebrafish resembles classical dominant human osteogenesis imperfecta.

    PubMed

    Fiedler, Imke A K; Schmidt, Felix N; Wölfel, Eva M; Plumeyer, Christine; Milovanovic, Petar; Gioia, Roberta; Tonelli, Francesca; Bale, Hrishikesh A; Jähn, Katharina; Besio, Roberta; Forlino, Antonella; Busse, Björn

    2018-04-17

    Excessive skeletal deformations and brittle fractures in the vast majority of patients suffering from osteogenesis imperfecta (OI) are a result of substantially reduced bone quality. Since the mechanical competence of bone is dependent on the tissue characteristics at small length scales, it is of crucial importance to assess how osteogenesis imperfecta manifests at the micro- and nanoscale of bone. In this context, the Chihuahua (Chi/ +) zebrafish, carrying a heterozygous glycine substitution in the α1 chain of collagen type I, has recently been proposed as suitable animal model of classical dominant OI, showing skeletal deformities, altered mineralization patterns and a smaller body size. This study assessed the bone quality properties of Chi/+ at multiple length scales using micro-computed tomography (micro-CT), histomorphometry, quantitative back-scattered electron imaging, Fourier transform infrared spectroscopy, nanoindentation and X-ray microscopy. At the skeletal level, Chi/+ display smaller body size, deformities and fracture calli in the ribs. Morphological changes at the whole bone level showed that the vertebrae in Chi/+ had a smaller size, smaller thickness and distorted shape. At the tissue level, Chi/+ displayed a higher degree of mineralization, lower collagen maturity, lower mineral maturity, altered osteoblast morphology, and lower osteocyte lacunar density compared to WT. The alterations in the cellular, compositional and structural properties of Chi/+ bones bear an explanation for the impaired local mechanical properties, which promote an increase in overall bone fragility in Chi/ +. The quantitative assessment of bone quality in Chi/+ thus further validates this mutant as an important model reflecting osseous characteristics associated with human classical dominant osteogenesis imperfecta. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Children with Osteogenesis Imperfecta and Their Daily Living. Handicap Research Group Report No. 4.

    ERIC Educational Resources Information Center

    Brodin, Jane

    The study examined aspects of daily living of Swedish children with osteogenesis imperfecta, a mineral deficiency in the skeleton which results in stunted growth and frequent fractures. A questionnaire was administered to 24 families with children under the age of 18 and 3 families were interviewed. The study found the families in great need of…

  17. Osteogenesis imperfecta in childhood: prognosis for walking.

    PubMed

    Engelbert, R H; Uiterwaal, C S; Gulmans, V A; Pruijs, H; Helders, P J

    2000-09-01

    We studied the predicted value of disease-related characteristics for the ability of children with osteogenesis imperfecta (OI) to walk. The severity of OI was classified according to Sillence. The parents were asked to report the age at which the child achieved motor milestones, the fracture incidence, and the age and localization of the first surgical intervention. The present main means of mobility was classified according to Bleck. There were 76 replies to the 98 questionnaires, of which 70 were included (type I, 41; type III, 11; type IV, 18). The type of OI was strongly associated with current walking ability, as was the presence of dentinogenesis imperfecta. Patients with type III and IV had a lower chance of ultimately walking compared with those with type I. Children with more than 2 intramedullary rods in the lower extremities had a reduced chance of walking than patients without rods. Rolling over before 8 months, unsupported sitting before 9 months, the ability to get in sitting position without support before 12 months, and the ability to get in a standing position without support before 12 months showed positive odds ratios. In Bleck > or = 4, multivariate analysis revealed that only the presence of rodding (yes/no) in the lower extremities had additional predictive value to the type of OI. The presence of dentinogenesis imperfecta and rodding (yes/no) had additional value in Bleck > or = 5. The type of OI is the single most important clinical indicator of the ultimate ability to walk. Information about motor development adds little. The early achievement of motor milestones contributes to the ability of independent walking when the type of OI is uncertain. Intramedullary rodding of the lower extremities is primarily related to the severity of the disease and in this way provides consequences for the ability to walk.

  18. IFITM5 mutations and osteogenesis imperfecta.

    PubMed

    Hanagata, Nobutaka

    2016-03-01

    Interferon-induced transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein that has been shown to be a positive regulatory factor for mineralization in vitro. However, Ifitm5 knockout mice do not exhibit serious bone abnormalities, and thus the function of IFITM5 in vivo remains unclear. Recently, a single point mutation (c.-14C>T) in the 5' untranslated region of IFITM5 was identified in patients with osteogenesis imperfecta type V (OI-V). Furthermore, a single point mutation (c.119C>T) in the coding region of IFITM5 was identified in OI patients with more severe symptoms than patients with OI-V. Although IFITM5 is not directly involved in the formation of bone in vivo, the reason why IFITM5 mutations cause OI remains a major mystery. In this review, the current state of knowledge of OI pathological mechanisms due to IFITM5 mutations will be reviewed.

  19. Clinical perspectives on osteogenesis imperfecta versus non-accidental injury.

    PubMed

    Pereira, Elaine Maria

    2015-12-01

    Although non-accidental injuries (NAI) are more common in cases of unexplained fractures than rare disorders such as osteogenesis imperfecta (OI), ruling out OI and other medical causes of fracture is always indicated. The majority of OI patients can be diagnosed with the help of family history, physical examination, and radiographic findings. In particular, there are a few radiological findings which are seen more commonly in NAI than in OI which may help guide clinician considerations regarding the probability of either of these diagnoses. At the same time, molecular testing still merits careful consideration in cases with unexplained fractures without obvious additional signs of abuse. © 2015 Wiley Periodicals, Inc.

  20. [Orthotic management for patients with osteogenesis imperfecta].

    PubMed

    Alguacil Diego, I M; Molina Rueda, F; Gómez Conches, M

    2011-02-01

    Osteogenesis imperfecta (OI) is a disease caused by a genetic defect in the qualitative and quantitative synthesis of type I collagen. There is a wide variation in its clinical signs, characterized by bone fragility, resulting in a bone vulnerable to external and internal forces, determining the occurrence of frequent fractures with minimal or no trauma. The therapeutic objective is directed to improve the functional capacity of the child or adult concerned, adopting those compensatory strategies to optimise their independence. In this sense, the use of different orthoses and assistive technology are important for achieving these objectives. We reviewed the main contributions to this orthotic disease and the evolution of the different devices used in different databases over the last 25 years. Copyright © 2010 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  1. Clinical and Molecular Characterization of Osteogenesis Imperfecta Type V

    PubMed Central

    Brizola, Evelise; Mattos, Eduardo P.; Ferrari, Jessica; Freire, Patricia O.A.; Germer, Raquel; Llerena Jr, Juan C.; Félix, Têmis M.

    2015-01-01

    Osteogenesis imperfecta type V (OI-V) has a wide clinical variability, with distinct clinical/radiological features, such as calcification of the interosseous membrane (CIM) between the radius-ulna and/or tibia-fibula, hyperplastic callus (HPC) formation, dislocation of the radial head (DRH), and absence of dentinogenesis imperfecta (DI). Recently, a single heterozygous mutation (c.-14C>T) in the 5′UTR of the IFITM5 gene was identified to be causative for OI-V. Here, we describe 7 individuals from 5 unrelated families that carry the c.-14C>T IFITM5 mutation. The clinical findings in these cases are: absence of DI in all patients, presence of blue sclera in 2 cases, and 4 patients with DRH. Radiographic findings revealed HPC in 3 cases. All patients presented CIM between the radius and ulna, while 4 patients presented additional CIM between the tibia and fibula. Spinal fractures by vertebral compression were observed in all individuals. The proportion of cases identified with this mutation represents 4% of OI cases at our institution. The clinical identification of OI-V is crucial, as this mutation has an autosomal dominant inheritance with variable expressivity. PMID:26648832

  2. Gene expression profiling of bone marrow mesenchymal stem cells from Osteogenesis Imperfecta patients during osteoblast differentiation.

    PubMed

    Kaneto, Carla Martins; Pereira Lima, Patrícia S; Prata, Karen Lima; Dos Santos, Jane Lima; de Pina Neto, João Monteiro; Panepucci, Rodrigo Alexandre; Noushmehr, Houtan; Covas, Dimas Tadeu; de Paula, Francisco José Alburquerque; Silva, Wilson Araújo

    2017-06-01

    Mesenchymal stem cells (MSCs) are precursors present in adult bone marrow that are able to differentiate into osteoblasts, adipocytes and chondroblasts that have gained great importance as a source for cell therapy. Recently, a number of studies involving the analysis of gene expression of undifferentiated MSCs and of MSCs in the differentiation into multiple lineage processes were observed but there is no information concerning the gene expression of MSCs from Osteogenesis Imperfecta (OI) patients. Osteogenesis Imperfecta is characterized as a genetic disorder in which a generalized osteopenia leads to excessive bone fragility and severe bone deformities. The aim of this study was to analyze gene expression profile during osteogenic differentiation from BMMSCs (Bone Marrow Mesenchymal Stem Cells) obtained from patients with Osteogenesis Imperfecta and from control subjects. Bone marrow samples were collected from three normal subjects and five patients with OI. Mononuclear cells were isolated for obtaining mesenchymal cells that had been expanded until osteogenic differentiation was induced. RNA was harvested at seven time points during the osteogenic differentiation period (D0, D+1, D+2, D+7, D+12, D+17 and D+21). Gene expression analysis was performed by the microarray technique and identified several differentially expressed genes. Some important genes for osteoblast differentiation had lower expression in OI patients, suggesting a smaller commitment of these patient's MSCs with the osteogenic lineage. Other genes also had their differential expression confirmed by RT-qPCR. An increase in the expression of genes related to adipocytes was observed, suggesting an increase of adipogenic differentiation at the expense osteogenic differentiation. Copyright © 2017. Published by Elsevier Masson SAS.

  3. What every clinical geneticist should know about testing for osteogenesis imperfecta in suspected child abuse cases.

    PubMed

    Pepin, Melanie G; Byers, Peter H

    2015-12-01

    Non-accidental injury (NAI) is a major medical concern in the United States. One of the challenges in evaluation of children with unexplained fractures is that genetic forms of bone fragility are one of the differential diagnoses. Infants who present with fractures with mild forms of osteogenesis imperfecta (OI) (OI type I or OI type IV), the most common genetic form of bone disease leading to fractures might be missed if clinical evaluation alone is used to make the diagnosis. Diagnostic clinical features (blue sclera, dentinogenesis imperfecta, Wormian bones on X-rays or positive family history) may not be present or apparent at the age of evaluation. The evaluating clinician faces the decision about whether genetic testing is necessary in certain NAI cases. In this review, we outline clinical presentations of mild OI and review the history of genetic testing for OI in the NAI versus OI setting. We summarize our data of molecular testing in the Collagen Diagnostic Laboratory (CDL) from 2008 to 2014 where NAI was noted on the request for DNA sequencing of COL1A1 and COL1A2. We provide recommendations for molecular testing in the NAI versus OI setting. First, DNA sequencing of COL1A1, COL1A2, and IFITM5 simultaneously and duplication/deletion testing is recommended. If a causative variant is not identified, in the absence of a pathologic clinical phenotype, no additional gene testing is indicated. If a VUS is found, parental segregation studies are recommended. © 2015 Wiley Periodicals, Inc.

  4. Soluble activin receptor type IIB decoy receptor differentially impacts murine osteogenesis imperfecta muscle function.

    PubMed

    Jeong, Youngjae; Daghlas, Salah A; Kahveci, Alp S; Salamango, Daniel; Gentry, Bettina A; Brown, Marybeth; Rector, R Scott; Pearsall, R Scott; Phillips, Charlotte L

    2018-02-01

    Osteogenesis imperfecta (OI) is characterized by skeletal fragility and muscle weakness. In this study we investigated the effects of soluble activin type IIB receptor (sActRIIB-mFc) on muscle mass and function in 2 distinct mouse models of OI: osteogenesis imperfecta murine (oim) and +/G610C. Wild-type (WT), +/G610C, and oim/oim mice were treated from 2 to 4 months of age with Tris-buffered saline (vehicle) or sActRIIB-mFc and their hindlimb muscles evaluated for mass, morphology, and contractile function. sActRIIB-mFc-treated WT, +/G610C, and oim/oim mice had increased hindlimb muscle weights and myofiber cross-sectional area compared with vehicle-treated counterparts. sActRIIB-mFc-treated oim/oim mice also exhibited increased contractile function relative to vehicle-treated counterparts. Blocking endogenous ActRIIB was effective at increasing muscle size in mouse models of OI, and increasing contractile function in oim/oim mice. ActRIIB inhibitors may provide a potential mutation-specific therapeutic option for compromised muscle function in OI. Muscle Nerve 57: 294-304, 2018. © 2017 Wiley Periodicals, Inc.

  5. Initial report of the osteogenesis imperfecta adult natural history initiative.

    PubMed

    Tosi, Laura L; Oetgen, Matthew E; Floor, Marianne K; Huber, Mary Beth; Kennelly, Ann M; McCarter, Robert J; Rak, Melanie F; Simmonds, Barbara J; Simpson, Melissa D; Tucker, Carole A; McKiernan, Fergus E

    2015-11-14

    A better understanding of the natural history of osteogenesis imperfecta (OI) in adulthood should improve health care for patients with this rare condition. The Osteogenesis Imperfecta Foundation established the Adult Natural History Initiative (ANHI) in 2010 to give voice to the health concerns of the adult OI community and to begin to address existing knowledge gaps for this condition. Using a web-based platform, 959 adults with self-reported OI, representing a wide range of self-reported disease severity, reported symptoms and health conditions, estimated the impact of these concerns on present and future health-related quality of life (QoL) and completed a Patient-Reported Outcomes Measurement Information System (PROMIS®) survey of health issues. Adults with OI report lower general physical health status (p < .0001), exhibit a higher prevalence of auditory (58% of sample versus 2-16% of normalized population) and musculoskeletal (64% of sample versus 1-3% of normalized population) concerns than the general population, but report generally similar mental health status. Musculoskeletal, auditory, pulmonary, endocrine, and gastrointestinal issues are particular future health-related QoL concerns for these adults. Numerous other statistically significant differences exist among adults with OI as well as between adults with OI and the referent PROMIS® population, but the clinical significance of these differences is uncertain. Adults with OI report lower general health status but are otherwise more similar to the general population than might have been expected. While reassuring, further analysis of the extensive OI-ANHI databank should help identify areas of unique clinical concern and for future research. The OI-ANHI survey experience supports an internet-based strategy for successful patient-centered outcomes research in rare disease populations.

  6. New Perspectives on Osteogenesis Imperfecta

    PubMed Central

    Forlino, Antonella; Cabral, Wayne A.; Barnes, Aileen M.; Marini, Joan C.

    2012-01-01

    A new paradigm has emerged for osteogenesis imperfecta (OI) as a collagen-related disorder. The more prevalent autosomal dominant forms of OI are caused by primary defects in type I collagen, while autosomal recessive forms are caused by deficiency of proteins which interact with type I procollagen for post-translational modification and/or folding. Factors contributing to the mechanism of dominant OI include intracellular stress, disruption of interactions between collagen and non-collagenous proteins, compromised matrix structure, abnormal cell-cell and cell-matrix interactions and tissue mineralization. Recessive OI is caused by deficiency of any of the three components of the collagen prolyl 3-hydroxylation complex; absence of 3-hydroxylation is associated with increased modification of the collagen helix, supporting delayed collagen folding. Other causes of recessive OI include deficiency of collagen chaperones, FKBP65 or HSP47. Murine models are crucial to uncovering the common pathways in dominant and recessive OI bone dysplasia. Clinical management of OI is multidiscipinary, encompassing substantial progress in physical rehabilitation and surgical procedures, managment of hearing, dental and pulmonary abnormalities, as well as drugs such as bisphosphonates and rGH. Novel treatments using cell therapy or new drug regimens hold promise for the future. PMID:21670757

  7. Bulbous epiphysis and popcorn calcification as related to growth plate differentiation in osteogenesis imperfecta.

    PubMed

    Brizola, Evelise; McCarthy, Edward; Shapiro, Jay Robert

    2015-01-01

    Osteogenesis Imperfecta (OI) is an heritable systemic disorder of connective tissue due to different sequence variants in genes affecting both the synthesis of type I collagen and osteoblast function. Dominant and recessive inheritance is recognized. Approximately 90% of the OI cases are due to mutations in COL1A1/A2 genes. We clinically and radiologically describes an adult male with type III osteogenesis imperfecta who presents a rare bone dysplasia termed bulbous epiphyseal deformity in association with popcorn calcifications. Popcorn calcifications may occur with bulbous epiphyseal deformity or independently. Molecular analysis was performed for COL1A1, COL1A2, LEPRE1 and WNT1 genes. An uncommon COL1A1 mutation was identified. Clinical and radiological exams confirmed a distinctive bulbous epiphyseal deformity with popcorn calcifications in distal femurs. We have identified four additional OI patients reported in current literature, whose X-rays show bulbous epiphyseal deformity related to mutations in CR-TAP, LEPRE1 and WNT1 genes. The mutation identified here had been previously described twice in OI patients and no previous correlation with bulbous epiphyseal deformity was described. The occurrence of this bone dysplasia focuses attention on alterations in normal growth plate differentiation and the subsequent effect on endochondral bone formation in OI.

  8. Investigation of the Human Disease Osteogenesis Imperfecta: A Research-Based Introduction to Concepts and Skills in Biomolecular Analysis

    ERIC Educational Resources Information Center

    Mate, Karen; Sim, Alistair; Weidenhofer, Judith; Milward, Liz; Scott, Judith

    2013-01-01

    A blended approach encompassing problem-based learning (PBL) and structured inquiry was used in this laboratory exercise based on the congenital disease Osteogenesis imperfecta (OI), to introduce commonly used techniques in biomolecular analysis within a clinical context. During a series of PBL sessions students were presented with several…

  9. Splenomegaly, myeloid lineage expansion and increased osteoclastogenesis in osteogenesis imperfecta murine.

    PubMed

    Matthews, Brya G; Roeder, Emilie; Wang, Xi; Aguila, Hector Leonardo; Lee, Sun-Kyeong; Grcevic, Danka; Kalajzic, Ivo

    2017-10-01

    Osteogenesis imperfecta (OI) is a disease caused by defects in type I collagen production that results in brittle bones. While the pathology is mainly caused by defects in the osteoblast lineage, there is also elevated bone resorption by osteoclasts resulting in high bone turnover in severe forms of the disease. Osteoclasts originate from hematopoietic myeloid cells, however changes in hematopoiesis have not been previously documented in OI. In this study, we evaluated hematopoietic lineage distribution and osteoclast progenitor cell frequency in bone marrow, spleen and peripheral blood of osteogenesis imperfecta murine (OIM) mice, a model of severe OI. We found splenomegaly in all ages examined, and expansion of myeloid lineage cells (CD11b + ) in bone marrow and spleen of 7-9week old male OIM animals. OIM spleens also showed an increased frequency of purified osteoclast progenitors. This phenotype is suggestive of chronic inflammation. Isolated osteoclast precursors from both spleen and bone marrow formed osteoclasts more rapidly than wild-type controls. We found that serum TNFα levels were increased in OIM, as was IL1α in OIM females. We targeted inflammation therapeutically by treating growing animals with murine TNFR2:Fc, a compound that blocks TNFα activity. Anti-TNFα treatment marginally decreased spleen mass in OIM females, but failed to reduce bone resorption, or improve bone parameters or fracture rate in OIM animals. We have demonstrated that OIM mice have changes in their hematopoietic system, and form osteoclasts more rapidly even in the absence of OI osteoblast signals, however therapy targeting TNFα did not improve disease parameters. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Phenotypic variability in patients with osteogenesis imperfecta caused by BMP1 mutations.

    PubMed

    Pollitt, Rebecca C; Saraff, Vrinda; Dalton, Ann; Webb, Emma A; Shaw, Nick J; Sobey, Glenda J; Mughal, M Zulf; Hobson, Emma; Ali, Farhan; Bishop, Nicholas J; Arundel, Paul; Högler, Wolfgang; Balasubramanian, Meena

    2016-12-01

    Osteogenesis Imperfecta (OI) is an inherited bone fragility disorder most commonly associated with autosomal dominant mutations in the type I collagen genes. Autosomal recessive mutations in a number of genes have also been described, including the BMP1 gene that encodes the mammalian Tolloid (mTLD) and its shorter isoform bone morphogenic protein-1 (BMP1). To date, less than 20 individuals with OI have been identified with BMP1 mutations, with skeletal phenotypes ranging from mild to severe and progressively deforming. In the majority of patients, bone fragility was associated with increased bone mineral density (BMD); however, the full range of phenotypes associated with BMP1 remains unclear. Here, we describe three children with mutations in BMP1 associated with a highly variable phenotype: a sibship homozygous for the c.2188delC mutation that affects only the shorter BMP1 isoform and a further patient who is compound heterozygous for a c.1293C>G nonsense mutation and a c.1148G>A missense mutation in the CUB1 domain. These individuals had recurrent fractures from early childhood, are hypermobile and have no evidence of dentinogenesis imperfecta. The homozygous siblings with OI had normal areal BMD by dual energy X-ray absorptiometry whereas the third patient presented with a high bone mass phenotype. Intravenous bisphosphonate therapy was started in all patients, but discontinued in two patients and reduced in another due to concerns about increasing bone stiffness leading to chalk-stick fractures. Given the association of BMP1-related OI with very high bone material density, concerns remain whether anti-resorptive therapy is indicated in this ultra-rare form of OI.© 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Phenotypic Variability of Osteogenesis Imperfecta Type V Caused by an IFITM5 Mutation

    PubMed Central

    Shapiro, Jay R; Lietman, Caressa; Grover, Monica; Lu, James T; Nagamani, Sandesh CS; Dawson, Brian C; Baldridge, Dustin M; Bainbridge, Matthew N; Cohn, Dan H; Blazo, Maria; Roberts, Timothy T; Brennen, Feng-Shu; Wu, Yimei; Gibbs, Richard A; Melvin, Pamela; Campeau, Philippe M; Lee, Brendan H

    2013-01-01

    In a large cohort of osteogenesis imperfecta type V (OI type V) patients (17 individuals from 12 families), we identified the same mutation in the 5′ untranslated region (5′UTR) of the interferon-induced transmembrane protein 5 (IFITM5) gene by whole exome and Sanger sequencing (IFITM5 c.–14C > T) and provide a detailed description of their phenotype. This mutation leads to the creation of a novel start codon adding five residues to IFITM5 and was recently reported in several other OI type V families. The variability of the phenotype was quite large even within families. Whereas some patients presented with the typical calcification of the forearm interosseous membrane, radial head dislocation and hyperplastic callus (HPC) formation following fractures, others had only some of the typical OI type V findings. Thirteen had calcification of interosseous membranes, 14 had radial head dislocations, 10 had HPC, 9 had long bone bowing, 11 could ambulate without assistance, and 1 had mild unilateral mixed hearing loss. The bone mineral density varied greatly, even within families. Our study thus highlights the phenotypic variability of OI type V caused by the IFITM5 mutation. PMID:23408678

  12. Bulbous epiphysis and popcorn calcification as related to growth plate differentiation in osteogenesis imperfecta

    PubMed Central

    Brizola, Evelise; McCarthy, Edward; Shapiro, Jay Robert

    2015-01-01

    Summary Background Osteogenesis Imperfecta (OI) is an heritable systemic disorder of connective tissue due to different sequence variants in genes affecting both the synthesis of type I collagen and osteoblast function. Dominant and recessive inheritance is recognized. Approximately 90% of the OI cases are due to mutations in COL1A1/A2 genes. We clinically and radiologically describes an adult male with type III osteogenesis imperfecta who presents a rare bone dysplasia termed bulbous epiphyseal deformity in association with popcorn calcifications. Popcorn calcifications may occur with bulbous epiphyseal deformity or independently. Methods Molecular analysis was performed for COL1A1, COL1A2, LEPRE1 and WNT1 genes. Results An uncommon COL1A1 mutation was identified. Clinical and radiological exams confirmed a distinctive bulbous epiphyseal deformity with popcorn calcifications in distal femurs. We have identified four additional OI patients reported in current literature, whose X-rays show bulbous epiphyseal deformity related to mutations in CR-TAP, LEPRE1 and WNT1 genes. Conclusion The mutation identified here had been previously described twice in OI patients and no previous correlation with bulbous epiphyseal deformity was described. The occurrence of this bone dysplasia focuses attention on alterations in normal growth plate differentiation and the subsequent effect on endochondral bone formation in OI. PMID:26604951

  13. The genetic implication of scoliosis in osteogenesis imperfecta: a review

    PubMed Central

    Liu, Gang; Chen, Jia; Zhou, Yangzhong; Zuo, Yuzhi; Liu, Sen; Chen, Weisheng

    2017-01-01

    Osteogenesis imperfecta (OI) is a kind of heritable connective tissue disorder, including blue sclerae, hearing loss, skeletal dysplasia causing bone fragility and deformities. It is typically caused by collagen related gene mutations, which could lead to bone formation abnormalities. Scoliosis is one of the most common and severe spinal phenotype which has been reported in approximately 26–74.5% of all OI patients. Recent breakthroughs have suggested that OI can be divided into more than 16 types based on genetic mutations with different degrees of scoliosis. In this review, we summarize the etiology of scoliosis in OI, especially the genetic studies of different types. We aim to provide a systematic review of the genetic etiology and clinical suggestions of scoliosis in OI. PMID:29354746

  14. Comprehensive rehabilitation of the child with osteogenesis imperfecta.

    PubMed

    Binder, H; Conway, A; Hason, S; Gerber, L H; Marini, J; Berry, R; Weintrob, J

    1993-01-15

    Children with osteogenesis imperfecta (OI) that results in considerable deformity are often viewed as poor candidates for aggressive physical therapy and rehabilitation. To determine if this view is realistic, we have entered almost 50 children with OI type III and OI type IV into a comprehensive graduated rehabilitation program, based at the National Institutes of Health, but designed to be implemented by continuing involvement of community resources. Children are begun in the program early with emphasis on gain of head and trunk control and progression to sitting and walking, if possible, with the aid of a variety of physical supports, including internal and external bracing. Although not conducted in a randomized fashion, the program's success in bringing children into graded exercise regimes and fostering their increased involvement in school and social situations suggest that aggressive physical therapy and rehabilitation have a major place in the overall care of the infants and children with OI.

  15. Managing the patient with osteogenesis imperfecta: a multidisciplinary approach

    PubMed Central

    Marr, Caroline; Seasman, Alison; Bishop, Nick

    2017-01-01

    Osteogenesis imperfecta (OI) is a heterogeneous heritable connective tissue disorder characterized by low bone density. The type and severity of OI are variable. The primary manifestations are fractures, bone deformity, and bone pain, resulting in reduced mobility and function to complete everyday tasks. OI affects not only the physical but also the social and emotional well-being of children, young people, and their families. As such, medical, surgical, and allied health professionals’ assessments all play a role in the management of these children. The multidisciplinary approach to the treatment of children and young people living with OI seeks to provide well-coordinated, comprehensive assessments, and interventions that place the child and family at the very center of their care. The coordinated efforts of a multidisciplinary team can support children with OI to fulfill their potential, maximizing function, independence, and well-being. PMID:28435282

  16. Clinical application of quantitative computed tomography in osteogenesis imperfecta-suspected cat.

    PubMed

    Won, Sungjun; Chung, Woo-Jo; Yoon, Junghee

    2017-09-30

    One-year-old male Persian cat presented with multiple fractures and no known traumatic history. Marked decrease of bone radiopacity and thin cortices of all long bones were identified on radiography. Tentative diagnosis was osteogenesis imperfecta, a congenital disorder characterized by fragile bone. To determine bone mineral density (BMD), quantitative computed tomography (QCT) was performed. The QCT results revealed a mean trabecular BMD of vertebral bodies of 149.9 ± 86.5 mg/cm 3 . After bisphosphonate therapy, BMD of the same site increased significantly (218.5 ± 117.1 mg/cm 3 , p < 0.05). QCT was a useful diagnostic tool to diagnose osteopenia and quantify response to medical treatment.

  17. Effect of intravenous pamidronate therapy on functional abilities and level of ambulation in children with osteogenesis imperfecta.

    PubMed

    Land, Christof; Rauch, Frank; Montpetit, Kathleen; Ruck-Gibis, Joanne; Glorieux, Francis H

    2006-04-01

    To evaluate the functional abilities and the level of ambulation during pamidronate therapy in children with moderate to severe osteogenesis imperfecta. Functional abilities, ambulation, and grip force were assessed in 59 patients (mean age, 6.1 years; range, 0.5-15.7 years; 30 girls) during 3 years of pamidronate treatment. Functional skills (mobility and self-care) were both assessed by using the Pediatric Evaluation of Disability Inventory. Ambulation level was assessed by using the modified Bleck score. For 48 patients, results after 3 years of pamidronate treatment could be matched to those of patients with similar age and disease severity who had not received pamidronate. Mobility and self-care scores increased during the study period (+43% and +30%, respectively). The average ambulation score changed from 0.8 to 1.9. Maximal isometric grip force increased by 63%. Mobility and ambulation scores and grip force measures were significantly higher than in patients who had not received pamidronate. The difference in self-care scores did not reach significance. This study suggests that cyclical pamidronate treatment improves mobility, ambulation level, and muscle force in children with moderate to severe osteogenesis imperfecta.

  18. Osteogenesis imperfecta Type IV: a newly identified variant at position c.560 (G > T; p.Gly187Val) in the COL1A2 gene.

    PubMed

    Usta, Akin; Karademir, Dilay; Sen, Eylem; Yazici, Selcuk; Adali, Ertan; Erdem, Erkan; Karacan, Meric

    2017-01-01

    Osteogenesis imperfecta is a clinically heterogenous disease caused by defective collagen syntesis associated with a mutation in the COL1A1 or COL1A2 genes. In this report, we present a case of osteogenesis imperfecta (OI) type IV, seen in a female fetus with incurved femurs at 18 weeks of gestation. Molecular analysis of the newborn revealed a novel mutation at position c.560 (c.560 G > T) of the exon 12 in the COL1A2 gene; which lead to the glycine modification with valine (p.Gly187Val) at codon 187. The pregnancy follow-up was uneventful. After delivery, the newborn underwent biphosponat therapy and no fracture was detected until 1 year old.

  19. Osteogenesis imperfecta type III/Ehlers-Danlos overlap syndrome in a Chinese man.

    PubMed

    Lu, Yanqin; Wang, Yanzhou; Rauch, Frank; Li, Hu; Zhang, Yao; Zhai, Naixiang; Zhang, Jian; Ren, Xiuzhi; Han, Jinxiang

    2018-02-01

    Osteogenesis imperfecta (OI) and Ehlers-Danlos syndrome (EDS) are rare genetic disorders that are typically inherited in an autosomal dominant manner. Few cases of OI/EDS overlap syndrome have been documented. Described here is a 30-year-old Chinese male with OI type III and EDS. Sequencing of genomic DNA revealed a heterozygous COL1A1 mutation (c.671G>A, p.Gly224Asp) that affected the N-anchor domain of the alpha 1 chain of collagen type I. Ultrastructural analysis of a skin biopsy specimen revealed thin collagen fibers with irregular alignment of collagen fibers. These findings have expanded the genotypic spectrum of the OI/EDS overlap syndrome.

  20. Osteogenesis Imperfecta: Muscle-Bone Interactions when Bi-directionally Compromised.

    PubMed

    Phillips, Charlotte L; Jeong, Youngjae

    2018-06-16

    Osteogenesis imperfecta (OI) is a hereditary connective tissue disorder of skeletal fragility and more recently muscle weakness. This review highlights our current knowledge of the impact of compromised OI muscle function on muscle-bone interactions and skeletal strength in OI. The ramifications of inherent muscle weakness in OI muscle-bone interactions are just beginning to be elucidated. Studies in patients and in OI mouse models implicate altered mechanosensing, energy metabolism, mitochondrial dysfunction, and paracrine/endocrine crosstalk in the pathogenesis of OI. Compromised muscle-bone unit impacts mechanosensing and the ability of OI muscle and bone to respond to physiotherapeutic and pharmacologic treatment strategies. Muscle and bone are both compromised in OI, making it essential to understand the mechanisms responsible for both impaired muscle and bone functions and their interdependence, as this will expand and drive new physiotherapeutic and pharmacological approaches to treat OI and other musculoskeletal disorders.

  1. Osteogenesis Imperfecta: A Review with Clinical Examples

    PubMed Central

    van Dijk, F.S.; Cobben, J.M.; Kariminejad, A.; Maugeri, A.; Nikkels, P.G.J.; van Rijn, R.R.; Pals, G.

    2011-01-01

    Osteogenesis imperfecta (OI) is characterized by susceptibility to bone fractures, with a severity ranging from subtle increase in fracture frequency to prenatal fractures. The first scientific description of OI dates from 1788. Since then, important milestones in OI research and treatment have, among others, been the classification of OI into 4 types (the ‘Sillence classification’), the discovery of defects in collagen type I biosynthesis as a cause of most cases of OI and the use of bisphosphonate therapy. Furthermore, in the past 5 years, it has become clear that OI comprises a group of heterogeneous disorders, with an estimated 90% of cases due to a causative variant in the COL1A1 or COL1A2 genes and with the remaining 10% due to causative recessive variants in the 8 genes known so far, or in other currently unknown genes. This review aims to highlight the current knowledge around the history, epidemiology, pathogenesis, clinical/radiological features, management, and future prospects of OI. The text will be illustrated with clinical descriptions, including radiographs and, where possible, photographs of patients with OI. PMID:22570641

  2. WHOLE-BODY VIBRATION EXERCISE IMPROVES FUNCTIONAL PARAMETERS IN PATIENTS WITH OSTEOGENESIS IMPERFECTA: A SYSTEMATIC REVIEW WITH A SUITABLE APPROACH.

    PubMed

    Sá-Caputo, Danubia C; Dionello, Carla da F; Frederico, Éric Heleno F F; Paineiras-Domingos, Laisa L; Sousa-Gonçalves, Cintia Renata; Morel, Danielle S; Moreira-Marconi, Eloá; Unger, Marianne; Bernardo-Filho, Mario

    2017-01-01

    Patients with osteogenesis imperfecta (OI) have abnormal bone modelling and resorption. The bone tissue adaptation and responsivity to dynamic and mechanical loading may be of therapeutic use under controlled circumstances. Improvements due to the wholebody vibration (WBV) exercises have been reported in strength, motion, gait, balance, posture and bone density in several osteopenic individuals, as in post-menopausal women or children with disabling conditions, as patients with OI. The aim of this investigation was to systematically analyse the current available literature to determine the effect of WBV exercises on functional parameters of OI patients. Three reviewers independently accessed bibliographical databases. Searches were performed in the PubMed, Scopus, Science Direct and PEDro databases using keywords related to possible interventions (including WBV) used in the management of patients with osteogenesis imperfecta . Three eligible studies were identified by searches in the analysed databases. It was concluded that WBV exercises could be an important option in the management of OI patients improving the mobility and functional parameters. However, further studies are necessary for establishing suitable protocols for these patients.

  3. Increased nuchal translucency and short femur length as possible early signs of osteogenesis imperfecta type III.

    PubMed

    Vimercati, Antonella; Panzarino, Mariantonietta; Totaro, Ilaria; Chincoli, Annarosa; Selvaggi, Luigi

    2013-01-01

    this paper reports an association between an increased Nuchal Translucency (NT) and Osteogenesis Imperfecta (OI), a type of skeletal dysplasia. Measurement of fetal NT at 10-14 weeks of gestation is a sensitive and effective screening method for chromosomal abnormalities. a 35-year- old Caucasian woman in her fourth pregnancy was referred to our clinic for an ultrasound scan at 12 weeks of gestation, that confirmed increased Nuchal Translucency. Chorionic villi sampling was performed, showing a normal karyotype. The patient was evaluated by a team of experienced ultra sonographers for pregnancy follow-up at our Department, that is a tertiary center. in our case the ultrasound scan at 12 week of gestation revealed only an increased NT (3 mm). Cytogenetic analysis on chorionic villi demonstrated a normal male karyotype. US follow-up, performed every 3-4 weeks, confirmed normal anthropometric parameters except for shortening of both femurs, but at 23 weeks an incorrect attitude of the feet was revealed. A clinical and radiographic diagnosis of OI type III was made only at birth, and through follow-up continuing to date. NT screening was successful for chromosomal abnormalities at 11-14 weeks of gestation. An increased NT thickness is also associated with numerous fetal anomalies and genetic syndromes in a chromosomally normal fetus. In our case there were no sonographic signs of imperfect osteogenesis in the first trimester, although there was an increased NT with a normal karyotype. currently, in literature, there are not other cases of OI type III associated with an increased NT. Our report is the first to suggest an association between an increased nuchal translucency, short femur length and osteogenesis imperfecta type III.

  4. An unusual presentation of osteogenesis imperfecta type I

    PubMed Central

    Rebelo, Marta; Lima, Jandira; Vieira, José Diniz; Costa, José Nascimento

    2011-01-01

    Osteogenesis imperfecta (OI) is a rare inherited disorder with a broad spectrum of clinical and genetic variability. The genetic diversity involves, in the majority of the cases, mutations in one of the genes that encodes the type 1 collagen protein (COL1 A1 and COL1 A2), but it is not a requirement for the diagnosis. The most benign form is OI type I. The authors present a case report of a 25-year-old woman who had severe low back pain associated with incapacity to walk and breast-feed post-partum. Symptoms developed 2 weeks after delivery. The radiological examination revealed severe osteoporosis with no abnormalities in the laboratory findings. The clinical signs and a positive personal and family history of multiple fractures in childhood suggested OI type I, although other diagnosis, such as pregnancy-associated osteoporosis, was also considered. The atypical presentation of this rare disorder in adulthood calls attention to the need for early diagnosis for prompt treatment. Treatment of OI is never curative, but it improves the quality of the patient’s life. PMID:23754901

  5. Mutation analysis of the COL1A1 and COL1A2 genes in Vietnamese patients with osteogenesis imperfecta.

    PubMed

    Ho Duy, Binh; Zhytnik, Lidiia; Maasalu, Katre; Kändla, Ivo; Prans, Ele; Reimann, Ene; Märtson, Aare; Kõks, Sulev

    2016-08-12

    The genetics of osteogenesis imperfecta (OI) have not been studied in a Vietnamese population before. We performed mutational analysis of the COL1A1 and COL1A2 genes in 91 unrelated OI patients of Vietnamese origin. We then systematically characterized the mutation profiles of these two genes which are most commonly related to OI. Genomic DNA was extracted from EDTA-preserved blood according to standard high-salt extraction methods. Sequence analysis and pathogenic variant identification was performed with Mutation Surveyor DNA variant analysis software. Prediction of the pathogenicity of mutations was conducted using Alamut Visual software. The presence of variants was checked against Dalgleish's osteogenesis imperfecta mutation database. The sample consisted of 91 unrelated osteogenesis imperfecta patients. We identified 54 patients with COL1A1/2 pathogenic variants; 33 with COL1A1 and 21 with COL1A2. Two patients had multiple pathogenic variants. Seventeen novel COL1A1 and 10 novel COL1A2 variants were identified. The majority of identified COL1A1/2 pathogenic variants occurred in a glycine substitution (36/56, 64.3 %), usually serine (23/36, 63.9 %). We found two pathogenic variants of the COL1A1 gene c.2461G > A (p.Gly821Ser) in four unrelated patients and one, c.2005G > A (p.Ala669Thr), in two unrelated patients. Our data showed a lower number of collagen OI pathogenic variants in Vietnamese patients compared to reported rates for Asian populations. The OI mutational profile of the Vietnamese population is unique and related to the presence of a high number of recessive mutations in non-collagenous OI genes. Further analysis of OI patients negative for collagen mutations, is required.

  6. Fluoroscopy-guided Sacroiliac Joint Steroid Injection for Low Back Pain in a Patient with Osteogenesis Imperfecta.

    PubMed

    Dawson, P U; Rose, R E; Wade, N A

    2015-09-01

    Osteogenesis imperfecta, also known as 'brittle bone disease', is a genetic connective tissue disease. It is characterized by bone fragility and osteopenia (low bone density). In this case, a 57-year old female presented to the University Hospital of the West Indies (UHWI), Physical Medicine and Rehabilitation Clinic with left low back pain rated 6/10 on the numeric rating scale (NRS). Clinically, the patient had sacroiliac joint mediated pain although X-rays did not show the sacroiliac joint changes. Fluoroscopy-guided left sacroiliac joint steroid injection was done. Numeric rating scale and Oswestry Disability Index (ODI) questionnaire were used to evaluate outcome. This was completed at baseline, one week follow-up and at eight weeks post fluoroscopy-guided sacroiliac joint steroid injection. Numeric rating scale improved from 6/10 before the procedure to 0/10 post procedure, and ODI questionnaire score improved from a moderate disability score of 40% to a minimal disability score of 13%. Up to eight weeks, the NRS was 0/10 and ODI remained at minimal disability of 15%. Fluoroscopy-guided sacroiliac joint injection is a known diagnostic and treatment method for sacroiliac joint mediated pain. To our knowledge, this is the first case published on the use of fluoroscopy-guided sacroiliac joint steroid injection in the treatment of sacroiliac joint mediated low back pain in a patient with osteogenesis imperfecta.

  7. Surgery versus surgery plus pamidronate in the management of osteogenesis imperfecta patients: a comparative study.

    PubMed

    el-Sobky, Mohammed A; Hanna, Atef A Zaky; Basha, Naguib E; Tarraf, Yehia N; Said, May H

    2006-05-01

    The aim of this study was to evaluate the efficacy of pamidronate in the management of osteogenesis imperfecta patients. This study was carried out in two groups. The first was treated only surgically whereas the second was treated by a combined approach, medical and surgical. Forty patients, divided into two groups, were surgically treated in order to correct bony deformities secondary to osteogenesis imperfecta. Group 1: twenty patients were operated at an average age of 6.5 years. Nine were type I, five type III and six type IV. Group 2: this group consisted of 20 patients to whom intermittent intravenous pamidronate were given at regular intervals for an average of 2 years postoperatively. The average age at surgery was 8.5 years. Four patients were type I, six type III, eight type IV, one type V and the remaining one type VII. The results were assessed according to a scoring system suggested and used by the authors since 1999. Group 1: we had three good, nine fair and eight poor results. Group 2: we had 11 excellent, four good and five fair results. The Bone mineral dens (BMD) increased by an average of 35.2% (22.7-112%), and the rate of refracture decreased. Best results in the management of patients can be obtained through the combined approach (surgical and medical treatment). We now advise preoperative and postoperative pamidronate for these patients.

  8. What is new in genetics and osteogenesis imperfecta classification?

    PubMed

    Valadares, Eugênia R; Carneiro, Túlio B; Santos, Paula M; Oliveira, Ana Cristina; Zabel, Bernhard

    2014-01-01

    Literature review of new genes related to osteogenesis imperfecta (OI) and update of its classification. Literature review in the PubMed and OMIM databases, followed by selection of relevant references. In 1979, Sillence et al. developed a classification of OI subtypes based on clinical features and disease severity: OI type I, mild, common, with blue sclera; OI type II, perinatal lethal form; OI type III, severe and progressively deforming, with normal sclera; and OI type IV, moderate severity with normal sclera. Approximately 90% of individuals with OI are heterozygous for mutations in the COL1A1 and COL1A2 genes, with dominant pattern of inheritance or sporadic mutations. After 2006, mutations were identified in the CRTAP, FKBP10, LEPRE1, PLOD2, PPIB, SERPINF1, SERPINH1, SP7, WNT1, BMP1, and TMEM38B genes, associated with recessive OI and mutation in the IFITM5 gene associated with dominant OI. Mutations in PLS3 were recently identified in families with osteoporosis and fractures, with X-linked inheritance pattern. In addition to the genetic complexity of the molecular basis of OI, extensive phenotypic variability resulting from individual loci has also been documented. Considering the discovery of new genes and limited genotype-phenotype correlation, the use of next-generation sequencing tools has become useful in molecular studies of OI cases. The recommendation of the Nosology Group of the International Society of Skeletal Dysplasias is to maintain the classification of Sillence as the prototypical form, universally accepted to classify the degree of severity in OI, while maintaining it free from direct molecular reference. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  9. WHOLE-BODY VIBRATION EXERCISE IMPROVES FUNCTIONAL PARAMETERS IN PATIENTS WITH OSTEOGENESIS IMPERFECTA: A SYSTEMATIC REVIEW WITH A SUITABLE APPROACH

    PubMed Central

    Sá-Caputo, Danubia C; Dionello, Carla da F; Frederico, Éric Heleno F. F; Paineiras-Domingos, Laisa L; Sousa-Gonçalves, Cintia Renata; Morel, Danielle S; Moreira-Marconi, Eloá; Unger, Marianne; Bernardo-Filho, Mario

    2017-01-01

    Background: Patients with osteogenesis imperfecta (OI) have abnormal bone modelling and resorption. The bone tissue adaptation and responsivity to dynamic and mechanical loading may be of therapeutic use under controlled circumstances. Improvements due to the wholebody vibration (WBV) exercises have been reported in strength, motion, gait, balance, posture and bone density in several osteopenic individuals, as in post-menopausal women or children with disabling conditions, as patients with OI. The aim of this investigation was to systematically analyse the current available literature to determine the effect of WBV exercises on functional parameters of OI patients. Materials and methods: Three reviewers independently accessed bibliographical databases. Searches were performed in the PubMed, Scopus, Science Direct and PEDro databases using keywords related to possible interventions (including WBV) used in the management of patients with osteogenesis imperfecta. Results: Three eligible studies were identified by searches in the analysed databases. Conclusion: It was concluded that WBV exercises could be an important option in the management of OI patients improving the mobility and functional parameters. However, further studies are necessary for establishing suitable protocols for these patients. PMID:28480432

  10. A novel homozygous variant in SERPINH1 associated with a severe, lethal presentation of osteogenesis imperfecta with hydranencephaly.

    PubMed

    Marshall, Charlotte; Lopez, Jaime; Crookes, Laura; Pollitt, Rebecca C; Balasubramanian, Meena

    2016-12-20

    Osteogenesis imperfecta (OI) is a genetic disorder characterised by low bone mineral density resulting in fractures. 85-90% of patients with OI carry a variant in the type 1 collagen genes, COL1A1 and COL1A2, which follows an autosomal dominant pattern of inheritance. However, within the last two decades, there have been growing number of variants identified in genes that follow an autosomal recessive pattern of inheritance. Our proband is a child born in Mexico with multiple fractures of ribs, minimal calvarial mineralisation, platyspondyly, marked compression and deformed long bones. He also presented with significant hydranencephaly, requiring ventilatory support from birth, and died at 8days of age. A homozygous c.338_357delins22 variant in exon 2 of SERPINH1 was identified. This gene encodes heat shock protein 47, a collagen-specific chaperone which binds to the procollagen triple helix and is responsible for collagen stabilisation in the endoplasmic reticulum. There is minimal literature on the mechanism of action for variants in SERPINH1 resulting in osteogenesis imperfecta. Here we discuss this rare, previously unreported variant, and expand on the phenotypic presentation of this novel variant resulting in a severe, lethal phenotype of OI in association with hydranencephaly. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Osteogenesis imperfecta: rehabilitation approach with infants and young children.

    PubMed

    Binder, H; Hawks, L; Graybill, G; Gerber, N L; Weintrob, J C

    1984-09-01

    A rehabilitation approach, consisting of initial handling and positioning followed by functional and formal strengthening exercises, was developed for the child with severe progressive osteogenesis imperfecta (OI). The program was developed because of the increased life expectancy for infants and children with severe progressive OI, combined with the lack of published reports dealing with their rehabilitation. The program can be followed easily by parents or therapists with regular monitoring by a psychiatrist. The goals are to improve the life span as well as the quality of life of these children by preventing the following: (1) positional contractures and deformities, (2) muscle weakness and osteoporosis, and (3) malalignment of the lower extremity joints prohibiting weight-bearing. Implementation of the program requires full cooperation of the parents. The initial results in four children between the ages of 3 and 11 years are encouraging. The benefits of increased strength and mobility leading to more age-appropriate activities and behaviors outweigh the only observed negative result, that is trauma-related lower extremity fractures in children with milder disease, and therefore greater mobility and higher activity levels.

  12. Physical activity in youth with osteogenesis imperfecta type I

    PubMed Central

    Pouliot-Laforte, A.; Veilleux, L-N.; Rauch, F.; Lemay, M.

    2015-01-01

    Introduction: Individuals with Osteogenesis Imperfecta (OI) type I often show muscular weakness. However, it is unclear whether muscular weakness is a consequence of physical inactivity or a result of the disease itself. The aim was to assess muscle function in youth with OI type I and evaluate physical activity (PA). Methods: Fourteen children with OI type I (mean age [SD]: 12.75 [4.62] years) were compared to 14 age- and gender-matched controls (mean age [SD]: 12.75 [4.59] years). Muscle force and power were determined through mechanography. PA and daily energy expenditure were measured with an accelerometer and a questionnaire. Results: Compared to controls, children with OI type I had lower muscle force and power. OI type I children were as active as their healthy counterparts. Conclusions: Children and adolescents with OI type I and their healthy counterparts did not reached daily recommendations of PA. Given their muscle function deficit, youth with OI type I would benefit to reach these recommendations to prevent precocious effect of aging on muscles. PMID:26032209

  13. A novel COL1A1 mutation in a family with osteogenesis imperfecta associated with phenotypic variabilities

    PubMed Central

    Seto, Toshiyuki; Yamamoto, Toshiyuki; Shimojima, Keiko; Shintaku, Haruo

    2017-01-01

    Osteogenesis imperfecta (OI) is a heterogeneous disorder that is characterized by bone fragility and systemic complications, and is mainly caused by gene mutations in COL1A1 or COL1A2. A novel COL1A1 splicing mutation, c.750+2T>A, was identified in a Japanese OI family. Only the proband in this family showed various complications, such as heart valve diseases and severe scoliosis. The clinical heterogeneity in the family is discussed in this study. PMID:28326186

  14. Effect of osteogenesis imperfecta mutations in tropocollagen molecule on strength of biomimetic tropocollagen-hydroxyapatite nanocomposites

    NASA Astrophysics Data System (ADS)

    Dubey, Devendra K.; Tomar, Vikas

    2010-01-01

    Osteogenesis Imperfecta (OI) is a genetic disorder that affects cellular synthesis of Type-I collagen fibrils and causes extreme bone fragility. This study reports the effects of OI mutations in Tropocollagen (TC) molecules on strength of model Tropocollagen-Hydroxyapatite biomaterials with two different mineral [hydroxyapatite (HAP)] distributions using three dimensional atomistic simulations. Results show that the effect of TC mutations on the strength of TC-HAP biomaterials is insignificant. Instead, change in mineral distribution showed significant impact on the overall strength of TC-HAP biomaterials. Study suggests that TC mutations manifest themselves by changing the mineral distribution during hydroxyapatite growth and nucleation period.

  15. Serum creatine kinase isoenzymes in children with osteogenesis imperfecta.

    PubMed

    D'Eufemia, P; Finocchiaro, R; Zambrano, A; Lodato, V; Celli, L; Finocchiaro, S; Persiani, P; Turchetti, A; Celli, M

    2017-01-01

    This study evaluates serum creatine kinase isoenzyme activity in children with osteogenesis imperfecta to determine its usefulness as a biochemical marker during treatment with bisphosphonate. The changes of creatine kinase (CK) isoenzyme activity during and after discontinuation therapy were observed. These results could be useful in addressing over-treatment risk prevention. The brain isoenzyme of creatine kinase (CKbb) is highly expressed in mature osteoclasts during osteoclastogenesis, thus plays an important role in bone resorption. We previously identified high serum CKbb levels in 18 children with osteogenesis imperfect (OI) type 1 treated for 1 year with bisphosphonate (neridronate). In the present study, serum CK isoenzymes were evaluated in the same children with continuous versus discontinued neridronate treatment over a further 2-year follow-up period. This study included 18 children with OI type 1, 12 with continued (group A) and 6 with ceased (group B) neridronate treatment. Auxological data, serum biochemical markers of bone metabolism, bone mineral density z-score, and serum total CK and isoenzyme activities were determined in both groups. Serum CKbb was progressively and significantly increased in group A (p < 0.004) but rapidly decreased to undetectable levels in group B. In both groups, the cardiac muscle creatine kinase isoenzyme (CKmb) showed a marked decrease, while serum C-terminal telopeptide (CTx) levels were almost unchanged. This study provides evidence of the cumulative effect of neridronate administration in increasing serum CKbb levels and the reversible effect after its discontinuation. This approach could be employed for verifying the usefulness of serum CKbb as a biochemical marker in patients receiving prolonged bisphosphonate treatment. Moreover, the decreased serum CKmb levels suggest a systemic effect of these drugs.

  16. PPIB mutations cause severe osteogenesis imperfecta.

    PubMed

    van Dijk, Fleur S; Nesbitt, Isabel M; Zwikstra, Eline H; Nikkels, Peter G J; Piersma, Sander R; Fratantoni, Silvina A; Jimenez, Connie R; Huizer, Margriet; Morsman, Alice C; Cobben, Jan M; van Roij, Mirjam H H; Elting, Mariet W; Verbeke, Jonathan I M L; Wijnaendts, Liliane C D; Shaw, Nick J; Högler, Wolfgang; McKeown, Carole; Sistermans, Erik A; Dalton, Ann; Meijers-Heijboer, Hanne; Pals, Gerard

    2009-10-01

    Deficiency of cartilage-associated protein (CRTAP) or prolyl 3-hydroxylase 1(P3H1) has been reported in autosomal-recessive lethal or severe osteogenesis imperfecta (OI). CRTAP, P3H1, and cyclophilin B (CyPB) form an intracellular collagen-modifying complex that 3-hydroxylates proline at position 986 (P986) in the alpha1 chains of collagen type I. This 3-prolyl hydroxylation is decreased in patients with CRTAP and P3H1 deficiency. It was suspected that mutations in the PPIB gene encoding CyPB would also cause OI with decreased collagen 3-prolyl hydroxylation. To our knowledge we present the first two families with recessive OI caused by PPIB gene mutations. The clinical phenotype is compatible with OI Sillence type II-B/III as seen with COL1A1/2, CRTAP, and LEPRE1 mutations. The percentage of 3-hydroxylated P986 residues in patients with PPIB mutations is decreased in comparison to normal, but it is higher than in patients with CRTAP and LEPRE1 mutations. This result and the fact that CyPB is demonstrable independent of CRTAP and P3H1, along with reported decreased 3-prolyl hydroxylation due to deficiency of CRTAP lacking the catalytic hydroxylation domain and the known function of CyPB as a cis-trans isomerase, suggest that recessive OI is caused by a dysfunctional P3H1/CRTAP/CyPB complex rather than by the lack of 3-prolyl hydroxylation of a single proline residue in the alpha1 chains of collagen type I.

  17. Decreasing maternal myostatin programs adult offspring bone strength in a mouse model of osteogenesis imperfecta

    PubMed Central

    Oestreich, Arin K.; Kamp, William M.; McCray, Marcus G.; Carleton, Stephanie M.; Karasseva, Natalia; Lenz, Kristin L.; Jeong, Youngjae; Daghlas, Salah A.; Yao, Xiaomei; Wang, Yong; Pfeiffer, Ferris M.; Ellersieck, Mark R.; Schulz, Laura C.; Phillips, Charlotte L.

    2016-01-01

    During fetal development, the uterine environment can have effects on offspring bone architecture and integrity that persist into adulthood; however, the biochemical and molecular mechanisms remain unknown. Myostatin is a negative regulator of muscle mass. Parental myostatin deficiency (Mstntm1Sjl/+) increases muscle mass in wild-type offspring, suggesting an intrauterine programming effect. Here, we hypothesized that Mstntm1Sjl/+ dams would also confer increased bone strength. In wild-type offspring, maternal myostatin deficiency altered fetal growth and calvarial collagen content of newborn mice and conferred a lasting impact on bone geometry and biomechanical integrity of offspring at 4 mo of age, the age of peak bone mass. Second, we sought to apply maternal myostatin deficiency to a mouse model with osteogenesis imperfecta (Col1a2oim), a heritable connective tissue disorder caused by abnormalities in the structure and/or synthesis of type I collagen. Femora of male Col1a2oim/+ offspring from natural mating of Mstntm1Sjl/+ dams to Col1a2oim/+sires had a 15% increase in torsional ultimate strength, a 29% increase in tensile strength, and a 24% increase in energy to failure compared with age, sex, and genotype-matched offspring from natural mating of Col1a2oim/+ dams to Col1a2oim/+ sires. Finally, increased bone biomechanical strength of Col1a2oim/+ offspring that had been transferred into Mstntm1Sjl/+ dams as blastocysts demonstrated that the effects of maternal myostatin deficiency were conferred by the postimplantation environment. Thus, targeting the gestational environment, and specifically prenatal myostatin pathways, provides a potential therapeutic window and an approach for treating osteogenesis imperfecta. PMID:27821779

  18. Roentgenographic Evaluation of the Spine in Patients With Osteogenesis Imperfecta.

    PubMed

    de Lima, Marcos Vaz; de Lima, Fabiana Vaz; Akkari, Miguel; Resende, Vanessa Ribeiro de; Santili, Claudio

    2015-11-01

    Osteogenesis imperfecta (OI) is a hereditary connective tissue disorder that leads to bone weakness and deformities, especially in the spine, which can lead to poor outcomes.The aim of this study was to find patterns and risk factors in spinal deformities in patients with OI.In a retrospective study, 70 patients with OI were selected. Radiographs of the spine were evaluated. We observed the presence or absence of the following changes: biconcave vertebrae, chest and vertebral deformities, unilateral rib, and thoracolumbar kyphosis. The greater curve was considered the primary one, and the secondary curve considered compensatory.In the study sample, we observed that the patients' ages ranged between 7 and 50 years, with a mean equal to 13 years, and 76% had scoliosis. In 68% of cases the main curve in the thoracic region was observed with the convexity to the right.The following was found in patients with OI: scoliosis, biconcave vertebrae, vertebral and chest deformity, unilateral rib, and thoracolumbar kyphosis. The thoracolumbar kyphosis is highly associated with thoracic hypokyphosis in patients with OI.

  19. Deep tissue single cell MSC ablation using a fiber laser source to evaluate therapeutic potential in osteogenesis imperfecta

    NASA Astrophysics Data System (ADS)

    Tehrani, Kayvan F.; Pendleton, Emily G.; Lin, Charles P.; Mortensen, Luke J.

    2016-04-01

    Osteogenesis imperfecta (OI) is a currently uncurable disease where a mutation in collagen type I yields brittle bones. One potential therapy is transplantation of mesenchymal stem cells (MSCs), but controlling and enhancing transplanted cell survival has proven challenging. Therefore, we use a 2- photon imaging system to study individual transplanted cells in the living bone marrow. We ablated cells deep in the bone marrow and observed minimal collateral damage to surrounding tissue. Future work will evaluate the local impact of transplanted MSCs on bone deposition in vivo.

  20. Osteogenesis imperfecta presenting as aneurysmal subarachnoid haemorrhage in a 53-year-old man

    PubMed Central

    Kaliaperumal, Chandrasekaran; Walsh, Tom; Balasubramanian, Chandramouli; Wyse, Gerry; Fanning, Noel; Kaar, George

    2011-01-01

    The authors describe a case of aneurysmal subarachnoid haemorrhage in a 53-year-old man with background of osteogenesis imperfecta (OI). CT brain revealed diffuse subarachnoid haemorrhage (SAH) and cerebral angiogram subsequently confirmed vertebral artery aneurysm rupture leading to SAH. To the authors knowledge this is the first case of vertebral artery aneurysmal SAH described in OI. A previously undiagnosed OI was confirmed by genetic analysis (COL1A1 gene mutation). This aneurysm was successfully treated by endovascular route. Post interventional treatment patient developed stroke secondary to vasospasm. Communicating hydrocephalus, which developed in the process of management, was successfully treated with ventriculo-peritoneal shunt. The aetio-pathogenesis and management of this condition is described. The authors have reviewed the literature and genetic basis of this disease. PMID:22674700

  1. Comparative X-ray morphometry of prenatal osteogenesis imperfecta type 2 and thanatophoric dysplasia: a contribution to prenatal differential diagnosis.

    PubMed

    Bondioni, Maria Pia; Pazzaglia, Ugo Ernesto; Izzi, Claudia; Di Gaetano, Giuseppe; Laffranchi, Francesco; Baldi, Maurizia; Prefumo, Federico

    2017-11-01

    The purpose of the paper was to assess the morphometric parameters to improve the specificity of the ultrasound (US) signs for the early differential diagnosis between two lethal dysplasias, as thanatophoric dysplasia (TD) and osteogenesis imperfecta type 2 (OI-2). The diaphyseal length and the bowed shape of long bones associated with vertebral body dimension assessment were investigated in a group of 14 pregnancy terminations carried out in the time period 2007-2013. The definitive diagnosis was established after pregnancy termination by means of skeletal standardized X-rays, histopathology and gene analysis. TD and OI-2 long bones were significantly shorter than controls. No significant differences were observed between the two dysplasias. The bowing angle was higher in OI-2; a true angulation or eventually axial displacement was present only in the latter. Furthermore, they did not show any evidence of vertebral collapse. The thanatophoric dysplasia presented less bowed long bones, and never true angulation. The spine was steadily characterized by flattened anterior vertebral bodies. Long bone shortening is not a sufficient and accurate sign for early sonographic differential diagnosis between TD and OI-2. Angled diaphysis, axial diaphyseal displacement and a conserved vertebral body height in the prenatal period support the diagnosis of osteogenesis imperfecta type 2, while moderately regular bowed diaphysis associated with platyspondyly that of thanatophoric dysplasia.

  2. Impaired bone remodeling in children with osteogenesis imperfecta treated and untreated with bisphosphonates: the role of DKK1, RANKL, and TNF-α.

    PubMed

    Brunetti, G; Papadia, F; Tummolo, A; Fischetto, R; Nicastro, F; Piacente, L; Ventura, A; Mori, G; Oranger, A; Gigante, I; Colucci, S; Ciccarelli, M; Grano, M; Cavallo, L; Delvecchio, M; Faienza, M F

    2016-07-01

    In this study, we investigated the bone cell activity in patients with osteogenesis imperfecta (OI) treated and untreated with neridronate. We demonstrated the key role of Dickkopf-1 (DKK1), receptor activator of nuclear factor-κB ligand (RANKL), and tumor necrosis factor alpha (TNF-α) in regulating bone cell of untreated and treated OI subjects. These cytokines could represent new pharmacological targets for OI. Bisphosphonates are widely used in the treatment of children with osteogenesis imperfecta (OI) with the objective of reducing the risk of fractures. Although bisphosphonates increase bone mineral density in OI subjects, the effects on fracture incidence are conflicting. The aim of this study was to investigate the mechanisms underlying bone cell activity in subjects with mild untreated forms of OI and in a group of subjects with severe OI treated with cycles of intravenous neridronate. Sclerostin, DKK1, TNF-α, RANKL, osteoprotegerin (OPG), and bone turnover markers were quantified in serum of 18 OI patients (12 females, mean age 8.86 ± 3.90), 8 of which were receiving cyclic intravenous neridronate, and 21 sex- and age-matched controls. The effects on osteoblastogenesis and OPG expression of media conditioned by the serum of OI patients and anti-DKK1 neutralizing antibody were evaluated. Osteoclastogenesis was assessed in cultures from patients and controls. DKK1 and RANKL levels were significantly increased both in untreated and in treated OI subjects with respect to controls. The serum from patients with high DKK1 levels inhibited both osteoblast differentiation and OPG expression in vitro. High RANKL and low OPG messenger RNA (mRNA) levels were found in lymphomonocytes from patients. High amounts of TNF-α were expressed by monocytes, and an elevated percentage of circulating CD11b-CD51/CD61+ osteoclast precursors was observed in patients. Our study demonstrated the key role of DKK1, RANKL, and TNF-α in regulating bone cell activity of subjects

  3. Specific entities affecting the craniocervical region: osteogenesis imperfecta and related osteochondrodysplasias: medical and surgical management of basilar impression.

    PubMed

    Menezes, Arnold H

    2008-10-01

    Osteogenesis imperfecta (OI) is an inheritable disorder of bone development caused by defective collagen synthesis. The attendant basilar impression or secondary basilar invagination is uncommon but can be devastating. Fifty-two patients with osteochondrodysplasia (28 with OI, six with Hajdu-Cheney syndrome, six with Paget's disease, and 12 with spondyloepiphyseal dysplasia) with basilar impression were evaluated between 1985 and 2005. The male/female ratio in this cohort was 1:1. The mean age at presentation was 12.2 years. Symptoms and signs included headache, lower cranial nerve dysfunction, dysphagia, respiratory embarrassment, weakness, and ataxia. In the earlier part of the series (1985-1995), all patients with hydrocephalus were shunted and a ventral transoral decompression made for ventral compression of the pontomedullary junction followed by a dorsal occipitocervical fusion. As a result of this evaluation, it was felt that most patients would benefit by early bracing after the hydrocephalus was shunted if it existed. However, 20% of patients still required an anterior ventral decompression and the occipitocervical fusion. The results showed that the fusions were stable but over a period of time, there was progressive forward bending with osteogenesis imperfecta as well as with the Hajdu-Cheney syndrome. All patients with spondyloepiphyseal dysplasia had a good strong stable fusion which stood the test of time. In conclusion, we feel that early intervention with occipitocervical bracing can prevent the progressive march of significant basilar impression which leads to mortality.

  4. Decreasing maternal myostatin programs adult offspring bone strength in a mouse model of osteogenesis imperfecta.

    PubMed

    Oestreich, Arin K; Kamp, William M; McCray, Marcus G; Carleton, Stephanie M; Karasseva, Natalia; Lenz, Kristin L; Jeong, Youngjae; Daghlas, Salah A; Yao, Xiaomei; Wang, Yong; Pfeiffer, Ferris M; Ellersieck, Mark R; Schulz, Laura C; Phillips, Charlotte L

    2016-11-22

    During fetal development, the uterine environment can have effects on offspring bone architecture and integrity that persist into adulthood; however, the biochemical and molecular mechanisms remain unknown. Myostatin is a negative regulator of muscle mass. Parental myostatin deficiency (Mstn tm1Sjl/+ ) increases muscle mass in wild-type offspring, suggesting an intrauterine programming effect. Here, we hypothesized that Mstn tm1Sjl/+ dams would also confer increased bone strength. In wild-type offspring, maternal myostatin deficiency altered fetal growth and calvarial collagen content of newborn mice and conferred a lasting impact on bone geometry and biomechanical integrity of offspring at 4 mo of age, the age of peak bone mass. Second, we sought to apply maternal myostatin deficiency to a mouse model with osteogenesis imperfecta (Col1a2 oim ), a heritable connective tissue disorder caused by abnormalities in the structure and/or synthesis of type I collagen. Femora of male Col1a2 oim/+ offspring from natural mating of Mstn tm1Sjl/+ dams to Col1a2 oim/+ sires had a 15% increase in torsional ultimate strength, a 29% increase in tensile strength, and a 24% increase in energy to failure compared with age, sex, and genotype-matched offspring from natural mating of Col1a2 oim/+ dams to Col1a2 oim/+ sires. Finally, increased bone biomechanical strength of Col1a2 oim/+ offspring that had been transferred into Mstn tm1Sjl/+ dams as blastocysts demonstrated that the effects of maternal myostatin deficiency were conferred by the postimplantation environment. Thus, targeting the gestational environment, and specifically prenatal myostatin pathways, provides a potential therapeutic window and an approach for treating osteogenesis imperfecta.

  5. Osteogenesis Imperfecta Diagnosed from Mandibular and Lower Limb Fractures: A Case Report.

    PubMed

    Kobayashi, Yoshikazu; Satoh, Koji; Mizutani, Hideki

    2016-06-01

    Osteogenesis imperfecta (OI) is a congenital disease characterized by bone fragility and low bone mass. Despite the variety of its manifestation and severity, facial fractures occur very infrequently. Here, we report a case of an infant diagnosed with OI after mandibular and lower limb fractures. A boy aged 1 year and 3 months was brought to his neighboring hospital with a complaint of facial injury. He was transferred to our hospital to undergo operation 3 days later. Computed tomography images revealed multiple mandibular fractures including complete fracture in the symphysis and dislocated condylar fracture on the right side. Open reduction and internal fixation with absorbable implants was performed 7 days after injury. He fractured his right lower limb 2 months later. He was diagnosed with OI type IA by an orthopedist. He will be administered bone-modifying agents if he suffers from frequent fractures.

