Physical properties of ice cream containing milk protein concentrates.
Alvarez, V B; Wolters, C L; Vodovotz, Y; Ji, T
2005-03-01
Two milk protein concentrates (MPC, 56 and 85%) were studied as substitutes for 20 and 50% of the protein content in ice cream mix. The basic mix formula had 12% fat, 11% nonfat milk solids, 15% sweetener, and 0.3% stabilizer/emulsifier blend. Protein levels remained constant, and total solids were compensated for in MPC mixes by the addition of polydextrose. Physical properties investigated included apparent viscosity, fat globule size, melting rate, shape retention, and freezing behavior using differential scanning calorimetry. Milk protein concentrate formulations had higher mix viscosity, larger amount of fat destabilization, narrower ice melting curves, and greater shape retention compared with the control. Milk protein concentrates did not offer significant modifications of ice cream physical properties on a constant protein basis when substituted for up to 50% of the protein supplied by nonfat dry milk. Milk protein concentrates may offer ice cream manufacturers an alternative source of milk solids non-fat, especially in mixes reduced in lactose or fat, where higher milk solids nonfat are needed to compensate other losses of total solids.
Dallas, David C.; Guerrero, Andres; Khaldi, Nora; Castillo, Patricia A.; Martin, William F.; Smilowitz, Jennifer T.; Bevins, Charles L.; Barile, Daniela; German, J. Bruce; Lebrilla, Carlito B.
2013-01-01
Milk is traditionally considered an ideal source of the basic elemental nutrients required by infants. More detailed examination is revealing that milk represents a more functional ensemble of components with benefits to both infants and mothers. A comprehensive peptidomics method was developed and used to analyze human milk yielding an extensive array of protein products present in the fluid. Over 300 milk peptides were identified originating from major and many minor protein components of milk. As expected, the majority of peptides derived from β-casein, however no peptide fragments from the major milk proteins lactoferrin, α-lactalbumin and secretory immunoglobulin A were identified. Proteolysis in the mammary gland is selective—released peptides were drawn only from specific proteins and typically from only select parts of the parent sequence. A large number of the peptides showed significant sequence overlap with peptides with known antimicrobial or immunomodulatory functions. Antibacterial assays showed the milk peptide mixtures inhibited the growth of Escherichia coli and Staphylococcus aureus. The pre-digestion of milk proteins and the consequent release antibacterial peptides may provide a selective advantage through evolution by protecting both the mother's mammary gland and her nursing offspring from infection. PMID:23586814
Al-Ghobashy, Medhat A; Williams, Martin A K; Brophy, Brigid; Laible, Götz; Harding, David R K
2009-06-01
Downstream purification of a model recombinant protein (human myelin basic protein) from milk of transgenic cows is described. The recombinant protein was expressed as a His tagged fusion protein in the milk of transgenic cows and was found associated with the casein micellar phase. While difficulties in obtaining good recoveries were found when employing conventional micelle disruption procedures, direct capture using the cation exchanger SP Sepharose Big Beads was found successful in the extraction of the recombinant protein. Early breakthrough suggested a slow release of the recombinant protein from the micelles and dictated micelle disruption in order to obtain good yields. A new approach for deconstruction of the calcium core of the casein micelles, employing the interaction between the micellar calcium and the active sites of the cation exchanger resin was developed. Milk samples were loaded to the column in aliquots with a column washing step after each aliquot. This sequential loading approach successfully liberated the recombinant protein from the micelles and was found superior to the conventional sample loading approach. It increased the recovery by more than 25%, reduced fouling due to milk components and improved the column hydrodynamic properties as compared to the conventional sample loading approach. Hardware and software modifications to the chromatography system were necessary in order to keep the whole process automated. A second purification step using a Ni2+ affinity column was used to isolate the recombinant protein at purity more than 90% and a recovery percentage of 78%.
Li, Lian; Wang, Yiru; Li, Chengmin; Wang, Genlin
2017-12-01
Heat stress can play a negative effect on milk yield and composition of dairy cattle, leading to immeasurable economic loss. The basic components of the mammary gland are the alveoli; these alveolar mammary epithelial cells reflect the milk producing ability of dairy cows. In this study, we exposed bovine mammary epithelial cells to heat stress and compared them to a control group using isobaric tags for relative and absolute quantitation combined with liquid chromatography coupled with tandem mass spectrometry. Compared with a control group, 104 differentially elevated proteins (>1.3-fold) and 167 decreased proteins (<0.77-fold) were identified in the heat treatment group. Gene Ontology analysis identified a majority of the differentially expressed proteins are associated in cell-substrate junction assembly, catabolic processes and metabolic processes. Some of these significantly regulated proteins were related to the synthesis and secretion of milk, such as milk protein and fat. This finding was further supported by the results obtained from the reduced β-casein expression through the system of plasminogen activator - plasminogen - plasmin and decreased fatty acid synthase could partly explain why milk fat synthesis ability of dairy cows decreased under heat stress. Our results highlight the effects of heat stress on synthesis of milk protein and fat, thus providing additional clues for further studies of heat stress on dairy milk production. © 2017 Japanese Society of Animal Science.
Benefits of Lactoferrin, Osteopontin and Milk Fat Globule Membranes for Infants.
Demmelmair, Hans; Prell, Christine; Timby, Niklas; Lönnerdal, Bo
2017-07-28
The provision of essential and non-essential amino acids for breast-fed infants is the major function of milk proteins. In addition, breast-fed infants might benefit from bioactivities of milk proteins, which are exhibited in the intestine during the digestive phase and by absorption of intact proteins or derived peptides. For lactoferrin, osteopontin and milk fat globule membrane proteins/lipids, which have not until recently been included in substantial amounts in infant formulas, in vitro experiments and animal models provide a convincing base of evidence for bioactivities, which contribute to the protection of the infant from pathogens, improve nutrient absorption, support the development of the immune system and provide components for optimal neurodevelopment. Technologies have become available to obtain these compounds from cow´s milk and the bovine compounds also exhibit bioactivities in humans. Randomized clinical trials with experimental infant formulas incorporating lactoferrin, osteopontin, or milk fat globule membranes have already provided some evidence for clinical benefits. This review aims to compare findings from laboratory and animal experiments with outcomes of clinical studies. There is good justification from basic science and there are promising results from clinical studies for beneficial effects of lactoferrin, osteopontin and the milk fat globule membrane complex of proteins and lipids. Further studies should ideally be adequately powered to investigate effects on clinically relevant endpoints in healthy term infants.
Benefits of Lactoferrin, Osteopontin and Milk Fat Globule Membranes for Infants
Prell, Christine; Timby, Niklas; Lönnerdal, Bo
2017-01-01
The provision of essential and non-essential amino acids for breast-fed infants is the major function of milk proteins. In addition, breast-fed infants might benefit from bioactivities of milk proteins, which are exhibited in the intestine during the digestive phase and by absorption of intact proteins or derived peptides. For lactoferrin, osteopontin and milk fat globule membrane proteins/lipids, which have not until recently been included in substantial amounts in infant formulas, in vitro experiments and animal models provide a convincing base of evidence for bioactivities, which contribute to the protection of the infant from pathogens, improve nutrient absorption, support the development of the immune system and provide components for optimal neurodevelopment. Technologies have become available to obtain these compounds from cow´s milk and the bovine compounds also exhibit bioactivities in humans. Randomized clinical trials with experimental infant formulas incorporating lactoferrin, osteopontin, or milk fat globule membranes have already provided some evidence for clinical benefits. This review aims to compare findings from laboratory and animal experiments with outcomes of clinical studies. There is good justification from basic science and there are promising results from clinical studies for beneficial effects of lactoferrin, osteopontin and the milk fat globule membrane complex of proteins and lipids. Further studies should ideally be adequately powered to investigate effects on clinically relevant endpoints in healthy term infants. PMID:28788066
Cow's milk quality and energy value during different lactation stages.
Salamończyk, Ewa
2013-01-01
The quality of dairy products, raw milk in particular, depends on many factors. Low bacterial and somatic cell counts are basic determinants of the appropriate raw milk quality. The objective of the work was to assess the effect of selected factors, that is, the age of cows and their daily milk performance, on cytological quality (somatic cell count) and energy value of milk produced at individual stages of lactation. Somatic cell count and energy value of cow's milk were assessed. A total of 229 792 milk samples were examined. Data for analysis were taken from milk records of 350 dairy herds. It was demonstrated that, of all the lactations studied, the fi rst lactation (from calving to the 100th day of lactation) was characterised by the highest daily milk performance (25.1 kg) and the lowest somatic cell count (356 thous./1 ml), fat, protein and dry matter contents (4.06, 2.96 and 12.41%, respectively) and milk calorific value (732 kcal/kg). The highest energy value was recorded in cow's milk produced towards the end of lactation, that is from day 300 till the end of lactation (842 kcal/kg). High milk calorific value in late lactation and high fat and protein contents were accompanied by low raw milk quality.
Yield of acid curd cheese produced from cow's milk from different lactation periods.
Salamończyk, Ewa; Młynek, Krzysztof; Guliński, Piotr; Zawadzka, Wiesława
2017-01-01
Milk production intensification has led in many countries, including Poland, to increased milk yields per cow. A higher milk yield resulted in changes in cow productivity, including extended lactations. There is a paucity of information on the quality of milk harvested during the last months of lactations exceed- ing 10 months. Production capacity cheese (“cheese expenditure”) is an important parameter of providing a recovery as much as the possible components of the milk processed are dry substances, which in turn af- fects the economics of production. The aim of the study was to determine the influence of the lactation period (from standard lactation; extended lactation phase) on the performance of the acid curd cheese. the relation- ship between total protein content and acidity of fresh milk collected in two separate periods of lactation on the yield of acid cheese was also evaluated. The study included 1384 samples of milk collected from Polish Holstein-Friesian cows, the Black-White variety. The basic chemical composition of fresh milk and acid-curd cheese produced in the laboratory were analyzed. The cheese milk yield was evaluated on the basis of the quantity of the re- sulting curd mass. According to our estimates, under laboratory conditions an average of 100 kg of milk per cow in population produced an estimated 20.1 kg of curd cheese. The basic chemical composition of raw milk, which was diverse in terms of the period of lactation, showed a higher dry matter, fat and protein content in milk acquired during the extension phase of lactation compared to the milk of standard lactation. It has been found that the lower titratable acidity of fresh milk appeared with a higher yield of cheese curd. This difference was between 1.76 kg (with milk from cows milked during the extended lactation phase) to 2.72 kg from 100 kg of cheese milk (milk with the standard lactation). Thus, the optimum level of titratable acidity of milk for cheese yield is 6.0–7.5°SH. Most samples with the highest yields of acid curd cheese (>20%) were obtained from the milk from collected in the period from day 306 till the end of lactation (60.54%).
Troise, Antonio Dario; Buonanno, Martina; Fiore, Alberto; Monti, Simona Maria; Fogliano, Vincenzo
2016-12-01
Thermal treatments and storage influence milk quality, particularly in low lactose milk as the higher concentration of reducing sugars can lead to the increased formation of the Maillard reaction products (MRPs). The control of the Amadori products (APs) formation is the key step to mitigate the Maillard reaction (MR) in milk. The use of fructosamine oxidases, (Faox) provided promising results. In this paper, the effects of Faox I were evaluated by monitoring the concentration of free and bound MRPs in low lactose milk during shelf life. Results showed that the enzyme reduced the formation of protein-bound MRPs down to 79% after six days at 37°C. Faox I lowered the glycation of almost all the free amino acids resulting effective on basic and polar amino acids. Data here reported corroborate previous findings on the potentiality of Faox enzymes in controlling the early stage of the MR in foods. Copyright © 2016 Elsevier Ltd. All rights reserved.
Qin, Wenyi; Zhang, Ke; Kliethermes, Beth; Ruhlen, Rachel L; Browne, Eva P; Arcaro, Kathleen F; Sauter, Edward R
2012-03-21
First full term pregnancy (FFTP) completed at a young age has been linked to low long term breast cancer risk, whereas late FFTP pregnancy age confers high long term risk, compared to nulliparity. Our hypothesis was that proteins linked to breast cancer would be differentially expressed in human milk collected at three time points during lactation based on age at FFTP. We analyzed breast milk from 72 lactating women. Samples were collected within 10 days of the onset of lactation (baseline-BL), two months after lactation started and during breast weaning (W). We measured 16 proteins (11 kallikreins (KLKs), basic fibroblast growth factor, YKL-40, neutrophil gelatinase-associated lipocalin and transforming growth factor (TGF) β-1 and -2) associated with breast cancer, most known to be secreted into milk. During lactation there was a significant change in the expression of 14 proteins in women < 26 years old and 9 proteins in women > = 26 at FFTP. The most significant (p < .001) changes from BL to W in women divided by FFTP age (< 26 vs. > = 26) were in KLK3,6, 8, and TGFβ2 in women < 26; and KLK6, 8, and TGFβ2 in women > = 26. There was a significant increase (p = .022) in KLK8 expression from BL to W depending on FFTP age. Examination of DNA methylation in the promoter region of KLK6 revealed high levels of methylation that did not explain the observed changes in protein levels. On the other hand, KLK6 and TGFβ1 expression were significantly associated (r2 = .43, p = .0050). The expression profile of milk proteins linked to breast cancer is influenced by age at FFTP. These proteins may play a role in future cancer risk.
Influence of micellar calcium and phosphorus on rennet coagulation properties of cows milk.
Malacarne, Massimo; Franceschi, Piero; Formaggioni, Paolo; Sandri, Sandro; Mariani, Primo; Summer, Andrea
2014-05-01
The main requirement for milk processed in most cheese typologies is its rennet coagulation ability. Despite the increasing number of studies, the causes for abnormal coagulation of milk are not fully understood. The aim of this study was to ascertain relationships between milk characteristics and its rennet coagulation ability, focusing on the influence of calcium (Ca) and phosphorus (P). Ca and P are essential constituents of the micelles. Micellar P can be present as part of colloidal calcium phosphate (inorganic-P) or covalently bound to caseins as phosphate groups (casein-P). Eighty one herd milk samples (SCC<400 000 cell/ml) were classified as Optimal (8), Suboptimal (39) Poor (29) and Non-coagulating milk (5), according to their rennet coagulation parameters as assessed by lactodynamographic test. Samples were analysed for their chemical composition (basic composition, protein fractions, minerals and salt equilibria), physicochemical parameters (pH and titratable acidity) and rheological properties. Optimal milk was characterised by the highest contents of major constituents, protein fractions and minerals, lowest content of chloride and highest values of titratable acidity. Non-coagulating milk was characterised by the highest values of pH and the lowest of titratable acidity. At micellar level, Optimal milk showed the highest values of colloidal Ca, casein-P and colloidal Mg (g/100 g casein), while Non-coagulating milk showed the lowest values. Interestingly, there was no statistical difference regarding the content of colloidal inorganic-P (g/100 g casein) between Optimal and Non-coagulating milks. Overall, high mineralisation of the micelle (expressed as g inorganic-P/100 g casein) positively affect its rennetability. However, excessive mineralisation could lead to a reduction of the phosphate groups (g casein-P/100 g casein) available for curd formation.
Dadousis, C; Cipolat-Gotet, C; Bittante, G; Cecchinato, A
2018-02-01
We studied the genetics of cheese-related latent variables (factors; Fs) for application in dairy cattle breeding. In total, 26 traits, recorded in 1264 Brown Swiss cows, were analyzed through multivariate factor analysis (MFA). Traits analyzed were descriptors of milk quality and yield (including protein fractions) and measures of coagulation, curd firmness (CF), cheese yields (%CY) and nutrient recoveries in the curd (REC). A total of 10 Fs (mutual orthogonal with a varimax rotation) were obtained. To assess the practical use of the Fs into breeding, we inferred their genetic parameters using single and bivariate animal models under a Bayesian framework. Heritability estimates (intra-herd) varied between 0.11 and 0.72 (F3: Yield and F7: κ-β-CN, respectively). The Fs underlined basic characteristics of the cheese-making process, milk components and udder health, while retaining 74% of the original variability. The first two Fs were indicators of the CY percentage (F1: %CY) and the CF process (F2: CF t ), and presented similar heritability estimates: 0.268 and 0.295, respectively. The third factor was associated with the yield of milk and solids (F3: Yield) characterized by a low heritability (0.108) and the fourth with the cheese nitrogen (N) (F4: Cheese N) that conversely appeared to be characterized by a high heritability (0.618). Three Fs were associated with the proportion of the basic milk caseins on total milk protein (F5: as1-β-CN, F7: κ-β-CN, F8: as2-CN), also highly heritable (0.565, 0.723 and 0.397, respectively) and 1 factor with the phosphorylated form of the as1-CN (F9: as1-CN-Ph; 0.318). Moreover, 1 factor was linked to the whey protein α-LA (F10: α-LA; 0.147). An indicator factor of a cow's udder health (F6: Udder health) was also obtained and showed a moderate heritability (0.204). Although the Fs were phenotypically uncorrelated, considerable additive genetic correlations existed among them, with highest values observed between F10: α-LA and F6: Udder health (-0.67) as well as between F9: as1-CN-Ph and F3: Yield (-0.60). Our results show the usefulness of MFA in dairy cattle breeding. The ability to replace a large number of variables with a few latent indicators of the same biological meaning marks MFA as a valuable tool for developing breeding strategies to improve cow's cheese-related traits.
NASA Technical Reports Server (NTRS)
Grogan, Dennis W.
1992-01-01
Report describes identification of thermophilic Beta-glycosidase enzyme from isolate of Sulfolobus solfataricus, sulfur-metabolizing archaebacteria growing aerobically and heterotrophically to relatively high cell yields. Enzyme useful in enzymatic conversion of cellulose to D-glucose and important in recycling of biomass. Used for removal of lactose from milk products. Offers promise as model substance for elucidation of basic principles of structural stabilization of proteins.
Derks, Marjolein; Hogeveen, Henk; Kooistra, Sake R; van Werven, Tine; Tauer, Loren W
2014-12-01
This paper compares farm efficiencies between dairies who were participating in a veterinary herd health management (VHHM) program with dairies not participating in such a program, to determine whether participation has an association with farm efficiency. In 2011, 572 dairy farmers received a questionnaire concerning the participation and execution of a VHHM program on their farms. Data from the questionnaire were combined with farm accountancy data from 2008 through 2012 from farms that used calendar year accounting periods, and were analyzed using Stochastic Frontier Analysis (SFA). Two separate models were specified: model 1 was the basic stochastic frontier model (output: total revenue; input: feed costs, land costs, cattle costs, non-operational costs), without explanatory variables embedded into the efficiency component of the error term. Model 2 was an expansion of model 1 which included explanatory variables (number of FTE; total kg milk delivered; price of concentrate; milk per hectare; cows per FTE; nutritional yield per hectare) inserted into the efficiency component of the joint error term. Both models were estimated with the financial parameters expressed per 100 kg fat and protein corrected milk and per cow. Land costs, cattle costs, feed costs and non-operational costs were statistically significant and positive in all models (P<0.01). Frequency distributions of the efficiency scores for the VHHM dairies and the non-VHHM dairies were plotted in a kernel density plot, and differences were tested using the Kolmogorov-Smirnov two-sample test. VHHM dairies had higher total revenue per cow, but not per 100 kg milk. For all SFA models, the difference in distribution was not statistically different between VHHM dairies and non-VHHM dairies (P values 0.94, 0.35, 0.95 and 0.89 for the basic and complete model per 100 kg fat and protein corrected milk and per cow respectively). Therefore we conclude that with our data farm participation in VHHM is not related to overall farm efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.
Considerations in meeting protein needs of the human milk-fed preterm infant.
Wagner, Julie; Hanson, Corrine; Anderson-Berry, Ann
2014-08-01
Preterm infants provided with sufficient nutrition to achieve intrauterine growth rates have the greatest potential for optimal neurodevelopment. Although human milk is the preferred feeding for preterm infants, unfortified human milk provides insufficient nutrition for the very low-birth-weight infant. Even after fortification with human milk fortifier, human milk often fails to meet the high protein needs of the smallest preterm infants, and additional protein supplementation must be provided. Although substantial evidence exists to support quantitative protein goals for human milk-fed preterm infants, the optimal type of protein for use in human milk fortification remains uncertain. This question was addressed through a PubMed literature search of prospective clinical trials conducted since 1990 in preterm or low-birth-weight infant populations. The following 3 different aspects of protein quality were evaluated: whey-to-casein ratio, hydrolyzed versus intact protein, and bovine milk protein versus human milk protein. Because of a scarcity of current studies conducted with fortified human milk, studies examining protein quality using preterm infant formulas were included to address certain components of the clinical question. Twenty-six studies were included in the review study. No definite advantage was found for any specific whey-to-casein ratio. Protein hydrolyzate products with appropriate formulations can support adequate growth and biochemical indicators of nutrition status and may reduce gastrointestinal transit time, gastroesophageal reflux events, and later incidence of atopic dermatitis in some infants. Plasma amino acid levels similar to those of infants fed exclusive human milk-based diets can be achieved with products composed of a mixture of bovine proteins, peptides, and amino acids formulated to replicate the amino acid composition of human milk. Growth and biochemical indicators of nutrition status are similar for infants fed human milk fortified with human milk protein and bovine milk protein.
The balance between caseins and whey proteins in cow's milk determines its allergenicity.
Lara-Villoslada, F; Olivares, M; Xaus, J
2005-05-01
Cow's milk allergy is quite common in the first years of human life. Protein composition plays an important role in this pathology, particularly the casein/whey protein ratio. It is known that milks from different species have different sensitization capacities although their protein sources are quite similar. Thus, the objective of this work was to compare the allergenicity of native cow's milk and milk with a modified ratio of casein and whey proteins in a murine model of atopy. Twenty-four Balb/c mice were orally sensitized to native cow's milk or modified cow's milk with a casein/whey protein ratio of 40:60. During the sensitization period, the number of mice suffering from diarrhea was significantly higher in the native cow's milk-sensitized group than in the modified milk-sensitized group. Once mice were killed, plasma histamine levels were shown to be significantly higher in native cow's milk-sensitized mice. In addition, cow's milk proteins induced a higher lymphocyte sensitization in the native milk-sensitized mice, with a significant increase in the specific proliferation ratio of these cells. These results suggest that the balance between caseins and whey proteins plays an important role in the sensitization capacity of cow's milk, and its modification might be a way to reduce the allergenicity of cow's milk.
Milk proteins interact with goat Binder of SPerm (BSP) proteins and decrease their binding to sperm.
de Menezes, Erika Bezerra; van Tilburg, Mauricio; Plante, Geneviève; de Oliveira, Rodrigo V; Moura, Arlindo A; Manjunath, Puttaswamy
2016-11-01
Seminal plasma Binder of SPerm (BSP) proteins bind to sperm at ejaculation and promote capacitation. When in excess, however, BSP proteins damage the sperm membrane. It has been suggested that milk components of semen extenders associate with BSP proteins, potentially protecting sperm. Thus, this study was conducted to investigate if milk proteins interact with BSP proteins and reduce BSP binding to goat sperm. Using gel filtration chromatography, milk was incubated with goat seminal plasma proteins and loaded onto columns with and without calcium. Milk was also fractionated into parts containing mostly whey proteins or mostly caseins, incubated with seminal plasma proteins and subjected to gel filtration. Eluted fractions were evaluated by immunoblot using anti-goat BSP antibodies, confirming milk protein-BSP protein interactions. As determined by ELISA, milk proteins coated on polystyrene wells bound to increasing of goat BSP proteins. Far-western dot blots confirmed that BSP proteins bound to caseins and β-lactoglobulin in a concentration-dependent manner. Then, cauda epididymal sperm from five goats was incubated with seminal plasma; seminal plasma followed by milk; and milk followed by seminal plasma. Sperm membrane proteins were extracted and evaluated by immunoblotting. The pattern of BSP binding to sperm membrane proteins was reduced by 59.3 % when epididymal sperm were incubated with seminal plasma and then with skimmed milk (p < 0.05). When epididymal sperm were treated with milk followed by seminal plasma, coating of sperm with BSP proteins was not significantly reduced (57.6 %; p > 0.05). In conclusion, goat BSP proteins have an affinity for caseins and whey proteins. Milk reduces BSP binding to goat sperm, depending whether or not sperm had been previously exposed to seminal plasma. Such events may explain the protective effect of milk during goat sperm preservation.
Hou, Xiaoming; Hu, Hongliu; Lin, Ye; Qu, Bo; Gao, Xuejun; Li, Qingzhang
2016-07-01
Milk protein is an important component of milk and a nutritional source for human consumption. To better understand the molecular events underlying synthesis of milk proteins, the global gene expression patterns in mammary glands of dairy cow with high-quality milk (>3% milk protein; >3.5% milk fat) and low-quality milk (<3% milk protein; <3.5% milk fat) were examined via digital gene expression study. A total of 139 upregulated and 66 downregulated genes were detected in the mammary tissues of lactating cows with high-quality milk compared with the tissues of cows with low-quality milk. A pathway enrichment study of these genes revealed that the top 5 pathways that were differentially affected in the tissues of cows with high- versus low-quality milk involved metabolic pathways, cancer, cytokine-cytokine receptor interactions, regulation of the actin cytoskeleton, and insulin signaling. We also found that the G protein-coupled receptor kinase 2 (GRK2) was one of the most highly upregulated genes in lactating mammary tissue with low-quality milk compared with tissue with high-quality milk. The knockdown of GRK2 in cultured bovine mammary epithelial cells enhanced CSN2 expression and activated signaling molecules related to translation, including protein kinase B, mammalian target of rapamycin, and p70 ribosomal protein S6 kinase 1 (S6K1), whereas overexpression of GRK2 had the opposite effects. However, expression of genes involved in the mitogen-activated protein kinase pathway was positively regulated by GRK2. Therefore, GRK2 seems to act as a negative mediator of milk-protein synthesis via the protein kinase B-mammalian target of rapamycin signaling axis. Furthermore, GRK2 may negatively control milk-protein synthesis by activating the mitogen-activated protein kinase pathway in dairy cow mammary epithelial cells. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A systematic review and meta-analysis of the nutrient content of preterm and term breast milk.
Gidrewicz, Dominica A; Fenton, Tanis R
2014-08-30
Breast milk nutrient content varies with prematurity and postnatal age. Our aims were to conduct a meta-analysis of preterm and term breast milk nutrient content (energy, protein, lactose, oligosaccharides, fat, calcium, and phosphorus); and to assess the influence of gestational and postnatal age. Additionally we assessed for differences by laboratory methods for: energy (measured vs. calculated estimates) and protein (true protein measurement vs. the total nitrogen estimates). Systematic review results were summarized graphically to illustrate the changes in composition over time for term and preterm milk. Since breast milk fat content varies within feeds and diurnally, to obtain accurate estimates we limited the meta-analyses for fat and energy to 24-hour breast milk collections. Forty-one studies met the inclusion criteria: 26 (843 mothers) preterm studies and 30 (2299 mothers) term studies of breast milk composition. Preterm milk was higher in true protein than term milk, with differences up to 35% (0.7 g/dL) in colostrum, however, after postnatal day 3, most of the differences in true protein between preterm and term milk were within 0.2 g/dL, and the week 10-12 estimates suggested that term milk may be the same as preterm milk by that age. Colostrum was higher than mature milk for protein, and lower than mature milk for energy, fat and lactose for both preterm and term milk. Breast milk composition was relatively stable between 2 and 12 weeks. With milk maturation, there was a narrowing of the protein variance. Energy estimates differed whether measured or calculated, from -9 to 13%; true protein measurement vs. the total nitrogen estimates differed by 1 to 37%. Although breast milk is highly variable between individuals, postnatal age and gestational stage (preterm versus term) were found to be important predictors of breast milk content. Energy content of breast milk calculated from the macronutrients provides poor estimates of measured energy, and protein estimated from the nitrogen over-estimates the protein milk content. When breast milk energy, macronutrient and mineral content cannot be directly measured the average values from these meta-analyses may provide useful estimates of mother's milk energy and nutrient content.
Yang, Yongxin; Bu, Dengpan; Zhao, Xiaowei; Sun, Peng; Wang, Jiaqi; Zhou, Lingyun
2013-04-05
To aid in unraveling diverse genetic and biological unknowns, a proteomic approach was used to analyze the whey proteome in cow, yak, buffalo, goat, and camel milk based on the isobaric tag for relative and absolute quantification (iTRAQ) techniques. This analysis is the first to produce proteomic data for the milk from the above-mentioned animal species: 211 proteins have been identified and 113 proteins have been categorized according to molecular function, cellular components, and biological processes based on gene ontology annotation. The results of principal component analysis showed significant differences in proteomic patterns among goat, camel, cow, buffalo, and yak milk. Furthermore, 177 differentially expressed proteins were submitted to advanced hierarchical clustering. The resulting clustering pattern included three major sample clusters: (1) cow, buffalo, and yak milk; (2) goat, cow, buffalo, and yak milk; and (3) camel milk. Certain proteins were chosen as characterization traits for a given species: whey acidic protein and quinone oxidoreductase for camel milk, biglycan for goat milk, uncharacterized protein (Accession Number: F1MK50 ) for yak milk, clusterin for buffalo milk, and primary amine oxidase for cow milk. These results help reveal the quantitative milk whey proteome pattern for analyzed species. This provides information for evaluating adulteration of specific specie milk and may provide potential directions for application of specific milk protein production based on physiological differences among animal species.
Proteomic evaluation of milk from different mammalian species as a substitute for breast milk.
D'Auria, Enza; Agostoni, Carlo; Giovannini, Marcello; Riva, Enrica; Zetterström, Rolf; Fortin, Riccardo; Greppi, Gian Franco; Bonizzi, Luigi; Roncada, Paola
2005-12-01
As milk represents the main source of nutrition for infants, the question of an effective human milk substitute becomes mandatory when a formula-fed baby is allergic to cows' milk proteins. In this case, formulas containing extensively hydrolysed milk proteins should be preferred, but even such a formula may cause allergic reactions in highly sensitive patients. If there is evidence of cows' milk allergy with IgE-associated symptoms, after 6 mo of age, a soy bean formula may be recommended only when tolerance to soy protein has been established by clinical challenge. In infants with allergic reactions to cows' milk proteins, even after extensive hydrolyzation, proteomic techniques coupled to immunological methods may make it possible to select other milk products that do not contain the same allergens as ordinary cow's milk. In this paper, evidence will be presented that proteomic evaluation of proteins from different mammalian species may be a suitable method of testing whether proteins from the milk of different mammalian species may be used as a substitute for untreated bovine milk. Proteomic evaluation of milk from different mammalian species may not only be of help when recommending suitable feeding in cases of cows' milk allergy but also gives new insight into the background to allergic reactions caused by milk proteins.
Radiation dose to Malaysian infants from natural radionuclides via consumption of powdered milk
NASA Astrophysics Data System (ADS)
Uwatse, Onosohwo Bemigho; Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd.
2015-04-01
Milk is the basic food stuff for the infants because they generally consume more milk on a daily basis as its minerals and proteins are essential for their growth and development, therefore, it is very important to assess the natural radioactivity levels and the associated dose in the widely consumed powered infant's milk. As a result, 14 brands of infant's powdered milk were collected from different supermarkets around Selangor, Malaysia and analysed for 226Ra, 232Th and 40K activities. The obtained mean activity of 226Ra, 232Th and 40K are 3.05±1.84, 2.55±2.48 and 99.1±69.5 Bqkg-1, respectively. Among the analysed milk samples, the brand from Philippines (Lactogen) showed low level of radioactivity while Singaporean brand (S26 SMA Gold) showed the highest. The estimated mean annual effective doses due to the ingestion of natural radionuclides in the sampled milk are 635 and 111 µSv for infant ≤ 1y and infant 1-2y, respectively. The obtained dose value does not yet pose any significant radiological hazards to the population under investigation comparing with the 1.0 mSvy-1 recommended by ICRP for all ages.
Contributions to ultrasound monitoring of the process of milk curdling.
Jiménez, Antonio; Rufo, Montaña; Paniagua, Jesús M; Crespo, Abel T; Guerrero, M Patricia; Riballo, M José
2017-04-01
Ultrasound evaluation permits the state of milk being curdled to be determined quickly and cheaply, thus satisfying the demands faced by today's dairy product producers. This paper describes the non-invasive ultrasonic method of in situ monitoring the changing physical properties of milk during the renneting process. The basic objectives of the study were, on the one hand, to confirm the usefulness of conventional non-destructive ultrasonic testing (time-of-flight and attenuation of the ultrasound waves) in monitoring the process in the case of ewe's milk, and, on the other, to include other ultrasound parameters which have not previously been considered in studies on this topic, in particular, parameters provided by the Fast Fourier Transform technique. The experimental study was carried out in a dairy industry environment on four 52-l samples of raw milk in which were immersed 500kHz ultrasound transducers. Other physicochemical parameters of the raw milk (pH, dry matter, protein, Gerber fat test, and lactose) were measured, as also were the pH and temperature of the curdled samples simultaneously with the ultrasound tests. Another contribution of this study is the linear correlation analysis of the aforementioned ultrasound parameters and the physicochemical properties of the curdled milk. Copyright © 2017 Elsevier B.V. All rights reserved.
Ivens, Katherine O; Baumert, Joseph L; Taylor, Steve L
2016-07-01
Numerous commercial enzyme-linked immunosorbent assay (ELISA) kits exist to quantitatively detect bovine milk residues in foods. Milk contains many proteins that can serve as ELISA targets including caseins (α-, β-, or κ-casein) and whey proteins (α-lactalbumin or β-lactoglobulin). Nine commercially-available milk ELISA kits were selected to compare the specificity and sensitivity with 5 purified milk proteins and 3 milk-derived ingredients. All of the milk kits were capable of quantifying nonfat dry milk (NFDM), but did not necessarily detect all individual protein fractions. While milk-derived ingredients were detected by the kits, their quantitation may be inaccurate due to the use of different calibrators, reference materials, and antibodies in kit development. The establishment of a standard reference material for the calibration of milk ELISA kits is increasingly important. The appropriate selection and understanding of milk ELISA kits for food analysis is critical to accurate quantification of milk residues and informed risk management decisions. © 2016 Institute of Food Technologists®
Expanding the bovine milk proteome through extensive fractionation.
Nissen, Asger; Bendixen, Emøke; Ingvartsen, Klaus Lønne; Røntved, Christine Maria
2013-01-01
Bovine milk is an agricultural product of tremendous value worldwide. It contains proteins, fat, lactose, vitamins, and minerals. It provides nutrition and immunological protection (e.g., in the gastrointestinal tract) to the newborn and young calf. It also forms an important part of human nutrition. The repertoire of proteins in milk (i.e., its proteome) is vast and complex. The milk proteome can be described in detail by mass spectrometry-based proteomics. However, the high concentration of dominating proteins in milk reduces mass spectrometry detection sensitivity and limits detection of low abundant proteins. Further, the general health and udder health of the dairy cows delivering the milk may influence the composition of the milk proteome. To gain a more exhaustive and true picture of the milk proteome, we performed an extensive preanalysis fractionation of raw composite milk collected from documented healthy cows in early lactation. Four simple and industrially applicable techniques exploring the physical and chemical properties of milk, including acidification, filtration, and centrifugation, were used for separation of the proteins. This resulted in 5 different fractions, whose content of proteins were compared with the proteins of nonfractionated milk using 2-dimensional liquid chromatography tandem mass spectrometry analysis. To validate the proteome analysis, spectral counts and ELISA were performed on 7 proteins using the ELISA for estimation of the detection sensitivity limit of the 2-dimensional liquid chromatography tandem mass spectrometry analysis. Each fractionation technique resulted in identification of a unique subset of proteins. However, high-speed centrifugation of milk to whey was by far the best method to achieve high and repeatable proteome coverage. The total number of milk proteins initially detected in nonfractionated milk and the fractions were 635 in 2 replicates. Removal of dominant proteins and filtering for redundancy across the different fractions reduced the number to 376 unique proteins in 2 replicates. In addition, 366 proteins were detected by this process in 1 replicate. Hence, by applying different fractionation techniques to milk, we expanded the milk proteome. The milk proteome map may serve as a reference for scientists working in the dairy sector. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Comparative proteomics of milk fat globule membrane in goat colostrum and mature milk.
Lu, Jing; Liu, Lu; Pang, Xiaoyang; Zhang, Shuwen; Jia, Zhenhu; Ma, Changlu; Zhao, Lili; Lv, Jiaping
2016-10-15
As an important nutrient source in large area of world, the composition and nutritional value of goat milk are not well deliberated. Detailed annotation of protein composition is essential to address the physiological and nutritional value of goat milk. In the present study, 423 colostrum and mature goat milk fat globule membrane (MFGM) proteins were identified. The abundance of 189 proteins was significantly different between colostrums and mature milk MFGM. The acute phase proteins were higher in colostrums MFGM than those in mature milk MFGM which protected newborns at the beginning of life. Proteins related to synthesis and secretion were conserved through lactation to ensure the milk production. Of note, long term depression (LTD) proteins were observed in colostrum and mature milk MFGM. Milk LTD proteins could be potential biomarkers for diagnosis of lactation related depressive syndromes and should be taken into considerations of their effects on newborns. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nakayama, Kyosuke; Kanda, Atsushi; Tagawa, Ryoichi; Sanbongi, Chiaki; Ikegami, Shuji; Itoh, Hiroyuki
2017-01-01
Bovine milk proteins have a low absorption rate due to gastric acid-induced coagulation. Acidified milk remains liquid under acidic conditions; therefore, the absorption rate of its protein may differ from that of untreated milk. To investigate how this would affect muscle protein synthesis (MPS), we compared MPS after ingestion of acidified versus skim milk in rats. Male Sprague-Dawley rats swam for 2 h and were immediately administered acidified or skim milk, then euthanized at 30, 60, 90, and 120 min afterwards. Triceps muscle samples were excised for assessing fractional synthetic rate (FSR), plasma components, intramuscular free amino acids and mTOR signaling. The FSR in the acidified milk group was significantly higher than in the skim milk group throughout the post-ingestive period. Plasma essential amino acids, leucine, and insulin levels were significantly increased in the acidified milk group at 30 min after administration compared to the skim milk group. In addition, acidified milk ingestion was associated with greater phosphorylation of protein kinase B (Akt) and ribosomal protein S6 kinase (S6K1), and sustained phosphorylation of 4E-binding protein 1 (4E-BP1). These results indicate that compared with untreated milk, acidified milk ingestion is associated with greater stimulation of post-exercise MPS. PMID:28953236
Nakayama, Kyosuke; Kanda, Atsushi; Tagawa, Ryoichi; Sanbongi, Chiaki; Ikegami, Shuji; Itoh, Hiroyuki
2017-09-27
Bovine milk proteins have a low absorption rate due to gastric acid-induced coagulation. Acidified milk remains liquid under acidic conditions; therefore, the absorption rate of its protein may differ from that of untreated milk. To investigate how this would affect muscle protein synthesis (MPS), we compared MPS after ingestion of acidified versus skim milk in rats. Male Sprague-Dawley rats swam for 2 h and were immediately administered acidified or skim milk, then euthanized at 30, 60, 90, and 120 min afterwards. Triceps muscle samples were excised for assessing fractional synthetic rate (FSR), plasma components, intramuscular free amino acids and mTOR signaling. The FSR in the acidified milk group was significantly higher than in the skim milk group throughout the post-ingestive period. Plasma essential amino acids, leucine, and insulin levels were significantly increased in the acidified milk group at 30 min after administration compared to the skim milk group. In addition, acidified milk ingestion was associated with greater phosphorylation of protein kinase B (Akt) and ribosomal protein S6 kinase (S6K1), and sustained phosphorylation of 4E-binding protein 1 (4E-BP1). These results indicate that compared with untreated milk, acidified milk ingestion is associated with greater stimulation of post-exercise MPS.
[Cow's milk protein allergy through human milk].
Denis, M; Loras-Duclaux, I; Lachaux, A
2012-03-01
Cow's milk protein allergy (CMPA) is the first allergy that affects infants. In this population, the incidence rate reaches 7.5%. The multiplicity and aspecificity of the symptoms makes its diagnosis sometimes complicated, especially in the delayed type (gastrointestinal, dermatological, and cutaneous). CMPA symptoms can develop in exclusively breastfed infants with an incidence rate of 0.5%. It, therefore, raises questions about sensitization to cow's milk proteins through breast milk. Transfer of native bovine proteins such as β-lactoglobulin into the breast milk is controversial: some authors have found bovine proteins in human milk but others point to cross-reactivity between human milk proteins and cow's milk proteins. However, it seems that a small percentage of dietary proteins can resist digestion and become potentially allergenic. Moreover, some authors suspect the transfer of some of these dietary proteins from the maternal bloodstream to breast milk, but the mechanisms governing sensitization are still being studied. Theoretically, CMPA diagnosis is based on clinical observations, prick-test or patch-test results, and cow's milk-specific IgE antibody concentration. A positive food challenge test usually confirms the diagnosis. No laboratory test is available to make a certain diagnosis, but the detection of eosinophil cationic protein (ECP) in the mother's milk, for example, seems to be advantageous since it is linked to CMA. Excluding cow's milk from the mother's diet is the only cure when she still wants to breastfeed. Usually, cow's milk proteins are reintroduced after 6 months of exclusion. Indeed, the prognosis for infants is very good: 80% acquire a tolerance before the age of 3 or 4 years. Mothers should not avoid dairy products during pregnancy and breastfeeding as preventive measures against allergy. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Interaction of milk proteins and Binder of Sperm (BSP) proteins from boar, stallion and ram semen.
Plante, Geneviève; Lusignan, Marie-France; Lafleur, Michel; Manjunath, Puttaswamy
2015-08-15
Mammalian semen contains a family of closely related proteins known as Binder of SPerm (BSP proteins) that are added to sperm at ejaculation. BSP proteins extract lipids from the sperm membrane thereby extensively modifying its composition. These changes can ultimately be detrimental to sperm storage. We have demonstrated that bovine BSP proteins interact with major milk proteins and proposed that this interaction could be the basis of sperm protection by milk extenders. In the present study, we investigated if homologous BSP proteins present in boar, stallion and ram seminal plasma display a similar affinity for the milk proteins in order to assess whether the mechanism of sperm protection by milk for these species could be general. Skim milk was incubated with seminal plasma proteins (boar, stallion and ram), chromatographed on a Sepharose CL-4B column and protein fractions were analyzed by immunoblotting. Boar, stallion and ram BSP proteins displayed affinity for a milk protein fraction (F1) mainly composed of α-lactalbumin, β-lactoglobulin, and κ-casein. They also had affinity for another milk protein fraction (F2) composed mostly of casein micelles. However, stallion BSP showed higher affinity for the fraction (F1). These results further extend our view that the association of BSP proteins with milk proteins could be a general feature of the mechanism of mammalian sperm protection by milk to prevent detrimental effect of prolonged exposure of sperm to seminal plasma.
van Herwijnen, Martijn J.C.; Zonneveld, Marijke I.; Goerdayal, Soenita; Nolte – 't Hoen, Esther N.M.; Garssen, Johan; Stahl, Bernd; Maarten Altelaar, A.F.; Redegeld, Frank A.; Wauben, Marca H.M.
2016-01-01
Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of the whole milk proteome and illustrates that milk-derived EV are macromolecular components with a unique functional proteome. PMID:27601599
Temporal changes in milk proteomes reveal developing milk functions.
Gao, Xinliu; McMahon, Robert J; Woo, Jessica G; Davidson, Barbara S; Morrow, Ardythe L; Zhang, Qiang
2012-07-06
Human milk proteins provide essential nutrition for growth and development, and support a number of vital developmental processes in the neonate. A complete understanding of the possible functions of human milk proteins has been limited by incomplete knowledge of the human milk proteome. In this report, we have analyzed the proteomes of whey from human transitional and mature milk using ion-exchange and SDS-PAGE based protein fractionation methods. With a larger-than-normal sample loading approach, we are able to largely extend human milk proteome to 976 proteins. Among them, 152 proteins are found to render significant regulatory changes between transitional milk and mature milk. We further found that immunoglobulins sIgA and IgM are more abundant in transitional milk, whereas IgG is more abundant in mature milk, suggesting a transformation in defense mechanism from newborns to young infants. Additionally, we report a more comprehensive view of a complement system and associated regulatory apparatus in human milk, demonstrating the presence and function of a system similar to that found in the circulation but prevailed by alternative pathway in complement activation. Proteins involved in various aspects of carbohydrate metabolism are also described, revealing either a transition in milk functionality to accommodate carbohydrate-rich secretions as lactation progresses, or a potentially novel way of looking at the metabolic state of the mammary tissue. Lately, a number of extracellular matrix (ECM) proteins are found to be in higher abundance in transitional milk and may be relevant to the development of infants' gastrointestinal tract in early life. In contrast, the ECM protein fibronectin and several of the actin cytoskeleton proteins that it regulates are more abundant in mature milk, which may indicate the important functional role for milk in regulating reactive oxygen species.
Use of Donkey Milk in Children with Cow's Milk Protein Allergy.
Polidori, Paolo; Vincenzetti, Silvia
2013-05-06
Human breast milk is the best nutritional support that insures the right development and influences the immune status of the newborn infant. However, when it is not possible to breast feed, it may be necessary to use commercial infant formulas that mimic, where possible, the levels and types of nutrients present in human milk. Despite this, some formula-fed infant develops allergy and/or atopic disease compared to breast-fed infants. Cow's milk allergy can be divided into immunoglobulin IgE mediated food allergy and non-IgE-mediated food allergy. Most infants with cow's milk protein allergy (CMPA) develop symptoms before 1 month of age, often within 1 week after introduction of cow's milk-based formula. Donkey milk may be considered a good substitute for cow's milk in feeding children with CMPA since its composition is very similar to human milk. Donkey milk total protein content is low (1.5-1.8 g/100 g), very close to human milk. A thorough analysis of the donkey milk protein profile has been performed in this study; the interest was focused on the milk proteins considered safe for the prevention and treatment of various disorders in humans. The content of lactoferrin, lactoperoxidase and lysozyme, peptides with antimicrobial activity, able to stimulate the development of the neonatal intestine, was determined. Donkey milk is characterized by a low casein content, with values very close to human milk; the total whey protein content in donkey milk ranges between 0.49 and 0.80 g/100 g, very close to human milk (0.68-0.83 g/100 g). Among whey proteins, α-lactalbumin average concentration in donkey milk is 1.8 mg/mL. The results of this study confirmed the possibility of using donkey milk in feeding children with CMPA.
Preparation of milk protein-vitamin A complexes and their evaluation for vitamin A binding ability.
Gupta, Chitra; Arora, Sumit; Syama, M A; Sharma, Apurva
2017-12-15
The recent trends for consumption of low fat and fat free foods have led to an increase in deficiencies of vitamin A. Vitamin A is susceptible to light and heat and thus require stabilization in aqueous medium. Stability can be improved by binding of vitamin A to milk protein. In the present research work, succinylated milk proteins were also prepared. 3.2 mol of succinic anhydride/mole of lysine content gave maximum degree of succinylation for both sodium caseinate and milk protein concentrate. Native, reassembled and succinylated milk proteins were used for the preparation of milk protein-Vitamin A (Vit A) complexes. These complexes were further evaluated for unbound vitamin A, ability of milk protein to bind vitamin A and solubility of protein and vitamin A as affected by complexation. Estimation of unbound vitamin A in milk protein-Vit A complexes was carried out using ammonium sulphate for precipitation. Copyright © 2017 Elsevier Ltd. All rights reserved.
A novel preparation of milk protein/polyethylene terephthalate fabric
NASA Astrophysics Data System (ADS)
Zhou, J. F.; Zheng, D. D.; Zhong, L.; Zhang, F. X.; Zhang, G. X.
2016-07-01
In this work, -NH2 groups were introduced to polyethylene terephthalate (PET) fibers by nitration and reduction method, and then milk protein was grafted on the nitrated and reduced PET (NR PET) fibers by sucrose glycidyl ether crosslinking agent. FTIR suggested the milk protein was successfully grafted on PET fiber surface. SEM images showed a layer of substance covered on the PET fiber surface. DSC demonstrated an excellent thermal stability of milk protein/PET fiber. The moisture regain was improved by milk protein/PET fiber. Moreover, the crease recovery angle and stiffness were retained by the milk protein/PET fabric.
The Host Defense Proteome of Human and Bovine Milk
Hettinga, Kasper; van Valenberg, Hein; de Vries, Sacco; Boeren, Sjef; van Hooijdonk, Toon; van Arendonk, Johan; Vervoort, Jacques
2011-01-01
Milk is the single source of nutrients for the newborn mammal. The composition of milk of different mammals has been adapted during evolution of the species to fulfill the needs of the offspring. Milk not only provides nutrients, but it also serves as a medium for transfer of host defense components to the offspring. The host defense proteins in the milk of different mammalian species are expected to reveal signatures of evolution. The aim of this study is therefore to study the difference in the host defense proteome of human and bovine milk. We analyzed human and bovine milk using a shot-gun proteomics approach focusing on host defense-related proteins. In total, 268 proteins in human milk and 269 proteins in bovine milk were identified. Of these, 44 from human milk and 51 from bovine milk are related to the host defense system. Of these proteins, 33 were found in both species but with significantly different quantities. High concentrations of proteins involved in the mucosal immune system, immunoglobulin A, CD14, lactoferrin, and lysozyme, were present in human milk. The human newborn is known to be deficient for at least two of these proteins (immunoglobulin A and CD14). On the other hand, antimicrobial proteins (5 cathelicidins and lactoperoxidase) were abundant in bovine milk. The high concentration of lactoperoxidase is probably linked to the high amount of thiocyanate in the plant-based diet of cows. This first detailed analysis of host defense proteins in human and bovine milk is an important step in understanding the function of milk in the development of the immune system of these two mammals. PMID:21556375
Yang, Yongxin; Zhao, Xiaowei; Yu, Shumin; Cao, Suizhong
2015-02-01
Yak (Bos grunniens) is an important natural resource in mountainous regions. To date, few studies have addressed the differences in the protein profiles of yak colostrum and milk. We used quantitative proteomics to compare the protein profiles of whey from yak colostrum and milk. Milk samples were collected from 21 yaks after calving (1 and 28 d). Whey protein profiles were generated through isobaric tag for relative and absolute quantification (iTRAQ)-labelled proteomics. We identified 183 proteins in milk whey; of these, the expression levels of 86 proteins differed significantly between the whey from colostrum and milk. Haemoglobin expression showed the greatest change; its levels were significantly higher in the whey from colostrum than in mature milk whey. Functional analysis revealed that many of the differentially expressed proteins were associated with biological regulation and response to stimuli. Further, eight differentially expressed proteins involved in the complement and coagulation cascade pathway were enriched in milk whey. These findings add to the general understanding of the protein composition of yak milk, suggest potential functions of the differentially expressed proteins, and provide novel information on the role of colostral components in calf survival. © 2014 Society of Chemical Industry.
Effect of protein degradability on milk production of dairy ewes.
Mikolayunas-Sandrock, C; Armentano, L E; Thomas, D L; Berger, Y M
2009-09-01
The objective of this experiment was to determine the effect of protein degradability of dairy sheep diets on milk yield and protein utilization across 2 levels of milk production. Three diets were formulated to provide similar energy concentrations and varying concentrations of rumen-degradable protein (RDP) and rumen-undegradable protein (RUP): 12% RDP and 4% RUP (12-4) included basal levels of RDP and RUP, 12% RDP and 6% RUP (12-6) included additional RUP, and 14% RDP and 4% RUP (14-4) included additional RDP. Diets were composed of alfalfa-timothy cubes, whole and ground corn, whole oats, dehulled soybean meal, and expeller soybean meal (SoyPlus, West Central, Ralston, IA). Estimates of RDP and RUP were based on the Small Ruminant Nutrition System model (2008) and feed and orts were analyzed for Cornell N fractions. Eighteen multiparous dairy ewes in midlactation were divided by milk yield (low and high) into 2 blocks of 9 ewes each and were randomly assigned within block (low and high) to 3 pens of 3 ewes each. Dietary treatments were arranged in a 3 x 3 Latin square within each block and applied to pens for 14-d periods. We hypothesized that pens consuming high-RUP diets (12-6) would produce more milk and milk protein than the basal diet (12-4) and pens consuming high-RDP diets (14-4) would not produce more milk than the basal diet (12-4). Ewes in the high-milk-yield square consumed more dry matter and produced more milk, milk fat, and milk protein than ewes in the low-milk-yield square. There was no effect of dietary treatment on dry matter intake. Across both levels of milk production, the 12-6 diet increased milk yield by 14%, increased milk fat yield by 14%, and increased milk protein yield by 13% compared with the 14-4 and 12-4 diets. Gross N efficiency (milk protein N/intake protein N) was 11 and 15% greater in the 12-6 and 12-4 diets, respectively, compared with the 14-4 diet. Milk urea N concentration was greater in the 12-6 diet and tended to be greater in the 14-4 diet compared with the 12-4 diet, indicating that the excretion of urea N in this study was more closely related to dietary crude protein concentration than to protein degradability.
Polberger, S; Räihä, N C; Juvonen, P; Moro, G E; Minoli, I; Warm, A
1999-09-01
To improve the nutritional management of pre-term infants, a new individualized human milk fortification system based on presupplementation milk protein analyses was evaluated. In an open, prospective, randomized multicenter study, 32 healthy preterm infants (birth weights, 920-1750 g) were enrolled at a mean of 21 days of age (range, 9-36 days) when tolerating exclusive enteral feedings of 150 ml/kg per day. All infants were fed human milk and were randomly allocated to fortification with a bovine whey protein fortifier (n = 16) or ultrafiltrated human milk protein (n = 16). All human milk was analyzed for protein content before fortification with the goal of a daily protein intake of 3.5 g/kg. During the study period (mean, 24 days) daily aliquots of the fortified milk were obtained for subsequent analyses of the protein content. Both fortifiers were well tolerated, and growth gain in weight, length, and head circumference, as well as final preprandial concentrations of serum urea, transthyretin, transferrin, and albumin were similar in both groups. The ultimate estimated protein intake was equivalent in both groups (mean 3.1+/-0.1 g/kg per day). Serum amino acid profiles were similar in both feeding groups, except for threonine (significantly higher in the bovine fortifier group) and proline and ornithine (significantly higher in the human milk protein group). Protein analyses of the milk before individual fortification provides a new tool for an individualized feeding system of the preterm infant. The bovine whey protein fortifier attained biochemical and growth results similar to those found in infants fed human milk protein exclusively with the corresponding protein intakes.
Zaher, Manal Mohamed; Ahmed, Eman Mohamed; Morsy, Amal Abd El Alim
2014-01-01
Cow's milk protein allergy (CMPA) is common in infants with variable clinical presentation including varied gastrointestinal manifestation. Cow's milk protein allergy chiefly, involving occurs in children below the age of 3 years, successful therapy depends on completely eliminating cow's milk proteins (CMP) from the child's diet. Ideally, with the replacement of hypo or an allergenic food. Symptoms suggestive of CMPA may be encountered in approximately 5 to 15% of infants emphasizing the importance of controlled elimination/milk challenge procedures. We report on an Egyptian male infant, who developed frequent attacks of hematemesis when begin to eat foods other than breast milk including cow's milk and its dairy products at the age of three months. Possible cow's milk protein allergy was suspected. Further diagnostic work-up was done including: Hb, hematocrit, MCV: iron, ferritin, CRP, occult blood in stools, antibodies to H-pylori and upper GIT endoscopy and biopsy from snip of duodenal mucosa. Measurement of serum cow milk protein specific IgE by radio allegro sorbent test (RAST) technique (immune CAP specific IgE method) and results revealed cow's milk protein allergy. It is concluded that cow's milk protein allergy should be considered in cases of hematemesis presented in early infancy in infants who fed cow's milk early and that hematemesis should be added to the list of clinical presentation of CMPA.
NASA Astrophysics Data System (ADS)
Hartanto, R.; Jantra, M. A. C.; Santosa, S. A. B.; Purnomoadi, A.
2018-01-01
The purpose of this research was to find an appropriate relationship model between the feed energy and protein ratio with the amount of production and quality of milk proteins. This research was conducted at Getasan Sub-district, Semarang Regency, Central Java Province, Indonesia using 40 samples (Holstein Friesian cattle, lactation period II-III and lactation month 3-4). Data were analyzed using linear and quadratic regressions, to predict the production and quality of milk protein from feed energy and protein ratio that describe the diet. The significance of model was tested using analysis of variance. Coefficient of determination (R2), residual variance (RV) and root mean square prediction error (RMSPE) were reported for the developed equations as an indicator of the goodness of model fit. The results showed no relationship in milk protein (kg), milk casein (%), milk casein (kg) and milk urea N (mg/dl) as function of CP/TDN. The significant relationship was observed in milk production (L or kg) and milk protein (%) as function of CP/TDN, both in linear and quadratic models. In addition, a quadratic change in milk production (L) (P = 0.003), milk production (kg) (P = 0.003) and milk protein concentration (%) (P = 0.026) were observed with increase of CP/TDN. It can be concluded that quadratic equation was the good fitting model for this research, because quadratic equation has larger R2, smaller RV and smaller RMSPE than those of linear equation.
Ye, Aiqian; Singh, Harjinder; Taylor, Michael W; Anema, Skelte G
2004-11-01
The changes in milk fat globules and fat globule surface proteins during concentration of whole milk using a pilot-scale multiple-effect evaporator were examined. The effects of heat treatment of milk at 95 degrees C for 20 s, prior to evaporation, on fat globule size and the milk fat globule membrane (MFGM) proteins were also determined. In both non-preheated and preheated whole milk, the size of milk fat globules decreased while the amount of total surface proteins at the fat globules increased as the milk passed through each effect of the evaporator. In non-preheated samples, the amount of caseins at the surface of fat globules increased markedly during evaporation with a relatively small increase in whey proteins. In preheated samples, both caseins and whey proteins were observed at the surface of fat globules and the amounts of these proteins increased during subsequent steps of evaporation. The major original MFGM proteins, xanthine oxidase, butyrophilin, PAS 6 and PAS 7, did not change during evaporation, however, PAS 6 and PAS 7 decreased during preheating. These results indicate that the proteins from the skim milk were adsorbed onto the fat globule surface when the milk fat globules were disrupted during evaporation.
Cow's milk allergy: where have we come from and where are we going?
Host, Arne; Halken, Susanne
2014-03-01
Since the 1930's the scientific literature on cow's milk protein allergy (CMPA) has accumulated. Over the last decade new diagnostic tools and treatment approaches have been developed. The diagnosis of reproducible adverse reactions to cow's milk proteins (CMP), i.e. CMPA, still has to be confirmed by controlled elimination and challenge procedures. Advanced diagnostic testing using epitope and microarray technology may in the future improve the diagnostic accuracy of CMPA by determination of specific IgE against specific allergen components of cow's milk protein. The incidence of CMPA in early childhood is approximately 2-3% in developed countries. Symptoms suggestive of CMPA may be encountered in 5-15% of infants emphasizing the importance of controlled elimination/milk challenge procedures. Reproducible clinical reactions to CMP in human milk have been reported in 0.5% of breastfed infants. Most infants with CMPA develop symptoms before 1 month of age, often within 1 week after inter introduction of CMP-based formula. The majority has two or more symptoms from two or more organ systems. Approximately 50-70% have cutaneous symptoms, 50-60% gastrointestinal symptoms and 20-30% respiratory symptoms. Symptoms may occur within 1 hour after milk intake (immediate reactions) or after 1 hour (late reactions). The prognosis of CMPA is good with a remission rate of approximately 45 to 50% at 1 year, 60 to 75% at 2 years and 85 to 90% at 3 years. Associated adverse reactions to other foods develop in up to 50% and allergy against inhalants in 50 to 80%. The basic treatment of CMPA is avoidance of CMP. In early childhood a milk substitute is needed. Documented extensively hydrolysed formulas are recommended, whereas partially hydrolysed formulas should not be used because of a high degree of antigenicity and allergenicity associated with adverse reactions. In case of intolerance to extensively hydrolysed formulas and multiple food allergies a formula based on aminoacids is recommended. Alternative milk substitutes such as sheep's and goat's milk should not be used because of a high degree of cross reactivity with CMP. Milk from other mammals such as mare and donkey may be tolerated by some children with CMPA. Soy protein is as allergenic as CMP and soy formula is not recommended for young children with CMPA because of a great risk of development of allergy to soy, whereas soymilk is normally tolerated in older children with CMPA. Recent treatment modalities are oral immunotherapy (OIT) involving the ingestion of increasing amounts of milk allergen on a regular basis to desensitize and potentially permanently tolerize patients to CMP. OIT can increase the reaction thresholds to CMP, but questions about safety and long-term efficacy remain. Anti-IgE therapy with Omalizumab may improve the safety and efficacy of OIT and may provide benefit in monotherapy.
Human milk proteins: key components for the biological activity of human milk.
Lönnerdal, Bo
2004-01-01
Human milk contains a wide array of proteins that provide biologic activities ranging from antimicrobial effects to immunostimulatory functions. Proteins like lactoferrin, secretory IgA, kappa-casein, lactoperoxidase, haptocorrin, lactadherin and peptides formed from human milk proteins during digestion can inhibit the growth of pathogenic bacteria and viruses and therefore protect against infection. At the same time, proteins like lactoferrin, bile-salt stimulated lipase, haptocorrin, kappa-casein, and folate-binding protein can facilitate the absorption of nutrients in the neonatal gut. However, the proteins in human milk themselves also provide adequate amounts of essential amino acids to the growing infant. This suggests a highly adapted digestive system, which allows the survival of some proteins and peptides in the upper gastrointestinal tract, while still allowing amino acid utilization from these proteins further down in the gut. It is now possible to produce recombinant human milk proteins in transgenic plants and animals, which makes it possible to further study the bioactivity of these proteins. Provided these proteins can be produced in large scale at low cost, that they show biologic activity and pose no safety concerns, it may be possible to add some human milk proteins to infant diets, such as formula and complementary foods. Human milk proteins produced in rice or potatoes, for example, could be added without much purification, because these staples commonly are used in weaning foods. Thus, some qualities provided by human milk may be included into other diets, although it is highly unlikely that all unique components of human milk can be copied this way.
van Herwijnen, Martijn J C; Zonneveld, Marijke I; Goerdayal, Soenita; Nolte-'t Hoen, Esther N M; Garssen, Johan; Stahl, Bernd; Maarten Altelaar, A F; Redegeld, Frank A; Wauben, Marca H M
2016-11-01
Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of the whole milk proteome and illustrates that milk-derived EV are macromolecular components with a unique functional proteome. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Use of Donkey Milk in Children with Cow’s Milk Protein Allergy
Polidori, Paolo; Vincenzetti, Silvia
2013-01-01
Human breast milk is the best nutritional support that insures the right development and influences the immune status of the newborn infant. However, when it is not possible to breast feed, it may be necessary to use commercial infant formulas that mimic, where possible, the levels and types of nutrients present in human milk. Despite this, some formula-fed infant develops allergy and/or atopic disease compared to breast-fed infants. Cow’s milk allergy can be divided into immunoglobulin IgE mediated food allergy and non-IgE-mediated food allergy. Most infants with cow’s milk protein allergy (CMPA) develop symptoms before 1 month of age, often within 1 week after introduction of cow’s milk-based formula. Donkey milk may be considered a good substitute for cow’s milk in feeding children with CMPA since its composition is very similar to human milk. Donkey milk total protein content is low (1.5–1.8 g/100 g), very close to human milk. A thorough analysis of the donkey milk protein profile has been performed in this study; the interest was focused on the milk proteins considered safe for the prevention and treatment of various disorders in humans. The content of lactoferrin, lactoperoxidase and lysozyme, peptides with antimicrobial activity, able to stimulate the development of the neonatal intestine, was determined. Donkey milk is characterized by a low casein content, with values very close to human milk; the total whey protein content in donkey milk ranges between 0.49 and 0.80 g/100 g, very close to human milk (0.68–0.83 g/100 g). Among whey proteins, α-lactalbumin average concentration in donkey milk is 1.8 mg/mL. The results of this study confirmed the possibility of using donkey milk in feeding children with CMPA. PMID:28239105
Bioactive Proteins in Human Milk-Potential Benefits for Preterm Infants.
Lönnerdal, Bo
2017-03-01
Human milk contains many bioactive proteins that are likely to be involved in the better outcomes of breast-fed infants compared with those fed infant formula. Bovine milk proteins or protein fractions may be able to provide some of these benefits and may, therefore, be used for preterm infants. Recombinant human milk proteins are likely to exert bioactivities similar to those of the native human milk proteins, but considerable research is needed before they can be used in routine care of preterm infants. Copyright © 2016 Elsevier Inc. All rights reserved.
Radiation dose to Malaysian infants from natural radionuclides via consumption of powdered milk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uwatse, Onosohwo Bemigho; Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin
Milk is the basic food stuff for the infants because they generally consume more milk on a daily basis as its minerals and proteins are essential for their growth and development, therefore, it is very important to assess the natural radioactivity levels and the associated dose in the widely consumed powered infant’s milk. As a result, 14 brands of infant’s powdered milk were collected from different supermarkets around Selangor, Malaysia and analysed for {sup 226}Ra, {sup 232}Th and {sup 40}K activities. The obtained mean activity of {sup 226}Ra, {sup 232}Th and {sup 40}K are 3.05±1.84, 2.55±2.48 and 99.1±69.5 Bqkg{sup −1},more » respectively. Among the analysed milk samples, the brand from Philippines (Lactogen) showed low level of radioactivity while Singaporean brand (S26 SMA Gold) showed the highest. The estimated mean annual effective doses due to the ingestion of natural radionuclides in the sampled milk are 635 and 111 µSv for infant ≤ 1y and infant 1-2y, respectively. The obtained dose value does not yet pose any significant radiological hazards to the population under investigation comparing with the 1.0 mSvy{sup −1} recommended by ICRP for all ages.« less
Amoebicidal Activity of Milk, Apo-lactoferrin, sIgA and Lysozyme
León-Sicairos, Nidia; López-Soto, Fernando; Reyes-López, Magda; Godínez-Vargas, Delfino; Ordaz-Pichardo, Cynthia; de la Garza, Mireya
2006-01-01
Objectives: To identify amoebicidal components in human milk and the effect of iron on the amoebicidal activity. Design: Investigation in axenic cultures of Entamoeba histolytica trophozoites. Methods: Amoebas were treated with 5%–20% of human, bovine and swine milk, with 10% of human milk fractions (i.e., casein, proteins except casein and fat) or with 1 mg/ml of human milk apo-lactoferrin, human secretory immunoglobulin type A (sIgA) and chicken egg-white lysozyme (i.e., purified proteins). Milk proteins were detected using immunoblot. Confocal microscopy was used to define the interaction of milk proteins (100 μM each) and amoebas. Experiments were done at least three times in triplicate, and mean and standard deviations were calculated. Results: Human and bovine milk were amoebicidal showing a concentration-dependent effect. The amoebicidal effect was increased in the absence of iron. Milk protein fractions, with the exception of casein, were the components responsible for the amoebicidal activity found. Apo-lactoferrin, sIgA and lysozyme were identified in the amoebicidal milk protein fraction. Apo-lactoferrin showed the major amoebicidal effect. These proteins, either alone or in combination, showed a killing effect on the trophozoites. They bound to the amoebic membrane causing cell rounding, lipid disruption and damage. Conclusions: Milk proteins such as apo-lactoferrin, sIgA and lysozyme are able to kill Entamoeba histolytica trophozoites. This study confirms the importance of feeding breast milk to newborns. PMID:16809402
Benoit, Joshua B; Attardo, Geoffrey M; Michalkova, Veronika; Krause, Tyler B; Bohova, Jana; Zhang, Qirui; Baumann, Aaron A; Mireji, Paul O; Takáč, Peter; Denlinger, David L; Ribeiro, Jose M; Aksoy, Serap
2014-04-01
In tsetse flies, nutrients for intrauterine larval development are synthesized by the modified accessory gland (milk gland) and provided in mother's milk during lactation. Interference with at least two milk proteins has been shown to extend larval development and reduce fecundity. The goal of this study was to perform a comprehensive characterization of tsetse milk proteins using lactation-specific transcriptome/milk proteome analyses and to define functional role(s) for the milk proteins during lactation. Differential analysis of RNA-seq data from lactating and dry (non-lactating) females revealed enrichment of transcripts coding for protein synthesis machinery, lipid metabolism and secretory proteins during lactation. Among the genes induced during lactation were those encoding the previously identified milk proteins (milk gland proteins 1-3, transferrin and acid sphingomyelinase 1) and seven new genes (mgp4-10). The genes encoding mgp2-10 are organized on a 40 kb syntenic block in the tsetse genome, have similar exon-intron arrangements, and share regions of amino acid sequence similarity. Expression of mgp2-10 is female-specific and high during milk secretion. While knockdown of a single mgp failed to reduce fecundity, simultaneous knockdown of multiple variants reduced milk protein levels and lowered fecundity. The genomic localization, gene structure similarities, and functional redundancy of MGP2-10 suggest that they constitute a novel highly divergent protein family. Our data indicates that MGP2-10 function both as the primary amino acid resource for the developing larva and in the maintenance of milk homeostasis, similar to the function of the mammalian casein family of milk proteins. This study underscores the dynamic nature of the lactation cycle and identifies a novel family of lactation-specific proteins, unique to Glossina sp., that are essential to larval development. The specificity of MGP2-10 to tsetse and their critical role during lactation suggests that these proteins may be an excellent target for tsetse-specific population control approaches.
Zhang, Lina; de Waard, Marita; Verheijen, Hester; Boeren, Sjef; Hageman, Jos A; van Hooijdonk, Toon; Vervoort, Jacques; van Goudoever, Johannes B; Hettinga, Kasper
2016-09-16
To objective of this study was to better understand the biological functions of breast milk proteins in relation to the growth and development of infants over the first six months of life. Breast milk samples from four individual women collected at seven time points in the first six months after delivery were analyzed by filter aided sample preparation and dimethyl labeling combined with liquid chromatography tandem mass spectrometry. A total of 247 and 200 milk serum proteins were identified and quantified, respectively. The milk serum proteome showed a high similarity (80% overlap) on the qualitative level between women and over lactation. The quantitative changes in milk serum proteins were mainly caused by three groups of proteins, enzymes, and transport and immunity proteins. Of these 21 significantly changed proteins, 30% were transport proteins, such as serum albumin and fatty acid binding protein, which are both involved in transporting nutrients to the infant. The decrease of the enzyme bile salt-activated lipase as well as the immunity proteins immunoglobulins and lactoferrin coincide with the gradual maturation of the digestive and immune system of infants. The human milk serum proteome didn't differ qualitatively but it did quantitatively, both between mothers and as lactation advanced. The changes of the breast milk serum proteome over lactation corresponded with the development of the digestive and immune system of infants. Breast milk proteins provide nutrition, but also contribute to healthy development of infants. Despite the previously reported large number of identified breast milk proteins and their changes over lactation, less is known on the changes of these proteins in individual mothers. This study is the first to determine the qualitative and quantitative changes of milk proteome over lactation between individual mothers. The results indicate that the differences in the milk proteome between individual mothers are more related to the quantitative level than qualitative level. The correlation between the changes of milk proteins and the gradual maturation of the gastrointestinal tract and immune system in infants, contributes to a better understanding of the biological functions of human milk proteins for the growth and development of infants. Copyright © 2016 Elsevier B.V. All rights reserved.
Cebo, C; Rebours, E; Henry, C; Makhzami, S; Cosette, P; Martin, P
2012-03-01
Although several studies have been devoted to the colloidal and soluble protein fractions of mare milk (caseins and whey proteins), to date little is known about the milk fat globule membrane (MFGM) protein fraction from mare milk. The objective of this study was thus to describe MFGM proteins from Equidae milk and to compare those proteins to already described MFGM proteins from cow and goat milk. Major MFGM proteins (namely, xanthine oxidase, butyrophilin, lactadherin, and adipophilin) already described in cow or goat milk were identified in mare milk using mass spectrometry. However, species-specific peculiarities were observed for 2 MFGM proteins: butyrophilin and lactadherin. A highly glycosylated 70-kDa protein was characterized for equine butyrophilin, whereas proteins of 64 and 67 kDa were characterized for cow and goat butyrophilin, respectively. Prominent differences across species were highlighted for lactadherin. Indeed, whereas 1 or 2 polypeptide chains were identified, respectively, by peptide mass fingerprinting matrix-assisted laser desorption/ionization-time of flight analysis for caprine and bovine lactadherin, 4 isoforms (60, 57, 48, and 45 kDa) for lactadherin from mare milk were identified by 10% sodium dodecyl sulfate-PAGE. Polymerase chain reaction experiments on lactadherin transcripts isolated from milk fat globules revealed the existence of 2 distinct lactadherin transcripts in the horse mammary gland. Cloning and sequencing of both transcripts encoding lactadherin showed an alternative use of a cryptic splice site located at the end of intron 5 of the equine lactadherin-encoding gene. This event results in the occurrence of an additional alanine (A) residue in the protein that disrupts a putative atypical N-glycosylation site (VNGC/VNAGC) described in human lactadherin. Liquid chromatography coupled with tandem mass spectrometry analyses confirmed the existence of both lactadherin variants in mare MFGM. We show here that lactadherin from Equidae milk is much more complex than that from Bovidae milk (i.e., cow and goat milk), therefore raising questions regarding the precise function of these different isoforms, if any, in the equine mammary gland. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Effects of thermal treatments on donkey milk nutritional characteristics.
Polidori, Paolo; Vincenzetti, Silvia
2013-12-01
Human breast milk is the best nutritional support to ensure right development and influence immune status of the newborn infant. However, when it is not possible to breast feed it may be necessary to use commercial infant formulas that mimic, where possible, the levels and types of nutrients present in human milk. Despite this, some formula-fed infants develop allergy and/or atopic disease compared to breast-fed infants. Most infants with cow's milk protein allergy (CMPA) develop symptoms before 1 month of age, often within 1 week after introduction of cow's milk-based formula. Donkey milk may be considered a good substitute for cow's milk in feeding children with CMPA since its composition is very similar to human milk. An in-depth analysis of the donkey milk protein profile has been performed in this study. The interest was focused on the milk proteins considered safe for the prevention and treatment of various disorders in human. Since donkey milk supply is related to its seasonal availability during the year, in this study were evaluated the effects of different thermal treatments on the protein fractions of donkey milk. The results obtained in fresh, frozen, powdered and lyophilized donkey milk showed different values in total proteins, caseins, whey proteins and lysozyme content. This study demonstrated the possibility of using lyophilization in order to maintain the nutritional characteristics of donkey milk. The article presents some promising patents on the effects of thermal treatments on donkey milk nutritional characteristics.
Nongonierma, Alice B; FitzGerald, Richard J
2018-06-01
Milk proteins have been extensively studied for their ability to yield a range of bioactive peptides following enzymatic hydrolysis/digestion. However, many hurdles still exist regarding the widespread utilization of milk protein-derived bioactive peptides as health enhancing agents for humans. These mostly arise from the fact that most milk protein-derived bioactive peptides are not highly potent. In addition, they may be degraded during gastrointestinal digestion and/or have a low intestinal permeability. The targeted release of bioactive peptides during the enzymatic hydrolysis of milk proteins may allow the generation of particularly potent bioactive hydrolysates and peptides. Therefore, the development of milk protein hydrolysates capable of improving human health requires, in the first instance, optimized targeted release of specific bioactive peptides. The targeted hydrolysis of milk proteins has been aided by a range of in silico tools. These include peptide cutters and predictive modeling linking bioactivity to peptide structure [i.e., molecular docking, quantitative structure activity relationship (QSAR)], or hydrolysis parameters [design of experiments (DOE)]. Different targeted enzymatic release strategies employed during the generation of milk protein hydrolysates are reviewed herein and their limitations are outlined. In addition, specific examples are provided to demonstrate how in silico tools may help in the identification and discovery of potent milk protein-derived peptides. It is anticipated that the development of novel strategies employing a range of in silico tools may help in the generation of milk protein hydrolysates containing potent and bioavailable peptides, which in turn may be used to validate their health promoting effects in humans. Graphical abstract The targeted enzymatic hydrolysis of milk proteins may allow the generation of highly potent and bioavailable bioactive peptides.
Pagl, Roland; Aurich, Jörg E; Müller-Schlösser, Frank; Kankofer, Marta; Aurich, Christine
2006-09-15
A problem of semen extenders based on milk or egg yolk is the fact that these biological products consist of a variety of substances. Extenders containing only components with clearly protective effects on spermatozoa would thus be an advantage. In this study, we have compared the effects of an extender containing defined caseinates and whey proteins only (EquiPro, defined milk protein extender) with skim milk extender on equine spermatozoa during cooled storage. The defined milk protein extender was used with and without the antioxidant N-acetyl cysteine (NAC). In a second experiment, semen was diluted with PBS or defined milk protein extender and was either stored directly or 90% of seminal plasma was removed by centrifugation and replaced by defined milk protein extender before storage. In both experiments, eight stallions were available for semen collections. Motility, velocity and membrane integrity of spermatozoa were determined by CASA immediately after semen processing and after 24, 48 and 72 h of storage at 5 degrees C. Total motility after 24 h of storage was lowest in semen diluted with PBS (p<0.05 versus all extenders). At 48 and 72 h, motility of spermatozoa in defined milk protein extender was significantly (p<0.05) higher than in PBS or skim milk extender. Velocity of spermatozoa after storage was highest in defined milk protein extender. Membrane integrity after storage was significantly (p<0.05) lower in semen diluted with PBS than in semen diluted with both extenders. Addition of NAC was without effect on the examined parameters. Centrifugation further increased the percentage of motile and membrane-intact spermatozoa in the defined milk protein extender (p<0.05). Velocity of spermatozoa in this extender was not negatively affected by centrifugation.
Effect of Processing Intensity on Immunologically Active Bovine Milk Serum Proteins.
Brick, Tabea; Ege, Markus; Boeren, Sjef; Böck, Andreas; von Mutius, Erika; Vervoort, Jacques; Hettinga, Kasper
2017-08-31
Consumption of raw cow's milk instead of industrially processed milk has been reported to protect children from developing asthma, allergies, and respiratory infections. Several heat-sensitive milk serum proteins have been implied in this effect though unbiased assessment of milk proteins in general is missing. The aim of this study was to compare the native milk serum proteome between raw cow's milk and various industrially applied processing methods, i.e., homogenization, fat separation, pasteurization, ultra-heat treatment (UHT), treatment for extended shelf-life (ESL), and conventional boiling. Each processing method was applied to the same three pools of raw milk. Levels of detectable proteins were quantified by liquid chromatography/tandem mass spectrometry following filter aided sample preparation. In total, 364 milk serum proteins were identified. The 140 proteins detectable in 66% of all samples were entered in a hierarchical cluster analysis. The resulting proteomics pattern separated mainly as high (boiling, UHT, ESL) versus no/low heat treatment (raw, skimmed, pasteurized). Comparing these two groups revealed 23 individual proteins significantly reduced by heating, e.g., lactoferrin (log2-fold change = -0.37, p = 0.004), lactoperoxidase (log2-fold change = -0.33, p = 0.001), and lactadherin (log2-fold change = -0.22, p = 0.020). The abundance of these heat sensitive proteins found in higher quantity in native cow's milk compared to heat treated milk, renders them potential candidates for protection from asthma, allergies, and respiratory infections.
Analysis of polymorphisms in milk proteins from cloned and sexually reproduced goats.
Xing, H; Shao, B; Gu, Y Y; Yuan, Y G; Zhang, T; Zang, J; Cheng, Y
2015-12-08
This study evaluates the relationship between the genotype and milk protein components in goats. Milk samples were collected from cloned goats and normal white goats during different postpartum (or abortion) phases. Two cloned goats, originated from the same somatic line of goat mammary gland epithelial cells, and three sexually reproduced normal white goats with no genetic relationships were used as the control. The goats were phylogenetically analyzed by polymerase chain reaction-restriction fragment length polymorphism. The milk protein components were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The results indicated that despite the genetic fingerprints being identical, the milk protein composition differed between the two cloned goats. The casein content of cloned goat C-50 was significantly higher than that of cloned goat C-4. Conversely, although the genetic fingerprints of the normal white goats N-1, N-2, and N-3 were not identical, the milk protein profiles did not differ significantly in their milk samples (obtained on postpartum day 15, 20, 25, 30, and 150). These results indicated an association between milk protein phenotypes and genetic polymorphisms, epigenetic regulation, and/or non-chromosomal factors. This study extends the knowledge of goat milk protein polymorphisms, and provides new strategies for the breeding of high milk-yielding goats.
The aggregation behavior and interactions of yak milk protein under thermal treatment.
Wang, T T; Guo, Z W; Liu, Z P; Feng, Q Y; Wang, X L; Tian, Q; Ren, F Z; Mao, X Y
2016-08-01
The aggregation behavior and interactions of yak milk protein were investigated after heat treatments. Skim yak milk was heated at temperatures in the range of 65 to 95°C for 10 min. The results showed that the whey proteins in yak milk were denatured after heat treatment, especially at temperatures higher than 85°C. Sodium dodecyl sulfate-PAGE analysis indicated that heat treatment induced milk protein denaturation accompanied with aggregation to a certain extent. When the heating temperature was 75 and 85°C, the aggregation behavior of yak milk proteins was almost completely due to the formation of disulfide bonds, whereas denatured α-lactalbumin and β-lactoglobulin interacted with κ-casein. When yak milk was heated at 85 and 95°C, other noncovalent interactions were found between proteins including hydrophobic interactions. The particle size distributions and microstructures demonstrated that the heat stability of yak milk proteins was significantly lowered by heat treatment. When yak milk was heated at 65 and 75°C, no obvious changes were found in the particle size distribution and microstructures in yak milk. When the temperature was 85 and 95°C, the particle size distribution shifted to larger size trend and aggregates were visible in the heated yak milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Allergenicity of milk of different animal species in relation to human milk.
Pastuszka, Robert; Barłowska, Joanna; Litwińczuk, Zygmunt
2016-12-31
Protein content in cow milk (with over 20 proteins, and peptides may also occur as a result of enzymatic hydrolysis) ranges from 2.5% to 4.2% and is about 1.5-2 times higher than in human milk. Its most important allergens are considered to be β-lactoglobulin (absent in human milk) and αs1-casein. The most similar in composition to human milk is horse and donkey milk. It contains considerably more whey proteins (35-50%) than cow milk (about 20%), and the concentration of the most allergenic casein fraction αs1 is 1.5-2.5 g/l. In comparison, the content of αs1-casein in cow milk is about 10 g/l. β-lactoglobulin present in donkey milk is a monomer, while in milk of ruminants it is a dimer. Like human milk, it contains a substantial amount of lactose (about 7%), which determines its flavour and facilitates calcium absorption. The high lysozyme content (about 1 g/l) gives it antibacterial properties (compared to trace amounts in ruminants). Camel milk is also more digestible and induces fewer allergic reactions, because it lacks β-lactoglobulin, and its β-casein has a different structure. It also contains (compared to cow milk) more antibacterial substances such as lysozyme, lactoferrin and immunoglobulins, and furthermore the number of immunoglobulins is compatible with human ones. Goat milk components have a higher degree of assimilability as compared to cow milk. Its main protein is β-casein, with total protein content depending on the αs1-casein genetic variant. Goats with the '0' variant do not synthesize this allergenic protein. Clinical and immunochemical studies indicate, however, that it cannot be a substitute for cow milk without the risk of an anaphylactic reaction.
Haptoglobin and serum amyloid A in bulk tank milk in relation to raw milk quality.
Akerstedt, Maria; Waller, Karin Persson; Sternesjö, Ase
2009-11-01
The aim of the present study was to evaluate relationships between the presence of the two major bovine acute phase proteins haptoglobin (Hp) and serum amyloid A (SAA) and raw milk quality parameters in bulk tank milk samples. Hp and SAA have been suggested as specific markers of mastitis but recently also as markers for raw milk quality. Since mastitis has detrimental effects on milk quality, it is important to investigate whether the presence of Hp or SAA indicates such changes in the composition and properties of the milk. Bulk tank milk samples (n=91) were analysed for Hp, SAA, total protein, casein, whey protein, proteolysis, fat, lactose, somatic cell count and coagulating properties. Samples with detectable levels of Hp had lower casein content, casein number and lactose content, but higher proteolysis than samples without Hp. Samples with detectable levels of SAA had lower casein number and lactose content, but higher whey protein content than samples without SAA. The presence of acute phase proteins in bulk tank milk is suggested as an indicator for unfavourable changes in the milk composition, e.g. protein quality, due to udder health disturbances, with economical implications for the dairy industry.
Beck, Kristen L; Weber, Darren; Phinney, Brett S; Smilowitz, Jennifer T; Hinde, Katie; Lönnerdal, Bo; Korf, Ian; Lemay, Danielle G
2015-05-01
Milk has been well established as the optimal nutrition source for infants, yet there is still much to be understood about its molecular composition. Therefore, our objective was to develop and compare comprehensive milk proteomes for human and rhesus macaques to highlight differences in neonatal nutrition. We developed a milk proteomics technique that overcomes previous technical barriers including pervasive post-translational modifications and limited sample volume. We identified 1606 and 518 proteins in human and macaque milk, respectively. During analysis of detected protein orthologs, we identified 88 differentially abundant proteins. Of these, 93% exhibited increased abundance in human milk relative to macaque and include lactoferrin, polymeric immunoglobulin receptor, alpha-1 antichymotrypsin, vitamin D-binding protein, and haptocorrin. Furthermore, proteins more abundant in human milk compared with macaque are associated with development of the gastrointestinal tract, the immune system, and the brain. Overall, our novel proteomics method reveals the first comprehensive macaque milk proteome and 524 newly identified human milk proteins. The differentially abundant proteins observed are consistent with the perspective that human infants, compared with nonhuman primates, are born at a slightly earlier stage of somatic development and require additional support through higher quantities of specific proteins to nurture human infant maturation.
The composition of cheetah (Acinonyx jubatus) milk.
