Sample records for mill buds require

  1. Synchronisms and correlations of spring phenology between apical and lateral meristems in two boreal conifers.

    PubMed

    Antonucci, Serena; Rossi, Sergio; Deslauriers, Annie; Lombardi, Fabio; Marchetti, Marco; Tognetti, Roberto

    2015-10-01

    Phenological synchronisms between apical and lateral meristems could clarify some aspects related to the physiological relationships among the different organs of trees. This study correlated the phenological phases of bud development and xylem differentiation during spring 2010-14 in balsam fir (Abies balsamea Mill.) and black spruce [(Picea mariana Mill. (BSP)] of the Monts-Valin National Park (Quebec, Canada) by testing the hypothesis that bud development occurs after the reactivation of xylem growth. From May to September, we conducted weekly monitoring of xylem differentiation using microcores and bud development with direct observations on terminal branches. Synchronism between the beginning of bud development and xylem differentiation was found in both species with significant correlations between the phases of bud and xylem phenology. Degree-day sum was more appropriate in assessing the date of bud growth resumption, while thermal thresholds were more suitable for cambium phenology. Our results provide new knowledge on the dynamics of spring phenology and novel information on the synchronisms between two meristems in coniferous trees. The study demonstrates the importance of precisely defining the phases of bud development in order to correctly analyse the relationships with xylem phenology. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Dormancy release and flowering time in Ziziphus jujuba Mill., a "direct flowering" fruit tree, has a facultative requirement for chilling.

    PubMed

    Meir, Michal; Ransbotyn, Vanessa; Raveh, Eran; Barak, Simon; Tel-Zur, Noemi; Zaccai, Michele

    2016-03-15

    In deciduous fruit trees, the effect of chilling on flowering has mostly been investigated in the "indirect flowering" group, characterized by a period of rest between flower bud formation and blooming. In the present study, we explored the effects of chilling and chilling deprivation on the flowering of Ziziphus jujuba, a temperate deciduous fruit tree belonging to the "direct flowering" group, in which flower bud differentiation, blooming and fruit development occur after dormancy release, during a single growing season. Dormancy release, vegetative growth and flowering time in Z. jujuba cv. Ben-Li were assessed following several treatments of chilling. Chilling treatments quantitatively decreased the timing of vegetative bud dormancy release, thereby accelerating flowering, but had no effect on the time from dormancy release to flowering. Trees grown at a constant temperature of 25°C, without chilling, broke dormancy and flowered, indicating the facultative character of chilling in this species. We measured the expression of Z. jujuba LFY and AP1 homologues (ZjLFY and ZjAP1). Chilling decreased ZjLFY expression in dormant vegetative buds but had no effect on ZjAP1expression, which reached peak expression before dormancy release and at anthesis. In conclusion, chilling is not obligatory for dormancy release of Z. jujuba cv. Ben-Li vegetative buds. However, the exposure to chilling during dormancy does accelerate vegetative bud dormancy release and flowering. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Synchronisms between bud and cambium phenology in black spruce: early-flushing provenances exhibit early xylem formation.

    PubMed

    Perrin, Magali; Rossi, Sergio; Isabel, Nathalie

    2017-05-01

    Bud and cambial phenology represent the adaptation of species to the local environment that allows the growing season to be maximized while minimizing the risk of frost for the developing tissues. The temporal relationship between the apical and radial meristems can help in the understanding of tree growth as a whole process. The aim of this study was to compare cambial phenology in black spruce (Picea mariana (Mill.) B.S.P.) provenances classified as early and late bud flushing. The different phases of cambial phenology were assessed on wood microcores sampled weekly from April to October in 2014 and 2015 from 61 trees growing in a provenance trial in Quebec, Canada. Trees showing an early bud flush also exhibited early reactivation of xylem differentiation, although an average difference of 12 days for buds corresponded to small although significant differences of 4 days for xylem. Provenances with early bud flush had an early bud set and completed xylem formation earlier than late bud flush provenances. No significant difference in the period of xylem formation and total growth was observed between the flushing classes. Our results demonstrate that the ecotype differentiation of black spruce provenances represented by the phenological adaptation of buds to the local climate corresponds to specific growth dynamics of the xylem. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Freezing of Water in Dormant Vegetative Apple Buds in Relation to Cryopreservation 1

    PubMed Central

    Tyler, Nancy; Stushnoff, Cecil; Gusta, Larry V.

    1988-01-01

    Various empirical prefreezing protocols have been used to facilitate cryopreservation of dormant buds from woody plants. The objective of this research was to determine the quantity of water remaining in liquid phase, under different prefreezing conditions using pulsed nuclear magnetic resonance spectroscopy of dormant apple (Malus domestica Mill.) buds from three cultivars. During prefreezing, the quantity of water remaining in the liquid phase was less at −40°C<−30°C<−20°C for all cultivars tested. The prefreezing temperature had a greater influence on reducing the quantity of liquid water than the duration of prefreezing. Prefreezing to −40°C for 24 hours was optimal for `Patterson' and `McIntosh,' the hardiest cultivars, compared to −30°C for 24 hours with `Red Delicious.' Cryopreservation of dormant apple buds depends upon the quantity of liquid water during prefreezing, prior to immersion in liquid nitrogen, and upon the cultivar. PMID:16666103

  5. Overexpression of DEMETER, a DNA demethylase, promotes early apical bud maturation in poplar.

    PubMed

    Conde, Daniel; Moreno-Cortés, Alicia; Dervinis, Christopher; Ramos-Sánchez, José M; Kirst, Matias; Perales, Mariano; González-Melendi, Pablo; Allona, Isabel

    2017-11-01

    The transition from active growth to dormancy is critical for the survival of perennial plants. We identified a DEMETER-like (CsDML) cDNA from a winter-enriched cDNA subtractive library in chestnut (Castanea sativa Mill.), an economically and ecologically important species. Next, we characterized this DNA demethylase and its putative ortholog in the more experimentally tractable hybrid poplar (Populus tremula × alba), under the signals that trigger bud dormancy in trees. We performed phylogenetic and protein sequence analysis, gene expression profiling, and 5-methyl-cytosine methylation immunodetection studies to evaluate the role of CsDML and its homolog in poplar, PtaDML6. Transgenic hybrid poplars overexpressing CsDML were produced and analysed. Short days and cold temperatures induced CsDML and PtaDML6. Overexpression of CsDML accelerated short-day-induced bud formation, specifically from Stages 1 to 0. Buds acquired a red-brown coloration earlier than wild-type plants, alongside with the up-regulation of flavonoid biosynthesis enzymes and accumulation of flavonoids in the shoot apical meristem and bud scales. Our data show that the CsDML gene induces bud formation needed for the survival of the apical meristem under the harsh conditions of winter. © 2017 John Wiley & Sons Ltd.

  6. Local adaptations and climate change: converging sensitivity of bud break in black spruce provenances.

    PubMed

    Rossi, Sergio

    2015-07-01

    Species with transcontinental distribution or spread over wide geographical regions develop populations with growth traits genetically adapted to the local climate. The aim of this study was to investigate the ecotypic sensitivity of bud break, a strong adaptive trait, to a changing environment. Six phenological phases of bud break were monitored daily on black spruce [Picea mariana (Mill.) BSP] seedlings submitted to different temperatures (12, 16 and 20 °C) and photoperiods (14, 18 and 22 h). Six provenances were tested in growth chambers, produced from seeds collected along the whole latitudinal range of the closed boreal forest in Quebec, Canada. Bud break lasted 13.3 days on average and occurred earlier in seedlings from colder sites. The annual temperature of the sites suitably tracked the clinal variation among ecotypes, providing a clear biological explanation for the environmental signal driving the adaptive divergence of populations to the local climate. Increasing temperature induced an earlier bud break according to a non-linear pattern with greater advancements observed between 12 and 16 °C. Photoperiod was significant, but sensitivity analysis indicated that its effect on bud break was marginal with respect to temperature. No interaction of provenance × treatment was observed, demonstrating an ecotypic convergence of the responses to both factors. Changes in the growing conditions could substantially modify the synchronization between bud phenology and climate, thus exposing the developing meristems of black spruce to frost damage. However, similar advancements of bud break could be expected in the different ecotypes subjected to warmer temperatures or longer day lengths.

  7. Longleaf pine flowering in response to nitrogen fertilization, branch girdling, growth substances, and cultivation

    Treesearch

    R.C. Hare; E.B. Snyder; R.C. Schmidtling

    1977-01-01

    Biweekly applications of 400 µg GA4/7 plus 25 µg NAA per bud from June 1 to August 10 promoted male and female flowering in longleaf pine (Pinus palustris Mill.), especially when combined with partial branch girdling and NH4N03 fertilization. Fertilization was the...

  8. [Process of meiosis in interspecific hybrid F1 Lycopersicon esculentum Mill. x Lycopersicon chilense Dun].

    PubMed

    Montvid, P Iu; Samovol, O P; Miroshnychenko, V P

    2011-01-01

    The investigation concerns meiosis behaviour in embryo-culture-obtained Lycopersicon esculentum Mill. (mutant seedline Mo 638) x L. chilense Dun. F1 hybrid and its parental forms. It was determined that chiasma frequency decreased while univalent and meiotic disorder frequencies increased in F1 plants in comparison with parents forms. Univalent number and the percent of main disorders lowered with bud tier increasing. The conclusion was made about meiosis regularity connection with the influence of environment factors and heterozygous genotype of F1 plants Lycopersicon esculentum x L. chilense.

  9. Animal damage to young spruce and fir in Maine

    Treesearch

    Barton M. Blum

    1977-01-01

    The loss of terminal buds on small balsam fir (Abies balsamea (L.) Mill.) and spruce (Picea spp.) trees because of nipping by mammals or birds has increased on the Penobscot Experimental Forest in recent years. The cut stem is smooth and slightly angled; there is no sign of tearing. Unnipped trees grew about 13 percent more than...

  10. High biological variability of plastids, photosynthetic pigments and pigment forms of leaf primordia in buds.

    PubMed

    Solymosi, Katalin; Morandi, Dominique; Bóka, Károly; Böddi, Béla; Schoefs, Benoît

    2012-05-01

    To study the formation of the photosynthetic apparatus in nature, the carotenoid and chlorophyllous pigment compositions of differently developed leaf primordia in closed and opening buds of common ash (Fraxinus excelsior L.) and horse chestnut (Aesculus hippocastanum L.) as well as in closed buds of tree of heaven (Ailanthus altissima P. Mill.) were analyzed with HPLC. The native organization of the chlorophyllous pigments was studied using 77 K fluorescence spectroscopy, and plastid ultrastructure was investigated with electron microscopy. Complete etiolation, i.e., accumulation of protochlorophyllide, and absence of chlorophylls occurred in the innermost leaf primordia of common ash buds. The other leaf primordia were partially etiolated in the buds and contained protochlorophyllide (0.5-1 μg g(-1) fresh mass), chlorophyllides (0.2-27 μg g(-1) fresh mass) and chlorophylls (0.9-643 μg g(-1) fresh mass). Etio-chloroplasts with prolamellar bodies and either regular or only low grana were found in leaves having high or low amounts of chlorophyll a and b, respectively. After bud break, etioplast-chloroplast conversion proceeded and the pigment contents increased in the leaves, similarly to the greening processes observed in illuminated etiolated seedlings under laboratory conditions. The pigment contents and the ratio of the different spectral forms had a high biological variability that could be attributed to (i) various light conditions due to light filtering in the buds resulting in differently etiolated leaf primordia, (ii) to differences in the light-exposed and inner regions of the same primordia in opening buds due to various leaf folding, and (iii) to tissue-specific slight variations of plastid ultrastructure.

  11. Geographic variation in shortleaf pine (Pinus echinata Mill.) - cortical monoterpenes

    Treesearch

    R.C. Schmidtling; J.H. Myszewski; C.E. McDaniel

    2005-01-01

    Cortical monoterpenes were assayed in bud tissue from 16 Southwide Southern Pine Seed Source Study (SSPSS) sources and from 6 seed orchard sources fiom across the natural range of the species, to examine geogaphic variation in shortleaf pine. Spruce pine and pond pine were also sampled. The results show geographic differences in all of the major terpenes. There was no...

  12. Ecology and management of yellow toadflax [Linaria vulgaris (L.) Mill.

    Treesearch

    Jim Jacobs; Sharlene Sing

    2006-01-01

    Yellow toadflax is a short-lived perennial herb native to the steppes of southeastern Europe and southwestern Asia (Eurasia). This species spreads by both seeds and vegetative buds on its roots and creeping rhizomes (see Figure 1). Yellow toadflax was intentionally introduced in North America but has escaped cultivation as an ornamental, a source of fabric dye, and as...

  13. Date of Pollen Shedding by Longleaf Pine Advanced by Increased Temperatures at Strobili

    Treesearch

    W.D. Boyer; F.W. Woods

    1973-01-01

    Air temperatures in the microenvironments of flower buds of Pinus palustris Mill. appear to be a major determinant of flowering date. Shoots bearing staminate strobili on each of 10 trees were bagged at different times and for varying lengths of time in January and February. Bagging treatments provided 488 to 3,852 additional degree-hr of heat...

  14. Altitudinal variation in growth, bud break and susceptibility to balsam twig aphid damage of balsam fir from 6 Vermont seed sources

    Treesearch

    Ronald C. Wilkinson; Paul G. Schaberg

    1992-01-01

    Differences in 10-year heights, 4-year growth from 1987 through 1990, relative timing of budbreak and damage by the balsam twig aphid (Mindarus abietinus Koch.) among balsam fir (Abies balsamea (L.) Mill.) from 6 Vermont seed sources originating from different elevations were examined. Height differences among seed sources were...

  15. The bud break process and its variation among local populations of boreal black spruce.

    PubMed

    Rossi, Sergio; Bousquet, Jean

    2014-01-01

    Phenology of local populations can exhibit adaptations to the current environmental conditions resulting from a close interaction between climate and genotype. The bud break process and its variations among populations were analyzed in greenhouse by monitoring the growth resumption in black spruce [Picea mariana (Mill.) BSP] seedlings originating from seeds of five stands across the closed boreal forest in Quebec, Canada. Bud break lasted 15 days and occurred earlier and quicker in northern provenances. Provenance explained between 10.2 and 32.3% of the variance in bud break, while the families accounted for a smaller but still significant part of the variance. The late occurrence of one phenological phase corresponded to a delayed occurrence of the others according to linear relationships. A causal model was proposed in the form of a chain of events with each phase of bud break being related to the previous and successive one, while no link was observed between non-adjacent phases. The adaptation of black spruce populations along the latitudinal gradient points toward a strategy based on rapid physiological processes triggered by temperature increase inducing high metabolic activity. The variation observed in bud break reflects an evolutionary trade-off between maximization of security and taking advantage of the short growing season. This work provides evidence of the phenological adaptations of black spruce to its local environmental conditions while retaining sizeable genetic diversity within populations. Because of the multigenic nature of phenology, this diversity should provide some raw material for adaptation to changing local environmental conditions.

  16. The bud break process and its variation among local populations of boreal black spruce

    PubMed Central

    Rossi, Sergio; Bousquet, Jean

    2014-01-01

    Phenology of local populations can exhibit adaptations to the current environmental conditions resulting from a close interaction between climate and genotype. The bud break process and its variations among populations were analyzed in greenhouse by monitoring the growth resumption in black spruce [Picea mariana (Mill.) BSP] seedlings originating from seeds of five stands across the closed boreal forest in Quebec, Canada. Bud break lasted 15 days and occurred earlier and quicker in northern provenances. Provenance explained between 10.2 and 32.3% of the variance in bud break, while the families accounted for a smaller but still significant part of the variance. The late occurrence of one phenological phase corresponded to a delayed occurrence of the others according to linear relationships. A causal model was proposed in the form of a chain of events with each phase of bud break being related to the previous and successive one, while no link was observed between non-adjacent phases. The adaptation of black spruce populations along the latitudinal gradient points toward a strategy based on rapid physiological processes triggered by temperature increase inducing high metabolic activity. The variation observed in bud break reflects an evolutionary trade-off between maximization of security and taking advantage of the short growing season. This work provides evidence of the phenological adaptations of black spruce to its local environmental conditions while retaining sizeable genetic diversity within populations. Because of the multigenic nature of phenology, this diversity should provide some raw material for adaptation to changing local environmental conditions. PMID:25389430

  17. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    PubMed Central

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  18. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  19. Cytokinin is required for escape but not release from auxin mediated apical dominance

    PubMed Central

    Müller, Dörte; Waldie, Tanya; Miyawaki, Kaori; To, Jennifer PC; Melnyk, Charles W; Kieber, Joseph J; Kakimoto, Tatsuo; Leyser, Ottoline

    2015-01-01

    Auxin produced by an active primary shoot apex is transported down the main stem and inhibits the growth of the axillary buds below it, contributing to apical dominance. Here we use Arabidopsis thaliana cytokinin (CK) biosynthetic and signalling mutants to probe the role of CK in this process. It is well established that bud outgrowth is promoted by CK, and that CK synthesis is inhibited by auxin, leading to the hypothesis that release from apical dominance relies on an increased supply of CK to buds. Our data confirm that decapitation induces the expression of at least one ISOPENTENYLTRANSFERASE (IPT) CK biosynthetic gene in the stem. We further show that transcript abundance of a clade of the CK-responsive type-A Arabidopsis response regulator (ARR) genes increases in buds following CK supply, and that, contrary to their typical action as inhibitors of CK signalling, these genes are required for CK-mediated bud activation. However, analysis of the relevant arr and ipt multiple mutants demonstrates that defects in bud CK response do not affect auxin-mediated bud inhibition, and increased IPT transcript levels are not needed for bud release following decapitation. Instead, our data suggest that CK acts to overcome auxin-mediated bud inhibition, allowing buds to escape apical dominance under favourable conditions, such as high nitrate availability. Significance Statement It has been proposed that the release of buds from auxin-mediated apical dominance following decapitation requires increased cytokinin biosynthesis and consequent increases in cytokinin supply to buds. Here we show that in Arabidopsis, increases in cytokinin appear to be unnecessary for the release of buds from apical dominance, but rather allow buds to escape the inhibitory effect of apical auxin, thereby promoting bud activation in favourable growth conditions. PMID:25904120

  20. Polyamines and Flower Development in the Male Sterile Stamenless-2 Mutant of Tomato (Lycopersicon esculentum Mill.) 1

    PubMed Central

    Rastogi, Rajeev; Sawhney, Vipen K.

    1990-01-01

    The floral organs of the male sterile stamenless-2 (sl-2/sl-2) mutant of tomato (Lycopersicon esculentum Mill.) contain significantly higher level of polyamines than those of the normal (R Rastogi, VK Sawhney [1990] Plant Physiol 93: 439-445). The effects of putrescine, spermidine and spermine, and three different inhibitors of polyamine biosynthesis on the in vitro development of floral buds of the normal and sl-2/sl-2 mutant were studied. The polyamines were inhibitory to the in vitro growth and development of both the normal and mutant floral buds and they induced abnormal stamen development in normal flowers. The inhibitors of polyamine biosynthesis also inhibited the growth and development of floral organs of the two genotypes, but the normal flowers showed greater sensitivity than the mutant. The inhibitors also promoted the formation of normal-looking pollen in stamens of some mutant flowers. The effect of the inhibitors on polyamine levels was not determined. The polyamine-induced abnormal stamen development in the normal, and the inhibitor-induced production of normal-looking pollen in mutant flowers support the suggestion that the elevated polyamine levels contribute to abnormal stamen development in the sl-2/sl-2 mutant of tomato. Images Figure 3 Figure 5 PMID:16667486

  1. BDNF is required for taste axon regeneration following unilateral chorda tympani nerve section.

    PubMed

    Meng, Lingbin; Huang, Tao; Sun, Chengsan; Hill, David L; Krimm, Robin

    2017-07-01

    Taste nerves readily regenerate to reinnervate denervated taste buds; however, factors required for regeneration have not yet been identified. When the chorda tympani nerve is sectioned, expression of brain-derived neurotrophic factor (BDNF) remains high in the geniculate ganglion and lingual epithelium, despite the loss of taste buds. These observations suggest that BDNF is present in the taste system after nerve section and may support taste nerve regeneration. To test this hypothesis, we inducibly deleted Bdnf during adulthood in mice. Shortly after Bdnf gene recombination, the chorda tympani nerve was unilaterally sectioned causing a loss of both taste buds and neurons, irrespective of BDNF levels. Eight weeks after nerve section, however, regeneration was differentially affected by Bdnf deletion. In control mice, there was regeneration of the chorda tympani nerve and taste buds reappeared with innervation. In contrast, few taste buds were reinnervated in mice lacking normal Bdnf expression such that taste bud number remained low. In all genotypes, taste buds that were reinnervated were normal-sized, but non-innervated taste buds remained small and atrophic. On the side of the tongue contralateral to the nerve section, taste buds for some genotypes became larger and all taste buds remained innervated. Our findings suggest that BDNF is required for nerve regeneration following gustatory nerve section. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The Cdc42 GTPase-associated proteins Gic1 and Gic2 are required for polarized cell growth in Saccharomyces cerevisiae

    PubMed Central

    Chen, Guang-Chao; Kim, Yung-Jin; Chan, Clarence S.M.

    1997-01-01

    BEM2 of Saccharomyces cerevisiae encodes a Rho-type GTPase-activating protein that is required for proper bud site selection at 26°C and for bud emergence at elevated temperatures. We show here that the temperature-sensitive growth phenotype of bem2 mutant cells can be suppressed by increased dosage of the GIC1 gene. The Gic1 protein, together with its structural homolog Gic2, are required for cell size and shape control, bud site selection, bud emergence, actin cytoskeletal organization, mitotic spindle orientation/positioning, and mating projection formation in response to mating pheromone. Each protein contains a CRIB (Cdc42/Rac-interactive binding) motif and each interacts in the two-hybrid assay with the GTP-bound form of the Rho-type Cdc42 GTPase, a key regulator of polarized growth in yeast. The CRIB motif of Gic1 and the effector domain of Cdc42 are required for this association. Genetic experiments indicate that Gic1 and Gic2 play positive roles in the Cdc42 signal transduction pathway, probably as effectors of Cdc42. Subcellular localization studies with a functional green fluorescent protein–Gic1 fusion protein indicate that this protein is concentrated at the incipient bud site of unbudded cells, at the bud tip and mother-bud neck of budded cells, and at cortical sites on large-budded cells that may delimit future bud sites in the two progeny cells. The ability of Gic1 to associate with Cdc42 is important for its function but is apparently not essential for its subcellular localization. PMID:9367979

  3. Complex bud architecture and cell-specific chemical patterns enable supercooling of Picea abies bud primordial

    USDA-ARS?s Scientific Manuscript database

    Bud primordia of Picea abies, despite a frozen shoot, stay ice free down to -50 °C by a mechanism termed supercooling whose biophysical and biochemical requirements are poorly understood. Bud architecture was assessed by 3D-reconstruction, supercooling and freezing patterns by infrared video thermog...

  4. The anillin-related region of Bud4 is the major functional determinant for Bud4's function in septin organization during bud growth and axial bud site selection in budding yeast.

    PubMed

    Wu, Huan; Guo, Jia; Zhou, Ya-Ting; Gao, Xiang-Dong

    2015-03-01

    The anillin-related protein Bud4 of Saccharomyces cerevisiae is required for axial bud site selection by linking the axial landmark to the septins, which localize at the mother bud neck. Recent studies indicate that Bud4 plays a role in septin organization during cytokinesis. Here we show that Bud4 is also involved in septin organization during bud growth prior to cytokinesis, as bud4Δ shs1Δ cells displayed an elongated bud morphology and defective septin organization at 18°C. Bud4 overexpression also affected septin organization during bud growth in shs1Δ cells at 30°C. Bud4 was previously thought to associate with the septins via its central region, while the C-terminal anillin-related region was not involved in septin association. Surprisingly, we found that the central region of Bud4 alone targets to the bud neck throughout the cell cycle, unlike full-length Bud4, which localizes to the bud neck only during G2/M phase. We identified the anillin-related region to be a second targeting domain that cooperates with the central region for proper septin association. In addition, the anillin-related region could largely mediate Bud4's function in septin organization during bud growth and bud site selection. We show that this region interacts with the C terminus of Bud3 and the two segments depend on each other for association with the septins. Moreover, like the bud4Δ mutant, the bud3Δ mutant genetically interacts with shs1Δ and cdc12-6 mutants in septin organization, suggesting that Bud4 and Bud3 may cooperate in septin organization during bud growth. These observations provide new insights into the interaction of Bud4 with the septins and Bud3. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. HAND2 Targets Define a Network of Transcriptional Regulators that Compartmentalize the Early Limb Bud Mesenchyme

    DOE PAGES

    Osterwalder, Marco; Speziale, Dario; Shoukry, Malak; ...

    2014-11-10

    The genetic networks that govern vertebrate development are well studied, but how the interactions of trans-acting factors with cis-regulatory modules (CRMs) are integrated into spatiotemporal regulation of gene expression is not clear. The transcriptional regulator HAND2 is required during limb, heart, and branchial arch development. Here, we identify the genomic regions enriched in HAND2 chromatin complexes from mouse embryos and limb buds. Then we analyze the HAND2 target CRMs in the genomic landscapes encoding transcriptional regulators required in early limb buds. HAND2 controls the expression of genes functioning in the proximal limb bud and orchestrates the establishment of anterior andmore » posterior polarity of the nascent limb bud mesenchyme by impacting Gli3 and Tbx3 expression. TBX3 is required downstream of HAND2 to refine the posterior Gli3 expression boundary. In conclusion, our analysis uncovers the transcriptional circuits that function in establishing distinct mesenchymal compartments downstream of HAND2 and upstream of SHH signaling.« less

  6. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  7. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  8. Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs.

    PubMed

    Soulika, Marina; Kaushik, Anna-Lila; Mathieu, Benjamin; Lourenço, Raquel; Komisarczuk, Anna Z; Romano, Sebastian Alejo; Jouary, Adrien; Lardennois, Alicia; Tissot, Nicolas; Okada, Shinji; Abe, Keiko; Becker, Thomas S; Kapsimali, Marika

    2016-06-01

    Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly. © 2016. Published by The Company of Biologists Ltd.

  9. New technique for more rapid cryopreservation of dormant vegetative tree buds

    USDA-ARS?s Scientific Manuscript database

    Cryopreservation of dormant buds of temperate trees in liquid nitrogen can provide a safe backup of field germplasm collections. However the process requires several months of preparation before buds can be cryopreserved. Cryopreservation at the natural moisture content (MC) would greatly accelerate...

  10. Beta-catenin (CTNNB1) induces Bmp expression in urogenital sinus epithelium and participates in prostatic bud initiation and patterning

    PubMed Central

    Mehta, Vatsal; Schmitz, Christopher T.; Keil, Kimberly P.; Joshi, Pinak S.; Abler, Lisa L.; Lin, Tien-Min; Taketo, Makoto M.; Sun, Xin; Vezina, Chad M.

    2013-01-01

    Fetal prostate development is initiated by androgens and patterned by androgen dependent and independent signals. How these signals integrate to control epithelial cell differentiation and prostatic bud patterning is not fully understood. To test the role of beta-catenin (Ctnnb1) in this process, we used a genetic approach to conditionally delete or stabilize Ctnnb1 in urogenital sinus (UGS) epithelium from which the prostate derives. Two opposing mechanisms of action were revealed. By deleting Ctnnb1, we found it is required for separation of UGS from cloaca, emergence or maintenance of differentiated UGS basal epithelium and formation of prostatic buds. By genetically inducing a patchy subset of UGS epithelial cells to express excess CTNNB1, we found its excess abundance increases Bmp expression and leads to a global impairment of prostatic bud formation. Addition of NOGGIN partially restores prostatic budding in UGS explants with excess Ctnnb1. These results indicate a requirement for Ctnnb1 in UGS basal epithelial cell differentiation, prostatic bud initiation and bud spacing and suggest some of these actions are mediated in part through activation of BMP signaling. PMID:23396188

  11. Temperature regulation of bud-burst phenology within and among years in a young Douglas-fir (Pseudotsuga menziesii) plantation in western Washington, USA.

    Treesearch

    John D. Bailey; Constance A. Harrington

    2006-01-01

    Past research has established that terminal buds of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings from many seed sources have a chilling requirement of about 1200 h at 0-5 °C; once chilled, temperatures > 5 °C force bud burst via accumulation of heat units. We tested this sequential bud-burst model in the field to determine...

  12. Fgf signaling controls pharyngeal taste bud formation through miR-200 and Delta-Notch activity.

    PubMed

    Kapsimali, Marika; Kaushik, Anna-Lila; Gibon, Guillaume; Dirian, Lara; Ernest, Sylvain; Rosa, Frederic M

    2011-08-01

    Taste buds, the taste sensory organs, are conserved in vertebrates and composed of distinct cell types, including taste receptor, basal/presynaptic and support cells. Here, we characterize zebrafish taste bud development and show that compromised Fgf signaling in the larva results in taste bud reduction and disorganization. We determine that Fgf activity is required within pharyngeal endoderm for formation of Calb2b(+) cells and reveal miR-200 and Delta-Notch signaling as key factors in this process. miR-200 knock down shows that miR-200 activity is required for taste bud formation and in particular for Calb2b(+) cell formation. Compromised delta activity in mib(-/-) dramatically reduces the number of Calb2b(+) cells and increases the number of 5HT(+) cells. Conversely, larvae with increased Notch activity and ascl1a(-/-) mutants are devoid of 5HT(+) cells, but have maintained and increased Calb2b(+) cells, respectively. These results show that Delta-Notch signaling is required for intact taste bud organ formation. Consistent with this, Notch activity restores Calb2b(+) cell formation in pharyngeal endoderm with compromised Fgf signaling, but fails to restore the formation of these cells after miR-200 knock down. Altogether, this study provides genetic evidence that supports a novel model where Fgf regulates Delta-Notch signaling, and subsequently miR-200 activity, in order to promote taste bud cell type differentiation.

  13. Annexin VI-mediated loss of spectrin during coated pit budding is coupled to delivery of LDL to lysosomes.

    PubMed

    Kamal, A; Ying, Y; Anderson, R G

    1998-08-24

    Previously we reported that annexin VI is required for the budding of clathrin-coated pits from human fibroblast plasma membranes in vitro. Here we show that annexin VI bound to the NH2-terminal 28-kD portion of membrane spectrin is as effective as cytosolic annexin VI in supporting coated pit budding. Annexin VI-dependent budding is accompanied by the loss of approximately 50% of the spectrin from the membrane and is blocked by the cysteine protease inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN). Incubation of fibroblasts in the presence of ALLN initially blocks the uptake of low density lipoprotein (LDL), but the cells recover after 1 h and internalize LDL with normal kinetics. The LDL internalized under these conditions, however, fails to migrate to the center of the cell and is not degraded. ALLN-treated cells have twice as many coated pits and twofold more membrane clathrin, suggesting that new coated pits have assembled. Annexin VI is not required for the budding of these new coated pits and ALLN does not inhibit. Finally, microinjection of a truncated annexin VI that inhibits budding in vitro has the same effect on LDL internalization as ALLN. These findings suggest that fibroblasts are able to make at least two types of coated pits, one of which requires the annexin VI-dependent activation of a cysteine protease to disconnect the clathrin lattice from the spectrin membrane cytoskeleton during the final stages of budding.

  14. Twilight far-red treatment advances leaf bud burst of silver birch (Betula pendula).

    PubMed

    Linkosalo, Tapio; Lechowicz, Martin J

    2006-10-01

    Bud development of boreal trees in spring, once initiated, is driven by ambient air temperature, but the mechanism triggering bud development remains unclear. We determined if some aspect of the diurnal or seasonal light regime influences initiation of bud burst once the chilling requirement is met. We grew 3-year-old birch plantlets cloned from a mature tree of boreal origin in light conditions realistically simulating the lengthening days of spring at 60 degrees N. To emulate the reduction in red to far-red light (R:FR) ratio between daylight and twilight, one group of plantlets was subjected to reduced R:FR ratio in the morning and evening in addition to progressively lengthening days, whereas the other group was subjected to the same R:FR ratio throughout the day. The reduced R:FR ratio of twilight advanced bud burst by 4 days compared with the reference group (P = 0.04). To assess the interplay between the fulfillment of the chilling requirement and the subsequent response to warming, we fitted a thermal time model to the data with separate parameterizations for the starting dates of heat sum accumulation in each treatment. Least-squares fitting suggested that bud development started in light regimes corresponding to late March, almost two months after the chilling requirement for dormancy release was satisfied. Therefore, shortening night length or increasing day length, or both, appears to be the cue enabling bud development in spring, with twilight quality having an effect on the photoperiodic response. If twilight alone were the cue, the difference in bud burst dates between the experimental groups would have been greater than 4 days. The result gives experimental support for the use of thermal-time models in phenological modeling.

  15. Efficient budding of the tacaribe virus matrix protein z requires the nucleoprotein.

    PubMed

    Groseth, Allison; Wolff, Svenja; Strecker, Thomas; Hoenen, Thomas; Becker, Stephan

    2010-04-01

    The Z protein has been shown for several arenaviruses to serve as the viral matrix protein. As such, Z provides the principal force for the budding of virus particles and is capable of forming virus-like particles (VLPs) when expressed alone. For most arenaviruses, this activity has been shown to be linked to the presence of proline-rich late-domain motifs in the C terminus; however, for the New World arenavirus Tacaribe virus (TCRV), no such motif exists within Z. It was recently demonstrated that while TCRV Z is still capable of functioning as a matrix protein to induce the formation of VLPs, neither its ASAP motif, which replaces a canonical PT/SAP motif in related viruses, nor its YxxL motif is involved in budding, leading to the suggestion that TCRV uses a novel budding mechanism. Here we show that in comparison to its closest relative, Junin virus (JUNV), TCRV Z buds only weakly when expressed in isolation. While this budding activity is independent of the ASAP or YxxL motif, it is significantly enhanced by coexpression with the nucleoprotein (NP), an effect not seen with JUNV Z. Interestingly, both the ASAP and YxxL motifs of Z appear to be critical for the recruitment of NP into VLPs, as well as for the enhancement of TCRV Z-mediated budding. While it is known that TCRV budding remains dependent on the endosomal sorting complex required for transport, our findings provide further evidence that TCRV uses a budding mechanism distinct from that of other known arenaviruses and suggest an essential role for NP in this process.

  16. Temperature regulation of bud-burst phenology within and among years in a young Douglas-fir (Pseudotsuga menziesii) plantation in western Washington, USA.

    PubMed

    Bailey, John D; Harrington, Constance A

    2006-04-01

    Past research has established that terminal buds of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings from many seed sources have a chilling requirement of about 1200 h at 0-5 degrees C; once chilled, temperatures > 5 degrees C force bud burst via accumulation of heat units. We tested this sequential bud-burst model in the field to determine whether terminal buds of trees in cooler microsites, which receive less heat forcing, develop more slowly than those in warmer microsites. For three years we monitored terminal bud development in young saplings as well as soil and air temperatures on large, replicated plots in a harvest unit; plots differed in microclimate based on amount of harvest residue and shade from neighboring stands. In two of three years, trees on cooler microsites broke bud 2 to 4 days earlier than those on warmer microsites, despite receiving less heat forcing from March to May each year. A simple sequential model did not predict cooler sites having earlier bud burst nor did it correctly predict the order of bud burst across the three years. We modified the basic heat-forcing model to initialize, or reset to zero, the accumulation of heat units whenever significant freezing temperature events (> or = 3 degree-hours day(-1) < 0 degrees C) occurred; this modified model correctly predicted the sequence of bud burst across years. Soil temperature alone or in combination with air temperature did not improve our predictions of bud burst. Past models of bud burst have relied heavily on data from controlled experiments with simple temperature patterns; analysis of more variable temperature patterns from our 3-year field trial, however, indicated that simple models of bud burst are inaccurate. More complex models that incorporate chilling hours, heat forcing, photoperiod and the occurrence of freeze events in the spring may be needed to predict effects of future silvicultural treatments as well to interpret the implications of climate-change scenarios. Developing and testing new models will require data from both field and controlled-environment experiments.

  17. Cellular Factors Required for Lassa Virus Budding

    PubMed Central

    Urata, Shuzo; Noda, Takeshi; Kawaoka, Yoshihiro; Yokosawa, Hideyoshi; Yasuda, Jiro

    2006-01-01

    It is known that Lassa virus Z protein is sufficient for the release of virus-like particles (VLPs) and that it has two L domains, PTAP and PPPY, in its C terminus. However, little is known about the cellular factor for Lassa virus budding. We examined which cellular factors are used in Lassa virus Z budding. We demonstrated that Lassa Z protein efficiently produces VLPs and uses cellular factors, Vps4A, Vps4B, and Tsg101, in budding, suggesting that Lassa virus budding uses the multivesicular body pathway functionally. Our data may provide a clue to develop an effective antiviral strategy for Lassa virus. PMID:16571837

  18. Herbivory modifies conifer phenology: induced amelioration by a specialist folivore.

    PubMed

    Carroll, Allan L; Quiring, Dan T

    2003-06-01

    Herbivory by Zeiraphera canadensis Mut. & Free. (Lepidoptera: Tortricidae), an early season folivore of white spruce [ Picea glauca(Moench) Voss], has been associated with a shift in the timing of bud burst by its host during the subsequent year. We tested the hypothesis that a herbivory-induced shift in the phenology of bud development improves the window for colonisation of white spruce buds by Z. canadensis. Feeding on cortical tissue of elongating shoots caused the destruction of apical buds and an interruption of apical dominance in the year following herbivory. White spruce compensated for damage with the activation of dormant buds; mainly at proximal positions along shoots. As a result, half of all active buds on previously damaged branches were located immediately adjacent egg sites (i.e. previous year's bud scales), whereas <10% of active buds on intact shoots were situated there. More than 40% of newly emerged larvae colonised the basal buds of damaged shoots versus just 10% for intact shoots. Previous herbivory also influenced the initiation of bud burst. All buds flushed 2 days earlier on damaged shoots and date of bud burst was inversely correlated to bud density, indicating that short damaged shoots with large numbers of buds were stronger sinks for nutrients required for bud development. Egg hatch was best synchronized with early bursting buds on damaged branches. As a consequence, 89% of first-instar larvae successfully colonised buds on damaged branches while only 55% were successful on undamaged branches. Improved survival of larvae in the year following herbivory was a direct result of the evolved response by white spruce to the interruption of apical dominance. The pattern of herbivory by Z. canadensis may have evolved as a strategy to enhance the quality of white spruce for their offspring.

  19. 7 CFR 868.306 - Milling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Milled Rice Principles Governing Application of Standards § 868.306 Milling requirements. The degree of milling for milled rice; i.e., “hard... interpretive line samples for such rice. [67 FR 61250, Sept. 30, 2002] ...

  20. 7 CFR 868.306 - Milling requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Milled Rice Principles Governing Application of Standards § 868.306 Milling requirements. The degree of milling for milled rice; i.e., “hard... interpretive line samples for such rice. [67 FR 61250, Sept. 30, 2002] ...