  6. Evaluation of a Modified Pamidronate Protocol for the Treatment of Osteogenesis Imperfecta.

    PubMed

    Palomo, Telma; Andrade, Maria C; Peters, Barbara S E; Reis, Fernanda A; Carvalhaes, João Tomás A; Glorieux, Francis H; Rauch, Frank; Lazaretti-Castro, Marise

    2016-01-01

    Intravenous pamidronate is widely used to treat children with osteogenesis imperfecta (OI). In a well-studied protocol ('standard protocol'), pamidronate is given at a daily dose of 1 mg per kg body weight over 4 h on 3 successive days; infusion cycles are repeated every 4 months. Here, we evaluated renal safety of a simpler protocol for intravenous pamidronate infusions (2 mg per kg body weight given in a single infusion over 2 h, repeated every 4 months; 'modified protocol'). Results of 18 patients with OI types I, III, or IV treated with the modified protocol for 12 months were compared to 18 historic controls, treated with standard protocol. In the modified protocol, mild transient post-infusion increases in serum creatinine were found during each infusion but after 12 months serum creatinine remained similar from baseline [0.40 mg/dl (SD: 0.13)] to the end of the study [0.41 mg/dl (SD: 0.11)] (P = 0.79). The two protocols led to similar changes in serum creatinine during the first pamidronate infusion [modified protocol: +2% (SD: 21%); standard protocol: -3% (SD: 8%); P = 0.32]. Areal lumbar spine bone mineral density Z-scores increased from -2.7 (SD: 1.5) to -1.8 (SD: 1.4) with the modified protocol, and from -4.1 (SD: 1.4) to -3.1 (SD: 1.1) with standard protocol (P = 0.68 for group differences in bone density Z-score changes). The modified pamidronate protocol is safe and may have similar effects on bone density as the standard pamidronate protocol. More studies are needed with longer follow-up to prove anti-fracture efficacy.

  7. MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta

    PubMed Central

    Lindert, Uschi; Cabral, Wayne A.; Ausavarat, Surasawadee; Tongkobpetch, Siraprapa; Ludin, Katja; Barnes, Aileen M.; Yeetong, Patra; Weis, Maryann; Krabichler, Birgit; Srichomthong, Chalurmpon; Makareeva, Elena N.; Janecke, Andreas R.; Leikin, Sergey; Röthlisberger, Benno; Rohrbach, Marianne; Kennerknecht, Ingo; Eyre, David R.; Suphapeetiporn, Kanya; Giunta, Cecilia; Marini, Joan C.; Shotelersuk, Vorasuk

    2016-01-01

    Osteogenesis imperfecta (OI) is a collagen-related bone dysplasia. We identified an X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P). MBTPS2 missense mutations in two independent kindreds with moderate/severe OI cause substitutions at highly conserved S2P residues. Mutant S2P has normal stability, but impaired functioning in regulated intramembrane proteolysis (RIP) of OASIS, ATF6 and SREBP transcription factors, consistent with decreased proband secretion of type I collagen. Further, hydroxylation of the collagen lysine residue (K87) critical for crosslinking is reduced in proband bone tissue, consistent with decreased lysyl hydroxylase 1 in proband osteoblasts. Reduced collagen crosslinks presumptively undermine bone strength. Also, proband osteoblasts have broadly defective differentiation. These mutations provide evidence that RIP plays a fundamental role in normal bone development. PMID:27380894

  8. Osteogenesis Imperfecta Type VI in Individuals from Northern Canada.

    PubMed

    Ward, Leanne; Bardai, Ghalib; Moffatt, Pierre; Al-Jallad, Hadil; Trejo, Pamela; Glorieux, Francis H; Rauch, Frank

    2016-06-01

    Osteogenesis imperfecta (OI) type VI is a recessively inherited form of OI that is caused by mutations in SERPINF1, the gene coding for pigment-epithelium derived factor (PEDF). Here, we report on two apparently unrelated children with OI type VI who had the same unusual homozygous variant in intron 6 of SERPINF1 (c.787-10C>G). This variant created a novel splice site that led to the in-frame addition of three amino acids to PEDF (p.Lys262_Ile263insLeuSerGln). Western blotting showed that skin fibroblasts with this mutation produced PEDF but failed to secrete it. Both children were treated with intravenous bisphosphonates, but the treatment of Individual 1 was switched to subcutaneous injections of denosumab (dose 1 mg per kg body weight, repeated every 3 months). An iliac bone sample obtained after 5 denosumab injections (and 3 months after the last injection) showed no change in the increased osteoid parameters that are typical of OI type VI, but the number of osteoclasts in trabecular bone was markedly increased. This suggests that the effect of denosumab on osteoclast suppression is of shorter duration in children with OI type VI than what has previously been reported on adults with osteoporosis.

  9. [Vertebral fractures in children with Type I Osteogenesis imperfecta].

    PubMed

    Sepúlveda, Andrea M; Terrazas, Claudia V; Sáez, Josefina; Reyes, María L

    2017-06-01

    Osteogenesis imperfecta (OI) is an hereditary disease affecting conective tissue, mainly associated to growth retardation and pathological fractures. OI type I (OI type I), is the mildest, most often, and homogeneous in its fenotype. Vertebral fractures are the most significant complications, associated to skeletical and cardiopulmonary morbidity. To characterize clinically a cohort of children with OI type I. A cohort of OI type I children younger than 20 year old was evaluated. Demographic, clinical, biochemical and radiological data were registered. Sixty seven patients were included, 55% male, 69% resident in the Metropolitan Region. The mean age of diagnose was 2.9 years, 70% presented vertebral fractures on follow-up, mostly thoracic, and 50% before the age of 5 years. Fifty percentage presented vertebral fractures at diagnose, which was about the age of 5 years. Bone metabolic parameters were in the normal range, without significant change at the moment of vertebral fractures. Calcium intake was found to be below American Academy of Pediatrics recommendations at the time of the first fracture. In this study OI type I has an early diagnose, and vertebral fractures show a high incidence, mostly in toddlers. Calcium intake was found to be below reccomended values, and should be closely supervised in these patients.

  10. Rare co-occurrence of osteogenesis imperfecta type I and autosomal dominant polycystic kidney disease.

    PubMed

    Hoefele, Julia; Mayer, Karin; Marschall, Christoph; Alberer, Martin; Klein, Hanns-Georg; Kirschstein, Martin

    2016-11-01

    There are several clinical reports about the co-occurrence of autosomal dominant polycystic kidney disease (ADPKD) and connective tissue disorders. A simultaneous occurrence of osteogenesis imperfecta (OI) type I and ADPKD has not been observed so far. This report presents the first patient with OI type I and ADPKD. Mutational analysis of PKD1 and COL1A1 in the index patient revealed a heterozygous mutation in each of the two genes. Mutational analysis of the parents indicated the mother as a carrier of the PKD1 mutation and the father as a carrier of the COL1A1 mutation. The simultaneous occurrence of both disorders has an estimated frequency of 3.5:100 000 000. In singular cases, ADPKD can occur in combination with other rare disorders, e.g. connective tissue disorders.

  11. Dentinogenesis imperfecta associated with short stature, hearing loss and mental retardation: a new syndrome with autosomal recessive inheritance?

    PubMed

    Cauwels, R G E C; De Coster, P J; Mortier, G R; Marks, L A M; Martens, L C

    2005-08-01

    The follow-up history and oral findings in two brothers from consanguineous parents suggest that the association of dentinogenesis imperfecta (DI), delayed tooth eruption, mild mental retardation, proportionate short stature, sensorineural hearing loss and dysmorphic facies may represent a new syndrome with autosomal recessive inheritance. Histological examination of the dentin matrix of a permanent molar from one of the siblings reveals morphological similarities with defective dentinogenesis as presenting in patients affected with Osteogenesis Imperfecta (OI), a condition caused by deficiency of type I collagen. A number of radiographic and histological characteristics, however, are inconsistent with classical features of DI. These findings suggest that DI may imply greater genetical heterogeneity than currently assumed.

  12. Health outcomes of neonates with osteogenesis imperfecta: a cross-sectional study.

    PubMed

    Yimgang, Doris P; Brizola, Evelise; Shapiro, Jay R

    2016-12-01

    To assess at-birth health outcomes of neonates with osteogenesis imperfecta (OI). A total of 53 women who self-reported having had at least one child with OI completed the survey. We evaluated pregnancy length, neonatal intensive care unit (NICU) usage, at-birth complications, and the child's clinical information including OI type, height and weight. Information was gathered on a total of 77 children (60 type I, 4 type III and 13 type IV). Health conditions reported at birth included breech presentation (24%), prematurity (27%), fracture (18%), bone deformity (18%) and respiratory problems (22%). Approximately 31% (n = 24) received NICU care. There was a significant association between younger maternal age, preterm delivery and NICU admission. Our findings suggest that newborns with OI appear to be at high risk of skeletal disorders, preterm delivery and breech presentation. Younger maternal age and preterm delivery seem to be strong predictors of the need for NICU care. Our data suggest that pregnant women with OI younger than 20 years of age may benefit from added clinical supervision in anticipation of adverse effects on their child.

  13. Assessment of quality of life of parents of children with osteogenesis imperfecta.

    PubMed

    Szczepaniak-Kubat, Anna; Kurnatowska, Olga; Jakubowska-Pietkiewicz, Elzbieta; Chlebna-Sokół, Danuta

    2012-01-01

    The aim of the work was an objective assessment of the quality of life of parents of children with osteogenesis imperfecta (OI) and of its determinant factors. The survey answers of 25 parents were analyzed and contained demographic parameters, socioeconomic status information, quality of life of responses and type of support they have been receiving. In order to assess the effects of this children's disease on the quality of life of the parents, families were divided into two groups depending on the OI severity: group M--mild (type I and IV OI), group S--severe (type III OI). The objective of the work was carried out based on the WHOQOL-BREF quality of life questionnaire and measures of family status: education degree based on the International Standard Classification of Education (ISCED), a subjective assessment of the family's wealth (Perceived Family Wealth, PFW), and the family's financial resources (Family Affluence Scale, FAS). 56% of respondents assessed their global quality of life (Quality of Life, QL) as good, whereas 8% answered poor. Perception of general health status was similar. Life domains assessed in the WHOQOL-BREF questionnaire received the following mean values on a scale from 4 to 20 points: physical--12.2 +/- 1.2, psychological--15.04 +/- 2.2, environmental--13.32 +/- 2, social relationships--14.28 +/- 1.5. In the severe OI group, the environmental domain was assessed as worse than in the mild OI group and this assessment was statistically significant, despite the fact that the group of families with severe cases of OI received more support from the appropriate institutions. Indicators of socioeconomic status did not affect the respondents' assessment of their global quality of life. In the tested group of families, the child's disease did not affect either the global quality of life assessment or health of the respondents or their quality of life in terms of physical and mental status and social relationships. The parents of children with

  14. EFFECTS OF LONG-TERM ALENDRONATE TREATMENT ON A LARGE SAMPLE OF PEDIATRIC PATIENTS WITH OSTEOGENESIS IMPERFECTA.

    PubMed

    Lv, Fang; Liu, Yi; Xu, Xiaojie; Wang, Jianyi; Ma, Doudou; Jiang, Yan; Wang, Ou; Xia, Weibo; Xing, Xiaoping; Yu, Wei; Li, Mei

    2016-12-01

    Osteogenesis imperfecta (OI) is a group of inherited diseases characterized by reduced bone mass, recurrent bone fractures, and progressive bone deformities. Here, we evaluate the efficacy and safety of long-term treatment with alendronate in a large sample of Chinese children and adolescents with OI. In this prospective study, a total of 91 children and adolescents with OI were included. The patients received 3 years' treatment with 70 mg alendronate weekly and 500 mg calcium daily. During the treatment, fracture incidence, bone mineral density (BMD), and serum levels of the bone turnover biomarkers (alkaline phosphatase [ALP] and cross-linked C-telopeptide of type I collagen [β-CTX]) were evaluated. Linear growth speed and parameters of safety were also measured. After 3 years of treatment, the mean annual fracture incidence decreased from 1.2 ± 0.8 to 0.2 ± 0.3 (P<.01). BMD at the lumbar spine and femoral neck significantly increased by 74.6% and 39.5%, with their BMD Z-score increasing from -3.0 to 0.1 and from -4.2 to -1.3, respectively (both P<.01 vs. baseline). In addition, serum ALP and β-CTX levels decreased by 35.6% and 44.3%, respectively (both P<.05 vs. baseline). Height significantly increased, but without an obvious increase in its Z-score. Patient tolerance of alendronate was good. Three years' treatment with alendronate was demonstrated for the first time to significantly reduce fracture incidence, increase lumbar spine and femoral neck BMD, and decrease bone turnover biomarkers in Chinese children and adolescents with OI. ALP = alkaline phosphatase β-CTX = cross-linked C-telopeptide of type I collagen BMD = bone mineral density BP = bisphosphonate DXA = dual-energy X-ray absorptiometry 25OHD = 25-hydroxyvitamin D OI = osteogenesis imperfecta PTH = parathyroid hormone.

  15. Osteogenesis imperfecta: Clinical diagnosis, nomenclature and severity assessment

    PubMed Central

    Van Dijk, FS; Sillence, DO

    2014-01-01

    Recently, the genetic heterogeneity in osteogenesis imperfecta (OI), proposed in 1979 by Sillence et al., has been confirmed with molecular genetic studies. At present, 17 genetic causes of OI and closely related disorders have been identified and it is expected that more will follow. Unlike most reviews that have been published in the last decade on the genetic causes and biochemical processes leading to OI, this review focuses on the clinical classification of OI and elaborates on the newly proposed OI classification from 2010, which returned to a descriptive and numerical grouping of five OI syndromic groups. The new OI nomenclature and the pre-and postnatal severity assessment introduced in this review, emphasize the importance of phenotyping in order to diagnose, classify, and assess severity of OI. This will provide patients and their families with insight into the probable course of the disorder and it will allow physicians to evaluate the effect of therapy. A careful clinical description in combination with knowledge of the specific molecular genetic cause is the starting point for development and assessment of therapy in patients with heritable disorders including OI. © 2014 The Authors. American Journal of Medical Genetics Published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution–NonCommercial–NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. PMID:24715559

  16. Identification of a novel COL1A1 frameshift mutation, c.700delG, in a Chinese osteogenesis imperfecta family

    PubMed Central

    Wang, Xiran; Pei, Yu; Dou, Jingtao; Lu, Juming; Li, Jian; Lv, Zhaohui

    2015-01-01

    Osteogenesis imperfecta (OI) is a family of genetic disorders associated with bone loss and fragility. Mutations associated with OI have been found in genes encoding the type I collagen chains. People with OI type I often produce insufficient α1-chain type I collagen because of frameshift, nonsense, or splice site mutations in COL1A1 or COL1A2. This report is of a Chinese daughter and mother who had both experienced two bone fractures. Because skeletal fragility is predominantly inherited, we focused on identifying mutations in COL1A1 and COL1A2 genes. A novel mutation in COL1A1, c.700delG, was detected by genomic DNA sequencing in the mother and daughter, but not in their relatives. The identification of this mutation led to the conclusion that they were affected by mild OI type I. Open reading frame analysis indicated that this frameshift mutation would truncate α1-chain type I collagen at residue p263 (p.E234KfsX264), while the wild-type protein would contain 1,464 residues. The clinical data were consistent with the patients’ diagnosis of mild OI type I caused by haploinsufficiency of α1-chain type I collagen. Combined with previous reports, identification of the novel mutation COL1A1-c.700delG in these patients suggests that additional genetic and environmental factors may influence the severity of OI. PMID:25983617

  17. Presentation on assistive technologies for the seating and mobility needs of persons with osteogenesis imperfecta.

    PubMed

    Axelson, P; Zollars, J A

    1995-01-01

    Persons with Osteogenesis Imperfecta (OI) are often protected and sheltered because of the fragile nature of their bones. Regardless of the degree of OI. over protecting a person with OI can be just as devastating as fractured bones. It is important that persons with OI are given the opportunity to participate in a wide variety of activities to develop the experiential, physical, and sociological dimensions of their lives. Assistive technology can help to make this participation a reality. Assistive technology should help protect the person from fractures, provide support to assist with postural alignment, and stability so that function and comfort can be enhanced. Technologies such as contoured foam mattresses, seating supports, temperature regulation technologies, orthotic supports, walking and wheelchair mobility devices can enhance the quality of live of people with OI.

  18. Rib Cage Deformities Alter Respiratory Muscle Action and Chest Wall Function in Patients with Severe Osteogenesis Imperfecta

    PubMed Central

    LoMauro, Antonella; Pochintesta, Simona; Romei, Marianna; D'Angelo, Maria Grazia; Pedotti, Antonio; Turconi, Anna Carla; Aliverti, Andrea

    2012-01-01

    Background Osteogenesis imperfecta (OI) is an inherited connective tissue disorder characterized by bone fragility, multiple fractures and significant chest wall deformities. Cardiopulmonary insufficiency is the leading cause of death in these patients. Methods Seven patients with severe OI type III, 15 with moderate OI type IV and 26 healthy subjects were studied. In addition to standard spirometry, rib cage geometry, breathing pattern and regional chest wall volume changes at rest in seated and supine position were assessed by opto-electronic plethysmography to investigate if structural modifications of the rib cage in OI have consequences on ventilatory pattern. One-way or two-way analysis of variance was performed to compare the results between the three groups and the two postures. Results Both OI type III and IV patients showed reduced FVC and FEV1 compared to predicted values, on condition that updated reference equations are considered. In both positions, ventilation was lower in OI patients than control because of lower tidal volume (p<0.01). In contrast to OI type IV patients, whose chest wall geometry and function was normal, OI type III patients were characterized by reduced (p<0.01) angle at the sternum (pectus carinatum), paradoxical inspiratory inward motion of the pulmonary rib cage, significant thoraco-abdominal asynchronies and rib cage distortions in supine position (p<0.001). Conclusions In conclusion, the restrictive respiratory pattern of Osteogenesis Imperfecta is closely related to the severity of the disease and to the sternal deformities. Pectus carinatum characterizes OI type III patients and alters respiratory muscles coordination, leading to chest wall and rib cage distortions and an inefficient ventilator pattern. OI type IV is characterized by lower alterations in the respiratory function. These findings suggest that functional assessment and treatment of OI should be differentiated in these two forms of the disease. PMID:22558284

  19. Normal Collagen and Bone Production by Gene-targeted Human Osteogenesis Imperfecta iPSCs

    PubMed Central

    Deyle, David R; Khan, Iram F; Ren, Gaoying; Wang, Pei-Rong; Kho, Jordan; Schwarze, Ulrike; Russell, David W

    2012-01-01

    Osteogenesis imperfecta (OI) is caused by dominant mutations in the type I collagen genes. In principle, the skeletal abnormalities of OI could be treated by transplantation of patient-specific, bone-forming cells that no longer express the mutant gene. Here, we develop this approach by isolating mesenchymal cells from OI patients, inactivating their mutant collagen genes by adeno-associated virus (AAV)-mediated gene targeting, and deriving induced pluripotent stem cells (iPSCs) that were expanded and differentiated into mesenchymal stem cells (iMSCs). Gene-targeted iMSCs produced normal collagen and formed bone in vivo, but were less senescent and proliferated more than bone-derived MSCs. To generate iPSCs that would be more appropriate for clinical use, the reprogramming and selectable marker transgenes were removed by Cre recombinase. These results demonstrate that the combination of gene targeting and iPSC derivation can be used to produce potentially therapeutic cells from patients with genetic disease. PMID:22031238

  20. Bone material elasticity in a murine model of osteogenesis imperfecta.

    PubMed

    Mehta, S S; Antich, P P; Landis, W J

    1999-01-01

    To investigate the source of bone brittleness in the disease osteogenesis imperfecta (OI), biomechanical properties have been measured in the femurs from a homozygous (oim/oim) mutant mouse model of OI, its heterozygous littermates, and wild-type animals. The novel technique of ultrasound critical-angle reflectometry (UCR) was used to determine bone material elasticity matrix from measurements of the pressure and shear wave velocity at different orientations about selected points of the bone specimens. This nondestructive method is the only available means for obtaining measurements of this nature from a single surface. The ultrasound pressure wave velocity showed an increased isotropy in the homozygous compared to the wild-type specimens. This was reflected in a significant decrease in the principal elastic modulus measured along the length of the oim/oim bones (E33) while the modulus along the width (E11) did not change significantly, compared to wild-type specimens. The Poisson's ratio, v12, also had a significantly increased value in oim/oim bones. Measurements of these parameters in heterozygous animals generally fell between those from homozygous and control mice. The differences in the elasticity components in oim/oim bones indicate an altered stress distribution and a modified elastic response to loads, compared to normal bone.

  1. Micro-CT characterization of human trabecular bone in osteogenesis imperfecta

    NASA Astrophysics Data System (ADS)

    Jameson, John; Albert, Carolyne; Smith, Peter; Molthen, Robert; Harris, Gerald

    2011-03-01

    Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment.

  2. Pregnancy- and lactation-associated transient osteoporosis of both hips in a 32 year old patient with osteogenesis imperfecta.

    PubMed

    Pabinger, C; Heu, C; Frohner, A; Dimai, H P

    2012-07-01

    Combination of osteogenesis imperfecta (OI), pregnancy, and transient osteoporosis (TO) of the hip is rare, only a few cases have been published so far. We report a 32 year old woman with OI, with TO on the right hip in her late third trimester. Non-pharmacological measures such as non-weight-bearing resulted in complete remission. Shortly after weaning, TO of the contralateral hip developed and non-pharmacological measures remained ineffective this time. Under treatment with a prostaglandin I(2) analog (iloprost), i.v. bisphosphonate (pamidronate), calcium and vitamin D supplementation rapid improvement of pain and complete remission was achieved. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Tooth agenesis in osteogenesis imperfecta related to mutations in the collagen type I genes.

    PubMed

    Malmgren, B; Andersson, K; Lindahl, K; Kindmark, A; Grigelioniene, G; Zachariadis, V; Dahllöf, G; Åström, E

    2017-01-01

    Osteogenesis imperfecta (OI) is a heterogeneous group of disorders of connective tissue, mainly caused by mutations in the collagen type I genes (COL1A1 and COL1A2). Tooth agenesis is a common feature of OI. We investigated the association between tooth agenesis and collagen type I mutations in individuals with OI. In this cohort study, 128 unrelated individuals with OI were included. Panoramic radiographs were analyzed regarding dentinogenesis imperfecta (DGI) and congenitally missing teeth. The collagen I genes were sequenced in all individuals, and in 25, multiplex ligation-dependent probe amplification was performed. Mutations in the COL1A1 and COL1A2 genes were found in 104 of 128 individuals. Tooth agenesis was diagnosed in 17% (hypodontia 11%, oligodontia 6%) and was more frequent in those with DGI (P = 0.016), and in those with OI type III, 47%, compared to those with OI types I, 12% (P = 0.003), and IV, 13% (P = 0.017). Seventy-five percent of the individuals with oligodontia (≥6 missing teeth) had qualitative mutations, but there was no association with OI type, gender, or presence of DGI. The prevalence of tooth agenesis is high (17%) in individuals with OI, and OI caused by a qualitative collagen I mutation is associated with oligodontia. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment.

    PubMed

    Van Dijk, F S; Sillence, D O

    2014-06-01

    Recently, the genetic heterogeneity in osteogenesis imperfecta (OI), proposed in 1979 by Sillence et al., has been confirmed with molecular genetic studies. At present, 17 genetic causes of OI and closely related disorders have been identified and it is expected that more will follow. Unlike most reviews that have been published in the last decade on the genetic causes and biochemical processes leading to OI, this review focuses on the clinical classification of OI and elaborates on the newly proposed OI classification from 2010, which returned to a descriptive and numerical grouping of five OI syndromic groups. The new OI nomenclature and the pre-and postnatal severity assessment introduced in this review, emphasize the importance of phenotyping in order to diagnose, classify, and assess severity of OI. This will provide patients and their families with insight into the probable course of the disorder and it will allow physicians to evaluate the effect of therapy. A careful clinical description in combination with knowledge of the specific molecular genetic cause is the starting point for development and assessment of therapy in patients with heritable disorders including OI. © 2014 The Authors. American Journal of Medical Genetics Published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2014 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc.

  5. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta.

    PubMed

    Roschger, Andreas; Roschger, Paul; Keplingter, Petra; Klaushofer, Klaus; Abdullah, Sami; Kneissel, Michaela; Rauch, Frank

    2014-09-01

    Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that is usually caused by mutations affecting collagen type I production in osteoblasts. Stimulation of bone formation through sclerostin antibody treatment (Sost-ab) has shown promising results in mouse models of relatively mild OI. We assessed the effect of once-weekly intravenous Sost-ab injections for 4weeks in male Col1a1(Jrt)/+mice, a model of severe dominant OI, starting either at 4weeks (growing mice) or at 20weeks (adult mice) of age. Sost-ab had no effect on weight or femur length. In OI mice, no significant treatment-associated differences in serum markers of bone formation (alkaline phosphatase activity, procollagen type I N-propeptide) or resorption (C-telopeptide of collagen type I) were found. Micro-CT analyses at the femur showed that Sost-ab treatment was associated with higher trabecular bone volume and higher cortical thickness in wild type mice at both ages and in growing OI mice, but not in adult OI mice. Three-point bending tests of the femur showed that in wild type but not in OI mice, Sost-ab was associated with higher ultimate load and work to failure. Quantitative backscattered electron imaging of the femur did not show any effect of Sost-ab on CaPeak (the most frequently occurring calcium concentration in the bone mineral density distribution), regardless of genotype, age or measurement location. Thus, Sost-ab had a larger effect in wild type than in Col1a1(Jrt)/+mice. Previous studies had found marked improvements of Sost-ab on bone mass and strength in an OI mouse model with a milder phenotype. Our data therefore suggest that Sost-ab is less effective in a more severely affected OI mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Radiology of Osteogenesis Imperfecta, Rickets and Other Bony Fragility States.

    PubMed

    Calder, Alistair D

    2015-01-01

    This section gives an overview of radiological findings in bony fragility states, with a special focus on osteogenesis imperfecta (OI) and rickets. Conventional radiological assessment of bone density is inaccurate and imprecise and only reliably detects severe osteopaenia. However, other aspects of bone structure and morphology can be assessed, and it is possible to distinguish between osteopaenic and osteomalacic states. OI is a heterogeneous group of disorders of type 1 collagen formation and processing that are characterised by varying degrees of bony fragility, with presentations varying from perinatal lethality to asymptomatic. Radiological diagnosis of severe forms is usually straightforward, but that of milder disease may be challenging because specific features are often absent. However, a multidisciplinary approach is usually successful. Features of OI, including Wormian bones, skull base deformities, vertebral involvement and long bone fractures and deformities, are reviewed in this section. Rickets is best defined as a disorder of the growth plate characterised by the impaired apoptosis of hypertrophied chondrocytes. Vitamin D deficiency is a common cause of rickets. The patho-anatomical basis of radiological findings in rickets is reviewed and illustrated. Rickets is frequently accompanied by hyperparathyroidism and osteomalacia. Rickets used to be classified as calciopaenic or phosphopaenic but is now referred to as parathyroid hormone or fibroblast growth factor 23 mediated, respectively [1]. The radiological features of the two forms are reviewed. © 2015 S. Karger AG, Basel.

  7. Weight loss surgery improves quality of life in pediatric patients with osteogenesis imperfecta

    PubMed Central

    Zani, Augusto; Ford-Adams, Martha; Ratcliff, Megan; Bevan, Denise; Inge, Thomas H.; Desai, Ashish

    2018-01-01

    Background Osteogenesis imperfecta (OI) is an inherited disorder, which causes brittle bones resulting in recurrent fractures. The associated poor mobility of children with OI increases susceptibility to obesity, and obesity further dramatically limits mobility and increases fracture risk. Objectives The aim of this report was to describe outcomes of weight loss surgery (WLS) in two adolescents with severe obesity and OI. Setting Two University Hospitals (in the United Kingdom and in the United States). Methods Two cases of OI treated with WLS were identified. Pre- and post-operative anthropometric and biochemical data and clinical course were reviewed. Results In these 2 cases, preoperative Body Mass Index (BMI) values were 38 and 46 kg/m2. Following laparoscopic sleeve gastrectomy (LSG), BMI decreased by 55% and 60% by 26 and 24 months, respectively. There were no surgical complications and both patients experienced improvement in their mobility and ability to perform activities of daily living. Conclusions WLS effectively treated severe obesity in two OI patients and substantially improved mobility and quality of life, theoretically reducing fracture risk. PMID:26948942

  8. Complete Remodeling After Conservative Treatment of a Severely Angulated Odontoid Fracture in a Patient With Osteogenesis Imperfecta: A Case Report.

    PubMed

    Colo, Dino; Schlösser, Tom P C; Oostenbroek, Hubert J; Castelein, René M

    2015-09-15

    Case report. This is the first case report describing successful healing and remodeling of a traumatic odontoid fracture that was dislocated and severely angulated in a patient with osteogenesis imperfecta who was treated conservatively. Osteogenesis imperfecta (OI) is a rare genetic disorder resulting in a low bone mass and bone fragility, predisposing these patients to fractures that often occur at a young age. Although any bone in the body may be involved, odontoid fractures are uncommon in this population. Because of a very high fusion rate, conservative management is accepted as a safe and efficient treatment of fractures of the odontoid in children. Several authors, however, recommend surgical treatment of patients who have failure of conservative treatment and have severe angulation or displacement of the odontoid. A 5-year-old female, diagnosed with OI type I, presented with neck pain without any neurological deficits after falling out of a rocking chair backward, with her head landing first on the ground. Computed tomography confirmed a type III odontoid fracture without dislocation and she was initially treated with a rigid cervical orthosis. At 1 and 2 months of follow-up, progressive severe angulation of the odontoid was observed but conservative treatment was maintained as the space available for the spinal cord was sufficient and also considering the patient's history of OI. Eight months postinjury, she had no clinical symptoms and there was osseous healing of the fracture with remodeling of the odontoid to normal morphology. Even in patients with OI, severely angulated odontoid fractures might have the capacity for osseous healing and complete remodeling under conservative treatment. 5.

  9. Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength.

    PubMed

    Sinder, B P; White, L E; Salemi, J D; Ominsky, M S; Caird, M S; Marini, J C; Kozloff, K M

    2014-08-01

    Treatments to reduce fracture rates in adults with osteogenesis imperfecta are limited. Sclerostin antibody, developed for treating osteoporosis, has not been explored in adults with OI. This study demonstrates that treatment of adult OI mice respond favorably to sclerostin antibody therapy despite retention of the OI-causing defect. Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk. Although OI fracture risk is greatest before puberty, adults with OI remain at risk of fracture. Antiresorptive bisphosphonates are commonly used to treat adult OI, but have shown mixed efficacy. New treatments which consistently improve bone mass throughout the skeleton may improve patient outcomes. Neutralizing antibodies to sclerostin (Scl-Ab) are a novel anabolic therapy that have shown efficacy in preclinical studies by stimulating bone formation via the canonical wnt signaling pathway. The purpose of this study was to evaluate Scl-Ab in an adult 6 month old Brtl/+ model of OI that harbors a typical heterozygous OI-causing Gly > Cys substitution on Col1a1. Six-month-old WT and Brtl/+ mice were treated with Scl-Ab (25 mg/kg, 2×/week) or Veh for 5 weeks. OCN and TRACP5b serum assays, dynamic histomorphometry, microCT and mechanical testing were performed. Adult Brtl/+ mice demonstrated a strong anabolic response to Scl-Ab with increased serum osteocalcin and bone formation rate. This anabolic response led to improved trabecular and cortical bone mass in the femur. Mechanical testing revealed Scl-Ab increased Brtl/+ femoral stiffness and strength. Scl-Ab was successfully anabolic in an adult Brtl/+ model of OI.

  10. A Cross-sectional Multicenter Study of Osteogenesis Imperfecta in North America – Results from the Linked Clinical Research Centers

    PubMed Central

    Patel, Ronak M; Nagamani, Sandesh CS; Cuthbertson, David; Campeau, Philippe M; Krischer, Jeffrey P; Shapiro, Jay R; Steiner, Robert D; Smith, Peter A; Bober, Michael B; Byers, Peter H; Pepin, Melanie; Durigova, Michaela; Glorieux, Francis H; Rauch, Frank; Lee, Brendan H; Smith, Tracy; Sutton, V. Reid

    2017-01-01

    Osteogenesis Imperfecta (OI) is the most common skeletal dysplasia that predisposes to recurrent fractures and bone deformities. In spite of significant advances in understanding the genetic basis of OI, there have been no large-scale natural history studies. To better understand the natural history and improve the care of patients, a network of Linked Clinical Research Centers (LCRC) was established. Subjects with OI were enrolled in a longitudinal study, and in this report, we present cross-sectional data on the largest cohort of OI subjects (n=544). OI type III subjects had higher prevalence of dentinogenesis imperfecta, severe scoliosis, and long bone deformities as compared to those with OI types I and IV. Whereas the mean LS aBMD was low across all OI subtypes, those with more severe forms had lower bone mass. Molecular testing may help predict the subtype in type I collagen-related OI. Analysis of such well-collected and unbiased data in OI can not only help answer questions that are relevant to patient care but also foster hypothesis-driven research, especially in the context of “phenotypic expansion” driven by next-generation sequencing. PMID:24754836

  11. Validation in mesenchymal progenitor cells of a mutation-independent ex vivo approach to gene therapy for osteogenesis imperfecta.

    PubMed

    Millington-Ward, Sophia; Allers, Carolina; Tuohy, Gearóid; Conget, Paulette; Allen, Danny; McMahon, Helena P; Kenna, Paul F; Humphries, Peter; Farrar, G Jane

    2002-09-15

    Over 100 dominant-negative mutations within the COL1A1 gene have been identified in osteogenesis imperfecta (OI). In terms of human therapeutics, targeting each of these mutations independently is unlikely to be feasible. Here we show that the hammerhead ribozyme Rzpol1a1, targeting a common polymorphism within transcripts from the COL1A1 gene, downregulates COL1A1 transcript in human mesenchymal progenitor cells at a ribozyme to transcript ratio of only 1:1. Downregulation was confirmed at the protein level. Transducing stem cells with Rzpol1A1 ex vivo followed by autologous transplantation could provide a gene therapy for a large proportion of OI patients with gain-of-function mutations using a single therapeutic.

  12. A cross-sectional multicenter study of osteogenesis imperfecta in North America - results from the linked clinical research centers.

    PubMed

    Patel, R M; Nagamani, S C S; Cuthbertson, D; Campeau, P M; Krischer, J P; Shapiro, J R; Steiner, R D; Smith, P A; Bober, M B; Byers, P H; Pepin, M; Durigova, M; Glorieux, F H; Rauch, F; Lee, B H; Hart, T; Sutton, V R

    2015-02-01

    Osteogenesis imperfecta (OI) is the most common skeletal dysplasia that predisposes to recurrent fractures and bone deformities. In spite of significant advances in understanding the genetic basis of OI, there have been no large-scale natural history studies. To better understand the natural history and improve the care of patients, a network of Linked Clinical Research Centers (LCRC) was established. Subjects with OI were enrolled in a longitudinal study, and in this report, we present cross-sectional data on the largest cohort of OI subjects (n = 544). OI type III subjects had higher prevalence of dentinogenesis imperfecta, severe scoliosis, and long bone deformities as compared to those with OI types I and IV. Whereas the mean lumbar spine area bone mineral density (LS aBMD) was low across all OI subtypes, those with more severe forms had lower bone mass. Molecular testing may help predict the subtype in type I collagen-related OI. Analysis of such well-collected and unbiased data in OI can not only help answering questions that are relevant to patient care but also foster hypothesis-driven research, especially in the context of 'phenotypic expansion' driven by next-generation sequencing. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Bone tissue ultrastructural defects in a mouse model for osteogenesis imperfecta: a Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Chen, Tsoching; Kozloff, Kenneth M.; Goldstein, Steven A.; Morris, Michael D.

    2004-07-01

    Osteogenesis imperfecta (OI) is genetic defect in which the genes that code for the α1(I) or α2(I) chains of type I collagen are defective. The defects often result in substitution of a bulky amino acid for glycine, causing formation of collagen that can not form the normal triple helix. Depending on the details of the defects, the outcomes range from controllable to lethal. This study focuses on OI type IV, a more common and moderately severe form of the disease. People with the disease have a substantial increase in the risk and rate of fracture. We examine the spectroscopic consequences of these defects, using a mouse model (BRTL) that mimics OI type IV. We compare Raman images from tibial cortical tissue of wild-type mice and BRTL mice with single copy of mutation and show that both mineral to matrix ratios and collagen inter-fibril cross-links are different in wild-type and mutant mice.

  14. Application of 3-Dimensional Printing in a Case of Osteogenesis Imperfecta for Patient Education, Anatomic Understanding, Preoperative Planning, and Intraoperative Evaluation.

    PubMed

    Eisenmenger, Laura B; Wiggins, Richard H; Fults, Daniel W; Huo, Eugene J

    2017-11-01

    The techniques and applications of 3-dimensional (3D) printing have progressed at a fast pace. In the last 10 years, there has been significant progress in applying this technology to medical applications. We present a case of osteogenesis imperfecta in which treatment was aided by prospectively using patient-specific, anatomically accurate 3D prints of the calvaria. The patient-specific, anatomically accurate 3D prints were used in the clinic and in the operating room to augment patient education, improve surgical decision making, and enhance preoperative planning. A 41-year-old woman with osteogenesis imperfecta and an extensive neurosurgical history presented for cranioplasty revision. Computed tomography (CT) data obtained as part of routine preoperative imaging were processed into a 3D model. The 3D patient-specific models were used in the clinic for patient education and in the operating room for preoperative visualization, planning, and intraoperative evaluation of anatomy. The patient reported the 3D models improved her understanding and comfort with the planned surgery when compared with discussing the procedure with the neurosurgeon or viewing the CT images with a neuroradiologist. The neurosurgeon reported an improved understanding of the patient's anatomy and potential cause of patient symptoms as well as improved preoperative planning compared with viewing the CT imaging alone. The neurosurgeon also reported an improvement in the planned surgical approach with a better intraoperative visualization and confirmation of the regions of planned calvarial resection. The use of patient-specific, anatomically accurate 3D prints may improve patient education, surgeon understanding and visualization, preoperative decision making, and intraoperative management. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The Outcomes of Nonelongating Intramedullary Fixation of the Lower Extremity for Pediatric Osteogenesis Imperfecta Patients: A Meta-analysis.

    PubMed

    Scollan, Joseph P; Jauregui, Julio J; Jacobsen, Christina M; Abzug, Joshua M

    Osteogenesis imperfecta is usually due to autosomal dominant mutations in type I collagen, leading to an increase in fractures and bone deformities, especially in the long bones of the lower extremities. The use of nonelongating intramedullary rods is an established surgical intervention to address such deformities. The rate of surgical complications has been reported to be as high as 187%, with revision rates as high as 90%, although exact global rates are unknown. As such, we sought to determine the published rates of (1) bone-related complications (including both fracture and deformity), (2) rod migration, and (3) complications that require reoperation. Following the Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) guidelines, 1295 studies were evaluated. After cross-referencing, and applying specific inclusion and exclusion criteria, a total of 7 studies were included in the final cohort. Data were extracted from the studies and analyzed. Random effect models determined the complication rates of intramedullary nonelongating rod procedures. A total of 359 primary nonelongating intramedullary rod procedures of tibiae and femurs, in patients with a mean age of 6 years (5.2 to 7.3 y), at a mean follow-up of 63 months (24 to 118 mo), were evaluated. 60% of the surgical procedures were on femurs, and 40% were on tibiae. The reoperation rate was 39.4%. The most common complication was rod migration, with a rate of 25.7%. The rate of bone-related complications was 19.5% including fractures (15.0%) and worsening bone deformity (4.3%). This is the first meta-analysis to identify the rates of complication and reoperation in lower limb intramedullary fixation for pediatric osteogenesis imperfecta patients. This study has shown that rod migration is the most common complication, followed by bone-related complications including fractures and deformity. Reoperations occur after nearly 40% of all procedures due to rod migration or bone

  16. Salubrinal improves mechanical properties of the femur in osteogenesis imperfecta mice.

    PubMed

    Takigawa, Shinya; Frondorf, Brian; Liu, Shengzhi; Liu, Yang; Li, Baiyan; Sudo, Akihiro; Wallace, Joseph M; Yokota, Hiroki; Hamamura, Kazunori

    2016-10-01

    Salubrinal is an agent that reduces the stress to the endoplasmic reticulum by inhibiting de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). We and others have previously shown that the elevated phosphorylation of eIF2α stimulates bone formation and attenuates bone resorption. In this study, we applied salubrinal to a mouse model of osteogenesis imperfecta (Oim), and examined whether it would improve Oim's mechanical property. We conducted in vitro experiments using RAW264.7 pre-osteoclasts and bone marrow derived cells (BMDCs), and performed in vivo administration of salubrinal to Oim (+/-) mice. The animal study included two control groups (wildtype and Oim placebo). The result revealed that salubrinal decreased expression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and suppressed osteoclast maturation, and it stimulated mineralization of mesenchymal stem cells from BMDCs. Furthermore, daily injection of salubrinal at 2 mg/kg for 2 months made stiffness (N/mm) and elastic module (GPa) of the femur undistinguishable to those of the wildtype control. Collectively, this study supported salubrinal's beneficial role to Oim's femora. Unlike bisphosphonates, salubrinal stimulates bone formation. For juvenile OI patients who may favor strengthening bone without inactivating bone remodeling, salubrinal may present a novel therapeutic option. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  17. A specialized rehabilitation approach improves mobility in children with osteogenesis imperfecta.

    PubMed

    Hoyer-Kuhn, H; Semler, O; Stark, C; Struebing, N; Goebel, O; Schoenau, E

    2014-12-01

    Osteogenesis imperfecta (OI) is a rare disease leading to recurrent fractures, hyperlaxicity of ligaments, short stature and muscular weakness. Physiotherapy is one important treatment approach. The objective of our analysis was to evaluate the effect of a new physiotherapy approach including side alternating whole body vibration on motor function in children with OI. In a retrospective analysis data of 53 children were analyzed. The 12 months approach included 6 months of side alternating whole body vibration training, concomitant physiotherapy, resistance training, treadmill training and 6 months follow up. Primary outcome parameter was the Gross Motor Function Measure after 12 months (M12). 53 children (male: 32; age (mean±SEM): 9.1±0.61, range 2.54-24.81 years) participated in the treatment approach. A significant increase of motor function (GMFM-66 score 55.47±2.45 to 58.67±2.83; p=0.001) and walking distance (47.04 m±6.52 to 63.36±8.25 m (p<0.01) between M0 and M12 was seen. Total body without head bone mineral density increased significantly at M12 (p=0.0189). In the cohort of OI children which participated in the specialized treatment approach improvements of motor function were observed. Therefore this program should be considered as additional therapeutic approach for children with severe OI.

  18. Gender-dependence of bone structure and properties in adult osteogenesis imperfecta murine model.

    PubMed

    Yao, Xiaomei; Carleton, Stephanie M; Kettle, Arin D; Melander, Jennifer; Phillips, Charlotte L; Wang, Yong

    2013-06-01

    Osteogenesis imperfecta (OI) is a dominant skeletal disorder characterized by bone fragility and deformities. Though the oim mouse model has been the most widely studied of the OI models, it has only recently been suggested to exhibit gender-dependent differences in bone mineralization. To characterize the impact of gender on the morphometry/ultra-structure, mechanical properties, and biochemical composition of oim bone on the congenic C57BL/J6 background, 4-month-old oim/oim, +/oim, and wild-type (wt) female and male tibiae were evaluated using micro-computed tomography, three-point bending, and Raman spectroscopy. Dramatic gender differences were evident in both cortical and trabecular bone morphological and geometric parameters. Male mice had inherently more bone and increased moment of inertia than genotype-matched female counterparts with corresponding increases in bone biomechanical strength. The primary influence of gender was structure/geometry in bone growth and mechanical properties, whereas the mineral/matrix composition and hydroxyproline content of bone were influenced primarily by the oim collagen mutation. This study provides evidence of the importance of gender in the evaluation and interpretation of potential therapeutic strategies when using mouse models of OI.

  19. Gender-dependence of bone structure and properties in adult osteogenesis imperfecta murine model

    PubMed Central

    Yao, Xiaomei; Carleton, Stephanie M.; Kettle, Arin D; Melander, Jennifer; Phillips, Charlotte L.; Wang, Yong

    2013-01-01

    Osteogenesis imperfecta (OI) is a dominant skeletal disorder characterized by bone fragility and deformities. Though the oim mouse model has been the most widely studied of the OI models, it has only recently been suggested to exhibit gender-dependent differences in bone mineralization. To characterize the impact of gender on the morphometry/ultra-structure, mechanical properties, and biochemical composition of oim bone on the congenic C57BL/J6 background, 4-month-old oim/oim, +/oim, and wild-type (wt) female and male tibiae were evaluated using micro-computed tomography, three-point bending, and Raman spectroscopy. Dramatic gender differences were evident in both cortical and trabecular bone morphological and geometric parameters. Male mice had inherently more bone and increased moment of inertia than genotype-matched female counterparts with corresponding increases in bone biomechanical strength. The primary influence of gender was structure/geometry in bone growth and mechanical properties, whereas the mineral/matrix composition, hydroxyproline content of bone were influenced primarily by the oim collagen mutation. This study provides evidence of the importance of gender in the evaluation and interpretation of potential therapeutic strategies when using mouse models of OI. PMID:23536112

  20. Cardiopulmonary fitness and muscle strength in patients with osteogenesis imperfecta type I.

    PubMed

    Takken, Tim; Terlingen, Heike C; Helders, Paul J M; Pruijs, Hans; Van der Ent, Cornelis K; Engelbert, Raoul H H

    2004-12-01

    To evaluate cardiopulmonary function, muscle strength, and cardiopulmonary fitness (VO 2 peak) in patients with osteogenesis imperfecta (OI). In 17 patients with OI type I (mean age 13.3 +/- 3.9 years) cardiopulmonary function was assessed at rest using spirometry, plethysmography, electrocardiography, and echocardiography. Exercise capacity was measured using a maximal exercise test on a bicycle ergometer and an expired gas analysis system. Muscle strength in shoulder abductors, hip flexors, ankle dorsal flexor, and grip strength were measured. All results were compared with reference values. Cardiopulmonary function at rest was within normal ranges, but when it was compared with normal height for age and sex, vital capacities were reduced. Mean absolute and relative VO 2 peak were respectively -1.17 (+/- 0.67) and -1.41 (+/- 1.52) standard deviations lower compared with reference values ( P < .01). Muscle strength also was significantly reduced in patients with OI, ranging from -1.24 +/- 1.40 to -2.88 +/- 2.67 standard deviations lower compared with reference values. In patients with OI type I, no pulmonary or cardiac abnormalities at rest were found. The exercise tolerance and muscle strength were significantly reduced in patients with OI, which might account for their increased levels of fatigue during activities of daily living.

  1. Metabolic phenotype in the mouse model of osteogenesis imperfecta.

    PubMed

    Boraschi-Diaz, Iris; Tauer, Josephine T; El-Rifai, Omar; Guillemette, Delphine; Lefebvre, Geneviève; Rauch, Frank; Ferron, Mathieu; Komarova, Svetlana V

    2017-09-01

    Osteogenesis imperfecta (OI) is the most common heritable bone fragility disorder, usually caused by dominant mutations in genes coding for collagen type I alpha chains, COL1A1 or COL1A2 Osteocalcin (OCN) is now recognized as a bone-derived regulator of insulin secretion and sensitivity and glucose homeostasis. Since OI is associated with increased rates of bone formation and resorption, we hypothesized that the levels of undercarboxylated OCN are increased in OI. The objective of this study was to determine changes in OCN and to elucidate the metabolic phenotype in the Col1a1 Jrt/+ mouse, a model of dominant OI caused by a Col1a1 mutation. Circulating levels of undercarboxylated OCN were higher in 4-week-old OI mice and normal by 8 weeks of age. Young OI animals exhibited a sex-dependent metabolic phenotype, including increased insulin levels in males, improved glucose tolerance in females, lower levels of random glucose and low adiposity in both sexes. The rates of O 2 consumption and CO 2 production, as well as energy expenditure assessed using indirect calorimetry were significantly increased in OI animals of both sexes, whereas respiratory exchange ratio was significantly higher in OI males only. Although OI mice have significant physical impairment that may contribute to metabolic differences, we specifically accounted for movement and compared OI and WT animals during the periods of similar activity levels. Taken together, our data strongly suggest that OI animals have alterations in whole body energy metabolism that are consistent with the action of undercarboxylated osteocalcin. © 2017 Society for Endocrinology.

  2. Pain and quality of life of children and adolescents with osteogenesis imperfecta over a bisphosphonate treatment cycle.

    PubMed

    Tsimicalis, Argerie; Boitor, Madalina; Ferland, Catherine E; Rauch, Frank; Le May, Sylvie; Carrier, Jaimie Isabel; Ngheim, Tracy; Bilodeau, Claudette

    2018-06-01

    The objective was to describe the pain and quality of life among children and adolescents with any osteogenesis imperfecta (OI) type over one intravenous bisphosphonate treatment cycle from a child and parental perspective. A prospective, observational study was conducted, where children and adolescents evaluated their pain intensity, location, and quality, as well as quality of life before, 1 week after treatment, and 6 months later. Quality of life was also evaluated from the parental perspective at the same three time points. Thirty-three child/parent dyads participated. The results showed that pain intensity on the 0-10 self-report scale after the Zoledronate infusion (median = 0, range = 0-6) was not different from pre (median = 2, range = 0-10) and 6-months post-scores (median = 2, range = 0-8) (p = 0.170). Children and adolescents with OI reported experiencing pain mainly in the ankles and the anterior and posterior shoulders. They selected evaluative pain descriptors such as uncomfortable (n = 16, 48%) and annoying (n = 13, 39%). Children and adolescents' functioning and quality of life did not change significantly across the bisphosphonate treatment cycle (p = 0.326), parents perceived an improvement immediately after the treatment compared to before (p = 0.016). Children and adolescents with OI experience mild, yet complex pain localized across several body areas. There is little fluctuation in the pain intensity and functioning of children with OI undergoing bisphosphonate treatment. What is Known: • Acute and chronic musculoskeletal pain remains a major issue in OI. • Pain has a negative impact on quality of life. What is New: • New and unpublished methods and findings describing the pain and quality of life of children and adolescents with OI over one intravenous bisphosphonate treatment cycle from a child- and parental-proxy perspective. • Children and adolescents with OI experience pain intensity that is mild, yet

  3. Premature chain termination is a unifying mechanism for COL1A1 null alleles in osteogenesis imperfecta type I cell strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willing, M.C.; Deschenes, S.P.; Roberts, E.J.

    Nonsense and frameshift mutations, which predict premature termination of translation, often cause a dramatic reduction in the amount of transcript from the mutant allele (nonsense-mediated mRNA decay). In some genes, these mutations also influence RNA splicing and induce skipping of the exon that contains the nonsense codon. To begin to dissect how premature termination alters the metabolism of RNA from the COL1A1 gene, we studied nonsense and frameshift mutations distributed over exons 11-49 of the gene. These mutations were originally identified in 10 unrelated families with osteogenesis imperfecta (OI) type I. We observed marked reduction in steady-state amounts of mRNAmore » from the mutant allele in both total cellular and nuclear RNA extracts of cells from affected individuals, suggesting that nonsense-mediated decay of COL1A1 RNA is a nuclear phenomenon. Position of the mutation within the gene did not influence this observation. None of the mutations induced skipping of either the exon containing the mutation or, for the frameshifts, the downstream exons with the new termination sites. Our data suggest that nonsense and frameshift mutations throughout most of the COL1A1 gene result in a null allele, which is associated with the predictable mild clinical phenotype, OI type I. 42 refs., 6 figs., 1 tab.« less

  4. Surgical stabilisation of the lower limb in osteogenesis imperfecta using the Sheffield Telescopic Intramedullary Rod System.

    PubMed

    Wilkinson, J M; Scott, B W; Clarke, A M; Bell, M J

    1998-11-01

    The Sheffield Expanding Intramedullary Rod System was developed after experiencing problems with existing rod systems in the management of osteogenesis imperfecta. Between 1986 and 1996 we treated 74 bones in the lower limb in 28 children at a median follow-up of 5.25 years. We have reviewed 24 children with a total of 60 rods. Before surgery, all children had had multiple fractures of the lower limb. At review eight patients had experienced no further fractures, but three had suffered five or more subsequently. Before initial stabilisation, 15 children had never walked, and only three (13%) used walking as their main means of mobility. After surgery, half of those who showed motor arrest were able to walk (p = 0.016). The number of patients able to walk, with or without aids, increased to 17 (p = 0.0001). We have experienced no evidence of epiphyseal damage after the procedure, and complication rates requiring rod exchange have been low (7%).

  5. Novel compound heterozygous mutations in SERPINH1 cause rare autosomal recessive osteogenesis imperfecta type X.

    PubMed

    Song, Y; Zhao, D; Xu, X; Lv, F; Li, L; Jiang, Y; Wang, O; Xia, W; Xing, X; Li, M

    2018-03-09

    We identified novel compound heterozygous mutations in SERPINH1 in a Chinese boy suffering from recurrent fractures, femoral deformities, and growth retardation, which resulted in extremely rare autosomal recessive OI type X. Long-term treatment of BPs was effective in increasing BMD Z-score, reducing fracture incidence and reshaping vertebrae compression. Osteogenesis imperfecta (OI) is a heritable bone disorder characterized by low bone mineral density, recurrent fractures, and progressive bone deformities. Mutation in serpin peptidase inhibitor clade H, member 1 (SERPINH1), which encodes heat shock protein 47 (HSP47), leads to rare autosomal recessive OI type X. We aimed to detect the phenotype and the pathogenic mutation of OI type X in a boy from a non-consanguineous Chinese family. We investigated the pathogenic mutations and analyzed their relationship with the phenotype in the patient using next-generation sequencing (NGS) and Sanger sequencing. Moreover, the efficacy of long-term bisphosphonate treatment in this patient was evaluated. The patient suffered from multiple fractures, low bone mass, and bone deformities in the femur, without dentinogenesis imperfecta or hearing loss. Compound heterozygous variants were found in SERPINH1 as follows: c.149 T>G in exon 2 and c.1214G>A in exon 5. His parents were heterozygous carriers of each of these mutations, respectively. Bisphosphonates could be helpful in increasing BMD Z-score, reducing bone fracture risk and reshaping the compressed vertebral bodies of this patient. We reported novel compound heterozygous mutations in SERPINH1 in a Chinese OI patient for the first time, which expanded the spectrum of phenotype and genotype of extremely rare OI type X.

  6. [Role of an interdisciplinary approach in the healing of long bone fractures in patients with osteogenesis imperfecta].

    PubMed

    Kokavec, M; Novorolský, K; Pribilincová, Z

    2008-06-01

    The aim of the study was to analyze a group of patients who had undergone multilevel osteotomy of long bones and medication therapy for osteogenesis imperfecta (OI). The group included 14 OI patients (nine girls and five boys) operated on in the years 1996 to 2006, who ranged in age from 3 to 17 years (average, 8.2 years). Due to residual deformation following a fracture of or because of treatment for acute trauma to long bones of the lower extremities, the patients underwent multilevel osteotomy with the use of osteosynthesis (Prevot's rod, six patients; Kirschner's wire, three patients; Küntcher's nail, three patients; Rush's nail, one patient; condylar plate, one patient). A special working and rehabilitation program played an important role in the therapeutic protocol. Four patients treated after 2003 received Pamidronate. Sufficient correction of axil deformity of the legs and equal leg length resulting in gait improvement were achieved in 11 patients. In one patient, osteosynthesis with a condylar plate failed and it was necessary to apply intramedullary elastic fixation. In one patient, tibia vara developed following Küntcher's nail osteosynthesis. In one patient, disunion of bone from osteosynthetic material, with a subsequent supracondylar fracture under the Küntcher's nail, was recorded. Pamidronate administered in pre- and post-operative periods to the four patients treated after 2003 reduced the need for their immobilization from 6 to 3 weeks, which permitted early rehabilitation and, in one patient, first standing and walking at the age of 12 years. The treatment of long bone fractures in OI patients is based on the assumptions that bone healing is not affected and that long immobilization leads to deterioration of osteopenia and to a risk of further fractures. For these reasons, surgical procedures using intramedullary fixation have recently been preferred. Pamidronate administration alleviates pain, improves muscle tonus, reduces the period of

  7. Correction of malocclusion and oral rehabilitation in a case of amelogenesis imperfecta by insertion of dental implants followed by Le Fort I distraction osteogenesis of the edentulous atrophic maxilla.

    PubMed

    Apaydin, Aysegul; Sermet, Bulent; Ureturk, Sevin; Kundakcioglu, Abdulsamet

    2014-09-17

    Amelogenesis imperfecta refers a group of hereditary diseases affecting the teeth and can present a variety of clinical forms and appearances, compromising esthetic appearance. Amelogenesis imperfecta variably reduces oral health quality and can result in severe psychological problems. We present the management of an amelogenesis imperfecta Angle class III malocclusion case with speech, esthetics and functional problems. This is an example of the rarely presented delayed eruption with multiple morphologic dental alterations and edentulous maxilla.There are only a few available reports in which this method is used method to correct sagittal discrepancies in edentulous patients.Our treatment plan consisted of a preoperative diagnostic and prosthodontics phase (including preparation of guiding prosthesis), followed by a surgical phase of Le Fort I osteotomy, distraction osteogenesis to correct the malocclusion, implant insertion and a follow up final restorative phase. Our treatment strategy attempts to serve patient needs, achieving function and esthetics while also minimizing the risk of reconstruction failure. Treatment not only restored function and esthetics, but also showed a positive psychological impact and thereby improved perceived quality of life.

  8. Quantitative changes in human epithelial cancers and osteogenesis imperfecta disease detected using nonlinear multicontrast microscopy

    NASA Astrophysics Data System (ADS)

    Adur, Javier; Pelegati, Vitor B.; de Thomaz, Andre A.; D'Souza-Li, Lilia; Assunção, Maria do Carmo; Bottcher-Luiz, Fátima; Andrade, Liliana A. L. A.; Cesar, Carlos L.

    2012-08-01

    We show that combined multimodal nonlinear optical (NLO) microscopies, including two-photon excitation fluorescence, second-harmonic generation (SHG), third harmonic generation, and fluorescence lifetime imaging microscopy (FLIM) can be used to detect morphological and metabolic changes associated with stroma and epithelial transformation during the progression of cancer and osteogenesis imperfecta (OI) disease. NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for different types of human breast cancer, mucinous ovarian tumors, and skin dermis of patients with OI. Using a set of scoring methods (anisotropy, correlation, uniformity, entropy, and lifetime components), we found significant differences in the content, distribution and organization of collagen fibrils in the stroma of breast and ovary as well as in the dermis of skin. We suggest that our results provide a framework for using NLO techniques as a clinical diagnostic tool for human cancer and OI. We further suggest that the SHG and FLIM metrics described could be applied to other connective or epithelial tissue disorders that are characterized by abnormal cells proliferation and collagen assembly.

  9. Gait Deviations in Children With Osteogenesis Imperfecta Type I.

    PubMed

    Garman, Christina R; Graf, Adam; Krzak, Joseph; Caudill, Angela; Smith, Peter; Harris, Gerald

    2017-08-02

    Osteogenesis imperfecta (OI) is a congenital connective tissue disorder often characterized by orthopaedic complications that impact normal gait. As such, mobility is of particular interest in the OI population as it is associated with multiple aspects of participation and quality of life. The purpose of the current study was to identify and describe common gait deviations in a large sample of individuals with type I OI and speculate the etiology with a goal of improving function. Gait analysis was performed on 44 subjects with type I (11.7±3.08 y old) and 30 typically developing controls (9.54±3.1 y old ). Spatial temporal, kinematic, and kinetic gait data were calculated from the Vicon Plug-in-Gait Model. Musculoskeletal modeling of the muscle tendon lengths (MTL) was done in OpenSim 3.3 to evaluate the MTL of the gastrocnemius and gluteus maximus. The gait deviation index, a dimensionless parameter that evaluates the deviation of 9 kinematic gait parameters from a control database, was also calculated. Walking speed, single support time, stride, and step length were lower and double support time was higher in the OI group. The gait deviation index score was lower and external hip rotation angle was higher in the OI group. Peak hip flexor, knee extensor and ankle plantarflexor moments, and power generation at the ankle were lower in the OI group. MTL analysis revealed no significant length discrepancies between the OI group and the typically developing group. Together, these findings provide a comprehensive description of gait characteristics among a group of individuals with type I OI. Such data inform clinicians about specific gait deviations in this population allowing clinicians to recommend more focused interventions. Level III-case-control study.

  10. Temperament and physical performance in children with osteogenesis imperfecta.

    PubMed

    Suskauer, Stacy J; Cintas, Holly L; Marini, Joan C; Gerber, Lynn H

    2003-02-01

    Children with osteogenesis imperfecta (OI) must participate in therapy to achieve motor performance objectives. Their behavioral style may influence motor performance. For this reason, the temperament of children with types III or IV OI was assessed prospectively to 1) compare their temperament with that of nondisabled children, 2) investigate the relationship between temperament and gross motor performance, and 3) examine relationships among temperament, parental overprotection and coping, physical activity, muscle strength, and motor performance. Age-appropriate Carey Temperament Scales, Brief Assessment of Motor Function (BAMF), and the Vulnerable Child/Overprotecting Parents Scale were completed for 35 children 1 to 12 years old. Additional measures included the Childhood Health Assessment Questionnaire, Parent Daily Hassles Scale, manual muscle testing, Pediatric Activity Record, and a Summed Severity Score. Spearman correlations and multiple regression were used to identify and predict significant relationships. Temperament of children with OI differed from age-based norms in only 1 domain: activity. Motor performance (BAMF) correlated significantly with 3 domains of temperament: persistence (r = -.48), approach (r = -.34), and activity (r =.40). Activity was also related to the ratio of head circumference to body length (r = -.45) and the number of fractures in the preceding year (r = -.35). Parents' reports of their daily hassles significantly correlated with several domains of the child's temperament. No significant relationships were identified between parental overprotection and temperament or motor performance. The temperament of children with types III and IV OI does not differ from that of their nondisabled peers, with the exception of lower activity scores. Although it is considered a biological attribute, the expression of temperament, specifically activity, may be influenced by learned behaviors. Because gross motor performance is related to

  11. Bone mineral density in developing children with osteogenesis imperfecta

    PubMed Central

    Sakkers, Ralph J B; Pruijs, Hans E H; Joosse, Pieter; Castelein, René M

    2013-01-01

    Background and purpose — Osteogenesis imperfecta (OI) is a heritable disorder of connective tissue caused by a defect in collagen type I synthesis. For bone, this includes fragility, low bone mass, and progressive skeletal deformities, which can result in various degrees of short stature. The purpose of this study was to investigate development of bone mineral density in children with OI. Patients and methods — Development of lumbar bone mineral density was studied retrospectively in a cohort of 74 children with OI. Mean age was 16.3 years (SD 4.3). In 52 children, repeated measurements were available. Mean age at the start of measurement was 8.8 years (SD 4.1), and mean follow-up was 9 years (SD 2.7). A longitudinal data analysis was performed. In the total cohort (74 children), a cross-sectional analysis was performed with the latest-measured BMD. Age at the latest BMD measurement was almost equal for girls and boys: 17.4 and 17.7 years respectively. Result — Mean annual increase in BMD in the 52 children was 0.038 g/cm2/year (SD 0.024). Annual increase in BMD was statistically significantly higher in girls, in both the unadjusted and adjusted analysis. In cross-sectional analysis, in the whole cohort the latest-measured lumbar BMD was significantly higher in girls, in the children with OI of type I, in walkers, and in those who were older, in both unadjusted and adjusted analysis. Interpretation — During 9 years of follow-up, there appeared to be an increase in bone mineral density, which was most pronounced in girls. One possible explanation might be a later growth spurt and older age at peak bone mass in boys. PMID:23992144

  12. Osteogenesis imperfecta in childhood: impairment and disability--a follow-up study.

    PubMed

    Engelbert, R H; Beemer, F A; van der Graaf, Y; Helders, P J

    1999-08-01

    To evaluate differences over time (mean follow-up, 14 months) on impairment parameters (range of joint motion and muscle strength), functional limitation parameters (functional ability), and disability parameters (caregiver assistance in achieving functional skills) in osteogenesis imperfecta (OI), related to the different types of the disease. A prospective, descriptive study. Fifty-four children with OI and their parents participated at the start of the study. At the end, 44 children participated in the assessment of functional skills and 42 of them participated in clinical assessment (OI type I, n = 19; OI type III, n = 13; OI type IV, n = 10). Range of joint motion was measured by means of goniometry. Generalized hypermobility was scored according to Bulbena. Manual muscle strength was scored by means of the MRC grading system. The level of ambulation was scored according to Bleck, and functional skills and caregiver assistance were scored with the Pediatric Evaluation of Disability Inventory. The different types of OI have impact on impairment, functional limitation, and disability. Almost all impairment parameters did not change significantly over time, whereas some disability parameters seemed to improve significantly. Impairment parameters in OI are presumably not always preconditions for functional limitation and disability. A 1-year follow-up revealed no significant changes in impairment parameters, whereas some disability parameters improved. Treatment strategies in OI should, therefore, focus primarily on improving functional ability, with respect to the natural course of the disease, and not only on impairment parameters.

  13. Severe Osteogenesis Imperfecta in Cyclophilin B–Deficient Mice

    PubMed Central

    Choi, Jae Won; Sutor, Shari L.; Lindquist, Lonn; Evans, Glenda L.; Madden, Benjamin J.; Bergen, H. Robert; Hefferan, Theresa E.; Yaszemski, Michael J.; Bram, Richard J.

    2009-01-01

    Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB–deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB–deficient cells and tissues from CypB–knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone. PMID:19997487

  14. Severe osteogenesis imperfecta in cyclophilin B-deficient mice.

    PubMed

    Choi, Jae Won; Sutor, Shari L; Lindquist, Lonn; Evans, Glenda L; Madden, Benjamin J; Bergen, H Robert; Hefferan, Theresa E; Yaszemski, Michael J; Bram, Richard J

    2009-12-01

    Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB-deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB-deficient cells and tissues from CypB-knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.

  15. Osteogenesis imperfecta type V: Genetic and clinical findings in eleven Chinese patients.

    PubMed

    Liu, Yi; Wang, Jiawei; Ma, Doudou; Lv, Fang; Xu, Xiaojie; Xia, Weibo; Jiang, Yan; Wang, Ou; Xing, Xiaoping; Zhou, Peiran; Wang, Jianyi; Yu, Wei; Li, Mei

    2016-11-01

    Osteogenesis imperfecta (OI) type V is a rare inherited disease characterized by multiple fractures, intraosseous membrane calcification, and hypercallus formation. We investigate the causative gene, phenotype and also observe the effects of zoledronic acid in Chinese OI type V patients. The clinical phenotype and causative gene mutation was investigated in eleven patients with type V OI. Patients were given a dose of zoledronic acid 5mg intravenously. Fracture incidence and Z-score of bone mineral density (BMD) were evaluated. Serum levels of biomarkers such as cross linked C-telopeptide of type I collagen (β-CTX) and safety parameters were assessed. The c.-14C>T mutation in the 5' untranslated region of IFITM5 was detected in all patients. The phenotype was largely variable, and no significant correlation of genotype and phenotype was found. After one dose of zoledronic acid infusion, fracture incidence significantly dropped from 2fractures/year before treatment to 0fracture/year after treatment (P=0.01). Z score of lumbar spine BMD elevated from -2.6 to -1.3 (P<0.001). Serum β-CTX level decreased by 50% (P<0.05). No serious adverse event was found. No obvious correlation was found between the genotype and phenotype. Zoledronic acid had significantly skeletal protective effects in OI of type V. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Rehabilitation of children and infants with osteogenesis imperfecta. A program for ambulation.

    PubMed

    Gerber, L H; Binder, H; Weintrob, J; Grange, D K; Shapiro, J; Fromherz, W; Berry, R; Conway, A; Nason, S; Marini, J

    1990-02-01

    Management of children and infants with osteogenesis imperfecta (OI) poses difficult decisions for pediatricians, orthopedists, and physiatrists. These children are frequently frail with disabling bone and joint deformities and fractures. In an eight-year cumulative management of 12 children with OI, a comprehensive program included strengthening exercises to the pelvic girdle and lower extremity muscles, in addition to pool exercises and molded seating to support upright posture. Long leg braces were fitted when the children were able to sit unsupported. All 12 were fitted with braces; nine were functional ambulators, and three were home ambulators. Six children required femoral plating or rodding, two of whom subsequently had the metal removed. Lower extremity fractures averaged one and one-half per year prior to bracing for nine children who had fractures. There was 0.83 fracture per year for the ten children who had fractures after bracing. The degree of femoral bowing increased in four, decreased in four, and remained unchanged in four, while the degree of tibial bowing increased in two, decreased in nine, and remained unchanged in one during the observation period. A comprehensive rehabilitation program and long leg bracing with surgical operations on the femur result in a high level of functional activity for children with OI with an acceptable level of risk for fracture.