Osthoff, G; Hugo, A; de Wit, M
2006-01-01
Milk was obtained from two captive bred cheetahs. The nutrient content was 99.6 g protein; 64.8 g fat; and 40.21 g lactose per kg milk. Small amounts of oligosaccharides, glucose, galactose and fucose were noted. The protein fraction respectively consisted of 34.2 g caseins per kg milk and of 65.3 g whey proteins per kg milk. Very little variation in milk composition among the individual cheetahs was noted. Electrophoresis and identification of protein bands showed a similar migrating sequence of proteins as seen in lion's and cat's milk, with small differences in the beta-caseins. The lipid fraction contains 290.4 g saturated and 337.3 g mono-unsaturated fatty acids per kg milk fat respectively. The high content of 279.5 g kg(-1) milk fat of polyunsaturated fatty acids is due to a high content in alpha-linolenic acid. No short chain fatty acids, but substantial levels of uneven carbon chain fatty acids were observed.
NASA Astrophysics Data System (ADS)
Zhou, Qun; Sun, Su-Qin; Yu, Lu; Xu, Chang-Hua; Noda, Isao; Zhang, Xin-Rong
2006-11-01
Infrared (IR) spectroscopy and two-dimensional (2D) correlation IR spectroscopy are shown to offer some information about stability and shelf life of milk powders without separation and extraction of individual components in this paper. Temperature has been chosen as the perturbation to monitor the infrared behavior of various milk powders, namely, whole milk powder (WMP), sweet whole milk powder (Sweet WMP), low-fat milk powder (LFMP), and skim milk powder (SMP). The sequential order of changes in protein, fat and carbohydrates (mainly lactose) in milk powders is studied for the first time. The protein changes before the sucrose in WMP, whereas the sucrose changes before the protein in Sweet WMP under temperature perturbation. It is also found that in SMP, carbohydrate changes prior to protein whereas in LFMP and WMP protein changes first as the temperature is increased. The conclusion can provide some useful reference to understand the thermal stability of milk powders.
Sharma, Pankaj; Oey, Indrawati; Everett, David W
2016-09-15
Thermodynamics of milk components (milk fat, xanthine oxidase, caseins and whey proteins) in pulsed electric field (PEF)-treated milk were compared with thermally treated milk (63 °C for 30 min and 73 °C for 15s). PEF treatments were applied at 20 or 26 kV cm(-1) for 34 μs with or without pre-heating of milk (55 °C for 24s), using bipolar square wave pulses in a continuous mode of operation. PEF treatments did not affect the final temperatures of fat melting (Tmelting) or xanthine oxidase denaturation (Tdenaturation), whereas thermal treatments increased both the Tmelting of milk fat and the Tdenaturation for xanthine oxidase by 2-3 °C. Xanthine oxidase denaturation was ∼13% less after PEF treatments compared with the thermal treatments. The enthalpy change (ΔH of denaturation) of whey proteins decreased in the treated-milk, and denaturation increased with the treatment intensity. New endothermic peaks in the calorimetric thermograms of treated milk revealed the formation of complexes due to interactions between MFGM (milk fat globule membrane) proteins and skim milk proteins. Evidence for the adsorption of complexes onto the MFGM surface was obtained from the increase in surface hydrophobicity of proteins, revealing the presence of unfolded hydrophobic regions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dallas, David C.; German, J. Bruce
2017-01-01
Milk proteins are a complex and diverse source of biological activities. Beyond their function intact, milk proteins also act as carriers of encrypted functional sequences that when released as peptides exert biological functions, including antimicrobial and immunomodulatory, which could contribute to the infant’s competitive success. Research has now revealed that the release of these functional peptides begins within the mammary gland itself. A complex array of proteases produced in mother’s milk have been shown to be active in the milk, releasing these peptides. Moreover, our recent research demonstrates that these milk proteases continue to digest milk proteins within the infant’s stomach, possibly even to a larger extent than the infant’s own proteases. As the neonate has relatively low digestive capacity, the activity of milk proteases in the infant may provide important assistance to digesting milk proteins. The coordinated release of these encrypted sequences is accomplished by selective proteolytic action provided by an array of native milk proteases and infant-produced enzymes. The task for scientists is now to discover the selective advantages of this protein-protease based peptide release system. PMID:28346930
Dallas, David C; German, J Bruce
2017-01-01
Milk proteins are a complex and diverse source of biological activities. Beyond their function, intact milk proteins also act as carriers of encrypted functional sequences that, when released as peptides, exert biological functions, including antimicrobial and immunomodulatory activity, which could contribute to the infant's competitive success. Research has now revealed that the release of these functional peptides begins within the mammary gland itself. A complex array of proteases produced in mother's milk has been shown to be active in the milk, releasing these peptides. Moreover, our recent research demonstrates that these milk proteases continue to digest milk proteins within the infant's stomach, possibly even to a larger extent than the infant's own proteases. As the neonate has relatively low digestive capacity, the activity of milk proteases in the infant may provide important assistance to digesting milk proteins. The coordinated release of these encrypted sequences is accomplished by selective proteolytic action provided by an array of native milk proteases and infant-produced enzymes. The task for scientists is now to discover the selective advantages of this protein-protease-based peptide release system. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.
Benoit, Joshua B.; Attardo, Geoffrey M.; Michalkova, Veronika; Krause, Tyler B.; Bohova, Jana; Zhang, Qirui; Baumann, Aaron A.; Mireji, Paul O.; Takáč, Peter; Denlinger, David L.; Ribeiro, Jose M.; Aksoy, Serap
2014-01-01
In tsetse flies, nutrients for intrauterine larval development are synthesized by the modified accessory gland (milk gland) and provided in mother's milk during lactation. Interference with at least two milk proteins has been shown to extend larval development and reduce fecundity. The goal of this study was to perform a comprehensive characterization of tsetse milk proteins using lactation-specific transcriptome/milk proteome analyses and to define functional role(s) for the milk proteins during lactation. Differential analysis of RNA-seq data from lactating and dry (non-lactating) females revealed enrichment of transcripts coding for protein synthesis machinery, lipid metabolism and secretory proteins during lactation. Among the genes induced during lactation were those encoding the previously identified milk proteins (milk gland proteins 1–3, transferrin and acid sphingomyelinase 1) and seven new genes (mgp4–10). The genes encoding mgp2–10 are organized on a 40 kb syntenic block in the tsetse genome, have similar exon-intron arrangements, and share regions of amino acid sequence similarity. Expression of mgp2–10 is female-specific and high during milk secretion. While knockdown of a single mgp failed to reduce fecundity, simultaneous knockdown of multiple variants reduced milk protein levels and lowered fecundity. The genomic localization, gene structure similarities, and functional redundancy of MGP2–10 suggest that they constitute a novel highly divergent protein family. Our data indicates that MGP2–10 function both as the primary amino acid resource for the developing larva and in the maintenance of milk homeostasis, similar to the function of the mammalian casein family of milk proteins. This study underscores the dynamic nature of the lactation cycle and identifies a novel family of lactation-specific proteins, unique to Glossina sp., that are essential to larval development. The specificity of MGP2–10 to tsetse and their critical role during lactation suggests that these proteins may be an excellent target for tsetse-specific population control approaches. PMID:24763277
Wagner, Stefan; Thresher, Rosemary; Bland, Ross; Laible, Götz
2015-01-01
Biopharming for the production of recombinant pharmaceutical proteins in the mammary gland of transgenic animals is an attractive but laborious alternative compared to mammalian cell fermentation. The disadvantage of the lengthy process of genetically modifying an entire animal could be circumvented with somatic transduction of only the mammary epithelium with recombinant, replication-defective viruses. While other viral vectors offer very limited scope for this approach, vectors based on adeno-associated virus (AAV) appear to be ideal candidates because AAV is helper-dependent, does not induce a strong immune response and has no association with disease. Here, we sought to test the suitability of recombinant AAV (rAAV) for biopharming. Using reporter genes, we showed that injected rAAV efficiently transduced mouse mammary cells. When rAAV encoding human myelin basic protein (hMBP) was injected into the mammary glands of mice and rabbits, this resulted in the expression of readily detectable protein levels of up to 0.5 g/L in the milk. Furthermore we demonstrated that production of hMBP persisted over extended periods and that protein expression could be renewed in a subsequent lactation by re-injection of rAAV into a previously injected mouse gland. PMID:26463440
Tacoma, Rinske; Fields, Julia; Ebenstein, David B; Lam, Ying-Wai; Greenwood, Sabrina L
2016-01-01
Milk is a highly nutritious natural product that provides not only a rich source of amino acids to the consumer but also hundreds of bioactive peptides and proteins known to elicit health-benefitting activities. We investigated the milk protein profile produced by Holstein and Jersey dairy cows maintained under the same diet, management and environmental conditions using proteomic approaches that optimize protein extraction and characterization of the low abundance proteins within the skim milk fraction of bovine milk. In total, 935 low abundance proteins were identified. Gene ontology classified all proteins identified into various cellular localization and function categories. A total of 43 low abundance proteins were differentially expressed between the two dairy breeds. Bioactive proteins involved in host-defense, including lactotransferrin (P=0.0026) and complement C2 protein (P=0.0001), were differentially expressed by the two breeds, whereas others such as osteopontin (P=0.1788) and lactoperoxidase (P=0.2973) were not. This work is the first to outline the protein profile produced by two important breeds of dairy cattle maintained under the same diet, environment and management conditions in order to observe likely true breed differences. This research now allows us to better understand and contrast further research examining the bovine proteome that includes these different breeds. Within the last decade, the amount of research characterizing the bovine milk proteome has increased due to growing interest in the bioactive proteins that are present in milk. Proteomic analysis of low abundance whey proteins has mainly focused on human breast milk; however, previous research has highlighted the presence of bioactive proteins in bovine milk. Recent publications outlining the cross-reactivity of bovine bioactive proteins on human biological function highlight the need for further investigation into the bovine milk proteome. The rationale behind this study is to characterize and compare the low abundance protein profile in the skim milk fraction produced from Holstein and Jersey breeds of dairy cattle, which are two major dairy cattle breeds in the USA. A combination of fractionation strategies was used to efficiently enrich the low abundance proteins from bovine skim milk for proteomic profiling. A total of 935 low abundance proteins were identified and compared between the two bovine breeds. The results from this study provide insight into breed differences and similarities in the milk proteome profile produced by two breeds of dairy cattle. Copyright © 2015 Elsevier B.V. All rights reserved.
Misawa, Noriko; Barbano, David M; Drake, MaryAnne
2016-07-01
Combinations of fresh liquid microfiltration retentate of skim milk, ultrafiltered retentate and permeate produced from microfiltration permeate, cream, and dried lactose monohydrate were used to produce a matrix of 20 milks. The milks contained 5 levels of casein as a percentage of true protein of about 5, 25, 50, 75, and 80% and 4 levels of true protein of 3.0, 3.76, 4.34, and 5.0% with constant lactose percentage of 5%. The experiment was replicated twice and repeated for both 1 and 2% fat content. Hunter color measurements, relative viscosity, and fat globule size distribution were measured, and a trained panel documented appearance and texture attributes on all milks. Overall, casein as a percentage of true protein had stronger effects than level of true protein on Hunter L, a, b values, relative viscosity, and fat globule size when using fresh liquid micellar casein concentrates and milk serum protein concentrates produced by a combination of microfiltration and ultrafiltration. As casein as a percentage of true protein increased, the milks became more white (higher L value), less green (lower negative a value), and less yellow (lower b value). Relative viscosity increased and d(0.9) generally decreased with increasing casein as a percentage of true protein. Panelists perceived milks with increasing casein as a percentage of true protein as more white, more opaque, and less yellow. Panelists were able to detect increased throat cling and mouthcoating with increased casein as a percentage of true protein in 2% milks, even when differences in appearance among milks were masked. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Time course of allergy to extensively hydrolyzed cow's milk proteins in infants.
de Boissieu, D; Dupont, C
2000-01-01
We report on the follow-up of 22 infants allergic to cow's milk proteins who did not tolerate extensively hydrolyzed protein formulas. After successful use of an amino acid-based diet for a duration of 11.8 +/- 8.7 months, evolution differed according to the presence or absence of associated allergy to other foods. Cow's milk protein tolerance occurred earlier in the patients (n = 9) whose allergy was limited to cow's milk proteins and to extensively hydrolyzed protein formulas.
Chen, Ren-Jin; Yang, Zhang-Ping; Mao, Yong-Jiang; Chen, Ying; Chang, Ling-Ling; Ji, De-Jun; Wu, Hai-Tao; Li, Yun-Long; Li, Rui
2010-12-01
The polymorphism of Interleukin-8 (IL8) gene were investigated for 610 Chinese Holstein cows of 30 bull families from a dairy farm in Shanghai using Polymerase Chain Reaction-Single Strand Conformation Polymorphism (PCR-SSCP) technique with a mixed animal model to verify the effects of the polymorphisms on some milk productive performance, tested day milk yield, tested day fat percentage, tested day milk protein percentage, 305 d corrected milk yield, 305 d milk fat yield, 305 d milk protein yield, and somatic cell score (SCS). The aim was to explore the significant molecular marker in practical dairy production. Three genotypes were identified and the genotypic frequencies of KK, KA, and AA were 0.187, 0.451, and 0.362, respectively. The gene frequencies of K and A were 0.412 and 0.588. The results showed highly significant (P < 0.01) association of IL8 mutations with tested day milk yield, 305 d milk protein yield, 305 d corrected milk yield and 305 d milk fat yield, SCS and tested day milk protein percentage (P < 0.05). However, no association (P > 0.05) with tested day milk fat percentage was recorded. The cows with KK genotype had higher tested day milk yield, 305 d milk protein yield, 305 d corrected milk yield and 305 d milk fat yield than those with AA and KA genotypes (P < 0.01). The least square mean of SCS for KK was significantly lower than that with AA and KA genotypes (P < 0.01). AA genotype was significant lower in tested day milk protein percentage than KK and KA genotypes (P < 0.05). The IL8 gene genetic diversity has a great genetic effect on milk traits and mastitis resistance and could be a useful genetic marker for Chinese Holstein breeding.
Trimboli, Francesca; Morittu, Valeria Maria; Cicino, Caterina; Palmieri, Camillo; Britti, Domenico
2017-10-13
The substitution of ewe milk with more economic cow milk is a common fraud. Here we present a capillary electrophoresis method for the quantification of ewe milk in ovine/bovine milk mixtures, which allows for the rapid and inexpensive recognition of ewe milk adulteration with cow milk. We utilized a routine CE method for human blood and urine proteins analysis, which fulfilled the separation of skimmed milk proteins in alkaline buffer. Under this condition, ovine and bovine milk exhibited a recognizable and distinct CE protein profiles, with a specific ewe peak showing a reproducible migration zone in ovine/bovine mixtures. Based on ewe specific CE peak, we developed a method for ewe milk quantification in ovine/bovine skimmed milk mixtures, which showed good linearity, precision and accuracy, and a minimum amount of detectable fraudulent cow milk equal to 5%. Copyright © 2017 Elsevier B.V. All rights reserved.
Producing recombinant human milk proteins in the milk of livestock species.
Bösze, Zsuzsanna; Baranyi, Mária; Whitelaw, C Bruce A
2008-01-01
Recombinant human proteins produced by the mammary glands of genetically modified transgenic livestock mammals represent a special aspect of milk bioactive components. For therapeutic applications, the often complex posttranslational modifications of human proteins should be recapitulated in the recombinant products. Compared to alternative production methods, mammary gland production is a viable option, underlined by a number of transgenic livestock animal models producing abundant biologically active foreign proteins in their milk. Recombinant proteins isolated from milk have reached different phases of clinical trials, with the first marketing approval for human therapeutic applications from the EMEA achieved in 2006.
Meredith-Dennis, Laura; Xu, Gege; Goonatilleke, Elisha; Lebrilla, Carlito B; Underwood, Mark A; Smilowitz, Jennifer T
2018-02-01
When human milk is unavailable, banked milk is recommended for feeding premature infants. Milk banks use processes to eliminate pathogens; however, variability among methods exists. Research aim: The aim of this study was to compare the macronutrient (protein, carbohydrate, fat, energy), immune-protective protein, and human milk oligosaccharide (HMO) content of human milk from three independent milk banks that use pasteurization (Holder vs. vat techniques) or retort sterilization. Randomly acquired human milk samples from three different milk banks ( n = 3 from each bank) were analyzed for macronutrient concentrations using a Fourier transform mid-infrared spectroscopy human milk analyzer. The concentrations of IgA, IgM, IgG, lactoferrin, lysozyme, α-lactalbumin, α antitrypsin, casein, and HMO were analyzed by mass spectrometry. The concentrations of protein and fat were significantly ( p < .05) less in the retort sterilized compared with the Holder and vat pasteurized samples, respectively. The concentrations of all immune-modulating proteins were significantly ( p < .05) less in the retort sterilized samples compared with vat and/or Holder pasteurized samples. The total HMO concentration and HMOs containing fucose, sialic acid, and nonfucosylated neutral sugars were significantly ( p < .05) less in retort sterilized compared with Holder pasteurized samples. Random milk samples that had undergone retort sterilization had significantly less immune-protective proteins and total and specific HMOs compared with samples that had undergone Holder and vat pasteurization. These data suggest that further analysis of the effect of retort sterilization on human milk components is needed prior to widespread adoption of this process.
Leung, Alexander Kc; Sauve, Reginald S
2003-09-01
Early introduction of whole cow's milk may lead to iron deficiency anemia. From a nutritional point of view, it is best to delay the introduction of whole cow's milk until the infant is one year old. While there is no evidence to suggest adverse clinical sequelae associated with the increased renal solute load in healthy infants, feeding with whole cow's milk would narrow the margin of safety in situations that may lead to dehydration. Early exposure to cow's milk proteins increases the risk of developing allergy to milk proteins. Because of the possible association between early exposure to cow's milk proteins and risk for type 1 diabetes mellitus, breast-feeding and avoidance of commercially available cow's milk and products containing intact cow's milk protein during the first year of life are strongly encouraged in families with a strong history of insulin dependent diabetes mellitus. The authors suggest that the optimal food in infancy is human breast milk. If human milk is not available, it is preferred that iron-fortified formulas rather than whole cow's milk be used during the first year of life.
Mitchell, Cameron J.; McGregor, Robin A.; D’Souza, Randall F.; Thorstensen, Eric B.; Markworth, James F.; Fanning, Aaron C.; Poppitt, Sally D.; Cameron-Smith, David
2015-01-01
The differential ability of various milk protein fractions to stimulate muscle protein synthesis (MPS) has been previously described, with whey protein generally considered to be superior to other fractions. However, the relative ability of a whole milk protein to stimulate MPS has not been compared to whey. Sixteen healthy middle-aged males ingested either 20 g of milk protein (n = 8) or whey protein (n = 8) while undergoing a primed constant infusion of ring 13C6 phenylalanine. Muscle biopsies were obtained 120 min prior to consumption of the protein and 90 and 210 min afterwards. Resting myofibrillar fractional synthetic rates (FSR) were 0.019% ± 0.009% and 0.021% ± 0.018% h−1 in the milk and whey groups respectively. For the first 90 min after protein ingestion the FSR increased (p < 0.001) to 0.057% ± 0.018% and 0.052% ± 0.024% h−1 in the milk and whey groups respectively with no difference between groups (p = 0.810). FSR returned to baseline in both groups between 90 and 210 min after protein ingestion. Despite evidence of increased rate of digestion and leucine availability following the ingestion of whey protein, there was similar activation of MPS in middle-aged men with either 20 g of milk protein or whey protein. PMID:26506377
A study of Lusitano mare lactation curve with Wood's model.
Santos, A S; Silvestre, A M
2008-02-01
Milk yield and composition data from 7 nursing Lusitano mares (450 to 580 kg of body weight and 2 to 9 parities) were used in this study (5 measurements per mare for milk yield and 8 measurements for composition). Wood's lactation model was used to describe milk fat, protein, and lactose lactation curves. Mean values for the concentration of major milk components across the lactation period (180 d) were 5.9 g/kg of fat, 18.4 g/kg of protein, and 60.8 g/kg of lactose. Milk fat and protein (g/kg) decreased and lactose (g/kg) increased during the 180 d of lactation. Curves for milk protein and lactose yields (g) were similar in shape to the milk yield curve; protein yield peaked at 307 g on d 10 and lactose peaked at 816 g on d 45. The fat (g) curve was different in shape compared with milk, protein, and lactose yields. Total production of the major milk constituents throughout the 180 d of lactation was estimated to be 12.0, 36.1, and 124 kg for fat, protein, and lactose, respectively. The algebraic model fitted by a nonlinear regression procedure to the data resulted in reasonable prediction curves for milk yield (R(a)(2) of 0.89) and the major constituents (R(a)(2) ranged from 0.89 to 0.95). The lactation curves of major milk constituents in Lusitano mares were similar, both in shape and values, to those found in other horse breeds. The established curves facilitate the estimation of milk yield and variation of milk constituents at different stages of lactation for both nursing and dairy mares, providing important information relative to weaning time and foal supplementation.
Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins
Dallas, David C.; Citerne, Florine; Tian, Tian; Silva, Vitor L. M.; Kalanetra, Karen M.; Frese, Steven A.; Robinson, Randall C.; Mills, David A.; Barile, Daniela
2015-01-01
Scope The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. Methods and results Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1,500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. Conclusion The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases. PMID:26616950
Carbonylation of milk powder proteins as a consequence of processing conditions.
Fenaille, François; Parisod, Véronique; Tabet, Jean-Claude; Guy, Philippe A
2005-08-01
During industrial treatments, milk proteins could be oxidatively modified, thus leading to the formation of modified/oxidised amino acid residues. The apparition of such modified residues may contribute to the formation of new immunologically reactive structures. Some of these adducts could, in an advanced stage, lead to cross-linked protein species whose proteolytic susceptibility would be drastically decreased. Such protein species, that are resistant to digestion, could also constitute major food allergens. Therefore, these oxidative protein modifications tend to increase the natural allergenicity of milk proteins. For these reasons, monitoring milk protein oxidative modifications could be very useful regarding both product quality and allergenicity issues. In the present paper, we highlight, using different analytical approaches, the preferential carbonylation of beta-lactoglobulin (beta-Lg) during industrial treatments of milk. This result is particularly interesting since native beta-Lg represents one of the major milk allergens.
Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins.
Dallas, David C; Citerne, Florine; Tian, Tian; Silva, Vitor L M; Kalanetra, Karen M; Frese, Steven A; Robinson, Randall C; Mills, David A; Barile, Daniela
2016-04-15
The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Detection of cow's milk proteins and minor components in human milk using proteomics techniques.
Coscia, A; Orrù, S; Di Nicola, P; Giuliani, F; Varalda, A; Peila, C; Fabris, C; Conti, A; Bertino, E
2012-10-01
Cow's milk proteins (CMPs) are the best characterized food allergens. The aim of this study was to investigate cow's milk allergens in human colostrum of term and preterm newborns' mothers, and other minor protein components by proteomics techniques, more sensitive than other techniques used in the past. Sixty-two term and 11 preterm colostrum samples were collected, subjected to a treatment able to increase the concentration of the most diluted proteins and simultaneously to reduce the concentration of the proteins present at high concentration (Proteominer Treatment), and subsequently subjected to the steps of proteomic techniques. The most relevant finding in this study was the detection of the intact bovine alpha-S1-casein in human colostrum, then bovine alpha-1-casein could be considered the cow's milk allergen that is readily secreted in human milk and could be a cause of sensitization to cow's milk in exclusively breastfed predisposed infants. Another interesting result was the detection, at very low concentrations, of proteins previously not described in human milk (galectin-7, the different isoforms of the 14-3-3 protein and the serum amyloid P-component), probably involved in the regulation of the normal cell growth, in the pro-apoptotic function and in the regulation of tissue homeostasis. Further investigations are needed to understand if these families of proteins have specific biological activity in human milk.
Effect of processing on nutritive values of milk protein.
Borad, Sanket G; Kumar, Anuj; Singh, Ashish K
2017-11-22
Milk is an essential source of nutritionally excellent quality protein in human, particularly in vegan diet. Before consumption, milk is invariably processed depending upon final product requirement. This processing may alter the nutritive value of protein in a significant manner. The processing operations like thermal treatment, chemical treatment, biochemical processing, physical treatments, nonconventional treatments, etc. may exert positive or negative influence on nutritional quality of milk proteins. On one side, processing enhances the nutritive and therapeutic values of protein while on other side intermediate or end products generated during protein reactions may cause toxicity and/or antigenicity upon consumption at elevated level. The review discusses the changes occurring in nutritive quality of milk proteins under the influence of various processing operations.
Role of milk protein-based products in some quality attributes of goat milk yogurt.
Gursel, A; Gursoy, A; Anli, E A K; Budak, S O; Aydemir, S; Durlu-Ozkaya, F
2016-04-01
Goat milk yogurts were manufactured with the fortification of 2% (wt/vol) skim goat milk powder (SGMP), sodium caseinate (NaCn), whey protein concentrate (WPC), whey protein isolate (WPI), or yogurt texture improver (YTI). Yogurts were characterized based on compositional, microbiological, and textural properties; volatile flavor components (with gas chromatography); and sensory analyses during storage (21d at 5 °C). Compared with goat milk yogurt made by using SGMP, the other goat milk yogurt variants had higher protein content and lower acidity values. Goat milk yogurts with NaCn and WPC, in particular, had better physical characteristics. Using WPI caused the hardest structure in yogurt, leading to higher syneresis values. Acetaldehyde and ethanol formation increased with the incorporation of WPI, WPC, or YTI to yogurt milk. The tyrosine value especially was higher in the samples with NaCn and YTI than in the samples with WPC and WPI. Counts of Streptococcus thermophilus were higher than the counts of Lactobacillus delbrueckii ssp. bulgaricus, possibly due to a stimulatory effect of milk protein-based ingredients other than SGMP on the growth of S. thermophilus. Yogurt with NaCn was the best accepted among the yogurts. For the parameters used, milk protein-based products such as NaCn or WPC have promising features as suitable ingredients for goat milk yogurt manufacture. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Grewal, Manpreet Kaur; Chandrapala, Jayani; Donkor, Osaana; Apostolopoulos, Vasso; Vasiljevic, Todor
2017-01-01
Accelerated shelf-life testing is applied to a variety of products to estimate keeping quality over a short period of time. The industry has not been successful in applying this approach to ultra-high temperature (UHT) milk because of chemical and physical changes in the milk proteins that take place during processing and storage. We investigated these protein changes, applying accelerated shelf-life principles to UHT milk samples with different fat levels and using native- and sodium dodecyl sulfate-PAGE. Samples of UHT skim and whole milk were stored at 20, 30, 40, and 50°C for 28d. Irrespective of fat content, UHT treatment had a similar effect on the electrophoretic patterns of milk proteins. At the start of testing, proteins were bonded mainly through disulfide and noncovalent interactions. However, storage at and above 30°C enhanced protein aggregation via covalent interactions. The extent of aggregation appeared to be influenced by fat content; whole milk contained more fat than skim milk, implying aggregation via melted or oxidized fat, or both. Based on reduction in loss in absolute quantity of individual proteins, covalent crosslinking in whole milk was facilitated mainly by products of lipid oxidation and increased access to caseins for crosslinking reactions. Maillard and dehydroalanine products were the main contributors involved in protein changes in skim milk. Protein crosslinking appeared to follow a different pathway at higher temperatures (≥40°C) than at lower temperatures, making it very difficult to extrapolate these changes to protein interactions at lower temperatures. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Burd, Nicholas A; Gorissen, Stefan H; van Vliet, Stephan; Snijders, Tim; van Loon, Luc Jc
2015-10-01
Protein consumed after resistance exercise increases postexercise muscle protein synthesis rates. To date, dairy protein has been studied extensively, with little known about the capacity of other protein-dense foods to augment postexercise muscle protein synthesis rates. We aimed to compare protein digestion and absorption kinetics, postprandial amino acid availability, anabolic signaling, and the subsequent myofibrillar protein synthetic response after the ingestion of milk compared with beef during recovery from resistance-type exercise. In crossover trials, 12 healthy young men performed a single bout of resistance exercise. Immediately after cessation of exercise, participants ingested 30 g protein by consuming isonitrogenous amounts of intrinsically l-[1-(13)C]phenylalanine-labeled beef or milk. Blood and muscle biopsy samples were collected at rest and after exercise during primed continuous infusions of l-[ring-(2)H5]phenylalanine and l-[ring-3,5-(2)H2]tyrosine to assess protein digestion and absorption kinetics, plasma amino acid availability, anabolic signaling, and subsequent myofibrillar protein synthesis rates in vivo in young men. Beef protein-derived phenylalanine appeared more rapidly in circulation compared with milk ingestion (P < 0.001). The availability of phenylalanine during the 5-h postexercise period tended to be higher after beef (64% ± 3%) ingestion than after milk ingestion (57% ± 3%; P = 0.08). Both beef and milk ingestion were followed by an increase in the phosphorylation of mammalian target of rapamycin complex 1 and 70-kDa S6 protein kinase 1 during postexercise recovery. Milk ingestion increased myofibrillar protein synthesis rates to a greater extent than did beef ingestion during the 0- to 2-h postexercise phase (P = 0.013). However, the increase in myofibrillar protein synthesis rates did not differ between milk and beef ingestion during the entire 0- to 5-h postexercise phase (P = 0.114). Both milk and beef ingestion augment the postexercise myofibrillar protein synthetic response in young men, with a stronger stimulation of myofibrillar protein synthesis during the early postprandial stage after milk ingestion. This trial was registered at www.clinicaltrials.gov as NCT01578590. © 2015 American Society for Nutrition.
USDA-ARS?s Scientific Manuscript database
Knowledge of milk protein composition/expression in healthy cows and cows with mastitis will provide information important for the dairy food industry, mammary biology and immune function in the mammary gland. To facilitate maximum protein discovery, milk was fractioned into whey, milk fat globule ...
Effects of two different domestic boiling practices on the allergenicity of cow's milk proteins.
Lamberti, Cristina; Baro, Cristina; Giribaldi, Marzia; Napolitano, Lorenzo; Cavallarin, Laura; Giuffrida, Maria Gabriella
2018-04-01
The sale of raw drinking milk through automatic dispensers is permitted in some EU member states, but consumers are usually advised to boil the milk before consumption. The present study has been conducted to evaluate the effects of two common domestic boiling techniques on the proteins of raw milk and, in particular, on their potential allergenicity. Native one-dimensional electrophoresis, N-terminal amino acid sequencing and immunoblotting have been used to characterize the protein pattern and to evaluate the possible changes in the allergenic properties of the processed milk. The main result of this investigation is that heating induces the aggregation of β-lactoglobulin in higher-molecular-weight products, while caseins seem to be more resistant to the treatments. β-Lactoglobulin aggregates have been found to be non-immunoreactive with the sera of subjects suffering from cow's milk protein allergy. Domestic boiling modifies the milk protein profile, causing a minor reduction in milk allergenicity. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Nicholas, K.R.; Fisher, J.A.; Muths, E.; Trott, J.; Janssens, P.A.; Reich, C.; Shaw, D.C.
2001-01-01
Milk collected from the red kangaroo (Macropus rufus) between day 100 and 260 of lactation showed major changes in milk composition at around day 200 of lactation, the time at which the pouch young begins to temporarily exit the pouch and eat herbage. The carbohydrate content of milk declined abruptly at this time and although there was only a small increase in total protein content, SDS PAGE analysis of milk revealed asynchrony in the secretory pattern of individual proteins. The levels of α-lactalbumin, β-lactoglobulin, serum albumin and transferrin remain unchanged during lactation. In contrast, the protease inhibitor cystatin, and the putative protease inhibitor whey acidic protein (WAP) first appeared in milk at elevated concentrations after approximately 150 days of lactation and then ceased to be secreted at approximately 200 days. In addition, a major whey protein, late lactation protein, was first detected in milk around the time whey acidic protein and cystatin cease to be secreted and was present at least until day 260 of lactation. The co-ordinated, but asynchronous secretion of putative protease inhibitors in milk may have several roles during lactation including tissue remodelling in the mammary gland and protecting specific proteins in milk required for physiological development of the dependent young.
Nicholas, K.R.; Fisher, J.A.; Muths, E.; Trott, J.; Janssens, P.A.; Reich, C.; Shaw, D.C.
2001-01-01
Milk collected from the red kangaroo (Macropus rufus) between day 100 and 260 of lactation showed major changes in milk composition at around day 200 of lactation, the time at which the pouch young begins to temporarily exit the pouch and eat herbage. The carbohydrate content of milk declined abruptly at this time and although there was only a small increase in total protein content, SDS PAGE analysis of milk revealed asynchrony in the secretory pattern of individual proteins. The levels of ??-lactalbumin, ??-lactoglobulin, serum albumin and transferrin remain unchanged during lactation. In contrast, the protease inhibitor cystatin, and the putative protease inhibitor whey acidic protein (WAP) first appeared in milk at elevated concentrations after approximately 150 days of lactation and then ceased to be secreted at approximately 200 days. In addition, a major whey protein, late lactation protein, was first detected in milk around the time whey acidic protein and cystatin cease to be secreted and was present at least until day 260 of lactation. The co-ordinated, but asynchronous secretion of putative protease inhibitors in milk may have several roles during lactation including tissue remodelling in the mammary gland and protecting specific proteins in milk required for physiological development of the dependent young. ?? 2001 Elsevier Science Inc.
Ramos, P R; Urtado, S L; Almeida, M R; Bortolozzi, J; Silva, E T
1992-01-01
Milk serum proteins such as alpha-lactalbumin (ALA) and beta-lactoglobulin (BLG) present biochemical polymorphism which is under the control of codominant autosomal alleles. In the present report, we propose modifications of traditional electrophoretic techniques such as increasing the running gel concentration from 5 to 10% and the addition of 5 M urea to the stacking gel, which permitted the detection of two variants (A and B) at the ALA and BLG loci. About 8 microliters of milk serum (6 mg/ml protein) and 10 microliters of total fresh milk were applied. Bovine serum albumin (BSA) and immunolactoglobulins (ILG) could also be discriminated. Total fresh milk was as useful as the purified serum milk proteins for the discrimination of ALA and BLG serum milk protein polymorphism by alkaline vertical slab polyacrylamide gel electrophoresis. However, BSA and ILG ran with caseins, which prevented their characterization in this system.
Coscia, Alessandra; Bertino, Enrico; Tonetto, Paola; Peila, Chiara; Cresi, Francesco; Arslanoglu, Sertac; Moro, Guido E; Spada, Elena; Milani, Silvano; Giribaldi, Marzia; Antoniazzi, Sara; Conti, Amedeo; Cavallarin, Laura
2018-01-09
Fortification of human milk is a standard practice for feeding very low birth weight infants. However, preterm infants often still experience suboptimal growth and feeding intolerance. New fortification strategies and different commercially available fortifiers have been developed. Commercially available fortifiers are constituted by a blend of ingredients from different sources, including plant oils and bovine milk proteins, thus presenting remarkable differences in the quality of macronutrients with respect to human milk. Based on the consideration that donkey milk has been suggested as a valid alternative for children allergic to cow's milk proteins, due to its biochemical similarity to human milk, we hypothesized that donkey milk could be a suitable ingredient for developing an innovative human milk fortifier. The aim of the study is to evaluate feeding tolerance, growth and clinical short and long-term outcomes in a population of preterm infants fed with a novel multi-component fortifier and a protein concentrate derived from donkey milk, in comparison to an analogous population fed with traditional fortifier and protein supplement containing bovine milk proteins. The study has been designed as a randomized, controlled, single-blind clinical trial. Infants born <1500 g and <32 weeks of gestational age were randomized to receive for 21 days either a combination of control bovine milk-based multicomponent fortifier and protein supplement, or a combination of a novel multicomponent fortifier and protein supplement derived from donkey milk. The fortification protocol followed is the same for the two groups, and the two diets were designed to be isoproteic and isocaloric. Weight, length and head circumference are measured; feeding tolerance is assessed by a standardized protocol. The occurrence of sepsis, necrotizing enterocolitis and adverse effects are monitored. This is the first clinical study investigating the use of a human milk fortifier derived from donkey milk for the nutrition of preterm infants. If donkey milk derived products will be shown to improve the feeding tolerance or either of the clinical, metabolic, neurological or auxological outcomes of preterm infants, it would be an absolute innovation in the field of feeding practices for preterm infants. ISRCTN - ISRCTN70022881 .
Çekiç, Sema Demirci; Demir, Aslı; Başkan, Kevser Sözgen; Tütem, Esma; Apak, Reşat
2015-05-01
Most milk-applied antioxidant assays in literature are based on the isolation and quantification of individual antioxidative compounds, whereas total antioxidant capacity (TAC) gives a more holistic picture due to cooperative action of antioxidants. Recently, the cupric reducing antioxidant capacity (CUPRAC) method has been modified to measure the antioxidant capacities of thiol-containing proteins, where the classical ammonium acetate buffer - that may otherwise precipitate proteins- was replaced with concentrated urea buffer (able to expose embedded thiol groups of proteins to oxidative attack) adjusted to pH 7.0. Thus, antioxidant capacity of milk was investigated with two competing TAC assays, namely CUPRAC and ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid))/persulphate, because only these assays were capable of evaluating protein contribution to the observed TAC value. As milk fat caused turbidity, experiments were carried out with skim milk or defatted milk samples. To determine TAC, modified CUPRAC method was applied to whole milk, separated and redissolved protein fractions, and the remaining liquid phase after necessary operations. Both TAC methods were investigated for their dilution sensitivity and antioxidant power assessment of separate milk fractions such as casein and whey. Proteins like β-lactoglobulin and casein (but not simple thiols) exhibited enhanced CUPRAC reactivity with surfactant (SDS) addition. Addition of milk protein fractions to whole skim milk produced significant 'negative-biased' deviations (up to -26% relative standard error) from TAC absorbance additivity in the application of the ABTS method, as opposed to that of the CUPRAC method less affected by chemical deviations from Beer's law thereby producing much smaller deviations from additivity (i.e. the property of additivity is valid when the measured TAC of a mixture is equal to the sum of individual antioxidant capacities of its constituents).
Quantitation of human milk proteins and their glycoforms using multiple reaction monitoring (MRM).
Huang, Jincui; Kailemia, Muchena J; Goonatilleke, Elisha; Parker, Evan A; Hong, Qiuting; Sabia, Rocchina; Smilowitz, Jennifer T; German, J Bruce; Lebrilla, Carlito B
2017-01-01
Human milk plays a substantial role in the child growth, development and determines their nutritional and health status. Despite the importance of the proteins and glycoproteins in human milk, very little quantitative information especially on their site-specific glycosylation is known. As more functions of milk proteins and other components continue to emerge, their fine-detailed quantitative information is becoming a key factor in milk research efforts. The present work utilizes a sensitive label-free MRM method to quantify seven milk proteins (α-lactalbumin, lactoferrin, secretory immunoglobulin A, immunoglobulin G, immunoglobulin M, α1-antitrypsin, and lysozyme) using their unique peptides while at the same time, quantifying their site-specific N-glycosylation relative to the protein abundance. The method is highly reproducible, has low limit of quantitation, and accounts for differences in glycosylation due to variations in protein amounts. The method described here expands our knowledge about human milk proteins and provides vital details that could be used in monitoring the health of the infant and even the mother. Graphical Abstract The glycopeptides EICs generated from QQQ.
Quantitation of human milk proteins and their glycoforms using multiple reaction monitoring (MRM)
Huang, Jincui; Kailemia, Muchena J.; Goonatilleke, Elisha; Parker, Evan A.; Hong, Qiuting; Sabia, Rocchina; Smilowitz, Jennifer T.; German, J. Bruce
2017-01-01
Human milk plays a substantial role in the child growth, development and determines their nutritional and health status. Despite the importance of the proteins and glycoproteins in human milk, very little quantitative information especially on their site-specific glycosylation is known. As more functions of milk proteins and other components continue to emerge, their fine-detailed quantitative information is becoming a key factor in milk research efforts. The present work utilizes a sensitive label-free MRM method to quantify seven milk proteins (α-lactalbumin, lactoferrin, secretory immunoglobulin A, immunoglobulin G, immunoglobulin M, α1-antitrypsin, and lysozyme) using their unique peptides while at the same time, quantifying their site-specific N-glycosylation relative to the protein abundance. The method is highly reproducible, has low limit of quantitation, and accounts for differences in glycosylation due to variations in protein amounts. The method described here expands our knowledge about human milk proteins and provides vital details that could be used in monitoring the health of the infant and even the mother. PMID:27796459
Effect of dairy powders fortification on yogurt textural and sensorial properties: a review.
Karam, Marie Celeste; Gaiani, Claire; Hosri, Chadi; Burgain, Jennifer; Scher, Joël
2013-11-01
Yogurts are important dairy products that have known a rapid market growth over the past few decades. Industrial yogurt manufacture involves different processing steps. Among them, protein fortification of the milk base is elemental. It greatly enhances yogurt nutritional and functional properties and prevents syneresis, an undesirable yogurt textural defect. Protein enrichment can be achieved by either concentration process (evaporation under vacuum and membrane processing: reverse osmosis and/or ultrafiltration) or by addition of dairy ingredients. Traditionally, skim milk powder (SMP) is used to enrich the milk base before fermentation. However, increased quality and availability of other dairy ingredients such as milk protein isolates (MPI), milk protein concentrates (MPC) whey protein isolates (WPI) and concentrates (WPC), micellar casein (MC) and caseinates have promoted their use as alternatives to SMP. Substituting different dry ingredients for skim milk powder in yogurt making affects the yogurt mix protein composition and subsequent textural and sensorial properties. This review focuses on various type of milk protein used for fortification purposes and their influence on these properties.
Christen, Lukas; Lai, Ching Tat; Hartmann, Ben; Hartmann, Peter E.; Geddes, Donna T.
2013-01-01
Background Human milk possesses bacteriostatic properties, largely due to the presence of immunological proteins. Heat treatments such as Holder pasteurization reduce the concentration of immunological proteins in human milk and consequently increase the bacterial growth rate. This study investigated the bacterial growth rate and the immunological protein concentration of ultraviolet (UV-C) irradiated, Holder pasteurized and untreated human milk. Methods Samples (n=10) of untreated, Holder pasteurized and UV-C irradiated human milk were inoculated with E. coli and S. aureus and the growth rate over 2 hours incubation time at 37°C was observed. Additionally, the concentration of sIgA, lactoferrin and lysozyme of untreated and treated human milk was analyzed. Results The bacterial growth rate of untreated and UV-C irradiated human milk was not significantly different. The bacterial growth rate of Holder pasteurized human milk was double compared to untreated human milk (p<0.001). The retention of sIgA, lactoferrin and lysozyme after UV-C irradiation was 89%, 87%, and 75% respectively, which were higher than Holder treated with 49%, 9%, and 41% respectively. Conclusion UV-C irradiation of human milk preserves significantly higher levels of immunological proteins than Holder pasteurization, resulting in bacteriostatic properties similar to those of untreated human milk. PMID:24376898
Christen, Lukas; Lai, Ching Tat; Hartmann, Ben; Hartmann, Peter E; Geddes, Donna T
2013-01-01
Human milk possesses bacteriostatic properties, largely due to the presence of immunological proteins. Heat treatments such as Holder pasteurization reduce the concentration of immunological proteins in human milk and consequently increase the bacterial growth rate. This study investigated the bacterial growth rate and the immunological protein concentration of ultraviolet (UV-C) irradiated, Holder pasteurized and untreated human milk. Samples (n=10) of untreated, Holder pasteurized and UV-C irradiated human milk were inoculated with E. coli and S. aureus and the growth rate over 2 hours incubation time at 37°C was observed. Additionally, the concentration of sIgA, lactoferrin and lysozyme of untreated and treated human milk was analyzed. The bacterial growth rate of untreated and UV-C irradiated human milk was not significantly different. The bacterial growth rate of Holder pasteurized human milk was double compared to untreated human milk (p<0.001). The retention of sIgA, lactoferrin and lysozyme after UV-C irradiation was 89%, 87%, and 75% respectively, which were higher than Holder treated with 49%, 9%, and 41% respectively. UV-C irradiation of human milk preserves significantly higher levels of immunological proteins than Holder pasteurization, resulting in bacteriostatic properties similar to those of untreated human milk.
Pancreatic enzyme deficiency depends on dietary protein origin in milk-fed calves.
Guilloteau, P; Plodari, M; Romé, V; Savary, G; Le Normand, L; Zabielski, R
2011-03-01
In young mammals, milk proteins and their substitutes are used in milk formula. Protein substitution modifies diet digestibility and pancreatic secretions. The aim of this study was to test if milk protein substitution could generate pancreatic deficiency in milk-fed calves. The effect of pancreatic juice on the digestibility of proteins was studied. Measurement of apparent fecal nutrient digestibility was used to estimate digestion. Ten calves (60 to 130 d old) were chronically fitted with pancreatic accessory duct cannulas and 2 duodenal cannulas to provide precise measurement, sampling, and reintroduction of pancreatic juice as well as additional infusions. Animals were fed milk formula based on skim milk powder or soybean concentrate. Level of deficiency depended on dietary protein origin. Twice as much protein or trypsin was required with a soybean concentrate diet than with a skim milk powder diet to obtain maximal nutrient digestibility. Pancreatic protein concentration in the juice can be used to differentiate between normal and deficient animals. Among these proteins, trypsin measurement is a good pancreatic deficiency marker. These results confirmed the major role of exocrine pancreatic secretions in producing optimal digestion in young calves. Furthermore, practical applications of these results can be applied for the young in other animal species and in humans. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
... incorporates an equivalent 2.25 percent true milk protein criterion for determining if a product meets the... percent true milk protein criterion for determining if a product meets the compositional standard. The... solids and incorporates an equivalent 2.25 percent true milk protein criterion for determining whether a...
JPRS Report, Soviet Union, Kommunist, No. 2, January 1988.
1989-03-02
Stavropolskoye Broiler Production i.e., a process of compensation for losses which occur as Association). the result of basic metabolism and work and, in...young The nutrition of modem man is to a large extent a people, growth. In the course of the digestion of variousThemnuromiseti oeen the ex istig...skimmed milk, approximately 60 percent of which con- master the standards of nutrition as any other type of sists of easily digestible rich protein of
Evaluation of milk powder quality by protein oxidative modifications.
Scheidegger, Dana; Radici, Paola M; Vergara-Roig, Víctor A; Bosio, Noelia S; Pesce, Silvia F; Pecora, Rolando P; Romano, José C P; Kivatinitz, Silvia C
2013-06-01
The objective of the present research was to evaluate commercially available milk powders according to their protein oxidative modifications and antioxidant capacity, and to evaluate if these characteristics are related to physical quality parameters such as dispersibility or stability during storage. Fifteen commercially processed spray-dried milk powders were evaluated: 6 whole milk powders (WMP), 4 skim milk powders (SMP), and 5 infant formula powders (IFP). Protein oxidative status was measured as protein carbonyl (PC) content, dityrosine content, and extent of protein polymerization. The level of PC was slightly lower in SMP than in WMP, whereas IFP had more than twice as much PC as WMP (2.8 ± 0.4, 2.1 ± 0.2, and 6.5 ± 1.3 nmol/mg of protein for WMP, SMP, and IFP, respectively). No differences were detected in dityrosine accumulation. Although all the possible pairs of parameters were tested for correlations, we found that 4 parameters were linked: PC, whey content, protein aggregate level, and dispersibility. After 9 mo of storage at -20°C or room temperature, all milk samples were analyzed to evaluate changes in protein oxidative status (PC, dityrosine, and protein integrity) and related parameters. Compared with the initial condition, PC increased in all tested samples after 9 mo of storage at -20°C or at room temperature. Stored milk powders had increased PC and decreased dispersibility compared with prestorage levels. Our results highlight the importance of protein oxidative status in milk powder and its relationship to other related quality parameters, such as protein integrity and dispersibility. Our findings suggest that the understanding of such relationships could help in developing quality differentiation for different types of milk powders in the product market. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Drewniak, Michelle; Waterhouse, Chris C M; Lyon, Andrew W; Fenton, Tanis R
2017-12-14
Several case studies report successful recovery from chylothorax while infants were fed low-fat human milk. The reported growth rates were inadequate despite milk supplementation with added medium-chain triglycerides (MCTs). The objective was to determine the effect that various human milk fat separating methods, refrigerated centrifuge, room temperature centrifuge, and refrigeration have on the loss of immunoglobulin A (IgA) and protein in the preparation of low-fat human milk. Protein and IgA were measured in 31 samples of reduced-fat human milk. Reduced-fat breastmilk samples were prepared by separating the fat using 3 methods (refrigerated centrifuge, room temperature centrifuge, and a refrigeration method), followed by lower fat milk extraction by syringe. The refrigeration method decreased IgA concentration by 17% (P = .035) while centrifugation and fat removal from the human milk samples led to a 38% decline in IgA concentration in both the nonrefrigerated and refrigerated centrifuge samples (P < .0001 for both). Protein declined by 11% with refrigeration and fat removal (P < .0001) while centrifugation and fat removal decreased protein concentration by 31% (P < .0001) in both nonrefrigerated centrifuge and refrigerated centrifuge samples. Preparing low-fat human milk for patients with chylothorax decreased the IgA and protein contents. As well as fat (in the form of MCTs), protein likely needs to be supplemented for infants fed low-fat human milk to support adequate growth. © 2017 American Society for Parenteral and Enteral Nutrition.
Hypoallergenic properties of donkey's milk: a preliminary study.
Vincenzetti, Silvia; Foghini, Laura; Pucciarelli, Stefania; Polzonetti, Valeria; Cammertoni, Natalina; Beghelli, Daniela; Polidori, Paolo
2014-01-01
Cow's milk protein allergy (CMPA) is an abnormal immunological response to cow milk proteins, which results in IgE-mediated reactions. The therapeutic strategy to respond to CMPA envisages the total elimination of milk or the administration of cow's milk substitutes. For this reason the use of milk from other mammalian species was tested. Among them, donkey's milk proved to be the best alternative in feeding infants affected by CMPA, since its chemical composition is comparable to human milk. In this work an in vitrostudy was performed in order to analyze the IgE reactivity to milk protein allergens from cow, donkey and goat. In particular, immunoblotting experiments using sera from milk-allergic and non-allergic adult volunteers were conducted with the aim of verifying the hypoallergenic property of donkey's milk. This study provided a preliminary evidence of the hypoallergenicity of donkey's milk when compared to bovine and goat milk. Considering the obtained results, it would be possible to develop a sensitive diagnostic method for CMPA detection, based on chromatographic and immunoblotting analysis.
Variations in the milk yield and milk composition of dairy cows during lactation.
Bedö, S; Nikodémusz, E; Percsich, K; Bárdos, L
1995-01-01
Variations in the milk yield and milk composition of a dairy cow colony (n = 23) were analyzed during 11 months of lactation. Milk yield followed a characteristic decreasing pattern in negative correlations with solid components (milk protein, lactose, total solids, milk fat). Titrable acidity (degree SH) was significantly (p < 0.1) higher in the milk of fresh-milking cows and it correlated negatively with lactose and positively with milk protein, milk fat and total solids. The concentrations of Zn, Fe and Cu tended to decrease, while Mn showed insignificant variation during lactation. Milk vitamin A showed a significant positive whilst milk vitamin E had a negative correlation with milk fat.
Getu, Rahel; Tola, Yetenayet B; Neela, Satheesh
2017-01-01
Soy milk-based beverages play an important role as a healthy food alternative for human consumption. However, the ‘beany’ flavor and chalky mouth feel of soy milk often makes it unpalatable to consumers. The objective of the present study is to optimize a blend of soy milk, mango nectar and sucrose solution for the best quality soy milk-based beverage. This study was designed to develop a soy milk blended beverage, with mango nectar and sucrose solutions, with the best physicochemical and sensory properties. Fourteen combinations of formulations were determined by D-optimal mixture simplex lattice design, by using Design expert. The blended beverages were prepared by mixing the three basic ingredients with the range of 60−100% soy milk, 0–25% mango nectar and 0–15% sucrose solution. The prepared blended beverage was analyzed for selected physicochemical and sensory properties. The statistical significance of the terms in the regression equations were examined by Analysis of Variance (ANOVA) for each response and the significance test level was set at 5% (p < 0.05). The results showed that, as the proportion of mango nectar and sucrose solution increased, total color change, total soluble solid, gross energy, titratable acidity, and beta-carotene contents increased but with a decrease in moisture , ash, protein, ether extract, minerals and phytic acid contents was observed. Fi- nally, numerical optimization determined that 81% soy milk, 16% Mango nectar and 3% sugar solution will give by a soy milk blended beverage with the best physicochemical and sensory properties, with a desirability of 0.564. Blending soy milk with fruit juice such as mango is beneficial, as it improves sensory as well as selected nutritional parameters.
The analysis of milk components and pathogenic bacteria isolated from bovine raw milk in Korea.
Park, Y K; Koo, H C; Kim, S H; Hwang, S Y; Jung, W K; Kim, J M; Shin, S; Kim, R T; Park, Y H
2007-12-01
Bovine mastitis can be diagnosed by abnormalities in milk components and somatic cell count (SCC), as well as by clinical signs. We examined raw milk in Korea by analyzing SCC, milk urea nitrogen (MUN), and the percentages of milk components (milk fat, protein, and lactose). The associations between SCC or MUN and other milk components were investigated, as well as the relationships between the bacterial species isolated from milk. Somatic cell counts, MUN, and the percentages of milk fat, protein, and lactose were analyzed in 30,019 raw milk samples collected from 2003 to 2006. The regression coefficients of natural logarithmic-transformed SCC (SCCt) on milk fat (-0.0149), lactose (-0.8910), and MUN (-0.0096), and those of MUN on milk fat (-0.3125), protein (-0.8012), and SCCt (-0.0671) were negative, whereas the regression coefficient of SCCt on protein was positive (0.3023). When the data were categorized by the presence or absence of bacterial infection in raw milk, SCCt was negatively associated with milk fat (-0.0172), protein (-0.2693), and lactose (-0.4108). The SCCt values were significantly affected by bacterial species. In particular, 104 milk samples infected with Staphylococcus aureus had the highest SCCt (1.67) compared with milk containing other mastitis-causing bacteria: coagulase-negative staphylococci (n = 755, 1.50), coagulase-positive staphylococci (except Staphylococcus aureus; n = 77, 1.59), Streptococcus spp. (Streptococcus dysgalactiae, n = 37; Streptococcus uberis, n = 12, 0.83), Enterococcus spp. (n = 46, 1.04), Escherichia coli (n = 705, 1.56), Pseudomonas spp. (n = 456, 1.59), and yeast (n = 189, 1.52). These results show that high SCC and MUN negatively affect milk components and that a statistical approach associating SCC, MUN, and milk components by bacterial infection can explain the patterns among them. Bacterial species present in raw milk are an important influence on SCC in Korea.
[Tool of nutrition education for allergic to egg and cow's milk protein in pediatric age].
San Mauro Martín, Ismael
2014-05-01
Food allergy affects a large part of the population and their numbers are increasing. Although the knowing of this pathology is growing, allergic patients have really difficulties to lead a normal life, especially with food. Until now,this group hadn t practical tools that would help them in the development of a balanced daily diet, as there are for the general population in the form of pyramids and dietary guidelines . This work has covered this need for two of the most prevalent allergies in early life. gather information on the allergy of cow's milk protein and egg, to design a food pyramid for these patients, based on the consensus, recommendations and scientific guidance. After confirming the absence of a similar work, food pyramids allergy to egg and cow's milk protein, adapted to each, and a joint pyramid is designed to both allergies. Besides basic recommendations for healthy eating were included in general and in particular individuals, with special interest for the collective (food hygiene, food additives, cosmetics, medicines, etc). Due to the importance of nutrition in childhood and acquires the underlying difficulties this group, to properly plan the diet is very important as it can prevent accidents and long-term nutritional deficiencies. Therefore provide graphical tools and practices to this goal, is importance for population and medical and scientific community, and is the result of this work. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Stern, M; Gellermann, B
1988-01-01
To study maturational changes of food protein and lectin binding to rat small intestinal microvillus membranes (MVM), MVM were prepared from newborn and adult animals by a modified CaCl2 precipitation technique. Radiolabeled cow's milk proteins [alpha-lactalbumin, alpha-casein, beta-lactoglobulin, bovine serum albumin (BSA)] and the lectin concanavalin A (Con A) were used for incubations. Binding assays were done using miniature ultracentrifugation for separation of unbound material. Binding of Con A to MVM from newborn and adult rats was strong, specific, and saturable. Binding of Con A was inhibited by cold Con A and by the sugar ligand polymer mannan. Adult MVM bound more Con A than newborn preparations. Unlike Con A, binding of cow's milk proteins by MVM was weak, nonspecific, and noninhibitable. Newborn MVM bound more cow's milk proteins than adult controls. This was true for all the proteins tested (p less than 0.001). Binding rose with decreased molecular weight of cow's milk proteins, but molecular weight was not the only determining factor for binding. Trypsin treatment of MVM caused a marked increase of BSA binding in adult but not in newborn preparations. This finding indicated the importance of protein components of MVM for cow's milk protein binding. Maturational changes in protein-lipid interactions and membrane fluidity possibly influence nonspecific cow's milk protein binding to MVM. Differences in binding between newborns and adults were not directly related to maturational shifts in membrane glycosylation that are indicated by differential Con A binding. Increased cow's milk protein binding in newborn individuals might increase the potential risk to develop an adverse reaction to food proteins.
Difference in the breast milk proteome between allergic and non-allergic mothers.
Hettinga, Kasper A; Reina, Fabiola M; Boeren, Sjef; Zhang, Lina; Koppelman, Gerard H; Postma, Dirkje S; Vervoort, Jacques J M; Wijga, Alet H
2015-01-01
Breastfeeding has been linked to a reduction in the prevalence of allergy and asthma. However, studies on this relationship vary in outcome, which may partly be related to differences in breast milk composition. In particular breast milk composition may differ between allergic and non-allergic mothers. Important components that may be involved are breast milk proteins, as these are known to regulate immune development in the newborn. The objective of this study was therefore to explore differences in the proteins of breast milk from 20 allergic and non-allergic mothers. The results from this comparison may then be used to generate hypotheses on proteins associated with allergy in their offspring. Milk samples from allergic and non-allergic mothers were obtained from the PIAMA project, a prospective birth cohort study on incidence, risk factors, and prevention of asthma and inhalant allergy. Non-targeted proteomics technology, based on liquid chromatography and mass spectrometry, was used to compare breast milk from allergic and non-allergic mothers. Nineteen proteins, out of a total of 364 proteins identified in both groups, differed significantly in concentration between the breast milk of allergic and non-allergic mothers. Protease inhibitors and apolipoproteins were present in much higher concentrations in breast milk of allergic than non-allergic mothers. These proteins have been suggested to be linked to allergy and asthma. The non-targeted milk proteomic analysis employed has provided new targets for future studies on the relation between breast milk composition and allergy.
Lupton, Sara J; Shappell, Nancy W; Shelver, Weilin L; Hakk, Heldur
2018-01-10
The distributions of eight drugs (acetaminophen, acetylsalicylic acid/salicylic acid, ciprofloxacin, clarithromycin, flunixin, phenylbutazone, praziquantel, and thiamphenicol) were determined in milk products (skim milk, milk fat, curd, whey, and whey protein) and used to expand a previous model (from 7 drugs to 15 drugs) for predicting drug distribution. Phenylbutazone and praziquantel were found to distribute with the lipid and curd phases (≥50%). Flunixin distribution was lower but similar in direction (12% in milk fat, 39% in curd). Acetaminophen, ciprofloxacin, and praziquantel preferentially associated with casein proteins, whereas thiamphenicol and clarithromycin associated preferentially to whey proteins. Regression analyses for log [milk fat]/[skim milk] and log [curd]/[whey] had r 2 values of 0.63 and 0.67, respectively, with p of <0.001 for 15 drugs (7 previously tested and 8 currently tested). The robustness of the distribution model was enhanced by doubling the number of drugs originally tested.
Tacoma, R; Fields, J; Ebenstein, D B; Lam, Y-W; Greenwood, S L
2017-09-01
Little is known about the bovine milk proteome or whether it can be affected by diet. The objective of this study was to determine if the dietary rumen degradable protein (RDP):rumen undegradable protein (RUP) ratio could alter the bovine milk proteome. Six Holstein cows (parity: 2.5 ± 0.8) in mid lactation were blocked by days in milk (80 ± 43 d in milk) and milk yield (57.5 ± 6.0 kg) and randomly assigned to treatment groups. The experiment was conducted as a double-crossover design consisting of three 21-d periods. Within each period, treatment groups received diets with either (1) a high RDP:RUP ratio (RDP treatment: 62.4:37.6% of crude protein) or (2) a low RDP:RUP ratio (RUP treatment: 51.3:48.7% of crude protein). Both diets were isonitrogenous and isoenergetic (crude protein: 18.5%, net energy for lactation: 1.8 Mcal/kg of dry matter). To confirm N and energy status of cows, dry matter intake was determined daily, rumen fluid samples were collected for volatile fatty acid analysis, blood samples were collected for plasma glucose, β-hydroxybutyrate, urea nitrogen, and fatty acid analysis, and total 24-h urine and fecal samples were collected for N analysis. Milk samples were collected to determine the general milk composition and the protein profile. Milk samples collected for high-abundance protein analysis were subjected to HPLC analysis to determine the content of α-casein, β-casein, and κ-casein, as well as α-lactalbumin and β-lactoglobulin. Samples collected for low-abundance protein analysis were fractionated, enriched using ProteoMiner treatment, and separated using sodium dodecyl sulfate-PAGE. After excision and digestion, the peptides were analyzed using liquid chromatography (LC) tandem mass spectrometry (MS/MS). The LC-MS/MS data were analyzed using PROC GLIMMIX of SAS (version 9.4, SAS Institute Inc., Cary, NC) and adjusted using the MULTTEST procedure. All other parameters were analyzed using PROC MIXED of SAS. No treatment differences were observed in dry matter intake, milk yield, general milk composition, plasma parameters, or rumen volatile fatty acid concentrations, indicating no shift in total energy or protein available. Milk urea N and plasma urea N concentrations were higher in the RDP group, indicating some shift in N partitioning due to diet. A total of 595 milk proteins were identified, with 83% of these proteins known to be involved in cellular processes. Although none of the low-abundance proteins identified by LC-MS/MS were affected by diet, feeding a diet high in RUP decreased β-casein, κ-casein, and total milk casein concentration. Further investigations of the interactions between diet and the milk protein profile are needed to manipulate the milk proteome using diet. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Kwan, Celia; Fusch, Gerhard; Bahonjic, Aldin; Rochow, Niels; Fusch, Christoph
2017-10-26
Currently, there is a growing interest in lacto-engineering in the neonatal intensive care unit, using infrared milk analyzers to rapidly measure the macronutrient content in breast milk before processing and feeding it to preterm infants. However, there is an overlap in the spectral information of different macronutrients, so they can potentially impact the robustness of the measurement. In this study, we investigate whether the measurement of protein is dependent on the levels of fat present while using an infrared milk analyzer. Breast milk samples (n=25) were measured for fat and protein content before and after being completely defatted by centrifugation, using chemical reference methods and near-infrared milk analyzer (Unity SpectraStar) with two different calibration algorithms provided by the manufacturer (released 2009 and 2015). While the protein content remained unchanged, as measured by elemental analysis, measurements by infrared milk analyzer show a difference in protein measurements dependent on fat content; high fat content can lead to falsely high protein content. This difference is less pronounced when measured using the more recent calibration algorithm. Milk analyzer users must be cautious of their devices' measurements, especially if they are changing the matrix of breast milk using more advanced lacto-engineering.
Liu, Tian-Tian; Dang, Dan; Lv, Xiao-Ming; Wang, Teng-Fei; Du, Jin-Feng; Wu, Hui
2015-06-01
To compare the growth of preterm infants fed standard protein-fortified human milk with that containing human milk fortifier (HMF) with a higher-than-standard protein content. Published articles reporting randomized controlled trials and prospective observational intervention studies listed on the PubMed®, Embase®, CINAHL and Cochrane Library databases were searched using the keywords 'fortifier', 'human milk', 'breastfeeding', 'breast milk' and 'human milk fortifier'. The mean difference with 95% confidence intervals was used to compare the effect of HMF with a higher-than-standard protein content on infant growth characteristics. Five studies with 352 infants with birth weight ≤ 1750 g and a gestational age ≤ 34 weeks who were fed human milk were included in this meta-analysis. Infants in the experimental groups given human milk with higher-than-standard protein fortifier achieved significantly greater weight and length at the end of the study, and greater weight gain, length gain, and head circumference gain, compared with control groups fed human milk with the standard HMF. HMF with a higher-than-standard protein content can improve preterm infant growth compared with standard HMF. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Zhang, Hao; Jiang, Lu; Guo, Huiyuan; Sun, Jing; Liu, Xianting; Liu, Ruihai; Ding, Qingbo; Ren, Fazheng
2013-07-01
We assessed the effects of milk proteins and fats, alone and in combination, on the absorption of phenolic acids and the change in plasma antioxidant capacity after jujube juice intake in humans. Twenty volunteers received the following four treatments each in a 4 × 4 Latin square design with a minimum 1 week interval: 200 mL of jujube juice plus 200 mL of (1) water; (2) whole milk; (3) skimmed milk; or (4) milk fat. The results showed that skimmed milk extended the time to reach maximum increase of plasma phenolic acids concentrations and plasma antioxidant capacity. However, neither the skimmed milk nor the milk fat had a significant effect on the absorption of phenolic acids. In contrast, whole milk significantly reduced the absorption of phenolic acids and the increase in plasma antioxidant capacity (p < 0.05). In vitro results suggested the formation of complexes during digestion that involved milk proteins, milk fats, and phenolic acids, which were responsible for the inhibitory effect of whole milk. Milk proteins and fats together, but not alone, are responsible for the inhibitory effect of milk on the absorption of phenolic acids and the change in plasma antioxidant capacity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aprianita, Aprianita; Donkor, Osaana N; Moate, Peter J; Williams, S Richard O; Auldist, Martin J; Greenwood, Jae S; Hannah, Murray C; Wales, William J; Vasiljevic, Todor
2014-05-01
This experiment was conducted to determine the effects of diets supplemented with cottonseed oil, Acacia mearnsii-condensed tannin extract, and a combination of both on composition of bovine milk. Treatment diets included addition of cottonseed oil (800 g/d; CSO), condensed tannin from Acacia mearnsii (400 g/d; TAN) or a combination of cottonseed oil (800 g/d) and condensed tannin (400 g/d; CPT) with a diet consisting of 6·0 kg dry matter (DM) of concentrates and alfalfa hay ad libitum, which also served as the control diet (CON). Relative to the CON diet, feeding CSO and CPT diets had a minor impact on feed intake and yield of lactose in milk. These diets increased yields of milk and protein in milk. In contrast to the TAN diet, the CSO and CPT diets significantly decreased milk fat concentration and altered milk fatty acid composition by decreasing the proportion of saturated fatty acids but increasing proportions of monounsaturated and polyunsaturated fatty acids. The CPT diet had a similar effect to the CSO diet in modifying fatty acid profile. Overall, reduction in milk fat concentration and changes in milk fatty acid profile were probably due to supplementation of linoleic acid-rich cottonseed oil. The TAN diet had no effect on feed intake, milk yield and milk protein concentration. However, a reduction in the yields of protein and lactose occurred when cows were fed this diet. Supplemented tannin had no significant effect on fat concentration and changes in fatty acid profile in milk. All supplemented diets did not affect protein concentration or composition, nitrogen concentration, or casein to total protein ratio of the resulting milk.
Lee, Na-Kyoung; Mok, Bo Ram; Jeewanthi, Renda Kankanamge Chaturika; Yoon, Yoh Chang; Paik, Hyun-Dong
2015-01-01
The objective of this study was to develop yogurt-cheese using cow’s milk, ultrafiltrated cow’s milk, and soy milk. The addition of soy milk and ultrafiltrated milk increased the amount of protein in the yogurt-cheese. Yogurt-cheeses were made using cheese base using 10% and 20% soy milk with raw and ultrafiltrated cow’s milk, and stored at 4℃ during 2 wk. The yield of yogurt-cheeses made with added soy milk was decreased and the cutting point was delayed compared to yogurt-cheese made without soy milk. Yogurt-cheese made using ultrafiltrated cow’s milk showed the highest yield. However, yogurt-cheese made with added soy milk had higher protein content and titratable acidity than yogurt-cheese made using raw and ultrafiltrated cow’s milk. Fat and lactose contents in the yogurt-cheese made with added soy milk were lower. Yogurt-cheeses made with added soy milk contained several soy protein bands corresponding to the sizes of α2-, β-, and κ-casein band. Yogurt-cheese made with added soy milk had similar elasticity to yogurt-cheese made without soy milk but had lower cohesiveness. There was no significant difference in the number of lactic acid bacteria in the different cheeses, as all had over 8.0 Log CFU/g. Considering these data and the fact that proteins and fats of vegetable origin with high biological value were observed as well as unsaturated fats, yogurt-cheese made with added soy milk can be considered to be a functional food. PMID:26761829
De Vries, F; Hamann, H; Drögemüller, C; Ganter, M; Distl, O
2005-01-01
The objective of this study was to analyze associations between ovine prion protein genotypes and production traits in East Friesian milk sheep. Production traits included the type traits scores for muscle mass, wool quality, and type; the reproduction traits age at first lambing, first lambing interval, second lambing interval, and total number of lambs born; the milk performance traits; milk, fat, and protein yields; fat and protein contents; and somatic cell scores. Prion protein genotypes were available for 658 East Friesian milk sheep. Linear animal models were used for the analysis of the prion protein genotype effects. The scores of the genotyped sheep for muscle mass, type, wool quality, and fat yield were significantly superior to those of the nongenotyped animals. An explanation for this might be that breeders seek to minimize genotyping costs by preselecting animals that do not meet the top breeding requirements. No significant associations were found between the prion protein genotypes and milk performance, type, or reproduction traits.
Shappell, Nancy W; Shelver, Weilin L; Lupton, Sara J; Fanaselle, Wendy; Van Doren, Jane M; Hakk, Heldur
2017-02-01
It is important to understand the partitioning of drugs in processed milk and milk products, when drugs are present in raw milk, in order to estimate the potential consumer exposure. Radioisotopically labeled erythromycin, ivermectin, ketoprofen, oxytetracycline, penicillin G, sulfadimethoxine, and thiabendazole were used to evaluate the distribution of animal drugs among rennet curd, whey, and protein fractions from skim cow milk. Our previous work reported the distribution of these same drugs between skim and fat fractions of milk. Drug distribution between curd and whey was significantly correlated (R 2 = 0.70) to the drug's lipophilicity (log P), with improved correlation using log D (R 2 = 0.95). Distribution of drugs was concentration independent over the range tested (20-2000 nM). With the exception of thiabendazole and ivermectin, more drug was associated with whey protein than casein on a nmol/g protein basis (oxytetracycline experiment not performed). These results provide insights into the distribution of animal drug residues, if present in cow milk, among milk fractions, with possible extrapolation to milk products.
Proteomic and functional analyses reveal MAPK1 regulates milk protein synthesis.
Lu, Li-Min; Li, Qing-Zhang; Huang, Jian-Guo; Gao, Xue-Jun
2012-12-27
L-Lysine (L-Lys) is an essential amino acid that plays fundamental roles in protein synthesis. Many nuclear phosphorylated proteins such as Stat5 and mTOR regulate milk protein synthesis. However, the details of milk protein synthesis control at the transcript and translational levels are not well known. In this current study, a two-dimensional gel electrophoresis (2-DE)/MS-based proteomic technology was used to identify phosphoproteins responsible for milk protein synthesis in dairy cow mammary epithelial cells (DCMECs). The effect of L-Lys on DCMECs was analyzed by CASY technology and reversed phase high performance liquid chromatography (RP-HPLC). The results showed that cell proliferation ability and β-casein expression were enhanced in DCMECs treated with L-Lys. By phosphoproteomics analysis, six proteins, including MAPK1, were identified up-expressed in DCMECs treated with 1.2 mM L-Lys for 24 h, and were verified by quantitative real-time PCR (qRT-PCR) and western blot. Overexpression and siRNA inhibition of MAPK1 experiments showed that MAPK1 upregulated milk protein synthesis through Stat5 and mTOR pathway. These findings that MAPK1 involves in regulation of milk synthesis shed new insights for understanding the mechanisms of milk protein synthesis.
Buitenhuis, Bart; Poulsen, Nina A; Gebreyesus, Grum; Larsen, Lotte B
2016-08-02
In the Western world bovine milk products are an important protein source in human diet. The major proteins in bovine milk are the four caseins (CN), αS1-, αS2-, β-, and k-CN and the two whey proteins, β-LG and α-LA. It has been shown that both the amount of specific CN and their isoforms including post-translational modifications (PTM) influence technological properties of milk. Therefore, the aim of this study was to 1) estimate genetic parameters for individual proteins in Danish Holstein (DH) (n = 371) and Danish Jersey (DJ) (n = 321) milk, and 2) detect genomic regions associated with specific milk protein and their different PTM forms using a genome-wide association study (GWAS) approach. For DH, high heritability estimates were found for protein percentage (0.47), casein percentage (0.43), k-CN (0.77), β-LG (0.58), and α-LA (0.40). For DJ, high heritability estimates were found for protein percentage (0.70), casein percentage (0.52), and α-LA (0.44). The heritability for G-k-CN, U-k-CN and GD was higher in the DH compared to the DJ, whereas the heritability for the PD of αS1-CN was lower in DH compared to DJ, whereas the PD for αS2-CN was higher in DH compared to DJ. The GWAS results for the main milk proteins were in line what has been earlier published. However, we showed that there were SNPs specifically regulating G-k-CN in DH. Some of these SNPs were assigned to casein protein kinase genes (CSNK1G3, PRKCQ). The genetic analysis of the major milk proteins and their PTM forms revealed that these were heritable in both DH and DJ. In DH, genomic regions specific for glycosylation of k-CN were detected. Furthermore, genomic regions for the major milk proteins confirmed the regions on BTA6 (casein cluster), BTA11 (PEAP), and BTA14 (DGAT1) as important regions influencing protein composition in milk. The results from this study provide confidence that it is possible to breed for specific milk protein including the different PTM forms.
Cow's milk proteins in human milk.
Coscia, A; Orrù, S; Di Nicola, P; Giuliani, F; Rovelli, I; Peila, C; Martano, C; Chiale, F; Bertino, E
2012-01-01
Cow's milk proteins (CMPs) are among the best characterized food allergens. Cow's milk contains more than twenty five different proteins, but only whey proteins alpha-lactalbumin, beta-lactoglobulin, bovine serum albumin (BSA), and lactoferrin, as well as the four caseins, have been identified as allergens. Aim of this study was to investigate by proteomics techniques cow's milk allergens in human colostrum of term and preterm newborns' mothers, not previously detected, in order to understand if such allergens could be cause of sensitization during lactation. Term colostrum samples from 62 healthy mothers and preterm colostrum samples from 11 healthy mothers were collected for this purpose. The most relevant finding was the detection of the intact bovine alpha-S1-casein in both term and preterm colostrum. Using this method, which allows direct proteins identification, beta-lactoglobulin was not detected in any of colostrum samples. According to our results bovine alpha 1 casein that is considered a major cow's milk allergen is readily secreted in human milk: further investigations are needed in order to clarify if alpha-1-casein has a major role in sensitization or tolerance to cow's milk of exclusively breastfed predisposed infants.
Kordesedehi, Reihane; Taheri-Kafrani, Asghar; Rabbani-Khorasgani, Mohammad; Kazemi, Rezvan; Mutangadura, Daniel; Haertle, Thomas
2018-06-20
Milk is a perfect source of nutrients for neonates. When breast feeding cannot be done, an infant's alimentation is usually initiated to cow's milk, among the primary foods. It has been reported that about 2.5% of juveniles under the age of 3 years manifest allergic reactions to cow's milk proteins. Among the cow's milk proteins, casein fractions are considered as the strongest allergenic proteins. The proteolytic enzymes of lactic acid bacteria (LAB), during fermentation of dairy products, can break down milk proteins especially caseins and subsequently reduce the immune reactivity of allergenic proteins. In this research, raw bovine and camel milk samples were screened for cocci LAB strains and after isolation, their proteolytic activity against bovine milk caseins were evaluated by SDS-PAGE and RP-HPLC. The potential of cocci LAB strains on α S1 -casein degradation and their potential to break down the principle allergenic epitopes of this protein was detected using indirect competitive ELISA. Molecular identification of the best proteolytic strain was fulfilled by 16S rDNA fragment sequencing with universal primers. The obtained results demonstrated that Enterococcus faecium isolated from raw camel milk samples was the most efficient isolate in hydrolyzing Na-caseinate and α S1 -casein. Hydrolysated α S1 -casein by Enterococcus faecium was also less recognized by IgE of bovine milk allergic patients' sera in comparison with native α S1 -casein. It has been proposed that Enterococcus faecium could be an efficient strain in allergenicity reduction of cow's milk proteins. So it could be an excellent candidate to be potentially used in dairy industries. Copyright © 2018 Elsevier B.V. All rights reserved.
Gardner, Christopher D; Messina, Mark; Kiazand, Alexandre; Morris, Jennifer L; Franke, Adrian A
2007-12-01
To compare the effects of two commercially available soy milks (one made using whole soy beans, the other using soy protein isolate) with low-fat dairy milk on plasma lipid, insulin, and glucose responses. Randomized clinical trial, cross-over design. Participants were 30-65 years of age, n = 28, with pre-study LDL-cholesterol (LDL-C) concentrations of 160-220 mg/dL, not on lipid lowering medications, and with an overall Framingham risk score of
Storage of Unfed and Leftover Pasteurized Human Milk.
Meng, Ting; Perrin, Maryanne T; Allen, Jonathan C; Osborne, Jason; Jones, Frances; Fogleman, April D
2016-12-01
To determine the impact of storage on bacterial growth and immunological activity of pasteurized human milk and leftover pasteurized human milk that has been exposed to the microflora in an infant's mouth. Eighteen mother-infant dyads participated in two separate studies. Mother's milk was pasteurized, and each baby was fed 1 to 2 ounces. Pasteurized and leftover pasteurized milk were stored at room (24°C) and refrigerated temperatures (4°C). After storage, milk was analyzed for bacteria, total protein, lysozyme activity, and secretory immunoglobulin A (SIgA) activity. In pasteurized and leftover pasteurized milk stored in the refrigerator for 7 days, total aerobic bacteria do not increase significantly and total protein and bioactive proteins are stable. At room temperature, there is a significant increase in total aerobic bacteria in leftover pasteurized milk during 12 hours of storage (p < 0.01) and a significant decrease in total protein and SIgA activity in pasteurized milk during 12 hours of storage (p = 0.02 and p = 0.03, respectively). When stored in the refrigerator, pasteurized and leftover pasteurized milk may be stored for at least 7 days when considering the variables studied. Caution should be used when storing pasteurized and leftover pasteurized milk at room temperature to prevent an increase in bacterial growth and a decrease in total protein and SIgA activity.
Janjanam, Jagadeesh; Singh, Surender; Jena, Manoj K; Varshney, Nishant; Kola, Srujana; Kumar, Sudarshan; Kaushik, Jai K; Grover, Sunita; Dang, Ajay K; Mukesh, Manishi; Prakash, B S; Mohanty, Ashok K
2014-01-01
Mammary gland is made up of a branching network of ducts that end with alveoli which surrounds the lumen. These alveolar mammary epithelial cells (MEC) reflect the milk producing ability of farm animals. In this study, we have used 2D-DIGE and mass spectrometry to identify the protein changes in MEC during immediate early, peak and late stages of lactation and also compared differentially expressed proteins in MEC isolated from milk of high and low milk producing cows. We have identified 41 differentially expressed proteins during lactation stages and 22 proteins in high and low milk yielding cows. Bioinformatics analysis showed that a majority of the differentially expressed proteins are associated in metabolic process, catalytic and binding activity. The differentially expressed proteins were mapped to the available biological pathways and networks involved in lactation. The proteins up-regulated during late stage of lactation are associated with NF-κB stress induced signaling pathways and whereas Akt, PI3K and p38/MAPK signaling pathways are associated with high milk production mediated through insulin hormone signaling.
Rodsamran, Pattrathip; Sothornvit, Rungsinee
2018-02-15
Coconut cake, a by-product from milk and oil extractions, contains a high amount of protein. Protein extraction from coconut milk cake and coconut oil cake was investigated. The supernatant and precipitate protein powders from both coconut milk and oil cakes were compared based on their physicochemical and functional properties. Glutelin was the predominant protein fraction in both coconut cakes. Protein powders from milk cake presented higher water and oil absorption capacities than those from oil cake. Both protein powders from oil cake exhibited better foaming capacity and a better emulsifying activity index than those from milk cake. Coconut proteins were mostly solubilized in strong acidic and alkaline solutions. Minimum solubility was observed at pH 4, confirming the isoelectric point of coconut protein. Therefore, the coconut residues after extractions might be a potential alternative renewable plant protein source to use asa food ingredient to enhance food nutrition and quality. Copyright © 2017 Elsevier Ltd. All rights reserved.
Experimental and Modelling Study of the Denaturation of Milk Protein by Heat Treatment
Qian, Fang; Sun, Jiayue; Cao, Di; Tuo, Yanfeng; Jiang, Shujuan; Mu, Guangqing
2017-01-01
Heat treatment of milk aims to inhibit the growth of microbes, extend the shelf-life of products and improve the quality of the products. Heat treatment also leads to denaturation of whey protein and the formation of whey protein-casein polymer, which has negative effects on milk product. Hence the milk heat treatment conditions should be controlled in milk processing. In this study, the denaturation degree of whey protein and the combination degree of whey protein and casein when undergoing heat treatment were also determined by using the Native-PAGE and SDS-PAGE analysis. The results showed that the denaturation degree of whey protein and the combination degree of whey protein with casein extended with the increase of the heat-treated temperature and time. The effects of the heat-treated temperature and heat-treated time on the denaturation degree of whey protein and on the combination degree of whey protein and casein were well described using the quadratic regression equation. The analysis strategy used in this study reveals an intuitive and effective measure of the denaturation degree of whey protein, and the changes of milk protein under different heat treatment conditions efficiently and accurately in the dairy industry. It can be of great significance for dairy product proteins following processing treatments applied for dairy product manufacturing. PMID:28316470
Milk Powder Added to a School Meal Increases Cognitive Test Scores in Ghanaian Children.
Lee, Reginald; Singh, Lauren; van Liefde, Danielle; Callaghan-Gillespie, Meghan; Steiner-Asiedu, Matilda; Saalia, Kwesi; Edwards, Carly; Serena, Anja; Hershey, Tamara; Manary, Mark J
2018-06-14
The inclusion of milk in school feeding is accepted as good nutritional practice, but specific benefits remain uncertain. The objective was to determine whether consumption of 8.8 g milk protein/d given as milk powder with a multiple micronutrient-enriched porridge resulted in greater increases in linear growth and Cambridge Neuropsychological Test Automated Battery (CANTAB) scores in Ghanaian schoolchildren when compared with 1 of 3 control groups. A randomized, double-blind, placebo-controlled clinical trial in healthy children aged 6-9 y was conducted comparing 8.8 g milk protein/d with 4.4 g milk protein/d or 4.4 g milk protein + 4.4 g rice protein/d (isonitrogenous, half of the protein from milk and half from rice) or a non-nitrogenous placebo. Primary outcomes were changes in length after 9 mo and CANTAB scores after 4.5 mo; secondary outcomes were body-composition measures. Supplements were added to porridge each school day and consumed for 9 mo. Anthropometric and body-composition measures and CANTAB tests were completed upon enrollment and after 4.5 and 9 mo. Group results were compared by using ANCOVA for anthropometric measures and the Kruskal-Wallis test for CANTAB scores. Children receiving 8.8 g milk protein/d showed greater increases on percentage correct in Pattern Recognition Memory (mean ± SD: 5.5% ± 16.8%; P < 0.05) and Intra/Extradimensional Set Shift completed stages compared with all other food groups (0.6 ± 2.3; P < 0.05). No differences were seen in linear growth between the groups. The children receiving either 4.4 or 8.8 g milk protein/d had a higher fat-free body mass index than those who received no milk, with an effect size of 0.34 kg/m2. Among schoolchildren, the consumption of 8.8 g milk protein/d improved executive cognitive function compared with other supplements and led to the accretion of more lean body mass, but not more linear growth. This trial was registered at www.clinicaltrials.gov">www.clinicaltrials.gov as NCT02757508.
Increasing the protein content of ice cream.
Patel, M R; Baer, R J; Acharya, M R
2006-05-01
Vanilla ice cream was made with a mix composition of 10.5% milk fat, 10.5% milk SNF, 12% beet sugar, and 4% corn syrup solids. None of the batches made contained stabilizer or emulsifier. The control (treatment 1) contained 3.78% protein. Treatments 2 and 5 contained 30% more protein, treatments 3 and 6 contained 60% more protein, and treatments 4 and 7 contained 90% more protein compared with treatment 1 by addition of whey protein concentrate or milk protein concentrate powders, respectively. In all treatments, levels of milk fat, milk SNF, beet sugar, and corn syrup solids were kept constant at 37% total solids. Mix protein content for treatment 1 was 3.78%, treatment 2 was 4.90%, treatment 5 was 4.91%, treatments 3 and 6 were 6.05%, and treatments 4 and 7 were 7.18%. This represented a 29.89, 60.05, 89.95, 29.63, 60.05, and 89.95% increase in protein for treatment 2 through treatment 7 compared with treatment 1, respectively. Milk protein level influenced ice crystal size; with increased protein, the ice crystal size was favorably reduced in treatments 2, 4, and 5 and was similar in treatments 3, 6, and 7 compared with treatment 1. At 1 wk postmanufacture, overall texture acceptance for all treatments was more desirable compared with treatment 1. When evaluating all parameters, treatment 2 with added whey protein concentrate and treatments 5 and 6 with added milk protein concentrate were similar or improved compared with treatment 1. It is possible to produce acceptable ice cream with higher levels of protein.
Anaphylactic reaction to probiotics. Cow's milk and hen's egg allergens in probiotic compounds.