  1. Therapeutic equivalence of budesonide/formoterol delivered via breath-actuated inhaler vs pMDI.

    PubMed

    Murphy, Kevin R; Dhand, Rajiv; Trudo, Frank; Uryniak, Tom; Aggarwal, Ajay; Eckerwall, Göran

    2015-02-01

    To assess equivalence of twice daily (bid) budesonide/formoterol (BUD/FM) 160/4.5 μg via breath-actuated metered-dose inhaler (BAI) versus pressurized metered-dose inhaler (pMDI). This 12-week, double-blind, multicenter, parallel-group study, randomized adolescents and adults (aged ≥12 years) with asthma (and ≥3 months daily use of inhaled corticosteroids) to BUD/FM BAI 2 × 160/4.5 μg bid, BUD/FM pMDI 2 × 160/4.5 μg bid, or BUD pMDI 2 × 160 μg bid. Inclusion required prebronchodilator forced expiratory volume in one second (FEV1) ≥45 to ≤85% predicted, and reversibility of ≥12% in FEV1 (ages 12 to <18 years) or ≥12% and 200 mL (ages ≥18 years). Confirmation that 60-min postdose FEV1 response to BUD/FM pMDI was superior to BUD pMDI was required before equivalence testing. Therapeutic equivalence was shown by treatment effect ratio of BUD/FM BAI vs BUD/FM pMDI on 60-min postdose FEV1 and predose FEV1 within confidence intervals (CIs) of 80-125%. Mean age of 214 randomized patients was 42.7 years. BUD/FM pMDI was superior to BUD pMDI (60-min postdose FEV1 treatment effect ratio, 1.10; 95% CI, 1.06-1.14; p < 0.001). Treatment effect ratios for BUD/FM BAI versus pMDI for 60-min postdose FEV1 (1.01; 95% CI, 0.97-1.05) and predose FEV1 (1.03; 95% CI, 0.99-1.08) were within predetermined CIs for therapeutic equivalence. Adverse event profiles, tolerability, and patient-reported ease of use were similar. BUD/FM 2 × 160/4.5 μg bid BAI is therapeutically equivalent to BUD/FM conventional pMDI. The introduction of BUD/FM BAI would expand options for delivering inhaled corticosteroid/long-acting β2-agonist combination therapy to patients with moderate-to-severe asthma. ClinicalTrials.gov NCT01360021. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium

    PubMed Central

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J.; Klein, Ophir D.; Barlow, Linda A.

    2014-01-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. PMID:24993944

  3. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    NASA Astrophysics Data System (ADS)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state while milled ITZ NanoClusters maintained the crystalline character. Overall, NanoClusters prepared by various processes represent a potential engineered drug particle approach for inhalation therapy since they provide effective aerosol properties and stability due to the crystalline state of the drug powders. Future work will continue to explore formulation and delivery performance in vitro and in vivo..

  4. Influence of the bud neck on nuclear envelope fission in Saccharomyces cerevisiae.

    PubMed

    Melloy, Patricia G; Rose, Mark D

    2017-09-15

    Studies have shown that nuclear envelope fission (karyokinesis) in budding yeast depends on cytokinesis, but not distinguished whether this was a direct requirement, indirect, because of cell cycle arrest, or due to bud neck-localized proteins impacting both processes. To determine the requirements for karyokinesis, we examined mutants conditionally defective for bud emergence and/or nuclear migration. The common mutant phenotype was completion of the nuclear division cycle within the mother cell, but karyokinesis did not occur. In the cdc24 swe1 mutant, at the non-permissive temperature, multiple nuclei accumulated within the unbudded cell, with connected nuclear envelopes. Upon return to the permissive temperature, the cdc24 swe1 mutant initiated bud emergence, but only the nucleus spanning the neck underwent fission suggesting that the bud neck region is important for fission initiation. The neck may be critical for either mechanical reasons, as the contractile ring might facilitate fission, or for regulatory reasons, as the site of a protein network regulating nuclear envelope fission, mitotic exit, and cytokinesis. We also found that 77-85% of pairs of septin mutant nuclei completed nuclear envelope fission. In addition, 27% of myo1Δ mutant nuclei completed karyokinesis. These data suggested that fission is not dependent on mechanical contraction at the bud neck, but was instead controlled by regulatory proteins there. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The influence of chilling requirement on the southern distribution limit of exotic Russian olive (Elaeagnus angustifolia) in western North America

    USGS Publications Warehouse

    Guilbault, Kimberly R.; Brown, C.S.; Friedman, J.M.; Shafroth, P.B.

    2012-01-01

    Russian olive (Elaeagnus angustifolia L.), a Eurasian tree now abundant along rivers in western North America, has an apparent southern distribution limit running through southern California, Arizona, New Mexico and Texas. We used field observations to precisely define this limit in relation to temperature variables. We then investigated whether lack of cold temperatures south of the limit may prevent the accumulation of sufficient chilling, inhibiting dormancy loss of seeds and buds. We found that Russian olive occurrence was more strongly associated with low winter temperatures than with high summer temperatures, and results of controlled seed germination and vegetative bud-break experiments suggest that the chilling requirements for germination and bud-break are partly responsible for the southern range limit. Both seed germination proportion and germination time decreased under conditions simulating those south of the range limit. Similarly, percentage bud break decreased when chilling dropped below values typical of the range limit. In 17–65% of the years from 1980 to 2000, the chilling accumulated at a site near the range limit (El Paso, TX) would lead to a 10% or more decrease in bud-break. The potential decline in growth could have large fitness consequences for Russian olive. If climate change exhibits a warming trend, our results suggest the chilling requirement for bud-break of Russian olive trees will not be met in some years and its southern range limit may retreat northward.

  6. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice.

    PubMed

    Gaillard, Dany; Bowles, Spencer G; Salcedo, Ernesto; Xu, Mingang; Millar, Sarah E; Barlow, Linda A

    2017-08-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds.

  7. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium.

    PubMed

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J; Klein, Ophir D; Barlow, Linda A

    2014-08-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. © 2014. Published by The Company of Biologists Ltd.

  8. Fgf16 is essential for pectoral fin bud formation in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Ryohei; Kamei, Eriko; Hotta, Yuuhei

    2006-08-18

    Zebrafish pectoral fin bud formation is an excellent model for studying morphogenesis. Fibroblast growth factors (Fgfs) and sonic hedgehog (shh) are essential for pectoral fin bud formation. We found that Fgf16 was expressed in the apical ectodermal ridge (AER) of fin buds. A knockdown of Fgf16 function resulted in no fin bud outgrowth. Fgf16 is required for cell proliferation and differentiation in the mesenchyme and the AER of the fin buds, respectively. Fgf16 functions downstream of Fgf10, a mesenchymal factor, signaling to induce the expression of Fgf4 and Fgf8 in the AER. Fgf16 in the AER and shh in themore » zone of polarizing activity (ZPA) interact to induce and/or maintain each other's expression. These findings have revealed that Fgf16, a newly identified AER factor, plays a crucial role in pectoral fin bud outgrowth by mediating the interactions of AER-mesenchyme and AER-ZPA.« less

  9. A Fate Map of the Murine Pancreas Buds Reveals a Multipotent Ventral Foregut Organ Progenitor

    PubMed Central

    Angelo, Jesse R.; Guerrero-Zayas, Mara-Isel; Tremblay, Kimberly D.

    2012-01-01

    The definitive endoderm is the embryonic germ layer that gives rise to the budding endodermal organs including the thyroid, lung, liver and pancreas as well as the remainder of the gut tube. DiI fate mapping and whole embryo culture were used to determine the endodermal origin of the 9.5 days post coitum (dpc) dorsal and ventral pancreas buds. Our results demonstrate that the progenitors of each bud occupy distinct endodermal territories. Dorsal bud progenitors are located in the medial endoderm overlying somites 2–4 between the 2 and 11 somite stage (SS). The endoderm forming the ventral pancreas bud is found in 2 distinct regions. One territory originates from the left and right lateral endoderm caudal to the anterior intestinal portal by the 6 SS and the second domain is derived from the ventral midline of the endoderm lip (VMEL). Unlike the laterally located ventral foregut progenitors, the VMEL population harbors a multipotent progenitor that contributes to the thyroid bud, the rostral cap of the liver bud, ventral midline of the liver bud and the midline of the ventral pancreas bud in a temporally restricted manner. This data suggests that the midline of the 9.5 dpc thyroid, liver and ventral pancreas buds originates from the same progenitor population, demonstrating a developmental link between all three ventral foregut buds. Taken together, these data define the location of the dorsal and ventral pancreas progenitors in the prespecified endodermal sheet and should lead to insights into the inductive events required for pancreas specification. PMID:22815796

  10. Biological/Horticultural Internship Final Report

    NASA Technical Reports Server (NTRS)

    Palmer, Shane R.; Spencer, Lashelle (Editor)

    2017-01-01

    A study was conducted to determine water use requirements of genetically modified (GMO) dwarf plum. GMO plum and unmodified standard plum plants were grown in a controlled environment chamber under varying CO2 concentrations (400 ppm, 1500 ppm, and 5000 ppm). Pepper plants were also grown in the chamber for additional comparison. Leaf stomatal conductance, biomass accumulation, soil moisture and pot weights were measured; Stomatal conductance of GMO plum and pepper plants decreased at sustained elevated CO2 concentrations. The stomatal conductance rates of the standard plums, however, increased at sustained elevated CO2 concentrations. Further data analysis (statistical analysis, biomass, soil moisture and pot weight measurements) is ongoing and required to gain better understanding of the data. An additional proof-of-concept study was undertaken to determine the feasibility of grafting unmodified standard plum scions onto genetically modified rootstocks as a propagation method. Bud grafts were performed on three GMO plum rootstocks: NASA-5, NASA-10, and NASA-11. All of the standard plum buds grafted onto NASA-5 and NASA-10 rootstocks began growing, indicating that this grafting method is highly successful for the formation of a graft union and initial bud growth. However, bud growth during stem elongation was curtailed on several grafts due to a combination of nutritional deficiency and physical damage/obstruction of the grafted tissues. Bud growth on the NASA-5 rootstock occurred sooner than in grafts on the NASA-10 rootstock, while only one bud graft has shown growth on the NASA-11 rootstock thus far. These marked differences in the onset of bud growth suggest genotypic differences between the rootstocks may affect bud graft vigor. Mature standard plum scions grown on the NASA-5 rootstock appeared to retain most or all of the physical characteristics of the standard plum donor plant.

  11. Roles for the Cytoplasmic Tails of the Fusion and Hemagglutinin-Neuraminidase Proteins in Budding of the Paramyxovirus Simian Virus 5

    PubMed Central

    Waning, David L.; Schmitt, Anthony P.; Leser, George P.; Lamb, Robert A.

    2002-01-01

    The efficient release of many enveloped viruses from cells involves the coalescence of viral components at sites of budding on the plasma membrane of infected cells. This coalescence is believed to require interactions between the cytoplasmic tails of surface glycoproteins and the matrix (M) protein. For the paramyxovirus simian virus 5 (SV5), the cytoplasmic tail of the hemagglutinin-neuraminidase (HN) protein has been shown previously to be important for normal virus budding. To investigate a role for the cytoplasmic tail of the fusion (F) protein in virus assembly and budding, we generated a series of F cytoplasmic tail-truncated recombinant viruses. Analysis of these viruses in tissue culture indicated that the cytoplasmic tail of the F protein was dispensable for normal virus replication and budding. To investigate further the requirements for assembly and budding of SV5, we generated two double-mutant recombinant viruses that lack 8 amino acids of the predicted 17-amino-acid HN protein cytoplasmic tail in combination with truncation of either 10 or 18 amino acids from the predicted 20-amino-acid F protein cytoplasmic tail. Both of the double mutant recombinant viruses displayed a replication defect in tissue culture and a budding defect, the extent of which was dependant on the length of the remaining F cytoplasmic tail. Taken together, this work and our earlier data on virus-like particle formation (A. P. Schmitt, G. P. Leser, D. L. Waning, and R. A. Lamb, J. Virol. 76:3953-3964, 2002) suggest a redundant role for the cytoplasmic tails of the HN and F proteins in virus assembly and budding. PMID:12186912

  12. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice

    PubMed Central

    Gaillard, Dany; Xu, Mingang; Millar, Sarah E.

    2017-01-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds. PMID:28846687

  13. Cryopreservation of Salix sp. dormant winter buds

    USDA-ARS?s Scientific Manuscript database

    In cryopreservation, using dormant winter buds (DB) as source plant materials is economically advantageous over tissue culture options (TC). Processing DB does not require aseptic conditions and elaborate cryopreservation procedures. However, the DB approach is only feasible for cryopreserving a sel...

  14. SERCA directs cell migration and branching across species and germ layers

    PubMed Central

    Lansdale, Nick; Navarro, Sonia; Truong, Thai V.; Bower, Dan J.; Featherstone, Neil C.; Connell, Marilyn G.; Al Alam, Denise; Frey, Mark R.; Trinh, Le A.; Fernandez, G. Esteban; Warburton, David; Fraser, Scott E.; Bennett, Daimark; Jesudason, Edwin C.

    2017-01-01

    ABSTRACT Branching morphogenesis underlies organogenesis in vertebrates and invertebrates, yet is incompletely understood. Here, we show that the sarco-endoplasmic reticulum Ca2+ reuptake pump (SERCA) directs budding across germ layers and species. Clonal knockdown demonstrated a cell-autonomous role for SERCA in Drosophila air sac budding. Live imaging of Drosophila tracheogenesis revealed elevated Ca2+ levels in migratory tip cells as they form branches. SERCA blockade abolished this Ca2+ differential, aborting both cell migration and new branching. Activating protein kinase C (PKC) rescued Ca2+ in tip cells and restored cell migration and branching. Likewise, inhibiting SERCA abolished mammalian epithelial budding, PKC activation rescued budding, while morphogens did not. Mesoderm (zebrafish angiogenesis) and ectoderm (Drosophila nervous system) behaved similarly, suggesting a conserved requirement for cell-autonomous Ca2+ signaling, established by SERCA, in iterative budding. PMID:28821490

  15. Septin Ring Assembly Requires Concerted Action of Polarisome Components, a PAK Kinase Cla4p, and the Actin Cytoskeleton in Saccharomyces cerevisiae

    PubMed Central

    Kadota, Jun; Yamamoto, Takaharu; Yoshiuchi, Shiro; Bi, Erfei; Tanaka, Kazuma

    2004-01-01

    Septins are filament-forming proteins that function in cytokinesis in a wide variety of organisms. In budding yeast, the small GTPase Cdc42p triggers the recruitment of septins to the incipient budding site and the assembly of septins into a ring. We herein report that Bni1p and Cla4p, effectors of Cdc42p, are required for the assembly of the septin ring during the initiation of budding but not for its maintenance after the ring converts to a septin collar. In bni1Δ cla4-75-td mutant, septins were recruited to the incipient budding site. However, the septin ring was not assembled, and septins remained at the polarized growing sites. Bni1p, a formin family protein, is a member of the polarisome complex with Spa2p, Bud6p, and Pea2p. All spa2Δ cla4-75-td, bud6Δ cla4-75-td, and pea2Δ cla4-75-td mutants showed defects in septin ring assembly. Bni1p stimulates actin polymerization for the formation of actin cables. Point mutants of BNI1 that are specifically defective in actin cable formation also exhibited septin ring assembly defects in the absence of Cla4p. Consistently, treatment of cla4Δ mutant with the actin inhibitor latrunculin A inhibited septin ring assembly. Our results suggest that polarisome components and Cla4p are required for the initial assembly of the septin ring and that the actin cytoskeleton is involved in this process. PMID:15371547

  16. Transcription profiling of the chilling requirement for bud break in apples: a putative role for FLC-like genes.

    PubMed

    Porto, Diogo Denardi; Bruneau, Maryline; Perini, Pâmela; Anzanello, Rafael; Renou, Jean-Pierre; dos Santos, Henrique Pessoa; Fialho, Flávio Bello; Revers, Luís Fernando

    2015-05-01

    Apple production depends on the fulfilment of a chilling requirement for bud dormancy release. Insufficient winter chilling results in irregular and suboptimal bud break in the spring, with negative impacts on apple yield. Trees from apple cultivars with contrasting chilling requirements for bud break were used to investigate the expression of the entire set of apple genes in response to chilling accumulation in the field and controlled conditions. Total RNA was analysed on the AryANE v.1.0 oligonucleotide microarray chip representing 57,000 apple genes. The data were tested for functional enrichment, and differential expression was confirmed by real-time PCR. The largest number of differentially expressed genes was found in samples treated with cold temperatures. Cold exposure mostly repressed expression of transcripts related to photosynthesis, and long-term cold exposure repressed flavonoid biosynthesis genes. Among the differentially expressed selected candidates, we identified genes whose annotations were related to the circadian clock, hormonal signalling, regulation of growth, and flower development. Two genes, annotated as FLOWERING LOCUS C-like and MADS AFFECTING FLOWERING, showed strong differential expression in several comparisons. One of these two genes was upregulated in most comparisons involving dormancy release, and this gene's chromosomal position co-localized with the confidence interval of a major quantitative trait locus for the timing of bud break. These results indicate that photosynthesis and auxin transport are major regulatory nodes of apple dormancy and unveil strong candidates for the control of bud dormancy. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Modulation of apical constriction by Wnt signaling is required for lung epithelial shape transition.

    PubMed

    Fumoto, Katsumi; Takigawa-Imamura, Hisako; Sumiyama, Kenta; Kaneiwa, Tomoyuki; Kikuchi, Akira

    2017-01-01

    In lung development, the apically constricted columnar epithelium forms numerous buds during the pseudoglandular stage. Subsequently, these epithelial cells change shape into the flat or cuboidal pneumocytes that form the air sacs during the canalicular and saccular (canalicular-saccular) stages, yet the impact of cell shape on tissue morphogenesis remains unclear. Here, we show that the expression of Wnt components is decreased in the canalicular-saccular stages, and that genetically constitutive activation of Wnt signaling impairs air sac formation by inducing apical constriction in the epithelium as seen in the pseudoglandular stage. Organ culture models also demonstrate that Wnt signaling induces apical constriction through apical actomyosin cytoskeletal organization. Mathematical modeling reveals that apical constriction induces bud formation and that loss of apical constriction is required for the formation of an air sac-like structure. We identify MAP/microtubule affinity-regulating kinase 1 (Mark1) as a downstream molecule of Wnt signaling and show that it is required for apical cytoskeletal organization and bud formation. These results suggest that Wnt signaling is required for bud formation by inducing apical constriction during the pseudoglandular stage, whereas loss of Wnt signaling is necessary for air sac formation in the canalicular-saccular stages. © 2017. Published by The Company of Biologists Ltd.

  18. The gravity-regulated growth of axillary buds is mediated by a mechanism different from decapitation-induced release.

    PubMed

    Kitazawa, Daisuke; Miyazawa, Yutaka; Fujii, Nobuharu; Hoshino, Atsushi; Iida, Shigeru; Nitasaka, Eiji; Takahashi, Hideyuki

    2008-06-01

    When the upper part of the main shoot of the Japanese morning glory (Pharbitis nil or Ipomoea nil) is bent down, the axillary bud situated on the uppermost node of the bending region is released from apical dominance and elongates. Here, we demonstrate that this release of axillary buds from apical dominance is gravity regulated. We utilized two agravitropic mutants of morning glory defective in gravisensing cell differentiation, weeping (we) and weeping2 (we2). Bending the main shoots of either we or we2 plants resulted in minimal elongation of their axillary buds. This aberration was genetically linked to the agravitropism phenotype of the mutants, which implied that shoot bending-induced release from apical dominance required gravisensing cells. Previous studies have shown that basipetal translocation of auxin from the apical bud inhibits axillary bud growth, whereas cytokinin promotes axillary bud outgrowth. We therefore compared the roles of auxin and cytokinin in bending- or decapitation-induced axillary bud growth. In the wild-type and we plants, decapitation increased cytokinin levels and reduced auxin response. In contrast, shoot bending did not cause significant changes in either cytokinin level or auxin response, suggesting that the mechanisms underlying gravity- and decapitation-regulated release from apical dominance are distinct and unique.

  19. Progress in cryopreservation of dormant winter buds of selected tree species

    USDA-ARS?s Scientific Manuscript database

    In cryopreservation of germplasm, using dormant winter buds (DB) as source plant materials is economically favorable over tissue culture options (TC). Processing DB does not require aseptic conditions and involved cryopreservation procedures. Although, the DB cryopreservation method has been known f...

  20. Arenavirus Budding: A Common Pathway with Mechanistic Differences

    PubMed Central

    Wolff, Svenja; Ebihara, Hideki; Groseth, Allison

    2013-01-01

    The Arenaviridae is a diverse and growing family of viruses that includes several agents responsible for important human diseases. Despite the importance of this family for public health, particularly in Africa and South America, much of its biology remains poorly understood. However, in recent years significant progress has been made in this regard, particularly relating to the formation and release of new enveloped virions, which is an essential step in the viral lifecycle. While this process is mediated chiefly by the viral matrix protein Z, recent evidence suggests that for some viruses the nucleoprotein (NP) is also required to enhance the budding process. Here we highlight and compare the distinct budding mechanisms of different arenaviruses, concentrating on the role of the matrix protein Z, its known late domain sequences, and the involvement of cellular endosomal sorting complex required for transport (ESCRT) pathway components. Finally we address the recently described roles for the nucleoprotein NP in budding and ribonucleoprotein complex (RNP) incorporation, as well as discussing possible mechanisms related to its involvement. PMID:23435234

  1. Climatic control of bud burst in young seedlings of nine provenances of Norway spruce.

    PubMed

    Søgaard, Gunnhild; Johnsen, Oystein; Nilsen, Jarle; Junttila, Olavi

    2008-02-01

    Detailed knowledge of temperature effects on the timing of dormancy development and bud burst will help evaluate the impacts of climate change on forest trees. We tested the effects of temperature applied during short-day treatment, duration of short-day treatment, duration of chilling and light regime applied during forcing on the timing of bud burst in 1- and 2-year-old seedlings of nine provenances of Norway spruce (Picea abies (L.) Karst.). High temperature during dormancy induction, little or no chilling and low temperature during forcing all delayed dormancy release but did not prevent bud burst or growth onset provided the seedlings were forced under long-day conditions. Without chilling, bud burst occurred in about 20% of seedlings kept in short days at 12 degrees C, indicating that young Norway spruce seedlings do not exhibit true bud dormancy. Chilling hastened bud burst and removed the long photoperiod requirement, but the effect of high temperature applied during dormancy induction was observed even after prolonged chilling. Extension of the short-day treatment from 4 to 8 or 12 weeks hastened bud burst. The effect of treatments applied during dormancy development was larger than that of provenance; in some cases no provenance effect was detected, but in 1-year-old seedlings, time to bud burst decreased linearly with increasing latitude of origin. Differences among provenances were complicated by different responses of some origins to light conditions under long-day forcing. In conclusion, timing of bud burst in Norway spruce seedlings is significantly affected by temperature during bud set, and these effects are modified by chilling and environmental conditions during forcing.

  2. The formation of endoderm-derived taste sensory organs requires a Pax9-dependent expansion of embryonic taste bud progenitor cells.

    PubMed

    Kist, Ralf; Watson, Michelle; Crosier, Moira; Robinson, Max; Fuchs, Jennifer; Reichelt, Julia; Peters, Heiko

    2014-10-01

    In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.

  3. Bud detachment in hydra requires activation of fibroblast growth factor receptor and a Rho–ROCK–myosin II signaling pathway to ensure formation of a basal constriction

    PubMed Central

    Holz, Oliver; Apel, David; Steinmetz, Patrick; Lange, Ellen; Hopfenmüller, Simon; Ohler, Kerstin; Sudhop, Stefanie

    2017-01-01

    Background: Hydra propagates asexually by exporting tissue into a bud, which detaches 4 days later as a fully differentiated young polyp. Prerequisite for detachment is activation of fibroblast growth factor receptor (FGFR) signaling. The mechanism which enables constriction and tissue separation within the monolayered ecto‐ and endodermal epithelia is unknown. Results: Histological sections and staining of F‐actin by phalloidin revealed conspicuous cell shape changes at the bud detachment site indicating a localized generation of mechanical forces and the potential enhancement of secretory functions in ectodermal cells. By gene expression analysis and pharmacological inhibition, we identified a candidate signaling pathway through Rho, ROCK, and myosin II, which controls bud base constriction and rearrangement of the actin cytoskeleton. Specific regional myosin phosphorylation suggests a crucial role of ectodermal cells at the detachment site. Inhibition of FGFR, Rho, ROCK, or myosin II kinase activity is permissive for budding, but represses myosin phosphorylation, rearrangement of F‐actin and constriction. The young polyp remains permanently connected to the parent by a broad tissue bridge. Conclusions: Our data suggest an essential role of FGFR and a Rho‐ROCK‐myosin II pathway in the control of cell shape changes required for bud detachment. Developmental Dynamics 246:502–516, 2017. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists PMID:28411398

  4. Bud detachment in hydra requires activation of fibroblast growth factor receptor and a Rho-ROCK-myosin II signaling pathway to ensure formation of a basal constriction.

    PubMed

    Holz, Oliver; Apel, David; Steinmetz, Patrick; Lange, Ellen; Hopfenmüller, Simon; Ohler, Kerstin; Sudhop, Stefanie; Hassel, Monika

    2017-07-01

    Hydra propagates asexually by exporting tissue into a bud, which detaches 4 days later as a fully differentiated young polyp. Prerequisite for detachment is activation of fibroblast growth factor receptor (FGFR) signaling. The mechanism which enables constriction and tissue separation within the monolayered ecto- and endodermal epithelia is unknown. Histological sections and staining of F-actin by phalloidin revealed conspicuous cell shape changes at the bud detachment site indicating a localized generation of mechanical forces and the potential enhancement of secretory functions in ectodermal cells. By gene expression analysis and pharmacological inhibition, we identified a candidate signaling pathway through Rho, ROCK, and myosin II, which controls bud base constriction and rearrangement of the actin cytoskeleton. Specific regional myosin phosphorylation suggests a crucial role of ectodermal cells at the detachment site. Inhibition of FGFR, Rho, ROCK, or myosin II kinase activity is permissive for budding, but represses myosin phosphorylation, rearrangement of F-actin and constriction. The young polyp remains permanently connected to the parent by a broad tissue bridge. Our data suggest an essential role of FGFR and a Rho-ROCK-myosin II pathway in the control of cell shape changes required for bud detachment. Developmental Dynamics 246:502-516, 2017. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.

  5. 7 CFR 868.311 - Grades and grade requirements for the class Second Head Milled Rice. (See also § 868.315.)

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Head Milled Rice. (See also § 868.315.) 868.311 Section 868.311 Agriculture Regulations of the... COMMODITIES United States Standards for Milled Rice Principles Governing Application of Standards § 868.311 Grades and grade requirements for the class Second Head Milled Rice. (See also § 868.315.) Grades, Grade...

  6. 7 CFR 868.311 - Grades and grade requirements for the class Second Head Milled Rice. (See also § 868.315.)

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Head Milled Rice. (See also § 868.315.) 868.311 Section 868.311 Agriculture Regulations of the... COMMODITIES United States Standards for Milled Rice Principles Governing Application of Standards § 868.311 Grades and grade requirements for the class Second Head Milled Rice. (See also § 868.315.) Grades, Grade...

  7. 7 CFR 868.312 - Grade and grade requirements for the class Screenings Milled Rice. (See also § 868.315.)

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Milled Rice. (See also § 868.315.) 868.312 Section 868.312 Agriculture Regulations of the Department of... United States Standards for Milled Rice Principles Governing Application of Standards § 868.312 Grade and grade requirements for the class Screenings Milled Rice. (See also § 868.315.) Grades, Grade...

  8. 7 CFR 868.313 - Grades and grade requirements for the class Brewers Milled Rice. (See also § 868.315.)

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Milled Rice. (See also § 868.315.) 868.313 Section 868.313 Agriculture Regulations of the Department of... United States Standards for Milled Rice Principles Governing Application of Standards § 868.313 Grades and grade requirements for the class Brewers Milled Rice. (See also § 868.315.) Grades, Grade...

  9. 7 CFR 868.312 - Grade and grade requirements for the class Screenings Milled Rice. (See also § 868.315.)

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Milled Rice. (See also § 868.315.) 868.312 Section 868.312 Agriculture Regulations of the Department of... United States Standards for Milled Rice Principles Governing Application of Standards § 868.312 Grade and grade requirements for the class Screenings Milled Rice. (See also § 868.315.) Grades, Grade...

  10. 7 CFR 868.313 - Grades and grade requirements for the class Brewers Milled Rice. (See also § 868.315.)

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Milled Rice. (See also § 868.315.) 868.313 Section 868.313 Agriculture Regulations of the Department of... United States Standards for Milled Rice Principles Governing Application of Standards § 868.313 Grades and grade requirements for the class Brewers Milled Rice. (See also § 868.315.) Grades, Grade...

  11. Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting

    PubMed Central

    2014-01-01

    Background In saffron (Crocus sativus), new corms develop at the base of every shoot developed from the maternal corm, a globular underground storage stem. Since the degree of bud sprouts influences the number and size of new corms, and strigolactones (SLs) suppress growth of pre-formed axillary bud, it was considered appropriate to investigate SL involvement in physiology and molecular biology in saffron. We focused on two of the genes within the SL pathway, CCD7 and CCD8, encoding carotenoid cleavage enzymes required for the production of SLs. Results The CsCCD7 and CsCCD8 genes are the first ones isolated and characterized from a non-grass monocotyledonous plant. CsCCD7 and CsCCD8 expression showed some overlapping, although they were not identical. CsCCD8 was highly expressed in quiescent axillary buds and decapitation dramatically reduced its expression levels, suggesting its involvement in the suppression of axillary bud outgrowth. Furthermore, in vitro experiments showed also the involvement of auxin, cytokinin and jasmonic acid on the sprouting of axillary buds from corms in which the apical bud was removed. In addition, CsCCD8 expression, but not CsCCD7, was higher in the newly developed vascular tissue of axillary buds compared to the vascular tissue of the apical bud. Conclusions We showed that production and transport of auxin in saffron corms could act synergistically with SLs to arrest the outgrowth of the axillary buds, similar to the control of above-ground shoot branching. In addition, jasmonic acid seems to play a prominent role in bud dormancy in saffron. While cytokinins from roots promote bud outgrowth. In addition the expression results of CsCCD8 suggest that SLs could positively regulate procambial activity and the development of new vascular tissues connecting leaves with the mother corm. PMID:24947472

  12. Hemorrhagic Fever Virus Budding Studies.

    PubMed

    Harty, Ronald N

    2018-01-01

    Independent expression of the VP40 or Z matrix proteins of filoviruses (marburgviruses and ebolaviruses) and arenaviruses (Lassa fever and Junín), respectively, gives rise to the production and release of virus-like particles (VLPs) that are morphologically identical to infectious virions. We can detect and quantify VLP production and egress in mammalian cells by transient transfection, SDS-PAGE, Western blotting, and live cell imaging techniques such as total internal reflection fluorescence (TIRF) microscopy. Since the VLP budding assay accurately mimics budding of infectious virus, this BSL-2 assay is safe and useful for the interrogation of both viral and host determinants required for budding and can be used as an initial screen to identify and validate small molecule inhibitors of virus release and spread.

  13. Effect of gravity on apical dominance in Pharbitis nil.

    PubMed

    Kitazawa, Daisuke; Fujii, Nobuharu; Suge, Hiroshi; Takahashi, Hideyuki

    2003-10-01

    When the upper part of main shoot of morning glory (Pharbitis nil) is gently bent down, lateral bud on the bending region is released from apical dominance and starts to elongate. But, clinorotating the bending shoots prevents the release of the lateral bud from apical dominance. These results suggest that gravity affects apical dominance in morning glory. Here we verified the gravity-regulated apical dominance by using a weeping morning glory defective in gravitropic response due to abnormal differentiation of endodermis. That is, bending main shoot of the weeping morning glory hardly caused the lateral bud to elongate. In addition, decapitation of apical bud released the lateral bud from apical dominance, and exogenous auxin applied to the cut surface of the decapitated stem was inhibitory to the outgrowth of the lateral bud in the wild type. However, the effect of auxin was much less in the weeping morning glory. Thus, apical dominance of the weeping morning glory was weaker and less influenced by gravity than that of the wild type, which could occur due to abnormal differentiation of endodermis required for graviperception.

  14. Estrogen signaling is not required for prostatic bud patterning or for its disruption by 2,3,7,8-tetrachlorodibenzo-p-dioxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgeier, Sarah Hicks; Vezina, Chad M.; Lin, T.-M.

    2009-08-15

    Estrogens play an important role in prostatic development, health, and disease. While estrogen signaling is essential for normal postnatal prostate development, little is known about its prenatal role in control animals. We tested the hypothesis that estrogen signaling is needed for normal male prostatic bud patterning. Budding patterns were examined by scanning electron microscopy of urogenital sinus epithelium from wild-type mice, mice lacking estrogen receptor (ER){alpha}, ER{beta}, or both, and wild-type mice exposed to the antiestrogen ICI 182,780. Budding phenotypes did not detectably differ among any of these groups, strongly suggesting that estrogen signaling is not needed to establish themore » prototypical prostatic budding pattern seen in control males. This finding contributes to our understanding of the effects of low-level estrogen exposure on early prostate development. In utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can greatly alter the pattern in which prostatic buds form and reduce their number. For several reasons, including a prior observation that inhibitory effects of TCDD on prostatic budding in rats depend heavily on the sex of adjacent fetuses, we tested the hypothesis that estrogen signaling is needed for TCDD to disrupt prostatic budding. However, budding did not detectably differ among wild-type mice, or mice lacking ER{alpha}, ER{beta}, or both, that were exposed prenatally to TCDD (5 {mu}g/kg on embryonic day 13.5). Nor did ICI 182,780 detectably affect the response to TCDD. These results strongly suggest that estrogen signaling is not needed for TCDD to inhibit prostatic epithelial budding.« less

  15. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species

    PubMed Central

    Harrington, Constance A.; Gould, Peter J.

    2015-01-01

    Many temperate and boreal tree species have a chilling requirement, that is, they need to experience cold temperatures during fall and winter to burst bud normally in the spring. Results from trials with 11 Pacific Northwest tree species are consistent with the concept that plants can accumulate both chilling and forcing units simultaneously during the dormant season and they exhibit a tradeoff between amount of forcing and chilling. That is, the parallel model of chilling and forcing was effective in predicting budburst and well chilled plants require less forcing for bud burst than plants which have received less chilling. Genotypes differed in the shape of the possibility line which describes the quantitative tradeoff between chilling and forcing units. Plants which have an obligate chilling requirement (Douglas-fir, western hemlock, western larch, pines, and true firs) and received no or very low levels of chilling did not burst bud normally even with long photoperiods. Pacific madrone and western redcedar benefited from chilling in terms of requiring less forcing to promote bud burst but many plants burst bud normally without chilling. Equations predicting budburst were developed for each species in our trials for a portion of western North America under current climatic conditions and for 2080. Mean winter temperature was predicted to increase 3.2–5.5°C and this change resulted in earlier predicted budburst for Douglas-fir throughout much of our study area (up to 74 days earlier) but later budburst in some southern portions of its current range (up to 48 days later) as insufficient chilling is predicted to occur. Other species all had earlier predicted dates of budburst by 2080 than currently. Recent warming trends have resulted in earlier budburst for some woody plant species; however, the substantial winter warming predicted by some climate models will reduce future chilling in some locations such that budburst will not consistently occur earlier. PMID:25784922

  16. Sall1-dependent signals affect Wnt signaling and ureter tip fate to initiate kidney development.

    PubMed

    Kiefer, Susan M; Robbins, Lynn; Stumpff, Kelly M; Lin, Congxing; Ma, Liang; Rauchman, Michael

    2010-09-01

    Development of the metanephric kidney depends on precise control of branching of the ureteric bud. Branching events represent terminal bifurcations that are thought to depend on unique patterns of gene expression in the tip compared with the stalk and are influenced by mesenchymal signals. The metanephric mesenchyme-derived signals that control gene expression at the ureteric bud tip are not well understood. In mouse Sall1 mutants, the ureteric bud grows out and invades the metanephric mesenchyme, but it fails to initiate branching despite tip-specific expression of Ret and Wnt11. The stalk-specific marker Wnt9b and the beta-catenin downstream target Axin2 are ectopically expressed in the mutant ureteric bud tips, suggesting that upregulated canonical Wnt signaling disrupts ureter branching in this mutant. In support of this hypothesis, ureter arrest is rescued by lowering beta-catenin levels in the Sall1 mutant and is phenocopied by ectopic expression of a stabilized beta-catenin in the ureteric bud. Furthermore, transgenic overexpression of Wnt9b in the ureteric bud causes reduced branching in multiple founder lines. These studies indicate that Sall1-dependent signals from the metanephric mesenchyme are required to modulate ureteric bud tip Wnt patterning in order to initiate branching.

  17. UV-B light contributes directly to the synthesis of chiloglottone floral volatiles

    PubMed Central

    Amarasinghe, Ranamalie; Poldy, Jacqueline; Matsuba, Yuki; Barrow, Russell A.; Hemmi, Jan M.; Pichersky, Eran; Peakall, Rod

    2015-01-01

    Background and Aims Australian sexually deceptive Chiloglottis orchids attract their specific male wasp pollinators by means of 2,5-dialkylcyclohexane-1,3-diones or ‘chiloglottones’, representing a newly discovered class of volatiles with unique structures. This study investigated the hypothesis that UV-B light at low intensities is directly required for chiloglottone biosynthesis in Chiloglottis trapeziformis. Methods Chiloglottone production occurs only in specific tissue (the callus) of the labellum. Cut buds and flowers, and whole plants with buds and flowers, sourced from the field, were kept in a growth chamber and interactions between growth stage of the flowers and duration and intensity of UV-B exposure on chiloglottone production were studied. The effects of the protein synthesis inhibitor cycloheximide were also examined. Key Results Chiloglottone was not present in buds, but was detected in buds that were manually opened and then exposed to sunlight, or artificial UV-B light for ≥5 min. Spectrophotometry revealed that the sepals and petals blocked UV-B light from reaching the labellum inside the bud. Rates of chiloglottone production increased with developmental stage, increasing exposure time and increasing UV-B irradiance intensity. Cycloheximide did not inhibit the initial production of chiloglottone within 5 min of UV-B exposure. However, inhibition of chiloglottone production by cycloheximide occurred over 2 h of UV-B exposure, indicating a requirement for de novo protein synthesis to sustain chiloglottone production under UV-B. Conclusions The sepals and petals of Chiloglottis orchids strongly block UV-B wavelengths of light, preventing chiloglottone production inside the bud. While initiation of chiloglottone biosynthesis requires only UV-B light, sustained chiloglottone biosynthesis requires both UV-B and de novo protein biosynthesis. The internal amounts of chiloglottone in a flower reflect the interplay between developmental stage, duration and intensity of UV-B exposure, de novo protein synthesis, and feedback loops linked to the starting amount of chiloglottone. It is concluded that UV-B light contributes directly to chiloglottone biosynthesis. These findings suggest an entirely new and unexpected biochemical reaction that might also occur in taxa other than these orchids. PMID:25649114

  18. De novo transcriptome assembly and comparative analysis of differentially expressed genes in Prunus dulcis Mill. in response to freezing stress.