  17. In vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta.

    PubMed

    Kobayashi, Akira; Higashide, Tomomi; Yokogawa, Hideaki; Yamazaki, Natsuko; Masaki, Toshinori; Sugiyama, Kazuhisa

    2014-01-01

    To report the in vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta (OI) with special attention to the abnormality of Bowman's layer and sub-Bowman's fibrous structures (K-structures). Two patients (67-year-old male and his 26-year-old son) with OI type I were included in this study. Slit lamp biomicroscopic and in vivo laser confocal microscopic examinations were performed for both patients. Central corneal thickness and central endothelial cell density were also measured. Although the corneas looked clear with normal endothelial density for both eyes in both patients, they were quite thin (386 μm oculus dexter (OD) (the right eye) and 384 μm oculus sinister (OS) (the left eye) in the father and 430 μm OD and 425 μm OS in the son). In both patients, slit lamp biomicroscopic and in vivo laser confocal microscopic examination showed similar results. Anterior corneal mosaics produced by rubbing the eyelid under fluorescein were completely absent in both eyes. In vivo laser confocal microscopy revealed an absent or atrophic Bowman's layer; a trace of a presumed Bowman's layer and/or basement membrane was barely visible with high intensity. Additionally, K-structures were completely absent in both eyes. The absence of K-structures and fluorescein anterior corneal mosaics strongly suggested an abnormality of Bowman's layer in these OI patients.

  18. Quantitative second-harmonic generation imaging to detect osteogenesis imperfecta in human skin samples

    NASA Astrophysics Data System (ADS)

    Adur, J.; Ferreira, A. E.; D'Souza-Li, L.; Pelegati, V. B.; de Thomaz, A. A.; Almeida, D. B.; Baratti, M. O.; Carvalho, H. F.; Cesar, C. L.

    2012-03-01

    Osteogenesis Imperfecta (OI) is a genetic disorder that leads to bone fractures due to mutations in the Col1A1 or Col1A2 genes that affect the primary structure of the collagen I chain with the ultimate outcome in collagen I fibrils that are either reduced in quantity or abnormally organized in the whole body. A quick test screening of the patients would largely reduce the sample number to be studied by the time consuming molecular genetics techniques. For this reason an assessment of the human skin collagen structure by Second Harmonic Generation (SHG) can be used as a screening technique to speed up the correlation of genetics/phenotype/OI types understanding. In the present work we have used quantitative second harmonic generation (SHG) imaging microscopy to investigate the collagen matrix organization of the OI human skin samples comparing with normal control patients. By comparing fibril collagen distribution and spatial organization, we calculated the anisotropy and texture patterns of this structural protein. The analysis of the anisotropy was performed by means of the two-dimensional Discrete Fourier Transform and image pattern analysis with Gray-Level Co-occurrence Matrix (GLCM). From these results, we show that statistically different results are obtained for the normal and disease states of OI.

  19. Local transplantation is an effective method for cell delivery in the osteogenesis imperfecta murine model.

    PubMed

    Pauley, Penelope; Matthews, Brya G; Wang, Liping; Dyment, Nathaniel A; Matic, Igor; Rowe, David W; Kalajzic, Ivo

    2014-09-01

    Osteogenesis imperfecta is a serious genetic disorder that results from improper type I collagen production. We aimed to evaluate whether bone marrow stromal cells (BMSC) delivered locally into femurs were able to engraft, differentiate into osteoblasts, and contribute to formation of normal bone matrix in the osteogenesis imperfect murine (oim) model. Donor BMSCs from bone-specific reporter mice (Col2.3GFP) were expanded in vitro and transplanted into the femoral intramedullary cavity of oim mice. Engraftment was evaluated after four weeks. We detected differentiation of donor BMSCs into Col2.3GFP+ osteoblasts and osteocytes in cortical and trabecular bone of transplanted oim femurs. New bone formation was detected by deposition of dynamic label in the proximity to the Col2.3GFP+ osteoblasts, and new bone showed more organized collagen structure and expression of type I α2 collagen. Col2.3GFP cells were not found in the contralateral femur indicating that transplanted osteogenic cells did not disseminate by circulation. No osteogenic engraftment was observed following intravenous transplantation of BMSCs. BMSC cultures derived from transplanted femurs showed numerous Col2.3GFP+ colonies, indicating the presence of donor progenitor cells. Secondary transplantation of cells recovered from recipient femurs and expanded in vitro also showed Col2.3GFP+ osteoblasts and osteocytes confirming the persistence of donor stem/progenitor cells. We show that BMSCs delivered locally in oim femurs are able to engraft, differentiate into osteoblasts and osteocytes and maintain their progenitor potential in vivo. This suggests that local delivery is a promising approach for introduction of autologous MSC in which mutations have been corrected.

  20. Popcorn calcification in osteogenesis imperfecta: incidence, progression, and molecular correlation.

    PubMed

    Obafemi, Abimbola A; Bulas, Dorothy I; Troendle, James; Marini, Joan C

    2008-11-01

    Osteogenesis imperfecta (OI) is a heritable disorder characterized by osteoporosis and increased susceptibility to fracture. All children with severe OI have extreme short stature and some have "popcorn" calcifications, areas of disorganized hyperdense lines in the metaphysis and epiphysis around the growth plate on lower limb radiographs. Popcorn calcifications were noted on radiographs of two children with non-lethal type VIII OI, a recessive form caused by P3H1 deficiency. To determine the incidence, progression, and molecular correlations of popcorn calcifications, we retrospectively examined serial lower limb radiographs of 45 children with type III or IV OI and known dominant mutations in type I collagen. Popcorn calcifications were present in 13 of 25 type III (52%), but only 2 of 20 type IV (10%), OI children. The mean age of onset was 7.0 years, with a range of 4-14 years. All children with popcorn calcifications had this finding in their distal femora, and most also had calcifications in proximal tibiae. While unilateral popcorn calcification contributes to femoral growth deficiency and leg length discrepancy, severe linear growth deficiency, and metaphyseal flare do not differ significantly between type III OI patients with and without popcorn calcifications. The type I collagen mutations associated with popcorn calcifications occur equally in both COL1A1 and COL1A2, and have no preferential location along the chains. These data demonstrate that popcorn calcifications are a frequent feature of severe OI, but do not distinguish cases with defects in collagen structure (primarily dominant type III OI) or modification (recessive type VIII OI). Copyright 2008 Wiley-Liss, Inc.

  1. Static Postural Control in Youth With Osteogenesis Imperfecta Type I.

    PubMed

    Pouliot-Laforte, Annie; Lemay, Martin; Rauch, Frank; Veilleux, Louis-Nicolas

    2017-10-01

    To assess static postural control in eyes-open and eyes-closed conditions in individuals with osteogenesis imperfecta (OI) type I as compared with typically developing (TD) individuals and to explore the relation between postural control and lower limb muscle function. Cross-sectional study. Outpatient department of a pediatric orthopedic hospital. A convenience sample (N=38) of individuals with OI type I (n=22; mean age, 13.1y; range, 6-21y) and TD individuals (n=16; mean age, 13.1y; range, 6-20y) was selected. Participants were eligible if they were between 6 and 21 years and if they did not have any fracture or surgery in the lower limb in the 12 months before testing. Not applicable. Postural control was assessed through static balance tests and muscle function through mechanographic tests on a force platform. Selected postural parameters were path length, velocity, 90% confidence ellipse area, and the ellipse's length of the mediolateral and anteroposterior axes. Mechanographic parameters were peak force and peak power as measured using the multiple two-legged hopping and the single two-legged jump test, respectively. Individuals with OI type I had poorer postural control than did TD individuals as indicated by longer and faster displacements and a larger ellipse area. Muscle function was unrelated to postural control in the OI group. Removing visual information resulted in a larger increase in postural control parameters in the OI group than in the TD group. A proprioceptive deficit could explain poorer postural control in individuals with OI type I. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. Efficacy of teriparatide vs neridronate in adults with osteogenesis imperfecta type I: a prospective randomized international clinical study

    PubMed Central

    Leali, Paolo Tranquilli; Balsano, Massimo; Maestretti, Gianluca; Brusoni, Matteo; Amorese, Veronica; Ciurlia, Emanuele; Andreozzi, Matteo; Caggiari, Gianfilippo; Doria, Carlo

    2017-01-01

    Summary Osteogenesis imperfecta (OI) is an hereditary disease characterized by low bone mass, increased bone fragility, short stature, and skeletal deformities, few treatment options are currently available. Neridronate is an amino-bisphosphonate, licensed in Italy for the treatment of OI and Paget’s disease of bone. A characteristic property of neridronate is that it can be administered both intravenously and intramuscularly, providing an useful system for administration in homecare. Neridronate appears to increase Bone Mineral Density (BMD) in adults with OI and reduces bone resorption by inhibition of osteoclastic activity. Teriparatide (recombinant 1–34 N terminal sequence of human parathyroid hormone) is the first anabolic agent approved for the treatment of patients with osteoporosis and has been reported to increase bone formation by stimulating osteoblast differentiation, osteoblast function, and survival. The results of this study showed a promising role of teriparatide in the therapy of OI type I. PMID:29263724

  3. Targeted exome sequencing identifies novel compound heterozygous mutations in P3H1 in a fetus with osteogenesis imperfecta type VIII.

    PubMed

    Huang, Yanru; Mei, Libin; Lv, Weigang; Li, Haoxian; Zhang, Rui; Pan, Qian; Tan, Hu; Guo, Jing; Luo, Xiaomei; Chen, Chen; Liang, Desheng; Wu, Lingqian

    2017-01-01

    Osteogenesis imperfecta (OI) is a highly clinically and genetically heterogeneous group of disorders. It is difficult to identify severe OI in the perinatal period. Here, a Chinese woman with a suspected history of fetal OI was referred to our institution at 19weeks of gestation, due to ultrasound inspection during antenatal screening, which revealed bulbous metaphyses, short humeri, and short thick bent femora in the fetus. Using targeted exome sequencing of 248 genes known to be involved in skeletal system diseases, we identified novel compound heterozygous mutation in the P3H1 gene in the fetus with OI type VIII: c.105_120del (p.D36Rfs*16) and c.2164C>T (p.Q722*). These two mutations were inherited from the father and mother, respectively. The mRNA level of P3H1 wasn't changed suggested that mRNA with this mutation escaped from nonsense-mediated RNA decay. Besides, the level of P3H1 was absence while the CRTAP was mildly decreased. In conclusion, our findings imply this novel compound heterozygous mutation as the molecular pathogenetic in a Chinese fetus with OI type VIII, and demonstrate that targeted next-generation sequencing (NGS) is an accurate, rapid, and cost-effective method in the genetic diagnosis of fetal skeletal dysplasia with genetic and clinical heterogeneity, especially for autosomal recessive skeletal disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Correlation of Bone Mineral Density on Quality of Life in Patients with Osteogenesis Imperfecta during Treatment with Denosumab.

    PubMed

    Hoyer-Kuhn, Heike; Stark, Christina; Franklin, Jeremy; Schoenau, Eckhard; Semler, Oliver

    2017-11-01

    Osteogenesis imperfecta (OI) is a rare hereditary skeletal disease leading to recurrent fractures, short stature and impaired mobility. The phenotype varies from mildly affected patients to perinatal lethal forms. In most cases an impaired collagen production due to mutations in COL1A1 or COL1A2 cause this hereditary bone fragility syndrome with an autosomal dominant inheritance. Currently an interdisciplinary therapeutic approach with antiresorptive drugs, physiotherapy and surgical procedures is the state of the art therapy. The effect of such a therapy is evaluated by measuring different surrogate parameters like areal bone mineral density or by using different mobility tests or questionnaires. Up till now the impact of these parameters on quality of life of the patients is not evaluated. Currently pharmacological strategies are based on antiresorptive treatment with bisphosphonates. In this trial we investigated the effect of an antiresorptive therapy with the monoclonal antibody denosumab decreasing the activity of osteoclasts. Denosumab was administered subcutaneously in a dose of 1mg/kg body weight in 10 children with OI (5-10 years of age) every 12 weeks for 48 weeks. Areal bone mineral density, mobility, pain scores and quality of life were measured. The results showed a good effect of the treatment on bone mineral density but this improvement showed no correlation to pain and quality of life. In conclusion further trials have to define parameters to assess interventions which influence activities of daily life of the patients. An interdisciplinary approach including physicians, basic researchers and patient organisation is needed to focus research on topics improving quality of life of patients with severe skeletal diseases. Copyright© of YS Medical Media ltd.

  5. Altered cytoskeletal organization characterized lethal but not surviving Brtl+/− mice: insight on phenotypic variability in osteogenesis imperfecta

    PubMed Central

    Bianchi, Laura; Gagliardi, Assunta; Maruelli, Silvia; Besio, Roberta; Landi, Claudia; Gioia, Roberta; Kozloff, Kenneth M.; Khoury, Basma M.; Coucke, Paul J.; Symoens, Sofie; Marini, Joan C.; Rossi, Antonio; Bini, Luca; Forlino, Antonella

    2015-01-01

    Osteogenesis imperfecta (OI) is a heritable bone disease with dominant and recessive transmission. It is characterized by a wide spectrum of clinical outcomes ranging from very mild to lethal in the perinatal period. The intra- and inter-familiar OI phenotypic variability in the presence of an identical molecular defect is still puzzling to the research field. We used the OI murine model Brtl+/− to investigate the molecular basis of OI phenotypic variability. Brtl+/− resembles classical dominant OI and shows either a moderately severe or a lethal outcome associated with the same Gly349Cys substitution in the α1 chain of type I collagen. A systems biology approach was used. We took advantage of proteomic pathway analysis to functionally link proteins differentially expressed in bone and skin of Brtl+/− mice with different outcomes to define possible phenotype modulators. The skin/bone and bone/skin hybrid networks highlighted three focal proteins: vimentin, stathmin and cofilin-1, belonging to or involved in cytoskeletal organization. Abnormal cytoskeleton was indeed demonstrated by immunohistochemistry to occur only in tissues from Brtl+/− lethal mice. The aberrant cytoskeleton affected osteoblast proliferation, collagen deposition, integrin and TGF-β signaling with impairment of bone structural properties. Finally, aberrant cytoskeletal assembly was detected in fibroblasts obtained from lethal, but not from non-lethal, OI patients carrying an identical glycine substitution. Our data demonstrated that compromised cytoskeletal assembly impaired both cell signaling and cellular trafficking in mutant lethal mice, altering bone properties. These results point to the cytoskeleton as a phenotypic modulator and potential novel target for OI treatment. PMID:26264579

  6. A method distinguishing expressed vs. null mutations of the Col1A1 gene in osteogenesis imperfecta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redford-Badwal, D.A.; Stover, M.L.; McKinstry, M.

    Osteogenesis imperfecta (OI) is a heterogeneous group of heritable disorders of bone characterized by increased susceptibility to fracture. Most of the causative mutations were identified in patients with the lethal form of the disease. Attention is now shifting to the milder forms of OI where glycine substitutions and null producing mutations have been found. Single amino acid substitutions can be identified by RT/PCR of total cellular RNA, but this approach does not work well for null mutations since the defective transcript does not accumulate in the cytoplasm. We have altered our RNA extraction method to separate RNA from the nuclearmore » and cytoplasmic compartments of cultured fibroblasts. Standard methods of mutation identification (RT/PCR followed by SSCP) is applied to each RNA fraction. DNA from an abnormal band on the SSCP gel is eluted and amplified by PCR for cloning and sequencing. Using this approach we have identified an Asp to Asn change in exon 50 (type II OI) and a Gly to Arg in exon 11 (type I OI) of the COL1A1 gene. These changes were found in both nuclear and cytoplasmic compartments. These putative mutations are currently being confirmed by protein studies. In contrast, three patients with mild OI associated with reduced {proportional_to}(I)mRNA, had distinguishing SSCP bands present in the nuclear but not the cytoplasmic compartment. In one case a frame shift mutation was observed, while the other two revealed polymorphisms. The compartmentalization of the mutant allele has directed us to look elsewhere in the transcript for the causative mutation. This approach to mutation identification is capable of distinguishing these fundamentally different types of mutations and allows for preferential cloning and sequencing of the abnormal allele.« less

  7. Bone structure assessed by HR-pQCT, TBS and DXL in adult patients with different types of osteogenesis imperfecta.

    PubMed

    Kocijan, R; Muschitz, C; Haschka, J; Hans, D; Nia, A; Geroldinger, A; Ardelt, M; Wakolbinger, R; Resch, H

    2015-10-01

    Bone microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT) was assessed in adult patients with mild, moderate, and severe osteogenesis imperfecta (OI). The trabecular bone score (TBS), bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA), and dual X-ray and laser (DXL) at the calcaneus were likewise assessed in patients with OI. Trabecular microstructure and BMD in particular were severely altered in patients with OI. OI is characterized by high fracture risk but not necessarily by low BMD. The main purpose of this study was to assess bone microarchitecture and BMD at different skeletal sites in different types of OI. HR-pQCT was performed in 30 patients with OI (mild OI-I, n = 18 (41.8 [34.7, 55.7] years) and moderate to severe OI-III-IV, n = 12 (47.6 [35.3, 58.4] years)) and 30 healthy age-matched controls. TBS, BMD by DXA at the lumbar spine and hip, as well as BMD by DXL at the calcaneus were likewise assessed in patients with OI only. At the radius, significantly lower trabecular parameters including BV/TV (p = 0.01 and p < 0.0001, respectively) and trabecular number (p < 0.0001 and p < 0.0001, respectively) as well as an increased inhomogeneity of the trabecular network (p < 0.0001 and p < 0.0001, respectively) were observed in OI-I and OI-III-IV in comparison to the control group. Similar results for trabecular parameters were found at the tibia. Microstructural parameters were worse in OI-III-IV than in OI-I. No significant differences were found in cortical thickness and cortical porosity between the three subgroups at the radius. The cortical thickness of the tibia was thinner in OI-I (p < 0.001), but not OI-III-IV, when compared to controls. Trabecular BMD and trabecular bone microstructure in particular are severely altered in patients with clinical OI-I and OI-III-IV. Low TBS and DXL and their significant associations to HR-pQCT parameters of trabecular bone support this conclusion.

  8. Enhanced Wnt signaling improves bone mass and strength, but not brittleness, in the Col1a1(+/mov13) mouse model of type I Osteogenesis Imperfecta.

    PubMed

    Jacobsen, Christina M; Schwartz, Marissa A; Roberts, Heather J; Lim, Kyung-Eun; Spevak, Lyudmila; Boskey, Adele L; Zurakowski, David; Robling, Alexander G; Warman, Matthew L

    2016-09-01

    Osteogenesis Imperfecta (OI) comprises a group of genetic skeletal fragility disorders. The mildest form of OI, Osteogenesis Imperfecta type I, is frequently caused by haploinsufficiency mutations in COL1A1, the gene encoding the α1(I) chain of type 1 collagen. Children with OI type I have a 95-fold higher fracture rate compared to unaffected children. Therapies for OI type I in the pediatric population are limited to anti-catabolic agents. In adults with osteoporosis, anabolic therapies that enhance Wnt signaling in bone improve bone mass, and ongoing clinical trials are determining if these therapies also reduce fracture risk. We performed a proof-of-principle experiment in mice to determine whether enhancing Wnt signaling in bone could benefit children with OI type I. We crossed a mouse model of OI type I (Col1a1(+/Mov13)) with a high bone mass (HBM) mouse (Lrp5(+/p.A214V)) that has increased bone strength from enhanced Wnt signaling. Offspring that inherited the OI and HBM alleles had higher bone mass and strength than mice that inherited the OI allele alone. However, OI+HBM and OI mice still had bones with lower ductility compared to wild-type mice. We conclude that enhancing Wnt signaling does not make OI bone normal, but does improve bone properties that could reduce fracture risk. Therefore, agents that enhance Wnt signaling are likely to benefit children and adults with OI type 1. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Prediction on fracture risk of femur with Osteogenesis Imperfecta using finite element models: Preliminary study

    NASA Astrophysics Data System (ADS)

    Wanna, S. B. C.; Basaruddin, K. S.; Mat Som, M. H.; Mohamad Hashim, M. S.; Daud, R.; Majid, M. S. Abdul; Sulaiman, A. R.

    2017-10-01

    Osteogenesis imperfecta (OI) is a genetic disease which affecting the bone geometry. In a severe case, this disease can cause death to patients. The main issue of this disease is the prediction on bone fracture by the orthopaedic surgeons. The resistance of the bone to withstand the force before the bones fracture often become the main concern. Therefore, the objective of the present preliminary study was to investigate the fracture risk associated with OI bone, particularly in femur, when subjected to the self-weight. Finite element (FEA) was employed to reconstruct the OI bone model and analyse the mechanical stress response of femur before it fractures. Ten deformed models with different severity of OI bones were developed and the force that represents patient self-weight was applied to the reconstructed models in static analysis. Stress and fracture risk were observed and analysed throughout the simulation. None of the deformed model were observed experienced fracture. The fracture risk increased with increased severity of the deformed bone. The results showed that all deformed femur models were able to bear the force without experienced fracture when subjected to only the self-weight.

  10. In vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta

    PubMed Central

    Kobayashi, Akira; Higashide, Tomomi; Yokogawa, Hideaki; Yamazaki, Natsuko; Masaki, Toshinori; Sugiyama, Kazuhisa

    2014-01-01

    Objective To report the in vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta (OI) with special attention to the abnormality of Bowman’s layer and sub-Bowman’s fibrous structures (K-structures). Patients and methods Two patients (67-year-old male and his 26-year-old son) with OI type I were included in this study. Slit lamp biomicroscopic and in vivo laser confocal microscopic examinations were performed for both patients. Central corneal thickness and central endothelial cell density were also measured. Results Although the corneas looked clear with normal endothelial density for both eyes in both patients, they were quite thin (386 μm oculus dexter (OD) (the right eye) and 384 μm oculus sinister (OS) (the left eye) in the father and 430 μm OD and 425 μm OS in the son). In both patients, slit lamp biomicroscopic and in vivo laser confocal microscopic examination showed similar results. Anterior corneal mosaics produced by rubbing the eyelid under fluorescein were completely absent in both eyes. In vivo laser confocal microscopy revealed an absent or atrophic Bowman’s layer; a trace of a presumed Bowman’s layer and/or basement membrane was barely visible with high intensity. Additionally, K-structures were completely absent in both eyes. Conclusion The absence of K-structures and fluorescein anterior corneal mosaics strongly suggested an abnormality of Bowman’s layer in these OI patients. PMID:24591812

  11. Structure–mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model

    PubMed Central

    Andriotis, O. G.; Chang, S. W.; Vanleene, M.; Howarth, P. H.; Davies, D. E.; Shefelbine, S. J.; Buehler, M. J.; Thurner, P. J.

    2015-01-01

    The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry. PMID:26468064

  12. Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model.

    PubMed

    Andriotis, O G; Chang, S W; Vanleene, M; Howarth, P H; Davies, D E; Shefelbine, S J; Buehler, M J; Thurner, P J

    2015-10-06

    The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry. © 2015 The Authors.

  13. An N-terminal glycine to cysteine mutation in the collagen COL1A1 gene produces moderately severe osteogenesis imperfecta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, W.; Scott, L.; Cohn, D.

    Osteogenesis imperfecta (OI) is usually due to mutations in the type I procollagen genes COL1A1 and COL1A2. Point mutations close to the N-terminus are generally milder than those near the C-terminus of the molecule (the gradient hypothesis of collagen mutations). We describe a patient with moderately severe OI due to a mutation in the N-terminal portion of the triple helical domain of the {alpha}1(I) chain. Electrophoretic analysis of collagen isolated from fibroblast cultures suggested the abnormal presence of a cysteine in the N-terminal portion of the {alpha}1(I) chain. Five overlapping DNA fragments amplified from fibroblast RNA were screened for mutationsmore » using single strand conformational polymorphism (SSCP) and heteroduplex analyses. Direct DNA sequence analysis of the single positive fragment demonstrated a G to T transversion, corresponding to a glycine to cysteine substitution at position 226 of the triple helical domain of the {alpha}1(I) chain. The mutation was confirmed by restriction enzyme analysis of amplified genomic DNA. The mutation was not present in fibroblasts from either phenotypically normal parent. Combining this mutation with other reported mutations, glycine to cysteine substitutions at positions 205, 211, 223, and 226 produce a moderately severe phenotype whereas flanking mutations at positions 175 and 382 produce a mild phenotype. This data supports a regional rather than a gradient model of the relationship between the nature and location of type I collagen mutations and OI phenotype.« less

  14. Efficacy and Safety of Bisphosphonate Therapy in Children with Osteogenesis Imperfecta: A Systematic Review.

    PubMed

    Rijks, Ester B G; Bongers, Bart C; Vlemmix, Marloes J G; Boot, Annemieke M; van Dijk, Atty T H; Sakkers, Ralph J B; van Brussel, Marco

    2015-01-01

    To systematically assess contemporary knowledge regarding the effectiveness and safety of bisphosphonates (BPs) in children with osteogenesis imperfecta (OI). PubMed/MEDLINE, Embase, and Cochrane were searched for eligible articles up to June 2014. Studies eligible for inclusion were (randomized) controlled trials assessing the effects of BPs in children with OI. Methodological quality was assessed independently by 4 reviewers using the Cochrane Collaboration's tool for risk of bias. Ten studies (519 children) were included. Four studies (40%) showed a low risk of bias. All studies investigating lumbar spine areal bone mineral density indicated a significant increase as a result of BP treatment. Most studies observed a significant decrease in fracture incidence. The most frequently reported adverse events were gastrointestinal complaints, fever, and muscle soreness. A significant decrease in (bone) pain due to BP treatment was observed in more than half of the studies. Most studies measuring urinary markers of bone resorption reported a significant decrease. The majority of studies with intravenous treatment showed a significant increase in lumbar projection area, whereas studies with oral treatment did not. Treatment with oral or intravenous BPs in children with OI results in an increase in bone mineral density and seems to be safe and well tolerated. © 2015 S. Karger AG, Basel.

  15. Pamidronate Affects the Mandibular Cortex of Children with Osteogenesis Imperfecta

    PubMed Central

    Apolinário, A.C.; Figueiredo, P.T.; Guimarães, A.T.; Acevedo, A.C.; Castro, L.C.; Paula, A.P.; Paula, L.M.; Melo, N.S.; Leite, A.F.

    2015-01-01

    We hypothesized that mandibular cortical width (MCW) is smaller in children with osteogenesis imperfecta (OI) than in healthy children and that pamidronate can improve the cortical mandibular thickness. The aim of this study was to assess changes in the MCW on dental panoramic radiographs (DPRs) of children with normal bone mineral density (BMD) and with OI. We also compared the MCW of children with different types of OI regarding the number of pamidronate cycles and age at the beginning of treatment. MCW measurements were retrospectively obtained from 197 DPRs of 66 children with OI types I, III, and IV who were in treatment with a comparable dosage of cyclical intravenous pamidronate between 2007 and 2013. The control group had 92 DPRs from normal BMD children. Factorial analysis of variance was used to compare MCW measurements among different age groups and between sexes and also to compare MCW measurements of children with different types of OI among different pamidronate cycles and age at the beginning of treatment. No significant differences in results were found between male and female subjects in both OI and healthy children, so they were evaluated altogether (P > 0.05). There was an increase of MCW values related to aging in all normal BMD and OI children but on a smaller scale in children with OI types I and III. Children with OI presented lower mean MCW values than did children with normal BMD at the beginning of treatment (P < 0.05). A linear model estimated the number of pamidronate cycles necessary to achieve mean MCW values equivalent to those of healthy children. The thinning of the mandibular cortex depended on the number of pamidronate cycles, the type of OI, and the age at the beginning of treatment. DPRs could thus provide a way to identify cyclic pamidronate treatment outcomes in patients with OI. PMID:25608973

  16. Genotype-phenotype analysis of a rare type of osteogenesis imperfecta in four Chinese families with WNT1 mutations.

    PubMed

    Liu, Yi; Song, Lijie; Ma, Doudou; Lv, Fang; Xu, Xiaojie; Wang, Jianyi; Xia, Weibo; Jiang, Yan; Wang, Ou; Song, Yuwen; Xing, Xiaoping; Asan; Li, Mei

    2016-10-01

    Osteogenesis imperfecta (OI) is a rare inherited disease characterized by increased bone fragility and vulnerability to fractures. Recently, WNT1 is identified as a new candidate gene for OI, here we detect pathogenic mutations in WNT1 and analyze the genotype-phenotype association in four Chinese families with OI. We designed a targeted next generation sequencing panel with known fourteen OI-related genes. We applied the approach to detect pathogenic mutations in OI patients and confirmed the mutations with Sanger sequencing and cosegregation analysis. Clinical fractures, bone mineral density (BMD) and the other clinical manifestations were evaluated. We also observed the effects of bisphosphonates in OI patients with WNT1 mutations. Four compound heterozygous mutations (c.110T>C; c.505 G>T; c. 385G>A; c.506 G>A) in WNT1 were detected in three unrelated families. These four mutations had not been reported yet. A recurrent homozygous mutation (c.506dupG) was identified in the other two families. These patients had moderate to severe OI, white to blue sclera, absence of dentinogenesis imperfecta and no brain malformation. We did not observe clear genotype-phenotype correlation in WNT1 mutated OI patients. Though bisphosphonates increased BMD in WNT1 related OI patients, height did not increase and fracture continued. We reported four novel heterozygous variants and confirmed a previous reported WNT1 mutation in four Chinese families with a clinical diagnosis of OI. Our study expanded OI spectrum and confirmed moderate to severe bone fragility induced by WNT1 defects. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The clinical application of single-sperm-based SNP haplotyping for PGD of osteogenesis imperfecta.

    PubMed

    Chen, Linjun; Diao, Zhenyu; Xu, Zhipeng; Zhou, Jianjun; Yan, Guijun; Sun, Haixiang

    2018-05-15

    Osteogenesis imperfecta (OI) is a genetically heterogeneous disorder, presenting either autosomal dominant, autosomal recessive or X-linked inheritance patterns. The majority of OI cases are autosomal dominant and are caused by heterozygous mutations in either the COL1A1 or COL1A2 gene. In these dominant disorders, allele dropout (ADO) can lead to misdiagnosis in preimplantation genetic diagnosis (PGD). Polymorphic markers linked to the mutated genes have been used to establish haplotypes for identifying ADO and ensuring the accuracy of PGD. However, the haplotype of male patients cannot be determined without data from affected relatives. Here, we developed a method for single-sperm-based single-nucleotide polymorphism (SNP) haplotyping via next-generation sequencing (NGS) for the PGD of OI. After NGS, 10 informative polymorphic SNP markers located upstream and downstream of the COL1A1 gene and its pathogenic mutation site were linked to individual alleles in a single sperm from an affected male. After haplotyping, a normal blastocyst was transferred to the uterus for a subsequent frozen embryo transfer cycle. The accuracy of PGD was confirmed by amniocentesis at 19 weeks of gestation. A healthy infant weighing 4,250 g was born via vaginal delivery at the 40th week of gestation. Single-sperm-based SNP haplotyping can be applied for PGD of any monogenic disorders or de novo mutations in males in whom the haplotype of paternal mutations cannot be determined due to a lack of affected relatives. ADO: allele dropout; DI: dentinogenesis imperfect; ESHRE: European Society of Human Reproduction and Embryology; FET: frozen embryo transfer; gDNA: genomic DNA; ICSI: intracytoplasmic sperm injection; IVF: in vitro fertilization; MDA: multiple displacement amplification; NGS: next-generation sequencing; OI: osteogenesis imperfect; PBS: phosphate buffer saline; PCR: polymerase chain reaction; PGD: preimplantation genetic diagnosis; SNP: single-nucleotide polymorphism; STR

  18. Multidisciplinary Treatment of Severe Osteogenesis Imperfecta: Functional Outcomes at Skeletal Maturity.

    PubMed

    Montpetit, Kathleen; Palomo, Telma; Glorieux, Francis H; Fassier, François; Rauch, Frank

    2015-10-01

    To determine the functional outcomes associated with long-term multidisciplinary treatment, intravenous bisphosphonate treatment, orthopedic surgery, and rehabilitation in children with severe osteogenesis imperfecta (OI) (diagnosed clinically as OI types III or IV). Retrospective study where outcomes were measured prospectively. Pediatric orthopedic hospital. Adolescents (N=41; age range, 15-21y) with severe OI (OI type III: n=17; OI type IV: n=24) who had started therapy before the age of 6 years, had received treatment for at least 10 years, and had achieved final height. Intravenous bisphosphonate treatment, orthopedic surgery, and rehabilitation. Pediatric Evaluation of Disability Inventory. At the time of the last available follow-up examination, none of the individuals diagnosed with OI type III (most severely affected group) was able to ambulate without ambulation aids, whereas 20 (83%) patients with OI type IV were able to ambulate without ambulation aids. Regarding self-care, we specifically assessed 8 skills that we deemed essential for living independently (grooming; dressing; toileting; bed, chair, toilet, tub, and car transfers). Only 6 (35%) of the youths with OI type III were able to complete all 8 items, whereas 23 (96%) individuals with OI type IV managed to perform all tasks. Teens with OI type III often needed assistance for the transfer to toilet, tub, and car and for personal hygiene and clothing management associated with toileting, usually because of limitations in upper-extremity function. These observations suggest that further improvements in the functional status of the most severely affected children with OI are contingent on advances in the clinical management of upper-extremity issues. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Muscle anatomy and dynamic muscle function in osteogenesis imperfecta type I.

    PubMed

    Veilleux, Louis-Nicolas; Lemay, Martin; Pouliot-Laforte, Annie; Cheung, Moira S; Glorieux, Francis H; Rauch, Frank

    2014-02-01

    Results of previous studies suggested that children and adolescents with osteogenesis imperfecta (OI) type I have a muscle force deficit. However, muscle function has only been assessed by static isometric force tests and not in more natural conditions such as dynamic force and power tests. The purpose of this study was to assess lower extremity dynamic muscle function and muscle anatomy in OI type I. The study was performed in the outpatient department of a pediatric orthopedic hospital. A total of 54 individuals with OI type I (6-21 years; 20 male) and 54 age- and sex-matched controls took part in this study. Calf muscle cross-sectional area and density were measured by peripheral quantitative computed tomography. Lower extremity muscle function (peak force per body weight and peak power per body mass) was measured by jumping mechanography through 5 tests: multiple two-legged hopping, multiple one-legged hopping, single two-legged jump, chair-rise test, and heel-rise test. Compared with age- and sex-matched controls, patients with OI type I had smaller muscle size (P = .04) but normal muscle density (P = .21). They also had lower average peak force and lower specific force (peak force/muscle cross-sectional area; all P < .008). Average peak power was lower in patients with OI type I but not significantly so (all P > .054). Children and adolescents with OI type I have, on average, a significant force deficit in the lower limb as measured by dynamic force tests. Nonetheless, these data also show that OI type I is compatible with normal muscle performance in some individuals.

  20. Management of lower-extremity deformities in osteogenesis imperfecta with extensible intramedullary rod technique: a 20-year experience.

    PubMed

    Luhmann, S J; Sheridan, J J; Capelli, A M; Schoenecker, P L

    1998-01-01

    Twelve patients (seven boys, five girls) who had osteogenesis imperfecta were treated with an extensible-rod system in 21 femurs and 15 tibias. Indications for use of extensible rods were multiple fractures, long-bone deformity prohibiting bracing and ambulation, and significant remaining linear growth. The average patient age at the time of placement of the extensible rods was 6 + 8 years (range, 2 + 4-10 + 10). Six femurs were treated with overlapping Rush rods; Bailey-Dubow rods were used in the remaining femurs and in all tibias. The average length of follow-up was 5 + 9 years (range, 2 + 0-3 + 2). Preoperatively, four of the 12 patients had never walked; postoperatively, all were ambulators with varying levels of assistance. Fourteen complications occurred, 12 of which required operative revision of the extensible rods. The average time between primary extensible rodding and revision was 5 + 1 years. No complications have occurred to date related to the use of overlapping Rush rods. No growth disturbance resulted from the use of the extensible-rod systems.

  1. Anesthetic management of an 8-month-old infant with osteogenesis imperfecta undergoing liver transplantation: a case report.

    PubMed

    Lee, Jiwon; Ryu, Ho-Geol; Kim, Anna; Yoo, Seokha; Shin, Seung-Yeon; Kang, Sun-Hye; Jeong, Jinyoung; Yoo, Yongjae

    2014-06-01

    Anesthetic management of pediatric liver transplantation in a patient with osteogenesis imperfecta (OI) requires tough decisions and comprehensive considerations of the cascade of effects that may arise and the required monitoring. Total intravenous anesthesia (TIVA) with propofol and remifentanil was chosen as the main anesthetic strategy. Malignant hyperthermia (MH), skeletal fragility, anhepatic phase during liver transplantation, uncertainties of TIVA in children, and propofol infusion syndrome were considered and monitored. There were no adverse events during the operation. Despite meticulous precautions with regard to the risk of MH, there was an episode of high fever (40℃) in the ICU a few hours after the operation, which was initially feared as MH. Fortunately, MH was ruled out as the fever subsided soon after hydration and antipyretics were given. Although the delivery of supportive care and the administration of dantrolene are the core principles in the management of MH, perioperative fever does not always mean a MH in patients at risk for MH, and other common causes of fever should also be considered.

  2. Sleep-Disordered Breathing in Children with Rare Skeletal Disorders: A Survey of Clinical Records.

    PubMed

    Zaffanello, Marco; Piacentini, Giorgio; Sacchetto, Luca; Pietrobelli, Angelo; Gasperi, Emma; Barillari, Marco; Cardobi, Nicolò; Nosetti, Luana; Ramaroli, Diego; Antoniazzi, Franco

    2018-06-21

    Craniofacial disharmony in skeletal diseases is strongly associated with sleep-disordered breathing. Our aim was to study sleep respiratory patterns in young children with rare skeletal disorders. This retrospective study included children with achondroplasia, osteogenesis imperfecta and Ellis van Creveld Syndrome. Our subjects underwent an in-laboratory overnight respiratory polygraph between January 2012 and April 2016. All medical records were reviewed and brain Magnetic Resonance Imaging was conducted on patients with achondroplasia, nasopharynx, oropharynx and laryngopharynx spaces. 24 children were enrolled, 13 with Achondroplasia, 2 with spondyloepiphyseal dysplasia, 1 with odontochondrodysplasia, 6 with osteogenesis imperfecta and 2 with Ellis van Creveld Syndrome. Children with achondroplasia, who had adenotonsillectomy, showed fewer sleep respiratory involvement than untreated children. Among 13 patients with Achondroplasia, brain magnetic resonance imaging was available in 10 subjects and significant negative correlation was found between sleep respiratory patterns, nasopharynx and oropharynx space (p < 0.05). In 2 patients with spondyloepiphyseal dysplasia, mild to moderate sleep respiratory involvement was found. Both subjects had history of adenotonsillectomy. Mild sleep respiratory involvement was also shown in 4 out of 6 patients with osteogenesis imperfecta. One patient with Ellis van Creveld syndrome had mild sleep respiratory disturbance. Sleep respiratory disturbances were detected in children with achondroplasia, and with less severity also in osteogenesis imperfecta and Ellis van Creveld syndrome. Adenotonsillectomy was successful in achondroplasia in reducing symptoms. In light of our findings, multicenter studies are needed to obtain further information on these rare skeletal diseases. ©2018The Author(s). Published by S. Karger AG, Basel.

  3. Novel Deletion of SERPINF1 Causes Autosomal Recessive Osteogenesis Imperfecta Type VI in Two Brazilian Families

    PubMed Central

    Moldenhauer Minillo, Renata; Sobreira, Nara; de Fatima de Faria Soares, Maria; Jurgens, Julie; Ling, Hua; Hetrick, Kurt N.; Doheny, Kimberly F.; Valle, David; Brunoni, Decio; Alvarez Perez, Ana B.

    2014-01-01

    Autosomal recessive osteogenesis imperfecta (OI) accounts for 10% of all OI cases, and, currently, mutations in 10 genes (CRTAP, LEPRE1, PPIB, SERPINH1, FKBP10, SERPINF1, SP7, BMP1, TMEM38B, and WNT1) are known to be responsible for this form of the disease. PEDF is a secreted glycoprotein of the serpin superfamily that maintains bone homeostasis and regulates osteoid mineralization, and it is encoded by SERPINF1, currently associated with OI type VI (MIM 172860). Here, we report a consanguineous Brazilian family in which multiple individuals from at least 4 generations are affected with a severe form of OI, and we also report an unrelated individual from the same small city in Brazil with a similar but more severe phenotype. In both families the same homozygous SERPINF1 19-bp deletion was identified which is not known in the literature yet. We described intra- and interfamilial clinical and radiological phenotypic variability of OI type VI caused by the same homozygous SERPINF1 19-bp deletion and suggest a founder effect. Furthermore, the SERPINF1 genotypes/phenotypes reported so far in the literature are reviewed. PMID:25565926

  4. Microstructural and Photoacoustic Infrared Spectroscopic Studies of Human Cortical Bone with Osteogenesis Imperfecta

    NASA Astrophysics Data System (ADS)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2016-04-01

    The molecular basis of bone disease osteogenesis imperfecta (OI) and the mineralization of hydroxyapatite in OI bone have been of significant research interest. To further investigate the mechanism of OI disease and bone mineralization, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and x-ray diffraction (XRD) are used in the present study to describe the structural and compositional differences between OI and healthy bone. OI bone exhibits more porous, fibrous features, abnormal collagen fibrils, and abnormal mineral deposits. Likewise, photoacoustic-FTIR experiments indicate an aberrant collagen structure and an altered mineral structure in OI. In contrast, there is neither significant difference in the non-collagenous proteins (NCPs) composition observed nor apparent change in the crystal structure between OI and healthy bone minerals as shown in XRD and energy-dispersive x-ray spectroscopy (EDS) results. This observation indicates that the biomineralization process is more controlled by the bone cells and non-collagenous phosphorylated proteins. The present study also confirms that there is an orientational influence on the stoichiometry of the mineral in OI bone. Also, a larger volume of the hydrated layer in the transverse plane than the longitudinal plane of the mineral crystal structure is proposed. The appearance of a new C-S band in the FTIR spectra in OI bone suggests the substitution of glycine by cysteine in collagen molecules or/and an increased amount of cysteine-rich osteonectin that relates to mineral nucleation and mineral crystal formation.

  5. Child abuse and osteogenesis imperfecta: how can they be still misdiagnosed? A case report

    PubMed Central

    D’Eufemia, Patrizia; Palombaro, Marta; Lodato, Valentina; Zambrano, Anna; Celli, Mauro; Persiani, Pietro; De Bari, Maria Pia; Sangiorgi, Luca

    2012-01-01

    Summary Osteogenesis imperfecta (OI) is a rare hereditary disease caused by mutations in genes coding for type I collagen, resulting in bone fragility. In literature are described forms lethal in perinatal period, forms which are moderate and slight forms where the only sign of disease is osteopenia. Child abuse is an important social and medical problem. Fractures are the second most common presentation after skin lesions and may present specific patterns. The differential diagnosis between slight-moderate forms of OI and child abuse could be very challenging especially when other signs typical of abuse are absent, since both could present with multiple fractures without reasonable explanations. We report a 20 months-old female with a history of 4 fractures occurred between the age of three and eighteen months, brought to authorities’ attention as a suspected child abuse. However when she came to our department physical examination, biochemical tests, total body X-ray and a molecular analysis of DNA led the diagnosis of OI. Thus, a treatment with bisphosphonate and a physical rehabilitation process, according to Vojta method, were started with improvement in bony mineralization, gross motor skills and absence of new fracture. In conclusion our case demonstrates how in any child presenting fractures efforts should be made to consider, besides child abuse, all the other hypothesis even the rarest as OI. PMID:23289038

  6. Raloxifene reduces skeletal fractures in an animal model of osteogenesis imperfecta.

    PubMed

    Berman, Alycia G; Wallace, Joseph M; Bart, Zachary R; Allen, Matthew R

    2016-01-01

    Osteogenesis imperfecta (OI) is a genetic disease of Type I collagen and collagen-associated pathways that results in brittle bone behavior characterized by fracture and reduced mechanical properties. Based on previous work in our laboratory showing that raloxifene (RAL) can significantly improve bone mechanical properties through non-cellular mechanisms, we hypothesized that raloxifene would improve the mechanical properties of OI bone. In experiment 1, tibiae from female wild type (WT) and homozygous oim mice were subjected to in vitro soaking in RAL followed by mechanical tests. RAL soaking resulted in significantly higher post-yield displacement (+75% in WT, +472% in oim; p<0.004), with no effect on ultimate load or stiffness, in both WT and oim animals. In experiment 2, eight-week old WT and oim male mice were treated for eight weeks with saline vehicle (VEH) or RAL. Endpoint measures included assessment of in vivo skeletal fractures, bone density/geometry and mechanical properties. In vivo skeletal fractures of the femora, assessed by micro CT imaging, were significantly lower in oim-RAL (20%) compared to oim-VEH (48%, p=0.047). RAL led to significantly higher DXA-based BMD (p<0.01) and CT-based trabecular BV/TV in both WT and oim animals compared to those treated with VEH. Fracture toughness of the femora was lower in oim mice compared to WT and improved with RAL in both genotypes. These results suggest that raloxifene reduces the incidence of fracture in this mouse model of oim. Furthermore, they suggest that raloxifene's effects may be the result of both cellular (increased bone mass) and non-cellular (presumably changes in hydration) mechanisms, raising the possibility of using raloxifene, or related compounds, as a new approach for treating bone fragility associated with OI. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  7. Macroscopic anisotropic bone material properties in children with severe osteogenesis imperfecta.

    PubMed

    Albert, Carolyne; Jameson, John; Tarima, Sergey; Smith, Peter; Harris, Gerald

    2017-11-07

    Children with severe osteogenesis imperfecta (OI) typically experience numerous fractures and progressive skeletal deformities over their lifetime. Recent studies proposed finite element models to assess fracture risk and guide clinicians in determining appropriate intervention in children with OI, but lack of appropriate material property inputs remains a challenge. This study aimed to characterize macroscopic anisotropic cortical bone material properties and investigate relationships with bone density measures in children with severe OI. Specimens were obtained from tibial or femoral shafts of nine children with severe OI and five controls. The specimens were cut into beams, characterized in bending, and imaged by synchrotron radiation X-ray micro-computed tomography. Longitudinal modulus of elasticity, yield strength, and bending strength were 32-65% lower in the OI group (p<0.001). Yield strain did not differ between groups (p≥0.197). In both groups, modulus and strength were lower in the transverse direction (p≤0.009), but anisotropy was less pronounced in the OI group. Intracortical vascular porosity was almost six times higher in the OI group (p<0.001), but no differences were observed in osteocyte lacunar porosity between the groups (p=0.086). Volumetric bone mineral density was lower in the OI group (p<0.001), but volumetric tissue mineral density was not (p=0.770). Longitudinal OI bone modulus and strength were correlated with volumetric bone mineral density (p≤0.024) but not volumetric tissue mineral density (p≥0.099). Results indicate that cortical bone in children with severe OI yields at the same strain as normal bone, and that their decreased bone material strength is associated with reduced volumetric bone mineral density. These results will enable the advancement of fracture risk assessment capability in children with severe OI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cranial base pathology in pediatric osteogenesis imperfecta patients treated with bisphosphonates.

    PubMed

    Arponen, Heidi; Vuorimies, Ilkka; Haukka, Jari; Valta, Helena; Waltimo-Sirén, Janna; Mäkitie, Outi

    2015-03-01

    Cranial base pathology is a serious complication of osteogenesis imperfecta (OI). Our aim was to analyze whether bisphosphonate treatment, used to improve bone strength, could also prevent the development of craniocervical junction pathology (basilar impression, basilar invagination, or platybasia) in children with OI. In this single-center retrospective study the authors analyzed the skull base morphology from lateral skull radiographs and midsagittal MR images (total of 94 images), obtained between the ages of 0 and 25 years in 39 bisphosphonate-treated OI patients. The results were compared with age-matched normative values and with findings in 70 OI patients who were not treated with bisphosphonates. In addition to cross-sectional data, longitudinal data were available from 22 patients with an average follow-up period of 7.6 years. The patients, who had OI types I, III, IV, VI, and VII, had been treated with zoledronic acid, pamidronate, or risedronate for 3.2 years on average. Altogether 33% of the 39 bisphosphonate-treated patients had at least 1 cranial base anomaly, platybasia being the most prevalent diagnosis (28%). Logistic regression analysis suggested a higher risk of basilar impression or invagination in patients with severe OI (OR 22.04) and/or older age at initiation of bisphosphonate treatment (OR 1.45), whereas a decreased risk was associated with longer duration of treatment (OR 0.28). No significant associations between age, height, or cumulative bisphosphonate dose and the risk for cranial base anomaly were detected. In longitudinal evaluation, Kaplan-Meier curves suggested delayed development of cranial base pathology in patients treated with bisphosphonates but the differences from the untreated group were not statistically significant. These findings indicate that cranial base pathology may develop despite bisphosphonate treatment. Early initiation of bisphosphonate treatment may delay development of craniocervical junction pathology

  9. An ultrastructural and immunogold localization study of proteoglycans associated with the osteocytes of fetal bone in osteogenesis imperfecta.

    PubMed

    Sarathchandra, P; Pope, F M; Ali, S Y

    1996-06-01

    Osteogenesis imperfecta (OI) is a rare, heterogeneous, inherited connective tissue disorder frequently caused by abnormalities of type I collagen. It is characterized by bone fragility, osteopenia, and progressive skeletal deformities. Electron microscopy of three OI type II fetal bone samples revealed numerous large osteocyte lacunae. In addition, there was a perilacunar osteoid-like band of collagen surrounding the osteocytes, which was unmineralized and morphologically unusual. Furthermore, large osteocyte lacunae contained fine particles and filamentous material similar to the expected ultrastructural appearance of proteoglycans. More detailed examination was carried out using histochemical and immunogold localization of proteoglycans at light and ultrastructural levels. These tests and the use of electron probe X-ray microanalysis confirmed that the material in the osteocyte lacunae was proteoglycan. In contrast, in the age- and site-matched normal fetal bone, all the osteocyte lacunae appeared negative for proteoglycan. Proteoglycans are regarded as inhibitors of calcification. Our observation of substantial amounts of proteoglycan in abnormally enlarged osteocytic lacunae of some OI fetal bone suggests association with the abnormal bone of this particular subtype of OI type II.

  10. [Elastic sliding central medullary nailing with osteogenesis imperfecta. Fourteen cases at eight years follow-up].

    PubMed

    Boutaud, B; Laville, J-M

    2004-06-01

    Elastic sliding centromedullary nailing (ESCN) proposed by Métaizeau in 1987 for the prevention and treatment of limb fractures in osteogenesis imperfecta has never been evaluated. A multicentric serie was studied in order to evaluate results of these procedure. Thirty-six ESCN procedures were performed in fourteen patients. Percutaneous pinning was used for the femur and distal tibia and arthrotomy for the distal femur as needed and in all cases for the proximal tibia. The pins were bent in compliance with the principles of the ESCN system. The ends of the pins were bent back to form a U pushed into the epiphysis. Reaxing osteotomies required minimal incisions. Age at the first procedure, the number of procedures and complications, and time between procedures were recorded. Pin overlap and the angle formed were also recorded. Pin gliding was evaluated. Ability to walk with or without assistance was noted. The medullary canal measured 4 to 10 mm. The first procedure was performed at a mean age of four years (range 15 days to 10 years). Follow-up was eight years (range 1-12). There were 2.5 procedures per patient (range 1-5). Pins had to be changed in 75% of the bone segments. Mean time between two procedures was 3.2 years. There were no cases of defective sliding or infection. There were four cases of secondary fracture with a mean 30% pin overlap, two pin migrations, one nonunion, and one shortening. The majority of the complications occurred after the age of five years. At last follow-up, three patients could not walk, four walked with aids, and eight without aids. The advantages of the technique (size of the pins, nailing without reaming, pin sliding in all cases, low cost) must not overshadow the drawbacks (risk of pin deformation and migration, secondary fracture). Secondary fractures might be limited by discrete valgus of the femoral shaft and preventive pin change when the angle formed approaches 30 degrees and when there is only 30% overlap left. Use of

  11. Altered corneal biomechanical properties in children with osteogenesis imperfecta.

    PubMed

    Lagrou, Lisa M; Gilbert, Jesse; Hannibal, Mark; Caird, Michelle S; Thomas, Inas; Moroi, Sayoko E; Bohnsack, Brenda L

    2018-04-07

    To evaluate biomechanical corneal properties in children with osteogenesis imperfecta (OI). A prospective, observational, case-control study was conducted on children 6-19 years of age diagnosed with OI. Patients with OI and healthy control subjects underwent complete ophthalmic examinations. Additional tests included Ocular Response Analyzer (ORA) and ultrasonic pachymetry. Primary outcomes were central corneal thickness (CCT), corneal hysteresis (CH), and corneal resistance factor (CRF). Intraocular pressure (IOP) was measured directly by either iCare or Goldmann applanation and indirectly by the ORA (Goldmann-correlated and corneal-compensated IOP). Statistically significant differences between OI and control groups were determined using independent samples t test. A total of 10 of 18 OI cases (mean age, 13 ± 4.37 years; 8 males) and 30 controls (mean age, 12.76 ± 2.62 years; 16 males) were able to complete the corneal biomechanics and pachymetry testing. Children with OI had decreased CH (8.5 ± 1.0 mm Hg vs 11.6 ± 1.2 mm Hg [P < 0.001]), CRF (9.0 ± 1.9 mm Hg vs 11.5 ± 1.5 [P < 0.001]) and CCT (449.8 ± 30.8 μm vs 568 ± 47.6 μm [P < 0.001]) compared to controls. The corneal-compensated IOP was significantly higher in OI cases (18.8 ± 3.1 mm Hg) than in controls (15.0 ± 1.6 mm Hg, P < 0.004), but there was no significant difference in Goldmann-correlated IOP (16.3 ± 4.2 mm Hg vs 15.8 ± 2.2 mm Hg). Collagen defects in OI alter corneal structure and biomechanics. Children with OI have decreased CH, CRF, and CCT, resulting in IOPs that are likely higher than measured by tonometry. These corneal alterations are present at a young age in OI. Affected individuals should be routinely screened for glaucoma and corneal pathologies. Copyright © 2018 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  12. Bone Collagen: New Clues to its Mineralization Mechanism From Recessive Osteogenesis Imperfecta

    PubMed Central

    Eyre, David R.; Ann Weis, Mary

    2013-01-01

    Until 2006 the only mutations known to cause osteogenesis imperfecta (OI) were in the two genes coding for type I collagen chains. These dominant mutations affecting the expression or primary sequence of collagen α1(I) and α2(I) chains account for over 90% of OI cases. Since then a growing list of mutant genes causing the 5–10% of recessive cases has rapidly emerged. They include CRTAP, LEPRE1 and PPIB, which encode three proteins forming the prolyl 3-hydroxylase complex; PLOD2 and FKBP10, which encode respectively lysyl hydroxylase 2 and a foldase required for its activity in forming mature cross-links in bone collagen; SERPIN H1, which encodes the collagen chaperone HSP47; SERPIN F1, which encodes pigment epithelium-derived factor required for osteoid mineralization; and BMP1, which encodes the type I procollagen C-propeptidase. All cause fragile bone in infancy, which can include over-mineralization or under-mineralization defects as well as abnormal collagen post-translational modifications. Consistently both dominant and recessive variants lead to abnormal cross-linking chemistry in bone collagen. These recent discoveries strengthen the potential for a common pathogenic mechanism of misassembled collagen fibrils. Of the new genes identified, eight encode proteins required for collagen post-translational modification, chaperoning of newly synthesized collagen chains into native molecules or transport through the endoplasmic reticulum and Golgi for polymerization, cross-linking and mineralization. In reviewing these findings, we conclude that a common theme is emerging in the pathogenesis of brittle bone disease of mishandled collagen assembly with important insights on post-translational features of bone collagen that have evolved to optimize it as a biomineral template. PMID:23508630

  13. Allele-specific Col1a1 silencing reduces mutant collagen in fibroblasts from Brtl mouse, a model for classical osteogenesis imperfecta

    PubMed Central

    Rousseau, Julie; Gioia, Roberta; Layrolle, Pierre; Lieubeau, Blandine; Heymann, Dominique; Rossi, Antonio; Marini, Joan C; Trichet, Valerie; Forlino, Antonella

    2014-01-01

    Gene silencing approaches have the potential to become a powerful curative tool for a variety of monogenic diseases caused by gain-of-function mutations. Classical osteogenesis imperfecta (OI), a dominantly inherited bone dysplasia, is characterized in its more severe forms by synthesis of structurally abnormal type I collagen, which exerts a negative effect on extracellular matrix. Specific suppression of the mutant (Mut) allele would convert severe OI forms to the mild type caused by a quantitative defect in normal collagen. Here, we describe the in vitro and ex vivo investigation of a small interfering RNA (siRNA) approach to allele-specific gene silencing using Mut Col1a1 from the Brtl mouse, a well-characterized model for classical human OI. A human embryonic kidney cell line, which expresses the firefly luciferase gene, combined with either wild-type or Mut Brtl Col1a1 exon 23 sequences, was used for the first screening. The siRNAs selected based on their specificity and the corresponding short hairpin RNAs (shRNAs) subcloned in a lentiviral vector were evaluated ex vivo in Brtl fibroblasts for their effect on collagen transcripts and protein. A preferential reduction of the Mut allele of up to 52% was associated with about 40% decrease of the Mut protein, with no alteration of cell proliferation. Interestingly, a downregulation of HSP47, a specific collagen chaperone known to be upregulated in some OI cases, was detected. Our data support further testing of shRNAs and their delivery by lentivirus as a strategy to specifically suppress the Mut allele in mesenchymal stem cells of OI patients for autologous transplantation. PMID:24022296

  14. Deficiency of CRTAP in non-lethal recessive osteogenesis imperfecta reduces collagen deposition into matrix.

    PubMed

    Valli, M; Barnes, A M; Gallanti, A; Cabral, W A; Viglio, S; Weis, M A; Makareeva, E; Eyre, D; Leikin, S; Antoniazzi, F; Marini, J C; Mottes, M

    2012-11-01

    Deficiency of any component of the ER-resident collagen prolyl 3-hydroxylation complex causes recessive osteogenesis imperfecta (OI). The complex modifies the α1(I)Pro986 residue and contains cartilage-associated protein (CRTAP), prolyl 3-hydroxylase 1 (P3H1) and cyclophilin B (CyPB). Fibroblasts normally secrete about 10% of CRTAP. Most CRTAP mutations cause a null allele and lethal type VII OI. We identified a 7-year-old Egyptian boy with non-lethal type VII OI and investigated the effects of his null CRTAP mutation on collagen biochemistry, the prolyl 3-hydroxylation complex, and collagen in extracellular matrix. The proband is homozygous for an insertion/deletion in CRTAP (c.118_133del16insTACCC). His dermal fibroblasts synthesize fully overmodified type I collagen, and 3-hydroxylate only 5% of α1(I)Pro986. CRTAP transcripts are 10% of control. CRTAP protein is absent from proband cells, with residual P3H1 and normal CyPB levels. Dermal collagen fibril diameters are significantly increased. By immunofluorescence of long-term cultures, we identified a severe deficiency (10-15% of control) of collagen deposited in extracellular matrix, with disorganization of the minimal fibrillar network. Quantitative pulse-chase experiments corroborate deficiency of matrix deposition, rather than increased matrix turnover. We conclude that defects of extracellular matrix, as well as intracellular defects in collagen modification, contribute to the pathology of type VII OI. © 2011 John Wiley & Sons A/S.

  15. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice☆

    PubMed Central

    Vanleene, Maximilien; Porter, Alexandra; Guillot, Pascale-Valerie; Boyde, Alan; Oyen, Michelle; Shefelbine, Sandra

    2012-01-01

    Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity. PMID:22449447

  16. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice.

    PubMed

    Vanleene, Maximilien; Porter, Alexandra; Guillot, Pascale-Valerie; Boyde, Alan; Oyen, Michelle; Shefelbine, Sandra

    2012-06-01

    Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Effects of a telescopic intramedullary rod for treating patients with osteogenesis imperfecta of the femur

    PubMed Central

    Rosemberg, D. L.; Goiano, E. O.; Akkari, M.; Santili, C.

    2018-01-01

    Abstract Purpose To introduce a new model of telescopic intramedullary rod (TIR), evaluate its effects on treating patients presenting with moderate and severe osteogenesis imperfecta (OI) and to compare the findings with those of other telescopic rods. Methods A total of 21 patients (nine girls and 12 boys; mean age at first operation, 6.6 years, 1.52 to 13.18) who underwent 52 femoral operations were monitored during a mean of 9.96 years (3.39 to 14.54). Patient characteristics, telescoping rod capability and its complications were examined. Results According to the Sillence classification, we investigated one patient with type I, nine with type III and 11 with type IV OI. Revision rates at up to five years (36%) were inferior to those found for the Fassier-Duval rod (46%). The main cause of revision was fracture (15 patients), followed by rod migration (nine), and infection (two). The rod exhibited higher telescopic capacity in boys than girls. Type III most commonly required an operation; the age group with the highest number of procedures was five to ten years. Male migration was the main cause of rod migration. Conclusion The TIR has a satisfactory cost-benefit ratio with less complication rates and low production costs. The TIR is a feasible alternative to the commonly used Fassier-Duval rod. Level of Evidence IV PMID:29456761

  18. Administration of soluble activin receptor 2B increases bone and muscle mass in a mouse model of osteogenesis imperfecta

    PubMed Central

    DiGirolamo, Douglas J.; Singhal, Vandana; Chang, Xiaoli; Lee, Se-Jin; Germain-Lee, Emily L.

    2015-01-01

    Osteogenesis imperfecta (OI) comprises a group of heritable connective tissue disorders generally defined by recurrent fractures, low bone mass, short stature and skeletal fragility. Beyond the skeletal complications of OI, many patients also report intolerance to physical activity, fatigue and muscle weakness. Indeed, recent studies have demonstrated that skeletal muscle is also negatively affected by OI, both directly and indirectly. Given the well-established interdependence of bone and skeletal muscle in both physiology and pathophysiology and the observations of skeletal muscle pathology in patients with OI, we investigated the therapeutic potential of simultaneous anabolic targeting of both bone and skeletal muscle using a soluble activin receptor 2B (ACVR2B) in a mouse model of type III OI (oim). Treatment of 12-week-old oim mice with ACVR2B for 4 weeks resulted in significant increases in both bone and muscle that were similar to those observed in healthy, wild-type littermates. This proof of concept study provides encouraging evidence for a holistic approach to treating the deleterious consequences of OI in the musculoskeletal system. PMID:26161291

  19. Children with severe Osteogenesis imperfecta and short stature present on average with normal IGF-I and IGFBP-3 levels.

    PubMed

    Hoyer-Kuhn, Heike; Höbing, Laura; Cassens, Julia; Schoenau, Eckhard; Semler, Oliver

    2016-07-01

    Osteogenesis imperfecta (OI) is characterized by bone fragility and short stature. Data about IGF-I/IGFBP-3 levels are rare in OI. Therefore IGF-I/IGFBP-3 levels in children with different types of OI were investigated. IGF-I and IGFBP-3 levels of 60 children (male n=38) were assessed in a retrospective cross-sectional setting. Height/weight was significant different [height z-score type 3 versus type 4: p=0.0011 and weight (p≤0.0001)] between OI type 3 and 4. Mean IGF-I levels were in the lower normal range (mean±SD level 137.4±109.1 μg/L). Mean IGFBP-3 measurements were in the normal range (mean±SD 3.105±1.175 mg/L). No significant differences between OI type 3 and 4 children have been observed (IGF-I: p=0.0906; IGFBP-3: p=0.2042). Patients with different severities of OI have IGF-I and IGFBP-3 levels in the lower normal range. The type of OI does not significantly influence these growth factors.

  20. DNA sequence analysis in 598 individuals with a clinical diagnosis of osteogenesis imperfecta: diagnostic yield and mutation spectrum.

    PubMed

    Bardai, G; Moffatt, P; Glorieux, F H; Rauch, F

    2016-12-01

    We detected disease-causing mutations in 585 of 598 individuals (98 %) with typical features of osteogenesis imperfecta (OI). In mild OI, only collagen type I encoding genes were involved. In moderate to severe OI, mutations in 12 different genes were found; 11 % of these patients had mutations in recessive genes. OI is usually caused by mutations in COL1A1 or COL1A2, the genes encoding collagen type I alpha chains, but mutations in at least 16 other genes have also been associated with OI. It is presently unknown what proportion of individuals with clinical features of OI has a disease-causing mutation in one of these genes. DNA sequence analysis was performed on 598 individuals from 487 families who had a typical OI phenotype. OI type I was diagnosed in 43 % of individuals, and 57 % had moderate to severe OI, defined as OI types other than type I. Disease-causing variants were detected in 97 % of individuals with OI type I and in 99 % of patients with moderate to severe OI. All mutations found in OI type I were dominant and exclusively affected COL1A1 or COL1A2. In moderate to severe OI, dominant mutations were found in COL1A1/COL1A2 (77 %), IFITM5 (9 %), and P4HB (0.6 %). Mutations in one of the recessive OI-associated gene were observed in 12 % of individuals with moderate to severe OI. The genes most frequently involved in recessive OI were SERPINF1 (4.0 % of individuals with moderate to severe OI) and CRTAP (2.9 %). DNA sequence analysis of currently known OI-associated genes identifies disease-causing variants in almost all individuals with a typical OI phenotype. About 20 % of individuals with moderate to severe OI had mutations in genes other than COL1A1/COL1A2.

  1. Right ventricular and pulmonary arterial dimensions in adults with osteogenesis imperfecta.

    PubMed

    Radunovic, Zoran; Wekre, Lena L; Steine, Kjetil

    2012-06-15

    We examined right ventricular (RV) and ascending pulmonary artery (PA1) dimensions in adults with osteogenesis imperfecta (OI). The survey included 99 adults with OI divided in 3 clinical types (I, III, and IV) and 52 controls. RV and PA1 dimensions were measured by echocardiography and indexed for body surface area. Scoliosis was registered, and spirometry was performed in 75 patients with OI. All RV dimensions indexed by body surface area were significantly larger in the OI group compared to controls (RV basal dimension 1.9 ± 0.5 vs 1.7 ± 0.3 cm/m(2), p <0.05; RV midcavity dimension 1.7 ± 0.5 vs 1.5 ± 0.3 cm/m(2), p <0.05; RV longitudinal dimension 4.3 ± 1.1 vs 4.0 ± 0.9 cm/m(2), p <0.05). RV outflow tract (RVOT) proximal diameter (1.8 ± 0.4 vs 1.5 ± 0.2 cm/m(2), p <0.05), RVOT distal diameter (1.2 ± 0.2 vs 1.0 ± 0.1 cm/m(2), p <0.05), and PA1 (1.2 ± 0.3 vs 1.0 ± 0.2 cm/m(2), p <0.05) were also significantly larger in the OI group. Furthermore, all RV dimensions and PA1 were significantly larger in patients with OI type III compared to patients with OI types I and IV and controls. There were no differences in RV, RVOT, or PA1 dimensions between patients presenting a restrictive ventilatory pattern (n = 11) and patients a normal ventilatory pattern. Scoliosis was registered in 42 patients. Patients with OI type III had greater RV and PA1 dimensions compared to controls and patients with OI types I and IV. Impaired ventilatory patterns and scoliosis did not have any impact on RV dimensions in these patients. In conclusion, patients with OI had increased RV and PA1 dimensions compared to the control group. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Extracellular vesicles released from mesenchymal stromal cells stimulate bone growth in osteogenesis imperfecta.

    PubMed

    Otsuru, Satoru; Desbourdes, Laura; Guess, Adam J; Hofmann, Ted J; Relation, Theresa; Kaito, Takashi; Dominici, Massimo; Iwamoto, Masahiro; Horwitz, Edwin M

    2018-01-01

    Systemic infusion of mesenchymal stromal cells (MSCs) has been shown to induce acute acceleration of growth velocity in children with osteogenesis imperfecta (OI) despite minimal engraftment of infused MSCs in bones. Using an animal model of OI we have previously shown that MSC infusion stimulates chondrocyte proliferation in the growth plate and that this enhanced proliferation is also observed with infusion of MSC conditioned medium in lieu of MSCs, suggesting that bone growth is due to trophic effects of MSCs. Here we sought to identify the trophic factor secreted by MSCs that mediates this therapeutic activity. To examine whether extracellular vesicles (EVs) released from MSCs have therapeutic activity, EVs were isolated from MSC conditioned medium by ultracentrifugation. To further characterize the trophic factor, RNA or microRNA (miRNA) within EVs was depleted by either ribonuclease (RNase) treatment or suppressing miRNA biogenesis in MSCs. The functional activity of these modified EVs was evaluated using an in vitro chondrocyte proliferation assay. Finally, bone growth was evaluated in an animal model of OI treated with EVs. We found that infusion of MSC-derived EVs stimulated chondrocyte proliferation in the growth plate, resulting in improved bone growth in a mouse model of OI. However, infusion of neither RNase-treated EVs nor miRNA-depleted EVs enhanced chondrocyte proliferation. MSCs exert therapeutic effects in OI by secreting EVs containing miRNA, and EV therapy has the potential to become a novel cell-free therapy for OI that will overcome some of the current limitations in MSC therapy. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. Fracture healing with alendronate treatment in the Brtl/+ mouse model of osteogenesis imperfecta

    PubMed Central

    Meganck, J.A.; Begun, D.L.; McElderry, J.D.; Swick, A.; Kozloff, K.M.; Goldstein, S.A.; Morris, M.D.; Marini, J.C.; Caird, M.S.