Martín-Muñoz, María Flora; Fortuni, Monserrat; Caminoa, Magdalena; Belver, Teresa; Quirce, Santiago; Caballero, Teresa
2012-12-01
Probiotics are used in the treatment of allergic diseases. We investigated the safety of probiotics for subjects with food allergy. Labels of probiotics commercially available in Spain were examined to assess their content of cow's milk or hen's egg. Skin prick tests with these compounds (20 mg/ml) were performed in five children allergic to cow's milk, five children allergic to hen's white egg, and five control subjects non-allergic to food. Three serum pools: I (positive-specific IgE to cow's milk and hen's egg white proteins), II (positive-specific IgE to cow's milk and negative to hen's egg white proteins), and III (negative-specific IgE to cow's milk and positive to hen's egg white proteins) were used to detect cow's milk and hen's egg white allergens in probiotics. ImmunoCAP(®) (Phadia), in-house ELISA, SDS-PAGE immunoblotting, and inhibition studies of these assays were performed. Proteins were quantified by enzyme-immunoassay. Eleven probiotics were studied. No label advertised about egg content, eight labels warned about lactose, lactic acid or cow's milk, one label claimed to be milk-free, and two gave no information. Cow's milk proteins were detected, by at least one lab technique, in 10/11 probiotics, three over 2.5 mg/kg (21, 52, 112 mg/kg). Hen's egg white proteins were detected in 3/11 probiotics, only one had more than 2.5 mg/kg (47 mg/kg). Probiotic compounds may contain hidden allergens of food and may not be safe for subjects with allergy to cow's milk or hen's egg. © 2012 John Wiley & Sons A/S.
Milk and growth in children: effects of whey and casein.
Mølgaard, Christian; Larnkjær, Anni; Arnberg, Karina; Michaelsen, Kim F
2011-01-01
Consumption of cow's milk is recommended in many countries. Observational and intervention studies show that cow's milk most likely has a positive influence on growth in children. The strongest evidence comes from observational studies and intervention studies in low-income countries, but there are also observational studies from high-income countries showing positive associations between milk intake and growth. Milk seems thus to have a specific stimulating effect on linear growth, not only in developing countries with high rates of malnutrition, but also in industrialized countries. However, it is not known which components in milk stimulate growth. Possible components are proteins, minerals, vitamins or combinations of these. Cow's milk proteins have a high protein quality, and whey has a slightly higher quality than casein, according to some indices based on amino acid composition. Studies, mainly from sport medicine, have suggested that whey protein also has the potential to increase muscle mass. Whether whey improves body composition to a larger extent than other milk proteins is not clear. The mechanism behind a possible growth-stimulating effect of milk and milk components is likely to be through a stimulation of insulin-like growth factor-I synthesis and maybe insulin secretion. In conclusion, there is strong evidence that milk stimulates linear growth. The mechanism is not yet clear, and more intervention studies are needed to understand which components in milk are responsible for the growth stimulation. The effects of milk on linear growth and adult height may have both positive and negative long-term implications. Copyright © 2011 S. Karger AG, Basel.
Premature Infants have Lower Gastric Digestion Capacity for Human Milk Proteins than Term Infants.
Demers-Mathieu, Veronique; Qu, Yunyao; Underwood, Mark A; Borghese, Robyn; Dallas, David Charles
2018-05-01
Whether premature infants have lower gastric protein digestive capacity than term infants and the extent to which human milk proteases contribute to overall gastric digestion are unknown and were investigated in this study. Human milk and infant gastric samples were collected from 16 preterm (24-32 wk gestational age) and 6 term (38-40 wk gestational age) mother-infant pairs within a range of 5 to 42 days postnatal age. For each pair, an aliquot of human milk was adjusted to pH 4.5 and incubated for 2 hours at 37 °C to simulate the gastric conditions without pepsin (milkinc). Their gastric protein digestion capacity was measured as proteolysis (free N-terminals) and protease activities. Two-way analysis of variance followed by Tukey post hoc test was applied to compare measurements between preterm and term infants as well as among human milk, milkinc, and gastric samples. Measurements of gastric protein digestion were significantly lower in preterm infants than term infants. Overall milk protease activity did not differ between human milk samples from term- and preterm-delivering mothers. As protease activity did not increase with simulated gastric incubation, milk proteases likely contributed minimally to gastric digestion. Preterm infants have lower gastric protein digestion capacity than term infants, which could impair nutrient acquisition. Human milk proteases contribute minimally to overall gastric digestion. The limited activity of milk proteases suggests that these enzymes cannot compensate for the premature infant's overall lower gastric protein digestion.
Wada, Yasuaki; Phinney, Brett S; Weber, Darren; Lönnerdal, Bo
2017-02-01
Human milk is the optimal mode of infant feeding for the first several months of life, and infant formulas serve as an alternative when breast-feeding is not possible. Milk proteins have a balanced amino acid composition and some of them provide beneficial bioactivities in their intact forms. They also encrypt a variety of bioactive peptides, possibly contributing to infant health and growth. However, there is limited knowledge of how milk proteins are digested in the gastrointestinal tract and bioactive peptides are released in infants. A peptidomic analysis was conducted to identify peptides released from milk proteins in human milk and infant formula, using a suckling rat pup model. Among the major milk proteins targeted, α-lactalbumin and β-casein in human milk, and β-lactoglobulin and β-casein in infant formula were the main sources of peptides, and these peptides covered large parts of the parental proteins' sequences. Release of peptides was concentrated to specific regions, such as residues 70-92 of β-casein in human milk, residues 39-55 of β-lactoglobulin in infant formula, and residues 57-96 and 145-161 of β-CN in infant formula, where resistance to gastrointestinal digestion was suggested. In the context of bioactive peptides, release of fragments containing known bioactive peptides was confirmed, such as β-CN-derived opioid and antihypertensive peptides. It is therefore likely that these fragments are of biological significance in neonatal health and development. Copyright © 2016 Elsevier Inc. All rights reserved.
Liquid egg as an alternative protein source in calf milk replacers.
Touchette, K J; O'Brien, M L; Coalson, J A
2003-08-01
The use of alternative proteins in milk replacer has been evaluated for their ability to decrease the cost of milk replacers without negatively impacting performance of the calf. Three studies were conducted to evaluate the performance of calves fed milk replacer utilizing liquid egg as an alternative protein and to determine the optimal concentration of liquid egg to include in milk replacers. Calves in trials 1 and 2 were assigned to a control diet of all milk protein replacer (MILK) or a diet formulated to contain 5% of the diet (13.5% of the protein) from liquid egg (5% EGG). Calves in trial 3 were assigned to one of four diets: the control (MILK) and 5% EGG diets fed in trials 1 and 2, or diets formulated to contain either 10 or 15% of the diet (27 or 40.5% of the protein) from liquid egg (10% EGG, 15% EGG). For all experiments, milk replacers were formulated to contain 20% protein, 20% fat and were fed at 454 g/d reconstituted to 12% DM. Production of the diets containing egg protein utilized breaker eggs that were pasteurized during manufacturing. Holstein bull calves (n = 44 for experiment 1, n = 38 for experiment 2, and n = 120 for experiment 3), were purchased from an area sale barn. Calves were housed in individual hutches with water available free choice starting on d 0. A commercially available calf starter was offered free choice beginning on d 7 for experiments 1 and 2 and on d 1 for experiment 3. Feed intake, scour scores, and antibiotic treatments were recorded daily. For experiment 1, calves fed 5% EGG had greater weight gains than calves fed MILK. No differences in average daily feed intake were observed. For experiment 2, weight gains tended to be lower with 5% EGG, whereas feed intakes and gain to feed ratios were similar between calves fed MILK or 5% EGG. For experiment 3, as the amount of egg in the diet increased, weight gain decreased in a linear fashion during the milk replacer feeding period, but the decrease in gain was significant only with the 15% EGG diet. These results indicate that egg is an effective alternative protein source to milk protein in calf milk replacers when fed at levels up to 10% of the diet in a conventional feeding program of 0.45 kg per head per day.
Turck, Dominique
2013-01-01
Cow's milk is increasingly suggested to play a role in the development of chronic degenerative, non-communicable disorders whereas goat's milk is advocated as having several health benefits. Cow's milk is a rich and cheap source of protein and calcium, and a valuable food for bone health. Despite their high content in saturated fats, consumption of full-fat dairy products does not seem to cause significant changes in cardiovascular disease risk variables. Early introduction of cow's milk is a strong negative determinant of iron status. Unmodified cow's milk does not meet nutritional requirements of infants although it is acceptable to add small volumes of cow's milk to complementary foods. Cow's milk protein allergy has a prevalence ranging from 2 to 7%, and the age of recovery is usually around 2-3 years. The evidence linking cow's milk intake to a later risk of type 1 diabetes or chronic degenerative, non-communicable disorders (obesity, metabolic syndrome, type 2 diabetes, hypertension) is not convincing. Milk probably protects against colorectal cancer, diets high in calcium are a probable cause of prostate cancer, and there is limited evidence suggesting that high consumption of milk and dairy products increases the risk for prostate cancer. There is no evidence to support the use of a cow's milk-free diet as a primary treatment for individuals with autistic spectrum disorders. Unmodified goat's milk is not suitable for infants because of the high protein and minerals content and of a low folate content. Goat's milk has no clear nutritional advantage over cow's milk and is not less allergenic. The European Food Safety Authority recently stated that proteins from goat's milk can be suitable as a protein source for infant and follow-on formula, provided the final product complies with the compositional criteria laid down in Directive 2006/141/EC. Copyright © 2013 S. Karger AG, Basel.
Jansson, Therese; Rauh, Valentin; Danielsen, Bente P; Poojary, Mahesha M; Waehrens, Sandra S; Bredie, Wender L P; Sørensen, John; Petersen, Mikael A; Ray, Colin A; Lund, Marianne N
2017-12-06
The effect of epigallocatechin gallate enriched green tea extract (GTE) on flavor, Maillard reactions and protein modifications in lactose-hydrolyzed (LH) ultrahigh temperature (UHT) processed milk was examined during storage at 40 °C for up to 42 days. Addition of GTE inhibited the formation of Strecker aldehydes by up to 95% compared to control milk, and the effect was similar when GTE was added either before or after UHT treatment. Release of free amino acids, caused by proteolysis, during storage was also decreased in GTE-added milk either before or after UHT treatment compared to control milk. Binding of polyphenols to milk proteins was observed in both fresh and stored milk samples. The inhibition of Strecker aldehyde formation by GTE may be explained by two different mechanisms; inhibition of proteolysis during storage by GTE or binding of amino acids and proteins to the GTE polyphenols.
Bevilacqua, C; Martin, P; Candalh, C; Fauquant, J; Piot, M; Roucayrol, A M; Pilla, F; Heyman, M
2001-05-01
Contradictory results have been reported on the use of goats' milk in cows' milk allergy. In this study the hypothesis was tested, using a guinea pig model of cows' milk allergy, that these discrepancies could be due to the high genetic polymorphism of goats' milk proteins. Forty guinea pigs were fed over a 20 d period with pelleted diets containing one of the following: soyabean proteins (group S), cows' milk proteins (group CM), goats' milk proteins with high (group GM1) or low (group GM2) alpha(s1)-casein content. Parenteral sensitization to GM1 and GM2 proteins as also assessed. The sensitization was measured (1) by systemic IgG1 antibodies directed against bovine or caprine beta-lactoglobulin (beta-lg), alpha-lactalbumin (alpha-la) and whole caseins, and (2) by intestinal anaphylaxis measured in vitro in Ussing chambers, by the rise in short-circuit current (delta Isc) in response to milk proteins. Guinea pigs fed on CM and GM1 developed high titres (> 1500) of anti-beta-lg IgG1, with an important cross reactivity between goat and cow beta-lg. However, in guinea pigs fed on GM2, anti-goat beta-lg IgG1 antibodies were significantly decreased compared with GM1 guinea pigs (mean IgG1 titres were 546 and 2046 respectively), and the intestinal anaphylaxis was significantly decreased (3.5+/-4.5 microA/cm2) compared with that observed in GM1 guinea pigs (8.3+/-7.6 microA/cm2). Animals receiving GM1 or GM2 proteins via the parenteral route developed a marked sensitization. These results suggest that the discrepancies observed in the use of goats milk in cows' milk allergy could be due, at least in part, to the high genetic polymorphism of goats' milk proteins.
Differences in proteomic profiles of milk fat globule membrane in yak and cow milk.
Ji, Xiaoxi; Li, Xisheng; Ma, Ying; Li, Day
2017-04-15
Milk fat globule membrane (MFGM) is an important milk component which is rich in bioactive proteins. In this work, the isobaric tags for relative and absolute quantitation (iTRAQ) proteomic approach was used to investigate the differences in the MFGM proteins between yak and cow milk. Over 450 proteins were identified between the yak and cow MFGM. The MFGM proteins with significant differences were compared based on the relative abundance. Proteins such as Glycosylation-dependent cell adhesion molecule 1 (GlyCAM1), CD59 molecule and lactadherin, were identified having a much higher abundance (4.6-10.1 fold) in yak MFGM than cow MFGM. These proteins are thought to have biological functions such as the antimicrobial and antitumor effects. This may be due to the need that yak produces high nutritive milk including high levels of bioactive compounds in order to resist the extreme high altitude environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guo, Cheng-ye; Wang, Hou-yu; Liu, Xiao-ping; Fan, Liu-yin; Zhang, Lei; Cao, Cheng-xi
2013-05-01
In this paper, moving reaction boundary titration (MRBT) was developed for rapid and accurate quantification of total protein in infant milk powder, from the concept of moving reaction boundary (MRB) electrophoresis. In the method, the MRB was formed by the hydroxide ions and the acidic residues of milk proteins immobilized via cross-linked polyacrylamide gel (PAG), an acid-base indicator was used to denote the boundary motion. As a proof of concept, we chose five brands of infant milk powders to study the feasibility of MRBT method. The calibration curve of MRB velocity versus logarithmic total protein content of infant milk powder sample was established based on the visual signal of MRB motion as a function of logarithmic milk protein content. Weak influence of nonprotein nitrogen (NPN) reagents (e.g., melamine and urea) on MRBT method was observed, due to the fact that MRB was formed with hydroxide ions and the acidic residues of captured milk proteins, rather than the alkaline residues or the NPN reagents added. The total protein contents in infant milk powder samples detected via the MRBT method were in good agreement with those achieved by the classic Kjeldahl method. In addition, the developed method had much faster measuring speed compared with the Kjeldahl method. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of increasing dietary metabolizable protein on nitrogen efficiency in Holstein dairy cows
Imran, Muhammad; Pasha, Talat Naseer; Shahid, Muhammad Qamer; Babar, Imran; Naveed ul Haque, Muhammad
2017-01-01
Objective The objective of the study was to determine the effects of increasing levels of metabolizable protein (MP) on lactation performance and nitrogen (N) efficiencies in lactating dairy cows. Methods Nine multiparous cows in mid lactation [113±25 days in milk] received three treatments in a 3×3 Latin square design with a period length of 21 days. The treatments were three diets, designed to provide similar energy and increasing supply of MP (g/d) (2,371 [low], 2,561 [medium], and 2,711 [high] with corresponding crude protein levels [%]) 15.2, 18.4, and 20.9, respectively. Results Increasing MP supplies did not modify dry matter intake, however, it increased milk protein, fat, and lactose yield linearly. Similarly, fat corrected milk increased linearly (9.3%) due to an increase in both milk yield (5.2%) and milk fat content (7.8%). No effects were observed on milk protein and lactose contents across the treatments. Milk nitrogen efficiency (MNE) decreased from 0.26 to 0.20; whereas, the metabolic efficiency of MP decreased from 0.70 to 0.60 in low to high MP supplies, respectively. The concentration of blood urea nitrogen (BUN) increased linearly in response to increasing MP supplies. Conclusion Increasing MP supplies resulted in increased milk protein yield; however, a higher BUN and low MNE indicated an efficient utilization of dietary protein at low MP supplies. PMID:28002937
Puppel, Kamila; Sakowski, Tomasz; Kuczyńska, Beata; Grodkowski, Grzegorz; Gołębiewski, Marcin; Barszczewski, Jerzy; Wróbel, Barbara; Budziński, Arkadiusz; Kapusta, Aleksandra; Balcerak, Marek
2017-02-01
The aim of this study was to determine the nutritional value of organic milk in Poland, investigate the influence of diet on antioxidant capacity and degree of antioxidant protection (DAP), and to examine the effect of season on the bioactive properties of milk from organic farms. From 2014 to 2015, 820 milk samples were collected from 6 organic farms during indoor feeding season (IDS) and pasture feeding season (PS). Pasture feeding season + corn grain (PSCG) cows' daily ration during pasture feeding season was enriched with 4 kg a day of corn to improve dietary energy balance. Milk obtained during PS was found to have a higher fat content, slight but significantly lower protein content compared with milk from IDS. The study showed that the content of monounsaturated fatty acids (MUFA) in milk fat was strongly linked to the concentration of polyunsaturated fatty acids (PUFA) and, to a lesser extent, on the supply of MUFA. The IDS data (concentration of vitamin E, A, and β-carotene) showed the lowest values compared with the PS and PSCG groups. Total antioxidant status (TAS) and DAP showed an increasing trend in organic milk. PSCG was associated with highest level of DAP (9% higher than PS and 79% higher than IDS) and TAS (37% higher than PS and 79% higher than IDS). The results obtained show that supplementation of the basic ration with corn grain improved both TAS and DAP. The higher DAP and TAS value is responsible for product stability, considering the risk factor related to levels of cholesterol-oxide intake in humans. © 2017 Institute of Food Technologists®.
Ito, Kentaro; Saito, Yuri; Ashida, Kinya; Yamaji, Taketo; Itoh, Hiroyuki; Oda, Munehiro
2015-01-01
A fluid-retention effect is required for beverages that are designed to prevent dehydration. That is, fluid absorbed from the intestines should not be excreted quickly; long-term retention is desirable. Here, we focused on the effect of milk protein on fluid retention, and propose a new effective oral rehydration method that can be used daily for preventing dehydration. We first evaluated the effects of different concentrations of milk protein on fluid retention by measuring the urinary volumes of rats fed fluid containing milk protein at concentrations of 1, 5, and 10%. We next compared the fluid-retention effect of milk protein-enriched drink (MPD) with those of distilled water (DW) and a sports drink (SD) by the same method. Third, to investigate the mechanism of fluid retention, we measured plasma insulin changes in rats after ingesting these three drinks. We found that the addition of milk protein at 5 or 10% reduced urinary volume in a dose-dependent manner. Ingestion of the MPD containing 4.6% milk protein resulted in lower urinary volumes than DW and SD. MPD also showed a higher water reabsorption rate in the kidneys and higher concentrations of plasma insulin than DW and SD. These results suggest that increasing milk protein concentration in a beverage enhances fluid retention, which may allow the possibility to develop rehydration beverages that are more effective than SDs. In addition, insulin-modifying renal water reabsorption may contribute to the fluid-retention effect of MPD.
The impact of human breast milk components on the infant metabolism
Hellmuth, Christian; Uhl, Olaf; Demmelmair, Hans; Grunewald, Maria; Auricchio, Renata; Castillejo, Gemma; Korponay-Szabo, Ilma R.; Polanco, Isabel; Roca, María; Vriezinga, Sabine L.; Werkstetter, Katharina J.; Koletzko, Berthold; Mearin, M. Luisa
2018-01-01
Background & aims Breastfeeding is beneficial for mothers and infants. Underlying mechanisms and biochemical mediators thus need to be investigated to develop and support improved infant nutrition practices promoting the child health. We analysed the relation between maternal breast milk composition and infant metabolism. Methods 196 pairs of mothers and infants from a European research project (PreventCD) were studied. Maternal milk samples collected at month 1 and month 4 after birth were analysed for macronutrient classes, hormone, and fatty acid (FA) content. Phospholipids, acylcarnitines, and amino acids were measured in serum samples of 4-month old infants. Associations between milk components and infant metabolites were analysed with spearman correlation and linear mixed effect models (LME). P-values were corrected for multiple testing (PLME). Results Month 1 milk protein content was strongly associated with infant serum lyso-phosphatidylcholine (LPC) 14:0 (PLME = 0.009). Month 1 milk insulin was associated to infant acetylcarnitine (PLME = 0.01). There were no associations between milk protein content and serum amino acids and milk total fat content and serum polar lipids. Middle- and odd-chain FA% in breast milk at both ages were significantly related to serum LPC and sphingomyelins (SM) species in infant serum (all PLME<0.05), while FA% 20:5n-3 and 22:6n-3 percentages were significantly associated to serum LPC 22:6 (PLME = 1.91×10−4/7.93×10−5) in milk only at month 4. Other polyunsaturated fatty acids and hormones in milk showed only weak associations with infant serum metabolites. Conclusions Infant serum LPC are influenced by breast milk FA composition and, intriguingly, milk protein content in early but not late lactation. LPC 14:0, previously found positively associated with obesity risk, was the serum metabolite which was the most strongly associated to milk protein content. Thus, LPC 14:0 might be a key metabolite not only reflecting milk protein intake in infants, but also relating high protein content in milk or infant formula to childhood obesity risk. PMID:29856767
Bioactive Proteins in Human Milk: Health, Nutrition, and Implications for Infant Formulas.
Lönnerdal, Bo
2016-06-01
Breast milk confers many benefits to the newborn and developing infant. There is substantial support for better long-term outcomes, such as less obesity, diabetes, and cardiovascular disease, in breastfed compared with formula-fed infants. More short-term outcomes, such as incidence and duration of illness, nutrient status, and cognitive development during the first year of life also demonstrate benefits of breastfeeding. Several proteins in breast milk, including lactoferrin, α-lactalbumin, milk fat globule membrane proteins, and osteopontin, have been shown to have bioactivities that range from involvement in the protection against infection to the acquisition of nutrients from breast milk. In some cases, bovine counterparts of these proteins exert similar bioactivities. It is possible by dairy technology to add protein fractions highly enriched in these proteins to infant formula. Copyright © 2016 Elsevier Inc. All rights reserved.
Kuczyńska, Beata; Puppel, Kamila; Gołebiewski, Marcin; Metera, Ewa; Sakowski, Tomasz; Słoniewski, Krzysztof
2012-11-01
The aim of the study was to investigate bioactive whey protein concentrations in cow's milk collected in late pasture (LP) and early indoor feeding (EIF) season from conventional and organic farms in Poland. Results showed that in the LP somatic cell count (SCC) was higher under organic farming conditions. However, percentages of protein and fat were higher under conventional farming conditions. In EIF, milk from conventional dairy farms had a higher percentage of fat and lactose and a lower concentration of protein and SCC in comparison to milk from organic farms. Organic milk in LP had higher concentrations of beneficial whey proteins than conventional milk, including β-lactoglobulin (β-Lg, 4.12 vs. 2.68 g L⁻¹), lactoferrin (Lf, 334.99 vs. 188.02 mg L⁻¹), and lysozyme (Lz, 15.68 vs. 12.56 µg L⁻¹). However, conventional milk in EIF had higher concentrations of bovine serum albumin (146.47 vs. 118.65 mg L⁻¹), Lf (49 vs. 185.27 mg L⁻¹), and Lz (16.63 vs. 13.22 µg L⁻¹). The results show significant differences in the investigated parameters between organic milk and milk from conventional system during EIF and LP. Moreover, extending the pasture season during EIF in organic farms decreases concentration of bioactive compounds of milk. Copyright © 2012 Society of Chemical Industry.
Effects of rumen-protected methionine, lysine, and histidine on lactation performance of dairy cows.
Giallongo, F; Harper, M T; Oh, J; Lopes, J C; Lapierre, H; Patton, R A; Parys, C; Shinzato, I; Hristov, A N
2016-06-01
The objective of this study was to evaluate the effects of supplementing a metabolizable protein (MP)-deficient diet with rumen-protected (RP) Met, Lys, and His, individually or combined, on the performance of lactating dairy cows. The experiment was a 9-wk randomized complete block design with 72 Holstein cows. Following a 2-wk covariate period, cows were blocked by days in milk, milk yield, and parity, and randomly assigned to 1 of the following 6 treatments: (1) MP-adequate diet [MPA; +243g/d MP balance, according to the National Research Council (2001) requirements]; (2) MP-deficient diet (MPD; -54g/d MP balance); (3) MPD supplemented with RPMet (MPDM); (4) MPD supplemented with RPLys (MPDL); (5) MPD supplemented with RPHis (MPDH); and (6) MPD supplemented with RPMet, RPLys, and RPHis (MPDMLH). Dry matter intake (DMI), yields of milk and milk components (fat, protein, lactose) and energy-corrected milk (ECM), feed and ECM feed efficiencies, and milk and plasma urea N were decreased by MPD, compared with MPA. Supplementation of the MPD diet with RPLys increased milk protein content and plasma glucose concentration and tended to increase milk urea N. Addition of RPHis tended to increase DMI, increased milk protein concentration, and numerically increased yields of milk fat, protein, and ECM. In addition to the trends for increased DMI and milk fat content, and higher milk protein concentration, supplementation of the 3 RP AA also increased yields of milk fat, protein, and ECM and ECM feed efficiency. Relative to MPA, milk N efficiency tended to be increased by MPD. Concentrations of plasma essential AA (except Met and Thr) were decreased by MPD compared with MPA. Supplementation of RPMet, RPLys, and RPHis increased plasma Met (except for MPDM), Lys, and His concentrations, respectively. Cows fed MPD had lower blood hemoglobin concentration and numerically higher plasma ghrelin than cows fed MPA. Concentration of total saturated fatty acids in milk fat were or tended to be higher for MPD compared with MPA and MPDMLH, respectively. Concentration of total polyunsaturated and yield of milk odd- and branched-chain fatty acids were or tended to be decreased by MPD compared with MPA. Overall, the results of this study confirm our previous data and suggest that His stimulates DMI and the combination of the 3 RP AA (Met, Lys, and His) has the potential to improve milk and milk component yields in dairy cows fed MP-deficient diets. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rodney, Rachael M; Hall, Jenianne K; Westwood, Charlotte T; Celi, Pietro; Lean, Ian J
2016-09-01
Multiparous Holstein cows (n=82) of either high or low genetic merit (GM) (for milk fat + protein yield) were allocated to 1 of 2 diets in a 2×2 factorial design. Diets differed in the ratio of rumen-undegradable protein (RUP) to rumen-degradable protein (37% RUP vs. 15% RUP) and were fed from 21 d precalving to 150 days in milk. This study evaluated the effects of these diets and GM on concentrations of milk casein (CN) variants and aimed to identify precalving and early lactation variables that predict milk CN and protein yield and composition and fertility of dairy cows. It explored the hypothesis that low milk protein content is associated with lower fertility and extended this hypothesis to also evaluate the association of CN contents with fertility. Yields (kg/d) for CN variants were 0.49 and 0.45 of α-CN, 0.38 and 0.34 of β-CN, 0.07 and 0.06 for κ-CN, and 0.10 and 0.09 of γ-CN for high- and low-RUP diets, respectively. Increased RUP increased milk, CN, and milk protein yields. Increased GM increased milk protein and γ-CN yields and tended to increase milk CN yield. The effects of indicator variables on CN variant yields and concentrations were largely consistent, with higher body weight and α-amino nitrogen resulting in higher yields, but lower concentrations. An increase in cholesterol was associated with decreased CN variant concentrations, and disease lowered CN variant yield. A diet high in RUP increased proportion of first services that resulted in pregnancy from 41 to 58%. Increased precalving metabolizable protein (MP) balance decreased the proportion of first services that resulted in pregnancy when evaluated in a model containing CN percentage, milk protein yield, diet, and GM. This finding suggests that the positive effects of increasing dietary RUP on fertility may be curvilinear because cows with a very positive MP balance before calving were less fertile than those with a lower, but positive, MP balance. Prepartum MP balance was important to production and reproductive outcomes, but surprisingly, metabolizable energy balance was not. The hazard of pregnancy in the first 150 d of lactation was 28% lower in cows producing milk with the lowest quartile of protein percentage compared with cows with milk in the upper 3 quartiles. Milk CN percentage was positively associated with improved pregnancy at first service. This study demonstrates the importance of protein metabolism to reproductive performance of the dairy cow. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Flavor and stability of milk proteins.
Smith, T J; Campbell, R E; Jo, Y; Drake, M A
2016-06-01
A greater understanding of the nature and source of dried milk protein ingredient flavor(s) is required to characterize flavor stability and identify the sources of flavors. The objective of this study was to characterize the flavor and flavor chemistry of milk protein concentrates (MPC 70, 80, 85), isolates (MPI), acid and rennet caseins, and micellar casein concentrate (MCC) and to determine the effect of storage on flavor and functionality of milk protein concentrates using instrumental and sensory techniques. Spray-dried milk protein ingredients (MPC, MPI, caseins, MCC) were collected in duplicate from 5 commercial suppliers or manufactured at North Carolina State University. Powders were rehydrated and evaluated in duplicate by descriptive sensory analysis. Volatile compounds were extracted by solid phase microextraction followed by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry. Compounds were identified by comparison of retention indices, odor properties, and mass spectra against reference standards. A subset of samples was selected for further analysis using direct solvent extraction with solvent-assisted flavor extraction, and aroma extract dilution analysis. External standard curves were created to quantify select volatile compounds. Pilot plant manufactured MPC were stored at 3, 25, and 40°C (44% relative humidity). Solubility, furosine, sensory properties, and volatile compound analyses were performed at 0, 1, 3, 6, and 12 mo. Milk proteins and caseins were diverse in flavor and exhibited sweet aromatic and cooked/milky flavors as well as cardboard, brothy, tortilla, soapy, and fatty flavors. Key aroma active compounds in milk proteins and caseins were 2-aminoacetophenone, nonanal, 1-octen-3-one, dimethyl trisulfide, 2-acetyl-1-pyrroline, heptanal, methional, 1-hexen-3-one, hexanal, dimethyl disulfide, butanoic acid, and acetic acid. Stored milk proteins developed animal and burnt sugar flavors over time. Solubility of MPC decreased and furosine concentration increased with storage time and temperature. Solubility of MPC 80 was reduced more than that of MPC 45, but time and temperature adversely affected solubility of both proteins, with storage temperature having the greatest effect. Flavor and shelf stability of milk proteins provide a foundation of knowledge to improve the flavor and shelf-life of milk proteins. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The impact of maternal- and neonatal-associated factors on human milk's macronutrients and energy.
Dritsakou, Kalliopi; Liosis, Georgios; Valsami, Georgia; Polychronopoulos, Evangelos; Skouroliakou, Maria
2017-06-01
To test the impact of specific maternal- and neonatal-associated factors on human milk's macronutrients and energy. This study was conducted with the use of a human milk analyzer (HMA, MIRIS, Uppsala, Sweden). Six hundred and thirty samples of raw milk and 95 samples of donor pasteurized milk were delivered from a total of 305 mothers. A significant inverse correlation of fat, protein and energy content with gestational age and birth weight was established. Fat and energy were lower in colostrum, increased in transitional milk and decreased on the 30th day's mature milk compared to transitional. The rate of protein decline from colostrum to mature milk was lower in premature deliveries compared to that of full-terms, resulting in greater contents of protein in preterm mature milk. The upmost amounts of carbohydrates were found in mature milk of preterm deliveries. A positive correlation was found between maternal age and fat contents. In women with higher post-pregnancy BMI levels greater analogies of fat and energy were presented. In women suffering diet-controlled gestational diabetes (GD), lower protein and higher fat and energy levels were found. Prematurity, maternal age, diet-controlled GD and high post-pregnancy BMI levels were found to impose statistical significant effect on milk's macronutrients and energy.
Carder, E G; Weiss, W P
2017-06-01
The first few weeks after parturition is marked by low, but increasing feed intake and sharply increasing milk production by dairy cows. Because of low intake, the nutrient density of the diet may need to be higher during this period to support increasing milk yields. We hypothesized that feeding higher levels of metabolizable protein (MP) or a protein supplement with rumen-protected lysine and methionine during the immediate postpartum period would increase yields of milk and milk components. Fifty-six Holstein cows (21 primiparous and 35 multiparous) starting at 3 d in milk were used in a randomized block design. In phase 1 (3 through 23 d in milk), cows were fed 1 of 3 diets that differed in supply of MP and AA profile. At 23 d in milk, all cows were moved to a common freestall pen and fed the control diet used in phase 1 for an additional 63 d (phase 2). Diets were formulated using the National Research Council model and were control [16.5% crude protein (CP), 10.9% rumen-degradable protein (RDP), and 5.6% rumen-undegradable protein (RUP)], high MP (HMP; 18.5% CP, 11.6% RDP, 6.9% RUP), and AA (MPAA; 17.5% CP, 10.5% RDP, 7.0% RUP 29.7). The MPAA diet included a proprietary spray-dried blood meal product (Perdue Agribusiness, Salisbury, MD) and contained a model-estimated 7.2 and 2.6% of digestible lysine and methionine (% of MP). The HMP and control diets contained 6.3 and 6.7% digestible lysine and both had 1.8% digestible methionine. In phase 1, diet did not affect milk yield (33.6, 34.7, and 33.2 kg for control, HMP, and MPAA, respectively), dry matter intake (17.8, 18.0, and 18.5 kg/d for control, HMP, and MPAA), or milk protein yield (1.07 kg/d). Feeding additional protein (HMP or MPAA) increased both the concentration and yield of milk fat, and milk protein concentration was greater (3.30 vs. 3.17%) for MPAA compared with the HMP diet. Energy-corrected milk was greater (38.4 and 38.6 vs. 35.3 kg/d, respectively) for MPAA and HP than for the control. Cows fed MPAA had the greatest plasma concentrations of Met and the lowest concentrations of isoleucine, but lysine was not affected by treatment. Feeding additional MP (HMP or MPAA) reduced the concentrations of 3-methylhistidine in plasma, indicating reduced muscle breakdown. Diet effects on milk composition continued after cows were changed to a common diet in that cows fed MPAA the first 3 wk of lactation had greater concentration of milk protein for the entire experiment than cows fed HMP, and cows fed additional MP (HMP and MPAA) during phase 1 had greater concentrations of milk fat for the entire experiment. Increasing dietary protein and AA supply in early lactation had short-term effects on yield of energy-corrected milk and long-term effects on milk composition. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ong, L; Dagastine, R R; Kentish, S E; Gras, S L
2010-04-01
Confocal laser scanning microscopy (CLSM) was successfully used to observe the effect of milk processing on the size and the morphology of the milk fat globule in raw milk, raw ultrafiltered milk, and standardized and pasteurized milk prepared for cheese manufacture (cheese-milk) and commercial pasteurized and homogenized milk. Fat globule size distributions for the milk preparations were analyzed using both image analysis and light scattering and both measurements produced similar data trends. Changes to the native milk fat globule membrane (MFGM) were tracked using a MFGM specific fluorescent stain that allowed MFGM proteins and adsorbed proteins to be differentiated on the fat globule surface. Sodium dodecyl sulfate polyacrylamide gel electrophoresis confirmed the identity of native MFGM proteins isolated from the surface of fat globules within raw, UF retentate, and cheese-milk preparations, whereas only casein was detected on the surface of fat globules in homogenized milk. The microstructure, porosity, and gel strength of the rennet induced gel made from raw milk and cheese-milk was also found to be comparable and significantly different to that made from homogenized milk. Our results highlight the potential use of CLSM as a tool to observe the structural details of the fat globule and associated membrane close to its native environment.
ROZENFELD, P; DOCENA, G H; AÑÓN, M C; FOSSATI, C A
2002-01-01
Soy-based formulas are the most employed cow's milk substitutes in the treatment of cow's milk allergy in our country. Since adverse reactions have been reported in allergic patients as a consequence of exposure to soy proteins, we have investigated the possible cross-reactivity between components from soybean and cow's milk. A cow's milk specific polyclonal antiserum and casein specific monoclonal antibodies were used in immunoblotting and competitive ELISA studies to identify a 30-kD component from soybean that cross-reacts with cow's milk caseins. Its IgE binding capacity was tested by EAST, employing sera from cow's milk allergic patients, not previously exposed to soy proteins. The 30 kD protein was isolated and partially sequenced. It is constituted by two polypeptides (A5 and B3) linked by a disulphide bond. The protein's capacity to bind to the different antibodies relies on the B3 poly-peptide. These results indicate that soy-based formula, which contains the A5-B3 glycinin molecule, could be involved in allergic reactions observed in cow's milk allergic patients exposed to soy-containing foods. PMID:12296853
Cunsolo, Vincenzo; Saletti, Rosaria; Muccilli, Vera; Gallina, Serafina; Di Francesco, Antonella; Foti, Salvatore
2017-09-01
The legendary therapeutics properties of donkey milk have recently been supported by many clinical trials who have clearly demonstrated that, even if with adequate lipid integration, it may represent a valid natural substitute of cow milk for feeding allergic children. During the last decade many investigations by MS-based methods have been performed in order to obtain a better knowledge of donkey milk proteins. The knowledge about the primary structure of donkey milk proteins now may provide the basis for a more accurate comprehension of its potential benefits for human nutrition. In this aspect, experimental data today available clearly demonstrate that donkey milk proteins (especially casein components) are more closely related with the human homologues rather than cow counterparts. Moreover, the low allergenic properties of donkey milk with respect to cow one seem to be related to the low total protein content, the low ratio of caseins to whey fraction, and finally to the presence in almost all bovine IgE-binding linear epitopes of multiple amino acid differences with respect to the corresponding regions of donkey milk counterparts. Copyright © 2017 Elsevier Ltd. All rights reserved.
... the liver: from basic research to clinical practice. World Journal of Gastroenterology. 2011;17(18):2288-2301. Milk Thistle. Natural Medicines Web site. Accessed at naturalmedicines.therapeuticresearch.com ...
The effects of human milk fortification on nutrients and milk properties.
Donovan, R; Kelly, S G; Prazad, P; Talaty, P N; Lefaiver, C; Hastings, M L; Everly, D N
2017-01-01
To investigate the effects of fortification and storage on nutrients and properties of various human milk (HM) types. Mother's own milk (MOM) and pasteurized donor human milk (DHM; n=118) were analyzed pre- and post fortification with Enfamil and Similac human milk fortifier (EHMF and SHMF) before and after 24 h of refrigerated storage. Milk fortified with SHMF had significantly greater osmolality, pH and lipase activity than EHMF. Changes in protein, pH and osmolality following refrigerated storage differed between fortifiers. When milk type was factored into the analysis, protein and lipase activity changes in fresh MOM differed significantly from DHM and frozen MOM. Analysis of UNF HM found higher protein levels in preterm vs term samples and in MOM vs DHM. Nutrient composition of HM varies significantly by milk type. Although fortifiers enhance select nutrients, each has the potential to affect HM properties in a unique way and these affects may vary by milk type.
Jabed, Anower; Wagner, Stefan; McCracken, Judi; Wells, David N.; Laible, Goetz
2012-01-01
Milk from dairy cows contains the protein β-lactoglobulin (BLG), which is not present in human milk. As it is a major milk allergen, we wished to decrease BLG levels in milk by RNAi. In vitro screening of 10 microRNAs (miRNAs), either individually or in tandem combinations, identified several that achieved as much as a 98% knockdown of BLG. One tandem construct was expressed in the mammary gland of an ovine BLG-expressing mouse model, resulting in 96% knockdown of ovine BLG in milk. Following this in vivo validation, we produced a transgenic calf, engineered to express these tandem miRNAs. Analysis of hormonally induced milk from this calf demonstrated absence of BLG and a concurrent increase of all casein milk proteins. The findings demonstrate miRNA–mediated depletion of an allergenic milk protein in cattle and validate targeted miRNA expression as an effective strategy to alter milk composition and other livestock traits. PMID:23027958
Milk Lacking α-Casein Leads to Permanent Reduction in Body Size in Mice
Kolb, Andreas F.; Huber, Reinhard C.; Lillico, Simon G.; Carlisle, Ailsa; Robinson, Claire J.; Neil, Claire; Petrie, Linda; Sorensen, Dorte B.; Olsson, I. Anna S.; Whitelaw, C. Bruce A.
2011-01-01
The major physiological function of milk is the transport of amino acids, carbohydrates, lipids and minerals to mammalian offspring. Caseins, the major milk proteins, are secreted in the form of a micelle consisting of protein and calcium-phosphate. We have analysed the role of the milk protein α-casein by inactivating the corresponding gene in mice. Absence of α-casein protein significantly curtails secretion of other milk proteins and calcium-phosphate, suggesting a role for α-casein in the establishment of casein micelles. In contrast, secretion of albumin, which is not synthesized in the mammary epithelium, into milk is not reduced. The absence of α-casein also significantly inhibits transcription of the other casein genes. α-Casein deficiency severely delays pup growth during lactation and results in a life-long body size reduction compared to control animals, but has only transient effects on physical and behavioural development of the pups. The data support a critical role for α-casein in casein micelle assembly. The results also confirm lactation as a critical window of metabolic programming and suggest milk protein concentration as a decisive factor in determining adult body weight. PMID:21789179
Human milk galectin-3 binding protein and breast-feeding-associated HIV transmission.
Chan, Christina S; Kim, Hae-Young; Autran, Chloe; Kim, Jae H; Sinkala, Moses; Kankasa, Chipepo; Mwiya, Mwiya; Thea, Donald M; Aldrovandi, Grace M; Kuhn, Louise; Bode, Lars
2013-12-01
Analysis of milk from 247 HIV-infected Zambian mothers showed that galectin-3 binding protein concentrations were significantly higher among HIV-infected mothers who transmitted HIV through breast-feeding (6.51 ± 2.12 μg/mL) than among nontransmitters but were also correlated with higher milk and plasma HIV RNA copies/mL and lower CD4+ cell counts. The association between galectin-3 binding protein and postnatal transmission was attenuated after adjustment for milk and plasma HIV load and CD4+ cell counts. This suggests that although milk galectin-3 binding protein is a marker of advanced maternal disease, it does not independently modify transmission risk.
Janjanam, Jagadeesh; Singh, Surender; Jena, Manoj K.; Varshney, Nishant; Kola, Srujana; Kumar, Sudarshan; Kaushik, Jai K.; Grover, Sunita; Dang, Ajay K.; Mukesh, Manishi; Prakash, B. S.; Mohanty, Ashok K.
2014-01-01
Mammary gland is made up of a branching network of ducts that end with alveoli which surrounds the lumen. These alveolar mammary epithelial cells (MEC) reflect the milk producing ability of farm animals. In this study, we have used 2D-DIGE and mass spectrometry to identify the protein changes in MEC during immediate early, peak and late stages of lactation and also compared differentially expressed proteins in MEC isolated from milk of high and low milk producing cows. We have identified 41 differentially expressed proteins during lactation stages and 22 proteins in high and low milk yielding cows. Bioinformatics analysis showed that a majority of the differentially expressed proteins are associated in metabolic process, catalytic and binding activity. The differentially expressed proteins were mapped to the available biological pathways and networks involved in lactation. The proteins up-regulated during late stage of lactation are associated with NF-κB stress induced signaling pathways and whereas Akt, PI3K and p38/MAPK signaling pathways are associated with high milk production mediated through insulin hormone signaling. PMID:25111801
Microstructure and Composition of Full Fat Cheddar Cheese Made with Ultrafiltered Milk Retentate
Ong, Lydia; Dagastine, Raymond R.; Kentish, Sandra E.; Gras, Sally L.
2013-01-01
Milk protein is often standardised prior to cheese-making using low concentration factor ultrafiltration retentate (LCUFR) but the effect of LCUFR addition on the microstructure of full fat gel, curd and Cheddar cheese is not known. In this work, Cheddar cheeses were made from cheese-milk with or without LCUFR addition using a protein concentration of 3.7%–5.8% w/w. The fat lost to sweet whey was higher in cheese made from cheese-milk without LCUFR or from cheese-milk with 5.8% w/w protein. At 5.8% w/w protein concentration, the porosity of the gel increased significantly and the fat globules within the gel and curd tended to pool together, which possibly contributed to the higher fat loss in the sweet whey. The microstructure of cheese from cheese-milk with a higher protein concentration was more compact, consistent with the increased hardness, although the cohesiveness was lower. These results highlight the potential use of LCUFR for the standardization of protein concentration in cheese-milk to 4%–5% w/w (equivalent to a casein to total protein ratio of 77%–79% w/w) to increase yield. Beyond this concentration, significant changes in the gel microstructure, cheese texture and fat loss were observed. PMID:28239117
Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns.
Chatterton, Dereck E W; Nguyen, Duc Ninh; Bering, Stine Brandt; Sangild, Per Torp
2013-08-01
The human newborn infant is susceptible to gut inflammatory disorders. In particular, growth-restricted infants or infants born prematurely may develop a severe form of intestinal inflammation known as necrotizing enterocolitis (NEC), which has a high mortality. Milk provides a multitude of proteins with anti-inflammatory properties and in this review we gather together some recent significant advances regarding the isolation and proteomic identification of these minor constituents of both human and bovine milk. We introduce the process of inflammation, with a focus on the immature gut, and describe how a multitude of milk proteins act against the inflammatory process according to both in vitro and in vivo studies. We highlight the effects of milk proteins such as caseins, and of whey proteins such as alpha-lactalbumin, beta-lactoglobulin, lactoferrin, osteopontin, immunoglobulins, trefoil factors, lactoperoxidase, superoxide dismutase, platelet-activating factor acetylhydrolase, alkaline phosphatase, and growth factors (TGF-β, IGF-I and IGF-II, EGF, HB-EGF). The effects of milk fat globule proteins, such as TLR-2, TLR-4, sCD14 and MFG-E8/lactadherin, are also discussed. Finally, we indicate how milk proteins could be useful for the prophylaxis and therapy of intestinal inflammation in infants and children. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rapid resolution of milk protein intolerance in infancy.
Lazare, Farrah B; Brand, Donald A; Marciano, Tuvia A; Daum, Fredric
2014-08-01
Infants with milk protein intolerance are usually switched to a casein hydrolysate or amino acid-based formula, which they continue to receive until 1 year of age, when they are rechallenged with a cow's-milk or soy protein formula. To investigate whether some of these infants actually become tolerant sooner, this study gathered preliminary data for establishing an empirical timetable for the resolution of milk protein intolerance. This prospective, longitudinal cohort study enrolled infants <4 months of age receiving either breast milk or a cow's-milk or casein hydrolysate formula who presented to a pediatric subspecialty practice during an 18-month period and had a positive stool guaiac test. After having been successfully switched to a casein hydrolysate or amino acid formula, infants who had guaiac-negative stools for at least 2 consecutive months were rechallenged with the formula that had necessitated the most recent switch. Of the 25 patients enrolled in the study, 16 completed the food challenge and data collection protocol. Negative stool guaiac tests following rechallenge indicated resolution of milk protein intolerance by the time subjects reached an average age of 6.7 ± 1.0 months (mean ± standard deviation). By the age of 7 months, milk protein intolerance was resolved in 12 of the 16 infants, the remainder having resolved by 10 months. It may be reasonable to treat infants with milk protein intolerance for 2 to 3 months with a hypoallergenic formula, then rechallenge them at 6 months of age, usually without causing recurrence of the hematochezia. Rechallenging before 12 months old could result in cost savings to families and insurers.
Modern proteomic methodologies for the characterization of lactosylation protein targets in milk.
Arena, Simona; Renzone, Giovanni; Novi, Gianfranco; Paffetti, Alessandro; Bernardini, Giulia; Santucci, Annalisa; Scaloni, Andrea
2010-10-01
Heat treatment of milk induces the Maillard reaction between lactose and proteins; in this context, β-lactoglobulin and α-lactalbumin adducts have been used as markers to monitor milk quality. Since some milk proteins have been reported as essential for the delivery of microelements and, being resistant against proteolysis in the gastrointestinal tract, also contributing to the acquired immune response against pathogens and the stimulation of cellular proliferation, it is crucial to systematically determine the milk subproteome affected by the Maillard reaction for a careful evaluation of aliment functional properties. This is more important when milk is the unique nutritional source, as in infant diet. To this purpose, a combination of proteomic procedures based on analyte capture by combinatorial peptide ligand libraries, selective trapping of lactosylated peptides by m-aminophenylboronic acid-agarose chromatography and collision-induced dissociation and electron transfer dissociation MS was used for systematic identification of the lactosylated proteins in milk samples subjected to different thermal treatments. An exhaustive modification of proteins was observed in milk powdered preparations for infant nutrition. Globally, this approach allowed the identification of 271 non-redundant modification sites in 33 milk proteins, which also included low-abundance components involved in nutrient delivery, defence response against virus/microorganisms and cellular proliferative events. A comparison of the modified peptide identification percentages resulting from electron transfer dissociation or collision-induced dissociation fragmentation spectra confirmed the first activation mode as most advantageous for the analysis of lactosylated proteins. Nutritional, biological and toxicological consequences of these findings are discussed on the basis of the recent literature on this subject, emphasizing their impact on newborn diet.
Cerbino, M R; Vieira, José Cavalcante Souza; Braga, C P; Oliveira, G; Padilha, I F; Silva, T M; Zara, L F; Silva, N J; Padilha, P M
2018-02-01
Mercury is a potentially toxic element that is present in the environment of the Brazilian Amazon and is responsible for adverse health effects in humans. This study sought to assess possible protein biomarkers of mercury exposure in breast milk samples from lactating women in the Madeira and Negro Rivers in the Brazilian Amazon. The mercury content of hair samples of lactating women was determined, and the proteome of breast milk samples was obtained using two-dimensional electrophoresis after protein precipitation with acetone. Mercury measurements of protein spots obtained via protein fractionation were performed by graphite furnace atomic absorption spectrometry (GFAAS), and it was observed that mercury is linked to proteins with molecular masses in the range of 14-26 kDa. The total mercury concentration was also determined by GFAAS in unprocessed milk, lyophilized milk, and protein pellets, with the purpose of determining the mercury mass balance in relation to the concentration of this element in milk and pellets. Approximately 85 to 97% of mercury present in the lyophilized milk from samples of lactating women of the Madeira River is bound in the protein fraction. From lactating women of the Negro River, approximately 49% of the total mercury is bound in the protein fraction, and a difference of 51% is bound in the lipid fraction.
Oh, Nam Su; Young Lee, Ji; Lee, Hyun Ah; Joung, Jae Yeon; Shin, Yong Kook; Kim, Sae Hun; Kim, Younghoon; Lee, Kwang Won
2016-02-01
The objective of this study was to investigate the characteristics, antioxidative properties, and hepatoprotective effects of Maillard reaction products (MRP) from milk protein reacted with sugars. The MRP were obtained from milk protein, whey protein concentrates and sodium caseinate, using 2 types of sugars, lactose and glucose, by heating the mixture at 55°C for 7d in a sodium phosphate buffer (pH 7.4). Changes in the chemical modification of the milk protein were monitored by measuring the protein-bound carbonyls and PAGE protein profiles. The results showed that the amount of protein-bound carbonyls increased after Maillard reaction (MR). In addition, sodium dodecyl sulfate-PAGE analysis indicated a formation of high-molecular weight complexes through MR. The modification sites induced by MR of milk protein were monitored by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of tryptic-digested gel spots of MRP. As a result, modification and their localization in AA sequence of MRP was identified. Also, the MRP showed higher antioxidant activities than the intact milk protein, and they reduced intracellular reactive oxygen species production and inhibited the depletion of the reduced glutathione concentrations in the HepG2 cells. In particular, glucose-sodium caseinate MRP showed the highest biological activities among all MRP. Therefore, these results suggest that the MRP from milk protein reacting with sugars possess effective antioxidant activity and have a protective ability against oxidative damage. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Mikolayunas, C; Thomas, D L; Armentano, L E; Berger, Y M
2011-01-01
Previous trials with dairy ewes fed stored feeds indicate a positive effect of rumen-undegradable protein (RUP) supplementation on milk yield. However, dairy sheep production in the United States is primarily based on grazing mixed grass-legume pastures, which contain a high proportion of rumen-degradable protein. Two trials were conducted to evaluate the effects of high-RUP protein supplementation and fresh forage composition on milk yield and N utilization of lactating dairy ewes fed in confinement or on pasture. In a cut-and-carry trial, 16 multiparous dairy ewes in mid-lactation were randomly assigned to 8 pens of 2 ewes each. Pens were randomly assigned 1 of 2 protein supplementation treatments, receiving either 0.0 or 0.3 kg of a high-RUP protein supplement (Soy Pass, LignoTech USA Inc., Rothschild, WI) per day. Within supplementation treatment, pens were randomly assigned to 1 of 4 forage treatments, which were applied in a 4×4 Latin square design for 10-d periods. Forage treatments included the following percentages of orchardgrass:alfalfa dry matter: 25:75, 50:50, 75:25, and 100:0. No interactions were observed between supplement and forage treatments. Supplementation with a high-RUP source tended to increase milk yield by 9%. Milk yield, milk protein yield, milk urea N, and urinary urea N excretion increased linearly with increased percentage of alfalfa. Milk N efficiency was greatest on the 100% orchardgrass diet. In a grazing trial, 12 multiparous dairy ewes in mid lactation were randomly assigned to 3 groups of 4 ewes each. Within group, 2 ewes were randomly assigned to receive either 0.0 or 0.3 kg of a high-RUP protein supplement (SoyPlus, West Central Cooperative, Ralston, IA) per day. Grazing treatments were arranged in a 3×3 Latin square design and applied to groups for 10-d periods. Ewes grazed paddocks that contained the following percentages of surface area of pure stands of orchardgrass:alfalfa: 50:50, 75:25, and 100:0. No interactions were found between supplement and forage treatments. Milk yield, milk protein yield, and milk urea N increased linearly with increased percentage of alfalfa in the paddock. In conclusion, supplementing with high-RUP protein tended to increase milk yield and increasing the proportion of alfalfa in the diet increased dry matter intake, milk yield, and protein yield of lactating dairy ewes fed or grazing fresh forage. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Caro, I; Soto, S; Franco, M J; Meza-Nieto, M; Alfaro-Rodríguez, R H; Mateo, J
2011-02-01
The effect of adding either skim milk or a commercial dry milk protein concentrate (MPC) to whole milk on the composition, yield, and functional properties of Mexican Oaxaca cheese were investigated. Five batches of Oaxaca cheeses were produced. One batch (the control) was produced from whole milk containing 3.5% fat and 9% nonfat solids (SNF). Two batches were produced from milk standardized with skim milk to 2.7 and 1.8% fat, maintaining the SNF content at 9%. In the other 2 batches, an MPC (40% protein content) was used to standardize the milk to a SNF content of 10 and 11%, maintaining the milk fat content at 3.5%. The use of either skim milk or MPC caused a significant decrease in the fat percentage in cheese. The use of skim milk or MPC showed a nonsignificant tendency to lower total solids and fat recoveries in cheese. Actual, dry matter, and moisture-adjusted cheese yields significantly decreased with skim milk addition, but increased with MPC addition. However, normalized yields adjusted to milk fat and protein reference levels did not show significant differences between treatments. Considering skim milk-added and control cheeses, actual yield increased with cheese milk fat content at a rate of 1.34 kg/kg of fat (R=0.88). In addition, cheese milk fat and SNF:fat ratio proved to be strong individual predictors of cheese moisture-adjusted yield (r(2) ≈ 0.90). Taking into account the results obtained from control and MPC-added cheeses, a 2.0-kg cheese yield increase rate per kg of milk MPC protein was observed (R=0.89), with TS and SNF being the strongest predictors for moisture adjusted yield (r(2) ≈ 0.77). Reduced-fat Oaxaca cheese functionality differed from that of controls. In unmelted reduced-fat cheeses, hardness and springiness increased. In melted reduced-fat cheeses, meltability and free oil increased, but stretchability decreased. These changes were related to differences in cheese composition, mainly fat in dry matter and calcium in SNF. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Smilowitz, Jennifer T.; Totten, Sarah M.; Huang, Jincui; Grapov, Dmitry; Durham, Holiday A.; Lammi-Keefe, Carol J.; Lebrilla, Carlito; German, J. Bruce
2013-01-01
Very little is known about the effects of gestational diabetes mellitus (GDM) on lactation and milk components. Recent reports suggested that hyperglycemia during pregnancy was associated with altered breast milk immune factors. Human milk oligosaccharides (HMOs) and N-glycans of milk immune-modulatory proteins are implicated in modulation of infant immunity. The objective of the current study was to evaluate the effect of GDM on HMO and protein-conjugated glycan profiles in breast milk. Milk was collected at 2 wk postpartum from women diagnosed with (n = 8) or without (n = 16) GDM at week 24–28 in pregnancy. Milk was analyzed for HMO abundances, protein concentrations, and N-glycan abundances of lactoferrin and secretory immunoglobulin A (sIgA). HMOs and N-glycans were analyzed by mass spectrometry and milk lactoferrin and sIgA concentrations were analyzed by the Bradford assay. The data were analyzed using multivariate modeling confirmed with univariate statistics to determine differences between milk of women with compared with women without GDM. There were no differences in HMOs between milk from women with vs. without GDM. Milk from women with GDM compared with those without GDM was 63.6% lower in sIgA protein (P < 0.05), 45% higher in lactoferrin total N-glycans (P < 0.0001), 36–72% higher in lactoferrin fucose and sialic acid N-glycans (P < 0.01), and 32–43% lower in sIgA total, mannose, fucose, and sialic acid N-glycans (P < 0.05). GDM did not alter breast milk free oligosaccharide abundances but decreased total protein and glycosylation of sIgA and increased glycosylation of lactoferrin in transitional milk. The results suggest that maternal glucose dysregulation during pregnancy has lasting consequences that may influence the innate immune protective functions of breast milk. PMID:24047700
Belay, T K; Svendsen, M; Kowalski, Z M; Ådnøy, T
2017-08-01
The aim of this study was to estimate genetic parameters for blood β-hydroxybutyrate (BHB) predicted from milk spectra and for clinical ketosis (KET), and to examine genetic association of blood BHB with KET and milk production traits (milk, fat, protein, and lactose yields, and milk fat, protein, and lactose contents). Data on milk traits, KET, and milk spectra were obtained from the Norwegian Dairy Herd Recording System with legal permission from TINE SA (Ås, Norway), the Norwegian Dairy Association that manages the central database. Data recorded up to 120 d after calving were considered. Blood BHB was predicted from milk spectra using a calibration model developed based on milk spectra and blood BHB measured in Polish dairy cows. The predicted blood BHB was grouped based on days in milk into 4 groups and each group was considered as a trait. The milk components for test-day milk samples were obtained by Fourier transform mid-infrared spectrometer with previously developed calibration equations from Foss (Hillerød, Denmark). Veterinarian-recorded KET data within 15 d before calving to 120 d after calving were used. Data were analyzed using univariate or bivariate linear animal models. Heritability estimates for predicted blood BHB at different stages of lactation were moderate, ranging from 0.250 to 0.365. Heritability estimate for KET from univariate analysis was 0.078, and the corresponding average estimate from bivariate analysis with BHB or milk production traits was 0.002. Genetic correlations between BHB traits were higher for adjacent lactation intervals and decreased as intervals were further apart. Predicted blood BHB at first test day was moderately genetically correlated with KET (0.469) and milk traits (ranged from -0.367 with protein content to 0.277 with milk yield), except for milk fat content from across lactation stages that had near zero genetic correlation with BHB (0.033). These genetic correlations indicate that a lower BHB is genetically associated with higher milk protein and lactose contents, but with lower yields of milk, fat, protein, and lactose, and with lower frequency of KET. Estimates of genetic correlation of KET with milk production traits were from -0.333 (with protein content) to 0.178 (with milk yield). Blood BHB can routinely be predicted from milk spectra analyzed from test-day milk samples, and thereby provides a practical alternative for selecting cows with lower susceptibility to ketosis, even though the correlations are moderate. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peng, Y; Serra, M; Horne, D S; Lucey, J A
2009-01-01
Yogurt base was prepared from reconstituted skim milk powder (SMP) with 2.5% protein and fortified with additional 1% protein (wt/wt) from 4 different milk protein sources: SMP, milk protein isolate (MPI), micellar casein (MC), and sodium caseinate (NaCN). Heat-treated yogurt mixes were fermented at 40 degrees C with a commercial yogurt culture until pH 4.6. During fermentation pH was monitored, and storage modulus (G') and loss tangent (LT) were measured using dynamic oscillatory rheology. Yield stress (sigma(yield)) and permeability of gels were analyzed at pH 4.6. Addition of NaCN significantly reduced buffering capacity of yogurt mix by apparently solubilizing part of the indigenous colloidal calcium phosphate (CCP) in reconstituted SMP. Use of different types of milk protein did not affect pH development except for MC, which had the slowest fermentation due to its very high buffering. NaCN-fortified yogurt had the highest G' and sigma(yield) values at pH 4.6, as well as maximum LT values. Partial removal of CCP by NaCN before fermentation may have increased rearrangements in yogurt gel. Soluble casein molecules in NaCN-fortified milks may have helped to increase G' and LT values of yogurt gels by increasing the number of cross-links between strands. Use of MC increased the CCP content but resulted in low G' and sigma(yield) at pH 4.6, high LT and high permeability. The G' value at pH 4.6 of yogurts increased in the order: SMP = MC < MPI < NaCN. Type of milk protein used to standardize the protein content had a significant impact on physical properties of yogurt. Practical Application: In yogurt processing, it is common to add additional milk solids to improve viscosity and textural attributes. There are many different types of milk protein powders that could potentially be used for fortification purposes. This study suggests that the type of milk protein used for fortification impacts yogurt properties and sodium caseinate gave the best textural results.
Proteolysis of milk fat globule membrane proteins during in vitro gastric digestion of milk.
Ye, A; Cui, J; Singh, H
2011-06-01
The influence of gastric proteolysis on the physicochemical characteristics of milk fat globules and the proteins of the milk fat globule membrane (MFGM) in raw milk and cream was examined in vitro in simulated gastric fluid (SGF) containing various pepsin concentrations at pH 1.6 for up to 2h. Apparent flocculation of the milk fat globules occurred in raw milk samples incubated in SGF containing pepsin, but no coalescence was observed in either raw milk samples or cream samples. The changes in the particle size of the fat globules as a result of the flocculation were dependent on the pepsin concentration. Correspondingly, the physical characteristics of the fat globules and the composition of the MFGM proteins in raw milk changed during incubation in SGF containing pepsin. The major MFGM proteins were hydrolyzed at different rates by the pepsin in the SGF; butyrophilin was more resistant than xanthine oxidase, PAS 6, or PAS 7. Peptides with various molecular weights, which altered with the time of incubation and the pepsin concentration, were present at the surfaces of the fat globules. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The Chemical Composition and Nitrogen Distribution of Chinese Yak (Maiwa) Milk
Li, Haimei; Ma, Ying; Li, Qiming; Wang, Jiaqi; Cheng, Jinju; Xue, Jun; Shi, John
2011-01-01
The paper surveyed the chemical composition and nitrogen distribution of Maiwa yak milk, and compared the results with reference composition of cow milk. Compared to cow milk, yak milk was richer in protein (especially whey protein), essential amino acids, fat, lactose and minerals (except phosphorus). The contents of some nutrients (total protein, lactose, essential amino acids and casein) were higher in the warm season than in the cold season. Higher ratios of total essential amino acids/total amino acids (TEAA/TAA) and total essential amino acids/total non essential amino acids (TEAA/TNEAA) were found in the yak milk from the warm season. However its annual average ratio of EAA/TAA and that of EAA/NEAA were similar to those of cow milk. Yak milk was rich in calcium and iron (p < 0.05), and thus may serve as a nutritional ingredient with a potential application in industrial processing. PMID:21954332
Casein micelles: size distribution in milks from individual cows.
de Kruif, C G Kees; Huppertz, Thom
2012-05-09
The size distribution and protein composition of casein micelles in the milk of Holstein-Friesian cows was determined as a function of stage and number of lactations. Protein composition did not vary significantly between the milks of different cows or as a function of lactation stage. Differences in the size and polydispersity of the casein micelles were observed between the milks of different cows, but not as a function of stage of milking or stage of lactation and not even over successive lactations periods. Modal radii varied from 55 to 70 nm, whereas hydrodynamic radii at a scattering angle of 73° (Q² = 350 μm⁻²) varied from 77 to 115 nm and polydispersity varied from 0.27 to 0.41, in a log-normal distribution. Casein micelle size in the milks of individual cows was not correlated with age, milk production, or lactation stage of the cows or fat or protein content of the milk.
Effect of volume of milk consumed on the attenuation of exercise-induced muscle damage.
Cockburn, Emma; Robson-Ansley, Paula; Hayes, Philip R; Stevenson, Emma
2012-09-01
Exercise-induced muscle damage (EIMD) leads to decrements in muscle performance, increases in intramuscular proteins and delayed-onset of muscle soreness (DOMS). Previous research demonstrated that one litre of milk-based protein-carbohydrate (CHO) consumed immediately following muscle damaging exercise can limit changes in markers of EIMD possibly due to attenuating protein degradation and/or increasing protein synthesis. If the attenuation of EIMD is derived from changes in protein metabolism then it can be hypothesised that consuming a smaller volume of CHO and protein will elicit similar effects. Three independent matched groups of 8 males consumed 500 mL of milk, 1,000 mL of milk or a placebo immediately following muscle damaging exercise. Passive and active DOMS, isokinetic muscle performance, creatine kinase (CK), myoglobin and interleukin-6 were assessed immediately before and 24, 48 and 72 h after EIMD. After 72 h 1,000 mL of milk had a likely benefit for limiting decrements in peak torque compared to the placebo. After 48 h, 1,000 mL of milk had a very likely benefit of limiting increases in CK in comparison to the placebo. There were no differences between consuming 500 or 1,000 mL of milk for changes in peak torque and CK. In conclusion, decrements in isokinetic muscle performance and increases in CK can be limited with the consumption of 500 mL of milk.
Dziuba, Bartłomiej; Dziuba, Marta
2014-08-20
New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs) from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM), random forest (RF), artificial neural networks (ANN) and discriminant analysis (DA) available in the Collection of Anti-Microbial Peptides (CAMP database). Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins.
Dziuba, Bartłomiej; Dziuba, Marta
2014-01-01
New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs) from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM), random forest (RF), artificial neural networks (ANN) and discriminant analysis (DA) available in the Collection of Anti-Microbial Peptides (CAMP database). Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins. PMID:25141106
Nongonierma, Alice B; Paolella, Sara; Mudgil, Priti; Maqsood, Sajid; FitzGerald, Richard J
2018-04-01
Nine novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides (FLQY, FQLGASPY, ILDKEGIDY, ILELA, LLQLEAIR, LPVP, LQALHQGQIV, MPVQA and SPVVPF) were identified in camel milk proteins hydrolysed with trypsin. This was achieved using a sequential approach combining liquid chromatography tandem mass spectrometry (LC-MS/MS), qualitative/quantitative structure activity relationship (QSAR) and confirmatory studies with synthetic peptides. The most potent camel milk protein-derived DPP-IV inhibitory peptides, LPVP and MPVQA, had DPP-IV half maximal inhibitory concentrations (IC 50 ) of 87.0 ± 3.2 and 93.3 ± 8.0 µM, respectively. DPP-IV inhibitory peptide sequences identified within camel and bovine milk protein hydrolysates generated under the same hydrolysis conditions differ. This was linked to differences in enzyme selectivity for peptide bond cleavage of camel and bovine milk proteins as well as dissimilarities in their amino acid sequences. Camel milk proteins contain novel DPP-IV inhibitory peptides which may play a role in the regulation of glycaemia in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cao, Xueyan; Song, Dahe; Yang, Mei; Yang, Ning; Ye, Qing; Tao, Dongbing; Liu, Biao; Wu, Rina; Yue, Xiqing
2017-11-29
Glycosylation is a ubiquitous post-translational protein modification that plays a substantial role in various processes. However, whey glycoproteins in human milk have not been completely profiled. Herein, we used quantitative glycoproteomics to quantify whey N-glycosylation sites and their alteration in human milk during lactation; 110 N-glycosylation sites on 63 proteins and 91 N-glycosylation sites on 53 proteins were quantified in colostrum and mature milk whey, respectively. Among these, 68 glycosylation sites on 38 proteins were differentially expressed in human colostrum and mature milk whey. These differentially expressed N-glycoproteins were highly enriched in "localization", "extracellular region part", and "modified amino acid binding" according to gene ontology annotation and mainly involved in complement and coagulation cascades pathway. These results shed light on the glycosylation sites, composition and biological functions of whey N-glycoproteins in human colostrum and mature milk, and provide substantial insight into the role of protein glycosylation during infant development.
[Incidence of IgE-mediated allergy to cow's milk proteins in the first year of life].
Sanz Ortega, J; Martorell Aragonés, A; Michavila Gómez, A; Nieto García, A
2001-06-01
To study the incidence of IgE-mediated allergy to cow's milk proteins during the first year of life. A multicenter, prospective study of newborns selected from different health centers was performed. The newborn infants were followed-up during the first year of life. Newborns with suspected adverse reaction to cow's milk were sent to the referral hospital for diagnostic study. This study was based on clinical history, skin tests (skin prick test) and on determination of specific IgE in serum (Pharmacia CAP system) against cow's milk and its protein fractions. Diagnosis was confirmed by open challenge. A total of 1,663 newborns were followed-up during the first year of life. Adverse reaction was suspected in 56 infants (3.3%). Allergy to cow's milk proteins was confirmed in 6 infants (0.36 %). Eighty-three percent of (5/6) children with cow's milk allergy had first-degree relatives with atopic disease compared with 19 % of children (329/1657) without cow's milk allergy. Among the entire sample, 26 infants had first-degree relatives with atopic disease and one of these infants (3.8%) developed cow milk allergy. The six children with cow's milk allergy were exclusively breast-fed, and clinical reaction developed within 1 week of the introduction of artificial feeding. The incidence of IgE-mediated allergy to cow's milk was 0.36 %. In infants with two first-degree family members with atopic disease, the probability of developing allergy to cow's milk proteins during the first year of life was 3.8%.
Milk Proteins, Peptides, and Oligosaccharides: Effects against the 21st Century Disorders
Hsieh, Chia-Chien; Hernández-Ledesma, Blanca; Fernández-Tomé, Samuel; Weinborn, Valerie; Barile, Daniela; de Moura Bell, Juliana María Leite Nobrega
2015-01-01
Milk is the most complete food for mammals, as it supplies all the energy and nutrients needed for the proper growth and development of the neonate. Milk is a source of many bioactive components, which not only help meeting the nutritional requirements of the consumers, but also play a relevant role in preventing various disorders. Milk-derived proteins and peptides have the potential to act as coadjuvants in conventional therapies, addressing cardiovascular diseases, metabolic disorders, intestinal health, and chemopreventive properties. In addition to being a source of proteins and peptides, milk contains complex oligosaccharides that possess important functions related to the newborn's development and health. Some of the health benefits attributed to milk oligosaccharides include prebiotic probifidogenic effects, antiadherence of pathogenic bacteria, and immunomodulation. This review focuses on recent findings demonstrating the biological activities of milk peptides, proteins, and oligosaccharides towards the prevention of diseases of the 21st century. Processing challenges hindering large-scale production and commercialization of those bioactive compounds have been also addressed. PMID:25789308
Milk proteins, peptides, and oligosaccharides: effects against the 21st century disorders.
Hsieh, Chia-Chien; Hernández-Ledesma, Blanca; Fernández-Tomé, Samuel; Weinborn, Valerie; Barile, Daniela; de Moura Bell, Juliana María Leite Nobrega
2015-01-01
Milk is the most complete food for mammals, as it supplies all the energy and nutrients needed for the proper growth and development of the neonate. Milk is a source of many bioactive components, which not only help meeting the nutritional requirements of the consumers, but also play a relevant role in preventing various disorders. Milk-derived proteins and peptides have the potential to act as coadjuvants in conventional therapies, addressing cardiovascular diseases, metabolic disorders, intestinal health, and chemopreventive properties. In addition to being a source of proteins and peptides, milk contains complex oligosaccharides that possess important functions related to the newborn's development and health. Some of the health benefits attributed to milk oligosaccharides include prebiotic probifidogenic effects, antiadherence of pathogenic bacteria, and immunomodulation. This review focuses on recent findings demonstrating the biological activities of milk peptides, proteins, and oligosaccharides towards the prevention of diseases of the 21st century. Processing challenges hindering large-scale production and commercialization of those bioactive compounds have been also addressed.
Effect of beta-lactoglobulin polymorphism and seasonality on bovine milk composition.
Botaro, Bruno G; Lima, Ygor V R; Aquino, Adriana A; Fernandes, Raquel H R; Garcia, José F; Santos, Marcos V
2008-05-01
The objective was to evaluate the effect of beta-lactoglobulin (beta-lg) polymorphism and seasonality on milk composition (fat, lactose, total solids, milk urea nitrogen, total protein, true protein, casein and somatic cell counts) of Holstein and Girolando cows. Milk and blood samples from 278 Holsteins cows and 156 Girolando cows were taken during two dry seasons and two rainy seasons, for milk composition analysis and to determine beta-lg genotypes, respectively. BB genotype was the most frequent for both breeds, followed by AA genotype for Holstein (BB>AA>AB) and by AB for Girolando cows (BB>AB>AA). No differences were found in milk compositional characteristics among genetic variants of beta-lg (AA, AB and BB) either between Holstein or Girolando cows. No association between milk composition and beta-lg genetic polymorphism was observed. During the dry season, independently of the breed considered, higher contents of lactose, true protein, casein and casein:true protein ratio were found.
Ye, Aiqian; Cui, Jian; Dalgleish, Douglas; Singh, Harjinder
2017-01-01
The effects of homogenization and heat treatment on the formation and the breakdown of clots during gastric digestion of whole milk were investigated using a human gastric simulator. Homogenization and heat treatment led to formation of coagula with fragmented and crumbled structures compared with the coagulum formed from raw whole milk, but a larger fraction of the protein and more fat globules were incorporated into the coagula induced by action of the milk-clotting enzyme pepsin. The fat globules in the whole milk appeared to be embedded in the clots as they formed. After formation of the clot, the greater numbers of pores in the structures of the clots formed with homogenized milk and heated whole milk led to greater rates of protein hydrolysis by pepsin, which resulted in faster release of fat globules from the clots into the digesta. Coalescence of fat globules occurred both in the digesta and within the protein clots no matter whether they were in homogenized or heated milk samples. The formation of clots with different structures and hence the changes in the rates of protein hydrolysis and the release of milk fat into the digesta in the stomach provide important information for understanding the gastric emptying of milk and the potential to use this knowledge to manipulate the bioavailability of fat and other fat-soluble nutrients in dairy products. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Vincent, Delphine; Elkins, Aaron; Condina, Mark R; Ezernieks, Vilnis; Rochfort, Simone
2016-01-01
Cow's milk is an important source of proteins in human nutrition. On average, cow's milk contains 3.5% protein. The most abundant proteins in bovine milk are caseins and some of the whey proteins, namely beta-lactoglobulin, alpha-lactalbumin, and serum albumin. A number of allelic variants and post-translationally modified forms of these proteins have been identified. Their occurrence varies with breed, individuality, stage of lactation, and health and nutritional status of the animal. It is therefore essential to have reliable methods of detection and quantitation of these proteins. Traditionally, major milk proteins are quantified using liquid chromatography (LC) and ultra violet detection method. However, as these protein variants co-elute to some degree, another dimension of separation is beneficial to accurately measure their amounts. Mass spectrometry (MS) offers such a tool. In this study, we tested several RP-HPLC and MS parameters to optimise the analysis of intact bovine proteins from milk. From our tests, we developed an optimum method that includes a 20-28-40% phase B gradient with 0.02% TFA in both mobile phases, at 0.2 mL/min flow rate, using 75°C for the C8 column temperature, scanning every 3 sec over a 600-3000 m/z window. The optimisations were performed using external standards commercially purchased for which ionisation efficiency, linearity of calibration, LOD, LOQ, sensitivity, selectivity, precision, reproducibility, and mass accuracy were demonstrated. From the MS analysis, we can use extracted ion chromatograms (EICs) of specific ion series of known proteins and integrate peaks at defined retention time (RT) window for quantitation purposes. This optimum quantitative method was successfully applied to two bulk milk samples from different breeds, Holstein-Friesian and Jersey, to assess differences in protein variant levels.
Carbohydrate phenotyping of human and animal milk glycoproteins.
Gustafsson, Anki; Kacskovics, Imre; Breimer, Michael E; Hammarström, Lennart; Holgersson, Jan
2005-03-01
Breast-milk has a well-known anti-microbial effect, which is in part due to the many different carbohydrate structures expressed. This renders it a position as a potential therapeutic for treatment of infection by different pathogens, thus avoiding the drawbacks of many antibiotics. The plethora of carbohydrate epitopes in breast-milk is known to differ between species, with human milk expressing the most complex one. We have investigated the expression of protein-bound carbohydrate epitopes in milk from man, cow, goat, sheep, pig, horse, dromedary and rabbit. Proteins were separated by SDS-PAGE and the presence of carbohydrate epitopes on milk proteins were analysed by Western blotting using different lectins and carbohydrate-specific antibodies. We show that ABH, Lewis (Le)x, sialyl-Lex, Lea, sialyl-Lea and Leb carbohydrate epitopes are expressed mainly on man, pig and horse milk proteins. The blood group precursor structure H type 1 is expressed in all species investigated, while only pig, dromedary and rabbit milk proteins carry H type 2 epitopes. These epitopes are receptors for Helicobacter pylori (Leb and sialyl-Lex), enteropathogenic (H type 1, Lea and Lex) and enterotoxic Escherichia coli (heat-stable toxin; H type 1 and 2), and Campylobacter jejuni (H type 2). Thus, milk from these animals or their genetically modified descendants could have a therapeutic effect by inhibiting pathogen colonization and infection.
Long-acting insulins alter milk composition and metabolism of lactating dairy cows.
Winkelman, L A; Overton, T R
2013-01-01
This study investigated the effect of 2 different types of long-acting insulin on milk production, milk composition, and metabolism in lactating dairy cows. Multiparous cows (n=30) averaging 88 d in milk were assigned to one of 3 treatments in a completely randomized design. Treatments consisted of control (C), Humulin-N (H; Eli Lilly and Company, Indianapolis, IN), and insulin glargine (L). The H and L treatments were administered twice daily at 12-h intervals via subcutaneous injection for 10d. Cows were milked twice daily, and milk composition was determined every other day. Mammary biopsies were conducted on d 11, and mammary proteins extracted from the biopsies were analyzed by Western blot for components of insulin and mammalian target of rapamycin signaling pathways. Treatment had no effect on dry matter intake or milk yield. Treatment with both forms of long-acting insulin increased milk protein content and tended to increase milk protein yield over the 10-d treatment period. Analysis of milk N fractions from samples collected on d 10 of treatment suggested that cows administered L tended to have higher yields of milk protein fractions than cows administered H. Milk fat content and yield tended to be increased for cows administered long-acting insulins. Lactose content and yields were decreased by treatment with long-acting insulins. Administration of long-acting insulins, particularly L, tended to shift milk fatty acid composition toward increased short- and medium-chain fatty acids and decreased long-chain fatty acids. Plasma concentrations of glucose and urea N were lower for cows administered long-acting insulins; interactions of treatment and sampling time were indicative of more pronounced effects of L than H on these metabolites. Concentrations of nonesterified fatty acids and insulin were increased in cows administered long-acting insulins. Decreased concentrations of urea N in both plasma and milk suggested more efficient use of N in cows administered long-acting insulins. Western blot analysis of mammary tissue collected by biopsy indicated that the ratios of phosphorylated protein kinase b (Akt) to total Akt and phosphorylated ribosomal protein S6 (rpS6) to total rpS6 were not affected by long-acting insulins. Modestly elevating insulin activity in lactating dairy cows using long-acting insulins altered milk composition and metabolism. Future research should explore mechanisms by which either insulin concentrations or insulin signaling pathways in the mammary gland can be altered to enhance milk fat and protein production. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wüst, Johannes; Pischetsrieder, Monika
2016-06-15
Thermal treatment of milk and milk products leads to protein oxidation, mainly the formation of methionine sulfoxide. Reactive oxygen species, responsible for the oxidation, can be generated by Maillard reaction, autoxidation of sugars, or lipid peroxidation. The present study investigated the influence of milk fat on methionine oxidation in milk. For this purpose, quantitative methionine sulfoxide profiling of all ten methionine residues of β-lactoglobulin, α-lactalbumin, and αs1-casein was carried out by ultrahigh-performance liquid chromatography-electrospray ionization tandem mass spectrometry with scheduled multiple reaction monitoring (UHPLC-ESI-MS/MS-sMRM). Analysis of defatted and regular raw milk samples after heating for up to 8 min at 120 °C and analysis of ultrahigh-temperature milk samples with 0.1%, 1.5%, and 3.5% fat revealed that methionine oxidation of the five residues of the whey proteins and of residues M 123, M 135, and M 196 of αs1-casein was not affected or even suppressed in the presence of milk fat. Only the oxidation of residues M 54 and M 60 of αs1-casein was promoted by lipids. In evaporated milk samples, formation of methionine sulfoxide was hardly influenced by the fat content of the samples. Thus, it can be concluded that lipid oxidation products are not the major cause of methionine oxidation in milk.
Braga, Lucylea P M; Palhares, Durval B
2007-01-01
To assess the effects of evaporation and pasteurization of human milk on its biochemical and immunological composition and on its osmolarity. The samples of mature human milk were categorized into four study groups: in natura human milk, pasteurized human milk, human milk evaporated at 70% of the baseline volume and human milk pasteurized and evaporated at 70%, with 12 different samples of milk in each group. The samples were used to determine the concentrations of sodium, potassium, calcium, phosphorus, magnesium, protein, fat, lactose, immunoglobulin A and osmolarity. The pasteurization of human milk did not show statistically significant changes in the concentration of sodium, potassium, calcium, phosphorus, magnesium, protein, fat, lactose, or in osmolarity; however, it showed remarkable reduction in the mean concentration of immunoglobulin A. Evaporation had a mean increase of 38% in the concentration of sodium, potassium, calcium, phosphorus, magnesium, protein, fat and lactose and mean reduction of 45% in the concentration of immunoglobulin A, without significant change in osmolarity in unprocessed milk. By evaporation at 70% of the baseline value of human milk, it is possible to obtain human milk that meets the nutritional requirements recommended for preterm infants, except for calcium and phosphorus.
Gunnerud, Ulrika; Holst, Jens J; Östman, Elin; Björck, Inger
2012-10-12
Dairy proteins, in particular the whey fraction, exert insulinogenic properties and facilitate glycemic regulation through a mechanism involving elevation of certain plasma amino acids, and stimulation of incretins. Human milk is rich in whey protein and has not been investigated in this respect. Nine healthy volunteers were served test meals consisting of human milk, bovine milk, reconstituted bovine whey- or casein protein in random order. All test meals contributed with 25 g intrinsic or added lactose, and a white wheat bread (WWB) meal was used as reference, providing 25 g starch. Post-prandial levels in plasma of glucose, insulin, incretins and amino acids were investigated at time intervals for up to 2 h. All test meals elicited lower postprandial blood glucose responses, expressed as iAUC 0-120 min compared with the WWB (P < 0.05). The insulin response was increased following all test meals, although only significantly higher after whey. Plasma amino acids were correlated to insulin and incretin secretion (iAUC 0-60 min) (P ≤ 0.05). The lowered glycemia with the test meals (iAUC 0-90 min) was inversely correlated to GLP-1 (iAUC 0-30 min) (P ≤ 0.05). This study shows that the glycemic response was significantly lower following all milk/milk protein based test meals, in comparison with WWB. The effect appears to originate from the protein fraction and early phase plasma amino acids and incretins were involved in the insulin secretion. Despite its lower protein content, the human milk was a potent GLP-1 secretagogue and showed insulinogenic properties similar to that seen with reconstituted bovine whey-protein, possibly due to the comparatively high proportion of whey in human milk.
Gustaw, Waldemar; Kozioł, Justyna; Radzki, Wojciech; Skrzypczak, Katarzyna; Michalak-Majewska, Monika; Sołowiej, Bartosz; Sławińska, Aneta; Jabłońska-Ryś, Ewa
2016-01-01
The intake of fermented milk products, especially yoghurts, has been systematically increasing for a few decades. The purpose of this work was to obtain milk products fermented with a mix of bacterial cultures (yoghurt bacteria and Lactobacillus acidophillus LA-5) and enriched with selected milk protein preparations. Secondly, the aim of the work was to determine physiochemical and rheological properties of the obtained products. The following additives were applied in the experiment: whey protein concentrate (WPC 65), whey protein isolate (WPI), demineralised whey powder (SPD), caseinoglycomacropeptide (CGMP), α-lactalbumin (α-la), sodium caseinate (KNa) and calcium caseinate (KCa). Milk was fermented using probiotic strain Lactobacillus acidophillus LA-5 and a typical yoghurt culture. The products were analysed in terms of the survivability of bacterial cells during refrigerated storage, rheological properties and syneresis. Fermented milk products were obtained using blends of bacterial strains: ST-B01:Lb-12 (1:1), ST-B01:Lb-12:LA-5 (1:1:2). Milk beverages fermented with typical yoghurt bacteria and LA-5 strain showed intensive syneresis. The addition of LA-5 strain caused formation of harder acid gels, comparing to typical yoghurts. Milk products which were prepared from skimmed milk possessed higher values of hardness and consistency coefficient. The increase of concentrations of milk preparations (except of WPI) did not cause significant differences in the hardness of acidic gels obtained by fermentation of mixed culture with a probiotic strain. The applied preparations improved physiochemical properties of the milk beverages which were prepared with a probiotic strain. The increase of protein milk preparations concentration resulted in a gradual decrease of the secreted whey. Among the products that were made of full milk powder and were subjected to three weeks of refrigerated storage the highest survivability of Lb. acidophilus LA-5 was noticed in the samples fortified with 1% WPC.
Mediterranean milk and milk products.