    PubMed

    Mousavi, Sadegh; Alisoltani, Arghavan; Shiran, Behrouz; Fallahi, Hossein; Ebrahimie, Esameil; Imani, Ali; Houshmand, Saadollah

    2014-01-01

    Almond (Prunus dulcis Mill.), one of the most important nut crops, requires chilling during winter to develop fruiting buds. However, early spring chilling and late spring frost may damage the reproductive tissues leading to reduction in the rate of productivity. Despite the importance of transcriptional changes and regulation, little is known about the almond's transcriptome under the cold stress conditions. In the current research, we used RNA-seq technique to study the response of the reproductive tissues of almond (anther and ovary) to frost stress. RNA sequencing resulted in more than 20 million reads from anther and ovary tissues of almond, individually. About 40,000 contigs were assembled and annotated de novo in each tissue. Profile of gene expression in ovary showed significant alterations in 5,112 genes, whereas in anther 6,926 genes were affected by freezing stress. Around two thousands of these genes were common altered genes in both ovary and anther libraries. Gene ontology indicated the involvement of differentially expressed (DE) genes, responding to freezing stress, in metabolic and cellular processes. qRT-PCR analysis verified the expression pattern of eight genes randomly selected from the DE genes. In conclusion, the almond gene index assembled in this study and the reported DE genes can provide great insights on responses of almond and other Prunus species to abiotic stresses. The obtained results from current research would add to the limited available information on almond and Rosaceae. Besides, the findings would be very useful for comparative studies as the number of DE genes reported here is much higher than that of any previous reports in this plant.

  19. De Novo Transcriptome Assembly and Comparative Analysis of Differentially Expressed Genes in Prunus dulcis Mill. in Response to Freezing Stress

    PubMed Central

    Shiran, Behrouz; Fallahi, Hossein; Ebrahimie, Esameil; Imani, Ali; Houshmand, Saadollah

    2014-01-01

    Almond (Prunus dulcis Mill.), one of the most important nut crops, requires chilling during winter to develop fruiting buds. However, early spring chilling and late spring frost may damage the reproductive tissues leading to reduction in the rate of productivity. Despite the importance of transcriptional changes and regulation, little is known about the almond’s transcriptome under the cold stress conditions. In the current reserch, we used RNA-seq technique to study the response of the reporuductive tissues of almond (anther and ovary) to frost stress. RNA sequencing resulted in more than 20 million reads from anther and ovary tissues of almond, individually. About 40,000 contigs were assembled and annotated de novo in each tissue. Profile of gene expression in ovary showed significant alterations in 5,112 genes, whereas in anther 6,926 genes were affected by freezing stress. Around two thousands of these genes were common altered genes in both ovary and anther libraries. Gene ontology indicated the involvement of differentially expressed (DE) genes, responding to freezing stress, in metabolic and cellular processes. qRT-PCR analysis verified the expression pattern of eight genes randomley selected from the DE genes. In conclusion, the almond gene index assembled in this study and the reported DE genes can provide great insights on responses of almond and other Prunus species to abiotic stresses. The obtained results from current research would add to the limited available information on almond and Rosaceae. Besides, the findings would be very useful for comparative studies as the number of DE genes reported here is much higher than that of any previous reports in this plant. PMID:25122458

  20. The prefoldin bud27 mediates the assembly of the eukaryotic RNA polymerases in an rpb5-dependent manner.

    PubMed

    Mirón-García, María Carmen; Garrido-Godino, Ana Isabel; García-Molinero, Varinia; Hernández-Torres, Francisco; Rodríguez-Navarro, Susana; Navarro, Francisco

    2013-01-01

    The unconventional prefoldin URI/RMP, in humans, and its orthologue in yeast, Bud27, have been proposed to participate in the biogenesis of the RNA polymerases. However, this role of Bud27 has not been confirmed and is poorly elucidated. Our data help clarify the mechanisms governing biogenesis of the three eukaryotic RNA pols. We show evidence that Bud27 is the first example of a protein that participates in the biogenesis of the three eukaryotic RNA polymerases and the first example of a protein modulating their assembly instead of their nuclear transport. In addition we demonstrate that the role of Bud27 in RNA pols biogenesis depends on Rpb5. In fact, lack of BUD27 affects growth and leads to a substantial accumulation of the three RNA polymerases in the cytoplasm, defects offset by the overexpression of RPB5. Supporting this, our data demonstrate that the lack of Bud27 affects the correct assembly of Rpb5 and Rpb6 to the three RNA polymerases, suggesting that this process occurs in the cytoplasm and is a required step prior to nuclear import. Also, our data support the view that Rpb5 and Rpb6 assemble somewhat later than the rest of the complexes. Furthermore, Bud27 Rpb5-binding but not PFD-binding domain is necessary for RNA polymerases biogenesis. In agreement, we also demonstrate genetic interactions between BUD27, RPB5, and RPB6. Bud27 shuttles between the nucleus and the cytoplasm in an Xpo1-independent manner, and also independently of microtubule polarization and possibly independently of its association with the RNA pols. Our data also suggest that the role of Bud27 in RNA pols biogenesis is independent of the chaperone prefoldin (PFD) complex and of Iwr1. Finally, the role of URI seems to be conserved in humans, suggesting conserved mechanisms in RNA pols biogenesis.

  1. The Prefoldin Bud27 Mediates the Assembly of the Eukaryotic RNA Polymerases in an Rpb5-Dependent Manner

    PubMed Central

    Mirón-García, María Carmen; Garrido-Godino, Ana Isabel; García-Molinero, Varinia; Hernández-Torres, Francisco; Rodríguez-Navarro, Susana; Navarro, Francisco

    2013-01-01

    The unconventional prefoldin URI/RMP, in humans, and its orthologue in yeast, Bud27, have been proposed to participate in the biogenesis of the RNA polymerases. However, this role of Bud27 has not been confirmed and is poorly elucidated. Our data help clarify the mechanisms governing biogenesis of the three eukaryotic RNA pols. We show evidence that Bud27 is the first example of a protein that participates in the biogenesis of the three eukaryotic RNA polymerases and the first example of a protein modulating their assembly instead of their nuclear transport. In addition we demonstrate that the role of Bud27 in RNA pols biogenesis depends on Rpb5. In fact, lack of BUD27 affects growth and leads to a substantial accumulation of the three RNA polymerases in the cytoplasm, defects offset by the overexpression of RPB5. Supporting this, our data demonstrate that the lack of Bud27 affects the correct assembly of Rpb5 and Rpb6 to the three RNA polymerases, suggesting that this process occurs in the cytoplasm and is a required step prior to nuclear import. Also, our data support the view that Rpb5 and Rpb6 assemble somewhat later than the rest of the complexes. Furthermore, Bud27 Rpb5-binding but not PFD-binding domain is necessary for RNA polymerases biogenesis. In agreement, we also demonstrate genetic interactions between BUD27, RPB5, and RPB6. Bud27 shuttles between the nucleus and the cytoplasm in an Xpo1-independent manner, and also independently of microtubule polarization and possibly independently of its association with the RNA pols. Our data also suggest that the role of Bud27 in RNA pols biogenesis is independent of the chaperone prefoldin (PFD) complex and of Iwr1. Finally, the role of URI seems to be conserved in humans, suggesting conserved mechanisms in RNA pols biogenesis. PMID:23459708

  2. Light Signaling in Bud Outgrowth and Branching in Plants

    PubMed Central

    Leduc, Nathalie; Roman, Hanaé; Barbier, François; Péron, Thomas; Huché-Thélier, Lydie; Lothier, Jérémy; Demotes-Mainard, Sabine; Sakr, Soulaiman

    2014-01-01

    Branching determines the final shape of plants, which influences adaptation, survival and the visual quality of many species. It is an intricate process that includes bud outgrowth and shoot extension, and these in turn respond to environmental cues and light conditions. Light is a powerful environmental factor that impacts multiple processes throughout plant life. The molecular basis of the perception and transduction of the light signal within buds is poorly understood and undoubtedly requires to be further unravelled. This review is based on current knowledge on bud outgrowth-related mechanisms and light-mediated regulation of many physiological processes. It provides an extensive, though not exhaustive, overview of the findings related to this field. In parallel, it points to issues to be addressed in the near future. PMID:27135502

  3. The milling of pristine and brominated P-100 graphite fibers

    NASA Technical Reports Server (NTRS)

    Dillehay, M. E.; Gaier, J. R.

    1986-01-01

    Techniques were developed for the ball milling of pristine and brominated P-100 graphite fibers. Because of the lubrication properties of graphite, large ball loads (50 percent by volume) were required. Use of 2-propanol as a milling medium enhanced the efficiency of the process. Milled brominated P-100 fibers had resistivities which were indistinguishable from milled pristine P-100 fibers. Apparent loss of bromine from the brominated fibers suggests that bromine would not be the intercalate of choice in applications where milled fibers of this type are required. Other intercalates which do not degas may be more appropriate for a milled fiber application. These same results, however, do provide evidence that bromine molecules leave the fiber surface when removed from overpressure of bromine. While exploring possible solvent media for milling purposes, it was found that brominated fibers are stable in a wide variety of organic solvents.

  4. A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell

    PubMed Central

    Clay, Lori; Caudron, Fabrice; Denoth-Lippuner, Annina; Boettcher, Barbara; Buvelot Frei, Stéphanie; Snapp, Erik Lee; Barral, Yves

    2014-01-01

    In many cell types, lateral diffusion barriers compartmentalize the plasma membrane and, at least in budding yeast, the endoplasmic reticulum (ER). However, the molecular nature of these barriers, their mode of action and their cellular functions are unclear. Here, we show that misfolded proteins of the ER remain confined into the mother compartment of budding yeast cells. Confinement required the formation of a lateral diffusion barrier in the form of a distinct domain of the ER-membrane at the bud neck, in a septin-, Bud1 GTPase- and sphingolipid-dependent manner. The sphingolipids, but not Bud1, also contributed to barrier formation in the outer membrane of the dividing nucleus. Barrier-dependent confinement of ER stress into the mother cell promoted aging. Together, our data clarify the physical nature of lateral diffusion barriers in the ER and establish the role of such barriers in the asymmetric segregation of proteotoxic misfolded proteins during cell division and aging. DOI: http://dx.doi.org/10.7554/eLife.01883.001 PMID:24843009

  5. Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity.

    PubMed

    Fairn, Gregory D; Hermansson, Martin; Somerharju, Pentti; Grinstein, Sergio

    2011-10-02

    Polarity is key to the function of eukaryotic cells. On the establishment of a polarity axis, cells can vectorially target secretion, generating an asymmetric distribution of plasma membrane proteins. From Saccharomyces cerevisiae to mammals, the small GTPase Cdc42 is a pivotal regulator of polarity. We used a fluorescent probe to visualize the distribution of phosphatidylserine in live S. cerevisiae. Remarkably, phosphatidylserine was polarized in the plasma membrane, accumulating in bud necks, the bud cortex and the tips of mating projections. Polarization required vectorial delivery of phosphatidylserine-containing secretory vesicles, and phosphatidylserine was largely excluded from endocytic vesicles, contributing to its polarized retention. Mutants lacking phosphatidylserine synthase had impaired polarization of the Cdc42 complex, leading to a delay in bud emergence, and defective mating. The addition of lysophosphatidylserine resulted in resynthesis and polarization of phosphatidylserine, as well as repolarization of Cdc42. The results indicate that phosphatidylserine--and presumably its polarization--are required for optimal Cdc42 targeting and activation during cell division and mating.

  6. The Chilling Optimum of Idaho and Arizona Ponderosa Pine Buds

    Treesearch

    David L. Wenny; Daniel J. Swanson; R. Kasten Dumroese

    2002-01-01

    Ponderosa pine (Pinus ponderosa) seedlings from Idaho (var. ponderosa) and Arizona (var. scopulorum) grown in a container nursery received optimum chilling [2,010 hr (84 days) of temperatures below 5°C]. While seedlings were in the greenhouse, days required for 50% of the population to break bud were similar for both seed sources...

  7. Bud break responds more strongly to daytime than night-time temperature under asymmetric experimental warming.

    PubMed

    Rossi, Sergio; Isabel, Nathalie

    2017-01-01

    Global warming is diurnally asymmetric, leading to a less cold, rather than warmer, climate. We investigated the effects of asymmetric experimental warming on plant phenology by testing the hypothesis that daytime warming is more effective in advancing bud break than night-time warming. Bud break was monitored daily in Picea mariana seedlings belonging to 20 provenances from Eastern Canada and subjected to daytime and night-time warming in growth chambers at temperatures varying between 8 and 16 °C. The higher advancements of bud break and shorter times required to complete the phenological phases occurred with daytime warming. Seedlings responded to night-time warming, but still with less advancement of bud break than under daytime warming. No advancement was observed when night-time warming was associated with a daytime cooling. The effect of the treatments was uniform across provenances. Our observations realized under controlled conditions allowed to experimentally demonstrate that bud break can advance under night-time warming, but to a lesser extent than under daytime warming. Prediction models using daily timescales could neglect the diverging influence of asymmetric warming and should be recalibrated for higher temporal resolutions. © 2016 John Wiley & Sons Ltd.

  8. 77 FR 48423 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... Company Model 737-500 series airplanes. This AD was prompted by reports of chem-mill step cracking on the aft lower lobe fuselage skins. This AD requires inspections of the fuselage skin at the chem- mill... 22686). That NPRM proposed to require inspections of the fuselage skin at the chem-mill steps, and...

  9. Dormancy release of Norway spruce under climatic warming: testing ecophysiological models of bud burst with a whole-tree chamber experiment.

    PubMed

    Hänninen, Heikki; Slaney, Michelle; Linder, Sune

    2007-02-01

    Ecophysiological models predicting timing of bud burst were tested with data gathered from 40-year-old Norway spruce (Picea abies (L.) Karst.) trees growing in northern Sweden in whole-tree chambers under climatic conditions predicted to prevail in 2100. Norway spruce trees, with heights between 5 and 7 m, were enclosed in individual chambers that provided a factorial combination of ambient (365 micromol mol-1) or elevated (700 micromol mol-1) atmospheric CO2 concentration, [CO2], and ambient or elevated air temperature. Temperature elevation above ambient ranged from +2.8 degrees C in summer to +5.6 degrees C in winter. Compared with control trees, elevated air temperature hastened bud burst by 2 to 3 weeks, whereas elevated [CO2] had no effect on the timing of bud burst. A simple model based on the assumption that bud rest completion takes place on a fixed calendar day predicted timing of bud burst more accurately than two more complicated models in which bud rest completion is caused by accumulated chilling. Together with some recent studies, the results suggest that, in adult trees, some additional environmental cues besides chilling are required for bud rest completion. Although it appears that these additional factors will protect trees under predicted climatic warming conditions, increased risk of frost damage associated with earlier bud burst cannot be ruled out. Inconsistent and partially anomalous results obtained in the model fitting show that, in addition to phenological data gathered under field conditions, more specific data from growth chamber and greenhouse experiments are needed for further development and testing of the models.

  10. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein.

    PubMed

    Nabhan, Joseph F; Hu, Ruoxi; Oh, Raymond S; Cohen, Stanley N; Lu, Quan

    2012-03-13

    Mammalian cells are capable of delivering multiple types of membrane capsules extracellularly. The limiting membrane of late endosomes can fuse with the plasma membrane, leading to the extracellular release of multivesicular bodies (MVBs), initially contained within the endosomes, as exosomes. Budding viruses exploit the TSG101 protein and endosomal sorting complex required for transport (ESCRT) machinery used for MVB formation to mediate the egress of viral particles from host cells. Here we report the discovery of a virus-independent cellular process that generates microvesicles that are distinct from exosomes and which, like budding viruses, are produced by direct plasma membrane budding. Such budding is driven by a specific interaction of TSG101 with a tetrapeptide PSAP motif of an accessory protein, arrestin domain-containing protein 1 (ARRDC1), which we show is localized to the plasma membrane through its arrestin domain. This interaction results in relocation of TSG101 from endosomes to the plasma membrane and mediates the release of microvesicles that contain TSG101, ARRDC1, and other cellular proteins. Unlike exosomes, which are derived from MVBs, ARRDC1-mediated microvesicles (ARMMs) lack known late endosomal markers. ARMMs formation requires VPS4 ATPase and is enhanced by the E3 ligase WWP2, which interacts with and ubiquitinates ARRDC1. ARRDC1 protein discharged into ARMMs was observed in co-cultured cells, suggesting a role for ARMMs in intercellular communication. Our findings reveal an intrinsic cellular mechanism that results in direct budding of microvesicles from the plasma membrane, providing a formal paradigm for the evolutionary recruitment of ESCRT proteins in the release of budding viruses.

  11. Genome-wide DNA-(de)methylation is associated with Noninfectious Bud-failure exhibition in Almond (Prunus dulcis [Mill.] D.A.Webb)

    PubMed Central

    Fresnedo-Ramírez, Jonathan; Chan, Helen M.; Parfitt, Dan E.; Crisosto, Carlos H.; Gradziel, Thomas M.

    2017-01-01

    Noninfectious bud-failure (BF) remains a major threat to almond production in California, particularly with the recent rapid expansion of acreage and as more intensive cultural practices and modern cultivars are adopted. BF has been shown to be inherited in both vegetative and sexual progeny, with exhibition related to the age and propagation history of scion clonal sources. These characteristics suggest an epigenetic influence, such as the loss of juvenility mediated by DNA-(de)methylation. Various degrees of BF have been reported among cultivars as well as within sources of clonal propagation of the same cultivar. Genome-wide methylation profiles for different clones within almond genotypes were developed to examine their association with BF levels and association with the chronological time from initial propagation. The degree of BF exhibition was found to be associated with DNA-(de)methylation and clonal age, which suggests that epigenetic changes associated with ageing may be involved in the differential exhibition of BF within and among almond clones. Research is needed to investigate the potential of DNA-(de)methylation status as a predictor for BF as well as for effective strategies to improve clonal selection against age related deterioration. This is the first report of an epigenetic-related disorder threatening a major tree crop. PMID:28202904

  12. Genome-wide DNA-(de)methylation is associated with Noninfectious Bud-failure exhibition in Almond (Prunus dulcis [Mill.] D.A.Webb).

    PubMed

    Fresnedo-Ramírez, Jonathan; Chan, Helen M; Parfitt, Dan E; Crisosto, Carlos H; Gradziel, Thomas M

    2017-02-16

    Noninfectious bud-failure (BF) remains a major threat to almond production in California, particularly with the recent rapid expansion of acreage and as more intensive cultural practices and modern cultivars are adopted. BF has been shown to be inherited in both vegetative and sexual progeny, with exhibition related to the age and propagation history of scion clonal sources. These characteristics suggest an epigenetic influence, such as the loss of juvenility mediated by DNA-(de)methylation. Various degrees of BF have been reported among cultivars as well as within sources of clonal propagation of the same cultivar. Genome-wide methylation profiles for different clones within almond genotypes were developed to examine their association with BF levels and association with the chronological time from initial propagation. The degree of BF exhibition was found to be associated with DNA-(de)methylation and clonal age, which suggests that epigenetic changes associated with ageing may be involved in the differential exhibition of BF within and among almond clones. Research is needed to investigate the potential of DNA-(de)methylation status as a predictor for BF as well as for effective strategies to improve clonal selection against age related deterioration. This is the first report of an epigenetic-related disorder threatening a major tree crop.

  13. Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures.

    PubMed

    Viherä-Aarnio, Anneli; Sutinen, Sirkka; Partanen, Jouni; Häkkinen, Risto

    2014-05-01

    The timing of budburst of temperate trees is known to be controlled by complicated interactions of temperature and photoperiod. To improve the phenological models of budburst, better knowledge of the internal bud development preceding budburst in relation to environmental cues is needed. We studied the effect of accumulated chilling and forcing temperatures on the internal development of vegetative buds preceding budburst in Norway spruce [Picea abies (L.) Karst.]. Branches from 17-year-old trees of southern Finnish origin were transferred eight times at 1- to 2-week intervals from October to December 2007 from the field at Punkaharju (61°48'N, 29°20'E) to the greenhouse with forcing conditions (day length 12 h, +20 °C). After seven different durations of forcing, the developmental phase and primordial shoot growth of the buds were analysed at the stereomicroscopic level. Air temperature was recorded hourly throughout the study period. The accumulated chilling unit sum had a significant effect on the temperature sum that was required to attain a certain developmental phase; a higher amount of chilling required a lower amount of forcing. The variation in the rate of development of different buds within each sample branch in relation to the chilling unit and forcing temperature sum was low. Regarding primordial shoot growth, there was also an inverse relation between accumulated chilling and forcing, i.e., a higher accumulated chilling unit sum before forcing required a lower temperature sum to initiate primordial shoot growth and resulted in a stronger effect of accumulated forcing. A second-order regression model with an interaction of chilling and forcing explained the variation of primordial shoot growth with high precision (R(2) = 0.88). However, further studies are required to determine the final parameter values to be used in phenological modelling. © The Author 2014. Published by Oxford University Press. All rights reserved.

  14. Centrosomal protein Dzip1l binds Cby, promotes ciliary bud formation, and acts redundantly with Bromi to regulate ciliogenesis in the mouse.

    PubMed

    Wang, Chengbing; Li, Jia; Takemaru, Ken-Ichi; Jiang, Xiaogang; Xu, Guoqiang; Wang, Baolin

    2018-03-15

    The primary cilium is a microtubule-based organelle required for Hedgehog (Hh) signaling and consists of a basal body, a ciliary axoneme and a compartment between the first two structures, called the transition zone (TZ). The TZ serves as a gatekeeper to control protein composition in cilia, but less is known about its role in ciliary bud formation. Here, we show that centrosomal protein Dzip1l is required for Hh signaling between Smoothened and Sufu. Dzip1l colocalizes with basal body appendage proteins and Rpgrip1l, a TZ protein. Loss of Dzip1l results in reduced ciliogenesis and dysmorphic cilia in vivo Dzip1l interacts with, and acts upstream of, Cby, an appendage protein, in ciliogenesis. Dzip1l also has overlapping functions with Bromi (Tbc1d32) in ciliogenesis, cilia morphogenesis and neural tube patterning. Loss of Dzip1l arrests ciliogenesis at the stage of ciliary bud formation from the TZ. Consistent with this, Dzip1l mutant cells fail to remove the capping protein Cp110 (Ccp110) from the distal end of mother centrioles and to recruit Rpgrip1l to the TZ. Therefore, Dzip1l promotes ciliary bud formation and is required for the integrity of the TZ. © 2018. Published by The Company of Biologists Ltd.

  15. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways.

    PubMed

    Zhao, Ying; Liang, Haiying; Li, Lan; Tang, Sha; Han, Xiao; Wang, Congpeng; Xia, Xinli; Yin, Weilun

    2015-01-01

    Metasequoia glyptostroboides is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as 5-to-7 years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE) tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD) and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia.

  16. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes.

    PubMed

    Taruno, Akiyuki; Vingtdeux, Valérie; Ohmoto, Makoto; Ma, Zhongming; Dvoryanchikov, Gennady; Li, Ang; Adrien, Leslie; Zhao, Haitian; Leung, Sze; Abernethy, Maria; Koppel, Jeremy; Davies, Peter; Civan, Mortimer M; Chaudhari, Nirupa; Matsumoto, Ichiro; Hellekant, Göran; Tordoff, Michael G; Marambaud, Philippe; Foskett, J Kevin

    2013-03-14

    Recognition of sweet, bitter and umami tastes requires the non-vesicular release from taste bud cells of ATP, which acts as a neurotransmitter to activate afferent neural gustatory pathways. However, how ATP is released to fulfil this function is not fully understood. Here we show that calcium homeostasis modulator 1 (CALHM1), a voltage-gated ion channel, is indispensable for taste-stimuli-evoked ATP release from sweet-, bitter- and umami-sensing taste bud cells. Calhm1 knockout mice have severely impaired perceptions of sweet, bitter and umami compounds, whereas their recognition of sour and salty tastes remains mostly normal. Calhm1 deficiency affects taste perception without interfering with taste cell development or integrity. CALHM1 is expressed specifically in sweet/bitter/umami-sensing type II taste bud cells. Its heterologous expression induces a novel ATP permeability that releases ATP from cells in response to manipulations that activate the CALHM1 ion channel. Knockout of Calhm1 strongly reduces voltage-gated currents in type II cells and taste-evoked ATP release from taste buds without affecting the excitability of taste cells by taste stimuli. Thus, CALHM1 is a voltage-gated ATP-release channel required for sweet, bitter and umami taste perception.

  17. Responses of Picea mariana to elevated CO2 concentration during growth, cold hardening and dehardening: phenology, cold tolerance, photosynthesis and growth.

    PubMed

    Bigras, F J; Bertrand, A

    2006-07-01

    Seedlings from a northern and a southern provenance of black spruce (Picea mariana Mill. BSP) from eastern Canada were exposed to 37 or 71 Pa of carbon dioxide (CO2) during growth, cold hardening and dehardening in a greenhouse. Bud phenology, cold tolerance and photosynthetic efficiency were assessed during the growing and over-wintering periods. Bud set occurred earlier in elevated [CO2] than in ambient [CO2], but it was later in the southern provenance than in the northern provenance. An increase in seedling cold tolerance in early fall was related to early bud set in elevated [CO2]. Maximal photosystem II (PSII) photochemical efficiency (F(v)/F(m)), effective quantum yield (phi(PSII)), photochemical quenching (q(P)), light-saturated photosynthesis (Amax), apparent quantum efficiency (alpha'), light-saturated rate of carboxylation (Vcmax) and electron transport (Jmax) decreased during hardening and recovered during dehardening. Although Amax and alpha' were higher in elevated [CO2] when measured at the growth [CO2], down-regulation of photosynthesis occurred in elevated [CO2] as shown by lower F(v)/F(m), phi(PSII), Vcmax and Jmax. Elevated [CO2] reduced gene expression of the small subunit of Rubisco and also decreased chlorophyll a/chlorophyll b ratio and nitrogen concentration in needles, confirming our observation of down-regulation of photosynthesis. Elevated [CO2] increased the CO2 diffusion gradient and decreased photorespiration, which may have contributed to enhance Amax despite down-regulation of photosynthesis. Total seedling dry mass was higher in elevated [CO2] than in ambient [CO2] at the end of the growing season. However, because of earlier bud formation and cold hardening, and down-regulation of photosynthesis during fall and winter in elevated [CO2], the treatment difference in dry mass increment was less by the end of the winter than during the growing season. Differences in photosynthetic rate observed during fall, winter and spring account for the inter-annual variations in carbon assimilation of black spruce seedlings: our results demonstrate that these variations need to be considered in carbon budget studies.

  18. Roles of Arenavirus Z Protein in Mediating Virion Budding, Viral Transcription-Inhibition and Interferon-Beta Suppression.

    PubMed

    Shao, Junjie; Liang, Yuying; Ly, Hinh

    2018-01-01

    The smallest arenaviral protein is the zinc-finger protein (Z) that belongs to the RING finger protein family. Z serves as a main component required for virus budding from the membrane of the infected cells through self-oligomerization, a process that can be aided by the viral nucleoprotein (NP) to form the viral matrix of progeny virus particles. Z has also been shown to be essential for mediating viral transcriptional repression activity by locking the L polymerase onto the viral promoter in a catalytically inactive state, thus limiting viral replication. The Z protein has also recently been shown to inhibit the type I interferon-induction pathway by directly binding to the intracellular pathogen-sensor proteins RIG-I and MDA5, and thus inhibiting their normal functions. This chapter describes several assays used to examine the important roles of the arenaviral Z protein in mediating virus budding (i.e., either Z self-budding or NP-Z budding activities), viral transcriptional inhibition in a viral minigenome (MG) assay, and type I IFN suppression in an IFN-β promoter-mediated luciferase reporter assay.

  19. Recruitment dynamics of ESCRT-III and Vps4 to endosomes and implications for reverse membrane budding

    PubMed Central

    Bykov, Yury S; Sprenger, Simon; Pakdel, Mehrshad; Vogel, Georg F; Jih, Gloria; Skillern, Wesley; Behrouzi, Reza; Babst, Markus; Schmidt, Oliver; Hess, Michael W; Briggs, John AG

    2017-01-01

    The ESCRT machinery mediates reverse membrane scission. By quantitative fluorescence lattice light-sheet microscopy, we have shown that ESCRT-III subunits polymerize rapidly on yeast endosomes, together with the recruitment of at least two Vps4 hexamers. During their 3–45 s lifetimes, the ESCRT-III assemblies accumulated 75–200 Snf7 and 15–50 Vps24 molecules. Productive budding events required at least two additional Vps4 hexamers. Membrane budding was associated with continuous, stochastic exchange of Vps4 and ESCRT-III components, rather than steady growth of fixed assemblies, and depended on Vps4 ATPase activity. An all-or-none step led to final release of ESCRT-III and Vps4. Tomographic electron microscopy demonstrated that acute disruption of Vps4 recruitment stalled membrane budding. We propose a model in which multiple Vps4 hexamers (four or more) draw together several ESCRT-III filaments. This process induces cargo crowding and inward membrane buckling, followed by constriction of the nascent bud neck and ultimately ILV generation by vesicle fission. PMID:29019322

  20. Measurement of the volume growth rate of single budding yeast with the MOSFET-based microfluidic Coulter counter

    PubMed Central

    Sun, Jiashu; Stowers, Chris C.; Boczko, Erik M.

    2012-01-01

    We report on measurements of the volume growth rate of ten individual budding yeast cells using a recently developed MOSFET-based microfluidic Coulter counter. The MOSFET-based microfluidic Coulter counter is very sensitive, provides signals that are immune from the baseline drift, and can work with cell culture media of complex composition. These desirable features allow us to directly measure the volume growth rate of single cells of Saccharomyces cerevisiae LYH3865 strain budding yeast in YNB culture media over a whole cell cycle. Results indicate that all budding yeast follow a sigmoid volume growth profile with reduced growth rates at the initial stage before the bud emerges and the final stage after the daughter gets mature. Analysis of the data indicates that even though all piecewise linear, Gomperitz, and Hill’s function models can fit the global growth profile equally well, the data strongly support local exponential growth phenomenon. Accurate volume growth measurements are important for applications in systems biology where quantitative parameters are required for modeling and simulation. PMID:20717618

  1. Measurement of the volume growth rate of single budding yeast with the MOSFET-based microfluidic Coulter counter.

    PubMed

    Sun, Jiashu; Stowers, Chris C; Boczko, Erik M; Li, Deyu

    2010-11-07

    We report on measurements of the volume growth rate of ten individual budding yeast cells using a recently developed MOSFET-based microfluidic Coulter counter. The MOSFET-based microfluidic Coulter counter is very sensitive, provides signals that are immune from the baseline drift, and can work with cell culture media of complex composition. These desirable features allow us to directly measure the volume growth rate of single cells of Saccharomyces cerevisiae LYH3865 strain budding yeast in YNB culture media over a whole cell cycle. Results indicate that all budding yeast follow a sigmoid volume growth profile with reduced growth rates at the initial stage before the bud emerges and the final stage after the daughter gets mature. Analysis of the data indicates that even though all piecewise linear, Gomperitz, and Hill's function models can fit the global growth profile equally well, the data strongly support local exponential growth phenomenon. Accurate volume growth measurements are important for applications in systems biology where quantitative parameters are required for modeling and simulation.

  2. Gibberellin Promotes Shoot Branching in the Perennial Woody Plant Jatropha curcas

    PubMed Central

    Ni, Jun; Gao, Congcong; Chen, Mao-Sheng; Pan, Bang-Zhen; Ye, Kaiqin; Xu, Zeng-Fu

    2015-01-01

    Strigolactone (SL), auxin and cytokinin (CK) interact to regulate shoot branching. CK has long been considered to be the only key phytohormone to promote lateral bud outgrowth. Here we report that gibberellin also acts as a positive regulator in the control of shoot branching in the woody plant Jatropha curcas. We show that gibberellin and CK synergistically promote lateral bud outgrowth, and that both hormones influence the expression of putative branching regulators, J. curcas BRANCHED1 and BRANCHED2, which are key transcription factors maintaining bud dormancy. Moreover, treatment with paclobutrazol, an inhibitor of de novo gibberellin biosynthesis, significantly reduced the promotion of bud outgrowth by CK, suggesting that gibberellin is required for CK-mediated axillary bud outgrowth. In addition, SL, a plant hormone involved in the repression of shoot branching, acted antagonistically to both gibberellin and CK in the control of lateral bud outgrowth. Consistent with this, the expression of JcMAX2, a J. curcas homolog of Arabidopsis MORE AXILLARY GROWTH 2 encoding an F-box protein in the SL signaling pathway, was repressed by gibberellin and CK treatment. We also provide physiological evidence that gibberellin also induces shoot branching in many other trees, such as papaya, indicating that a more complicated regulatory network occurs in the control of shoot branching in some perennial woody plants. PMID:26076970

  3. Productive potential of cassava plants (Manihot esculenta Crantz) propagated by leaf buds.

    PubMed

    Neves, Reizaluamar J; Diniz, Rafael P; Oliveira, Eder J DE

    2018-04-23

    New techniques of rapid multiplication of cassava (Manihot esculenta Crantz) have been developed, requiring technical support for large-scale use. This work main to evaluate the agronomic performance of plantlets obtained by leaf buds technique against stem cuttings in the field conditions. The work was conducted using the randomized block design in a factorial scheme with 3 varieties (BRS Kiriris, 98150-06, 9624-09) × 4 origins of the plantlets (conventional - stem cuttings of 20 cm length, leaf buds of the upper, middle and inferior stem part) × 2 agrochemicals (control and treated). There was a remarkable decrease in some agronomic traits that ranged from 23% (number of branches) to 62% (shoot weight) when using leaf buds plantlets. The treatment of plantlets with agrochemicals promoted significant increases in all traits, ranging from 26% (number of roots per plant) to 46% (shoot weight). The plantlets originating from leaf buds of the upper and middle parts were able to generate stem-like plants similar to stem-derived ones. Despite its lower agronomic performance under field conditions, multiplication by leaf buds may generate five times the number of propagules in comparison with the conventional multiplication, and therefore it could be a viable alternative for rapid cassava multiplication.

  4. 40 CFR 63.747 - Standards: Chemical milling maskant application operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Standards: Chemical milling maskant... Standards: Chemical milling maskant application operations. (a) Each owner or operator of a new or existing chemical milling maskant operation subject to this subpart shall comply with the requirements specified in...

  5. 7 CFR 868.315 - Special grades and special grade requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS AND STANDARDS FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Milled Rice Special....314. Such special grades for milled rice are established and determined as follows: (a) Coated milled rice. Coated milled rice shall be rice which is coated, in whole or in part, with substances that are...

  6. 7 CFR 868.315 - Special grades and special grade requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS AND STANDARDS FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Milled Rice Special....314. Such special grades for milled rice are established and determined as follows: (a) Coated milled rice. Coated milled rice shall be rice which is coated, in whole or in part, with substances that are...

  7. Live cell imaging of mitochondrial movement along actin cables in budding yeast.

    PubMed

    Fehrenbacher, Kammy L; Yang, Hyeong-Cheol; Gay, Anna Card; Huckaba, Thomas M; Pon, Liza A

    2004-11-23

    Mitochondrial inheritance is essential for cell division. In budding yeast, mitochondrial movement from mother to daughter requires (1) actin cables, F-actin bundles that undergo retrograde movement during elongation from buds into mother cells; (2) the mitochore, a mitochondrial protein complex implicated in linking mitochondria to actin cables; and (3) Arp2/3 complex-mediated force generation on mitochondria. We observed three new classes of mitochondrial motility: anterograde movement at velocities of 0.2-0.33 microm/s, retrograde movement at velocities of 0.26-0.51 microm/s, and no net anterograde or retrograde movement. In all cases, motile mitochondria were associated with actin cables undergoing retrograde flow at velocities of 0.18-0.62 microm/s. Destabilization of actin cables or mutations of the mitochore blocked all mitochondrial movements. In contrast, mutations in the Arp2/3 complex affected anterograde but not retrograde mitochondrial movements. Actin cables are required for movement of mitochondria, secretory vesicles, mRNA, and spindle alignment elements in yeast. We provide the first direct evidence that one of the proposed cargos use actin cables as tracks. In the case of mitochondrial inheritance, anterograde movement drives transfer of the organelle from mothers to buds, while retrograde movement contributes to retention of the organelle in mother cells. Interaction of mitochondria with actin cables is required for anterograde and retrograde movement. In contrast, force generation on mitochondria is required only for anterograde movement. Finally, we propose a novel mechanism in which actin cables serve as "conveyor belts" that drive retrograde organelle movement.

  8. The Cak1p Protein Kinase Is Required at G(1)/S and G(2)/M in the Budding Yeast Cell Cycle

    PubMed Central

    Sutton, A.; Freiman, R.

    1997-01-01

    The CAK1 gene encodes the major CDK-activating kinase (CAK) in budding yeast and is required for activation of Cdc28p for cell cycle progression from G(2) to M phase. Here we describe the isolation of a mutant allele of CAK1 in a synthetic lethal screen with the Sit4 protein phosphatase. Analysis of several different cak1 mutants shows that although the G(2) to M transition appears most sensitive to loss of Cak1p function, Cak1p is also required for activation of Cdc28p for progression from G(1) into S phase. Further characterization of these mutants suggests that, unlike the CAK identified from higher eukaryotes, Cak1p of budding yeast may not play a role in general transcription. Finally, although Cak1 protein levels and in vitro protein kinase activity do not fluctuate during the cell cycle, at least a fraction of Cak1p associates with higher molecular weight proteins, which may be important for its in vivo function. PMID:9286668

  9. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways

    PubMed Central

    Zhao, Ying; Liang, Haiying; Li, Lan; Tang, Sha; Han, Xiao; Wang, Congpeng; Xia, Xinli; Yin, Weilun

    2015-01-01

    Metasequoia glyptostroboides is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as 5-to-7 years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE) tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD) and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia. PMID:26157452

  10. Targeting of Chitin Synthase 3 to Polarized Growth Sites in Yeast Requires Chs5p and Myo2p

    PubMed Central

    Santos, Beatriz; Snyder, Michael

    1997-01-01

    Chitin is an essential structural component of the yeast cell wall whose deposition is regulated throughout the yeast life cycle. The temporal and spatial regulation of chitin synthesis was investigated during vegetative growth and mating of Saccharomyces cerevisiae by localization of the putative catalytic subunit of chitin synthase III, Chs3p, and its regulator, Chs5p. Immunolocalization of epitope-tagged Chs3p revealed a novel localization pattern that is cell cycledependent. Chs3p is polarized as a diffuse ring at the incipient bud site and at the neck between the mother and bud in small-budded cells; it is not found at the neck in large-budded cells containing a single nucleus. In large-budded cells undergoing cytokinesis, it reappears as a ring at the neck. In cells responding to mating pheromone, Chs3p is found throughout the projection. The appearance of Chs3p at cortical sites correlates with times that chitin synthesis is expected to occur. In addition to its localization at the incipient bud site and neck, Chs3p is also found in cytoplasmic patches in cells at different stages of the cell cycle. Epitope-tagged Chs5p also localizes to cytoplasmic patches; these patches contain Kex2p, a late Golgi-associated enzyme. Unlike Chs3p, Chs5p does not accumulate at the incipient bud site or neck. Nearly all Chs3p patches contain Chs5p, whereas some Chs5p patches lack detectable Chs3p. In the absence of Chs5p, Chs3p localizes in cytoplasmic patches, but it is no longer found at the neck or the incipient bud site, indicating that Chs5p is required for the polarization of Chs3p. Furthermore, Chs5p localization is not affected either by temperature shift or by the myo2-66 mutation, however, Chs3p polarization is affected by temperature shift and myo2-66. We suggest a model in which Chs3p polarization to cortical sites in yeast is dependent on both Chs5p and the actin cytoskeleton/Myo2p. PMID:9008706

  11. Schizosaccharomyces pombe Noc3 Is Essential for Ribosome Biogenesis and Cell Division but Not DNA Replication▿

    PubMed Central

    Houchens, Christopher R.; Perreault, Audrey; Bachand, François; Kelly, Thomas J.