    2014-01-01

    Osteogenesis imperfecta (OI) is a heritable bone dysplasia characterized by increased skeletal fragility. Patients are often treated with bisphosphonates to attempt to reduce fracture risk. However, bisphosphonates reside in the skeleton for many years and long-term administration may impact bone material quality. Acutely, there is concern about risk of non-union of fractures that occur near the time of bisphosphonate administration. This study investigated the effect of alendronate, a potent aminobisphosphonate, on fracture healing. Using the Brtl/+ murine model of type IV OI, tibial fractures were generated in 8-week-old mice that were untreated, treated with alendronate before fracture, or treated before and after fracture. After 2, 3, or 5 weeks of healing, tibiae were assessed using microcomputed tomography (μCT), torsion testing, quantitative histomorphometry, and Raman microspectroscopy. There were no morphologic, biomechanical or histomorphometric differences in callus between untreated mice and mice that received alendronate before fracture. Alendronate treatment before fracture did not cause a significant increase in cartilage retention in fracture callus. Both Brtl/+ and WT mice that received alendronate before and after fracture had increases in the callus volume, bone volume fraction and torque at failure after 5 weeks of healing. Raman microspectroscopy results did not show any effects of alendronate in wild-type mice, but calluses from Brtl/+ mice treated with alendronate during healing had a decreased mineral-to-matrix ratio, decreased crystallinity and an increased carbonate-to-phosphate ratio. Treatment with alendronate altered the dynamics of healing by preventing callus volume decreases later in the healing process. Fracture healing in Brtl/+ untreated animals was not significantly different from animals in which alendronate was halted at the time of fracture. PMID:23774443

  4. Osteogenesis imperfecta type I: Molecular heterogeneity for COL1A1 null alleles of type I collagen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willing, M.C.; Deschenes, S.P.; Pitts, S.H.

    Osteogenesis imperfecta (OI) type I is the mildest form of inherited brittle-bone disease. Dermal fibroblasts from most affected individuals produce about half the usual amount of type I procollagen, as a result of a COL1A1 {open_quotes}null{close_quotes} allele. Using PCR amplification of genomic DNA from affected individuals, followed by denaturing gradient gel electrophoresis (DGGE) and SSCP, we identified seven different COL1A1 gene mutations in eight unrelated families with OI type I. Three families have single nucleotide substitutions that alter 5{prime} donor splice sites; two of these unrelated families have the same mutation. One family has a point mutation, in an exon,more » that creates a premature termination codon, and four have small deletions or insertions, within exons, that create translational frameshifts and new termination codons downstream of the mutation sites. Each mutation leads to both marked reduction in steady-state levels of mRNA from the mutant allele and a quantitative decrease in type I procollagen production. Our data demonstrate that different molecular mechanisms that have the same effect on type I collagen production result in the same clinical phenotype. 58 refs., 4 figs., 1 tab.« less

  5. Osteogenesis imperfecta in childhood: effects of spondylodesis on functional ability, ambulation and perceived competence.

    PubMed

    Tolboom, N; Cats, E A; Helders, P J M; Pruijs, J E H; Engelbert, R H H

    2004-03-01

    We studied the effects of spondylodesis on spinal curvature, functional outcome, level of ambulation and perceived competence in 11 children with osteogenesis imperfecta (OI). Mean age at surgical intervention was 13.1 years (SD 2.5 years) and follow-up amounted to 3.4 years (SD 2.3 years). Spinal curvature was measured according to Cobb. The level of ambulation was scored according to the modified criteria of Bleck. Functional abilities and the amount of parental assistance were scored using the Dutch version of the Pediatric Evaluation of Disability Inventory (PEDI). Perceived competence was measured using the Harter Self-Perception Profile for Children. The amount of fatigue, spinal pain and presence of subjective dyspnea were scored with a visual analog scale. The median progression per year before spondylodesis was 6.1 degrees (interquartile range 2.9 degrees -12.9 degrees ) and after the spondylodesis it was 5.0 degrees (interquartile range 1.6 degrees -11.0 degrees ). No significant progression or regression in the level of ambulation was found. Perceived competence improved slightly. In the total score of the perceived competence, a borderline significant increase was found ( P-value 0.068). We concluded that spinal fusion in children with OI does not materially influence functional ability and level of ambulation. Self-perceived competence seemed to improve after surgery. The amount of pain, fatigue and subjective dyspnea seemed to diminish after spinal surgery. Progression of scoliosis proceeded, as did development of spinal curvature at the junction of the spondylodesis. Therefore, oral or intravenous bisphosphonates before and after spinal surgery should be considered.

  6. A case of fetal osteogenesis imperfecta type 2A: longitudinal observation of natural course in utero and pitfalls for prenatal ultrasound diagnosis.

    PubMed

    Kimura, Ibuki; Araki, Ryota; Yoshizato, Toshiyuki; Miyamoto, Shingo

    2015-10-01

    We present a case of osteogenesis imperfecta (OI) type 2A in which a natural course in utero was observed from 23 weeks' gestation to term. At 23 weeks' gestation, a sonographic examination showed a cloverleaf skull-like head, a narrow thorax, and marked shortening of the long bones with bowing of the femurs and humeri. Follow-up examinations showed that the cloverleaf skull-like head was not evident at 28 weeks' gestation. Discontinuity of the ribs and femurs was observed at 26 and 30 weeks' gestation, respectively. This finding suggested bone fractures, which were confirmed by three-dimensional computed tomography at 32 weeks' gestation. Ultrasonographic findings of bones, including the long bones and calvarium, changed with advancing gestation during the second trimester. Characteristic features of OI type 2A were evident during the late second to early third trimesters. Repeated ultrasonographic examinations together with three-dimensional computed tomography are necessary for the definitive diagnosis of OI type 2A in the second trimester.

  7. Delivery by Cesarean Section is not Associated With Decreased at-Birth Fracture Rates in Osteogenesis Imperfecta

    PubMed Central

    Bellur, S; Jain, M; Cuthbertson, D; Krakow, D; Shapiro, JR; Steiner, RD; Smith, PA; Bober, MB; Hart, T; Krischer, J; Mullins, M; Byers, PH; Pepin, M; Durigova, M; Glorieux, FH; Rauch, F; Sutton, VR; Lee, B; Nagamani, SC

    2015-01-01

    Purpose Osteogenesis imperfecta (OI) predisposes to recurrent fractures. The moderate-to-severe forms of OI present with antenatal fractures and the mode of delivery that would be safest for the fetus is not known. Methods We conducted systematic analyses on the largest cohort of individuals (n=540) with OI enrolled to-date in the OI Linked Clinical Research Centers. Self-reported at-birth fracture rates were compared in individuals with OI types I, III, and IV. Multivariate analyses utilizing backward-elimination logistic regression model building were performed to assess the effect of multiple covariates including method of delivery on fracture-related outcomes. Results When accounting for other covariates, at-birth fracture rates did not differ based on whether delivery was by vaginal route or by cesarean section (CS). Increased birth weight conferred higher risk for fractures irrespective of the delivery method. In utero fracture, maternal history of OI, and breech presentation were strong predictors for choosing CS for delivery. Conclusion Our study, the largest to analyze the effect of various factors on at-birth fracture rates in OI shows that delivery by CS is not associated with decreased fracture rate. With the limitation that the fracture data were self-reported in this cohort, these results suggest that CS should be performed only for other maternal or fetal indications, but not for the sole purpose of fracture prevention in OI. PMID:26426884

  8. Multi-scale analysis of bone chemistry, morphology and mechanics in the oim model of osteogenesis imperfecta.

    PubMed

    Bart, Zachary R; Hammond, Max A; Wallace, Joseph M

    2014-08-01

    Osteogenesis imperfecta is a congenital disease commonly characterized by brittle bones and caused by mutations in the genes encoding Type I collagen, the single most abundant protein produced by the body. The oim model has a natural collagen mutation, converting its heterotrimeric structure (two α1 and one α2 chains) into α1 homotrimers. This mutation in collagen may impact formation of the mineral, creating a brittle bone phenotype in animals. Femurs from male wild type (WT) and homozygous (oim/oim) mice, all at 12 weeks of age, were assessed using assays at multiple length scales with minimal sample processing to ensure a near-physiological state. Atomic force microscopy (AFM) demonstrated detectable differences in the organization of collagen at the nanoscale that may partially contribute to alterations in material and structural behavior obtained through mechanical testing and reference point indentation (RPI). Changes in geometric and chemical structure obtained from µ-Computed Tomography and Raman spectroscopy indicate a smaller bone with reduced trabecular architecture and altered chemical composition. Decreased tissue material properties in oim/oim mice are likely driven by changes in collagen fibril structure, decreasing space available for mineral nucleation and growth, as supported by a reduction in mineral crystallinity. Multi-scale analyses of this nature offer much in assessing how molecular changes compound to create a degraded, brittle bone phenotype.

  9. Osteogenesis imperfecta type I: second-trimester diagnosis and incidental identification of a dominant COL1A1 deletion mutation in the paucisymptomatic father.

    PubMed

    Chen, Chih-Ping; Su, Yi-Ning; Chang, Tung-Yao; Chern, Schu-Rern; Chen, Chen-Yu; Su, Jun-Wei; Wang, Wayseen

    2012-06-01

    To present second-trimester ultrasound and molecular diagnosis for osteogenesis imperfecta (OI) type I in a female fetus and incidental identification of a dominant COL1A1 deletion mutation in her paucisymptomatic father. A 30-year-old, primigravid woman was referred for genetic counseling in the second trimester because of bowing of the fetal lower limbs. She and her husband were non-consanguineous, and there was no family history of skeletal dysplasias. Prenatal ultrasound at 22 weeks of gestation revealed short and curved right femur and left tibia, and a short left fibula. The lengths of other long bones were normal. The husband was 158 cm tall, had blue sclerae, a history of habitual subluxation and dislocation of bilateral elbows and left knee, and an episode of left ulna fracture, and was not aware of his being affected with OI type I. The woman underwent amniocentesis. Cytogenetic analysis revealed a karyotype of 46,XX. Molecular analysis of the amniocytes revealed a heterozygous deletion mutation of c.1064_1068delCTGGT in exon 17 of the COL1A1 gene. By genetic testing the husband was found to carry the same mutation. Despite counseling of favorable outcome for OI type I with the parents, the woman elected to terminate the pregnancy. Postnatal skeletal X-ray findings were consistent with OI type I. Prenatal ultrasound diagnosis of mild forms of OI should include molecular analysis of type I collagen genes in both fetus and parents. Molecular genetic analysis of the family may incidentally identify a collagen gene mutation in the paucisymptomatic affected parent. Copyright © 2012. Published by Elsevier B.V.

  10. Exome Sequencing Identifies Truncating Mutations in Human SERPINF1 in Autosomal-Recessive Osteogenesis Imperfecta

    PubMed Central

    Becker, Jutta; Semler, Oliver; Gilissen, Christian; Li, Yun; Bolz, Hanno Jörn; Giunta, Cecilia; Bergmann, Carsten; Rohrbach, Marianne; Koerber, Friederike; Zimmermann, Katharina; de Vries, Petra; Wirth, Brunhilde; Schoenau, Eckhard; Wollnik, Bernd; Veltman, Joris A.; Hoischen, Alexander; Netzer, Christian

    2011-01-01

    Osteogenesis imperfecta (OI) is a heterogeneous genetic disorder characterized by bone fragility and susceptibility to fractures after minimal trauma. After mutations in all known OI genes had been excluded by Sanger sequencing, we applied next-generation sequencing to analyze the exome of a single individual who has a severe form of the disease and whose parents are second cousins. A total of 26,922 variations from the human reference genome sequence were subjected to several filtering steps. In addition, we extracted the genotypes of all dbSNP130-annotated SNPs from the exome sequencing data and used these 299,494 genotypes as markers for the genome-wide identification of homozygous regions. A single homozygous truncating mutation, affecting SERPINF1 on chromosome 17p13.3, that was embedded into a homozygous stretch of 2.99 Mb remained. The mutation was also homozygous in the affected brother of the index patient. Subsequently, we identified homozygosity for two different truncating SERPINF1 mutations in two unrelated patients with OI and parental consanguinity. All four individuals with SERPINF1 mutations have severe OI. Fractures of long bones and severe vertebral compression fractures with resulting deformities were observed as early as the first year of life in these individuals. Collagen analyses with cultured dermal fibroblasts displayed no evidence for impaired collagen folding, posttranslational modification, or secretion. SERPINF1 encodes pigment epithelium-derived factor (PEDF), a secreted glycoprotein of the serpin superfamily. PEDF is a multifunctional protein and one of the strongest inhibitors of angiogenesis currently known in humans. Our data provide genetic evidence for PEDF involvement in human bone homeostasis. PMID:21353196

  11. Strontium Ranelate Reduces the Fracture Incidence in a Growing Mouse Model of Osteogenesis Imperfecta.

    PubMed

    Shi, Changgui; Hu, Bo; Guo, Lei; Cao, Peng; Tian, Ye; Ma, Jun; Chen, Yuanyuan; Wu, Huiqiao; Hu, Jinquan; Deng, Lianfu; Zhang, Ying; Yuan, Wen

    2016-05-01

    Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by brittle bones with increased fracture risk. Although current treatment options to improve bone strength in OI focus on antiresorptive bisphosphonates, controlled clinical trials suggest they have an equivocal effect on reducing fracture risk. Strontium ranelate (SrR) is a promising therapy with a dual mode of action that is capable of simultaneously maintaining bone formation and reducing bone resorption, and may be beneficial for the treatment of OI. In this study, SrR therapy was investigated to assess its effects on fracture frequency and bone mass and strength in an animal model of OI, the oim/oim mouse. Three-week-old oim/oim and wt/wt mice were treated with either SrR or vehicle (Veh) for 11 weeks. After treatment, the average number of fractures sustained by SrR-treated oim/oim mice was significantly reduced compared to Veh-treated oim/oim mice. Micro-computed tomographic (μCT) analyses of femurs showed that both trabecular and cortical bone mass were significantly improved with SrR treatment in both genotypes. SrR significantly inhibited bone resorption, whereas bone formation indices were maintained. Biomechanical testing revealed improved bone structural properties in both oim/oim and wild-type (wt/wt) mice under the treatment, whereas no significant effects on bone brittleness and material quality were observed. In conclusion, SrR was able to effectively reduce fractures in oim/oim mice by improving bone mass and strength and thus represents a potential therapy for the treatment of pediatric OI. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.

  12. Study of the Determinants of Vitamin D Status in Pediatric Patients With Osteogenesis Imperfecta.

    PubMed

    Zambrano, Marina B; Brizola, Evelise; Pinheiro, Bruna; Vanz, Ana Paula; Mello, Elza D; Félix, Têmis Maria

    2016-01-01

    Vitamin D is essential to the development and maintenance of the skeleton, especially for children with bone disorders such as osteogenesis imperfecta (OI). We evaluated serum 25-hydroxyvitamin D (25-OHD) levels to assess the relationship between determinants of vitamin D status in pediatric patients with OI. This cross-sectional study evaluated sex, age, weight, height, body mass index, OI type, sunscreen use, season of assessment, sun exposure, vitamin D and calcium supplementation, bisphosphonate treatment, bone mineral density (BMD), milk and soda consumption, mobility, and time of sedentary activity. Levels of serum 25-OHD, calcium, parathyroid hormone (PTH), phosphorus, and alkaline phosphatase (ALP) were analyzed. Serum levels of 25-OHD were classified according to sufficient (>30 ng/ml or 75 nmol/L), insufficient (20-30 ng/ml or 50-75 nmol/L), moderately deficient (20-10 ng/ml or 50-25 nmol/L), and severely deficient (<10 ng/ml or 25 nmol/L). Fifty-two patients were included and 46 (88.4%) were classified as having insufficient or deficient 25-OHD. An inverse correlation between serum 25-OHD and time of sedentary activity (r = -0.597, p < 0.001) and a positive correlation with height (r = 0.521, p = 0.046) and whole body BMD (r = 0.586, p = 0.022) were observed. A significant difference between the number of glasses of milk consumed (p = 0.010) was observed. To optimize bone health, patients with OI need to be educated regarding habits that can improve serum 25-OHD levels, such as a reduction in periods of inactivity, the importance of sun exposure, and increasing consumption of milk and fortified dairy products.

  13. PHENOTYPIC VARIABILITY IN INDIVIDUALS WITH TYPE V OSTEOGENESIS IMPERFECTA WITH IDENTICAL IFITM5 MUTATIONS

    PubMed Central

    Fitzgerald, Jamie; Holden, Paul; Wright, Hollis; Wilmot, Beth; Hata, Abigail; Steiner, Robert D.; Basel, Don

    2016-01-01

    Background Osteogenesis imperfecta (OI) type V is a dominantly inherited skeletal dysplasia characterized by fractures and progressive deformity of long bones. In addition, patients often present with radial head dislocation, hyperplastic callus, and calcification of the forearm interosseous membrane. Recently, a specific mutation in the IFITM5 gene was found to be responsible for OI type V. This mutation, a C to T transition 14 nucleotides upstream from the endogenous start codon, creates a new start methionine that appears to be preferentially used by the translational machinery. However, the mechanism by which the lengthened protein results in a dominant type of OI is unknown. Methods and Results We report 7 ethnically diverse (African-American, Caucasian, Hispanic, and African) individuals with OI type V from 2 families and 2 sporadic cases. Exome sequencing failed to identify a causative mutation. Using Sanger sequencing, we found that all affected individuals in our cohort possess the c.−14 IFITM5 variant, further supporting the notion that OI type V is caused by a single, discrete mutation. Our patient cohort demonstrated inter-and intrafamilial phenotypic variability, including a father with classic OI type V whose daughter had a phenotype similar to OI type I. This clinical variability suggests that modifier genes influence the OI type V phenotype. We also confirm that the mutation creates an aberrant IFITM5 protein containing an additional 5 amino acids at the N-terminus. Conclusions The variable clinical signs in these cases illustrate the significant variability of the OI type V phenotype caused by the c.−14 IFITM5 mutation. The affected individuals are more ethnically diverse than previously reported. PMID:28824928

  14. Occlusal features and need for orthodontic treatment in persons with osteogenesis imperfecta.

    PubMed

    Nguyen, Minh Son; Binh, Ho Duy; Nguyen, Khac Minh; Maasalu, Katre; Kõks, Sulev; Märtson, Aare; Saag, Mare; Jagomägi, Triin

    2017-02-01

    The aim of the study was to (a) analyse dental occlusion and determine the need for orthodontic treatment of persons with osteogenesis imperfecta (OI) in comparison with the healthy population and (b) investigate the associations between OI and malocclusion. A case-control study included 26 OI persons and 400 healthy participants (control group). Occlusal features and the need for orthodontic treatment were defined according to Dental Health Component-Index of Orthodontic Treatment Need and Dental Aesthetic Index. Results showed that Angle Class I, II, and III relationship was found in 23.1%, 3.8%, and 73.1% of OI group, and in the control group, it was 67%, 17.5%, and 15.5%, respectively. OI group had significantly higher prevalence of reverse overjet >1 mm (76.9%), missing teeth (42.3%), posterior crossbite (34.6%), and open bite >2 mm (19.2%) compared to the control group (8.5%, 2.2%, 6.2%, and 3.5%, respectively). OI group had less incisal segment crowding and more incisal segment spacing than the control group ( p  < 0.05). The need for orthodontic treatment of OI group according to Dental Health Component-Index of Orthodontic Treatment Need and Dental Aesthetic Index was 88.5% and 61.5%, respectively, while in the control group, it was 24.8% and 51.8%. The malocclusion in OI persons was associated with reverse overjet > 1 mm (OR = 13.3, 95% CI = 3.9-44.7, p  < .001), Angle Class III malocclusion (OR = 8.0, 95% CI = 2.0-30.8, p  = .003), and missing teeth (OR = 4.7, 95% CI = 1.0-22.4, p  = .049). In conclusion, there is the high probability of malocclusion in OI persons. Persons with OI require early orthodontic treatment because of significant correlation of OI disease with Angle Class III malocclusion, reverse overjet, and missing teeth.

  15. Occlusal features and need for orthodontic treatment in persons with osteogenesis imperfecta

    PubMed Central

    Binh, Ho Duy; Nguyen, Khac Minh; Maasalu, Katre; Kõks, Sulev; Märtson, Aare; Saag, Mare; Jagomägi, Triin

    2017-01-01

    Abstract The aim of the study was to (a) analyse dental occlusion and determine the need for orthodontic treatment of persons with osteogenesis imperfecta (OI) in comparison with the healthy population and (b) investigate the associations between OI and malocclusion. A case‐control study included 26 OI persons and 400 healthy participants (control group). Occlusal features and the need for orthodontic treatment were defined according to Dental Health Component‐Index of Orthodontic Treatment Need and Dental Aesthetic Index. Results showed that Angle Class I, II, and III relationship was found in 23.1%, 3.8%, and 73.1% of OI group, and in the control group, it was 67%, 17.5%, and 15.5%, respectively. OI group had significantly higher prevalence of reverse overjet >1 mm (76.9%), missing teeth (42.3%), posterior crossbite (34.6%), and open bite >2 mm (19.2%) compared to the control group (8.5%, 2.2%, 6.2%, and 3.5%, respectively). OI group had less incisal segment crowding and more incisal segment spacing than the control group (p < 0.05). The need for orthodontic treatment of OI group according to Dental Health Component‐Index of Orthodontic Treatment Need and Dental Aesthetic Index was 88.5% and 61.5%, respectively, while in the control group, it was 24.8% and 51.8%. The malocclusion in OI persons was associated with reverse overjet > 1 mm (OR = 13.3, 95% CI = 3.9–44.7, p < .001), Angle Class III malocclusion (OR = 8.0, 95% CI = 2.0–30.8, p = .003), and missing teeth (OR = 4.7, 95% CI = 1.0–22.4, p = .049). In conclusion, there is the high probability of malocclusion in OI persons. Persons with OI require early orthodontic treatment because of significant correlation of OI disease with Angle Class III malocclusion, reverse overjet, and missing teeth. PMID:29744175

  16. Hypermineralization and High Osteocyte Lacunar Density in Osteogenesis Imperfecta Type V Bone Indicate Exuberant Primary Bone Formation.

    PubMed

    Blouin, Stéphane; Fratzl-Zelman, Nadja; Glorieux, Francis H; Roschger, Paul; Klaushofer, Klaus; Marini, Joan C; Rauch, Frank

    2017-09-01

    In contrast to "classical" forms of osteogenesis imperfecta (OI) types I to IV, caused by a mutation in COL1A1/A2, OI type V is due to a gain-of-function mutation in the IFITM5 gene, encoding the interferon-induced transmembrane protein 5, or bone-restricted interferon-inducible transmembrane (IFITM)-like protein (BRIL). Its phenotype distinctly differs from OI types I to IV by absence of blue sclerae and dentinogenesis imperfecta, by the occurrence of ossification disorders such as hyperplastic callus and forearm interosseous membrane ossification. Little is known about the impact of the mutation on bone tissue/material level in untreated and bisphosphonate-treated patients. Therefore, investigations of transiliac bone biopsy samples from a cohort of OI type V children (n = 15, 8.7 ± 4 years old) untreated at baseline and a subset (n = 8) after pamidronate treatment (2.6 years in average) were performed. Quantitative backscattered electron imaging (qBEI) was used to determine bone mineralization density distribution (BMDD) as well as osteocyte lacunar density. The BMDD of type V OI bone was distinctly shifted toward a higher degree of mineralization. The most frequently occurring calcium concentration (CaPeak) in cortical (Ct) and cancellous (Cn) bone was markedly increased (+11.5%, +10.4%, respectively, p < 0.0001) compared to healthy reference values. Treatment with pamidronate resulted in only a slight enhancement of mineralization. The osteocyte lacunar density derived from sectioned bone area was elevated in OI type V Ct and Cn bone (+171%, p < 0.0001; +183.3%, p < 0.01; respectively) versus controls. The high osteocyte density was associated with an overall immature primary bone structure ("mesh-like") as visualized by polarized light microscopy. In summary, the bone material from OI type V patients is hypermineralized, similar to other forms of OI. The elevated osteocyte lacunar density in connection with lack of regular bone

  17. Geometry reconstruction method for patient-specific finite element models for the assessment of tibia fracture risk in osteogenesis imperfecta.

    PubMed

    Caouette, Christiane; Ikin, Nicole; Villemure, Isabelle; Arnoux, Pierre-Jean; Rauch, Frank; Aubin, Carl-Éric

    2017-04-01

    Lower limb deformation in children with osteogenesis imperfecta (OI) impairs ambulation and may lead to fracture. Corrective surgery is based on empirical assessment criteria. The objective was to develop a reconstruction method of the tibia for OI patients that could be used as input of a comprehensive finite element model to assess fracture risks. Data were obtained from three children with OI and tibia deformities. Four pQCT scans were registered to biplanar radiographs, and a template mesh was deformed to fit the bone outline. Cortical bone thickness was computed. Sensitivity of the model to missing slices of pQCT was assessed by calculating maximal von Mises stress for a vertical hopping load case. Sensitivity of the model to ±5 % of cortical thickness measurements was assessed by calculating loads at fracture. Difference between the mesh contour and bone outline on the radiographs was below 1 mm. Removal of one pQCT slice increased maximal von Mises stress by up to 10 %. Simulated ±5 % variation of cortical bone thickness leads to variations of up to 4.1 % on predicted fracture loads. Using clinically available tibia imaging from children with OI, the developed reconstruction method allowed the building of patient-specific finite element models.

  18. Targeting the LRP5 pathway improves bone properties in a mouse model of Osteogenesis Imperfecta

    PubMed Central

    Jacobsen, Christina M.; Barber, Lauren A.; Ayturk, Ugur M.; Roberts, Heather J.; Deal, Lauren E.; Schwartz, Marissa A.; Weis, MaryAnn; Eyre, David; Zurakowski, David; Robling, Alexander G.; Warman, Matthew L.

    2014-01-01

    The cell surface receptor low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass and bone strength. Heterozygous missense mutations in LRP5 cause autosomal dominant high bone mass (HBM) in humans by reducing binding to LRP5 by endogenous inhibitors, such as sclerostin (SOST). Mice heterozygous for a knockin allele (Lrp5p.A214V) that is orthologous to a human HBM-causing mutation have increased bone mass and strength. Osteogenesis Imperfecta (OI) is a skeletal fragility disorder predominantly caused by mutations that affect type I collagen. We tested whether the LRP5 pathway can be used to improve bone properties in animal models of OI. First, we mated Lrp5+/p.A214V mice to Col1a2+/p.G610C mice, which model human type IV OI. We found that Col1a2+/p.G610C;Lrp5+/p.A214V offspring had significantly increased bone mass and strength compared to Col1a2+/p.G610C;Lrp5+/+ littermates. The improved bone properties were not due to altered mRNA expression of type I collagen or its chaperones, nor were they due to changes in mutant type I collagen secretion. Second, we treated Col1a2+/p.G610C mice with a monoclonal antibody that inhibits sclerostin activity (Scl-Ab). We found that antibody treated mice had significantly increased bone mass and strength compared to vehicle treated littermates. These findings indicate increasing bone formation, even without altering bone collagen composition, may benefit patients with OI. PMID:24677211

  19. Targeting the LRP5 pathway improves bone properties in a mouse model of osteogenesis imperfecta.

    PubMed

    Jacobsen, Christina M; Barber, Lauren A; Ayturk, Ugur M; Roberts, Heather J; Deal, Lauren E; Schwartz, Marissa A; Weis, MaryAnn; Eyre, David; Zurakowski, David; Robling, Alexander G; Warman, Matthew L

    2014-10-01

    The cell surface receptor low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass and bone strength. Heterozygous missense mutations in LRP5 cause autosomal dominant high bone mass (HBM) in humans by reducing binding to LRP5 by endogenous inhibitors, such as sclerostin (SOST). Mice heterozygous for a knockin allele (Lrp5(p.A214V) ) that is orthologous to a human HBM-causing mutation have increased bone mass and strength. Osteogenesis imperfecta (OI) is a skeletal fragility disorder predominantly caused by mutations that affect type I collagen. We tested whether the LRP5 pathway can be used to improve bone properties in animal models of OI. First, we mated Lrp5(+/p.A214V) mice to Col1a2(+/p.G610C) mice, which model human type IV OI. We found that Col1a2(+/p.G610C) ;Lrp5(+/p.A214V) offspring had significantly increased bone mass and strength compared to Col1a2(+/p.G610C) ;Lrp5(+/+) littermates. The improved bone properties were not a result of altered mRNA expression of type I collagen or its chaperones, nor were they due to changes in mutant type I collagen secretion. Second, we treated Col1a2(+/p.G610C) mice with a monoclonal antibody that inhibits sclerostin activity (Scl-Ab). We found that antibody-treated mice had significantly increased bone mass and strength compared to vehicle-treated littermates. These findings indicate increasing bone formation, even without altering bone collagen composition, may benefit patients with OI. © 2014 American Society for Bone and Mineral Research.

  20. Fracture during intravenous bisphosphonate treatment in a child with osteogenesis imperfecta: an argument for a more frequent, low-dose treatment regimen.

    PubMed

    Biggin, Andrew; Briody, Julie N; Ormshaw, Elizabeth; Wong, Karen K Y; Bennetts, Bruce H; Munns, Craig F

    2014-01-01

    Intravenous bisphosphonate therapy is the mainstay of medical treatment in osteogenesis imperfecta (OI) and has been shown to increase bone mass, decrease bone pain, improve mobility, and reduce the incidence of fractures. Sclerotic metaphyseal lines parallel to the growth plate are seen on long bone radiographs following cyclical intravenous therapy. These areas create stress risers within the bone that may act as foci for subsequent fractures as exemplified in this clinical case. An 8-year-old girl with OI sustained a distal radial fracture following 3 years of treatment with 6-monthly intravenous zoledronate. Her diagnosis, response to treatment, and subsequent fracture at a sclerotic metaphyseal line is described. Peripheral quantitative computer tomography was used to characterise the presence of multiple stress risers at the distal forearm. Trabecular bone mineral density fluctuated from 34 to 126% compared to neighbouring 2-mm regions. There remain many unanswered questions about optimal bisphosphonate treatment regimens in children with OI. The formation of stress risers following intravenous bisphosphonate treatment raises the hypothesis that a more frequent and low-dose bisphosphonate regimen would provide more uniform dosing of bone in the growing child and reduce the likelihood of fractures compared to current treatment practices.

  1. Rapidly Growing Brtl/+ Mouse Model of Osteogenesis Imperfecta Improves Bone Mass and Strength with Sclerostin Antibody Treatment

    PubMed Central

    Sinder, Benjamin P.; Salemi, Joseph D.; Ominsky, Michael S.; Caird, Michelle S.; Marini, Joan C.; Kozloff, Kenneth M.

    2014-01-01

    Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk that presents most severely in children. Anti-resorptive bisphosphonates are frequently used to treat pediatric OI and controlled clinical trials have shown bisphosphonate therapy improves vertebral outcomes but has little benefit on long bone fracture rate. New treatments which increase bone mass throughout the pediatric OI skeleton would be beneficial. Sclerostin antibody (Scl-Ab) is a potential candidate anabolic therapy for pediatric OI and functions by stimulating osteoblastic bone formation via the canonical wnt signaling pathway. To explore the effect of Scl-Ab on the rapidly growing OI skeleton, we treated rapidly growing 3 week old Brtl/+ mice, harboring a typical heterozygous OI-causing Gly->Cys substitution on col1a1, for 5 weeks with Scl-Ab. Scl-Ab had anabolic effects in Brtl/+ and led to new cortical bone formation and increased cortical bone mass. This anabolic action resulted in improved mechanical strength to WT Veh levels without altering the underlying brittle nature of the material. While Scl-Ab was anabolic in trabecular bone of the distal femur in both genotypes, the effect was less strong in these rapidly growing Brtl/+ mice compared to WT. In conclusion, Scl-Ab was able to stimulate bone formation in a rapidly growing Brtl/+ murine model of OI, and represents a potential new therapy to improve bone mass and reduce fracture risk in pediatric OI. PMID:25445450

  2. Osteogenesis Imperfecta due to Mutations in Non-Collagenous Genes-Lessons in the Biology of Bone Formation

    PubMed Central

    Marini, Joan C.; Reich, Adi; Smith, Simone M.

    2014-01-01

    Purpose of Review Osteogenesis imperfecta (OI), or “brittle bone disease”, has mainly been considered a bone disorder caused by collagen mutations. Within the last decade, however, a surge of genetic discoveries has created a new paradigm for OI as a collagen-related disorder, where autosomal dominant type I collagen defects cause most cases, while rare, mostly recessive forms are due to defects in genes whose protein products interact with collagen protein. This review is both timely and relevant in outlining the genesis, development and future of this paradigm shift in the understanding of OI. Recent Findings BRIL and PEDF defects cause types V and VI OI via defective bone mineralization, while defects in CRTAP, P3H1 and CyPB cause types VII-IX via defective collagen post-translational modification. Hsp47 and FKBP65 defects cause types X and XI OI via aberrant collagen crosslinking, folding and chaperoning, while defects in SP7, WNT1, TRIC-B and OASIS disrupt osteoblast development. Finally, absence of the type I collagen C-propeptidase BMP1 causes type XII OI due to altered collagen maturation/processing. Summary Identification of these multiple causative defects has provided crucial information for accurate genetic counseling, inspired a recently proposed functional grouping of OI types by shared mechanism to simplify current nosology, and should prod investigations into common pathways in OI. Such investigations could yield critical information on cellular and bone tissue mechanisms and translate to new mechanistic insight into clinical therapies for patients. PMID:25007323

  3. A population-based study of demographical variables and ability to perform activities of daily living in adults with osteogenesis imperfecta.

    PubMed

    Wekre, Lena Lande; Frøslie, Kathrine Frey; Haugen, Lena; Falch, Jan A

    2010-01-01

    To describe demographical variables, and to study functional ability to perform activities of daily life in adults with osteogenesis imperfecta (OI). Population-based study. Ninety-seven patients aged 25 years and older, 41 men and 56 women, were included. For the demographical variables, comparison was made to a matched control-group (475 persons) from the Norwegian general population. Structured interviews concerning social conditions, employment and educational issues and clinical examination were performed. The Sunnaas Activities of Daily Living (ADL) Index was used to assess the ability to perform ADL. The prevalence of clinical manifestations according to Sillence was in accordance with other studies. Demographical variables showed that most adults with OI are married and have children. They had a higher educational level than the control group, but the employment rate was significantly lower. However, the rate of employed men was similar in both groups. Adult persons with OI achieved a high score when tested for ADL. Adults with OI are well educated compared with the general population, and most of them are employed. High scores when tested for ADL indicate that most of them are able to live their lives independently, even though there are some differences according to the severity of the disorder.

  4. Increased cartilage type II collagen degradation in patients with osteogenesis imperfecta used as a human model of bone type I collagen alterations.

    PubMed

    Rousseau, Jean-Charles; Chevrel, Guillaume; Schott, Anne-Marie; Garnero, Patrick

    2010-04-01

    We investigated whether cartilage degradation is altered in adult patients with mild osteogenesis imperfecta (OI) used as a human model of bone type I collagen-related osteoarthritis (OA). Sixty-four adult patients with OI (39% women, mean age+/-SD: 37+/-12 years) and 64 healthy age-matched controls (54% women, 39+/-7 years) were included. We also compared data in 87 patients with knee OA (73% women, 63+/-8 years, mean disease duration: 6 years) and 291 age-matched controls (80% women, 62+/-10 years). Urinary C-terminal cross-linked telopeptide of type II collagen (CTX-II), a marker of cartilage degradation, urinary helical peptide of type I collagen (Helix-I), a marker of bone resorption, and the urinary ratio between non-isomerised/isomerised (alpha/beta CTX-I) type I collagen C-telopeptide, a marker of type I collagen maturation, were measured. Patients with OI had CTX-II levels similar to those of subjects with knee OA (p=0.89; mean+/-SEM; 460+/-57 ng/mmol Cr for OI group and 547+/-32 ng/mmol Cr for OA group) and significantly higher than both young (144+/-7.8 ng/mmol Cr, p<0.0001) and old controls (247+/-7 ng/mmol Cr, p<0.0001). In patients with OI, increased Helix-I (p<0.0001) and alpha/beta CTX-I (p=0.0067) were independently associated with increased CTX-II and together explained 26% of its variance (p< 0.0001). In patients with knee OA, increased levels of alpha/beta CTX-I ratio were also associated with higher CTX-II levels. Adult patients with OI or knee OA are characterized by increased cartilage type II collagen degradation, which is associated with increased type I collagen degradation for OI and lower type I collagen maturation for both OI and OA. These data suggest that both quantitative and qualitative alterations of bone type I collagen metabolism are involved in increased cartilage degradation in patients with OI or knee OA. Copyright 2009 Elsevier Inc. All rights reserved.

  5. Novel mutation of FKBP10 in a pediatric patient with osteogenesis imperfecta type XI identified by clinical exome sequencing

    PubMed Central

    Velasco, Harvy Mauricio; Morales, Jessica L

    2017-01-01

    Osteogenesis imperfecta (OI) is a hereditary disease characterized by bone fragility caused by mutations in the proteins that support the formation of the extracellular matrix in the bone. The diagnosis of OI begins with clinical suspicion, from phenotypic findings at birth, low-impact fractures during childhood or family history that may lead to it. However, the variability in the semiology of the disease does not allow establishing an early diagnosis in all cases, and unfortunately, specific clinical data provided by the literature only report 28 patients with OI type XI. This information is limited and heterogeneous, and therefore, detailed information on the natural history of this disease is not yet available. This paper reports the case of a male patient who, despite undergoing multidisciplinary management, did not have a diagnosis for a long period of time, and could only be given one with the use of whole-exome sequencing. The use of the next-generation sequencing in patients with ultrarare genetic diseases, including skeletal dysplasias, should be justified when clear clinical criteria and an improvement in the quality of life of the patients and their families are intended while reducing economic and time costs. Thus, this case report corresponds to the 29th patient affected with OI type XI, and the 18th mutation in FKBP10, causative of this pathology. PMID:29158687

  6. Mutational characterization of the P3H1/CRTAP/CypB complex in recessive osteogenesis imperfecta.

    PubMed

    Barbirato, C; Trancozo, M; Almeida, M G; Almeida, L S; Santos, T O; Duarte, J C G; Rebouças, M R G O; Sipolatti, V; Nunes, V R R; Paula, F

    2015-12-03

    Osteogenesis imperfecta (OI) is a genetic disease characterized by bone deformities and fractures. Most cases are caused by autosomal dominant mutations in the type I collagen genes COL1A1 and COL1A2; however, an increasing number of recessive mutations in other genes have been reported. The LEPRE1, CRTAP, and PPIB genes encode proteins that form the P3H1/CRTAP/CypB complex, which is responsible for posttranslational modifications of type I collagen. In general, mutations in these genes lead to severe and lethal phenotypes of recessive OI. Here, we describe sixteen genetic variations detected in LEPRE1, CRTAP, and PPIB from 25 Brazilian patients with OI. Samples were screened for mutations on single-strand conformation polymorphism gels and variants were determined by automated sequencing. Seven variants were detected in patients but were absent in control samples. LEPRE1 contained the highest number of variants, including the previously described West African allele (c.1080+1G>T) found in one patient with severe OI as well as a previously undescribed p.Trp675Leu change that is predicted to be disease causing. In CRTAP, one patient carried the c.558A>G homozygous mutation, predicted as disease causing through alteration of a splice site. Genetic variations detected in the PPIB gene are probably not pathogenic due to their localization or because of their synonymous effect. This study enhances our knowledge about the mutational pattern of the LEPRE1, CRTAP, and PPIB genes. In addition, the results strengthen the proposition that LEPRE1 should be the first gene analyzed in mutation detection studies in patients with recessive OI.

  7. Pre- and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: a two-center experience.

    PubMed

    Götherström, Cecilia; Westgren, Magnus; Shaw, S W Steven; Aström, Eva; Biswas, Arijit; Byers, Peter H; Mattar, Citra N Z; Graham, Gail E; Taslimi, Jahan; Ewald, Uwe; Fisk, Nicholas M; Yeoh, Allen E J; Lin, Ju-Li; Cheng, Po-Jen; Choolani, Mahesh; Le Blanc, Katarina; Chan, Jerry K Y

    2014-02-01

    Osteogenesis imperfecta (OI) can be recognized prenatally with ultrasound. Transplantation of mesenchymal stem cells (MSCs) has the potential to ameliorate skeletal damage. We report the clinical course of two patients with OI who received prenatal human fetal MSC (hfMSC) transplantation and postnatal boosting with same-donor MSCs. We have previously reported on prenatal transplantation for OI type III. This patient was retransplanted with 2.8 × 10(6) same-donor MSCs per kilogram at 8 years of age, resulting in low-level engraftment in bone and improved linear growth, mobility, and fracture incidence. An infant with an identical mutation who did not receive MSC therapy succumbed at 5 months despite postnatal bisphosphonate therapy. A second fetus with OI type IV was also transplanted with 30 × 10(6) hfMSCs per kilogram at 31 weeks of gestation and did not suffer any new fractures for the remainder of the pregnancy or during infancy. The patient followed her normal growth velocity until 13 months of age, at which time longitudinal length plateaued. A postnatal infusion of 10 × 10(6) MSCs per kilogram from the same donor was performed at 19 months of age, resulting in resumption of her growth trajectory. Neither patient demonstrated alloreactivity toward the donor hfMSCs or manifested any evidence of toxicities after transplantation. Our findings suggest that prenatal transplantation of allogeneic hfMSCs in OI appears safe and is of likely clinical benefit and that retransplantation with same-donor cells is feasible. However, the limited experience to date means that it is not possible to be conclusive and that further studies are required.

  8. Development of a High-Throughput Resequencing Array for the Detection of Pathogenic Mutations in Osteogenesis Imperfecta

    PubMed Central

    Wang, Yao; Cui, Yazhou; Zhou, Xiaoyan; Han, Jinxiang

    2015-01-01

    Objective Osteogenesis imperfecta (OI) is a rare inherited skeletal disease, characterized by bone fragility and low bone density. The mutations in this disorder have been widely reported to be on various exonal hotspots of the candidate genes, including COL1A1, COL1A2, CRTAP, LEPRE1, and FKBP10, thus creating a great demand for precise genetic tests. However, large genome sizes make the process daunting and the analyses, inefficient and expensive. Therefore, we aimed at developing a fast, accurate, efficient, and cheaper sequencing platform for OI diagnosis; and to this end, use of an advanced array-based technique was proposed. Method A CustomSeq Affymetrix Resequencing Array was established for high-throughput sequencing of five genes simultaneously. Genomic DNA extraction from 13 OI patients and 85 normal controls and amplification using long-range PCR (LR-PCR) were followed by DNA fragmentation and chip hybridization, according to standard Affymetrix protocols. Hybridization signals were determined using GeneChip Sequence Analysis Software (GSEQ). To examine the feasibility, the outcome from new resequencing approach was validated by conventional capillary sequencing method. Result Overall call rates using resequencing array was 96–98% and the agreement between microarray and capillary sequencing was 99.99%. 11 out of 13 OI patients with pathogenic mutations were successfully detected by the chip analysis without adjustment, and one mutation could also be identified using manual visual inspection. Conclusion A high-throughput resequencing array was developed that detects the disease-associated mutations in OI, providing a potential tool to facilitate large-scale genetic screening for OI patients. Through this method, a novel mutation was also found. PMID:25742658

  9. Surgical treatment in Osteogenesis Imperfecta - 10 years experience.

    PubMed

    Georgescu, I; Vlad, C; Gavriliu, T Ş; Dan, S; Pârvan, A A

    2013-06-15

    Osteogenesis imperfecta (OI) is a very rare disease compared to other afflictions, running the risk of social isolation for children and their parents, due to the problems specific to the disease. All the social, psychological and physical disadvantages must be removed or at least mitigated, all within the society's limited resources. In Romania, this situation has led in the last couple of years to the selection of a number of extremely severe cases, which could not be solved by orthopedic and classic surgical treatment methods. These patients exhibit gracile long bones, which are distorted, often with cystic degeneration at the level of the extremities, pseudarthroses, limb length discrepancies, most of them being unable to walk, being condemned to sitting in a wheelchair. This paper deals with the experience of the Orthopedics Department of "Maria Sklodowska Curie" Clinical Emergency Hospital for Children, in Bucharest, in the field of surgical treatment for moderate and severe forms of OI, within the time frame of May 2002-May 2012. For the first time in Romania, on May 20, 2002, the team led by Professor Gh. Burnei, MD, has implanted telescopic rods in the femur and tibia of a patient with OI. One of the most important themes, of great interest in the orthopedic surgery, is the osteoarticular regularization and reconstruction in severe forms of OI, which should allow the patients to stand and walk. These cases are a challenge for the surgeon, who is in the position of applying new, complex procedures, or perfecting, modifying and adapting techniques that have already been established. The aim of the surgical treatment is the increase of the quality of life of these children and adolescents and of their social integration. In the above-mentioned period, from the OI patients who are in the evidence of our clinic, 32 were operated on, totaling 81 surgeries. Out of these, 28 patients, aged 2-27 years, have benefited from reconstructive surgery of the pelvic limbs

  10. Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment.

    PubMed

    Sinder, Benjamin P; Salemi, Joseph D; Ominsky, Michael S; Caird, Michelle S; Marini, Joan C; Kozloff, Kenneth M

    2015-02-01

    Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk that presents most severely in children. Anti-resorptive bisphosphonates are frequently used to treat pediatric OI and controlled clinical trials have shown that bisphosphonate therapy improves vertebral outcomes but has little benefit on long bone fracture rate. New treatments which increase bone mass throughout the pediatric OI skeleton would be beneficial. Sclerostin antibody (Scl-Ab) is a potential candidate anabolic therapy for pediatric OI and functions by stimulating osteoblastic bone formation via the canonical Wnt signaling pathway. To explore the effect of Scl-Ab on the rapidly growing OI skeleton, we treated rapidly growing 3week old Brtl/+ mice, harboring a typical heterozygous OI-causing Gly→Cys substitution on col1a1, for 5weeks with Scl-Ab. Scl-Ab had anabolic effects in Brtl/+ and led to new cortical bone formation and increased cortical bone mass. This anabolic action resulted in improved mechanical strength to WT Veh levels without altering the underlying brittle nature of the material. While Scl-Ab was anabolic in trabecular bone of the distal femur in both genotypes, the effect was less strong in these rapidly growing Brtl/+ mice compared to WT. In conclusion, Scl-Ab was able to stimulate bone formation in a rapidly growing Brtl/+ murine model of OI, and represents a potential new therapy to improve bone mass and reduce fracture risk in pediatric OI. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Phenotypic Spectrum in Osteogenesis Imperfecta Due to Mutations in TMEM38B: Unraveling a Complex Cellular Defect.

    PubMed

    Webb, Emma A; Balasubramanian, Meena; Fratzl-Zelman, Nadja; Cabral, Wayne A; Titheradge, Hannah; Alsaedi, Atif; Saraff, Vrinda; Vogt, Julie; Cole, Trevor; Stewart, Susan; Crabtree, Nicola J; Sargent, Brandi M; Gamsjaeger, Sonja; Paschalis, Eleftherios P; Roschger, Paul; Klaushofer, Klaus; Shaw, Nick J; Marini, Joan C; Högler, Wolfgang

    2017-06-01

    Recessive mutations in TMEM38B cause type XIV osteogenesis imperfecta (OI) by dysregulating intracellular calcium flux. Clinical and bone material phenotype description and osteoblast differentiation studies. Natural history study in pediatric research centers. Eight patients with type XIV OI. Clinical examinations included bone mineral density, radiographs, echocardiography, and muscle biopsy. Bone biopsy samples (n = 3) were analyzed using histomorphometry, quantitative backscattered electron microscopy, and Raman microspectroscopy. Cellular differentiation studies were performed on proband and control osteoblasts and normal murine osteoclasts. Type XIV OI clinical phenotype ranges from asymptomatic to severe. Previously unreported features include vertebral fractures, periosteal cloaking, coxa vara, and extraskeletal features (muscular hypotonia, cardiac abnormalities). Proband lumbar spine bone density z score was reduced [median -3.3 (range -4.77 to +0.1; n = 7)] and increased by +1.7 (1.17 to 3.0; n = 3) following bisphosphonate therapy. TMEM38B mutant bone has reduced trabecular bone volume, osteoblast, and particularly osteoclast numbers, with >80% reduction in bone resorption. Bone matrix mineralization is normal and nanoporosity low. We demonstrate a complex osteoblast differentiation defect with decreased expression of early markers and increased expression of late and mineralization-related markers. Predominance of trimeric intracellular cation channel type B over type A expression in murine osteoclasts supports an intrinsic osteoclast defect underlying low bone turnover. OI type XIV has a bone histology, matrix mineralization, and osteoblast differentiation pattern that is distinct from OI with collagen defects. Probands are responsive to bisphosphonates and some show muscular and cardiovascular features possibly related to intracellular calcium flux abnormalities. Copyright © 2017 Endocrine Society

  12. Nanoscale Morphology of Type I Collagen is Altered in the Brtl Mouse Model of Osteogenesis Imperfecta

    PubMed Central

    Wallace, Joseph M.; Orr, Bradford G.; Marini, Joan C.; Banaszak Holl, Mark M.

    2010-01-01

    Bone has a complex hierarchical structure that has evolved to serve structural and metabolic roles in the body. Due to the complexity of bone structure and the number of diseases which affect the ultrastructural constituents of bone, it is important to develop quantitative methods to assess bone nanoscale properties. Autosomal dominant Osteogenesis Imperfecta results predominantly from glycine substitutions (80%) and splice site mutations (20%) in the genes encoding the α1 or α2 chains of Type I collagen. Genotype-phenotype correlations using over 830 collagen mutations have revealed that lethal mutations are located in regions crucial for collagen-ligand binding in the matrix. However, few of these correlations have been extended to collagen structure in bone. Here, an atomic force microscopy-based approach was used to image and quantitatively analyze the D-periodic spacing of Type I collagen fibrils in femora from heterozygous (Brtl/+) mice (α1(I)G349C), compared to wild type (WT) littermates. This disease system has a well-defined change in the col1α1 allele, leading to a well characterized alteration in collagen protein structure, which are directly related to altered Type I collagen nanoscale morphology, as measured by the D-periodic spacing. In Brtl/+ bone, the D-periodic spacing shows significantly greater variability on average and along the length of the bone compared to WT, although the average spacing was unchanged. Brtl/+ bone also had a significant difference in the population distribution of collagen D-period spacings. These changes may be due to the mutant collagen structure, or to the heterogeneity of collagen monomers in the Brtl/+ matrix. These observations at the nanoscale level provide insight into the structural basis for changes present in bone composition, geometry and mechanical integrity in Brtl/+ bones. Further studies are necessary to link these morphological observations to nanoscale mechanical integrity. PMID:20696252

  13. Sclerostin Antibody Treatment Improves the Bone Phenotype of Crtap(-/-) Mice, a Model of Recessive Osteogenesis Imperfecta.

    PubMed

    Grafe, Ingo; Alexander, Stefanie; Yang, Tao; Lietman, Caressa; Homan, Erica P; Munivez, Elda; Chen, Yuqing; Jiang, Ming Ming; Bertin, Terry; Dawson, Brian; Asuncion, Franklin; Ke, Hua Zhu; Ominsky, Michael S; Lee, Brendan

    2016-05-01

    Osteogenesis imperfecta (OI) is characterized by low bone mass, poor bone quality, and fractures. Standard treatment for OI patients is limited to bisphosphonates, which only incompletely correct the bone phenotype, and seem to be less effective in adults. Sclerostin-neutralizing antibodies (Scl-Ab) have been shown to be beneficial in animal models of osteoporosis, and dominant OI resulting from mutations in the genes encoding type I collagen. However, Scl-Ab treatment has not been studied in models of recessive OI. Cartilage-associated protein (CRTAP) is involved in posttranslational type I collagen modification, and its loss of function results in recessive OI. In this study, we treated 1-week-old and 6-week-old Crtap(-/-) mice with Scl-Ab for 6 weeks (25 mg/kg, s.c., twice per week), to determine the effects on the bone phenotype in models of "pediatric" and "young adult" recessive OI. Vehicle-treated Crtap(-/-) and wild-type (WT) mice served as controls. Compared with control Crtap(-/-) mice, micro-computed tomography (μCT) analyses showed significant increases in bone volume and improved trabecular microarchitecture in Scl-Ab-treated Crtap(-/-) mice in both age cohorts, in both vertebrae and femurs. Additionally, Scl-Ab improved femoral cortical parameters in both age cohorts. Biomechanical testing showed that Scl-Ab improved parameters of whole-bone strength in Crtap(-/-) mice, with more robust effects in the week 6 to 12 cohort, but did not affect the increased bone brittleness. Additionally, Scl-Ab normalized the increased osteoclast numbers, stimulated bone formation rate (week 6 to 12 cohort only), but did not affect osteocyte density. Overall, our findings suggest that Scl-Ab treatment may be beneficial in the treatment of recessive OI caused by defects in collagen posttranslational modification. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.

  14. Combination sclerostin antibody and zoledronic acid treatment outperforms either treatment alone in a mouse model of osteogenesis imperfecta.

    PubMed

    Little, David G; Peacock, Lauren; Mikulec, Kathy; Kneissel, Michaela; Kramer, Ina; Cheng, Tegan L; Schindeler, Aaron; Munns, Craig

    2017-08-01

    In this study, we examined the therapeutic potential of anti-Sclerostin Antibody (Scl-Ab) and bisphosphonate treatments for the bone fragility disorder Osteogenesis Imperfecta (OI). Mice with the Amish OI mutation (Col1a2 G610C mice) and control wild type littermates (WT) were treated from week 5 to week 9 of life with (1) saline (control), (2) zoledronic acid given 0.025mg/kg s.c. weekly (ZA), (3) Scl-Ab given 50mg/kg IV weekly (Scl-Ab), or (4) a combination of both (Scl-Ab/ZA). Functional outcomes were prioritized and included bone mineral density (BMD), bone microarchitecture, long bone bending strength, and vertebral compression strength. By dual-energy absorptiometry, Scl-Ab treatment alone had no effect on tibial BMD, while ZA and Scl-Ab/ZA significantly enhanced BMD by week 4 (+16% and +27% respectively, P<0.05). Scl-Ab/ZA treatment also led to increases in cortical thickness and tissue mineral density, and restored the tibial 4-point bending strength to that of control WT mice. In the spine, all treatments increased compression strength over controls, but only the combined group reached the strength of WT controls. Scl-Ab showed greater anabolic effects in the trabecular bone than in cortical bone. In summary, the Scl-Ab/ZA intervention was superior to either treatment alone in this OI mouse model, however further studies are required to establish its efficacy in other preclinical and clinical scenarios. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  15. Combined treatment with laser sintering and zirconium: a case report of dentinogenesis imperfecta.

    PubMed

    Ayyildiz, Simel; Sahin, Cem; Akgün, Ozlem Marti; Basak, Feridun

    2013-01-01

    Osteogenesis imperfecta (OI) is a heterogeneous disorder of connective tissue that manifests mainly as skeletal deformity and bone fragility. Dentinogenesis imperfecta (DI) is sometimes an accompanying symptom of OI. The treatment protocol of these patients varies according to the clinical appearance. The case report here describes complete mouth rehabilitation of an 18-year-old male patient with OI and DI using direct metal laser sintering (DMLS) technique of metal-ceramic restorations and zirconium all-ceramic crowns. DMLS is an additive metal fabrication technology that is simpler, more precise, and healthier than conventional manufacturing and can be remarkably cost effective. Moreover, the technique affords highly accurate production of fixed partial dentures with ideal marginal fit and excellent mechanical properties. The patient was treated using a multidisciplinary strategy that focused on controlling caries, protecting teeth from further wear, obtaining an appropriate vertical dimension, and providing soft tissue support to return the facial profile to a normal appearance using new technology in the field of prosthetics.

  16. Combined Treatment with Laser Sintering and Zirconium: A Case Report of Dentinogenesis Imperfecta

    PubMed Central

    Sahin, Cem; Akgün, Özlem Marti; Basak, Feridun

    2013-01-01

    Osteogenesis imperfecta (OI) is a heterogeneous disorder of connective tissue that manifests mainly as skeletal deformity and bone fragility. Dentinogenesis imperfecta (DI) is sometimes an accompanying symptom of OI. The treatment protocol of these patients varies according to the clinical appearance. The case report here describes complete mouth rehabilitation of an 18-year-old male patient with OI and DI using direct metal laser sintering (DMLS) technique of metal-ceramic restorations and zirconium all-ceramic crowns. DMLS is an additive metal fabrication technology that is simpler, more precise, and healthier than conventional manufacturing and can be remarkably cost effective. Moreover, the technique affords highly accurate production of fixed partial dentures with ideal marginal fit and excellent mechanical properties. The patient was treated using a multidisciplinary strategy that focused on controlling caries, protecting teeth from further wear, obtaining an appropriate vertical dimension, and providing soft tissue support to return the facial profile to a normal appearance using new technology in the field of prosthetics. PMID:23533828

  17. Embryonic ablation of osteoblast Smad4 interrupts matrix synthesis in response to canonical Wnt signaling and causes an osteogenesis-imperfecta-like phenotype

    PubMed Central

    Salazar, Valerie S.; Zarkadis, Nicholas; Huang, Lisa; Norris, Jin; Grimston, Susan K.; Mbalaviele, Gabriel; Civitelli, Roberto

    2013-01-01

    Summary To examine interactions between bone morphogenic protein (BMP) and canonical Wnt signaling during skeletal growth, we ablated Smad4, a key component of the TGF-β–BMP pathway, in Osx1+ cells in mice. We show that loss of Smad4 causes stunted growth, spontaneous fractures and a combination of features seen in osteogenesis imperfecta, cleidocranial dysplasia and Wnt-deficiency syndromes. Bones of Smad4 mutant mice exhibited markers of fully differentiated osteoblasts but lacked multiple collagen-processing enzymes, including lysyl oxidase (Lox), a BMP2-responsive gene regulated by Smad4 and Runx2. Accordingly, the collagen matrix in Smad4 mutants was disorganized, but also hypomineralized. Primary osteoblasts from these mutants did not mineralize in vitro in the presence of BMP2 or Wnt3a, and Smad4 mutant mice failed to accrue new bone following systemic inhibition of the Dickkopf homolog Dkk1. Consistent with impaired biological responses to canonical Wnt, ablation of Smad4 causes cleavage of β-catenin and depletion of the low density lipoprotein receptor Lrp5, subsequent to increased caspase-3 activity and apoptosis. In summary, Smad4 regulates maturation of skeletal collagen and osteoblast survival, and is required for matrix-forming responses to both BMP2 and canonical Wnt. PMID:24006258

  18. A rare association--amelogenesis imperfecta, platispondyly and bicytopenia: a case report.

    PubMed

    Laouina, Samir; El Alaoui, Siham Chafai; Amezian, Rachida; Al Bouzidi, Abderrahmane; Sefiani, Abdelaziz; El Alloussi, Mustapha

    2015-10-28

    Amelogenesis imperfecta is an inherited disease characterized by generalized structural abnormalities of the enamel on all teeth, including both primary and permanent dentition. To the best of our knowledge, this is the first case report of a rare association of amelogenesis imperfecta, platyspondyly, and bicytopenia. A 5-year-old Moroccan boy was examined in the Centre for Dental Consultation and Treatment, Faculty of Dentistry, Rabat. He was a child of consanguineous parents (first degree). The child failed to thrive (-4 standard deviation score) and displayed delayed overall development. A dental examination revealed a hypoplastic amelogenesis imperfecta with a bacterial biofilm deposit on tooth surfaces. A complete blood count revealed bicytopenia (normocytic-normochromic anemia with thrombocytopenia). A radiographic examination of the spinal column showed a deviation of the spine in the frontal plane in the form of thoracolumbar scoliosis. The interpedicular distance was not expanded; but a mild platyspondyly exists, especially pronounced in T11 and T12. No other family members presented amelogenesis imperfecta, bicytopenia, or platyspondyly. The consanguineous marriage suggested an autosomal recessive mode of inheritance. Further studies are necessary to clarify the genetic defect producing this syndrome, and the symptomatic associations of amelogenesis imperfecta, platyspondyly and bicytopenia.

  19. Splicing defect in FKBP10 gene causes autosomal recessive osteogenesis imperfecta disease: a case report.

    PubMed

    Maghami, Fatemeh; Tabei, Seyed Mohammad Bagher; Moravej, Hossein; Dastsooz, Hassan; Modarresi, Farzaneh; Silawi, Mohammad; Faghihi, Mohammad Ali

    2018-05-25

    Osteogenesis imperfecta (OI) is a group of connective tissue disorder caused by mutations of genes involved in the production of collagen and its supporting proteins. Although the majority of reported OI variants are in COL1A1 and COL1A2 genes, recent reports have shown problems in other non-collagenous genes involved in the post translational modifications, folding and transport, transcription and proliferation of osteoblasts, bone mineralization, and cell signaling. Up to now, 17 types of OI have been reported in which types I to IV are the most frequent cases with autosomal dominant pattern of inheritance. Here we report an 8- year- old boy with OI who has had multiple fractures since birth and now he is wheelchair-dependent. To identify genetic cause of OI in our patient, whole exome sequencing (WES) was carried out and it revealed a novel deleterious homozygote splice acceptor site mutation (c.1257-2A > G, IVS7-2A > G) in FKBP10 gene in the patient. Then, the identified mutation was confirmed using Sanger sequencing in the proband as homozygous and in his parents as heterozygous, indicating its autosomal recessive pattern of inheritance. In addition, we performed RT-PCR on RNA transcripts originated from skin fibroblast of the proband to analyze the functional effect of the mutation on splicing pattern of FKBP10 gene and it showed skipping of the exon 8 of this gene. Moreover, Real-Time PCR was carried out to quantify the expression level of FKBP10 in the proband and his family members in which it revealed nearly the full decrease in the level of FKBP10 expression in the proband and around 75% decrease in its level in the carriers of the mutation, strongly suggesting the pathogenicity of the mutation. Our study identified, for the first time, a private pathogenic splice site mutation in FKBP10 gene and further prove the involvement of this gene in the rare cases of autosomal recessive OI type XI with distinguished clinical manifestations.

  20. Surgical treatment in Osteogenesis Imperfecta – 10 years experience

    PubMed Central

    Georgescu, I; Vlad, C; Gavriliu, TȘ; Dan, S; Pârvan, AA

    2013-01-01

    Introduction. Osteogenesis imperfecta (OI) is a very rare disease compared to other afflictions, running the risk of social isolation for children and their parents, due to the problems specific to the disease. All the social, psychological and physical disadvantages must be removed or at least mitigated, all within the society’s limited resources. In Romania, this situation has led in the last couple of years to the selection of a number of extremely severe cases, which could not be solved by orthopedic and classic surgical treatment methods. These patients exhibit gracile long bones, which are distorted, often with cystic degeneration at the level of the extremities, pseudarthroses, limb length discrepancies, most of them being unable to walk, being condemned to sitting in a wheelchair. Aim. This paper deals with the experience of the Orthopedics Department of "Maria Sklodowska Curie" Clinical Emergency Hospital for Children, in Bucharest, in the field of surgical treatment for moderate and severe forms of OI, within the time frame of May 2002-May 2012. For the first time in Romania, on May 20, 2002, the team led by Professor Gh. Burnei, MD, has implanted telescopic rods in the femur and tibia of a patient with OI. One of the most important themes, of great interest in the orthopedic surgery, is the osteoarticular regularization and reconstruction in severe forms of OI, which should allow the patients to stand and walk. These cases are a challenge for the surgeon, who is in the position of applying new, complex procedures, or perfecting, modifying and adapting techniques that have already been established. The aim of the surgical treatment is the increase of the quality of life of these children and adolescents and of their social integration. Methods and results. In the above-mentioned period, from the OI patients who are in the evidence of our clinic, 32 were operated on, totaling 81 surgeries. Out of these, 28 patients, aged 2-27 years, have benefited from

  1. Mutations in COL1A1 and COL1A2 and dental aberrations in children and adolescents with osteogenesis imperfecta – A retrospective cohort study

    PubMed Central

    Dahllöf, Göran; Lindahl, Katarina; Kindmark, Andreas; Grigelioniene, Giedre; Åström, Eva; Malmgren, Barbro

    2017-01-01

    Osteogenesis imperfecta (OI) is a heterogeneous group of disorders of connective tissue, caused mainly by mutations in the collagen I genes (COL1A1 and COL1A2). Dentinogenesis imperfecta (DGI) and other dental aberrations are common features of OI. We investigated the association between collagen I mutations and DGI, taurodontism, and retention of permanent second molars in a retrospective cohort of 152 unrelated children and adolescents with OI. The clinical examination included radiographic evaluations. Teeth from 81 individuals were available for histopathological evaluation. COL1A1/2 mutations were found in 104 individuals by nucleotide sequencing. DGI was diagnosed clinically and radiographically in 29% of the individuals (44/152) and through isolated histological findings in another 19% (29/152). In the individuals with a COL1A1 mutation, 70% (7/10) of those with a glycine substitution located C-terminal of p.Gly305 exhibited DGI in both dentitions while no individual (0/7) with a mutation N-terminal of this point exhibited DGI in either dentition (p = 0.01). In the individuals with a COL1A2 mutation, 80% (8/10) of those with a glycine substitution located C terminal of p.Gly211 exhibited DGI in both dentitions while no individual (0/5) with a mutation N-terminal of this point (p = 0.007) exhibited DGI in either dentition. DGI was restricted to the deciduous dentition in 20 individuals. Seventeen had missense mutations where glycine to serine was the most prevalent substitution (53%). Taurodontism occurred in 18% and retention of permanent second molars in 31% of the adolescents. Dental aberrations are strongly associated with qualitatively changed collagen I. The varying expressivity of DGI is related to the location of the collagen I mutation. Genotype information may be helpful in identifying individuals with OI who have an increased risk of dental aberrations. PMID:28498836

  2. Single dose of bisphosphonate preserves gains in bone mass following cessation of sclerostin antibody in Brtl/+ osteogenesis imperfecta model.

    PubMed

    Perosky, Joseph E; Khoury, Basma M; Jenks, Terese N; Ward, Ferrous S; Cortright, Kai; Meyer, Bethany; Barton, David K; Sinder, Benjamin P; Marini, Joan C; Caird, Michelle S; Kozloff, Kenneth M

    2016-12-01

    Sclerostin antibody has demonstrated a bone-forming effect in pre-clinical models of osteogenesis imperfecta, where mutations in collagen or collagen-associated proteins often result in high bone fragility in pediatric patients. Cessation studies in osteoporotic patients have demonstrated that sclerostin antibody, like intermittent PTH treatment, requires sequential anti-resorptive therapy to preserve the anabolic effects in adult populations. However, the persistence of anabolic gains from either drug has not been explored clinically in OI, or in any animal model. To determine whether cessation of sclerostin antibody therapy in a growing OI skeleton requires sequential anti-resorptive treatment to preserve anabolic gains in bone mass, we treated 3week old Brtl/+ and wild type mice for 5weeks with SclAb, and then withdrew treatment for an additional 6weeks. Trabecular bone loss was evident following cessation, but was preserved in a dose-dependent manner with single administration of pamidronate at the time of cessation. In vivo longitudinal near-infrared optical imaging of cathepsin K activation in the proximal tibia suggests an anti-resorptive effect of both SclAb and pamidronate which is reversed after three weeks of cessation. Cortical bone was considerably less susceptible to cessation effects, and showed no structural or functional deficits in the absence of pamidronate during this cessation period. In conclusion, while SclAb induces a considerable anabolic gain in the rapidly growing Brtl/+ murine model of OI, a single sequential dose of antiresorptive drug is required to maintain bone mass at trabecular sites for 6weeks following cessation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Beneficial effects of intravenous pamidronate treatment in children with osteogenesis imperfecta under 24 months of age.