Hinrichs, Jörg
2004-03-01
Milk and dairy products are part of a healthy Mediterranean diet which, besides cow's milk, also consists of sheep's, goat's and buffalo's milk--alone or as a mixture---as raw material. The fat and protein composition of the milk of the various animal species differs only slightly, but in every case it has a high priority in human nutrition. The milk proteins are characterized by a high content of essential amino acids. Beyond that macromolecules,which have various biological functions, are available or may be formed by proteolysis in milk. Taking this into consideration, the technology of different well-known Italian and German cheese types is presented and the differences as well as correspondences regarding nutrition are discussed. Especially Ricotta and Mascarpone are discussed in detail. Ricotta represents a special feature as this cheese is traditionally made of whey and cream. Thus the highly valuable whey proteins which contain a higher amount of the amino acids lysine, methionine and cysteic acid in comparison to casein and, additionally, to soy protein, are made usable for human nutrition. Finally, it is pointed out on the basis of individual examples that technologies to enrich whey proteins in cheese are already available and in use. Thus, the flavor of low fat cheese is improved and the nutritional value is increased.
van Meijl, Leonie E C; Mensink, Ronald P
2013-08-28
Studies have suggested that two major milk constituents, casein and Ca, favourably affect postprandial responses. However, effects of milk on postprandial metabolism are unknown. We therefore investigated effects of using milk with a fat-containing meal on lipid and glucose responses in overweight men. To identify the constituent responsible for possible effects, we also studied responses to Ca and protein. A total of sixteen men (BMI .27 kg/m2) participated in four postprandial tests. They consumed a breakfast (44 g of fat) plus a drink: a control drink, low-fat milk or a protein and Ca drink (500 ml). Blood samples were taken before the meals and at regular time points during 6 h thereafter. Compared with control, the incremental AUC (iAUC) for serum TAG was increased by 44% after the protein meal (P¼0·015). Although the iAUC were not different (P¼0·051), peak glucose concentrations were reduced by 24% after protein intake, as compared with control (P¼0·021). The decrease of 18% after milk intake did not reach statistical significance. Compared with the milk meal, the iAUC for insulin was 52% lower after the control meal (P¼0·035) and 51% after the protein meal (P¼0·005). The present results indicate that the intake of milk with a fat-containing meal enhances postprandial TAG and insulin responses and may blunt glucose increases. The protein fraction of milk seems to be the main determinant for the effects on TAG and glucose. Ca did not change any of the postprandial responses.
Chang, Jih-Chin; Chen, Chao-Huei; Fang, Li-Jung; Tsai, Chi-Ren; Chang, Yu-Chuan; Wang, Teh-Ming
2013-12-01
The bioactive proteins in human milk may be influenced by prolonged storage process, pasteurization, and heat treatment. This study was conducted to evaluate the effects of these procedures. Three forms of human milk - freshly expressed, frozen at -20°C for a prolonged duration, and pasteurized milk - were collected from 14 healthy lactating mothers and a milk bank. The concentrations of major bioactive proteins (secretory immunoglobulin A, lactoferrin, lysozyme, and leptin) were quantified using enzyme-linked immunosorbent assay kits. Changes in these proteins by heat treatment at 40°C or 60°C for 30 minutes were further evaluated. The mean concentrations of lactoferrin and secretory immunoglobulin A were significantly reduced by 66% and 25.9%, respectively, in pasteurized milk compared with those in freshly-expressed milk. Heat treatment at 40°C or 60°C did not cause significant changes in lactoferrin and secretory immunoglobulin A, but there was an apparent increase in lysozyme (p = 0.016). There were no significant differences in leptin level among these three forms of milk prior to (p = 0.153) or after heat treatment (p = 0.053). Various freezing/heating/pasteurization processes applied to human milk prior to delivery to neonates could affect the concentration of immunomodulatory proteins, especially lactoferrin, secretory immunoglobulin A, and lysozyme. Leptin was unaffected by the various handling processes tested. Fresh milk was found to be the best food for neonates. Further studies are warranted to evaluate the functional activity of these proteins and their effects on infants' immunological status. Copyright © 2013. Published by Elsevier B.V.
Effects of supplementation and stage of lactation on performance of grazing dairy ewes.
Mikolayunas, C M; Thomas, D L; Albrecht, K A; Combs, D K; Berger, Y M; Eckerman, S R
2008-04-01
The majority of dairy sheep in the world are fed pasture and supplemental grain during lactation; however, no trials have reported the effects of supplementation of dairy ewes grazing improved pastures in North America. In trial 1, 56 three-year-old grazing dairy ewes in early [21 +/- 10 d in milk (DIM)] or late (136 +/- 9 DIM) lactation were fed 0 or 0.82 kg of dry matter/d per ewe of supplement (16.5% crude protein mixture of corn and a soybean meal-based high-protein pellet) in a 2 x 2 factorial arrangement of treatments. There were no significant interactions between stage of lactation and supplementation treatments. Average test-day milk production was higher in early-lactation ewes than in late-lactation ewes (1.74 vs. 1.21 kg/d, respectively). Although test-day milk protein percentage was higher in late-lactation ewes than in early-lactation ewes (5.02 vs. 4.86%, respectively), there was no difference in milk fat percentage between stages of lactation. Supplemented ewes had higher milk production (1.59 vs. 1.36 kg/d, respectively), lower milk fat percentage (5.75 vs. 6.00%, respectively), and lower milk protein percentage (4.84 vs. 5.04%, respectively) than unsupplemented ewes. Milk urea N levels were similar between the 2 stages of lactation and between the 2 supplementation treatments and were above recommended levels for dairy sheep, indicating an excess intake or inefficient utilization of protein for both supplementation treatments. In trial 2, 96 two-, three-, and four-year-old grazing dairy ewes in midlactation (112 +/- 21 DIM) were randomly assigned to 4 treatments of 0, 0.41, 0.82, or 1.24 kg of dry matter/d per ewe of whole corn. Average test-day milk production increased linearly and milk fat percentage decreased quadratically with increasing amounts of corn supplementation. Milk protein yield increased linearly, and milk urea N levels decreased quadratically with increasing amounts of corn supplementation, suggesting an improvement in the utilization of pasture protein with increasing dietary energy intake.
Dallas, David C.; Guerrero, Andrés; Khaldi, Nora; Borghese, Robyn; Bhandari, Aashish; Underwood, Mark A.; Lebrilla, Carlito B.; German, J. Bruce; Barile, Daniela
2014-01-01
In vitro digestion of isolated milk proteins results in milk peptides with a variety of actions. However, it remains unclear to what degree protein degradation occurs in vivo in the infant stomach and whether peptides previously annotated for bioactivity are released. This study combined nanospray LC separation with time-of-flight mass spectrometry, comprehensive structural libraries, and informatics to analyze milk from 3 human mothers and the gastric aspirates from their 4- to 12-d-old postpartum infants. Milk from the mothers contained almost 200 distinct peptides, demonstrating enzymatic degradation of milk proteins beginning either during lactation or between milk collection and feeding. In the gastric samples, 649 milk peptides were identified, demonstrating that digestion continues in the infant stomach. Most peptides in both the intact milk and gastric samples were derived from β-casein. The numbers of peptides from β-casein, lactoferrin, α-lactalbumin, lactadherin, κ-casein, serum albumin, bile salt–associated lipase, and xanthine dehydrogenase/oxidase were significantly higher in the gastric samples than in the milk samples (P < 0.05). A total of 603 peptides differed significantly in abundance between milk and gastric samples (P < 0.05). Most of the identified peptides have previously identified biologic activity. Gastric proteolysis occurs in the term infant in the first 2 wk of life, releasing biologically active milk peptides with immunomodulatory and antibacterial properties of clinical relevance to the proximal intestinal tract. Data are available via ProteomeXchange (identifier PXD000688). PMID:24699806
Dallas, David C; Guerrero, Andrés; Khaldi, Nora; Borghese, Robyn; Bhandari, Aashish; Underwood, Mark A; Lebrilla, Carlito B; German, J Bruce; Barile, Daniela
2014-06-01
In vitro digestion of isolated milk proteins results in milk peptides with a variety of actions. However, it remains unclear to what degree protein degradation occurs in vivo in the infant stomach and whether peptides previously annotated for bioactivity are released. This study combined nanospray LC separation with time-of-flight mass spectrometry, comprehensive structural libraries, and informatics to analyze milk from 3 human mothers and the gastric aspirates from their 4- to 12-d-old postpartum infants. Milk from the mothers contained almost 200 distinct peptides, demonstrating enzymatic degradation of milk proteins beginning either during lactation or between milk collection and feeding. In the gastric samples, 649 milk peptides were identified, demonstrating that digestion continues in the infant stomach. Most peptides in both the intact milk and gastric samples were derived from β-casein. The numbers of peptides from β-casein, lactoferrin, α-lactalbumin, lactadherin, κ-casein, serum albumin, bile salt-associated lipase, and xanthine dehydrogenase/oxidase were significantly higher in the gastric samples than in the milk samples (P < 0.05). A total of 603 peptides differed significantly in abundance between milk and gastric samples (P < 0.05). Most of the identified peptides have previously identified biologic activity. Gastric proteolysis occurs in the term infant in the first 2 wk of life, releasing biologically active milk peptides with immunomodulatory and antibacterial properties of clinical relevance to the proximal intestinal tract. Data are available via ProteomeXchange (identifier PXD000688). © 2014 American Society for Nutrition.
Invited review: Dairy intake and bone health: a viewpoint from the state of the art.
Caroli, A; Poli, A; Ricotta, D; Banfi, G; Cocchi, D
2011-11-01
The aim of this review was to focus on the complex relationships between milk and dairy products intake and bone health, with particular emphasis on osteoporosis. The literature was extensively examined to provide an objective overview of the most significant achievements on the subject. Osteoporosis can be defined as a disease characterized by low bone mass and microarchitectural deterioration of bone tissue, leading to enhanced bone fragility and a consequent increase in fracture risk. Although the major determinants of peak bone mass and strength are genetic, major factors during childhood and adolescence may affect the ability to achieve peak bone mass. These include nutrition, particularly calcium and protein intake, physical activity, endocrine status, as well as exposure to a wide variety of risk factors. The role of calcium intake in determining bone mineral mass is well recognized to be the most critical nutritional factor to achieve optimal peak bone mass. The greatest amount of dietary calcium is obtained from milk and dairy foods, which also provide the human diet with vitamin D (particularly for products fortified with vitamin D), potassium, and other macro- and micronutrients. Although studies supporting the beneficial effects of milk or calcium on bone health are predominant in the literature, perplexity or discordance on this subject was expressed by some authors. Discordant data, mainly on the risk of fractures, provided limited proof of the unfavorable effect of dairy intake. More often, discordant works indicate no effect of dairy consumption on bone safety. Some considerations can be drawn from this viewpoint. Milk and dairy products are an optimal source of calcium as well as of other limiting nutrients (e.g., potassium and magnesium), with important effects on bone health. Bioactive components occurring in milk and dairy products may play an essential role on bone metabolism, as shown by in vivo and in vitro studies on colostrum acidic proteins and milk basic proteins. Calcium intake positively affects bone mass and is crucial in childhood and youth for correct bone development. In elderly people, calcium intake as well as vitamin D availability should be carefully checked. As a general conclusion, calcium is essential for bone health, although it will not prevent bone loss due to other factors; in this context, milk and dairy foods are bioavailable, relatively inexpensive sources of calcium for the human diet. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Jensen, H B; Poulsen, N A; Andersen, K K; Hammershøj, M; Poulsen, H D; Larsen, L B
2012-12-01
The objective of this study was to examine variation in overall milk, protein, and mineral composition of bovine milk in relation to rennet-induced coagulation, with the aim of elucidating the underlying causes of milk with impaired coagulation abilities. On the basis of an initial screening of 892 milk samples from 42 herds with Danish Jersey and Holstein-Friesian cows, a subset of 102 samples was selected to represent milk with good, poor, or noncoagulating properties (i.e., samples that within each breed represented the most extremes in regard to coagulation properties). Milk with good coagulation characteristics was defined as milk forming a strong coagulum based on oscillatory rheology, as indicated by high values for maximum coagulum strength (G'(max)) and curd firming rate (CFR) and a short rennet coagulation time. Poorly coagulating milk formed a weak coagulum, with a low G'(max) and CFR and a long rennet coagulation time. Noncoagulating milk was defined as milk that failed to form a coagulum, having G'(max) and CFR values of zero at measurements taken within 1h after addition of rennet. For both breeds, a lower content of total protein, total casein (CN) and κ-CN, and lower levels of minerals (Ca, P, Mg) were identified in poorly coagulating and noncoagulating milk in comparison with milk with good coagulation properties. Liquid chromatography/electrospray ionization-mass spectrometry revealed the presence of a great variety of genetic variants of the major milk proteins, namely, α(S1)-CN (variants B and C), α(S2)-CN (A), β-CN (A(1), A(2), B, I, and F), κ-CN (A, B, and E), α-lactalbumin (B), and β-lactoglobulin (A, B, and C). In poorly coagulating and noncoagulating milk samples of both breeds, the predominant composite genotype of α(S1)-, β-, and κ-CN was BB-A(2)A(2)-AA, which confirmed a genetic contribution to impaired milk coagulation. Interestingly, subtle variations in posttranslational modification of CN were observed between the coagulation classes in both breeds. Poorly coagulating and noncoagulating milk contained a lower fraction of the least phosphorylated α(S1)-CN form, α(S1)-CN 8P, relative to total α(S1)-CN, along with a lower fraction of glycosylated κ-CN relative to total κ-CN. Thus, apparent variation was observed in the milk and protein composition, in the genetic makeup of the major milk proteins, and in the posttranslational modification level of CN between milk samples with either good or impaired coagulation ability, whereas the composition of poorly coagulating and noncoagulating milk was similar. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Dietary proteins in humans: basic aspects and consumption in Switzerland.
Guigoz, Yves
2011-03-01
This introductory review gives an overview on protein metabolism, and discusses protein quality, sources, and requirements as well as the results from recent studies on Swiss spontaneous protein consumption. To assess protein quality in protein mixes and foods, the "protein digestibility-corrected amino acid score" (PDCAAS) is presented as a valuable tool in addition to the biological value (BV). Considering protein intake recommendations, the lower limit recommended has been defined according to the minimal amount needed to maintain short-term nitrogen balance in healthy people with moderate activity. Evaluation of intakes in Switzerland from food consumption data is about 90 g/day of protein per person. Two-thirds of proteins consumed in Switzerland are animal proteins with high biological value [meat and meat products (28 %), milk and dairy products (28 %), fish (3 %), and eggs (3 %)] and about 1/3 of proteins are of plant origin (25 % of cereals, 3 - 4 % of vegetables). Actual spontaneous protein consumption in Switzerland by specific groups of subjects is well within the actual recommendations (10 - 20 % of energy) with only the frail elderly being at risk of not covering their requirements for protein.
Comparison of the nutrient composition of commercial dog milk replacers with that of dog milk
Heinze, Cailin R.; Freeman, Lisa M.; Martin, Camilia R.; Power, Michael L.; Fascetti, Andrea J.
2015-01-01
Objective To compare the nutrient composition of commercially available dog milk replacers with that of dog milk. Design Prospective, cross-sectional study. Sample 5 dog milk samples and 15 samples of commercial dog milk replacers. Procedures Dog milk and milk replacers were analyzed for concentrations of total protein, essential amino acids, sugars, total fat, essential fatty acids, calcium, and phosphorus. Energy density was calculated. Results from milk replacers were compared with the range of the concentration of each nutrient in milk samples from mature dogs as well as the National Research Council (NRC) recommendations for puppy growth. Results Milk replacers varied widely in caloric density and concentration of nutrients such as calcium, protein, and fat. Calcium concentration was lower in 14 of 15 milk replacers than in the dog milk samples. Docosahexaenoic acid was undetectable in 12 of 15 milk replacers but present in all dog milk samples. All milk replacers had numerous essential nutrients outside of the range of the dog milk samples, and many had concentrations of amino acids, essential fatty acids, calcium, and phosphorus less than the NRC minimal requirement or recommended allowance. Compared with NRC recommendations, some dog milk samples had concentrations of total protein, linoleic acid, calcium, or phosphorus less than the recommended allowance. Conclusions and Clinical Relevance Results suggested that there was substantial variation in nutrient composition of 15 dog milk replacers and that some products were closer approximations of dog milk than others. Nearly all products would benefit from more appropriate calcium, amino acids, and essential fatty acids concentrations and better feeding directions. PMID:24871064
Milk protein composition and stability changes affected by iron in water sources.
Wang, Aili; Duncan, Susan E; Knowlton, Katharine F; Ray, William K; Dietrich, Andrea M
2016-06-01
Water makes up more than 80% of the total weight of milk. However, the influence of water chemistry on the milk proteome has not been extensively studied. The objective was to evaluate interaction of water-sourced iron (low, medium, and high levels) on milk proteome and implications on milk oxidative state and mineral content. Protein composition, oxidative stability, and mineral composition of milk were investigated under conditions of iron ingestion through bovine drinking water (infused) as well as direct iron addition to commercial milk in 2 studies. Four ruminally cannulated cows each received aqueous infusions (based on water consumption of 100L) of 0, 2, 5, and 12.5mg/L Fe(2+) as ferrous lactate, resulting in doses of 0, 200, 500 or 1,250mg of Fe/d, in a 4×4Latin square design for a 14-d period. For comparison, ferrous sulfate solution was directly added into commercial retail milk at the same concentrations: control (0mg of Fe/L), low (2mg of Fe/L), medium (5mg of Fe/L), and high (12.5mg of Fe/L). Two-dimensional electrophoresis coupled with matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) high-resolution tandem mass spectrometry analysis was applied to characterize milk protein composition. Oxidative stability of milk was evaluated by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde, and mineral content was measured by inductively coupled plasma mass spectrometry. For milk from both abomasal infusion of ferrous lactate and direct addition of ferrous sulfate, an iron concentration as low as 2mg of Fe/L was able to cause oxidative stress in dairy cattle and infused milk, respectively. Abomasal infusion affected both caseins and whey proteins in the milk, whereas direct addition mainly influenced caseins. Although abomasal iron infusion did not significantly affect oxidation state and mineral balance (except iron), it induced oxidized off-flavor and partial degradation of whey proteins. Direct iron addition to milk led to lipid oxidation during storage at 4°C. Oxidation level was positively associated with the concentration of added iron. Minerals (Mg, P, Na, K, Ca, Zn) in milk were not affected by the added iron in milk. This study indicated that a small amount of iron contamination in bovine drinking water at the farm or incidental iron addition from potable water sources causes oxidation, affects milk protein composition and stability, and affects final milk quality. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
White, Robin R; McGill, Tyler; Garnett, Rebecca; Patterson, Robert J; Hanigan, Mark D
2017-04-01
The objective of this work was to evaluate the precision and accuracy of the milk yield predictions made by the PREP10 model in comparison to those from the National Research Council (NRC) Nutrient Requirements of Dairy Cattle. The PREP10 model is a ration-balancing system that allows protein use efficiency to vary with production level. The model also has advanced AA supply and requirement calculations that enable estimation of AA-allowable milk (Milk AA ) based on 10 essential AA. A literature data set of 374 treatment means was collected and used to quantitatively evaluate the estimates of protein-allowable milk (Milk MP ) and energy-allowable milk yields from the NRC and PREP10 models. The PREP10 Milk AA prediction was also evaluated, as were both models' estimates of milk based on the most-limiting nutrient or the mean of the estimated milk yields. For most milk estimates compared, the PREP10 model had reduced root mean squared prediction error (RMSPE), improved concordance correlation coefficient, and reduced mean and slope bias in comparison to the NRC model. In particular, utilizing the variable protein use efficiency for milk production notably improved the estimate of Milk MP when compared with NRC. The PREP10 Milk MP estimate had an RMSPE of 18.2% (NRC = 25.7%), concordance correlation coefficient of 0.82% (NRC = 0.64), slope bias of -0.14 kg/kg of predicted milk (NRC = -0.34 kg/kg), and mean bias of -0.63 kg (NRC = -2.85 kg). The PREP10 estimate of Milk AA had slightly elevated RMSPE and mean and slope bias when compared with Milk MP . The PREP10 estimate of Milk AA was not advantageous when compared with Milk MP , likely because AA use efficiency for milk was constant whereas MP use was variable. Future work evaluating variable AA use efficiencies for milk production is likely to improve accuracy and precision of models of allowable milk. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Mol, Praseeda; Kannegundla, Uday; Dey, Gourav; Gopalakrishnan, Lathika; Dammalli, Manjunath; Kumar, Manish; Patil, Arun H; Basavaraju, Marappa; Rao, Akhila; Ramesha, Kerekoppa P; Prasad, Thottethodi Subrahmanya Keshava
2018-03-01
Bovine milk is important for both veterinary medicine and human nutrition. Understanding the bovine milk proteome at different stages of lactation has therefore broad significance for integrative biology and clinical medicine as well. Indeed, different lactation stages have marked influence on the milk yield, milk constituents, and nourishment of the neonates. We performed a comparative proteome analysis of the bovine milk obtained at different stages of lactation from the Indian indigenous cattle Malnad Gidda (Bos indicus), a widely available breed. The milk differential proteome during the lactation stages in B. indicus has not been investigated to date. Using high-resolution mass spectrometry-based quantitative proteomics of the bovine whey proteins at early, mid, and late lactation stages, we identified a total of 564 proteins, out of which 403 proteins were found to be differentially abundant at different lactation stages. As is expected of any body fluid proteome, 51% of the proteins identified in the milk were found to have signal peptides. Gene ontology analyses were carried out to categorize proteins altered across different lactation stages based on biological process and molecular function, which enabled us to correlate their significance in each lactation stage. We also investigated the potential pathways enriched in different lactation stages using bioinformatics pathway analysis tools. To the best of our knowledge, this study represents the first and largest inventory of milk proteins identified to date for an Indian cattle breed. We believe that the current study broadly informs both veterinary omics research and the emerging field of nutriproteomics during lactation stages.
Somatic cell counts in bulk milk and their importance for milk processing
NASA Astrophysics Data System (ADS)
Savić, N. R.; Mikulec, D. P.; Radovanović, R. S.
2017-09-01
Bulk tank milk somatic cell counts are the indicator of the mammary gland health in the dairy herds and may be regarded as an indirect measure of milk quality. Elevated somatic cell counts are correlated with changes in milk composition The aim of this study was to assess the somatic cell counts that significantly affect the quality of milk and dairy products. We examined the somatic cell counts in bulk tank milk samples from 38 farms during the period of 6 months, from December to the May of the next year. The flow cytometry, Fossomatic was used for determination of somatic cell counts. In the same samples content of total proteins and lactose was determined by Milcoscan. Our results showed that average values for bulk tank milk samples were 273,605/ml from morning milking and 292,895/ml from evening milking. The average values for total proteins content from morning and evening milking are 3,31 and 3,34%, respectively. The average values for lactose content from morning and evening milking are 4,56 and 4,63%, respectively. The highest somatic cell count (516,000/ml) was detected in bulk tank milk sample from evening milk in the Winter and the lowest content of lactose was 4,46%. Our results showed that obtained values for bulk tank milk somatic cell counts did not significantly affected the content of total proteins and lactose.
Anaphylaxis to cutaneous exposure to bovine colostrum based cream.
Porcaro, Federica; Caminiti, Lucia; Crisafulli, Giuseppe; Guglielmo, Francesco; Pajno, Giovanni Battista
2018-03-12
Children who are highly sensitive to milk may also have severe allergic reactions after exposure to cow's milk proteins(CMP) through a different administration route than the oral one. We describe the case of a 16-year-old Caucasian boy with a clinical history of persistent cow's milk allergy (CMA), who developed one episode of anaphylaxis following cutaneous application of a bovine colostrum containing cream to a surgical wound. UniCAP testing showed a significant elevation in specific IgE antibodies to whey milk proteins. Until now, only three cases of anaphylaxis following cutaneous application of products containing milk proteins were available in the scientific literature.
Enjapoori, Ashwantha Kumar; Grant, Tom R.; Nicol, Stewart C.; Lefèvre, Christophe M.; Nicholas, Kevin R.; Sharp, Julie A.
2014-01-01
Monotremes (platypus and echidna) are the descendants of the oldest ancestor of all extant mammals distinguished from other mammals by mode of reproduction. Monotremes lay eggs following a short gestation period and after an even briefer incubation period, altricial hatchlings are nourished over a long lactation period with milk secreted by nipple-less mammary patches located on the female’s abdomen. Milk is the sole source of nutrition and immune protection for the developing young until weaning. Using transcriptome and mass spectrometry analysis of milk cells and milk proteins, respectively, a novel Monotreme Lactation Protein (MLP) was identified as a major secreted protein in milk. We show that platypus and short-beaked echidna MLP genes show significant homology and are unique to monotremes. The MLP transcript was shown to be expressed in a variety of tissues; however, highest expression was observed in milk cells and was expressed constitutively from early to late lactation. Analysis of recombinant MLP showed that it is an N-linked glycosylated protein and biophysical studies predicted that MLP is an amphipathic, α-helical protein, a typical feature of antimicrobial proteins. Functional analysis revealed MLP antibacterial activity against both opportunistic pathogenic Staphylococcus aureus and commensal Enterococcus faecalis bacteria but showed no effect on Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Salmonella enterica. Our data suggest that MLP is an evolutionarily ancient component of milk-mediated innate immunity absent in other mammals. We propose that MLP evolved specifically in the monotreme lineage supporting the evolution of lactation in these species to provide bacterial protection, at a time when mammals lacked nipples. PMID:25245409
The changes of proteins fractions shares in milk and fermented milk drinks.
Bonczar, Genowefa; Walczycka, Maria; Duda, Iwona
2016-01-01
The aim of this research was to observe the changes which take place in the electrophoretic picture of milk proteins after pasteurisation and inoculation with different starter cultures (both traditional and probiotic). After incubation, the yoghurt, kefir, acidified milk, fermented Bifidobacterium bifidum drink and Lactobacillus acidophillus drink were chilled for 14 days to observe the changes which occurred. The research materials were raw and pasteurised milk, as well as fermented milk- based drinks. The raw milk used for research came from Polish Holstein-Fresian black and white cows. The milk was sampled 3 times and divided into 5 parts, each of which was pasteurised at 95°C for 10 min and then cooled for inoculation: yoghurt to 45°C, kefir and acidified milk to 22°C and drinks with Bifidobacterium bifidum and Lactobacillus acidophillus to 38°C. Milk was inoculated with lyophilised, direct vat starter cultures, in an amount equal to 2% of the working starter. For the production of fermented drinks, the subsequent starters were applied: "YC-180" Christian Hansen for yoghurt, "D" Biolacta-Texel-Rhodia for kefir, CH-N--11 Christian Hansen for acidified milk, starter by Christian Hansen for the probiotic Bifidobacterium bifidum milk, starter by Biolacta-Texel-Rhodia for the probiotic Lactobacillus acidophillus milk. The analyses were conducted in raw, pasteurised and freshly fermented milk as well as in milk drinks stored for 14 days. The total solid content was estimated by the drying method; the fat content by the Gerber method; the lactose content by the Bertrand method; the protein content by the Kjeldahl method with Buchi apparatus; the density of milk was measured with lactodensimeter; acidity with a pH-meter; and potential acidity by Soxhlet-Henkl method (AOAC, 1990). The electrophoretic separation of proteins in raw and pasteurised milk, as well as in freshly produced milk drinks and those stored for 14 days, was performed with SDS-PAGE (on polyacrylamid gel) basing on procedure described by Laemmli (1970). It was shown that, in comparison with raw milk, the pasteurised milk had smaller amounts of αs-, β- and κ-casein, whereas the shares of γ-casein and peptides were greater, and there were no changes in immunoglobulin, α-lactalbumin or β-lactoglobulin levels, which indicated that hydrolysis of caseins had occurred. In all freshly fermented milk drinks, a drop in αs- and β-casein was observed relative to raw milk. An increase in peptides and γ-casein was also noticed (with the exception of acidified milk). There were differences in α-lactalbumin and β-lactoglobulin levels between the different drinks: raw, pasteurised or freshly fermented milk. It was shown that kefir, compared to the other drinks, had the lowest levels of αs- and β-casein, α-lactalbumin and of peptides, as well as the highest level of γ-casein, which is evidence of an increased rate of hydrolysis in that drink. It was stated that, during the storage of fermented milk drinks, the levels of lactoferrin, serum albumin and peptides significantly increased whereas the content of κ-casein diminished. The proportions of serum albumin and lactoferrin in fermented milk drinks increased relative to raw milk and/or after storage, which is evidence of aggregation of proteins of low molecular mass into bigger conglomerates. The observed differences between fermented milks, including during chilled storage, in the amounts of individual proteins proves the different proteolytic abilities of starter cultures used in fermented milk production. α-lactoalbumin and β-lactoglobulin are, besides caseins, the most allergenic milk proteins. So, kefir, because of its low α-lactoalbumin content, and Bifidobacterium bifidum milk, with the lowest content of β-lactoglobulin, were the most advantageous and least allergenic drinks examined.
Gustavsson, F; Buitenhuis, A J; Johansson, M; Bertelsen, H P; Glantz, M; Poulsen, N A; Lindmark Månsson, H; Stålhammar, H; Larsen, L B; Bendixen, C; Paulsson, M; Andrén, A
2014-01-01
In selecting cows for higher milk yields and milk quality, it is important to understand how these traits are affected by the bovine genome. The major milk proteins exhibit genetic polymorphism and these genetic variants can serve as markers for milk composition, milk production traits, and technological properties of milk. The aim of this study was to investigate the relationships between casein (CN) genetic variants and detailed protein composition in Swedish and Danish dairy milk. Milk and DNA samples were collected from approximately 400 individual cows each of 3 Scandinavian dairy breeds: Swedish Red (SR), Danish Holstein (DH), and Danish Jersey (DJ). The protein profile with relative concentrations of α-lactalbumin, β-lactoglobulin, and α(S1)-, α(S2)-, κ-, and β-CN was determined for each milk sample using capillary zone electrophoresis. The genetic variants of the α(S1)- (CSN1S1), β- (CSN2), and κ-CN (CSN3) genes for each cow were determined using TaqMan SNP genotyping assays (Applied Biosystems, Foster City, CA). Univariate statistical models were used to evaluate the effects of composite genetic variants, α(S1)-β-κ-CN, on the protein profile. The 3 studied Scandinavian breeds differed from each other regarding CN genotypes, with DH and SR having similar genotype frequencies, whereas the genotype frequencies in DJ differed from the other 2 breeds. The similarities in genotype frequencies of SR and DH and differences compared with DJ were also seen in milk production traits, gross milk composition, and protein profile. Frequencies of the most common composite α(S1)-β-κ-CN genotype BB/A(2)A(2)/AA were 30% in DH and 15% in SR, and cows that had this genotype gave milk with lower relative concentrations of κ- and β-CN and higher relative concentrations of αS-CN, than the majority of the other composite genotypes in SR and DH. The effect of composite genotypes on relative concentrations of the milk proteins was not as pronounced in DJ. The present work suggests that a higher frequency of BB/A(1)A(2)/AB, together with a decrease in BB/A(2)A(2)/AA, could have positive effects on DH and SR milk regarding, for example, the processing of cheese. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Endogenous Human Milk Peptide Release Is Greater after Preterm Birth than Term Birth123
Dallas, David C; Smink, Christina J; Robinson, Randall C; Tian, Tian; Guerrero, Andres; Parker, Evan A; Smilowitz, Jennifer T; Hettinga, Kasper A; Underwood, Mark A; Lebrilla, Carlito B; German, J Bruce; Barile, Daniela
2015-01-01
Background: Hundreds of naturally occurring milk peptides are present in term human milk. Preterm milk is produced before complete maturation of the mammary gland, which could change milk synthesis and secretion processes within the mammary gland, leading to differences in protein expression and enzymatic activity, thereby resulting in an altered peptide profile. Objective: This study examined differences in peptides present between milk from women delivering at term and women delivering prematurely. Methods: Nano-LC tandem mass spectrometry was employed to identify naturally occurring peptides and compare their abundances between term and preterm human milk samples at multiple time points over lactation. Term milk samples were collected from 8 mothers and preterm milk was collected from 14 mothers. The 28 preterm and 32 term human milk samples were divided into 4 groups based on day of collection (<14, 14–28, 29–41, and 42–58 d). Results: Preterm milk peptide counts, ion abundance, and concentration were significantly higher in preterm milk than term milk. Bioinformatic analysis of the cleavage sites for peptides identified suggested that plasmin was more active in preterm milk than term milk and that cytosol aminopeptidase and carboxypeptidase B2 likely contribute to extensive milk protein breakdown. Many identified milk peptides in both term and preterm milk overlapped with known functional peptides, including antihypertensive, antimicrobial, and immunomodulatory peptides. Conclusion: The high protein degradation by endogenous proteases in preterm milk might attenuate problems because of the preterm infant’s immature digestive system. This trial was registered at clinicaltrials.gov as NCT01817127. PMID:25540406
Dong, Xue; Zhou, Shiyue; Mechref, Yehia
2016-01-01
Oligosaccharides in milk not only provide nutrition to the infants, but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat and human milk using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat and human milk samples (without isomeric consideration) were 11, 8 and 11 respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by PGC LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using PGC column. Permethylation of the glycan structures facilitated the interpretation of tandem MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers. PMID:26959529
Dong, Xue; Zhou, Shiyue; Mechref, Yehia
2016-06-01
Oligosaccharides in milk not only provide nutrition to the infants but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat, and human milks using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat, and human milk samples (without isomeric consideration) were 11, 8, and 11, respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat, and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by porous graphitic carbon LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using porous graphitic carbon column. Permethylation of the glycan structures facilitated the interpretation of MS/MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comparison of the principal proteins in bovine, caprine, buffalo, equine and camel milk.
Hinz, Katharina; O'Connor, Paula M; Huppertz, Thom; Ross, R Paul; Kelly, Alan L
2012-05-01
Proteomic analysis of bovine, caprine, buffalo, equine and camel milk highlighted significant interspecies differences. Camel milk was found to be devoid of β-lactoglobulin, whereas β-lactoglobulin was the major whey protein in bovine, buffalo, caprine, and equine milk. Five different isoforms of κ-casein were found in camel milk, analogous to the micro-heterogeneity observed for bovine κ-casein. Several spots observed in 2D-electrophoretograms of milk of all species could tentatively be identified as polypeptides arising from the enzymatic hydrolysis of caseins. The understanding gained from the proteomic comparison of these milks may be of relevance both in terms of identifying sources of hypoallergenic alternatives to bovine milk and detection of adulteration of milk samples and products.
Zhang, Lina; Boeren, Sjef; Hageman, Jos A; van Hooijdonk, Toon; Vervoort, Jacques; Hettinga, Kasper
2015-01-01
In order to better understand the milk proteome and its changes from colostrum to mature milk, samples taken at seven time points in the first 9 days from 4 individual cows were analyzed using proteomic techniques. Both the similarity in changes from day 0 to day 9 in the quantitative milk proteome, and the differences in specific protein abundance, were observed among four cows. One third of the quantified proteins showed a significant decrease in concentration over the first 9 days after calving, especially in the immune proteins (as much as 40 fold). Three relative high abundant enzymes (XDH, LPL, and RNASE1) and cell division and proliferation protein (CREG1) may be involved in the maturation of the gastro-intestinal tract. In addition, high correlations between proteins involved in complement and blood coagulation cascades illustrates the complex nature of biological interrelationships between milk proteins. The linear decrease of protease inhibitors and proteins involved in innate and adaptive immune system implies a protective role for protease inhibitor against degradation. In conclusion, the results found in this study not only improve our understanding of the role of colostrum in both host defense and development of the newborn calf but also provides guidance for the improvement of infant formula through better understanding of the complex interactions between milk proteins.
Influence of calcium depletion on iron-binding properties of milk.
Mittal, V A; Ellis, A; Ye, A; Das, S; Singh, H
2015-04-01
We investigated the effects of calcium depletion on the binding of iron in milk. A weakly acidic cation-exchange resin was used to remove 3 different levels (18-22, 50-55, and 68-72%) of calcium from milk. Five levels of iron (5, 10, 15, 20, and 25 mM) were added to each of these calcium-depleted milks (CDM) and the resultant milks were analyzed for particle size, microstructure, and the distribution of protein and minerals between the colloidal and soluble phases. The depletion of calcium affected the distribution of protein and minerals in normal milk. Iron added to normal milk and low-CDM (~20% calcium depletion) bound mainly to the colloidal phase (material sedimented at 100,000 × g for 1 h at 20 °C), with little effect on the integrity of the casein micelles. Depletion of ~70% of the calcium from milk resulted in almost complete disintegration of the casein micelles, as indicated by all the protein remaining in the soluble phase upon ultracentrifugation. Addition of up to ~20 mM iron to high CDM resulted in the formation of small fibrous structures that remained in the soluble phase of milk. It appeared that the iron bound to soluble (nonsedimentable) caseins in high-CDM. We observed a decrease in the aqueous phosphorus content of all milks upon iron addition, irrespective of their calcium content. We considered the interaction between aqueous phosphorus and added iron to be responsible for the high iron-binding capacity of the proteins in milk. The soluble protein-iron complexes formed in high-CDM (~70% calcium depletion) could be used as an effective iron fortificant for a range of food products because of their good solubility characteristics. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Effect of preservatives on the accuracy of mid-infrared milk component testing.
Barbano, D M; Wojciechowski, K L; Lynch, J M
2010-12-01
Our objective was to determine the effect of commonly used milk preservatives on the accuracy of fat, protein, and lactose content determination in milk by mid-infrared (mid-IR) milk analysis. Two producer raw milks (Holstein and Jersey) and 2 pasteurized modified milks, 1 similar to Holstein milk and 1 similar to Jersey milk were used as the 4 different milk sources. Seven different milk preservative approaches (K(2)Cr(2)O(7) and 6 different bronopol-based preservatives) and a portion of unpreserved milk for each of the 4 different milks sources were tested for fat B, lactose, protein, and fat A. The experiment was replicated 3 times (28 d each) for a total of 84 d. Two mid-infrared (mid-IR) transmittance milk analyzers (an optical and a virtual filter instrument) were used. A large batch of pilot milk was prepared from pasteurized, homogenized, unpreserved whole milk, split into vials, quick frozen by immersion in liquid nitrogen, and transferred into a -80 °C freezer. Pilots were thawed and analyzed on each testing day during the study. Significant increases were observed in all uncorrected readings on the pilot milks over the 84 d of the study, but the increases were gradual and small on each instrument for all components. Results from the study were corrected for these changes. A significant difference in mid-IR fat A readings was observed, whereas no differences were detected for fat B, lactose, or protein between unpreserved and preserved milks containing 0.02% K(2)Cr(2)O(7.) Therefore, K(2)Cr(2)O(7) has little or no effect on mid-IR test results. All bronopol-based preservative approaches in this study differed in mid-IR test results compared with K(2)Cr(2)O(7)-preserved and unpreserved milks, with the largest effect on protein results. Mid-IR uncorrected readings increased with time of refrigerated storage at 4°C for all preservative approaches, with the largest increase for protein. The rate of increase in uncorrected readings with time of storage was always higher for raw milks than for pasteurized milks, and the stability of instrument zero was lower for raw milks than for pasteurized milks. The largest economic effect of a systematic bias caused by a preservative occurs when the milks used for calibration and routine testing for payment do not contain the same preservative or when calibration milks are preserved and milks for routine testing are unpreserved. These effects can create errors in payment for large dairy processing plants ranging from several hundred thousand to over a million dollars annually. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Jung, Ji A; Kim, Hyesook; Jo, Ara; Kang, Sujeong; Lee, Si-Won; Yi, Hyunju; Kim, Jihee; Yim, Jong-Gap; Jung, Byung-Moon
2015-01-01
BACKGROUND/OBJECTIVES Breast milk is the best available food for optimum growth and development of infants and the breastfeeding rate is increasing in Korea. The purpose of this study is to measure the concentrations of macronutrients and to evaluate their changes according to lactation period in breast milk from lactating Korean women. SUBJECTS/METHODS Milk samples were obtained from 2,632 healthy lactating women (mean age; 32.0 ± 3.3 years), where the lactating period was up to a period of 8 months, who also volunteered to participate in the Human Milk Macronutrient Analysis Research. Lactose, protein, fat and water content in the breast milk samples were analyzed with infrared spectrometry using MilkoScan FT-2. RESULTS The mean macronutrient composition per 100 mL of mature breast milk was 7.1 g for lactose, 1.4 g for protein and 3.0 g for fat, and energy content was 61.1 kcal. The protein concentration was significantly lower in milk samples at 1-2 weeks (2.0 g/dL) to 2-3 months (1.4 g/dL) than those at 0-1 week (2.2 g/dL), but it was similar among samples from 3-4 months to 7-8 months (1.3 g/dL). Mean lipid levels varied among different lactational period groups (2.7-3.2 g/dL), but presented no significant difference. Lactose concentration in the milk samples did not differ with lactation period. Maternal body mass index was positively related to protein and lipid breast milk contents, but was negatively related to lactose content. General linear models examining the associations between maternal variables and milk macronutrient content revealed that lactation period had a major impact on protein and lipid, but not on lactose content in breast milk. CONCLUSIONS These results warrant future studies to explore factors that may be associated with changes in macronutrient content in human milk. PMID:26244084
A nine-country study of the protein content and amino acid composition of mature human milk
Feng, Ping; Gao, Ming; Burgher, Anita; Zhou, Tian Hui; Pramuk, Kathryn
2016-01-01
Background Numerous studies have evaluated protein and amino acid levels in human milk. However, research in this area has been limited by small sample sizes and study populations with little ethnic or racial diversity. Objective Evaluate the protein and amino acid composition of mature (≥30 days) human milk samples collected from a large, multinational study using highly standardized methods for sample collection, storage, and analysis. Design Using a single, centralized laboratory, human milk samples from 220 women (30–188 days postpartum) from nine countries were analyzed for amino acid composition using Waters AccQ-Tag high-performance liquid chromatography and total nitrogen content using the LECO FP-528 nitrogen analyzer. Total protein was calculated as total nitrogen×6.25. True protein, which includes protein, free amino acids, and peptides, was calculated from the total amino acids. Results Mean total protein from individual countries (standard deviation [SD]) ranged from 1,133 (125.5) to 1,366 (341.4) mg/dL; the mean across all countries (SD) was 1,192 (200.9) mg/dL. Total protein, true protein, and amino acid composition were not significantly different across countries except Chile, which had higher total and true protein. Amino acid profiles (percent of total amino acids) did not differ across countries. Total and true protein concentrations and 16 of 18 amino acid concentrations declined with the stage of lactation. Conclusions Total protein, true protein, and individual amino acid concentrations in human milk steadily decline from 30 to 151 days of lactation, and are significantly higher in the second month of lactation compared with the following 4 months. There is a high level of consistency in the protein content and amino acid composition of human milk across geographic locations. The size and diversity of the study population and highly standardized procedures for the collection, storage, and analysis of human milk support the validity and broad application of these findings. PMID:27569428
Effect of lactation stage and concurrent pregnancy on milk composition in the bottlenose dolphin
West, K L; Oftedal, O T; Carpenter, J R; Krames, B J; Campbell, M; Sweeney, J C
2007-01-01
Although many toothed whales (Cetacea: Odontoceti) lactate for 2–3 years or more, it is not known whether milk composition is affected by lactation stage in any odontocete species. We collected 64 pooled milk samples spanning 1–30 months postpartum from three captive bottlenose dolphins Tursiops truncatus. Milks were assayed for water, fat, crude protein (TN × 6.38) and sugar; gross energy was calculated. Ovulation and pregnancy were determined via monitoring of milk progesterone. Based on analysis of changes in milk composition for each individual dolphin, there were significant increases (P<0.05) in fat (in all three dolphins) and crude protein (in two of three), and a decrease (P<0.05) in water (in two of three) over the course of lactation, but the sugar content did not change. In all three animals, the energy content was positively correlated with month of lactation, but the percentage of energy provided by crude protein declined slightly but significantly (P<0.05). At mid-lactation (7–12 months postpartum, n=17), milk averaged 73.0±1.0% water, 12.8±1.0% fat, 8.9±0.5% crude protein, 1.0±0.1% sugar, 1.76±0.09 kcal g−1 (=7.25 kJ g−1) and 30.3±1.3% protein:energy per cent. This protein:energy per cent was surprisingly high compared with other cetaceans and in relation to the growth rates of calves. Milk progesterone indicated that dolphins ovulated and conceived between 413 and 673 days postpartum, following an increase in milk energy density. The significance of these observed compositional changes to calf nutrition will depend on the amounts of milk produced at different stages of lactation, and how milk composition and yield are influenced by sampling procedure, maternal diet and maternal condition, none of which are known. PMID:22140298
Morris, Katrina M.; O’Meally, Denis; Zaw, Thiri; Song, Xiaomin; Gillett, Amber; Molloy, Mark P.; Polkinghorne, Adam; Belov, Katherine
2016-01-01
Production of milk is a key characteristic of mammals, but the features of lactation vary greatly between monotreme, marsupial and eutherian mammals. Marsupials have a short gestation followed by a long lactation period, and milk constituents vary greatly across lactation. Marsupials are born immunologically naïve and rely on their mother’s milk for immunological protection. Koalas (Phascolarctos cinereus) are an iconic Australian species that are increasingly threatened by disease. Here we use a mammary transcriptome, two milk proteomes and the koala genome to comprehensively characterise the protein components of koala milk across lactation, with a focus on immune constituents. The most abundant proteins were well-characterised milk proteins, including β-lactoglobulin and lactotransferrin. In the mammary transcriptome, 851 immune transcripts were expressed, including immunoglobulins and complement components. We identified many abundant antimicrobial peptides, as well as novel proteins with potential antimicrobial roles. We discovered that marsupial VELP is an ortholog of eutherian Glycam1, and likely has an antimicrobial function in milk. We also identified highly-abundant koala endogenous-retrovirus sequences, identifying a potential transmission route from mother to young. Characterising the immune components of milk is key to understanding protection of marsupial young, and the novel immune compounds identified may have applications in clinical research. PMID:27713568
Milkovska-Stamenova, Sanja; Hoffmann, Ralf
2017-04-15
Thermal treatment preserves the microbiological safety of milk, but also induces Maillard reactions modifying for example proteins. The purpose of this study was evaluating the influence of consumer behaviors (storage and heating) on protein glycation degrees in bovine milk products. Lactosylation and hexosylation sites were identified in ultra-high temperature (UHT), lactose-free pasteurized, and lactose-free UHT milk (ULF) and infant formula (IF) using tandem mass spectrometry (electron transfer dissociation). Overall, 303 lactosylated and 199 hexosylated peptides were identified corresponding to 170 lactosylation (31 proteins) and 117 hexosylation sites (25 proteins). In quantitative terms, storage increased lactosylation up to fourfold in UHT and IF and hexosylation up to elevenfold in ULF and threefold in IF. These levels increased additionally twofold when the stored samples were heated (40°C). In conclusion, storage and heating appear to influence protein glycation levels in milk at similar or even higher degrees than industrial processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enzymatic cross-linking of soy proteins within non-fat set yogurt gel.
Soleymanpuori, Rana; Madadlou, Ashkan; Zeynali, Fariba; Khosrowshahi, Asghar
2014-08-01
Soy proteins as the health-promoting ingredients and candidate fat substitutes in dairy products are good substrates for the cross-linking action of the enzyme transglutaminase. Non-fat set yogurt samples were prepared from the milks enriched with soy protein isolate (SPI) and/or treated with the enzyme transglutaminase. The highest titrable acidity was recorded for the yogurt enriched with SPI and treated with the enzyme throughout the cold storage for 21 d. SPI-enrichment of yogurt milk increased the water holding capacity. Although enrichment with SPI did not influence the count of Streptococcus themophilus, increased that of Lactobacillus bulgaricus ∼3 log cycles. The enzymatic treatment of SPI-enriched milk however, suppressed the bacteria growth-promoting influence of SPI due probably to making the soy proteins inaccessible for Lactobacillus. SPI-enrichment and enzymatic treatment of milk decreased the various organic acids content in yoghurt samples; influence of the former was more significant. The cross-linking of milk proteins to soy proteins was confirmed with the gel electrophoresis results.
Chowanadisai, Winyoo; Kelleher, Shannon L; Nemeth, Jennifer F; Yachetti, Stephen; Kuhlman, Charles F; Jackson, Joan G; Davis, Anne M; Lien, Eric L; Lönnerdal, Bo
2005-05-01
Variability in the protein composition of breast milk has been observed in many women and is believed to be due to natural variation of the human population. Single nucleotide polymorphisms (SNPs) are present throughout the entire human genome, but the impact of this variation on human milk composition and biological activity and infant nutrition and health is unclear. The goals of this study were to characterize a variant of human alpha-lactalbumin observed in milk from a Filipino population by determining the location of the polymorphism in the amino acid and genomic sequences of alpha-lactalbumin. Milk and blood samples were collected from 20 Filipino women, and milk samples were collected from an additional 450 women from nine different countries. alpha-Lactalbumin concentration was measured by high-performance liquid chromatography (HPLC), and milk samples containing the variant form of the protein were identified with both HPLC and mass spectrometry (MS). The molecular weight of the variant form was measured by MS, and the location of the polymorphism was narrowed down by protein reduction, alkylation and trypsin digestion. Genomic DNA was isolated from whole blood, and the polymorphism location and subject genotype were determined by amplifying the entire coding sequence of human alpha-lactalbumin by PCR, followed by DNA sequencing. A variant form of alpha-lactalbumin was observed in HPLC chromatograms, and the difference in molecular weight was determined by MS (wild type=14,070 Da, variant=14,056 Da). Protein reduction and digestion narrowed the polymorphism between the 33rd and 77th amino acid of the protein. The genetic polymorphism was identified as adenine to guanine, which translates to a substitution from isoleucine to valine at amino acid 46. The frequency of variation was higher in milk from China, Japan and Philippines, which suggests that this polymorphism is most prevalent in Asia. There are SNPs in the genome for human milk proteins and their implications for protein bioactivity and infant nutrition need to be considered.
Protein and nitrogen composition of equine (Equus caballus) milk during early lactation.
Zicker, S C; Lonnerdal, B
1994-01-01
Separation of whey protein from casein in equine milk was achieved by adjustment of pH to 4.3 without addition of calcium, and by ultracentrifugation at 189,000 g for 1 hr. True protein, whey protein, and casein decreased significantly during the first 28 days of lactation with the magnitude of decrease being greatest for whey protein. The proportion of nitrogen in whey protein:casein decreased from 85:15 to 54:46 during the 28 day time period. The concentration of non-protein nitrogen remained relatively constant at 500 mg nitrogen/l but increased in proportion from 2 to 13% of the total nitrogen during the first 28 days of lactation. These results illustrate the unique nitrogen composition of equine milk, which is intermediate between human and ruminant milk, and how it changes during early lactation.
Soy formulas and nonbovine milk.
Muraro, Maria Antonella; Giampietro, Paolo G; Galli, Elena
2002-12-01
Cow's milk allergy is frequently observed during the first year of life when nutritional requirements are critical. In those cases where breast-feeding is not available, a safe and adequate substitute to cow's milk should be offered. The primary aim of this review is to evaluate the clinical use of milk derived from vegetable proteins, such as soy, or from animals such as goat, mare, or donkey, or elemental diet in children with cow's milk allergy. MEDLINE searches were conducted with key words such as soy, goat's milk, donkey's milk, mare's milk, and elemental diet. Additional articles were identified from references in books or articles. Original research papers and review articles from peer-reviewed journals were chosen. Soy formulas are nutritionally adequate and can be used in children with immunoglobulin E-mediated nongastrointestinal manifestations of cow's milk allergy. Goat's milk is as allergenic as cow's milk. Mare's milk and donkey's milk may be used in selected cases of cow's milk allergy after appropriate modification to make them suitable for human infants. Elemental diets are usually restricted to the most severe cases of cow's milk allergy (ie, sensitivity to extensively hydrolyzed protein formulas). Vegetable formulas obtained from soy and milk derived from other mammals, such as mare or donkey, homemade preparations, and elemental diet may represent valid alternatives for children with cow's milk allergy. Extensive clinical trials are needed on the safety profile of any alternative mammal-derived milk. The choice of alternative milk should take into account the clinical profile of the child allergic to cow's milk, particularly as concerns age, severity of symptoms, degree of sensitivity to cow's milk proteins, and any multiple food allergies.
Costa, Marion P; Frasao, Beatriz S; Rodrigues, Bruna L; Silva, Adriana Co; Conte-Junior, Carlos A
2016-11-01
The aim of this Research Communication was to investigate the changes in physicochemical, colour, apparent viscosity and texture properties in low-fat goat milk yogurts prepared with cupuassu pulp by the addition of inulin (SI), maltodextrin (SM), whey protein (SW) and skim milk powder (SP). Three batches of each cupuassu goat milk yogurt were prepared and analysed on the 1st day of storage by pH, proximate composition, colour, apparent viscosity, and texture. In comparison to yogurts from whole (W) or skimmed milk (S), all of the fat replacers improved the physicochemical properties (P < 0·05). The addition of the carbohydrates (inulin and maltodextrin) and proteins (whey protein and skim milk powder) also influenced the colour of the low-fat cupuassu goat milk yogurt (P < 0·05). All fat replacer treatments (SI, SM, SW and SP) presented a higher (P < 0·05) apparent viscosity than W and S yogurts. However, only the addition of skim milk powder increased the texture parameters (firmness and consistency) (P < 0·05). These results suggest that skim milk powder can be used to improve the texture properties of low-fat cupuassu goat milk. Furthermore, inulin, maltodextrin, and whey protein can potentially be applied in the goat dairy industry to increase the viscosity of yogurts.
Barbut, S
2010-06-01
The effects of whole milk powder, 2 skim milk powders, caseinate, and 2 modified whey proteins (2% protein level in the final product) were evaluated in lean chicken meat batters and compared with controls with and without added lactose. All dairy proteins significantly (P<0.05) reduced cook losses when compared against the controls, with the 2 skim milk powders and modified whey-I showing the best results. Hardness and fracturability were also higher for all test batters compared with controls. Skim milk-II showed the highest fracturability value (21.9 vs. 7.1 N for the control) and was also found to be the most cost-effective ingredient for improving moisture binding and texture; skim milk-I and modified whey-I followed behind. Springiness and fracture distance were higher for all of the dairy proteins, except caseinate, indicating a positive contribution to the lean meat system's elasticity. In terms of color, adding the skim milk powders, modified whey-II, and whole milk powder resulted in lighter cooked meat batters as evidenced by the higher L* values and higher spectra curves.
Comparative analysis of human milk and infant formula derived peptides following in vitro digestion.
Su, M-Y; Broadhurst, M; Liu, C-P; Gathercole, J; Cheng, W-L; Qi, X-Y; Clerens, S; Dyer, J M; Day, L; Haigh, B
2017-04-15
It has long been recognised that there are differences between human milk and infant formulas which lead to differences in health and nutrition for the neonate. In this study we examine and compare the peptide profile of human milk and an exemplar infant formula. The study identifies both similarities and differences in the endogenous and postdigestion peptide profiles of human milk and infant formula. This includes differences in the protein source of these peptides but also with the region within the protein producing the dominant proteins. Clustering of similar peptides around regions of high sequence identity and known bioactivity was also observed. Together the data may explain some of the functional differences between human milk and infant formula, while identifying some aspects of conserved function between bovine and human milks which contribute to the effectiveness of modern infant formula as a substitute for human milk. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Cong; Cai, Wentao; Zhou, Chenghao; Yin, Hongwei; Zhang, Ziqi; Loor, Juan J; Sun, Dongxiao; Zhang, Qin; Liu, Jianfeng; Zhang, Shengli
2016-06-02
Paired-end RNA sequencing (RNA-Seq) was used to explore the bovine transcriptome from the mammary tissue of 12 Chinese Holstein cows with 6 extremely high and 6 low phenotypic values for milk protein percentage. We defined the differentially expressed transcripts between the two comparison groups, extremely high and low milk protein percentage during the peak lactation (HP vs LP) and during the non-lactating period (HD vs LD), respectively. Within the differentially expressed genes (DEGs), we detected 157 at peak lactation and 497 in the non-lactating period with a highly significant correlation with milk protein concentration. Integrated interpretation of differential gene expression indicated that SERPINA1, CLU, CNTFR, ERBB2, NEDD4L, ANG, GALE, HSPA8, LPAR6 and CD14 are the most promising candidate genes affecting milk protein concentration. Similarly, LTF, FCGR3A, MEGF10, RRM2 and UBE2C are the most promising candidates that in the non-lactating period could help the mammary tissue prevent issues with inflammation and udder disorders. Putative genes will be valuable resources for designing better breeding strategies to optimize the content of milk protein and also to provide new insights into regulation of lactogenesis.
Ultrasound effects on the assembly of casein micelles in reconstituted skim milk.
Liu, Zheng; Juliano, Pablo; Williams, Roderick P W; Niere, Julie; Augustin, Mary Ann
2014-05-01
Reconstituted skim milks (10 % w/w total solids, pH 6·7-8·0) were ultrasonicated (20, 400 or 1600 kHz at a specific energy input of 286 kJ/kg) at a bulk milk temperature of <30 °C. Application of ultrasound to milk at different pH altered the assembly of the casein micelle in milk, with greater effects at higher pH and lower frequency. Low frequency ultrasound caused greater disruption of casein micelles causing release of protein from the micellar to the serum phase than high frequency. The released protein re-associated to form aggregates of smaller size but with surface charge similar to the casein micelles in the original milk. Ultrasound may be used as a physical intervention to alter the size of the micelles and the partitioning of caseins between the micellar and serum phases in milk. The altered protein equilibria induced by ultrasound treatment may have potential for the development of milk with novel functionality.
Eitam, Harel; Brosh, Arieh; Orlov, Alla; Izhaki, Ido
2008-01-01
Selection for higher production rate in cattle inhabiting challenging habitats may be considered disadvantageous because of possible deleterious effects on immunity and reproduction and, consequently, on calf crop percentage. In Israel, free-grazing high productive beef cows experience reduction in nutritional quality of forage during up to 8 months of the year. As milk production by dams dictates calf performance, dam’s nutritional needs and rebreeding rates, the aim of the present study was to test how lactating beef cows deal with combined caloric and protein stress both at the productive and self protective levels. For this purpose, we studied the effect of long-term caloric stress on milk characteristics and gene expression of stress and milk components producing proteins. Lactating dams responded to caloric stress by decreased body weight, milk, and milk protein production. To compensate for total energy loses in milk, they produced milk of higher fat concentration and shifted the proportions of its fatty acids towards long and unsaturated ones. This was reflected by increased mRNA transcription of the fatty acid binding protein. Prolonged low-energy diet promoted cell-specific heat shock protein (Hsp) response; whereas significant increase of Hsp90 but unchanged levels of Hsp70 proteins were observed in white blood cells, the expression of Hsp70 in milk somatic cells was markedly attenuated, in parallel with a marked increase of αs1-casein expression. At the mammary gland level, these results may indicate a decrease in turnover of proteins and a shift to an exclusive expression of milk components producing factors. Similar responses to caloric stress were revealed also in ketotic dairy cows. Ketosis promoted a shift towards long and unsaturated fatty acids and an increased expression of αs1-casein in milk somatic cells. These findings may reflect an evolutionary-preserved mechanism in lactating cows for coping with caloric restriction. Overall, our results provide an index to test suitability of beef cattle breeds to inadequate caloric demands. PMID:18704763
Adhisivam, B; Vishnu Bhat, B; Rao, Krishna; Kingsley, S M; Plakkal, Nishad; Palanivel, C
2018-03-27
The objective of this study was to study the effect of Holder pasteurization on macronutrients and immunoglobulin profile of pooled donor human milk. This descriptive study was conducted in a Human Milk Bank of a tertiary care teaching institute in south India. Thirty random paired pooled donor human milk samples (before and after pasteurization) were analyzed for macronutrients (protein, fat, carbohydrates) using infrared spectroscopy. Similarly, immunoglobulin profile (IgA and IgG) before and after pasteurization was quantified using ELISA. The mean values of protein, fat, and carbohydrates in pooled donor milk pre-pasteurization were 1.6, 3.6, and 6.1 g/dl compared with post-pasteurization values 1.4, 2.7, and 5.9 g/dl, respectively. Pasteurization reduced protein, fat, and energy content of pooled donor milk by 12.5%, 25%, and 16%, respectively. However, carbohydrates were not significantly reduced. Pasteurization decreased IgA by 30% and IgG by 60%. Holder pasteurization of pooled donor human milk decreases protein, fat, and energy content and also reduces the levels of IgA and IgG.
Gebreyesus, G; Lund, M S; Janss, L; Poulsen, N A; Larsen, L B; Bovenhuis, H; Buitenhuis, A J
2016-04-01
Genetic parameters were estimated for the major milk proteins using bivariate and multi-trait models based on genomic relationships between animals. The analyses included, apart from total protein percentage, αS1-casein (CN), αS2-CN, β-CN, κ-CN, α-lactalbumin, and β-lactoglobulin, as well as the posttranslational sub-forms of glycosylated κ-CN and αS1-CN-8P (phosphorylated). Standard errors of the estimates were used to compare the models. In total, 650 Danish Holstein cows across 4 parities and days in milk ranging from 9 to 481d were selected from 21 herds. The multi-trait model generally resulted in lower standard errors of heritability estimates, suggesting that genetic parameters can be estimated with high accuracy using multi-trait analyses with genomic relationships for scarcely recorded traits. The heritability estimates from the multi-trait model ranged from low (0.05 for β-CN) to high (0.78 for κ-CN). Genetic correlations between the milk proteins and the total milk protein percentage were generally low, suggesting the possibility to alter protein composition through selective breeding with little effect on total milk protein percentage. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Verney, J; Martin, V; Ratel, S; Chavanelle, V; Bargetto, M; Etienne, M; Chaplais, E; Le Ruyet, P; Bonhomme, C; Combaret, L; Guillet, C; Boisseau, N; Sirvent, P; Dardevet, D
2017-01-01
Effect of 3 different dairy protein sources on the recovery of muscle function after limb immobilization in old rats. Longitudinal animal study. Institut National de la Recherche Agronomique (INRA). The study took part in a laboratory setting. Old rats were subjected to unilateral hindlimb immobilization for 8 days and then allowed to recover with 3 different dietary proteins: casein, soluble milk proteins or whey proteins for 49 days. Body weight, muscle mass, muscle fibre size, isometric, isokinetic torque, muscle fatigability and muscle oxidative status were measured before and at the end of the immobilization period and during the recovery period i.e 7, 21, 35 and 49 days post immobilization. In contrast to the casein diet, soluble milk proteins and whey proteins were efficient to favor muscle mass recovery after cast immobilization during aging. By contrast, none of the 3 diary proteins was able to improve muscle strength, power and fatigability showing a discrepancy between the recovery of muscle mass and function. However, the soluble milk proteins allowed a better oxidative capacity in skeletal muscle during the rehabilitation period. Whey proteins and soluble milk proteins improve muscle mass recovery after immobilization-induced muscle atrophy in old rats but do not allow muscle functional property restoration.
Reassociation of dissociated caseins upon acidification of heated pH-adjusted skim milk.
Anema, Skelte G; Li, Yuming
2015-05-01
Milk was heated at different pH (pH 6.5-7.1) and temperatures (20-120 °C/10 min). This resulted in different levels of casein and denatured whey proteins to be distributed between the colloidal and serum phases. The milks were subsequently acidified and the distribution of protein between colloidal and serum was monitored at different pH. On acidification to pH 5.4, the serum phase caseins and denatured whey proteins partially reassociated with the caseins, although a complex behaviour was observed at ∼ pH 5.4 where additional casein dissociation occurred in some samples. At pH below 5.4 the caseins and denatured whey proteins rapidly aggregated. No separate aggregation of κ-casein/denatured whey protein complexes or κ-casein depleted micelles was observed. The earlier gelation of milks heated at higher pH was likely to be due to the destabilisation of the entire milk protein system rather than a preferential aggregation of the serum phase proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.
Proteomic profiling of camel and cow milk proteins under heat treatment.
Felfoul, Imène; Jardin, Julien; Gaucheron, Frédéric; Attia, Hamadi; Ayadi, M A
2017-02-01
Cow and camel milk proteins before and after heat treatment at 80°C for 60min were identified using LC/MS and LC-MS/MS following monodimensional electrophoresis. The database used for the identification of camel and cow proteins was set from http://www.uniprot.org/. The obtained results showed that, after heating, camel milk at 80°C for 60min, camel α-lactalbumin (α-la) and peptidoglycan recognition protein (PGRP) were not detected while camel serum albumin (CSA) was significantly diminished. When heating cow milk at 80°C for 60min, α-lactalbumin (α-la) and β-lactoglobulin (β-lg) were not significantly detected. Moreover, 19 protein bands from SDS-PAGE were analyzed and a total of 45 different proteins were identified by LC-MS/MS. Casein fractions were kept intact under a heat treatment of 80°C during 60min of both camel and cow milks. Camel and bovine whey proteins were affected by a heat treatment of 80°C for 60min. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ye, A; Anema, S G; Singh, H
2004-12-01
The association of beta-lactoglobulin (beta-LG) and alpha-lactalbumin (alpha-LA) with milk fat globule membrane (MFGM), when whole milk was treated by high pressure in the range 100 to 800 MPa, was investigated using sodium dodecyl sulfate (SDS)-PAGE under reducing and nonreducing conditions. In SDS-PAGE under reducing conditions, beta-LG was observed in the MFGM material isolated from milk treated at 100 to 800 MPa for 30 min, and small amounts of alpha-LA and kappa-casein were also observed at pressures >600 MPa for 30 min. However, these proteins were not observed in SDS-PAGE under nonreducing conditions. These results indicate that beta-LG and alpha-LA associated with MFGM proteins via disulfide bonds during the high-pressure treatment of whole milk. The amount of beta-LG associated with the MFGM increased with an increase in pressure up to 800 MPa and with increasing time of pressure treatment. The maximum value for beta-LG association with the MFGM was approximately 0.75 mg/g of fat. Of the major original MFGM proteins, no change in butyrophilin was observed during the high-pressure treatment of whole milk, whereas xanthine oxidase was reduced to some extent beyond 400 MPa. In contrast to the behavior during heat treatment, PAS 6 and PAS 7 were stable during high-pressure treatment, and they remained associated with the MFGM.
Bioactive peptides derived from human milk proteins--mechanisms of action.
Wada, Yasuaki; Lönnerdal, Bo
2014-05-01
Human milk contains a multitude of bioactive proteins with very diverse functions, which are beneficial for the rapidly growing neonate. The large variety of bioactivities is accomplished by the combination of bioactive proteins per se and gastrointestinal release of bioactive peptides derived from them. The bioactivities exerted by these peptides include enhancement of mineral absorption, immunomodulation, opioid, antihypertensive and antimicrobial activities. Notably, several of the activities are not attributed to the parental proteins, but exclusively to released bioactive peptides. This article reviews studies on bioactive peptides derived from major human milk proteins, such as caseins, α-lactalbumin and lactoferrin, during gastrointestinal digestion. Studies of bovine milk counterparts are also cited as a comparison. Copyright © 2014. Published by Elsevier Inc.
Geary, Una; Lopez-Villalobos, Nicolas; O'Brien, Bernadette; Garrick, Dorian J; Shalloo, Laurence
2014-05-01
The impact of mastitis on milk value per litre independent of the effect of mastitis on milk volume, was quantified for Ireland using a meta-analysis and a processing sector model. Changes in raw milk composition, cheese processing and composition associated with increased bulk milk somatic cell count (BMSCC) were incorporated into the model. Processing costs and market values were representative of current industry values. It was assumed that as BMSCC increased (i) milk fat and milk protein increased and milk lactose decreased, (ii) fat and protein recoveries decreased, (iii) cheese protein decreased and cheese moisture increased. Five BMSCC categories were examined from ⩽100 000 to >400 000 cells/ml. The analysis showed that as BMSCC increased the production quantities reduced. An increase in BMSCC from 100 000 to >400 000 cells/ml saw a reduction in net revenue of 3·2% per annum (€51·3 million) which corresponded to a reduction in the value of raw milk of €0·0096 cents/l.
Murata, M; Wakabayashi, H; Yamauchi, K; Abe, F
2013-08-01
Lactoferrin (LF) is known as an iron-binding antimicrobial protein present in exocrine secretions such as milk and releases the potent antimicrobial peptide lactoferricin (LFcin) by hydrolysis with pepsin. The antimicrobial activity of LF and LFcin has been studied well; however, their cooperative action with other milk proteins remains to be elucidated. In this study, we identified milk proteins enhancing the antimicrobial activity of bovine LF and LFcin against gram-negative bacteria, gram-positive bacteria, and fungi. As the target fraction, we isolated a minor milk protein fraction around 15 kDa, which was identified as bovine RNase 5 (angiogenin-1), RNase 4, and angiogenin-2 by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. As these proteins are collectively known as the RNase A family, we referred to the target protein fraction as milk RNase of 15 kDa (MR15). The number of colony-forming units of Escherichia coli and other pathogenic microorganisms with the addition of MR15 to LF (MR15:LF ratio=16:1,000) was dramatically lowered than that with LF alone. On the other hand, MR15 itself did not show any reductions in the number of colony-forming units at the concentrations tested. Similarly, the antimicrobial activities of LFcin against various microorganisms were significantly enhanced by the addition of MR15. These results suggest that LF and MR15 may be concomitantly acting antimicrobial agents in milk. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Binding of vitamin A by casein micelles in commercial skim milk
Mohan, M. S.; Jurat-Fuentes, J. L.; Harte, F.
2015-01-01
Recent studies have shown that reassembled micelles formed by caseinates and purified casein fractions (αs- and β-casein) bind to hydrophobic compounds, including curcumin, docosahexaenoic acid, and vitamin D. However, limited research has been done on the binding of hydrophobic compounds by unmodified casein micelles in skim milk. In the present study, we investigated the ability of casein micelles in commercial skim milk to associate with vitamin A (retinyl palmitate), a fat-soluble vitamin commonly used to fortify milk. Milk protein fractions from different commercially available skim milk samples subjected to different processing treatments, including pasteurized, ultrapasteurized, organic pasteurized, and organic ultrapasteurized milks, were separated by fast protein liquid chromatography. The fractions within each peak were combined and freeze-dried. Sodium dodecyl sulfate-PAGE with silver staining was used to identify the proteins present in each of the fractions. The skim milk samples and fractions were extracted for retinyl palmitate and quantified against a standard using normal phase-HPLC. Retinyl palmitate was found to associate with the fraction of skim milk containing caseins, whereas the other proteins (BSA, β-lactoglobulin, α-lactalbumin) did not show any binding. The retinyl palmitate content in the various samples ranged from 1.59 to 2.48 μg of retinyl palmitate per mL of milk. The casein fractions contained between 14 and 40% of total retinyl palmitate in the various milks tested. The variation in the retention of vitamin A by caseins was probably explained by differences in the processing of different milk samples, including thermal treatment, the form of vitamin A emulsion used for fortification, and the point of fortification during processing. Unmodified casein micelles have a strong intrinsic affinity toward the binding of vitamin A used to fortify commercially available skim milks. PMID:23261375
Shariatikia, Malihe; Behbahani, Mandana; Mohabatkar, Hassan
2017-06-01
The present investigation was carried out to evaluate anticancer activity of cow, goat, sheep, mare, donkey and camel milks and their casein and whey proteins against MCF7 cell line. The structure-based properties of the casein proteins were also investigated, using bioinformatics tools to find explanation for their antitumor activities. The effect of different milks and their casein and whey proteins on MCF7 proliferation was measured using MTT assay at different concentrations (0.5, 1 and 2 mg/ml). The results showed that mare, donkey, cow and camel milks and their casein and whey proteins have potent cytotoxic activity against MCF7 cells in a dose dependent manner while sheep and goat milks and their proteins did not reveal any cytotoxic activity. The in silico results demonstrated that mare, donkey and camel caseins had highest positive and negative charges. The secondary structure prediction indicated that mare and donkey caseins had the maximum percentage of α helix and camel casein had the highest percentage of extended strand. This study suggests that there is a striking correlation between anti-cancer activity of milk caseins and their physicochemical properties such as alpha helix structure and positive and negative charges. In conclusion, the results indicated that mare, camel and donkey milks might be good candidates against breast cancer cells.
Aslebagh, Roshanak; Channaveerappa, Devika; Arcaro, Kathleen F; Darie, Costel C
2018-05-13
Breast cancer (BC) remains a major cause of mortality, and early detection is considered important for reducing BC-associated deaths. Early detection of BC is challenging in young women, due to the limitations of mammography on the dense breast tissue of young women. We recently reported results of a pilot proteomics study, using one-dimensional polyacrylamide gel electrophoresis (1D-PAGE) and mass spectrometry (MS) to investigate differences in milk proteins from women with and without BC. Here, we applied two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and MS to compare the protein pattern in milk from the breasts of a single woman who was diagnosed with BC in one breast 24 months after donating her milk. Statistically different gel spots were picked for protein digestion followed by nanoliquid chromatography tandem MS (nanoLC-MS/MS) analysis. The upregulated proteins in BC versus control are alpha-amylase, gelsolin isoform a precursor, alpha-2-glycoprotein 1 zinc isoform CRA_b partial, apoptosis-inducing factor 2 and vitronectin. Several proteins were downregulated in the milk of the breast later diagnosed with cancer as compared to the milk from the healthy breast, including different isoforms of albumin, cholesterol esterase, different isoforms of lactoferrin, different proteins from the casein family and different isoforms of lysozyme. Results warrant further studies to determine the usefulness of these milk proteins for assessing risk and detecting occult disease. MS data is available via ProteomeXchange with identifier PXD009860. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thompson, Patricia A; DeMarini, David M; Kadlubar, Fred F; McClure, Gail Y; Brooks, Lance R; Green, Bridgett L; Fares, Manal Y; Stone, Angie; Josephy, P David; Ambrosone, Christine B
2002-01-01
Aromatic and heterocyclic amines are ubiquitous environmental mutagens present in combustion emissions, fried meats, and tobacco smoke, and are suspect human mammary carcinogens. To determine the presence of arylamines in breast tissue and fluid, we examined exfoliated breast ductal epithelial cells for DNA adducts and matched human milk samples for mutagenicity. Breast milk was obtained from 50 women who were 4-6 weeks postpartum, and exfoliated epithelial-cell DNA was evaluated for bulky, nonpolar DNA adducts by (32)P-postlabeling and thin-layer chromatography. Milk was processed by acid hydrolysis, and the extracted organics were examined in the standard plate-incorporation Ames Salmonella assay using primarily strain YG1024, which detects frameshift mutations and overexpresses aryl amine N-acetyltransferase. DNA adducts were identified in 66% of the specimens, and bulky adducts migrated in a pattern similar to that of 4-aminobiphenyl standards. The distribution of adducts did not vary by NAT2 genotype status. Of whole milk samples, 88% (22/25) had mutagenic activity. Among the samples for which we had both DNA adduct and mutagenicity data, 58% (14/19) of the samples with adducts were also mutagenic, and 85% (11/13) of the mutagenic samples had adducts. Quantitatively, no correlation was observed between the levels of adducts and the levels of mutagenicity. Separation of the milk showed that mutagenic activity was found in 69% of skimmed milk samples but in only 29% of the corresponding milk fat samples, suggesting that the breast milk mutagens were moderately polar molecules. Chemical fractionation showed that mutagenic activity was found in 67% (4/6) of the basic fractions but in only 33% (2/6) of acidic samples, indicating that the mutagens were primarily basic compounds, such as arylamines. Although pilot in nature, this study corroborates previous findings of significant levels of DNA adducts in breast tissue and mutagenicity in human breast milk and indicates that breast milk mutagens may be moderately polar basic compounds, such as arylamines.
Does Circadian Variation of Mothers Affect Macronutrients of Breast Milk?
Çetinkaya, Aslihan Köse; Dizdar, Evrim Alyamaç; Yarcı, Erbu; Sari, Fatma Nur; Oguz, Serife Suna; Uras, Nurdan; Canpolat, Fuat Emre
2017-06-01
Objective To determine the within-day variation of fat, protein, and carbohydrate content of breast milk. Methods The study was conducted at Zekai Tahir Burak Maternity Teaching Hospital between April 2013 and January 2014. We obtained milk samples from lactating mothers of hospitalized infants through hand expression after breast-feeding or pumping three times a day. A mid-infrared human milk analyzer was used for measuring the macronutrient contents of breast milk samples. Results Lactating mothers of 52 infants (30 preterm, 22 term) were recruited to the study. No significant difference was found in protein, fat, and carbohydrate content of milk samples throughout the day. We compared within-day variation of macronutrients of transitional and mature milk, milk samples from the mothers of preterm and term infants, and samples collected by either hand expression or pumping. We did not find a significant difference between the groups. Conclusion Absence of circadian variations in lipid, carbohydrate, and protein content of breast milk in our study may be related to ethnic differences, maternal nutritional status, different milk content measurement technique, and population characteristics. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Cryo-transmission electron tomography of native casein micelles from bovine milk
Trejo, R.; Dokland, T.; Jurat-Fuentes, J.; Harte, F.
2013-01-01
Caseins are the principal protein components in milk and an important ingredient in the food industry. In liquid milk, caseins are found as micelles of casein proteins and colloidal calcium nanoclusters. Casein micelles were isolated from raw skim milk by size exclusion chromatography and suspended in milk protein-free serum produced by ultrafiltration (molecular weight cut-off of 3 kDa) of raw skim milk. The micelles were imaged by cryo-electron microscopy and subjected to tomographic reconstruction methods to visualize the 3-dimensional and internal organization of native casein micelles. This provided new insights into the internal architecture of the casein micelle that had not been apparent from prior cryo-transmission electron microscopy studies. This analysis demonstrated the presence of water-filled cavities (~20 to 30 nm in diameter), channels (diameter greater than ~5 nm), and several hundred high-density nanoclusters (6 to 12 nm in diameter) within the interior of the micelles. No spherical protein submicellar structures were observed. PMID:22118067
Vincent, Delphine; Elkins, Aaron; Condina, Mark R.; Ezernieks, Vilnis; Rochfort, Simone
2016-01-01
Cow’s milk is an important source of proteins in human nutrition. On average, cow’s milk contains 3.5% protein. The most abundant proteins in bovine milk are caseins and some of the whey proteins, namely beta-lactoglobulin, alpha-lactalbumin, and serum albumin. A number of allelic variants and post-translationally modified forms of these proteins have been identified. Their occurrence varies with breed, individuality, stage of lactation, and health and nutritional status of the animal. It is therefore essential to have reliable methods of detection and quantitation of these proteins. Traditionally, major milk proteins are quantified using liquid chromatography (LC) and ultra violet detection method. However, as these protein variants co-elute to some degree, another dimension of separation is beneficial to accurately measure their amounts. Mass spectrometry (MS) offers such a tool. In this study, we tested several RP-HPLC and MS parameters to optimise the analysis of intact bovine proteins from milk. From our tests, we developed an optimum method that includes a 20-28-40% phase B gradient with 0.02% TFA in both mobile phases, at 0.2 mL/min flow rate, using 75°C for the C8 column temperature, scanning every 3 sec over a 600–3000 m/z window. The optimisations were performed using external standards commercially purchased for which ionisation efficiency, linearity of calibration, LOD, LOQ, sensitivity, selectivity, precision, reproducibility, and mass accuracy were demonstrated. From the MS analysis, we can use extracted ion chromatograms (EICs) of specific ion series of known proteins and integrate peaks at defined retention time (RT) window for quantitation purposes. This optimum quantitative method was successfully applied to two bulk milk samples from different breeds, Holstein-Friesian and Jersey, to assess differences in protein variant levels. PMID:27749892
Estimation of the protein content of US imports of milk protein concentrates.
Bailey, K W
2003-12-01
Recent declines in milk prices in the United States have sparked renewed concern that imports of milk protein concentrates (MPC) are increasingly entering the United States with very low tariff rates and is having an adverse impact on the US dairy industry. Milk protein concentrates are used in the United States in many different products, including the starter culture of cheese, or in nonstandard cheeses such as baker's cheese, ricotta, Feta and Hispanic cheese, processed cheese foods, and nutritional products. One of the difficult aspects of trying to assess the impact of MPC imports on the US dairy industry is to quantify the protein content of these imports. The protein content of MPC imports typically ranges from 40 to 88%. The purpose of this study is to develop a methodology that can be used to estimate the protein content of MPC on a country by country basis. Such an estimate would not only provide information regarding the quantity of protein entering the United States, but would also provide a profile of low- and high-value MPC importers. This is critical for market analysis, since it is the lower valued MPC imports that more directly displaces US-produced skim milk powder.
Physicochemical characterization of native and modified sodium caseinate- Vitamin A complexes.
Gupta, Chitra; Arora, Sumit; Syama, M A; Sharma, Apurva
2018-04-01
Native and modified sodium caseinate- Vitamin A complexes {Sodium caseinate- Vit A complex by stirring (NaCas-VA ST), succinylated sodium caseinate- Vit A complex by stirring (SNaCas-VA ST), reassembled sodium caseinate- Vit A complex (RNaCas-VA) and reassembled succinylated sodium caseinate- Vit A complex (RSNaCas-VA)} were prepared and characterized for their physicochemical characteristics e.g. particle size, zeta potential, turbidity analysis and tryptophan intensities which confirmed structural modification of both native (NaCas-VA ST) and modified (SNaCas-VA ST, RNaCas-VA and RSNaCas- VA) proteins upon complex formation with vitamin A. Binding of vitamin A to milk protein reduced the turbidity caused by vitamin A, however, the particle size and zeta potential of milk protein increased after complexation. Microstructure details of NaCas (spray dried) showed uniform spherical structure, however, other milk proteins and milk protein- Vit A complexes (freeze dried) showed broken glass and flaky structures. Tiny particles were observed on the surface of reassembled protein and reassembled protein- Vit A complexes. Binding of vitamin A to milk protein did not have an influence on the electrophoretic mobility and elution profile (RP-HPLC). Copyright © 2018 Elsevier Ltd. All rights reserved.
[Comparison between old and new methods for detection of allergenic substances (egg and milk)].
Watanabe, Hiroko; Akaboshi, Chie; Saita, Kiyotaka; Sekido, Haruko; Hashiguchi, Shigeki; Watabe, Kenjiro; Tanaka, Kouki
2011-01-01
The old ELISA method for detection of allergenic substances (egg and milk) in Kanagawa prefecture from 2003 to 2007, employed before improvement of the food allergen labeling system, yielded detection rates of 20% for egg and 30% for milk. In 2005, after improvement of the labeling system, the detection rate using the new ELISA in solutions containing 1% SDS and 7% 2-mercaptoethanol increased by about 10% for egg, but decreased by half for milk. There were 4 positive samples (over 10 µg/g) for both egg and milk proteins, on account of contamination by ingredients at the manufacturing line and the lack of proper food labeling. In 2009, the contamination levels of egg and milk proteins in labeled commercial foods were low. In a comparison between the new and old methods with the same samples, both the new ELISA and Western-blot analyses showed an increase in the detection rate of egg protein. In relation to milk protein, the detection rates were decreased with the new ELISA, although the ELISA detection rate and consistency rates with Western-blot analysis were increased. On the other hand, in the case of a protein content below 5 µg/g, it was impossible to determine ovomucoid and casein by Western-blot analysis.
High intake of milk, but not meat, decreases bone turnover in prepubertal boys after 7 days.
Budek, A Z; Hoppe, C; Michaelsen, K F; Mølgaard, C
2007-08-01
To compare the short-term effect of a high milk and a high meat intake, identical in protein amount, on bone turnover during prepuberty. A University department. From 28, randomly recruited, 8-year-old boys, first 14 were assigned to the milk group and next 14 to the meat group. In each group, 12 boys finished the dietary intervention. Milk (1.5 l/day) and meat (250 g/d), both containing approximately 53 g of protein, were given together with the habitual diet for 7 days. At baseline and day-7, serum osteocalcin (s-OC), bone-specific alkaline phosphatase (s-BAP) and C-terminal telopeptides of type I collagen (s-CTX) were measured (immunoassay) and dietary intake was estimated (a 3-day weighted food record). Baseline s-OC, s-BAP and s-CTX were not significantly different between the groups. After 7 days, the average protein intake increased in both groups by 47.5 g; the milk group had higher (P<0.0001) calcium intake; s-OC and s-CTX decreased (P< or =0.04) in the milk group (-30.9%; -18.7%, respectively) compared with the meat group (+6.4%; -1.0%, respectively) and s-BAP decreased (P=0.06) both in the milk (-3.9%) and the meat group (-7.5%). At the equal protein intake, milk, but not meat, decreased bone turnover in prepubertal boys after 7 days. This effect was probably due to some milk-derived compounds, rather than to the total protein intake. Future studies should elucidate the mechanism(s) of milk-related decline of bone turnover and its relevance for peak bone mass during growth. University PhD scholarships.
Milk production of Jersey and Fleckvieh × Jersey cows in a pasture-based feeding system.
Goni, Sindisile; Muller, Carel Johan Christiaan; Dube, Bekezela; Dzama, Kennedy
2015-01-01
Milk production parameters of purebred Jersey (J) cows and Fleckvieh × Jersey (F × J) cows in a pasture-based feeding system were compared using standard milk recording procedures. Milk, fat and protein production was adjusted to 305 days per lactation and corrected for age at calving. Effects of breed, parity, month and year were estimated for milk, fat and protein yield as well as fat and protein percentage, using the general linear model procedure. Fixed effects identified as affecting milk production parameters significantly were breed, parity and year. F × J cows produced significantly more milk than J cows (6141 ± 102 and 5398 ± 95 kg milk, respectively). Similarly, fat and protein yields were significantly higher in F × J (272 ± 4 and 201 ± 3 kg, respectively) than in Jersey cows (246 ± 3 and 194 ± 2 kg, respectively). Fat and protein percentages only differed slightly in absolute terms being 4.61 ± 0.04% fat in the Jersey compared to 4.47 ± 0.04% fat in the F × J. Protein levels for J and F × J cows were 3.62 ± 0.03 and 3.51 ± 0.03%, respectively. Despite a lower fat percentage, F × J crossbred cows may be more productive than purebred Jersey cows which may be due to heterotic effects.