    2008-01-01

    The initiation of eukaryotic DNA replication is preceded by the assembly of prereplication complexes (pre-RCs) at chromosomal origins of DNA replication. Pre-RC assembly requires the essential DNA replication proteins ORC, Cdc6, and Cdt1 to load the MCM DNA helicase onto chromatin. Saccharomyces cerevisiae Noc3 (ScNoc3), an evolutionarily conserved protein originally implicated in 60S ribosomal subunit trafficking, has been proposed to be an essential regulator of DNA replication that plays a direct role during pre-RC formation in budding yeast. We have cloned Schizosaccharomyces pombe noc3+ (Spnoc3+), the S. pombe homolog of the budding yeast ScNOC3 gene, and functionally characterized the requirement for the SpNoc3 protein during ribosome biogenesis, cell cycle progression, and DNA replication in fission yeast. We showed that fission yeast SpNoc3 is a functional homolog of budding yeast ScNoc3 that is essential for cell viability and ribosome biogenesis. We also showed that SpNoc3 is required for the normal completion of cell division in fission yeast. However, in contrast to the proposal that ScNoc3 plays an essential role during DNA replication in budding yeast, we demonstrated that fission yeast cells do enter and complete S phase in the absence of SpNoc3, suggesting that SpNoc3 is not essential for DNA replication in fission yeast. PMID:18606828

  12. Crosstalk between the p190-B RhoGAP and IGF signaling pathways is required for embryonic mammary bud development

    USDA-ARS?s Scientific Manuscript database

    P190-B RhoGAP (p190-B, also known as ARHGAP5) has been shown to play an essential role in invasion of the terminal end buds (TEBs) into the surrounding fat pad during mammary gland ductal morphogenesis. Here we report that embryos with a homozygous p190-B gene deletion exhibit major defects in embry...

  13. Venture from the Interior-Herpesvirus pUL31 Escorts Capsids from Nucleoplasmic Replication Compartments to Sites of Primary Envelopment at the Inner Nuclear Membrane.

    PubMed

    Bailer, Susanne M.

    2017-11-25

    Herpesviral capsid assembly is initiated in the nucleoplasm of the infected cell. Size constraints require that newly formed viral nucleocapsids leave the nucleus by an evolutionarily conserved vescular transport mechanism called nuclear egress. Mature capsids released from the nucleoplasm are engaged in a membrane-mediated budding process, composed of primary envelopment at the inner nuclear membrane and de-envelopment at the outer nuclear membrane. Once in the cytoplasm, the capsids receive their secondary envelope for maturation into infectious virions. Two viral proteins conserved throughout the herpesvirus family, the integral membrane protein pUL34 and the phosphoprotein pUL31, form the nuclear egress complex required for capsid transport from the infected nucleus to the cytoplasm. Formation of the nuclear egress complex results in budding of membrane vesicles revealing its function as minimal virus-encoded membrane budding and scission machinery. The recent structural analysis unraveled details of the heterodimeric nuclear egress complex and the hexagonal coat it forms at the inside of budding vesicles to drive primary envelopment. With this review, I would like to present the capsid-escort-model where pUL31 associates with capsids in nucleoplasmic replication compartments for escort to sites of primary envelopment thereby coupling capsid maturation and nuclear egress.

  14. Multiple Shh signaling centers participate in fungiform papilla and taste bud formation and maintenance

    PubMed Central

    Liu, H-X; Ermilov, A; Grachtchouk, M; Li, L; Gumucio, DL; Dlugosz, AA; Mistretta, CM

    2014-01-01

    The adult fungiform taste papilla is a complex of specialized cell types residing in the stratified squamous tongue epithelium. This unique sensory organ includes taste buds, papilla epithelium and lateral walls that extend into underlying connective tissue to surround a core of lamina propria cells. Fungiform papillae must contain long-lived, sustaining or stem cells and short-lived, maintaining or transit amplifying cells that support the papilla and specialized taste buds. Shh signaling has established roles in supporting fungiform induction, development and patterning. However, for a full understanding of how Shh transduced signals act in tongue, papilla and taste bud formation and maintenance, it is necessary to know where and when the Shh ligand and pathway components are positioned. We used immunostaining, in situ hybridization and mouse reporter strains for Shh, Ptch1, Gli1 and Gli2-expression and proliferation markers to identify cells that participate in hedgehog signaling. Whereas there is a progressive restriction in location of Shh ligand-expressing cells, from placode and apical papilla cells to taste bud cells only, a surrounding population of Ptch1 and Gli1 responding cells is maintained in signaling centers throughout papilla and taste bud development and differentiation. The Shh signaling targets are in regions of active cell proliferation. Using genetic-inducible lineage tracing for Gli1-expression, we found that Shh-responding cells contribute not only to maintenance of filiform and fungiform papillae, but also to taste buds. A requirement for normal Shh signaling in fungiform papilla, taste bud and filiform papilla maintenance was shown by Gli2 constitutive activation. We identified proliferation niches where Shh signaling is active and suggest that epithelial and mesenchymal compartments harbor potential stem and/or progenitor cell zones. In all, we report a set of hedgehog signaling centers that regulate development and maintenance of taste organs, the fungiform papilla and taste bud, and surrounding lingual cells. Shh signaling has roles in forming and maintaining fungiform papillae and taste buds, most likely via stage-specific autocrine and/or paracrine mechanisms, and by engaging epithelial/mesenchymal interactions. PMID:23916850

  15. Multiple Shh signaling centers participate in fungiform papilla and taste bud formation and maintenance.

    PubMed

    Liu, Hong Xiang; Ermilov, Alexandre; Grachtchouk, Marina; Li, Libo; Gumucio, Deborah L; Dlugosz, Andrzej A; Mistretta, Charalotte M

    2013-10-01

    The adult fungiform taste papilla is a complex of specialized cell types residing in the stratified squamous tongue epithelium. This unique sensory organ includes taste buds, papilla epithelium and lateral walls that extend into underlying connective tissue to surround a core of lamina propria cells. Fungiform papillae must contain long-lived, sustaining or stem cells and short-lived, maintaining or transit amplifying cells that support the papilla and specialized taste buds. Shh signaling has established roles in supporting fungiform induction, development and patterning. However, for a full understanding of how Shh transduced signals act in tongue, papilla and taste bud formation and maintenance, it is necessary to know where and when the Shh ligand and pathway components are positioned. We used immunostaining, in situ hybridization and mouse reporter strains for Shh, Ptch1, Gli1 and Gli2-expression and proliferation markers to identify cells that participate in hedgehog signaling. Whereas there is a progressive restriction in location of Shh ligand-expressing cells, from placode and apical papilla cells to taste bud cells only, a surrounding population of Ptch1 and Gli1 responding cells is maintained in signaling centers throughout papilla and taste bud development and differentiation. The Shh signaling targets are in regions of active cell proliferation. Using genetic-inducible lineage tracing for Gli1-expression, we found that Shh-responding cells contribute not only to maintenance of filiform and fungiform papillae, but also to taste buds. A requirement for normal Shh signaling in fungiform papilla, taste bud and filiform papilla maintenance was shown by Gli2 constitutive activation. We identified proliferation niches where Shh signaling is active and suggest that epithelial and mesenchymal compartments harbor potential stem and/or progenitor cell zones. In all, we report a set of hedgehog signaling centers that regulate development and maintenance of taste organs, the fungiform papilla and taste bud, and surrounding lingual cells. Shh signaling has roles in forming and maintaining fungiform papillae and taste buds, most likely via stage-specific autocrine and/or paracrine mechanisms, and by engaging epithelial/mesenchymal interactions. © 2013 Elsevier Inc. All rights reserved.

  16. Kinesin-related KIP3 of Saccharomyces cerevisiae Is Required for a Distinct Step in Nuclear Migration

    PubMed Central

    DeZwaan, Todd M.; Ellingson, Eric; Pellman, David; Roof, David M.

    1997-01-01

    Spindle orientation and nuclear migration are crucial events in cell growth and differentiation of many eukaryotes. Here we show that KIP3, the sixth and final kinesin-related gene in Saccharomyces cerevisiae, is required for migration of the nucleus to the bud site in preparation for mitosis. The position of the nucleus in the cell and the orientation of the mitotic spindle was examined by microscopy of fixed cells and by time-lapse microscopy of individual live cells. Mutations in KIP3 and in the dynein heavy chain gene defined two distinct phases of nuclear migration: a KIP3-dependent movement of the nucleus toward the incipient bud site and a dynein-dependent translocation of the nucleus through the bud neck during anaphase. Loss of KIP3 function disrupts the unidirectional movement of the nucleus toward the bud and mitotic spindle orientation, causing large oscillations in nuclear position. The oscillatory motions sometimes brought the nucleus in close proximity to the bud neck, possibly accounting for the viability of a kip3 null mutant. The kip3 null mutant exhibits normal translocation of the nucleus through the neck and normal spindle pole separation kinetics during anaphase. Simultaneous loss of KIP3 and kinesin-related KAR3 function, or of KIP3 and dynein function, is lethal but does not block any additional detectable movement. This suggests that the lethality is due to the combination of sequential and possibly overlapping defects. Epitope-tagged Kip3p localizes to astral and central spindle microtubules and is also present throughout the cytoplasm and nucleus. PMID:9281581

  17. NOGGIN IS REQUIRED FOR NORMAL LOBE PATTERNING AND DUCTAL BUDDING IN THE MOUSE PROSTATE

    PubMed Central

    Cook, Crist; Vezina, Chad M.; Hicks, Sarah M.; Shaw, Aubie; Yu, Min; Peterson, Richard E.; Bushman, Wade

    2008-01-01

    Mesenchymal expression of the BMP antagonist NOGGIN during prostate development plays a critical role in pre-natal ventral prostate development and opposes BMP4-mediated inhibition of cell proliferation during postnatal ductal development. Morphologic examination of newborn Noggin-/- male fetuses revealed genitourinary anomalies including cryptorchidism, incomplete separation of the hindgut from the urogenital sinus (UGS), absence of the ventral mesenchymal pad and a complete loss of ventral prostate (VP) budding. Examination of lobe-specific marker expression in the E14 Noggin-/- UGS rescued by transplantation under the renal capsule of a male nude mouse confirmed a complete loss of VP determination. More modest effects were observed in the other lobes, including decreased number of ductal buds in the dorsal and lateral prostates of newborn Noggin-/- males. BMP4 and BMP7 have been shown to inhibit ductal budding and outgrowth by negatively regulating epithelial cell proliferation. We show here that NOGGIN can neutralize budding inhibition by BMP4 and rescues branching morphogenesis of BMP4-exposed UGS in organ culture and show that the effects of BMP4 and NOGGIN activities converge on P63+ epithelial cells located at nascent duct tips. Together, these studies show that the BMP-NOGGIN axis regulates patterning of the ventral prostate, regulates ductal budding, and controls proliferation of P63+ epithelial cells in the nascent ducts of developing mouse prostate. PMID:18028901

  18. Actin dynamics affect mitochondrial quality control and aging in budding yeast.

    PubMed

    Higuchi, Ryo; Vevea, Jason D; Swayne, Theresa C; Chojnowski, Robert; Hill, Vanessa; Boldogh, Istvan R; Pon, Liza A

    2013-12-02

    Actin cables of budding yeast are bundles of F-actin that extend from the bud tip or neck to the mother cell tip, serve as tracks for bidirectional cargo transport, and undergo continuous movement from buds toward mother cells [1]. This movement, retrograde actin cable flow (RACF), is similar to retrograde actin flow in lamellipodia, growth cones, immunological synapses, dendritic spines, and filopodia [2-5]. In all cases, actin flow is driven by the push of actin polymerization and assembly at the cell cortex, and myosin-driven pulling forces deeper within the cell [6-10]. Therefore, for movement and inheritance from mothers to buds, mitochondria must "swim upstream" against the opposing force of RACF [11]. We find that increasing RACF rates results in increased fitness of mitochondria inherited by buds and that the increase in mitochondrial fitness leads to extended replicative lifespan and increased cellular healthspan. The sirtuin SIR2 is required for normal RACF and mitochondrial fitness, and increasing RACF rates in sir2Δ cells increases mitochondrial fitness and cellular healthspan but does not affect replicative lifespan. These studies support the model that RACF serves as a filter for segregation of fit from less-fit mitochondria during inheritance, which controls cellular lifespan and healthspan. They also support a role for Sir2p in these processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Gibberellin Promotes Shoot Branching in the Perennial Woody Plant Jatropha curcas.

    PubMed

    Ni, Jun; Gao, Congcong; Chen, Mao-Sheng; Pan, Bang-Zhen; Ye, Kaiqin; Xu, Zeng-Fu

    2015-08-01

    Strigolactone (SL), auxin and cytokinin (CK) interact to regulate shoot branching. CK has long been considered to be the only key phytohormone to promote lateral bud outgrowth. Here we report that gibberellin also acts as a positive regulator in the control of shoot branching in the woody plant Jatropha curcas. We show that gibberellin and CK synergistically promote lateral bud outgrowth, and that both hormones influence the expression of putative branching regulators, J. curcas BRANCHED1 and BRANCHED2, which are key transcription factors maintaining bud dormancy. Moreover, treatment with paclobutrazol, an inhibitor of de novo gibberellin biosynthesis, significantly reduced the promotion of bud outgrowth by CK, suggesting that gibberellin is required for CK-mediated axillary bud outgrowth. In addition, SL, a plant hormone involved in the repression of shoot branching, acted antagonistically to both gibberellin and CK in the control of lateral bud outgrowth. Consistent with this, the expression of JcMAX2, a J. curcas homolog of Arabidopsis MORE AXILLARY GROWTH 2 encoding an F-box protein in the SL signaling pathway, was repressed by gibberellin and CK treatment. We also provide physiological evidence that gibberellin also induces shoot branching in many other trees, such as papaya, indicating that a more complicated regulatory network occurs in the control of shoot branching in some perennial woody plants. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  20. Complex bud architecture and cell‐specific chemical patterns enable supercooling of Picea abies bud primordia

    PubMed Central

    Munkler, Caspar; Resnyak, Anna; Zimmermann, Sonja; Tuong, Tan D.; Gierlinger, Notburga; Müller, Thomas; Livingston, David P.; Neuner, Gilbert

    2017-01-01

    Abstract Bud primordia of Picea abies, despite a frozen shoot, stay ice free down to −50 °C by a mechanism termed supercooling whose biophysical and biochemical requirements are poorly understood. Bud architecture was assessed by 3D—reconstruction, supercooling and freezing patterns by infrared video thermography, freeze dehydration and extraorgan freezing by water potential measurements, and cell‐specific chemical patterns by Raman microscopy and mass spectrometry imaging. A bowl‐like ice barrier tissue insulates primordia from entrance by intrinsic ice. Water repellent and densely packed bud scales prevent extrinsic ice penetration. At −18 °C, break‐down of supercooling was triggered by intrinsic ice nucleators whereas the ice barrier remained active. Temperature‐dependent freeze dehydration (−0.1 MPa K−1) caused accumulation of extraorgan ice masses that by rupture of the shoot, pith tissue are accommodated in large voids. The barrier tissue has exceptionally pectin‐rich cell walls and intercellular spaces, and the cell lumina were lined or filled with proteins, especially near the primordium. Primordial cells close to the barrier accumulate di, tri and tetrasaccharides. Bud architecture efficiently prevents ice penetration, but ice nucleators become active inside the primordium below a temperature threshold. Biochemical patterns indicate a complex cellular interplay enabling supercooling and the necessity for cell‐specific biochemical analysis. PMID:28960368

  1. Expression of GAD67 and Dlx5 in the taste buds of mice genetically lacking Mash1.

    PubMed

    Kito-Shingaki, Ayae; Seta, Yuji; Toyono, Takashi; Kataoka, Shinji; Kakinoki, Yasuaki; Yanagawa, Yuchio; Toyoshima, Kuniaki

    2014-06-01

    It has been reported that a subset of type III taste cells express glutamate decarboxylase (GAD)67, which is a molecule that synthesizes gamma-aminobutyric acid (GABA), and that Mash1 could be a potential regulator of the development of GABAnergic neurons via Dlx transcription factors in the central nervous system. In this study, we investigated the expression of GAD67 and Dlx in the embryonic taste buds of the soft palate and circumvallate papilla using Mash1 knockout (KO)/GAD67-GFP knock-in mice. In the wild-type animal, a subset of type III taste cells contained GAD67 in the taste buds of the soft palate and the developing circumvallate papilla, whereas GAD67-expressing taste bud cells were missing from Mash1 KO mice. A subset of type III cells expressed mRNA for Dlx5 in the wild-type animals, whereas Dlx5-expressing cells were not evident in the apical part of the circumvallate papilla and taste buds in the soft palate of Mash1 KO mice. Our results suggest that Mash1 is required for the expression of GAD67 and Dlx5 in taste bud cells. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. An individual based computational model of intestinal crypt fission and its application to predicting unrestrictive growth of the intestinal epithelium.

    PubMed

    Pin, Carmen; Parker, Aimee; Gunning, A Patrick; Ohta, Yuki; Johnson, Ian T; Carding, Simon R; Sato, Toshiro

    2015-02-01

    Intestinal crypt fission is a homeostatic phenomenon, observable in healthy adult mucosa, but which also plays a pathological role as the main mode of growth of some intestinal polyps. Building on our previous individual based model for the small intestinal crypt and on in vitro cultured intestinal organoids, we here model crypt fission as a budding process based on fluid mechanics at the individual cell level and extrapolated predictions for growth of the intestinal epithelium. Budding was always observed in regions of organoids with abundant Paneth cells. Our data support a model in which buds are biomechanically initiated by single stem cells surrounded by Paneth cells which exhibit greater resistance to viscoelastic deformation, a hypothesis supported by atomic force measurements of single cells. Time intervals between consecutive budding events, as simulated by the model and observed in vitro, were 2.84 and 2.62 days, respectively. Predicted cell dynamics was unaffected within the original crypt which retained its full capability of providing cells to the epithelium throughout fission. Mitotic pressure in simulated primary crypts forced upward migration of buds, which simultaneously grew into new protruding crypts at a rate equal to 1.03 days(-1) in simulations and 0.99 days(-1) in cultured organoids. Simulated crypts reached their final size in 4.6 days, and required 6.2 days to migrate to the top of the primary crypt. The growth of the secondary crypt is independent of its migration along the original crypt. Assuming unrestricted crypt fission and multiple budding events, a maximal growth rate of the intestinal epithelium of 0.10 days(-1) is predicted and thus approximately 22 days are required for a 10-fold increase of polyp size. These predictions are in agreement with the time reported to develop macroscopic adenomas in mice after loss of Apc in intestinal stem cells.

  3. Role of cleavage at the core-E1 junction of hepatitis C virus polyprotein in viral morphogenesis.

    PubMed

    Pène, Véronique; Lemasson, Matthieu; Harper, Francis; Pierron, Gérard; Rosenberg, Arielle R

    2017-01-01

    In hepatitis C virus (HCV) polyprotein sequence, core protein terminates with E1 envelope signal peptide. Cleavage by signal peptidase (SP) separates E1 from the complete form of core protein, anchored in the endoplasmic reticulum (ER) membrane by the signal peptide. Subsequent cleavage of the signal peptide by signal-peptide peptidase (SPP) releases the mature form of core protein, which preferentially relocates to lipid droplets. Both of these cleavages are required for the HCV infectious cycle, supporting the idea that HCV assembly begins at the surface of lipid droplets, yet SPP-catalyzed cleavage is dispensable for initiation of budding in the ER. Here we have addressed at what step(s) of the HCV infectious cycle SP-catalyzed cleavage at the core-E1 junction is required. Taking advantage of the sole system that has allowed visualization of HCV budding events in the ER lumen of mammalian cells, we showed that, unexpectedly, mutations abolishing this cleavage did not prevent but instead tended to promote the initiation of viral budding. Moreover, even though no viral particles were released from Huh-7 cells transfected with a full-length HCV genome bearing these mutations, intracellular viral particles containing core protein protected by a membrane envelope were formed. These were visualized by electron microscopy as capsid-containing particles with a diameter of about 70 nm and 40 nm before and after delipidation, respectively, comparable to intracellular wild-type particle precursors except that they were non-infectious. Thus, our results show that SP-catalyzed cleavage is dispensable for HCV budding per se, but is required for the viral particles to acquire their infectivity and secretion. These data support the idea that HCV assembly occurs in concert with budding at the ER membrane. Furthermore, capsid-containing particles did not accumulate in the absence of SP-catalyzed cleavage, suggesting the quality of newly formed viral particles is controlled before secretion.

  4. Role of cleavage at the core-E1 junction of hepatitis C virus polyprotein in viral morphogenesis

    PubMed Central

    Pène, Véronique; Lemasson, Matthieu; Harper, Francis; Pierron, Gérard; Rosenberg, Arielle R.

    2017-01-01

    In hepatitis C virus (HCV) polyprotein sequence, core protein terminates with E1 envelope signal peptide. Cleavage by signal peptidase (SP) separates E1 from the complete form of core protein, anchored in the endoplasmic reticulum (ER) membrane by the signal peptide. Subsequent cleavage of the signal peptide by signal-peptide peptidase (SPP) releases the mature form of core protein, which preferentially relocates to lipid droplets. Both of these cleavages are required for the HCV infectious cycle, supporting the idea that HCV assembly begins at the surface of lipid droplets, yet SPP-catalyzed cleavage is dispensable for initiation of budding in the ER. Here we have addressed at what step(s) of the HCV infectious cycle SP-catalyzed cleavage at the core-E1 junction is required. Taking advantage of the sole system that has allowed visualization of HCV budding events in the ER lumen of mammalian cells, we showed that, unexpectedly, mutations abolishing this cleavage did not prevent but instead tended to promote the initiation of viral budding. Moreover, even though no viral particles were released from Huh-7 cells transfected with a full-length HCV genome bearing these mutations, intracellular viral particles containing core protein protected by a membrane envelope were formed. These were visualized by electron microscopy as capsid-containing particles with a diameter of about 70 nm and 40 nm before and after delipidation, respectively, comparable to intracellular wild-type particle precursors except that they were non-infectious. Thus, our results show that SP-catalyzed cleavage is dispensable for HCV budding per se, but is required for the viral particles to acquire their infectivity and secretion. These data support the idea that HCV assembly occurs in concert with budding at the ER membrane. Furthermore, capsid-containing particles did not accumulate in the absence of SP-catalyzed cleavage, suggesting the quality of newly formed viral particles is controlled before secretion. PMID:28437468

  5. Endothelial cells are not required for specification of respiratory progenitors

    PubMed Central

    Havrilak, Jamie A.; Melton, Kristin R.; Shannon, John M.

    2017-01-01

    Crosstalk between mesenchymal and epithelial cells influences organogenesis in multiple tissues, such as lung, pancreas, liver, and the nervous system. Lung mesenchyme comprises multiple cell types, however, and precise identification of the mesenchymal cell type(s) that drives early events in lung development remains unknown. Endothelial cells have been shown to be required for some aspects of lung epithelial patterning, lung stem cell differentiation, and regeneration after injury. Furthermore, endothelial cells are involved in early liver and pancreas development. From these observations we hypothesized that endothelial cells might also be required for early specification of the respiratory field and subsequent lung bud initiation. We first blocked VEGF signaling in E8.5 cultured foreguts with small molecule VEGFR inhibitors and found that lung specification and bud formation were unaltered. However, when we examined E9.5 mouse embryos carrying a mutation in the VEGFR Flk-1, which do not develop endothelial cells, we found that respiratory progenitor specification was impeded. Because the E9.5 embryos were substantially smaller than control littermates, suggesting the possibility of developmental delay, we isolated and cultured foreguts from mutant and control embryos on E8.5, when no size differences were apparent. We found that both specification of the respiratory field and lung bud formation occurred in mutant and control explants. These observations were unaffected by the presence or absence of serum. We also observed that hepatic specification and initiation occurred in the absence of endothelial cells, and that expansion of the liver epithelium in culture did not differ between mutant and control explants. Consistent with previously published results, we also found that pancreatic buds were not maintained in cultured foreguts when endothelial cells were absent. Our observations support the conclusion that endothelial cells are not required for early specification of lung progenitors and bud initiation, and that the diminished lung specification seen in E9.5 Flk−/− embryos is likely due to developmental delay resulting from the insufficient delivery of oxygen, nutrients, and other factors in the absence of a vasculature. PMID:28501476

  6. Volatile constituents of essential oil and rose water of damask rose (Rosa damascena Mill.) cultivars from North Indian hills.

    PubMed

    Verma, Ram Swaroop; Padalia, Rajendra Chandra; Chauhan, Amit; Singh, Anand; Yadav, Ajai Kumar

    2011-10-01

    Rosa damascena Mill. is an important aromatic plant for commercial production of rose oil, water, concrete and absolute. The rose water and rose oil produced under the mountainous conditions of Uttarakhand were investigated for their chemical composition. The major components of rose water volatiles obtained from the bud, half bloom and full bloom stages of cultivar 'Ranisahiba' were phenyl ethyl alcohol (66.2-79.0%), geraniol (3.3-6.6%) and citronellol (1.8-5.5%). The rose water volatiles of cultivar 'Noorjahan' and 'Kannouj' also possessed phenyl ethyl alcohol (80.7% and 76.7%, respectively) as a major component at full bloom stage. The essential oil of cultivar 'Noorjahan' obtained from two different growing sites was also compared. The major components of these oils were citronellol (15.9-35.3%), geraniol (8.3-30.2%), nerol (4.0-9.6%), nonadecane (4.5-16.0%), heneicosane (2.6-7.9%) and linalool (0.7-2.8%). This study clearly showed that the flower ontogeny and growing site affect the composition of rose volatiles. The rose oil produced in this region was comparable with ISO standards. Thus, it was concluded that the climatic conditions of Uttarakhand are suitable for the production of rose oil of international standards.

  7. 7 CFR 868.315 - Special grades and special grade requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... milled rice which has been crushed or granulated so that 95.0 percent or more will pass through a 5 sieve, 70.0 percent or more will pass through a 4 sieve, and not more than 15.0 percent will pass through a 21/2 sieve. (c) Parboiled milled rice. Parboiled milled rice shall be milled rice in which the starch...

  8. 7 CFR 868.315 - Special grades and special grade requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... milled rice which has been crushed or granulated so that 95.0 percent or more will pass through a 5 sieve, 70.0 percent or more will pass through a 4 sieve, and not more than 15.0 percent will pass through a 21/2 sieve. (c) Parboiled milled rice. Parboiled milled rice shall be milled rice in which the starch...

  9. 7 CFR 868.315 - Special grades and special grade requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... milled rice which has been crushed or granulated so that 95.0 percent or more will pass through a 5 sieve, 70.0 percent or more will pass through a 4 sieve, and not more than 15.0 percent will pass through a 21/2 sieve. (c) Parboiled milled rice. Parboiled milled rice shall be milled rice in which the starch...

  10. Budesonide nanocrystal-loaded hyaluronic acid microparticles for inhalation: In vitro and in vivo evaluation.

    PubMed

    Liu, Tingting; Han, Meihua; Tian, Fang; Cun, Dongmei; Rantanen, Jukka; Yang, Mingshi

    2018-02-01

    Most inhaled pharmaceutical formulations on the market are intended to exert immediate pharmacological action, even although inhaled sustained-release formulations can be needed to reduce the frequency of dosing. The purpose of this study was to investigate the pulmonary retention and pharmacokinetics of a poorly water-soluble drug after loading its nanocrystal form into inhalable mucoadhesive microparticles composed of hyaluronic acid. It was intended to prolong the pharmacological effect without compromising the dissolution rate of the poorly water-soluble drug. In this study, budesonide, a corticosteroid anti-inflammatory drug, was used as a model poorly water-soluble drug. Submicron budesonide particles were prepared by wet ball milling, and subsequently loaded into hyaluronic acid microparticles by the spray drying process. The ball-milled budesonide particles and the spray-dried microparticles were characterized using dynamic light scattering (DLS), laser diffraction, Scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). Selected formulations were evaluated in terms of their dissolution/release rate, aerosol performance, muco-adhesion and pharmacokinetics in rats. As shown by XRD and DSC analysis, the nanonized budesonide particles in this study were mainly in crystalline form. The dissolution/release study showed that the in vitro release of budesonide from the microparticles was not significantly sustained compared with the dissolution rate of budesonide nanocrystals (BUD-NC). However, the budesonide in the microparticles exhibited prolonged retention on the surface of porcine tracheal tube owing to the muco-adhesion ability of hyaluronic acid. After intratracheal administration to rats, the BUD-NC exhibited a similar pharmacokinetic profile to that of budesonide solution via i.v. injection. In contrast, budesonide loaded in the mucoadhesive microparticles exhibited a significantly prolonged T max and increased bioavailability with the animal model. This study demonstrated that inhaled microparticles composed of hyaluronic acid could produce sustained budesonide pharmacological effects. This can be attributed to the mucoadhesion of the polymer that overcame the mucociliary clearance and, consequently, prolonged the retention of the active substance in the lung without necessarily reducing the in vitro dissolution rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. 33 CFR 117.225 - Yellow Mill Channel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Yellow Mill Channel. 117.225 Section 117.225 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.225 Yellow Mill Channel. The...

  12. Role of the ectonucleotidase NTPDase2 in taste bud function

    PubMed Central

    Vandenbeuch, Aurelie; Anderson, Catherine B.; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C.; Finger, Thomas E.; Kinnamon, Sue C.

    2013-01-01

    Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses. PMID:23959882

  13. Isolation and characterization of the Jatropha curcas APETALA1 (JcAP1) promoter conferring preferential expression in inflorescence buds.

    PubMed

    Tao, Yan-Bin; He, Liang-Liang; Niu, Longjian; Xu, Zeng-Fu

    2016-08-01

    The 1.5 kb JcAP1 promoter from the biofuel plant Jatropha curcas is predominantly active in the inflorescence buds of transgenic plants, in which the -1313/-1057 region is essential for maintaining the activity. Arabidopsis thaliana APETALA1 (AP1) is a MADS-domain transcription factor gene that functions primarily in flower development. We isolated a homolog of AP1 from Jatropha curcas (designated JcAP1), which was shown to exhibit flower-specific expression in Jatropha. JcAP1 is first expressed in inflorescence buds and continues to be primarily expressed in the sepals. We isolated a 1.5 kb JcAP1 promoter and evaluated its activity in transgenic Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. In transgenic Arabidopsis and Jatropha, the inflorescence buds exhibited notable GUS activity, whereas the sepals did not. Against expectations, the JcAP1 promoter was active in the anthers of Arabidopsis and Jatropha and was highly expressed in Jatropha seeds. An analysis of promoter deletions in transgenic Arabidopsis revealed that deletion of the -1313/-1057 region resulted in loss of JcAP1 promoter activity in the inflorescence buds and increased activity in the anthers. These results suggested that some regulatory sequences in the -1313/-1057 region are essential for maintaining promoter activity in inflorescence buds and can partly suppress activity in the anthers. Based on these findings, we hypothesized that other elements located upstream of the 1.5 kb JcAP1 promoter may be required for flower-specific activation. The JcAP1 promoter characterized in this study can be used to drive transgene expression in both the inflorescence buds and seeds of Jatropha.

  14. Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers

    PubMed Central

    Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin

    2018-01-01

    Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB− fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. PMID:28600222

  15. Role of the ectonucleotidase NTPDase2 in taste bud function.

    PubMed

    Vandenbeuch, Aurelie; Anderson, Catherine B; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C; Finger, Thomas E; Kinnamon, Sue C

    2013-09-03

    Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses.

  16. Changes in membrane biophysical properties induced by the Budesonide/Hydroxypropyl-β-cyclodextrin complex.

    PubMed

    Dos Santos, Andreia G; Bayiha, Jules César; Dufour, Gilles; Cataldo, Didier; Evrard, Brigitte; Silva, Liana C; Deleu, Magali; Mingeot-Leclercq, Marie-Paule

    2017-10-01

    Budesonide (BUD), a poorly soluble anti-inflammatory drug, is used to treat patients suffering from asthma and COPD (Chronic Obstructive Pulmonary Disease). Hydroxypropyl-β-cyclodextrin (HPβCD), a biocompatible cyclodextrin known to interact with cholesterol, is used as a drug-solubilizing agent in pharmaceutical formulations. Budesonide administered as an inclusion complex within HPβCD (BUD:HPβCD) required a quarter of the nominal dose of the suspension formulation and significantly reduced neutrophil-induced inflammation in a COPD mouse model exceeding the effect of each molecule administered individually. This suggests the role of lipid domains enriched in cholesterol for inflammatory signaling activation. In this context, we investigated the effect of BUD:HPβCD on the biophysical properties of membrane lipids. On cellular models (A549, lung epithelial cells), BUD:HPβCD extracted cholesterol similarly to HPβCD. On large unilamellar vesicles (LUVs), by using the fluorescent probes diphenylhexatriene (DPH) and calcein, we demonstrated an increase in membrane fluidity and permeability induced by BUD:HPβCD in vesicles containing cholesterol. On giant unilamellar vesicles (GUVs) and lipid monolayers, BUD:HPβCD induced the disruption of cholesterol-enriched raft-like liquid ordered domains as well as changes in lipid packing and lipid desorption from the cholesterol monolayers, respectively. Except for membrane fluidity, all these effects were enhanced when HPβCD was complexed with budesonide as compared with HPβCD. Since cholesterol-enriched domains have been linked to membrane signaling including pathways involved in inflammation processes, we hypothesized the effects of BUD:HPβCD could be partly mediated by changes in the biophysical properties of cholesterol-enriched domains. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The sweet cherry (Prunus avium) FLOWERING LOCUS T gene is expressed during floral bud determination and can promote flowering in a winter-annual Arabidopsis accession.

    PubMed

    Yarur, Antonia; Soto, Esteban; León, Gabriel; Almeida, Andrea Miyasaka

    2016-12-01

    FT gene is expressed in leaves and buds and is involved in floral meristem determination and bud development in sweet cherry. In woody fruit perennial trees, floral determination, dormancy and bloom, depends on perception of different environmental and endogenous cues which converge to a systemic signaling gene known as FLOWERING LOCUS T (FT). In long-day flowering plants, FT is expressed in the leaves on long days. The protein travels through the phloem to the shoot apical meristem, where it induces flower determination. In perennial plants, meristem determination and flowering are separated by a dormancy period. Meristem determination takes place in summer, but flowering occurs only after a dormancy period and cold accumulation during winter. The roles of FT are not completely clear in meristem determination, dormancy release, and flowering in perennial plants. We cloned FT from sweet cherry (Prunus avium) and analyzed its expression pattern in leaves and floral buds during spring and summer. Phylogenetic analysis shows high identity of the FT cloned sequence with orthologous genes from other Rosaceae species. Our results show that FT is expressed in both leaves and floral buds and increases when the daylight reached 12 h. The peak in FT expression was coincident with floral meristem identity genes expression and morphological changes typical of floral meristem determination. The Edi-0 Arabidopsis ecotype, which requires vernalization to flower, was transformed with a construct for overexpression of PavFT. These transgenic plants showed an early-flowering phenotype without cold treatment. Our results suggest that FT is involved in floral meristem determination and bud development in sweet cherry. Moreover, we show that FT is expressed in both leaves and floral buds in this species, in contrast to annual plants.

  18. Intra-arterial bromodeoxyuridine radiosensitization of malignant gliomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegarty, T.J.; Thornton, A.F.; Diaz, R.F.

    1990-08-01

    In the 1950's it was first observed that mammalian cells exposed to the halogenated deoxyuridines were more sensitive to ultraviolet light and radiation than untreated cells. This prompted early clinical trials with bromodeoxyuridine (BUdR) which showed mixed results. More recently, several Phase I studies, while establishing the feasibility of continuous intravenous (IV) infusion of BUdR, have reported significant dose limiting skin and bone marrow toxicities and have questioned the optimal method of BUdR delivery. To exploit the high mitotic activity of malignant gliomas relative to surrounding normal brain tissue, we have developed a permanently implantable infusion pump system for safe,more » continuous intraarterial (IA) internal carotid BUdR delivery. Since July 1985, 23 patients with malignant brain tumors (18 grade 4, 5 grade 3) have been treated in a Phase I clinical trial using IA BUdR (400-600 mg/m2/day X 8 1/2 weeks) and focal external beam radiotherapy (59.4 Gy at 1.8 Gy/day in 6 1/2 weeks). Following initial biopsy/surgery the infusion pump system was implanted; BUdR infusion began 2 weeks prior to and continued throughout the 6 1/2 week course of radiotherapy. There have been no vascular complications. Side-effects in all patients have included varying degrees of anorexia, fatigue, ipsilateral forehead dermatitis, blepharitis, and conjunctivitis. Myelosuppression requiring dose reduction occurred in one patient. An overall Kaplan-Meier estimated median survival of 20 months has been achieved. As in larger controlled series, histologic grade and age are prognostically significant. We have shown in a Phase I study that IA BUdR radiosensitization is safe, tolerable, may lead to improved survival, and appears to be an efficacious primary treatment of malignant gliomas.« less

  19. Sensitivity of disease parameters to flexible budesonide/formoterol treatment in an allergic rat model.

    PubMed

    Brange, Charlotte; Smailagic, Amir; Jansson, Anne-Helene; Middleton, Brian; Miller-Larsson, Anna; Taylor, John D; Silberstein, David S; Lal, Harbans

    2009-02-01

    Clinical studies show that flexible dosing (maintenance and symptom-driven dose adjustments) of budesonide and formoterol (BUD/FORM) improves control of asthma exacerbations as compared to fixed maintenance dosing protocols (maintenance therapy) even when the latter utilize higher BUD/FORM doses. This suggests that dose-response relationships for certain pathobiologic mechanisms in asthma shift over time. Here, we have conducted animal studies to address this issue. (1) To test in an animal asthma-like model whether it is possible to achieve the same or greater pharmacological control over bronchoconstriction and airway/lung inflammation, and with less total drug used, by flexible BUD/FORM dosing (upward adjustment of doses) in association with allergen challenges. (2) To determine whether the benefit requires adjustment of both drug components. Rats sensitized on days 0 and 7 were challenged intratracheally with ovalbumin on days 14 and 21. On days 13-21, rats were treated intratracheally with fixed maintenance or flexible BUD/FORM combinations. On day 22, rats were challenged with methacholine and lungs were harvested for analysis. A flexible BUD/FORM dosing regimen (using 3.3 times less total drug than the fixed maintenance high dose regimen), delivered the same or greater reductions of excised lung gas volume (a measure of gas trapped in lung by bronchoconstriction) and lung weight (a measure of inflammatory oedema). When either BUD or FORM alone was increased on days of challenge, the benefit of the flexible dose upward adjustment was lost. Flexible dosing of the BUD/FORM combination improves the pharmacological inhibition of allergen-induced bronchoconstriction and an inflammatory oedema in an allergic asthma-like rat model.