    PubMed

    Kusumi, Kirsten; Ayoob, Rose; Bowden, Sasigarn A; Ingraham, Susan; Mahan, John D

    2015-09-01

    Osteogenesis imperfecta (OI) is an inherited disorder characterized by bone fragility and low bone mass. Low bone density and fracture is a cause of morbidity. Limited data exists on bisphosphonate treatment in patients under 24 months of age. The objective of the study was to examine the safety and efficacy of pamidronate in children under 24 months with OI. To do so, we carried out a retrospective chart review and analysis of OI patients started on intravenous pamidronate under 24 months of age. Pamidronate was administered in three-day cycles. Growth, the number of fractures, and lumbar bone mineral densities were recorded both prior to and after treatment initiation. A total of 18 patients were reviewed. Five were classified as OI type I, seven were type III, and six were type IV. The mean age at treatment initiation was 12 months (range 11 days to 23 months). The mean lumbar z score at baseline was -3.63, which improved to -1.53 at one year (P < 0.01) and 0.79 (P < 0.01) at the end of the study. The fracture rate improved from 68 fractures in 209 months (0.32 fractures/patient-month) before treatment to 41 fractures in 1,248 months (0.03 fractures/patient-month) post-treatment (P < 0.05). Height standard deviation score (SDS) was conserved from baseline to end of study (-2.12 ± 2.45 vs. -2.45 ± 2.73) (P = 0.05) with an average follow-up of 73 months. The only adverse effect recorded in six infants was fever during the initial pamidronate infusion. Treatment with intravenous pamidronate is safe, significantly improves lumbar bone mineral density (L-BMD), and reduces fracture rates in young infants with OI while preserving linear growth.

  4. Pyridinium cross-links in bone of patients with osteogenesis imperfecta: evidence of a normal intrafibrillar collagen packing.

    PubMed

    Bank, R A; Tekoppele, J M; Janus, G J; Wassen, M H; Pruijs, H E; Van der Sluijs, H A; Sakkers, R J

    2000-07-01

    The brittleness of bone in patients with osteogenesis imperfecta (OI) has been attributed to an aberrant collagen network. However, the role of collagen in the loss of tissue integrity has not been well established. To gain an insight into the biochemistry and structure of the collagen network, the cross-links hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) and the level of triple helical hydroxylysine (Hyl) were determined in bone of OI patients (types I, III, and IV) as well as controls. The amount of triple helical Hyl was increased in all patients. LP levels in OI were not significantly different; in contrast, the amount of HP (and as a consequence the HP/LP ratio and the total pyridinoline level) was significantly increased. There was no relationship between the sum of pyridinolines and the amount of triple helical Hyl, indicating that lysyl hydroxylation of the triple helix and the telopeptides are under separate control. Cross-linking is the result of a specific three-dimensional arrangement of collagens within the fibril; only molecules that are correctly aligned are able to form cross-links. Inasmuch as the total amount of pyridinoline cross-links in OI bone is similar to control bone, the packing geometry of intrafibrillar collagen molecules is not disturbed in OI. Consequently, the brittleness of bone is not caused by a disorganized intrafibrillar collagen packing and/or loss of cross-links. This is an unexpected finding, because mutant collagen molecules with a random distribution within the fibril are expected to result in disruptions of the alignment of neighboring collagen molecules. Pepsin digestion of OI bone revealed that collagen located at the surface of the fibril had lower cross-link levels compared with collagen located at the inside of the fibril, indicating that mutant molecules are not distributed randomly within the fibril but are located preferentially at the surface of the fibril.

  5. Sclerostin antibody treatment improves the bone phenotype of Crtap−/− mice, a model of recessive Osteogenesis Imperfecta

    PubMed Central

    Grafe, Ingo; Alexander, Stefanie; Yang, Tao; Lietman, Caressa; Homan, Erica P; Munivez, Elda; Chen, Yuqing; Jiang, Ming Ming; Bertin, Terry; Dawson, Brian; Asuncion, Franklin; Ke, Hua Zhu; Ominsky, Michael S; Lee, Brendan

    2016-01-01

    Osteogenesis Imperfecta (OI) is characterized by low bone mass, poor bone quality and fractures. Standard treatment for OI patients is limited to bisphosphonates, which only incompletely correct the bone phenotype, and seem to be less effective in adults. Sclerostin neutralizing antibodies (Scl-Ab) have been shown to be beneficial in animal models of osteoporosis, and dominant OI resulting from mutations in the genes encoding type I collagen. However, Scl-Ab treatment has not been studied in models of recessive OI. Cartilage associated protein (CRTAP) is involved in posttranslational type I collagen modification, and its loss of function results in recessive OI. In this study, we treated 1 and 6 week old Crtap−/− mice with Scl-Ab for 6 weeks (25 mg/kg, s.c., twice per week), to determine the effects on the bone phenotype in models of “pediatric” and “young adult” recessive OI. Vehicle treated Crtap−/− and wildtype (WT) mice served as controls. Compared with control Crtap−/− mice, microCT analyses showed significant increases in bone volume and improved trabecular microarchitecture in Scl-Ab treated Crtap−/− mice in both age cohorts, in both vertebrae and femurs. Additionally, Scl-Ab improved femoral cortical parameters in both age cohorts. Biomechanical testing showed that Scl-Ab improved parameters of whole bone strength in Crtap−/− mice, with more robust effects in the week 6–12 cohort, but did not affect the increased bone brittleness. Additionally, Scl-Ab normalized the increased osteoclast numbers, stimulated bone formation rate (week 6–12 cohort only), but did not affect osteocyte density. Overall, our findings suggest that Scl-Ab treatment may be beneficial in the treatment of recessive OI caused by defects in collagen post-translational modification. PMID:26716893

  6. Tissue level material composition and mechanical properties in Brtl/+ mouse model of Osteogenesis Imperfecta after sclerostin antibody treatment

    NASA Astrophysics Data System (ADS)

    Lloyd, William R.; Sinder, Benjamin P.; Salemi, Joseph; Ominsky, Michael S.; Marini, Joan C.; Caird, Michelle S.; Morris, Michael D.; Kozloff, Kenneth M.

    2015-02-01

    Osteogenesis imperfecta (OI) is a genetic disorder resulting in defective collagen or collagen-associated proteins and fragile, brittle bones. To date, therapies to improve OI bone mass, such as bisphosphonates, have increased bone mass in the axial skeleton of OI patients, but have shown limited effects at reducing long bone fragility. Sclerostin antibody (Scl- Ab), currently in clinical trials for osteoporosis, stimulates bone formation and may have the potential to reduce long bone fracture rates in OI patients. Scl-Ab has been investigated as an anabolic therapy for OI in the Brtl/+ mouse model of moderately severe Type IV OI. While Scl-Ab increases long bone mass in the Brtl/+ mouse, it is not known whether material properties and composition changes also occur. Here, we report on the effects of Scl-Ab on wild type and Brtl/+ young (3 week) and adult (6 month) male mice. Scl-Ab was administered over 5 weeks (25mg/kg, 2x/week). Raman microspectroscopy and nanoindentation are used for bone composition and biomechanical bone property measurements in excised bone. Fluorescent labels (calcein and alizarin) at 4 time points over the entire treatment period are used to enable measurements at specific tissue age. Differences between wild type and Brtl/+ groups included variations in the mineral and matrix lattices, particularly the phosphate v1, carbonate v1, and the v(CC) proline and hydroxyproline stretch vibrations. Results of Raman spectroscopy corresponded to nanoindentation findings which indicated that old bone (near midcortex) is stiffer (higher elastic modulus) than new bone. We compare and contrast mineral to matrix and carbonate to phosphate ratios in young and adult mice with and without treatment.

  7. Angiogenic Signaling in Living Breast Tumor Models

    DTIC Science & Technology

    2010-06-01

    harmonic generation imaging of the diseased state osteogenesis imperfecta : experiment and simulation,” Biophys. J. 94(11), 4504–4514 (2008). 3. O...biopsies, mouse models of breast cancer, and dermis from mouse models of Osteogenesis Imperfecta (OIM) [1–5,7]. The F/B ratio revealed the length scale of...interest in discriminating skin with Osteogenesis Imperfecta [2] from normal dermis [2] and SHG F/B ratio measurements have been used to help determine

  8. Confirmation of the pathogenicity of a mutation p.G337C in the COL1A2 gene associated with osteogenesis imperfecta

    PubMed Central

    Jia, Mingrui; Shi, Ranran; Zhao, Xuli; Fu, Zhijian; Bai, Zhijing; Sun, Tao; Zhao, Xuejun; Wang, Wenbo; Xu, Chao; Yan, Fang

    2017-01-01

    Abstract Mutation analysis as the gold standard is particularly important in diagnosis of osteogenesis imperfecta (OI) and it may be preventable upon early diagnosis. In this study, we aimed to analyze the clinical and genetic materials of an OI pedigree as well as to confirm the deleterious property of the mutation. A pedigree with OI was identified. All family members received careful clinical examinations and blood was drawn for genetic analyses. Genes implicated in OI were screened for mutation. The function and structure of the mutant protein were predicted using bioinformatics analysis. The proband, a 9-month fetus, showed abnormal sonographic images. Disproportionately short and triangular face with blue sclera was noticed at birth. She can barely walk and suffered multiple fractures till 2-year old. Her mother appeared small stature, frequent fractures, blue sclera, and deformity of extremities. A heterozygous missense mutation c.1009G>T (p.G337C) in the COL1A2 gene was identified in her mother and her. Bioinformatics analysis showed p.G337 was well-conserved among multiple species and the mutation probably changed the structure and damaged the function of collagen. We suggest that the mutation p.G337C in the COL1A2 gene is pathogenic for OI by affecting the protein structure and the function of collagen. PMID:28953610

  9. The long-term effects of switching from active intravenous bisphosphonate treatment to low-dose maintenance therapy in children with osteogenesis imperfecta.

    PubMed

    Biggin, Andrew; Zheng, Linda; Briody, Julie N; Coorey, Craig P; Munns, Craig F

    2015-01-01

    Intravenous bisphosphonate therapy is the first-line treatment in moderate-to-severe osteogenesis imperfecta (OI), but there are varied treatment protocols with little data on long-term efficacy. This study evaluates the clinical outcomes when transitioning from active bisphosphonate treatment to maintenance therapy. A retrospective review was conducted on 17 patients before treatment, following active treatment (zoledronate 0.05 mg/kg 6-monthly or pamidronate 6-9 mg/kg/year) and after establishment on maintenance treatment for more than 2 years (zoledronate 0.025 mg/kg 6-monthly or pamidronate <4 mg/kg/year). There was a significant reduction in mean fracture rate from 1.5 ± 1.1 fractures/year at baseline to 0.7 ± 0.7 fractures/year on active treatment. Z-scores for lumbar spine bone mineral density, bone mineral content, volumetric bone mineral density and bone mineral content for lean tissue mass increased during active treatment. These improvements were maintained during the period of maintenance treatment. Vertebral height improved in fractured thoracic vertebrae from pre-treatment to active therapy and improved further during maintenance treatment. Metacarpal cortical thickness and relative cortical area also increased over the treatment periods. Maintenance intravenous bisphosphonate therapy preserved the beneficial effects of active treatment at the doses stated above. Further studies are required to determine the optimal bisphosphonate treatment regimen in the management of children with OI. © 2015 S. Karger AG, Basel.

  10. Mortality and Causes of Death in Patients With Osteogenesis Imperfecta: A Register-Based Nationwide Cohort Study.

    PubMed

    Folkestad, Lars; Hald, Jannie Dahl; Canudas-Romo, Vladimir; Gram, Jeppe; Hermann, Anne Pernille; Langdahl, Bente; Abrahamsen, Bo; Brixen, Kim

    2016-12-01

    Osteogenesis imperfecta (OI) is a hereditary connective tissue disease that causes frequent fractures. Little is known about causes of death and length of survival in OI. The objective of this work was to calculate the risk and cause of death, and the median survival time in patients with OI. This study was a Danish nationwide, population-based and register-based cohort study. We used National Patient Register data from 1977 until 2013 with complete long-term follow-up. Participants comprised all patients registered with the diagnosis of OI from 1977 until 2013, and a reference population matched five to one to the OI cohort. We calculated hazard ratios for all-cause mortality and subhazard ratios for cause-specific mortality in a comparison of the OI cohort and the reference population. We also calculated all-cause mortality hazard ratios for males, females, and age groups (0 to 17.99 years, 18.00 to 34.99 years, 35.00 to 54.99 years, 55.00 to 74.99 years, and >75 years). We identified 687 cases of OI (379 women) and included 3435 reference persons (1895 women). A total of 112 patients with OI and 257 persons in the reference population died during the observation period. The all-cause mortality hazard ratio between the OI cohort and the reference population was 2.90. The median survival time for males with OI was 72.4 years, compared to 81.9 in the reference population. The median survival time for females with OI was 77.4 years, compared to 84.5 years in the reference population. Patients with OI had a higher risk of death from respiratory diseases, gastrointestinal diseases, and trauma. We were limited by the lack of clinical information about phenotype and genotype of the included patients. Patients with OI had a higher mortality rate throughout their life compared to the general population. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  11. Quantitative In Vivo Imaging of Breast Tumor Extracellular Matrix

    DTIC Science & Technology

    2010-05-01

    dermis from mouse models of Osteogenesis Imperfecta (OIM) [1–5,7]. The F/B ratio revealed the length scale of ordering in the fibers. In these...imaging of the diseased state osteogenesis imperfecta : experiment and simulation,” Biophys. J. 94(11), 4504–4514 (2008). 3. O. Nadiarnykh, R. B. Lacomb...breast cancer, and dermis from mouse models of Osteogenesis Imperfecta (OIM) [1–5,7]. The F/B ratio revealed the length scale of ordering in the fibers

  12. Mutational analysis of COL1A1 and COL1A2 genes among Estonian osteogenesis imperfecta patients.

    PubMed

    Zhytnik, Lidiia; Maasalu, Katre; Reimann, Ene; Prans, Ele; Kõks, Sulev; Märtson, Aare

    2017-08-15

    Osteogenesis imperfecta (OI) is a rare bone disorder. In 90% of cases, OI is caused by mutations in the COL1A1/2 genes, which code procollagen α1 and α2 chains. The main aim of the current research was to identify the mutational spectrum of COL1A1/2 genes in Estonian patients. The small population size of Estonia provides a unique chance to explore the collagen I mutational profile of 100% of OI families in the country. We performed mutational analysis of peripheral blood gDNA of 30 unrelated Estonian OI patients using Sanger sequencing of COL1A1 and COL1A2 genes, including all intron-exon junctions and 5'UTR and 3'UTR regions, to identify causative OI mutations. We identified COL1A1/2 mutations in 86.67% of patients (26/30). 76.92% of discovered mutations were located in the COL1A1 (n = 20) and 23.08% in the COL1A2 (n = 6) gene. Half of the COL1A1/2 mutations appeared to be novel. The percentage of quantitative COL1A1/2 mutations was 69.23%. Glycine substitution with serine was the most prevalent among missense mutations. All qualitative mutations were situated in the chain domain of pro-α1/2 chains. Our study shows that among the Estonian OI population, the range of collagen I mutations is quite high, which agrees with other described OI cohorts of Northern Europe. The Estonian OI cohort differs due to the high number of quantitative variants and simple missense variants, which are mostly Gly to Ser substitutions and do not extend the chain domain of COL1A1/2 products.

  13. Investigation of the human disease osteogenesis imperfecta: a research-based introduction to concepts and skills in biomolecular analysis.

    PubMed

    Mate, Karen; Sim, Alistair; Weidenhofer, Judith; Milward, Liz; Scott, Judith

    2013-01-01

    A blended approach encompassing problem-based learning (PBL) and structured inquiry was used in this laboratory exercise based on the congenital disease Osteogenesis imperfecta (OI), to introduce commonly used techniques in biomolecular analysis within a clinical context. During a series of PBL sessions students were presented with several scenarios involving a 2 year old child, who had experienced numerous fractures. Key learning goals related to both the theory and practical aspects of the course, covering biomolecular analysis and functional genomics, were identified in successive PBL sessions. The laboratory exercises were conducted in 3 hour blocks over six weeks, focused firstly on protein analysis, followed by nucleic acids. Students isolated collagen from normal and OI affected fibroblast cultures. Analysis by SDS-PAGE demonstrated α1 and α2 of collagen Type I chains at approximately 95 kDa and 92 kDa, respectively. Subtle differences in protein mobility between the control and OI samples were observed by some students, but most considered it inconclusive as a diagnostic tool. The nucleic acid module involved isolation of RNA from OI affected fibroblasts. The RNA was reverse transcribed and used as template to amplify a 354 bp COL1A1 fragment. Students were provided with the sequence of the OI affected COL1A1 PCR product aligned with the normal COL1A1 sequence, allowing identification of the mutation, as the substitution of Arg for Gly(976) of the triple helical region. Our experience with student cohorts over several years is that presentation of this laboratory exercise within a relevant clinical context, and the opportunity for active engagement with the experimental procedures via PBL sessions, supported the learning of basic theory and practical techniques of biomolecular analysis. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  14. Ultrastructural and histological findings on examination of skin in osteogenesis imperfecta: a novel study.

    PubMed

    Balasubramanian, Meena; Wagner, Bart E; Peres, Luiz C; Sobey, Glenda J; Parker, Michael J; Dalton, Ann; Arundel, Paul; Bishop, Nicholas J

    2015-04-01

    Osteogenesis imperfecta (OI) is a heterogeneous group of inherited disorders of bone formation, resulting in low bone mass and an increased propensity for fractures. It is a variable condition with a range of clinical severities. The histological and ultrastructural findings in the skin of patients with OI have not been described in detail in the previously published literature. Although protein analysis of cultured fibroblasts has historically been used in the diagnostic work-up of OI patients, other aspects of skin examination are not routinely performed as part of the diagnostic pathway in patients with OI. The aims of this study were to perform histological and ultrastructural examination of skin biopsies in patients with OI. This was to identify common and distinguishing features in the numerous genetically distinct subtypes of OI and compare the findings with those in patients who did not present with fractures, and to enable the use of the results thus obtained to aid in the diagnostic work-up of patients with OI. As part of a larger research study set-up to identify clinical features and natural history in patients with atypical features of OI, skin biopsy and examination (histology and electron microscopy) were undertaken. Genetic analysis and ancillary investigations were also performed to identify similarities within this group and to differentiate this group from the 'normal' population. At the end of this study, we were able to demonstrate that the histological and electron microscopic findings on a skin biopsy may be an indicator of the likelihood of identifying a pathogenic mutation in type 1 collagen genes. This is because patients with specific findings on examination, such as elastic fibre area fraction (on histological analysis), collagen fibril diameter variability, deviation from the expected mean and collagen flowers (on electron microscopy), are more likely to be positive on genetic analyses. This has, in turn, provided more insight into the

  15. Cytoskeleton and nuclear lamina affection in recessive osteogenesis imperfecta: A functional proteomics perspective.

    PubMed

    Gagliardi, Assunta; Besio, Roberta; Carnemolla, Chiara; Landi, Claudia; Armini, Alessandro; Aglan, Mona; Otaify, Ghada; Temtamy, Samia A; Forlino, Antonella; Bini, Luca; Bianchi, Laura

    2017-09-07

    Osteogenesis imperfecta (OI) is a collagen-related disorder associated to dominant, recessive or X-linked transmission, mainly caused by mutations in type I collagen genes or in genes involved in type I collagen metabolism. Among the recessive forms, OI types VII, VIII, and IX are due to mutations in CRTAP, P3H1, and PPIB genes, respectively. They code for the three components of the endoplasmic reticulum complex that catalyzes 3-hydroxylation of type I collagen α1Pro986. Under-hydroxylation of this residue leads to collagen structural abnormalities and results in moderate to lethal OI phenotype, despite the exact molecular mechanisms are still not completely clear. To shed light on these recessive forms, primary fibroblasts from OI patients with mutations in CRTAP (n=3), P3H1 (n=3), PPIB (n=1) genes and from controls (n=4) were investigated by a functional proteomic approach. Cytoskeleton and nucleoskeleton asset, protein fate, and metabolism were delineated as mainly affected. While western blot experiments confirmed altered expression of lamin A/C and cofilin-1, immunofluorescence analysis using antibody against lamin A/C and phalloidin showed an aberrant organization of nucleus and cytoskeleton. This is the first report describing an altered organization of intracellular structural proteins in recessive OI and pointing them as possible novel target for OI treatment. OI is a prototype for skeletal dysplasias. It is a highly heterogeneous collagen-related disorder with dominant, recessive and X-linked transmission. There is no definitive cure for this disease, thus a better understanding of the molecular basis of its pathophysiology is expected to contribute in identifying potential targets to develop new treatments. Based on this concept, we performed a functional proteomic study to delineate affected molecular pathways in primary fibroblasts from recessive OI patients, carrying mutations in CRTAP (OI type VII), P3H1 (OI type VIII), and PPIB (OI type IX) genes

  16. Recurrent Proximal Femur Fractures in a Teenager With Osteogenesis Imperfecta on Continuous Bisphosphonate Therapy: Are We Overtreating?

    PubMed

    Vasanwala, Rashida F; Sanghrajka, Anish; Bishop, Nicholas J; Högler, Wolfgang

    2016-07-01

    Long-term bisphosphonate (BP) therapy in adults with osteoporosis is associated with atypical femoral fractures, caused by increased material bone density and prolonged suppression of bone remodeling which may reduce fracture toughness. In children with osteogenesis imperfecta (OI), long-term intravenous BP therapy improves bone structure and mass without further increasing the already hypermineralized bone matrix, and is generally regarded as safe. Here we report a teenage girl with OI type IV, who was started on cyclical intravenous pamidronate therapy at age 6 years because of recurrent fractures. Transiliac bone biopsy revealed classical structural features of OI but unusually low bone resorption surfaces. She made substantial improvements in functional ability, bone mass, and fracture rate. However, after 5 years of pamidronate therapy she started to develop recurrent, bilateral, nontraumatic, and proximal femur fractures, which satisfied the case definition for atypical femur fractures. Some fractures were preceded by periosteal reactions and prodromal pain. Pamidronate was discontinued after 7 years of therapy, following which she sustained two further nontraumatic femur fractures, and continued to show delayed tibial osteotomy healing. Despite rodding surgery, and very much in contrast to her affected, untreated, and normally mobile mother, she remains wheelchair-dependent. The case of this girl raises questions about the long-term safety of BP therapy in some children, in particular about the risk of oversuppressed bone remodeling with the potential for microcrack accumulation, delayed healing, and increased stiffness. The principal concern is whether there is point at which benefit from BP therapy could turn into harm, where fracture risk increases again. This case should stimulate debate whether current adult atypical femoral fracture guidance should apply to children, and whether low-frequency, low-dose cyclical, intermittent, or oral treatment

  17. Bone Marrow Stromal Cells Contribute to Bone Formation Following Infusion into Femoral Cavities of a Mouse Model of Osteogenesis Imperfecta

    PubMed Central

    Li, Feng; Wang, Xujun; Niyibizi, Christopher

    2010-01-01

    Currently, there are conflicting data in literature regarding contribution of bone marrow stromal cells (BMSCs) to bone formation when the cells are systemically delivered in recipient animals. To understand if BMSCs contribute to bone cell phenotype and bone formation in osteogenesis imperfecta bones (OI), MSCs marked with GFP were directly infused into the femurs of a mouse model of OI (oim). The contribution of the cells to the cell phenotype and bone formation was assessed by histology, immunohistochemistry and biomechanical loading of recipient bones. Two weeks following infusion of BMSCs, histological examination of the recipient femurs demonstrated presence of new bone when compared to femurs injected with saline which showed little or no bone formation. The new bone contained few donor cells as demonstrated by GFP fluorescence. At six weeks following cell injection, new bone was still detectable in the recipient femurs but was enhanced by injection of the cells suspended in pepsin solublized type I collagen. Immunofluorescence and immunohistochemical staining showed that donor GFP positive cells in the new bone were localized with osteocalcin expressing cells suggesting that the cells differentiated into osteoblasts in vivo. Biomechanical loading to failure in thee point bending, revealed that, femurs infused with BMSCs in PBS or in soluble type I collagen were biomechanically stronger than those injected with PBS or type I collagen alone. Taken together, the results indicate that transplanted cells differentiated into osteoblasts in vivo and contributed to bone formation in vivo; we also speculate that donor cells induced differentiation or recruitment of endogenous cells to initiate reparative process at early stages following transplantation. PMID:20570757

  18. Results of a bone splint technique for the treatment of lower limb deformities in children with type I osteogenesis imperfecta

    PubMed Central

    Lin, Dasheng; Zhai, Wenliang; Lian, Kejian; Ding, Zhenqi

    2013-01-01

    Background: Children with osteogenesis imperfecta (OI) can suffer from frequent fractures and limb deformities, resulting in impaired ambulation. Osteopenia and thin cortices complicate orthopedic treatment in this group. This study evaluates the clinical results of a bone splint technique for the treatment of lower limb deformities in children with type I OI. The technique consists of internal plating combined with cortical strut allograft fixation. Materials and Methods: We prospectively followed nine children (five boys, four girls) with lower limb deformities due to type I OI, who had been treated with the bone splint technique (11 femurs, four tibias) between 2003 and 2006. The fracture healing time, deformity improvement, ambulation ability and complications were recorded to evaluate treatment effects. Results: At the time of surgery the average age in our study was 7.7 years (range 5-12 years). The average length of followup was 69 months (range 60-84 months). All patients had good fracture healing with an average healing time of 14 weeks (range 12-16 weeks) and none experienced further fractures, deformity, or nonunion. The fixation remained stable throughout the procedure in all cases, with no evidence of loosening or breakage of screws and the deformity and mobility significantly improved after surgery. Of the two children confined to bed before surgery, one was able to walk on crutches and the other needed a wheelchair. The other seven patients could walk without walking aids or support like crutches. Conclusions: These findings suggest that the bone splint technique provides good mechanical support and increases the bone mass. It is an effective treatment for children with OI and lower limb deformities. PMID:23960282

  19. The chaperone activity of 4PBA ameliorates the skeletal phenotype of Chihuahua, a zebrafish model for dominant osteogenesis imperfecta.

    PubMed

    Gioia, Roberta; Tonelli, Francesca; Ceppi, Ilaria; Biggiogera, Marco; Leikin, Sergey; Fisher, Shannon; Tenedini, Elena; Yorgan, Timur A; Schinke, Thorsten; Tian, Kun; Schwartz, Jean-Marc; Forte, Fabiana; Wagener, Raimund; Villani, Simona; Rossi, Antonio; Forlino, Antonella

    2017-08-01

    Classical osteogenesis imperfecta (OI) is a bone disease caused by type I collagen mutations and characterized by bone fragility, frequent fractures in absence of trauma and growth deficiency. No definitive cure is available for OI and to develop novel drug therapies, taking advantage of a repositioning strategy, the small teleost zebrafish (Danio rerio) is a particularly appealing model. Its small size, high proliferative rate, embryo transparency and small amount of drug required make zebrafish the model of choice for drug screening studies, when a valid disease model is available. We performed a deep characterization of the zebrafish mutant Chihuahua, that carries a G574D (p.G736D) substitution in the α1 chain of type I collagen. We successfully validated it as a model for classical OI. Growth of mutants was delayed compared with WT. X-ray, µCT, alizarin red/alcian blue and calcein staining revealed severe skeletal deformity, presence of fractures and delayed mineralization. Type I collagen extracted from different tissues showed abnormal electrophoretic migration and low melting temperature. The presence of endoplasmic reticulum (ER) enlargement due to mutant collagen retention in osteoblasts and fibroblasts of mutant fish was shown by electron and confocal microscopy. Two chemical chaperones, 4PBA and TUDCA, were used to ameliorate the cellular stress and indeed 4PBA ameliorated bone mineralization in larvae and skeletal deformities in adult, mainly acting on reducing ER cisternae size and favoring collagen secretion. In conclusion, our data demonstrated that ER stress is a novel target to ameliorate OI phenotype; chemical chaperones such as 4PBA may be, alone or in combination, a new class of molecules to be further investigated for OI treatment. © The Author 2017. Published by Oxford University Press.

  20. The chaperone activity of 4PBA ameliorates the skeletal phenotype of Chihuahua, a zebrafish model for dominant osteogenesis imperfecta

    PubMed Central

    Gioia, Roberta; Tonelli, Francesca; Ceppi, Ilaria; Biggiogera, Marco; Leikin, Sergey; Fisher, Shannon; Tenedini, Elena; Yorgan, Timur A.; Schinke, Thorsten; Tian, Kun; Schwartz, Jean-Marc; Forte, Fabiana; Wagener, Raimund; Villani, Simona; Rossi, Antonio; Forlino, Antonella

    2017-01-01

    Abstract Classical osteogenesis imperfecta (OI) is a bone disease caused by type I collagen mutations and characterized by bone fragility, frequent fractures in absence of trauma and growth deficiency. No definitive cure is available for OI and to develop novel drug therapies, taking advantage of a repositioning strategy, the small teleost zebrafish (Danio rerio) is a particularly appealing model. Its small size, high proliferative rate, embryo transparency and small amount of drug required make zebrafish the model of choice for drug screening studies, when a valid disease model is available. We performed a deep characterization of the zebrafish mutant Chihuahua, that carries a G574D (p.G736D) substitution in the α1 chain of type I collagen. We successfully validated it as a model for classical OI. Growth of mutants was delayed compared with WT. X-ray, µCT, alizarin red/alcian blue and calcein staining revealed severe skeletal deformity, presence of fractures and delayed mineralization. Type I collagen extracted from different tissues showed abnormal electrophoretic migration and low melting temperature. The presence of endoplasmic reticulum (ER) enlargement due to mutant collagen retention in osteoblasts and fibroblasts of mutant fish was shown by electron and confocal microscopy. Two chemical chaperones, 4PBA and TUDCA, were used to ameliorate the cellular stress and indeed 4PBA ameliorated bone mineralization in larvae and skeletal deformities in adult, mainly acting on reducing ER cisternae size and favoring collagen secretion. In conclusion, our data demonstrated that ER stress is a novel target to ameliorate OI phenotype; chemical chaperones such as 4PBA may be, alone or in combination, a new class of molecules to be further investigated for OI treatment. PMID:28475764

  1. Effect of high-dose vitamin D supplementation on bone density in youth with osteogenesis imperfecta: A randomized controlled trial.

    PubMed

    Plante, Laura; Veilleux, Louis-Nicolas; Glorieux, Francis H; Weiler, Hope; Rauch, Frank

    2016-05-01

    Osteogenesis imperfecta (OI) is a heritable condition characterized by fragile bones. Our previous studies indicated that serum 25-hydroxyvitamin D (25OHD) concentrations were positively associated with lumbar spine areal bone mineral density (LS-aBMD) in children and adolescents with OI. Here we assessed whether one year of high-dose vitamin D supplementation results in higher LS-aBMD z-scores in youth with OI. A one-year double-blind randomized controlled trial conducted at a pediatric orthopedic hospital in Montreal, Canada. Sixty patients (age: 6.0 to 18.9years; 35 female) were randomized in equal numbers to receive either 400 or 2000international units (IU) of vitamin D, stratified according to baseline bisphosphonate treatment status and pubertal stage. At baseline, the average serum 25OHD concentration was 65.6nmol/L (SD 20.4) with no difference between treatment groups (p=0.77); 21% of patients had results <50nmol/L. Vitamin D supplementation was associated with higher serum 25OHD concentrations in 90% of participants. The increase in mean 25OHD was significantly higher (p=0.02) in the group receiving 2000IU of vitamin D (mean [95% CI]=30.5nmol/L [21.3; 39.6]) than in the group receiving 400IU (15.2nmol/L [6.4; 24.1]). No significant differences in LS-aBMD z-score changes were detected between treatment groups. Thus, supplementation with vitamin D at 2000IU increased serum 25OHD concentrations in children with OI more than supplementation with 400IU. However, in this study where about 80% of participants had baseline serum 25OHD concentrations ≥50nmol/L, this difference had no detectable effect on LS-aBMD z-scores. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Whole exome sequencing is an efficient, sensitive and specific method of mutation detection in osteogenesis imperfecta and Marfan syndrome

    PubMed Central

    McInerney-Leo, Aideen M; Marshall, Mhairi S; Gardiner, Brooke; Coucke, Paul J; Van Laer, Lut; Loeys, Bart L; Summers, Kim M; Symoens, Sofie; West, Jennifer A; West, Malcolm J; Paul Wordsworth, B; Zankl, Andreas; Leo, Paul J; Brown, Matthew A; Duncan, Emma L

    2013-01-01

    Osteogenesis imperfecta (OI) and Marfan syndrome (MFS) are common Mendelian disorders. Both conditions are usually diagnosed clinically, as genetic testing is expensive due to the size and number of potentially causative genes and mutations. However, genetic testing may benefit patients, at-risk family members and individuals with borderline phenotypes, as well as improving genetic counseling and allowing critical differential diagnoses. We assessed whether whole exome sequencing (WES) is a sensitive method for mutation detection in OI and MFS. WES was performed on genomic DNA from 13 participants with OI and 10 participants with MFS who had known mutations, with exome capture followed by massive parallel sequencing of multiplexed samples. Single nucleotide polymorphisms (SNPs) and small indels were called using Genome Analysis Toolkit (GATK) and annotated with ANNOVAR. CREST, exomeCopy and exomeDepth were used for large deletion detection. Results were compared with the previous data. Specificity was calculated by screening WES data from a control population of 487 individuals for mutations in COL1A1, COL1A2 and FBN1. The target capture of five exome capture platforms was compared. All 13 mutations in the OI cohort and 9/10 in the MFS cohort were detected (sensitivity=95.6%) including non-synonymous SNPs, small indels (<10 bp), and a large UTR5/exon 1 deletion. One mutation was not detected by GATK due to strand bias. Specificity was 99.5%. Capture platforms and analysis programs differed considerably in their ability to detect mutations. Consumable costs for WES were low. WES is an efficient, sensitive, specific and cost-effective method for mutation detection in patients with OI and MFS. Careful selection of platform and analysis programs is necessary to maximize success. PMID:24501682

  3. Absence of FKBP10 in Recessive Type XI Osteogenesis Imperfecta Leads to Diminished Collagen Cross-Linking and Reduced Collagen Deposition in Extracellular Matrix

    PubMed Central

    Barnes, Aileen M.; Cabral, Wayne A.; Weis, MaryAnn; Makareeva, Elena; Mertz, Edward L.; Leikin, Sergey; Eyre, David; Trujillo, Carlos; Marini, Joan C.

    2012-01-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in genes whose products interact with type I collagen for modification and/or folding. We identified a Palestinian pedigree with moderate and lethal forms of recessive OI caused by mutations in FKBP10 or PPIB, which encode endoplasmic reticulum resident chaperone/isomerases FKBP65 and CyPB, respectively. In one pedigree branch, both parents carry a deletion in PPIB (c.563_566delACAG), causing lethal type IX OI in their two children. In another branch, a child with moderate type XI OI has a homozygous FKBP10 mutation (c.1271_1272delCCinsA). Proband FKBP10 transcripts are 4% of control and FKBP65 protein is absent from proband cells. Proband collagen electrophoresis reveals slight band broadening, compatible with ≈10% overmodification. Normal chain incorporation, helix folding, and collagen Tm support a minimal general collagen chaperone role for FKBP65. However, there is a dramatic decrease in collagen deposited in culture despite normal collagen secretion. Mass spectrometry reveals absence of hydroxylation of the collagen telopeptide lysine involved in cross-linking, suggesting that FKBP65 is required for lysyl hydroxylase activity or access to type I collagen telopeptide lysines, perhaps through its function as a peptidylprolyl isomerase. Proband collagen to organics ratio in matrix is approximately 30% of normal in Raman spectra. Immunofluorescence shows sparse, disorganized collagen fibrils in proband matrix. PMID:22718341

  4. Involving Families with Osteogenesis Imperfecta in Health Service Research: Joint Development of the OI/ECE Questionnaire

    PubMed Central

    Dogba, Maman Joyce; Dahan-Oliel, Noémi; Snider, Laurie; Glorieux, Francis H.; Durigova, Michaela; Palomo, Telma; Cordey, Michel; Bédard, Marie-Hélène; Bedos, Christophe; Rauch, Frank

    2016-01-01

    Background Despite the growing interest in understanding the psycho-social impact of rare genetic diseases, few studies examine this concept and even fewer seek to obtain feedback from families who have lived the experience. The aim of this project was to involve families of children living with osteogenesis imperfecta (OI) in the development of a tool to assess the impact of OI on the lives of patients and their families. Methods This project used an integrated knowledge translation approach in which knowledge users (clinicians and people living with OI and their families) were consulted throughout the four steps of development, that is: content mapping, item generation, tool appraisal and pre-testing of the questionnaires. The International Classification of Functioning and Health was used as a framework for content mapping. Based on a scoping review we selected two validated tools to use as a basis for developing the questionnaire. The final parent self-report version measured six domains: experience of diagnosis; use of health services; use of social and psychological support services; expectations about tertiary specialized centers; and socio-demographic information. Results A total of 27 out of 40 families receiving care at the Shriners Hospital for Children-Canada and invited to participate in the pre-test returned the completed questionnaires. In more than two-thirds of families (69%; n = 18) OI was suspected either at or within the first 3 months after birth. Up to 46% of families consulted between 3 and 5 doctors (46%; n = 12) prior to final diagnosis. The use of services by families varied from 0 to 16 consultations, 0 to 9 exploratory examinations and 1 to 10 types of allied health services. In the 12 months prior to the study, fewer than a quarter of children had been admitted, for treatment, for hospital stays of longer than 8 hours or to an emergency department (24% and 9% respectively). Only 29% of parents received psychological support. Conclusion

  5. Zoledronic acid in children with osteogenesis imperfecta and Bruck syndrome: a 2-year prospective observational study.

    PubMed

    Otaify, G A; Aglan, M S; Ibrahim, M M; Elnashar, M; El Banna, R A S; Temtamy, S A

    2016-01-01

    Treatment with zoledronic acid (ZA) over 2 years, among 33 children with osteogenesis imperfecta (OI) and five Bruck syndrome cases, showed reduction in fracture rates, pain, and improvement in bone mineral density (BMD) and motor milestones of development. This is the first study reporting the use of bisphosphonates in patients with Bruck syndrome (BS). OI and BS are genetic disorders that result in bone fragility and reduced BMD. There is little literature describing the efficacy and safety of ZA in this population. In this study, we assess the response to treatment with ZA at six monthly intervals in Egyptian children with OI and BS for a period of 2 years. Thirty-three patients with OI and five patients with BS were treated with 0.1 mg/kg ZA intravenously every 6 months for 2 years during which they were followed up using different parameters. A clinical severity score (CSS) was applied to the patients before and 2 years after the start of therapy. Comparison of disease severity and response to ZA treatment between autosomal-dominant (AD) and autosomal-recessive (AR) OI patients was also done. After 6 months of treatment, OI and BS patients showed a significant increase in BMD Z-scores (P < 0.003 in the spine and P < 0.004 in the hip), together with a significant drop in fracture rate (P < 0.001), relief of pain (P < 0.001), and improvement in ambulation (P < 0.001). CSS was significantly reduced after 2 years of treatment in both OI and BS patients. AR-OI patients were more severely affected than AD-OI patients and showed more significant improvement. Zoledronic acid proved to be safe and effective in the treatment of OI and BS. The biannual infusion protocol was convenient to patients. There was a positive correlation between disease severity and benefits of the treatment. The use of the CSS proved to be of value in the assessment of the degree of severity in OI, and with some modifications, it was a valuable tool for the assessment of

  6. In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta

    PubMed Central

    Panaroni, Cristina; Gioia, Roberta; Lupi, Anna; Besio, Roberta; Goldstein, Steven A.; Kreider, Jaclynn; Leikin, Sergey; Vera, Juan Carlos; Mertz, Edward L.; Perilli, Egon; Baruffaldi, Fabio; Villa, Isabella; Farina, Aurora; Casasco, Marco; Cetta, Giuseppe; Rossi, Antonio; Frattini, Annalisa; Marini, Joan C.; Vezzoni, Paolo

    2009-01-01

    Autosomal dominant osteogenesis imperfecta (OI) caused by glycine substitutions in type I collagen is a paradigmatic disorder for stem cell therapy. Bone marrow transplantation in OI children has produced a low engraftment rate, but surprisingly encouraging symptomatic improvements. In utero transplantation (IUT) may hold even more promise. However, systematic studies of both methods have so far been limited to a recessive mouse model. In this study, we evaluated intrauterine transplantation of adult bone marrow into heterozygous BrtlIV mice. Brtl is a knockin mouse with a classical glycine substitution in type I collagen [α1(I)-Gly349Cys], dominant trait transmission, and a phenotype resembling moderately severe and lethal OI. Adult bone marrow donor cells from enhanced green fluorescent protein (eGFP) transgenic mice engrafted in hematopoietic and nonhematopoietic tissues differentiated to trabecular and cortical bone cells and synthesized up to 20% of all type I collagen in the host bone. The transplantation eliminated the perinatal lethality of heterozygous BrtlIV mice. At 2 months of age, femora of treated Brtl mice had significant improvement in geometric parameters (P < .05) versus untreated Brtl mice, and their mechanical properties attained wild-type values. Our results suggest that the engrafted cells form bone with higher efficiency than the endogenous cells, supporting IUT as a promising approach for the treatment of genetic bone diseases. PMID:19414862

  7. Use of the Polymerase Chain Reaction and Complementary DNA Probes in the Detection of Duchenne Muscular Dystrophy Carriers

    DTIC Science & Technology

    1990-01-01

    dominant or X-linked mutations, for example DMD and lethal osteogenesis imperfecta (1, 97). This phenomenon is the result of a dual population of...of the mutations. Am J Hum Genet 1988; 43: 620-29. 97. Cohn DH, Starman B, Blumberg B, Byers PH. Recurrence of lethal osteogenesis imperfecta due to

  8. Consortium for Osteogenesis Imperfecta Mutations in the Helical Domain of Type I Collagen: Regions Rich in Lethal Mutations Align With Collagen Binding Sites for Integrins and Proteoglycans

    PubMed Central

    Marini, Joan C.; Forlino, Antonella; Cabral, Wayne A.; Barnes, Aileen M.; San Antonio, James D.; Milgrom, Sarah; Hyland, James C.; Körkkö, Jarmo; Prockop, Darwin J.; De Paepe, Anne; Coucke, Paul; Symoens, Sofie; Glorieux, Francis H.; Roughley, Peter J.; Lund, Alan M.; Kuurila-Svahn, Kaija; Hartikka, Heini; Cohn, Daniel H.; Krakow, Deborah; Mottes, Monica; Schwarze, Ulrike; Chen, Diana; Yang, Kathleen; Kuslich, Christine; Troendle, James; Dalgleish, Raymond; Byers, Peter H.

    2014-01-01

    Osteogenesis imperfecta (OI) is a generalized disorder of connective tissue characterized by fragile bones and easy susceptibility to fracture. Most cases of OI are caused by mutations in type I collagen. We have identified and assembled structural mutations in type I collagen genes (COL1A1 and COL1A2, encoding the proα1(I) and proα2(I) chains, respectively) that result in OI. Quantitative defects causing type I OI were not included. Of these 832 independent mutations, 682 result in substitution for glycine residues in the triple helical domain of the encoded protein and 150 alter splice sites. Distinct genotype–phenotype relationships emerge for each chain. One-third of the mutations that result in glycine substitutions in α1(I) are lethal, especially when the substituting residues are charged or have a branched side chain. Substitutions in the first 200 residues are nonlethal and have variable outcome thereafter, unrelated to folding or helix stability domains. Two exclusively lethal regions (helix positions 691–823 and 910–964) align with major ligand binding regions (MLBRs), suggesting crucial interactions of collagen monomers or fibrils with integrins, matrix metalloproteinases (MMPs), fibronectin, and cartilage oligomeric matrix protein (COMP). Mutations in COL1A2 are predominantly nonlethal (80%). Lethal substitutions are located in eight regularly spaced clusters along the chain, supporting a regional model. The lethal regions align with proteoglycan binding sites along the fibril, suggesting a role in fibril–matrix interactions. Recurrences at the same site in α2(I) are generally concordant for outcome, unlike α1(I). Splice site mutations comprise 20% of helical mutations identified in OI patients, and may lead to exon skipping, intron inclusion, or the activation of cryptic splice sites. Splice site mutations in COL1A1 are rarely lethal; they often lead to frameshifts and the mild type I phenotype. In α2(I), lethal exon skipping events are

  9. Absence of FKBP10 in recessive type XI osteogenesis imperfecta leads to diminished collagen cross-linking and reduced collagen deposition in extracellular matrix.

    PubMed

    Barnes, Aileen M; Cabral, Wayne A; Weis, MaryAnn; Makareeva, Elena; Mertz, Edward L; Leikin, Sergey; Eyre, David; Trujillo, Carlos; Marini, Joan C

    2012-11-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in genes whose products interact with type I collagen for modification and/or folding. We identified a Palestinian pedigree with moderate and lethal forms of recessive OI caused by mutations in FKBP10 or PPIB, which encode endoplasmic reticulum resident chaperone/isomerases FKBP65 and CyPB, respectively. In one pedigree branch, both parents carry a deletion in PPIB (c.563_566delACAG), causing lethal type IX OI in their two children. In another branch, a child with moderate type XI OI has a homozygous FKBP10 mutation (c.1271_1272delCCinsA). Proband FKBP10 transcripts are 4% of control and FKBP65 protein is absent from proband cells. Proband collagen electrophoresis reveals slight band broadening, compatible with ≈10% over-modification. Normal chain incorporation, helix folding, and collagen T(m) support a minimal general collagen chaperone role for FKBP65. However, there is a dramatic decrease in collagen deposited in culture despite normal collagen secretion. Mass spectrometry reveals absence of hydroxylation of the collagen telopeptide lysine involved in cross-linking, suggesting that FKBP65 is required for lysyl hydroxylase activity or access to type I collagen telopeptide lysines, perhaps through its function as a peptidylprolyl isomerase. Proband collagen to organics ratio in matrix is approximately 30% of normal in Raman spectra. Immunofluorescence shows sparse, disorganized collagen fibrils in proband matrix. Published 2012 Wiley Periodicals, Inc.*This article is a US Government work and, as such, is in the public domain of the United States of America.

  10. Characterization of skin abnormalities in a mouse model of osteogenesis imperfecta using high resolution magnetic resonance imaging and Fourier transform infrared imaging spectroscopy.

    PubMed

    Canuto, H C; Fishbein, K W; Huang, A; Doty, S B; Herbert, R A; Peckham, J; Pleshko, N; Spencer, R G

    2012-01-01

    Evaluation of the skin phenotype in osteogenesis imperfecta (OI) typically involves biochemical measurements, such as histologic or biochemical assessment of the collagen produced from biopsy-derived dermal fibroblasts. As an alternative, the current study utilized non-invasive magnetic resonance imaging (MRI) microscopy and optical spectroscopy to define biophysical characteristics of skin in an animal model of OI. MRI of skin harvested from control, homozygous oim/oim and heterozygous oim/+ mice demonstrated several differences in anatomic and biophysical properties. Fourier transform infrared imaging spectroscopy (FT-IRIS) was used to interpret observed MRI signal characteristics in terms of chemical composition. Differences between wild-type and OI mouse skin included the appearance of a collagen-depleted lower dermal layer containing prominent hair follicles in the oim/oim mice, accounting for 55% of skin thickness in these. The MRI magnetization transfer rate was lower by 50% in this layer as compared to the upper dermis, consistent with lower collagen content. The MRI transverse relaxation time, T2, was greater by 30% in the dermis of the oim/oim mice compared to controls, consistent with a more highly hydrated collagen network. Similarly, an FT-IRIS-defined measure of collagen integrity was 30% lower in the oim/oim mice. We conclude that characterization of phenotypic differences between the skin of OI and wild-type mice by MRI and FT-IRIS is feasible, and that these techniques provide powerful complementary approaches for the analysis of the skin phenotype in animal models of disease. Copyright © 2011 John Wiley & Sons, Ltd.

  11. U.S. Army Medical Department Journal (May-June 1998)

    DTIC Science & Technology

    1998-06-01

    patients. Dental Management of a Patient with Osteogenesis Imperfecta is a case report on the dental management of molar extraction in a patient with the...bone-forming disease osteogenesis imperfecta . Through a continual process of evaluation and improvement in training, the AMEDD’s combat medics will continue to conserve the fighting strength.

  12. Oral Rehabilitation of Young Adult with Amelogenesis Imperfecta.

    PubMed

    Leung, Vincent Ws; Low, Bernard; Yang, Yanqi; Botelho, Michael G

    2018-05-01

    Amelogenesis imperfecta is a heterogeneous group of hereditary disorders that affect the enamel formation of the primary and permanent dentitions while the remaining tooth structure is normal. Appropriate patient care is necessary to prevent adverse effects on dental oral health, dental disfigurement, and psychological well-being. This clinical report presents a 27-year-old Chinese male with amelogenesis imperfecta (AI) and his restorative management. This clinical report presents a 27-year-old Chinese male with AI and his restorative management. Extraoral examination showed a skeletal class III profile and increased lower facial proportion. Intraorally, all the permanent dentition was hypoplastic with noticeable tooth surface loss and a yellow-brown appearance. This was complicated with a mild maloc-clusion and food packing on his posterior teeth. The patient wanted to improve his appearance and masticatory efficiency. Orthodontic treatment was performed to treat the mild malocclu-sion and create physiological interproximal spacing to minimize tooth preparation and facilitate oral hygiene. This report demonstrates how a multidisciplinary approach for the management of AI can achieve a predictable, functional, and esthetic outcome. Orthodontic treatment facilitated a conservative prosthodontic treatment outcome by selectively increasing interproximal space, minimizing tooth preparation, correcting posterior bilateral cross-bite, as well as an anterior reverse overjet and derotation of the canines. This case report demonstrates the effective restoration of AI using a multidisciplinary approach to overcome crowding using a relatively conservative approach.

  13. Therapeutic impact of low amplitude high frequency whole body vibrations on the osteogenesis imperfecta mouse bone☆

    PubMed Central

    Vanleene, Maximilien; Shefelbine, Sandra J.

    2013-01-01

    Osteogenesis imperfecta (OI) is characterized by extremely brittle bone. Currently, bisphosphonate drugs allow a decrease of fracture by inhibiting bone resorption and increasing bone mass but with possible long term side effects. Whole body mechanical vibrations (WBV) treatment may offer a promising route to stimulate bone formation in OI patients as it has exhibited health benefits on both muscle and bone mass in human and animal models. The present study has investigated the effects of WBV (45 Hz, 0.3 g, 15 minutes/days, 5 days/week) in young OI (oim) and wild type female mice from 3 to 8 weeks of age. Vibration therapy resulted in a significant increase in the cortical bone area and cortical thickness in the femur and tibia diaphysis of both vibrated oim and wild type mice compared to sham controls. Trabecular bone was not affected by vibration in the wild type mice; vibrated oim mice, however, exhibited significantly higher trabecular bone volume fraction in the proximal tibia. Femoral stiffness and yield load in three point bending were greater in the vibrated wild type mice than in sham controls, most likely attributed to the increase in femur cortical cross sectional area observed in the μCT morphology analyses. The vibrated oim mice showed a trend toward improved mechanical properties, but bending data had large standard deviations and there was no significant difference between vibrated and non-vibrated oim mice. No significant difference of the bone apposition was observed in the tibial metaphyseal trabecular bone for both the oim and wild type vibrated mice by histomorphometry analyses of calcein labels. At the mid diaphysis, the cortical bone apposition was not significantly influenced by the WBV treatment in both the endosteum and periosteum of the oim vibrated mice while a significant change is observed in the endosteum of the vibrated wild type mice. As only a weak impact in bone apposition between the vibrated and sham groups is observed in

  14. Mutations in PPIB (cyclophilin B) delay type I procollagen chain association and result in perinatal lethal to moderate osteogenesis imperfecta phenotypes.

    PubMed

    Pyott, Shawna M; Schwarze, Ulrike; Christiansen, Helena E; Pepin, Melanie G; Leistritz, Dru F; Dineen, Richard; Harris, Catharine; Burton, Barbara K; Angle, Brad; Kim, Katherine; Sussman, Michael D; Weis, Maryann; Eyre, David R; Russell, David W; McCarthy, Kevin J; Steiner, Robert D; Byers, Peter H

    2011-04-15

    Recessive mutations in the cartilage-associated protein (CRTAP), leucine proline-enriched proteoglycan 1 (LEPRE1) and peptidyl prolyl cis-trans isomerase B (PPIB) genes result in phenotypes that range from lethal in the perinatal period to severe deforming osteogenesis imperfecta (OI). These genes encode CRTAP (encoded by CRTAP), prolyl 3-hydroxylase 1 (P3H1; encoded by LEPRE1) and cyclophilin B (CYPB; encoded by PPIB), which reside in the rough endoplasmic reticulum (RER) and can form a complex involved in prolyl 3-hydroxylation in type I procollagen. CYPB, a prolyl cis-trans isomerase, has been thought to drive the prolyl-containing peptide bonds to the trans configuration needed for triple helix formation. Here, we describe mutations in PPIB identified in cells from three individuals with OI. Cultured dermal fibroblasts from the most severely affected infant make some overmodified type I procollagen molecules. Proα1(I) chains are slow to assemble into trimers, and abnormal procollagen molecules concentrate in the RER, and bind to protein disulfide isomerase (PDI) and prolyl 4-hydroxylase 1 (P4H1). These findings suggest that although CYPB plays a role in helix formation another effect is on folding of the C-terminal propeptide and trimer formation. The extent of procollagen accumulation and PDI/P4H1 binding differs among cells with mutations in PPIB, CRTAP and LEPRE1 with the greatest amount in PPIB-deficient cells and the least in LEPRE1-deficient cells. These findings suggest that prolyl cis-trans isomerase may be required to effectively fold the proline-rich regions of the C-terminal propeptide to allow proα chain association and suggest an order of action for CRTAP, P3H1 and CYPB in procollagen biosynthesis and pathogenesis of OI.

  15. Mutations in PPIB (cyclophilin B) delay type I procollagen chain association and result in perinatal lethal to moderate osteogenesis imperfecta phenotypes

    PubMed Central

    Pyott, Shawna M.; Schwarze, Ulrike; Christiansen, Helena E.; Pepin, Melanie G.; Leistritz, Dru F.; Dineen, Richard; Harris, Catharine; Burton, Barbara K.; Angle, Brad; Kim, Katherine; Sussman, Michael D.; Weis, MaryAnn; Eyre, David R.; Russell, David W.; McCarthy, Kevin J.; Steiner, Robert D.; Byers, Peter H.

    2011-01-01

    Recessive mutations in the cartilage-associated protein (CRTAP), leucine proline-enriched proteoglycan 1 (LEPRE1) and peptidyl prolyl cis–trans isomerase B (PPIB) genes result in phenotypes that range from lethal in the perinatal period to severe deforming osteogenesis imperfecta (OI). These genes encode CRTAP (encoded by CRTAP), prolyl 3-hydroxylase 1 (P3H1; encoded by LEPRE1) and cyclophilin B (CYPB; encoded by PPIB), which reside in the rough endoplasmic reticulum (RER) and can form a complex involved in prolyl 3-hydroxylation in type I procollagen. CYPB, a prolyl cis–trans isomerase, has been thought to drive the prolyl-containing peptide bonds to the trans configuration needed for triple helix formation. Here, we describe mutations in PPIB identified in cells from three individuals with OI. Cultured dermal fibroblasts from the most severely affected infant make some overmodified type I procollagen molecules. Proα1(I) chains are slow to assemble into trimers, and abnormal procollagen molecules concentrate in the RER, and bind to protein disulfide isomerase (PDI) and prolyl 4-hydroxylase 1 (P4H1). These findings suggest that although CYPB plays a role in helix formation another effect is on folding of the C-terminal propeptide and trimer formation. The extent of procollagen accumulation and PDI/P4H1 binding differs among cells with mutations in PPIB, CRTAP and LEPRE1 with the greatest amount in PPIB-deficient cells and the least in LEPRE1-deficient cells. These findings suggest that prolyl cis–trans isomerase may be required to effectively fold the proline-rich regions of the C-terminal propeptide to allow proα chain association and suggest an order of action for CRTAP, P3H1 and CYPB in procollagen biosynthesis and pathogenesis of OI. PMID:21282188

  16. 10-m Shuttle Ride Test in Youth With Osteogenesis Imperfecta Who Use Wheelchairs: Feasibility, Reproducibility, and Physiological Responses.

    PubMed

    Bongers, Bart C; Rijks, Ester B G; Harsevoort, Arjan G J; Takken, Tim; van Brussel, Marco

    2016-05-01

    Physical fitness levels in youth with osteogenesis imperfecta (OI) who use wheelchairs are unknown. The 10-m Shuttle Ride Test (SRiT) has recently been introduced as a field test to determine cardiorespiratory fitness in children with cerebral palsy who self-propel a wheelchair. The purpose of this study was to investigate the feasibility and reproducibility of the SRiT, as well as the physiological responses to the SRiT, in youth with moderate-to-severe OI between 8 and 25 years of age who self-propel a wheelchair at least for long distances. A test-retest design was used. Thirteen patients with OI (8 boys, 5 girls; mean±SD values for age=15.5±6.4 years) using a manual wheelchair performed 2 SRiTs within 2 weeks. Adverse events, reached stage, peak heart rate (HRpeak), peak respiratory exchange ratio (RERpeak), peak oxygen uptake (V̇o2peak), and peak minute ventilation (V̇epeak) were the main outcome parameters. All participants performed a maximal effort at both SRiTs (mean±SD values for HRpeak of 195±9 beats per minute [bpm], RERpeak of 1.32±0.16, V̇o2peak of 25.4±5.6 mL·kg(-1)·min(-1), and V̇epeak of 47.9±18.6 L·min(-1)), without adverse events. The intraclass correlation coefficient of the reached stage showed excellent reliability (.95). Limits of agreement (LoA) analysis revealed acceptable LoA for reached stage (mean bias=-0.58, range=-2.50 to +1.35). There was a low correlation between reached stage and V̇o2peak (r=.61 and r=.45 for the first and second SRiTs, respectively). The influence of wheelchair properties and individually adjusted wheelchair designs was not examined. The SRiT appears to be a feasible, safe, and reproducible maximal field test in youth with OI using wheelchairs at least for long distances. This field test might be useful to provide an indication of physical fitness and to assess the efficacy of interventions on physical fitness in these patients. © 2016 American Physical Therapy Association.

  17. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta.

    PubMed

    Cabral, Wayne A; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R; Chang, Weizhong; Perosky, Joseph E; Makareeva, Elena N; Mertz, Edward L; Leikin, Sergey; Tomer, Kenneth B; Kozloff, Kenneth M; Eyre, David R; Yamauchi, Mitsuo; Marini, Joan C

    2014-06-01

    Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib-/- mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2-11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib-/- fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered crosslink

  18. Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen

    PubMed Central

    Schwarze, Ulrike; Cundy, Tim; Pyott, Shawna M.; Christiansen, Helena E.; Hegde, Madhuri R.; Bank, Ruud A.; Pals, Gerard; Ankala, Arunkanth; Conneely, Karen; Seaver, Laurie; Yandow, Suzanne M.; Raney, Ellen; Babovic-Vuksanovic, Dusica; Stoler, Joan; Ben-Neriah, Ziva; Segel, Reeval; Lieberman, Sari; Siderius, Liesbeth; Al-Aqeel, Aida; Hannibal, Mark; Hudgins, Louanne; McPherson, Elizabeth; Clemens, Michele; Sussman, Michael D.; Steiner, Robert D.; Mahan, John; Smith, Rosemarie; Anyane-Yeboa, Kwame; Wynn, Julia; Chong, Karen; Uster, Tami; Aftimos, Salim; Sutton, V. Reid; Davis, Elaine C.; Kim, Lammy S.; Weis, Mary Ann; Eyre, David; Byers, Peter H.

    2013-01-01

    Although biallelic mutations in non-collagen genes account for <10% of individuals with osteogenesis imperfecta, the characterization of these genes has identified new pathways and potential interventions that could benefit even those with mutations in type I collagen genes. We identified mutations in FKBP10, which encodes the 65 kDa prolyl cis–trans isomerase, FKBP65, in 38 members of 21 families with OI. These include 10 families from the Samoan Islands who share a founder mutation. Of the mutations, three are missense; the remainder either introduce premature termination codons or create frameshifts both of which result in mRNA instability. In four families missense mutations result in loss of most of the protein. The clinical effects of these mutations are short stature, a high incidence of joint contractures at birth and progressive scoliosis and fractures, but there is remarkable variability in phenotype even within families. The loss of the activity of FKBP65 has several effects: type I procollagen secretion is slightly delayed, the stabilization of the intact trimer is incomplete and there is diminished hydroxylation of the telopeptide lysyl residues involved in intermolecular cross-link formation in bone. The phenotype overlaps with that seen with mutations in PLOD2 (Bruck syndrome II), which encodes LH2, the enzyme that hydroxylates the telopeptide lysyl residues. These findings define a set of genes, FKBP10, PLOD2 and SERPINH1, that act during procollagen maturation to contribute to molecular stability and post-translational modification of type I procollagen, without which bone mass and quality are abnormal and fractures and contractures result. PMID:22949511

  19. A Founder Mutation in LEPRE1 Carried by 1.5% of West Africans and 0.4% of African Americans Causes Lethal Recessive Osteogenesis Imperfecta

    PubMed Central

    Cabral, Wayne A.; Barnes, Aileen M.; Adeyemo, Adebowale; Cushing, Kelly; Chitayat, David; Porter, Forbes D.; Panny, Susan R.; Gulamali-Majid, Fizza; Tishkoff, Sarah A.; Rebbeck, Timothy R.; Gueye, Serigne M.; Bailey-Wilson, Joan E.; Brody, Lawrence C.; Rotimi, Charles N.; Marini, Joan C.

    2012-01-01

    Purpose Deficiency of prolyl 3-hydroxylase 1, encoded by LEPRE1, causes recessive osteogenesis imperfecta. We previously identified a LEPRE1 mutation, exclusively in African Americans and contemporary West Africans. We hypothesized that this allele originated in West Africa and was introduced to the Americas with the Atlantic slave trade. We aimed to determine the frequency of carriers for this mutation among African Americans and West Africans, and the mutation origin and age. Methods Genomic DNA was screened for the mutation using PCR and restriction digestion, and a custom TaqMan genomic SNP assay. The mutation age was estimated using microsatellites and short tandem repeats spanning 4.2 Mb surrounding LEPRE1 in probands and carriers. Results Approximately 0.4% of Mid-Atlantic African Americans carry this mutation, estimating recessive OI in 1/260,000 births in this population. In Nigeria and Ghana, 1.48% of unrelated individuals are heterozygous carriers, predicting 1/18,260 births will be affected with recessive OI, equal to the incidence of de novo dominant OI. The mutation was not detected in Africans from surrounding countries. All carriers shared a haplotype of 63-770 Kb, consistent with a single founder for this mutation. Using linkage disequilibrium analysis, the mutation was estimated to have originated between 650 and 900 years before present (1100-1350 C.E.). Conclusions We identified a West African founder mutation for recessive OI in LEPRE1. Nearly 1.5% of Ghanians and Nigerians are carriers. The age of this allele is consistent with introduction to North America via the Atlantic slave trade (1501 – 1867 C.E). PMID:22281939

  20. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta

    PubMed Central

    Cabral, Wayne A.; Ishikawa, Masaki; Garten, Matthias; Makareeva, Elena N.; Sargent, Brandi M.; Weis, MaryAnn; Barnes, Aileen M.; Webb, Emma A.; Shaw, Nicholas J.; Ala-Kokko, Leena; Lacbawan, Felicitas L.; Högler, Wolfgang; Leikin, Sergey; Blank, Paul S.; Zimmerberg, Joshua; Eyre, David R.; Yamada, Yoshihiko; Marini, Joan C.

    2016-01-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50–70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes. PMID:27441836

  1. Scoliosis in osteogenesis imperfecta caused by COL1A1/COL1A2 mutations - genotype-phenotype correlations and effect of bisphosphonate treatment.

    PubMed

    Sato, Atsuko; Ouellet, Jean; Muneta, Takeshi; Glorieux, Francis H; Rauch, Frank

    2016-05-01

    Bisphosphonates are widely used to treat children with osteogenesis imperfecta (OI), a bone fragility disorder that is most often caused by mutations in COL1A1 or COL1A2. However, it is unclear whether this treatment decreases the risk of developing scoliosis. We retrospectively evaluated spine radiographs and charts of 437 patients (227 female) with OI caused by mutations in COL1A1 or COL1A2 and compared the relationship between scoliosis, genotype and bisphosphonate treatment history. At the last follow-up (mean age 11.9 [SD: 5.9] years), 242 (55%) patients had scoliosis. The prevalence of scoliosis was highest in OI type III (89%), followed by OI type IV (61%) and OI type I (36%). Moderate to severe scoliosis (Cobb angle ≥25°) was rare in individuals with COL1A1 haploinsufficiency mutations but was present in about two fifth of patients with triple helical glycine substitutions or C-propeptide mutations. During the first 2 to 4years of bisphosphonate therapy, patients with OI type III had lower Cobb angle progression rates than before bisphosphonate treatment, whereas in OI types I and IV bisphosphonate treatment was not associated with a change in Cobb angle progression rates. At skeletal maturity, the prevalence of scoliosis (Cobb angle >10°) was similar in patients who had started bisphosphonate treatment early in life (before 5.0years of age) and in patients who had started therapy later (after the age of 10.0years) or had never received bisphosphonate therapy. Bisphosphonate treatment decreased progression rate of scoliosis in OI type III but there was no evidence of a positive effect on scoliosis in OI types I and IV. The prevalence of scoliosis at maturity was not influenced by the bisphosphonate treatment history in any OI type. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Evaluation of Fracture and Osteotomy Union in the Setting of Osteogenesis Imperfecta: Reliability of the Modified Radiographic Union Score for Tibial Fractures (RUST).

    PubMed

    Franzone, Jeanne M; Finkelstein, Mark S; Rogers, Kenneth J; Kruse, Richard W

    2017-09-08

    Evaluation of the union of osteotomies and fractures in patients with osteogenesis imperfecta (OI) is a critical component of patient care. Studies of the OI patient population have so far used varied criteria to evaluate bony union. The radiographic union score for tibial fractures (RUST), which was subsequently revised to the modified RUST, is an objective standardized method of evaluating fracture healing. We sought to evaluate the reliability of the modified RUST in the setting of the tibias of patients with OI. Tibial radiographs of 30 patients with OI fractures, or osteotomies were scored by 3 observers on 2 separate occasions. Each of the 4 cortices was given a score (1=no callus, 2=callus present, 3=bridging callus, and 4=remodeled, fracture not visible) and the modified RUST is the sum of these scores (range, 4 to 16). The interobserver and intraobserver reliabilities were evaluated using intraclass coefficients (ICC) with 95% confidence intervals. The ICC representing the interobserver reliability for the first iteration of scores was 0.926 (0.864 to 0.962) and for the second series was 0.915 (0.845 to 0.957). The ICCs representing the intraobserver reliability for each of the 3 reviewers for the measurements in series 1 and 2 were 0.860 (0.707 to 0.934), 0.994 (0.986 to 0.997), and 0.974 (0.946 to 0.988). The modified RUST has excellent interobserver and intraobserver reliability in the setting of OI despite challenges related to the poor quality of the bone and its dysplastic nature. The application and routine use of the modified RUST in the OI population will help standardize our evaluation of osteotomy and fracture healing. Level III-retrospective study of nonconsecutive patients.

  3. Osteogenesis imperfecta

    MedlinePlus

    ... defect in the gene that produces type 1 collagen, an important building block of bone. There are ... fractures Early hearing loss ( deafness ) Because type I collagen is also found in ligaments, people with OI ...

  4. Angiogenic Signaling in Living Breast Tumor Models

    DTIC Science & Technology

    2008-06-01

    A.S. Kamoun-Goldrat and M.F. Le Merrer, "Animal models of osteogenesis imperfecta and related syndromes," J. Bone Miner. Metab. 25, 211-8 (2007...in the tumor reactive stroma. Therefore these optical properties may be useful in studying genetic disorders of collagen, such as in Osteogenesis ... Imperfecta [26]. Acknowledgments This work is supported by Department of Defense grant W81XWH-05-1-0396. We thank Drs. Ania Majewska and Dr. Julie

  5. Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta

    PubMed Central

    Cabral, Wayne A.; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R.; Chang, Weizhong; Perosky, Joseph E.; Makareeva, Elena N.; Mertz, Edward L.; Leikin, Sergey; Tomer, Kenneth B.; Kozloff, Kenneth M.; Eyre, David R.; Yamauchi, Mitsuo; Marini, Joan C.

    2014-01-01

    Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib−/− mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2–11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib−/− fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered

  6. Isolated olecranon fractures in children affected by osteogenesis imperfecta type I treated with single screw or tension band wiring system: Outcomes and pitfalls in relation to bone mineral density.

    PubMed

    Persiani, Pietro; Ranaldi, Filippo M; Graci, Jole; De Cristo, Claudia; Zambrano, Anna; D'Eufemia, Patrizia; Martini, Lorena; Villani, Ciro

    2017-05-01

    The purpose of this study is to compare the results of 2 techniques, tension band wiring (TBW) and fixation with screws, in olecranon fractures in children affected with osteogenesis imperfecta (OI) type I. Between 2010 and 2014, 21 olecranon fractures in 18 children with OI (average age: 12 years old) were treated surgically. Ten patients were treated with the screw fixation and 11 with TBW. A total of 65% of olecranon fractures occurred as a result of a spontaneous avulsion of the olecranon during the contraction of the triceps muscle. The average follow-up was 36 months. Among the children treated with 1 screw, 5 patients needed a surgical revision with TBW due to a mobilization of the screw. In this group, the satisfactory results were 50%. In patients treated with TBW, the satisfactory results were 100% of the cases. The average Z-score, the last one recorded in the patients before the trauma, was -2.53 in patients treated with screw fixation and -2.04 in those treated with TBW. TBW represents the safest surgical treatment for patients suffering from OI type I, as it helps to prevent the rigidity of the elbow through an earlier recovery of the range of motion, and there was no loosening of the implant. In analyzing the average Z-score before any fracture, the fixation with screws has an increased risk of failure in combination with low bone mineral density.