2012-01-01
Background Dairy proteins, in particular the whey fraction, exert insulinogenic properties and facilitate glycemic regulation through a mechanism involving elevation of certain plasma amino acids, and stimulation of incretins. Human milk is rich in whey protein and has not been investigated in this respect. Method Nine healthy volunteers were served test meals consisting of human milk, bovine milk, reconstituted bovine whey- or casein protein in random order. All test meals contributed with 25g intrinsic or added lactose, and a white wheat bread (WWB) meal was used as reference, providing 25g starch. Post-prandial levels in plasma of glucose, insulin, incretins and amino acids were investigated at time intervals for up to 2 h. Results All test meals elicited lower postprandial blood glucose responses, expressed as iAUC 0–120 min compared with the WWB (P < 0.05). The insulin response was increased following all test meals, although only significantly higher after whey. Plasma amino acids were correlated to insulin and incretin secretion (iAUC 0–60 min) (P ≤ 0.05). The lowered glycemia with the test meals (iAUC 0–90 min) was inversely correlated to GLP-1 (iAUC 0–30 min) (P ≤ 0.05). Conclusion This study shows that the glycemic response was significantly lower following all milk/milk protein based test meals, in comparison with WWB. The effect appears to originate from the protein fraction and early phase plasma amino acids and incretins were involved in the insulin secretion. Despite its lower protein content, the human milk was a potent GLP-1 secretagogue and showed insulinogenic properties similar to that seen with reconstituted bovine whey-protein, possibly due to the comparatively high proportion of whey in human milk. PMID:23057765
Broderick, G A; Stevenson, M J; Patton, R A
2009-06-01
An incomplete 8 x 8 Latin square trial (4-wk periods; 12 wk total) using 32 multiparous and 16 primiparous Holstein cows was conducted to assess the production response to crude protein (CP), digestible rumen-undegraded protein (RUP), and rumen-protected Met (RPM; fed as Mepron; Degussa Corp., Kennesaw, GA). Diets contained [dry matter (DM) basis] 21% alfalfa silage, 34% corn silage, 22 to 26% high-moisture corn, 10 to 14% soybean meal, 4% soyhulls, 2% added fat, 1.3% minerals and vitamins, and 27 to 28% neutral detergent fiber. Treatments were a 2 x 2 x 2 factorial arrangement of the following main effects: 15.8 or 17.1% dietary CP, with or without supplemental rumen-undegraded protein (RUP) from expeller soybean meal, and 0 or 9 g of RPM/d. None of the 2- or 3-way interactions was significant. Higher dietary CP increased DM intake 1.1 kg/d and yield of milk 1.7 kg/d, 3.5% fat-corrected milk (FCM) 2.2 kg/d, fat 0.10 kg/d, and true protein 0.05 kg/d, and improved apparent N balance and DM and fiber digestibility. However, milk urea N and estimated urinary excretion of urea-N and total-N also increased, and apparent N efficiency (milk-N/N-intake) fell from 33 to 30% when cows consumed higher dietary CP. Positive effects of feeding more RUP were increased feed efficiency and milk fat content plus 1.8 kg/d greater FCM and 0.08 kg/d greater fat, but milk protein content was lower and milk urea N and urinary urea excretion were elevated. Supplementation with RPM increased DM intake 0.7 kg/d and FCM and fat yield by 1.4 and 0.06 kg/d, and tended to increase milk fat content and yield of milk and protein.
Fiocchi, A; Restani, P; Bernardini, R; Lucarelli, S; Lombardi, G; Magazzù, G; Marseglia, G L; Pittschieler, K; Tripodi, S; Troncone, R; Ranzini, C
2006-03-01
Children allergic to cow's milk are fed a soy- or a hydrolysed cow's milk-based substitute. Neither can rule out a sensitization risk. Previous studies have shown that hydrolysed rice is tolerated by animals and children with multiple food hypersensitivities. A prospective clinical assessment of tolerance to a rice-based hydrolysed formula was carried out in children allergic to cow's milk. Patients and methods One hundred children (42 girls and 58 boys, mean age 3.17+/-2.93 years, median 2.20, range 0.18-14.6 years) with a history of immediate reactions to cow's milk and confirmed at double-blind, placebo-controlled food challenge (DBPCFC) when not contraindicated were assessed for clinical tolerance to cow's milk proteins. Their allergy work-up included skin prick tests with whole milk, alpha-lactalbumin (ALA), beta-lactoglobulin (BLG) and total caseins, and specific IgE determinations using CAP technology were performed against whole milk, ALA, BLG and casein. Sensitization to rice and rice-based hydrolysed formula was similarly investigated. Patients' sera were evaluated at immunoblotting for specific IgE to cow's milk proteins, rice and rice-based hydrolysed formula. DBPCFC was carried out with increasing doses of a rice-based hydrolysed formula. All patients were sensitized to cow's milk and/or at least one cow's milk protein fraction. Eighty-seven out of 99 were positive to cow's milk and/or a cow's milk protein fraction at skin prick test. Positive (>0.35 kUA/L) specific IgE determinations were found for cow's milk and/or milk fractions (92/95), rice (21/91) and hydrolysed rice infant formula (4/91). At immunoblotting, sera from 96 children were positive to alpha-casein (n=54), beta-casein (n=38), ALA (n=57), BLG (n=37) and bovine serum albumin (n=61). Similarly, although patients' sera often contained specific IgE against rice proteins at CAP (21/91) and immunoblotting (70/96), only six very weakly positive responses were observed against rice-based hydrolysed formula. All DBPCFC with rice-based hydrolysed formula were negative. Rice-based hydrolysed formula is a possible alternative not only for children with multiple allergies, but also for children with cow's milk allergy.
Zhou, J P; Dong, C H
2013-09-04
The traits particularly important for milk production include milk yield, protein percentage, fat percentage, and the somatic cell score. Alpha-lactalbumin (α-LA) is an important whey protein of cow milk, and is also present in the milk of many other mammalian species. In this study, we analyzed the genetic polymorphisms of the α-LA gene and their relationship to milk production traits (milk yield, protein percentage, fat percentage, and somatic cell score) in Chinese Holstein cows. The goal of this study was to contribute further molecular genetic information related to dairy cattle, to determine the molecular markers that are most closely linked with milk production traits, and to provide a scientific basis for the improvement of economically relevant traits in cows. Fluorescence-based conformation-sensitive gel electrophoresis, DNA sequencing, and ligation detection reaction techniques were used to analyze genetic variations of the α-LA gene (5'-UTR, exons 1, 2, 3, 4, and 3'-UTR) in 923 Chinese Holstein cows. One novel single nucleotide polymorphism (SNP), α-LA2516, was identified in exon 4 of the α-LA gene. Allele frequencies were as follows: T 0.674, C 0.326. Association analysis revealed that α-LA2516 was not associated with milk yield, protein percentage, fat percentage, or somatic cell score (P > 0.05). These findings suggest that the SNP α-LA2516 in the α-LA gene likely does not have potential as a molecular marker for milk production traits in Chinese Holstein cows.
Ghazal, S; Berthelot, V; Friggens, N C; Schmidely, P
2014-11-01
The objective of this trial was to study the interaction between the supplementation of lipid-encapsulated conjugated linoleic acid (CLA; 4.5 g of cis-9,trans-11 C18:2 and 4.5 g of trans-10,cis-12 C18:2) and feeding level to test if milk performance or milk fatty acid (FA) profile are affected by the interaction between CLA and feeding level. Twenty-four dairy goats were used in an 8-wk trial with a 3-wk adaptation to the experimental ration that contained corn silage, beet pulp, barley, and a commercial concentrate. During the third week, goats were assigned into blocks of 2 goats according to their dry matter intake (DMI), raw milk yield, and fat yield. Each block was randomly allocated to control (45 g of Ca salt of palm oil/d) or CLA treatment. Within each block, one goat was fed to cover 100% (FL100) of the calculated energy requirements and the other was fed 85% of the DMI of the first goat (FL85). Individual milk production and composition were recorded weekly, and milk FA composition was analyzed in wk 3, 5, and 7. Conjugated linoleic acid supplementation reduced milk fat content and fat yield by 17 and 19%, respectively, independent of the feeding level. It reduced both the secretion of milk FA synthesized de novo, and those taken up from the blood. No interaction between CLA and feeding level was observed on milk secretion of any group of FA. The CLA supplementation had no effect on DMI, milk yield, protein, and lactose yields but it improved calculated net energy for lactation balance. Goats fed the FL100 × CLA diet tended to have the highest DMI and protein yield. The interaction between CLA and feeding level was not significant for any other variables. Compared with the goats fed FL100, those fed FL85 had lower DMI, lower net energy for lactation balance, and lower digestible protein in the intestine balance. The body weight; milk yield; milk fat, protein, and lactose yields; and fat, protein, lactose, and urea contents in milk were not affected by feeding level. In conclusion, reduction in energy spared via fat yield reduction after CLA supplementation was not partitioned toward milk lactose or protein in goats at a low feeding level, possibly because of a simultaneous shortage of energy and amino acids. In goats on the high feeding level, energy spared tended to be partitioned toward milk protein yield, and at the same time to the prevention of excessive lipid mobilization. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Milk--the promoter of chronic Western diseases.
Melnik, Bodo C
2009-06-01
Common chronic diseases of Western societies, such as coronary heart disease, diabetes mellitus, cancer, hypertension, obesity, dementia, and allergic diseases are significantly influenced by dietary habits. Cow's milk and dairy products are nutritional staples in most Western societies. Milk and dairy product consumption is recommended by most nutritional societies because of their beneficial effects for calcium uptake and bone mineralization and as a source of valuable protein. However, the adverse long-term effects of milk and milk protein consumption on human health have been neglected. A hypothesis is presented, showing for the first time that milk protein consumption is an essential adverse environmental factor promoting most chronic diseases of Western societies. Milk protein consumption induces postprandial hyperinsulinaemia and shifts the growth hormone/insulin-like growth factor-1 (IGF-1) axis to permanently increased IGF-1 serum levels. Insulin/IGF-1 signalling is involved in the regulation of fetal growth, T-cell maturation in the thymus, linear growth, pathogenesis of acne, atherosclerosis, diabetes mellitus, obesity, cancer and neurodegenerative diseases, thus affecting most chronic diseases of Western societies. Of special concern is the possibility that milk intake during pregnancy adversely affects the early fetal programming of the IGF-1 axis which will influence health risks later in life. An accumulated body of evidence for the adverse effects of cow's milk consumption from fetal life to childhood, adolescence, adulthood and senescence will be provided which strengthens the presented hypothesis.
Islam, M. A.; Alam, M. K.; Islam, M. N.; Khan, M. A. S.; Ekeberg, D.; Rukke, E. O.; Vegarud, G. E.
2014-01-01
The aim of the present study was to get a total physical and chemical characterization and comparison of the principal components in Bangladeshi buffalo (B), Holstein cross (HX), Indigenous cattle (IC) and Red Chittagong Cattle (RCC) milk. Protein and casein (CN) composition and type, casein micellar size (CMS), naturally occurring peptides, free amino acids, fat, milk fat globule size (MFGS), fatty acid composition, carbohydrates, total and individual minerals were analyzed. These components are related to technological and nutritional properties of milk. Consequently, they are important for the dairy industry and in the animal feeding and breeding strategies. Considerable variation in most of the principal components of milk were observed among the animals. The milk of RCC and IC contained higher protein, CN, β-CN, whey protein, lactose, total mineral and P. They were more or less similar in most of the all other components. The B milk was found higher in CN number, in the content of αs2-, κ-CN and α-lactalbumin, free amino acids, unsaturated fatty acids, Ca and Ca:P. The B milk was also lower in β-lactoglobulin content and had the largest CMS and MFGS. Proportion of CN to whey protein was lower in HX milk and this milk was found higher in β-lactoglobulin and naturally occuring peptides. Considering the results obtained including the ratio of αs1-, αs2-, β- and κ-CN, B and RCC milk showed best data both from nutritional and technological aspects. PMID:25050028
Bittante, G; Cipolat-Gotet, C; Cecchinato, A
2013-01-01
Cheese yield (CY) is an important technological trait in the dairy industry, and the objective of this study was to estimate the genetic parameters of cheese yield in a dairy cattle population using an individual model-cheese production procedure. A total of 1,167 Brown Swiss cows belonging to 85 herds were sampled once (a maximum of 15 cows were sampled per herd on a single test day, 1 or 2 herds per week). From each cow, 1,500 mL of milk was processed according to the following steps: milk sampling and heating, culture addition, rennet addition, gelation-time recording, curd cutting, whey draining and sampling, wheel formation, pressing, salting in brine, weighing, and cheese sampling. The compositions of individual milk, whey, and curd samples were determined. Three measures of percentage cheese yield (%CY) were calculated: %CY(CURD), %CY(SOLIDS), and %CY(WATER), which represented the ratios between the weight of fresh curd, the total solids of the curd, and the water content of the curd, respectively, and the weight of the milk processed. In addition, 3 measures of daily cheese yield (dCY, kg/d) were defined, considering the daily milk yield. Three measures of nutrient recovery (REC) were computed: REC(FAT), REC(PROTEIN), and REC(SOLIDS), which represented the ratio between the weights of the fat, protein, and total solids in the curd, respectively, and the corresponding nutrient in the milk. Energy recovery, REC(ENERGY), represented the energy content of the cheese versus that in the milk. For statistical analysis, a Bayesian animal model was implemented via Gibbs sampling. The effects of parity (1 to ≥4), days in milk (6 classes), and laboratory vat (15 vats) were assigned flat priors; those of herd-test-date, animal, and residual were given Gaussian prior distributions. Intra-herd heritability estimates of %CY(CURD), %CY(SOLIDS), and %CY(WATER) ranged from 0.224 to 0.267; these were larger than the estimates obtained for milk yield (0.182) and milk fat content (0.122), and similar to that for protein content (0.275). Daily cheese yields showed heritability estimates similar to those of daily milk yield. The trait %CY(WATER) showed a highly positive genetic correlation with %CY(SOLIDS) (0.87), whereas their phenotypic correlation was moderate (0.37), and the fat and protein contents of milk showed high genetic correlations with %CY traits. The heritability estimates of REC(PROTEIN) and REC(FAT) were larger (0.490 and 0.208, respectively) than those obtained for the protein and fat contents of milk, and the genetic relationships between REC(PROTEIN) and REC(FAT) with milk protein and fat content were low or moderate; REC(PROTEIN) and REC(FAT) were moderately correlated with the %CY traits and highly correlated with REC(SOLIDS) and REC(ENERGY). Both REC(SOLIDS) and REC(ENERGY) were heritable (0.274 and 0.232), and showed high correlations with each other (0.96) and with the %CY traits (0.83 to 0.97). Together, these findings demonstrate the existence of economically important, genetically determined variability in cheese yield that does not depend solely upon the fat and protein contents of milk, but also relies on the ability of the coagulum to retain the highest possible proportions of the available protein, fat, and water. Exploitation of this interesting genetic variation does not seem to be feasible through direct measurement of the phenotype in cows at the population level. Instead, further research is warranted to examine possible means for indirect prediction, such as through assessing the mid-infrared spectra of milk samples. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Aernouts, B; Polshin, E; Lammertyn, J; Saeys, W
2011-11-01
The composition of produced milk has great value for the dairy farmer. It determines the economic value of the milk and provides valuable information about the metabolism of the corresponding cow. Therefore, online measurement of milk components during milking 2 or more times per day would provide knowledge about the current health and nutritional status of each cow individually. This information provides a solid basis for optimizing cow management. The potential of visible and near-infrared (Vis/NIR) spectroscopy for predicting the fat, crude protein, lactose, and urea content of raw milk online during milking was, therefore, investigated in this study. Two measurement modes (reflectance and transmittance) and different wavelength ranges for Vis/NIR spectroscopy were evaluated and their ability to measure the milk composition online was compared. The Vis/NIR reflectance measurements allowed for very accurate monitoring of the fat and crude protein content in raw milk (R(2)>0.95), but resulted in poor lactose predictions (R(2)<0.75). In contrast, Vis/NIR transmittance spectra of the milk samples gave accurate fat and crude protein predictions (R(2)>0.90) and useful lactose predictions (R(2)=0.88). Neither Vis/NIR reflectance nor transmittance spectroscopy lead to an acceptable prediction of the milk urea content. Transmittance spectroscopy can thus be used to predict the 3 major milk components, but with lower accuracy for fat and crude protein than the reflectance mode. Moreover, the small sample thickness (1mm) required for NIR transmittance measurement considerably complicates its online use. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Schwaighofer, Andreas; Kuligowski, Julia; Quintás, Guillermo; Mayer, Helmut K; Lendl, Bernhard
2018-06-30
Analysis of proteins in bovine milk is usually tackled by time-consuming analytical approaches involving wet-chemical, multi-step sample clean-up procedures. The use of external cavity-quantum cascade laser (EC-QCL) based IR spectroscopy was evaluated as an alternative screening tool for direct and simultaneous quantification of individual proteins (i.e. casein and β-lactoglobulin) and total protein content in commercial bovine milk samples. Mid-IR spectra of protein standard mixtures were used for building partial least squares (PLS) regression models. A sample set comprising different milk types (pasteurized; differently processed extended shelf life, ESL; ultra-high temperature, UHT) was analysed and results were compared to reference methods. Concentration values of the QCL-IR spectroscopy approach obtained within several minutes are in good agreement with reference methods involving multiple sample preparation steps. The potential application as a fast screening method for estimating the heat load applied to liquid milk is demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lafoux, Aude; Baudry, Charlotte; Bonhomme, Cécile; Le Ruyet, Pascale; Huchet, Corinne
2016-01-01
Aging is associated with a loss of muscle mass and functional capacity. Present study was designed to compare the impact of specific dairy proteins on muscular function with or without a low-intensity physical activity program on a treadmill in an aged rat model. We investigated the effects of nutritional supplementation, five days a week over a 2-month period with a slow digestible protein, casein or fast digestible proteins, whey or soluble milk protein, on strength and locomotor parameters in sedentary or active aged Wistar RjHan rats (17-19 months of age). An extensive gait analysis was performed before and after protein supplementation. After two months of protein administration and activity program, muscle force was evaluated using a grip test, spontaneous activity using an open-field and muscular mass by specific muscle sampling. When aged rats were supplemented with proteins without exercise, only minor effects of different diets on muscle mass and locomotion were observed: higher muscle mass in the casein group and improvement of stride frequencies with soluble milk protein. By contrast, supplementation with soluble milk protein just after physical activity was more effective at improving overall skeletal muscle function in old rats compared to casein. For active old rats supplemented with soluble milk protein, an increase in locomotor activity in the open field and an enhancement of static and dynamic gait parameters compared to active groups supplemented with casein or whey were observed without any differences in muscle mass and forelimb strength. These results suggest that consumption of soluble milk protein as a bolus immediately after a low intensity physical activity may be a suitable nutritional intervention to prevent decline in locomotion in aged rats and strengthen the interest to analyze the longitudinal aspect of locomotion in aged rodents.
Lafoux, Aude; Baudry, Charlotte; Bonhomme, Cécile; Le Ruyet, Pascale; Huchet, Corinne
2016-01-01
Aging is associated with a loss of muscle mass and functional capacity. Present study was designed to compare the impact of specific dairy proteins on muscular function with or without a low-intensity physical activity program on a treadmill in an aged rat model. We investigated the effects of nutritional supplementation, five days a week over a 2-month period with a slow digestible protein, casein or fast digestible proteins, whey or soluble milk protein, on strength and locomotor parameters in sedentary or active aged Wistar RjHan rats (17–19 months of age). An extensive gait analysis was performed before and after protein supplementation. After two months of protein administration and activity program, muscle force was evaluated using a grip test, spontaneous activity using an open-field and muscular mass by specific muscle sampling. When aged rats were supplemented with proteins without exercise, only minor effects of different diets on muscle mass and locomotion were observed: higher muscle mass in the casein group and improvement of stride frequencies with soluble milk protein. By contrast, supplementation with soluble milk protein just after physical activity was more effective at improving overall skeletal muscle function in old rats compared to casein. For active old rats supplemented with soluble milk protein, an increase in locomotor activity in the open field and an enhancement of static and dynamic gait parameters compared to active groups supplemented with casein or whey were observed without any differences in muscle mass and forelimb strength. These results suggest that consumption of soluble milk protein as a bolus immediately after a low intensity physical activity may be a suitable nutritional intervention to prevent decline in locomotion in aged rats and strengthen the interest to analyze the longitudinal aspect of locomotion in aged rodents. PMID:27973615
Maningat, Patricia D.; Sen, Partha; Rijnkels, Monique; Hadsell, Darryl L.; Bray, Molly S.
2011-01-01
Growth hormone is one of few pharmacologic agents known to augment milk production in humans. We hypothesized that recombinant human GH (rhGH) increases the expression of cell proliferation and milk protein synthesis genes. Sequential milk and blood samples collected over four days were obtained from five normal lactating women. Following 24 h of baseline milk and blood sampling, rhGH (0.1 mg/kg/day) was administered subcutaneously once daily for 3 days. Gene expression changes were determined by microarray studies utilizing milk fat globule RNA isolated from each milk sample. Following rhGH administration, DNA synthesis and cell cycle genes were induced, while no significant changes were observed in the expression of milk synthesis genes. Expression of glycolysis and citric acid cycle genes were increased by day 4 compared with day 1, while lipid synthesis genes displayed a circadian-like pattern. Cell cycle gene upregulation occurred after a lag of ∼2 days, likely explaining the failure to increase milk production after only 3 days of rhGH treatment. We conclude that rhGH induces expression of cellular proliferation and metabolism genes but does not induce milk protein gene expression, as potential mechanisms for increasing milk production and could account for the known effect of rhGH to increase milk production following 7–10 days. PMID:21205870
Brouk, M J; Cvetkovic, B; Rice, D W; Smith, B L; Hinds, M A; Owens, F N; Iiams, C; Sauber, T E
2011-04-01
The nutritional equivalency of grain plus whole plant silage from genetically modified corn plants containing the DAS-59122-7 (59122) event expressing the Cry34Ab1 and Cry35Ab1 proteins to grain and silage from a near-isogenic corn hybrid without this trait (control) was assessed using lactating dairy cows. Corn plants with event 59122 are resistant to western corn rootworm and tolerant to the herbicide active ingredient glufosinate-ammonium. Effects on feed intake, milk production, and milk composition were determined. The 59122 grain and the control grain were produced in 2005 from isolated plots in Richland, Iowa. Whole plant corn silage for the 59122 and control treatments were grown in isolated plots at the Kansas State University Dairy Center and ensiled in Ag-Bags. Thirty lactating Holstein cows blocked by lactation number, day of lactation, and previous energy-corrected milk production were used in a switchback design. All cows were fed diets that contained 22.7% grain plus 21.3% whole plant silage from either the 59122 or the control hybrid, in addition to 21% wet corn gluten feed, 12.3% protein mix, 8.0% whole cottonseed, and 14.7% alfalfa hay. Each period of the switchback trial included 2 wk for diet adjustment followed by 4 wk for data and sample collection. Milk samples (a.m. and p.m.) collected from 2 consecutive milkings of each collection wk were analyzed for fat, protein, lactose, solids-not-fat, milk urea nitrogen, and somatic cell count. Percentages of milk fat, protein, lactose, and solids-not-fat were not affected by dietary treatment. Yields of milk, 4% fat-corrected milk, energy-corrected milk, solids-corrected milk, and the concentrations and yields of milk fat, milk protein, milk solids, and milk lactose were not significantly different between treatments. Efficiencies of milk, fat-corrected milk, energy-corrected milk, and solids-corrected milk production also were not different when cows were fed crops from 59122 than when they were fed the control hybrid. Milk production efficiency averaged 1.48 and 1.50 kg/kg of dry matter intake for cows fed diets containing the control and 59122 corn, respectively. These data indicate that the nutritional value for milk production was not different between a diet containing grain plus whole plant corn silage produced from a 59122 corn hybrid versus a diet containing grain and corn silage from its near-isogenic control corn hybrid. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Proteomic analysis and cross species comparison of casein fractions from the milk of dairy animals
Wang, Xiaxia; Zhao, Xiaowei; Huang, Dongwei; Pan, Xiaocheng; Qi, Yunxia; Yang, Yongxin; Zhao, Huiling; Cheng, Guanglong
2017-01-01
Casein micelles contribute to the physicochemical properties of milk and may also influence its functionality. At present, however, there is an incomplete understanding of the casein micelle associated proteins and its diversity among the milk obtained from different species. Therefore, milk samples were collected from seven dairy animals groups, casein fractions were prepared by ultracentrifugation and their constituent proteins were identified by liquid chromatography tandem mass spectrometry. A total of 193 distinct proteins were identified among all the casein micelle preparations. Protein interaction analysis indicated that caseins could interact with major whey proteins, including β-lactoglobulin, α-lactalbumin, lactoferrin, and serum albumin, and then whey proteins interacted with other proteins. Pathway analysis found that the peroxisome proliferator-activated receptor signaling pathway is shared among the studied animals. Additionally, galactose metabolism pathway is also found to be commonly involved for proteins derived from camel and horse milk. According to the similarity of casein micelle proteomes, two major sample clusters were classified into ruminant animals (Holstein and Jersey cows, buffaloes, yaks, and goats) and non-ruminants (camels and horses). Our results provide new insights into the protein profile associated with casein micelles and the functionality of the casein micelle from the studied animals. PMID:28240229
Yang, Mei; Cao, Xueyan; Wu, Rina; Liu, Biao; Ye, Wenhui; Yue, Xiqing; Wu, Junrui
2017-09-01
Whey, an essential source of dietary nutrients, is widely used in dairy foods for infants. A total of 584 whey proteins in human and bovine colostrum and mature milk were identified and quantified by the isobaric tag for relative and absolute quantification (iTRAQ) proteomic method. The 424 differentially expressed whey proteins were identified and analyzed according to gene ontology (GO) annotation, Kyoto encyclopedia of genes and genomes (KEGG) pathway, and multivariate statistical analysis. Biological processes principally involved biological regulation and response to stimulus. Major cellular components were extracellular region part and extracellular space. The most prevalent molecular function was protein binding. Twenty immune-related proteins and 13 proteins related to enzyme regulatory activity were differentially expressed in human and bovine milk. Differentially expressed whey proteins participated in many KEGG pathways, including major complement and coagulation cascades and in phagosomes. Whey proteins show obvious differences in expression in human and bovine colostrum and mature milk, with consequences for biological function. The results here increase our understanding of different whey proteomes, which could provide useful information for the development and manufacture of dairy products and nutrient food for infants. The advanced iTRAQ proteomic approach was used to analyze differentially expressed whey proteins in human and bovine colostrum and mature milk.
Li, Cong; Cai, Wentao; Zhou, Chenghao; Yin, Hongwei; Zhang, Ziqi; Loor, Juan J.; Sun, Dongxiao; Zhang, Qin; Liu, Jianfeng; Zhang, Shengli
2016-01-01
Paired-end RNA sequencing (RNA-Seq) was used to explore the bovine transcriptome from the mammary tissue of 12 Chinese Holstein cows with 6 extremely high and 6 low phenotypic values for milk protein percentage. We defined the differentially expressed transcripts between the two comparison groups, extremely high and low milk protein percentage during the peak lactation (HP vs LP) and during the non-lactating period (HD vs LD), respectively. Within the differentially expressed genes (DEGs), we detected 157 at peak lactation and 497 in the non-lactating period with a highly significant correlation with milk protein concentration. Integrated interpretation of differential gene expression indicated that SERPINA1, CLU, CNTFR, ERBB2, NEDD4L, ANG, GALE, HSPA8, LPAR6 and CD14 are the most promising candidate genes affecting milk protein concentration. Similarly, LTF, FCGR3A, MEGF10, RRM2 and UBE2C are the most promising candidates that in the non-lactating period could help the mammary tissue prevent issues with inflammation and udder disorders. Putative genes will be valuable resources for designing better breeding strategies to optimize the content of milk protein and also to provide new insights into regulation of lactogenesis. PMID:27254118
Polymorphism in ovine ANXA9 gene and physic-chemical properties and the fraction of protein in milk.
Pecka-Kiełb, Ewa; Czerniawska-Piątkowska, Ewa; Kowalewska-Łuczak, Inga; Vasil, Milan
2018-04-16
Annexin A9 (ANXA9) is a specific fatty acid transport protein. ANXA9 gene is expressed in various tissues, including secretory tissue and mammary glands. The association between three SNPs of the ANXA9 gene and sheep's milk compositions was assessed. Genotype analysis was performed with the use of PCR-RFLP method. The studied ANXA9 polymorphisms had the following MAF (Major Allele Frequency): SNP1: allele G 0,66; SNP2: allele G 0,54; SNP3: allele C 0,57. The study found the most desired profile of protein fractions, namely an increased kappa-casein fractions and a decreased level of whey protein in sheep's milk for SNP1 and SNP3 polymorphisms. Sheep with the SNP1 GA genotype had the highest (P <0.05) content of fat and dry matter in milk. AXNA9 gene polymorphism did not influence the levels of protein, lactose or urea in sheep's milk. The information contained in this study may be useful for determining the impact of the ANXA9 gene on sheep's milk. The ANXA9 SNP1 and SNP3 polymorphisms results could be included in the breeding programs to select the sheep with the genotypes ensuring the highest kappa-casein levels in milk. However, it is worth conducting further research on ANXA9 and milk composition in larger herds of animals and various breeds of sheep. This article is protected by copyright. All rights reserved.
Liu, Yanhong; Ream, Amy
2008-11-01
To study how Listeria monocytogenes survives and grows in ultrahigh-temperature-processed (UHT) skim milk, microarray technology was used to monitor the gene expression profiles of strain F2365 in UHT skim milk. Total RNA was isolated from strain F2365 in UHT skim milk after 24 h of growth at 4 degrees C, labeled with fluorescent dyes, and hybridized to "custom-made" commercial oligonucleotide (35-mers) microarray chips containing the whole genome of L. monocytogenes strain F2365. Compared to L. monocytogenes grown in brain heart infusion (BHI) broth for 24 h at 4 degrees C, 26 genes were upregulated (more-than-twofold increase) in UHT skim milk, whereas 14 genes were downregulated (less-than-twofold decrease). The upregulated genes included genes encoding transport and binding proteins, transcriptional regulators, proteins in amino acid biosynthesis and energy metabolism, protein synthesis, cell division, and hypothetical proteins. The downregulated genes included genes that encode transport and binding proteins, protein synthesis, cellular processes, cell envelope, energy metabolism, a transcriptional regulator, and an unknown protein. The gene expression changes determined by microarray assays were confirmed by real-time reverse transcriptase PCR analyses. Furthermore, cells grown in UHT skim milk displayed the same sensitivity to hydrogen peroxide as cells grown in BHI, demonstrating that the elevated levels of expression of genes encoding manganese transporter complexes in UHT skim milk did not result in changes in the oxidative stress sensitivity. To our knowledge, this report represents a novel study of global transcriptional gene expression profiling of L. monocytogenes in a liquid food.
Approach to milk protein allergy in infants.
Brill, Herbert
2008-09-01
To provide a practical, evidence-based approach to the diagnosis and management of milk protein allergy in infants. MEDLINE was searched from 1950 to March 2008 using the MeSH heading milk-hypersensitivity. Additional sources were derived from reviews found with the initial search strategy. Evidence was levels I, II, and III. Milk protein allergy is a recognized problem in the first year of life; cow's milk protein allergy is the most common such allergy. Diagnosis is suspected on history alone, with laboratory evaluations playing a supporting role. Confirmation requires elimination and reintroduction of the suspected allergen. Management includes diet modification for nursing mothers and hydrolyzed formulas for formula-fed infants. Assessing the underlying immunopathology can aid in determining prognosis. The therapeutic model presented allows rapid assessment of the presence of allergy, timely management, and surveillance for recurrence of symptoms. Breastfeeding can be continued with attentive diet modification by motivated mothers.
Sensitization to cow's milk protein in a dairy worker.
Quirantes Sierra, B; Lara Jiménez, A; Skodova, M
2017-10-01
Repeated skin exposure and inhalation of milk proteins may lead to IgE-mediated sensitization, normally manifested at the site of contact. Although this is a phenomenon predominantly found in children, it has also been observed in adults. To describe a case of a worker who, after being exposed to milk proteins for many years, eventually experienced episodes of anaphylaxis. A 62-year-old worker experienced severe episodes of anaphylaxis following the intake of dairy products. He had worked in the dairy industry for 17 years, where he was exposed to dried milk every day. This case report illustrates how continued exposure to milk proteins, either by skin contact or inhalation, may lead to sensitization which could result in severe manifestations of anaphylaxis. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Setchell, Kenneth D R; Cole, Sidney J
2003-07-02
The reliability of databases on the isoflavone composition of foods designed to estimate dietary intakes is contingent on the assumption that soy foods are consistent in their isoflavone content. To validate this, total and individual isoflavone compositions were determined by HPLC for two different soy protein isolates used in the commercial manufacture of soy foods over a 3-year period (n = 30/isolate) and 85 samples of 40 different brands of soy milks. Total isoflavone concentrations differed markedly between the soy protein isolates, varying by 200-300% over 3 years, whereas the protein content varied by only 3%. Total isoflavone content varied by up to 5-fold among different commercial soy milks and was not consistent between repeat purchases. Whole soybean milks had significantly higher isoflavone levels than those made from soy protein isolates (mean +/- SD, 63.6 +/- 21.9 mg/L, n = 43, vs 30.2 +/- 5.8 mg/L, n = 38, respectively, p < 0.0001), although some isolated soy protein-based milks were similar in content to "whole bean" varieties. The ratio of genistein to daidzein isoflavone forms was higher in isolated soy protein-based versus "whole bean" soy milks (2.72 +/- 0.24 vs 1.62 +/- 0.47, respectively, p < 0.0001), and the greatest variability in isoflavone content was observed among brands of whole bean soy milks. These studies illustrate large variability in the isoflavone content of isolated soy proteins used in food manufacture and in commercial soy milks and reinforce the need to accurately determine the isoflavone content of foods used in dietary intervention studies while exposing the limitations of food databases for estimating daily isoflavone intakes.
Review: Milk Proteins as Nanocarrier Systems for Hydrophobic Nutraceuticals.
Kimpel, Florian; Schmitt, Joachim J
2015-11-01
Milk proteins and milk protein aggregates are among the most important nanovehicles in food technology. Milk proteins have various functional properties that facilitate their ability to carry hydrophobic nutraceutical substances. The main functional transport properties that were examined in the reviewed studies are binding of molecules or ions, surface activity, aggregation, gelation, and interaction with other polymers. Hydrophobic binding has been investigated using caseins and isolated β-casein as well as whey proteins. Surface activity of caseins has been used to create emulsion-based carrier systems. Furthermore, caseins are able to self-assemble into micelles, which can incorporate molecules. Gelation and interaction with other polymers can be used to encapsulate molecules into protein networks. The release of transported substances mainly depends on pH and swelling behavior of the proteins. The targeted use of nanocarrier systems requires specific knowledge about the binding mechanisms between the proteins and the carried substances in a certain food matrix. © 2015 Institute of Food Technologists®
Impact of processing on the digestibility of milk
USDA-ARS?s Scientific Manuscript database
Processing of milk by homogenization and pasteurization causes changes in the milk proteins and fats, but there is little information about whether these changes affect milk digestibility. In this study, whole and skim milk samples were processed and compared to raw milk after all samples had underg...
Morton, John M; Auldist, Martin J; Douglas, Meaghan L; Macmillan, Keith L
2017-07-01
Milk protein concentration in dairy cows has been positively associated with a range of measures of reproductive performance, and genetic factors affecting both milk protein concentration and reproductive performance may contribute to the observed phenotypic associations. It was of interest to assess whether these beneficial phenotypic associations are accounted for or interact with the effects of estimated breeding values for fertility. The effects of a multitrait estimated breeding value for fertility [the Australian breeding value for daughter fertility (ABV fertility)] on reproductive performance were also of interest. Interactions of milk protein concentration and ABV fertility with the interval from calving date to the start of the herd's seasonally concentrated breeding period were also assessed. A retrospective single cohort study was conducted using data collected from 74 Australian seasonally and split calving dairy herds. Associations between milk protein concentration, ABV fertility, and reproductive performance in Holstein cows were assessed using random effects logistic regression. Between 52,438 and 61,939 lactations were used for analyses of 4 reproductive performance measures. Milk protein concentration was strongly and positively associated with reproductive performance in dairy cows, and this effect was not accounted for by the effects of ABV fertility. Increases in ABV fertility had important additional beneficial effects on the probability of pregnancy by wk 6 and 21 of the herd's breeding period. For cows calved before the start of the breeding period, the effects of increases in both milk protein concentration and ABV fertility were beneficial regardless of their interval from calving to the start of the breeding period. These findings demonstrate the potential for increasing reproductive performance through identifying the causes of the association between milk protein concentration and reproductive performance and then devising management strategies to capitalize on them. Research should be conducted to understand the component of the relationship not captured by ABV fertility. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Cyriac, J; Rius, A G; McGilliard, M L; Pearson, R E; Bequette, B J; Hanigan, M D
2008-12-01
The aim of this study was to test whether feeding of diets containing lower proportions of ruminally degradable protein (RDP) but with a constant proportion of ruminally undegradable protein (RUP) alters feed intake, milk production and yield, and the apparent efficiency of N utilization by mid-lactation dairy cows. During the covariate period (d 1 to 28), 40 mid-lactation cows (36 Holstein and 4 Jersey x Holstein cross-breds) were fed a common diet formulated to contain 11.3% of diet dry matter (DM) as RDP. During the treatment period (d 29 to 47), cows were randomly assigned to 1 of 4 diets formulated to contain 11.3, 10.1, 8.8, or 7.6% RDP, whereas ruminally undegradable protein remained constant at 7.1% of DM. All diets contained 47.5% forage and 52.5% concentrate on a DM basis. Dry matter intake was significantly reduced for the 7.6% RDP diet. The lowest RDP content was associated with a trend for reduced milk yield. Dietary RDP had no effect on body weight or milk fat, protein, and lactose contents. Milk protein yield was not affected by RDP level; however, milk fat yield decreased linearly as dietary RDP was reduced. Concentrations of plasma essential amino acids were unaffected, whereas milk urea-N concentrations decreased linearly as dietary RDP content was reduced. The apparent efficiency of N utilization for milk N production increased from 27.7% on the 11.3% RDP diet to 38.6% on the 7.6% RDP diet. The dietary RDP requirement of cows in this study was apparently met between 15.9 and 14.7% dietary crude protein. Milk production was not significantly affected by the 8.8% RDP (15.9% crude protein) diet even though the NRC (2001) model predicted that RDP supply was 87% of that required, suggesting the current NRC recommendations for RDP may be overestimated for mid-lactation dairy cows in this study.
... of the most common food allergies in children. Cow's milk is the usual cause of milk allergy, ... and symptoms. There are two main proteins in cow's milk that can cause an allergic reaction: Casein, ...
Contribution of Molecular Allergen Analysis in Diagnosis of Milk Allergy.
Bartuzi, Zbigniew; Cocco, Renata Rodrigues; Muraro, Antonella; Nowak-Węgrzyn, Anna
2017-07-01
We sought to describe the available evidence supporting the utilization of the molecular allergen analysis (MAA) for diagnosis and management of cow milk protein allergy (CMPA). Cow milk proteins are among the most common food allergens in IgE- and non-IgE-mediated food allergic disorders in children. Most individuals with CMPA are sensitized to both caseins and whey proteins. Caseins are more resistant to high temperatures compared to whey proteins. MAA is not superior to the conventional diagnostic tests based on the whole allergen extracts for diagnosis of CMPA. However, MAA can be useful in diagnosing tolerance to extensively heated milk proteins in baked foods. Children with CMPA and high levels of casein IgE are less likely to tolerate baked milk compared to children with low levels of casein IgE. Specific IgE-binding patterns to casein and betalactoglobulin peptides may predict the natural course of CMPA and differentiate subjects who are more likely to develop CMPA at a younger age versus those with a more persistent CMPA. Specific IgE-binding patterns to casein and beta-lactoglobulin peptides may also predict response to milk OITand identify patientsmost likely to benefit fromOIT.
Abranches, Andrea D; Soares, Fernanda V M; Junior, Saint-Clair G; Moreira, Maria Elisabeth L
2014-01-01
to analyze the changes in human milk macronutrients: fat, protein, and lactose in natural human milk (raw), frozen and thawed, after administration simulation by gavage and continuous infusion. an experimental study was performed with 34 human milk samples. The infrared spectrophotometry using the infrared analysis equipment MilkoScan Minor® (Foss, Denmark) equipment was used to analyze the macronutrients in human milk during the study phases. The analyses were performed in natural (raw) samples and after freezing and fast thawing following two steps: gavage and continuous infusion. The non-parametric Wilcoxon test for paired samples was used for the statistical analysis. the fat content was significantly reduced after administration by continuous infusion (p<0.001) during administration of both raw and thawed samples. No changes in protein and lactose content were observed between the two forms of infusion. However, the thawing process significantly increased the levels of lactose and milk protein. the route of administration by continuous infusion showed the greatest influence on fat loss among all the processes required for human milk administration. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Ehling, Stefan; Reddy, Todime M
2015-12-09
A straightforward analytical method based on derivatization with fluorenylmethyloxycarbonyl chloride and liquid chromatography-mass spectrometry has been developed for the analysis of residues of glyphosate and aminomethylphosphonic acid (AMPA) in a suite of nutritional ingredients derived from soybean, corn, and sugar beet and also in cow's milk and human breast milk. Accuracy and intermediate precision were 91-116% and <10% RSD, respectively, in soy protein isolate. Limits of quantitation were 0.05 and 0.005 μg/g in powdered and liquid samples, respectively. Glyphosate and AMPA were quantified at 0.105 and 0.210 μg/g (soy protein isolate) and 0.850 and 2.71 μg/g (soy protein concentrate, both derived from genetically modified soybean), respectively. Residues were not detected in soy milk, soybean oil, corn oil, maltodextrin, sucrose, cow's milk, whole milk powder, or human breast milk. The method is proposed as a convenient tool for the survey of glyphosate and AMPA in the ingredient supply chain.
Yang, Mei; Cong, Min; Peng, Xiuming; Wu, Junrui; Wu, Rina; Liu, Biao; Ye, Wenhui; Yue, Xiqing
2016-05-18
Milk fat globule membrane (MFGM) proteins have many functions. To explore the different proteomics of human and bovine MFGM, MFGM proteins were separated from human and bovine colostrum and mature milk, and analyzed by the iTRAQ proteomic approach. A total of 411 proteins were recognized and quantified. Among these, 232 kinds of differentially expressed proteins were identified. These differentially expressed proteins were analyzed based on multivariate analysis, gene ontology (GO) annotation and KEGG pathway. Biological processes involved were response to stimulus, localization, establishment of localization, and the immune system process. Cellular components engaged were the extracellular space, extracellular region parts, cell fractions, and vesicles. Molecular functions touched upon were protein binding, nucleotide binding, and enzyme inhibitor activity. The KEGG pathway analysis showed several pathways, including regulation of the actin cytoskeleton, focal adhesion, neurotrophin signaling pathway, leukocyte transendothelial migration, tight junction, complement and coagulation cascades, vascular endothelial growth factor signaling pathway, and adherens junction. These results enhance our understanding of different proteomes of human and bovine MFGM across different lactation phases, which could provide important information and potential directions for the infant milk powder and functional food industries.
Du, Lijuan; Lu, Weiying; Cai, Zhenzhen Julia; Bao, Lei; Hartmann, Christoph; Gao, Boyan; Yu, Liangli Lucy
2018-02-01
Flow injection mass spectrometry (FIMS) combined with chemometrics was evaluated for rapidly detecting economically motivated adulteration (EMA) of milk. Twenty-two pure milk and thirty-five counterparts adulterated with soybean, pea, and whey protein isolates at 0.5, 1, 3, 5, and 10% (w/w) levels were analyzed. The principal component analysis (PCA), partial least-squares-discriminant analysis (PLS-DA), and support vector machine (SVM) classification models indicated that the adulterated milks could successfully be classified from the pure milks. FIMS combined with chemometrics might be an effective method to detect possible EMA in milk. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hollmann, M; Allen, M S; Beede, D K
2011-04-01
Diet fermentability influences lactational responses to feeding corn distillers grains (CDG) to dairy cows. However, some measures of diet fermentability are inherently related to the concentration and characteristics of corn-based ingredients in the ration. Corn-based feeds have poor protein quality, unable to meet the essential AA requirements of lactating cows. We conducted a meta-analysis of treatment means (n=44) from the scientific literature to evaluate responses in milk yield (MY) and milk true protein concentration and yield to dietary CDG. The test variable was the difference in response between the CDG diet mean and the control diet mean (0% CDG) within experiment. Fixed variables were CDG concentration of the diet [% of dietary dry matter (DM)] and crude protein (CP) concentration and fractions of CP based on origin (corn-based versus non-corn-based feeds) of control and CDG diets. Diets with CDG ranged from 4 to 42% CDG, DM basis. Non-corn-based dietary CP averaged 6.3±3.32% of total DM. Milk yield and milk true protein yield responses to added CDG were maximized when approximately 8.5% of the total dietary DM was non-corn-based CP. Milk yield response peaked for higher-producing cows (>30.0 kg MY/cow per day) at 4.3% dietary corn-based CP, but decreased linearly for lower-producing cows (<30.0 kg MY/cow per day) as corn-based dietary CP increased. Milk true protein yield response decreased as corn-based dietary CP concentration increased but milk true protein concentration response was not decreased when CDG diets had more than 6.5% dietary non-corn-based CP. Overall, 8.5% dietary non-corn-based CP was necessary in lactation diets to maximize lactational responses to dietary CDG. The necessity of dietary non-corn-based CP to maximize milk and milk protein yields limits the amount of dietary corn-based CP, including that from CDG, which can be included in rations without overfeeding N. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Detection of recombinant human lactoferrin and lysozyme produced in a bitransgenic cow.
Kaiser, Germán G; Mucci, Nicolás C; González, Vega; Sánchez, Lourdes; Parrón, José A; Pérez, María D; Calvo, Miguel; Aller, Juan F; Hozbor, Federico A; Mutto, Adrián A
2017-03-01
Lactoferrin and lysozyme are 2 glycoproteins with great antimicrobial activity, being part of the nonspecific defensive system of human milk, though their use in commercial products is difficult because human milk is a limited source. Therefore, many investigations have been carried out to produce those proteins in biological systems, such as bacteria, yeasts, or plants. Mammals seem to be more suitable as expression systems for human proteins, however, especially for those that are glycosylated. In the present study, we developed a bicistronic commercial vector containing a goat β-casein promoter and an internal ribosome entry site fragment between the human lactoferrin and human lysozyme genes to allow the introduction of both genes into bovine adult fibroblasts in a single transfection. Embryos were obtained by somatic cell nuclear transfer, and, after 6 transferences to recipients, 3 pregnancies and 1 viable bitransgenic calf were obtained. The presence of the vector was confirmed by fluorescent in situ hybridization of skin cells. At 13 mo of life and after artificial induction of lactation, both recombinant proteins were found in the colostrum and milk of the bitransgenic calf. Human lactoferrin concentration in the colostrum was 0.0098 mg/mL and that in milk was 0.011 mg/mL; human lysozyme concentration in the colostrum was 0.0022 mg/mL and that in milk was 0.0024 mg/mL. The molar concentration of both human proteins revealed no differences in protein production of the internal ribosome entry site upstream and downstream protein. The enzymatic activity of lysozyme in the transgenic milk was comparable to that of human milk, being 6 and 10 times higher than that of bovine lysozyme present in milk. This work represents an important step to obtain multiple proteins or enhance single protein production by using animal pharming and fewer regulatory and antibiotic-resistant foreign sequences, allowing the design of humanized milk with added biological value for newborn nutrition and development. Transgenic animals can offer a unique opportunity to the dairy industry, providing starting materials suitable to develop specific products with high added value. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bovine milk in human nutrition – a review
Haug, Anna; Høstmark, Arne T; Harstad, Odd M
2007-01-01
Milk and milk products are nutritious food items containing numerous essential nutrients, but in the western societies the consumption of milk has decreased partly due to claimed negative health effects. The content of oleic acid, conjugated linoleic acid, omega-3 fatty acids, short- and medium chain fatty acids, vitamins, minerals and bioactive compounds may promote positive health effects. Full-fat milk has been shown to increase the mean gastric emptying time compared to half-skimmed milk, thereby increasing the gastrointestinal transit time. Also the low pH in fermented milk may delay the gastric emptying. Hence, it may be suggested that ingesting full-fat milk or fermented milk might be favourable for glycaemic (and appetite?) regulation. For some persons milk proteins, fat and milk sugar may be of health concern. The interaction between carbohydrates (both natural milk sugar and added sugar) and protein in milk exposed to heat may give products, whose effects on health should be further studied, and the increasing use of sweetened milk products should be questioned. The concentration in milk of several nutrients can be manipulated through feeding regimes. There is no evidence that moderate intake of milk fat gives increased risk of diseases. PMID:17894873
Bovine milk in human nutrition--a review.
Haug, Anna; Høstmark, Arne T; Harstad, Odd M
2007-09-25
Milk and milk products are nutritious food items containing numerous essential nutrients, but in the western societies the consumption of milk has decreased partly due to claimed negative health effects. The content of oleic acid, conjugated linoleic acid, omega-3 fatty acids, short- and medium chain fatty acids, vitamins, minerals and bioactive compounds may promote positive health effects. Full-fat milk has been shown to increase the mean gastric emptying time compared to half-skimmed milk, thereby increasing the gastrointestinal transit time. Also the low pH in fermented milk may delay the gastric emptying. Hence, it may be suggested that ingesting full-fat milk or fermented milk might be favourable for glycaemic (and appetite?) regulation. For some persons milk proteins, fat and milk sugar may be of health concern. The interaction between carbohydrates (both natural milk sugar and added sugar) and protein in milk exposed to heat may give products, whose effects on health should be further studied, and the increasing use of sweetened milk products should be questioned. The concentration in milk of several nutrients can be manipulated through feeding regimes. There is no evidence that moderate intake of milk fat gives increased risk of diseases.
Isolation and identification of a high molecular weight protein in sow milk.
Qin, Y; Qi, N; Tang, Y; He, J; Li, X; Gu, F; Zou, S
2015-05-01
A high molecular weight protein (HMWP) was isolated and purified from sow milk, and some of its biochemical characteristics and biological functions were identified. The origin of HMWP was also investigated. The molecular weight of HMWP was determined to be about 115 000 and 114 800 by SDS-PAGE and gel filtration, respectively. The sequence of 10 amino acids in N-terminal of HMWP was Ala-Leu-Val-Gln-Ser-Cys-Leu-Asn-Leu-Val. The sequence was blasted against GenBank. No protein showed significant similarity with this sequence suggesting the HMWP may be novel. The result of liquid chromatography mass spectrometry (LC-MS) also proved HMWP could be a novel protein. By amino acid assay, HMWP was rich in glutamate (including glutamine), cysteine, glycine, aspartic acid (including asparagines) and proline. The content of hydrophobic amino acids (Ala, Val, Leu, Ile, Met, Phe and Pro) was lower at 18.59% of the total amino acids suggesting HMWP has high solubility in water. Western blots of lectins were used to identify the kinds of carbohydrate residues attached to HMWP qualitatively. The result showed that HMWP was a kind of glycoprotein containing N-acetylneuraminic acid (NeuNAc), mannose (Man) and/or N-acetylglucosamine (GlcNAc). By isoelectric focusing, HMWP pI was found to be 5.1. Compared with milk fat globule membrane protein (MFGMP) isolated from the sow milk in SDS-PAGE, MFGMP did not contain HMWP. HMWP was assumed to be a secretory milk protein. HMWP was not found in bovine, goat, rabbit or human milk in SDS-PAGE gel suggesting HMWP may be unique to sow milk. By Western blot, HMWP could be detected in sow milk, not in sow serum, which suggests it is synthesized and secreted by the mammary gland. HMWP concentrations in sows milk were the lowest in the first day of lactation, rose significantly during lactation 1 to 7 days. The HMWP content of sows milk remained relatively constant ((1.95±0.13) g/l) during lactation 7 to 20 days. HMWP significantly inhibited Escherichia coli in a dose related manner in vitro. Overall, HMWP could be a novel sow milk protein with implications for the mammary gland and the piglet.
Effect of bromelain on milk yield, milk composition and mammary health in dairy goats.
Contreras, A; Paape, M J; Miller, R H; Corrales, J C; Luengo, C; Sánchez, A
2009-04-01
A 7 month prospective cohort study was designed to determine if feeding bromelain to dairy goats influenced the MSCC, milk yield, milk composition and the incidence of IMI. Forty-four clinically normal goats from 2nd to 6th parities were studied. Daily bromelain dosage was 7.4 grams/animal (185-mg/Kg weight). Samples for diagnostic bacteriology were collected from each udder half every 2 weeks. Samples for MSCC and composition were obtained every 42 days. Milk yield was also recorded every 42 days. Bromelain affected milk protein and fat but not MSCC, milk yield or milk lactose. Bromelain did not decrease the MSCC in healthy goats. Milk protein and fat increased in the bromelain treated group (P < 0.01), which is important for dairymen because premiums are paid milk fat and protein content. No clinical mastitis was detected in the goats for the total study period and incidence rate of subclinical IMI was 5.7%. Relative risk was 1.50 (0.28 < RR < 8.12) which means that the bromelain had no significant effect on IMI (P > 0.05). In addition, the use of pineapple by-products could be especially important in tropical countries were pineapple waste seems to be a pollution problem.
USDA-ARS?s Scientific Manuscript database
Twenty-seven environmental contaminants and pharmaceuticals encompassing a wide range of physicochemical properties were utilized to determine the effects of milk processing on xenobiotic distribution among milk fractions. Target compounds included radiolabeled antibiotics [ciprofloxacin (CIPR), cl...
Allergic Colitis With Pneumatosis Intestinalis in an Infant.
Liu, Helena; Turner, Troy W S
2018-01-01
Inflammatory causes of bloody diarrhea during infancy include necrotizing enterocolitis and allergic colitis, often due to cow's milk protein. We report this case of cow's milk protein allergy, managed successfully with elimination of dietary antigen, to highlight the unusual finding of pneumatosis intestinalis on abdominal x-ray, a radiographic hallmark associated with necrotizing enterocolitis. Detailed patient's history, clinical presentation, and physical examinations are discussed for cow's milk protein allergy and necrotizing enterocolitis.
Cieslak, Jakub; Wodas, Lukasz; Borowska, Alicja; Sadoch, Jan; Pawlak, Piotr; Puppel, Kamila; Kuczynska, Beata; Mackowski, Mariusz
2017-05-01
Equine milk is considered to be an interesting product for human nutrition, mainly owing to its low allergenicity and significant amounts of bioactive proteins, including lysozyme (LYZ) and lactoferrin (LTF). The present study assessed the effect of genetic factors on LYZ and LTF concentration variability in mare's milk. Significant effects of horse breed and lactation stage on milk LYZ and LTF contents were observed. The highest level of LTF and the lowest concentration of LYZ were recorded for the Polish Warmblood Horse breed. The highest amounts of both proteins were found for the earliest investigated time point of lactation (5th week). Altogether 13 (nine novel) polymorphisms were found in the 5'-flanking regions of both genes, but they showed no significant relationship with milk LYZ and LTF contents. Several associations were found between selected SNPs and the LYZ gene relative transcript level. While the present study indicated the existence of intra- and interbreed variability of LYZ and LTF contents in mare's milk, this variation is rather unrelated to the 5'-flanking variants of genes encoding both proteins. This study is a good introduction for broader investigations focused on the genetic background for variability of bioactive protein contents in mare's milk. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Alim, M A; Dong, T; Xie, Y; Wu, X P; Zhang, Yi; Zhang, Shengli; Sun, D X
2014-11-01
This study was designed to evaluate significant associations between single nucleotide polymorphisms (SNPs) and milk composition and milk production traits in Chinese Holstein cows. Six SNPs were identified in the κ-casein gene using pooled DNA sequencing. The identified SNPs were genotyped by Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) methods from 507 individuals. Out of six, we identified three non-synonymous SNPs (g.10888T>C, g.10924C>A and g.10944A>G) that changed in the protein product. SIFT (Sorting_Intolerant_From_Tolerant) prediction score (0.01) demonstrated that protein changed Isoleucine > Threonine (g.10888T>C) will affect the phenotypes. Significant associations between identified SNPs and three yield traits (milk, protein and fat) and two composition traits (fat and protein percentages) were found whereas it did not reach significance for fat percentage in haplotypes association. Importantly, the significant SNPs in our results showed a large proportion of the phenotypic variation of milk protein yield and concentration. Our results suggest that CSN3 is an important candidate gene that influences milk production traits, and identified polymorphisms and haplotypes could be used as a genetic marker in programs of marker-assisted selection for the genetic improvement of milk production traits in dairy cattle.
Smilowitz, Jennifer T; Gho, Deborah S; Mirmiran, Majid; German, J Bruce; Underwood, Mark A
2014-05-01
Although it is well established that human milk varies widely in macronutrient content, it remains common for human milk fortification for premature infants to be based on historic mean values. As a result, those caring for premature infants often underestimate protein intake. Rapid precise measurement of human milk protein, fat, and lactose to allow individualized fortification has been proposed for decades but remains elusive due to technical challenges. This study aimed to evaluate the accuracy and precision of a Fourier transform (FT) mid-infrared (IR) spectroscope in the neonatal intensive care unit to measure human milk fat, total protein, lactose, and calculated energy compared with standard chemical analyses. One hundred sixteen breast milk samples across lactation stages from women who delivered at term (n = 69) and preterm (n = 5) were analyzed with the FT mid-IR spectroscope and with standard chemical methods. Ten of the samples were tested in replicate using the FT mid-IR spectroscope to determine repeatability. The agreement between the FT mid-IR spectroscope analysis and reference methods was high for protein and fat and moderate for lactose and energy. The intra-assay coefficients of variation for all outcomes were less than 3%. The FT mid-IR spectroscope demonstrated high accuracy in measurement of total protein and fat of preterm and term milk with high precision.
[Content of mineral elements in the diet of students of physical education faculty].
Novokshanova, A L; Nikitiyk, D B; Pozdniakov, A L
2013-01-01
Research of the diet of students of the Faculty of Physical Education found discrepancy of caloric content and correlation of macro- and micronutrients to physiological norms accompanied by a deficiency of some mineral elements. Thus, this research found discrepancy of a diet in caloric content and correlation of macro- and micronutrients to physiological norms. Calorie deficiency in both groups is caused for lack of all macro- and micronutrients, but mostly for lack of carbohydrates with an average glycemic index, fruit, and vegetables that have prebiotic properties and mineral-rich elements. Deficiency in the diet of young men 9.6% of the total protein and 23.5% of carbohydrates was accompanied for lack 15.5% of calcium. In the group of girls the results showed a decrease of the required amounts of calcium, magnesium and iron of 36.4; 7.5 and 1.5% respectively, which was displayed against a background of reducing the consumption of the total protein 25.1 and 36.0% of carbohydrates. As a result, basic nutrition of students practicing sports requires rationalization and adjustment. To improve the biological value of the diet it is advisable for students to use daily dairy products and other sources of animal protein in their diets. It is also necessary to introduce fruit and vegetables as a source of dietary fibers and mineral elements. Created in both groups deficiency of calcium and biologically high-grade proteins of animal origin can be eliminated by various dairy products in which calcium and phosphorus are in easily digestible form and in a balanced quantity. Despite the considerable amount of calcium in many foods (meat, bread, cereals, vegetables) calcium is assimilated with difficulty from these products. The exception is the calcium of milk, curd, cheese and other dairy products. The ration between calcium and phosphorus in milk is 1:1-1.4:1. For example, taking 0.5 liters of milk provides 600 mg of assimilable calcium intake.
Vieira, Alan Araujo; Soares, Fernanda Valente Mendes; Pimenta, Hellen Porto; Abranches, Andrea Dunshee; Moreira, Maria Elisabeth Lopes
2011-08-01
The macronutrient concentrations of human milk could be influenced by the various processes used in human milk bank. To determine the effect of various process (Holder pasteurization, freezing and thawing and feeding method) on the macronutrient concentration of human milk. The samples of donated fresh human milk were studied before and after each process (Holder pasteurization, freezing and thawing and feeding method) until their delivery to newborn infants. Fifty-seven raw human milk samples were analyzed in the first step (pasteurization) and 228 in the offer step. Repeated measurements of protein, fat and lactose amounts were made in samples of human milk using an Infrared analyzer. The influence of repeated processes on the mean concentration of macronutrients in donor human milk was analyzed by repeated measurements ANOVA, using R statistical package. The most variable macronutrient concentration in the analyzed samples was fat (reduction of 59%). There was a significant reduction of fat and protein mean concentrations following pasteurization (5.5 and 3.9%, respectively). The speed at which the milk was thawed didn't cause a significant variation in the macronutrients concentrations. However, the continuous infusion delivery significantly reduced the fat concentration. When the influence of repeated processes was analyzed, the fat and protein concentrations varied significantly (reduction of 56.6% and 10.1% respectively) (P<0.05). Lactose didn't suffer significant reductions in all steps. The repeated processes that donor human milk is submitted before delivery to newborn infants cause a reduction in the fat and protein concentration. The magnitude of this decrease is higher on the fat concentration and it needs to be considered when this processed milk is used to feed preterm infants. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Mang, Yannick Dimitry; Njintang, Yanou Nicolas; Abdou, Bouba Armand; Scher, Joel; Bernard, Clémence; Mbofung, Moses C
2016-06-01
The present work was carried out to evaluate the nutritive quality (proximate and antinutrients composition) of vegetable milks prepared from whole and dehulled mucuna bean flours. Casein and mucuna milk diets were fed to rats (four weeks old; n = 8 per group) for 28 days to determine protein efficiency ratio (PER), net protein efficiency ratio (NPER), true and apparent digestibility (TD and AD, respectively), organ-to-body weight ratios and hematological parameters. The experimental design was a factorial design with two variety of mucuna (cochinchinensis and veracruz) and two treatments (whole and dehulled beans). Protein, total sugar, dry matter and ash-content of mucuna milks ranged from 6.40 to 12.13 g/100 mL, 10.52 to 13.08 g/100 mL, 8.59 to 12.88 g/100 g and 0.31 to 0.92 g/100 g, respectively. Milks from dehulled flours had lower contents of tannins (80-87.08 %), phytates (76.67-78.16 %) and L-Dopamine (44.45-66.66 %) than that from whole flours. The PER of dehulled mucuna diets were 22.76-21.74 %, but negative PER and low NPER was observed for whole mucuna milk diets. TD for dehulled mucuna milk (85.15-85.96 %) were higher and similar to casein when compared to that of whole mucuna milk (47.87-51.17 %). Rats fed with diets containing whole mucuna milk lost weight and had higher kidney weight. In addition, the rats fed with milk from whole mucuna flours showed significantly lower levels of lymphocytes, granulocytes, red blood cells, hemoglobin and hematocrit than that fed with dehulled mucuna milk.
Boldt, Ariane; Becker, Frank; Martin, Gunter; Nürnberg, Gerd; Römer, Anke; Kanitz, Wilhelm
2015-06-01
The interval from calving to commencement of luteal activity (CLA) was determined by progesterone measurements from milk samples obtained once a week until the 14th week post-partum in 513 German Holstein cows in first to third parity. Milk samples were analyzed by an "on-farm" device (eProCheck(®), Minitüb, Germany) and simultaneously by RIA. The objective of this study was to examine the effect of milk yield, protein content and body condition of a cow on the CLA post-partum. Milk progesterone concentrations of "on-farm" measurements correlated with measurements done by the RIA-method significantly (r=0.72; P<0.001). Within the analyzed herd the interval from calving until the first rise of progesterone averaged 5.6±2.4 weeks. The 100-days milk yield was not associated with CLA. Cows with a milk protein content at 1st milk recording of ≤3.5% revealed first luteal activity 1.3±0.3 weeks later than cows that had a content of >3.75% protein (P<0.01). Furthermore cows with assisted calving or dystocia presented significantly later CLA than cows which required no help during the calving process (P<0.05). The change in back fat thickness from 1st to 2nd milk recording had a significant influence on CLA (P<0.05). In conclusion the phenotypic impact of milk yield on fertility cannot be confirmed regarding to CLA. The negative energy balance after calving, caused by the high milk yields, is more detrimental for the cyclical activity as was shown by the parameters milk protein content and change in BFT. Copyright © 2015 Elsevier B.V. All rights reserved.
Manuyakorn, Wiparat; Benjaponpitak, Suwat; Siripool, Khanitha; Prempunpong, Chatchay; Singvijarn, Prapasiri; Kamchaisatian, Wasu; Supapannachart, Sarayut
2015-01-01
Three preterm infants with cow milk protein allergy (CMPA) presented with feeding intolerance, sepsis-like episodes and persistent moderate-to-severe eosinophilia. After eliminating cow milk, the clinical symptoms improved significantly. CMPA can cause common manifestations in sick preterm infants such as feeding intolerance and eosinophilia.
Dingess, Kelly A; de Waard, Marita; Boeren, Sjef; Vervoort, Jacques; Lambers, Tim T; van Goudoever, Johannes B; Hettinga, Kasper
2017-10-18
Variations in endogenous peptide profiles, functionality, and the enzymes responsible for the formation of these peptides in human milk are understudied. Additionally, there is a lack of knowledge regarding peptides in donor human milk, which is used to feed preterm infants when mother's own milk is not (sufficiently) available. To assess this, 29 human milk samples from the Dutch Human Milk Bank were analyzed as three groups, preterm late lactation stage (LS) (n = 12), term early (n = 8) and term late LS (n = 9). Gestational age (GA) groups were defined as preterm (24-36 weeks) and term (≥37 weeks). LS was determined as days postpartum as early (16-36 days) or late (55-88 days). Peptides, analyzed by LC-MS/MS, and parent proteins (proteins from matched peptide sequences) were identified and quantified, after which peptide functionality and the enzymes responsible for protein cleavage were determined. A total of 16 different parent proteins were identified from human milk, with no differences by GA or LS. We identified 1104 endogenous peptides, of which, the majority were from the parent proteins β-casein, polymeric immunoglobulin receptor, α s1 -casein, osteopontin, and κ-casein. The absolute number of peptides differed by GA and LS with 30 and 41 differing sequences respectively (p < 0.05) Odds likelihood tests determined that 32 peptides had a predicted bioactive functionality, with no significant differences between groups. Enzyme prediction analysis showed that plasmin/trypsin enzymes most likely cleaved the identified human milk peptides. These results explain some of the variation in endogenous peptides in human milk, leading to future targets that may be studied for functionality.
Gallier, Sophie; Gragson, Derek; Jiménez-Flores, Rafael; Everett, David
2010-04-14
The bovine milk fat globule membrane (MFGM) is an important, biologically relevant membrane due to its functional and health properties. Its composition has been thoroughly studied, but its structure, especially the lateral organization of its components, still remains unclear. We have used confocal laser scanning microscopy (CLSM) to investigate the surface structure of the MFGM in globules with different degrees of processing using two types of fluorescently labeled phospholipid probes and a protein dye. Using this technique, we have observed heterogeneities in the distribution of MFGM lipids and proteins relating to the processing and size of the globules. The effect of pretreating the milk (centrifugation, pasteurization-homogenization and churning) was studied by double-staining the surface of the milk fat globules, followed by observation using CLSM, and by determining the phospholipid profile of raw milk, raw cream, processed milk and buttermilk powder. Our findings agree with other techniques by showing that the composition of the MFGM changes with processing through the loss of phospholipids and the adsorption of caseins and whey proteins onto the surface.
Effect of two pasteurization methods on the protein content of human milk.
Baro, Cristina; Giribaldi, Marzia; Arslanoglu, Sertac; Giuffrida, Maria Gabriella; Dellavalle, Giuseppina; Conti, Amedeo; Tonetto, Paola; Biasini, Augusto; Coscia, Alessandra; Fabris, Claudio; Moro, Guido Eugenio; Cavallarin, Laura; Bertino, Enrico
2011-06-01
The Holder method is the recommended pasteurization method for human milk banks, as it ensures the microbiological safety of human milk (HM). The loss of some biologically active milk components, due to the heat treatment, is a main limit to the diffusion of donor HM. High-temperature short-time (HTST) pasteurization may be an alternative to maintain the nutritional and immunological quality of HM. The aim of the present study was to compare the impact of Holder and HTST pasteurization on the HM protein profile. The protein patterns of HTST-treated milk and raw milk were similar. The Holder method modified bile salt-stimulated lipase, lactoferrin and components of the immune system. The HTST method preserved the integrity of bile salt-stimulated lipase, lactoferrin and, to some extent, of IgAs. Holder pasteurization decreased the amount of bile salt-stimulated lipase and inactivated the remaining molecules, while the HTST method did not alter its activity. Pasteurization increased the bioavailable lysine quantity. HTST pasteurization seems to better retain the protein profile and some of the key active components of donor HM.
Cryo-transmission electron tomography of native casein micelles from bovine milk.
Trejo, R; Dokland, T; Jurat-Fuentes, J; Harte, F
2011-12-01
Caseins are the principal protein components in milk and an important ingredient in the food industry. In liquid milk, caseins are found as micelles of casein proteins and colloidal calcium nanoclusters. Casein micelles were isolated from raw skim milk by size exclusion chromatography and suspended in milk protein-free serum produced by ultrafiltration (molecular weight cut-off of 3 kDa) of raw skim milk. The micelles were imaged by cryo-electron microscopy and subjected to tomographic reconstruction methods to visualize the 3-dimensional and internal organization of native casein micelles. This provided new insights into the internal architecture of the casein micelle that had not been apparent from prior cryo-transmission electron microscopy studies. This analysis demonstrated the presence of water-filled cavities (∼20 to 30 nm in diameter), channels (diameter greater than ∼5 nm), and several hundred high-density nanoclusters (6 to 12 nm in diameter) within the interior of the micelles. No spherical protein submicellar structures were observed. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Peptidome analysis of human skim milk in term and preterm milk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Jun; Cui, Xian-wei; Zhang, Jun
Highlights: •A method was developed for preparation of peptide extracts from human milk. •Analysis of the extracts by LC–MS/MS resulted in the detection of 1000–3000 peptide-like features. •419 Peptides were identified by LC–MS/MS from 34 proteins. •Isotope dimethyl labeling analysis revealed 41 peptides differentially expressed. -- Abstract: The abundant proteins in human milk have been well characterized and are known to provide nutritional, protective, and developmental advantages to both term and preterm infants. Due to the difficulties associated with detection technology of the peptides, the expression of the peptides present in human milk is not known widely. In recent years,more » peptidome analysis has received increasing attention. In this report, the analysis of endogenous peptides in human milk was done by mass spectrometry. A method was also developed by our researchers, which can be used in the extraction of peptide from human milk. Analysis of the extracts by LC–MS/MS resulted in the detection of 1000–3000 Da peptide-like features. Out of these, 419 peptides were identified by MS/MS. The identified peptides were found to originate from 34 proteins, of which several have been reported. Analysis of the peptides’ cleavage sites showed that the peptides are cleaved with regulations. This may reflect the protease activity and distribution in human body, and also represent the biological state of the tissue and provide a fresh source for biomarker discovery. Isotope dimethyl labeling analysis was also used to test the effects of premature delivery on milk protein composition in this study. Differences in peptides expression between breast milk in term milk (38–41 weeks gestation) and preterm milk (28–32 weeks gestation) were investigated in this study. 41 Peptides in these two groups were found expressed differently. 23 Peptides were present at higher levels in preterm milk, and 18 were present at higher levels in term milk.« less
Binding of vitamin A by casein micelles in commercial skim milk.
Mohan, M S; Jurat-Fuentes, J L; Harte, F
2013-02-01
Recent studies have shown that reassembled micelles formed by caseinates and purified casein fractions (α(s)- and β-casein) bind to hydrophobic compounds, including curcumin, docosahexaenoic acid, and vitamin D. However, limited research has been done on the binding of hydrophobic compounds by unmodified casein micelles in skim milk. In the present study, we investigated the ability of casein micelles in commercial skim milk to associate with vitamin A (retinyl palmitate), a fat-soluble vitamin commonly used to fortify milk. Milk protein fractions from different commercially available skim milk samples subjected to different processing treatments, including pasteurized, ultrapasteurized, organic pasteurized, and organic ultrapasteurized milks, were separated by fast protein liquid chromatography. The fractions within each peak were combined and freeze-dried. Sodium dodecyl sulfate-PAGE with silver staining was used to identify the proteins present in each of the fractions. The skim milk samples and fractions were extracted for retinyl palmitate and quantified against a standard using normal phase-HPLC. Retinyl palmitate was found to associate with the fraction of skim milk containing caseins, whereas the other proteins (BSA, β-lactoglobulin, α-lactalbumin) did not show any binding. The retinyl palmitate content in the various samples ranged from 1.59 to 2.48 µg of retinyl palmitate per mL of milk. The casein fractions contained between 14 and 40% of total retinyl palmitate in the various milks tested. The variation in the retention of vitamin A by caseins was probably explained by differences in the processing of different milk samples, including thermal treatment, the form of vitamin A emulsion used for fortification, and the point of fortification during processing. Unmodified casein micelles have a strong intrinsic affinity toward the binding of vitamin A used to fortify commercially available skim milks. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
External cavity-quantum cascade laser (EC-QCL) spectroscopy for protein analysis in bovine milk.
Kuligowski, Julia; Schwaighofer, Andreas; Alcaráz, Mirta Raquel; Quintás, Guillermo; Mayer, Helmut; Vento, Máximo; Lendl, Bernhard
2017-04-22
The analytical determination of bovine milk proteins is important in food and non-food industrial applications and yet, rather labour-intensive wet-chemical, low-throughput methods have been employed since decades. This work proposes the use of external cavity-quantum cascade laser (EC-QCL) spectroscopy for the simultaneous quantification of the most abundant bovine milk proteins and the total protein content based on the chemical information contained in mid-infrared (IR) spectral features of the amide I band. Mid-IR spectra of protein standard mixtures were used for building partial least squares (PLS) regression models. Protein concentrations in commercial bovine milk samples were calculated after chemometric compensation of the matrix contribution employing science-based calibration (SBC) without sample pre-processing. The use of EC-QCL spectroscopy together with advanced multivariate data analysis allowed the determination of casein, α-lactalbumin, β-lactoglobulin and total protein content within several minutes. Copyright © 2017 Elsevier B.V. All rights reserved.
Detailed proteomic analysis on DM: insight into its hypoallergenicity.
Bertino, Enrico; Gastaldi, Daniela; Monti, Giovanna; Baro, Cristina; Fortunato, Donatella; Perono Garoffo, Lorenza; Coscia, Alessandra; Fabris, Claudio; Mussap, Michele; Conti, Amedeo
2010-01-01
Successful therapy in cow milk (CM) protein allergy rests upon completely eliminating CM proteins from the child's diet: it is thus necessary to provide a replacement food. Donkey milk (DM) has recently aroused scientific and clinical interest, above all among paediatric allergologists. A deeper knowledge of proteins in DM is necessary to evaluate the immunological and physiological properties of this natural substitute for cow's milk. The paper offers a detailed comparative analysis among the protein fractions of DM, CM and human milk, following an extensive proteomic study of the casein and whey proteins of DM performed by narrow pH range 2-DE. The detailed protein composition and structural features reported in this study provide insight into the molecular reasons for the hypoallergenicity of DM. Whole DM might constitute a valid substitute of CM in feeding children with CM protein allergy and it might also constitute the basis for formulas suitable for allergic subjects in the first year of life.
Hydromorphone transfer into breast milk after intranasal administration.
Edwards, Jeffrey E; Rudy, Anita C; Wermeling, Daniel P; Desai, Nirmala; McNamara, Patrick J
2003-02-01
To determine the distribution of hydromorphone into breast milk and the potential exposure of the suckling infant, and whether the distribution of hydromorphone into milk can be predicted accurately by a passive diffusion model. Single-dose, pharmacokinetic study. University clinical research unit. Eight lactating, nonsmoking, healthy women aged 24-32 years. Hydromorphone HCl 2 mg was given intranasally to the women to characterize its pharmacokinetics and extent of its transfer into breast milk. Plasma and milk samples were analyzed using liquid chromatography with tandem mass spectrometry detection. The milk:plasma ratio (M:P) was calculated as the total area under the concentration-time curve (AUC) of the milk divided by the total AUC of the plasma. Predicted in vitro M:P ratios were calculated using a diffusion model. Protein binding in milk and plasma, partitioning into milk fat (whole milk:skim milk ratios), as well as pH partitioning between plasma and milk were incorporated in the model. Protein binding was determined by equilibrium dialysis. Protein binding was minimal in both milk and plasma, with unbound fractions of 1 and 0.84, respectively There was little partitioning into milk fat, as demonstrated by the whole milk:skim milk ratio of 0.98. The observed and predicted M:P ratios +/- SD for hydromorphone were 2.57 +/- 0.47 and 1.11 +/- 0.28, respectively. The 95% confidence interval for the observed M:P ratio overlapped the confidence interval of the predicted M:P ratio, a finding that supports a role for both passive diffusion and active transport as mechanisms of hydromorphone transfer into milk. Hydromorphone distributes rapidly from plasma into breast milk; however, the drug does not partition into fat. The suckling infant would receive approximately 0.67% of the maternal dose of hydromorphone (adjusted for body weight). As this is a limited exposure, further studies are needed to determine any potential impact to an infant who is fed breast milk from a mother treated with hydromorphone.
McDermott, A; Visentin, G; De Marchi, M; Berry, D P; Fenelon, M A; O'Connor, P M; Kenny, O A; McParland, S
2016-04-01
The aim of this study was to evaluate the effectiveness of mid-infrared spectroscopy in predicting milk protein and free amino acid (FAA) composition in bovine milk. Milk samples were collected from 7 Irish research herds and represented cows from a range of breeds, parities, and stages of lactation. Mid-infrared spectral data in the range of 900 to 5,000 cm(-1) were available for 730 milk samples; gold standard methods were used to quantify individual protein fractions and FAA of these samples with a view to predicting these gold standard protein fractions and FAA levels with available mid-infrared spectroscopy data. Separate prediction equations were developed for each trait using partial least squares regression; accuracy of prediction was assessed using both cross validation on a calibration data set (n=400 to 591 samples) and external validation on an independent data set (n=143 to 294 samples). The accuracy of prediction in external validation was the same irrespective of whether undertaken on the entire external validation data set or just within the Holstein-Friesian breed. The strongest coefficient of correlation obtained for protein fractions in external validation was 0.74, 0.69, and 0.67 for total casein, total β-lactoglobulin, and β-casein, respectively. Total proteins (i.e., total casein, total whey, and total lactoglobulin) were predicted with greater accuracy then their respective component traits; prediction accuracy using the infrared spectrum was superior to prediction using just milk protein concentration. Weak to moderate prediction accuracies were observed for FAA. The greatest coefficient of correlation in both cross validation and external validation was for Gly (0.75), indicating a moderate accuracy of prediction. Overall, the FAA prediction models overpredicted the gold standard values. Near-unity correlations existed between total casein and β-casein irrespective of whether the traits were based on the gold standard (0.92) or mid-infrared spectroscopy predictions (0.95). Weaker correlations among FAA were observed than the correlations among the protein fractions. Pearson correlations between gold standard protein fractions and the milk processing characteristics of rennet coagulation time, curd firming time, curd firmness, heat coagulating time, pH, and casein micelle size were weak to moderate and ranged from -0.48 (protein and pH) to 0.50 (total casein and a30). Pearson correlations between gold standard FAA and these milk processing characteristics were also weak to moderate and ranged from -0.60 (Val and pH) to 0.49 (Val and K20). Results from this study indicate that mid-infrared spectroscopy has the potential to predict protein fractions and some FAA in milk at a population level. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Benabdelkamel, Hicham; Masood, Afshan; Alanazi, Ibrahim O.; Alzahrani, Dunia A.; Alrabiah, Deema K.; AlYahya, Sami A.; Alfadda, Assim A.
2017-01-01
Camel milk is consumed in the Middle East because of its high nutritional value. Traditional heating methods and the duration of heating affect the protein content and nutritional quality of the milk. We examined the denaturation of whey proteins in camel milk by assessing the effects of temperature on the whey protein profile at room temperature (RT), moderate heating at 63 °C, and at 98 °C, for 1 h. The qualitative and quantitative variations in the whey proteins before and after heat treatments were determined using quantitative 2D-difference in gel electrophoresis (DIGE)-mass spectrometry. Qualitative gel image analysis revealed a similar spot distribution between samples at RT and those heated at 63 °C, while the spot distribution between RT and samples heated at 98 °C differed. One hundred sixteen protein spots were determined to be significantly different (p < 0.05 and a fold change of ≥1.2) between the non-heated and heated milk samples. Eighty protein spots were decreased in common in both the heat-treated samples and an additional 25 spots were further decreased in the 98 °C sample. The proteins with decreased abundance included serum albumin, lactadherin, fibrinogen β and γ chain, lactotransferrin, active receptor type-2A, arginase-1, glutathione peroxidase-1 and, thiopurine S, etc. Eight protein spots were increased in common to both the samples when compared to RT and included α-lactalbumin, a glycosylation-dependent cell adhesion molecule. Whey proteins present in camel milk were less affected by heating at 63 °C than at 98 °C. This experimental study showed that denaturation increased significantly as the temperature increased from 63 to 98 °C. PMID:28350354
Wang, Hao; Wang, Cuina; Wang, Mu; Guo, Mingruo
2017-11-01
A set-type fermented goat milk (FGM) using polymerized whey protein (PWP) as main thickening agent and Kefir Mild 01 as starter culture was developed. The FGM with PWP (0.3%, w/v) and pectin (0.2%, w/v) had low syneresis (5.44 ± 0.92%), desirable viscosity (952.86 ± 61.52 mPa⋅s), and hardness (112.57 ± 3.23 g), which were comparable to a fermented cow milk. Sensory evaluation data showed that the FGM with PWP and pectin had higher scores of both flavor (4.41 ± 0.39) and taste (3.72 ± 0.34) than the sample without PWP. Chemical composition of both fermented goat and cow milk were analyzed. The protein content of goat and cow milk samples were 3.50% ± 0.12% and 3.28% ± 0.09% (w/w), respectively. Lactobacillus acidophilus population in both FGM samples remained above 10 6 CFU/g during the 1st 4-wk storage. There was a slight but no significant (P > 0.05) decrease in pH and TA during storage. Scanning electron microscopy micrographs displayed a compact and homogeneous protein network of the FGM with PWP and pectin. Polymerized whey protein may be a novel protein-based thickening agent for formulation of a set-type FGM with starter culture Kefir Mild 01. Fermented goat milk is an increasingly popular dairy product in the world. However, it is difficult to make set type fermented goat milk due to the smaller size and lower content of casein micelles in goat milk. A fermented goat milk with PWP (0.3%, w/v) and pectin (0.2%, w/v) was successfully developed in this study. The product fermented by Kefir Mild 01 starter culture had a similar taste with Kefir but no yeast or alcoholic exists. The new product would be a promising food in the market. © 2017 Institute of Food Technologists®.
Abou-Soliman, Nagwa H I; Sakr, Sally S; Awad, Sameh
2017-05-01
Camel milk produces watery texture when it is processed to yogurt. Despite the extensive studies on microbial transglutaminase (MTGase) in dairy research, the effect of this enzyme on the properties of yogurt made from camel milk has not been studied. This study aims to investigate the impact of MTGase with and without bovine skimmed milk powder (SMP), whey protein concentrate (WPC),or β-lactoglobulin (β-lg) on physico-chemical, rheological, microstructural, and sensory properties of camel-milk yogurt during 15 days of storage period. MTGase treatment markedly reduced the fermentation time of unfortified and SMP-fortified camel milk. The fortification of camel milk without MTGase failed to give set-type yogurt. The treatment of unfortified milk with MTGase enormously improved the viscosity and the body of yogurt samples. Fortification of MTGase-treated milk impacted positively on the viscosity, the water holding capacity, and the density of the protein matrix in the gel microstructure, which were influenced by the type of dairy ingredients. All MTGase-treated yogurts differed from each other in hardness and adhesiveness values. Electrophoresis results showed that the susceptibility of the individual milk proteins to MTGase varied, and there were differences among the treatments toward the enzyme. SMP-fortified yogurt was the most accepted product. Generally, the addition of MTGase preparation at a concentration of 0.4%, simultaneously with starter culture, to fortified camel milk was considered an effective tool to solve the challenges of producing set-type yogurt from this milk.
Skrzypczak, Katarzyna W; Gustaw, Waldemar Z; Jabłońska-Ryś, Ewa D; Michalak-Majewska, Monika; Sławińska, Aneta; Radzki, Wojciech P; Gustaw, Klaudia M; Waśko, Adam D
2017-01-01
The increasing significance of food products containing substances with antioxidative activi- ties is currently being observed. This is mainly due to the fact that pathogenic changes underlying some diseases are related to the carcinogenic effects of free radicals. Antioxidative compounds play an important role in supporting and enhancing the body’s defense mechanisms, which is useful in preventing some civili- zation diseases. Unfortunately, it has been already proved that some synthetic antioxidants pose a potential risk in vivo. Therefore, antioxidant compounds derived from a natural source are extremely valuable. Milk is a source of biologically active precursors, which when enclosed in structural protein sequences are inactive. The hydrolysis process, involving bacterial proteolytic enzymes, might release biopeptides that act in various ways, including having antioxidant properties. The objective of this study was to determine the antioxidant properties of milk protein preparations fermented by Polish strains of L. helveticus. The research also focused on evaluating the dynamics of milk acidification by these strains and analyzing the textural properties of the skim milk fermented products obtained. The research studied Polish strains of L. helveticus: B734, 141, T80 and T105, which have not yet been used industrially. The antioxidant properties of 1% (w/v) solutions of milk protein preparations (skim milk powder, caseinoglycomacropeptide and α-lactoalbumin) fermented by these strains were determined by neutralizing the free radicals with 2,2-diphenyl-1-picrylhydrazyl (DPPH˙). Moreover, solutions of skim milk powder (SMP) fermented by the microorganisms being tested were analyzed on gel electrophoresis (SDS-PAGE). The dynamics of milk acidification by these microorganisms was also analyzed L. helveticus strains were used to prepare fermented regenerated skim milk products that were subjected to texture profile analysis (TPA) performed using a TA-XT2i (Stable Micro Systems, Godalming, UK). The results suggest that the antioxidant activity of fermented milk protein preparations depended on the type of milk protein preparation and was also related to the strain that conducted the fermentation process. The process of caseinoglycomacropeptide (CGMP) fermentation by DSMZ 20075, T105 and 141 signifi- cantly (p < 0.05) influenced the increase in the antioxidant activities of the protein preparation, the highest values of parameter were obtained in samples fermented by L. helveticus T105 (64.82 ±0.013%), while in the case of α-lactoalbumin (α-la), the strongest free radical scavenging activity (66.67 ±0.020%) was noted for unfermented samples (control). The greatest increase in DPPH scavenging activity (% of inhibition) was noted for fermented SMP solutions. The highest values of the parameter measured were recorded for SMP fermented by the reference strain (85.98 ±0.009%) and T80 (81.66 ±0.013%). Strain T105 demonstrated the most desirable properties with respect to milk acidifying dynamic and texture properties of fermented skim milk products, while the reference strain (L. helveticus DSMZ 20075) and L. helveticus T80 seem to be more desirable in terms of the possibility of obtaining fermented protein preparations with the best antioxidant properties. The Polish strains analyzed here might find application in dairy products and also in developing functional food products. Furthermore, the preparations of milk protein that were fermented by the strains being tested may be a natural source dietary antioxidants.