  20. Endogenous peripheral neuromodulators of the mammalian taste bud.

    PubMed

    Dando, Robin

    2010-10-01

    The sensitivity of the mammalian taste system displays a degree of plasticity based on short-term nutritional requirements. Deficiency in a particular substance may lead to a perceived increase in palatability of this substance, providing an additional drive to redress this nutritional imbalance through modification of intake. This alteration occurs not only in the brain but also, before any higher level processing has occurred, in the taste buds themselves. A brief review of recent advances is offered.

  1. Pharmacognostic Specification, Chlorogenic Acid Content, and In vitro Antioxidant Activities of Lonicera japonica Flowering Bud.

    PubMed

    Chaowuttikul, Chayanon; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2017-01-01

    Lonicera japonica Thunb. or Japanese Honeysuckle has been widely used in traditional medicine for antipyretic. To establish the pharmacognostic specification of L. japonica flowering bud in Thailand and to determine its chlorogenic acid content and in vitro antioxidant activities. Dried L. japonica flowering bud from 15 various herbal drugstores throughout Thailand were investigated for pharmacognostic specification. Their chlorogenic acid contents were quantitatively analyzed by thin layer chromatography (TLC) densitometry with winCATS software. The mobile phase for TLC development consisted of ethyl acetate: formic acid: acetic acid: water (10:1.1:1.1:2.6). Antioxidant activities were investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric ion reducing antioxidant power assay, nitric oxide scavenging assay, and β-carotene bleaching assays. Qualified L. japonica flowering bud in Thailand was presented that the contents of loss on drying, total ash, acid-insoluble ash, and water should not be >10.11%, 6.59%, 1.14%, and 10.82% by weight, respectively. The ethanol and water soluble extractive values should not be < 16.46% and 28.88% by weight, respectively. Chlorogenic acid content in L. japonica flowering bud was found to be 2.24 ± 0.50 g/100 g of crude drug. L. japonica flowering bud showed DPPH and nitric oxide scavenging activities as well as reducing power property. This pharmacognostic specification with special reference to the chlorogenic acid content can be used for quality control of L. japonica flowering bud in Thailand. The potential antioxidant of this crude drug was demonstrated in vitro . Pharmacognostic specification of Lonicera japonica flowering bud in Thailand has been establishedThe chlorogenic acid content has been quantified by thin layer chromatography-densitometryThe ethanolic extract of L. japonica flowering bud showed antioxidation potential, especially on reducing power property. Abbreviations Used: TLC: Thin layer chromatography, DPPH: 2,2-diphenyl-1-picrylhydrazyl, FRAP: Ferric ion Reducing Antioxidant Power, WHO: World Health Organization, ICH: International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use; LOD: Limit of detection; LOQ: Limit of quantitation; BHT: Butylated hydroxytoluene; FeSO 4 : Iron(II) sulfate; DMSO: Dimethyl sulfoxide; TPTZ: 2,4,6-tripyridyl-s-triazine.

  2. Analysis of BmNPV orf101 disruption: orf101 is essential for mediating budded virus production.

    PubMed

    Chen, Huiqing; Li, Mei; Mai, Weijun; Tang, Qi; Li, Guohui; Chen, Keping; Zhou, Yajing

    2014-12-01

    In our previous study, Orf101 (Bm101) of Bombyx mori nucleopolyhedrovirus (BmNPV) was identified as a component of the budded virions important for viral late gene expression. In this study we demonstrate that Bm101 is actually a previously unrecognized core gene and that it is essential for mediating budded virus production. To determine the role of Bm101 in the baculovirus life cycle, a Bm101 knockout bacmid containing the BmNPV genome was generated through homologous recombination in Escherichia coli. Furthermore, a Bm101 repair bacmid was constructed by transposing the Bm101 open reading frame with its native promoter region into the polyhedrin locus of the Bm101 knockout bacmid. Bacmid DNA transfection assay revealed that the Bm101 knockout bacmid was unable to produce the infectious budded virus, while the Bm101 repair bacmid rescued this defect, allowing budded-virus titers to reach wild-type levels. Real time PCR analysis indicated that the viral DNA genome in the absence of Bm101 was unaffected in the first 24 h p.t. Thus, studies of a Bm101-null BACmid indicate that Bm101 is required for viral DNA replication during the infection cycle.

  3. Stamping Die Making. 439-318/320.

    ERIC Educational Resources Information Center

    Yunke, P.; And Others

    Each unit in this curriculum guide on stamping die making contains an introduction, objectives, materials required, lessons, space for notes, figures, and diagrams. There are 29 units in this guide, dealing with the following topics: EZ-MILL programming; EZ-MILL BATT; print of punch and EZ-MILL part programming; download to Computer Numerical…

  4. 33 CFR 117.800 - Mill Neck Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mill Neck Creek. 117.800 Section 117.800 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.800 Mill Neck Creek. The draw of the...

  5. 78 FR 54899 - Agency Information Collection Activities; Announcement of Office of Management and Budget...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ...; Recordkeeping Requirements for Medicated Feed Mill License Application AGENCY: Food and Drug Administration, HHS... information entitled, ``Medicated Feed Mill License Application,'' has been approved by the Office of... proposed collection of information entitled ``Medicated Feed Mill License Application,'' to OMB for review...

  6. Localization, characterization and candidate gene discovery for genes controlling dormancy, chilling requirement, bloom time, and heat requirement in Prunus species.

    USDA-ARS?s Scientific Manuscript database

    Perennial fruiting trees require sustained exposure to low, near freezing, temperatures before vigorous floral and vegetative bud break is possible after the resumption of warm temperatures in the spring. The depth of dormancy, duration of chilling required (the chilling requirement, CR) blooming da...

  7. Hedgehog pathway blockade with the cancer drug LDE225 disrupts taste organs and taste sensation.

    PubMed

    Kumari, Archana; Ermilov, Alexandre N; Allen, Benjamin L; Bradley, Robert M; Dlugosz, Andrzej A; Mistretta, Charlotte M

    2015-02-01

    Taste sensation on the anterior tongue requires chorda tympani nerve function and connections with continuously renewing taste receptor cells. However, it is unclear which signaling pathways regulate the receptor cells to maintain chorda tympani sensation. Hedgehog (HH) signaling controls cell proliferation and differentiation in numerous tissues and is active in taste papillae and taste buds. In contrast, uncontrolled HH signaling drives tumorigenesis, including the common skin cancer, basal cell carcinoma. Systemic HH pathway inhibitors (HPIs) lead to basal cell carcinoma regression, but these drugs cause severe taste disturbances. We tested the hypothesis that taste disruption by HPIs reflects a direct requirement for HH signaling in maintaining taste organs and gustatory sensation. In mice treated with the HPI LDE225 up to 28 days, HH-responding cells were lost in fungiform papilla epithelium, and papillae acquired a conical apex. Taste buds were either absent or severely reduced in size in more than 90% of aberrant papillae. Taste bud remnants expressed the taste cell marker keratin 8, and papillae retained expression of nerve markers, neurofilament and P2X3. Chorda tympani nerve responses to taste stimuli were markedly reduced or absent in LDE225-treated mice. Responses to touch were retained, however, whereas cold responses were retained after 16 days of treatment but lost after 28 days. These data identify a critical, modality-specific requirement for HH signaling in maintaining taste papillae, taste buds and neurophysiological taste function, supporting the proposition that taste disturbances in HPI-treated patients are an on-target response to HH pathway blockade in taste organs. Copyright © 2015 the American Physiological Society.

  8. Analysis of Septin Reorganization at Cytokinesis Using Polarized Fluorescence Microscopy

    PubMed Central

    McQuilken, Molly; Jentzsch, Maximilian S.; Verma, Amitabh; Mehta, Shalin B.; Oldenbourg, Rudolf; Gladfelter, Amy S.

    2017-01-01

    Septins are conserved filament-forming proteins that act in diverse cellular processes. They closely associate with membranes and, in some systems, components of the cytoskeleton. It is not well understood how filaments assemble into higher-order structures in vivo or how they are remodeled throughout the cell cycle. In the budding yeast S. cerevisiae, septins are found through most of the cell cycle in an hourglass organization at the mother-bud neck until cytokinesis when the collar splits into two rings that disassemble prior to the next cell cycle. Experiments using polarized fluorescence microscopy have suggested that septins are arranged in ordered, paired filaments in the hourglass and undergo a coordinated 90° reorientation during splitting at cytokinesis. This apparent reorganization could be due to two orthogonal populations of filaments disassembling and reassembling or being preferentially retained at cytokinesis. In support of this idea, we report a decrease in septin concentration at the mother-bud neck during cytokinesis consistent with other reports and the timing of the decrease depends on known septin regulators including the Gin4 kinase. We took a candidate-based approach to examine what factors control reorientation during splitting and used polarized fluorescence microscopy to screen mutant yeast strains deficient in septin interacting proteins. Using this method, we have linked known septin regulators to different aspects of the assembly, stability, and reorganization of septin assemblies. The data support that ring splitting requires Gin4 activity and an anillin-like protein Bud4, and normal accumulation of septins at the ring requires phosphorylation of Shs1. We found distinct regulatory requirements for septin organization in the hourglass compared to split rings. We propose that septin subpopulations can vary in their localization and assembly/disassembly behavior in a cell-cycle dependent manner at cytokinesis. PMID:28516085

  9. Structural and Biochemical Studies of ALIX/AlP1 and Its Role in Retrovirus Budding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher,R.; Chung, H.; Zhai, Q.

    2007-01-01

    ALIX/AIP1 functions in enveloped virus budding, endosomal protein sorting, and many other cellular processes. Retroviruses, including HIV-1, SIV, and EIAV, bind and recruit ALIX through YPXnL late-domain motifs (X = any residue; n = 1-3). Crystal structures reveal that human ALIX is composed of an N-terminal Bro1 domain and a central domain that is composed of two extended three-helix bundles that form elongated arms that fold back into a 'V.'. The structures also reveal conformational flexibility in the arms that suggests that the V domain may act as a flexible hinge in response to ligand binding. YPXnL late domains bindmore » in a conserved hydrophobic pocket on the second arm near the apex of the V, whereas CHMP4/ESCRT-III proteins bind a conserved hydrophobic patch on the Bro1 domain, and both interactions are required for virus budding. ALIX therefore serves as a flexible, extended scaffold that connects retroviral Gag proteins to ESCRT-III and other cellular-budding machinery.« less

  10. In vivo imaging of basement membrane movement: ECM patterning shapes Hydra polyps.

    PubMed

    Aufschnaiter, Roland; Zamir, Evan A; Little, Charles D; Özbek, Suat; Münder, Sandra; David, Charles N; Li, Li; Sarras, Michael P; Zhang, Xiaoming

    2011-12-01

    Growth and morphogenesis during embryonic development, asexual reproduction and regeneration require extensive remodeling of the extracellular matrix (ECM). We used the simple metazoan Hydra to examine the fate of ECM during tissue morphogenesis and asexual budding. In growing Hydra, epithelial cells constantly move towards the extremities of the animal and into outgrowing buds. It is not known, whether these tissue movements involve epithelial migration relative to the underlying matrix or whether cells and ECM are displaced as a composite structure. Furthermore, it is unclear, how the ECM is remodeled to adapt to the shape of developing buds and tentacles. To address these questions, we used a new in vivo labeling technique for Hydra collagen-1 and laminin, and tracked the fate of ECM in all body regions of the animal. Our results reveal that Hydra 'tissue movements' are largely displacements of epithelial cells together with associated ECM. By contrast, during the evagination of buds and tentacles, extensive movement of epithelial cells relative to the matrix is observed, together with local ECM remodeling. These findings provide new insights into the nature of growth and morphogenesis in epithelial tissues.

  11. Epigenetic regulation of bud dormancy events in perennial plants

    PubMed Central

    Ríos, Gabino; Leida, Carmen; Conejero, Ana; Badenes, María Luisa

    2014-01-01

    Release of bud dormancy in perennial plants resembles vernalization in Arabidopsis thaliana and cereals. In both cases, a certain period of chilling is required for accomplishing the reproductive phase, and several transcription factors with the MADS-box domain perform a central regulatory role in these processes. The expression of DORMANCY-ASSOCIATED MADS-box (DAM)-related genes has been found to be up-regulated in dormant buds of numerous plant species, such as poplar, raspberry, leafy spurge, blackcurrant, Japanese apricot, and peach. Moreover, functional evidence suggests the involvement of DAM genes in the regulation of seasonal dormancy in peach. Recent findings highlight the presence of genome-wide epigenetic modifications related to dormancy events, and more specifically the epigenetic regulation of DAM-related genes in a similar way to FLOWERING LOCUS C, a key integrator of vernalization effectors on flowering initiation in Arabidopsis. We revise the most relevant molecular and genomic contributions in the field of bud dormancy, and discuss the increasing evidence for chromatin modification involvement in the epigenetic regulation of seasonal dormancy cycles in perennial plants. PMID:24917873

  12. 78 FR 23465 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ...-mill areas on the crown skin panels. This AD requires repetitive inspections for cracking of the fuselage skin at certain locations at chem-mill areas, and repair if necessary. We are issuing this AD to detect and correct fatigue cracking of the skin panel at the specified chem-mill step locations, which...

  13. 78 FR 25369 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... at chem-mill areas on the crown skin panels. This AD requires repetitive inspections for cracking of the fuselage skin at certain locations at chem-mill areas, and repair if necessary. We are issuing this AD to detect and correct fatigue cracking of the skin panel at the specified chem-mill step...

  14. 77 FR 57536 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... chem-mill areas on the crown skin panels. This proposed AD would require repetitive inspections for cracking of the fuselage skin at certain locations at chem-mill areas, and repair if necessary. We are proposing this AD to detect and correct fatigue cracking of the skin panel at the specified chem-mill step...

  15. Rough Mill Improvement Guide for Managers and Supervisors

    Treesearch

    Philip H. Mitchell; Jan Wiedenbeck; Bobby Ammerman; Bobby Ammerman

    2005-01-01

    Wood products manufacturers require an efficient recovery of product from lumber to remain profitable. A company's ability to obtain the best yield in lumber cut-up operations (i.e., the rough mill) varies according to the raw material, product, processing equipment, processing environment, and knowledge and skill of the rough mill's employees. This book...

  16. Deletion of a Cys-His motif from the Alpharetrovirus nucleocapsid domain reveals late domain mutant-like budding defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eun-Gyung; Linial, Maxine L.

    2006-03-30

    The Rous sarcoma virus (RSV) Gag polyprotein is the only protein required for virus assembly and release. We previously found that deletion of either one of the two Cys-His (CH) motifs in the RSV nucleocapsid (NC) protein did not abrogate Gag-Gag interactions, RNA binding, or packaging but greatly reduced virus production (E-G. Lee, A. Alidina et al., J. Virol. 77: 2010-2020, 2003). In this report, we have further investigated the effects of mutations in the CH motifs on virus assembly and release. Precise deletion of either CH motif, without affecting surrounding basic residues, reduced virus production by approximately 10-fold, similarmore » to levels seen for late (L) domain mutants. Strikingly, transmission electron microscopy revealed that virions of both {delta}CH1 and {delta}CH2 mutants were assembled normally at the plasma membrane but were arrested in budding. Virus particles remained tethered to the membrane or to each other, reminiscent of L domain mutants, although the release defect appears to be independent of the L domain functions. Therefore, two CH motifs are likely to be required for budding independent of a requirement for either Gag-Gag interactions or RNA packaging.« less

  17. Format and style for environmental documents prepared as part of the Uranium Mill Tailings Remedial Action Program. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-01

    The Uranium Mill Tailings Remedial Action Program will require the preparation of several environmental impact statements and several environmental assessments. This guide begins with a section describing in general terms the efforts required to make these documents readable. The sections describe the formats to be used for the pages, headings, front matter, footnotes, lists, figures, tables, references, glossaries, indexes, and appendixes in these documents. A final section presents some rules of style to be followed in writing the texts.

  18. Differentiated dynamics of bud dormancy and growth in temperate fruit trees relating to bud phenology adaptation, the case of apple and almond trees.

    PubMed

    El Yaacoubi, Adnane; Malagi, Gustavo; Oukabli, Ahmed; Citadin, Idemir; Hafidi, Majida; Bonhomme, Marc; Legave, Jean-Michel

    2016-11-01

    Few studies have focused on the characterization of bud dormancy and growth dynamics for temperate fruit species in temperate and mild cropping areas, although this is an appropriate framework to anticipate phenology adaptation facing future warming contexts which would potentially combine chill declines and heat increases. To examine this issue, two experimental approaches and field observations were used for high- and low-chill apple cultivars in temperate climate of southern France and in mild climates of northern Morocco and southern Brazil. Low-chill almond cultivars offered an additional relevant plant material for comparison with apple in northern Morocco. Divergent patterns of dormancy and growth dynamics were clearly found in apple tree between southern France and southern Brazil. Divergences were less pronounced between France and Morocco. A global view outlined main differences in the dormancy chronology and intensity, the transition between endordormancy and ecodormancy and the duration of ecodormancy. A key role of bud rehydration in the transition period was shown. High-chill cultivars would be submitted in mild conditions to heterogeneous rehydration capacities linked to insufficient chill fulfillment and excessive forcing linked to high temperatures. This would favor bud competitions and consequently excessive flowering durations and weak flowering. Low chilling requirements in apple and almond would conversely confer biological capacities to tolerate superficial dormancy and abrupt transition from endordormancy to ecodormancy without important heterogeneous rehydration states within buds. It may also assume that low-chill cultivars can also tolerate high temperatures during ecodormancy as well as extended flowering durations.

  19. Differentiated dynamics of bud dormancy and growth in temperate fruit trees relating to bud phenology adaptation, the case of apple and almond trees

    NASA Astrophysics Data System (ADS)

    El Yaacoubi, Adnane; Malagi, Gustavo; Oukabli, Ahmed; Citadin, Idemir; Hafidi, Majida; Bonhomme, Marc; Legave, Jean-Michel

    2016-11-01

    Few studies have focused on the characterization of bud dormancy and growth dynamics for temperate fruit species in temperate and mild cropping areas, although this is an appropriate framework to anticipate phenology adaptation facing future warming contexts which would potentially combine chill declines and heat increases. To examine this issue, two experimental approaches and field observations were used for high- and low-chill apple cultivars in temperate climate of southern France and in mild climates of northern Morocco and southern Brazil. Low-chill almond cultivars offered an additional relevant plant material for comparison with apple in northern Morocco. Divergent patterns of dormancy and growth dynamics were clearly found in apple tree between southern France and southern Brazil. Divergences were less pronounced between France and Morocco. A global view outlined main differences in the dormancy chronology and intensity, the transition between endordormancy and ecodormancy and the duration of ecodormancy. A key role of bud rehydration in the transition period was shown. High-chill cultivars would be submitted in mild conditions to heterogeneous rehydration capacities linked to insufficient chill fulfillment and excessive forcing linked to high temperatures. This would favor bud competitions and consequently excessive flowering durations and weak flowering. Low chilling requirements in apple and almond would conversely confer biological capacities to tolerate superficial dormancy and abrupt transition from endordormancy to ecodormancy without important heterogeneous rehydration states within buds. It may also assume that low-chill cultivars can also tolerate high temperatures during ecodormancy as well as extended flowering durations.

  20. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate

    PubMed Central

    Gamat, Melissa; Malinowski, Rita L.; Parkhurst, Linnea J.; Steinke, Laura M.; Marker, Paul C.

    2015-01-01

    The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO) to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS) epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their effect in mediating prostatic bud induction, and are required for the expression of a subset of prostatic developmental regulatory genes including Notch1 and Nkx3.1. PMID:26426536

  1. In vitro grown thickened taproots, a new type of soil transplanting source in Panax ginseng.

    PubMed

    Kim, Jong Youn; Kim, Dong Hwi; Kim, Young Chang; Kim, Kee Hong; Han, Jung Yeon; Choi, Yong Eui

    2016-10-01

    The low survival rate of in vitro regenerated Panax ginseng plantlets after transfer to soil is the main obstacle for their successful micropropagation and molecular breeding. In most cases, young plantlets converted from somatic embryos are transferred to soil. In vitro thickened taproots, which were produced after prolonged culture of ginseng plantlets, were transferred to soil. Taproot thickening of plantlets occurred near hypocotyl and primary roots. Elevated concentration of sucrose in the medium stimulated the root thickening of plantlets. Senescence of shoots occurred following the prolonged culture of plantlets. Once the leaves of plantlets senesced, the buds on taproots developed a dormant tendency. Gibberellic acid treatment was required for dormancy breaking of the buds. Analysis of endogenous abscisic acid revealed that the content of abscisic acid in taproots with senescent shoots was comparatively higher than that of taproots with green shoots. Thickened taproots were transferred to soil, followed by exposure to gibberellic acid or a cold temperature of 2°C for 4 mo. Cold treatment of roots at 2°C for 4 mo resulted in bud sprouting in 84% of roots. Spraying of 100 mg/L gibberellic acid also induced the bud sprouting in 81% roots. Soil transfer of dormant taproots of P. ginseng has advantages since they do not require an acclimatization procedure, humidity control of plants, and photoautotrophic growth, and a high soil survival rate was attained.

  2. Tree-ring proxies of larch bud moth defoliation: latewood width and blue intensity are more precise than tree-ring width.

    PubMed

    Arbellay, Estelle; Jarvis, Ingrid; Chavardès, Raphaël D; Daniels, Lori D; Stoffel, Markus

    2018-05-19

    Reconstructions of defoliation by larch bud moth (LBM, Zeiraphera diniana Gn.) based on European larch (Larix decidua Mill.) tree rings have unraveled outbreak patterns over exceptional temporal and spatial scales. In this study, we conducted tree-ring analyses on 105 increment cores of European larch from the Valais Alps, Switzerland. The well-documented history of LBM outbreaks in Valais provided a solid baseline for evaluating the LBM defoliation signal in multiple tree-ring parameters. First, we used tree-ring width measurements along with regional records of LBM outbreaks to reconstruct the occurrence of these events at two sites within the Swiss Alps. Second, we measured earlywood width, latewood width and blue intensity, and compared these parameters with tree-ring width to assess the capacity of each proxy to detect LBM defoliation. A total of six LBM outbreaks were reconstructed for the two sites between AD 1850 and 2000. Growth suppression induced by LBM was, on average, highest in latewood width (59%), followed by total ring width (54%), earlywood width (51%) and blue intensity (26%). We show that latewood width and blue intensity can improve the temporal accuracy of LBM outbreak reconstructions, as both proxies systematically detected LBM defoliation in the first year it occurred, as well as the differentiation between defoliation and non-defoliation years. This study introduces blue intensity as a promising new proxy of insect defoliation and encourages its use in conjunction with latewood width.

  3. Gustatory papillae and taste bud development and maintenance in the absence of TrkB ligands BDNF and NT-4.

    PubMed

    Ito, Akira; Nosrat, Christopher A

    2009-09-01

    Taste buds and the peripheral nerves innervating them are two important components of the peripheral gustatory system. They require appropriate connections for the taste system to function. Neurotrophic factors play crucial roles in the innervation of peripheral sensory organs and tissues. Both brain-derived neurotrophic factor (BDNF) null-mutated and neurotrophin-4 (NT-4) null-mutated mice exhibit peripheral gustatory deficits. BDNF and NT-4 bind to a common high affinity tyrosine kinase receptor, TrkB (NTRK-2), and a common p75 neurotrophin receptor (NGFR). We are currently using a transgenic mouse model to study peripheral taste system development and innervation in the absence of both TrkB ligands. We show that taste cell progenitors express taste cell markers during early stages of taste bud development in both BDNF(-/-)xNT-4(-/-) and wild-type mice. At early embryonic stages, taste bud progenitors express Troma-1, Shh, and Sox2 in all mice. At later stages, lack of innervation becomes a prominent feature in BDNF(-/-)xNT-4(-/-) mice leading to a decreasing number of fungiform papillae and morphologically degenerating taste cells. A total loss of vallate taste cells also occurs in postnatal transgenic mice. Our data indicate an initial independence but a later permissive and essential role for innervation in taste bud development and maintenance.

  4. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    PubMed

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Pharmacognostic Specification, Chlorogenic Acid Content, and In vitro Antioxidant Activities of Lonicera japonica Flowering Bud

    PubMed Central

    Chaowuttikul, Chayanon; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2017-01-01

    Background: Lonicera japonica Thunb. or Japanese Honeysuckle has been widely used in traditional medicine for antipyretic. Objective: To establish the pharmacognostic specification of L. japonica flowering bud in Thailand and to determine its chlorogenic acid content and in vitro antioxidant activities. Materials and Methods: Dried L. japonica flowering bud from 15 various herbal drugstores throughout Thailand were investigated for pharmacognostic specification. Their chlorogenic acid contents were quantitatively analyzed by thin layer chromatography (TLC) densitometry with winCATS software. The mobile phase for TLC development consisted of ethyl acetate: formic acid: acetic acid: water (10:1.1:1.1:2.6). Antioxidant activities were investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric ion reducing antioxidant power assay, nitric oxide scavenging assay, and β-carotene bleaching assays. Results: Qualified L. japonica flowering bud in Thailand was presented that the contents of loss on drying, total ash, acid-insoluble ash, and water should not be >10.11%, 6.59%, 1.14%, and 10.82% by weight, respectively. The ethanol and water soluble extractive values should not be < 16.46% and 28.88% by weight, respectively. Chlorogenic acid content in L. japonica flowering bud was found to be 2.24 ± 0.50 g/100 g of crude drug. L. japonica flowering bud showed DPPH and nitric oxide scavenging activities as well as reducing power property. Conclusion: This pharmacognostic specification with special reference to the chlorogenic acid content can be used for quality control of L. japonica flowering bud in Thailand. The potential antioxidant of this crude drug was demonstrated in vitro. SUMMARY Pharmacognostic specification of Lonicera japonica flowering bud in Thailand has been establishedThe chlorogenic acid content has been quantified by thin layer chromatography-densitometryThe ethanolic extract of L. japonica flowering bud showed antioxidation potential, especially on reducing power property. Abbreviations Used: TLC: Thin layer chromatography, DPPH: 2,2-diphenyl-1-picrylhydrazyl, FRAP: Ferric ion Reducing Antioxidant Power, WHO: World Health Organization, ICH: International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use; LOD: Limit of detection; LOQ: Limit of quantitation; BHT: Butylated hydroxytoluene; FeSO4: Iron(II) sulfate; DMSO: Dimethyl sulfoxide; TPTZ: 2,4,6-tripyridyl-s-triazine. PMID:28539735

  6. Perspectives on woody biomass fuel value and specifications in Alabama

    Treesearch

    Dana Mitchell

    2006-01-01

    Pulp and paper mills in Alabama buy woody biomass but the specifications required by the mills vary and are not widely known. Some characteristics of woody biomass that are often included in mill specifications include size, species, ash and moisture content. These characteristics are briefly reviewed in reference to how they impact the energy value, physical handling...

  7. Efficient transmission of cassava brown streak disease viral pathogens by chip bud grafting.

    PubMed

    Wagaba, Henry; Beyene, Getu; Trembley, Cynthia; Alicai, Titus; Fauquet, Claude M; Taylor, Nigel J

    2013-12-06

    Techniques to study plant viral diseases under controlled growth conditions are required to fully understand their biology and investigate host resistance. Cassava brown streak disease (CBSD) presents a major threat to cassava production in East Africa. No infectious clones of the causal viruses, Cassava brown streak virus (CBSV) or Ugandan cassava brown streak virus (UCBSV) are available, and mechanical transmission to cassava is not effective. An improved method for transmission of the viruses, both singly and as co-infections has been developed using bud grafts. Axillary buds from CBSD symptomatic plants infected with virulent isolates of CBSV and UCBSV were excised and grafted onto 6-8 week old greenhouse-grown, disease-free cassava plants of cultivars Ebwanateraka, TME204 and 60444. Plants were assessed visually for development of CBSD symptoms and by RT-PCR for presence of the viruses in leaf and storage root tissues. Across replicated experiments, 70-100% of plants inoculated with CBSV developed CBSD leaf and stem symptoms 2-6 weeks after bud grafting. Infected plants showed typical, severe necrotic lesions in storage roots at harvest 12-14 weeks after graft inoculation. Sequential grafting of buds from plants infected with UCBSV followed 10-14 days later by buds carrying CBSV, onto the same test plant, resulted in 100% of the rootstocks becoming co-infected with both pathogens. This dual transmission rate was greater than that achieved by simultaneous grafting with UCBSV and CBSV (67%), or when grafting first with CBSV followed by UCBSV (17%). The bud grafting method described presents an improved tool for screening cassava germplasm for resistance to CBSD causal viruses, and for studying pathogenicity of this important disease. Bud grafting provides new opportunities compared to previously reported top and side grafting systems. Test plants can be inoculated as young, uniform plants of a size easily handled in a small greenhouse or large growth chamber and can be inoculated in a controlled manner with CBSV and UCBSV, either singly or together. Disease symptoms develop rapidly, allowing better studies of interactions between these viral pathogens, their movement within shoot and root systems, and how they induce their destructive disease symptoms.

  8. Bud-bank and tiller dynamics of co-occurring C3 caespitose grasses in mixed-grass prairie.

    PubMed

    Ott, Jacqueline P; Hartnett, David C

    2015-09-01

    Tiller recruitment from the belowground bud bank of caespitose grasses influences their ability to monopolize local resources and, hence, their genet fitness. Differences in bud production and outgrowth among tiller types within a genet and among species may explain co-occurrence of caespitose grasses. This study aimed to characterize genet bud-bank and tiller production and dynamics in two co-occurring species and compare their vegetative reproductive strategies. Bud-bank and tiller dynamics of Hesperostipa comata and Nassella viridula, dominant C3 caespitose grasses in the northern mixed-grass prairie of North America, were assessed throughout an annual cycle. The two species showed similar strategies, maintaining polycyclic tillers and thus creating mixed-age genet bud banks comprising multiple bud cohorts produced in different years. Vegetative tillers produced the majority of buds, whereas flowering tillers contributed little to the bud bank. Buds lived for at least 2 yr and were maintained in multiple developmental stages throughout the year. Because bud longevity rarely exceeded tiller longevity, tiller longevity drove turnover within the bud bank. Tiller population dynamics, more than bud production per tiller, determined the differential contribution of tiller types to the bud bank. Nassella viridula had higher bud production per tiller, a consistent annual tiller recruitment density, and greater longevity of buds on senesced and flowering tillers than H. comata. Co-occurring C3 caespitose grasses had similar bud-bank and tiller dynamics contributing to genet persistence but differed in bud characteristics that could affect genet longevity and species coexistence. © 2015 Botanical Society of America.

  9. Casing window milling with abrasive fluid jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vestavik, O.M.; Fidtje, T.H.; Faure, A.M.

    1995-12-31

    Methods for through tubing re-entry drilling of multilateral wells has a large potential for increasing hydrocarbon production and total recovery. One of the bottle-necks of this technology is initiation of the side-track by milling a window in the casing downhole. A new approach to this problem has been investigated in a joint industry project. An experimental set-up has been built for milling a 4 inch window in a 7 inch steel casing at surface in the laboratory. A specially designed bit developed at RIF using abrasive jet cutting technology has been used for the window milling. The bit has anmore » abrasive jet beam which is always directed in the desired side-track direction, even if the bit is rotating uniformly. The bit performs the milling with a combined mechanical and hydraulic jet action. The method has been successfully demonstrated. The experiments has shown that the window milling can be performed with very low WOB and torque, and that only small side forces are required to perform the operation. Casing milling has been performed without a whipstock, a cement plug has been the only support for the tool. The tests indicate that milling operations can be performed more efficiently with less time and costs than what is required with conventional techniques. However, the method still needs some development of the downhole motor for coiled tubing applications. The method can be used both for milling and drilling giving the advantage of improved rate of penetration, improved bit life and increased horizontal reach. The method is planned to be demonstrated downhole in the near future.« less

  10. New phenotypes generated by the G57R mutation of BUD23 in Saccharomyces cerevisiae.

    PubMed

    Lin, Jyun-Liang; Yu, Hui-Chia; Chao, Ju-Lan; Wang, Chung; Cheng, Ming-Yuan

    2012-12-01

    BUD23 in Saccharomyces cerevisiae encodes for a class I methyltransferase, and deletion of the gene results in slow growth and random budding phenotypes. Herein, two BUD23 mutants defective in methyltransferase activity were generated to investigate whether the phenotypes of the null mutant might be correlated with a loss in enzymatic activity. Expression at the physiological level of both D77A and G57R mutants was able to rescue the phenotypes of the bud23-null mutant. The result implied that the methyltransferase activity of the protein was not necessary for supporting normal growth and bud site selection of the cells. High-level expression of Bud23 (G57R), but not Bud23 or Bud23 (D77A), in BUD23 deletion cells failed to complement these phenotypes. However, just like Bud23, Bud23 (G57R) was localized in a DAPI-poor region in the nucleus. Distinct behaviour in Bud23 (G57R) could not be originated from a mislocalization of the protein. Over-expression of Bud23 (G57R) in null cells also produced changes in actin organization and additional septin mutant-like phenotypes. Therefore, the absence of Bud23, Bud23 (G57R) at a high level might affect the cell division of yeast cells through an as yet unidentified mechanism. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling.

    PubMed

    Ermilov, Alexandre N; Kumari, Archana; Li, Libo; Joiner, Ariell M; Grachtchouk, Marina A; Allen, Benjamin L; Dlugosz, Andrzej A; Mistretta, Charlotte M

    2016-11-01

    For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste alterations in cancer patients using systemic Hedgehog pathway inhibitors result principally from interruption of signaling activity in taste papillae.

  12. Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers.

    PubMed

    Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin

    2017-07-01

    Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB- fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. Copyright © 2017. Published by Elsevier Inc.

  13. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling

    PubMed Central

    Mistretta, Charlotte M.

    2016-01-01

    For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste alterations in cancer patients using systemic Hedgehog pathway inhibitors result principally from interruption of signaling activity in taste papillae. PMID:27893742

  14. Analysis of Assembly and Budding of Lujo Virus

    PubMed Central

    Urata, Shuzo; Weyer, Jacqueline; Storm, Nadia; Miyazaki, Yukiko; van Vuren, Petrus Jansen; Paweska, Janusz Tadeusz

    2015-01-01

    The recently identified arenavirus Lujo virus (LUJV) causes fatal hemorrhagic fever in humans. We analyzed its mechanism of viral release driven by matrix protein Z and the cell surface glycoprotein precursor GPC. The L domains in Z are required for efficient virus-like particle release, but Tsg101, ALIX/AIP1, and Vps4A/B are unnecessary for budding. LUJV GPC is cleaved by site 1 protease (S1P) at the RKLM motif, and treatment with the S1P inhibitor PF-429242 reduced LUJV production. PMID:26719243

  15. Innervation of single fungiform taste buds during development in rat.

    PubMed

    Krimm, R F; Hill, D L

    1998-08-17

    To determine whether the innervation of taste buds changes during postnatal development, the number of geniculate ganglion cells that innervated single fungiform taste buds were quantified in the tip- and midregions of the tongue of adult and developing rats. There was substantial variation in both the size of individual taste buds and number of geniculate ganglion cells that innervated them. Importantly, taste bud morphology and innervation were highly related. Namely, the number of labeled geniculate ganglion cells that innervated a taste bud was highly correlated with the size of the taste bud (r = 0.91, P < .0003): The larger the taste bud, the more geniculate ganglion cells that innervated it. The relationship between ganglion cell number and taste bud volume emerged during the first 40 days postnatal. Whereas there was no difference in the average number of ganglion cells that innervated individual taste buds in rats aged 10 days postnatal through adulthood, taste bud volumes increased progressively between 10 and 40 days postnatal, at which age taste bud volumes were similar to adults. The maturation of taste bud size was accompanied by the emergence of the relationship between taste bud volume and number of innervating neurons. Specifically, there was no correlation between taste bud size and number of innervating geniculate ganglion cells in 10-, 20-, or 30-day-old rats, whereas taste bud size and the number of innervating ganglion cells in 40-day-old rats were positively correlated (r = .80, P < .002). Therefore, the relationship between taste bud size and number of innervating ganglion cells develops over a prolonged postnatal period and is established when taste buds grow to their adult size.

  16. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus

    PubMed Central

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A.; Fraser, Mark E.; Scott, Jordan L.; Soni, Smita P.; Jones, Keaton R.; Digman, Michelle A.; Gratton, Enrico; Tessier, Charles R.