  7. Effect of Anti-Sclerostin Therapy and Osteogenesis Imperfecta on Tissue-level Properties in Growing and Adult Mice While Controlling for Tissue Age

    PubMed Central

    Sinder, Benjamin P.; Lloyd, William R.; Salemi, Joseph D.; Marini, Joan C.; Caird, Michelle S.; Morris, Michael D.; Kozloff, Kenneth M.

    2016-01-01

    Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as Osteogenesis Imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly→Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5 weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2–4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages >3wk) and rapidly growing Brtl/+ (at tissue ages > 4wk) mice compared to WT. At identical tissue ages defined by fluorescent labels adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age

  8. Effect of anti-sclerostin therapy and osteogenesis imperfecta on tissue-level properties in growing and adult mice while controlling for tissue age.

    PubMed

    Sinder, Benjamin P; Lloyd, William R; Salemi, Joseph D; Marini, Joan C; Caird, Michelle S; Morris, Michael D; Kozloff, Kenneth M

    2016-03-01

    Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as osteogenesis imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly➔Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2-4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages>3wks) and rapidly growing Brtl/+ (at tissue ages>4wks) mice compared to WT. At identical tissue ages defined by fluorescent labels, adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and

  9. Scoliosis in children with osteogenesis imperfecta: influence of severity of disease and age of reaching motor milestones.

    PubMed

    Engelbert, Raoul H H; Uiterwaal, Cuno S P M; van der Hulst, Annelies; Witjes, Baukje; Helders, Paul J M; Pruijs, Hans E H

    2003-04-01

    We studied the relationship between the age of reaching motor milestones, especially anti-gravity activities, and the age of development of pathological spinal curvatures in children with osteogenesis imperfecta (OI). We hypothesized that earlier achievement of anti-gravity motor milestones predicts a later development of pathological spinal curvatures. Ninety-six children participated in this retrospective study. The severity of the disease was classified according to Sillence into types I-IV. Spinal radiography was performed annually and spinal deformities were measured according to the Cobb angle. Scoliosis was defined as a Cobb angle exceeding 9 degrees. Pathological thoracic kyphosis was defined as a Cobb angle exceeding 40 degrees. The parents were asked to report the age at which the child achieved motor milestones, and data were checked against health care records. Thirty-seven of 96 children (39%) developed a scoliosis of more than 9 degrees. Nine of 96 children (9%) developed a pathological kyphosis. The age of developing scoliosis was significantly lower than the age of development of the pathological kyphosis (P=0.01). Bone mineral density was measured by dual energy X-ray absorptiometry (DEXA) in 53 children, 28 of whom developed scoliosis, and 25 of whom did not. The mean DEXA Z-score of the 28 children with scoliosis was significantly lower than that of the 25 children without (-5.2, SD 1.3 vs -3.2, SD 1.9; P-value <0.001). Children with OI type IV, but particularly OI type III, reached motor milestones much later than children with OI type I. The motor milestone "supported sitting" showed a significant inverse association with time of the first presence of scoliosis with a Cobb angle greater than 9 degrees (linear regression coefficient: -1.3, 95% confidence interval: -2.6 to -0.03). The age of achieving the motor milestones "lifting the head to 45 degrees in prone position", "rolling", and "supported-" and "unsupported standing" were not

  10. [Clinical condition and therapy of bone diseases].

    PubMed

    Miura, Kohji; Oznono, Keiichi

    2013-12-01

    Skeletal dysplasia is the term which represents disorders including growth and differentiation of bone, cartilage and ligament. A lot of diseases are included, and new disorders have been added. However, the therapy of most bone diseases is less well-established. Achondroplasia, hypochondroplasia, and osteogenesis imperfecta are most frequent bone diseases. There is no curative treatment for these diseases, however, supportive therapies are available ; for example, growth-hormone therapy for achondroplasia and hypochondroplasia, and bisphosphonate therapy for osteogenesis imperfecta. In addition, enzyme replacement therapy for hypophosphatasia is now on clinical trial.

  11. Association Between Osteogenesis and Inflammation During the Progression of Calcified Plaque Evaluated by 18F-Fluoride and 18F-FDG.

    PubMed

    Li, Xiang; Heber, Daniel; Cal-Gonzalez, Jacobo; Karanikas, Georgios; Mayerhoefer, Marius E; Rasul, Sazan; Beitzke, Dietrich; Zhang, Xiaoli; Agis, Hermine; Mitterhauser, Markus; Wadsak, Wolfgang; Beyer, Thomas; Loewe, Christian; Hacker, Marcus

    2017-06-01

    18 F-FDG is the most widely validated PET tracer for the evaluation of atherosclerotic inflammation. Recently, 18 F-NaF has also been considered a potential novel biomarker of osteogenesis in atherosclerosis. We aimed to analyze the association between inflammation and osteogenesis at different stages of atherosclerosis, as well as the interrelationship between these 2 processes during disease progression. Methods: Thirty-four myeloma patients underwent 18 F-NaF and 18 F-FDG PET/CT examinations. Lesions were divided into 3 groups (noncalcified, mildly calcified, and severely calcified lesions) on the basis of calcium density as measured in Hounsfield units by CT. Tissue-to-background ratios were determined from PET for both tracers. The association between inflammation and osteogenesis during atherosclerosis progression was evaluated in 19 patients who had at least 2 examinations with both tracers. Results: There were significant correlations between the maximum tissue-to-background ratios of the 2 tracers (Spearman r = 0.5 [ P < 0.01]; Pearson r = 0.4 [ P < 0.01]) in the 221 lesions at baseline. The highest uptake of both tracers was observed in noncalcified lesions, but without any correlation between the tracers (Pearson r = 0.06; P = 0.76). Compared with noncalcified plaques, mildly calcified plaques showed concordant significantly lower accumulation, with good correlation between the tracers (Pearson r = 0.7; P < 0.01). In addition, enhanced osteogenesis-derived 18 F-NaF uptake and regressive inflammation-derived 18 F-FDG uptake were observed in severely calcified lesions (Pearson r = 0.4; P < 0.01). During follow-up, increased calcium density and increased mean 18 F-NaF uptake were observed, whereas mean 18 F-FDG uptake decreased. Most noncalcified (86%) and mildly calcified (81%) lesions and 47% of severely calcified lesions had concordant development of both vascular inflammation and osteogenesis. Conclusion: The combination of 18 F-NaF PET imaging and 18 F

  12. Amelogenesis imperfecta: review of diagnostic findings and treatment concepts.

    PubMed

    Sabandal, Martin M I; Schäfer, Edgar

    2016-09-01

    Mineralization defects like amelogenesis imperfecta are often of hereditary origin. This article reviews the diagnostic findings and summarizes the suggested treatment approaches. Currently, there are no defined therapy recommendations available for patients suffering from amelogenesis imperfecta. The mentioned therapies are more or less equal but no comprehensive therapy recommendation is evident. When treating patients suffering from amelogenesis imperfecta, a comprehensive therapy of almost every dental discipline has to be considered. The earlier the diagnosis of amelogenesis imperfecta is confirmed, the better the outcome is. Optimal treatment approaches consist of early diagnosis and treatment approach and frequent dental recall appointments to prevent progressive occlusal wear or early destruction by caries. Full-mouth prosthetic treatment seems to be the best treatment option.

  13. Mesenchymal Stem Cell as Targeted-Delivery Vehicle in Breast Cancer

    DTIC Science & Technology

    2008-06-01

    Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta . Nat Med. 1999;5:309-13. 3. Le...relevant because the beneficial effects of MSCs are being tested clinically in attempts to improve hematopoietic engraftment [1], to treat osteogenesis

  14. Osteogenesis Imperfecta Foundation

    MedlinePlus

    ... OIF Research Grants 50,000 Lives, One Unbreakable Spirit © Jamie Kendall Fund My Personal Gift Employer Matching ... Wheel Regional Conference 50,000 Laps, One Unbreakable Spirit® OI Golf Classic Awareness Week Fine Wines Strong ...

  15. Osteogenesis Imperfecta Overview

    MedlinePlus

    ... 15-AR-8004 Last Reviewed 2015-06 NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 ... your language or another language, contact the NIH Osteoporosis and Related Bone Diseases ~ National Resource Center at ...

  16. Specific Genetic Disorders

    MedlinePlus

    ... Gaucher Disease Hemochromatosis Hemophilia Holoprosencephaly Huntington's disease Klinefelter syndrome Marfan syndrome Myotonic Dystrophy Neurofibromatosis Noonan Syndrome Osteogenesis Imperfecta ...

  17. Decreased fracture rate, pharmacogenetics and BMD response in 79 Swedish children with osteogenesis imperfecta types I, III and IV treated with Pamidronate.

    PubMed

    Lindahl, K; Kindmark, A; Rubin, C-J; Malmgren, B; Grigelioniene, G; Söderhäll, S; Ljunggren, Ö; Åström, E

    2016-06-01

    Osteogenesis imperfecta (OI) is an inherited heterogeneous bone fragility disorder, usually caused by collagen I mutations. It is well established that bisphosphonate treatment increases lumbar spine (LS) bone mineral density (BMD), as well as improves vertebral geometry in severe OI; however, fracture reduction has been difficult to prove, pharmacogenetic studies are scarce, and it is not known at which age, or severity of disease, treatment should be initiated. COL1A1 and COL1A2 were analyzed in 79 children with OI (type I n=33, type III n=25 and type IV n=21) treated with Pamidronate. Data on LS BMD, height, and radiologically confirmed non-vertebral and vertebral fractures were collected prior to, and at several time points during treatment. An increase in LS BMD Z-score was observed for all types of OI, and a negative correlation to Δ LS BMD was observed for both age and LS BMD Z-score at treatment initiation. Supine height Z-scores were not affected by Pamidronate treatment, The fracture rate was reduced for all OI types at all time points during treatment (overall p<0.0003, <0.0001 and 0.0003 for all OI types I, III and IV respectively). The reduced fracture rate was maintained for types I and IV, while an additional decrease was observed over time for type III. The fracture rate was reduced also in individuals with continued low BMD after >4yrs Pamidronate. Twice as many boys as girls with OI type I were treated with Pamidronate, and the fracture rate the year prior treatment was 2.2 times higher for boys (p=0.0236). Greater Δ LS BMD, but smaller Δ fracture numbers were observed on Pamidronate for helical glycine mutations in COL1A1 vs. COL1A2. Vertebral compression fractures did not progress in any individual during treatment; however, they did not improve in 9%, and these individuals were all >11years of age at treatment initiation (p<0.0001). Pamidronate treatment in children with all types of OI increased LS BMD, decreased fracture rate, and improved

  18. Intermolecular Slip Mechanism in Tropocollagen Nanofibrils

    DTIC Science & Technology

    2009-01-01

    Imperfecta or Ehlers - Danlos Syndrome . REPORT DOCUMENTATION PAGE (SF298) (Continuation Sheet) Continuation for Block 13 ARO Report Number Intermolecular slip...our studies could advance our knowledge of mechan- isms underlying important collagen-related diseases like Osteogenesis Imperfecta or Ehlers - Danlos ... Syndrome . Keywords: Collagen; Shear; Nanomechanics; Steered mo- lecular dynamics; Adhesion strength; Materiomics 1. Introduction Collagen is the

  19. Substitutions of aspartic acid for glycine-220 and of arginine for glycine-664 in the triple helix of the pro alpha 1(I) chain of type I procollagen produce lethal osteogenesis imperfecta and disrupt the ability of collagen fibrils to incorporate crystalline hydroxyapatite.

    PubMed Central

    Culbert, A A; Lowe, M P; Atkinson, M; Byers, P H; Wallis, G A; Kadler, K E

    1995-01-01

    We identified two infants with lethal (type II) osteogenesis imperfecta (OI) who were heterozygous for mutations in the COL1A1 gene that resulted in substitutions of aspartic acid for glycine at position 220 and arginine for glycine at position 664 in the product of one COL1A1 allele in each individual. In normal age- and site-matched bone, approximately 70% (by number) of the collagen fibrils were encrusted with plate-like crystallites of hydroxyapatite. In contrast, approximately 5% (by number) of the collagen fibrils in the probands' bone contained crystallites. In contrast with normal bone, the c-axes of hydroxyapatite crystallites were sometimes poorly aligned with the long axis of fibrils obtained from OI bone. Chemical analysis showed that the OI samples contained normal amounts of calcium. The probands' bone samples contained type I collagen, overmodified type I collagen and elevated levels of type III and V collagens. On the basis of biochemical and morphological data, the fibrils in the OI samples were co-polymers of normal and mutant collagen. The results are consistent with a model of fibril mineralization in which the presence of abnormal type I collagen prevents normal collagen in the same fibril from incorporating hydroxyapatite crystallites. Images Figure 1 Figure 2 Figure 3 PMID:7487936

  20. Amelogenesis imperfecta and anterior open bite: Etiological, classification, clinical and management interrelationships

    PubMed Central

    Alachioti, Xanthippi Sofia; Dimopoulou, Eleni; Vlasakidou, Anatoli; Athanasiou, Athanasios E

    2014-01-01

    Although amelogenesis imperfecta is not a common dental pathological condition, its etiological, classification, clinical and management aspects have been addressed extensively in the scientific literature. Of special clinical consideration is the frequent co-existence of amelogenesis imperfecta with the anterior open bite. This paper provides an updated review on amelogenesis imperfecta as well as anterior open bite, in general, and documents the association of these two separate entities, in particular. Diagnosis and treatment of amelogenesis imperfecta patients presenting also with anterior open bite require a lengthy, comprehensive and multidisciplinary approach, which should aim to successfully address all dental, occlusal, developmental, skeletal and soft tissue problems associated with these two serious clinical conditions. PMID:24987656

  1. Amelogenesis imperfecta and anterior open bite: Etiological, classification, clinical and management interrelationships.

    PubMed

    Alachioti, Xanthippi Sofia; Dimopoulou, Eleni; Vlasakidou, Anatoli; Athanasiou, Athanasios E

    2014-01-01

    Although amelogenesis imperfecta is not a common dental pathological condition, its etiological, classification, clinical and management aspects have been addressed extensively in the scientific literature. Of special clinical consideration is the frequent co-existence of amelogenesis imperfecta with the anterior open bite. This paper provides an updated review on amelogenesis imperfecta as well as anterior open bite, in general, and documents the association of these two separate entities, in particular. Diagnosis and treatment of amelogenesis imperfecta patients presenting also with anterior open bite require a lengthy, comprehensive and multidisciplinary approach, which should aim to successfully address all dental, occlusal, developmental, skeletal and soft tissue problems associated with these two serious clinical conditions.

  2. Enamelin/ameloblastin gene polymorphisms in autosomal amelogenesis imperfecta among Syrian families.

    PubMed

    Dashash, Mayssoon; Bazrafshani, Mohamed Riza; Poulton, Kay; Jaber, Saaed; Naeem, Emad; Blinkhorn, Anthony Stevenson

    2011-02-01

      This study was undertaken to investigate whether a single G deletion within a series of seven G residues (codon 196) at the exon 9-intron 9 boundary of the enamelin gene ENAM and a tri-nucleotide deletion at codon 180 in exon 7 (GGA vs deletion) of ameloblastin gene AMBN could have a role in autosomal amelogenesis imperfecta among affected Syrian families.   A new technique - size-dependent, deletion screening - was developed to detect nucleotide deletion in ENAM and AMBN genes. Twelve Syrian families with autosomal-dominant or -recessive amelogenesis imperfecta were included.   A homozygous/heterozygous mutation in the ENAM gene (152/152, 152/153) was identified in affected members of three families with autosomal-dominant amelogenesis imperfecta and one family with autosomal-recessive amelogenesis imperfecta. A heterozygous mutation (222/225) in the AMBN gene was identified. However, no disease causing mutations was found. The present findings provide useful information for the implication of ENAM gene polymorphism in autosomal-dominant/-recessive amelogenesis imperfecta.   Further investigations are required to identify other genes responsible for the various clinical phenotypes. © 2010 Blackwell Publishing Asia Pty Ltd.

  3. Fontanelles - excessively large

    MedlinePlus

    ... Hydrocephalus Intrauterine growth retardation (IUGR) Premature birth Rarer causes: Achondroplasia Apert syndrome Cleidocranial dysostosis Congenital rubella Neonatal hypothyroidism Osteogenesis imperfecta Rickets When to Contact a Medical ...

  4. Correlations Between Bone Mechanical Properties and Bone Composition Parameters in Mouse Models of Dominant and Recessive Osteogenesis Imperfecta and the Response to Anti-TGF-β Treatment.

    PubMed

    Bi, Xiaohong; Grafe, Ingo; Ding, Hao; Flores, Rene; Munivez, Elda; Jiang, Ming Ming; Dawson, Brian; Lee, Brendan; Ambrose, Catherine G

    2017-02-01

    Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF-β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti-TGF-β treatment in OI has not been studied. Here, we performed follow-up analyses of femurs collected in an earlier study from OI mice with and without anti-TGF-β treatment from both recessive (Crtap -/- ) and dominant (Col1a2 +/P.G610C ) OI mouse models and WT mice. Mechanical properties were determined using three-point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti-TGF-β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2 +/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral-to-collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in

  5. Learning about Osteogenesis Imperfecta

    MedlinePlus

    ... team including the child's own doctor, and genetic, orthopedic and rehabilitation medicine. Supportive therapy is unique to ... and adults who do not have OI. An orthopedic treatment called intramedullary rodding (placing rods in the ...

  6. Osteogenesis Imperfecta Issues: Constipation

    MedlinePlus

    ... to the diet. • Increase amount of fruits, fruit juice and vegetables. • Reduce amount of processed foods and ... This can put pressure on the rectum. Pressure, plus the lax or elastic muscles seen in the ...

  7. Amelogenesis Imperfecta with Coronal Resorption: Report of Three Cases.

    PubMed

    Bhatia, Shannu K; Hunter, M Lindsay; Ashley, Paul F

    2015-12-01

    Intracoronal resorption of the permanent dentition in cases of amelogenesis imperfecta (AI) is a rare finding which poses an added complication to the already complex management of this condition. This paper presents three cases of AI associated with delayed eruption of permanent teeth in which asymptomatic intracoronal resorption occurred. CPD/Clinical Relevance: This paper highlights the fact that teeth affected with amelogenesis imperfecta may undergo asymptomatic intracoronal resorption which is only identifiable radiographically.

  8. Oral Rehabilitation of a Patient with Amelogenesis Imperfecta

    PubMed Central

    Cogulu, Dilsah; Becerik, Sema; Emingil, Gülnur; Hart, P. Suzanne; Hart, Thomas C.

    2014-01-01

    Amelogenesis imperfecta is a hereditary disorder that causes defective enamel development in the primary and permanent teeth. Clinical treatment is important to address the esthetic appearance of affected teeth, reduce dentinal sensitivity, preserve tooth structure, and optimize masticatory function. The purpose of this case report was to describe the diagnosis, treatment planning, and dental rehabilitation of a patient with autosomal recessive amelogenesis imperfecta. The patient was followed for 5 years, and evaluation 3 years after restorations revealed no pathology associated with the rehabilitation. The patient’s esthetic and functional expectations were satisfied. PMID:20108745

  9. Bone Mineral Properties in Growing Col1a2+/G610C Mice, an animal model of Osteogenesis Imperfecta

    PubMed Central

    Masci, Marco; Wang, Min; Imbert, Laurianne; Barnes, Aileen M; Spevak, Lyudmila; Lukashova, Lyudmila; Yihe, Huang; Yan, Ma; Marini, Joan C; Jacobsen, Christina M; Warman, Matthew L; Boskey, Adele L

    2016-01-01

    The Col1a2+/G610C knock-in mouse, models osteogenesis imperfecta in a large old order Amish family (OOA) with type IV OI, caused by a G-to-T transversion at nucleotide 2098, which alters the gly-610 codon in the triple-helical domain of the α2(I) chain of type I collagen. Mineral and matrix properties of the long bones and vertebrae of male Col1a2+/G610C and their wild-type controls (Col1a2+/+), were characterized to gain insight into the role of α2-chain collagen mutations in mineralization. Additionally, we examined the rescuability of the composition by sclerostin inhibition initiated by crossing Col1a2+/G610C with an LRP+/A214V high bone mass allele. At age 10-days, vertebrae and tibia showed few alterations by micro-CT or Fourier transform infrared imaging (FTIRI). At 2-months-of-age, Col1a2+/G610C tibias had 13% fewer secondary trabeculae than Col1a2+/+, these were thinner (11%) and more widely spaced (20%) than those of Col1a2+/+ mice. Vertebrae of Col1a2+/G610C mice at 2-months also had lower bone volume fraction (38%), trabecular number (13%), thickness (13%) and connectivity density (32%) compared to Col1a2+/+. The cortical bone of Col1a2+/G610C tibias at 2-months had 3% higher tissue mineral density compared to Col1a2+/+; Col1a2+/G610C vertebrae had lower cortical thickness (29%), bone area (37%) and polar moment of inertia (38%) relative to Col1a2+/+. FTIRI analysis, which provides information on bone chemical composition at ~ 7 µm-spatial resolution, showed tibias at 10-days, did not differ between genotypes. Comparing identical bone types in Col1a2+/G610C to Col1a2+/+ at 2-months-of-age, tibias showed higher mineral-to-matrix ratio in trabeculae (17%) and cortices (31%). and in vertebral cortices (28%). Collagen maturity was 42% higher at 10-days-of-age in Col1a2+/G610C vertebral trabeculae and in 2-month tibial cortices (12%), vertebral trabeculae (42%) and vertebral cortices (12%). Higher acid-phosphate substitution was noted in 10-day

  10. Interradicular dentin dysplasia associated with amelogenesis imperfecta with taurodontism or trichodentoosseous syndrome: a diagnostic dilemma.

    PubMed

    Hegde, Veda; Srikanth, K

    2014-01-01

    Amelogenesis imperfecta is a hereditary disorder with diverse clinical presentation, where enamel is the tissue that is primarily affected either quantitatively or qualitatively. Hypomaturation/hypoplastic amelogenesis imperfecta with taurodontism is a rare variant of amelogenesis imperfecta which is often confused with trichodentoosseous syndrome. We report a rare case of hereditary enamel defect with taurodontism associated with interradicular dentin dysplasia.

  11. Respiratory Issues in OI

    MedlinePlus

    Respiratory Issues in Osteogenesis Imperfecta \\ Introduction The respiratory system’s job is to bring oxygen into the body and remove carbon dioxide, the waste product of breathing. Because oxygen is the fuel ...

  12. Classification of micro-CT images using 3D characterization of bone canal patterns in human osteogenesis imperfecta

    NASA Astrophysics Data System (ADS)

    Abidin, Anas Z.; Jameson, John; Molthen, Robert; Wismüller, Axel

    2017-03-01

    Few studies have analyzed the microstructural properties of bone in cases of Osteogenenis Imperfecta (OI), or `brittle bone disease'. Current approaches mainly focus on bone mineral density measurements as an indirect indicator of bone strength and quality. It has been shown that bone strength would depend not only on composition but also structural organization. This study aims to characterize 3D structure of the cortical bone in high-resolution micro CT images. A total of 40 bone fragments from 28 subjects (13 with OI and 15 healthy controls) were imaged using micro tomography using a synchrotron light source (SRµCT). Minkowski functionals - volume, surface, curvature, and Euler characteristics - describing the topological organization of the bone were computed from the images. The features were used in a machine learning task to classify between healthy and OI bone. The best classification performance (mean AUC - 0.96) was achieved with a combined 4-dimensional feature of all Minkowski functionals. Individually, the best feature performance was seen using curvature (mean AUC - 0.85), which characterizes the edges within a binary object. These results show that quantitative analysis of cortical bone microstructure, in a computer-aided diagnostics framework, can be used to distinguish between healthy and OI bone with high accuracy.

  13. Bone Sialoproteins and Breast Cancer Detection

    DTIC Science & Technology

    2005-07-01

    Fig. 8 shows (DSPP) gene within the critical dentinogenesis imperfecta type 11 and BSP with an intact RGD bridging MMP-2 to its cell-surface dentin...sialoprotein (BSP) and the pivotal transcriptional oebter Gasy seler I Freedma NcWe of BiselarMa.tMatix regulator of osteogenesis , Cbfal/Runx2, in malignant...potential the pathogenesis of dentinogenesis imperfecta type II. Genomics 1997; diagnostic biomarker for ovarian cancer. JAMA 2002;287:1671-9. 42:38-45

  14. Nutrition and OI

    MedlinePlus

    Nutrition and OI Introduction To promote bone development and optimal health, children and adults with osteogenesis imperfecta ( ... no foods or supplements that will cure OI. Nutrition Related Problems Difficulties eating solid food have been ...

  15. OI Issues: Dental Care for Persons with OI

    MedlinePlus

    ... Better Bones Upcoming Events Online Store OI Issues: Dental Care for Persons with OI Introduction Osteogenesis imperfecta ( ... jaws and may or may not affect the teeth. About half of the people who have OI ...

  16. Children with Brittle Bones.

    ERIC Educational Resources Information Center

    Alston, Jean

    1982-01-01

    Special help given to children with Osteogenesis Imperfecta (brittle bone disease) is described, including adapted equipment to allow for writing and use of a classroom assistant to aid participation in a regular classroom. (CL)

  17. Sclerostin Antibody Improves Skeletal Parameters in a Brtl/+ Mouse Model of Osteogenesis Imperfecta†

    PubMed Central

    Sinder, Benjamin P.; Eddy, Mary M.; Ominsky, Michael S; Caird, Michelle S.; Marini, Joan C.; Kozloff, Kenneth M.

    2012-01-01

    Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by osteopenia and easy susceptibility to fracture. Symptoms are most prominent during childhood. Although anti-resorptive bisphosphonates have been widely used to treat pediatric OI, controlled trials showed improved vertebral parameters but equivocal effects on long-bone fracture rates. New treatments for OI are needed to increase bone mass throughout the skeleton. Sclerostin antibody (Scl-Ab) therapy is potently anabolic in the skeleton by stimulating osteoblasts via the canonical wnt signaling pathway, and may be beneficial for treating OI. In this study, Scl-Ab therapy was investigated in mice heterozygous for a typical OI-causing Gly->Cys substitution in col1a1. Two weeks of Scl-Ab successfully stimulated osteoblast bone formation in Brtl/+ and WT mice, leading to improved bone mass and reduced long-bone fragility. Image-guided nanoindentation revealed no alteration in local tissue mineralization dynamics with Scl-Ab. These results contrast with previous findings of antiresorptive efficacy in OI both in mechanism and potency of effects on fragility. In conclusion, short-term Scl-Ab was successfully anabolic in osteoblasts harboring a typical OI-causing collagen mutation and represents a potential new therapy to improve bone mass and reduce fractures in pediatric OI. PMID:22836659

  18. Bone mineral properties in growing Col1a2(+/G610C) mice, an animal model of osteogenesis imperfecta.

    PubMed

    Masci, Marco; Wang, Min; Imbert, Laurianne; Barnes, Aileen M; Spevak, Lyudmila; Lukashova, Lyudmila; Huang, Yihe; Ma, Yan; Marini, Joan C; Jacobsen, Christina M; Warman, Matthew L; Boskey, Adele L

    2016-06-01

    The Col1a2(+/G610C) knock-in mouse, models osteogenesis imperfecta in a large old order Amish family (OOA) with type IV OI, caused by a G-to-T transversion at nucleotide 2098, which alters the gly-610 codon in the triple-helical domain of the α2(I) chain of type I collagen. Mineral and matrix properties of the long bones and vertebrae of male Col1a2(+/G610C) and their wild-type controls (Col1a2(+/+)), were characterized to gain insight into the role of α2-chain collagen mutations in mineralization. Additionally, we examined the rescuability of the composition by sclerostin inhibition initiated by crossing Col1a2(+/G610C) with an LRP(+/A214V) high bone mass allele. At age 10-days, vertebrae and tibia showed few alterations by micro-CT or Fourier transform infrared imaging (FTIRI). At 2-months-of-age, Col1a2(+/G610C) tibias had 13% fewer secondary trabeculae than Col1a2(+/+), these were thinner (11%) and more widely spaced (20%) than those of Col1a2(+/+) mice. Vertebrae of Col1a2(+/G610C) mice at 2-months also had lower bone volume fraction (38%), trabecular number (13%), thickness (13%) and connectivity density (32%) compared to Col1(a2+/+). The cortical bone of Col1a2(+/G610C) tibias at 2-months had 3% higher tissue mineral density compared to Col1a2(+/+); Col1a2(+/G610C) vertebrae had lower cortical thickness (29%), bone area (37%) and polar moment of inertia (38%) relative to Col1a2(+/+). FTIRI analysis, which provides information on bone chemical composition at ~7μm-spatial resolution, showed tibias at 10-days did not differ between genotypes. Comparing identical bone types in Col1a2(+/G610C) to Col1a2(+/+) at 2-months-of-age, tibias showed higher mineral-to-matrix ratio in trabeculae (17%) and cortices (31%). and in vertebral cortices (28%). Collagen maturity was 42% higher at 10-days-of-age in Col1a2(+/G610C) vertebral trabeculae and in 2-month tibial cortices (12%), vertebral trabeculae (42%) and vertebral cortices (12%). Higher acid-phosphate substitution

  19. Bone x-ray

    MedlinePlus

    ... different views of the bone may be uncomfortable. Why the Test is Performed A bone x-ray ... neoplasia (MEN) II Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Paget's disease Primary hyperparathyroidism Rickets Risks There ...

  20. Exonal deletion of SLC24A4 causes hypomaturation amelogenesis imperfecta.

    PubMed

    Seymen, F; Lee, K-E; Tran Le, C G; Yildirim, M; Gencay, K; Lee, Z H; Kim, J-W

    2014-04-01

    Amelogenesis imperfecta is a heterogeneous group of genetic conditions affecting enamel formation. Recently, mutations in solute carrier family 24 member 4 (SLC24A4) have been identified to cause autosomal recessive hypomaturation amelogenesis imperfecta. We recruited a consanguineous family with hypomaturation amelogenesis imperfecta with generalized brown discoloration. Sequencing of the candidate genes identified a 10-kb deletion, including exons 15, 16, and most of the last exon of the SLC24A4 gene. Interestingly, this deletion was caused by homologous recombination between two 354-bp-long homologous sequences located in intron 14 and the 3' UTR. This is the first report of exonal deletion in SLC24A4 providing confirmatory evidence that the function of SLC24A4 in calcium transport has a crucial role in the maturation stage of amelogenesis.

  1. Aesthetic composite veneers for an adult patient with amelogenesis imperfecta: a case report.

    PubMed

    Brignall, Ian; Mehta, Shamir B; Banerji, Subir; Millar, Brian J

    2011-11-01

    This case has been presented as part of the continual assessment requirement for the MSc in Aesthetic Dentistry, King's College Dental Institute. Amelogenesis imperfecta (AI) is a hereditary disorder of enamel formation, affecting both the permanent and deciduous dentitions. It can be classified into hypoplastic, hypomaturation and hypocalcified types and presents with different hereditary patterns. The aim of this article is to provide an overview of amelogenesis imperfecta, including a detailed case report for an aesthetically concerned adult patient presenting in general practice with a Witkop's Type IA defect managed with the placement of direct, layered resin composite veneers. Amelogenesis imperfecta patients are susceptible to the restorative cycle of replacement restorations like any other patient, but start with a distinct disadvantage.This case report demonstrates a minimally invasive, relatively simple and cost-effective option for the aesthetic correction of a case of hypoplastic amelogenesis imperfecta with layered composite veneers. Dent Update 2011; 38:594-603

  2. [The genetics of collagen diseases].

    PubMed

    Kaplan, J; Maroteaux, P; Frezal, J

    1986-01-01

    Heritable disorders of collagen include Ehler-Danlos syndromes (11 types are actually known), Larsen syndrome and osteogenesis imperfecta. Their clinical, genetic and biochemical features are reviewed. Marfan syndrome is closely related to heritable disorders of collagen.

  3. [Stimulation and evaluation on maxillary distraction osteogenesis using CASSOS 2001].

    PubMed

    Zhu, Min; Qiu, Wei-liu; Tang, You-sheng; Li, Qing-yun

    2002-09-01

    To simulate maxillary distraction osteogenesis and evaluate the change of soft and hard tissue before and after treatment, using Computer-Assisted Simulation System for Orthognathic Surgery( CASSOS 2001). A fourteen-year-old boy with severe maxillary hypoplasia, due to unilateral cleft lip and palate, was analysed by cephalometric analysis. The simulations of maxillary distraction osteogenesis (Le Fort I osteotomy and Le Fort II osteotomy) were re-analysed. After the treatment, cephalometric analysis was preformed again. The data were compared. The maxillary hypoplasia was well treated using maxillary distraction osteogenesis; Compared with Le fort I osteotomy, more satisfactory results can be obtained by Le fort I distraction osteogenesis. Maxillary distraction osteogenesis is a better way to treat severe maxillary hypoplasia with operated CLP than maxillary osteotomy. CASSOS 2001 can help surgeons and patients on simulation and evaluation of maxillary distraction osteogenesis, and on decision of treatment plan.

  4. Amelogenesis imperfecta and the treatment plan - interdisciplinary team approach.

    PubMed

    Suchancova, B; Holly, D; Janska, M; Stebel, J; Lysy, J; Thurzo, A; Sasinek, S

    2014-01-01

    Amelogenesis imperfecta is a set of hereditary defects representing mainly the development defects of enamel without the presence of whole-body symptoms. Developmental disorders can manifest a complete absence of enamel, which is caused by improper differentiation of ameloblasts. This article describes the diagnosis and treatment of a patient with amelogenesis imperfecta, as well as the need for interdisciplinary cooperation to achieve the best possible morphological, skeletal, functional and aesthetic rehabilitation of the patients with this diagnosis. Furthermore, the article reviews literature dealing with other anomalies occurring in association with amelogenesis imperfect (Fig. 12, Ref. 20).

  5. Transcriptional Repression of the Dspp Gene Leads to Dentinogenesis Imperfecta Phenotype in Col1a1-Trps1 Transgenic Mice

    PubMed Central

    Napierala, Dobrawa; Sun, Yao; Maciejewska, Izabela; Bertin, Terry K; Dawson, Brian; D'Souza, Rena; Qin, Chunlin; Lee, Brendan

    2012-01-01

    Dentinogenesis imperfecta (DGI) is a hereditary defect of dentin, a calcified tissue that is the most abundant component of teeth. Most commonly, DGI is manifested as a part of osteogenesis imperfecta (OI) or the phenotype is restricted to dental findings only. In the latter case, DGI is caused by mutations in the DSPP gene, which codes for dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). Although these two proteins together constitute the majority of noncollagenous proteins of the dentin, little is known about their transcriptional regulation. Here we demonstrate that mice overexpressing the Trps1 transcription factor (Col1a1-Trps1 mice) in dentin-producing cells, odontoblasts, present with severe defects of dentin formation that resemble DGI. Combined micro–computed tomography (µCT) and histological analyses revealed tooth fragility due to severe hypomineralization of dentin and a diminished dentin layer with irregular mineralization in Col1a1-Trps1 mice. Biochemical analyses of noncollagenous dentin matrix proteins demonstrated decreased levels of both DSP and DPP proteins in Col1a1-Trps1 mice. On the molecular level, we demonstrated that sustained high levels of Trps1 in odontoblasts lead to dramatic decrease of Dspp expression as a result of direct inhibition of the Dspp promoter by Trps1. During tooth development Trps1 is highly expressed in preodontoblasts, but in mature odontoblasts secreting matrix its expression significantly decreases, which suggests a Trps1 role in odontoblast development. In these studies we identified Trps1 as a potent inhibitor of Dspp expression and the subsequent mineralization of dentin. Thus, we provide novel insights into mechanisms of transcriptional dysregulation that leads to DGI. © 2012 American Society for Bone and Mineral Research. PMID:22508542

  6. Mesenchymal Stem Cell as Targeted-Delivery Vehicle in Breast Cancer

    DTIC Science & Technology

    2010-06-01

    osteogenesis imperfect [2], graft-versus-host disease [3], and autoimmune diseases [4, 5], and to deliver therapy for malignancies [6, 7]. For the current...Gordon PL, Neel M, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis ... imperfecta . Nat Med. 1999;5:309-13. 3. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-versus

  7. Leader genes in osteogenesis: a theoretical study.

    PubMed

    Orlando, Bruno; Giacomelli, Luca; Ricci, Massimiliano; Barone, Antonio; Covani, Ugo

    2013-01-01

    Little is still known about the molecular mechanisms involved in the process of osteogenesis. In this paper, the leader genes approach, a new bioinformatics method which has already been experimentally validated, is adopted in order to identify the genes involved in human osteogenesis. Interactions among genes are then calculated and genes are ranked according to their relative importance in this process. In total, 167 genes were identified as being involved in osteogenesis. Genes were divided into 4 groups, according to their main function in the osteogenic processes: skeletal development; cell adhesion and proliferation; ossification; and calcium ion binding. Seven genes were consistently identified as leader genes (i.e. the genes with the greatest importance in osteogenesis), while 14 were found to have slightly less importance (class B genes). It was interesting to notice that the larger part of leader and class B genes belonged to the cell adhesion and proliferation or to the ossification sub-groups. This finding suggested that these two particular sub-processes could play a more important role in osteogenesis. Moreover, among the 7 leader genes, it is interesting to notice that RUNX2, BMP2, SPARC, PTH play a direct role in bone formation, while the 3 other leader genes (VEGF, IL6, FGF2) seem to be more connected with an angiogenetic process. Twenty-nine genes have no known interactions (orphan genes). From these results, it may be possible to plan an ad hoc experimentation, for instance by microarray analyses, focused on leader, class B and orphan genes, with the aim to shed new light on the molecular mechanisms underlying osteogenesis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Get in the Swim: Gaining Access to Recreational Facilities.

    ERIC Educational Resources Information Center

    Richard, Jean-Paul

    1980-01-01

    The father of a child with osteogenesis imperfecta, an orthopedic condition, recounts his struggles to convince local agencies to operate a swimming program for disabled students. He offers eight guidelines for advocating such programs in other areas. (CL)

  9. Acoustic Emission Based Surveillance System for Prediction of Stress Fractures

    DTIC Science & Technology

    2007-09-01

    aging are susceptible to such fractures in contexts of osteoporosis, diabetes, cerebral palsy, fibrous dysplasia and osteogenesis imperfecta . This...disease, or, healthy people who have excessive exercise regimes (soldiers and athletes) experience these fractures [2]. Stress fractures interrupt

  10. Connective Tissue Disorders

    MedlinePlus

    ... syndrome, and osteogenesis imperfecta Autoimmune disorders, such as lupus and scleroderma Cancers, like some types of soft tissue sarcoma Each disorder has its own symptoms and needs different treatment. NIH: National Institute of Arthritis and Musculoskeletal and Skin Diseases

  11. Thoracolumbar Junction Syndrome Causing Pain around Posterior Iliac Crest: A Case Report.

    PubMed

    Kim, Soo-Ryu; Lee, Min-Ji; Lee, Seung-Jun; Suh, Young-Sung; Kim, Dae-Hyun; Hong, Ji-Hee

    2013-03-01

    Thoracolumbar junction syndrome is characterized by referred pain which may originate at the thoracolumbar junction, which extends from 12th thoracic vertebra to 2nd lumbar vertebra, due to functional abnormalities. Clinical manifestations include back pain, pseudo-visceral pain and pseudo-pain on the posterior iliac crest, as well as irritable bowel symptoms. During clinical examination, pain can be demonstrated by applying pressure on the facet joints or to the sides of the spinous processes. Radiological studies show only mild and insignificant degenerative changes in most cases. We report a 42-year-old female patient with osteogenesis imperfecta who suffered from chronic low back pain. Under the diagnosis of thoracolumbar junction syndrome, she was treated with an epidural block and a sympathetic nerve block, which improved her symptoms.

  12. Fast Facts on Osteogenesis Imperfecta

    MedlinePlus

    ... bone) and short femur (upper leg bone) Coxa vera is common (the acutely angled femur head affects ... Fax: 301-947-0456 Internet: www.oif.org E-mail: bonelink@oif.org The National Institutes of ...

  13. Child Abuse or Osteogenesis Imperfecta?

    MedlinePlus

    ... Most cases involve a defect in type 1 collagen—the protein “scaffolding” of bone and other connective ... bodies to make either too little type 1 collagen or poor quality type 1 collagen. The result ...

  14. Myths about OI (Osteogenesis Imperfecta)

    MedlinePlus

    ... Classic Awareness Week Fine Wines Strong Bones Bone China Tea Blue Jeans for Better Bones Upcoming Events ... children. Some women who have OI may experience pregnancy complications due to skeletal problems. It is important ...

  15. Emodin enhances osteogenesis and inhibits adipogenesis

    PubMed Central

    2014-01-01

    Background It has been suggested that the formation of osteoblasts in bone marrow is closely associated with adipogenesis, and the balance between osteogenesis and adipogenesis differentiation of MSCs (mesenchymal stem cells) is disrupted in osteoporosis. In order to improve the treatment of osteoporosis, available agents with roles of regulating the balance is highly desirable. Emodin is a natural anthraquinone derivative extracted from Chinese herbs, which have been used to treat bone diseases for thousands of years. However, the underlying molecular mechanisms of emodin in modulating osteogenesis and adipogenesis remain poorly understood. Methods The molecular mechanisms of emodin on the processes of osteogenesis and adipogenesis in ovariectomized mouse and BMSCs (bone marrow mesenchymal stem cells) have been studied. We have analyzed the effects of emodin in vivo and in vitro. Female ICR mice were assigned to three groups: sham group, ovariectomy group, emodin group. Efficacy was evaluated by H&E, immunohistochemical assay and Micro-CT. In vitro, we analyze the effect of emodin—at concentrations between 0.1 μM and 10 μM-on the processes of inducing osteogenesis and inhibiting adipogenesis in BMSCs by ALP, Oil red O staining, real time RT-PCR and western blot. Results As our experiment shows that emodin could increase the number of osteoblast, BMD (bone mineral density), BV/TV (trabecular bone volume fraction), Tb.N (trabecular number) and Conn.D (connectivity density) of OVX (ovariectomized) mice and decrease the bone marrow fat tissue and adipocytes. The genes and proteins expression of osteogenesis markers, such as Runx2, osterix, collagen type I, osteocalcin, or ALP were up-regulated. While, the genes and proteins involved in adipogenesis, PPARγ, C/EBPα and ap2 were down-regulated. Conclusion It proves that emodin inhibits adipocyte differentiation and enhances osteoblast differentiation from BMSCs. PMID:24565373

  16. Stem cells rejuvenate radiation-impaired vasculogenesis in murine distraction osteogenesis.

    PubMed

    Deshpande, Sagar S; Gallagher, Kathleen K; Donneys, Alexis; Nelson, Noah S; Guys, Nicholas P; Felice, Peter A; Page, Erin E; Sun, Hongli; Krebsbach, Paul H; Buchman, Steven R

    2015-03-01

    Radiotherapy is known to be detrimental to bone and soft-tissue repair. Bone marrow stromal cells have been shown to enhance bone regeneration during distraction osteogenesis following radiation therapy. The authors posit that transplanted bone marrow stromal cells will significantly augment the mandibular vascularity devastated by radiation therapy. Nineteen male Lewis rats were split randomly into three groups: distraction osteogenesis only (n = 5), radiation therapy plus distraction osteogenesis (n = 7), and radiation therapy plus distraction osteogenesis with intraoperative placement of 2 million bone marrow stromal cells (n = 7). A mandibular osteotomy was performed, and an external fixator device was installed. From postoperative days 4 through 12, rats underwent a gradual 5.1-mm distraction followed by a 28-day consolidation period. On postoperative day 40, Microfil was perfused into the vasculature and imaging commenced. Vascular radiomorphometric values were calculated for regions of interest. An analysis of variance with post hoc Tukey or Games-Howell tests was used, dependent on data homogeneity. Stereologic analysis indicated significant remediation in vasculature in the bone marrow stromal cell group compared with the radiation therapy/distraction osteogenesis group. Each of five metrics idicated significant improvements from radiation therapy/distraction osteogenesis to the bone marrow stromal cell group, with no difference between the bone marrow stromal cell group and the distraction osteogenesis group. Bone marrow stromal cells used together with distraction osteogenesis can rejuvenate radiation-impaired vasculogenesis in the mandible, reversing radiation therapy-induced isotropy and creating a robust vascular network. Bone marrow stromal cells may offer clinicians an alternative reconstructive modality that could improve the lifestyle of patients with hypovascular bone.

  17. Treatment of maxillary cleft palate: Distraction osteogenesis vs. orthognathic surgery

    PubMed Central

    Rachmiel, Adi; Even-Almos, Michal; Aizenbud, Dror

    2012-01-01

    Purpose: The purpose of this paper is to compare the treatment of hypoplastic, retruded maxillary cleft palate using distraction osteogenesis vs. orthognathic surgery in terms of stability and relapse, growth after distraction and soft tissue profile changes. Materials and Methods: The cleft patients showed anteroposterior maxillary hypoplasia with class III malocclusion and negative overjet resulting in a concave profile according to preoperative cephalometric measurements, dental relationship, and soft tissue analysis. The patients were divided in two groups of treatment : S0 eventeen were treated by orthognathic Le Fort I osteotomy fixed with four mini plates and 2 mm screws, and 19 were treated by maxillary distraction osteogenesis with rigid extraoral devices (RED) connected after a Le Fort I osteotomy. The rate of distraction was 1 mm per day to achieve Class I occlusion with slight overcorrection and to create facial profile convexity. Following a 10 week latency period the distraction devices were removed. Results: In the RED group the maxilla was advanced an average of 15.80 mm. The occlusion changed from class III to class I. The profile of the face changed from concave to convex. At a 1-year follow up the results were stable. The mean orthognathic movement was 8.4 mm. Conclusion: In mild maxillary deficiency a one stage orthognathic surgery is preferable. However, in patients requiring moderate to large advancements with significant structural deficiencies of the maxilla or in growing patients the distraction technique is preferred. PMID:23483803

  18. Enamel renal syndrome with associated amelogenesis imperfecta, nephrolithiasis, and hypocitraturia: A case report.

    PubMed

    Bhesania, Dhvani; Arora, Ankit; Kapoor, Sonali

    2015-09-01

    Numerous cases of enamel renal syndrome have been previously reported. Various terms, such as enamel renal syndrome, amelogenesis imperfecta and gingival fibromatosis syndrome, and enamel-renal-gingival syndrome, have been used for patients presenting with the dental phenotype characteristic of this condition, nephrocalcinosis or nephrolithiasis, and gingival findings. This report describes a case of amelogenesis imperfecta of the enamel agenesis variety with nephrolithiasis in a 21-year-old male patient who complained of small teeth. The imaging modalities employed were conventional radiography, cone-beam computed tomography, and renal sonography. Such cases are first encountered by dentists, as other organ or metabolic diseases are generally hidden. Hence, cases of amelogenesis imperfecta should be subjected to advanced diagnostic modalities, incorporating both dental and medical criteria, in order to facilitate comprehensive long-term management.

  19. Novel FAM20A mutation causes autosomal recessive amelogenesis imperfecta.

    PubMed

    Volodarsky, Michael; Zilberman, Uri; Birk, Ohad S

    2015-06-01

    To relate the peculiar phenotype of amelogenesis imperfecta in a large Bedouin family to the genotype determined by whole genome linkage analysis. Amelogenesis imperfecta (AI) is a broad group of inherited pathologies affecting enamel formation, characterized by variability in phenotypes, causing mutations and modes of inheritance. Autosomal recessive or compound heterozygous mutations in FAM20A, encoding sequence similarity 20, member A, have been shown to cause several AI phenotypes. Five members from a large consanguineous Bedouin family presented with hypoplastic amelogenesis imperfecta with unerupted and resorbed permanent molars. Following Soroka Medical Center IRB approval and informed consent, blood samples were obtained from six affected offspring, five obligatory carriers and two unaffected siblings. Whole genome linkage analysis was performed followed by Sanger sequencing of FAM20A. The sequencing unravelled a novel homozygous deletion mutation in exon 11 (c.1523delC), predicted to insert a premature stop codon (p.Thr508Lysfs*6). We provide an interesting case of novel mutation in this rare disorder, in which the affected kindred is unique in the large number of family members sharing a similar phenotype. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Le Fort I Maxillary Advancement Using Distraction Osteogenesis

    PubMed Central

    Combs, Patrick D.; Harshbarger, Raymond J.

    2014-01-01

    Treatment of maxillary hypoplasia has traditionally involved conventional Le Fort I osteotomies and advancement. Advancements of greater than 10 mm risk significant relapse. This risk is greater in the cleft lip and palate population, whose anatomy and soft tissue scarring from prior procedures contributes to instability of conventional maxillary advancement. Le Fort I advancement with distraction osteogenesis has emerged as viable, stable treatment modality correction of severe maxillary hypoplasia in cleft, syndromic, and noncleft patients. In this article, the authors provide a review of current data and recommendations concerning Le Fort I advancement with distraction osteogenesis. In addition, they outline their technique for treating severe maxillary hypoplasia with distraction osteogenesis using internal devices. PMID:25383054

  1. [Epidemiology of Imperfect Osteogenesis: a Rare Disease in the Valencia Region.

    PubMed

    Gimeno-Martos, Silvia; Pérez-Riera, Carlos; Guardiola-Vilarroig, Sandra; Cavero-Carbonell, Clara

    2017-11-28

    Osteogenesis imperfecta (OI) is a rare connective tissue and bone disease that results in a bone fragility of varying severity. The objective was to determine and describe the OI in the Valencia Region (VR) during the period 2004 to 2014. From the Rare Diseases Information System of the VR (SIER-CV) patients from 2004 to 2014 with the codes of the International Classification of Diseases for the OI were identified: 756.51 from the 9th Revision-Clinical Modification and Q78.0 from the 10th Revision. The information was validated by reviewing clinical documentation (mainly electronic health records) and a descriptive analysis of the confirmed cases (diagnosis of OI in the clinical documentation) was performed. 162 patients were identified with a code for OI. 145 of the 161 patients with available clinical documentation were confirmed as cases. The prevalence was 0.29 per 10.000 inhabitants. 93.1% were Spanish, 54.5% were women and they were treated in 25 different hospitals in the VR. The type of OI was known in the 26.4% of the cases and type I was the most common (9.7%). 6.2% of the patients died with an average death age of 60.8 years. 44.8% of patients received treatment with bisphosphonates and 10.4% had affected relatives. The real situation of the OI in the VR has been established, which will allow a better planning in the health actions to improve the quality of life of the affected ones and their families.

  2. Transsutural distraction osteogenesis applied to maxillary complex with new internalized distraction device: analysis of the feasibility and long-term osteogenesis outcome.

    PubMed

    Tong, Haizhou; Gao, Feng; Yin, Jiapeng; Zhang, Xiangyu; Zhang, Chen; Yin, Ningbei; Zhao, Zhenmin

    2015-03-01

    The purposes of this study were to evaluate the effects of transsutural distraction osteogenesis applied to the maxillary complex with a new internalized distraction device and to analyze the long-term osteogenesis outcome. Three-month-old beagle dogs were treated with a self-designed internalized distractor. The feasibility was evaluated, and the effects of the maxillary growth were measured using radiography and computed tomography (CT). The regenerated bone was examined with micro-CT, biomechanical testing, and histology 1 year after the distraction. The experimental group showed significantly larger forward displacement of maxillary during the distraction. One year after the distraction, the micro-CT showed more incompact structure and bone volume/total volume was significantly less in the experimental group. Biomechanical testing also showed a significantly lower yield but with no difference in stiffness. Histologic staining found osteoclasts deposited in the region of the suture and osteoblasts on the bone surface. The immunohistochemical staining of osteoprotegrin and receptor activator of nuclear factor-κ B ligand showed evidence of expression in suture area components and osteocytes with no difference between the groups. Transsutural distraction osteogenesis using an internalized distractor with skull anchorage demonstrated feasibility. It is expected that this device may provide new thoughts in developing an appropriate appliance for clinical use in young patients with midfacial hypoplasia. Moreover, the long-term osteogenesis analysis findings suggest that the metabolism of sutural area still remained active, which enhanced our understanding of bone remodeling in the sutural area to manage maxillary relapse after transsutural distraction osteogenesis.

  3. Children with Brittle Bones: An Examination of Their Educational Needs and Progress.

    ERIC Educational Resources Information Center

    Alston, Jean

    1983-01-01

    A study of the educational achievements of 40 children (5-16 years old) with osteogenesis imperfecta, brittle bone disease, revealed no differences between Ss and control Ss without the condition in terms of nonverbal intelligence. Differences were found, however, in writing speed. Inteviews with children, teachers, and parents revealed…

  4. Johanna and Tommy: Two Preschoolers in Sweden with Brittle Bones.

    ERIC Educational Resources Information Center

    Millde, Kristina; Brodin, Jane

    Information is presented for caregivers of Swedish children with osteogenesis imperfecta (brittle bones) and their families. Approximately five children with brittle bones are born in Sweden annually. Two main types of brittle bone disease have been identified: congenita and tarda. Typical symptoms include numerous and unexpected fractures, bluish…

  5. Parathyroid hormone therapy mollifies radiation-induced biomechanical degradation in murine distraction osteogenesis.

    PubMed

    Deshpande, Sagar S; Gallagher, Katherine K; Donneys, Alexis; Tchanque-Fossuo, Catherine N; Sarhaddi, Deniz; Nelson, Noah S; Chepeha, Douglas B; Buchman, Steven R

    2013-07-01

    Descriptions of mandibular distraction osteogenesis for tissue replacement after oncologic resection or for defects caused by osteoradionecrosis have been limited. Previous work demonstrated radiation decreases union formation, cellularity and mineral density in mandibular distraction osteogenesis. The authors posit that intermittent systemic administration of parathyroid hormone will serve as a stimulant to cellular function, reversing radiation-induced damage and enhancing bone regeneration. Twenty male Lewis rats were randomly assigned to three groups: group 1 (radiation and distraction osteogenesis, n = 7) and group 2 (radiation, distraction osteogenesis, and parathyroid hormone, n = 5) received a human-equivalent dose of 35 Gy of radiation (human bioequivalent, 70 Gy) fractionated over 5 days. All groups, including group 3 (distraction osteogenesis, n = 8), underwent a left unilateral mandibular osteotomy with bilateral external fixator placement. Distraction osteogenesis was performed at a rate of 0.3 mm every 12 hours to reach a gap of 5.1 mm. Group 2 was injected with parathyroid hormone (60 µg/kg) subcutaneously daily for 3 weeks after the start of distraction osteogenesis. On postoperative day 40, all left hemimandibles were harvested. Biomechanical response parameters were generated. Statistical significance was considered at p ≤ 0.05. Parathyroid hormone-treated mandibles had significantly higher failure load and higher yield than did untreated mandibles. However, these values were still significantly lower than those of nonirradiated mandibles. The authors have successfully demonstrated the therapeutic efficacy of parathyroid hormone to stimulate and enhance bone regeneration in their irradiated murine mandibular model of distraction osteogenesis. Anabolic regimens of parathyroid hormone, a U.S. Food and Drug Administration-approved drug on formulary, significantly improve outcomes in a model of postoncologic craniofacial reconstruction.

  6. Response of ramus following vertical lengthening with distraction osteogenesis.

    PubMed

    Tuzuner-Oncul, Aysegul Mine; Kisnisci, Reha S

    2011-09-01

    Vertical lengthening of the mandibular ramus is considered to be one of the least stable surgical procedures in the management of musculoskeletal maxillofacial deformities. The aim of this study was to evaluate the response of the mandibular ramus following vertical lengthening by means of distraction osteogenesis. This study included eight non-syndromic adult patients with temporomandibular joint ankylosis. The vertical height deficiency of the mandibular ramus and the ramus/condyle unit on the affected side were simultaneously reconstructed by transportation of a bone segment using distraction osteogenesis following gap arthroplasty. Lateral and posteroanterior (PA) cephalograms taken postoperatively before active distraction, at the completion of distraction and 6, 12, 24 months after distraction, were compared to evaluate the changes of the ramus height. In all cases the vertical ramus and ramus/condyle unit height loss were successfully reconstructed by distraction osteogenesis. There was no relapse in the amount of height gained by distraction osteogenesis at the 24 months follow-up review (p>0.05). Acute one stage vertical lengthening of the mandibular ramus is considered to be one of the least stable musculoskeletal procedures with relapse being a significant adverse outcome. In this clinical study gradual vertical lengthening of the ramus through ramus/condyle unit distraction osteogenesis has maintained the initial vertical ramus height gained for 24 months. Copyright © 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. What Happens After School? A Study of Disabled Women and Education.

    ERIC Educational Resources Information Center

    O'Toole, J. Corbett; Weeks, CeCe

    The report, over half of which consists of appendixes and lists of resources, discusses the educational and related life experiences of six disabled women. Focus is on their early experiences with school and family, their high school years, their college years, and their work. Their disabilities include blindness, osteogenesis imperfecta (fragile…

  8. Parathyroid Hormone Therapy Mollifies Radiation-Induced Biomechanical Degradation in Murine Distraction Osteogenesis

    PubMed Central

    Deshpande, Sagar S.; Gallagher, Katherine K.; Donneys, Alexis; Tchanque-Fossuo, Catherine N.; Sarhaddi, Deniz; Nelson, Noah S.; Chepeha, Douglas B.; Buchman, Steven R.

    2015-01-01

    Objective Descriptions of mandibular distraction osteogenesis for tissue replacement after oncologic resection or for defects caused by osteoradionecrosis have been limited. Previous work demonstrated radiation decreases union formation, cellularity and mineral density in mandibular distraction osteogenesis. The authors posit that intermittent systemic administration of parathyroid hormone will serve as a stimulant to cellular function, reversing radiation-induced damage and enhancing bone regeneration. Methods Twenty male Lewis rats were randomly assigned to three groups: group 1 (radiation and distraction osteogenesis, n = 7) and group 2 (radiation, distraction osteogenesis, and parathyroid hormone, n = 5) received a human-equivalent dose of 35 Gy of radiation (human bioequivalent, 70 Gy) fractionated over 5 days. All groups, including group 3 (distraction osteogenesis, n = 8), underwent a left unilateral mandibular osteotomy with bilateral external fixator placement. Distraction osteogenesis was performed at a rate of 0.3 mm every 12 hours to reach a gap of 5.1 mm. Group 2 was injected with parathyroid hormone (60 μg/kg) subcutaneously daily for 3 weeks after the start of distraction osteogenesis. On postoperative day 40, all left hemimandibles were harvested. Biomechanical response parameters were generated. Statistical significance was considered at p ≤ 0.05. Results Parathyroid hormone–treated mandibles had significantly higher failure load and higher yield than did untreated mandibles. However, these values were still significantly lower than those of nonirradiated mandibles. Conclusions The authors have successfully demonstrated the therapeutic efficacy of parathyroid hormone to stimulate and enhance bone regeneration in their irradiated murine mandibular model of distraction osteogenesis. Anabolic regimens of parathyroid hormone, a U.S. Food and Drug Administration–approved drug on formulary, significantly improve outcomes in a model of

  9. G to A substitution in 5{prime} donor splice site of introns 18 and 48 of COL1A1 gene of type I collagen results in different splicing alternatives in osteogenesis imperfecta type I cell strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willing, M.; Deschenes, S.

    We have identified a G to A substitution in the 5{prime} donor splice site of intron 18 of one COL1A1 allele in two unrelated families with osteogenesis imperfecta (OI) type I. A third OI type I family has a G to A substitution at the identical position in intron 48 of one COL1A1 allele. Both mutations abolish normal splicing and lead to reduced steady-state levels of mRNA from the mutant COL1A1 allele. The intron 18 mutation leads to both exon 18 skipping in the mRNA and to utilization of a single alternative splice site near the 3{prime} end of exonmore » 18. The latter results in deletion of the last 8 nucleotides of exon 18 from the mRNA, a shift in the translational reading-frame, and the creation of a premature termination codon in exon 19. Of the potential alternative 5{prime} splice sites in exon 18 and intron 18, the one utilized has a surrounding nucleotide sequence which most closely resembles that of the natural splice site. Although a G to A mutation was detected at the identical position in intron 48 of one COL1A1 allele in another OI type I family, nine complex alternative splicing patterns were identified by sequence analysis of cDNA clones derived from fibroblast mRNA from this cell strain. All result in partial or complete skipping of exon 48, with in-frame deletions of portions of exons 47 and/or 49. The different patterns of RNA splicing were not explained by their sequence homology with naturally occuring 5{prime} splice sites, but rather by recombination between highly homologous exon sequences, suggesting that we may not have identified the major splicing alternative(s) in this cell strain. Both G to A mutations result in decreased production of type I collagen, the common biochemical correlate of OI type I.« less

  10. The Molecular and Cellular Events That Take Place during Craniofacial Distraction Osteogenesis

    PubMed Central

    Rachmiel, Adi

    2014-01-01

    Summary: Gradual bone lengthening using distraction osteogenesis principles is the gold standard for the treatment of hypoplastic facial bones. However, the long treatment time is a major disadvantage of the lengthening procedures. The aim of this study is to review the current literature and summarize the cellular and molecular events occurring during membranous craniofacial distraction osteogenesis. Mechanical stimulation by distraction induces biological responses of skeletal regeneration that is accomplished by a cascade of biological processes that may include differentiation of pluripotential tissue, angiogenesis, osteogenesis, mineralization, and remodeling. There are complex interactions between bone-forming osteoblasts and other cells present within the bone microenvironment, particularly vascular endothelial cells that may be pivotal members of a complex interactive communication network in bone. Studies have implicated number of cytokines that are intimately involved in the regulation of bone synthesis and turnover. The gene regulation of numerous cytokines (transforming growth factor-β, bone morphogenetic proteins, insulin-like growth factor-1, and fibroblast growth factor-2) and extracellular matrix proteins (osteonectin, osteopontin) during distraction osteogenesis has been best characterized and discussed. Understanding the biomolecular mechanisms that mediate membranous distraction osteogenesis may guide the development of targeted strategies designed to improve distraction osteogenesis and accelerate bone regeneration that may lead to shorten the treatment duration. PMID:25289295

  11. Further evidence for causal FAM20A mutations and first case of amelogenesis imperfecta and gingival hyperplasia syndrome in Morocco: a case report.

    PubMed

    Cherkaoui Jaouad, Imane; El Alloussi, Mustapha; Chafai El Alaoui, Siham; Laarabi, Fatima Zahra; Lyahyai, Jaber; Sefiani, Abdelaziz

    2015-01-30

    Amelogenesis imperfecta represents a group of developmental conditions, clinically and genetically heterogeneous, that affect the structure and clinical appearance of enamel. Amelogenesis imperfecta occurred as an isolated trait or as part of a genetic syndrome. Recently, disease-causing mutations in the FAM20A gene were identified, in families with an autosomal recessive syndrome associating amelogenesis imperfecta and gingival fibromatosis. We report, the first description of a Moroccan patient with amelogenesis imperfecta and gingival fibromatosis, in whom we performed Sanger sequencing of the entire coding sequence of FAM20A and identified a homozygous mutation in the FAM20A gene (c.34_35delCT), already reported in a family with this syndrome. Our finding confirms that the mutations of FAM20A gene are causative for amelogenesis imperfecta and gingival fibromatosis and underlines the recurrent character of the c.34_35delCT in two different ethnic groups.

  12. Regenerate Healing Outcomes in Unilateral Mandibular Distraction Osteogenesis Using Quantitative Histomorphometry

    PubMed Central

    Schwarz, Daniel A.; Arman, Krikor G.; Kakwan, Mehreen S.; Jamali, Ameen M.; Elmeligy, Ayman A.; Buchman, Steven R.

    2015-01-01

    Background The authors’ goal was to ascertain regenerate bone-healing metrics using quantitative histomorphometry at a single consolidation period. Methods Rats underwent either mandibular distraction osteogenesis (n=7) or partially reduced fractures (n=7); their contralateral mandibles were used as controls (n=11). External fixators were secured and unilateral osteotomies performed, followed by either mandibular distraction osteogenesis (4 days’ latency, then 0.3 mm every 12 hours for 8 days; 5.1 mm) or partially reduced fractures (fixed immediately postoperatively; 2.1 mm); both groups underwent 4 weeks of consolidation. After tissue processing, bone volume/tissue volume ratio, osteoid volume/tissue volume ratio, and osteocyte count per high-power field were analyzed by means of quantitative histomorphometry. Results Contralateral mandibles had statistically greater bone volume/tissue volume ratio and osteocyte count per high-power field compared with both mandibular distraction osteogenesis and partially reduced fractures by almost 50 percent, whereas osteoid volume/tissue volume ratio was statistically greater in both mandibular distraction osteogenesis specimens and partially reduced fractures compared with contralateral mandibles. No statistical difference in bone volume/tissue volume ratio, osteoid volume/tissue volume ratio, or osteocyte count per high-power field was found between mandibular distraction osteogenesis specimens and partially reduced fractures. Conclusions The authors’ findings demonstrate significantly decreased bone quantity and maturity in mandibular distraction osteogenesis specimens and partially reduced fractures compared with contralateral mandibles using the clinically analogous protocols. If these results are extrapolated clinically, treatment strategies may require modification to ensure reliable, predictable, and improved outcomes. PMID:20463629

  13. Association of Amelogenesis Imperfecta and Bartter's Syndrome.

    PubMed

    Kumar, A C V; Alekya, V; Krishna, M S V V; Alekya, K; Aruna, M; Reddy, M H K; Sangeetha, B; Ram, R; Kumar, V S

    2017-01-01

    Bartter's syndrome is an autosomal recessive renal tubular disorder characterized by hypokalemia, hypochloremia, metabolic alkalosis, and hyperreninemia with normal blood pressure. Bartter's syndrome is associated with hypercalciuria and nephrocalcinosis. Amelogenesis imperfecta (AI) is a group of hereditary disorders that affect dental enamel. AI could be part of several syndromes. The enamel renal syndrome is the association of AI and nephrocalcinosis. We report two patients of AI with Bartter's syndrome.

  14. OI Positive: A Look at Unbreakable Spirits

    ERIC Educational Resources Information Center

    Carlson, Priscilla

    2007-01-01

    In this article, the author reflects on the positive outlook of parents and children with OI (Osteogenesis Imperfecta or simply, brittle bones), who attended the 15th Biennial National OI Conference. The author believes that the attendees positive attitudes comes from the positive influences they have had from the beginning. One example of an…

  15. Nanoscale Structure of Type I Collagen Fibrils: Quantitative Measurement of D-spacing

    PubMed Central

    Erickson, Blake; Fang, Ming; Wallace, Joseph M.; Orr, Bradford G.; Les, Clifford M.; Holl, Mark M. Banaszak

    2012-01-01

    This paper details a quantitative method to measure the D-periodic spacing of Type I collagen fibrils using Atomic Force Microscopy coupled with analysis using a 2D Fast Fourier Transform approach. Instrument calibration, data sampling and data analysis are all discussed and comparisons of the data to the complementary methods of electron microscopy and X-ray scattering are made. Examples of the application of this new approach to the analysis of Type I collagen morphology in disease models of estrogen depletion and Osteogenesis Imperfecta are provided. We demonstrate that it is the D-spacing distribution, not the D-spacing mean, that showed statistically significant differences in estrogen depletion associated with early stage Osteoporosis and Osteogenesis Imperfecta. The ability to quantitatively characterize nanoscale morphological features of Type I collagen fibrils will provide important structural information regarding Type I collagen in many research areas, including tissue aging and disease, tissue engineering, and gene knock out studies. Furthermore, we also envision potential clinical applications including evaluation of tissue collagen integrity under the impact of diseases or drug treatments. PMID:23027700

  16. Effects of Electromagnetic Fields on Osteogenesis of Human Alveolar Bone-Derived Mesenchymal Stem Cells

    PubMed Central

    Lim, KiTaek; Hexiu, Jin; Kim, Jangho; Seonwoo, Hoon; Cho, Woo Jae; Choung, Pill-Hoon; Chung, Jong Hoon

    2013-01-01

    This study was performed to investigate the effects of extremely low frequency pulsed electromagnetic fields (ELF-PEMFs) on the proliferation and differentiation of human alveolar bone-derived mesenchymal stem cells (hABMSCs). Osteogenesis is a complex series of events involving the differentiation of mesenchymal stem cells to generate new bone. In this study, we examined not merely the effect of ELF-PEMFs on cell proliferation, alkaline phosphatase (ALP) activity, and mineralization of the extracellular matrix but vinculin, vimentin, and calmodulin (CaM) expressions in hABMSCs during osteogenic differentiation. Exposure of hABMSCs to ELF-PEMFs increased proliferation by 15% compared to untreated cells at day 5. In addition, exposure to ELF-PEMFs significantly increased ALP expression during the early stages of osteogenesis and substantially enhanced mineralization near the midpoint of osteogenesis within 2 weeks. ELF-PEMFs also increased vinculin, vimentin, and CaM expressions, compared to control. In particular, CaM indicated that ELF-PEMFs significantly altered the expression of osteogenesis-related genes. The results indicated that ELF-PEMFs could enhance early cell proliferation in hABMSCs-mediated osteogenesis and accelerate the osteogenesis. PMID:23862141

  17. Dental management of amelogenesis imperfecta patients: a primer on genotype-phenotype correlations.

    PubMed

    Ng, F K; Messer, L B

    2009-01-01

    Amelogenesis imperfecta (AI) represents a group of hereditary conditions which affects enamel formation in the primary and permanent dentitions. Mutations in genes critical for amelogenesis result in diverse phenotypes characterized by variably thin and/or defective enamel. To date, mutations in 5 genes are known to cause AI in humans. Understanding the molecular etiologies and associated inheritance patterns can assist in the early diagnosis of this condition. Recognition of genotype-phenotype correlations will allow clinicians to guide genetic testing and select appropriate management strategies for patients who express different phenotypes. The purpose of this paper was to provide a narrative review of the current literature on amelogenesis imperfecta, particularly regarding recent advances in the identification of candidate genes and the patterns of inheritance.