Nigro, Francesco; Gagliardi, Luigi; Ciotti, Sabina; Galvano, Fabio; Pietri, Amedeo; Tina, Gabriella Lucia; Cavallaro, Daniela; La Fauci, Luca; Iacopino, Leonardo; Bognanno, Matteo; Li Volti, Giovanni; Scacco, Antonio; Michetti, Fabrizio; Gazzolo, Diego
2008-05-01
Human milk S100B protein possesses important neurotrophic properties. However, in some conditions human milk is substituted by milk formulas. The aims of the present study were: to assess S100B concentrations in milk formulas, to verify any differences in S100B levels between preterm and term infant formulas and to evaluate the impact of industrial preparation at predetermined phases on S100B content. Two different set of samples were tested: (i) commercial preterm (n = 36) and term (n = 36) infant milk formulas; ii) milk preterm (n = 10) and term infant (n = 10) formulas sampled at the following predetermined industrial preparation time points: skimmed cow milk (Time 0); after protein sources supplementation (Time 1); after pasteurization (Time 2); after spray-drying (Time 3). Our results showed that S100B concentration in preterm formulas were higher than in term ones (p < 0.01). In addition, S100B concentrations during industrial preparation showed a significant increase (p < 0.001) at Time 1 followed by a slight decrease (p > 0.05) at Time 2, whereas a significant (p < 0.001) dip was observed at Time 3. In conclusion, S100B showed a sufficient thermostability to resist pasteurization but not spry-drying. New feeding strategies in preterm and term infants are therefore warranted in order to preserve S100B protein during industrial preparation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... section the use of the term “milk” unqualified means milk from cows. If any milk other than cow's milk is used in whole or in part, the animal source shall be identified in conjunction with the word milk in... and/or milk and/or milk products. (ii) Suitable edible protein including, but not limited to, the...
Maloney, Jennifer; Nowak-Wegrzyn, Anna
2007-06-01
Cow's milk protein allergy is the most common food allergy in infants and young children. It is estimated that up to 50% of pediatric cow's milk allergy is non-IgE-mediated. Allergic proctocolitis is a benign disorder manifesting with blood-streaked stools in otherwise healthy-appearing infants who are breast- or formula-fed. Symptoms resolve within 48-72 h following elimination of dietary cow's milk protein. Most infants tolerate cow's milk by their first birthday. Food protein-induced enterocolitis syndrome presents in young formula-fed infants with chronic emesis, diarrhea, and failure to thrive. Reintroduction of cow's milk protein following a period of avoidance results in profuse, repetitive emesis within 2-3 h following ingestion; 20% of acute exposures may be associated with hypovolemic shock. Treatment of acute reactions is with vigorous hydration. Most children become tolerant with age; attempts of re-introduction of milk must be done under physician supervision and with secure i.v. access. Allergic eosinophilic gastroenteritis affects infants as well as older children and adolescents. Abdominal pain, emesis, diarrhea, failure to thrive, or weight loss are the most common symptoms. A subset of patients may develop protein-losing enteropathy. Fifty percent of affected children are atopic and have evidence of food-specific IgE antibody but skin prick tests and serum food-IgE levels correlate with response to elimination diet poorly. Elemental diet based on the amino-acid formula leads to resolutions of gastrointestinal eosinophilic inflammation typically within 6 wk.
James, Lewis J; Evans, Gethin H; Madin, Joshua; Scott, Darren; Stepney, Michael; Harris, Russell; Stone, Robert; Clayton, David J
2013-10-01
The present study investigated the relationship between the milk protein content of a rehydration solution and fluid balance after exercise-induced dehydration. On three occasions, eight healthy males were dehydrated to an identical degree of body mass loss (BML, approximately 1·8%) by intermittent cycling in the heat, rehydrating with 150% of their BML over 1 h with either a 60 g/l carbohydrate solution (C), a 40 g/l carbohydrate, 20 g/l milk protein solution (CP20) or a 20 g/l carbohydrate, 40 g/l milk protein solution (CP40). Urine samples were collected pre-exercise, post-exercise, post-rehydration and for a further 4 h. Subjects produced less urine after ingesting the CP20 or CP40 drink compared with the C drink (P<0·01), and at the end of the study, more of the CP20 (59 (SD 12)%) and CP40 (64 (SD 6)%) drinks had been retained compared with the C drink (46 (SD 9)%) (P<0·01). At the end of the study, whole-body net fluid balance was more negative for trial C (- 470 (SD 154) ml) compared with both trials CP20 (- 181 (SD 280) ml) and CP40 (2107 (SD 126) ml) (P<0·01). At 2 and 3 h after drink ingestion, urine osmolality was greater for trials CP20 and CP40 compared with trial C (P<0·05). The present study further demonstrates that after exercise-induced dehydration, a carbohydrate--milk protein solution is better retained than a carbohydrate solution. The results also suggest that high concentrations of milk protein are not more beneficial in terms of fluid retention than low concentrations of milk protein following exercise-induced dehydration.
Torres, Isabel Celigueta; Nieto, Gema; Nylander, Tommy; Simonsen, Adam Cohen; Tolkach, Alexander; Ipsen, Richard
2017-05-01
The objective of the research presented in this paper was to investigate how different characteristics of whey protein microparticles (MWP) added to milk as fat replacers influence intermolecular interactions occurring with other milk proteins during homogenisation and heating. These interactions are responsible for the formation of heat-induced aggregates that influence the texture and sensory characteristics of the final product. The formation of heat-induced complexes was studied in non- and low-fat milk model systems, where microparticulated whey protein (MWP) was used as fat replacer. Five MWP types with different particle characteristics were utilised and three heat treatments used: 85 °C for 15 min, 90 °C for 5 min and 95 °C for 2 min. Surface characteristics of the protein aggregates were expressed as the number of available thiol groups and the surface net charge. Intermolecular interactions involved in the formation of protein aggregates were studied by polyacrylamide gel electrophoresis and the final complexes visualised by darkfield microscopy. Homogenisation of non-fat milk systems led to partial adsorption of caseins onto microparticles, independently of the type of microparticle. On the contrary, homogenisation of low-fat milk resulted in preferential adsorption of caseins onto fat globules, rather than onto microparticles. Further heating of the milk, led to the formation of heat induced complexes with different sizes and characteristics depending on the type of MWP and the presence or not of fat. The results highlight the importance of controlling homogenisation and heat processing in yoghurt manufacture in order to induce desired changes in the surface reactivity of the microparticles and thereby promote effective protein interactions.
2011-09-01
cancer patient, express breast differentiation-specific proteins , and secrete milk lipids [45]. Therefore, the simplest conclusion is that MDA-MB-435...chromosomes; expresses milk proteins and lipids; and when transfected with the nm23 metastasis suppressor gene, MDA-MB-435 cells show the morphologic... proteins and secrete milk lipids [44]. Since the patient had no evidence of melanoma but was diagnosed with only a breast carcinoma; and, since
A 100-Year Review: The production of fluid (market) milk.
Barbano, David M
2017-12-01
During the first 100 years of the Journal of Dairy Science, dairy foods and dairy production dairy scientists have partnered to publish new data and research results that have fostered the development of new knowledge. This knowledge has been the underpinning of both the commercial development of the fluid milk processing industry and regulations and marketing policies for the benefit of dairy farmers, processors, and consumers. During the first 50 years, most of the focus was on producing and delivering high-quality raw milk to factories and improving the shelf life of pasteurized fluid milk. During the second 50 years, raw milk quality was further improved through the use of milk quality payment incentives. Due to changing demographics and lifestyle, whole fluid milk consumption declined and processing technologies were developed to increase the range of fluid milk products (skim and low-fat milks, flavored milks, lactose-reduced milk, long-shelf-life milks, and milks with higher protein and calcium contents) offered to the consumer. In addition, technology to produce specialty high-protein sports beverages was developed, which expanded the milk-based beverage offerings to the consumer. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Extra virgin olive oil: from composition to "molecular gastronomy".
Sacchi, Raffaele; Paduano, Antonello; Savarese, Maria; Vitaglione, Paola; Fogliano, Vincenzo
2014-01-01
The aim of this chapter is to provide a brief overview of the recent results of studies on extra virgin olive oil (EVOO) and its interactions with other food ingredients during cooking, to highlight basic molecular aspects of the "magic" of EVOO and its role in Mediterranean gastronomy. The use of raw EVOO added to foods after cooking (or as a salad oil) is the best way to express the original flavour and to maximize the intake of natural antioxidants and compounds related to positive effects on human health (hypotensive, anti-inflammatory, and anti-cancerogenic, among others). EVOO, however, also exhibits its protective properties during/after cooking. Different chemical interactions between biophenolic compounds and other food ingredients (water, milk proteins, carotenoids of tomato, omega-3 polyunsaturated fatty acids in canned-in-oil fish and meat or fish proteins) occur. Even during cooking, EVOO exhibits strong antioxidant properties and influences the overall flavour of cooked foods. The physical (partitioning, emulsion) and chemical (hydrolysis, covalent binding, antioxidant properties) phenomena occurring during cooking of EVOO are discussed with emphasis on the changes in the sensory (bitterness and fruity flavour) and nutritional qualities of some traditional Mediterranean foods. In particular, tomato-oil interactions during cooking, fish canning in EVOO, meat marinated in EVOO before cooking and roasting and frying in EVOO are examined. The interactions between EVOO antioxidants and flavours with milk proteins are also briefly discussed.
Hidayat, K; Chen, G-C; Wang, Y; Zhang, Z; Dai, X; Szeto, I M Y; Qin, L-Q
2018-01-01
Older adults experience age-related physiological changes that affect body weight and body composition. In general, nutrition and exercise have been identified as potent stimulators of protein synthesis in skeletal muscle. Milk proteins are excellent sources of all the essential amino acids and may represent an ideal protein source to promote muscle anabolism in older adults undergoing resistance training. However, several randomized control trials (RCTs) have yielded mixed results on the effects of milk proteins supplementation in combination with resistance training on body weight and composition. PubMed, Web of Science and Cochrane databases were searched for literature that evaluated the effects of milk proteins supplementation on body weight and composition among older adults (age ≥ 60 years) undergoing resistance training up to September 2016. A random-effects model was used to calculate the pooled estimates and 95% confidence intervals (CIs) of effect sizes. The final analysis included 10 RCTs involving 574 participants (mean age range from 60 to 80.8 years). Overall, the combination of milk proteins supplementation and resistance training did not have significant effect on fat mass (0.30, 95% CI -0.25, 0.86 kg) or body weight (1.02, 95% CI: -0.01, 2.04 kg). However, a positive effect of milk proteins supplementation paired with resistance training on fat-free mass was observed (0.74, 95% CI 0.30, 1.17 kg). Greater fat-free mass gains were observed in studies that included more than 55 participants (0.73, 95% CI 0.30, 1.16 kg), and in studies that enrolled participants with aging-related medical conditions (1.60, 95% CI 0.92, 2.28 kg). There was no statistical evidence of publication bias among the studies. Our findings provide evidence that supplementation of milk protein, in combination with resistance training, is effective to elicit fat-free mass gain in older adults.
Donkey milk as a supplement in infant formula: Benefits and technological challenges.
Souroullas, Kallis; Aspri, Maria; Papademas, Photis
2018-07-01
The aim of this review paper is to assess the applicability of donkey's milk to infants suffering from Cow Milk Protein Allergy (CMPA) compared to human and other available milk types. The bioactive and immune-supportive character which could be beneficial as a fortifier to the formula-fed infants is described while limitations of this type of milk are also discussed. Studies showed that human and donkey's milk have similar, overall, chemical composition as well as protein homogeneity and antigenic similarities. Several in vitro and in vivo studies showed that donkey's milk has nutraceutical and functional properties that can support immunity, alter metabolism and beneficially modify gut microbiota. Clinical studies illustrated that donkeys' milk is well tolerated (82.6%-88%) by infants. Finally, the effect that processing (i.e. thermal, non-thermal treatments, drying methods) has on donkey milk components is also discussed pointing out the need for minimally processing this type of milk. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise
Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki
2016-01-01
Whey protein (WP) is characterized as a “fast” protein and caseinate (CA) as a “slow” protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p < 0.05) in FSR compared with SP at different times (WP, 60 min; MP, 90 and 120 min; CA, 120 min). Although statistical analysis could not be performed, the calculated the area under the curve (AUC) values for FSR following this trend were: MP, 534.61; CA, 498.22; WP, 473.46; and SP, 406.18. We conclude that ingestion of MP, CA or WP causes the initial peak time in muscle protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP. PMID:27271661
Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise.
Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki
2016-06-03
Whey protein (WP) is characterized as a "fast" protein and caseinate (CA) as a "slow" protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p < 0.05) in FSR compared with SP at different times (WP, 60 min; MP, 90 and 120 min; CA, 120 min). Although statistical analysis could not be performed, the calculated the area under the curve (AUC) values for FSR following this trend were: MP, 534.61; CA, 498.22; WP, 473.46; and SP, 406.18. We conclude that ingestion of MP, CA or WP causes the initial peak time in muscle protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP.
The Basic Level of Feeding: A Comparison of Military and Comparable Civilian Food Utilization
1974-08-01
In terms of usage, fresh milk is No. I or 2 for all installations studied. Chicken was the next highest product in terms of usage appearing among...DoD but not for civilian operations are: fresh white bread (6), butter, (8) and beef pot roast (9). Meat or poultry or fish products account for 17...Law Univ. Football Enforc. 2 1 7 6 Milk, fresh 1 1 Milk, Evap. 2 Milk, Choc. 3 3 Chicken (+Ducks) 10 4 Potatoes, white
Rodríguez-Nogales, J M; Vivar-Quintana, A M; Revilla, I
2007-07-01
Bulk tank ewe milk from the Assaf, Castellana, and Churra breeds categorized into 3 somatic cell count (SCC) groups (<500,000; 1,000,000 to 1,500,000; and >2,500,000 cells/mL) was used to investigate changes in chemical composition and capillary electrophoresis protein profiles. The results obtained indicated that breed affected fat, protein, and total solids levels, and differences were also observed for the following milk proteins: beta-, beta1-, beta2-, and alpha(s1)-III-casein, alpha-lactalbumin, and beta-lactoglobulin. High SCC affected fat and protein contents and bacterial counts. The level of beta1-, beta2-, and alpha(s1)-I-casein, and alpha-lactalbumin were significantly lower in milk with SCC scores >2,500,000 cells/mL. A preliminary study of the chemical, microbiological, and electrophoretic data was performed by cluster analysis and principal components analysis. Applying discriminant analysis, it was possible to group the milk samples according to breed and level of SCC, obtaining a prediction of 100 and 97% of the samples, respectively.
Determination of fat and total protein content in milk using conventional digital imaging.
Kucheryavskiy, Sergey; Melenteva, Anastasiia; Bogomolov, Andrey
2014-04-01
The applicability of conventional digital imaging to quantitative determination of fat and total protein in cow's milk, based on the phenomenon of light scatter, has been proved. A new algorithm for extracting features from digital images of milk samples has been developed. The algorithm takes into account spatial distribution of light, diffusely transmitted through a sample. The proposed method has been tested on two sample sets prepared from industrial raw milk standards, with variable fat and protein content. Partial Least-Squares (PLS) regression on the features calculated from images of monochromatically illuminated milk samples resulted in models with high prediction performance when analysed the sets separately (best models with cross-validated R(2)=0.974 for protein and R(2)=0.973 for fat content). However when analysed the sets jointly with the obtained results were significantly worse (best models with cross-validated R(2)=0.890 for fat content and R(2)=0.720 for protein content). The results have been compared with previously published Vis/SW-NIR spectroscopic study of similar samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Functional and technological properties of camel milk proteins: a review.
Hailu, Yonas; Hansen, Egon Bech; Seifu, Eyassu; Eshetu, Mitiku; Ipsen, Richard; Kappeler, Stefan
2016-11-01
This review summarises current knowledge on camel milk proteins, with focus on significant peculiarities in protein composition and molecular properties. Camel milk is traditionally consumed as a fresh or naturally fermented product. Within the last couple of years, an increasing quantity is being processed in dairy plants, and a number of consumer products have been marketed. A better understanding of the technological and functional properties, as required for product improvement, has been gained in the past years. Absence of the whey protein β-LG and a low proportion of к-casein cause differences in relation to dairy processing. In addition to the technological properties, there are also implications for human nutrition and camel milk proteins are of interest for applications in infant foods, for food preservation and in functional foods. Proposed health benefits include inhibition of the angiotensin converting enzyme, antimicrobial and antioxidant properties as well as an antidiabetogenic effect. Detailed investigations on foaming, gelation and solubility as well as technological consequences of processing should be investigated further for the improvement of camel milk utilisation in the near future.
Acne located on the trunk, whey protein supplementation: Is there any association?
Cengiz, Fatma Pelin; Cevirgen Cemil, Bengu; Emiroglu, Nazan; Gulsel Bahali, Anil; Onsun, Nahide
2017-01-01
Whey protein is a source of protein that was isolated from milk. Whey proteins are composed of higher levels of essential amino acids. The role of diet in acne etiology has been investigated for several years. It was established that milk and milk products can trigger acneiform lesions, and recent evidence supports the role of whey protein supplements in acne. Herein, we report 6 healthy male adolescent patients developing acne located only to the trunk after the consumption of whey protein supplements for faster bodybuilding. This is the first observation which specified the location of acneiform lesions among bodybuilders. In our opinion, a trendy and common health problem is beginning among adolescents in the gyms.
Milk Bottom-Up Proteomics: Method Optimization
Vincent, Delphine; Ezernieks, Vilnis; Elkins, Aaron; Nguyen, Nga; Moate, Peter J.; Cocks, Benjamin G.; Rochfort, Simone
2016-01-01
Milk is a complex fluid whose proteome displays a diverse set of proteins of high abundance such as caseins and medium to low abundance whey proteins such as ß-lactoglobulin, lactoferrin, immunoglobulins, glycoproteins, peptide hormones, and enzymes. A sample preparation method that enables high reproducibility and throughput is key in reliably identifying proteins present or proteins responding to conditions such as a diet, health or genetics. Using skim milk samples from Jersey and Holstein-Friesian cows, we compared three extraction procedures which have not previously been applied to samples of cows' milk. Method A (urea) involved a simple dilution of the milk in a urea-based buffer, method B (TCA/acetone) involved a trichloroacetic acid (TCA)/acetone precipitation, and method C (methanol/chloroform) involved a tri-phasic partition method in chloroform/methanol solution. Protein assays, SDS-PAGE profiling, and trypsin digestion followed by nanoHPLC-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS/MS) analyses were performed to assess their efficiency. Replicates were used at each analytical step (extraction, digestion, injection) to assess reproducibility. Mass spectrometry (MS) data are available via ProteomeXchange with identifier PXD002529. Overall 186 unique accessions, major and minor proteins, were identified with a combination of methods. Method C (methanol/chloroform) yielded the best resolved SDS-patterns and highest protein recovery rates, method A (urea) yielded the greatest number of accessions, and, of the three procedures, method B (TCA/acetone) was the least compatible of all with a wide range of downstream analytical procedures. Our results also highlighted breed differences between the proteins in milk of Jersey and Holstein-Friesian cows. PMID:26793233
Jirapinyo, Pipop; Densupsoontorn, Narumon; Kangwanpornsiri, Channagan; Wongarn, Renu
2012-01-01
The effective treatment of cow milk allergy in infants consists of elimination of cow milk protein and the introduction of formulas based on an extensively hydrolyzed protein formula or an amino acid-based formula. However, about 10% of these infants are still allergic to an extensively hydrolyzed protein formula and an amino acid-based formula is very expensive. We conducted a study to verify whether the new chicken-based formula will be better tolerated than an extensively hydrolyzed protein formula for the treatment of cow milk allergy in infants. One hundred infants, diagnosed with cow milk allergy by double-blind, placebo-controlled food challenge tests, were enrolled in a double-blind, randomized, cross-over study to compare a response to an extensively hydrolyzed protein formula and the chicken-based formula. Subjects were randomly given one of the two formulas for 2 weeks. There was a 2-week washout period of taking an amino acid-based formula before being switched to the other formula for another 2 weeks. If the subjects showed allergic symptoms during the 2 weeks of test formula, they would be announced as intolerance or allergic to that formula. Sixty seven of 80 confirmed subjects agreed to enroll their infants. Fifty-eight subjects completed the study. Twenty and 33 infants were tolerant whereas and 38 and 25 infants were intolerant to an extensively hydrolyzed protein formula and the chicken-based formula, respectively. The chicken-based formula showed significantly better tolerance than an extensively hydrolyzed protein formula in the management of cow milk allergy in infants.
Bovine somatotropin and lactation: from basic science to commercial application.
Bauman, D E
1999-10-01
Bovine somatotropin (bST) results in increased milk yield and an unprecedented improvement in efficiency. Beginning in the 1930s to present day, investigations have examined animal-related factors such as nutrition, bioenergetics, metabolism, health and well being and consumer-related factors such as milk quality, manufacturing characteristics, and product safety. Overall, bST is a homeorhetic control involved in orchestrating many physiological processes. Direct effects involve adaptations in many tissues and the metabolism of all nutrient classes--carbohydrates, lipids, protein, and minerals. Mechanisms include alterations in key enzymes, intracellular signal transduction systems, and tissue response to homeostatic signals. Indirect effects involve the mammary gland and are thought to be mediated by the insulin-like growth factor (IGF) system. Specific changes include increased cellular rates of milk synthesis and enhanced maintenance of secretory cells. Indirect effects are modulated by environment and management factors, especially nutritional status. This modulation is a central component in allowing ST to play a key role in regulating nutrient utilization across a range of physiological situations. U.S. commercial use began in 1994, and adoption has been extensive. From a consumer perspective, bST was unique, and special interest groups loudly predicted dire consequences. However, introduction of bST had no impact on milk consumption, and milk labeled as recombinant bST-free occupies a minor niche market. From a producer perspective, commercial use verified scientific studies and enhanced net farm income. Overall, ST is a key homeorhetic control regulating nutrient partitioning, and the ST/IGF system plays a key role in animal performance and well being across a range of physiological situations.
Chen, Qi; Zhang, Jingshun; Ke, Xing; Lai, Shiyun; Li, Duo; Yang, Jinchuan; Mo, Weimin; Ren, Yiping
2016-09-01
In recent years, there is an increasing need to measure the concentration of individual proteins in human milk, instead of total human milk proteins. Due to lack of human milk protein standards, there are only few quantification methods established. The objective of the present work was to develop a simple and rapid quantification method for simultaneous determination of α-lactalbumin and β-casein in human milk using signature peptides according to a modified quantitative proteomics strategy. The internal standards containing the signature peptide sequences were synthesized with isotope-labeled amino acids. The purity of synthesized peptides as standards was determined by amino acid analysis method and area normalization method. The contents of α-lactalbumin and β-casein in human milk were measured according to the equimolar relationship between the two proteins and their corresponding signature peptides. The method validation results showed a satisfied linearity (R(2)>0.99) and recoveries (97.2-102.5% for α-lactalbumin and 99.5-100.3% for β-casein). The limit of quantification for α-lactalbumin and β-casein was 8.0mg/100g and 1.2mg/100g, respectively. CVs for α-lactalbumin and β-casein in human milk were 5.2% and 3.0%. The contents of α-lactalbumin and β-casein in 147 human milk samples were successfully determined by the established method and their contents were 205.5-578.2mg/100g and 116.4-467.4mg/100g at different lactation stages. The developed method allows simultaneously determination of α-lactalbumin and β-casein in human milk. The quantitative strategy based on signature peptide should be applicable to other endogenous proteins in breast milk and other body fluids. Copyright © 2016 Elsevier B.V. All rights reserved.
VanHouten, Joshua; Dann, Pamela; McGeoch, Grace; Brown, Edward M.; Krapcho, Karen; Neville, Margaret; Wysolmerski, John J.
2004-01-01
The transfer of calcium from mother to milk during lactation is poorly understood. In this report, we demonstrate that parathyroid hormone–related protein (PTHrP) production and calcium transport in mammary epithelial cells are regulated by extracellular calcium acting through the calcium-sensing receptor (CaR). The CaR becomes expressed on mammary epithelial cells at the transition from pregnancy to lactation. Increasing concentrations of calcium, neomycin, and a calcimimetic compound suppress PTHrP secretion by mammary epithelial cells in vitro, whereas in vivo, systemic hypocalcemia increases PTHrP production, an effect that can be prevented by treatment with a calcimimetic. Hypocalcemia also reduces overall milk production and calcium content, while increasing milk osmolality and protein concentrations. The changes in milk calcium content, milk osmolality, and milk protein concentration were mitigated by calcimimetic infusions. Finally, in a three-dimensional culture system that recapitulates the lactating alveolus, activation of the basolateral CaR increases transcellular calcium transport independent of its effect on PTHrP. We conclude that the lactating mammary gland can sense calcium and adjusts its secretion of calcium, PTHrP, and perhaps water in response to changes in extracellular calcium concentration. We believe this defines a homeostatic system that helps to match milk production to the availability of calcium. PMID:14966569
NASA Astrophysics Data System (ADS)
Mahdi, Chanif; Untari, Handayu; Cendrakasih Padaga, Masdiana
2018-01-01
The increasing of functional food is rising in line with public awareness for healthy food consumption. Provision of functional food source is developed through enhanced bioactive that has a regulatory function for body. Bioactive peptides in milk is known have variety of beneficial function of the body such as immunomodulator, immunostimulatory, anti-hypertension, anti-hyper cholesterol, as well as a variety of other beneficial function. The aim of this study is to obtain fermentation methods to product functional dairy product contain bioactive peptides and beneficial of fermented goat milk. The result of this study showed that goat milk fermented using 3 % commercial starter able to produce the best yoghurt than using local yoghurt starter. Analysis of protein content showed that the fermentation processing increased the amount of protein in goat milk sample. Using SDS-PAGE showed that the breakdown of protein into fraction of fermented goat milk greater than unfermented goat milk. The result of fractional protein was analyzed by LC MS/MS and showed that there were three kind bioactive sequences of bioactive peptides. Each of which consist of 16 amino acids that safely protected from gastrointestinal animal model that fed by dietary treatment of hypercholesterolemia.
Kotrri, Gynter; Fusch, Gerhard; Kwan, Celia; Choi, Dasol; Choi, Arum; Al Kafi, Nisreen; Rochow, Niels; Fusch, Christoph
2016-02-26
Commercial infrared (IR) milk analyzers are being increasingly used in research settings for the macronutrient measurement of breast milk (BM) prior to its target fortification. These devices, however, may not provide reliable measurement if not properly calibrated. In the current study, we tested a correction algorithm for a Near-IR milk analyzer (Unity SpectraStar, Brookfield, CT, USA) for fat and protein measurements, and examined the effect of pasteurization on the IR matrix and the stability of fat, protein, and lactose. Measurement values generated through Near-IR analysis were compared against those obtained through chemical reference methods to test the correction algorithm for the Near-IR milk analyzer. Macronutrient levels were compared between unpasteurized and pasteurized milk samples to determine the effect of pasteurization on macronutrient stability. The correction algorithm generated for our device was found to be valid for unpasteurized and pasteurized BM. Pasteurization had no effect on the macronutrient levels and the IR matrix of BM. These results show that fat and protein content can be accurately measured and monitored for unpasteurized and pasteurized BM. Of additional importance is the implication that donated human milk, generally low in protein content, has the potential to be target fortified.
Kotrri, Gynter; Fusch, Gerhard; Kwan, Celia; Choi, Dasol; Choi, Arum; Al Kafi, Nisreen; Rochow, Niels; Fusch, Christoph
2016-01-01
Commercial infrared (IR) milk analyzers are being increasingly used in research settings for the macronutrient measurement of breast milk (BM) prior to its target fortification. These devices, however, may not provide reliable measurement if not properly calibrated. In the current study, we tested a correction algorithm for a Near-IR milk analyzer (Unity SpectraStar, Brookfield, CT, USA) for fat and protein measurements, and examined the effect of pasteurization on the IR matrix and the stability of fat, protein, and lactose. Measurement values generated through Near-IR analysis were compared against those obtained through chemical reference methods to test the correction algorithm for the Near-IR milk analyzer. Macronutrient levels were compared between unpasteurized and pasteurized milk samples to determine the effect of pasteurization on macronutrient stability. The correction algorithm generated for our device was found to be valid for unpasteurized and pasteurized BM. Pasteurization had no effect on the macronutrient levels and the IR matrix of BM. These results show that fat and protein content can be accurately measured and monitored for unpasteurized and pasteurized BM. Of additional importance is the implication that donated human milk, generally low in protein content, has the potential to be target fortified. PMID:26927169
Estimation of Mineral and Trace Element Profile in Bubaline Milk Affected with Subclinical Mastitis.
Singh, Mahavir; Yadav, Poonam; Sharma, Anshu; Garg, V K; Mittal, Dinesh
2017-04-01
The milk samples from buffaloes of Murrah breed at mid lactation stage, reared at an organised dairy farm, were screened for subclinical mastitis based on bacteriological examination and somatic cell count following International Dairy Federation criteria. Milk samples from subclinical mastitis infected and healthy buffaloes were analysed to evaluate physicochemical alterations in terms of protein, fat, pH, electrical conductivity, chloride, minerals (sodium, potassium and calcium) and trace elements (iron, zinc, copper and selenium). In the present study, protein, fat, zinc, iron, calcium and selenium content was significantly lower (P < 0.001), while pH and electrical conductivity were significantly higher in mastitic milk as compared to normal milk. Concentration of electrolytes mainly sodium and chloride significantly increased with higher somatic cell count in mastitic milk and to maintain osmolality; potassium levels decreased proportionately. Correlation matrix revealed significantly positive interdependences of somatic cell count with pH, electrical conductivity, sodium and chloride. However, protein, fat, calcium and potassium were correlated negatively with elevated somatic cell count in mastitic milk. It is concluded that udder infections resulting in elevated somatic cells may alter the mineral and trace element profile of milk, and magnitude of changes may have diagnostic and prognostic value.
Abrams, Steven A; Schanler, Richard J; Lee, Martin L; Rechtman, David J
2014-01-01
Provision of human milk has important implications for the health and outcomes of extremely preterm (EP) infants. This study evaluated the effects of an exclusive human milk diet on the health of EP infants during their stay in the neonatal intensive care unit. EP infants <1,250 g birth weight received a diet consisting of either human milk fortified with a human milk protein-based fortifier (HM) (n=167) or a diet containing variable amounts of milk containing cow milk-based protein (CM) (n=93). Principal outcomes were mortality, necrotizing enterocolitis (NEC), growth, and duration of parenteral nutrition (PN). Mortality (2% versus 8%, p=0.004) and NEC (5% versus 17%, p=0.002) differed significantly between the HM and CM groups, respectively. For every 10% increase in the volume of milk containing CM, the risk of sepsis increased by 17.9% (p<0.001). Growth rates were similar between groups. The duration of PN was 8 days less in the subgroup of infants receiving a diet containing <10% CM versus ≥10% CM (p<0.02). An exclusive human milk diet, devoid of CM-containing products, was associated with lower mortality and morbidity in EP infants without compromising growth and should be considered as an approach to nutritional care of these infants.
Koeck, A; Jamrozik, J; Schenkel, F S; Moore, R K; Lefebvre, D M; Kelton, D F; Miglior, F
2014-11-01
The aim of this study was to estimate genetic parameters for milk β-hydroxybutyrate (BHBA) in early first lactation of Canadian Holstein cows and to examine its genetic association with indicators of energy balance (fat-to-protein ratio and body condition score) and metabolic diseases (clinical ketosis and displaced abomasum). Data for milk BHBA recorded between 5 and 100 d in milk was obtained from Valacta (Sainte-Anne-de-Bellevue, Québec, Canada), the Canadian Dairy Herd Improvement organization responsible for Québec and Atlantic provinces. Test-day milk samples were analyzed by mid-infrared spectrometry using previously developed calibration equations for milk BHBA. Test-day records of fat-to-protein ratio were obtained from the routine milk recording scheme. Body condition score records were available from the routine type classification system. Data on clinical ketosis and displaced abomasum recorded by producers were available from the national dairy cattle health system in Canada. Data were analyzed using linear animal models. Heritability estimates for milk BHBA at different stages of early lactation were between 0.14 and 0.29. Genetic correlations between milk BHBA were higher between adjacent lactation intervals and decreased as intervals were further apart. Correlations between breeding values for milk BHBA and routinely evaluated traits revealed that selection for lower milk BHBA in early lactation would lead to an improvement of several health and fertility traits, including SCS, calving to first service, number of services, first service to conception, and days open. Also, lower milk BHBA was associated with a longer herd life, better conformation, and better feet and legs. A higher genetic merit for milk yield was associated with higher milk BHBA, and, therefore, a greater susceptibility to hyperketonemia. Milk BHBA at the first test-day was moderately genetically correlated with fat-to-protein ratio (0.49), body condition score (-0.35), and clinical ketosis (0.48), whereas the genetic correlation with displaced abomasum was near zero (0.07). Milk BHBA can be routinely analyzed in milk samples at test days, and, therefore, provides a practical tool for breeding cows less susceptible to hyperketonemia. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Jukkola, A; Partanen, R; Rojas, O J; Heino, A
2016-11-01
Milk fat globule membranes (MFGM) sourced in buttermilk have gained recent interest given their nutritional value and functional properties. However, production of isolated MFGM has been challenging given their size similarity with casein micelles, which limits attempts toward fractionation by size exclusion techniques. Therefore, the hypothesis underpinning this study is that the removal of proteins from cream before butter-making facilitates MFGM isolation. As such, milk fat globules were separated from raw whole milk via microfiltration (1.4-µm pore diameter and 0.005-m 2 filtration surface area) by using 3 diafiltration media; namely, skim milk ultrafiltration permeate, saline, and water. Their effects on the stability of the milk fat globules and protein permeation was elucidated. Whereas a substantial reduction in protein concentration was achieved with all diafiltration media (~90% reduction), water and saline produced negligible membrane fouling with better filtration performance. Moreover, diafiltration with skim milk ultrafiltration permeate exhibited reduced permeate flux. Colloidal stability of the resultant milk decreased with all diafiltration solutions due to changing composition and reduced apparent viscosity. Overall, microfiltration was found to be an efficient method for separation of milk fat globules from whole milk, leading to increased MFGM fragment concentration in buttermilk dry matter, thus making it more suitable for industrial utilization. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Petzinger, Christina; Oftedal, Olav T; Jacobsen, Krista; Murtough, Katie L; Irlbeck, Nancy A; Power, Michael L
2014-01-01
African bovids represent a highly diverse group with divergent neonatal care strategies. The extent to which their milks reflect this diversity is poorly understood. We analyzed milk of the bongo (Tragelaphus eurycerus) to compare its composition to milks of other African bovids and to evaluate bongo milk replacement formulas. Milk samples from three individuals (0 through 300 days postpartum, n = 28) were assayed for dry matter (total solids), crude fat, crude protein, total sugar, ash, calcium, and phosphorus; gross energy was assayed on a subset of samples and compared to calculated values. Nutrient composition changed very little over the lactation period except for day 0 (colostrum) and the last sample (day 300). Bongo milk (days 6-286) contained (mean ± SEM): 28.1 ± 0.7% dry matter (71.9 ± 0.7% water), 12.3 ± 0.6% fat, 10.6 ± 0.3% crude protein, 3.6 ± 0.1% sugar, 1.05 ± 0.03% ash, 0.26 ± 0.01% calcium, 0.16 ± 0.01% phosphorus, and a GE of 1.88 ± 0.06 kcal/g. The protein content of bongo milk accounts for 33% of energy. High protein energy appears to be typical of Tragelaphines and of African bovids that utilize a "hider" system of postnatal care. The stability of milk composition until day 300 suggests complete weaning may not occur until 9 months rather than at 6 months of age, as commonly assumed. None of the milk replacement formulas previously used for bongos was well matched to bongo milk composition; therefore, a new milk replacement formula is proposed. © 2014 Wiley Periodicals, Inc.
Anema, Skelte G; Li, Yuming
2003-02-01
When skim milk at pH 6.55 was heated (75 to 100 degrees C for up to 60 min), the casein micelle size, as monitored by photon correlation spectroscopy, was found to increase during the initial stages of heating and tended to plateau on prolonged heating. At any particular temperature, the casein micelle size increased with longer holding times, and, at any particular holding time, the casein micelle size increased with increasing temperature. The maximum increase in casein micelle size was about 30-35 nm. The changes in casein micelle size were poorly correlated with the level of whey protein denaturation. However, the changes in casein micelle size were highly correlated with the levels of denatured whey proteins that were associated with the casein micelles. The rate of association of the denatured whey proteins with the casein micelles was considerably slower than the rate of denaturation of the whey proteins. Removal of the whey proteins from the skim milk resulted in only small changes in casein micelle size during heating. Re-addition of beta-lactoglobulin to the whey-protein-depleted milk caused the casein micelle size to increase markedly on heat treatment. The changes in casein micelle size induced by the heat treatment of skim milk may be a consequence of the whey proteins associating with the casein micelles. However, these associated whey proteins would need to occlude a large amount of serum to account for the particle size changes. Separate experiments showed that the viscosity changes of heated milk and the estimated volume fraction changes were consistent with the particle size changes observed. Further studies are needed to determine whether the changes in size are due to the specific association of whey proteins with the micelles or whether a low level of aggregation of the casein micelles accompanies this association behaviour. Preliminary studies indicated lower levels of denatured whey proteins associated with the casein micelles and smaller changes in casein micelle size occurred as the pH of the milk was increased from pH 6.5 to pH 6.7.
Moreno-Montoro, Miriam; Olalla, Manuel; Giménez-Martínez, Rafael; Bergillos-Meca, Triana; Ruiz-López, María Dolores; Cabrera-Vique, Carmen; Artacho, Reyes; Navarro-Alarcón, Miguel
2015-11-01
Goat milk has been reported to possess good nutritional and health-promoting properties. Usually, it must be concentrated before fermented products can be obtained. The aim of this study was to compare physicochemical and nutritional variables among raw (RM), skimmed (SM), and ultrafiltration-concentrated skimmed (UFM) goat milk. The density, acidity, ash, protein, casein, whey protein, Ca, P, Mg, and Zn values were significantly higher in UFM than in RM or SM. Dry extract and fat levels were significantly higher in UFM than in SM, and Mg content was significantly higher in UFM than in RM. Ultrafiltration also increased the solubility of Ca and Mg, changing their distribution in the milk. The higher concentrations of minerals and proteins, especially caseins, increase the nutritional value of UFM, which may therefore be more appropriate for goat milk yogurt manufacturing in comparison to RM or SM. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Assessment of heat treatment of dairy products by MALDI-TOF-MS.
Meltretter, Jasmin; Birlouez-Aragon, Inès; Becker, Cord-Michael; Pischetsrieder, Monika
2009-12-01
The formation of the Amadori product from lactose (protein lactosylation) is a major parameter to evaluate the quality of processed milk. Here, MALDI-TOF-MS was used for the relative quantification of lactose-adducts in heated milk. Milk was heated at a temperature of 70, 80, and 100 degrees C between 0 and 300 min, diluted, and subjected directly to MALDI-TOF-MS. The lactosylation rate of alpha-lactalbumin increased with increasing reaction temperature and time. The results correlated well with established markers for heat treatment of milk (concentration of total soluble protein, soluble alpha-lactalbumin and beta-lactoglobulin at pH 4.6, and fluorescence of advanced Maillard products and soluble tryptophan index; r=0.969-0.997). The method was also applied to examine commercially available dairy products. In severely heated products, protein pre-purification by immobilized metal affinity chromatography improved spectra quality. Relative quantification of protein lactosylation by MALDI-TOF-MS proved to be a very fast and reliable method to monitor early Maillard reaction during milk processing.
Jaafar, Syarifah Hazirah Syd; Hashim, Roshada; Hassan, Zaiton; Arifin, Norlelawati
2018-03-01
This study was conducted to determine the physical and chemical composition of goat milk produced by eight local farms located in the central region of Malaysia. Farms 1 to 4 (F1-SC, F2-SP, F3-SP, F4-SBC) reared Saanen-type goats while farms 5 to 8 (F5-JK, F6-JPEC, F7-JTC, F8-JC), Jamnapari-type goats. The common feedstuffs used in all farms comprised of fresh or silage from Napier grass, feed pellets, and brans while two farms, F5-JK and F6-JPEC supplemented the feeds with soybean-based product. The total solid content, dry matter, and proximate composition of goat milk and feedstuffs from the different farms were determined and the results analysed using principal component analysis. Total solid content of goat milk from the Jamnapari crossbreed had the highest solid content ranging from 11.81% to 17.54% compared to milk from farms with Saanen and Saanen crossbreed (10.95% to 14.63%). Jamnapari-type goats from F5-JK, F6-JPEC, and F8-JC had significantly higher ( p < 0.05) milk fat and protein contents (7.36%, 7.14%, and 6.59% fat; 5.08%, 6.19%, and 4.23% protein, respectively) than milk from other farms but, milk produced by Saanen-type goats from F4-SBC contained similar protein content (4.34%) to that from F8-JC. Total ash and carbohydrate contents in milk ranged between 0.67% to 0.86% and 3.26% to 4.71%, respectively, regardless of goat breed. Feeding soybean-based products appear to have a positive influence on milk fat and protein content in Jamnaparitype goats.
Jaafar, Syarifah Hazirah Syd; Hashim, Roshada; Hassan, Zaiton; Arifin, Norlelawati
2018-01-01
This study was conducted to determine the physical and chemical composition of goat milk produced by eight local farms located in the central region of Malaysia. Farms 1 to 4 (F1-SC, F2-SP, F3-SP, F4-SBC) reared Saanen-type goats while farms 5 to 8 (F5-JK, F6-JPEC, F7-JTC, F8-JC), Jamnapari-type goats. The common feedstuffs used in all farms comprised of fresh or silage from Napier grass, feed pellets, and brans while two farms, F5-JK and F6-JPEC supplemented the feeds with soybean-based product. The total solid content, dry matter, and proximate composition of goat milk and feedstuffs from the different farms were determined and the results analysed using principal component analysis. Total solid content of goat milk from the Jamnapari crossbreed had the highest solid content ranging from 11.81% to 17.54% compared to milk from farms with Saanen and Saanen crossbreed (10.95% to 14.63%). Jamnapari-type goats from F5-JK, F6-JPEC, and F8-JC had significantly higher (p < 0.05) milk fat and protein contents (7.36%, 7.14%, and 6.59% fat; 5.08%, 6.19%, and 4.23% protein, respectively) than milk from other farms but, milk produced by Saanen-type goats from F4-SBC contained similar protein content (4.34%) to that from F8-JC. Total ash and carbohydrate contents in milk ranged between 0.67% to 0.86% and 3.26% to 4.71%, respectively, regardless of goat breed. Feeding soybean-based products appear to have a positive influence on milk fat and protein content in Jamnaparitype goats. PMID:29644024
Seasonal variation in the Dutch bovine raw milk composition.
Heck, J M L; van Valenberg, H J F; Dijkstra, J; van Hooijdonk, A C M
2009-10-01
In this study, we determined the detailed composition of and seasonal variation in Dutch dairy milk. Raw milk samples representative of the complete Dutch milk supply were collected weekly from February 2005 until February 2006. Large seasonal variation exists in the concentrations of the main components and milk fatty acid composition. Milk lactose concentration was rather constant throughout the season. Milk true protein content was somewhat more responsive to season, with the lowest content in June (3.21 g/100 g) and the highest content in December (3.38 g/100 g). Milk fat concentration increased from a minimum of 4.10 g/100 g in June to a maximum of 4.57 g/100 g in January. The largest (up to 2-fold) seasonal changes in the fatty acid composition were found for trans fatty acids, including conjugated linoleic acid. Milk protein composition was rather constant throughout the season. Milk unsaturation indices, which were used as an indication of desaturase activity, were lowest in spring and highest in autumn. Compared with a previous investigation of Dutch dairy milk in 1992, the fatty acid composition of Dutch raw milk has changed considerably, in particular with a higher content of saturated fatty acids in 2005 milk.
Weller, J I; Ezra, E
2016-12-01
The objective was to test the hypothesis that more frequent but less accurately analyzed milk components may give a more representative measure of a cow's total lactation production. Daily records for milk production and fat and protein concentration collected by the AfiLab recording system (Afimilk, Kibbutz Afikim, Israel) from January 2014 to January 2016 from 47 large kibbutz (communal) herds distributed throughout Israel with a total of 37,486 Israeli Holstein cows were compared with the same statistics derived from monthly test day records derived by Bentley and Foss milk analyzers at the central laboratory of the Israel Cattle Breeders Association. The lactation means for all traits were quite similar for the 2 methods in both parities, except for fat production, which was lower for the daily records. This finding corresponded to fat lactation curves, which showed that daily results were lower with low days in milk (DIM) but almost equal to the monthly results after 125 DIM. Relative to monthly records, daily records overestimated protein percentage before 150 DIM and underestimated protein percentage in the second half of the lactation. The standard deviation for first- and second-parity daily records scored by the monthly and daily system were least similar for fat percentage, but even for this trait the difference was no more than 0.1 percentage points. The standard deviations for complete lactation production were slightly lower for the daily results for all traits but protein production. First-parity heritabilities were higher for lactations computed from daily records for all traits except for protein percentage, but differences were not significant. For daily records, coefficients of determination to predict future milk, fat, and protein lactation production from truncated lactations were greatest and root mean squared errors were least if the mean production from the last 2 weeks before the truncation date was used to estimate future production. Daily first-parity partial lactations for milk, fat, and protein production with <150 DIM predicted future lactation more accurately than corresponding monthly partial lactations. With only 30 DIM, genetic correlations between predicted and actual lactations ranged from 0.73 to 0.79 for milk, fat, and protein production. Real-time daily recording of fat and protein concentration by the daily recording system may be preferable to monthly analysis for herd-management decisions and genetic evaluation. Further study is required to compare the results of individual cows in multiple lactations. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Gusha, Jacob; Manyuchi, Clive Rolex; Imbayarwo-Chikosi, Venancio Edward; Hamandishe, Vimbayi Rangaridzo; Katsande, Simbarashe; Zvinorova, Plaxedis Ivy
2014-01-01
The effects of supplementing crossbred cows with non-conventional protein sources on dry matter intake, milk yield parameters and economic returns were investigated. Twenty-five lactating F1 Holstein-Mashona crossbreds averaging 115 ± 24 days in milk were used. Five treatments, total mixed ration (TMR), urea-treated maize stover, untreated maize stover, Macroptilium atropurpureum (Siratro) hay and veld hay, were randomly assigned to cows and replicated five times in a completely randomised design. Nutrient composition, intake, milk yield and economic returns were determined. M. atropurpureum hay, urea-treated maize stover and TMR had equal crude protein content. Daily dry matter intake and yield differed significantly among the treatment diets (P < 0.05). Cows on TMR, urea-treated maize stover and M. atropurpureum consumed more (P < 0.05) than cows on untreated maize stover and veld hay. Supplementing with TMR, urea-treated maize stover and M. atropurpureum hay increased (P < 0.05) milk yields. Mean daily milk yield was highest for cows supplemented with urea-treated maize stover. Percent fat, protein and total solids in milk from cows fed urea-treated stover compared favourably to that of milk for cows supplemented with TMR. Income over supplement cost was highest for cows supplemented with M. atropurpureum hay and urea-treated maize stover. Urea-treated maize stover and M. atropurpureum can therefore be used as a replacer protein supplements for dairy cattle in Zimbabwe.
Variation in nutrients formulated and nutrients supplied on 5 California dairies.
Rossow, H A; Aly, S S
2013-01-01
Computer models used in ration formulation assume that nutrients supplied by a ration formulation are the same as the nutrients presented in front of the cow in the final ration. Deviations in nutrients due to feed management effects such as dry matter changes (i.e., rain), loading, mixing, and delivery errors are assumed to not affect delivery of nutrients to the cow and her resulting milk production. To estimate how feed management affects nutrients supplied to the cow and milk production, and determine if nutrients can serve as indexes of feed management practices, weekly total mixed ration samples were collected and analyzed for 4 pens (close-up cows, fresh cows, high-milk-producing, and low-milk-producing cows, if available) for 7 to 12 wk on 5 commercial California dairies. Differences among nutrient analyses from these samples and nutrients from the formulated rations were analyzed by PROC MIXED of SAS (SAS Institute Inc., Cary, NC). Milk fat and milk protein percentages did not vary as much [coefficient of variation (CV) = 18 to 33%] as milk yield (kg; CV = 16 to 47 %) across all dairies and pens. Variability in nutrients delivered were highest for macronutrient fat (CV = 22%), lignin (CV = 15%), and ash (CV = 11%) percentages and micronutrients Fe (mg/kg; CV = 48%), Na (%; CV = 42%), and Zn (mg/kg; CV = 38%) for the milking pens across all dairies. Partitioning of the variability in random effects of nutrients delivered and intraclass correlation coefficients showed that variability in lignin percentage of TMR had the highest correlation with variability in milk yield and milk fat percentage, followed by fat and crude protein percentages. But, variability in ash, fat, and lignin percentages of total mixed ration had the highest correlation with variability in milk protein percentage. Therefore, lignin, fat, and ash may be the best indices of feed management to include effects of variability in nutrients on variability in milk yield, milk fat, and milk protein percentages in ration formulation models. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Target fortification of breast milk with fat, protein, and carbohydrates for preterm infants.
Rochow, Niels; Fusch, Gerhard; Choi, Arum; Chessell, Lorraine; Elliott, Louann; McDonald, Kimberley; Kuiper, Elizabeth; Purcha, Margaret; Turner, Steve; Chan, Emily; Xia, Meng Yang; Fusch, Christoph
2013-10-01
Fortification of breast milk is an accepted practice for feeding very low birth weight infants, however, fixed dosage enhancement does not address variations in native breast milk. This could lead to deficiencies in calories and macronutrients. We therefore established the infrastructure for target fortification in breast milk by measuring and adjusting fat, protein, and carbohydrate content daily. We analyzed nutrient intake, growth, and safety variables. Each 12-hour batch of breast milk was analyzed using near-infrared spectroscopy. Macronutrients were individually added to routine fortification to achieve final contents for fat (4.4 g), protein (3 g), and carbohydrates (8.8 g) (per 100 mL). Fully breast milk fed healthy very low birth weight infants (<32 weeks) were fed the fortified breast milk for at least 3 weeks. Matched pair analysis of 20 infants fed routinely fortified breast milk was performed using birth weight, gestational age, and postnatal age. All 650 pooled breast milk samples required at least 1 macronutrient adjusted. On average, 0.3 ± 0.4 g of fat, 0.7 ± 0.2 g of protein, and 1.2 ± 0.2 g of carbohydrate were added. Biochemistry was normal in the 10 target fortified infants (birth weight: 860 ± 309 g, 26.3 ± 1.6 weeks gestational age); weight gain was 19.9 ± 2.7 g/kg/d; and milk intake was 147 ± 5 mL/kg/d (131 ± 16 kcal/kg/d). Osmolality of fortified breast milk was 436 ± 13 mOsmol/kg. Matched pair analysis of infants indicated a higher milk intake (155 ± 5 mL/kg/d) but similar weight gain (19.7 ± 3.3 g/kg/d). No adverse event was observed. The linear relationship between milk intake and weight gain observed in study babies but not seen in matched controls may be related to the variable composition of breast milk. Daily target fortification can be safely implemented in clinical routine and may improve growth. Copyright © 2013 Mosby, Inc. All rights reserved.
Akinbi, Henry; Meinzen-Derr, Jareen; Auer, Christine; Ma, Yan; Pullum, Derek; Kusano, Ryosuke; Reszka, Krzysztof J; Zimmerly, Kira
2010-09-01
Preterm infants are often fed pasteurized donor milk or mother's milk that has been stored frozen for up to 4 weeks. Our objectives were to assess the impact of pasteurization or prolonged storage at -20 degrees C on the immunologic components of human milk and the capability of the different forms of human milk to support bacterial proliferation. The concentrations and activities of major host defense proteins in the whey fractions of mother's milk stored for 4 weeks at -20 degrees C or pasteurized human donor milk were compared with freshly expressed human milk. Proliferation of bacteria incubated in the 3 forms of human milk was assessed. Relative to freshly expressed human milk, the concentrations of lysozyme, lactoferrin, lactoperoxidase, and secretory immunoglobulin A were reduced 50% to 82% in pasteurized donor milk and the activities of lysozyme and lactoperoxidase were 74% to 88% lower (P < 0.01). Proliferation of bacterial pathogens in pasteurized donor milk was enhanced 1.8- to 4.6-fold compared with fresh or frozen human milk (P < 0.01). The immunomodulatory proteins in human milk are reduced by pasteurization and, to a lesser extent, by frozen storage, resulting in decreased antibacterial capability. Stringent procedure to minimize bacterial contamination is essential during handling of pasteurized milk.
Effect of homogenization and pasteurization on the structure and stability of whey protein in milk.
Qi, Phoebe X; Ren, Daxi; Xiao, Yingping; Tomasula, Peggy M
2015-05-01
The effect of homogenization alone or in combination with high-temperature, short-time (HTST) pasteurization or UHT processing on the whey fraction of milk was investigated using highly sensitive spectroscopic techniques. In pilot plant trials, 1-L quantities of whole milk were homogenized in a 2-stage homogenizer at 35°C (6.9 MPa/10.3 MPa) and, along with skim milk, were subjected to HTST pasteurization (72°C for 15 s) or UHT processing (135°C for 2 s). Other whole milk samples were processed using homogenization followed by either HTST pasteurization or UHT processing. The processed skim and whole milk samples were centrifuged further to remove fat and then acidified to pH 4.6 to isolate the corresponding whey fractions, and centrifuged again. The whey fractions were then purified using dialysis and investigated using the circular dichroism, Fourier transform infrared, and Trp intrinsic fluorescence spectroscopic techniques. Results demonstrated that homogenization combined with UHT processing of milk caused not only changes in protein composition but also significant secondary structural loss, particularly in the amounts of apparent antiparallel β-sheet and α-helix, as well as diminished tertiary structural contact. In both cases of homogenization alone and followed by HTST treatments, neither caused appreciable chemical changes, nor remarkable secondary structural reduction. But disruption was evident in the tertiary structural environment of the whey proteins due to homogenization of whole milk as shown by both the near-UV circular dichroism and Trp intrinsic fluorescence. In-depth structural stability analyses revealed that even though processing of milk imposed little impairment on the secondary structural stability, the tertiary structural stability of whey protein was altered significantly. The following order was derived based on these studies: raw whole>HTST, homogenized, homogenized and pasteurized>skimmed and pasteurized, and skimmed UHT>homogenized UHT. The methodology demonstrated in this study can be used to gain insight into the behavior of milk proteins when processed and provides a new empirical and comparative approach for analyzing and assessing the effect of processing schemes on the nutrition and quality of milk and dairy product without the need for extended separation and purification, which can be both time-consuming and disruptive to protein structures. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
It is important to understand the partitioning of drugs in processed milk and milk products, when drugs are present in raw milk, in order to estimate the potential consumer exposure. Radioisotopically labelled erythromycin, ivermectin, ketoprofen, oxytetracycline, penicillin G, sulfadimethoxine, and...
21 CFR 866.5170 - Breast milk immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breast milk immunological test system. 866.5170... milk immunological test system. (a) Identification. A breast milk immunological test system is a device that consists of the reagents used to measure by immunochemical techniques the breast milk proteins. (b...
21 CFR 866.5170 - Breast milk immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breast milk immunological test system. 866.5170... milk immunological test system. (a) Identification. A breast milk immunological test system is a device that consists of the reagents used to measure by immunochemical techniques the breast milk proteins. (b...
21 CFR 866.5170 - Breast milk immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breast milk immunological test system. 866.5170... milk immunological test system. (a) Identification. A breast milk immunological test system is a device that consists of the reagents used to measure by immunochemical techniques the breast milk proteins. (b...
21 CFR 866.5170 - Breast milk immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breast milk immunological test system. 866.5170... milk immunological test system. (a) Identification. A breast milk immunological test system is a device that consists of the reagents used to measure by immunochemical techniques the breast milk proteins. (b...
Altering allergenicity of cow's milk by food processing for applications in infant formula.
Golkar, Abdolkhalegh; Milani, Jafar M; Vasiljevic, Todor
2018-04-16
Cow's milk-based infant formulas have a long tradition in infant nutrition, although some infants are unable to use them due to presence of several known allergens. Various processing methods have been identified capable of reducing cow's milk protein allergenicity including thermal and non-thermal methods and their combinations. Heat treatment and enzymatic hydrolysis have been in production of hypoallergenic infant formulas. However, modulation of allergenic epitopes depends on the extent of heat treatment applied, which consequently may also reduce a nutritional value of these proteins. In addition, enzymatic hydrolysis may not target allergenic epitopes thus allergenicity may persist; however released peptides may have detrimental impact on taste and functional properties of final products. Modulation of allergenicity of milk proteins appears to require a concerted effort to minimize detrimental effects as clinical studies conducted on commercial hypoallergenic formulas demonstrated persistence of allergic symptoms. This article covers traditional and novel processing methods and their impact on reduction of cow's milk allergenicity in milk-based infant formulas.
Finete, Virgínia de Lourdes Mendes; Gouvêa, Marcos Martins; Marques, Flávia Ferreira de Carvalho; Netto, Annibal Duarte Pereira
2013-12-15
The Kjeldahl method and four classic spectrophotometric methods (Biuret, Lowry, Bradford and Markwell) were applied to evaluate the protein content of samples of UHT whole milk deliberately adulterated with melamine, ammonium sulphate or urea, which can be used to defraud milk protein and whey contents. Compared with the Kjeldahl method, the response of the spectrophotometric methods was unaffected by the addition of the nitrogen compounds to milk or whey. The methods of Bradford and Markwell were most robust and did not exhibit interference subject to composition. However, the simultaneous interpretation of results obtained using these methods with those obtained using the Kjeldahl method indicated the addition of nitrogen-rich compounds to milk and/or whey. Therefore, this work suggests a combination of results of Kjeldahl and spectrophotometric methods should be used to screen for milk adulteration by these compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.
Validation of mid-infrared spectroscopy for macronutrient analysis of human milk.
Parat, S; Groh-Wargo, S; Merlino, S; Wijers, C; Super, D M
2017-07-01
Human milk has considerable variation in its composition. Hence, the nutrient profile is only an estimate and can result in under- or over-estimation of the intake of preterm infants. Mid-infrared (MIR) spectroscopy is an evolving technique for analyzing human milk but needs validation before use in clinical practice. Human milk samples from 35 mothers delivering at 35 weeks to term gestation were analyzed for macronutrients by MIR spectroscopy and by standard laboratory methods using Kjeldahl assay for protein, Mojonnier assay for fat and high-pressure liquid chromatography assay for lactose. MIR analysis of the macronutrients in human milk correlated well with standard laboratory tests with intraclass correlation coefficients of 0.997 for fat, 0.839 for protein and 0.776 for lactose. Agreement between the two methods was excellent for fat, and moderate for protein and lactose (P<0.001). This methodological paper provides evidence that MIR spectroscopy can be used to analyze macronutrient composition of human milk. Agreement between the methodologies varies by macronutrient.
ZHANG, Zhihe; HOU, Rong; LAN, Jingchao; WANG, Hairui; KUROKAWA, Hiroyuki; TAKATSU, Zenta; KOBAYASHI, Toyokazu; KOIE, Hiroshi; KAMATA, Hiroshi; KANAYAMA, Kiichi; WATANABE, Toshi
2016-01-01
The first milk substitute for giant panda cubs was developed in 1988 based on limited data about giant panda breast milk and that of certain types of bear. Mixtures of other formulas have also been fed to cubs at some facilities. However, they are not of sufficient nutritional quality for promoting growth in panda cubs. Here, we report analysis of giant panda breast milk and propose new milk substitutes for cubs, which were developed based on the results of our analysis. The Chengdu Research Base of Giant Panda Breeding obtained breast milk samples from three giant pandas. Up to 30 ml of breast milk were collected from each mother by hand. Then, the milk samples were frozen and sent to Nihon University. The levels of protein, fat, carbohydrates, ash, moisture, vitamins, minerals, total amino acids, fatty acids, lactose and other carbohydrates in the milk were analyzed. The breast milk samples exhibited the following nutritional values: protein: 6.6–8.5%, fat: 6.9–16.4%, carbohydrates: 2.5–9.1%, ash: 0.9–1.0% and moisture: 67–83%. We designed two kinds of milk substitutes based on the data obtained and the nutritional requirements of dogs, cats and rodents. The nutritional composition of the milk substitutes for the first and second stages was as follows: protein: 38 and 26%, fat: 40 and 40%, carbohydrates: 13 and 25%, ash: 6 and 6% and moisture: 3 and 3%, respectively. In addition, the substitutes contained vitamins, minerals, taurine, docosahexaenoic acid, lactoferrin, nucleotides and other nutrients. PMID:26781707
The macronutrients in human milk change after storage in various containers.
Chang, Yu-Chuan; Chen, Chao-Huei; Lin, Ming-Chih
2012-06-01
The concentrations of macronutrients in human milk can be influenced by various processes, such as storage, freezing, and thawing, that are performed by lactating working mothers and breast milk banks. We evaluated the impact of various containers on the nutrient concentrations in human milk. A total of 42 breast milk samples from 18 healthy lactating mothers were collected. A baseline macronutrient concentration was determined for each sample. Then, the breast milk samples were divided and stored in nine different commercial milk containers. After freezing at -20°C for 2 days, the milk samples were thawed and analyzed again. A midinfrared human milk analyzer (HMA) was used to measure the protein, fat, and carbohydrate contents. There was a significant decrease in the fat content following the storage, freezing, and thawing processes, ranging from 0.27-0.30 g/dL (p=0.02), but no significant decrease in energy content (p=0.069) was noted in the nine different containers. There were statistically significant increases in protein and carbohydrate concentrations in all containers (p=0.021 and 0.001, respectively), however there were no significant differences between the containers in terms of fat, protein, carbohydrate, or energy contents. Human milk, when subjected to storage, freezing, and thawing processes, demonstrated a significant decrease in fat content (up to 9% reduction) in various containers. It is better for infants to receive milk directly from the mother via breastfeeding. More studies are warranted to evaluate the effects of milk storage on infant growth and development. Copyright © 2012. Published by Elsevier B.V.
Milk with and without lactoferrin can influence intestinal damage in a pig model of malnutrition.
Garas, Lydia C; Feltrin, Cristiano; Hamilton, M Kristina; Hagey, Jill V; Murray, James D; Bertolini, Luciana R; Bertolini, Marcelo; Raybould, Helen E; Maga, Elizabeth A
2016-02-01
Malnutrition remains a leading contributor to the morbidity and mortality of children under the age of five worldwide. However, the underlying mechanisms are not well understood necessitating an appropriate animal model to answer fundamental questions and conduct translational research into optimal interventions. One potential intervention is milk from livestock that more closely mimics human milk by increased levels of bioactive components that can promote a healthy intestinal epithelium. We tested the ability of cow milk and milk from transgenic cows expressing human lactoferrin at levels found in human milk (hLF milk) to mitigate the effects of malnutrition at the level of the intestine in a pig model of malnutrition. Weaned pigs (3 weeks old) were fed a protein and calorie restricted diet for five weeks, receiving cow, hLF or no milk supplementation daily from weeks 3-5. After three weeks, the restricted diet induced changes in growth, blood chemistry and intestinal structure including villous atrophy, increased ex vivo permeability and decreased expression of tight junction proteins. Addition of both cow and hLF milk to the diet increased growth rate and calcium and glucose levels while promoting growth of the intestinal epithelium. In the jejunum hLF milk restored intestinal morphology, reduced permeability and increased expression of anti-inflammatory IL-10. Overall, this pig model of malnutrition mimics salient aspects of the human condition and demonstrates that cow milk can stimulate the repair of damage to the intestinal epithelium caused by protein and calorie restriction with hLF milk improving this recovery to a greater extent.
Calamari, L; Gobbi, L; Russo, F; Cappelli, F Piccioli
2015-08-01
The main objective of this experiment was to study the γ-glutamyl transferase (GGT) activity in milk during lactation and its relationship with metabolic status of dairy cows, milk yield, milk composition, and cheesemaking properties. The study was performed in a tied stall barn and involved 20 lactations from 12 healthy multiparous Italian Friesian dairy cows. During lactation starting at d 10, milk samples were collected weekly and analyzed for composition, somatic cells count, titratable acidity, and milk coagulation properties. The GGT activity was measured in defatted samples. Blood samples were collected weekly to assess biochemical indicators related to energy, protein, and mineral metabolism, markers of inflammation and some enzyme activities. The lactations of each cow were retrospectively categorized into 2 groups according to their milk GGT activity value through lactation. A median value of GGT activity in the milk of all lactations was calculated (3,045 U/L), and 10 lactations with lower GGT activity were classified as low while 10 lactations with greater GGT activity were classified as high. The average value of milk GGT activity during lactation was 3,863 and 3,024 U/L for high and low, respectively. The GGT activity decreased in early lactation and reached minimum values in the second month (3,289 and 2,355 U/L for high and low, respectively). Thereafter GGT activity increased progressively, reaching values in late lactation of 4,511 and 3,540 U/L in high and low, respectively. On average, milk yield was 40.81 and 42.76 kg/d in high and low, respectively, and a negative partial correlation with milk GGT activity was observed. A greater milk protein concentration was observed in high (3.39%) compared with low (3.18%), and a positive partial correlation with milk GGT activity was observed. Greater titratable acidity in high than that in low (3.75 vs. 3.45 degrees Soxhlet-Henkel/50 mL, respectively) was also observed. Plasma glucose was greater in cows of high than in low group, while plasma urea was lower in the high than in the low group. No relationship between plasma GGT and milk GGT activity was observed. Our results show an important effect of lactation stage on milk GGT activity. The individual effect observed from consecutive lactations and the relationship between milk GGT activity and milk protein concentration in healthy cows could open prospects for GGT as a future tool in improving milk protein content.
Maas, Christoph; Mathes, Michaela; Bleeker, Christine; Vek, Julia; Bernhard, Wolfgang; Wiechers, Cornelia; Peter, Andreas; Poets, Christian F; Franz, Axel R
2017-01-01
Protein, supplied in currently available commercial fortifiers, may be inadequate to meet the requirements of very preterm infants; in addition, intraindividual and interindividual variability of human milk protein and energy content potentially contribute to unsatisfactory early postnatal growth. To determine effects on growth of different levels of enteral protein supplementation in predominantly human milk-fed preterm infants. This randomized clinical and partially blinded single-center trial was conducted in a neonatal tertiary referral center in Germany. Sixty preterm infants (gestation <32 weeks and weight <1500 g at birth) were recruited from October 2012 to October 2014 and included 35% of 173 eligible infants. Median (interquartile range [IQR]) gestational age at birth was 29.9 (28.7-31.2) weeks. All analyses were conducted in an intention-to-treat population. Infants were randomly assigned to either a lower-protein (adding 1 g of bovine protein/100 mL of breast milk through a commercial human milk fortifier; n = 30) or a higher-protein group at a median (IQR) postnatal age of 7 (6-8) days. The higher-protein group (n = 30) received either standardized higher-protein supplementation (study fortifier adding 1.8 g of bovine protein/100 mL of breast milk [n = 15]) or individualized high-protein supplementation based on protein and fat content of administered breast milk (n = 15). Study interventions were continued for a median (IQR) of 41 (30-57) days and until definite discharge planning. Primary outcome was weight gain (g/kg/d) from birth to the end of intervention. Sixty preterm infants (gestation <32 weeks and weight <1500 g at birth), 33 girls, were recruited from October 2012 to October 2014 and included 35% of 173 eligible infants. Median (IQR) gestational age at birth was 29.9 (28.7-31.2) weeks. Demographic characteristics and hospital courses were similar in both groups, and birth weights ranged from 580 to 1495 g in the lower-protein group and 490 to 1470 g in the higher-protein group. Weight gain was similar in the lower- and higher-protein groups: mean (95% CI), 16.3 g/kg/d (15.4-17.1 g/kg/d) in the lower-protein group vs 16.0 g/kg/d (15.1-16.9 g/kg/d) in the higher-protein group) (P = .70), despite an increase in actual protein intake by 0.6 g/kg/d (0.4-0.7 g/kg/d) (P < .001). Head circumference and lower leg longitudinal growth were also similar, as was the proportion of cumulative total enteral feeding volume provided as breast milk: median (IQR) proportion of breast milk, 92% (79%-98%) in the lower-protein group vs 94% (62%-99%) in the higher-protein group (P = .89). An increase in protein intake by 0.6 g/kg/d to a mean intake of 4.3 g/kg/d did not further enhance growth of very preterm infants with a median birth weight of 1200 g, who achieved near-fetal growth rates. This might point to a ceiling effect for enteral protein intake with respect to its influence on growth. clinicaltrials.gov Identifier: NCT01773902.
Ndiaye, B; Fall, M; Fall, D; Sarr, S O; Faye, D; Diop, A; Diop, Y M
2008-01-01
The powdered milk is a much appreciated food in Senegal. However no particular control is realized by authorities on the various marks of milk imported before their marketing. In the concern to protect the health of the consumers, but especially in front of the very big variety of the sources of supply in this product we determined the contents in fat, in protein and in vitamin D main variety show of marketed powdered milk Dakar. Chemical methods were operated to determine the fat contents and in proteins. The liquid chromatography in high performance was used to identify and measure the vitamin D. The obtained results profits showed that all the studied samples of milk had contents in fat included between 25 and 31 g %, those in proteins were included between 23 and 25 g %. As regards the dosage of the vitamin D, a single sample had content weaker than that mentioned on the packaging by the manufacturer. The results of this study allowed to notice most of the variety varieties of powdered milk marketed in Dakar were in accordance with the standards established for this food and are consequently good quality.
Recombinant Human Factor IX Produced from Transgenic Porcine Milk
Lee, Meng-Hwan; Lin, Yin-Shen; Tu, Ching-Fu; Yen, Chon-Ho
2014-01-01
Production of biopharmaceuticals from transgenic animal milk is a cost-effective method for highly complex proteins that cannot be efficiently produced using conventional systems such as microorganisms or animal cells. Yields of recombinant human factor IX (rhFIX) produced from transgenic porcine milk under the control of the bovine α-lactalbumin promoter reached 0.25 mg/mL. The rhFIX protein was purified from transgenic porcine milk using a three-column purification scheme after a precipitation step to remove casein. The purified protein had high specific activity and a low ratio of the active form (FIXa). The purified rhFIX had 11.9 γ-carboxyglutamic acid (Gla) residues/mol protein, which approached full occupancy of the 12 potential sites in the Gla domain. The rhFIX was shown to have a higher isoelectric point and lower sialic acid content than plasma-derived FIX (pdFIX). The rhFIX had the same N-glycosylation sites and phosphorylation sites as pdFIX, but had a higher specific activity. These results suggest that rhFIX produced from porcine milk is physiologically active and they support the use of transgenic animals as bioreactors for industrial scale production in milk. PMID:24955355
Broderick, G A; Grabber, J H; Muck, R E; Hymes-Fecht, U C
2017-05-01
Two lactation trials were conducted comparing the feeding value of silages made from birdsfoot trefoil (BFT, Lotus corniculatus L.) that had been selected for low (BFTL), medium (BFTM), and high (BFTH) levels of condensed tannins (CT) to an alfalfa silage (AS) when fed as the principal forage in total mixed rations. Diets also included corn silage, high-moisture shelled corn, soybean meal, soy hulls, and supplemental fat. In trial 1, 32 lactating Holstein cows were blocked by days in milk, assigned to treatment sequences in 8 balanced 4 × 4 Latin squares, and fed 50% dietary dry matter from AS or 1 of 3 BFT silages containing 0.6, 1.2, or 1.7% CT. Diets averaged 17.5 to 19.5% crude protein and 26% neutral detergent fiber on a dry matter basis. Data were collected over the last 2 wk of each 4-wk period. Intakes were 1.3 to 2.8 kg of dry matter/d greater on BFT than on AS and cows gained 0.5 kg of body weight/d on BFT diets while losing 0.14 kg of body weight/d on the AS diet; this resulted in greater milk per dry matter intake (DMI) on AS. Linear effects indicated true protein yield and milk urea nitrogen declined with increasing CT concentration and quadratic effects indicated DMI, energy-corrected milk, and fat yield were increased at intermediate CT concentration. True protein yield and apparent N-efficiency were greater, and milk urea nitrogen lower, on all BFT diets than on AS. In trial 2, 50 lactating Holstein cows were fed a covariate AS diet for 2 wk and then blocked by parity and days in milk and randomly assigned to 1 of 5 diets that were fed continuously for 12 wk. Diets contained (dry matter basis) 48% AS, 16% AS plus 32% of 1 of 3 BFT silages with 0.5, 0.8, or 1.5% CT, or 48% of an equal mixture of each BFT silage. Diets averaged 16.5% crude protein and 30% neutral detergent fiber. Intake and milk yield tended to be lower on AS than BFT, but body weight gains averaged 0.6 kg/d on all diets. Cows fed any of the BFT silages had reduced milk urea nitrogen and ruminal ammonia and reduced urinary N excretion. Feeding the BFT mixture reduced concentrations of milk true protein and milk urea nitrogen and depressed apparent nutrient digestibility. Among diets containing the individual BFT silages, linear reductions in DMI and yield of milk, fat, true protein, lactose, and SNF were observed with increasing CT concentration. By contrast, a previous trial with the same BFT populations showed that substituting BFTH silage containing 1.6% CT for AS in rations containing 60% silage dry matter had no effect on intake, increased yield of milk, energy-corrected milk and milk components, elevated protein use-efficiency, but with a more modest reduction in milk urea nitrogen and urinary N excretion. Silage analyses suggested that the inconsistent responses among trials were related to growth environment or ensiling effects that altered tannin-protein interactions in BFT silage. Differences in diet formulation among trials may have also influenced responses. Results from the current and previous trials indicate further work is needed to identify optimum tannin levels in forages. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Moreno-Fernández, Jorge; Díaz-Castro, Javier; Alférez, Maria J M; Hijano, Silvia; Nestares, Teresa; López-Aliaga, Inmaculada
2016-02-01
The aim of this study was to identify the differences between the main macro and micronutrients including proteins, fat, minerals and vitamins in cow and goat dehydrated fermented milks. Fermented goat milk had higher protein and lower ash content. All amino acids (except for Ala), were higher in fermented goat milk than in fermented cow milk. Except for the values of C11:0, C13:0, C16:0, C18:0, C20:5, C22:5 and the total quantity of saturated and monounsaturated fatty acids, all the other fatty acid studied were significantly different in both fermented milks. Ca, Mg, Zn, Fe, Cu and Se were higher in fermented goat milk. Fermented goat milk had lower amounts of folic acid, vitamin E and C, and higher values of vitamin A, D3, B6 and B12. The current study demonstrates the better nutritional characteristics of fermented goat milk, suggesting a potential role of this dairy product as a high nutritional value food.
Rashidinejad, Ali; Birch, E John; Sun-Waterhouse, Dongxiao; Everett, David W
2017-10-13
Tea consumption is practised as a tradition, and has shown potential to improve human health. Maximal uptake of tea antioxidants and milk proteins without a negative impact on tea flavor is highly desired by consumers. There is a conflicting evidence of the effect of milk addition to tea on antioxidant activity. Differences in the type of tea, the composition, type and amount of milk, preparation method of tea-milk infusions, the assays used to measure antioxidant activity, and sampling size likely account for different findings. Interactions between tea polyphenols and milk proteins, especially between catechins and caseins, could account for a decrease in antioxidant activity, although other mechanisms are also possible, given the similar effects between soy and bovine milk. The role of milk fat globules and the milk fat globule membrane surface is also important when considering interactions and loss of polyphenolic antioxidant activity, which has not been addressed in the literature.
Caries protective agents in human milk and bovine milk: an in vitro study.
Shetty, Vabitha; Hegde, Amitha M; Nandan, S; Shetty, Suchetha
2011-01-01
To estimate Calcium and Phosphorus withdrawal from hydroxyapatite in the presence of bovine milk and human milk from which the following protective fractions namely Casein, Whey protein, Lactose and Milk fat have been individually removed and to compare the above protective fractions in human and bovine milk. Human milk obtained from lactating mothers in the labor ward of Kshema hospital was subjected to immediate analysis. Bovine milk was obtained from a local dairy. Equal quantities of human milk and bovine milk (1 ml) were separately subjected to the systematic removal of the four milk fractions. As each fraction was removed, the remaining milk samples were subjected to testing. Powdered hydroxyapatite from human dental enamel was subjected to demineralization with the addition of the milk sample under test for 20 minutes. This mixture was then centrifuged. Aliquots of the supernatant were taken for calcium and Phosphorus analysis using photospectrometry. Ten demineralization tests were similarly carried out for every milk fraction for both human and bovine milk separately. Equal samples of whole bovine milk and whole human milk were also subjected to similar testing. The calcium and phosphorus dissolution values were higher when the individual fractions were eliminated from both human milk/enamel samples and bovine milk/enamel samples as compared to the values obtained from whole human milk/whole bovine milk/enamel samples. Further higher calcium and phosphorus dissolution values were observed when the fractions were individually and separately removed from the whole human milk/enamel samples as compared to the corresponding values obtained when these fractions were removed from bovine milk/enamel samples. The evaluated milk fraction in bovine milk namely casein, whey protein, lactose and milk fat were individually more caries protective when compared to the corresponding fractions in human milk.
Buntuchai, Ganokwun; Pavadhgul, Patcharanee; Kittipichai, Wirin; Satheannoppakao, Warapone
2017-08-01
Thai traditional galactagogue consumption is still observed today. However, there are few scientific studies that describe this practice. Research aim: The aim of this study was to describe the connection between traditional galactagogue consumption and human milk volume. Self-reported maternal surveys ( N = 36) were conducted of mothers and their infants who breastfeed exclusively. The mothers were interviewed about traditional galactagogue consumption and intake of protein-rich foods using a semiquantitative food-frequency questionnaire. They were also assessed for energy and nutrient intake using the 24-hr dietary recall method. Their infants were between 1 and 3 months of age and were test weighed for 24 hr to measure their mother's own milk volume. Partial correlation was used to test the relationship between galactagogue consumption and milk volume by controlling the infants' birth weight, weight-for-age, maternal energy, and carbohydrate intake. The results revealed that consumption of some traditional galactagogues was significantly correlated to human milk volume, including banana flower, lemon basil, Thai basil, bottle gourd, and pumpkin ( p < .05). Furthermore, there were significant correlations between consumption of some kinds of protein and milk volume, including egg tofu, chicken, fish, and seafood ( p < .05). Maternal energy and carbohydrate intake were related to milk volume ( p < .05), but protein intake was not. Certain kinds of traditional galactagogues and proteins are associated with human milk volume. However, studies related to the active ingredients in these galactagogues are required to secure a recommendation about use of traditional galactagogues among breastfeeding mothers.
Dettori, Maria Luisa; Pazzola, Michele; Pira, Emanuela; Puggioni, Ornella; Vacca, Giuseppe Massimo
2015-11-01
The variability of the promoter region and the 3'UTR (exon-7) of the BLG gene, encoding the β-lactoglobulin, was investigated by sequencing in 263 lactating Sarda goats in order to assess its association with milk traits. Milk traits included: milk yield, fat, total protein and lactose content, pH, daily fat and protein yield (DFPY), freezing point, milk energy, somatic cell count, total microbial mesophilic count, rennet coagulation time (RCT), curd firming rate (k20) and curd firmness (a30). A total of 7 polymorphic sites were detected and the sequence analysed was given accession number KM817769. Only three SNPs (c.-381C>T, c.-323C>T and c.*420C>A) had minor allele frequency higher than 0.05. The effects of farm, stage of lactation and the interaction farm × stage of lactation significantly influenced all the milk traits (P T and c.*420C>A (P T (P < 0.001). The c.-381TT homozygous goats showed lower pH, RCT and k20 than c.-381CT (P < 0.05). In conclusion the polymorphism of the goat BLG gene did not affect the total protein content of the Sarda goat milk, and only weakly influenced RCT and k20. On the other hand, an interesting effect on milk yields and DFPY emerged in two SNPs. This information might be useful in dairy goat breeding programs.
Shimazaki, Yoshihiro; Mitoma, Morihide; Oho, Takahiko; Nakano, Yoshio; Yamashita, Yoshihisa; Okano, Kaoru; Nakano, Yutaka; Fukuyama, Masataka; Fujihara, Noboru; Nada, Youichi; Koga, Toshihiko
2001-01-01
Cell surface protein antigen (PAc) and water-insoluble glucan-synthesizing enzyme (GTF-I) produced by cariogenic Streptococcus mutans are two major factors implicated in the colonization of the human oral cavity by this bacterium. We examined the effect of bovine milk, produced after immunization with a fusion protein of functional domains of these proteins, on the recolonization of S. mutans. To prepare immune milk, a pregnant Holstein cow was immunized with the fusion protein PAcA-GB, a fusion of the saliva-binding alanine-rich region (PAcA) of PAc and the glucan-binding (GB) domain of GTF-I. After eight adult subjects received cetylpyridinium chloride (CPC) treatment, one subgroup (n = 4) rinsed their mouths with immune milk and a control group (n = 4) rinsed with nonimmune milk. S. mutans levels in saliva and dental plaque decreased after CPC treatment in both groups. Mouth rinsing with immune milk significantly inhibited recolonization of S. mutans in saliva and plaque. On the other hand, the numbers of S. mutans cells in saliva and plaque in the control group increased immediately after the CPC treatment and surpassed the baseline level 42 and 28 days, respectively, after the CPC treatment. The ratios of S. mutans to total streptococci in saliva and plaque in the group that received immune milk were lower than those in the control group. These results suggest that milk produced from immunized cow may be useful for controlling S. mutans in the human oral cavity. PMID:11687453
Zhao, Meng; Bu, Dengpan; Wang, Jiaqi; Zhou, Xiaoqiao; Zhu, Dan; Zhang, Ting; Niu, Junli; Ma, Lu
2016-06-01
This study was designed to investigate whether dietary neutral detergent fiber (NDF) : starch ratio could be considered as a nutritional indicator to evaluate carbohydrate composition and manipulate milk production and composition synthesis. Eight primiparous dairy cows were assigned to four total mixed rations with NDF : starch ratios of 0.86, 1.18, 1.63 and 2.34 from T1 to T4 in a replicated 4 × 4 Latin square design. Dry matter intake and milk production were decreased from T1 to T4. Digestibility of dry matter, organic matter, NDF and crude protein were linearly decreased from T1 to T4. As NDF : starch ratio increased, milk protein content and production, and milk lactose content and production were linearly reduced. However, milk fat content was linearly increased from T1 to T4. Quadratic effect was observed on milk fat production with the highest level in T3. Averaged rumen pH was linearly increased from T1 to T4, and subacute rumen acidosis occurred in T1. Ruminal propionate and butyrate concentration were linearly decreased, and microbial crude protein and metabolizable protein decreased from T1 to T4. It is concluded that NDF : starch ratio can be considered as a potential indicator to evaluate dietary carbohydrate composition and manipulate milk production and composition synthesis. © 2015 Japanese Society of Animal Science.
2013-05-07
milk o Low fat 1 % milk o Chocolate milk o Lactaid milk - (~ONLY ONE) . . o Reduced fat 2% o Nonfat milk o Soy milk . o Don’t know - m~ - Please tell...did you drink? : (~Ol\\ILYONE) · · • OWholemilk o Reduced fat 2% milk • Please tell us about yourself o Low fat 1 % milk o Chocolate milk o...intakes for energy, fiber, fat , fatty acids, cholesterol, protein , and amino acids Washington, DC: The
Preterm human milk macronutrient concentration is independent of gestational age at birth.
Maly, Jan; Burianova, Iva; Vitkova, Veronika; Ticha, Eva; Navratilova, Martina; Cermakova, Eva
2018-01-20
To evaluate the amount of macronutrients in aggregate of human milk samples after preterm delivery during the first 2 months of lactation. Analysis of the donated single milk samples, gained by complete emptying of the whole breast at the same daytime between 24+0 and 35+6 gestational age (GA), was designed as prospective observational cohort trial. Two milk samples were analysed every postnatal week up to the discharge from the hospital, week 9 or loss of lactation. 24-Hour milk collection was not done. Analysis was performed using the MIRIS Human Milk Analyser (MIRIS AB, Uppsala, Sweden). A set of 1917 human milk samples donated by 225 mothers after preterm labour was analysed. Group A (24-30 GA) contains 969 milk samples; group B (31-35 GA) contains 948 milk samples. No difference in milk composition between the groups was identified. Median of true protein content decreased from 1.6 g/dL in group A and 1.5 g/dL in group B in the first week of life, to 1.1 g/dL in both groups at the end of week 3, and then remained stable up to week 9. Content of carbohydrates and fat was stable during the whole observation, with interindividual differences. Human milk does not differ as a function of degree of prematurity. Protein content of preterm human milk is low and decreases during the first 3 weeks of lactation. Recommended daily protein intake cannot be achieved with routine fortification in majority of milk samples. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Heuer, C; Schukken, Y H; Dobbelaar, P
1999-02-01
The study used field data from a regular herd health service to investigate the relationships between body condition scores or first test day milk data and disease incidence, milk yield, fertility, and culling. Path model analysis with adjustment for time at risk was applied to delineate the time sequence of events. Milk fever occurred more often in fat cows, and endometritis occurred between calving and 20 d of lactation more often in thin cows. Fat cows were less likely to conceive at first service than were cows in normal condition. Fat body condition postpartum, higher first test day milk yield, and a fat to protein ratio of > 1.5 increased body condition loss. Fat or thin condition or condition loss was not related to other lactation diseases, fertility parameters, milk yield, or culling. First test day milk yield was 1.3 kg higher after milk fever and was 7.1 kg lower after displaced abomasum. Higher first test day milk yield directly increased the risk of ovarian cyst and lameness, increased 100-d milk yield, and reduced the risk of culling and indirectly decreased reproductive performance. Cows with a fat to protein ratio of > 1.5 had higher risks for ketosis, displaced abomasum, ovarian cyst, lameness, and mastitis. Those cows produced more milk but showed poor reproductive performance. Given this type of herd health data, we concluded that the first test day milk yield and the fat to protein ratio were more reliable indicators of disease, fertility, and milk yield than was body condition score or loss of body condition score.