    2015-01-01

    ABSTRACT Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. IMPORTANCE The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. PMID:26136573

  17. Coordinate action of distinct sequence elements localizes checkpoint kinase Hsl1 to the septin collar at the bud neck in Saccharomyces cerevisiae

    PubMed Central

    Finnigan, Gregory C.; Sterling, Sarah M.; Duvalyan, Angela; Liao, Elizabeth N.; Sargsyan, Aspram; Garcia, Galo; Nogales, Eva; Thorner, Jeremy

    2016-01-01

    Passage through the eukaryotic cell cycle requires processes that are tightly regulated both spatially and temporally. Surveillance mechanisms (checkpoints) exert quality control and impose order on the timing and organization of downstream events by impeding cell cycle progression until the necessary components are available and undamaged and have acted in the proper sequence. In budding yeast, a checkpoint exists that does not allow timely execution of the G2/M transition unless and until a collar of septin filaments has properly assembled at the bud neck, which is the site where subsequent cytokinesis will occur. An essential component of this checkpoint is the large (1518-residue) protein kinase Hsl1, which localizes to the bud neck only if the septin collar has been correctly formed. Hsl1 reportedly interacts with particular septins; however, the precise molecular determinants in Hsl1 responsible for its recruitment to this cellular location during G2 have not been elucidated. We performed a comprehensive mutational dissection and accompanying image analysis to identify the sequence elements within Hsl1 responsible for its localization to the septins at the bud neck. Unexpectedly, we found that this targeting is multipartite. A segment of the central region of Hsl1 (residues 611–950), composed of two tandem, semiredundant but distinct septin-associating elements, is necessary and sufficient for binding to septin filaments both in vitro and in vivo. However, in addition to 611–950, efficient localization of Hsl1 to the septin collar in the cell obligatorily requires generalized targeting to the cytosolic face of the plasma membrane, a function normally provided by the C-terminal phosphatidylserine-binding KA1 domain (residues 1379–1518) in Hsl1 but that can be replaced by other, heterologous phosphatidylserine-binding sequences. PMID:27193302

  18. A Toxoplasma MORN1 Null Mutant Undergoes Repeated Divisions but Is Defective in Basal Assembly, Apicoplast Division and Cytokinesis

    PubMed Central

    Lorestani, Alexander; Sheiner, Lilach; Yang, Kevin; Robertson, Seth D.; Sahoo, Nivedita; Brooks, Carrie F.; Ferguson, David J. P.; Striepen, Boris; Gubbels, Marc-Jan

    2010-01-01

    The membrane occupation and recognition nexus protein 1 (MORN1) is highly conserved among apicomplexan parasites and is associated with several structures that have a role in cell division. Here we dissected the role of MORN1 using the relatively simple budding process of Toxoplasma gondii as a model. Ablation of MORN1 in a conditional null mutant resulted in pronounced defects suggesting a central role for MORN1 in apicoplast segregation and in daughter cell budding. Lack of MORN1 resulted in double-headed parasites. These Janus-headed parasites form two complete apical complexes but fail to assemble a basal complex. Moreover, these parasites were capable of undergoing several more budding rounds resulting in the formation of up to 16-headed parasites conjoined at the basal end. Despite this segregation defect, the mother's cytoskeleton was completely disassembled in every budding round. Overall this argues that successful completion of the budding is not required for cell cycle progression. None of the known basal complex components, including a set of recently identified inner membrane complex (IMC) proteins, localized correctly in these multi-headed parasites. These data suggest that MORN1 is essential for assembly of the basal complex, and that lack of the basal complex abolishes the contractile capacity assigned to the basal complex late in daughter formation. Consistent with this hypothesis we observe that MORN1 mutants fail to efficiently constrict and divide the apicoplast. We used the null background provided by the mutant to dissect the function of subdomains of the MORN1 protein. This demonstrated that deletion of a single MORN domain already prevented the function of MORN1 whereas a critical role for the short linker between MORN domains 6 and 7 was identified. In conclusion, MORN1 is required for basal complex assembly and loss of MORN1 results in defects in apicoplast division and daughter segregation. PMID:20808817

  19. Optimal Cluster Mill Pass Scheduling With an Accurate and Rapid New Strip Crown Model

    NASA Astrophysics Data System (ADS)

    Malik, Arif S.; Grandhi, Ramana V.; Zipf, Mark E.

    2007-05-01

    Besides the requirement to roll coiled sheet at high levels of productivity, the optimal pass scheduling of cluster-type reversing cold mills presents the added challenge of assigning mill parameters that facilitate the best possible strip flatness. The pressures of intense global competition, and the requirements for increasingly thinner, higher quality specialty sheet products that are more difficult to roll, continue to force metal producers to commission innovative flatness-control technologies. This means that during the on-line computerized set-up of rolling mills, the mathematical model should not only determine the minimum total number of passes and maximum rolling speed, it should simultaneously optimize the pass-schedule so that desired flatness is assured, either by manual or automated means. In many cases today, however, on-line prediction of strip crown and corresponding flatness for the complex cluster-type rolling mills is typically addressed either by trial and error, by approximate deflection models for equivalent vertical roll-stacks, or by non-physical pattern recognition style models. The abundance of the aforementioned methods is largely due to the complexity of cluster-type mill configurations and the lack of deflection models with sufficient accuracy and speed for on-line use. Without adequate assignment of the pass-schedule set-up parameters, it may be difficult or impossible to achieve the required strip flatness. In this paper, we demonstrate optimization of cluster mill pass-schedules using a new accurate and rapid strip crown model. This pass-schedule optimization includes computations of the predicted strip thickness profile to validate mathematical constraints. In contrast to many of the existing methods for on-line prediction of strip crown and flatness on cluster mills, the demonstrated method requires minimal prior tuning and no extensive training with collected mill data. To rapidly and accurately solve the multi-contact problem and predict the strip crown, a new customized semi-analytical modeling technique that couples the Finite Element Method (FEM) with classical solid mechanics was developed to model the deflection of the rolls and strip while under load. The technique employed offers several important advantages over traditional methods to calculate strip crown, including continuity of elastic foundations, non-iterative solution when using predetermined foundation moduli, continuous third-order displacement fields, simple stress-field determination, and a comparatively faster solution time.

  20. Identification and expression analysis of the IPT and CKX gene families during axillary bud outgrowth in apple (Malus domestica Borkh.).

    PubMed

    Tan, Ming; Li, Guofang; Qi, Siyan; Liu, Xiaojie; Chen, Xilong; Ma, Juanjuan; Zhang, Dong; Han, Mingyu

    2018-04-20

    Cytokinins (CKs) play a crucial role in promoting axillary bud outgrowth and targeting the control of CK metabolism can be used to enhance branching in plants. CK levels are maintained mainly by CK biosynthesis (isopentenyl transferase, IPT) and degradation (dehydrogenase, CKX) genes in plants. A systematic study of the IPT and CKX gene families in apple, however, has not been conducted. In the present study, 12 MdIPTs and 12 MdCKXs were identified in the apple genome. Systematic phylogenetic, structural, and synteny analyses were performed. Expression analysis of these genes in different tissues was also assessed. MdIPT and MdCKX genes exhibit distinct expression patterns in different tissues. The response of MdIPT, MdCKX, and MdPIN1 genes to various treatments (6-BA, decapitation and Lovastatin, an inhibitor of CKs synthesis) that impact branching were also investigated. Results indicated that most of the MdIPT and MdCKX, and MdPIN1 genes were upregulated by 6-BA and decapitation treatment, but inhibited by Lovastatin, a compound that effectively suppresses axillary bud outgrowth induced by decapitation. These findings suggest that cytokinin biosynthesis is required for the activation of bud break and the export of auxin from buds in apple tree with intact primary shoot apex or decapitated apple tree. MdCKX8 and MdCKX10, however, exhibited little response to decapitation, but were significantly up-regulated by 6-BA and Lovastatin, a finding that warrants further investigation in order to understand their function in bud-outgrowth. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers.

    PubMed

    Gyllenstrand, Niclas; Clapham, David; Källman, Thomas; Lagercrantz, Ulf

    2007-05-01

    Growth in perennial plants possesses an annual cycle of active growth and dormancy that is controlled by environmental factors, mainly photoperiod and temperature. In conifers and other nonangiosperm species, the molecular mechanisms behind these responses are currently unknown. In Norway spruce (Picea abies L. Karst.) seedlings, growth cessation and bud set are induced by short days and plants from southern latitudes require at least 7 to 10 h of darkness, whereas plants from northern latitudes need only 2 to 3 h of darkness. Bud burst, on the other hand, is almost exclusively controlled by temperature. To test the possible role of Norway spruce FLOWERING LOCUS T (FT)-like genes in growth rhythm, we have studied expression patterns of four Norway spruce FT family genes in two populations with a divergent bud set response under various photoperiodic conditions. Our data show a significant and tight correlation between growth rhythm (both bud set and bud burst), and expression pattern of one of the four Norway spruce phosphatidylethanolamine-binding protein gene family members (PaFT4) over a variety of experimental conditions. This study strongly suggests that one Norway spruce homolog to the FT gene, which controls flowering in angiosperms, is also a key integrator of photoperiodic and thermal signals in the control of growth rhythms in gymnosperms. The data also indicate that the divergent adaptive bud set responses of northern and southern Norway spruce populations, both to photoperiod and light quality, are mediated through PaFT4. These results provide a major advance in our understanding of the molecular control of a major adaptive trait in conifers and a tool for further molecular studies of adaptive variation in plants.

  2. Expression of the voltage-gated potassium channel KCNQ1 in mammalian taste bud cells and the effect of its null-mutation on taste preferences.

    PubMed

    Wang, Hong; Iguchi, Naoko; Rong, Qi; Zhou, Minliang; Ogunkorode, Martina; Inoue, Masashi; Pribitkin, Edmund A; Bachmanov, Alexander A; Margolskee, Robert F; Pfeifer, Karl; Huang, Liquan

    2009-01-20

    Vertebrate taste buds undergo continual cell turnover. To understand how the gustatory progenitor cells in the stratified lingual epithelium migrate and differentiate into different types of mature taste cells, we sought to identify genes that were selectively expressed in taste cells at different maturation stages. Here we report the expression of the voltage-gated potassium channel KCNQ1 in mammalian taste buds of mouse, rat, and human. Immunohistochemistry and nuclear staining showed that nearly all rodent and human taste cells express this channel. Double immunostaining with antibodies against type II and III taste cell markers validated the presence of KCNQ1 in these two types of cells. Co-localization studies with cytokeratin 14 indicated that KCNQ1 is also expressed in type IV basal precursor cells. Null mutation of the kcnq1 gene in mouse, however, did not alter the gross structure of taste buds or the expression of taste signaling molecules. Behavioral assays showed that the mutant mice display reduced preference to some umami substances, but not to any other taste compounds tested. Gustatory nerve recordings, however, were unable to detect any significant change in the integrated nerve responses of the mutant mice to umami stimuli. These results suggest that although it is expressed in nearly all taste bud cells, the function of KCNQ1 is not required for gross taste bud development or peripheral taste transduction pathways, and the reduced preference of kcnq1-null mice in the behavioral assays may be attributable to the deficiency in the central nervous system or other organs.

  3. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds.

    PubMed

    Yang, Hyekyung; Cong, Wei-Na; Yoon, Jeong Seon; Egan, Josephine M

    2015-02-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  4. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds

    PubMed Central

    Yang, Hyekyung; Cong, Wei-na; Yoon, Jeong Seon; Egan, Josephine M

    2015-01-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. PMID:25354792

  5. A Norway Spruce FLOWERING LOCUS T Homolog Is Implicated in Control of Growth Rhythm in Conifers1[OA

    PubMed Central

    Gyllenstrand, Niclas; Clapham, David; Källman, Thomas; Lagercrantz, Ulf

    2007-01-01

    Growth in perennial plants possesses an annual cycle of active growth and dormancy that is controlled by environmental factors, mainly photoperiod and temperature. In conifers and other nonangiosperm species, the molecular mechanisms behind these responses are currently unknown. In Norway spruce (Picea abies L. Karst.) seedlings, growth cessation and bud set are induced by short days and plants from southern latitudes require at least 7 to 10 h of darkness, whereas plants from northern latitudes need only 2 to 3 h of darkness. Bud burst, on the other hand, is almost exclusively controlled by temperature. To test the possible role of Norway spruce FLOWERING LOCUS T (FT)-like genes in growth rhythm, we have studied expression patterns of four Norway spruce FT family genes in two populations with a divergent bud set response under various photoperiodic conditions. Our data show a significant and tight correlation between growth rhythm (both bud set and bud burst), and expression pattern of one of the four Norway spruce phosphatidylethanolamine-binding protein gene family members (PaFT4) over a variety of experimental conditions. This study strongly suggests that one Norway spruce homolog to the FT gene, which controls flowering in angiosperms, is also a key integrator of photoperiodic and thermal signals in the control of growth rhythms in gymnosperms. The data also indicate that the divergent adaptive bud set responses of northern and southern Norway spruce populations, both to photoperiod and light quality, are mediated through PaFT4. These results provide a major advance in our understanding of the molecular control of a major adaptive trait in conifers and a tool for further molecular studies of adaptive variation in plants. PMID:17369429

  6. Sonic Hedgehog Signaling in Limb Development

    PubMed Central

    Tickle, Cheryll; Towers, Matthew

    2017-01-01

    The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs. PMID:28293554

  7. Peculiarities of binding composition production in vortex jet mill

    NASA Astrophysics Data System (ADS)

    Zagorodnyuk, L. Kh; Lesovik, V. S.; Sumskoy, D. A.; Elistratkin, M. Yu; Makhortov, D. S.

    2018-03-01

    The article investigates the disintegration of perlite production waste in a vortex jet mill; the regularities of milling were established. Binding compositions were obtained at different ratios of cement vs. perlite sand production waste in the vortex jet mill in various milling regimes. The peculiarities of milling processes were studied, and technological and physicomechanical properties of the binding compositions were determined as well. The microstructure of the cement stones made of activated Portland cement and binding compositions in the vortex jet mill was elucidated by electron microscopy. The open pores of the cement-binding compositions prepared using perlite fillers were found to be filled by newgrowths at different stages of collective growth. The microstructure of the binding compositions is dense due to rationally proportioned composition, effective mineral filler— perlite waste — that creates additional substrates for internal composite microstructure formation, mechanochemical activation of raw mixture, which allows obtaining composites with required properties.

  8. The duration of mitosis and daughter cell size are modulated by nutrients in budding yeast

    PubMed Central

    2017-01-01

    The size of nearly all cells is modulated by nutrients. Thus, cells growing in poor nutrients can be nearly half the size of cells in rich nutrients. In budding yeast, cell size is thought to be controlled almost entirely by a mechanism that delays cell cycle entry until sufficient growth has occurred in G1 phase. Here, we show that most growth of a new daughter cell occurs in mitosis. When the rate of growth is slowed by poor nutrients, the duration of mitosis is increased, which suggests that cells compensate for slow growth in mitosis by increasing the duration of growth. The amount of growth required to complete mitosis is reduced in poor nutrients, leading to a large reduction in cell size. Together, these observations suggest that mechanisms that control the extent of growth in mitosis play a major role in cell size control in budding yeast. PMID:28939614

  9. Tongue and Taste Organ Biology and Function: Homeostasis Maintained by Hedgehog Signaling.

    PubMed

    Mistretta, Charlotte M; Kumari, Archana

    2017-02-10

    The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.

  10. Continuous development precludes radioprotection in a colonial ascidian.

    PubMed

    Laird, Diana J; Weissman, Irving L

    2004-03-01

    Colonial organisms provide a unique experimental system for stem cell biology. The colonial Urochordate Botryllus schlosseri reproduces sexually as well as by continuous asexual budding. Adjacent colonies with a shared histocompatibility allele undergo vascular fusion and establish a common blood circulation, performing natural transplantation. Fused colonies become chimeras, often with complete somatic replacement of the host cell genotype by the fused parabiont. We attempted to establish a radioprotection assay for the somatic stem cells that induce long-term chimerism in Botryllus. We demonstrate over a range of radiation doses that neither autologous nor allogeneic cell transplantation enhances survival of host colonies. This suggests that high mitotic index associated with continuous asexual development leads to radiosensitivity of organs and structures essential to survival during engraftment. We observe that radiation induces uncontrolled epithelial cell proliferation in abnormally terminated buds, suggesting that stem cells are not required for the initial stages of bud development.

  11. In vivo imaging of basement membrane movement: ECM patterning shapes Hydra polyps

    PubMed Central

    Aufschnaiter, Roland; Zamir, Evan A.; Little, Charles D.; Özbek, Suat; Münder, Sandra; David, Charles N.; Li, Li; Sarras, Michael P.; Zhang, Xiaoming

    2011-01-01

    Growth and morphogenesis during embryonic development, asexual reproduction and regeneration require extensive remodeling of the extracellular matrix (ECM). We used the simple metazoan Hydra to examine the fate of ECM during tissue morphogenesis and asexual budding. In growing Hydra, epithelial cells constantly move towards the extremities of the animal and into outgrowing buds. It is not known, whether these tissue movements involve epithelial migration relative to the underlying matrix or whether cells and ECM are displaced as a composite structure. Furthermore, it is unclear, how the ECM is remodeled to adapt to the shape of developing buds and tentacles. To address these questions, we used a new in vivo labeling technique for Hydra collagen-1 and laminin, and tracked the fate of ECM in all body regions of the animal. Our results reveal that Hydra ‘tissue movements’ are largely displacements of epithelial cells together with associated ECM. By contrast, during the evagination of buds and tentacles, extensive movement of epithelial cells relative to the matrix is observed, together with local ECM remodeling. These findings provide new insights into the nature of growth and morphogenesis in epithelial tissues. PMID:22194305

  12. A static model of a Sendzimir mill for use in shape control

    NASA Astrophysics Data System (ADS)

    Gunawardene, G. W. D. M.

    The design of shape control systems is an area of current interest in the steel industry. Shape is defined as the internal stress distribution resulting from a transverse variation in the reduction of the strip thickness. The object of shape control is to adjust the mill so that the rolled strip is free from internal stresses. Both static and dynamic models of the mill are required for the control system design.The subject of this thesis is the static model of the Sendzimir cold rolling mill, which is a 1-2-3-4 type cluster mill. The static model derived enables shape profiles to be calculated for a given set of actuator positions, and is used to generate the steady state mill gains. The method of calculation of these shape profiles is discussed. The shape profiles obtained for different mill schedules are plotted against the distance across the strip. The corresponding mill gains are calculated and these relate the shape changes to the actuator changes. These mill gains are presented in the form of a square matrix, obtained by measuring shape at eight points across the strip.

  13. Fungiform taste bud degeneration in C57BL/6J mice following chorda-lingual nerve transection.

    PubMed

    Guagliardo, Nick A; Hill, David L

    2007-09-10

    Taste buds are dependent on innervation for normal morphology and function. Fungiform taste bud degeneration after chorda tympani nerve injury has been well documented in rats, hamsters, and gerbils. The current study examines fungiform taste bud distribution and structure in adult C57BL/6J mice from both intact taste systems and after unilateral chorda-lingual nerve transection. Fungiform taste buds were visualized and measured with the aid of cytokeratin 8. In control mice, taste buds were smaller and more abundant on the anterior tip (<1 mm) of the tongue. By 5 days after nerve transection taste buds were smaller and fewer on the side of the tongue ipsilateral to the transection and continued to decrease in both size and number until 15 days posttransection. Degenerating fungiform taste buds were smaller due to a loss of taste bud cells rather than changes in taste bud morphology. While almost all taste buds disappeared in more posterior fungiform papillae by 15 days posttransection, the anterior tip of the tongue retained nearly half of its taste buds compared to intact mice. Surviving taste buds could not be explained by an apparent innervation from the remaining intact nerves. Contralateral effects of nerve transection were also observed; taste buds were larger due to an increase in the number of taste bud cells. These data are the first to characterize adult mouse fungiform taste buds and subsequent degeneration after unilateral nerve transection. They provide the basis for more mechanistic studies in which genetically engineered mice can be used. (c) 2007 Wiley-Liss, Inc.

  14. Taste bud cell dynamics during normal and sodium-restricted development.

    PubMed

    Hendricks, Susan J; Brunjes, Peter C; Hill, David L

    2004-04-26

    Taste bud volume increases over the postnatal period to match the number of neurons providing innervation. To clarify age-related changes in fungiform taste bud volume, the current study investigated developmental changes in taste bud cell number, proliferation rate, and life span. Taste bud growth can largely be accounted for by addition of cytokeratin-19-positive taste bud cells. Examination of taste bud cell kinetics with 3H-thymidine autoradiography revealed that cell life span and turnover periods were not altered during normal development but that cells were produced more rapidly in young rats, a prominent modification that could lead to increased taste bud size. By comparison, dietary sodium restriction instituted during pre- and postnatal development results in small taste buds at adulthood as a result of fewer cytokeratin-19-positive cells. The dietary manipulation also had profound influences on taste bud growth kinetics, including an increased latency for cells to enter the taste bud and longer life span and turnover periods. These studies provide fundamental, new information about taste bud development under normal conditions and after environmental manipulations that impact nerve/target matching. Copyright 2004 Wiley-Liss, Inc.

  15. Heterogeneity of fish taste bud ultrastructure as demonstrated in the holosteans Amia calva and Lepisosteus oculatus.

    PubMed Central

    Reutter, K; Boudriot, F; Witt, M

    2000-01-01

    Taste buds are the peripheral sensory organs of the gustatory system. They occur in all taxa of vertebrates and are pear-shaped intra-epithelial organs of about 80 microm height and 50 microm width. Taste buds mainly consist of specialized epithelial cells, which synapse at their bases and therefore are secondary sensory cells. Taste buds have been described based on studies of teleostean species, but it turned out that the ultrastructure of teleostean taste buds may differ between distinct systematic groups and that this description is not representative of those taste buds in other main taxa of fishes, such as selachians, holosteans and dipnoans. Furthermore, it is not known how variable the micromorphologies of non-teleostean taste buds are. For this reason the taste buds of two holosteans, Lepisosteus oculatus and Amia calva, were investigated and compared. While in both species the taste buds are of the same shapes and sizes, the cellular components of their sensory epithelia differ: in Lepisosteus taste buds comprise two types of elongated light cells and one type of dark cells. In contrast, Amia taste buds contain only one type of light, but two types of dark elongated cells. Afferent synapses are common in the buds of both species, efferent synapses occur only in Lepisosteus taste buds. These differences show that even in the small group of holostean fishes the taste buds are differently organized. Consequently, a representative type of fish taste buds does not exist. PMID:11079403

  16. Heterogeneity of fish taste bud ultrastructure as demonstrated in the holosteans Amia calva and Lepisosteus oculatus.

    PubMed

    Reutter, K; Boudriot, F; Witt, M

    2000-09-29

    Taste buds are the peripheral sensory organs of the gustatory system. They occur in all taxa of vertebrates and are pear-shaped intra-epithelial organs of about 80 microm height and 50 microm width. Taste buds mainly consist of specialized epithelial cells, which synapse at their bases and therefore are secondary sensory cells. Taste buds have been described based on studies of teleostean species, but it turned out that the ultrastructure of teleostean taste buds may differ between distinct systematic groups and that this description is not representative of those taste buds in other main taxa of fishes, such as selachians, holosteans and dipnoans. Furthermore, it is not known how variable the micromorphologies of non-teleostean taste buds are. For this reason the taste buds of two holosteans, Lepisosteus oculatus and Amia calva, were investigated and compared. While in both species the taste buds are of the same shapes and sizes, the cellular components of their sensory epithelia differ: in Lepisosteus taste buds comprise two types of elongated light cells and one type of dark cells. In contrast, Amia taste buds contain only one type of light, but two types of dark elongated cells. Afferent synapses are common in the buds of both species, efferent synapses occur only in Lepisosteus taste buds. These differences show that even in the small group of holostean fishes the taste buds are differently organized. Consequently, a representative type of fish taste buds does not exist.

  17. Effect of alternating day and night temperature on short day-induced bud set and subsequent bud burst in long days in Norway spruce

    PubMed Central

    Olsen, Jorunn E.; Lee, YeonKyeong; Junttila, Olavi

    2014-01-01

    Young seedlings of the conifer Norway spruce exhibit short day (SD)-induced cessation of apical growth and bud set. Although different, constant temperatures under SD are known to modulate timing of bud set and depth of dormancy with development of deeper dormancy under higher compared to lower temperature, systematic studies of effects of alternating day (DT) and night temperatures (NT) are limited. To shed light on this, seedlings of different provenances of Norway spruce were exposed to a wide range of DT-NT combinations during bud development, followed by transfer to forcing conditions of long days (LD) and 18°C, directly or after different periods of chilling. Although no specific effect of alternating DT/NT was found, the results demonstrate that the effects of DT under SD on bud set and subsequent bud break are significantly modified by NT in a complex way. The effects on bud break persisted after chilling. Since time to bud set correlated with the daily mean temperature under SD at DTs of 18 and 21°C, but not a DT of 15°C, time to bud set apparently also depend on the specific DT, implying that the effect of NT depends on the actual DT. Although higher temperature under SD generally results in later bud break after transfer to forcing conditions, the fastest bud flush was observed at intermediate NTs. This might be due to a bud break-hastening chilling effect of intermediate compared to higher temperatures, and delayed bud development to a stage where bud burst can occur, under lower temperatures. Also, time to bud burst in un-chilled seedlings decreased with increasing SD-duration, suggesting that bud development must reach a certain stage before the processes leading to bud burst are initiated. The present results also indicate that low temperature during bud development had a larger effect on the most southern compared to the most northern provenance studied. Decreasing time to bud burst was observed with increasing northern latitude of origin in un-chilled as well as chilled plants. In conclusion, being a highly temperature-dependent process, bud development is strongly delayed by low temperature, and the effects of DT is significantly modified by NT in a complex manner. PMID:25538722

  18. Quantitative analysis of taste bud cell numbers in fungiform and soft palate taste buds of mice.

    PubMed

    Ohtubo, Yoshitaka; Yoshii, Kiyonori

    2011-01-07

    Mammalian taste bud cells (TBCs) consist of several cell types equipped with different taste receptor molecules, and hence the ratio of cell types in a taste bud constitutes the taste responses of the taste bud. Here we show that the population of immunohistochemically identified cell types per taste bud is proportional to the number of total TBCs in the taste bud or the area of the taste bud in fungiform papillae, and that the proportions differ among cell types. This result is applicable to soft palate taste buds. However, the density of almost all cell types, the population of cell types divided by the area of the respective taste buds, is significantly higher in soft palates. These results suggest that the turnover of TBCs is regulated to keep the ratio of each cell type constant, and that taste responsiveness is different between fungiform and soft palate taste buds. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. [Impact of TDZ and NAA on adventitious bud induction and cluster bud multiplication in Tulipa edulis].

    PubMed

    Zhu, Li-Fang; Xu, Chao; Zhu, Zai-Biao; Yang, He-Tong; Guo, Qiao-Sheng; Xu, Hong-jian; Ma, Hong-Jian; Zhao, Gui-Hua

    2014-08-01

    To explore the method of explants directly induced bud and establish the tissue culture system of mutiple shoot by means of direct organogenesis, core bud and daughter bulbs (the top of bud stem expanded to form daughter bulb) of T. edulis were used as explants and treated with thidiazuron (TDZ) and 1-naphthlcetic acid (NAA). The results showed that the optimal medium for bud inducted form core bud and daughter bulb were MS + TDZ 2.0 mg x L(-1) + NAA 4.0 mg x L(-1) and MS +TDZ 2.0 mg x L(-1) + NAA 2.0 mg x L(-1) respectively, both of them had a bud induction rate of 72.92%, 79.22%. The optimal medium for cluster buds multiplication was MS + TDZ 0.2 mg x L(-1) + NAA 0.2 mg x L(-1), and proliferation coefficient was 2.23. After proliferation, cluster buds rooting occurred on MS medium with IBA 1.0 mg x L(-1) and the rooting rate was 52.6%, three to five seedlings in each plant. Using core bud and daughter bulb of T. edulis, the optimum medium for adventitious bud directly inducted from daughter bulb, core bud and cluster bud multiplication were screened out and the tissue culture system of multiple shoot by means of direct organogenesis was established.

  20. Tracheid production phenology of Picea mariana and its relationship with climatic fluctuations and bud development using multivariate analysis.

    PubMed

    Dufour, Boris; Morin, Hubert

    2010-07-01

    Research on cambium phenology in trees and its limiting factors in natural conditions is still at an early stage of development, restricting our capacity to precisely evaluate the effect of growing season length and climate fluctuations on tracheid production. The first objective of this paper was to describe cambial tracheid production phenology of black spruce (Picea mariana (Mills.) BSP). Repeated tree ring sampling was performed from 2002 to 2006 on four sites (48 degrees 13.78' N, 71 degrees 15.18' W; 48 degrees 51.92' N, 70 degrees 20.57' W; 49 degrees 43.92' N, 71 degrees 56.88' W; and 50 degrees 41.78' N, 72 degrees 11.03' W) representative of closed black spruce forest in Quebec, Canada. The timing of cambial initiation and cambial cessation in black spruce differs from year to year, the first occurring on 4 June on average, whereas the second occurs on 15 August. During a single year, these events do not vary significantly in space within the study area. The duration of cambial tracheid production does not vary significantly in either time or space. The second objective of this study was to identify the climatic factors that explain variations in initiation and cessation. Air temperature and humidity, soil temperature and water content, rain precipitations, snow cover as well as photosynthetically active radiation were monitored at each studied site. These were then used to create sets of candidate regressors to explain timing of phenological events. Timing of cambial initiation is primarily dependent on mean temperature between mid-March and initiation itself. Vapor pressure during this period is also important but in a negative way. A significant effect of the previous year's August soil and air temperature conditions suggests a link with spring bud activity resumption, an interpretation that is supported by an analysis significantly linking measured timing of bud break to cambial initiation. Cessation of cambial tracheid production is influenced by factors linked to photosynthesis during the period from mid-July to cessation. Those related to water status, namely saturation vapor pressure, soil water content and vapor pressure are particularly influential, but light intensity and soil temperature also have an effect. Also, because mid-July corresponds to the timing of bud set and because the previous late summer's soil temperature has a significant effect, a clear link is established with apical cessation.

  1. WATER POLLUTION ABATEMENT IN THE WISCONSIN PAPER INDUSTRY

    EPA Science Inventory

    The study estimates the costs incurred by paper mills in the State of Wisconsin to comply with water pollution control requirements and compares these costs to those incurred by similar mills in other states.

  2. Discrete innervation of murine taste buds by peripheral taste neurons.

    PubMed

    Zaidi, Faisal N; Whitehead, Mark C

    2006-08-09

    The peripheral taste system likely maintains a specific relationship between ganglion cells that signal a particular taste quality and taste bud cells responsive to that quality. We have explored a measure of the receptoneural relationship in the mouse. By injecting single fungiform taste buds with lipophilic retrograde neuroanatomical markers, the number of labeled geniculate ganglion cells innervating single buds on the tongue were identified. We found that three to five ganglion cells innervate a single bud. Injecting neighboring buds with different color markers showed that the buds are primarily innervated by separate populations of geniculate cells (i.e., multiply labeled ganglion cells are rare). In other words, each taste bud is innervated by a population of neurons that only connects with that bud. Palate bud injections revealed a similar, relatively exclusive receptoneural relationship. Injecting buds in different regions of the tongue did not reveal a topographic representation of buds in the geniculate ganglion, despite a stereotyped patterned arrangement of fungiform buds as rows and columns on the tongue. However, ganglion cells innervating the tongue and palate were differentially concentrated in lateral and rostral regions of the ganglion, respectively. The principal finding that small groups of ganglion cells send sensory fibers that converge selectively on a single bud is a new-found measure of specific matching between the two principal cellular elements of the mouse peripheral taste system. Repetition of the experiments in the hamster showed a more divergent innervation of buds in this species. The results indicate that whatever taste quality is signaled by a murine geniculate ganglion neuron, that signal reflects the activity of cells in a single taste bud.

  3. Molecular events of apical bud formation in white spruce, Picea glauca.

    PubMed

    El Kayal, Walid; Allen, Carmen C G; Ju, Chelsea J-T; Adams, Eri; King-Jones, Susanne; Zaharia, L Irina; Abrams, Suzanne R; Cooke, Janice E K

    2011-03-01

    Bud formation is an adaptive trait that temperate forest trees have acquired to facilitate seasonal synchronization. We have characterized transcriptome-level changes that occur during bud formation of white spruce [Picea glauca (Moench) Voss], a primarily determinate species in which preformed stem units contained within the apical bud constitute most of next season's growth. Microarray analysis identified 4460 differentially expressed sequences in shoot tips during short day-induced bud formation. Cluster analysis revealed distinct temporal patterns of expression, and functional classification of genes in these clusters implied molecular processes that coincide with anatomical changes occurring in the developing bud. Comparing expression profiles in developing buds under long day and short day conditions identified possible photoperiod-responsive genes that may not be essential for bud development. Several genes putatively associated with hormone signalling were identified, and hormone quantification revealed distinct profiles for abscisic acid (ABA), cytokinins, auxin and their metabolites that can be related to morphological changes to the bud. Comparison of gene expression profiles during bud formation in different tissues revealed 108 genes that are differentially expressed only in developing buds and show greater transcript abundance in developing buds than other tissues. These findings provide a temporal roadmap of bud formation in white spruce. © 2011 Blackwell Publishing Ltd.

  4. Assessment of regeneration potential in the clonal macrophyte Miscanthus sacchariflorus (Poaceae) after burial disturbance based on bud bank size and sprouting capacity.

    PubMed

    Chen, Xinsheng; Cao, Chenshu; Deng, Zhengmiao; Xie, Yonghong; Li, Feng; Hou, Zhiyong; Li, Xu

    2015-01-01

    The demography of the bud bank and its sprouting capacity are important for understanding the population dynamics of clonal plants and their potential responses to disturbances. To this end, we investigated the size and composition of the bud bank of Miscanthus sacchariflorus (Maxim.) Hack. immediately after flooding (November), in winter (January), in spring (March), and before flooding (May) in the wetlands of Dongting Lake. We then examined the sprouting capacity of axillary buds after sediment burial at 0, 5, 10, 15, and 20 cm. Total bud density of M. sacchariflorus ranged from 2524 buds m(-2) in November to 4293 buds m(-2) in March. Rhizome segments with inactive axillary buds, which represented the majority of the bud population (88.7% in November, 93.3% in May), did not sprout during the 140 days of the experiment (n = 250). The sprouting ratio was the highest for active axillary buds buried at 0 cm (64%) and decreased when buried at 10-20 cm (34%-40%). Due to the large number of active axillary buds in the bud bank (211-277 buds m(-2) from November to the following March), M. sacchariflorus could completely replace its aboveground shoot population, except in May (142 buds m(-2)). Increasing burial depth delayed bud emergence and reduced the growth period of shoots; however, burial depth did not affect the resulting plant height and only reduced the accumulated biomass at 20 cm. Therefore, the belowground bud bank and its strong sprouting capacity are important factors in the maintenance of local populations and colonization of new habitats for M. sacchariflorus after burial disturbances. The present methodology, which combined measurements of bud bank demography and sprouting capacity, may reflect the regeneration potential of clonal plants after burial disturbances.

  5. Association of DSM-5 Betel-Quid Use Disorder With Oral Potentially Malignant Disorder in 6 Betel-Quid Endemic Asian Populations.

    PubMed

    Lee, Chien-Hung; Ko, Albert Min-Shan; Yang, Frances M; Hung, Chung-Chieh; Warnakulasuriya, Saman; Ibrahim, Salah Osman; Zain, Rosnah Binti; Ko, Ying-Chin

    2018-03-01

    Betel-quid (BQ) is the fourth most popular psychoactive agent worldwide. An emerging trend across Asia is the addictive consumption of BQ, which is associated with oral cancer and other health consequences. To investigate the validity and pattern of DSM-5-defined BQ use disorder (BUD) and its association with oral potentially malignant disorder (OPMD) among Asian populations. In-person interviews were conducted from January 1, 2009, to February 28, 2010, among a random sample of 8922 noninstitutionalized adults from the Asian Betel-quid Consortium study, an Asian representative survey of 6 BQ-endemic populations. Statistical analysis was performed from January 1, 2015, to December 31, 2016. Participants were evaluated for BUD using DSM-5 criteria for substance use disorder and for OPMD using a clinical oral examination. Current users of BQ with 0 to 1 symptoms were classified as having no BUD, those with 2 to 3 symptoms as having mild BUD, those with 4 to 5 symptoms as having moderate BUD, and those with 6 or more symptoms as having severe BUD. Among the 8922 participants (4564 women and 4358 men; mean [SD] age, 44.2 [0.2] years), DSM-5 symptoms showed sufficient unidimensionality to act as a valid measure for BUD. The 12-month prevalence of DSM-5-defined BUD in the 6 study populations was 18.0% (mild BUD, 3.2%; moderate BUD, 4.3%; and severe BUD, 10.5%). The 12-month proportion of DSM-5-defined BUD among current users of BQ was 86.0% (mild BUD, 15.5%; moderate BUD, 20.6%; and severe BUD, 50.0%). Sex, age, low educational level, smoking, and drinking were significantly associated with BUD. Among individuals who used BQ, family use, high frequency of use, and amount of BQ used were significantly linked to moderate to severe BUD. Compared with individuals who did not use BQ, those who used BQ and had no BUD showed a 22.0-fold (95% CI, 4.3-112.4) risk of OPMD (P < .001), whereas those with mild BUD showed a 9.6-fold (95% CI, 1.8-56.8) risk (P = .01), those with moderate BUD showed a 35.5-fold (95% CI, 4.3-292.3) risk (P = .001), and those with severe BUD showed a 27.5-fold (95% CI, 1.6-461.4) risk of OPMD (P = .02). Individuals with moderate to severe BUD who used BQ and had the symptom of tolerance had a 153.4-fold (95% CI, 33.4-703.6) higher risk of OPMD than those who did not use BQ, and those with moderate to severe BUD who used BQ and had a larger amount or longer history of BQ use had an 88.9-fold (95% CI, 16.6-476.5) higher risk of OPMD than those who did not use BQ. This international study gathered data about BQ users across 6 Asian populations, and it demonstrates that DSM-5 symptoms could fulfill a BUD construct. Most current Asian users of BQ already have BUD, which is correlated with risk of OPMD. Among individuals with moderate to severe BUD who used BQ, tolerance and a larger amount or longer history of BQ use are the key symptoms that correlated with enhanced risk of OPMD. These findings play an important role in providing a new indication of an additional psychiatric management plan for users of BQ who have BUD.

  6. Trueness of four different milling procedures used in dental CAD/CAM systems.

    PubMed

    Kirsch, Corinna; Ender, Andreas; Attin, Thomas; Mehl, Albert

    2017-03-01

    Milling is a crucial step in producing restorations using computer-aided design and computer-aided manufacturing (CAD/CAM) systems. In this study the trueness of currently available milling devices was evaluated. Thirty clinical cases (ten inlays, ten crowns, ten onlays) were milled from ceramic blocks using four different milling approaches: five axis with IMES CORiTEC 450i, four axis with CEREC MCXL, four axis with CEREC MCXL-EF and five axis with inLab MCX5. The milled restorations were scanned and the occlusal and inner surfaces compared to the originally calculated 3D surface using difference analysis software. The (90-10 %) / 2 percentile of the distances were calculated and analysed using one-way ANOVA with the post hoc Scheffé test (α = 0.05). Chipping of marginal areas were visually examined and analysed using one-way ANOVA with a post hoc Tamhane test (α = 0.05). At inner surfaces, the milling trueness of IMES (33.9 ± 16.3 μm), X5 (32.3 ± 9.7 μm) and MCXL-EF (34.4 ± 7.5 μm) was significantly better (p < 0.001) than that of MCXL (62.1 ± 17.1 μm). At occlusal surfaces, MCXL-EF (25.7 ± 9.3 μm) showed significant higher accuracy (p < 0.001) than MCXL (48.7 ± 23.3 μm) and X5 (40.9 ± 20.4 μm). IMES produced the most chipping (p < 0.001). Five-axis milling devices yield high trueness. MCXL-EF is competitive and may allow chairside fabrication with good milling results. Accurate milling is required for well-fitting restorations and thereby requires fewer manual finishing steps, yields smaller marginal gaps, resistance to secondary caries and longevity of restorations.

  7. Operational performance of the photovoltaic-powered grain mill and water pump at Tangaye, Upper Volta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martz, J.E.; Ratajczak, A.F.; Delombard, R.