  18. Osteogensis imperfecta type I is commonly due to a COLIAI null allel of type I collagen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willing, M.C.; Pruchno, C.J.; Atkinson, M.

    Dermal fibroblasts from most individuals with osteogenesis imperfecta (OI) type I produce about half the normal amount of type I procollagen, as a result of decreased synthesis of one of its constituent chains, pro[alpha](I). To test the hypothesis that decreased synthesis of pro[alpha](I) chains results from mutations in the COL1A1 gene, the authors used primer extension with nucleotide-specific chain termination to measure the contribution of individual COL1A1 alleles to the mRNA pool in fibroblasts from affected individuals. A polymorphic Mn/I restriction endonuclease site in the 3'-untranslated region of COL1A1 was used to distinguish the transcripts of the two alleles inmore » heterozygous individuals. Twenty-three individuals from 21 unrelated families were studied. In each case there was marked diminution in steady-state mRNA levels from one COL1A2 allele. Loss of an allele through deletion or rearrangement was not the cause of the diminished COL1A1 mRNA levels. Primer extension with nucleotide-specific chain termination allows identification of the mutant COL1A1 allele in cell strains that are heterozygous for an expressed polymorphism. It is applicable to sporadic cases, to small families, and to large families in whom key individuals are uninformative at the polymorphic sites used in linkage analysis, making it a useful adjunct to the biochemical screening of collagenous proteins for OI. 40 refs., 3 figs., 1 tab.« less

  19. Missense Mutation in Fam83H Gene in Iranian Patients with Amelogenesis Imperfecta.

    PubMed

    Pourhashemi, S Jalal; Ghandehari Motlagh, Mehdi; Meighani, Ghasem; Ebrahimi Takaloo, Azadeh; Mansouri, Mahsa; Mohandes, Fatemeh; Mirzaii, Maryam; Khoshzaban, Ahad; Moshtaghi, Faranak; Abedkhojasteh, Hoda; Heidari, Mansour

    2014-12-01

    Amelogenesis Imperfecta (AI) is a disorder of tooth development where there is an abnormal formation of enamel or the external layer of teeth. The aim of this study was to screen mutations in the four most important candidate genes, ENAM, KLK4, MMP20 and FAM83H responsible for amelogenesis imperfect. Geneomic DNA was isolated from five Iranian families with 22 members affected with enamel malformations. The PCR amplifications were typically carried out for amplification the coding regions for AI patients and unaffected family members. The PCR products were subjected to direct sequencing. The pedigree analysis was performed using Cyrillic software. One family had four affected members with autosomal dominant hypocalcified amelogenesis imperfecta (ADHPCAI); pedigree analysis revealed four consanguineous families with 18 patients with autosomal recessive hypoplastic amelogenesis imperfecta (ARHPAI). One non-synonymous single-nucleotide substitution, c.1150T>A, p. Ser 342Thr was identified in the FAM83H, which resulted in ADHCAI. Furthermore, different polymorphisms or unclassified variants were detected in MMP20, ENAM and KLK4. Our results are consistent with other studies and provide further evidence for pathogenic mutations of FAM83H gene. These findings suggest different loci and genes could be implicated in the pathogenesis of AI.

  20. Oral rehabilitation of a patient with amelogenesis imperfecta using removable overlay denture: a clinical report.

    PubMed

    Ghodsi, S; Rasaeipour, S; Vojdani, M

    2012-03-01

    The aim of this study was oral rehabilitation of 17-year old patient with amelogenesis imperfecta using removable overlay denture in order to satisfy her esthetic and functional expectations and enhance her self-image. Amelogenesis imperfecta (AI) is a group of genetic disorders that primarily affect the quality and quantity of amelogenesis in both primary and permanent dentitions. The main clinical characteristics are severe attrition, tooth sensitivity and unesthetic appearance. This clinical report illustrates the oral rehabilitation of a 17-year-old girl with hypoplastic-hypomature type of AI with cobalt-chromium (Co-Cr) overlay removable partial denture (ORPD) that is one of the most economical and biocompatible replacements for noble metal and nickel-chromium (Ni-Cr) alloy. The presented case report suggests that Co-Cr ORPD can be a good temporary or even permanent treatment option for AI patients with limited budget, low esthetic concerns or medical limitations. There are major advantages in cast metal ORPDs; they are simpler, less traumatic and less expensive than fixed prosthetic options. This case report supports their use in patients with amelogenesis imperfecta.

  1. Backward distraction osteogenesis in a patient with severe mandibular micrognathia.

    PubMed

    Mitsukawa, Nobuyuki; Morishita, Tadashi; Saiga, Atsuomi; Akita, Shinsuke; Kubota, Yoshitaka; Satoh, Kaneshige

    2013-09-01

    Maxillary skeletal prognathism can involve severe mandibular micrognathia with marked mandibular retrognathism or hypoplasia. For patients with such a condition, a conventional treatment is mandibular advancement by sagittal split ramus osteotomy (SSRO). This procedure has problems such as insufficient advancement, instability of jaw position, and postoperative relapse. Thus, in recent years, mandibular distraction osteogenesis has been used in some patients. Mandibular distraction has many advantages, but an ideal occlusion is difficult to achieve using this procedure. That is, 3-dimensional control cannot be attained using an internal device that is unidirectional. This report describes a case of severe mandibular micrognathia in a 14-year-old girl treated using backward distraction osteogenesis. This procedure was first reported by Ishii et al (Jpn J Jaw Deform 2004; 14:49) and involves a combination of SSRO and ramus distraction osteogenesis. In the present study, intermaxillary fixation in centric occlusion was performed after osteotomy, and proximal bone segments were distracted in a posterosuperior direction. This procedure is a superior surgical technique that avoids the drawbacks of SSRO and conventional mandibular distraction. However, it applies a large load to the temporomandibular joints and requires thorough management. Thus, careful evaluation needs to be made of the indication for backward distraction osteogenesis.

  2. Biomechanical analysis on fracture risk associated with bone deformity

    NASA Astrophysics Data System (ADS)

    Kamal, Nur Amalina Nadiah Mustafa; Som, Mohd Hanafi Mat; Basaruddin, Khairul Salleh; Daud, Ruslizam

    2017-09-01

    Osteogenesis Imperfecta (OI) is a disease related to bone deformity and is also known as `brittle bone' disease. Currently, medical personnel predict the bone fracture solely based on their experience. In this study, the prediction for risk of fracture was carried out by using finite element analysis on the simulated OI bone of femur. The main objective of this research was to analyze the fracture risk of OI-affected bone with respect to various loadings. A total of 12 models of OI bone were developed by applying four load cases and the angle of deformation for each of the models was calculated. The models were differentiated into four groups, namely standard, light, mild and severe. The results show that only a small amount of load is required to increase the fracture risk of the bone when the model is tested with hopping conditions. The analysis also shows that the torsional load gives a small effect to the increase of the fracture risk of the bone.

  3. [Genetic basis for skeletal disease. Dental management of patients with bone diseases].

    PubMed

    Shintani, Seikou; Ooshima, Takashi

    2010-08-01

    Malformation of teeth can be found in patients with bone diseases, which was induced when the disease occurred during the tooth formation. The tooth malformation shows typical manifestations of the disease, which may demonstrate the occurrence of the bone disease. In this article, dental management of the patients with bone diseases such as X-linked hypophosphatemic rickets, osteogenesis imperfecta, and hypophosphatasia was presented.

  4. Changes in nasorespiratory function in association with maxillary distraction osteogenesis in subjects with cleft lip and palate.

    PubMed

    Saito, Kiyo; Ono, Takashi; Mochida, Masumi; Ohyama, Kimie

    2006-01-01

    The current study aimed to determine how nasorespiratory function changes in association with maxillary distraction osteogenesis (DO). Furthermore, with regard to impaired nasorespiratory function, the possibility of a relationship between the cleft side and laterality and any effect of maxillary distraction osteogenesis was investigated. In this descriptive, prospective clinical report, subjective and objective data regarding nasorespiratory function before and after maxillary distraction osteogenesis were compared. Data from 13 subjects with cleft lip and palate were used. Subjects had a severe maxillary deficiency and underwent distraction osteogenesis using a rigid external device system. The subjective measure was the score on a questionnaire regarding nasorespiratory function using a visual analog scale. The objective measure was nasal resistance. The visual analog scale score for two items significantly decreased just after distraction osteogenesis. Nasal resistance also significantly decreased 1 year after distraction osteogenesis. Moreover, nasal resistance on the cleft side was significantly greater than that on the noncleft side just before and 1 year after distraction osteogenesis. There was a significant positive correlation between changes in the visual analog scale score and nasal resistance. These results suggest that nasorespiratory function changes in association with maxillary distraction osteogenesis in subjects with cleft lip and palate. Moreover, it appears that nasal obstruction on the cleft side does not change in subjects with unilateral cleft lip and palate.

  5. Characteristics of contact and distance osteogenesis around modified implant surfaces in rabbit tibiae

    PubMed Central

    2017-01-01

    Purpose Contact and distance osteogenesis occur around all endosseous dental implants. However, the mechanisms underlying these processes have not been fully elucidated. We hypothesized that these processes occur independently of each other. To test this, we used titanium (Ti) tubes to physically separate contact and distance osteogenesis, thus allowing contact osteogenesis to be measured in the absence of possible triggers from distance osteogenesis. Methods Sandblasted and acid-etched (SLA) and modified SLA (modSLA) implants were used. Both types had been sandblasted with large grit and then etched with acid. The modSLA implants then underwent additional treatment to increase hydrophilicity. The implants were implanted into rabbit tibiae, and half were implanted within Ti tubes. The bone-to-implant contact (BIC) ratio was calculated for each implant. Immunohistochemical analyses of bone morphogenetic protein (BMP)-2 expression and new bone formation (Masson trichrome stain) were performed. Results The implants outside of Ti tubes were associated with good bone formation along the implant surface. Implantation within a Ti tube significantly reduced the BIC ratio (P<0.001). Compared with the modSLA implants, the SLA implants were associated with significantly higher BIC ratios, regardless of the presence or absence of Ti tubes (P=0.043). In the absence of Ti tubes, the bone adjacent to the implant had areas of new bone formation that expressed BMP-2 at high levels. Conclusions This study disproved the null hypothesis and suggested that contact osteogenesis is initiated by signals from the old bone that undergoes distance osteogenesis after drilling. This signal may be BMP-2. PMID:28680714

  6. A multidisciplinary approach for the diagnosis of hypocalcified amelogenesis imperfecta in two Chilean families.

    PubMed

    Urzúa, Blanca; Ortega-Pinto, Ana; Farias, Daniela Adorno; Franco, Eugenia; Morales-Bozo, Irene; Moncada, Gustavo; Escobar-Pezoa, Nicolás; Scholz, Ursula; Cifuentes, Victor

    2012-01-01

    The purpose of this study was to conduct a multidisciplinary analysis of a specific type of tooth enamel disturbance (amelogenesis imperfecta) affecting two Chilean families to obtain a precise diagnosis and to investigate possible underlying mutations. Two non-related families affected with amelogenesis imperfecta were evaluated with clinical, radiographic and histopathological methods. Furthermore, pedigrees of both families were constructed and the presence of eight mutations in the enamelin gene (ENAM) and three mutations in the enamelysin gene (MMP-20) were investigated by PCR and direct sequencing. In the two affected patients, the dental malformation presented as soft and easily disintegrated enamel and exposed dark dentin. Neither of the affected individuals presented with a dental and skeletal open bite. Histologically, a high level of an organic matrix with prismatic organization was found. Genetic analysis indicated that the condition is autosomal recessive in one family and either autosomal recessive or due to a new mutation in the other family. Molecular mutational analysis revealed that none of the eight mutations previously described in the ENAM gene or the three mutations in the MMP-20 gene were present in the probands. A multidisciplinary analysis allowed for a diagnosis of hypocalcified amelogenesis imperfecta, Witkop type III, which was unrelated to previously described mutations in the ENAM or MMP-20 genes.

  7. What Are the Symptoms of Osteogenesis Imperfecta?

    MedlinePlus

    ... Corner Contact Us Condition Information What causes it? How many people are affected/at risk? What are common ... Eds.), Management of genetic syndromes . Hoboken, NJ: Wiley. « How many people are affected/at risk? How is it ...

  8. Planning for Your Child's Surgery (Osteogenesis Imperfecta)

    MedlinePlus

    ... Casts. Inquire about cast options to accommodate your child’s age and stage of development. Discuss the shape and type of cast and ... also are entertaining. Many children enjoy listening to music through headphones. As your child begins to feel better, family visits can be ...

  9. What Are the Treatments for Osteogenesis Imperfecta?

    MedlinePlus

    ... Browse AZTopics Browse A-Z Adrenal Gland Disorders Autism Spectrum Disorder (ASD) Down Syndrome Endometriosis Learning Disabilities ... NICHD Research Information Find a Study More Information Autism Spectrum Disorder (ASD) About NICHD Research Information Find ...

  10. Vector alignment in maxillary distraction osteogenesis.

    PubMed

    Uckan, Sina; Arman, Ayca; Bayram, Burak; Celik, Erkan

    2006-09-01

    Maxillary distraction osteogenesis is an alternative treatment of cleft patients with severe maxillary hypoplasia. The aim of this paper is to present the combined surgical/orthodontic treatment of a cleft lip and palate patient and to evaluate the maxillary distraction procedure and the distraction vector in high Le Fort I osteotomy.

  11. Isolation and characterization of dental epithelial cells derived from amelogenesis imperfecta rat.

    PubMed

    Adiningrat, A; Tanimura, A; Miyoshi, K; Hagita, H; Yanuaryska, R D; Arinawati, D Y; Horiguchi, T; Noma, T

    2016-03-01

    Disruption of the third zinc finger domain of specificity protein 6 (SP6) presents an enamel-specific defect in a rat model of amelogenesis imperfecta (AMI rats). To understand the molecular basis of amelogenesis imperfecta caused by the Sp6 mutation, we established and characterized AMI-derived rat dental epithelial (ARE) cells. ARE cell clones were isolated from the mandibular incisors of AMI rats, and amelogenesis-related gene expression was analyzed by reverse transcription polymerase chain reaction (RT-PCR). Localization of wild-type SP6 (SP6WT) and mutant-type SP6 (SP6AMI) was analyzed by immunocytochemistry. SP6 transcriptional activity was monitored by rho-associated protein kinase 1 (Rock1) promoter activity with its specific binding to the promoter region in dental (G5 and ARE) and non-dental (COS-7) epithelial cells. Isolated ARE cells were varied in morphology and gene expression. Both SP6WT and SP6AMI were mainly detected in nuclei. The promoter analysis revealed that SP6WT and SP6AMI enhanced Rock1 promoter activity in G5 cells but that enhancement by SP6AMI was weaker, whereas no enhancement was observed in the ARE and COS-7 cells, even though SP6WT and SP6AMI bound to the promoter in all instances. ARE cell clones can provide a useful in vitro model to study the mechanism of SP6-mediated amelogenesis imperfecta. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Diffusion model to describe osteogenesis within a porous titanium scaffold.

    PubMed

    Schmitt, M; Allena, R; Schouman, T; Frasca, S; Collombet, J M; Holy, X; Rouch, P

    2016-01-01

    In this study, we develop a two-dimensional finite element model, which is derived from an animal experiment and allows simulating osteogenesis within a porous titanium scaffold implanted in ewe's hemi-mandible during 12 weeks. The cell activity is described through diffusion equations and regulated by the stress state of the structure. We compare our model to (i) histological observations and (ii) experimental data obtained from a mechanical test done on sacrificed animal. We show that our mechano-biological approach provides consistent numerical results and constitutes a useful tool to predict osteogenesis pattern.

  13. Analyses of MMP20 Missense Mutations in Two Families with Hypomaturation Amelogenesis Imperfecta.

    PubMed

    Kim, Youn Jung; Kang, Jenny; Seymen, Figen; Koruyucu, Mine; Gencay, Koray; Shin, Teo Jeon; Hyun, Hong-Keun; Lee, Zang Hee; Hu, Jan C-C; Simmer, James P; Kim, Jung-Wook

    2017-01-01

    Amelogenesis imperfecta is a group of rare inherited disorders that affect tooth enamel formation, quantitatively and/or qualitatively. The aim of this study was to identify the genetic etiologies of two families presenting with hypomaturation amelogenesis imperfecta. DNA was isolated from peripheral blood samples obtained from participating family members. Whole exome sequencing was performed using DNA samples from the two probands. Sequencing data was aligned to the NCBI human reference genome (NCBI build 37.2, hg19) and sequence variations were annotated with the dbSNP build 138. Mutations in MMP20 were identified in both probands. A homozygous missense mutation (c.678T>A; p.His226Gln) was identified in the consanguineous Family 1. Compound heterozygous MMP20 mutations (c.540T>A, p.Tyr180 * and c.389C>T, p.Thr130Ile) were identified in the non-consanguineous Family 2. Affected persons in Family 1 showed hypomaturation AI with dark brown discoloration, which is similar to the clinical phenotype in a previous report with the same mutation. However, the dentition of the Family 2 proband exhibited slight yellowish discoloration with reduced transparency. Functional analysis showed that the p.Thr130Ile mutant protein had reduced activity of MMP20, while there was no functional MMP20 in the Family 1 proband. These results expand the mutational spectrum of the MMP20 and broaden our understanding of genotype-phenotype correlations in amelogenesis imperfecta.

  14. Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects

    PubMed Central

    Liu, Chen; Fu, Xuekun; Pan, Haobo; Wan, Peng; Wang, Lei; Tan, Lili; Wang, Kehong; Zhao, Ying; Yang, Ke; Chu, Paul K.

    2016-01-01

    A series of biodegradable Mg-Cu alloys is designed to induce osteogenesis, stimulate angiogenesis, and provide long-lasting antibacterial performance at the same time. The Mg-Cu alloys with precipitated Mg2Cu intermetallic phases exhibit accelerated degradation in the physiological environment due to galvanic corrosion and the alkaline environment combined with Cu release endows the Mg-Cu alloys with prolonged antibacterial effects. In addition to no cytotoxicity towards HUVECs and MC3T3-E1 cells, the Mg-Cu alloys, particularly Mg-0.03Cu, enhance the cell viability, alkaline phosphatase activity, matrix mineralization, collagen secretion, osteogenesis-related gene and protein expressions of MC3T3-E1 cells, cell proliferation, migration, endothelial tubule forming, angiogenesis-related gene, and protein expressions of HUVECs compared to pure Mg. The favorable osteogenesis and angiogenesis are believed to arise from the release of bioactive Mg and Cu ions into the biological environment and the biodegradable Mg-Cu alloys with osteogenesis, angiogenesis, and long-term antibacterial ability are very promising in orthopedic applications. PMID:27271057

  15. Assessment of restorative treatment of patients with amelogenesis imperfecta.

    PubMed

    Chen, Chiung-Fen; Hu, Jan Ching Chun; Estrella, Maria Regina Padilla; Peters, Mathilde C; Bresciani, Eduardo

    2013-01-01

    The purpose of this study was to assess restorative treatment outcomes in the mixed dentition of amelogenesis imperfecta (AI) patients and determine the postrehabilitation oral health status and satisfaction of the patients. Clinical and radiographic examinations were performed on eight AI patients, who had 74 restorations placed in permanent incisors and molars, to allow evaluation of the integrity of the restorations and periodontal status post-treatment. Subjects completed a survey regarding esthetics, function, and sensitivity. Among the 74 restorations evaluated, seven were lost; of the remaining restorations, 31 were posterior, and 36 were anterior. Ten were rated clinically unacceptable. Teeth with stainless steel crowns had a moderate gingival index (mean=2.3) and plaque index (mean=2.0) scores. Widening of the periodontal ligament and pulp canal obliteration were common radiographic findings. Subject's recall of satisfaction regarding esthetics (P=.002) and sensitivity (brushing-P=.03; eating-P=.01) showed a statically significant difference before and after treatment. During mixed dentition, teeth with amelogenesis imperfecta may be restored with conventional treatment modalities. Direct restorations should be considered "interim" with multiple repairs anticipated. Post-treatment, gingival inflammation and plaque accumulation were observed. Subjects were satisfied with their appearance and reported a decrease of hypersensitivity.

  16. Enhanced Osteogenesis by Reduced Graphene Oxide/Hydroxyapatite Nanocomposites

    PubMed Central

    Lee, Jong Ho; Shin, Yong Cheol; Lee, Sang-Min; Jin, Oh Seong; Kang, Seok Hee; Hong, Suck Won; Jeong, Chang-Mo; Huh, Jung Bo; Han, Dong-Wook

    2015-01-01

    Recently, graphene-based nanomaterials, in the form of two dimensional substrates or three dimensional foams, have attracted considerable attention as bioactive scaffolds to promote the differentiation of various stem cells towards specific lineages. On the other hand, the potential advantages of using graphene-based hybrid composites directly as factors inducing cellular differentiation as well as tissue regeneration are unclear. This study examined whether nanocomposites of reduced graphene oxide (rGO) and hydroxyapatite (HAp) (rGO/HAp NCs) could enhance the osteogenesis of MC3T3-E1 preosteoblasts and promote new bone formation. When combined with HAp, rGO synergistically promoted the spontaneous osteodifferentiation of MC3T3-E1 cells without hindering their proliferation. This enhanced osteogenesis was corroborated from determination of alkaline phosphatase activity as early stage markers of osteodifferentiation and mineralization of calcium and phosphate as late stage markers. Immunoblot analysis showed that rGO/HAp NCs increase the expression levels of osteopontin and osteocalcin significantly. Furthermore, rGO/HAp grafts were found to significantly enhance new bone formation in full-thickness calvarial defects without inflammatory responses. These results suggest that rGO/HAp NCs can be exploited to craft a range of strategies for the development of novel dental and orthopedic bone grafts to accelerate bone regeneration because these graphene-based composite materials have potentials to stimulate osteogenesis. PMID:26685901

  17. Complete Overlay Denture for Pedodontic Patient with Severe Dentinogenesis Imperfecta

    PubMed Central

    Joseph, Elizabeth; Rupesh, Suresh; Mathew, Josey

    2017-01-01

    Dentinogenesis imperfecta (DI) is a hereditary condition that may affect both primary and permanent dentition and is characterized by abnormal dentin formation. The teeth may be discolored with chipping of enamel and, in untreated cases, the entire dentition may wear off to the gingiva. This may lead to the formation of abscesses, tooth mobility, and early loss of teeth. In the Indian population, DI is found to have an incidence of 0.09%. Treatment of DI should aim to remove infection, if any, from the oral cavity; restore form, function, and esthetics; and protect posterior teeth from wear for maintaining the occlusal vertical dimension. Treatment strategies should be selected based on the presenting complaint of the patient, patient’s age, and severity of the problem. This case report presents the management of severe DI with tooth worn off until gingival level in a very young patient using complete overlay denture, which has not been reported earlier. How to cite this article: Syriac G, Joseph E, Rupesh S, Mathew J. Complete Overlay Denture for Pedodontic Patient with Severe Dentinogenesis Imperfecta. Int J Clin Pediatr Dent 2017;10(4):394-398. PMID:29403236

  18. Complete Overlay Denture for Pedodontic Patient with Severe Dentinogenesis Imperfecta.

    PubMed

    Syriac, Gibi; Joseph, Elizabeth; Rupesh, Suresh; Mathew, Josey

    2017-01-01

    Dentinogenesis imperfecta (DI) is a hereditary condition that may affect both primary and permanent dentition and is characterized by abnormal dentin formation. The teeth may be discolored with chipping of enamel and, in untreated cases, the entire dentition may wear off to the gingiva. This may lead to the formation of abscesses, tooth mobility, and early loss of teeth. In the Indian population, DI is found to have an incidence of 0.09%. Treatment of DI should aim to remove infection, if any, from the oral cavity; restore form, function, and esthetics; and protect posterior teeth from wear for maintaining the occlusal vertical dimension. Treatment strategies should be selected based on the presenting complaint of the patient, patient's age, and severity of the problem. This case report presents the management of severe DI with tooth worn off until gingival level in a very young patient using complete overlay denture, which has not been reported earlier. How to cite this article: Syriac G, Joseph E, Rupesh S, Mathew J. Complete Overlay Denture for Pedodontic Patient with Severe Dentinogenesis Imperfecta. Int J Clin Pediatr Dent 2017;10(4):394-398.

  19. Maxillary distraction osteogenesis at Le Fort-I level induces bone apposition at infraorbital rim.

    PubMed

    Rattan, Vidya; Jena, Ashok Kumar; Singh, Satinder Pal; Utreja, Ashok Kumar

    2014-09-01

    The aim of this study is to evaluate whether there is any remodeling of bone at infraorbital rim following maxillary distraction osteogenesis (DO) at Le Fort-I level. Twelve adult subjects in the age range of 17-21 years with complete unilateral cleft lip and palate underwent advancement of the maxilla by DO. The effect of maxillary DO on the infraorbital rim remodeling was evaluated from lateral cephalograms recorded prior to the DO (T0), at the end of DO (T1), and at least 2-years after the DO (T2) by Walker's analysis. The ANOVA and two-tailed t test were used and probability value (P value) 0.05 was considered as statistically significant level. There was anterior movement of maxilla by 9.22 ± 3.27 mm and 7.67 ± 3.99 mm at the end of immediate (T1) and long-term (T2) follow-up of maxillary DO, respectively. The Walker's analysis showed 1.49 ± 1.22 mm and 2.31 ± 1.81 mm anterior movement of the infraorbital margin (Orbitale point) at the end of T1 and T2, respectively (P < 0.01). This apposition of bone at the infraorbital rim region further improved the facial profile of these patients. The advancement of maxilla by distraction osteogenesis at Le Fort-I level induced significant bone apposition at infraorbital rim. Patients with mild midface hypoplasia who would otherwise may be candidates for osteotomy at Le Fort-II or Le Fort-III level may benefit from maxillary distraction at Le Fort-I level.

  20. Defining a new candidate gene for amelogenesis imperfecta: from molecular genetics to biochemistry.

    PubMed

    Urzúa, Blanca; Ortega-Pinto, Ana; Morales-Bozo, Irene; Rojas-Alcayaga, Gonzalo; Cifuentes, Víctor

    2011-02-01

    Amelogenesis imperfecta is a group of genetic conditions that affect the structure and clinical appearance of tooth enamel. The types (hypoplastic, hypocalcified, and hypomature) are correlated with defects in different stages of the process of enamel synthesis. Autosomal dominant, recessive, and X-linked types have been previously described. These disorders are considered clinically and genetically heterogeneous in etiology, involving a variety of genes, such as AMELX, ENAM, DLX3, FAM83H, MMP-20, KLK4, and WDR72. The mutations identified within these causal genes explain less than half of all cases of amelogenesis imperfecta. Most of the candidate and causal genes currently identified encode proteins involved in enamel synthesis. We think it is necessary to refocus the search for candidate genes using biochemical processes. This review provides theoretical evidence that the human SLC4A4 gene (sodium bicarbonate cotransporter) may be a new candidate gene.

  1. Alternative prosthodontic-based treatment of a patient with hypocalcified type Amelogenesis Imperfecta.

    PubMed

    Jivanescu, Anca; Miglionico, Antonio; Barua, Souman; Hategan, Simona Ioana

    2017-07-01

    The Amelogenesis Imperfecta is associated with malocclusion and usually requires an interdisciplinary treatment. Due to the patient's refusal of orthodontic treatment, prosthodontics-based treatments alternative was considered and planned. The patient was treated with zirconia-based fixed partial dentures, which resulted in improved occlusion, better oral health, and improved esthetic appearance.

  2. Treatment of Severe Maxillary Hypoplasia With Combined Orthodontics and Distraction Osteogenesis.

    PubMed

    Lucchese, Alessandra; Albertini, Paolo; Asperio, Paolo; Manuelli, Maurizio; Gastaldi, Giorgio

    2018-01-05

    Distraction osteogenesis (DO) is a technique that allows the generation of new bone in a gap between 2 vascularized bone surfaces in response to the application of graduated tensile stress across the bone gap.Distraction osteogenesis has become a routine treatment of choice to correct skeletal deformities and severe bone defects in the craniofacial complex over the past decade. Distraction osteogenesis has been successfully chosen in lengthening the maxilla and the mandible; in the maxilla and recently in the mandible, the jawbones have been distracted and widened transversely to relieve severe anterior dental crowding and transverse discrepancies between the dental arches.Distraction osteogenesis for maxillary advancement started in 1993 and is now widely used, especially in patients with skeletal Class III malocclusion caused by maxillary hypoplasia.The aim of this study was to present the efficiency of combined orthodontic and DO in the severe maxillary hypoplasia.A 35-year-old Italian man presented to our clinical practice with the chief complaint of esthetic and functionally problems because of skeletal Class III malocclusion with anterior crossbite.Considering that the severity of the skeletal discrepancy is remarkable but compensated by the DO potential, the combined orthodontic and DO treatment was considered adequate, like less invasive and equally effective.It was obtained a good alignment with the upper and lower arch dental alveolar maxillary advancement that allowed to correct the sagittal relationships.The patient was satisfied for the treatment results and had considerable improvement in his self-esteem.

  3. Noninvasive esthetic treatment for hypomaturation amelogenesis imperfecta: a case report.

    PubMed

    Nahsan, Flávia Pardo Salata; Silva, Luciana Mendonça da; Lima, Thiago Mendes de; Bertocco, Verônica Pereira de Lima; Chui, Fabíola Mendonça da Silva; Martins, Leandro de Moura

    2016-01-01

    Enamel alterations, such as amelogenesis imperfecta, can compromise the harmony of the smile and the patient's self-esteem and may cause tooth sensitivity. A simple and effective treatment approach uses the natural stratification of composite resins to mask deficient enamel formation and mimic the natural appearance of the substrate. The operative steps and principles for restorative success are described in this case report with 36-month follow-up.

  4. Impact of moderate and severe hypodontia and amelogenesis imperfecta on quality of life and self-esteem of adult patients.

    PubMed

    Hashem, Atef; Kelly, Alan; O'Connell, Brian; O'Sullivan, Michael

    2013-08-01

    The objective of this study was to investigate the impact of moderate and severe hypodontia and amelogenesis imperfecta on the quality of life and self-esteem of affected adult patients. Forty one adult patients (aged 18-45 years) with clinical and radiological diagnoses of moderate to severe hypodontia and twenty seven patients diagnosed with amelogenesis imperfecta were age and gender matched with a control group of patients attending for routine dental care. Subjects completed the Oral Health Impact Profile [OHIP-49] and Rosenberg Self Esteem Scale. A paired t-test was used to analyse data; the test alpha level was set at P ≤ 0.05. The results for hypodontia patients were significantly different from controls in six out of the seven OHIP-49 domains, the exception being the Handicap domain. Total scores were also significantly different between the two groups (P=0.003). Self-esteem was not significantly different between the two groups (P=0.98). For amelogenesis imperfecta patients the results were significantly different from control patients in four out of the seven domains of the OHIP-49 and also in the total scores (P=0.01). When self-esteem was investigated there was no significant differences between the two groups (P=0.92). Moderate to severe hypodontia and amelogenesis imperfecta have marked negative impacts on the Oral Health Related quality of life of this patient population relative to controls. However, self-esteem was not significantly affected. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Maxillary distraction osteogenesis in cleft lip and palate patients with skeletal anchorage.

    PubMed

    Minami, Katsuhiro; Mori, Yoshihide; Tae-Geon, Kwon; Shimizu, Hidetaka; Ohtani, Miyuki; Yura, Yoshiaki

    2007-03-01

    Maxillary distraction osteogenesis with the rigid external distraction (RED) system has been used to treat cleft lip and palate (CLP) patients with severe maxillary hypoplasia. We introduce maxillary distraction osteogenesis for CLP patients with skeletal anchorage adapted on a stereolithographic model. Six maxillary deficiency CLP patients treated according to our CLP treatment protocol had undergone maxillary distraction osteogenesis. In all patients, computed tomography (CT) images were recorded preoperatively, and the data were transferred to a workstation. Three-dimensional skeletal structures were reconstructed with CT data sets, and a stereolithographic model was produced. On the stereolithographic model, miniplates were adapted to the surface of maxilla beside aperture piriforms. The operation performed involved a high Le Fort I osteotomy with pterygomaxillary disjunction. Miniplates were fixed to the maxillary segment with three or four screws and used for anchorage of the RED system. Retraction of the maxillary segment was initiated after 1 week. The accuracy of the stereolithographic models was enough to adapt the miniplates so that there was no need to readjust the plates during surgery. Postoperative cephalometric analysis showed that the direction of the retraction was almost parallel to the palatal plane, and dental compensation did not occur. We performed maxillary distraction osteogenesis with skeletal anchorage adapted on the stereolithographic models. Excellent esthetic outcome and skeletal advancement were achieved without dentoalveolar compensations.

  6. Molecular, Phenotypic Aspects and Therapeutic Horizons of Rare Genetic Bone Disorders

    PubMed Central

    Dhawan, Naveen; Vohra, Shivani; Tu, Khin; Abdelmagid, Samir M.

    2014-01-01

    A rare disease afflicts less than 200,000 individuals, according to the National Organization for Rare Diseases (NORD) of the United States. Over 6,000 rare disorders affect approximately 1 in 10 Americans. Rare genetic bone disorders remain the major causes of disability in US patients. These rare bone disorders also represent a therapeutic challenge for clinicians, due to lack of understanding of underlying mechanisms. This systematic review explored current literature on therapeutic directions for the following rare genetic bone disorders: fibrous dysplasia, Gorham-Stout syndrome, fibrodysplasia ossificans progressiva, melorheostosis, multiple hereditary exostosis, osteogenesis imperfecta, craniometaphyseal dysplasia, achondroplasia, and hypophosphatasia. The disease mechanisms of Gorham-Stout disease, melorheostosis, and multiple hereditary exostosis are not fully elucidated. Inhibitors of the ACVR1/ALK2 pathway may serve as possible therapeutic intervention for FOP. The use of bisphosphonates and IL-6 inhibitors has been explored to be useful in the treatment of fibrous dysplasia, but more research is warranted. Cell therapy, bisphosphonate polytherapy, and human growth hormone may avert the pathology in osteogenesis imperfecta, but further studies are needed. There are still no current effective treatments for these bone disorders; however, significant promising advances in therapeutic modalities were developed that will limit patient suffering and treat their skeletal disabilities. PMID:25530967

  7. Pharmacological management of osteogenesis

    PubMed Central

    Nardone, Valeria; D'Asta, Federica; Brandi, Maria Luisa

    2014-01-01

    Osteogenesis and bone remodeling are complex biological processes that are essential for the formation of new bone tissue and its correct functioning. When the balance between bone resorption and formation is disrupted, bone diseases and disorders such as Paget's disease, fibrous dysplasia, osteoporosis and fragility fractures may result. Recent advances in bone cell biology have revealed new specific targets for the treatment of bone loss that are based on the inhibition of bone resorption by osteoclasts or the stimulation of bone formation by osteoblasts. Bisphosphonates, antiresorptive agents that reduce bone resorption, are usually recommended as first-line therapy in women with postmenopausal osteoporosis. Numerous studies have shown that bisphosphonates are able to significantly reduce the risk of femoral and vertebral fractures. Other antiresorptive agents indicated for the treatment of osteoporosis include selective estrogen receptor modulators, such as raloxifene. Denosumab, a human monoclonal antibody, is another antiresorptive agent that has been approved in Europe and the USA. This agent blocks the RANK/RANKL/OPG system, which is responsible for osteoclastic activation, thus reducing bone resorption. Other approved agents include bone anabolic agents, such as teriparatide, a recombinant parathyroid hormone that improves bone microarchitecture and strength, and strontium ranelate, considered to be a dual-action drug that acts by both osteoclastic inhibition and osteoblastic stimulation. Currently, anti-catabolic drugs that act through the Wnt-β catenin signaling pathway, serving as Dickkopf-related protein 1 inhibitors and sclerostin antagonists, are also in development. This concise review provides an overview of the drugs most commonly used for the control of osteogenesis in bone diseases. PMID:24964310

  8. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone

    NASA Astrophysics Data System (ADS)

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Wang, Lin; Adams, Ralf H.

    2014-03-01

    Blood vessel growth in the skeletal system and osteogenesis seem to be coupled, suggesting the existence of molecular crosstalk between endothelial and osteoblastic cells. Understanding the nature of the mechanisms linking angiogenesis and bone formation should be of great relevance for improved fracture healing or prevention of bone mass loss. Here we show that vascular growth in bone involves a specialized, tissue-specific form of angiogenesis. Notch signalling promotes endothelial cell proliferation and vessel growth in postnatal long bone, which is the opposite of the well-established function of Notch and its ligand Dll4 in the endothelium of other organs and tumours. Endothelial-cell-specific and inducible genetic disruption of Notch signalling in mice not only impaired bone vessel morphology and growth, but also led to reduced osteogenesis, shortening of long bones, chondrocyte defects, loss of trabeculae and decreased bone mass. On the basis of a series of genetic experiments, we conclude that skeletal defects in these mutants involved defective angiocrine release of Noggin from endothelial cells, which is positively regulated by Notch. Administration of recombinant Noggin, a secreted antagonist of bone morphogenetic proteins, restored bone growth and mineralization, chondrocyte maturation, the formation of trabeculae and osteoprogenitor numbers in endothelial-cell-specific Notch pathway mutants. These findings establish a molecular framework coupling angiogenesis, angiocrine signals and osteogenesis, which may prove significant for the development of future therapeutic applications.

  9. Maxillary distraction osteogenesis using Le Fort I osteotomy without intraoperative down-fracture.

    PubMed

    Yamauchi, K; Mitsugi, M; Takahashi, T

    2006-06-01

    The aim of this study is to present a technique for maxillary distraction osteogenesis using Le Fort I osteotomy without down-fracture. Six cleft-related patients suffering from severe midfacial deficiency were treated with maxillary distraction osteogenesis. The RED II system was chosen as the extraoral device and the Leipzig retention plate system to anchor the maxillary segment. Maxillary distraction osteogenesis was successful in all cases. Cephalometric and clinical evaluation after an average follow-up period of 1 year showed stable results with respect to skeletal and dental relationships. The SNA angle increased from 72.3 degrees to 81.4 degrees and the ANB angle increased by 11.0 degrees immediately after removing the distraction device. After 1 year, the sagittal bone gain remained and the SNA angle had decreased by 0.8 degrees . This technique seems to minimize the risk of the surgical procedure and shorten the operation time. It may become an alternative method for the treatment of patients with severe midfacial hypoplasia.

  10. Amelogenesis Imperfecta: A Non-Invasive Approach to Improve Esthetics in Young Patients. Report of Two Cases.

    PubMed

    Cagetti, Maria Grazia; Cattaneo, Stefano; Hu, Ye Qing; Campus, Guglielmo

    Objective-Evaluate esthetic and functional efficacy of infiltrant resin (Icon, DMG, Hamburg, Germany) in Amelogenesis Imperfecta's treatment. Two adolescent patients, G.S. (13 years old) and C.M. (15 years old), affected by the hypomaturation type of Amelogenesis Imperfecta, were treated with Icon resin and were followed for twelve months. Treated teeth show an excellent aesthetical result immediately after the resin application, effect that lasts in the long-term (six and twelve months follow-up examinations); the dental wear's progression seems to be clinically arrested. Resin infiltration has proven to be a minimal invasive treatment for dental discoloration, less aggressive than conventional procedures. This approach might be recommended for a stable esthetical improvement in moderate AI's lesions especially in children and adolescents.

  11. Muscle response to leg lengthening during distraction osteogenesis.

    PubMed

    Thorey, Fritz; Bruenger, Jens; Windhagen, Henning; Witte, Frank

    2009-04-01

    Continuous lengthening of intact muscles during distraction osteogenesis leads to an increase of sarcomeres and enhances the regeneration of tendons and blood vessels. A high distraction rate leads to an excessive leg and muscle lengthening and might cause damages of muscle fibers with fibrosis, necrosis, and muscle weakness. Complications like muscle contractures or atrophy after postoperative immobilization emphazize the importance of muscles and their function in the clinical outcome. In an animal model of distraction osteogenesis, 18 sheep were operated with an external fixator followed by 4 days latency, 21 days distraction (1.25 mm per day) and 51 days consolidation. The anatomical location (gastrocnemius, peroneus tertius, and first flexor digitorum longus muscle), dimension and occurrence of muscular defects were characterized histologically. The callus formation and leg axis was monitored by weekly X-rays. Additionally, serum creatine kinase was analyzed during a distraction and consolidation period. Significant signs of muscle lesions in all three observed muscles can be found postoperatively, whereas normal callus formation and regular leg axis was observed radiologically. The peroneus tertius and first flexor digitorum longus muscles were found to have significantly more signs of fibrosis, inflammatory, and necrosis. Creatine kinase showed two peaks: 4 and 39 days postoperative as an indication of muscle damage and regeneration. The study implicates that muscle damages should be considered when a long-distance distraction osteogenesis is planned. The surgeon should consider these muscle responses and individually discuss a two-stage treatment or additional muscle tendon releases to minimize the risk of muscle damages.

  12. Structurally-diverse, PPARγ-activating environmental toxicants induce adipogenesis and suppress osteogenesis in bone marrow mesenchymal stromal cells

    PubMed Central

    Watt, James; Schlezinger, Jennifer J.

    2015-01-01

    Environmental obesogens are a newly recognized category of endocrine disrupting chemicals that have been implicated in contributing to the rising rates of obesity in the United States. While obesity is typically regarded as an increase in visceral fat, adipocyte accumulation in the bone has been linked to increased fracture risk, lower bone density, and osteoporosis. Exposure to environmental toxicants that activate peroxisome proliferator activated receptor γ (PPARγ), a critical regulator of the balance of differentiation between adipogenesis and osteogenesis, may contribute to the increasing prevalence of osteoporosis. However, induction of adipogenesis and suppression of osteogenesis are separable activities of PPARγ, and ligands may selectively alter these activities. It currently is unknown whether suppression of osteogenesis is a common toxic endpoint of environmental PPARγ ligands. Using a primary mouse bone marrow culture model, we tested the hypothesis that environmental toxicants acting as PPARγ agonists divert the differentiation pathway of bone marrow-derived multipotent mesenchymal stromal cells towards adipogenesis and away from osteogenesis. The toxicants tested included the organotins tributyltin and triphenyltin, a ubiquitous phthalate metabolite (mono-(2-ethylhexyl) phthalate, MEHP), and two brominated flame retardants (tetrabromobisphenol-a, TBBPA, and mono-(2-ethylhexyl) tetrabromophthalate, METBP). All of the compounds activated PPARγ1 and 2. All compounds increased adipogenesis (lipid accumulation, Fabp4 expression) and suppressed osteogenesis (alkaline phosphatase activity, Osx expression) in mouse primary bone marrow cultures, but with different potencies and efficacies. Despite structural dissimilarities, there was a strong negative correlation between efficacies to induce adipogenesis and suppress osteogenesis, with the organotins being distinct in their exceptional ability to suppress osteogenesis. As human exposure to a mixture of

  13. Chairside treatment of amelogenesis imperfecta, including establishment of a new vertical dimension with resin nanoceramic and intraoral scanning.

    PubMed

    Zimmermann, Moritz; Koller, Christina; Hickel, Reinhard; Kühnisch, Jan

    2016-09-01

    Amelogenesis imperfecta is a hereditary disease affecting the structural development of tooth substance. This clinical report describes a 1-visit chairside treatment of an 8-year-old patient with amelogenesis imperfecta, using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. Intraoral scanning was performed using the Cerec Omnicam. Thirteen resin nanoceramic crowns (Lava Ultimate) were fabricated chairside by using a Cerec MCXL milling unit and seated adhesively. The patient's treatment included establishing a new occlusal vertical dimension and new centric relationship. Reevaluation after 6 months showed a stable situation. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Amelogenesis imperfecta

    PubMed Central

    Crawford, Peter JM; Aldred, Michael; Bloch-Zupan, Agnes

    2007-01-01

    Amelogenesis imperfecta (AI) represents a group of developmental conditions, genomic in origin, which affect the structure and clinical appearance of enamel of all or nearly all the teeth in a more or less equal manner, and which may be associated with morphologic or biochemical changes elsewhere in the body. The prevalence varies from 1:700 to 1:14,000, according to the populations studied. The enamel may be hypoplastic, hypomineralised or both and teeth affected may be discoloured, sensitive or prone to disintegration. AI exists in isolation or associated with other abnormalities in syndromes. It may show autosomal dominant, autosomal recessive, sex-linked and sporadic inheritance patterns. In families with an X-linked form it has been shown that the disorder may result from mutations in the amelogenin gene, AMELX. The enamelin gene, ENAM, is implicated in the pathogenesis of the dominant forms of AI. Autosomal recessive AI has been reported in families with known consanguinity. Diagnosis is based on the family history, pedigree plotting and meticulous clinical observation. Genetic diagnosis is presently only a research tool. The condition presents problems of socialisation, function and discomfort but may be managed by early vigorous intervention, both preventively and restoratively, with treatment continued throughout childhood and into adult life. In infancy, the primary dentition may be protected by the use of preformed metal crowns on posterior teeth. The longer-term care involves either crowns or, more frequently these days, adhesive, plastic restorations. PMID:17408482

  15. Effect of mandibular distraction osteogenesis on the temporomandibular joint: a systematic review of animal experimental studies.

    PubMed

    Andersen, Kristian; Pedersen, Thomas Klit; Hauge, Ellen Margrethe; Schou, Søren; Nørholt, Sven Erik

    2014-04-01

    The present systematic review aimed to test the hypothesis of no effect of mandibular distraction osteogenesis on the temporomandibular joint. Animal experimental studies from January 1985 to August 2013 were included. Studies were searched in PubMed, Embase, Scopus, and the Cochrane Library. A total of 289 articles were identified, and 17 were included. Included studies were characterized by a high risk of bias and by inhomogeneity related to animal species, experimental procedures, and evaluation methods. Mandibular distraction osteogenesis within physiologic limits may be followed by adaptive changes in bone, disk, and cartilage. Increased daily rates and total activation length may influence the severity of the adaptive changes. Animal experimental studies indicate that mandibular distraction osteogenesis may induce adaptive changes in the temporomandibular joint. Adaptive changes may be influenced by increased daily rates and total length of distraction osteogenesis. Well-designed studies are needed before final conclusions can be drawn. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Rheological, biocompatibility and osteogenesis assessment of fish collagen scaffold for bone tissue engineering.

    PubMed

    Elango, Jeevithan; Zhang, Jingyi; Bao, Bin; Palaniyandi, Krishnamoorthy; Wang, Shujun; Wenhui, Wu; Robinson, Jeya Shakila

    2016-10-01

    In the present investigation, an attempt was made to find an alternative to mammalian collagen with better osteogenesis ability. Three types of collagen scaffolds - collagen, collagen-chitosan (CCH), and collagen-hydroxyapatite (CHA) - were prepared from the cartilage of Blue shark and investigated for their physico-functional and mechanical properties in relation to biocompatibility and osteogenesis. CCH scaffold was superior with pH 4.5-4.9 and viscosity 9.7-10.9cP. Notably, addition of chitosan and HA (hydroxyapatite) improved the stiffness (11-23MPa) and degradation rate but lowered the water binding capacity and porosity of the scaffold. Interestingly, CCH scaffolds remained for 3days before complete in-vitro biodegradation. The decreased amount of viable T-cells and higher level of FAS/APO-1 were substantiated the biocompatibility properties of prepared collagen scaffolds. Osteogenesis study revealed that the addition of CH and HA in both fish and mammalian collagen scaffolds could efficiently promote osteoblast cell formation. The ALP activity was significantly high in CHA scaffold-treated osteoblast cells, which suggests an enhanced bone-healing process. Therefore, the present study concludes that the composite scaffolds prepared from fish collagen with higher stiffness, lower biodegradation rate, better biocompatible, and osteogenesis properties were suitable biomaterial for a bone tissue engineering application as an alternative to mammalian collagen scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A low-cost method of craniofacial distraction osteogenesis.

    PubMed

    Greyvensteyn, Gerhardus A; Madaree, Anil

    2016-03-01

    Distraction osteogenesis is an effective treatment modality for the correction of craniofacial deformities. The cost of these devices is significant and may preclude routine use of these distractors in developing countries. Hence, distraction osteogenesis was performed using medical equipment that was readily available in any hospital at minimal cost. From 2008 to 2013, a retrospective study was performed on infants and neonates who underwent primary distraction for craniofacial abnormalities. Midface or mandibular distraction was performed because of respiratory impairment and/or globe exposure. The apparatus used included Steinmann pins, stainless steel wires, attachment bolts, orthopaedic pulleys, string and intravenous bags for weights. For midface distraction, a transzygomatic pin was inserted, and a transmandibular pin or a cerclage wire was inserted into the mandible through the symphysis or body of the mandible and connected to the pulley system. Distraction osteogenesis was performed on five patients - three mandibular distractions (Pierre Robin sequence) and two transfacial distractions (Apert syndrome/Pfeiffer syndrome type III). The mean age, duration of distraction and duration of consolidation at the time of distraction was 60.5 days, 18.6 days and 16.4 days, respectively. The mean length of distraction achieved was 12 mm. Common complications observed were pin loosening, pressure necrosis of the skin and uneven pull. A major disadvantage was the longer hospital stay required. The African method of distraction is effective, easy and cost effective and could be used in third-world hospitals where surgical expertise or expensive distraction sets are not freely available. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Reconstruction of juxta-articular huge defects of distal femur with vascularized fibular bone graft and Ilizarov's distraction osteogenesis.

    PubMed

    Lai, Davy; Chen, Chuan-Mu; Chiu, Fang-Yao; Chang, Ming-Chau; Chen, Tain-Hsiung

    2007-01-01

    We evaluate the effect of reconstructing huge defects (mean, 15.8 cm) of the distal femur with Ilizarov's distraction osteogenesis and free twin-barreled vascularized fibular bone graft (TVFG). We retrospectively reviewed a consecutive series of five patients who had cases of distal femoral fractures with huge defects and infection that were treated by the Ilizarov's distraction osteogenesis. After radical debridement, two of the five cases had free TVFG and monolocal distraction osteogenesis, and another two cases had multilocal distraction osteogenesis with knee fusion because of loss of the joint congruity. The other case with floating knee injury had bilocal distraction osteogenesis and a preserved knee joint. The mean defect of distal femur was 15.8 cm (range, 14-18 cm) in length. The mean length of distraction osteogenesis by Ilizarov's apparatus was 8.2 cm. The mean length of TVFG was 8 cm. The average duration from application of Ilizarov's apparatus to achievement of bony union was 10.2 months (range, 8-13 months). At the end of the follow-up, ranges of motion of three knees were 0 to 45 degrees, 0 to 60 degrees, and 0 to 90 degrees. Two cases had knee arthrodesis with bony fusion because of loss of the joint congruity. There were no leg length discrepancies in all five patients. In addition, three patients had pin tract infections and one case had a 10 degree varus deformity of the femur. Juxta-articular huge defect (>10 cm) of distal femur remains a challenge to orthopedic surgeons. Ilizarov's technique provides the capability to maintain stability, eradicate infection, restore leg length, and to perform adjuvant reconstructive procedure easily. In this study, we found that combining Ilizarov's distraction osteogenesis with TVFG results in improved patient outcome for patients with injuries such as supracondylar or intercondylar infected fractures or nonunion of distal femur with huge bone defect.

  19. Amelogenesis Imperfecta, Facial Esthetics and Snap-On Smile.

    PubMed

    Wilson, Lee; Bradshaw, Jonathan P; Marks, Murray K

    2015-01-01

    Amelogenesis imperfecta is a hereditary enamel protein disorder affecting deciduous and secondary crown formation. The prevalence ranges from 1:700 to 1:14,000 depending on the population. These teeth may be hypoplastic, hypomineralized, or hypermineralized and are often discolored, sensitive and caries vulnerable. Patients often present with psychosocial issues due to appearance. Primary teeth are often treated with stainless steel crowns while secondary teeth are treated with full coverage esthetic crowns. The presenting preteen male here was fitted with Snap-On Smile? (www.snaponsmile.com). This treatment option provided cosmetic enhancement of the patient's appearance besides stabilization without altering the primary and secondary dentition during adolescent development.

  20. Distraction osteogenesis of costochondral bone grafts in the mandible.

    PubMed

    Stelnicki, Eric J; Hollier, Larry; Lee, Catherine; Lin, Wen-Yuan; Grayson, Barry; McCarthy, Joseph G

    2002-03-01

    Costochondral grafting for reconstruction of the Pruzansky type III mandible has given variable results. Lengthening of the rib graft by means of distraction had been advocated when subsequent growth of the grafted mandible is inadequate. This retrospective study reviews a series of patients with mandibular costochondral grafts who underwent subsequent distraction osteogenesis of the graft. A retrospective review identified two patient groups: group 1 consisted of individuals (n = 9) who underwent costochondral rib grafting of the mandible followed by distraction osteogenesis several months later at a rate of 1 mm/day. Group 2 consisted of patients with Pruzansky type II mandibles who had distraction osteogenesis without prior rib grafting (n = 9). The biomechanical parameters, orthodontic treatment regimens, and complications were examined versus patient age and quality of the rib graft. Distraction osteogenesis was successfully performed in six of the rib graft patients (group 1) and in all of the group 2 individuals. On the basis of the Haminishi scale, the computed tomographic scan appearance of the regenerate was classified as "standard or external" in six of the group 1 patients and as either "agenetic" or "pillar" (fibrous union) in the remaining three patients. In group 1, the average device was expanded 23 mm (range, 20 to 30 mm). Group 2 mandibular distraction results were all classified as either standard or external, and there was an average device expansion of 22.4 mm (range, 16 to 30 mm). The length of consolidation averaged 12.6 weeks in group 1, compared with 8.5 weeks in the traditional mandibular distraction patients (group 2). The mean shift of the dental midline to the contralateral side was 2.5 mm in group 1 versus 4.0 mm in group 2. Complex multiplanar and transport distractions were successfully performed on grafts of adequate bony volume. All four patients in group 1 with tracheostomies were successfully decannulated after consolidation. Rib

  1. A novel bioactive osteogenesis scaffold delivers ascorbic acid, β-glycerophosphate, and dexamethasone in vivo to promote bone regeneration.

    PubMed

    Wang, Chao; Cao, Xuecheng; Zhang, Yongxian

    2017-05-09

    Ascorbic acid, β-glycerophosphate, and dexamethasone have been used in osteogenesis differentiation medium for in vitro cell culture, nothing is known for delivering these three bioactive compounds in vivo. In this study, we synthesized a novel bioactive scaffold by combining these three compounds with a lysine diisocyanate-based polyurethane. These bioactive compounds were released from the scaffold during the degradation process. The cell culture showed that the sponge-like structure in the scaffold was critical in providing a large surface area to support cell growth and all degradation products of the polymer were non-toxic. This bioactive scaffold enhanced the bone regeneration as evidenced by increasing the expression of three bone-related genes including collagen type I, Runx-2 and osteocalcin in rabbit bone marrow stem cells (BMSCs) in vitro and in vivo. The osteogenesis differentiation of BMSCs cultured in this bioactive scaffold was similar to that in osteogenesis differentiation medium and more extensive in this bioactive scaffold compared to the scaffold without these three bioactive compounds. These results indicated that the scaffold containing three bioactive compounds was a good osteogenesis differentiation promoter to enhance the osteogenesis differentiation and new bone formation in vivo.

  2. A novel bioactive osteogenesis scaffold delivers ascorbic acid, β-glycerophosphate, and dexamethasone in vivo to promote bone regeneration

    PubMed Central

    Wang, Chao; Cao, Xuecheng; Zhang, Yongxian

    2017-01-01

    Ascorbic acid, β-glycerophosphate, and dexamethasone have been used in osteogenesis differentiation medium for in vitro cell culture, nothing is known for delivering these three bioactive compounds in vivo. In this study, we synthesized a novel bioactive scaffold by combining these three compounds with a lysine diisocyanate-based polyurethane. These bioactive compounds were released from the scaffold during the degradation process. The cell culture showed that the sponge-like structure in the scaffold was critical in providing a large surface area to support cell growth and all degradation products of the polymer were non-toxic. This bioactive scaffold enhanced the bone regeneration as evidenced by increasing the expression of three bone-related genes including collagen type I, Runx-2 and osteocalcin in rabbit bone marrow stem cells (BMSCs) in vitro and in vivo. The osteogenesis differentiation of BMSCs cultured in this bioactive scaffold was similar to that in osteogenesis differentiation medium and more extensive in this bioactive scaffold compared to the scaffold without these three bioactive compounds. These results indicated that the scaffold containing three bioactive compounds was a good osteogenesis differentiation promoter to enhance the osteogenesis differentiation and new bone formation in vivo. PMID:28404942

  3. Lengthening by distraction osteogenesis in congenital shortening of metacarpals.

    PubMed

    Bulut, Mehmet; Uçar, Bekir Yavuz; Azboy, Ibrahim; Belhan, Oktay; Yilmaz, Erhan; Karakurt, Lokman

    2013-01-01

    The aim of this study was to present the results of seven cases of metacarpal lengthening by distraction osteogenesis and to discuss the ideal daily rate of distraction. Metacarpal lengthening was performed by distraction osteogenesis in the seven metacarpals of four patients (3 females, 1 male; mean age: 14.9 years). A unilateral external fixator was used for lengthening. Lengthening was initiated with a distraction rate of 2x0.5 mm/day in the patient with bilateral involvement of the middle and ring metacarpals. On the tenth day of lengthening, distraction was discontinued due to pain and contracture. Then, distraction was continued with a rate of 2x0.25 mm/day. In all other cases, the distraction rate was 0.5 mm/day. Pre- and postoperative range of motion was measured with a goniometer. Patient satisfaction was evaluated with visual analog scale. The mean pre- and postoperative metacarpal lengths were 34.6 mm (range: 33 to 37) and 49.7 mm (range: 47 to 52), respectively. The mean lengthening achieved was 15.1 mm (range: 14 to 17), while the mean distraction rate was 0.55 mm/day (range: 0.48 to 0.63). No functional loss was observed in the fingers at the final check-up. The patients were happy with the functional and cosmetic results. Distraction osteogenesis is a safe method providing acceptable cosmetic and functional results in patients with congenital metacarpal shortness. The length of metacarpals and muscles that will be affected from lengthening should be considered when determining the daily rate of distraction.

  4. Cyclophilin B Deficiency Causes Abnormal Dentin Collagen Matrix.

    PubMed

    Terajima, Masahiko; Taga, Yuki; Cabral, Wayne A; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Marini, Joan C; Yamauchi, Mitsuo

    2017-08-04

    Cyclophilin B (CypB) is an endoplasmic reticulum-resident protein that regulates collagen folding, and also contributes to prolyl 3-hydroxylation (P3H) and lysine (Lys) hydroxylation of collagen. In this study, we characterized dentin type I collagen in CypB null (KO) mice, a model of recessive osteogenesis imperfecta type IX, and compared to those of wild-type (WT) and heterozygous (Het) mice. Mass spectrometric analysis demonstrated that the extent of P3H in KO collagen was significantly diminished compared to WT/Het. Lys hydroxylation in KO was significantly diminished at the helical cross-linking sites, α1/α2(I) Lys-87 and α1(I) Lys-930, leading to a significant increase in the under-hydroxylated cross-links and a decrease in fully hydroxylated cross-links. The extent of glycosylation of hydroxylysine residues was, except α1(I) Lys-87, generally higher in KO than WT/Het. Some of these molecular phenotypes were distinct from other KO tissues reported previously, indicating the dentin-specific control mechanism through CypB. Histological analysis revealed that the width of predentin was greater and irregular, and collagen fibrils were sparse and significantly smaller in KO than WT/Het. These results indicate a critical role of CypB in dentin matrix formation, suggesting a possible association between recessive osteogenesis imperfecta and dentin defects that have not been clinically detected.

  5. A novel autosomal-recessive mutation, whitish chalk-like teeth, resembling amelogenesis imperfecta, maps to rat chromosome 14 corresponding to human 4q21.

    PubMed

    Masuyama, Taku; Miyajima, Katsuhiro; Ohshima, Hayato; Osawa, Masaru; Yokoi, Norihide; Oikawa, Toshihiro; Taniguchi, Kazuyuki

    2005-12-01

    A rat mutant, whitish chalk-like teeth (wct), with white, chalk-like abnormal incisors, was discovered and morphologically and genetically characterized. The mutant rats showed tooth enamel defects that were similar to those of human amelogenesis imperfecta. The wct mutation was found to disturb the morphological transition of ameloblasts from secretory to maturation stages and to induce cyst formation. This mutation also disturbs the transfer of iron into the enamel, resulting in the whitish chalk-like incisors. A genetic linkage study indicated that the wct locus maps to a specific interval of rat chromosome 14 between D14Got13 and D14Wox2. Interestingly, the human chromosomal region orthologous to wct, a 5.5-Mb interval in human chromosome 4q21, is a critical region for the locus of human amelogenesis imperfecta AIH2. These results strongly suggest that this wct mutant is a useful model for the identification of genes responsible for amelogenesis imperfecta and molecular mechanisms of tooth development.

  6. Dentinogenesis imperfecta: a case report of comprehensive treatment for a teenager.

    PubMed

    Biethman, Rick; Capati, Laura Richards; Eldger, Nicole

    2014-01-01

    Improving a smile can change a person's self-image. This case report describes treatment for an adolescent boy with dentinogenesis imperfecta. Soon to begin high school, the 14-year-old patient was severely obese and disliked his stained teeth. A combination of surgical periodontal treatment, endodontic treatment, and veneers improved both his smile and self-perception-which may have played a role in achieving his weight loss goal of 125 lb at 12 months post-treatment.

  7. Improved osteogenesis and angiogenesis of magnesium-doped calcium phosphate cement via macrophage immunomodulation.

    PubMed

    Wang, Meng; Yu, Yuanman; Dai, Kai; Ma, Zhengyu; Liu, Yang; Wang, Jing; Liu, Changsheng

    2016-10-18

    Immune responses are vital for bone regeneration and play an essential role in the fate of biomaterials after implantation. As a kind of plastic cell, macrophages are central regulators of the immune response during the infection and wound healing process including osteogenesis and angiogenesis. Magnesium-calcium phosphate cement (MCPC) has been reported as a promising candidate for bone repair with promoted osteogenesis both in vitro and in vivo. However, relatively little is known about the effects of MCPC on immune response and the following outcome. In this study, we investigated the interactions between macrophages and MCPC. Here we found that the pro-inflammatory cytokines including TNF-α and IL-6 were less expressed and the bone repair related cytokine of TGF-β1 was up-regulated by macrophages in MCPC extract. Furthermore, the enhanced osteogenic capacity of BMSCs and angiogenic potential of HUVECs were acquired in vitro by the MCPC-induced immune microenvironment. These findings suggest that MCPC is able to facilitate bone healing by endowing favorable osteoimmunomodulatory properties and influencing crosstalk behavior between immune cells and osteogenesis-related cells.

  8. New fixation method for maxillary distraction osteogenesis using locking attachments.

    PubMed

    Suzuki, Eduardo Yugo; Buranastidporn, Boonsiva; Ishii, Masatoshi

    2006-10-01

    The external traction hooks of the intraoral splint used in the rigid external distraction (RED) system for maxillary distraction osteogenesis interfere with the surgical procedures. The purpose of this study is to introduce an innovative splint fixation method for maxillary distraction osteogenesis with Locking Attachments and evaluate their advantages, such as reduction of operating time compared with the traditional intraoral splint method. Retrospective comparison of operative times of maxillary Le Fort I osteotomy procedures was carried out with the traditional protocol using the intraoral splint cemented to the maxillary dentition (n = 14), and a removable intraoral splint that is inserted postsurgically (n = 14). Operative procedure times were compared and analyzed statistically using the data extracted from the surgical records. There were no complications inserting the removable splint postsurgically, including pain, discomfort, or time-consuming procedure. Stable and secure splint fixation was obtained before the distraction procedure and the desired treatment goals were obtained in all patients. The total operative procedure times were significantly reduced in the Locking Attachments group by 24% to 41% (approximately 65 minutes) compared with earlier operations involving the conventional splints (P < .05). Maxillary distraction osteogenesis with the Locking Attachments is a highly effective fixation approach to manage severe hypoplastic maxilla, eliminating lip constraints resulting from scarring and allowing for easier, more deliberate and careful dissection. The use of the Locking Attachments is reliable in craniofacial surgery and has proved to be advantageous in the reduction of the operating time and surgical risks.

  9. Mineral features of connective dental hard tissues in hypoplastic amelogenesis imperfecta.

    PubMed

    Kammoun, R; Behets, C; Mansour, L; Ghoul-Mazgar, S

    2018-04-01

    To explore the mineral features of dentin and cementum in hypoplastic Amelogenesis imperfecta AI teeth. Forty-four (44) teeth cleaned and free of caries were used: 20 control and 24 affected by hypoplastic amelogenesis imperfecta. Thirty-two teeth were studied by pQCT, cut in sections, and analyzed under microradiography, polarized light microscopy, and confocal Raman spectroscopy. Eight teeth were observed under scanning electron microscope. Four teeth were used for an X-ray diffraction. The mineral density data were analyzed statistically with the Mann-Whitney U test, using GraphPad InStat software. Both coronal dentin and radicular dentin were less mineralized in AI teeth when compared to control (respectively 6.2% and 6.8%; p < .001). Root dentinal walls were thin and irregular, while the cellular cementum layers were thick, reaching sometimes the cervical region of the tooth. Regular dentinal tubules and sclerotic dentin areas were noticed. Partially tubular or cellular dysplastic dentin and hyper-, normo-, or hypomineralized areas were noticed in the inter-radicular areas of hypoplastic AI teeth. The main mineral component was carbonate hydroxyapatite as explored by Raman spectroscopy and X-ray diffraction. Dentin and cementum in hypoplastic AI teeth are (i) hypomineralized, (ii) constituted of carbonate hydroxyapatite, and (iii) of non-homogenous structure. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Recessive Mutations in ACPT, Encoding Testicular Acid Phosphatase, Cause Hypoplastic Amelogenesis Imperfecta.