Effect of somatic cell count and mastitis pathogens on milk composition in Gyr cows
2013-01-01
Background Gyr cows are well adapted to tropical conditions, resistant to some tropical diseases and have satisfactory milk production. However, Gyr dairy herds have a high prevalence of subclinical mastitis, which negatively affects their milk yield and composition. The objectives of this study were (i) to evaluate the effects of seasonality, mammary quarter location (rear x front), mastitis-causing pathogen species, and somatic cell count (SCC) on milk composition in Gyr cows with mammary quarters as the experimental units and (ii) to evaluate the effects of seasonality and somatic cell count (SCC) on milk composition in Gyr cows with cows as the experimental units. A total of 221 lactating Gyr cows from three commercial dairy farms were selected for this study. Individual foremilk quarter samples and composite milk samples were collected once a month over one year from all lactating cows for analysis of SCC, milk composition, and bacteriological culture. Results Subclinical mastitis reduced lactose, nonfat solids and total solids content, but no difference was found in the protein and fat content between infected and uninfected quarters. Seasonality influenced milk composition both in mammary quarters and composite milk samples. Nevertheless, there was no effect of mammary quarter position on milk composition. Mastitis-causing pathogens affected protein, lactose, nonfat solids, and total solids content, but not milk fat content. Somatic cell count levels affected milk composition in both mammary quarters and composite samples of milk. Conclusions Intramammary infections in Gyr cows alter milk composition; however, the degree of change depends on the mastitis-causing pathogen. Somatic cell count is negatively associated with reduced lactose and nonfat solids content in milk. Seasonality significantly affects milk composition, in which the concentration of lactose, fat, protein, nonfat solids and total solids differs between dry and wet seasons in Gyr cows. PMID:23566405
Acne located on the trunk, whey protein supplementation: Is there any association?
Cengiz, Fatma Pelin; Cevirgen Cemil, Bengu; Emiroglu, Nazan; Gulsel Bahali, Anil; Onsun, Nahide
2017-01-01
Whey protein is a source of protein that was isolated from milk. Whey proteins are composed of higher levels of essential amino acids. The role of diet in acne etiology has been investigated for several years. It was established that milk and milk products can trigger acneiform lesions, and recent evidence supports the role of whey protein supplements in acne. Herein, we report 6 healthy male adolescent patients developing acne located only to the trunk after the consumption of whey protein supplements for faster bodybuilding. This is the first observation which specified the location of acneiform lesions among bodybuilders. In our opinion, a trendy and common health problem is beginning among adolescents in the gyms. PMID:28326292
Caroli, A; Rizzi, R; Lühken, G; Erhardt, G
2010-03-01
Milk protein genetic polymorphisms are often used for characterizing domesticated mammalian species and breeds, and for studying associations with economic traits. The aim of this work was to analyze milk protein genetic variation in the Original Pinzgauer, a dual-purpose (dairy and beef) cattle breed of European origin that was influenced in the past by human movements from different regions as well as by crossbreeding with Red Holstein. A total of 485 milk samples from Original Pinzgauer from Austria (n=275) and Germany (n=210) were typed at milk proteins alpha(S1)-casein, beta-casein, kappa-casein, alpha-lactalbumin, and beta-lactoglobulin by isoelectrofocusing to analyze the genetic variation affecting the protein amino acid charge. The Original Pinzgauer breed is characterized by a rather high genetic variation affecting the amino acid charge of milk proteins, with a total of 15 alleles, 12 of which were found at a frequency >0.05. The most polymorphic protein was beta-casein with 4 alleles detected. The prevalent alleles were CSN1S1*B, CSN2*A(2), CSN1S2*A, CSN3*A, LGB*A, and LAA*B. A relatively high frequency of CSN1S2*B (0.202 in the whole data set) was found, mainly occurring within the C-A(2)-B-A haplotype (in the order CSN1S1-CSN2-CSN1S2-CSN3), which seems to be peculiar to the Original Pinzgauer, possibly because the survival of an ancestral haplotype or the introgression of Bos indicus.
USDA-ARS?s Scientific Manuscript database
Milking frequency is known to affect milk production and lactation persistence in dairy cows. Despite this, the mechanisms underlying this effect are only partially understood. Previous work in dairy cows examining increases in milk yield due to increased milking frequency have identified changes in...
Al-Awadi, F M; Srikumar, T S
2001-08-01
Studies on camels' milk, whether with respect to concentration or bioavailability of trace elements from this milk, are limited and warrant further investigation. The object of this study was to analyse the concentration and distribution of zinc, copper, selenium, manganese and iron in camel milk compared to those in human milk, cows' milk and infant formula under similar experimental conditions. Camels' milk and cows' milk were collected from local farms, human milk samples were obtained from healthy donors in Kuwait and infant formula was purchased locally. Milk fractionation was performed by ultra-centrifugation and gelcolumn chromatography. The concentration of trace elements was analysed by atomic absorption spectrometry and that of protein was determined spectrophotometrically. The concentration of manganese and iron in camels' milk was remarkably higher (7-20-fold and 4-10-fold, respectively) than in human milk, cows' milk and infant formula. The zinc content of camels' milk was higher than that of human milk but slightly lower than in cows' milk and infant formula. The concentration of copper in camels' milk was similar to that of cows' milk but lower than in human milk and infant formula. The selenium content of camels' milk was comparable to those of other types of milk, Approximately 50-80% of zinc, copper and manganese in camels' milk were associated with the casein fraction, similar to that of cows' milk, The majority of selenium and iron in camels' milk was in association with the low molecular weight fraction, It is recommended that camels' milk be considered as a potential source of manganese, selenium and iron, perhaps not only for infants, but also for other groups suspected of mild deficiency of these elements. Further investigations are required to confirm this proposal.
Microwave-assisted cross-linking of milk proteins induced by microbial transglutaminase
NASA Astrophysics Data System (ADS)
Chen, Chun-Chi; Hsieh, Jung-Feng
2016-12-01
We investigated the combined effects of microbial transglutaminase (MTGase, 7.0 units/mL) and microwave irradiation (MI) on the polymerization of milk proteins at 30 °C for 3 h. The addition of MTGase caused the milk proteins to become polymerized, which resulted in the formation of components with a higher molecular-weight (>130 kDa). SDS-PAGE analysis revealed reductions in the protein content of β-lactoglobulin (β-LG), αS-casein (αS-CN), κ-casein (κ-CN) and β-casein (β-CN) to 50.4 ± 2.9, 33.5 ± 3.0, 4.2 ± 0.5 and 1.2 ± 0.1%, respectively. The use of MTGase in conjunction MI with led to a 3-fold increase in the rate of milk protein polymerization, compared to a sample that contained MTGase but did not undergo MI. Results of two-dimensional gel electrophoresis (2-DE) indicated that κ-CN, β-CN, a fraction of serum albumin (SA), β-LG, α-lactalbumin (α-LA), αs1-casein (αs1-CN), and αs2-casein (αs2-CN) were polymerized in the milk, following incubation with MTGase and MI at 30 °C for 1 h. Based on this result, the combined use of MTGase and MI appears to be a better way to polymerize milk proteins.
Acosta, Mariano; Torres, Sabier; Mariño-Repizo, Leonardo; Martinez, Luis D; Gil, Raúl A
2018-06-02
Levels of essential metals in human breast milk (HBM) have been determined by different analytical techniques, but there is few woks about human whey milk fractions. However, the current trend lies in metalloproteomic and identification of different metalloproteins. In this sense, native separative techniques (N-PAGE and SEC) coupled to ICP-MS provide us with valuable information. Besides it is necessary the development of new methodologies in order to determine with accuracy and precision the profile of such metals and metalloproteins in the different whey protein fractions of HBM. Thus, the aim of this work was to develop a new method for metals and metalloproteins determination by SEC-ICP-MS in whey protein fractions of HBM. Human whey fractions were obtained of HBM samples by ultracentrifugation. Then, protein fractions of whey milk were separated by SEC coupled to ICP-MS for metalloproteins and Mn, Co, Cu and Se quantification. Besides, protein profile of whey milk was determined by N-PAGE and computer assisted image analysis. SEC-ICP-MS results indicated that first and second protein fractions showed detectable levels of the Mn, Co, Cu, and Se. Protein profile determined by N-PAGE and image analysis showed that molecular weight of protein fractions ranged between 68,878-1,228.277 Da. In this work, metalloproteins were analyzed by SEC coupled to ICP-MS, with adequate sensitivity and accuracy. Our study has shown the presence of Mn, Co, Cu and Se bound to two protein fractions in whey milk of HBM. Metals levels analyzed were within the ranges reported in the literature. Copyright © 2018 Elsevier B.V. All rights reserved.
Romek, Katarzyna M; Julien, Maxime; Frasquet-Darrieux, Marine; Tea, Illa; Antheaume, Ingrid; Hankard, Régis; Robins, Richard J
2013-12-01
Since exclusively breast-suckled infants obtain their nutrient only from their mother's milk, it might be anticipated that a correlation will exist between the (15)N/(14)N isotope ratios of amino acids of protein of young infants and those supplied by their mother. The work presented here aimed to determine whether amino nitrogen transfer from human milk to infant hair protein synthesized within the first month of life conserves the maternal isotopic signature or whether post-ingestion fractionation dominates the nitrogen isotope spectrum. The study was conducted at 1 month post-birth on 100 mother-infant pairs. Isotope ratios (15)N/(14)N and (13)C/(12)C were measured using isotope ratio measurement by Mass Spectrometry (irm-MS) for whole maternal milk, and infant hair and (15)N/(14)N ratios were also measured by GC-irm-MS for the N-pivaloyl-O-isopropyl esters of amino acids obtained from the hydrolysis of milk and hair proteins. The δ(15)N and δ(13)C (‰) were found to be significantly higher in infant hair than in breast milk (δ(15)N, P < 0.001; δ(13)C, P < 0.001). Furthermore, the δ(15)N (‰) of individual amino acids in infant hair was also significantly higher than that in maternal milk (P < 0.001). By calculation, the observed shift in isotope ratio was shown not to be accounted for by the amino acid composition of hair and milk proteins, indicating that it is not simply due to differences in the composition in the proteins present. Rather, it would appear that each pool-mother and infant-turns over independently, and that fractionation in infant N-metabolism even in the first month of life dominates over the nutrient N-content.
Castillo, Daniela S.
2017-01-01
Cow milk protein allergy (CMPA) is the most common childhood food allergy, which can sometimes persist or can newly develop in adulthood with severe symptoms. CMPA's treatment is complete dietary avoidance of milk proteins. To achieve this task, patients have to be aware of milk proteins found as "hidden allergens" in food commodities. In regard to milk proteins, it has been reported that allergenicity of caseins remains unaffected upon heat treatment. For these reasons, we aimed to obtain monoclonal antibodies (mAbs) against native and denatured β-casein, one of the most abundant and antigenic caseins, in order to develop an indirect competitive ELISA (icELISA) to detect and quantify traces of this milk allergen in raw and processed foodstuffs. We developed two specific hybridoma clones, 1H3 and 6A12, which recognized β-casein in its denatured and native conformations by indirect ELISA (iELISA). Cross-reaction analysis by Western blot and iELISA indicated that these mAbs specifically recognized β-casein from bovine and goat milk extracts, while they did not cross-react with proteins present in other food matrixes. These highly specific mAbs enabled the development of sensitive, reliable and reproducible icELISAs to detect and quantify this milk protein allergen in food commodities. The extraction of β-casein from foodstuff was efficiently carried out at 60°C for 15 minutes, using an extraction buffer containing 1% SDS. The present study establishes a valid 1H3 based-icELISA, which allows the detection and quantification -0.29 ppm and 0.80 ppm, respectively- of small amounts of β-casein in raw and processed foods. Furthermore, we were able to detect milk contamination in incurred food samples with the same sensitivity as a commercial sandwich ELISA thus showing that this icELISA constitutes a reliable analytical method for control strategies in food industry and allergy prevention. PMID:28759641
Castillo, Daniela S; Cassola, Alejandro
2017-01-01
Cow milk protein allergy (CMPA) is the most common childhood food allergy, which can sometimes persist or can newly develop in adulthood with severe symptoms. CMPA's treatment is complete dietary avoidance of milk proteins. To achieve this task, patients have to be aware of milk proteins found as "hidden allergens" in food commodities. In regard to milk proteins, it has been reported that allergenicity of caseins remains unaffected upon heat treatment. For these reasons, we aimed to obtain monoclonal antibodies (mAbs) against native and denatured β-casein, one of the most abundant and antigenic caseins, in order to develop an indirect competitive ELISA (icELISA) to detect and quantify traces of this milk allergen in raw and processed foodstuffs. We developed two specific hybridoma clones, 1H3 and 6A12, which recognized β-casein in its denatured and native conformations by indirect ELISA (iELISA). Cross-reaction analysis by Western blot and iELISA indicated that these mAbs specifically recognized β-casein from bovine and goat milk extracts, while they did not cross-react with proteins present in other food matrixes. These highly specific mAbs enabled the development of sensitive, reliable and reproducible icELISAs to detect and quantify this milk protein allergen in food commodities. The extraction of β-casein from foodstuff was efficiently carried out at 60°C for 15 minutes, using an extraction buffer containing 1% SDS. The present study establishes a valid 1H3 based-icELISA, which allows the detection and quantification -0.29 ppm and 0.80 ppm, respectively- of small amounts of β-casein in raw and processed foods. Furthermore, we were able to detect milk contamination in incurred food samples with the same sensitivity as a commercial sandwich ELISA thus showing that this icELISA constitutes a reliable analytical method for control strategies in food industry and allergy prevention.
Production of coconut protein powder from coconut wet processing waste and its characterization.
Naik, Aduja; Raghavendra, S N; Raghavarao, K S M S
2012-07-01
Virgin coconut oil (VCO) has been gaining popularity in recent times. During its production, byproducts such as coconut skim milk and insoluble protein are obtained which are underutilized or thrown away to the environment at present. This study deals with utilization of these byproducts to obtain a value-added product, namely, coconut protein powder. When coconut milk was subjected to centrifugation, three phases, namely, fat phase (coconut cream), aqueous phase (coconut skim milk), and solid phase (insoluble protein) were obtained. The coconut skim milk and insoluble protein were mixed and homogenized before spray drying to obtain a dehydrated protein powder. The proximate analysis of the powder showed high protein content (33 % w/w) and low fat content (3 % w/w). Protein solubility was studied as a function of pH and ionic content of solvent. Functional properties such as water hydration capacity, fat absorption capacity, emulsifying properties, wettability, and dispersibility of coconut protein powder were evaluated along with morphological characterization, polyphenol content, and color analysis. Coconut protein powder has shown to have good emulsifying properties and hence has potential to find applications in emulsified foods. Sensory analysis showed high overall quality of the product, indicating that coconut protein powder could be a useful food ingredient.
7 CFR 58.205 - Meaning of words.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., dry whey, or products other than nonfat dry milk, except that lactose may be added as a processing aid... agent, or other chemical. If lactose is used, the amount of lactose shall be the minimum required to... from milk and contains the lactose, milk proteins, milk fat, and milk minerals in the same relative...
7 CFR 58.205 - Meaning of words.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., dry whey, or products other than nonfat dry milk, except that lactose may be added as a processing aid... agent, or other chemical. If lactose is used, the amount of lactose shall be the minimum required to... from milk and contains the lactose, milk proteins, milk fat, and milk minerals in the same relative...
Berry, S D; Lopez-Villalobos, N; Beattie, E M; Davis, S R; Adams, L F; Thomas, N L; Ankersmit-Udy, A E; Stanfield, A M; Lehnert, K; Ward, H E; Arias, J A; Spelman, R J; Snell, R G
2010-02-01
To identify quantitative trait loci (QTL) affecting the concentration of beta-lactoglobulin in milk, and to evaluate the effect of beta-lactoglobulin genetic variants on the concentration of fat, protein and casein in bovine milk. A herd of 850 F2 Holstein-Friesian x Jersey crossbred cows was produced through mating six Holstein-Friesian x Jersey F1 bulls of high genetic merit with F1 cows from the national herd. A total of 1,610 herd-test records from 556 second-parity crossbreds were analysed. The concentration of fat, protein and casein in milk was measured at peak, mid- and late lactation, during the production seasons of 2003-2004 and 2004-2005. Liveweight was measured daily. DNA from the F2 animals, their F1 dams and sires, and selected grandsires was genotyped across the genome, initially with 285 microsatellite markers, and subsequently with 6,634 single nucleotide polymorphisms (SNP). A highly significant QTL for the concentration of beta-lactoglobulin in milk was identified, which coincided with the position of the beta-lactoglobulin gene on bovine Chromosome 11. No other consistently significant QTL for the concentration of beta-lactoglobulin in milk were detected. Cows with the BB beta-lactoglobulin genotype produced milk with a 30% lower concentration of beta-lactoglobulin than cows with the AA genotype. The beta-lactoglobulin polymorphism also explained variation in the proportion of casein in total protein. In addition, the percentage of fat was higher for BB than AA animals, whereas the percentage of total protein, mean daily milk yield and liveweight did not differ between AA and BB animals. A significant QTL determining the concentration of beta-lactoglobulin in milk was identified. Selection of animals for the beta-lactoglobulin B-allele may enable the production of milk naturally enriched for casein, thus allowing a potential increase in the yield of cheese. There may be additional future value in production of bovine milk more like human milk, where decreasing the concentration of beta-lactoglobulin is desirable.
Interactions between acidified dispersions of milk proteins and dextran or dextran sulfate.
Pachekrepapol, U; Horne, D S; Lucey, J A
2014-09-01
Polysaccharides are often used to stabilize cultured milk products, although the nature of these interactions is not entirely clear. The objective of this study was to investigate phase behavior of milk protein dispersions with added dextran (DX; molecular weight = 2 × 10(6) Da) or dextran sulfate (DS; molecular weight = 1.4 × 10(6) Da) as examples of uncharged and charged polysaccharides, respectively. Reconstituted skim milk (5-20% milk solids, wt/wt) was acidified to pH 4.4, 4.6, 4.8, or 4.9 at approximately 0°C (to inhibit gelation) by addition of 3 N HCl. Dextran or DS was added to acidified milk samples to give concentrations of 0 to 2% (wt/wt) and 0 to 1% (wt/wt) polysaccharide, respectively. Milk samples were observed for possible phase separation after storage at 0°C for 1 and 24h. Possible gelation of these systems was determined by using dynamic oscillatory rheology. The type of interactions between caseins and DX or DS was probed by determining the total carbohydrate analysis of supernatants from phase-separated samples. At 5.0 to 7.5% milk solids, phase separation of milk samples occurred after 24h even without DX or DS addition, due to destabilization of caseins in these acidic conditions, and a stabilizing effect was observed when 0.7 or 1.0% DS was added. At higher milk solids content, phase separation was not observed without DX or DS addition. Similar results were observed at all pH levels. Gelation occurred in samples containing high milk solids (≥10%) with the addition of 1.0 to 2.0% DX or 0.4 to 1.0% DS. Based on carbohydrate analysis of supernatants, we believe that DX interacted with milk proteins through a type of depletion flocculation mechanism, whereas DS appeared to interact via electrostatic-type interactions with milk proteins. This study helps to explain how uncharged and charged stabilizers influence the texture of cultured dairy products. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Human milk is the feeding strategy to prevent necrotizing enterocolitis!
Maffei, Diana; Schanler, Richard J
2017-02-01
Human milk is the preferred diet for preterm infants as it protects against a multitude of NICU challenges, specifically necrotizing enterocolitis. Infants who receive greater than 50% of mother's own milk (MOM) in the 2 weeks after birth have a significantly decreased risk of NEC. An additional factor in the recent declining rates of NEC is the increased utilization of donor human milk (DHM). This creates a bridge until MOM is readily available, thus decreasing the exposure to cow milk protein. Preterm infants are susceptible to NEC due to the immaturity of their gastrointestinal and immune systems. An exclusive human milk diet compensates for these immature systems in many ways such as lowering gastric pH, enhancing intestinal motility, decreasing epithelial permeability, and altering the composition of bacterial flora. Ideally, preterm infants should be fed human milk and avoid bovine protein. A diet consisting of human milk-based human milk fortifier is one way to provide the additional nutritional supplements necessary for adequate growth while receiving the protective benefits of a human milk diet. Copyright © 2016 Elsevier Inc. All rights reserved.
Lemay, Danielle G.; Ballard, Olivia A.; Hughes, Maria A.; Morrow, Ardythe L.; Horseman, Nelson D.; Nommsen-Rivers, Laurie A.
2013-01-01
Aware of the important benefits of human milk, most U.S. women initiate breastfeeding but difficulties with milk supply lead some to quit earlier than intended. Yet, the contribution of maternal physiology to lactation difficulties remains poorly understood. Human milk fat globules, by enveloping cell contents during their secretion into milk, are a rich source of mammary cell RNA. Here, we pair this non-invasive mRNA source with RNA-sequencing to probe the milk fat layer transcriptome during three stages of lactation: colostral, transitional, and mature milk production. The resulting transcriptomes paint an exquisite portrait of human lactation. The resulting transcriptional profiles cluster not by postpartum day, but by milk Na:K ratio, indicating that women sampled during similar postpartum time frames could be at markedly different stages of gene expression. Each stage of lactation is characterized by a dynamic range (105-fold) in transcript abundances not previously observed with microarray technology. We discovered that transcripts for isoferritins and cathepsins are strikingly abundant during colostrum production, highlighting the potential importance of these proteins for neonatal health. Two transcripts, encoding β-casein (CSN2) and α-lactalbumin (LALBA), make up 45% of the total pool of mRNA in mature lactation. Genes significantly expressed across all stages of lactation are associated with making, modifying, transporting, and packaging milk proteins. Stage-specific transcripts are associated with immune defense during the colostral stage, up-regulation of the machinery needed for milk protein synthesis during the transitional stage, and the production of lipids during mature lactation. We observed strong modulation of key genes involved in lactose synthesis and insulin signaling. In particular, protein tyrosine phosphatase, receptor type, F (PTPRF) may serve as a biomarker linking insulin resistance with insufficient milk supply. This study provides the methodology and reference data set to enable future targeted research on the physiological contributors of sub-optimal lactation in humans. PMID:23861770
Target Fortification of Breast Milk: Predicting the Final Osmolality of the Feeds
Choi, Arum; Fusch, Gerhard; Rochow, Niels; Fusch, Christoph
2016-01-01
For preterm infants, it is common practice to add human milk fortifiers to native breast milk to enhance protein and calorie supply because the growth rates and nutritional requirements of preterm infants are considerably higher than those of term infants. However, macronutrient intake may still be inadequate because the composition of native breast milk has individual inter- and intra-sample variation. Target fortification (TFO) of breast milk is a new nutritional regime aiming to reduce such variations by individually measuring and adding deficient macronutrients. Added TFO components contribute to the final osmolality of milk feeds. It is important to predict the final osmolality of TFO breast milk to ensure current osmolality recommendations are followed to minimize feeding intolerance and necrotizing enterocolitis. This study aims to develop and validate equations to predict the osmolality of TFO milk batches. To establish prediction models, the osmolalities of either native or supplemented breast milk with known amounts of fat, protein, and carbohydrates were analyzed. To validate prediction models, the osmolalities of each macronutrient and combinations of macronutrients were measured in an independent sample set. Additionally, osmolality was measured in TFO milk samples obtained from a previous clinical study and compared with predicted osmolality using the prediction equations. Following the addition of 1 g of carbohydrates (glucose polymer), 1 g of hydrolyzed protein, or 1 g of whey protein per 100 mL breast milk, the average increase in osmolality was 20, 38, and 4 mOsm/kg respectively. Adding fat decreased osmolality only marginally due to dilution effect. Measured and predicted osmolality of combinations of macronutrients as well as single macronutrient (R2 = 0.93) were highly correlated. Using clinical data (n = 696), the average difference between the measured and predicted osmolality was 3 ± 11 mOsm/kg and was not statistically significant. In conclusion, the prediction model can be utilized to estimate osmolality values after fortification. PMID:26863130
Improved circadian sleep-wake cycle in infants fed a day/night dissociated formula milk.
Cubero, J; Narciso, D; Aparicio, S; Garau, C; Valero, V; Rivero, M; Esteban, S; Rial, R; Rodríguez, A B; Barriga, C
2006-06-01
On the basis of the circadian nutritional variations present in breast milk, and of the implications for the sleep/wake cycle of the nutrients present in infant formula milks, we designed a formula milk nutritionally dissociated into a Day/Night composition. The goal was to improve the bottle-fed infant's sleep/wake circadian rhythm. A total of 21 infants aged 4-20 weeks with sleeping difficulties were enrolled in the three-week duration study. The sleep analysis was performed using an actimeter (Actiwatch) placed on an ankle of each infant to uninterruptedly record movements during the three weeks. The dissociated Day milk, designed to be administered from 06:00 to 18:00, contained low levels of tryptophan (1.5g/100g protein) and carbohydrates, high levels of proteins, and the nucleotides Cytidine 5 monophosphate, Guanosine 5 monophosphate and Inosine 5 monophosphate. The dissociated Night milk, designed to be administered from 18.00 to 06.00, contained high levels of tryptophan (3.4g/100g protein) and carbohydrates, low levels of protein, and the nucleotides Adenosine 5 monophosphate and Uridine 5 monophosphate. Three different milk-feeding experiments were performed in a double-blind procedure covering three weeks. In week 1 (control), the infants received both by day and by night a standard formula milk; in week 2 (inverse control), they received the dissociated milk inversely (Night/Day instead of Day/Night); and in week 3, they received the Day/Night dissociated formula concordant with the formula design. When the infants were receiving the Day/Night dissociated milk in concordance with their environment, they showed improvement in all the nocturnal sleep parameters analyzed: total hours of sleep, sleep efficiency, minutes of nocturnal immobility, nocturnal awakenings, and sleep latency. In conclusion, the use of a chronobiologically adjusted infant formula milk seems to be effective in improving the consolidation of the circadian sleep/wake cycle in bottle-fed infants.
Guzel, Saime; Yibar, Artun; Belenli, Deniz; Cetin, Ismail; Tanriverdi, Meltem
2017-03-23
The main objectives of our study were to measure the major adipokines adiponectin, leptin and resistin in goat milk, to assess their interrelationships and to assess their relationships with the plasma and serum concentrations of total protein, cholesterol, total lipids, plasma C-reactive protein (CRP), milk somatic cell count (SCC), milk total aerobic colony and lactobacillus count, and milk components in lactating Saanen goats. The study was performed on eighteen lactating Saanen goats. Milk and blood samples were collected on days 20, 35, 50, 65 and 80 of lactation postpartum. The milk and plasma adiponectin levels on days 50, 65 and 80 postpartum were significantly higher than those on day 20. The milk and plasma leptin levels were lower on day 20 than on days 35, 50, 65 and 80. The milk concentrations of these major adipokines were positively intercorrelated. The milk and plasma concentrations of these three adipokines were also positively correlated. The plasma CRP concentrations correlated positively with milk leptin and resistin concentrations and inversely with milk adiponectin concentration. Milk adiponectin concentration was inversely related with its SCC. These data confirm that adiponectin, leptin and resistin are present in goat milk. The milk concentrations of these three adipokines were interrelated and interacted with the general inflammatory marker, CRP. The inverse relationship between milk adiponectin concentrations and its SCC suggests that variations in milk adiponectin might be involved in the udder health of lactating goats, but clinical trials are needed to support this hypothesis.
Poppea's bath liquor: the secret proteome of she-donkey's milk.
Cunsolo, Vincenzo; Muccilli, Vera; Fasoli, Elisa; Saletti, Rosaria; Righetti, Pier Giorgio; Foti, Salvatore
2011-09-06
Donkey's milk is today categorized among the best mother's milk substitute for allergic newborns, due to its much reduced or absent allergenicity, coupled to excellent palatability and nutritional value. However, up to the present, only a handful of proteins had been characterized, just about the standard eight to ten major ones known in all types of milk. By exploiting the combinatorial peptide ligand library technology, and treating large volumes (up to 300 mL) of defatted, de-caseinized (whey) milk, we have been able to identify 106 unique gene products, by far the largest description so far of this precious nutrient. Due to poor knowledge of the donkey's genetic asset, only 10% of the proteins could be identified by consulting the data base of Equus asinus; the largest proportion (70%) could be identified by homology with the proteins of Equus caballus. Copyright © 2011 Elsevier B.V. All rights reserved.
Mather, I H; Sullivan, C H; Madara, P J
1982-01-01
A solid-phase immunoassay was used to detect xanthine oxidase in fractions from bovine mammary glands after electrophoresis in polyacrylamide gels containing sodium dodecyl sulphate. Under these conditions the major proportion of xanthine oxidase in either mammary tissue or mild could be recovered as a protein of mol.wt. 150 000. In mammary tissue approx. 80% of the enzyme was in a soluble form and the remainder was accounted for in either 'mitochondrial' or microsomal fractions after tissue homogenization and fractionation. Affinity chromatography of either detergent-solubilized microsomal membranes or postmicrosomal supernatants on immobilized antibody to xanthine oxidase yielded a single protein that cross-reacted with antibody to the enzyme. In milk presumptive degradation products of the enzyme were detected in minor quantities with mol.wts. of 43 000 in the whey fraction and 90 000 in fat-globule membrane. Only the undegraded enzyme was present in the skim-milk membrane fraction. Xanthine oxidase is therefore synthesized and secreted as a protein with a monomeric mol.wt. of 150 000 and is not subjected to extensive proteolytic degradation during the storage of milk in mammary alveoli. The significance of the results is discussed in relation to the overall protein composition of the membranes of milk-fat globules and skim milk. Images Fig. 1. Fig. 2. Fig. 3. PMID:7046730
Sabikhi, Latha
2007-01-01
Dairy biotechnology is fast gaining ground in the area of altering milk composition for processing and/or animal and human health by employing nutritional and genetic approaches. Modification of the primary structure of casein, alteration in the lipid profile, increased protein recovery, milk containing nutraceuticals, and replacement for infant formula offer several advantages in the area of processing. Less fat in milk, altered fatty acid profiles to include more healthy fatty acids such as CLA and omega-fats, improved amino acid profiles, more protein, less lactose, and absence of beta-lactoglobulin (beta-LG) are some opportunities of "designing" milk for human health benefits. Transgenic technology has also produced farm animals that secrete in their milk, human lactoferrin, lysozyme, and lipase so as to simulate human milk in terms of quality and quantity of these elements that are protective to infants. Cow milk allergenicity in children could be reduced by eliminating the beta-LG gene from bovines. Animals that produce milk containing therapeutic agents such as insulin, plasma proteins, drugs, and vaccines for human health have been genetically engineered. In order to cater to animal health, transgenic animals that express in their mammary glands, various components that work against mastitis have been generated. The ultimate acceptability of the "designer" products will depend on ethical issues such as animal welfare and safety, besides better health benefits and increased profitability of products manufactured by the novel techniques.
Milk composition and lactation of beta-casein-deficient mice.
Kumar, S; Clarke, A R; Hooper, M L; Horne, D S; Law, A J; Leaver, J; Springbett, A; Stevenson, E; Simons, J P
1994-01-01
beta-Casein is a major protein component of milk and, in conjunction with the other caseins, it is assembled into micelles. The casein micelles determine many of the physical characteristics of milk, which are important for stability during storage and for milk-processing properties. There is evidence that suggests that beta-casein may also possess other, nonnutritional functions. To address the function of beta-casein, the mouse beta-casein gene was disrupted by gene targeting in embryonic stem cells. Homozygous beta-casein mutant mice are viable and fertile; females can lactate and successfully rear young. beta-Casein was expressed at a reduced level in heterozygotes and was completely absent from the milk of homozygous mutant mice. Despite the deficiency of beta-casein, casein micelles were assembled in heterozygous and homozygous mutants, albeit with reduced diameters. The absence of beta-casein expression was reflected in a reduced total protein concentration in milk, although this was partially compensated for by an increased concentration of other proteins. The growth of pups feeding on the milk of homozygous mutants was reduced relative to those feeding on the milk of wild-type mice. Various genetic manipulations of caseins have been proposed for the qualitative improvement of cow's milk composition. The results presented here demonstrate that beta-casein has no essential function and that the casein micelle is remarkably tolerant of changes in composition. Images PMID:8016126
Sanchez, M P; Ferrand, M; Gelé, M; Pourchet, D; Miranda, G; Martin, P; Brochard, M; Boichard, D
2017-08-01
Genetic parameters for the major milk proteins were estimated in the 3 main French dairy cattle breeds (i.e. Montbéliarde, Normande, and Holstein) as part of the PhénoFinlait program. The 6 major milk protein contents as well as the total protein content (PC) were estimated from mid-infrared spectrometry on 133,592 test-day milk samples from 20,434 cows in first lactation. Lactation means, expressed as a percentage of milk (protein contents) or of protein (protein fractions), were analyzed with an animal mixed model including fixed environmental effects (herd, year × month of calving, and spectrometer) and a random genetic effect. Genetic parameter estimates were very consistent across breeds. Heritability estimates (h 2 ) were generally higher for protein fractions than for protein contents. They were moderate to high for α S1 -casein, α S2 -casein, β-casein, κ-casein, and α-lactalbumin (0.25 < h 2 < 0.72). In each breed, β-lactoglobulin was the most heritable trait (0.61 < h 2 < 0.86). Genetic correlations (r g ) varied depending on how the percentage was expressed. The PC was strongly positively correlated with protein contents but almost genetically independent from protein fractions. Protein fractions were generally in opposition, except between κ-casein and α-lactalbumin (0.39 < r g < 0.46) and κ-casein and α S2 -casein (0.36 < r g < 0.49). Between protein contents, r g estimates were positive, with highest values found between caseins (0.83 < r g < 0.98). In the 3 breeds, β-lactoglobulin was negatively correlated with caseins (-0.75 < r g < -0.08), in particular with κ-casein (-0.75 < r g < -0.55). These results, obtained from a large panel of cows of the 3 main French dairy cattle breeds, show that routinely collected mid-infrared spectra could be used to modify milk protein composition by selection. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Absorption of zinc from lupin (Lupinus angustifolius)-based foods.
Petterson, D S; Sandström, B; Cederblad, A
1994-12-01
The absorption of Zn from a lupin (Lupinus angustifolius) milk fortified with Ca, a bread containing lupin flour (230 g/kg), a sauce containing lupin flour and a sauce containing a lupin-protein isolate was determined in humans by measuring the whole-body retention of radioisotope from meals labelled with 0.02 MBq 65Zn, allowing for endogenous excretion of Zn, after 14 d. The absorption of Zn from the Ca-enriched milk (16.2%) and the bread made with lupin flour (27.0%) was similar to literature figures for comparable soya-bean products. The absorption from composite meals made with lupin flour (28.2%) and protein isolate (32.7%) was significantly higher than that reported for comparable soya-bean products. In a second experiment the absorption of Zn from a lupin-milk base and a soya-bean-milk base was compared with that from Ca-supplemented bases. The absorption of Zn from the lupin-milk base (26.3%) was significantly higher than from the soya-bean-milk base (17.6%), and neither was significantly altered by the addition of Ca. Overall the absorption of Zn from lupin-protein foods was found to be higher than from comparable soya-bean products. Lupin milk could be an attractive alternative to soya-bean milk for infant formulas.
Newburg, David S; Tanritanir, Ayse C; Chakrabarti, Subrata
2016-07-01
Human milk strongly quenches inflammatory processes in vitro, and breastfed infants have lower incidence of inflammatory diseases than those fed artificially. Platelets from neonates, in contrast to those from adults, are less responsive to platelet agonists such as collagen, thrombin, ADP, and epinephrine. Breastfed infants absorb oligosaccharides intact from the human milk in their gut to the circulation. This study was to determine whether these oligosaccharides can attenuate platelet function and platelet secretion of pro-inflammatory proteins, and to identify the active component. The natural mixture of oligosaccharides from human milk and pure individual human milk oligosaccharides were tested for their ability to modulate responses of platelets isolated from human blood following exposure to thrombin, ADP, and collagen. Human milk and the natural mixture of human milk oligosaccharides inhibited platelet release of inflammatory proteins. Of the purified human milk oligosaccharides tested, only lactodifucotetraose (LDFT) significantly inhibited thrombin induced release of the pro-inflammatory proteins RANTES and sCD40L. LDFT also inhibited platelet adhesion to a collagen-coated surface, as well as platelet aggregation induced by ADP or collagen. These data indicate that LDFT may help modulate hemostasis by suppressing platelet-induced inflammatory processes in breastfed infants. This activity suggests further study of LDFT for its potential as a therapeutic agent in infants and adults.
Bahrami-Yekdangi, H; Khorvash, M; Ghorbani, G R; Alikhani, M; Jahanian, R; Kamalian, E
2014-01-01
This study was conducted to evaluate the effects of decreasing dietary protein and rumen-undegradable protein (RUP) on production performance, nitrogen retention, and nutrient digestibility in high-producing Holstein cows in early lactation. Twelve multiparous Holstein lactating cows (2 lactations; 50 ± 7 d in milk; 47 kg/d of milk production) were used in a Latin square design with 4 treatments and 3 replicates (cows). Treatments 1 to 4 consisted of diets containing 18, 17.2, 16.4, and 15.6% crude protein (CP), respectively, with the 18% CP diet considered the control group. Rumen-degradable protein levels were constant across the treatments (approximately 10.9% on a dry matter basis), whereas RUP was gradually decreased. All diets were calculated to supply a postruminal Lys:Met ratio of about 3:1. Dietary CP had no significant effects on milk production or milk composition. In fact, 16.4% dietary CP compared with 18% dietary CP led to higher milk production; however, this effect was not significant. Feed intake was higher for 16.4% CP than for 18% CP (25.7 vs. 24.3 kg/d). Control cows had greater CP and RUP intakes, which resulted in higher concentrations of plasma urea nitrogen and milk urea nitrogen; cows receiving 16.4 and 15.6% CP, respectively, exhibited lower concentrations of milk urea nitrogen (15.2 and 15.1 vs. 17.3 mg/dL). The control diet had a significant effect on predicted urinary N. Higher CP digestibility was recorded for 18% CP compared with the other diets. Decreasing CP and RUP to 15.6 and 4.6% of dietary dry matter, respectively, had no negative effects on milk production or composition when the amounts of Lys and Met and the Lys:Met ratio were balanced. Furthermore, decreasing CP and RUP to 16.4 and 5.4%, respectively, increased dry matter intake. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The use of whey or skimmed milk powder in fortified blended foods for vulnerable groups.
Hoppe, Camilla; Andersen, Gregers S; Jacobsen, Stine; Mølgaard, Christian; Friis, Henrik; Sangild, Per T; Michaelsen, Kim F
2008-01-01
Fortified blended foods (FBF), especially corn soy blend, are used as food aid for millions of people worldwide, especially malnourished individuals and vulnerable groups. There are only a few studies evaluating the effect of FBF on health outcomes, and the potential negative effect of antinutrients has not been examined. Different lines of evidence suggest that dairy proteins have beneficial effects on vulnerable groups. Here we review the evidence on the effects of adding whey or skimmed milk powder to FBF used for malnourished infants and young children or people living with HIV or AIDS. Adding whey or skimmed milk powder to FBF improves the protein quality, allowing a reduction in total amount of protein, which could have potential metabolic advantages. It also allows for a reduced content of soy and cereal and thereby a reduction of potential antinutrients. It is possible that adding milk could improve weight gain, linear growth, and recovery from malnutrition, but this needs to be confirmed. Bioactive factors in whey might have beneficial effects on the immune system and muscle synthesis, but evidence from vulnerable groups is lacking. Milk proteins will improve flavor, which is important for acceptability in vulnerable groups. The most important disadvantage is a considerable increase in price. Adding 10-15% milk powder would double the price, which means that such a product should be used only in well-defined vulnerable groups with special needs. The potential beneficial effects of adding milk protein and lack of evidence in vulnerable groups call for randomized intervention studies.
Zhu, Mei; Yang, Zhenyu; Ren, Yiping; Duan, Yifan; Gao, Huiyu; Liu, Biao; Ye, Wenhui; Wang, Jie; Yin, Shian
2017-01-01
Macronutrient contents in human milk are the common basis for estimating these nutrient requirements for both infants and lactating women. A mid-infrared human milk analyser (HMA, Miris, Sweden) was recently developed for determining macronutrient levels. The purpose of the study is to compare the accuracy and precision of HMA method with fresh milk samples in the field studies with chemical methods with frozen samples in the lab. Full breast milk was collected using electric pumps and fresh milk was analyzed in the field studies using HMA. All human milk samples were thawed and analyzed with chemical reference methods in the lab. The protein, fat and total solid levels were significantly correlated between the two methods and the correlation coefficient was 0.88, 0.93 and 0.78, respectively (p < 0.001). The mean protein content was significantly lower and the mean fat level was significantly greater when measured using HMA method (1.0 g 100 mL -1 vs 1.2 g 100 mL -1 and 3. 7 g 100 mL -1 vs 3.2 g 100 mL -1 , respectively, p < 0.001). Thus, linear recalibration could be used to improve mean estimation for both protein and fat. There was no significant correlation for lactose between the two methods (p > 0.05). There was no statistically significant difference in the mean total solid concentration (12.2 g 100 mL -1 vs 12.3 g 100 mL -1 , p > 0.05). Overall, HMA might be used to analyze macronutrients in fresh human milk with acceptable accuracy and precision after recalibrating fat and protein levels of field samples. © 2016 John Wiley & Sons Ltd.
Cow's milk allergic children-Can component-resolved diagnostics predict duration and severity?
Petersen, Thomas Houmann; Mortz, Charlotte Gotthard; Bindslev-Jensen, Carsten; Eller, Esben
2018-03-01
Cow's milk allergy (CMA) affects 2% of all children. This study investigatescomponent-resolved diagnostics(CRD) to cow's milk proteins in children suspected of CMA, by correlating the level of CRD with outcome of the oral challenge. Furthermore, we evaluate the ability of serial CRD measurements to distinguish children with persistent CMA from children developing tolerance. We included data from 78 children referred to the Allergy Centre during a 13-year period. Results from oral food challenges including threshold, severity, and sensitization data (IgE antibodies to whole milk protein, IgE components toward milk and skin prick test (SPT)) were collected. The milk allergic children were re-evaluated with sensitization data and rechallenges regularly. Thirty-nine children had negative first challenges, and 39 had positive first challenges. The positive group was rechallenged and separated into 3 groups depending on time to remission. At inclusion, children with persistent CMA had significantly larger size of SPT and higher levels of s-IgE to milk and CRD compared to the other groups. SPT wheal size was significantly larger in children with persistent CMA compared to children outgrowing CMA. Furthermore, a correlation between s-IgE level to cow's milk and casein and the severity of the allergic reaction elicited by food challenges was found. Oral food challenge cannot be replaced by s-IgE to whole milk protein or milk components nor SPT in the diagnosis of CMA; however, high levels of milk components and s-IgE to milk increase the risk of a long-lasting or persisting CMA. © 2018 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.
Association of REL Polymorphism with Cow's Milk Proteins Allergy in Pediatric Algerian Population.
Rahmoun, Nesrine; El Mecherfi, Kamel Eddine; Bouchetara, Assia; Lardjem Hetraf, Sara; Dahmani Amira, Chahinez; Adda Neggaz, Leila; Boudjema, Abdallah; Zemani-Fodil, Faouzia; Kheroua, Omar
2018-02-01
Cow's milk proteins allergy (CMPA) pathogenesis involves complex immunological mechanisms with the participation of several cells and molecules involved in food allergy. The association of polymorphisms in the interleukin 4, Forkhead box P3 and the avian reticuloendotheliosis genes was investigated in an infant population with CMPA of Western Algeria. We obtained DNA and clinical data from milk allergic subjects during active phase and from a group of non-atopic control subjects. Our findings showed that the allele G of the cRel gene intronic polymorphism at +7883 positions was significantly higher among cow's milk proteins allergic patients compared to control subjects. The results of this study suggest a possible association of CMPA with cRel G+7883T polymorphism.
Influence of race and crossbreeding on casein micelles size.
Freitas, Denise R; Fonseca, Leorges M; Souza, Fernando N; Ladeira, Cristiane V G; Diniz, Soraia A; Haddad, João Paulo A; Ferreira, Diêgo S; Santoro, Marcelo M; Cerqueira, Mônica M O P
2015-05-01
Casein (CN) micelles are colloidal aggregates of protein dispersed in milk, the importance of which in the dairy industry is related to functionality and yield in dairy products. The objective of this work was to investigate the correlation of milk CN micelles diameter from Holstein and Zebu crossbreds with milk composition (protein, fat, lactose, total and nonfat solids and milk urea nitrogen), somatic cell count (SCC), age, lactation stage and production. Average casein micelles diameters of milk samples obtained from 200 cows were measured using photon correlation spectroscopy and multiple regression analysis was used to find relationship between variables. CN micelle diameter, SCC and nonfat solids were different between animals with different Holstein crossbreed ratios, which suggests influence of genetic factors, mammary gland health and milk composition. Overall, results indicate the potential use of CN micelle diameter as a tool to select animals to produce milk more suitable to cheese production. © 2014 Japanese Society of Animal Science.
Variant discovery in the sheep milk transcriptome using RNA sequencing.
Suárez-Vega, Aroa; Gutiérrez-Gil, Beatriz; Klopp, Christophe; Tosser-Klopp, Gwenola; Arranz, Juan José
2017-02-15
The identification of genetic variation underlying desired phenotypes is one of the main challenges of current livestock genetic research. High-throughput transcriptome sequencing (RNA-Seq) offers new opportunities for the detection of transcriptome variants (SNPs and short indels) in different tissues and species. In this study, we used RNA-Seq on Milk Sheep Somatic Cells (MSCs) with the goal of characterizing the genetic variation within the coding regions of the milk transcriptome in Churra and Assaf sheep, two common dairy sheep breeds farmed in Spain. A total of 216,637 variants were detected in the MSCs transcriptome of the eight ewes analyzed. Among them, a total of 57,795 variants were detected in the regions harboring Quantitative Trait Loci (QTL) for milk yield, protein percentage and fat percentage, of which 21.44% were novel variants. Among the total variants detected, 561 (2.52%) and 1,649 (7.42%) were predicted to produce high or moderate impact changes in the corresponding transcriptional unit, respectively. In the functional enrichment analysis of the genes positioned within selected QTL regions harboring novel relevant functional variants (high and moderate impact), the KEGG pathway with the highest enrichment was "protein processing in endoplasmic reticulum". Additionally, a total of 504 and 1,063 variants were identified in the genes encoding principal milk proteins and molecules involved in the lipid metabolism, respectively. Of these variants, 20 mutations were found to have putative relevant effects on the encoded proteins. We present herein the first transcriptomic approach aimed at identifying genetic variants of the genes expressed in the lactating mammary gland of sheep. Through the transcriptome analysis of variability within regions harboring QTL for milk yield, protein percentage and fat percentage, we have found several pathways and genes that harbor mutations that could affect dairy production traits. Moreover, remarkable variants were also found in candidate genes coding for major milk proteins and proteins related to milk fat metabolism. Several of the SNPs found in this study could be included as suitable markers in genotyping platforms or custom SNP arrays to perform association analyses in commercial populations and apply genomic selection protocols in the dairy production industry.
Henry, Céline; Saadaoui, Besma; Bouvier, Frédéric; Cebo, Christelle
2015-07-01
Mechanisms of milk lipid secretion are highly controversial. Analyzing the fine protein composition of the "milk fat globule membrane" (MFGM), the triple-layered membrane surrounding milk lipid droplets (LDs) can provide mechanistic clues to better understand LD biosynthesis and secretion pathways in mammary epithelial cells (MECs). We therefore combined a high-sensitive Q-Exactive LC-MS/MS analysis of MFGM-derived peptides to the use of an in-house database intended to improve protein identification in the goat species. Using this approach, we performed the identification of 442 functional groups of proteins in the MFGM from goat milk. To get a more dynamic view of intracellular mechanisms driving LD dynamics in the MECs, we decided to investigate for the first time whether MFGM proteins were phosphorylated. MFGM proteins were sequentially digested by lysine-C and trypsin proteases and the resulting peptides were fractionated by a strong cation exchange chromatography. Titanium beads were used to enrich phosphopeptides from strong cation exchange chromatography eluted fractions. This approach lets us pinpoint 271 sites of phosphorylation on 124 unique goat MFGM proteins. Enriched GO terms associated with phosphorylated MFGM proteins were protein transport and actin cytoskeleton organization. Gained data are discussed with regard to lipid secretory mechanisms in the MECs. All MS data have been deposited in the ProteomeXchange with identifier PXD001039 (http://proteomecentral.proteomexchange.org/dataset/PXD001039). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Innocente, N; Biasutti, M
2013-02-01
Montasio cheese is a typical Italian semi-hard, semi-cooked cheese produced in northeastern Italy from unpasteurized (raw or thermised) cow milk. The Protected Designation of Origin label regulations for Montasio cheese require that local milk be used from twice-daily milking. The number of farms milking with automatic milking systems (AMS) has increased rapidly in the last few years in the Montasio production area. The objective of this study was to evaluate the effects of a variation in milking frequency, associated with the adoption of an automatic milking system, on milk quality and on the specific characteristics of Montasio cheese. Fourteen farms were chosen, all located in the Montasio production area, with an average herd size of 60 (Simmental, Holstein-Friesian, and Brown Swiss breeds). In 7 experimental farms, the cows were milked 3 times per day with an AMS, whereas in the other 7 control farms, cows were milked twice daily in conventional milking parlors (CMP). The study showed that the main components, the hygienic quality, and the cheese-making features of milk were not affected by the milking system adopted. In fact, the control and experimental milks did not reveal a statistically significant difference in fat, protein, and lactose contents; in the casein index; or in the HPLC profiles of casein and whey protein fractions. Milk from farms that used an AMS always showed somatic cell counts and total bacterial counts below the legal limits imposed by European Union regulations for raw milk. Finally, bulk milk clotting characteristics (clotting time, curd firmness, and time to curd firmness of 20mm) did not differ between milk from AMS and milk from CMP. Montasio cheese was made from milk collected from the 2 groups of farms milking either with AMS or with CMP. Three different cheese-making trials were performed during the year at different times. As expected, considering the results of the milk analysis, the moisture, fat, and protein contents of the experimental and control cheeses were comparable. The milking system was not seen to significantly affect the biochemical processes associated with ripening. In fact, all cheeses showed a normal proteolysis trend and a characteristic volatile compound profile during aging. Therefore, the milking system does not appear to modify the distinctive characteristics of this cheese that remain dependent on the area and methodology of production. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
2012-01-01
Prostate cancer (PCa) is dependent on androgen receptor signaling and aberrations of the PI3K-Akt-mTORC1 pathway mediating excessive and sustained growth signaling. The nutrient-sensitive kinase mTORC1 is upregulated in nearly 100% of advanced human PCas. Oncogenic mTORC1 signaling activates key subsets of mRNAs that cooperate in distinct steps of PCa initiation and progression. Epidemiological evidence points to increased dairy protein consumption as a major dietary risk factor for the development of PCa. mTORC1 is a master regulator of protein synthesis, lipid synthesis and autophagy pathways that couple nutrient sensing to cell growth and cancer. This review provides evidence that PCa initiation and progression are promoted by cow´s milk, but not human milk, stimulation of mTORC1 signaling. Mammalian milk is presented as an endocrine signaling system, which activates mTORC1, promotes cell growth and proliferation and suppresses autophagy. Naturally, milk-mediated mTORC1 signaling is restricted only to the postnatal growth phase of mammals. However, persistent consumption of cow´s milk proteins in humans provide highly insulinotropic branched-chain amino acids (BCAAs) provided by milk´s fast hydrolysable whey proteins, which elevate postprandial plasma insulin levels, and increase hepatic IGF-1 plasma concentrations by casein-derived amino acids. BCAAs, insulin and IGF-1 are pivotal activating signals of mTORC1. Increased cow´s milk protein-mediated mTORC1 signaling along with constant exposure to commercial cow´s milk estrogens derived from pregnant cows may explain the observed association between high dairy consumption and increased risk of PCa in Westernized societies. As well-balanced mTORC1-signaling plays an important role in appropriate prostate morphogenesis and differentiation, exaggerated mTORC1-signaling by high cow´s milk consumption predominantly during critical growth phases of prostate development and differentiation may exert long-term adverse effects on prostate health. Attenuation of mTORC1 signaling by contemporary Paleolithic diets and restriction of dairy protein intake, especially during mTORC1-dependent phases of prostate development and differentiation, may offer protection from the most common dairy-promoted cancer in men of Western societies. PMID:22891897
2010-01-01
The objective of the present study was to estimate genetic parameters for test-day milk, fat and protein yields and 305-day-yields in Murrah buffaloes. 4,757 complete lactations of Murrah buffaloes were analyzed. Co-variance components were estimated by the restricted maximum likelihood method. The models included additive direct genetic and permanent environmental effects as random effects, and the fixed effects of contemporary group, milking number and age of the cow at calving as linear and quadratic covariables. Contemporary groups were defined by herd-year-month of test for test-day yields and by herd-year-season of calving for 305-day yields. The heritability estimates obtained by two-trait analysis ranged from 0.15 to 0.24 for milk, 0.16 to 0.23 for protein and 0.13 to 0.22 for fat, yields. Genetic and phenotypic correlations were all positive. The observed population additive genetic variation indicated that selection might be an effective tool in changing population means in milk, fat and protein yields. PMID:21637608
Etcheverry, P; Wallingford, J C; Miller, D D; Glahn, R P
2004-11-01
Adding human milk fortifiers (HMF) to human milk (HM) is one way of overcoming the nutrient deficits found in the latter. In this study, the bioavailabilities of calcium, zinc, and iron in S-26/SMA HMF added to HM were compared with those in HM fortified with various bovine milk proteins: alpha-lactalbumin, colostrum, caseinate, casein phosphopeptides, and whey protein concentrate. The bioavailability of each mineral was assessed using an in vitro digestion/Caco-2 cell culture model. Calcium and zinc uptake by the cells was traced with radioisotopes; iron uptake was assessed via cell ferritin levels. Samples were prepared on an equal protein content basis and with added calcium, but no zinc or iron was added. Results revealed that calcium uptake from HM + S-26/SMA was not different from any of the HM fortified with the bovine milk proteins, except for unfortified HM and HM + colostrum in which calcium uptake was significantly lower (-89 and -38%, respectively). Uptake of zinc and iron were significantly higher for HM + S-26/SMA than for the other HM + fortifiers.
Protein profile of mature soybean seeds and prepared soybean milk.
Capriotti, Anna Laura; Caruso, Giuseppe; Cavaliere, Chiara; Samperi, Roberto; Stampachiacchiere, Serena; Zenezini Chiozzi, Riccardo; Laganà, Aldo
2014-10-08
The soybean (Glycine max (L.) Merrill) is economically the most important bean in the world, providing a wide range of vegetable proteins. Soybean milk is a colloidal solution obtained as water extract from swelled and ground soybean seeds. Soybean proteins represent about 35-40% on a dry weight basis and they are receiving increasing attention with respect to their health effects. However, the soybean is a well-recognized allergenic food, and therefore, it is urgent to define its protein components responsible for the allergenicity in order to develop hypoallergenic soybean products for sensitive people. The main aim of this work was the characterization of seed and milk soybean proteome and their comparison in terms of protein content and specific proteins. Using a shotgun proteomics approach, 243 nonredundant proteins were identified in mature soybean seeds.
Genome-association analysis of Korean Holstein milk traits using genomic estimated breeding value.
Shin, Donghyun; Lee, Chul; Park, Kyoung-Do; Kim, Heebal; Cho, Kwang-Hyeon
2017-03-01
Holsteins are known as the world's highest-milk producing dairy cattle. The purpose of this study was to identify genetic regions strongly associated with milk traits (milk production, fat, and protein) using Korean Holstein data. This study was performed using single nucleotide polymorphism (SNP) chip data (Illumina BovineSNP50 Beadchip) of 911 Korean Holstein individuals. We inferred each genomic estimated breeding values based on best linear unbiased prediction (BLUP) and ridge regression using BLUPF90 and R. We then performed a genome-wide association study and identified genetic regions related to milk traits. We identified 9, 6, and 17 significant genetic regions related to milk production, fat and protein, respectively. These genes are newly reported in the genetic association with milk traits of Holstein. This study complements a recent Holstein genome-wide association studies that identified other SNPs and genes as the most significant variants. These results will help to expand the knowledge of the polygenic nature of milk production in Holsteins.
Genome-association analysis of Korean Holstein milk traits using genomic estimated breeding value
Shin, Donghyun; Lee, Chul; Park, Kyoung-Do; Kim, Heebal; Cho, Kwang-hyeon
2017-01-01
Objective Holsteins are known as the world’s highest-milk producing dairy cattle. The purpose of this study was to identify genetic regions strongly associated with milk traits (milk production, fat, and protein) using Korean Holstein data. Methods This study was performed using single nucleotide polymorphism (SNP) chip data (Illumina BovineSNP50 Beadchip) of 911 Korean Holstein individuals. We inferred each genomic estimated breeding values based on best linear unbiased prediction (BLUP) and ridge regression using BLUPF90 and R. We then performed a genome-wide association study and identified genetic regions related to milk traits. Results We identified 9, 6, and 17 significant genetic regions related to milk production, fat and protein, respectively. These genes are newly reported in the genetic association with milk traits of Holstein. Conclusion This study complements a recent Holstein genome-wide association studies that identified other SNPs and genes as the most significant variants. These results will help to expand the knowledge of the polygenic nature of milk production in Holsteins. PMID:26954162
Yu, Siran; Zhao, Zhehao; Sun, Liming; Li, Ping
2017-02-15
The discovery of microRNAs encapsulated in milk-derived exosomes has revealed stability under extreme conditions reflecting the protection of membranes. We attempted to determine the variations in nanoparticles derived from milk after fermentation, and provide evidence to determine the effects of these exosomes on cells with potential bioactivity. Using scanning electron microscopy and dynamic light scattering, we compared the morphology and particle size distribution of exosomes from yogurt fermented with three different combinations of strains with those from raw milk. The protein content of the exosome was significantly reduced in fermented milk. The cycle threshold showed that the expression of miR-29b and miR-21 was relatively high in raw milk, indicating a loss of microRNA after fermentation. Milk-derived exosomes could promote cell growth and activate the mitogen-activated protein kinase pathway. These findings demonstrated biological functions in milk exosomes and provided new insight into the nutrient composition of dairy products.
Genetic correlations of mid-infrared-predicted milk fatty acid groups with milk production traits.
Fleming, A; Schenkel, F S; Malchiodi, F; Ali, R A; Mallard, B; Sargolzaei, M; Jamrozik, J; Johnston, J; Miglior, F
2018-05-01
The objective of this research was to estimate the genetic correlations between milk mid-infrared-predicted fatty acid groups and production traits in first-parity Canadian Holsteins. Contents of short-chain, medium-chain, long-chain, saturated, and unsaturated fatty acid groupings in milk samples can be predicted using mid-infrared spectral data for cows enrolled in milk recording programs. Predicted fatty acid group contents were obtained for 49,127 test-day milk samples from 10,029 first-parity Holstein cows in 810 herds. Milk yield, fat and protein yield, fat and protein percentage, fat-to-protein ratio, and somatic cell score were also available for these test days. Genetic parameters were estimated for the fatty acid groups and production traits using multiple-trait random regression test day models by Bayesian methods via Gibbs sampling. Three separate 8- or 9-trait analyses were performed, including the 5 fatty acid groups with different combinations of the production traits. Posterior standard deviations ranged from <0.001 to 0.01. Average daily genetic correlations were negative and similar to each other for the fatty acid groups with milk yield (-0.62 to -0.59) and with protein yield (-0.32 to -0.25). Weak and positive average daily genetic correlations were found between somatic cell score and the fatty acid groups (from 0.25 to 0.36). Stronger genetic correlations with fat yield, fat and protein percentage, and fat-to-protein ratio were found with medium-chain and saturated fatty acid groups compared with those with long-chain and unsaturated fatty acid groups. Genetic correlations were very strong between the fatty acid groups and fat percentage, ranging between 0.88 for unsaturated and 0.99 for saturated fatty acids. Daily genetic correlations from 5 to 305 d in milk with milk, protein yield and percentage, and somatic cell score traits showed similar patterns for all fatty acid groups. The daily genetic correlations with fat yield at the beginning of lactation were decreasing for long-chain and unsaturated fatty acid groups and increasing for short-chain fatty acids. Genetic correlations between fat percentage and fatty acids were increasing at the beginning of lactation for short- and medium-chain and saturated fatty acids, but slightly decreasing for long-chain and unsaturated fatty acid groups. These results can be used in defining fatty acid traits and breeding objectives. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Etzion, Y; Linker, R; Cogan, U; Shmulevich, I
2004-09-01
This study investigates the potential use of attenuated total reflectance spectroscopy in the mid-infrared range for determining protein concentration in raw cow milk. The determination of protein concentration is based on the characteristic absorbance of milk proteins, which includes 2 absorbance bands in the 1500 to 1700 cm(-1) range, known as the amide I and amide II bands, and absorbance in the 1060 to 1100 cm(-1) range, which is associated with phosphate groups covalently bound to casein proteins. To minimize the influence of the strong water band (centered around 1640 cm(-1)) that overlaps with the amide I and amide II bands, an optimized automatic procedure for accurate water subtraction was applied. Following water subtraction, the spectra were analyzed by 3 methods, namely simple band integration, partial least squares (PLS) and neural networks. For the neural network models, the spectra were first decomposed by principal component analysis (PCA), and the neural network inputs were the spectra principal components scores. In addition, the concentrations of 2 constituents expected to interact with the protein (i.e., fat and lactose) were also used as inputs. These approaches were tested with 235 spectra of standardized raw milk samples, corresponding to 26 protein concentrations in the 2.47 to 3.90% (weight per volume) range. The simple integration method led to very poor results, whereas PLS resulted in prediction errors of about 0.22% protein. The neural network approach led to prediction errors of 0.20% protein when based on PCA scores only, and 0.08% protein when lactose and fat concentrations were also included in the model. These results indicate the potential usefulness of Fourier transform infrared/attenuated total reflectance spectroscopy for rapid, possibly online, determination of protein concentration in raw milk.
Bobbo, T; Ruegg, P L; Stocco, G; Fiore, E; Gianesella, M; Morgante, M; Pasotto, D; Bittante, G; Cecchinato, A
2017-06-01
The aim of this study was to investigate associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits. Forty-one multibreed herds were selected for the study, and composite milk samples were collected from 1,508 cows belonging to 3 specialized dairy breeds (Holstein Friesian, Brown Swiss, and Jersey) and 3 dual-purpose breeds of Alpine origin (Simmental, Rendena, and Grey Alpine). Milk composition [i.e., fat, protein, casein, lactose, pH, urea, and somatic cell count (SCC)] was analyzed, and separation of protein fractions was performed by reversed-phase high performance liquid chromatography. Eleven coagulation traits were measured: 5 traditional milk coagulation properties [time from rennet addition to milk gelation (RCT, min), curd-firming rate as the time to a curd firmness (CF) of 20 mm (k 20 , min), and CF at 30, 45, and 60 min from rennet addition (a 30 , a 45 , and a 60 , mm)], and 6 new curd firming and syneresis traits [potential asymptotical CF at an infinite time (CF P , mm), curd-firming instant rate constant (k CF , % × min -1 ), curd syneresis instant rate constant (k SR , % × min -1 ), modeled RCT (RCT eq , min), maximum CF value (CF max, mm), and time at CF max (t max , min)]. We also measured 3 cheese yield traits, expressing the weights of total fresh curd (%CY CURD ), dry matter (%CY SOLIDS ), and water (%CY WATER ) in the curd as percentages of the weight of the processed milk, and 4 nutrient recovery traits (REC PROTEIN , REC FAT , REC SOLIDS , and REC ENERGY ), representing the percentage ratio between each nutrient in the curd and milk. Milk samples with SCC > 100,000 cells/mL were subjected to bacteriological examination. All samples were divided into 7 clusters of udder health (UH) status: healthy (cows with milk SCC < 100,000 cells/mL and uncultured); culture-negative samples with low, medium, or high SCC; and culture-positive samples divided into contagious, environmental, and opportunistic intramammary infection (IMI). Data were analyzed using a linear mixed model. Significant variations in the casein to protein ratio and lactose content were observed in all culture-positive samples and in culture-negative samples with medium to high SCC compared to normal milk. No differences were observed among contagious, environmental, and opportunistic pathogens, suggesting an effect of inflammation rather than infection. The greatest impairment in milk quantity and composition, clotting ability, and cheese production was observed in the 2 UH status groups with the highest milk SCC (i.e., contagious IMI and culture-negative samples with high SCC), revealing a discrepancy between the bacteriological results and inflammatory status, and thus confirming the importance of SCC as an indicator of udder health and milk quality. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Peeters, R; Galesloot, P J B
2002-03-01
The objective of this study was to estimate the daily fat yield and fat percentage from one sampled milking per cow per test day in an automatic milking system herd, when the milking times and milk yields of all individual milkings are recorded by the automatic milking system. Multiple regression models were used to estimate the 24-h fat percentage when only one milking is sampled for components and milk yields and milking times are known for all milkings in the 24-h period before the sampled milking. In total, 10,697 cow test day records, from 595 herd tests at 91 Dutch herds milked with an automatic milking system, were used. The best model to predict 24-h fat percentage included fat percentage, protein percentage, milk yield and milking interval of the sampled milking, milk yield, and milking interval of the preceding milking, and the interaction between milking interval and the ratio of fat and protein percentage of the sampled milking. This model gave a standard deviation of the prediction error (SE) for 24-h fat percentage of 0.321 and a correlation between the predicted and actual 24-h fat percentage of 0.910. For the 24-h fat yield, we found SE = 90 g and correlation = 0.967. This precision is slightly better than that of present a.m.-p.m. testing schemes. Extra attention must be paid to correctly matching the sample jars and the milkings. Furthermore, milkings with an interval of less than 4 h must be excluded from sampling as well as milkings that are interrupted or that follow an interrupted milking. Under these restrictions (correct matching, interval of at least 4 h, and no interrupted milking), one sampled milking suffices to get a satisfactory estimate for the test-day fat yield.
Guo, Chengye; Wang, Houyu; Zhang, Lei; Fan, Liuyin; Cao, Chengxi
2013-11-01
A visual, rapid and accurate moving reaction boundary titration (MRBT) method was used for the determination of the total protein in soya-bean milk. During the process, moving reaction boundary (MRB) was formed by hydroxyl ions in the catholyte and soya-bean milk proteins immobilized in polyacrylamide gel (PAG), and an acid-base indicator was used to denote the boundary motion. The velocity of MRB has a relationship with protein concentration, which was used to obtain a standard curve. By paired t-test, there was no significant difference of the protein content between MRBT and Kjeldahl method at 95% confidence interval. The procedure of MRBT method required about 10 min, and it had linearity in the range of 2.0-14.0 g/L, low limit of detection (0.05 g/L), good precision (RSD of intra-day < 1.90% and inter-day < 4.39%), and high recoveries (97.41%-99.91%). In addition, non-protein nitrogen (NPN) such as melamine added into the soya-bean milk had weak influence on MRBT results.
... which normally fights infections, overreacts to proteins in cow's milk (the basis for most commercial baby formulas). ... days to weeks after they're first given cow milk-based formula. Breastfed infants have a lower ...
Interfacial properties of acidified skim milk.
Cases, E; Rampini, C; Cayot, Ph
2005-02-01
The purpose of this study is to investigate the tension properties and dilatational viscoelastic modulus of various skim milk proteins (whole milk, EDTA-treated milk, beta-casein, and beta-lactoglobulin) at an oil/water interface at 20 degrees C. Measurements are performed using a dynamic drop tensiometer for 15,000 s. The aqueous bulk phase is a skim milk simulated ultrafiltrate containing 11 x 10(-3) g L(-1) milk protein. At pH 6.7, beta-casein appears as the best to decrease the interfacial tension, whereas beta-lactoglobulin leads to the highest interfacial viscoelastic modulus value. Whole milk was almost as surface-active as individual beta-casein in terms of the final (steady-state) lowering of the interfacial tension, but the rate of tension lowering was smaller. EDTA treatment improved the rate of tension lowering of whole milk. The acidification of milk, from previous measurements, would lead to the enhancement of surface activity. At t=15,000 s, the order of effectiveness is pH 4.3 > pH 5.3 = pH 5.6 > pH 6.7 whole milk, suggesting that pH 4.3 whole milk is the best surface active. As compared to pH 6.7 whole milk, the use of pH 5.3 and pH 5.6 milk as surface active would result in the use of milk containing more free beta-casein born of pH-dissociated casein micelles.
Maye, Susan; Stanton, Catherine; Fitzgerald, Gerald F; Kelly, Philip M
2015-08-01
While the Complement protein system in human milk is well characterised, there is little information on its presence and activity in bovine milk. Complement forms part of the innate immune system, hence the importance of its contribution during milk ingestion to the overall defences of the neonate. A bactericidal sequestration assay, featuring a Complement sensitive strain, Escherichia coli 0111, originally used to characterise Complement activity in human milk was successfully applied to freshly drawn bovine milk samples, thus, providing an opportunity to compare Complement activities in both human and bovine milks. Although not identical in response, the levels of Complement activity in bovine milk were found to be closely comparable with that of human milk. Differential counts of Esch. coli 0111 after 2 h incubation were 6.20 and 6.06 log CFU/ml, for raw bovine and human milks, respectively - the lower value representing a stronger Complement response. Exposing bovine milk to a range of thermal treatments e.g. 42, 45, 65, 72, 85 or 95 °C for 10 min, progressively inhibited Complement activity by increasing temperature, thus confirming the heat labile nature of this immune protein system. Low level Complement activity was found, however, in 65 and 72 °C heat treated samples and in retailed pasteurised milk which highlights the outer limit to which high temperature, short time (HTST) industrial thermal processes should be applied if retention of activity is a priority. Concentration of Complement in the fat phase was evident following cream separation, and this was also reflected in the further loss of activity recorded in low fat variants of retailed pasteurised milk. Laboratory-based churning of the cream during simulated buttermaking generated an aqueous (buttermilk) phase with higher levels of Complement activity than the fat phase, thus pointing to a likely association with the milk fat globule membrane (MFGM) layer.
Isolation and purification of beta-lactoglobulin from cow milk
Aich, Ranjit; Batabyal, Subhasis; Joardar, Siddhartha Narayan
2015-01-01
Aim: The present study was undertaken to standardize a convenient method for isolation and purification of β-lactoglobulin (β-lg) from cow milk keeping its antigenicity intact, so that the purified β-lg can be used for detection of cow milk protein intolerance (CMPI). Materials and Methods: Raw milk was collected from Gir breed of cattle reared in Haringhata Farm, West Bengal. Milk was then converted to skimmed milk by removing fat globules and casein protein was removed by acidification to pH 4.6 by adding 3 M HCl. β-lg was isolated by gel filtration chromatography using Sephacryl S-200 from the supernatant whey protein fraction. Further, β-lg was purified by anion-exchange chromatography in diethylaminoethyl-sepharose. Molecular weight of the purified cattle β-lg was determined by 15 percent one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and was analyzed by gel documentation system using standard molecular weight marker. Results: The molecular weight of the purified cattle β-lg was detected as 17.44 kDa. The isolated β-lg was almost in pure form as the molecular weight of purified β-lg monomer is 18kDa. Conclusion: The study revealed a simple and suitable method for isolation of β-lg from whey protein in pure form which may be used for detection of CMPI. PMID:27047145
Churchward-Venne, Tyler A; Snijders, Tim; Linkens, Armand M A; Hamer, Henrike M; van Kranenburg, Janneau; van Loon, Luc J C
2015-07-01
The slow digestion and amino acid absorption kinetics of isolated micellar casein have been held responsible for its relatively lower postprandial muscle protein synthetic response compared with rapidly digested proteins such as isolated whey. However, casein is normally consumed within a milk matrix. We hypothesized that protein digestion and absorption kinetics and the subsequent muscle protein synthetic response after micellar casein ingestion are modulated by the milk matrix. The aim of this study was to determine the impact of a milk matrix on casein protein digestion and absorption kinetics and postprandial muscle protein synthesis in older men. In a parallel-group design, 32 healthy older men (aged 71 ± 1 y) received a primed continuous infusion of L-[ring-(2)H5]-phenylalanine, L-[ring-3,5-(2)H2]-tyrosine, and L-[1-(13)C]-leucine, and ingested 25 g intrinsically L-[1-(13)C]-phenylalanine and L-[1-(13)C]-leucine labeled casein dissolved in bovine milk serum (Cas+Serum) or water (Cas). Plasma samples and muscle biopsies were collected in the postabsorptive state and for 300 min in the postprandial period to examine whole-body and skeletal muscle protein metabolism. Casein ingestion increased plasma leucine and phenylalanine concentrations and L-[1-(13)C]-phenylalanine enrichments, with a more rapid rise after Cas vs. Cas+Serum. Nonetheless, dietary protein-derived phenylalanine availability did not differ between Cas+Serum (47 ± 2%, mean ± SEM) and Cas (46 ± 3%) when assessed over the 300-min postprandial period (P = 0.80). The milk matrix did not modulate postprandial myofibrillar protein synthesis rates from 0 to 120 min (0.038 ± 0.005 vs. 0.031 ± 0.007%/h) or from 120 to 300 min (0.052 ± 0.004 vs. 0.067 ± 0.005%/h) after Cas+Serum vs. Cas. Similarly, no treatment differences in muscle protein-bound L-[1-(13)C]-phenylalanine enrichments were observed at 120 min (0.003 ± 0.001 vs. 0.002 ± 0.001) or 300 min (0.015 ± 0.002 vs. 0.016 ± 0.002 mole percent excess) after Cas+Serum vs. Cas. Casein ingestion in a milk matrix delays protein digestion and absorption but does not modulate postprandial muscle protein synthesis when compared to the ingestion of micellar casein only in healthy older men. This trial was registered at Nederlands Trial Register as NTR4429. © 2015 American Society for Nutrition.
Effect of human milk fortifiers on bacterial growth in human milk.
Santiago, Myla S; Codipilly, Champa N; Potak, Debra C; Schanler, Richard J
2005-10-01
As a component in human milk fortifiers (HMF), iron may equilibrate with human milk for as long as 24 hours, bind important bacteriostatic proteins, and potentially affect the host defense properties of human milk. We compared bacterial growth in human milk prepared with each of two HMF differing in their content of iron. Samples of human milk obtained from mothers of premature infants were divided and mixed with one of two HMF and maintained at refrigerator temperature. Refrigerated milk samples were removed at 0, 24, and 72 hours for determination of total bacterial colony counts (TBCC). TBCC did not differ between groups but declined from 0 to 72 hours, p<0.001. These data suggest that differences in iron content, or other nutrients in HMF, do not affect bacterial growth in human milk. Storage of fortified human milk at refrigerator temperature for 72 hours results in decreased bacterial growth. As a component in human milk fortifiers (HMF), iron may equilibrate with human milk for as long as 24 hours, bind important bacteriostatic proteins, and potentially affect the host defense properties of human milk. We compared bacterial growth in human milk prepared with each of two HMF differing in their content of iron. Samples of human milk obtained from mothers of premature infants were divided and mixed with one of two HMF and maintained at refrigerator temperature. Refrigerated milk samples were removed at 0, 24, and 72 hours for determination of total bacterial colony counts (TBCC).
Effect of paratuberculosis on culling, milk production, and milk quality in dairy herds.
Hendrick, Steven H; Kelton, David F; Leslie, Ken E; Lissemore, Kerry D; Archambault, Marie; Duffield, Todd F
2005-10-15
To determine the effect of paratuberculosis on culling, milk production, and milk quality in infected dairy herds. Cross-sectional study. 689 lactating dairy cows in 9 herds. Milk, blood, and fecal samples were obtained from all cows. Fecal samples were evaluated via mycobacterial culture. Serum samples were tested with a commercially available ELISA for antibodies against Mycobacterium avium subsp paratuberculosis, and preserved milk samples were tested with an ELISA for antibodies against M paratuberculosis. Mixed effect and proportional hazards models were used to determine the effect of paratuberculosis on 305-day milk, fat, and protein production; somatic cell count linear score; and the risk of culling. Cows with positive results of bacteriologic culture of feces and milk ELISA produced less milk, fat, and protein, compared with herdmates with negative results. No difference in 305-day milk or fat production was detected in cows with positive results of serum ELISA, compared with seronegative cows. The 3 survival analyses revealed that cows with positive results of each test were at higher risk of being culled than cows with negative results. Paratuberculosis status, as determined by use of all 3 diagnostic tests, was not associated with milk somatic cell count linear score. Results suggest that for the 9 herds in this study, paratuberculosis significantly decreased milk production and cow longevity.
Laible, Götz; Smolenski, Grant; Wheeler, Thomas; Brophy, Brigid
2016-01-01
We have previously generated transgenic cattle with additional copies of bovine β- and κ casein genes. An initial characterisation of milk produced with a hormonally induced lactation from these transgenic cows showed an altered milk composition with elevated β-casein levels and twofold increased κ-casein content. Here we report the first in-depth characterisation of the composition of the enriched casein milk that was produced through a natural lactation. We have analyzed milk from the high expressing transgenic line TG3 for milk composition at early, peak, mid and late lactation. The introduction of additional β- and κ-casein genes resulted in the expected expression of the transgene derived proteins and an associated reduction in the size of the casein micelles. Expression of the transgenes was associated with complex changes in the expression levels of other milk proteins. Two other major milk components were affected, namely fat and micronutrients. In addition, the sialic acid content of the milk was increased. In contrast, the level of lactose remained unchanged. This novel milk with its substantially altered composition will provide insights into the regulatory processes synchronizing the synthesis and assembly of milk components, as well as production of potentially healthier milk with improved dairy processing characteristics. PMID:27876865
Allergenicity of mare's milk in children with cow's milk allergy.
Businco, L; Giampietro, P G; Lucenti, P; Lucaroni, F; Pini, C; Di Felice, G; Iacovacci, P; Curadi, C; Orlandi, M
2000-05-01
Cow's milk allergy is a common disease of infancy and early childhood. If the baby is not breast-fed, a substitute for cow's milk formula is necessary. The aim of this study was to investigate, in vitro and in vivo, the allergenicity of mare's milk in a population of selected children with severe IgE-mediated cow's milk allergy. Twenty-five children (17 male and 8 female) aged 19 to 72 months (median age 34 months) with IgE-mediated cow's milk allergy were selected for this study. All the children underwent skin prick tests with cow's milk and mare's milk and double-blind placebo-controlled oral food challenge (DBPCOFC) with fresh cow's milk, fresh mare's milk, and, as placebo, a soy formula (Isomil, Abbott, Campoverde, Italy). We performed immunoblotting of cow's and mare's milk developed with IgE from allergic children. All the children showed strong positive skin test responses to cow's milk (4+); 2 children had positive skin test responses to mare's milk (2+). All children had positive DBPCOFCs to cow's milk; one child had a positive DBPCOFC to mare's milk. No children reacted to the placebo (Isomil). In the cow's milk, some proteins are able to strongly react with human IgE; when the sera are tested with mare's milk, the bands corresponding to the same proteins are recognized by a lower percentage of sera. These data suggest that mare's milk can be regarded as a good substitute of cow's milk in most children with severe IgE-mediated cow's milk allergy. It would be prudent, however, to confirm its tolerability by a supervised titrated oral challenge test.
Baudracco, J; Lopez-Villalobos, N; Holmes, C W; Comeron, E A; Macdonald, K A; Barry, T N; Friggens, N C
2012-06-01
This animal simulation model, named e-Cow, represents a single dairy cow at grazing. The model integrates algorithms from three previously published models: a model that predicts herbage dry matter (DM) intake by grazing dairy cows, a mammary gland model that predicts potential milk yield and a body lipid model that predicts genetically driven live weight (LW) and body condition score (BCS). Both nutritional and genetic drives are accounted for in the prediction of energy intake and its partitioning. The main inputs are herbage allowance (HA; kg DM offered/cow per day), metabolisable energy and NDF concentrations in herbage and supplements, supplements offered (kg DM/cow per day), type of pasture (ryegrass or lucerne), days in milk, days pregnant, lactation number, BCS and LW at calving, breed or strain of cow and genetic merit, that is, potential yields of milk, fat and protein. Separate equations are used to predict herbage intake, depending on the cutting heights at which HA is expressed. The e-Cow model is written in Visual Basic programming language within Microsoft Excel®. The model predicts whole-lactation performance of dairy cows on a daily basis, and the main outputs are the daily and annual DM intake, milk yield and changes in BCS and LW. In the e-Cow model, neither herbage DM intake nor milk yield or LW change are needed as inputs; instead, they are predicted by the e-Cow model. The e-Cow model was validated against experimental data for Holstein-Friesian cows with both North American (NA) and New Zealand (NZ) genetics grazing ryegrass-based pastures, with or without supplementary feeding and for three complete lactations, divided into weekly periods. The model was able to predict animal performance with satisfactory accuracy, with concordance correlation coefficients of 0.81, 0.76 and 0.62 for herbage DM intake, milk yield and LW change, respectively. Simulations performed with the model showed that it is sensitive to genotype by feeding environment interactions. The e-Cow model tended to overestimate the milk yield of NA genotype cows at low milk yields, while it underestimated the milk yield of NZ genotype cows at high milk yields. The approach used to define the potential milk yield of the cow and equations used to predict herbage DM intake make the model applicable for predictions in countries with temperate pastures.
García, M C; Marina, M L
2006-04-01
The undeclared addition of soybean proteins to milk products is forbidden and a method is needed for food control and enforcement. This paper reports the development of a chromatographic method for routine analysis enabling the detection of the addition of soybean proteins to dairy products. A perfusion chromatography column and a linear binary gradient of acetonitrile-water-0.1% (v/v) trifluoroacetic acid at a temperature of 60 degrees C were used. A very simple sample treatment consisting of mixing the sample with a suitable solvent (Milli-Q water or bicarbonate buffer (pH=11)) and centrifuging was used. The method enabled the separation of soybean proteins from milk proteins in less than 4 min (at a flow-rate of 3 ml/min). The method has been successfully applied to the detection of soybean proteins in milk, cheese, yogurt, and enteral formula. The correct quantitation of these vegetable proteins has also been possible in milk adulterated at origin with known sources of soybean proteins. The application of the method to samples adulterated at origin also leads to interesting conclusions as to the effect of the processing conditions used for the preparation of each dairy product on the determination of soybean proteins.
Boerman, J P; Preseault, C L; Kraft, J; Dann, H M; Lock, A L
2014-02-01
This study evaluated the effect of a blend of synthetic antioxidants on the yield of milk and milk components and milk fatty acid composition in dairy cows fed a diet designed to cause milk fat depression (MFD). We hypothesized that supplementing a synthetic antioxidant to diets with a high rumen unsaturated fatty acid load (RUFAL) would decrease the severity of MFD. Sixteen lactating Holstein cows (163 ± 47 d in milk), in a crossover design with two 21-d periods, were fed a corn silage and grass silage-based diet containing 15% distillers grains. The diet contained 34% neutral detergent fiber, 18% crude protein, 26% starch, and 4.3% total fatty acids (dry matter basis). Cows were fed the diet without supplementation (control; CON) or supplemented with 0.02% (dry matter basis) of a synthetic antioxidant (AOX; Agrado Plus, Novus International Inc., St. Charles, MO). Dry matter intake and milk yields were recorded daily. Milk samples were collected at the start of the study for baseline values and the end of each period (d 20-21) and analyzed for milk components and fatty acid composition. Dry matter intake and milk yield were unaffected by treatment and averaged 25.9 and 50.2 kg/d, respectively. Similarly, we observed no effect of treatment on yields of fat, protein, lactose, 3.5% fat-corrected milk, energy-corrected milk, feed efficiency, body weight, or body condition score. Milk fat concentration and yield were both reduced by the high RUFAL diets. We observed a tendency for AOX to increase the concentration of milk fat and decrease the concentration of milk protein. Yields of de novo and preformed fatty acids were not affected by treatment, although we detected a trend for a slight increase in the yield of 16-carbon fatty acid for AOX compared with CON. Treatment had only minor effects on individual milk fatty acids, except for the concentration and yield of linoleic acid, which were over 90% higher for AOX compared with CON. In conclusion, milk fat concentration and yield were reduced by a high RUFAL diet containing 15% distillers grains; however, supplementation with AOX did not overcome the MFD induced by this diet. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
[Macronutrients and energy in milk from mothers of premature infants].