    1982-02-01

    The first two years of operation of a stand alone photovoltaic (PV) power system for the village of Tangaye, Upper Volta in West Africa are described. The purpose of the experiment was to demonstrate that PV systems could provide reliable electrical power for multiple use applications in remote areas where local technical expertise is limited. The 1.8 kW (peak) power system supplies 120-V (d.c.) electrical power to operate a grain mill, a water pump, and mill building lights for the village. The system was initially sized to pump a part of the village water requirements from an existing improved well,more » and to meet a portion of the village grain grinding requirements. The data, observations, experiences, and conclusions developed during the first two years of operation are discussed. Reports of tests of the mills used in the project are included.« less

  8. Operational performance of the photovoltaic-powered grain mill and water pump at Tangaye, Upper Volta

    NASA Technical Reports Server (NTRS)

    Martz, J. E.; Ratajczak, A. F.; Delombard, R.

    1982-01-01

    The first two years of operation of a stand alone photovoltaic (PV) power system for the village of Tangaye, Upper Volta in West Africa are described. The purpose of the experiment was to demonstrate that PV systems could provide reliable electrical power for multiple use applications in remote areas where local technical expertise is limited. The 1.8 kW (peak) power system supplies 120-V (d.c.) electrical power to operate a grain mill, a water pump, and mill building lights for the village. The system was initially sized to pump a part of the village water requirements from an existing improved well, and to meet a portion of the village grain grinding requirements. The data, observations, experiences, and conclusions developed during the first two years of operation are discussed. Reports of tests of the mills used in the project are included.

  9. The Multiple Roles of Cyk1p in the Assembly and Function of the Actomyosin Ring in Budding Yeast

    PubMed Central

    Shannon, Katie B.; Li, Rong

    1999-01-01

    The budding yeast IQGAP-like protein Cyk1p/Iqg1p localizes to the mother-bud junction during anaphase and has been shown to be required for the completion of cytokinesis. In this study, video microscopy analysis of cells expressing green fluorescent protein-tagged Cyk1p/Iqg1p demonstrates that Cyk1p/Iqg1p is a dynamic component of the contractile ring during cytokinesis. Furthermore, in the absence of Cyk1p/Iqg1p, myosin II fails to undergo the contraction-like size change at the end of mitosis. To understand the mechanistic role of Cyk1p/Iqg1p in actomyosin ring assembly and dynamics, we have investigated the role of the structural domains that Cyk1p/Iqg1p shares with IQGAPs. An amino terminal portion containing the calponin homology domain binds to actin filaments and is required for the assembly of actin filaments to the ring. This result supports the hypothesis that Cyk1p/Iqg1p plays a direct role in F-actin recruitment. Deletion of the domain harboring the eight IQ motifs abolishes the localization of Cyk1p/Iqg1p to the bud neck, suggesting that Cyk1p/Iqg1p may be localized through interactions with a calmodulin-like protein. Interestingly, deletion of the COOH-terminal GTPase-activating protein-related domain does not affect Cyk1p/Iqg1p localization or actin recruitment to the ring but prevents actomyosin ring contraction. In vitro binding experiments show that Cyk1p/Iqg1p binds to calmodulin, Cmd1p, in a calcium-dependent manner, and to Tem1p, a small GTP-binding protein previously found to be required for the completion of anaphase. These results demonstrate the critical function of Cyk1p/Iqg1p in regulating various steps of actomyosin ring assembly and cytokinesis. PMID:9950677

  10. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast.

    PubMed

    Peterson, J; Zheng, Y; Bender, L; Myers, A; Cerione, R; Bender, A

    1994-12-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine-nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases.

  11. The N-Terminus of Vps74p Is Essential for the Retention of Glycosyltransferases in the Golgi but Not for the Modulation of Apical Polarized Growth in Saccharomyces cerevisiae

    PubMed Central

    Huang, Chun-Fang; Lee, Fang-Jen S.

    2013-01-01

    Vps74p is a member of the PtdIns(4)P-binding protein family. Vps74p interacts with Golgi-resident glycosyltransferases and the coat protein COPI complex to modulate Golgi retention of glycosyltransferases and with the PtdIns(4)P phosphatase Sac1p to modulate PtdIns(4)P homeostasis at the Golgi. Genetic analysis has shown that Vps74p is required for the formation of abnormal elongated buds in cdc34-2 cells. The C-terminal region of Vps74p is required for Vps74p multimerization, Golgi localization, and glycosyltransferase interactions; however, the functional significance of the N-terminal region and three putative phosphorylation sites of Vps74p have not been well characterized. In this study, we demonstrate that Vps74p executes multiple cellular functions using different domains. We found that the N-terminal 66 amino acids of Vps74p are dispensable for its Golgi localization and modulation of cell wall integrity but are required for glycosyltransferase retention and glycoprotein processing. Deletion of the N-terminal 90 amino acids, but not the 66 amino acids, of Vps74p impaired its ability to restore the elongated bud phenotype in cdc34-2/vps74Δ cells. Deletion of Sac1p and Arf1p also specifically reduced the abnormal elongated bud phenotype in cdc34-2 cells. Furthermore, we found that three N-terminal phosphorylation sites contribute to rapamycin hypersensitivity, although these phosphorylation residues are not involved in Vps74p localization, ability to modulate glycosyltransferase retention, or elongated bud formation in cdc34-2 cells. Thus, we propose that Vps74p may use different domains to interact with specific effectors thereby differentially modulating a variety of cellular functions. PMID:24019977

  12. The Amphipathic Helix of Influenza A Virus M2 Protein Is Required for Filamentous Bud Formation and Scission of Filamentous and Spherical Particles

    PubMed Central

    Roberts, Kari L.; Leser, George P.; Ma, Chunlong

    2013-01-01

    Influenza virus assembles and buds at the infected-cell plasma membrane. This involves extrusion of the plasma membrane followed by scission of the bud, resulting in severing the nascent virion from its former host. The influenza virus M2 ion channel protein contains in its cytoplasmic tail a membrane-proximal amphipathic helix that facilitates the scission process and is also required for filamentous particle formation. Mutation of five conserved hydrophobic residues to alanines within the amphipathic helix (M2 five-point mutant, or 5PM) reduced scission and also filament formation, whereas single mutations had no apparent phenotype. Here, we show that any two of these five residues mutated together to alanines result in virus debilitated for growth and filament formation in a manner similar to 5PM. Growth kinetics of the M2 mutants are approximately 2 logs lower than the wild-type level, and plaque diameter was significantly reduced. When the 5PM and a representative double mutant (I51A-Y52A) were introduced into A/WSN/33 M2, a strain that produces spherical particles, similar debilitation in viral growth occurred. Electron microscopy showed that with the 5PM and the I51A-Y52A A/Udorn/72 and WSN viruses, scission failed, and emerging virus particles exhibited a “beads-on-a-string” morphology. The major spike glycoprotein hemagglutinin is localized within lipid rafts in virus-infected cells, whereas M2 is associated at the periphery of rafts. Mutant M2s were more widely dispersed, and their abundance at the raft periphery was reduced, suggesting that the M2 amphipathic helix is required for proper localization in the host membrane and that this has implications for budding and scission. PMID:23843641

  13. Twig pre-harvest temperature significantly influences effective cryopreservation of Vaccinium dormant buds.

    PubMed

    Jenderek, Maria M; Tanner, Justin D; Ambruzs, Barbara D; West, Mark; Postman, Joseph D; Hummer, Kim E

    2017-02-01

    Cryopreservation of temperate woody-plant material by dormant buds is less expensive than using shoot tips isolated from tissue cultured plants; however currently, dormant buds are used only for preservation of selected temperate tree and shrub species. Using dormant buds could be an efficient strategy for long-term preservation of blueberry (Vaccinium L.) genetic resources. In this study, viability of V. hybrid 'Northsky' (PI 554943) dormant buds was evaluated at 30 harvest dates over three consecutive fall/winter seasons to determine the optimal harvest time that promotes high post cryopreservation viability. Twigs with dormant buds were cut into 70 mm segments containing at least two nodes, desiccated, slowly cooled, stored in liquid nitrogen vapor and tested for post-cryopreservation regrowth. The highest regrowth of cryopreserved dormant buds was observed for buds harvested in mid-December and during the first half of January. Pearson's correlation coefficients were computed to evaluate the association between bud characteristics and viability at harvest date and logistic regression models were fit to test the ability of twig characteristics and temperatures to predict post cryopreservation bud viability. Post-cryopreservation viability was negatively correlated (p < 0.05) with average minimum, maximum and daily mean temperature preceding the bud harvest but was not correlated with the dormant bud initial and end moisture content, twig diameter, the number of dormant buds/cm of twig length and the number of days in desiccation. Regression tree analysis suggested post-cryopreservation viability to be between 52 and 80% for dormant buds harvested after a 10 day average maximum air temperature of <11.2 °C. Pre-harvest air temperature was a significant indicator of optimal dormant bud harvest time to produce adequate viability for long term preservation of blueberry genetic resources. Published by Elsevier Inc.

  14. Distribution of α-Gustducin and Vimentin in premature and mature taste buds in chickens.

    PubMed

    Venkatesan, Nandakumar; Rajapaksha, Prasangi; Payne, Jason; Goodfellow, Forrest; Wang, Zhonghou; Kawabata, Fuminori; Tabata, Shoji; Stice, Steven; Beckstead, Robert; Liu, Hong-Xiang

    2016-10-14

    The sensory organs for taste in chickens (Gallus sp.) are taste buds in the oral epithelium of the palate, base of the oral cavity, and posterior tongue. Although there is not a pan-taste cell marker that labels all chicken taste bud cells, α-Gustducin and Vimentin each label a subpopulation of taste bud cells. In the present study, we used both α-Gustducin and Vimentin to further characterize chicken taste buds at the embryonic and post-hatching stages (E17-P5). We found that both α-Gustducin and Vimentin label distinct and overlapping populations of, but not all, taste bud cells. A-Gustducin immunosignals were observed as early as E18 and were consistently distributed in early and mature taste buds in embryos and hatchlings. Vimentin immunoreactivity was initially sparse at the embryonic stages then became apparent in taste buds after hatch. In hatchlings, α-Gustducin and Vimentin immunosignals largely co-localized in taste buds. A small subset of taste bud cells were labeled by either α-Gustducin or Vimentin or were not labeled. Importantly, each of the markers was observed in all of the examined taste buds. Our data suggest that the early onset of α-Gustducin in taste buds might be important for enabling chickens to respond to taste stimuli immediately after hatch and that distinctive population of taste bud cells that are labeled by different molecular markers might represent different cell types or different phases of taste bud cells. Additionally, α-Gustducin and Vimentin can potentially be used as molecular markers of all chicken taste buds in whole mount tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Bud development and hydraulics

    PubMed Central

    Cochard, Hervé

    2008-01-01

    The distal zone of one-year-old apple (Malus domestica) shoots was studied on five cultivars for bud size and composition (number of appendages) and hydraulic conductance before bud burst. Our hypothesis was that bud development was related to hydraulic conductance of the sap pathway to the bud independent of an acrotonic (proximal vs. distal) effect. Bud size and composition, and hydraulic conductance, were highly variable for all cultivars. A positive correlation was demonstrated between both the number of cataphylls and green-leaf primordia and hydraulic conductance. Cultivar and bud size affected the intercept of these relationships more than the slope suggesting similar scaling between these variables but different hydraulic efficiencies. A great proportion of small buds were also characterized by null values of hydraulic conductance. Our study suggests that hydraulically mediated competitions exist between adjacent buds within a same branching zone prefiguring the variability of lateral types in the following growing season. It is hypothesized that this developmental patterning is driven by hydraulic characteristics of the whole-metamer, including the subtending leaf, during bud development. PMID:19704779

  16. Quantitative anatomical study of taste buds in fungiform papillae of young and old Fischer rats.

    PubMed

    Mistretta, C M; Oakley, I A

    1986-05-01

    To determine if differences in neural taste responses relate to taste bud loss in old age, taste buds were counted in fungiform papillae of Fischer 344 rats aged 4 to 6 months, 20 to 24 months, and 30 to 37 months. Papillae anterior to the intermolar eminence on one half of the tongue were examined in serial sections. Presence or absence of a taste bud was noted and taste bud diameter was measured. Average percentages of papillae that contained a taste bud in the three groups were 99.6, 99.3, and 94.7%. This is a significant age-related difference but actual number of taste buds lost in the oldest rats was small. Taste bud diameter did not differ with age and general anatomical characteristics of buds were similar in all groups. Thus, anatomical observations on taste bud maintenance in rats over a wide age range, coupled with neurophysiological data, demonstrate that the integrity of the peripheral gustatory system is not altered greatly in old age.

  17. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets

    PubMed Central

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F.; Payne, Jason; Swetenburg, Raymond L.; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J.; Stice, Steven L.; Beckstead, Robert; Liu, Hong-Xiang

    2016-01-01

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240–360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors. PMID:27853250

  18. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets.

    PubMed

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F; Payne, Jason; Swetenburg, Raymond L; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J; Stice, Steven L; Beckstead, Robert; Liu, Hong-Xiang

    2016-11-17

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240-360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors.

  19. Homogeneity of ball milled ceramic powders: Effect of jar shape and milling conditions.

    PubMed

    Broseghini, M; D'Incau, M; Gelisio, L; Pugno, N M; Scardi, P

    2017-02-01

    This paper contains data and supporting information of and complementary to the research article entitled " Effect of jar shape on high-energy planetary ball milling efficiency: simulations and experiments " (Broseghini et al.,) [1]. Calcium fluoride (CaF 2 ) was ground using two jars of different shape (cylindrical and half-moon) installed on a planetary ball-mill, exploring different operating conditions (jar-to-plate angular velocity ratio and milling time). Scanning Electron Microscopy (SEM) images and X-Ray Powder Diffraction data (XRPD) were collected to assess the effect of milling conditions on the end-product crystallite size. Due to the inhomogeneity of the end product, the Whole Powder Pattern Model (WPPM, (Scardi, 2008) [2]) analysis of XRPD data required the hypothesis of a bimodal distribution of sizes - respectively ground (fine fraction) and less-to-not ground (coarse fraction) - confirmed by SEM images and suggested by the previous literature (Abdellatief et al., 2013) [3,4]. Predominance of fine fraction clearly indicates optimal milling conditions.

  20. Hepatitis C Virus Proteins Interact with the Endosomal Sorting Complex Required for Transport (ESCRT) Machinery via Ubiquitination To Facilitate Viral Envelopment.

    PubMed

    Barouch-Bentov, Rina; Neveu, Gregory; Xiao, Fei; Beer, Melanie; Bekerman, Elena; Schor, Stanford; Campbell, Joseph; Boonyaratanakornkit, Jim; Lindenbach, Brett; Lu, Albert; Jacob, Yves; Einav, Shirit

    2016-11-01

    Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT) machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV) protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate), an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS) proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses. Viruses commonly bud at the plasma membrane by recruiting the host ESCRT machinery via conserved motifs termed late domains. The mechanism by which some viruses, such as HCV, bud intracellularly is, however, poorly characterized. Moreover, whether envelopment of HCV and other viruses lacking defined late domains is ESCRT mediated and, if so, what the entry points into the ESCRT pathway are remain unknown. Here, we report the interaction network of HCV with the ESCRT machinery and a critical role for HRS, an ESCRT-0 complex component, in HCV envelopment. Viral protein ubiquitination was discovered to be a signal for HRS binding and HCV assembly, thereby functionally compensating for the absence of late domains. These findings characterize how a virus lacking defined late domains co-opts ESCRT to bud intracellularly. Since the ESCRT machinery is essential for the life cycle of multiple viruses, better understanding of this virus-host interplay may yield targets for broad-spectrum antiviral therapies. Copyright © 2016 Barouch-Bentov et al.

  1. [Seasonal dynamics and vertical distribution pattern of bud bank in different erosion environments on hilly-gully Loess Plateau of Northwest China].

    PubMed

    Du, Hua-Dong; Jiao, Ju-Ying; Kou, Meng; Wang, Ning

    2013-05-01

    This paper studied the vegetation composition, bud composition, and the seasonal dynamics and vertical distribution pattern of bud bank in five erosion environments (sunny gully slope, sunny hilly slope, hilltop, shady hilly slope, and shady gully slope) on the hilly-gully Loess Plateau of North Shaanxi. In the study area, the perennial species with perennial bud bank accounted for 80.3% of the total species, while the annual species with seasonal bud bank took up 19.7% of the total. In vegetation turning-green season, there was a relatively large perennial bud bank stock on the sunny hilly-gully slope where serious erosion occurred, while seasonal bud bank showed a higher bud bank density in blossom and fruit-setting season on the hilltop and two shady slopes where soil erosion intensity was relatively gentle. The proportion of underground bud bank to total perennial bud bank in different erosion environments was relatively stable. On the land surface, the perennial bud bank stock was larger on the sunny slope where the soil disturbance often occurred, whereas the seasonal bud bank stock was larger on the shady slope and hilltop. Due to the different species composition of plant communities in different erosion environments, in addition to the disturbance of soil erosion and the seasonal plant regeneration, the seasonal dynamics and vertical distribution pattern of bud bank changed. It was suggested that bud bank played an important role in the vegetation regeneration after the disturbance of soil erosion on the hilly-gully Loess Plateau of North Shaanxi.

  2. Rice bran: a novel functional ingredient.

    PubMed

    Sharif, Mian Kamran; Butt, Masood Sadiq; Anjum, Faqir Muhammad; Khan, Saima Hafiz

    2014-01-01

    Rice (Oryza sativa) is the most important staple food for a large part of the world's human population, especially in East and South Asia, the Middle East, Latin America, and the West Indies. It provides more than one fifth of the calories consumed worldwide by the human. It is the second leading cereal crop and staple food of half of the world's population. It is grown in at least 114 countries with global production of 645 million tons; share of Asian farmers is about 90% of the total produce. Rice bran, brown outer layer of rice kernel, is mainly composed of pericarp, aleurone, subaleurone layer, and germ. It contains appreciable quantities of nutrients like protein, fat, and dietary fiber. Furthermore, it contains substantial amount of minerals like K, Ca, Mg, and Fe. Presence of antioxidants like tocopherols, tocotrienols, and γ-oryzanol also brighten prospects of rice bran utilization for humans as functional ingredient to mitigate the life-threatening disorders. Moreover, in the developing countries, budding dilemma of food crisis, arising due to lower crop yields and escalating population, needs to utilize each pent of available resources. To provide enough food to all people, there is the holistic approach of using the by-products generated during food processing and preparations. Rice is being processed in well-established industry, but the major apprehension is the utilization of its by-products; rice bran (5-8%) and polishing (2-3%) that are going as waste. Rice processing or milling produces several streams of materials including milled rice, bran, and husk. In developing countries, rice bran is considered as a by-product of the milling process and commonly used in animal feed or discarded as a waste. The potential of producing rice bran at the global level is 29.3 million tons annually, whereas the share of Pakistan is worked out to be 0.5 million tons. In present paper, attempt has been made to highlight the significance of these valuable but neglected ingredients under various headings.

  3. Association of the variants in the BUD13-ZNF259 genes and the risk of hyperlipidaemia.

    PubMed

    Aung, Lynn Htet Htet; Yin, Rui-Xing; Wu, Dong-Feng; Wang, Wei; Liu, Cheng-Wu; Pan, Shang-Ling

    2014-07-01

    The single nucleotide polymorphisms (SNPs) in the BUD13 homolog (BUD13) and zinc finger protein 259 (ZNF259) genes have been associated with one or more serum lipid traits in the European populations. However, little is known about such association in the Chinese populations. Our objectives were to determine the association of the BUD13/ZNF259 SNPs and their haplotypes with hypercholesterolaemia (HCH)/hypertriglyceridaemia (HTG) and to identify the possible gene-gene interactions among these SNPs. Genotyping of 6 SNPs was performed in 634 hyperlipidaemic and 547 normolipidaemic participants. The ZNF259 rs2075290, ZNF259 rs964184 and BUD13 rs10790162 SNPs were significantly associated with serum lipid levels in both HCH and non-HCH populations (P < 0.008-0.001). On single locus analysis, only BUD13 rs10790162 was associated with HCH (OR: 2.23, 95% CI: 1.05, 4.75, P = 0.015). The G-G-A-A-C-C haplotype, carrying rs964184-G-allele, was associated with increased risk of HCH (OR: 1.35, 95% CI: 1.10, 1.66, P = 0.005) and HTG (OR: 1.75, 95% CI: 1.39, 2.21, P = 0.000). The A-C-G-G-C-C and A-C-A-G-T-C haplotypes, carrying rs964184-C-allele, were associated with reduced risk of HCH (OR: 0.77, 95% CI: 0.61, 0.99, P = 0.039 and OR: 0.66, 95% CI: 0.47, 0.94, P = 0.021 respectively). On multifactor dimensionality reduction analyses, the two- to three-locus models showed a significant association with HCH and HTG (P < 0.01-0.001). The BUD13/ZNF259 SNPs, which were significant in the European populations, are also replicable in the Southern Chinese population. Moreover, inter-locus interactions may exist among these SNPs. However, further functional studies are required to clarify how these SNPs and genes actually affect the serum lipid levels. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Polyp morphogenesis in a scyphozoan: Evidence for a head inhibitor from the presumptive foot end in vegetative buds ofCassiopeia andromeda.

    PubMed

    Neumann, R

    1977-03-01

    Buds ofCassiopeia andromeda have been transected into fragments of various sizes. Depending on their original position in the organism, on their size and on the age of the dissected buds, the fragments either regenerated or developed to a solitary polyp's head without stalk and peduncle. Generally, basal fragments tended to regenerate complete buds, young apical parts mostly differenciated polyp heads whereas apical and middle parts of progressively older buds regenerated buds with increasing frequency. To explain the alteration of the developmental capacities a head inhibitor is postulated which originates from the basal end of the buds and which expands towards the apical pole with increasing age of the buds.

  5. Hepatitis C Virus Proteins Interact with the Endosomal Sorting Complex Required for Transport (ESCRT) Machinery via Ubiquitination To Facilitate Viral Envelopment

    PubMed Central

    Barouch-Bentov, Rina; Neveu, Gregory; Xiao, Fei; Beer, Melanie; Bekerman, Elena; Schor, Stanford; Campbell, Joseph; Boonyaratanakornkit, Jim; Lindenbach, Brett; Lu, Albert; Jacob, Yves

    2016-01-01

    ABSTRACT Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT) machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV) protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate), an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS) proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses. PMID:27803188

  6. The distribution of Vallisneria americana seeds and seedling light requirements in the upper Mississippi River

    USGS Publications Warehouse

    Kimber, A.; Korschgen, C.E.; Van Der Valk, A.G.

    1995-01-01

    Vallisneria americana declined in backwaters of the Upper Mississippi River, U.S.A., after a drought in 1988. To determine whether viable seeds of V. americana occurred in the seed bank of navigation pool 7, Lake Onalaska, the upper 5 cm of sediment was collected from 103 sites in May 1990. These sediment samples were kept in pots at a depth of 0.4, 0.8, and 1.2 m in an outdoor pond for 12 weeks. Vallisneria americana seeds germinated from sites throughout the lake, and some seedlings produced overwintering buds by the end of the study. Seeds, spores, or fragments of 12 other species of aquatic plants also germinated. Seed germination trials with fresh and stored seeds in both greenhouse and ponds in which light availability was reduced with shade cloths indicated that seed germination was insensitive to light level. To determine the tight requirements for seedling survival and bud production, sediment from Lake Onalaska was incubated in ponds under neutral density shade screens reducing light to 2, 5, 9, and 25% of full sun. Seeds germinated under all shade treatments but survival was significantly higher in the 9 and 25% light treatments, and bud production was restricted to these light levels.

  7. Cooperative action of multiple cis-acting elements is required for N-myc expression in branchial arches: specific contribution of GATA3.

    PubMed

    Potvin, Eric; Beuret, Laurent; Cadrin-Girard, Jean-François; Carter, Marcelle; Roy, Sophie; Tremblay, Michel; Charron, Jean

    2010-11-01

    The precise expression of the N-myc proto-oncogene is essential for normal mammalian development, whereas altered N-myc gene regulation is known to be a determinant factor in tumor formation. Using transgenic mouse embryos, we show that N-myc sequences from kb -8.7 to kb +7.2 are sufficient to reproduce the N-myc embryonic expression profile in developing branchial arches and limb buds. These sequences encompass several regulatory elements dispersed throughout the N-myc locus, including an upstream limb bud enhancer, a downstream somite enhancer, a branchial arch enhancer in the second intron, and a negative regulatory element in the first intron. N-myc expression in the limb buds is under the dominant control of the limb bud enhancer. The expression in the branchial arches necessitates the interplay of three regulatory domains. The branchial arch enhancer cooperates with the somite enhancer region to prevent an inhibitory activity contained in the first intron. The characterization of the branchial arch enhancer has revealed a specific role of the transcription factor GATA3 in the regulation of N-myc expression. Together, these data demonstrate that correct N-myc developmental expression is achieved via cooperation of multiple positive and negative regulatory elements.

  8. The flipflop orphan genes are required for limb bud eversion in the Tribolium embryo.

    PubMed

    Thümecke, Susanne; Beermann, Anke; Klingler, Martin; Schröder, Reinhard

    2017-01-01

    Unlike Drosophila but similar to other arthropod and vertebrate embryos, the flour beetle Tribolium castaneum develops everted limb buds during embryogenesis. However, the molecular processes directing the evagination of epithelia are only poorly understood. Here we show that the newly discovered genes Tc-flipflop1 and Tc-flipflop2 are involved in regulating the directional budding of appendages. RNAi-knockdown of Tc-flipflop results in a variety of phenotypic traits. Most prominently, embryonic limb buds frequently grow inwards rather than out, leading to the development of inverted appendages inside the larval body. Moreover, affected embryos display dorsal closure defects. The Tc-flipflop genes are evolutionarily non-conserved, and their molecular function is not evident. We further found that Tc-RhoGEF2 , a highly-conserved gene known to be involved in actomyosin-dependent cell movement and cell shape changes, shows a Tc-flipflop -like RNAi-phenotype. The similarity of the inverted appendage phenotype in both the flipflop - and the RhoGEF2 RNAi gene knockdown led us to conclude that the Tc-flipflop orphan genes act in a Rho-dependent pathway that is essential for the early morphogenesis of polarised epithelial movements. Our work describes one of the few examples of an orphan gene playing a crucial role in an important developmental process.

  9. SVP-like MADS Box Genes Control Dormancy and Budbreak in Apple

    PubMed Central

    Wu, Rongmei; Tomes, Sumathi; Karunairetnam, Sakuntala; Tustin, Stuart D.; Hellens, Roger P.; Allan, Andrew C.; Macknight, Richard C.; Varkonyi-Gasic, Erika

    2017-01-01

    The annual growth cycle of trees is the result of seasonal cues. The onset of winter triggers an endodormant state preventing bud growth and, once a chilling requirement is satisfied, these buds enter an ecodormant state and resume growing. MADS-box genes with similarity to Arabidopsis SHORT VEGETATIVE PHASE (SVP) [the SVP-like and DORMANCY ASSOCIATED MADS-BOX (DAM) genes] have been implicated in regulating flowering and growth-dormancy cycles in perennials. Here, we identified and characterized three DAM-like (MdDAMs) and two SHORT VEGETATIVE PHASE-like (MdSVPs) genes from apple (Malus × domestica ‘Royal Gala’). The expression of MdDAMa and MdDAMc indicated they may play a role in triggering autumn growth cessation. In contrast, the expression of MdDAMb, MdSVPa and MdSVPb suggested a role in maintaining bud dormancy. Consistent with this, ectopic expression of MdDAMb and MdSVPa in ‘Royal Gala’ apple plants resulted in delayed budbreak and architecture change due to constrained lateral shoot outgrowth, but normal flower and fruit development. The association of MdSVPa and MdSVPb expression with floral bud development in the low fruiting ‘Off’ trees of a biennial bearing cultivar ‘Sciros’ suggested the SVP genes might also play a role in floral meristem identity. PMID:28421103

  10. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., heatdamaged, and paddy kernels (singly or combined) Total (number in 500 grams) Heatdamaged kernels and objectionable seeds (number in 500 grams) Red rice anddamaged kernels (singly or combined) (percent) Chalky...

  11. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., heatdamaged, and paddy kernels (singly or combined) Total (number in 500 grams) Heatdamaged kernels and objectionable seeds (number in 500 grams) Red rice anddamaged kernels (singly or combined) (percent) Chalky...

  12. [Effects of temperature on leaf lettuce vernalization.

    PubMed

    Zhang, Li Li; Hao, Jing Hong; Han, Ying Yan; Liu, Chao Jie; Su, He Nan; Li, Pan Pan; Sun, Yan Chuan; Fan, Shuang Xi

    2016-11-18

    To investigate the effects of different temperatures on the vernalization of leaf lettuce, and declare their type, two easy bolting leaf lettuce varieties of GB-30 and GB-31 were selected as material, which were treated by 4 ℃, 20 ℃ and 25 ℃ for 20 d respectively and afterwards treated by high temperature stress. The process of flower bud differentiation was observed by using paraffin section technology, and combined the condition of bolting and flowering to estimate whether or not it underwent vernalization, and defined its vernalization type. The results showed that, two varieties of GB-30 and GB-31 appeared bolting to different degrees at the 8 th day under high temperature stress after temperature treatments in the early stage. Different temperatures in the early stage all made flower bud differentiated of two varieties. 4 ℃ treatment did not advance the flower bud differentiation, while the high temperature in later time accelerated this progress. Furthermore, the days required for the two varieties to complete development stages differed under different temperature treatments. The effective accumulated temperature whether from pregermination to flowering or from high temperature stress to flowering of two varieties were also different. The leaf lettuce without low temperature treatment in early stage could enter into the flower bud differentiation, bolting, budding and flowering stages, and it could be considered as non-low temperature vernalization plant. The high temperature treatment in later stage could obviously promote its bolting and flowering. In addition, the effective accumulated temperature had to reach about 2500 ℃·d from germination to blossom.

  13. High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming.

    PubMed

    Heide, O M

    2003-09-01

    The effect of temperature during short-day (SD) dormancy induction was examined in three boreal tree species in a controlled environment. Saplings of Betula pendula Roth, B. pubescens Ehrh. and Alnus glutinosa (L.) Moench. were exposed to 5 weeks of 10-h SD induction at 9, 15 and 21 degrees C followed by chilling at 5 degrees C for 40, 70, 100 and 130 days and subsequent forcing at 15 degrees C in a 24-h photoperiod for 60 days. In all species and with all chilling periods, high temperature during SD dormancy induction significantly delayed bud burst during subsequent flushing at 15 degrees C. In A. glutinosa, high temperature during SD dormancy induction also significantly increased the chilling requirement for dormancy release. Field experiments at 60 degrees N with a range of latitudinal birch populations revealed a highly significant correlation between autumn temperature and days to bud burst in the subsequent spring. September temperature alone explained 20% of the variation between years in time of bud burst. In birch populations from 69 and 71 degrees N, which ceased growing and shed their leaves in August when the mean temperature was 15 degrees C, bud burst occurred later than expected compared with lower latitude populations (56 degrees N) in which dormancy induction took place more than 2 months later at a mean temperature of about 6 degrees C. It is concluded that this autumn temperature response may be important for counterbalancing the potentially adverse effects of higher winter temperatures on dormancy stability of boreal trees during climate warming.

  14. Volumetry of human taste buds using laser scanning microscopy.

    PubMed

    Just, T; Srur, E; Stachs, O; Pau, H W

    2009-10-01

    In vivo laser scanning confocal microscopy is a relatively new, non-invasive method for assessment of oral cavity epithelia. The penetration depth of approximately 200-400 microm allows visualisation of fungiform papillae and their taste buds. This paper describes the technique of in vivo volumetry of human taste buds. Confocal laser scanning microscopy used a diode laser at 670 nm for illumination. Digital laser scanning confocal microscopy equipment consisted of the Heidelberg Retina Tomograph HRTII and the Rostock Cornea Module. Volume scans of fungiform papillae were used for three-dimensional reconstruction of the taste bud. This technique supplied information on taste bud structure and enabled measurement and calculation of taste bud volume. Volumetric data from a 23-year-old man over a nine-day period showed only a small deviation in values. After three to four weeks, phenomenological changes in taste bud structures were found (i.e. a significant increase in volume, followed by disappearance of the taste bud and appearance of a new taste bud). The data obtained indicate the potential application of this non-invasive imaging modality: to evaluate variation of taste bud volume in human fungiform papillae with ageing; to study the effects of chorda tympani nerve transection on taste bud volume; and to demonstrate recovery of taste buds in patients with a severed chorda tympani nerve who show recovery of gustatory sensibility after surgery.

  15. Mitochondrial anchorage and fusion contribute to mitochondrial inheritance and quality control in the budding yeast Saccharomyces cerevisiae

    PubMed Central

    Higuchi-Sanabria, Ryo; Charalel, Joseph K.; Viana, Matheus P.; Garcia, Enrique J.; Sing, Cierra N.; Koenigsberg, Andrea; Swayne, Theresa C.; Vevea, Jason D.; Boldogh, Istvan R.; Rafelski, Susanne M.; Pon, Liza A.

    2016-01-01

    Higher-functioning mitochondria that are more reduced and have less ROS are anchored in the yeast bud tip by the Dsl1-family protein Mmr1p. Here we report a role for mitochondrial fusion in bud-tip anchorage of mitochondria. Fluorescence loss in photobleaching (FLIP) and network analysis experiments revealed that mitochondria in large buds are a continuous reticulum that is physically distinct from mitochondria in mother cells. FLIP studies also showed that mitochondria that enter the bud can fuse with mitochondria that are anchored in the bud tip. In addition, loss of fusion and mitochondrial DNA (mtDNA) by deletion of mitochondrial outer or inner membrane fusion proteins (Fzo1p or Mgm1p) leads to decreased accumulation of mitochondria at the bud tip and inheritance of fitter mitochondria by buds compared with cells with no mtDNA. Conversely, increasing the accumulation and anchorage of mitochondria in the bud tip by overexpression of MMR1 results in inheritance of less-fit mitochondria by buds and decreased replicative lifespan and healthspan. Thus quantity and quality of mitochondrial inheritance are ensured by two opposing processes: bud-tip anchorage by mitochondrial fusion and Mmr1p, which favors bulk inheritance; and quality control mechanisms that promote segregation of fitter mitochondria to the bud. PMID:26764088

  16. Frost hardiness of tree species is independent of phenology and macroclimatic niche.

    PubMed

    Hofmann, M; Bruelheide, H

    2015-03-01

    The differences in timing in bud burst between species have been interpreted as an adaptation to late frost events in spring. Thus, it has been suggested that the degree of frost susceptibility of leaves is species-specific and depends on the species' phenology and geographic distribution range. To test for relationships between frost tolerance and phenology as well as between frost tolerance and distribution range across Central European tree species, we studied the frost hardiness of closed buds before bud burst and of freshly opened buds at the time of bud burst. We hypothesized that species with early bud burst and species distributed in eastern and northern areas were more frost tolerant than species with late bud burst and species distributed in western and southern areas. Frost hardiness was estimated by exposing twigs to 11 frost temperatures between -4 °C and -80 °C and by assessing tissue damage by the electrolyte leakage method. In contrast to our hypotheses, neither frost hardiness of closed buds nor frost hardiness of freshly opened buds were related to any variable describing species' macroclimatic niche. Furthermore, frost hardiness of freshly opened buds did not differ among species. Thus, the investigated species with early bud burst take higher risks of frost damage than the species with late bud bursts. These findings indicate that frost hardiness might not play the key role in limiting the geographic distribution ranges previously anticipated.

  17. Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushman, Chris

    In 2011 the Inter-Tribal Council of Michigan, Inc. was awarded an Energy Efficiency Development and Deployment in Indian Country grant from the U.S. Department of Energy’s Tribal Energy Program. This grant aimed to study select Bay Mills Indian Community community/government buildings to determine what is required to reduce each building’s energy consumption by 30%. The Bay Mills Indian Community (BMIC) buildings with the largest expected energy use were selected for this study and included the Bay Mills Ellen Marshall Health Center building, Bay Mills Indian Community Administration Building, Bay Mills Community College main campus, Bay Mills Charter School and themore » Waishkey Community Center buildings. These five sites are the largest energy consuming Community buildings and comprised the study area of this project titled “Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community”. The end objective of this study, plan and the Tribe is to reduce the energy consumption at the Community’s most energy intensive buildings that will, in turn, reduce emissions at the source of energy production, reduce energy expenditures, create long lasting energy conscious practices and positively affect the quality of the natural environment. This project’s feasibility study and resulting plan is intended to act as a guide to the Community’s first step towards planned energy management within its buildings/facilities. It aims to reduce energy consumption by 30% or greater within the subject facilities with an emphasis on energy conservation and efficiency. The energy audits and related power consumption analyses conducted for this study revealed numerous significant energy conservation and efficiency opportunities for all of the subject sites/buildings. In addition, many of the energy conservation measures require no cost and serve to help balance other measures requiring capital investment. Reoccurring deficiencies relating to heating, cooling, thermostat setting inefficiencies, powering computers, lighting, items linked to weatherization and numerous other items were encountered that can be mitigated with the energy conservation measures developed and specified during the course of this project.« less

  18. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus.

    PubMed

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A; Fraser, Mark E; Scott, Jordan L; Soni, Smita P; Jones, Keaton R; Digman, Michelle A; Gratton, Enrico; Tessier, Charles R; Stahelin, Robert V

    2015-09-01

    Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Coordinate action of distinct sequence elements localizes checkpoint kinase Hsl1 to the septin collar at the bud neck in Saccharomyces cerevisiae.

    PubMed

    Finnigan, Gregory C; Sterling, Sarah M; Duvalyan, Angela; Liao, Elizabeth N; Sargsyan, Aspram; Garcia, Galo; Nogales, Eva; Thorner, Jeremy

    2016-07-15

    Passage through the eukaryotic cell cycle requires processes that are tightly regulated both spatially and temporally. Surveillance mechanisms (checkpoints) exert quality control and impose order on the timing and organization of downstream events by impeding cell cycle progression until the necessary components are available and undamaged and have acted in the proper sequence. In budding yeast, a checkpoint exists that does not allow timely execution of the G2/M transition unless and until a collar of septin filaments has properly assembled at the bud neck, which is the site where subsequent cytokinesis will occur. An essential component of this checkpoint is the large (1518-residue) protein kinase Hsl1, which localizes to the bud neck only if the septin collar has been correctly formed. Hsl1 reportedly interacts with particular septins; however, the precise molecular determinants in Hsl1 responsible for its recruitment to this cellular location during G2 have not been elucidated. We performed a comprehensive mutational dissection and accompanying image analysis to identify the sequence elements within Hsl1 responsible for its localization to the septins at the bud neck. Unexpectedly, we found that this targeting is multipartite. A segment of the central region of Hsl1 (residues 611-950), composed of two tandem, semiredundant but distinct septin-associating elements, is necessary and sufficient for binding to septin filaments both in vitro and in vivo. However, in addition to 611-950, efficient localization of Hsl1 to the septin collar in the cell obligatorily requires generalized targeting to the cytosolic face of the plasma membrane, a function normally provided by the C-terminal phosphatidylserine-binding KA1 domain (residues 1379-1518) in Hsl1 but that can be replaced by other, heterologous phosphatidylserine-binding sequences. © 2016 Finnigan et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. The duration of mitosis and daughter cell size are modulated by nutrients in budding yeast.