    PubMed

    Seymen, Figen; Kim, Youn Jung; Lee, Ye Ji; Kang, Jenny; Kim, Tak-Heun; Choi, Hwajung; Koruyucu, Mine; Kasimoglu, Yelda; Tuna, Elif Bahar; Gencay, Koray; Shin, Teo Jeon; Hyun, Hong-Keun; Kim, Young-Jae; Lee, Sang-Hoon; Lee, Zang Hee; Zhang, Hong; Hu, Jan C-C; Simmer, James P; Cho, Eui-Sic; Kim, Jung-Wook

    2016-11-03

    Amelogenesis imperfecta (AI) is a heterogeneous group of genetic disorders affecting tooth enamel. The affected enamel can be hypoplastic and/or hypomineralized. In this study, we identified ACPT (testicular acid phosphatase) biallelic mutations causing non-syndromic, generalized hypoplastic autosomal-recessive amelogenesis imperfecta (AI) in individuals from six apparently unrelated Turkish families. Families 1, 4, and 5 were affected by the homozygous ACPT mutation c.713C>T (p.Ser238Leu), family 2 by the homozygous ACPT mutation c.331C>T (p.Arg111Cys), family 3 by the homozygous ACPT mutation c.226C>T (p.Arg76Cys), and family 6 by the compound heterozygous ACPT mutations c.382G>C (p.Ala128Pro) and 397G>A (p.Glu133Lys). Analysis of the ACPT crystal structure suggests that these mutations damaged the activity of ACPT by altering the sizes and charges of key amino acid side chains, limiting accessibility of the catalytic core, and interfering with homodimerization. Immunohistochemical analysis confirmed localization of ACPT in secretory-stage ameloblasts. The study results provide evidence for the crucial function of ACPT during amelogenesis. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. Ectopic osteogenesis and angiogenesis regulated by porous architecture of hydroxyapatite scaffolds with similar interconnecting structure in vivo

    PubMed Central

    Li, Jinyu; Zhi, Wei; Xu, Taotao; Shi, Feng; Duan, Ke; Wang, Jianxin; Mu, Yandong; Weng, Jie

    2016-01-01

    The macro-pore sizes of porous scaffold play a key role for regulating ectopic osteogenesis and angiogenesis but many researches ignored the influence of interconnection between macro-pores with different sizes. In order to accurately reveal the relationship between ectopic osteogenesis and macro-pore sizes in dorsal muscle and abdominal cavities of dogs, hydroxyapatite (HA) scaffolds with three different macro-pore sizes of 500–650, 750–900 and 1100–1250 µm were prepared via sugar spheres-leaching process, which also had similar interconnecting structure determined by keeping the d/s ratio of interconnecting window diameter to macro-pore size constant. The permeability test showed that the seepage flow of fluid through the porous scaffolds increased with the increase of macro-pore sizes. The cell growth in three scaffolds was not affected by the macro-pore sizes. The in vivo ectopic implantation results indicated that the macro-pore sizes of HA scaffolds with the similar interconnecting structure have impact not only the speed of osteogenesis and angiogenesis but also the space distribution of newly formed bone. The scaffold with macro-pore sizes of 750–900 µm exhibited much faster angiogenesis and osteogenesis, and much more uniformly distribution of new bone than those with other macro-pore sizes. This work illustrates the importance of a suitable macro-pore sizes in HA scaffolds with the similar interconnecting structure which provides the environment for ectopic osteogenesis and angiogenesis. PMID:27699059

  12. Rehabilitation of a patient with amelogenesis imperfecta using porcelain veneers and CAD/CAM polymer restorations: A clinical report.

    PubMed

    Saeidi Pour, Reza; Edelhoff, Daniel; Prandtner, Otto; Liebermann, Anja

    2015-01-01

    The complete dental rehabilitation of patients with a vertical dimension loss (VDL) caused by structural enamel deficits associated with amelogenesis imperfecta (AI) represents a difficult challenge for restorative teams. Accurate analysis and treatment planning that includes esthetic and functional evaluations and adequate material selection are important prerequisites for successful results. Long-term provisional restorations play an important role in exploring and elucidating the patients' esthetic demands and functional needs. Restorative treatment options can vary from requiring only oral hygiene instructions to extensive dental restorations that include composite fillings, ceramic veneers, metal-ceramic, or all-ceramic crowns. This case report describes a full-mouth rehabilitation of a patient with amelogenesis imperfecta including the case planning, bite replacement, preparation, and restoration setting steps with an experimental CAD/CAM polymer and porcelain veneers.

  13. The temporal expression of estrogen receptor alpha-36 and runx2 in human bone marrow derived stromal cells during osteogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, W.R., E-mail: w.francis@swansea.ac.uk; Owens, S.E.; Wilde, C.

    2014-10-24

    Highlights: • ERα36 is the predominant ERα isoform involved in bone regulation in human BMSC. • ERα36 mRNA is significantly upregulated during the process of osteogenesis. • The pattern of ERα36 and runx2 mRNA expression is similar during osteogenesis. • ERα36 appears to be co-localised with runx2 during osteogenesis. - Abstract: During bone maintenance in vivo, estrogen signals through estrogen receptor (ER)-α. The objectives of this study were to investigate the temporal expression of ERα36 and ascertain its functional relevance during osteogenesis in human bone marrow derived stromal cells (BMSC). This was assessed in relation to runt-related transcription factor-2 (runx2),more » a main modulatory protein involved in bone formation. ERα36 and runx2 subcellular localisation was assessed using immunocytochemistry, and their mRNA expression levels by real time PCR throughout the process of osteogenesis. The osteogenically induced BMSCs demonstrated a rise in ERα36 mRNA during proliferation followed by a decline in expression at day 10, which represents a change in dynamics within the culture between the proliferative stage and the differentiative stage. The mRNA expression profile of runx2 mirrored that of ERα36 and showed a degree subcellular co-localisation with ERα36. This study suggests that ERα36 is involved in the process of osteogenesis in BMSCs, which has implications in estrogen deficient environments.« less

  14. Formation of ectopic osteogenesis in weightlessness

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An ectopic osteogenesis experiment aboard the Cosmos-936 biosatellite is described. Decalcified, lyophilized femur and tibia were implanted under the fascia or in the anterior wall of the abdomen in rats. Bone formation before and after the tests is described and illustrated. The extent of formation of ectopic bone in weightlessness did not differ significantly from that in the ground controls, but the bone marrow of the ectopic bone of the flight rats consisted exclusively of fat cells. The deficit of support-muscle loading was considered to cause the disturbance in skeletal bone tissue development.

  15. Trace element doping in calcium phosphate ceramics to Understand osteogenesis and angiogenesis

    PubMed Central

    Bose, Susmita; Fielding, Gary; Tarafder, Solaiman; Bandyopadhyay, Amit

    2013-01-01

    The general trends in synthetic bone grafting materials are shifting towards approaches that can illicit osteoinductive properties. Pharmacologics and biologics have been used in combination with calcium phosphate (CaP) ceramics, however, recently have become the target of scrutiny over the safety. The importance of trace elements in natural bone health is well documented. Ions, e.g. lithium, zinc, magnesium, manganese, silicon, strontium etc. have shown to increase osteogenesis and neovascularization. Incorporation of dopants into CaPs can provide a platform for safe and efficient delivery in clinical applications where increased bone healing is favorable. This review highlights use of trace elements in CaP biomaterials, and offers an insight into the mechanisms of how metal ions can enhance both osteogenesis and angiogenesis. PMID:24012308

  16. Distraction osteogenesis in the surgical management of syndromic craniosynostosis: a comprehensive review of published papers.

    PubMed

    Al-Namnam, N M N; Hariri, F; Rahman, Z A A

    2018-04-13

    Our aim was to summarise current published evidence about the prognosis of various techniques of craniofacial distraction osteogenesis, particularly its indications, protocols, and complications. Published papers were acquired from online sources using the keywords "distraction osteogenesis", "Le Fort III", "monobloc", and "syndromic craniosynostosis" in combination with other keywords, such as "craniofacial deformity" and "midface". The search was confined to publications in English, and we followed the guidelines of the PRISMA statement. We found that deformity of the skull resulted mainly from Crouzon syndrome. Recently craniofacial distraction has been achieved by monobloc distraction osteogenesis using an external distraction device during childhood, while Le Fort III distraction osteogenesis was used in maturity. Craniofacial distraction was indicated primarily to correct increased intracranial pressure, exorbitism, and obstructive sleep apnoea in childhood, while midface hypoplasia was the main indication in maturity. Overall the most commonly reported complications were minor inflammatory reactions around the pins, and anticlockwise rotation when using external distraction systems. The mean amount of bony advancement was 12.3mm for an external device, 18.6mm for an internal device and 18.7mm when both external and internal devices were used. Treatment by craniofacial distraction must be validated by long-term studies as there adequate data are lacking, particularly about structural relapse and the assessment of function. Copyright © 2018 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Turning the backbone into an ankylosed concrete-like structure: Case report.

    PubMed

    Kaissi, Ali Al; Chehida, Farid Ben; Grill, Franz; Ganger, Rudolf; Kircher, Susanne Gerit

    2018-04-01

    Progressive restriction of the spinal bio-mechanics is not-uncommon deformity encountered in spine clinics. Congenital spinal fusion as seen in Klippel-Feil-anomaly, progressive non-infectious anterior vertebral fusion, and progressive spinal hyperostosis secondary to ossification of the anterior longitudinal spinal ligament are well delineated and recognized. A 24-year-old girl has history of osteoporosis since her early childhood, associated with multiple axial and appendicular fractures and scoliosis. Recently she presented with episodes of severe back pain, spinal rigidity/stiffness with total loss of spine biomechanics. She was provisionally diagnosed as having osteogenesis imperfecta and was investigated for COL1A1/A2 mutations which have been proven to be negative. Autosomal recessive type of osteogenesis imperfecta was proposed as well, no mutations have been encountered. A homozygous for CTSA gene mutation, the gene associated with Galactosialidosis was identified via whole exome sequencing (Next-Generation Sequencing projects) has been identified. Early in her life she had a history of frequent fractures of the long bones since she was 4 years which was followed by vertebral fractures at the age of 12 years. She manifested lower serum 25OH-D levels and were associated with lower LS-aBMD Z-scores with higher urinary bone turnover indexes (urinary NTX/Cr). Lysosomal storage diseases (LSD) have a strong correlation with the development of osteoporosis. LSD causes skeletal abnormalities results from a lack of skeletal remodeling and ossification abnormalities owing to abnormal deposition of GAGs (impaired degradation of glycosaminoglycans ) in bone and cartilage. 3D reconstruction CT scan of the spine showed diffuse hyperostosis of almost the entire spine (begins at the level of T4- extending downwards to involve the whole thoraco-lumbar and upper part of the sacrum) with total diffuse fusion of the pedicles, the transverse and articular processes, the

  18. Akermanite bioceramics promote osteogenesis, angiogenesis and suppress osteoclastogenesis for osteoporotic bone regeneration

    PubMed Central

    Xia, Lunguo; Yin, Zhilan; Mao, Lixia; Wang, Xiuhui; Liu, Jiaqiang; Jiang, Xinquan; Zhang, Zhiyuan; Lin, Kaili; Chang, Jiang; Fang, Bing

    2016-01-01

    It is a big challenge for bone healing under osteoporotic pathological condition with impaired angiogenesis, osteogenesis and remodeling. In the present study, the effect of Ca, Mg, Si containing akermanite bioceramics (Ca2MgSi2O7) extract on cell proliferation, osteogenic differentiation and angiogenic factor expression of BMSCs derived from ovariectomized rats (BMSCs-OVX) as well as the expression of osteoclastogenic factors was evaluated. The results showed that akermanite could enhance cell proliferation, ALP activity, expression of Runx2, BMP-2, BSP, OPN, OCN, OPG and angiogenic factors including VEGF and ANG-1. Meanwhile, akermanite could repress expression of osteoclastogenic factors including RANKL and TNF-α. Moreover, akermanite could activate ERK, P38, AKT and STAT3 signaling pathways, while crosstalk among these signaling pathways was evident. More importantly, the effect of akermanite extract on RANKL-induced osteoclastogenesis was evaluated by TRAP staining and real-time PCR assay. The results showed that akermanite could suppress osteoclast formation and expression of TRAP, cathepsin K and NFATc1. The in vivo experiments revealed that akermanite bioceramics dramatically stimulated osteogenesis and angiogenesis in an OVX rat critical-sized calvarial defect model. All these results suggest that akermanite bioceramics with the effects of Mg and Si ions on osteogenesis, angiogenesis and osteoclastogenesis are promising biomaterials for osteoporotic bone regeneration. PMID:26911441

  19. Minipig model of maxillary distraction osteogenesis: immunohistochemical and histomorphometric analysis of the sequence of osteogenesis.

    PubMed

    Papadaki, Maria E; Kaban, Leonard B; Troulis, Maria J

    2012-11-01

    To document the sequence of bone formation in a minipig model of Le Fort I distraction osteogenesis (DO) using immunohistochemistry and histomorphometry. Female Yucatan minipigs (N = 9) in the mixed-dentition stage underwent bilateral maxillary DO. The distraction protocol was 0 days of latency, with a distraction rate of 1 mm/d for 12 days and 24 days of fixation. Specimens were harvested and divided between the central incisors (18 hemi-maxillae) at the end of DO (n = 6), at mid-fixation (n = 6), and at the end of fixation (n = 6). Sections, including the advancement zone, were stained with hematoxylin-eosin, collagen II, CD34, proliferating cell nuclear antigen, and tartrate-resistant acid phosphatase. Light and fluorescence microscope images (original magnification ×200) were obtained, and percentage of surface area (PSA) of the advancement zone occupied by fibrous tissue, vessels, proliferating cells, osteoid, and bone was determined. An intact maxilla served as the control. At the end of DO, in the advancement zone, the PSA (mean values) of proliferating cells was 33.16%; fibrous tissue, 52%; vessels, 4.35%; and new bone, 5.45%. At the end of fixation, the PSA of proliferating cells decreased to 10.53%, fibrous tissue to 2.3%, and vessels to 1.5% whereas the PSA of new bone increased to 44.9%. The results of this study indicate that the progression of osteogenesis in the maxillary DO wound begins with intense cellular proliferation and vascular fibrous tissue formation and progresses to mature, cancellous bone by the end of fixation. The PSA occupied by mature bone is significantly less than in the control maxilla at the end of fixation. This is consistent with the sequence in the mandibular DO wound. Published by Elsevier Inc.

  20. Ex-vivo assessment and non-invasive in vivo imaging of internal hemorrhages in Aga2/+ mutant mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ermolayev, Vladimir; Cohrs, Christian M.; Mohajerani, Pouyan

    Highlights: ► Aga2/+ mice, model for Osteogenesis imperfecta, have type I collagen mutation. ► Aga2/+ mice display both moderate and severe phenotypes lethal 6–11th postnatal. ► Internal hemorrhages studied in Aga2/+ vs. control mice at 6 and 9 days postnatal. ► Anatomical and functional findings in-vivo contrasted to the ex-vivo appearance. -- Abstract: Mutations in type I collagen genes (COL1A1/2) typically lead to Osteogenesis imperfecta, the most common heritable cause of skeletal fractures and bone deformation in humans. Heterozygous Col1a1{sup Aga2/+}, animals with a dominant mutation in the terminal C-propeptide domain of type I collagen develop typical skeletal hallmarks andmore » internal hemorrhages starting from 6 day after birth. The disease progression for Aga2/+ mice, however, is not uniform differing between severe phenotype lethal at the 6–11th day of life, and moderate-to-severe one with survival to adulthood. Herein we investigated whether a new modality that combines X-ray computer tomography with fluorescence tomography in one hybrid system can be employed to study internal bleedings in relation to bone fractures and obtain insights into disease progression. The disease phenotype was characterized on Aga2/+ vs. wild type mice between 6 and 9 days postnatal. Anatomical and functional findings obtained in-vivo were contrasted to the ex-vivo appearance of the same tissues under cryo-slicing.« less

  1. Gene expression analysis of human adipose tissue-derived stem cells during the initial steps of in vitro osteogenesis.

    PubMed

    Robert, Anny Waloski; Angulski, Addeli Bez Batti; Spangenberg, Lucia; Shigunov, Patrícia; Pereira, Isabela Tiemy; Bettes, Paulo Sergio Loiacono; Naya, Hugo; Correa, Alejandro; Dallagiovanna, Bruno; Stimamiglio, Marco Augusto

    2018-03-16

    Mesenchymal stem cells (MSCs) have been widely studied with regard to their potential use in cell therapy protocols and regenerative medicine. However, a better comprehension about the factors and molecular mechanisms driving cell differentiation is now mandatory to improve our chance to manipulate MSC behavior and to benefit future applications. In this work, we aimed to study gene regulatory networks at an early step of osteogenic differentiation. Therefore, we analyzed both the total mRNA and the mRNA fraction associated with polysomes on human adipose tissue-derived stem cells (hASCs) at 24 h of osteogenesis induction. The RNA-seq results evidenced that hASC fate is not compromised with osteogenesis at this time and that 21 days of continuous cell culture stimuli are necessary for full osteogenic differentiation of hASCs. Furthermore, early stages of osteogenesis induction involved gene regulation that was linked to the management of cell behavior in culture, such as the control of cell adhesion and proliferation. In conclusion, although discrete initial gene regulation related to osteogenesis occur, the first 24 h of induction is not sufficient to trigger and drive in vitro osteogenic differentiation of hASCs.

  2. Upregulation of BMSCs Osteogenesis by Positively-Charged Tertiary Amines on Polymeric Implants via Charge/iNOS Signaling Pathway

    PubMed Central

    Zhang, Wei; Liu, Na; Shi, Haigang; Liu, Jun; Shi, Lianxin; Zhang, Bo; Wang, Huaiyu; Ji, Junhui; Chu, Paul K.

    2015-01-01

    Positively-charged surfaces on implants have a similar potential to upregulate osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) as electromagnetic therapy approved for bone regeneration. Generally, their osteogenesis functions are generally considered to stem from the charge-induced adhesion of extracellular matrix (ECM) proteins without exploring the underlying surface charge/cell signaling molecule pathways. Herein, a positively-charged surface with controllable tertiary amines is produced on a polymer implant by plasma surface modification. In addition to inhibiting the TNF-α expression, the positively-charged surface with tertiary amines exhibits excellent cytocompatibility as well as remarkably upregulated osteogenesis-related gene/protein expressions and calcification of the contacted BMSCs. Stimulated by the charged surface, these BMSCs display high iNOS expressions among the three NOS isoforms. Meanwhile, downregulation of the iNOS by L-Can or siRNA inhibit osteogenic differentiation in the BMSCs. These findings suggest that a positively-charged surface with tertiary amines induces osteogenesis of BMSCs via the surface charge/iNOS signaling pathway in addition to elevated ECM protein adhesion. Therefore, creating a positively-charged surface with tertiary amines is a promising approach to promote osseointegration with bone tissues. PMID:25791957

  3. Novel Wnt Regulator NEL-Like Molecule-1 Antagonizes Adipogenesis and Augments Osteogenesis Induced by Bone Morphogenetic Protein 2

    PubMed Central

    Shen, Jia; James, Aaron W.; Zhang, Xinli; Pang, Shen; Zara, Janette N.; Asatrian, Greg; Chiang, Michael; Lee, Min; Khadarian, Kevork; Nguyen, Alan; Lee, Kevin S.; Siu, Ronald K.; Tetradis, Sotirios; Ting, Kang; Soo, Chia

    2017-01-01

    The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis. PMID:26772960

  4. Bio-Oss® modified by calcitonin gene-related peptide promotes osteogenesis in vitro.

    PubMed

    Li, Yuanjing; Yang, Lan; Zheng, Zhichao; Li, Zhengmao; Deng, Tian; Ren, Wen; Wu, Caijuan; Guo, Lvhua

    2017-11-01

    Bio-Oss ® and α-calcitonin gene-related peptide (CGRP) are involved in osteogenesis. However, it has remained to be assessed how α-CGRP affects the effect of Bio-Oss. In the present study, primary osteoblasts were incubated with α-CGRP, Bio-Oss, α-GGRP-Bio-Oss or mimic-α-CGRP. The proliferation rate, mineralization nodules, alkaline phosphatase (ALP) activity and the expression of osteogenic genes were measured by a Cell Counting Kit-8 assay, Alizarin Red-S staining, ALP activity detection and reverse-transcription quantitative PCR as well as western blot analysis, respectively. The proliferation rate, ALP activity and the number of mineralization nodules were significantly increased in the α-CGRP-modified Bio-Oss group compared to that in the Bio-Oss group. The mRNA and protein levels of osteocalcin, Runt-related transcription factor-2 and ALP were significantly upregulated in the α-CGRP-Bio-Oss group compared with those in the Bio-Oss group. Furthermore, the effect of mimic-α-CGRP on osteogenesis was reduced as it carried a mutation. In conclusion, the present study was the first to demonstrate that Bio-Oss modified with CGRP contributed to osteogenesis and may provide a novel formulation applied in the clinic for restoration of large bone defects.

  5. [An adjustable distractor for transverse maxillary distraction osteogenesis].

    PubMed

    Leyder, P; Wycisk, G; Quilichini, J

    2013-06-01

    The posterior skeletal widening in conventional distractions (Surgical Assisted Rapid Maxillary Expansion) is often modest, in contrast with a predominant anterior expansion. Until recently, it was not possible to consider transverse palatal distraction osteogenesis and Le Fort I impaction or advancement in the same procedure, as the osteosynthesis plates impeded maxillary anterior opening. We developed new sliding osteosynthesis plates allowing to perform an advancement or impaction Le Fort I osteotomy associated with a low-resistance bipartite palatal distraction osteogenesis. We had for aim to describe the device and to determine its clinical applications. This new palatal distractor is made up of two independent stainless steel jacks allowing for an adjustable distraction in the anterior or posterior area as needed. Bone-borne and tooth-borne versions are available. This new distractor can be adjusted sagittally. The distraction can be angular or parallel, and the distraction mode can be modified during post-operative distraction. This device should be adapted to all clinical presentations. It can be used in combination with sliding osteosynthesis to perform a Le Fort 1 osteotomy and at the same time a complete correction of vertical, horizontal, and sagittal deficiencies. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. The biology of distraction osteogenesis for correction of mandibular and craniomaxillofacial defects: A review

    PubMed Central

    Natu, Subodh Shankar; Ali, Iqbal; Alam, Sarwar; Giri, Kolli Yada; Agarwal, Anshita; Kulkarni, Vrishali Ajit

    2014-01-01

    Limb lengthening by distraction osteogenesis was first described in 1905. The technique did not gain wide acceptance until Gavril Ilizarov identified the physiologic and mechanical factors governing successful regeneration of bone formation. Distraction osteogenesis is a new variation of more traditional orthognathic surgical procedure for the correction of dentofacial deformities. It is most commonly used for the correction of more severe deformities and syndromes of both the maxilla and the mandible and can also be used in children at ages previously untreatable. The basic technique includes surgical fracture of deformed bone, insertion of device, 5-7 days rest, and gradual separation of bony segments by subsequent activation at the rate of 1 mm per day, followed by an 8-12 weeks consolidation phase. This allows surgeons, the lengthening and reshaping of deformed bone. The aim of this paper is to review the principle, technical considerations, applications and limitations of distraction osteogenesis. The application of osteodistraction offers novel solutions for surgical-orthodontic management of developmental anomalies of the craniofacial skeleton as bone may be molded into different shapes along with the soft tissue component gradually thereby resulting in less relapse. PMID:24688555

  7. Promotion of osteogenesis by a piezoelectric biological ceramic.

    PubMed

    Feng, J; Yuan, H; Zhang, X

    1997-12-01

    Hydroxyapatite (HA) ceramic and piezoelectric biological ceramic, hydroxyapatite and barium titanate (HABT), were implanted in the jawbones of dogs. Histological observation showed that, compared with HA ceramics, HABT promoted the growth and repair of the bone significantly, the tissue growth around the HABT ceramic was direction-dependent, the collagen arranged orderly and the bone grew orderly. The order growth of the bone increased the efficiency of osteogenesis on the surface of the implanted HABT ceramics.

  8. Pectus carinatum.

    PubMed

    Robicsek, Francis; Watts, Larry T

    2010-11-01

    Pectus carinatum or keel chest is a spectrum of progressive inborn anomalies of the anterior chest wall, named after the keel (carina) of ancient Roman ships. It defines a wide spectrum of inborn protrusion anomalies of the sternum and/or the adjacent costal cartilages. Pectus carinatum is often associated with various conditions, notably Marfan disease, homocystinuria, prune belly, Morquio syndrome, osteogenesis imperfecta, Noonan syndrome, and mitral valve prolapse. Treatment of pectus carinatum by nonsurgical methods such as exercise and casting has not been worthwhile, whereas surgical management is simple and successful.

  9. Numerical simulation of electrically stimulated osteogenesis in dental implants.

    PubMed

    Vanegas-Acosta, J C; Garzón-Alvarado, D A; Lancellotti, V

    2014-04-01

    Cell behavior and tissue formation are influenced by a static electric field (EF). Several protocols for EF exposure are aimed at increasing the rate of tissue recovery and reducing the healing times in wounds. However, the underlying mechanisms of the EF action on cells and tissues are still a matter of research. In this work we introduce a mathematical model for electrically stimulated osteogenesis at the bone-dental implant interface. The model describes the influence of the EF in the most critical biological processes leading to bone formation at the bone-dental implant interface. The numerical solution is able to reproduce the distribution of spatial-temporal patterns describing the influence of EF during blood clotting, osteogenic cell migration, granulation tissue formation, displacements of the fibrillar matrix, and formation of new bone. In addition, the model describes the EF-mediated cell behavior and tissue formation which lead to an increased osteogenesis in both smooth and rough implant surfaces. Since numerical results compare favorably with experimental evidence, the model can be used to predict the outcome of using electrostimulation in other types of wounds and tissues. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Bilateral Distraction Osteogenesis of Vascularized Iliac Crest Free Flaps Used in Mandibular Reconstruction

    PubMed Central

    Subramaniam, Shiva S.; Vujcich, Nathan J.; Nastri, Alf L.

    2016-01-01

    Summary: Vascularized free flaps have become the gold standard in reconstructing large segmental mandibular defects; however, even when bony union and soft-tissue coverage is achieved, insufficient bone stock and altered facial contour can create functional and cosmetic problems for the patient. There have been limited case reports on the use of secondary distraction osteogenesis to address these issues. The authors report a case of bilateral mandibular distraction of deep circumflex iliac artery free flaps, used for mandibular reconstruction after total mandibulectomy for treatment of osteosarcoma. Performed for reasons of retrognathia and facilitation of dental prosthetic rehabilitation, this is the first case of bilateral horizontal distraction osteogenesis of deep circumflex iliac artery free flaps reported in the literature. PMID:27257565

  11. Stability after Cleft Maxillary Distraction Osteogenesis or Conventional Orthognathic Surgery.

    PubMed

    Andersen, Kristian; Svenstrup, Martin; Pedersen, Thomas Klit; Küseler, Annelise; Jensen, John; Nørholt, Sven Erik

    2015-01-01

    To compare stability of maxillary advancements in patients with cleft lip and palate following distraction osteogenesis or orthognathic surgery. 1) cleft lip and palate, 2) advancement > 8 mm. Eleven patients comprised the distraction osteogenesis group (DOG). Seven patients comprised the orthognathic treatment group (CONVG). Skeletal and soft tissue points were traced on lateral cephalograms: T1 (preoperatively), T2 (after surgery), T3 (follow-up). Group differences were analyzed using Students t-test. At T1-T2, advancement of 6.98 mm (P = 0.002) was observed in DOG. Horizontal overjet increased 11.62 mm (P = 0.001). A point-nasion-B point (ANB) angle increased 8.82° (P = 0.001). Aesthetic plane to upper lip was reduced 5.44 mm (P = 0.017) and the naso-labial angle increased 16.6° (P = 0.001). Vertical overbite (VOB) increased 2.27 mm (P = 0.021). In T2-T3, no significant changes were observed in DOG. In T1-T2, horizontal overjet increased 8.45 mm (P = 0.02). The ANB angle, 9.33° (P = 0.009) in CONVG. At T2-T3, VOB increased, 2.35 mm (P = 0.046), and the ANB angle reduced, 3.83° (P = 0.003). In T2-T3, no parameters changed in CONVG. At follow-up (T3), VOB increased in CONVG compared with DOG, (P = 0.01). Vertical position of A point differed between the groups (P = 0.04). No significant intergroup differences between soft tissue parameters occurred. Distraction osteogenesis resulted in a stable position of the maxilla and movement upwards in vertical plane, however in case of orthognathic treatment sagittal relapse and a continued postoperatively downward movement was registered.

  12. Stability after Cleft Maxillary Distraction Osteogenesis or Conventional Orthognathic Surgery

    PubMed Central

    Svenstrup, Martin; Pedersen, Thomas Klit; Küseler, Annelise; Jensen, John; Nørholt, Sven Erik

    2015-01-01

    ABSTRACT Objectives To compare stability of maxillary advancements in patients with cleft lip and palate following distraction osteogenesis or orthognathic surgery. Material and Methods Inclusion criteria: 1) cleft lip and palate, 2) advancement > 8 mm. Eleven patients comprised the distraction osteogenesis group (DOG). Seven patients comprised the orthognathic treatment group (CONVG). Skeletal and soft tissue points were traced on lateral cephalograms: T1 (preoperatively), T2 (after surgery), T3 (follow-up). Group differences were analyzed using Students t-test. Results At T1-T2, advancement of 6.98 mm (P = 0.002) was observed in DOG. Horizontal overjet increased 11.62 mm (P = 0.001). A point-nasion-B point (ANB) angle increased 8.82° (P = 0.001). Aesthetic plane to upper lip was reduced 5.44 mm (P = 0.017) and the naso-labial angle increased 16.6° (P = 0.001). Vertical overbite (VOB) increased 2.27 mm (P = 0.021). In T2-T3, no significant changes were observed in DOG. In T1-T2, horizontal overjet increased 8.45 mm (P = 0.02). The ANB angle, 9.33° (P = 0.009) in CONVG. At T2-T3, VOB increased, 2.35 mm (P = 0.046), and the ANB angle reduced, 3.83° (P = 0.003). In T2-T3, no parameters changed in CONVG. At follow-up (T3), VOB increased in CONVG compared with DOG, (P = 0.01). Vertical position of A point differed between the groups (P = 0.04). No significant intergroup differences between soft tissue parameters occurred. Conclusions Distraction osteogenesis resulted in a stable position of the maxilla and movement upwards in vertical plane, however in case of orthognathic treatment sagittal relapse and a continued postoperatively downward movement was registered. PMID:26229581

  13. Localization of a gene for autosomal dominant amelogenesis imperfecta (ADAI) to chromosome 4q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsman, K.; Lind. L.; Westermark, E.

    1994-09-01

    Amelogenesis imperfecta (AI), a disorder affecting the formation of enamel, is significantly more common in Northern Sweden than in other parts of the world. The disease is genetically and clinically heterogenous, and autosomal dominant, autosomal recessive and X-linked inheritance patterns have been recognized. Linkage analysis has identified two different loci for X-linked AI, one of which is identical to the gene encoding the enamel protein amelogenin. However, in families with an autosomal inheritance pattern for AI, the genetic basis of the disease still remains unknown. We report a linkage analysis study performed on three Swedish families where the affected membersmore » had an autosomal dominant variant of AI (ADAI) clinically characterized as local hypoplastic. Significant linkage to microsatellite markers on chromosome 4q were obtained, with a maximum lod score of 5.55 for the marker D4S428. Recombinations in the family localized the ADAI locus to the interval between D4S392 and D4S395. This chromosome region contains both a locus for the dental disorder dentinogenesis imperfecta and the albumin gene. Serum albumin has been suggested to play a role in enamel formation, and the albumin gene is therefore a candidate gene for this genetic disease.« less

  14. Decreased heterotopic osteogenesis in vitamin-D-deficient, but normocalcemic guinea pigs

    NASA Technical Reports Server (NTRS)

    Dziedzic-Goclawska, A.; Toverud, S. U.; Kaminski, A.; Boass, A.; Yamauchi, M.

    1992-01-01

    The effect of vitamin D deficiency unhampered by hypocalcemia on de novo bone formation was studied in guinea pigs. Heterotopic induction of osteogenesis was evaluated 4 weeks after intramuscular transplantation of allogenic urinary bladder transitional epithelium from vitamin-D-repleted (+D) donors into +D and -D recipients. In -D recipients the frequency of osteogenesis and the amount of induced bone were significantly diminished; induced bone was less mature, scantly cellular woven bone poorly repopulated with bone marrow. No effect of vitamin D deficiency on orthotopic bone growth and on mineralization of orthotopic and heterotopically induced bone was observed. It is proposed that in addition to inducing factors (BMPs, growth factors) which may be responsible for transformation of mesenchymal cells to osteoprogenitor cells, normal concentrations of 1,25-(OH)2D3 may be required for proliferation and further differentiation of these cells into osteoblasts and for expression of genes engaged in extracellular matrix formation and maturation.

  15. Maxillary distraction osteogenesis versus orthognathic surgery for cleft lip and palate patients.

    PubMed

    Kloukos, Dimitrios; Fudalej, Piotr; Sequeira-Byron, Patrick; Katsaros, Christos

    2016-09-30

    Cleft lip and palate is one of the most common birth defects and can cause difficulties with feeding, speech and hearing, as well as psychosocial problems. Treatment of orofacial clefts is prolonged; it typically commences after birth and lasts until the child reaches adulthood or even into adulthood. Residual deformities, functional disturbances, or both, are frequently seen in adults with a repaired cleft. Conventional orthognathic surgery, such as Le Fort I osteotomy, is often performed for the correction of maxillary hypoplasia. An alternative intervention is distraction osteogenesis, which achieves bone lengthening by gradual mechanical distraction. To provide evidence regarding the effects and long-term results of maxillary distraction osteogenesis compared to orthognathic surgery for the treatment of hypoplastic maxilla in people with cleft lip and palate. We searched the following electronic databases: Cochrane Oral Health's Trials Register (to 16 February 2016), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2016, Issue 1), MEDLINE Ovid (1946 to 16 February 2016), Embase Ovid (1980 to 16 February 2016), LILACS BIREME (1982 to 16 February 2016), the US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov) (to 16 February 2016), and the World Health Organization (WHO) International Clinical Trials Registry Platform (to 16 February 2016). There were no restrictions regarding language or date of publication in the electronic searches. We performed handsearching of six speciality journals and we checked the reference lists of all trials identified for further studies. We included randomised controlled trials (RCTs) comparing maxillary distraction osteogenesis to conventional Le Fort I osteotomy for the correction of cleft lip and palate maxillary hypoplasia in non-syndromic cleft patients aged 15 years or older. Two review authors assessed studies for eligibility. Two review authors independently

  16. Enamel formation and amelogenesis imperfecta.

    PubMed

    Hu, Jan C-C; Chun, Yong-Hee P; Al Hazzazzi, Turki; Simmer, James P

    2007-01-01

    Dental enamel is the epithelial-derived hard tissue covering the crowns of teeth. It is the most highly mineralized and hardest tissue in the body. Dental enamel is acellular and has no physiological means of repair outside of the protective and remineralization potential provided by saliva. Enamel is comprised of highly organized hydroxyapatite crystals that form in a defined extracellular space, the contents of which are supplied and regulated by ameloblasts. The entire process is under genetic instruction. The genetic control of amelogenesis is poorly understood, but requires the activities of multiple components that are uniquely important for dental enamel formation. Amelogenesis imperfecta (AI) is a collective designation for the variety of inherited conditions displaying isolated enamel malformations, but the designation is also used to indicate the presence of an enamel phenotype in syndromes. Recently, genetic studies have demonstrated the importance of genes encoding enamel matrix proteins in the etiology of isolated AI. Here we review the essential elements of dental enamel formation and the results of genetic analyses that have identified disease-causing mutations in genes encoding enamel matrix proteins. In addition, we provide a fresh perspective on the roles matrix proteins play in catalyzing the biomineralization of dental enamel. Copyright 2007 S. Karger AG, Basel.

  17. Alternative Distraction Osteogenesis Technique After Implant Placement for Alveolar Ridge Augmentation of the Maxilla.

    PubMed

    Nogueira, Renato Luiz Maia; Osterne, Rafael Lima Verde; Abreu, Ricardo Teixeira; Araújo, Phelype Maia

    2017-07-01

    An alternative technique to reconstruct atrophic alveolar vertical bone after implant placement is presented. The technique consists of distraction osteogenesis or direct surgical repositioning of an implant-and-bone block segment after segmental osteotomies that can be used in esthetic or unesthetic cases. Initially, casts indicating the implant position are obtained and the future ideal prosthetic position is determined to guide the model surgery. After the model surgery, a new provisional prosthesis is fabricated, and an occlusal splint, which is used as a surgical guide and a device for distraction osteogenesis, is custom fabricated. Then, the surgery is performed. For mobilization of the implant-and-bone block segment, 2 vertical osteotomies are performed and then joined by a horizontal osteotomy. The implant-and-bone block segment is moved to the planned position. If a small movement is planned, then the implant-and-bone segment is stabilized; for larger movements, the implant-and-bone segment can be gradually moved to the final position by distraction osteogenesis. This technique has good predictability of the final position of the implant-and-bone segment and relatively fast esthetic rehabilitation. It can be considered for dental implants in regions of vertical bone atrophy. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  18. The early psychological adjustment of cleft patients after maxillary distraction osteogenesis and conventional orthognathic surgery: a preliminary study.

    PubMed

    Cheung, Lim Kwong; Loh, John Ser Pheng; Ho, Samuel M Y

    2006-12-01

    To compare the early psychological changes of cleft lip and palate (CLP) and noncleft patients after maxillofacial corrective surgery, including maxillary distraction osteogenesis and conventional orthognathic surgery. Nine CLP patients were compared with a group of 9 non-CLP patients having similar dentofacial deformities in a prospective longitudinal cohort study. Five of the CLP patients underwent maxillary distraction osteogenesis and 4 underwent conventional orthognathic surgery. A control group of 9 noncleft patients received conventional orthognathic surgery. All patients completed a set of questionnaires to enable their psychological profile to be assessed. The data were collected immediately before surgery (T1), and at 3 weeks (T2) and 12 weeks (T3) after surgery. The CLP patients treated with distraction osteogenesis were happier, but had a higher level of social anxiety and distress than the CLP patients receiving conventional orthognathic surgery. On the other hand, the CLP patients overall were happier, with lower social anxiety and distress, than the noncleft control group. The CLP patients showed a higher level of parental self-esteem than the noncleft patients. This preliminary study shows that CLP patients were generally happier, and had a higher level of parental support, than normal patients suffering from dentofacial deformities. Maxillary distraction osteogenesis seemed to induce a higher level of anxiety and distress in CLP patients than conventional orthognathic surgery in both cleft and noncleft patients.

  19. Heat shock protein 47 and 65-kDa FK506-binding protein weakly but synergistically interact during collagen folding in the endoplasmic reticulum.

    PubMed

    Ishikawa, Yoshihiro; Holden, Paul; Bächinger, Hans Peter

    2017-10-20

    Collagen is the most abundant protein in the extracellular matrix in humans and is critical to the integrity and function of many musculoskeletal tissues. A molecular ensemble comprising more than 20 molecules is involved in collagen biosynthesis in the rough endoplasmic reticulum. Two proteins, heat shock protein 47 (Hsp47/ SERPINH1 ) and 65-kDa FK506-binding protein (FKBP65/ FKBP10 ), have been shown to play important roles in this ensemble. In humans, autosomal recessive mutations in both genes cause similar osteogenesis imperfecta phenotypes. Whereas it has been proposed that Hsp47 and FKBP65 interact in the rough endoplasmic reticulum, there is neither clear evidence for this interaction nor any data regarding their binding affinities for each other. In this study using purified endogenous proteins, we examined the interaction between Hsp47, FKBP65, and collagen and also determined their binding affinities and functions in vitro Hsp47 and FKBP65 show a direct but weak interaction, and FKBP65 prefers to interact with Hsp47 rather than type I collagen. Our results suggest that a weak interaction between Hsp47 and FKBP65 confers mutual molecular stability and also allows for a synergistic effect during collagen folding. We also propose that Hsp47 likely acts as a hub molecule during collagen folding and secretion by directing other molecules to reach their target sites on collagens. Our findings may explain why osteogenesis imperfecta-causing mutations in both genes result in similar phenotypes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Supplying osteogenesis to dead bone using an osteogenic matrix cell sheet.

    PubMed

    Uchihara, Yoshinobu; Akahane, Manabu; Okuda, Akinori; Shimizu, Takamasa; Masuda, Keisuke; Kira, Tsutomu; Kawate, Kenji; Tanaka, Yasuhito

    2018-02-22

    To evaluate whether osteogenic matrix cell sheets can supply osteogenesis to dead bone. Femur bone fragments (5 mm in length) were obtained from Fisher 344 rats and irradiated by a single exposure of 60 Gy to produce bones that were no longer viable. Osteogenic matrix cell sheets were created from rat bone marrow-derived stromal cells (BMSCs). After wrapping the dead bone with an osteogenic matrix cell sheet, it was subcutaneously transplanted into the back of a rat and harvested after 4 weeks. Bone formation around the dead bone was evaluated by X-ray imaging and histology. Alkaline phosphatase (ALP) and osteocalcin (OC) mRNA expression levels were measured to confirm osteogenesis of the transplanted bone. The contribution of donor cells to bone formation was assessed using the Sry gene and PKH26. After the cell sheet was transplanted together with dead bone, X-ray images showed abundant calcification around the dead bone. In contrast, no newly formed bone was seen in samples that were transplanted without the cell sheet. Histological sections also showed newly formed bone around dead bone in samples transplanted with the cell sheet, whereas many empty lacunae and no newly formed bone were observed in samples transplanted without the cell sheet. ALP and OC mRNA expression levels were significantly higher in dead bones transplanted with cell sheets than in those without a cell sheet (P < 0.01). Sry gene expression and cells derived from cell sheets labeled with PKH26 were detected in samples transplanted with a cell sheet, indicating survival of donor cells after transplantation. Our study indicates that osteogenic matrix cell sheet transplantation can supply osteogenesis to dead bone. Copyright © 2018. Published by Elsevier B.V.

  1. Altered Expression of Wnt Signaling Pathway Components in Osteogenesis of Mesenchymal Stem Cells in Osteoarthritis Patients.

    PubMed

    Tornero-Esteban, Pilar; Peralta-Sastre, Ascensión; Herranz, Eva; Rodríguez-Rodríguez, Luis; Mucientes, Arkaitz; Abásolo, Lydia; Marco, Fernando; Fernández-Gutiérrez, Benjamín; Lamas, José Ramón

    2015-01-01

    Osteoarthritis (OA) is characterized by altered homeostasis of joint cartilage and bone, whose functional properties rely on chondrocytes and osteoblasts, belonging to mesenchymal stem cells (MSCs). WNT signaling acts as a hub integrating and crosstalking with other signaling pathways leading to the regulation of MSC functions. The aim of this study was to evaluate the existence of a differential signaling between Healthy and OA-MSCs during osteogenesis. MSCs of seven OA patients and six healthy controls were isolated, characterised and expanded. During in vitro osteogenesis, cells were recovered at days 1, 10 and 21. RNA and protein content was obtained. Expression of WNT pathway genes was evaluated using RT-qPCR. Functional studies were also performed to study the MSC osteogenic commitment and functional and post-traslational status of β-catenin and several receptor tyrosine kinases. Several genes were downregulated in OA-MSCs during osteogenesis in vitro. These included soluble Wnts, inhibitors, receptors, co-receptors, several kinases and transcription factors. Basal levels of β-catenin were higher in OA-MSCs, but calcium deposition and expression of osteogenic genes was similar between Healthy and OA-MSCs. Interestingly an increased phosphorylation of p44/42 MAPK (ERK1/2) signaling node was present in OA-MSCs. Our results point to the existence in OA-MSCs of alterations in expression of Wnt pathway components during in vitro osteogenesis that are partially compensated by post-translational mechanisms modulating the function of other pathways. We also point the relevance of other signaling pathways in OA pathophysiology suggesting their role in the maintenance of joint homeostasis through modulation of MSC osteogenic potential.

  2. Comprehensive Review of Adipose Stem Cells and Their Implication in Distraction Osteogenesis and Bone Regeneration

    PubMed Central

    Morcos, Mina W.; Al-Jallad, Hadil; Hamdy, Reggie

    2015-01-01

    Bone is one of the most dynamic tissues in the human body that can heal following injury without leaving a scar. However, in instances of extensive bone loss, this intrinsic capacity of bone to heal may not be sufficient and external intervention becomes necessary. Several techniques are available to address this problem, including autogenous bone grafts and allografts. However, all these techniques have their own limitations. An alternative method is the technique of distraction osteogenesis, where gradual and controlled distraction of two bony segments after osteotomy leads to induction of new bone formation. Although distraction osteogenesis usually gives satisfactory results, its major limitation is the prolonged duration of time required before the external fixator is removed, which may lead to numerous complications. Numerous methods to accelerate bone formation in the context of distraction osteogenesis have been reported. A viable alternative to autogenous bone grafts for a source of osteogenic cells is mesenchymal stem cells from bone marrow. However, there are certain problems with bone marrow aspirate. Hence, scientists have investigated other sources for mesenchymal stem cells, specifically adipose tissue, which has been shown to be an excellent source of mesenchymal stem cells. In this paper, the potential use of adipose stem cells to stimulate bone formation is discussed. PMID:26448947

  3. A minipig model of maxillary distraction osteogenesis.

    PubMed

    Papadaki, Maria E; Troulis, Maria J; Glowacki, Julie; Kaban, Leonard B

    2010-11-01

    To establish a porcine model for maxillary distraction osteogenesis and to document the sequence of bone formation in the zone of advancement. Female Yucatan minipigs (n = 9) in the mixed dentition stage underwent modified Le Fort I osteotomy through a vestibular incision under general anesthesia. A unidirectional, semiburied Le Fort I distraction device was fixed across the osteotomy. The distraction protocol was 0-day latency, 1-mm/d rate for 12 days, and 24 days of fixation. Maxillary specimens (n = 9) were harvested and divided in half at the end of distraction (n = 6 sides), midfixation (n = 6), and the end of fixation (n = 6). Clinical stability, volume, and radiographic density across the zone of advancement were graded on semiquantitative scales. Specimens were stained with hematoxylin and eosin and examined with light microscopy. Animals tolerated the operation, the distraction and fixation periods. There were no infections and no devices failed. At the end of the distraction period, bone trabeculae were present at the periphery and fibrous tissues, and vessels, preosteoblasts, and osteoblasts were present in the center of the zone of advancement. Islands of chondrocyte-like cells appeared in 1 specimen each at midfixation and the end of fixation. At the end of fixation, clinical stability and radiographic density were graded 3/3 and bone formation was complete across the advancement zone in all specimens. A model for Le Fort I distraction osteogenesis was established. Intramembranous bone formation was the predominant mechanism of healing in the zone of advancement. Latency was not necessary for bone formation in this minipig model. Copyright © 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Ankylosis of temporomandibular joints after mandibular distraction osteogenesis in patients with Nager syndrome: Report of two cases and literature review.

    PubMed

    Wu, Cheng Chun; Sakahara, Daisuke; Imai, Keisuke

    2017-10-01

    Nager syndrome, also known as Nager acrofacial dysostosis, was first described by Nager and de Reynier in 1948. The patients commonly present with micrognathia, and a preventive tracheostomy is necessary when there are symptoms of upper airway obstruction. Mandibular distraction osteogenesis is considered as an effective procedure, which not only improves micrognathia but also minimizes the chances of tracheostomy. However, mandibular distraction osteogenesis has some complications such as relapse, teeth injury, infection, and injury of the temporomandibular joints (TMJs). In this study, the author reported two patients with Nager syndrome who suffered from ankylosis of TMJs after mandibular distraction osteogenesis. In addition, a comprehensive literature review of post-distraction ankylosis of TMJs in patients with Nager syndrome was performed. Few studies demonstrated the condition of TMJs after mandibular distraction osteogenesis, and three studies were identified from the review. One study reported ankylosis of bilateral coronoid processes, in which coronoidectomies were necessary. Another study reported the use of prostheses to replace the ankylosed joints in a patient who had undergone many surgeries of the joints, such as gap arthroplasties, reconstructions with costochondral grafts, etc. One other study raised the concept of unloading the condyles during the mandibular distraction to prevent subsequent ankylosis. It seems that multiple factors are related to the ankylosis of TMJs after mandibular distraction osteogenesis in patients with Nager syndrome. Prevention of post-distraction ankylosis of the joints is important because the treatment is difficult and not always effective. We should conduct more studies about protection of the joints during mandibular distraction in the future. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Three-dimensional computed tomographic evaluation of Le Fort III distraction osteogenesis with an external device in syndromic craniosynostosis.

    PubMed

    Wery, M F; Nada, R M; van der Meulen, J J; Wolvius, E B; Ongkosuwito, E M

    2015-03-01

    There is little anteroposterior growth of the midface in patients with syndromic craniosynostosis who are followed up over time without intervention. A Le Fort III with distraction osteogenesis can be done to correct this. This is a controlled way in which to achieve appreciable stable advancement of the midface without the need for bone grafting, but the vector of the movement is not always predictable. The purpose of this study was to evaluate the 3-dimensional effect of Le Fort III distraction osteogenesis with an external frame. Ten patients (aged 7-19 years) who had the procedure were included in the study. The le Fort III procedure and the placement of the external frame were followed by an activation period and then a 3-month retention period. Computed tomographic (CT) images taken before and after operation were converted and loaded into 3-dimensional image rendering software and compared with the aid of a paired sample t test and a colour-coded qualitative analysis. Comparison of the CT data before and after distraction indicated that the amount of midface advancement was significant. Le Fort III distraction osteogenesis is an effective way to advance the midface. However, the movement during osteogenesis is not always exactly in the intended direction, and a secondary operation is often necessary. Three-dimensional evaluation over a longer period of time is necessary. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Distraction osteogenesis for management of obstructive sleep apnoea in temporomandibular joint ankylosis patients before the release of joint.

    PubMed

    Yadav, Rahul; Bhutia, Ongkila; Shukla, Garima; Roychoudhury, Ajoy

    2014-07-01

    To evaluate the effects of distraction osteogenesis in management of obstructive sleep apnoea patients secondary to temporomandibular joints ankylosis. Fifteen patients were included in study. Preoperatively the patients were worked up for polysomnography and CT scans. Only those patients with Apnoea-hypopnoea index >15 events/h denoting moderate to severe obstructive sleep apnoea were included in the study. Distraction osteogenesis was followed with 5 days latency period in adult patients and 0 days for children. Rate of distraction was 1 mm/day for adults and 2 mm/day for children till the mandibular incisors were in reverse overjet. After 3 months post distraction assessment was done using polysomnography and CT scan. TMJ ankylosis was released by doing gap arthroplasty after distraction osteogenesis. Post distraction improvement was seen in clinical features of OSA like daytime sleepiness and snoring. Epworth sleepiness scale improved from a mean of 10.25 to 2.25. Polysomnographic analysis also showed improvement in all cases with apnoea-hypopnoea index from 57.03 to 6.67 per hour. Lowest oxygen saturation improved from 64.47% to 81.20% and average minimum oxygen saturation improved from 92.17% to 98.19%. Body mass index improved from a mean of 18.26 to 21.39 kg/m2. Distraction osteogenesis is a stable and beneficial treatment option for temporomandibular joint ankylosis patients with obstructive sleep apnoea. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Defects in the acid phosphatase ACPT cause recessive hypoplastic amelogenesis imperfecta.

    PubMed

    Smith, Claire El; Whitehouse, Laura LE; Poulter, James A; Brookes, Steven J; Day, Peter F; Soldani, Francesca; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2017-08-01

    We identified two homozygous missense variants (c.428C>T, p.(T143M) and c.746C>T, p.(P249L)) in ACPT, the gene encoding acid phosphatase, testicular, which segregates with hypoplastic amelogenesis imperfecta in two unrelated families. ACPT is reported to play a role in odontoblast differentiation and mineralisation by supplying phosphate during dentine formation. Analysis by computerised tomography and scanning electron microscopy of a primary molar tooth from an individual homozygous for the c.746C>T variant revealed an enamel layer that was hypoplastic, but mineralised with prismatic architecture. These findings implicate variants in ACPT as a cause of early failure of amelogenesis during the secretory phase.

  8. Promotion of human mesenchymal stem cell osteogenesis by PI3-kinase/Akt signaling, and the influence of caveolin-1/cholesterol homeostasis.

    PubMed

    Baker, Natasha; Sohn, Jihee; Tuan, Rocky S

    2015-12-01

    Stem cells are considered an important resource for tissue repair and regeneration. Their utilization in regenerative medicine will be aided by mechanistic insight into their responsiveness to external stimuli. It is likely that, similar to all other cells, an initial determinant of stem cell responsiveness to external stimuli is the organization of signaling molecules in cell membrane rafts. The clustering of signaling molecules in these cholesterol-rich membrane microdomains can affect the activity, specificity, cross-talk and amplification of cell signaling. Membrane rafts fall into two broad categories, non-caveolar and caveolar, based on the absence or presence, respectively, of caveolin scaffolding proteins. We have recently demonstrated that caveolin-1 (Cav-1) expression increases during, and knockdown of Cav-1 expression enhances, osteogenic differentiation of human bone marrow derived mesenchymal stem cells (MSCs). The increase in Cav-1 expression observed during osteogenesis is likely a negative feedback mechanism. We hypothesize that focal adhesion signaling pathways such as PI3K/Akt signaling may be negatively regulated by Cav-1 during human MSC osteogenesis. Human bone marrow MSCs were isolated from femoral heads obtained after total hip arthroplasty. MSCs were incubated in standard growth medium alone or induced to osteogenically differentiate by the addition of supplements (β-glycerophosphate, ascorbic acid, dexamethasone, and 1,25-dihydroxyvitamin D3). The activation of and requirement for PI3K/Akt signaling in MSC osteogenesis were assessed by immunoblotting for phosphorylated Akt, and treatment with the PI3K inhibitor LY294002 and Akt siRNA, respectively. The influences of Cav-1 and cholesterol membrane rafts on PI3K/Akt signaling were investigated by treatment with Cav-1 siRNA, methyl-β-cyclodextrin, or cholesterol oxidase, followed by cellular sub-fractionation and/or immunoblotting for phosphorylated Akt. LY294002 and Akt siRNA inhibited MSC

  9. Combined micro computed tomography and histology study of bone augmentation and distraction osteogenesis

    NASA Astrophysics Data System (ADS)

    Ilgenstein, Bernd; Deyhle, Hans; Jaquiery, Claude; Kunz, Christoph; Stalder, Anja; Stübinger, Stefan; Jundt, Gernot; Beckmann, Felix; Müller, Bert; Hieber, Simone E.

    2012-10-01

    Bone augmentation is a vital part of surgical interventions of the oral and maxillofacial area including dental implantology. Prior to implant placement, sufficient bone volume is needed to reduce the risk of peri-implantitis. While augmentation using harvested autologous bone is still considered as gold standard, many surgeons prefer bone substitutes to reduce operation time and to avoid donor site morbidity. To assess the osteogenic efficacy of commercially available augmentation materials we analyzed drill cores extracted before implant insertion. In younger patients, distraction osteogenesis is successfully applied to correct craniofacial deformities through targeted bone formation. To study the influence of mesenchymal stem cells on bone regeneration during distraction osteogenesis, human mesenchymal stem cells were injected into the distraction gap of nude rat mandibles immediately after osteotomy. The distraction was performed over eleven days to reach a distraction gap of 6 mm. Both the rat mandibles and the drill cores were scanned using synchrotron radiation-based micro computed tomography. The three-dimensional data were manually registered and compared with corresponding two-dimensional histological sections to assess bone regeneration and its morphology. The analysis of the rat mandibles indicates that bone formation is enhanced by mesenchymal stem cells injected before distraction. The bone substitutes yielded a wide range of bone volume and degree of resorption. The volume fraction of the newly formed bone was determined to 34.4% in the computed tomography dataset for the augmentation material Geistlich Bio-Oss®. The combination of computed tomography and histology allowed a complementary assessment for both bone augmentation and distraction osteogenesis.

  10. Large Reactional Osteogenesis in Maxillary Sinus Associated with Secondary Root Canal Infection Detected Using Cone-beam Computed Tomography.

    PubMed

    Estrela, Carlos; Porto, Olavo César Lyra; Costa, Nádia Lago; Garrote, Marcel da Silva; Decurcio, Daniel Almeida; Bueno, Mike R; Silva, Brunno Santos de Freitas

    2015-12-01

    Inflammatory injuries in the maxillary sinus may originate from root canal infections and lead to bone resorption or regeneration. This report describes the radiographic findings of 4 asymptomatic clinical cases of large reactional osteogenesis in the maxillary sinus (MS) associated with secondary root canal infection detected using cone-beam computed tomographic (CBCT) imaging. Apical periodontitis, a consequence of root canal infection, may lead to a periosteal reaction in the MS and osteogenesis seen as a radiopaque structure on imaging scans. The use of a map-reading strategy for the longitudinal and sequential slices of CBCT images may contribute to the definition of diagnoses and treatment plans. Root canal infections may lead to reactional osteogenesis in the MS. High-resolution CBCT images may reveal changes that go unnoticed when using conventional imaging. Findings may help define initial diagnoses and therapeutic plans, but only histopathology provides a definitive diagnosis. Surgical enucleation of the periapical lesion is recommended if nonsurgical root canal treatment fails to control apical periodontitis. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Bone-anchored maxillary expansion and bilateral interoral mandibular distraction osteogenesis in adult with severe obstructive sleep apnea syndrome.

    PubMed

    Nie, Ping; Zhu, Min; Lu, Xiao-Feng; Fang, Bing

    2013-05-01

    Severe obstructive sleep apnea syndrome (OSAS) threatens patients' lives. To solve ventilation problem, snoring, and avoid another orthognathic surgery for mandibular advancement, bone-anchored rapid maxillary expansion and bilateral interoral mandibular distraction osteogenesis were tried on a 20-year-old Chinese male patient with severe skeletal class II malocclusion and OSAS.The patient had polysomnography (apnea-hypopnea index 54.2), body mass index measurement (19.7 kg/m), and cephalometry before the treatment. Bone-anchored rapid maxillary expansion was performed for the correction of maxillary transverse and minor sagittal deficiency and the improvement of nasal airflow by decreasing nasal resistance. Bilateral interoral mandibular distraction osteogenesis was operated to lengthen the small, retruded mandible by 15 mm. Orthodontic treatment after the maxillary expansion and mandibular distraction osteogenesis can help obtain stable occlusion.The Epworth Sleepiness Scale, a questionnaire for temporomandibular joint, cephalometric analysis, polysomnography, acoustic rhinometry, and multislice spiral computed tomography were performed to evaluate changes from the treatment. All the results showed that the patient had a significantly alleviated OSAS. In addition, an acceptable occlusion was also obtained.

  12. Amelogenesis Imperfecta with Distal Renal Tubular Acidosis: A Novel Syndrome?

    PubMed

    Misgar, R A; Hassan, Z; Wani, A I; Bashir, M I

    2017-01-01

    Amelogenesis imperfecta (AI) is a heterogeneous group of inherited dental enamel defects. It has rarely been reported in association with multiorgan syndromes and metabolic disorders. The metabolic disorders that have been reported in association with AI include hypocalciuria, impaired urinary concentrating ability, and Bartter-like syndrome. In literature, only three cases of AI and distal renal tubular acidosis (dRTA) have been described: two cases in adults and a solitary case in the pediatric age group. Here, we report a child with AI presenting with dRTA; to the best of our knowledge, our reported case is the only second such case in pediatric age group. Our case highlights the importance of recognizing the possibility of renal abnormalities in patients with AI as it will affect the long-term prognosis.

  13. Regulation of osteogenesis by long noncoding RNAs: An epigenetic mechanism contributing to bone formation.

    PubMed

    Tye, Coralee E; Boyd, Joseph R; Page, Natalie A; Falcone, Michelle M; Stein, Janet L; Stein, Gary S; Lian, Jane B

    2018-12-01

    Long noncoding RNAs (lncRNAs) have recently emerged as novel regulators of lineage commitment, differentiation, development, viability, and disease progression. Few studies have examined their role in osteogenesis; however, given their critical and wide-ranging roles in other tissues, lncRNAs are most likely vital regulators of osteogenesis. In this study, we extensively characterized lncRNA expression in mesenchymal cells during commitment and differentiation to the osteoblast lineage using a whole transcriptome sequencing approach (RNA-Seq). Using mouse primary mesenchymal stromal cells (mMSC), we identified 1438 annotated lncRNAs expressed during MSC differentiation, 462 of which are differentially expressed. We performed guilt-by-association analysis using lncRNA and mRNA expression profiles to identify lncRNAs influencing MSC commitment and differentiation. These findings open novel dimensions for exploring lncRNAs in regulating normal bone formation and in skeletal disorders.

  14. [Fundamental study on effect of high-mineral drinking water for osteogenesis in calciprivia ovariectomized rats].

    PubMed

    Ogata, Fumihiko; Nagai, Noriaki; Ito, Yoshimasa; Kawasaki, Naohito

    2014-01-01

    Since osteoporosis is a major public health problem in Japan, it is important to clarify the effect of high-mineral drinking water consumption on osteogenesis. Therefore, in this study, we investigated the relationship between high-mineral drinking water consumption and osteogenesis in ovariectomized rats that received a low-calcium diet and purified water (PW group) or a low-calcium diet and high-mineral drinking water (CR group). High-mineral drinking water affected the rats' body weight. After 3 months, the bone density of the CR group was higher than that of the PW group (p<0.05). Furthermore, the CR group showed a decrease in the amount of calcium in the bones after 3 months. These results suggest that high-mineral drinking water contributes to the maintenance of bone density and not to the amount of calcium in bone. On the other hand, serum alkaline phosphatase levels in the PW group at 3 months were higher than those in the CR group, which indicates that the blood concentration of calcium in the CR group was maintained. Moreover, the amount of magnesium in the bones and the blood concentration of magnesium in the CR group after 3 months were higher than the corresponding values in the PW group. These results suggest that consumption of high-mineral drinking water could be beneficial for osteogenesis (i.e., for maintaining bone quantity).

  15. Different Effects of Implanting Sensory Nerve or Blood Vessel on the Vascularization, Neurotization, and Osteogenesis of Tissue-Engineered Bone In Vivo

    PubMed Central

    Fan, Jun-jun; Mu, Tian-wang; Qin, Jun-jun; Bi, Long; Pei, Guo-xian

    2014-01-01

    To compare the different effects of implanting sensory nerve tracts or blood vessel on the osteogenesis, vascularization, and neurotization of the tissue-engineered bone in vivo, we constructed the tissue engineered bone and implanted the sensory nerve tracts (group SN), blood vessel (group VB), or nothing (group Blank) to the side channel of the bone graft to repair the femur defect in the rabbit. Better osteogenesis was observed in groups SN and VB than in group Blank, and no significant difference was found between groups SN and VB at 4, 8, and 12 weeks postoperatively. The neuropeptides expression and the number of new blood vessels in the bone tissues were increased at 8 weeks and then decreased at 12 weeks in all groups and were highest in group VB and lowest in group Blank at all three time points. We conclude that implanting either blood vessel or sensory nerve tract into the tissue-engineered bone can significantly enhance both the vascularization and neurotization simultaneously to get a better osteogenesis effect than TEB alone, and the method of implanting blood vessel has a little better effect of vascularization and neurotization but almost the same osteogenesis effect as implanting sensory nerve. PMID:25101279

  16. Stem cell therapy for enhancement of bone consolidation in distraction osteogenesis

    PubMed Central

    Yang, Y.; Lin, S.; Wang, B.; Gu, W.

    2017-01-01

    Objectives Distraction osteogenesis (DO) mobilises bone regenerative potential and avoids the complications of other treatments such as bone graft. The major disadvantage of DO is the length of time required for bone consolidation. Mesenchymal stem cells (MSCs) have been used to promote bone formation with some good results. Methods We hereby review the published literature on the use of MSCs in promoting bone consolidation during DO. Results Studies differed in animal type (mice, rabbit, dog, sheep), bone type (femur, tibia, skull), DO protocols and cell transplantation methods. Conclusion The majority of studies reported that the transplantation of MSCs enhanced bone consolidation or formation in DO. Many questions relating to animal model, DO protocol and cell transplantation regime remain to be further investigated. Clinical trials are needed to test and confirm these findings from animal studies. Cite this article: Y. Yang, S. Lin, B. Wang, W. Gu, G. Li. Stem cell therapy for enhancement of bone consolidation in distraction osteogenesis: A contemporary review of experimental studies. Bone Joint Res 2017;6:385–390. DOI: 10.1302/2046-3758.66.BJR-2017-0023. PMID:28634158

  17. Tracheostomy-dependent child with temporomandibular ankylosis and severe micrognathia treated by piezosurgery and distraction osteogenesis: case report.

    PubMed

    de Castro e Silva, Lucas Martins; Pereira Filho, Valfrido Antonio; Vieira, Eduardo Hochuli; Gabrielli, Mário Francisco Real

    2011-10-01

    Ankylosis of the temporomandibular joint in children is one the most difficult and complex conditions managed by oral and maxillofacial surgeons, and often leads to some facial deformity. Distraction osteogenesis of the mandible provides an excellent treatment for mandibular airway obstruction in children who do not respond to conservative measures, and allows for early removal of the tracheostomy. We report the case of a 1-year-old boy with severe micrognathia and temporomandibular ankylosis who was dependent on a tracheostomy; he was treated with piezosurgery and mandibular advancement by distraction osteogenesis. Copyright © 2010 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Maxillary advancement using distraction osteogenesis with intraoral device.

    PubMed

    Takigawa, Yoko; Uematsu, Setsuko; Takada, Kenji

    2010-11-01

    This article describes the surgical orthodontic treatment of maxillary hypoplasia in a patient with cleft lip and palate using maxillary distraction osteogenesis with internal maxillary distractors. Maxillary advancement was performed to correct the retrusive maxillary facial profile and Class III malocclusion. Rotational movement of the distraction segment was made to correct the upper dental midline. Although maxillary advancement was insufficient because of unexpected breakage of the intraoral distractor after completion of the distraction, skeletal traction with a face mask compensated for the shortage. Successful esthetic improvement and posttreatment occlusal stability were achieved with no discernible relapse after 2 years of retention.

  19. Tributyltin engages multiple nuclear receptor pathways and suppresses osteogenesis in bone marrow multipotent stromal cells.

    PubMed

    Baker, Amelia H; Watt, James; Huang, Cassie K; Gerstenfeld, Louis C; Schlezinger, Jennifer J

    2015-06-15

    Organotins are members of the environmental obesogen class of contaminants because they activate peroxisome proliferator-activated receptor γ (PPARγ), the essential regulator of adipogenesis. Exposure to thiazolidinediones (PPARγ ligands used to treat type 2 diabetes) is associated with increased fractures. Diminished bone quality likely results from PPARγ's role in promoting adipogenesis while suppressing osteogenesis of bone marrow multipotent mesenchymal stromal cells (BM-MSC). We hypothesized that tributyltin (TBT) would be a potent modifier of BM-MSC differentiation and a negative regulator of bone formation. Organotins interact with both PPARγ and retinoid X receptors (RXR), suggesting that they activate multiple nuclear receptor pathways. To investigate the role of RXR in the actions of TBT, the effects of PPARγ (rosiglitazone) and RXR (bexarotene, LG100268) agonists were compared to the effects of TBT in BMS2 cells and primary mouse BM-MSC cultures. In BMS2 cells, TBT induced the expression of Fabp4, Abca1, and Tgm2 in an RXR-dependent manner. All agonists suppressed osteogenesis in primary mouse BM-MSC cultures, based on decreased alkaline phosphatase activity, mineralization, and expression of osteoblast-related genes. While rosiglitazone and TBT strongly activated adipogenesis, based on lipid accumulation and expression of adipocyte-related genes, the RXR agonists did not. Extending these analyses to other RXR heterodimers showed that TBT and the RXR agonists activated the liver X receptor pathway, whereas rosiglitazone did not. Application of either a PPARγ antagonist (T0070907) or an RXR antagonist (HX531) significantly reduced rosiglitazone-induced suppression of bone nodule formation. Only the RXR antagonist significantly reduced LG100268- and TBT-induced bone suppression. The RXR antagonist also inhibited LG100268- and TBT-induced expression of Abca1, an LXR target gene, in primary BM-MSC cultures. These results provide novel evidence that

  20. An osteogenesis/angiogenesis-stimulation artificial ligament for anterior cruciate ligament reconstruction.

    PubMed

    Li, Hong; Li, Jinyan; Jiang, Jia; Lv, Fang; Chang, Jiang; Chen, Shiyi; Wu, Chengtie

    2017-05-01

    To solve the poor healing of polyethylene terephthalate (PET) artificial ligament in bone tunnel, copper-containing bioactive glass (Cu-BG) nanocoatings on PET artificial ligaments were successfully prepared by pulsed laser deposition (PLD). It was hypothesized that Cu-BG coated PET (Cu-BG/PET) grafts could enhance the in vitro osteogenic and angiogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) and in vivo graft-bone healing after anterior cruciate ligament (ACL) reconstruction in a goat model. Scanning electron microscope and EDS mapping analysis revealed that the prepared nanocoatings had uniform element distribution (Cu, Ca, Si and P) and nanostructure. The surface hydrophilicity of PET grafts was significantly improved after depositing Cu-BG nanocoatings. The in vitro study displayed that the Cu-BG/PET grafts supported the attachment and proliferation of rBMSCs, and significantly promoted the expression of HIF-1α gene, which up-regulated the osteogenesis-related genes (S100A10, BMP2, OCN) and angiogenesis-related genes (VEGF) in comparison with PET or BG coated PET (BG/PET) grafts which do not contain Cu element. Meanwhile, Cu-BG/PET grafts promoted the bone regeneration at the graft-host bone interface and decreased graft-bone interface width, thus enhancing the bonding strength as well as angiogenesis (as indicated by CD31 expression) in the goat model as compared with BG/PET and pure PET grafts. The study demonstrates that the Cu-containing biomaterials significantly promote osteogenesis and angiogenesis in the repair of bone defects of large animals and thus offering a promising method for ACL reconstruction by using Cu-containing nanobioglass modified PET grafts. It remains a significant challenge to develop an artificial graft with distinct osteogenetic/angiogenetic activity to enhance graft-bone healing for ligament reconstruction. To solve these problems, copper-containing bioactive glass (Cu-BG) nanocoatings on PET artificial