He, Bi-Zi; Sun, Xiu-Jing; Quan, Mei-Ying; Wang, Dan-Hua
2014-07-01
To study the dynamic changes in macronutrients and energy in human milk from mothers of premature infants. A total of 339 human milk samples were collected from 170 women who delivered preterm or full-term infants in the Department of Obstetrics and Gynecology, Peking Union Medical College Hospital between November 2012 and January 2014. Macronutrients (proteins, fats and carbohydrates and energy were measured using a MIRIS human milk analyzer and compared between groups. In milk samples from premature infants' mothers, the protein levels were the highest in colostrum (2.22±0.49 g/dL), less in transitional milk (1.83±0.39 g/dL), and the least in mature milk (1.40±0.28 g/dL) (P<0.01), and the levels of fats (2.4±1.3 g/dL vs 3.1±1.1 g/dL; P<0.01), carbohydrates (6.4±0.9 g/dL vs 6.6±0.4 g/dL; P<0.05) and energy (55±9 kcal/dL vs 62±8 kcal/dL; P<0.01) were significantly lower in colostrum than in transitional milk. The protein levels in colostrum from premature infants' mothers were significantly higher than those in colostrum from term infants' mothers (2.22±0.49 g/dL vs 2.07±0.34 g/dL; P<0.05). The colostrum from mothers of premature infants with a gestational age of ≤30 weeks had significantly higher protein levels than those from mothers of premature infants with gestational ages of 30(+1)-33(+6) weeks and ≥34 weeks (2.48±0.68 g/dL vs 2.11±0.25 g/dL and 2.22±0.39 g/dL respectively, P<0.05); the energy levels in colostrum from mothers of premature infants with a gestational age of ≤30 weeks group (51±6 kcal/dL) were significantly lower than those in colostrum from mothers of premature infants with a gestational age of 30(+1)-33(+6) weeks (58±8 kcal/d; P<0.05). The carbohydrate levels in transitional milk from mothers of premature infants with a gestational age of ≤30 weeks were significantly higher than those in transitional milk from mothers of premature infants with gestational ages of 30(+1)-33(+6) weeks and ≥34 weeks (P<0.05). The protein levels in mature milk from mothers of premature infants with a gestational age of 30(+1)-33(+6) weeks were significantly higher than those in mature milk from mothers of premature infants with gestational ages of ≤30 weeks and ≥34 weeks (P<0.05). The levels of macronutrients and energy in milk from mothers of premature infants vary significantly between colostrum, transitional milk, and mature milk. Protein levels are significantly higher in colostrum from premature infants' mothers than in colostrum from term infants' mothers, but the significant difference is not seen for mature milk. Macronutrient and energy levels show significant differences between milk samples from mothers of premature infants with different gestational ages, so as to meet different needs of premature infants.
Renzone, Giovanni; Arena, Simona; Scaloni, Andrea
2015-03-18
The Maillard reaction consists of a number of chemical processes affecting the structure of the proteins present in foods. We previously accomplished the proteomic characterization of the lactosylation targets in commercial milk samples. Although characterizing the early modification derivatives, this analysis did not describe the corresponding advanced glycation end-products (AGEs), which may be formed from the further oxidation of former ones or by reaction of oxidized sugars with proteins, when high temperatures are exploited. To fill this gap, we have used combined proteomic procedures for the systematic characterization of the lactosylated and AGE-containing proteins from the soluble and milk fat globule membrane fraction of various milk products. Besides to confirm all lactulosyl-lysines described previously, 40 novel lactosylation sites were identified. More importantly, 308 additional intermediate and advanced glyco-oxidation derivatives (including cross-linking adducts) were characterized in 31 proteins, providing the widest qualitative inventory of modified species ascertained in commercial milk samples so far. Amadori adducts with glucose/galactose, their dehydration products, carboxymethyllysine and glyoxal-, 3-deoxyglucosone/3-deoxygalactosone- and 3-deoxylactosone-derived dihydroxyimidazolines and/or hemiaminals were the most frequent derivatives observed. Depending on thermal treatment, a variable number of modification sites was identified within each protein; their number increased with harder food processing conditions. Among the modified proteins, species involved in assisting the delivery of nutrients, defense response against pathogens and cellular proliferation/differentiation were highly affected by AGE formation. This may lead to a progressive decrease of the milk nutritional value, as it reduces the protein functional properties, abates the bioavailability of the essential amino acids and eventually affects food digestibility. These aspects are of particular importance in products intended for infant diet, such as milk powders and infant formulas. We used combined shotgun proteomic procedures for the systematic characterization of intermediate and advanced glycoxidation protein products in various raw and commercial milk samples. Several hundreds of modified species were characterized as deriving from 31 milk proteins, providing the widest qualitative inventory of assigned components in this fluid. Amadori adducts with glucose/galactose, their dehydration products, carboxymethyl-lysine, and glyoxal-, 3-deoxyglucosone/3-deoxygalactosone- and 3-deoxylactosone-derived dihydroxyimidazolines and/or hemiaminals were the most frequent derivatives observed. Proteins involved in nutrient delivery, defense response against pathogens and cellular proliferation/differentiation were highly subjected to intermediate and advanced glyco-oxidation modification. This may lead to a progressive decrease of the milk nutritional value, as it reduces the protein functional properties, diminishes the bioavailability of the essential amino acids, eventually affects food digestibility and determines a potential increase of specific allergens. These information are important points of interest to connect the extent of the Maillard reaction present in different commercial samples with the potential nutritional aspects mentioned above. These themes have to be fully evaluated in a next future for a complete estimation of the nutritional and toxicological properties of the dairy products deriving from severe heat processing. Copyright © 2015 Elsevier B.V. All rights reserved.
Impact of Variation at the FTO Locus on Milk Fat Yield in Holstein Dairy Cattle
Zielke, Lea G.; Bortfeldt, Ralf H.; Reissmann, Monika; Tetens, Jens; Thaller, Georg; Brockmann, Gudrun A.
2013-01-01
This study explores the biological role of the Fat Mass and Obesity associated (FTO) gene locus on milk composition in German Holstein cattle. Since FTO controls energy homeostasis and expenditure and the FTO locus has repeatedly shown association with obesity in human studies, we tested FTO as a candidate gene in particular for milk fat yield, which represents a high amount of energy secreted during lactation. The study was performed on 2,402 bulls and 860 cows where dense milk composition data were available. Genetic information was taken from a 2 Mb region around FTO. Five SNPs and two haplotype blocks in a 725 kb region covering FTO and the neighboring genes RPGRIP1L, U6ATAC, and 5 S rRNA were associated with milk fat yield and also affected protein yield in the same direction. Interestingly, higher frequency SNP alleles and haplotypes within the FTO gene increased milk fat and protein yields by up to 2.8 and 2.2 kg per lactation, respectively, while the most frequent haplotype in the upstream block covering exon 1 of FTO to exon 15 of RPGRIP1L had opposite effects with lower fat and milk yield. Both haplotype blocks were also significant in cows. The loci accounted for about 1% of the corresponding trait variance in the population. The association signals not only provided evidence for at least two causative mutations in the FTO locus with a functional effect on milk but also milk protein yield. The pleiotropic effects suggest a biological function on the usage of energy resources and the control of energy balance rather than directly affecting fat and protein synthesis. The identified effect of the obesity gene locus on milk energy content suggests an impact on infant nutrition by breast feeding in humans. PMID:23691044
Impact of variation at the FTO locus on milk fat yield in Holstein dairy cattle.
Zielke, Lea G; Bortfeldt, Ralf H; Reissmann, Monika; Tetens, Jens; Thaller, Georg; Brockmann, Gudrun A
2013-01-01
This study explores the biological role of the Fat Mass and Obesity associated (FTO) gene locus on milk composition in German Holstein cattle. Since FTO controls energy homeostasis and expenditure and the FTO locus has repeatedly shown association with obesity in human studies, we tested FTO as a candidate gene in particular for milk fat yield, which represents a high amount of energy secreted during lactation. The study was performed on 2,402 bulls and 860 cows where dense milk composition data were available. Genetic information was taken from a 2 Mb region around FTO. Five SNPs and two haplotype blocks in a 725 kb region covering FTO and the neighboring genes RPGRIP1L, U6ATAC, and 5 S rRNA were associated with milk fat yield and also affected protein yield in the same direction. Interestingly, higher frequency SNP alleles and haplotypes within the FTO gene increased milk fat and protein yields by up to 2.8 and 2.2 kg per lactation, respectively, while the most frequent haplotype in the upstream block covering exon 1 of FTO to exon 15 of RPGRIP1L had opposite effects with lower fat and milk yield. Both haplotype blocks were also significant in cows. The loci accounted for about 1% of the corresponding trait variance in the population. The association signals not only provided evidence for at least two causative mutations in the FTO locus with a functional effect on milk but also milk protein yield. The pleiotropic effects suggest a biological function on the usage of energy resources and the control of energy balance rather than directly affecting fat and protein synthesis. The identified effect of the obesity gene locus on milk energy content suggests an impact on infant nutrition by breast feeding in humans.
Jeske, Stephanie; Zannini, Emanuele; Cronin, Michael F; Arendt, Elke K
2018-06-12
Plant proteins are often characterized by low solubilities and impaired functionalities e.g. emulsifying properties. In products like milk substitutes, these protein properties are of great importance to ensure good product quality. In this study proteolytic enzymes were used as a tool to increase protein solubility and alter their properties gently. A plant-based milk substitute based on quinoa was produced and treated with different enzymes. One α-amylase and three commercial proteases were selected: Hitempase 2XP, Profix 100L, Bioprotease N100L, and Flavourzyme 1000L. The protein solubility of the samples was initially low with 48.02% and was improved with the increasing degree of hydrolysis up to a value of 75.82% for Profix. These results were supported by SDS-PAGE and circular dichroism analysis: especially Profix degraded the proteins extensively. Quality characteristics, such as foaming, and emulsifying properties were not influenced considerably by the protease treatment. The results of this study provide an in-depth understanding of the effects of different enzymes in a complex system of a plant-based milk substitute and contribute to the development of protein based products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundheim, G.; Bengtsson-Olivecrona, G.
1987-12-01
Heparin can dissociate lipoprotein lipase from casein micelles, and addition of heparin enhances lipolysis in bovine but not in caprine milk. Heparin shortened the lag-time for binding of lipoprotein lipase to milk fat globules and for lipolysis. Heparin counteracted the inhibitory effects of skim milk on binding of lipase and on lipolysis. Heparin stimulated lipolysis in all bovine milk samples when added before cooling and in spontaneously lipolytic milk samples also when added after cooling. Heparin enhanced lipolysis of isolated milk fat globules. Hence, its effect is not solely due to dissociation of lipoprotein lipase from the casein micelles. Coolingmore » of goat milk caused more marked changes in the distribution of lipase than cooling of bovine milk; the fraction of added /sup 125/I-labeled lipase that bound to cream increased from about 8 to 60%. In addition, caprine skim milk caused less inhibition of lipolysis than bovine skim milk. These observations provide an explanation for the high degree of cold storage lipolysis in goat milk. Heparin had only small effects on the distribution of lipoprotein lipase in caprine milk, which explains why heparin has so little effect on lipolysis in caprine milk. The distribution of /sup 35/S-labeled heparin in bovine milk was studied. In warm milk less than 10% bound to the cream fraction, but when milk was cooled, binding of heparin to cream increased to 45%. These results suggest that there exists in the skim fraction a relatively small amount of a heparin-binding protein, which on cooling of milk adsorbs to the milk fat, or suggests that cooling induces a conformational change in a membrane protein such that its affinity for heparin increases.« less
Melfsen, Andreas; Hartung, Eberhard; Haeussermann, Angelika
2013-02-01
The robustness of in-line raw milk analysis with near-infrared spectroscopy (NIRS) was tested with respect to the prediction of the raw milk contents fat, protein and lactose. Near-infrared (NIR) spectra of raw milk (n = 3119) were acquired on three different farms during the milking process of 354 milkings over a period of six months. Calibration models were calculated for: a random data set of each farm (fully random internal calibration); first two thirds of the visits per farm (internal calibration); whole datasets of two of the three farms (external calibration), and combinations of external and internal datasets. Validation was done either on the remaining data set per farm (internal validation) or on data of the remaining farms (external validation). Excellent calibration results were obtained when fully randomised internal calibration sets were used for milk analysis. In this case, RPD values of around ten, five and three for the prediction of fat, protein and lactose content, respectively, were achieved. Farm internal calibrations achieved much poorer prediction results especially for the prediction of protein and lactose with RPD values of around two and one respectively. The prediction accuracy improved when validation was done on spectra of an external farm, mainly due to the higher sample variation in external calibration sets in terms of feeding diets and individual cow effects. The results showed that further improvements were achieved when additional farm information was added to the calibration set. One of the main requirements towards a robust calibration model is the ability to predict milk constituents in unknown future milk samples. The robustness and quality of prediction increases with increasing variation of, e.g., feeding and cow individual milk composition in the calibration model.
Trendelenburg, V; Enzian, N; Bellach, J; Schnadt, S; Niggemann, B; Beyer, K
2015-05-01
Currently, there is no mandatory labelling of allergens for non-pre-packed foods in the EU. Therefore, consumers with food allergy rely on voluntary information provided by the staff. The aim of this study was to characterize allergic reactions to non-pre-packed foods and to investigate whether staff in bakery shops were able to give advice regarding a safe product choice. Questionnaires were sent to 200 parents of children with a food allergy. Staff of 50 bakery shops were interviewed regarding selling non-pre-packed foods to food-allergic customers. Bakery products being recommended as 'cow's milk-free' were bought, and cow's milk protein levels were measured using ELISA. A total of 104 of 200 questionnaires were returned. 25% of the children experienced an allergic reaction due to a non-pre-packed food from bakery shops and 20% from ice cream parlours. Sixty percent of the bakery staff reported serving food-allergic customers at least once a month, 24% once a week. Eighty four percent of the staff felt able to advise food-allergic consumers regarding a safe product choice. Seventy three 'cow's milk-free' products were sold in 44 bakery shops. Cow's milk could be detected in 43% of the bakery products, 21% contained >3 mg cow's milk protein per serving. Staff in bakery shops felt confident about advising customers with food allergy. However, cow's milk was detectable in almost half of bakery products being sold as 'cow's milk-free'. Every fifth product contained quantities of cow's milk exceeding an amount where approximately 10% of cow's milk-allergic children will show clinical relevant symptoms. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Is cow's milk harmful to a child's health?
Agostoni, Carlo; Turck, Dominique
2011-12-01
Discussions and debates have recently emerged on the potential positive and negative effects of cow's milk in the paediatric community, also under the pressure of public opinion. The negative effects of cow's-milk consumption seem to be limited to iron status up to 9 to 12 months; then no negative effects are observed, provided that cow's milk, up to a maximum daily intake of 500 mL, is adequately complemented with iron-enriched foods. Lactose intolerance can be easily managed and up to 250 mL/day of milk can be consumed. Allergy to cow's-milk proteins is usually transient. Atopic children may independently be at risk for poor growth, and the contribution of dairy nutrients to their diet should be considered. The connection of cow's milk to autistic spectrum disorders is lacking, and even a cause-effect relation with type 1 diabetes mellitus has not been established because many factors may concur. Although it is true that cow's milk stimulates insulin-like growth factor-1 and may affect linear growth, association with chronic degenerative, noncommunicable diseases has not been established. Finally, fat-reduced milk, if needed, should be considered after 24 to 36 months. Cow's milk represents a major source of high nutritional quality protein as well as of calcium. Moreover, it has growth-promoting effects independent of specific compounds. Its protein and fat composition, together with the micronutrient content, is suggestive of a functional food, whose positive effects are emphasised by regular consumption, particularly under conditions of diets poor in some limiting nutrients, although in industrialised countries cow's milk's optimal daily intake should be around 500 mL, adequately complemented with other relevant nutrients.
Ranaraja, Umanthi; Cho, KwangHyun; Park, MiNa; Kim, SiDong; Lee, SeokHyun; Do, ChangHee
2018-06-01
The objective of this study was to estimate the genetic parameters for milk β-hydroxybutyrate (BHBA), acetone (Ac), fat protein ratio (FPR), and energy balance (EB) using milk test day records and investigate the effect of early lactation FPR and EB on milk ketone body concentrations. Total 262,940 test-day records collected from Korea Animal Improvement Association during the period of 2012 to 2016 were used in this study. BHBA and Ac concentrations in milk were measured by Fourier transform infrared spectroscopy (FTIR). FPR values were obtained using test day records of fat and protein percentage. EB was calculated using previously developed equation based on parity, lactation week, and milk composition data. Genetic parameters were estimated by restricted maximum likelihood procedure based on repeatability model using Wombat program. Elevated milk BHBA and Ac concentrations were observed during the early lactation under the negative energy balance. Milk FPR tends to decrease with the decreasing ketone body concentrations. Heritability estimates for milk BHBA, Ac, EB, and FPR ranged from 0.09 to 0.14, 0.23 to 0.31, 0.19 to 0.52, and 0.16 to 0.42 respectively at parity 1, 2, 3, and 4. The overall heritability for BHBA, Ac, EB and FPR were 0.29, 0.32, 0.58, and 0.38 respectively. A common pattern was observed in heritability of EB and FPR along with parities. FPR and EB can be suggested as potential predictors for risk of hyperketonemia. The heritability estimates of milk BHBA, Ac, EB, and FPR indicate that the selective breeding may contribute to maintaining the milk ketone bodies at optimum level during early lactation.
Miarelli, Maria; Signorelli, Federica
2015-01-01
The aim of this study was to explore the possibility of detecting novel phenotypes of natural resistance at the molecular level through the in-vitro stimulation of monocyte-derived macrophages (MDMs). This study was conducted with 16 healthy buffaloes who were reared for milk production and for whom data on milk-producing ability were available for several lactations. MDMs from circulating monocytes were activated with interferon-gamma and lipopolysaccharide. The response was evaluated using Western blotting to detect the presence of 2 types of proteins separated by electrophoresis: tyrosine-phosphorylated proteins, which are indicators of the dynamic control of biochemical pathways, and IkB-alpha (Kappa light polipeptide gene enhancer in B-cells Inhibitor, alpha) protein, which controls the activity of nuclear factor kappa-light-chain-enhancer of activated B cells-a transcription factor that is responsible for the expression of proinflammatory cytokines. The results showed that the buffaloes who were positive for IkB-alpha proteins had a significantly higher milk-producing ability than the buffaloes who did not express IkB-alpha. On the contrary, no significant difference was detected between the high and low milk-producing buffaloes with regard to the presence of tyrosine-phosphorylated proteins. This preliminary study indicated that it may be possible to identify the more disease-resistant nonhuman animals on a molecular level. The results, therefore, indicate that an intense selection toward the increase of milk yield could impair natural disease resistance in future dairy buffalo generations.
Wang, Xuehui; Zhang, Li; Jin, Jing; Xia, Anting; Wang, Chunmei; Cui, Yingjun; Qu, Bo; Li, Qingzhang; Sheng, Chunyan
2018-04-19
miRNAs play an important role in the processes of cell differentiation, biological development, and physiology. Here we investigated the molecular mechanisms regulating milk secretion and quality in dairy cows via transcriptome analyses of mammary gland tissues from dairy cows during the high-protein/high-fat, low-protein/low-fat or dry periods. To characterize the important roles of miRNAs and mRNAs in milk quality and to elucidate their regulatory networks in relation to milk secretion and quality, an integrated analysis was performed. A total of 25 core miRNAs were found to be differentially expressed (DE) during lactation compared to non-lactation, and these miRNAs were involved in epithelial cell terminal differentiation and mammary gland development. In addition, comprehensive analysis of mRNA and miRNA expression between high-protein/high-fat group and low-protein/low-fat groups indicated that, 38 miRNAs and 944 mRNAs were differentially expressed between them. Furthermore, 38 DE miRNAs putatively negatively regulated 253 DE mRNAs. The putative genes (253 DE mRNAs) were enriched in lipid biosynthetic process and amino acid transmembrane transporter activity. Moreover, putative DE genes were significantly enriched in fatty acid (FA) metabolism, biosynthesis of amino acids, synthesis and degradation of ketone bodies and biosynthesis of unsaturated FAs. Our results suggest that DE miRNAs might play roles as regulators of milk quality and milk secretion during mammary gland differentiation.
Ramel, P R; Marangoni, A G
2017-09-01
The effect of incorporation and presence of various ingredients in a model sodium caseinate-based imitation cheese matrix on the polymorphism of milk fat was comprehensively described using powder x-ray diffraction, differential scanning calorimetry, and microscopy. With anhydrous milk fat (AMF) in bulk used as control, the embedding of AMF as droplets in a protein matrix was found to result in a greater extent of formation of the β polymorph than AMF alone and AMF homogenized with water and salts solution. The use of other protein matrices such as soy and whey protein isolate gels revealed that the nature of the protein and other factors associated with it (i.e., hydrophobicity and molecular structure) do not seem to play a role in the formation of the β polymorph. These results indicated that the most important factor in the formation of the β polymorph is the physical constraints imposed by a solid protein matrix, which forces the triacylglycerols in milk fat to arrange themselves in the most stable crystal polymorph. Characterization of the crystal structure of milk fat or fats in general within a food matrix could provide insights into the complex thermal and rheological behavior of foods with added fats. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Disulphide bonds in casein micelle from milk.
Bouguyon, Edwige; Beauvallet, Christian; Huet, Jean-Claude; Chanat, Eric
2006-05-05
Mammary epithelial cells synthesised and secreted caseins, the major milk proteins in most mammals, as large aggregates called micelles into the alveolar lumen they surround. We investigated the implication of the highly conserved cysteine(s) of kappa-casein in disulphide bond formation in casein micelles from several species. Dimers were found in all milks studied, confirming previous observation in ruminants. More importantly, the study of interchain disulphide bridges in mouse and rat casein micelles revealed that any casein possessing a cysteine is engaged in disulphide bond interchange; these species express four or five cysteine-containing caseins, respectively. We found that the main rodent caseins form both homo- and heterodimers. Additionally, disulphide bond formation among milk proteins was specific since the interaction of the caseins with cysteine-containing whey proteins was not observed in native casein micelles.
Peptidome characterization and bioactivity analysis of donkey milk.
Piovesana, Susy; Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo
2015-04-24
Donkey milk is an interesting commercial product for its nutritional values, which make it the most suitable mammalian milk for human consumption, and for the bioactivity associated with it and derivative products. To further mine the characterization of donkey milk, an extensive peptidomic study was performed. Two peptide purification strategies were compared to remove native proteins and lipids and enrich the peptide fraction. In one case the whole protein content was precipitated by organic solvent using cold acetone. In the other one the precipitation of the most abundant milk proteins, caseins, was performed under acidic conditions by acetic acid at pH4.6, instead. The procedures were compared and proved to be partially complementary. Considered together they provided 1330 peptide identifications for donkey milk, mainly coming from the most abundant proteins in milk. The bioactivity of the isolated peptides was also investigated, both by angiotensin-converting-enzyme inhibitory and antioxidant activity assays and by bioinformatics, proving that the isolated peptides did have the tested biological activities. The rationale behind this study is that peptides in food matrices often play an important biological role and, despite the extensive study of the protein composition of different samples, they remain poorly characterized. In fact, in a typical shotgun proteomics study endogenous peptides are not properly characterized. In proteomics workflows one limiting point is the isolation process: if it is specific for the purification of proteins, it often comprises a precipitation step which aims at isolating pure protein pellets and remove unwonted interferent compounds. In this way endogenous peptides, which are not effectively precipitated as well as proteins, are removed too and not analyzed at the end of the process. Moreover, endogenous peptides do often originate from precursor proteins, but in phenomena which are independent of the shotgun digestion protocol, thus they can be obtained from cleavage specificities other than trypsin's, which is the main proteolytic enzyme employed in proteomic experiments. For this reason, in the end, database search will not be effective for identification of these peptides, thus the need to provide different workflows for peptide analysis. In the work presented in this paper this issue is considered for the first time for the analysis of the peptides isolated in donkey milk samples, which have been chosen for its nutritional interest. This study provides additional knowledge on this milk, already characterized by traditional proteomics studies and peptidomic studies after simulated digestion. This type of study is not just a description of the naturally occurring peptidome of a sample, but also represents a starting point to discover and characterize those naturally occurring peptides responsible for the observed bioactivities of biological samples, as in the case of donkey milk, which would remain uncharacterized by other approaches. In this paper an analytical protocol was described for the efficient isolation and purification of peptides in donkey milk, assessing the effect of the purification protocol on the final identifications. Purified peptide samples were also checked to empirically elucidate any ACE inhibitory or antioxidant activity. Finally, the peptidomic results were also further mined by a bioinformatic-driven approach for bioactive peptide identification in the donkey milk samples. In our opinion, the main strengths of this study are related to the improved analytical workflow (either as purification protocol comparison or analytical platform development) which provides a high number of identified peptides, for which the biological significance as potential bioactive peptides has also been investigated. Copyright © 2015 Elsevier B.V. All rights reserved.
The bovine lactation genome: Insights into the evolution of mammalian milk
USDA-ARS?s Scientific Manuscript database
The newly assembled Bos Taurus genome sequence enables the linkage of bovine milk and lactation data with other mammalian genomes. Using publicly available milk proteome data and mammary expressed sequence tags, 197 milk protein genes and over 6,000 mammary genes were identified in the bovine genome...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., milk protein hydrolysate, and monosodium glutamate. (8) Sugars (sucrose and dextrose). (9) Binders and... not be cooked. It contains meat, milk or water or a combination thereof, eggs, vegetables, and any of... (Species) may be used in accordance with § 319.6. (2) The “milk” may be fresh whole milk, dried milk...
Nutritional limitations to increased production on pasture-based systems.
Kolver, Eric S
2003-05-01
The constraints to high levels of milk production imposed by a high-quality-pasture diet, and development of feeding strategies to overcome these limitations, were examined by modelling the nutritional status of New Zealand Friesian and North American Holstein-Friesian dairy cows grazing high-quality pasture. The Cornell Net Carbohydrate and Protein System (CNCPS) was used to predict sensitivity of milk production to a 10% change in the composition of pasture nutrients. The rate at which fibre and protein were degraded in the rumen and the value given to effective fibre and lignin content significantly affected the supply of metabolisable energy and protein, and the profile of amino acid supply. The first limiting factor in milk production when only high-quality pasture was fed was metabolisable energy supply, while specific amino acids, particularly methionine and lysine, limited milk production when > 20 g/kg diet consisted of a grain supplement. Compared with cows fed a total mixed ration in confinement, North American Holstein-Friesians grazing all pasture produced less milk (29.6 v. 44.1 kg/d). Of the difference in milk production 61% could be attributed to a lower DM intake (19 kg/d v. 23.4 kg/d). Predictions using the CNCPS indicated that supply of metabolisable energy was the first-limiting factor for milk production from high-quality pasture (251 g crude protein (N x 6.25)/kg, 432 g neutral-detergent fibre/kg, 77% in vitro DM digestibility), rather than metabolisable protein or amino acids. In addition, these nutritional limitations imposed by pasture diets will be greater for dairy cow genotypes that have not been selected for high performance within a pasture system.
Characterization of casein gene complex and genetic diversity analysis in Indian goats.
Rout, P K; Kumar, A; Mandal, A; Laloe, D; Singh, S K; Roy, R
2010-04-01
Milk protein polymorphism plays an important role in genetic diversity analysis, phylogenetic studies, establishing geographical diversity, conservation decision, and improving breeding goals. Milk protein polymorphism in Indian goat breeds has not been well studied; therefore, an investigation was carried out to analyze the genetic structure of the casein gene and milk protein diversity at six milk protein loci in nine Indian goat breeds/genetic groups from varied agro-climatic zones. Milk protein genotyping was carried out in 1098 individual milk samples by SDS-PAGE at alphaS1-CN (CSN1S1), beta-CN (CSN2), alphaS2-CN (CSN1S2), kappa-CN (CSN3), beta-LG, and alpha-LA loci. Indian goats exhibited alphaS1-casein A allele in higher frequency in the majority of breeds except Ganjam and local goats. The alphaS1-casein A allele frequencies varied from 0.45 to 0.77. A total of 16 casein haplotypes were observed in seven breeds and breed specific haplotypes were observed with respect to geographic region. The average number of alleles was lowest in Ganjam (1.66 +/- 0.81) and highest in Sirohi goats (2.50 +/- 1.05). Expected heterozygosity at six different loci demonstrated genetic diversity and breed fragmentation. Neighbor-Joining tree was built basing on Nei's distance. There was about 16.95% variability due to differences between breeds, indicating a strong subdivision. Principal component analysis was carried out to highlight the relationship among breeds. The variability among goat breeds was contributed by alphaS2-CN, beta-LG and alphaS1-CN. The Indian goats exhibited alphaS1-CN (CSN1S1) A allele in higher frequency in all the breeds indicating the higher casein yield in their milk.
Abilleira, E; Virto, M; Nájera, A I; Salmerón, J; Albisu, M; Pérez-Elortondo, F J; Ruiz de Gordoa, J C; de Renobales, M; Barron, L J R
2010-09-01
Ewe raw milk composition, rennet coagulation parameters, and curd texture were monitored throughout the milk production season in 11 commercial flocks reared under a part-time grazing system. Milking season lasted from February to July. During that period, the diet of the animals shifted from indoor feeding, consisting of concentrate and forage, to an outdoor grazing diet. Lean dry matter, fat, protein, calcium, and magnesium contents increased throughout the milking season, as did rennet coagulation time, curd firmness, and curd resistance to compression. However, lean dry matter, protein content, and curd resistance to compression stabilized when sheep started to graze. Principal component analysis correlated curd resistance to compression and proteins, whereas curd firmness was highly correlated with fat content and minerals. Discriminant analysis distributed milk samples according to the feeding management. Curd firmness, fat, and magnesium turned out to be discriminant variables. Those variables reflected the evolution of the composition and coagulation parameters when fresh pasture prevailed over other feeds in the diet of the flocks. The present study shows that seasonal changes associated with feeding management influence milk technological quality and that milk of good processing quality can be obtained under part-time grazing. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Demers-Mathieu, Veronique; Qu, Yunyao; Underwood, Mark A; Dallas, David C
2018-06-01
This study investigated the effect of time post-ingestion on gastric digestion and gastric hormones after feeding preterm infants unfortified and fortified human milk. Human milk and infant gastric samples were collected from 14 preterm (23-32 weeks birth gestational age) mother-infant pairs within 7-98 days postnatal age. Gastric samples were collected one, two and three hours after beginning of feeding. Samples were analysed for pH, proteolysis, general protease activity and the concentrations of pepsin, gastrin and gastrin-releasing peptide (GRP). One-way ANOVA with repeated measures followed by Tukey's multiple comparisons test was used. Gastric pH was significantly decreased after each hour in the preterm infant stomach from one to three hours postprandial. Proteolysis increased significantly from human milk to gastric contents at one, two and three hours postprandial (by 62, 131% and 181%, p < 0.05). General protease activity increased significantly by 58% from human milk to the gastric contents at two hours postprandial. GRP was present in human milk, whereas gastrin was produced in the infant stomach. Although preterm infants may digest human milk proteins to a lesser extent than term infants, we demonstrated that the preterm infant stomach actively degrades milk proteins with increasing breakdown over digestion time. ©2018 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Identification of activin A and follistatin in human milk.
Luisi, Stefano; Calonaci, Giulia; Florio, Pasquale; Lombardi, Ilaria; De Felice, Claudio; Bagnoli, Franco; Petraglia, Felice
2002-09-01
Activin A is a dimeric protein member of the transforming growth factor-beta (TGF-beta) family: it is synthesized by a variety of organs and follistatin is an activin-binding protein. A sensitive and specific assays for bioactive dimeric activin A and follistatin have recently allowed to measure these proteins in blood and other biological fluids, giving a new insights into their possible physiological role. Since human breast is able to produce activin A, the aim of the present study was to evaluate whether it and follistatin are measurable in breast milk of women during lactation. Concentrations of activin A and follistatin were measured in milk samples collected at 3, 5 and 30 days after delivery by using specific and sensitive two-site ELISAs. For the first time the presence of immunoreactive activin A and follistatin in human milk has been shown; no significant different concentration between the third and the fifth day after delivery was found. Furthermore, no difference of activin A and follistatin concentration between the whole and the skim milk or between spontaneous delivery and cesarean section was found. Milk activin A and follistatin concentrations after 1 month of lactation were significantly decreased (P < 0.01). Activin A and follistatin are present in human milk in high concentrations in the first week of lactation, while decrease after a month suggesting a possible role as growth factors in human milk.
Perrin, Maryanne T; Fogleman, April D; Newburg, David S; Allen, Jonathan C
2017-01-01
While the composition of human milk has been studied extensively in the first year of lactation, there is a paucity of data regarding human milk composition beyond one year postpartum. Policies vary at milk banks around the world regarding how long lactating women are eligible to donate their milk. The primary purpose of this study is to describe longitudinal changes in human milk composition in the second year postpartum to support the development of evidence based guidelines regarding how long lactating women can donate human milk to a milk bank. Nineteen lactating women in North Carolina provided monthly milk samples from 11 months to 17 months postpartum (N = 131), and two non-profit milk banks provided (N = 33) pooled, unpasteurized milk samples from 51 approved donors less than one year postpartum. There was a significant increase (P < 0.05) in the concentration of total protein, lactoferrin, lysozyme, Immunoglobulin A, oligosaccharides and sodium in longitudinal samples of mother's milk between 11 and 17 months postpartum, while zinc and calcium concentrations declined, and no changes were observed in lactose, fat, iron and potassium. Human milk in the second year postpartum contained significantly higher concentrations of total protein, lactoferrin, lysozyme and Immunoglobulin A, than milk bank samples, and significantly lower concentrations of zinc, calcium, iron and oligosaccharides. Accepting milk bank donations beyond one year postpartum is a potential strategy for increasing the supply of donor milk, but may require mineral fortification. © 2016 John Wiley & Sons Ltd.
Qualitative Analysis of Dairy and Powder Milk Using Laser-Induced Breakdown Spectroscopy (LIBS).
Alfarraj, Bader A; Sanghapi, Herve K; Bhatt, Chet R; Yueh, Fang Y; Singh, Jagdish P
2018-01-01
Laser-induced breakdown spectroscopy (LIBS) technique was used to compare various types of commercial milk products. Laser-induced breakdown spectroscopy spectra were investigated for the determination of the elemental composition of soy and rice milk powder, dairy milk, and lactose-free dairy milk. The analysis was performed using radiative transitions. Atomic emissions from Ca, K, Na, and Mg lines observed in LIBS spectra of dairy milk were compared. In addition, proteins and fat level in milks can be determined using molecular emissions such as CN bands. Ca concentrations were calculated to be 2.165 ± 0.203 g/L in 1% of dairy milk fat samples and 2.809 ± 0.172 g/L in 2% of dairy milk fat samples using the standard addition method (SAM) with LIBS spectra. Univariate and multivariate statistical analysis methods showed that the contents of major mineral elements were higher in lactose-free dairy milk than those in dairy milk. The principal component analysis (PCA) method was used to discriminate four milk samples depending on their mineral elements concentration. In addition, proteins and fat level in dairy milks were determined using molecular emissions such as CN band. We applied partial least squares regression (PLSR) and simple linear regression (SLR) models to predict levels of milk fat in dairy milk samples. The PLSR model was successfully used to predict levels of milk fat in dairy milk sample with the relative accuracy (RA%) less than 6.62% using CN (0,0) band.
Review: Optimizing ruminant conversion of feed protein to human food protein.
Broderick, G A
2017-11-20
Ruminant livestock have the ability to produce high-quality human food from feedstuffs of little or no value for humans. Balanced essential amino acid composition of meat and milk from ruminants makes those protein sources valuable adjuncts to human diets. It is anticipated that there will be increasing demand for ruminant proteins in the future. Increasing productivity per animal dilutes out the nutritional and environmental costs of maintenance and rearing dairy animals up to production. A number of nutritional strategies improve production per animal such as ration balancing in smallholder operations and small grain supplements to ruminants fed high-forage diets. Greenhouse gas emission intensity is reduced by increased productivity per animal; recent research has developed at least one effective inhibitor of methane production in the rumen. There is widespread over-feeding of protein to dairy cattle; milk and component yields can be maintained, and sometimes even increased, at lower protein intake. Group feeding dairy cows according to production and feeding diets higher in rumen-undegraded protein can improve milk and protein yield. Supplementing rumen-protected essential amino acids will also improve N efficiency in some cases. Better N utilization reduces urinary N, which is the most environmentally unstable form of excretory N. Employing nutritional models to more accurately meet animal requirements improves nutrient efficiency. Although smallholder enterprises, which are concentrated in tropical and semi-tropical regions of developing countries, are subject to different economic pressures, nutritional biology is similar at all production levels. Rather than milk volume, nutritional strategies should maximize milk component yield, which is proportional to market value as well as food value when milk nutrients are consumed directly by farmers and their families. Moving away from Holsteins toward smaller breeds such as Jerseys, Holstein-Jersey crosses or locally adapted breeds (e.g. Vechur) would also reduce lactose production and improve metabolic, environmental and economic efficiencies. Forages containing condensed tannins or polyphenol oxidase enzymes have reduced rumen protein degradation; ruminants capture this protein more efficiently for meat and milk. Although these forages generally have lower yields and persistence, genetic modification would allow insertion of these traits into more widely cultivated forages. Ruminants will retain their niches because of their ability to produce valuable human food from low value feedstuffs. Employing these emerging strategies will allow improved productive efficiency of ruminants in both developing and developed countries.
Paradigm shift in the management of milk and egg allergy: baked milk and egg diet.
Konstantinou, George N; Kim, Jennifer S
2012-02-01
Heat treatment of several foods, including all types of cooking, has been mainly used to minimize the number of viable microbes, reduce pathogenicity, and destroy the undesirable enzymes, maintaining food quality. In addition, food processing improves sensory, nutritional, and physical properties of the foods, due to food protein denaturation. Heat-induced alterations of food proteins can attenuate allergenicity. In this article, the authors review the important role of thermal processing on milk and egg proteins, which comprise the commonest food allergies in infancy and early childhood. Copyright © 2012 Elsevier Inc. All rights reserved.
2011-10-01
beans in chili? Unlike most meats, dried beans are high in protein but low in fat , unless you cook or serve them with added fat . 5. For the milk ...chili? Unlike most meats, dried beans are high in protein but low in fat , unless you cook or serve them with added fat . 5. For the milk group: Some...Mixed fruit/berries 1 cup Dairy (Non- Fat ) Milk /Yogurt 1 cup Cheese (natural or soft) 1.5 oz Protein rich Nuts/Seeds 1 tbsp Peanut butter 2 tbsp Daily
2014-01-01
Background Milk contains a range of proteins of moderate or low abundance that contribute to host defence. Characterisation of these proteins, the extent to which their abundance is regulated by pathogenic stimuli, and the variability of their response between and within individual animals would facilitate a better understanding of the molecular basis for this important function of milk. Results We have characterised the host defence proteins in bovine milk and their responses to intra-mammary infection by a common Gram positive mastitis pathogen, Streptococcus uberis, using a combination of 2D gel electrophoresis and GeLC mass spectrometry. In total, 68 host defence-associated proteins were identified, 18 of which have a direct antimicrobial function, 23 of which have a pathogen-recognition function, and 27 of which have a role in modulating inflammatory or immune signalling. The responsiveness of seven proteins was quantified by western blotting; validating the proteomic analyses, quantifying the within- and between animal variability of the responses, and demonstrating the complexity and specificity of the responses to this pathogen. Conclusions These data provide a foundation for understanding the role of milk in host-microbe interaction. Furthermore they provide candidate biomarkers for mastitis diagnosis, and will inform efforts to develop dairy products with improved health-promoting properties. PMID:24721702
Bioactive peptides released by in vitro digestion of standard and hydrolyzed infant formulas.
Wada, Yasuaki; Lönnerdal, Bo
2015-11-01
Hydrolyzed infant formulas serve as appropriate nutritional sources for infants afflicted with cow's milk allergy, and milk proteins in hydrolyzed formulas are industrially hydrolyzed extensively or partially. To investigate whether industrial hydrolysis may modulate the digestive trajectory of milk proteins, thereby releasing different profiles of bioactive peptides compared with standard formulas, both standard and hydrolyzed formulas were subjected to in vitro digestion and formation of bioactive peptides were compared. One standard, one extensively hydrolyzed, and one partially hydrolyzed infant formula were digested in vitro with pepsin and pancreatin, taking into account the higher gastric pH of infants, and the digesta were subjected to peptidomic analysis. The standard formula released a larger variety of bioactive peptides than from the hydrolyzed formulas, indicating that industrial hydrolysis of milk proteins may generally attenuate their indigenous bioactivities such as antibacterial, immuno-regulatory, and anti-oxidative activities. Conversely, industrial hydrolysis may facilitate the formation of bioactive peptides from hydrophobic proteins/regions such as β-LG and the "strategic zone" of β-CN, which encrypt bioactive peptides including a dipeptidyl dipeptidase-4-inhibitory, hypocholesterolemic, and opioid peptides. Infants fed hydrolyzed infant formulas may be influenced by milk protein-derived bioactive peptides in a manner different from those fed standard formula. Copyright © 2015 Elsevier Inc. All rights reserved.
Effect of high hydrostatic pressure processing on in vitro digestion of milk proteins and fats
USDA-ARS?s Scientific Manuscript database
The use of high hydrostatic pressure processing (HPP) is increasing in popularity in the food industry. Its ability to modify milk proteins and fats suggests that it may be useful in creating foods that suppress appetite; however, its effect on the digestibility of proteins and fats is unclear. The...
Michalkova, Veronika; Didion, Elise M.; Xiao, Yanyu; Attardo, Geoffrey M.; Aksoy, Serap
2018-01-01
Tsetse flies are important vectors of human and animal trypanosomiasis. Ability to reduce tsetse populations is an effective means of disease control. Lactation is an essential component of tsetse’s viviparous reproductive physiology and requires a dramatic increase in the expression and synthesis of milk proteins by the milk gland organ in order to nurture larval growth. In between each gonotrophic cycle, tsetse ceases milk production and milk gland tubules undergo a nearly two-fold reduction in width (involution). In this study, we examined the role autophagy plays during tsetse fly milk gland involution and reproductive output. Autophagy genes show elevated expression in tissues associated with lactation, immediately before or within two hours post-parturition, and decline at 24-48h post-parturition. This expression pattern is inversely correlated with that of the milk gland proteins (lactation-specific protein coding genes) and the autophagy inhibitor fk506-bp1. Increased expression of Drosophila inhibitor of apoptosis 1, diap1, was also observed in the milk gland during involution, when it likely prevents apoptosis of milk gland cells. RNAi-mediated knockdown of autophagy related gene 8a (atg8a) prevented rapid milk gland autophagy during involution, prolonging gestation, and reducing fecundity in the subsequent gonotrophic cycle. The resultant inhibition of autophagy reduced the recovery of stored lipids during the dry (non-lactating) periods by 15–20%. Ecdysone application, similar to levels that occur immediately before birth, induced autophagy, and increased milk gland involution even before abortion. This suggests that the ecdysteroid peak immediately preceding parturition likely triggers milk gland autophagy. Population modeling reveals that a delay in involution would yield a negative population growth rate. This study indicates that milk gland autophagy during involution is critical to restore nutrient reserves and allow efficient transition between pregnancy cycles. Targeting post-birth phases of reproduction could be utilized as a novel mechanism to suppress tsetse populations and reduce trypanosomiasis. PMID:29385123
Effect of heat and homogenization on in vitro digestion of milk.
Tunick, Michael H; Ren, Daxi X; Van Hekken, Diane L; Bonnaillie, Laetitia; Paul, Moushumi; Kwoczak, Raymond; Tomasula, Peggy M
2016-06-01
Central to commercial fluid milk processing is the use of high temperature, short time (HTST) pasteurization to ensure the safety and quality of milk, and homogenization to prevent creaming of fat-containing milk. Ultra-high-temperature sterilization is also applied to milk and is typically used to extend the shelf life of refrigerated, specialty milk products or to provide shelf-stable milk. The structures of the milk proteins and lipids are affected by processing but little information is available on the effects of the individual processes or sequences of processes on digestibility. In this study, raw whole milk was subjected to homogenization, HTST pasteurization, and homogenization followed by HTST or UHT processing. Raw skim milk was subjected to the same heating regimens. In vitro gastrointestinal digestion using a fasting model was then used to detect the processing-induced changes in the proteins and lipids. Using sodium dodecyl sulfate-PAGE, gastric pepsin digestion of the milk samples showed rapid elimination of the casein and α-lactalbumin bands, persistence of the β-lactoglobulin bands, and appearance of casein and whey peptide bands. The bands for β-lactoglobulin were eliminated within the first 15min of intestinal pancreatin digestion. The remaining proteins and peptides of raw, HTST, and UHT skim samples were digested rapidly within the first 15min of intestinal digestion, but intestinal digestion of raw and HTST pasteurized whole milk showed some persistence of the peptides throughout digestion. The availability of more lipid droplets upon homogenization, with greater surface area available for interaction with the peptides, led to persistence of the smaller peptide bands and thus slower intestinal digestion when followed by HTST pasteurization but not by UHT processing, in which the denatured proteins may be more accessible to the digestive enzymes. Homogenization and heat processing also affected the ζ-potential and free fatty acid release during intestinal digestion. Stearic and oleic acids were broken down faster than other fatty acids due to their positions on the outside of the triglyceride molecule. Five different casein phosphopeptide sequences were observed after gastric digestion, and 31 sequences were found after intestinal digestion, with activities yet to be explored. Processing affects milk structure and thus digestion and is an important factor to consider in design of foods that affect health and nutrition. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Cappozzo, Jack C; Koutchma, Tatiana; Barnes, Gail
2015-08-01
As a result of growing interest to nonthermal processing of milk, the purpose of this study was to characterize the chemical changes in raw milk composition after exposure to a new nonthermal turbulent flow UV process, conventional thermal pasteurization process (high-temperature, short-time; HTST), and their combinations, and compare those changes with commercially UHT-treated milk. Raw milk was exposed to UV light in turbulent flow at a flow rate of 4,000L/h and applied doses of 1,045 and 2,090 J/L, HTST pasteurization, and HTST in combination with UV (before or after the UV). Unprocessed raw milk, HTST-treated milk, and UHT-treated milk were the control to the milk processed with the continuous turbulent flow UV treatment. The chemical characterization included component analysis and fatty acid composition (with emphasis on conjugated linoleic acid) and analysis for vitamin D and A and volatile components. Lipid oxidation, which is an indicator to oxidative rancidity, was evaluated by free fatty acid analysis, and the volatile components (extracted organic fraction) by gas chromatography-mass spectrometry to obtain mass spectral profile. These analyses were done over a 14-d period (initially after treatment and at 7 and 14 d) because of the extended shelf-life requirement for milk. The effect of UV light on proteins (i.e., casein or lactalbumin) was evaluated qualitatively by sodium dodecyl sulfate-PAGE. The milk or liquid soluble fraction was analyzed by sodium dodecyl sulfate-PAGE for changes in the protein profile. From this study, it appears that continuous turbulent flow UV processing, whether used as a single process or in combination with HTST did not cause any statistically significant chemical changes when compared with raw milk with regard to the proximate analysis (total fat, protein, moisture, or ash), the fatty acid profile, lipid oxidation with respect to volatile analysis, or protein profile. A 56% loss of vitamin D and a 95% loss of vitamin A content was noted after 7 d from the continuous turbulent flow UV processing, but this loss was equally comparable to that found with traditional thermal processing, such as HTST and UHT. Chemical characterization of milk showed that turbulent flow UV light technology can be considered as alternative nonthermal treatment of pasteurized milk and raw milk to extend shelf life. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Patton, R A
2010-05-01
A meta-analysis of published studies was used to investigate the effect of rumen-protected methionine (RPM) added to the diets of lactating dairy cattle on dry matter intake, milk production, true milk protein (TMP) production, and milk fat yield. Differences in responses between 2 commonly used RPM products, Mepron (Evonik Industries, Hanau, Germany) and Smartamine (Adisseo, Antony, France), were investigated as well as dietary and animal factors that could influence responses. Diets were coded with respect to the amino acid (AA) deficiency of the control diet as predicted by the AminoCow model (version 3.5.2, http://www.makemilknotmanure.com/aminocow.php; 0=no AA deficiency, 1=Met deficiency, 2=Met and Lys deficiency, 3=Met and Lys plus at least 1 other AA deficiency) to test the effect of AA deficiencies on RPM response. Thirty-five studies were identified, 17 studies evaluating Mepron, 18 studies evaluating Smartamine, and 1 study evaluating both. This permitted 75 dietary comparisons between control and RPM-added diets. Diets were entered into the AminoCow and the 2001 National Research Council models to compare predictions of Met, Lys, and metabolizable protein (MP) flow. Mean Met and Lys in diets where RPM was fed were estimated to be 2.35 and 6.33% of MP, respectively. Predictions of flows between models were similar. Overall, RPM addition to diets increased production of TMP, both as percentage (0.07%) and yield (27 g/d). Dry matter intake and milk fat percentage were slightly decreased, whereas milk production was slightly increased. Differences between products were detected for all production variables, with Mepron-fed cows producing less TMP percentage but greater milk production, resulting in twice as much TMP yield. Milk protein response to RPM was not related to predicted AA deficiency, calculated Met deficiency, or Met as a percentage of MP. Other dietary factors, including Lys flow (g/d), Lys as percentage of MP, neutral detergent fiber percentage, crude protein percentage, or energy balance, had no detectable effects on TMP response. When cows with a predicted positive AA balance were fed RPM, milk production increased, but when AA balance was negative, milk production decreased. Amount of RPM added to the diet was not correlated to TMP response. This study does not support the necessity of a high Lys level as a prerequisite to obtaining a TMP response to feeding RPM or the MP requirement suggested by the National Research Council model (2001). However, more dose-response studies over a wide range of milk production and dietary regimens will be required to more clearly establish AA requirements and to predict responses to RPM supplementation. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
2010-01-01
Background Leptin modulates appetite, energy expenditure and the reproductive axis by signalling via its receptor the status of body energy stores to the brain. The present study aimed to quantify the associations between 10 novel and known single nucleotide polymorphisms in genes coding for leptin and leptin receptor with performance traits in 848 Holstein-Friesian sires, estimated from performance of up to 43,117 daughter-parity records per sire. Results All single nucleotide polymorphisms were segregating in this sample population and none deviated (P > 0.05) from Hardy-Weinberg equilibrium. Complete linkage disequilibrium existed between the novel polymorphism LEP-1609, and the previously identified polymorphisms LEP-1457 and LEP-580. LEP-2470 associated (P < 0.05) with milk protein concentration and calf perinatal mortality. It had a tendency to associate with milk yield (P < 0.1). The G allele of LEP-1238 was associated (P < 0.05) with reduced milk fat concentration, reduced milk protein concentration, longer gestation length and tended to associate (P < 0.1) with an increase in calving difficulty, calf perinatal mortality and somatic cells in the milk. LEP-963 exhibited an association (P < 0.05) with milk fat concentration, milk protein concentration, calving difficulty and gestation length. It also tended to associate with milk yield (P < 0.1). The R25C SNP associated (P < 0.05) with milk fat concentration, milk protein concentration, calving difficulty and length of gestation. The T allele of the Y7F SNP significantly associated with reduced angularity (P < 0.01) and reduced milk protein yield (P < 0.05). There was also a tendency (P < 0.1) for Y7F to associate with increased body condition score, reduced milk yield and shorter gestation (P < 0.1). A80V associated with reduced survival in the herd (P < 0.05). Conclusions Several leptin polymorphisms (LEP-2470, LEP-1238, LEP-963, Y7F and R25C) associated with the energetically expensive process of lactogenesis. Only SNP Y7F associated with energy storage. Associations were also observed between leptin polymorphisms and calving difficulty, gestation length and calf perinatal mortality. The lack of an association between the leptin variants investigated with calving interval in this large data set would question the potential importance of these leptin variants, or indeed leptin, in selection for improved fertility in the Holstein-Friesian dairy cow. PMID:20670403
Cow- and herd-level risk factors for on-farm mortality in Midwest US dairy herds.
Shahid, M Q; Reneau, J K; Chester-Jones, H; Chebel, R C; Endres, M I
2015-07-01
The objectives of this study were to describe on-farm mortality and to investigate cow- and herd-level risk factors associated with on-farm mortality in Midwest US dairy herds using lactation survival analysis. We analyzed a total of approximately 5.9 million DHIA lactation records from 10 Midwest US states from January 2006 to December 2010. The cow-level independent variables used in the models were first test-day milk yield, milk fat percent, milk protein percent, fat-to-protein ratio, milk urea nitrogen, somatic cell score, previous dry period, previous calving interval, stillbirth, calf sex, twinning, calving difficulty, season of calving, parity, and breed. The herd-level variables included herd size, calving interval, somatic cell score, 305-d mature-equivalent milk yield, and herd stillbirth percentage. Descriptive analysis showed that overall cow-level mortality rate was 6.4 per 100 cow-years and it increased from 5.9 in 2006 to 6.8 in 2010. Mortality was the primary reason of leaving the herd (19.4% of total culls) followed by reproduction (14.6%), injuries and other (14.0%), low production (12.3%), and mastitis (10.5%). Risk factor analysis showed that increased hazard for mortality was associated with higher fat-to-protein ratio (>1.6 vs. 1 to 1.6), higher milk fat percent, lower milk protein percent, cows with male calves, cows carrying multiple calves, higher milk urea nitrogen, increasing parity, longer previous calving interval, higher first test-day somatic cell score, increased calving difficulty score, and breed (Holstein vs. others). Decreased hazard for mortality was associated with higher first test-day milk yield, higher milk protein, and shorter dry period. For herd-level factors, increased hazard for mortality was associated with increased herd size, increased percentage of stillbirths, higher somatic cell score, and increased herd calving interval. Cows in herds with higher milk yield had lower mortality hazard. Results of the study indicated that first test-day records, especially those indicative of negative energy balance in cows, could be helpful to identify animals at high risk for mortality. Higher milk yield per cow did not have a negative association with mortality. In addition, the association between herd-level factors and mortality indicated that management quality could be an important factor in lowering on-farm mortality, thereby improving cow welfare. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kazemi, Rezvan; Taheri-Kafrani, Asghar; Motahari, Ahmad; Kordesedehi, Reihane
2018-06-01
Nowadays health benefits of bioactive food constituents, known as probiotic microorganisms, are a growing awareness. Cow's milk is a nutritious food containing probiotic bacteria. However, milk allergenicity is one of the most common food allergies. The milk protein, β-lactoglobulin (BLG), is in about 80% of all main cases of milk allergies for children and infants. With the aim of screening proteolytic strains of lactic acid bacteria to evaluate their potential for the reduction of allergenicity of the major bovine milk proteins, we isolated new proteolytic strains of cocci lactic acid bacteria from traditional Iranian dairy products. The proteases produced by these strains had strong proteolytic activity against BLG. Proteolysis of BLG, observed after sodium dodecyl sulfate-PAGE, was confirmed by the analysis of the peptide profiles by reversed-phase HPLC. The two isolates were submitted to 16S rDNA sequencing and identified as Lactcoccus lactis subsp. cremoris and Lactcoccus lactis subsp. hordniea. The competitive ELISA experiments confirmed that these isolates, with high proteolytic activity, reduce significantly the allergenicity of BLG. Accordingly, these isolates can reduce the immunoreactivity of bovine milk proteins, which can be helpful for the production of low-allergic dairy products. Copyright © 2018 Elsevier B.V. All rights reserved.
McLeod, Gemma; Sherriff, Jill; Hartmann, Peter E; Nathan, Elizabeth; Geddes, Donna; Simmer, Karen
2016-02-14
The variable content of human breast milk suggests that its routine fortification may result in sub-optimal nutritional intakes and growth. In a pragmatic trial, we randomised infants born below 30 weeks of gestation to either the intervention (Igp) of fortifying milk on measured composition according to birth weight criteria and postmenstrual age (PMA) or our routine practice (RPgp) of fortifying on assumed milk composition to target 3·8-4·4 g protein/kg per d and 545-629 kJ/kg per d. Milk composition was measured using the MIRIS® Human Milk Analyser. Percentage fat mass (%FM) was measured using PEA POD (COSMED). The effects of macronutrient intakes and clinical variables on growth were assessed using mixed model analysis. Mean measured protein content (1·6 g/100 ml) was higher than the assumed value (1·4 g/100 ml), often leading to lower amounts of fortifier added to the milk of intervention infants. At discharge (Igp v. RPgp), total protein (3·2 (SD 0·3) v. 3·4 (SD 0·4) g; P=0·067) and energy (456 (SD 39) v. 481 (SD 48) kJ; P=0·079) intakes from all nutrition sources, weight gain velocity (11·4 (SD 1·4) v. 12·1 (SD 1·6) g/kg per d; P=0·135) and %FM (13·7 (SD 3·6) v.13·6 (SD 3·5) %; P=0·984) did not significantly differ between groups. A protein intake >3·4 g/kg per d reduced %FM by 2%. Nutrition and growth was not improved by targeting milk fortification according to birth weight criteria and PMA using measured milk composition, compared with routine practice. Targeting fortification on measured composition is labour intensive, requiring frequent milk sampling and precision measuring equipment, perhaps reasons for its limited practice. Guidance around safe upper levels of milk fortification is needed.
Rinne, M; Kuoppala, K; Ahvenjärvi, S; Vanhatalo, A
2015-12-01
The effects of rapeseed and soya bean expeller (SBE) supplementation on digestion and milk production responses in dairy cows were investigated in an incomplete Latin square design using five cows and four 3-week periods. The experimental diets consisted of five concentrate treatments fed at a rate of 9 kg/day: a mixture of barley and oats, which was replaced with rapeseed or SBE at two levels (CP concentration (g/kg dry matter (DM)) of 130 for the control concentrate and 180 and 230 for the two protein supplemented levels). A mixture of grass and red clover silage (1:1) was fed ad libitum and it had a CP concentration of 157 g/kg DM. Supply of nutrients to the lower tract was measured using the omasal canal sampling technique, and total digestion from total faecal collection. Protein supplementation increased omasal canal amino acid (AA) flows and plasma concentrations of AA, and was also reflected as increased milk production. However, N use efficiency (NUE) decreased with increased protein supplementation. Rapeseed expeller (RSE) tended to increase silage DM intake and elicited higher milk production responses compared with SBE and also resulted in a higher NUE. The differences between the protein supplements in nitrogen metabolism were relatively small, for example, there were no differences in the efficiency of microbial protein synthesis or omasal canal flows of nitrogenous components between them, but plasma methionine concentration was lower for soya bean-fed cows at the high CP level in particular. The lower milk protein production responses to SBE than to RSE supplementation were at least partly caused by increased silage DM and by the lower methionine supply, which may further have been amplified by the use of red clover in the basal diet. Although feed intake, diet digestion, AA supply and milk production were all consistently improved by protein supplementation, there was a simultaneous decrease in NUE. In the current study, the milk protein production increased only 9% and energy-corrected milk production by 7% when high level of protein supplementation (on average 2.9 kg DM/day) was compared with the control diet without protein supplementation showing that dairy production could be sustained at a high level even without external protein supplements, at least in the short term. The economic and environmental aspects need to be carefully evaluated when decisions about protein supplementation for dairy cows are taken.
Nutritive value of maize silage in relation to dairy cow performance and milk quality.
Khan, Nazir A; Yu, Peiqiang; Ali, Mubarak; Cone, John W; Hendriks, Wouter H
2015-01-01
Maize silage has become the major forage component in the ration of dairy cows over the last few decades. This review provides information on the mean content and variability in chemical composition, fatty acid (FA) profile and ensiling quality of maize silages, and discusses the major factors which cause these variations. In addition, the effect of the broad range in chemical composition of maize silages on the total tract digestibility of dietary nutrients, milk production and milk composition of dairy cows is quantified and discussed. Finally, the optimum inclusion level of maize silage in the ration of dairy cows for milk production and composition is reviewed. The data showed that the nutritive value of maize silages is highly variable and that most of this variation is caused by large differences in maturity at harvest. Maize silages ensiled at a very early stage (dry matter (DM) < 250 g kg(-1)) were particularly low in starch content and starch/neutral detergent fibre (NDF) ratio, and resulted in a lower DM intake (DMI), milk yield and milk protein content. The DMI, milk yield and milk protein content increased with advancing maturity, reaching an optimum level for maize silages ensiled at DM contents of 300-350 g kg(-1), and then declined slightly at further maturity beyond 350 g kg(-1). The increases in milk (R(2) = 0.599) and protein (R(2) = 0.605) yields with maturity of maize silages were positively related to the increase in starch/NDF ratio of the maize silages. On average, the inclusion of maize silage in grass silage-based diets improved the forage DMI by 2 kg d(-1), milk yield by 1.9 kg d(-1) and milk protein content by 1.2 g kg(-1). Further comparisons showed that, in terms of milk and milk constituent yields, the optimum grass/maize silage ratio depends on the quality of both the grass and maize silages. Replacement of grass silage with maize silage in the ration, as well as an increasing maturity of the maize silages, altered the milk FA profile of the dairy cows, notably, the concentration of the cis-unsaturated FAs, C18:3n-3 and n-3/n-6 ratio decreased in milk fat. Despite variation in nutritive value, maize silage is rich in metabolizable energy and supports higher DMI and milk yield. Harvesting maize silages at a DM content between 300 and 350 g kg(-1) and feeding in combination with grass silage results in a higher milk yield of dairy cows. © 2014 Society of Chemical Industry.
CNV discovery for milk composition traits in dairy cattle using whole genome resequencing.
Gao, Yahui; Jiang, Jianping; Yang, Shaohua; Hou, Yali; Liu, George E; Zhang, Shengli; Zhang, Qin; Sun, Dongxiao
2017-03-29
Copy number variations (CNVs) are important and widely distributed in the genome. CNV detection opens a new avenue for exploring genes associated with complex traits in humans, animals and plants. Herein, we present a genome-wide assessment of CNVs that are potentially associated with milk composition traits in dairy cattle. In this study, CNVs were detected based on whole genome re-sequencing data of eight Holstein bulls from four half- and/or full-sib families, with extremely high and low estimated breeding values (EBVs) of milk protein percentage and fat percentage. The range of coverage depth per individual was 8.2-11.9×. Using CNVnator, we identified a total of 14,821 CNVs, including 5025 duplications and 9796 deletions. Among them, 487 differential CNV regions (CNVRs) comprising ~8.23 Mb of the cattle genome were observed between the high and low groups. Annotation of these differential CNVRs were performed based on the cattle genome reference assembly (UMD3.1) and totally 235 functional genes were found within the CNVRs. By Gene Ontology and KEGG pathway analyses, we found that genes were significantly enriched for specific biological functions related to protein and lipid metabolism, insulin/IGF pathway-protein kinase B signaling cascade, prolactin signaling pathway and AMPK signaling pathways. These genes included INS, IGF2, FOXO3, TH, SCD5, GALNT18, GALNT16, ART3, SNCA and WNT7A, implying their potential association with milk protein and fat traits. In addition, 95 CNVRs were overlapped with 75 known QTLs that are associated with milk protein and fat traits of dairy cattle (Cattle QTLdb). In conclusion, based on NGS of 8 Holstein bulls with extremely high and low EBVs for milk PP and FP, we identified a total of 14,821 CNVs, 487 differential CNVRs between groups, and 10 genes, which were suggested as promising candidate genes for milk protein and fat traits.
Hu, X-C; Gao, C-Q; Wang, X-H; Yan, H-C; Chen, Z-S; Wang, X-Q
2016-12-01
The experiment was conducted to study whether insulin receptor substance 1 (IRS1) / Protein kinase B (Akt)/target of the rapamycin (TOR) signalling pathway activation stimulates crop milk protein synthesis in the domestic pigeon (Columba livia). Crop milk was collected from ten 1-d-old squabs and analysed for nutrient content. During the non-breeding period and the first day of lactation, blood samples were collected from 5 pairs of breeding pigeons and the levels of prolactin and insulin were determined. Crop samples were collected from 5 pairs of breeders at d 14 and 16 of the incubation period and d 1, 3 and 7 of the lactation period. Crop samples were evaluated for changes in crop weight and thickness and changes in the expression patterns of IRS1/Akt/TOR signalling pathway-related proteins. The results demonstrated that prolactin induces a gradual increase in the relative weight and thickness of the crop, with crops reaching a maximum size at the third day of lactation. Pigeon crop milk contains 64.1% crude protein and 29.7% crude fat based on dry weight. Serum prolactin and insulin levels in the lactation period were significantly higher than those in the non-breeding period. Compared with non-breeding pigeons, the expression of the phosphorylated IRS1 phosphorylated Akt, phosphorylated TOR, phosphorylated ribosomal protein S6 kinase, phosphorylated S6, phosphorylated eukaryotic initiation factor 4E binding protein 1 and eukaryotic initiation factor 4E were significantly up-regulated in the crop of pigeons in the lactation period. In conclusion, prolactin might induce changes in crop tissue and form the physiological structure for crop milk synthesis. Furthermore, the synthesis of crop milk protein is regulated by activation of the IRS1/Akt/TOR signalling pathway.
Kirk, Ben; Mitchell, Jade; Jackson, Matthew; Amirabdollahian, Farzad; Alizadehkhaiyat, Omid; Clifford, Tom
2017-01-28
Hyperaminoacidemia following ingestion of cows-milk may stimulate muscle anabolism and attenuate exercise-induced muscle damage (EIMD). However, as dairy-intolerant athletes do not obtain the reported benefits from milk-based products, A2 milk may offer a suitable alternative as it lacks the A1-protein. This study aimed to determine the effect of A2 milk on recovery from a sports-specific muscle damage model. Twenty-one male team sport players were allocated to three independent groups: A2 milk ( n = 7), regular milk ( n = 7), and placebo (PLA) ( n = 7). Immediately following muscle-damaging exercise, participants consumed either A2 milk, regular milk or PLA (500 mL each). Visual analogue scale (muscle soreness), maximal voluntary isometric contraction (MVIC), countermovement jump (CMJ) and 20-m sprint were measured prior to and 24, 48, and 72 h post EIMD. At 48 h post-EIMD, CMJ and 20-m sprint recovered quicker in A2 (33.4 ± 6.6 and 3.3 ± 0.1, respectively) and regular milk (33.1 ± 7.1 and 3.3 ± 0.3, respectively) vs. PLA (29.2 ± 3.6 and 3.6 ± 0.3, respectively) ( p < 0.05). Relative to baseline, decrements in 48 h CMJ and 20-m sprint were minimised in A2 (by 7.2 and 5.1%, respectively) and regular milk (by 6.3 and 5.2%, respectively) vs. PLA. There was a trend for milk treatments to attenuate decrements in MVIC, however statistical significance was not reached ( p = 0.069). Milk treatments had no apparent effect on muscle soreness ( p = 0.152). Following muscle-damaging exercise, ingestion of 500 mL of A2 or regular milk can limit decrements in dynamic muscle function in male athletes, thus hastening recovery and improving subsequent performance. The findings propose A2 milk as an ergogenic aid following EIMD, and may offer an alternative to athletes intolerant to the A1 protein.
Oftedal, O T; Eisert, R; Barrell, G K
2014-01-01
Mammalian milks may differ greatly in composition from cow milk, and these differences may affect the performance of analytical methods. High-fat, high-protein milks with a preponderance of oligosaccharides, such as those produced by many marine mammals, present a particular challenge. We compared the performance of several methods against reference procedures using Weddell seal (Leptonychotes weddellii) milk of highly varied composition (by reference methods: 27-63% water, 24-62% fat, 8-12% crude protein, 0.5-1.8% sugar). A microdrying step preparatory to carbon-hydrogen-nitrogen (CHN) gas analysis slightly underestimated water content and had a higher repeatability relative standard deviation (RSDr) than did reference oven drying at 100°C. Compared with a reference macro-Kjeldahl protein procedure, the CHN (or Dumas) combustion method had a somewhat higher RSDr (1.56 vs. 0.60%) but correlation between methods was high (0.992), means were not different (CHN: 17.2±0.46% dry matter basis; Kjeldahl 17.3±0.49% dry matter basis), there were no significant proportional or constant errors, and predictive performance was high. A carbon stoichiometric procedure based on CHN analysis failed to adequately predict fat (reference: Röse-Gottlieb method) or total sugar (reference: phenol-sulfuric acid method). Gross energy content, calculated from energetic factors and results from reference methods for fat, protein, and total sugar, accurately predicted gross energy as measured by bomb calorimetry. We conclude that the CHN (Dumas) combustion method and calculation of gross energy are acceptable analytical approaches for marine mammal milk, but fat and sugar require separate analysis by appropriate analytic methods and cannot be adequately estimated by carbon stoichiometry. Some other alternative methods-low-temperature drying for water determination; Bradford, Lowry, and biuret methods for protein; the Folch and the Bligh and Dyer methods for fat; and enzymatic and reducing sugar methods for total sugar-appear likely to produce substantial error in marine mammal milks. It is important that alternative analytical methods be properly validated against a reference method before being used, especially for mammalian milks that differ greatly from cow milk in analyte characteristics and concentrations. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Cow and herd variation in milk urea nitrogen concentrations in lactating dairy cattle.
Aguilar, M; Hanigan, M D; Tucker, H A; Jones, B L; Garbade, S K; McGilliard, M L; Stallings, C C; Knowlton, K F; James, R E
2012-12-01
Milk urea nitrogen (MUN) is correlated with N balance, N intake, and dietary N content, and thus is a good indicator of proper feeding management with respect to protein. It is commonly used to monitor feeding programs to achieve environmental goals; however, genetic diversity also exists among cows. It was hypothesized that phenotypic diversity among cows could bias feed management decisions when monitoring tools do not consider genetic diversity associated with MUN. The objective of the work was to evaluate the effect of cow and herd variation on MUN. Data from 2 previously published research trials and a field trial were subjected to multivariate regression analyses using a mixed model. Analyses of the research trial data showed that MUN concentrations could be predicted equally well from diet composition, milk yield, and milk components regardless of whether dry matter intake was included in the regression model. This indicated that cow and herd variation could be accurately estimated from field trial data when feed intake was not known. Milk urea N was correlated with dietary protein and neutral detergent fiber content, milk yield, milk protein content, and days in milk for both data sets. Cow was a highly significant determinant of MUN regardless of the data set used, and herd trended to significance for the field trial data. When all other variables were held constant, a percentage unit change in dietary protein concentration resulted in a 1.1mg/dL change in MUN. Least squares means estimates of MUN concentrations across herds ranged from a low of 13.6 mg/dL to a high of 17.3 mg/dL. If the observed MUN for the high herd were caused solely by high crude protein feeding, then the herd would have to reduce dietary protein to a concentration of 12.8% of dry matter to achieve a MUN concentration of 12 mg/dL, likely resulting in lost milk production. If the observed phenotypic variation is due to genetic differences among cows, genetic choices could result in herds that exceed target values for MUN when adhering to best management practices, which is consistent with the trend for differences in MUN among herds. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Poulsen, Nina A; Glantz, Maria; Rosengaard, Anette K; Paulsson, Marie; Larsen, Lotte B
2017-11-01
Recent studies have reported a very high frequency of noncoagulating milk in Swedish Red cows. The underlying factors are not fully understood. In this study, we explored rennet-induced coagulation properties and relative protein profiles in milk from native Swedish Mountain and Swedish Red Polled cows and compared them with a subset of noncoagulating (NC) and well-coagulating (WC) milk samples from modern Swedish Red cows. The native breeds displayed a very low prevalence of NC milk and superior milk coagulation properties compared with Swedish Red cows. The predominant variants in both native breeds were α S1 -casein (α S1 -CN) B, β-CN A 2 and β-lactoglobulin (β-LG) B. For κ-CN, the B variant was predominant in the Swedish Mountain cows, whereas the A variant was the most frequent in the Swedish Red Polled. The native breeds displayed similar protein composition, but varied in content of α S1 -CN with 9 phosphorylated serines (9P) form. Within the Swedish Mountain cows, we observed a strong inverse correlation between the relative concentration of κ-CN and micelle size and a positive correlation between ionic calcium and gel firmness. For comparison, we investigated a subset of 29 NC and 28 WC milk samples, representing the extremes with regard to coagulation properties based on an initial screening of 395 Swedish Red cows. In Swedish Red, NC milk properties were found to be related to higher frequencies of β-CN A 2 , κ-CN E and A variants, as well as β-LG B, and the predominant composite genotype of β- and κ-CN in the NC group was A 2 A 2 /AA. Generally, the A 2 A 2 /AA composite genotype was related to lower relative concentrations of κ-CN isoforms and higher relative concentrations of α S1 -, α S2 -, and β-CN. Compared with the group of WC milk samples, NC milk contained a higher fraction of α S2 -CN and α-lactalbumin (α-LA) but a lower fraction of α S1 -CN 9P. In conclusion, milk from native Swedish breeds has good characteristics for cheese milk, which could be exploited in niche dairy products. In milk from Swedish Mountain cows, levels of ionic calcium seemed to be more important for rennet-induced gel firmness than variation in the relative protein profile. In Swedish Red, lower protein content as well as higher fraction of α S2 -CN and lower fraction of α S1 -CN 9P were related to NC milk. Further, a decrease in the frequency of the composite β-κ-CN genotype A 2 A 2 /AA through selective breeding could have a positive effect on milk coagulation properties. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Cadesky, Lee; Walkling-Ribeiro, Markus; Kriner, Kyle T; Karwe, Mukund V; Moraru, Carmen I
2017-09-01
Reconstituted micellar casein concentrates and milk protein concentrates of 2.5 and 10% (wt/vol) protein concentration were subjected to high-pressure processing at pressures from 150 to 450 MPa, for 15 min, at ambient temperature. The structural changes induced in milk proteins by high-pressure processing were investigated using a range of physical, physicochemical, and chemical methods, including dynamic light scattering, rheology, mid-infrared spectroscopy, scanning electron microscopy, proteomics, and soluble mineral analyses. The experimental data clearly indicate pressure-induced changes of casein micelles, as well as denaturation of serum proteins. Calcium-binding α S1 - and α S2 -casein levels increased in the soluble phase after all pressure treatments. Pressurization up to 350 MPa also increased levels of soluble calcium and phosphorus, in all samples and concentrations, whereas treatment at 450 MPa reduced the levels of soluble Ca and P. Experimental data suggest dissociation of calcium phosphate and subsequent casein micelle destabilization as a result of pressure treatment. Treatment of 10% micellar casein concentrate and 10% milk protein concentrate samples at 450 MPa resulted in weak, physical gels, which featured aggregates of uniformly distributed, casein substructures of 15 to 20 nm in diameter. Serum proteins were significantly denatured by pressures above 250 MPa. These results provide information on pressure-induced changes in high-concentration protein systems, and may inform the development on new milk protein-based foods with novel textures and potentially high nutritional quality, of particular interest being the soft gel structures formed at high pressure levels. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Francos, G; Distl, O; Ezra, E; Mayer, E
1999-06-01
In three field trials comprising 602 Israeli-Holstein dairy cows, the effect of the dry period ration on reproductive performance, culling rate and milk production was investigated. The cows were fed in groups. The basic dry period rations consisted for two herds of medium quality cereal hay and for one herd of corn straw, which were fed ad libitum. In each herd dry cows were assigned to an experimental and control group. Cows of the experimental group were supplemented with 1.5 to 3 kg of lactating cows mixed ration (LMR), whereas in the control group the amount of supplement was increased by the factor two or 3.3. In the experimental group the amount of the supplement was calculated to achieve levels of net energy and of crude protein close to NRC requirements; in the control group the level of net energy and protein was 12 to 18% higher as compared to the experimental group. The amount of LMR supplement in the experimental group of herds A, B, C were 1.5 kg, 1.9 kg, and 3 kg, respectively. In the control groups these amounts were 5 kg, 3.8 kg, and 6 kg, respectively. The groups fed moderate amounts of LMR supplement had a higher conception rate at first insemination, a higher percentage of cows conceiving and fewer cows culled in the consecutive lactation than cows fed increased amounts of LMR supplement. The lactational incidence of reproductive disorders and the milk production were not affected by the differences in feeding during the dry period. Reproductive performance and culling rate appeared to be more favorable for cows fed moderate amounts of supplement during the entire dry period or during the last 3 to 4 weeks of the dry period.
The Use of a "Qual" Centrifuge for Greatly Simplifying and Speeding the Study of Milk
NASA Astrophysics Data System (ADS)
Petersen, Quentin R.
1996-09-01
Laboratory study of the constituents of milk is almost always slowed by difficult separation of relatively large amounts of curd and whey by filtration. In the two-and-one-half hour experiment described, only 5 mL of skim milk is used and the curd is separated from the whey by using a simple "qual" centrifuge. Casein and serum proteins are quickly isolated as solids in essentially-quantitative yields in a procedure utilizing only two 13 x 100 mm test tubes and a 50 mL beaker along with the centrifuge and a hotplate. Protein solutions are prepared in the test tubes in which they were isolated and subjected to a variety of classical tests, the most dramatic of which is the Hopkins-Cole test which shows the presence of tryptophan in casein and its absence in serum protein. An essentially-quantitative yield of solid lactose is obtained by evaporation of the supernatant liquid obtained from the serum protein centrifugation. A lactose solution is subjected to Benedict's and Barfoed's tests, identifying it as a disaccharide. Sufficient time is available to compare the fat and enzyme contents of raw milk and skim milk.
Funkquist, E L; Tuvemo, T; Jonsson, B; Serenius, F; Hedberg-Nyqvist, K
2006-01-01
The effect of protein enrichment of mother's milk on growth of low birthweight infants needs further exploration in order to optimize feeding strategies. The aim of this study was to describe feeding and growth of infants weighing <1,900 g at birth, up to a corrected age of 18 months, with or without protein-enriched breastmilk. A retrospective, descriptive, non-experimental design was used to describe the growth of 52 low birthweight infants. Data on their growth and feeding were collected from medical records at hospitals and child health care clinics. Despite more severe morbidity, the infants given protein-enriched milk showed similar growth as the other study infants. Standard deviation score for length at birth correlated positively with delta standard deviation score for length, from discharge to 12 and from discharge to 18 months corrected age. Duration of 'full' breastfeeding had a significant impact on subsequent improvement in SDS for weight. At discharge a smaller proportion of singletons fed with protein enriched milk were breastfed 'fully'. Infants who established breastfeeding at an early post-menstrual age were born with more optimal weight standard deviation score and had a better weight gain after discharge. We conclude that protein-enriched breast milk enables low birthweight infants requiring especially intensive care to attain growth at discharge comparable to that of healthier infants not given enriched milk. Low standard deviation score for length at birth may predict poor growth after discharge. However duration of 'full' breastfeeding had a significant impact on subsequent improvement in SDS for weight. Therefore it is important that mothers of LBW infants are given sufficient support of lactation and breastfeeding.
Amino acid metabolism in dairy cows and their regulation in milk synthesis.
Wang, Feiran; Shi, Haitao; Wang, Shuxiang; Wang, Yajing; Cao, Zhijun; Li, Shengli
2018-06-10
Reducing dietary crude protein (CP) and supplementing with certain amino acids (AAs) has been known as a potential solution to improve nitrogen (N) efficiency in dairy production. Thus understanding how AAs are utilized in various sites along the gut is critical. AA flow from the intestine to portal-drained viscera (PDV) and liver then to the mammary gland was elaborated in this article. Recoveries in individual AA in PDV and liver seem to share similar AA pattern with input: output ratio in mammary gland, which subdivides essential AA (EAA) into two groups, lysine (Lys) and branched-chain AA (BCAA) in group 1, input: output ratio > 1; methionine (Met), histidine (His), phenylalanine (Phe) etc. in group 2, input: output ratio close to 1. AAs in the mammary gland are either utilized for milk protein synthesis or retained as body tissue, or catabolized. The fractional removal of AAs and the number and activity of AA transporters together contribute to the ability of AAs going through mammary cells. Mammalian target of rapamycin (mTOR) pathway is closely related to milk protein synthesis and provides alternatives for AA regulation of milk protein synthesis, which connects AA with lactose synthesis via α-lactalbumin (gene: LALBA) and links with milk fat synthesis via sterol regulatory element-binding transcription protein 1 (SREBP1) and peroxisome proliferator-activated receptor (PPAR). Overall, AA flow across various tissues reveal AA metabolism and utilization in dairy cows on one hand. While the function of AA in the biosynthesis of milk protein, fat and lactose at both transcriptional and posttranscriptional level from another angle provides the possibility for us to regulate them for higher efficiency. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
James, Lewis J; Clayton, David; Evans, Gethin H
2011-02-01
The present study examined the effects of milk protein on rehydration after exercise in the heat, via the comparison of energy- and electrolyte content-matched carbohydrate and carbohydrate-milk protein solutions. Eight male subjects lost 1·9 (SD 0·2) % of their body mass by intermittent exercise in the heat and rehydrated with 150% of their body mass loss with either a 65 g/l carbohydrate solution (trial C) or a 40 g/l carbohydrate, 25 g/l milk protein solution (trial CP). Urine samples were collected before and after exercise and for 4 h after rehydration. Total cumulative urine output after rehydration was greater for trial C (1212 (SD 310) ml) than for trial CP (931 (SD 254) ml) (P < 0·05), and total fluid retention over the study was greater after ingestion of drink CP (55 (SD 12) %) than that after ingestion of drink C (43 (SD 15) %) (P < 0·05). At the end of the study period, whole body net fluid balance (P < 0·05) was less negative for trial CP (-0·26 (SD 0·27) litres) than for trial C (-0·52 (SD 0·30) litres), and although net negative for both the trials, it was only significantly negative after ingestion of drink C (P < 0·05). The results of the present study suggest that when matched for energy density and fat content, as well as for Na and K concentration, and when ingested after exercise-induced dehydration, a carbohydrate-milk protein solution is better retained than a carbohydrate solution. These results suggest that gram-for-gram, milk protein is more effective at augmenting fluid retention than carbohydrate.
Influence of raw milk quality on fluid milk shelf life.
Barbano, D M; Ma, Y; Santos, M V
2006-03-01
Pasteurized fluid milk shelf life is influenced by raw milk quality. The microbial count and somatic cell count (SCC) determine the load of heat-resistant enzymes in milk. Generally, high levels of psychrotrophic bacteria in raw milk are required to contribute sufficient quantities of heat-stable proteases and lipases to cause breakdown of protein and fat after pasteurization. Sanitation, refrigeration, and the addition of CO2 to milk are used to control both total and psychrotrophic bacteria count. It is not uncommon for total bacterial counts of raw milk to be < 10,000 cfu/mL. In the past, fluid milk processors have not focused much attention on milk SCC. Increased SCC is correlated with increased amounts of heat-stable protease (plasmin) and lipase (lipoprotein lipase) in milk. When starting with raw milk that has a low bacterial count, and in the absence of microbial growth in pasteurized milk, enzymes associated with high SCC will cause protein and fat degradation during refrigerated storage, and produce off-flavors. As the ability to kill, remove, or control microbial growth in pasteurized refrigerated milk continues to improve, the original milk SCC will be the factor limiting the time of refrigerated storage before development of an off-flavor in milk. Most healthy cows in a dairy herd have a milk SCC < 50,000 cell/mL. Bulk tank SCC > 200,000 cell/mL are usually due to the contribution of high SCC milk from a small number of cows in the herd. Technology to identify these cows and keep their milk out of the bulk tank could substantially increase the value of the remaining milk for use in fluid milk processing. To achieve a 60- to 90-d shelf life of refrigerated fluid milk, fluid processors and dairy farmers need to work together to structure economic incentives that allow farmers to produce milk with the SCC needed for extended refrigerated shelf life.
Establishment and application of milk fingerprint by gel filtration chromatography.
Gao, P; Li, J; Li, Z; Hao, J; Zan, L
2016-12-01
Raw milk adulteration frequently occurs in undeveloped countries. It not only reduces the nutritional value of milk, but it is also harmful to consumers. In this paper, we focused on investigating an efficient method for the quality control of raw milk protein. A gel filtration chromatography (GFC) fingerprint method combined with chemometrics was developed for fingerprint analysis of raw milk. To optimize the GFC conditions, milk fat was removed by centrifugation, and GFC analysis was performed on a Superdex 75 10/300GL column (Just Scientific, Shanghai, China) with 0.2 M NaH 2 PO 4 -Na 2 HPO 4 buffer (pH 7.0) as the mobile phase. The flow rate was 0.5mL/min, and the detection wavelength was set at 280 nm. Ten batches of 120 raw milk samples were analyzed to establish the GFC fingerprint under optimal conditions. Six major peaks common to the chromatogram of each raw milk sample were selected for fingerprint analysis, and the characteristic peaks were used to establish a standard chromatographic fingerprint. Principal component analysis was then applied to classify GFC information of adulterated milk and raw milk, allowing adulterated samples to be effectively screened out from the raw milk in principal component analysis scores plot. The fingerprint method demonstrates promising features in detecting milk protein adulteration. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Xuli, Wu; Weiyi, He; Ji, Kunmei; Wenpu, Wan; Dongsheng, Hu; Hui, Wu; Xinpin, Luo; Zhigang, Liu
2013-03-01
The ingredient declaration on food labels assumes paramount importance in the protection of food-allergic consumers. China has not implemented Food allergen labeling. A gold immunochromatography assay (GICA) was developed using 2 monoclonal antibodies (mAb) against the milk allergen β-lactoglobulin in this study. The GICA was specific for pure milk samples with a sensitivity of 0.2 ng/mL. Milk protein traces extracted from 110 food products were detected by this method. The labels of 106 were confirmed by our GICA method: 57 food samples originally labeled as containing milk were positive for β-lactoglobulin and 49 food samples labeled as not containing milk were negative for β-lactoglobulin. However, 3 food samples falsely labeled as containing milk were found to contain no β-lactoglobulin whereas 1 food sample labeled as not containing milk actually contained β-lactoglobulin. First, these negatives could be because of the addition of a casein fraction. Second, some countries demand that food manufacturers label all ingredients derived from milk as "containing milk" even though the ingredients contain no detectable milk protein by any method. Our GICA method could thus provide a fast and simple method for semiquantitatation of β-lactoglobulin in foods. The present method provides a fast, simple, semiquantitative method for the determination of milk allergens in foods. © 2013 Institute of Food Technologists®
New insights into the health benefits of dairy products
USDA-ARS?s Scientific Manuscript database
Dairy products such as milk, cheese, and yogurt have long been known to provide good nutrition. The protein and calcium present in milk and the vitamin D added to it are major healthful contributors to the diets of many Americans. Additional ways in which milk and milk products benefit humans is th...
New insights into the health benefits of dairy products
USDA-ARS?s Scientific Manuscript database
Dairy products such as milk, cheese, and yogurt have long been known to provide good nutrition. The protein, calcium, and fatty acids present in milk and the vitamin D added to it are major healthful contributors to the diets of many people. Additional ways in which milk and milk products benefit h...
USDA-ARS?s Scientific Manuscript database
Consumption of raw milk from pasture-fed cows, typically purchased at local farms, is steadily increasing in the US because many consumers believe that high-temperature short-time (HTST) or ultrahigh temperature (UHT) pasteurization affects the digestibility of milk proteins and thus the bioavailabi...