    PubMed

    Leitao, Ricardo M; Kellogg, Douglas R

    2017-11-06

    The size of nearly all cells is modulated by nutrients. Thus, cells growing in poor nutrients can be nearly half the size of cells in rich nutrients. In budding yeast, cell size is thought to be controlled almost entirely by a mechanism that delays cell cycle entry until sufficient growth has occurred in G1 phase. Here, we show that most growth of a new daughter cell occurs in mitosis. When the rate of growth is slowed by poor nutrients, the duration of mitosis is increased, which suggests that cells compensate for slow growth in mitosis by increasing the duration of growth. The amount of growth required to complete mitosis is reduced in poor nutrients, leading to a large reduction in cell size. Together, these observations suggest that mechanisms that control the extent of growth in mitosis play a major role in cell size control in budding yeast. © 2017 Leitao and Kellogg.

  1. Wnt-dependent epithelial transitions drive pharyngeal pouch formation

    PubMed Central

    Choe, Chong Pyo; Collazo, Andres; Trinh, Le A.; Pan, Luyuan; Moens, Cecilia B.; Crump, J. Gage

    2013-01-01

    SUMMARY The pharyngeal pouches, which form by budding of the foregut endoderm, are essential for segmentation of the vertebrate face. To date, the cellular mechanism and segmental nature of such budding have remained elusive. Here, we find that Wnt11r and Wnt4a from the head mesoderm and ectoderm, respectively, play distinct roles in the segmental formation of pouches in zebrafish. Time-lapse microscopy, combined with mutant and tissue-specific transgenic experiments, reveal requirements of Wnt signaling in two phases of endodermal epithelial transitions. Initially, Wnt11r and Rac1 destabilize the endodermal epithelium to promote the lateral movement of pouch-forming cells. Next, Wnt4a and Cdc42 signaling induce the rearrangement of maturing pouch cells into bilayers through junctional localization of the Alcama immunoglobulin-domain protein, which functions to restabilize adherens junctions. We propose that this dynamic control of epithelial morphology by Wnt signaling may be a common theme for the budding of organ anlagen from the endoderm. PMID:23375584

  2. Requirement of Phosphoinositides Containing Stearic Acid To Control Cell Polarity.

    PubMed

    Doignon, François; Laquel, Patricia; Testet, Eric; Tuphile, Karine; Fouillen, Laetitia; Bessoule, Jean-Jacques

    2015-12-28

    Phosphoinositides (PIPs) are present in very small amounts but are essential for cell signaling, morphogenesis, and polarity. By mass spectrometry, we demonstrated that some PIPs with stearic acyl chains were strongly disturbed in a psi1Δ Saccharomyces cerevisiae yeast strain deficient in the specific incorporation of a stearoyl chain at the sn-1 position of phosphatidylinositol. The absence of PIPs containing stearic acid induced disturbances in intracellular trafficking, although the total amount of PIPs was not diminished. Changes in PIPs also induced alterations in the budding pattern and defects in actin cytoskeleton organization (cables and patches). Moreover, when the PSI1 gene was impaired, a high proportion of cells with bipolar cortical actin patches that occurred concomitantly with the bipolar localization of Cdc42p was specifically found among diploid cells. This bipolar cortical actin phenotype, never previously described, was also detected in a bud9Δ/bud9Δ strain. Very interestingly, overexpression of PSI1 reversed this phenotype. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Fusion, fission, and transport control asymmetric inheritance of mitochondria and protein aggregates

    PubMed Central

    Böckler, Stefan; Chelius, Xenia; Hock, Nadine; Weiss, Matthias

    2017-01-01

    Partitioning of cell organelles and cytoplasmic components determines the fate of daughter cells upon asymmetric division. We studied the role of mitochondria in this process using budding yeast as a model. Anterograde mitochondrial transport is mediated by the myosin motor, Myo2. A genetic screen revealed an unexpected interaction of MYO2 and genes required for mitochondrial fusion. Genetic analyses, live-cell microscopy, and simulations in silico showed that fused mitochondria become critical for inheritance and transport across the bud neck in myo2 mutants. Similarly, fused mitochondria are essential for retention in the mother when bud-directed transport is enforced. Inheritance of a less than critical mitochondrial quantity causes a severe decline of replicative life span of daughter cells. Myo2-dependent mitochondrial distribution also is critical for the capture of heat stress–induced cytosolic protein aggregates and their retention in the mother cell. Together, these data suggest that coordination of mitochondrial transport, fusion, and fission is critical for asymmetric division and rejuvenation of daughter cells. PMID:28615194

  4. Centromere-Like Regions in the Budding Yeast Genome

    PubMed Central

    Lefrançois, Philippe; Auerbach, Raymond K.; Yellman, Christopher M.; Roeder, G. Shirleen; Snyder, Michael

    2013-01-01

    Accurate chromosome segregation requires centromeres (CENs), the DNA sequences where kinetochores form, to attach chromosomes to microtubules. In contrast to most eukaryotes, which have broad centromeres, Saccharomyces cerevisiae possesses sequence-defined point CENs. Chromatin immunoprecipitation followed by sequencing (ChIP–Seq) reveals colocalization of four kinetochore proteins at novel, discrete, non-centromeric regions, especially when levels of the centromeric histone H3 variant, Cse4 (a.k.a. CENP-A or CenH3), are elevated. These regions of overlapping protein binding enhance the segregation of plasmids and chromosomes and have thus been termed Centromere-Like Regions (CLRs). CLRs form in close proximity to S. cerevisiae CENs and share characteristics typical of both point and regional CENs. CLR sequences are conserved among related budding yeasts. Many genomic features characteristic of CLRs are also associated with these conserved homologous sequences from closely related budding yeasts. These studies provide general and important insights into the origin and evolution of centromeres. PMID:23349633

  5. Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast.

    PubMed

    Goshima, G; Yanagida, M

    2000-03-17

    Sister kinetochores are bioriented toward the spindle poles in higher eukaryotic prometaphase before chromosome segregation. We show that, in budding yeast, the sister kinetochores are separated in the very early spindle, while the sister arms remain associated. Biorientation of the separated kinetochores is achieved already after replication. Mtw1p, a homolog of fission yeast Mis12 required for biorientation, locates at the centromeres in an Ndc10p-dependent manner. Mtw1p and the sequences 1.8 and 3.8 kb from CEN3 and CEN15, respectively, behave like the precociously separated kinetochores, whereas the sequences 23 and 35 kb distant from CEN3 and CEN5 previously used as the centromere markers behave like a part of the arm. Mtw1p and Ndc10p are identically located except for additional spindle localization of Ndc10p. A model explaining small centromeres and early spindle formation in budding yeast is proposed.

  6. Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates.

    PubMed

    Barreiro-Iglesias, Antón; Villar-Cerviño, Verona; Villar-Cheda, Begoña; Anadón, Ramón; Rodicio, María Celina

    2008-12-01

    Neuroactive substances such as serotonin and other monoamines have been suggested to be involved in the transmission of gustatory signals from taste bud cells to afferent fibers. Lampreys are the earliest vertebrates that possess taste buds, although these differ in structure from taste buds in jawed vertebrates, and their neurochemistry remains unknown. We used immunofluorescence methods with antibodies raised against serotonin, tyrosine hydroxylase (TH), gamma-aminobutyric acid (GABA), glutamate, calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), calretinin, and acetylated alpha-tubulin to characterize the neurochemistry and innervation of taste buds in the sea lamprey, Petromyzon marinus L. For localization of proliferative cells in taste buds we used bromodeoxyuridine labeling and proliferating cell nuclear antigen immunohistochemistry. Results with both markers indicate that proliferating cells are restricted to a few basal cells and that almost all cells in taste buds are nonproliferating. A large number of serotonin-, calretinin-, and CGRP-immunoreactive bi-ciliated cells were revealed in lamprey taste buds. This suggests that serotonin participates in the transmission of gustatory signals and indicates that this substance appeared early on in vertebrate evolution. The basal surface of the bi-ciliated taste bud cells was contacted by tubulin-immunoreactive fibers. Some of the fibers surrounding the taste bud were calretinin immunoreactive. Lamprey taste bud cells or afferent fibers did not exhibit TH, GABA, glutamate, or NPY immunoreactivity, which suggests that expression of these substances evolved in taste buds of some gnathostomes lines after the separation of gnathostomes and lampreys. (c) 2008 Wiley-Liss, Inc.

  7. Cost effectiveness of adding budesonide/formoterol to tiotropium in COPD in four Nordic countries.

    PubMed

    Nielsen, Rune; Kankaanranta, Hannu; Bjermer, Leif; Lange, Peter; Arnetorp, Sofie; Hedegaard, Morten; Stenling, Anna; Mittmann, Nicole

    2013-11-01

    Assess the cost effectiveness of budesonide/formoterol (BUD/FORM) Turbuhaler(®)+tiotropium (TIO) HandiHaler(®) vs. placebo (PBO)+TIO in patients with chronic obstructive pulmonary disease (COPD) eligible for inhaled corticosteroids/long-acting β2-agonists (ICS/LABA). The cost-effectiveness analysis was based on the 12-week, randomised, double-blind CLIMB trial. The study included 659 patients with pre-bronchodilator forced expiratory volume in 1 s ≤ 50% and ≥1 exacerbation requiring systemic glucocorticosteroids or antibiotics the preceding year. Patients received BUD/FORM 320/9 μg bid + TIO 18 μg qd or PBO bid + TIO 18 μg qd. Effectiveness was defined as the number of severe exacerbations (hospitalisation/emergency room visit/systemic glucocorticosteroids) avoided. A sub-analysis included antibiotics in the definition of an exacerbation. Resource use from CLIMB was combined with Danish (DKK), Finnish (€), Norwegian (NOK) and Swedish (SEK) unit costs (2010). The incremental cost-effectiveness ratios (ICERs) for BUD/FORM + TIO vs. PBO + TIO were estimated using descriptive statistics and uncertainty around estimates using bootstrapping. Analyses were conducted from the societal and healthcare perspectives in Denmark, Finland, Norway and Sweden. From a societal perspective, the ICER was estimated at €174/severe exacerbation avoided in Finland while BUD/FORM + TIO was dominant in the other countries. From the healthcare perspective, ICERs were DKK 1580 (€212), €307 and SEK 1573 (€165) per severe exacerbation avoided for Denmark, Finland and Sweden, respectively, while BUD/FORM + TIO was dominant in Norway. Including antibiotics decreased ICERs by 8-15%. Sensitivity analyses showed that results were overall robust. BUD/FORM + TIO represents a clinical and economic benefit to health systems and society for the treatment of COPD in the Nordic countries. (ClinicalTrials.gov Identifier: NCT00496470). Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., heat damaged, and paddy kernels (singly or combined) Total (number in 500 grams) Heat damaged kernels and objectionable seeds (number in 500 grams) Red rice and damaged kernels (singly or combined...

  9. Insect pest management decisions in food processing facilities

    USDA-ARS?s Scientific Manuscript database

    Pest management decision making in food processing facilities such as flour mills, rice mills, human and pet food manufacturing facilities, distribution centers and warehouses, and retail stores is a challenging undertaking. Insect pest management programs require an understanding of the food facili...

  10. 5. 7 MW Tornados for Dunn Paper mill power CHP plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffs, E.

    The first commercial installation in the United States of Ruston's high efficiency Tornado gas turbine is now fully operational at the Dunn Paper Company's Port Huron, Michigan paper mill where they make special light weight papers for packaging and business forms. It's a cogeneration installation powered by three Tornados and two waste heat recovery boilers which provide the mill with all of its electricity and process steam requirements - at high overall thermal efficiency.

  11. Taste bud development and patterning in sighted and blind morphs of Astyanax mexicanus.

    PubMed

    Varatharasan, Nirupa; Croll, Roger P; Franz-Odendaal, Tamara

    2009-12-01

    In the blind cave-dwelling morph of A. mexicanus, the eye degenerates while other sensory systems, such as gustation, are expanded compared to their sighted (surface-dwelling) ancestor. This study compares the development of taste buds along the jaws of each morph. To determine whether cavefish have an altered onset or rate of taste bud development, we fluorescently labeled basal and receptor cells within taste buds over a developmental series. Our results show that taste bud number increases during development in both morphs. The rate of development is, however, accelerated in cavefish; a small difference in taste bud number exists at 5 dpf reaching threefold by 22 dpf. The expansion of taste buds in cavefish is, therefore, detectable after the onset of eye degeneration. This study provides important insights into the timing of taste bud expansion in cavefish as well as enhances our understanding of taste bud development in teleosts in general. (c) 2009 Wiley-Liss, Inc.

  12. A unique approach to demonstrating that apical bud temperature specifically determines leaf initiation rate in the dicot Cucumis sativus.

    PubMed

    Savvides, Andreas; Dieleman, Janneke A; van Ieperen, Wim; Marcelis, Leo F M

    2016-04-01

    Leaf initiation rate is largely determined by the apical bud temperature even when apical bud temperature largely deviates from the temperature of other plant organs. We have long known that the rate of leaf initiation (LIR) is highly sensitive to temperature, but previous studies in dicots have not rigorously demonstrated that apical bud temperature controls LIR independent of other plant organs temperature. Many models assume that apical bud and leaf temperature are the same. In some environments, the temperature of the apical bud, where leaf initiation occurs, may differ by several degrees Celsius from the temperature of other plant organs. In a 28-days study, we maintained temperature differences between the apical bud and the rest of the individual Cucumis sativus plants from -7 to +8 °C by enclosing the apical buds in transparent, temperature-controlled, flow-through, spheres. Our results demonstrate that LIR was completely determined by apical bud temperature independent of other plant organs temperature. These results emphasize the need to measure or model apical bud temperatures in dicots to improve the prediction of crop development rates in simulation models.

  13. Model of human immunodeficiency virus budding and self-assembly: Role of the cell membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Nguyen, Toan T.

    2008-11-01

    Budding from the plasma membrane of the host cell is an indispensable step in the life cycle of the human immunodeficiency virus (HIV), which belongs to a large family of enveloped RNA viruses, retroviruses. Unlike regular enveloped viruses, retrovirus budding happens concurrently with the self-assembly of the main retrovirus protein subunits (called Gag protein after the name of the genetic material that codes for this protein: Group-specific AntiGen) into spherical virus capsids on the cell membrane. Led by this unique budding and assembly mechanism, we study the free energy profile of retrovirus budding, taking into account the Gag-Gag attraction energy and the membrane elastic energy. We find that if the Gag-Gag attraction is strong, budding always proceeds to completion. During early stage of budding, the zenith angle of partial budded capsids, α , increases with time as α∝t1/2 . However, if the Gag-Gag attraction is weak, a metastable state of partial budding appears. The zenith angle of these partially spherical capsids is given by α0≃(τ2/κσ)1/4 in a linear approximation, where κ and σ are the bending modulus and the surface tension of the membrane, and τ is a line tension of the capsid proportional to the strength of Gag-Gag attraction. Numerically, we find α0<0.3π without any approximations. Using experimental parameters, we show that HIV budding and assembly always proceed to completion in normal biological conditions. On the other hand, by changing Gag-Gag interaction strength or membrane rigidity, it is relatively easy to tune it back and forth between complete budding and partial budding. Our model agrees reasonably well with experiments observing partial budding of retroviruses including HIV.

  14. During development intense Sox2 expression marks not only Prox1-expressing taste bud cell but also perigemmal cell lineages.

    PubMed

    Nakayama, Ayumi; Miura, Hirohito; Ooki, Makoto; Harada, Shuitsu

    2015-03-01

    Sox2 is proposed to regulate the differentiation of bipotential progenitor cells into taste bud cells. However, detailed expression of Sox2 remains unclear. In this report, Sox2 expression during taste bud development in the fungiform (FF), circumvallate (CV) and soft palate (SP) areas is examined together with Prox1. First, we immunohistochemically checked Prox1 expression in adults and found that almost all taste bud cells are Prox1-positive. During FF development, intense Sox2 expression was restricted to taste bud primordia expressing Prox1 at E12.5. However, at E14.5, Sox2 was intensely expressed outside the developing taste buds resolving to perigemmal Sox2 expression in adults. In the SP, at E14.5, taste bud primordia emerged as Prox1-expressing cell clusters. However, intense Sox2 expression was not restricted to taste bud primordia but was detected widely in the epithelium. During development, Sox2 expression outside developing taste buds was generally down-regulated but was retained in the perigemmal region similarly to that in the FF. In the CV, the initial stage of taste bud development remained unclear because of the lack of taste bud primordia comparable to that in the FF and SP. Here, we show that Prox1-expressing cells appear in the apical epithelium at E12.5, in the inner trench wall at E17.5 and in the outer trench wall at E18.5. Sox2 was again not restricted to developing taste bud cells expressing Prox1 during CV development. The expression patterns support that Sox2 does not serve as a cell fate selector between taste bud cells and surrounding keratinocytes but rather may contribute to them both.

  15. The glossopharyngeal nerve controls epithelial expression of Sprr2a and Krt13 around taste buds in the circumvallate papilla.

    PubMed

    Miura, Hirohito; Kusakabe, Yuko; Hashido, Kento; Hino, Akihiro; Ooki, Makoto; Harada, Shuitsu

    2014-09-19

    Tastants reach the tip of taste bud cells through taste pores which are openings in the epithelium. We found Sprr2a is selectively expressed in the upper layer of the epithelium surrounding taste buds in the circumvallate papilla (CV) where the epithelium is organized into taste pores. Sprr2a is a member of a small proline-rich protein family, which is suggested to be involved in the restitution/migration phase of epithelial wound healing. The expression of Sprr2a was restricted to the upper layer and largely segregated with Ptch1 expression that is restricted to the basal side of the epithelium around the taste buds. Denervation resulted in the gradual loss of Sprr2a-expressing cells over 10 days similarly to that of taste bud cells which is in contrast to the rapid loss of Ptch1 expression. We also found that denervation caused an increase of Keratin (Krt)13 expression around taste buds that corresponded with the disappearance of Sprr2a and Ptch1 expression. Taste buds were surrounded by Krt13-negative cells in the CV in control mice. However, at 6 days post-denervation, taste buds were tightly surrounded by Krt13-positive cells. During taste bud development, taste bud cells emerged together with Krt13-negtive cells, and Sprr2a expression was increased along with the progress of taste bud development. These results demonstrate that regional gene expression surrounding taste buds is associated with taste bud formation and controlled by the innervating taste nerve. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Effects of zinc deficiency on the vallate papillae and taste buds in rats.

    PubMed

    Chou, H C; Chien, C L; Huang, H L; Lu, K S

    2001-05-01

    Zinc deficiency is associated with multiple clinical complications, including taste disturbance, anorexia, growth retardation, skin changes, and hypogonadism. We investigated the zinc-deficiency-induced morphologic changes in the vallate taste buds of weanling and young adult male Wistar rats. A total of 24 weanling and 30 young adult rats were used. Each age group was further divided into a control group fed a zinc-adequate (50 ppm) diet, a zinc-deficient (< 1 ppm) diet group, and a zinc-adequate pair-fed group who were fed the same amount of food as that taken by the zinc-deficient group. Weanling rats were fed for 4 weeks and young adult rats were fed for 6 weeks. The morphometry and morphologic changes of vallate taste buds were analyzed using light and transmission electron microscopy. Light microscopy revealed no significant difference in papilla size and morphology among the various groups. In both weanling and young adult rats in the zinc-deficient diet and pair-fed groups, the number of taste buds per papilla (per animal) and the average profile area of the taste bud were significantly smaller than those of the corresponding controls (p < 0.05). Ultrastructural changes were seen only in the taste buds of weanling rats fed the zinc-deficient diet, with derangement of the architecture of the taste bud and widening of the intercellular space between taste bud cells. The proportion of type I taste bud cells in the taste buds of weanling rats fed the zinc-deficient diet decreased from 59% to 39%, and that of type II taste bud cells decreased from 25% to 12%. No obvious changes in the ultrastructure of type III taste bud cells were observed. The main effects of zinc deficiency in weanling and young adult rats and in adequate diet pair-fed rats were changes in the number and size of taste buds, and fine structure changes in the taste bud cells, especially during the accelerated growth stage after weaning.

  17. Coevolutionary patterning of teeth and taste buds

    PubMed Central

    Bloomquist, Ryan F.; Parnell, Nicholas F.; Phillips, Kristine A.; Fowler, Teresa E.; Yu, Tian Y.; Sharpe, Paul T.; Streelman, J. Todd

    2015-01-01

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium. PMID:26483492

  18. Coevolutionary patterning of teeth and taste buds.

    PubMed

    Bloomquist, Ryan F; Parnell, Nicholas F; Phillips, Kristine A; Fowler, Teresa E; Yu, Tian Y; Sharpe, Paul T; Streelman, J Todd

    2015-11-03

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium.

  19. Effect of Surfactant Molecular Weight on Particle Morphology of SmCo5 Prepared by High Energy Ball Milling

    DTIC Science & Technology

    2014-04-01

    nanostructured materials to the high temperatures required for surfactant removal is known to result in grain growth and oxidation . In other studies...and oxidation . In other studies, select surfactant systems, such as octanoic acid or oleylamine, have been used, however, a systematic study examining...argon atmosphere to prevent oxidation . The vial was loaded into a SPEX 8000 D mill for 1 h. After milling, each powder sample was washed with ace- tone

  20. The ratio of red light to far red light alters Arabidopsis axillary bud growth and abscisic acid signalling before stem auxin changes.

    PubMed

    Holalu, Srinidhi V; Finlayson, Scott A

    2017-02-01

    Arabidopsis thaliana shoot branching is inhibited by a low red light to far red light ratio (R:FR, an indicator of competition), and by loss of phytochrome B function. Prior studies have shown that phytochrome B deficiency suppresses bud growth by elevating systemic auxin signalling, and that increasing the R:FR promotes the growth of buds suppressed by low R:FR by inhibiting bud abscisic acid (ABA) accumulation and signalling. Here, systemic auxin signalling and bud ABA signalling were examined in the context of rapid bud responses to an increased R:FR. Increasing the R:FR promoted the growth of buds inhibited by a low R:FR within 6 h. Relative to a low R:FR, bud ABA accumulation and signalling in plants given a high R:FR showed a sustained decline within 3 h, prior to increased growth. Main stem auxin levels and signalling showed a weak, transient response. Systemic effects and those localised to the bud were further examined by decapitating plants maintained either under a low R:FR or provided with a high R:FR. Increasing the R:FR promoted bud growth before decapitation, but decapitated plants eventually formed longer branches. The data suggest that rapid responses to an increased R:FR may be mediated by changes in bud ABA physiology, although systemic auxin signalling is necessary for sustained bud repression under a low R:FR. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Identification of milling and baking quality QTL in multiple soft wheat mapping populations

    USDA-ARS?s Scientific Manuscript database

    Wheat derived food products require a range of characteristics. Identification and understanding of the genetic components controlling end-use quality of wheat is important for crop improvement. We assessed the underlying genetics controlling specific milling and baking quality parameters of soft wh...

  2. An elastic model of partial budding of retroviruses

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Nguyen, Toan

    2008-03-01

    Retroviruses are characterized by their unique infection strategy of reverse transcription, in which the genetic information flows from RNA back to DNA. The most well known representative is the human immunodeficiency virus (HIV). Unlike budding of traditional enveloped viruses, retrovirus budding happens together with the formation of spherical virus capsids at the cell membrane. Led by this unique budding mechanism, we proposed an elastic model of retrovirus budding in this work. We found that if the lipid molecules of the membrane are supplied fast enough from the cell interior, the budding always proceeds to completion. In the opposite limit, there is an optimal size of partially budded virions. The zenith angle of these partially spherical capsids, α, is given by α˜(2̂/κσ)^1/4, where κ is the bending modulus of the membrane, σ is the surface tension of the membrane, and τ characterizes the strength of capsid protein interaction. If τ is large enough such that α˜π, the budding is complete. Our model explained many features of retrovirus partial budding observed in experiments.

  3. Milling of rice grains. The degradation on three structural levels of starch in rice flour can be independently controlled during grinding.

    PubMed

    Tran, Thuy T B; Shelat, Kinnari J; Tang, Daniel; Li, Enpeng; Gilbert, Robert G; Hasjim, Jovin

    2011-04-27

    Whole polished rice grains were ground using cryogenic and hammer milling to understand the mechanisms of degradation of starch granule structure, whole (branched) molecular structure, and individual branches of the molecules during particle size reduction (grinding). Hammer milling caused greater degradation to starch granules than cryogenic milling when the grains were ground to a similar volume-median diameter. Molecular degradation of starch was not evident in the cryogenically milled flours, but it was observed in the hammer-milled flours with preferential cleavage of longer (amylose) branches. This can be attributed to the increased grain brittleness and fracturability at cryogenic temperatures, reducing the mechanical energy required to diminish the grain size and thus reducing the probability of chain scission. The results indicate, for the first time, that branching, whole molecule, and granule structures of starch can be independently altered by varying grinding conditions, such as grinding force and temperature.

  4. Fabrication of an r-Al2Ti intermetallic matrix composite reinforced with α-Al2O3 ceramic by discontinuous mechanical milling for thermite reaction

    NASA Astrophysics Data System (ADS)

    Mosleh, A.; Ehteshamzadeh, M.; Taherzadeh Mousavian, R.

    2014-10-01

    In this study, a powder mixture with an Al/TiO2 molar ratio of 10/3 was used to form an r-Al2Ti intermetallic matrix composite (IMC) reinforced with α-Al2O3 ceramic by a novel milling technique, called discontinuous mechanical milling (DMM) instead of milling and ignition of the produced thermite. The results of energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) of samples with varying milling time indicate that this fabrication process requires considerable mechanical energy. It is shown that Al2Ti-Al2O3 IMC with small grain size was produced by DMM after 15 h of ball milling. Peaks for γ-TiAl as well as Al2Ti and Al2O3 are observed in XRD patterns after DMM followed by heat treatment. The microhardness of the DMM-treated composite produced after heat treatment was higher than Hv 700.

  5. Gustatory stimuli representing different perceptual qualities elicit distinct patterns of neuropeptide secretion from taste buds.

    PubMed

    Geraedts, Maartje C P; Munger, Steven D

    2013-04-24

    Taste stimuli that evoke different perceptual qualities (e.g., sweet, umami, bitter, sour, salty) are detected by dedicated subpopulations of taste bud cells that use distinct combinations of sensory receptors and transduction molecules. Here, we report that taste stimuli also elicit unique patterns of neuropeptide secretion from taste buds that are correlated with those perceptual qualities. We measured tastant-dependent secretion of glucagon-like peptide-1 (GLP-1), glucagon, and neuropeptide Y (NPY) from circumvallate papillae of Tas1r3(+/+), Tas1r3(+/-) and Tas1r3 (-/-) mice. Isolated tongue epithelia were mounted in modified Ussing chambers, permitting apical stimulation of taste buds; secreted peptides were collected from the basal side and measured by specific ELISAs. Appetitive stimuli (sweet: glucose, sucralose; umami: monosodium glutamate; polysaccharide: Polycose) elicited GLP-1 and NPY secretion and inhibited basal glucagon secretion. Sweet and umami stimuli were ineffective in Tas1r3(-/-) mice, indicating an obligatory role for the T1R3 subunit common to the sweet and umami taste receptors. Polycose responses were unaffected by T1R3 deletion, consistent with the presence of a distinct polysaccharide taste receptor. The effects of sweet stimuli on peptide secretion also required the closing of ATP-sensitive K(+) (KATP) channels, as the KATP channel activator diazoxide inhibited the effects of glucose and sucralose on both GLP-1 and glucagon release. Both sour citric acid and salty NaCl increased NPY secretion but had no effects on GLP-1 or glucagon. Bitter denatonium showed no effects on these peptides. Together, these results suggest that taste stimuli of different perceptual qualities elicit unique patterns of neuropeptide secretion from taste buds.

  6. Light and temperature sensing and signaling in induction of bud dormancy in woody plants.

    PubMed

    Olsen, Jorunn E

    2010-05-01

    In woody species cycling between growth and dormancy must be precisely synchronized with the seasonal climatic variations. Cessation of apical growth, resulting from exposure to short photoperiod (SD) and altered light quality, is gating the chain of events resulting in bud dormancy and cold hardiness. The relative importance of these light parameters, sensed by phytochromes and possibly a blue light receptor, varies with latitude. Early in SD, changes in expression of light signaling components dominate. In Populus active shoot elongation is linked to high expression of FLOWERING LOCUS T (FT) resulting from coincidence of high levels of CONSTANS and light at the end of days longer than a critical one. In Picea, PaFT4 expression increases substantially in response to SD. Thus, in contrast to Populus-FT, PaFT4 appears to function in inhibition of shoot elongation or promotion of growth cessation. Accordingly, different FT-genes appear to have opposite effects in photoperiodic control of shoot elongation. Reduction in gibberellin under SD is involved in control of growth cessation and bud formation, but not further dormancy development. Coinciding with formation of a closed bud, abscisic acid activity increases and cell-proliferation genes are down-regulated. When dormancy is established very few changes in gene expression occur. Thus, maintenance of dormancy is not dependent on comprehensive transcriptional regulation. In some species low temperature induces growth cessation and dormancy, in others temperature affects photoperiod requirement. The temperature under SD affects both the rate of growth cessation, bud formation and depth of dormancy. As yet, information on the molecular basis of these responses to temperature is scarce.

  7. Involvement of an Actomyosin Contractile Ring in Saccharomyces cerevisiae Cytokinesis

    PubMed Central

    Bi, Erfei; Maddox, Paul; Lew, Daniel J.; Salmon, E.D.; McMillan, John N.; Yeh, Elaine; Pringle, John R.

    1998-01-01

    In Saccharomyces cerevisiae, the mother cell and bud are connected by a narrow neck. The mechanism by which this neck is closed during cytokinesis has been unclear. Here we report on the role of a contractile actomyosin ring in this process. Myo1p (the only type II myosin in S. cerevisiae) forms a ring at the presumptive bud site shortly before bud emergence. Myo1p ring formation depends on the septins but not on F-actin, and preexisting Myo1p rings are stable when F-actin is depolymerized. The Myo1p ring remains in the mother–bud neck until the end of anaphase, when a ring of F-actin forms in association with it. The actomyosin ring then contracts to a point and disappears. In the absence of F-actin, the Myo1p ring does not contract. After ring contraction, cortical actin patches congregate at the mother–bud neck, and septum formation and cell separation rapidly ensue. Strains deleted for MYO1 are viable; they fail to form the actin ring but show apparently normal congregation of actin patches at the neck. Some myo1Δ strains divide nearly as efficiently as wild type; other myo1Δ strains divide less efficiently, but it is unclear whether the primary defect is in cytokinesis, septum formation, or cell separation. Even cells lacking F-actin can divide, although in this case division is considerably delayed. Thus, the contractile actomyosin ring is not essential for cytokinesis in S. cerevisiae. In its absence, cytokinesis can still be completed by a process (possibly localized cell–wall synthesis leading to septum formation) that appears to require septin function and to be facilitated by F-actin. PMID:9732290

  8. Exploring Event and Status Based Phenological Monitoring in Citizen Science Projects: Lessons Learned from Project BudBurst

    NASA Astrophysics Data System (ADS)

    Ward, D.; Henderson, S.; Newman, S. J.

    2012-12-01

    Citizen science projects in ecology are in a unique position to address the needs of both the science and education communities. Such projects can provide needed data to further understanding of ecological processes at multiple spatial scales while also increasing public understanding of the importance of the ecological sciences. Balancing the needs of both communities, it is important that citizen science programs also provide different 'entry' points to appeal to diverse segments of society. In the case of NEON's Project BudBurst, a national plant phenology citizen science program, two approaches were developed to address the ongoing challenge to recruitment and retention of participants. Initially, Project BudBurst was designed to be an event-based phenology program. Participants were asked to identify a plant and report on the timing of specific phenoevents throughout the year. This approach requires a certain level of participation, which while yielding useful results, is not going to appeal to the broadest audience possible. To broaden participation, in 2011 and 2012, Project BudBurst added campaigns targeted at engaging individuals in making simple status-based reports of a plant they chose. Three targeted field campaigns were identified to take advantage of times when people notice changes to plants in their environment, using simple status-based protocols: Fall Into Phenology, Cherry Blossom Blitz, and Summer Solstice Snapshot. The interest and participation in these single report phenological status-based campaigns exceeded initial expectations. For example, Fall Into Phenology attracted individuals who otherwise had not considered participating in an ongoing field campaign. In the past, observations of fall phenology events submitted to Project BudBurst had been limited. By providing the opportunity for submitting simple, single reports, the number of both new participants and submitted observations increased significantly.

  9. Long-term Follow-up Results of Regeneration Process of Fungiform Taste Buds After Severing the Chorda Tympani Nerve During Middle Ear Surgery.

    PubMed

    Saito, Takehisa; Ito, Tetsufumi; Ito, Yumi; Manabe, Yasuhiro

    2016-05-01

    To elucidate the regeneration process of fungiform taste buds after severing the chorda tympani nerve (CTN) by confocal laser scanning microscopy in vivo. In 7 consecutive patients whose CTN was severed during tympanoplasty, an average of 10 fungiform papillae in the midlateral region of the tongue were periodically observed, and the number of taste buds was counted until 12 to 24 months after surgery. Gustatory function was assessed by EGM. EGM thresholds showed no response within 1 month after surgery in any patient. All taste buds had disappeared until 13 to 71 days after surgery. Regenerated taste buds were first detected 5 to 8 months after surgery in 5 of the 7 patients. EGM thresholds recovered to their preoperative values in 2 patients. In these 2 patients, the number of regenerated taste buds gradually increased in combination with a recovered taste function. However, a time lag existed between taste bud regeneration and taste function recovery. EGM thresholds did not recover in the other 3 patients with regenerated taste buds, suggesting that these taste buds were immature without gustatory function. The long-term regeneration process of fungiform taste buds could be clarified using confocal laser scanning microscopy. © The Author(s) 2015.

  10. The Septins Function in G1 Pathways that Influence the Pattern of Cell Growth in Budding Yeast

    PubMed Central

    Egelhofer, Thea A.; Villén, Judit; McCusker, Derek; Gygi, Steven P.; Kellogg, Douglas R.

    2008-01-01

    The septins are a conserved family of proteins that have been proposed to carry out diverse functions. In budding yeast, the septins become localized to the site of bud emergence in G1 but have not been thought to carry out important functions at this stage of the cell cycle. We show here that the septins function in redundant mechanisms that are required for formation of the bud neck and for the normal pattern of cell growth early in the cell cycle. The Shs1 septin shows strong genetic interactions with G1 cyclins and is directly phosphorylated by G1 cyclin-dependent kinases, consistent with a role in early cell cycle events. However, Shs1 phosphorylation site mutants do not show genetic interactions with the G1 cyclins or obvious defects early in the cell cycle. Rather, they cause an increased cell size and aberrant cell morphology that are dependent upon inhibitory phosphorylation of Cdk1 at the G2/M transition. Shs1 phosphorylation mutants also show defects in interaction with the Gin4 kinase, which associates with the septins during G2/M and plays a role in regulating inhibitory phosphorylation of Cdk1. Phosphorylation of Shs1 by G1 cyclin-dependent kinases plays a role in events that influence Cdk1 inhibitory phosphorylation. PMID:18431499

  11. Mhr1p-dependent concatemeric mitochondrial DNA formation for generating yeast mitochondrial homoplasmic cells.

    PubMed

    Ling, Feng; Shibata, Takehiko

    2004-01-01

    Mitochondria carry many copies of mitochondrial DNA (mtDNA), but mt-alleles quickly segregate during mitotic growth through unknown mechanisms. Consequently, all mtDNA copies are often genetically homogeneous within each individual ("homoplasmic"). Our previous study suggested that tandem multimers ("concatemers") formed mainly by the Mhr1p (a yeast nuclear gene-encoded mtDNA-recombination protein)-dependent pathway are required for mtDNA partitioning into buds with concomitant monomerization. The transmission of a few randomly selected clones (as concatemers) of mtDNA into buds is a possible mechanism to establish homoplasmy. The current study provides evidence for this hypothesis as follows: the overexpression of MHR1 accelerates mt-allele-segregation in growing heteroplasmic zygotes, and mhr1-1 (recombination-deficient) causes its delay. The mt-allele-segregation rate correlates with the abundance of concatemers, which depends on Mhr1p. In G1-arrested cells, concatemeric mtDNA was labeled by [14C]thymidine at a much higher density than monomers, indicating concatemers as the immediate products of mtDNA replication, most likely in a rolling circle mode. After releasing the G1 arrest in the absence of [14C]thymidine, the monomers as the major species in growing buds of dividing cells bear a similar density of 14C as the concatemers in the mother cells, indicating that the concatemers in mother cells are the precursors of the monomers in buds.

  12. BudBurst Buddies: A New Tool for Engaging the Youngest Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Henderson, S.; Ward, D.

    2010-12-01

    BudBurst Buddies (www.budburstbuddies.org) introduces elementary school age children to the science of observing plants and the timing of phenological (life cycle) events. BudBurst Buddies is a new part of the Project BudBurst national citizen science initiative (www.budburst.org), which allows individuals to engage in the scientific process, contributing to a better understanding of climate change while increasing public awareness of phenology and the impacts of climate change on plants. As a first step towards engaging the next generation of citizen scientists, BudBurst Buddies provides the opportunity for children to gain experience with scientific research and increases awareness of how plants change throughout the year. Children can participate in BudBurst Buddies on their own, with their families, or in formal or informal education settings. Each child who participates creates a journal about a plant of his or her choosing, makes observations of the plant over the growing season and submits findings online, earning an official BudBurst Buddies certificate. An online storybook for kids tells how two children, Lily and Sage, observed plants in their neighborhood and became BudBurst Buddies. This presentation will provide an overview of the BudBurst Buddies newly developed resources. BudBurst Buddies is a part of Project BudBurst, a national citizen science program coordinated by the National Ecological Observatory Network (NEON) and the Chicago Botanic Garden. Funding for this resource was provided by NEON, NSF, NASA, and the National Geographic Education Foundation.

  13. The RING domain and the L79 residue of Z protein are involved in both the rescue of nucleocapsids and the incorporation of glycoproteins into infectious chimeric arenavirus-like particles.

    PubMed

    Casabona, Juan Cruz; Levingston Macleod, Jesica M; Loureiro, Maria Eugenia; Gomez, Guillermo A; Lopez, Nora

    2009-07-01

    Arenaviruses, such as Tacaribe virus (TacV) and its closely related pathogenic Junin virus (JunV), are enveloped viruses with a bipartite negative-sense RNA genome that encodes the nucleocapsid protein (N), the precursor of the envelope glycoprotein complex (GP), the polymerase (L), and a RING finger protein (Z), which is the driving force of arenavirus budding. We have established a plasmid-based system which allowed the successful packaging of TacV-like nucleocapsids along with Z and GP of JunV into infectious virus-like particles (VLPs). By coexpressing different combinations of the system components, followed by biochemical analysis of the VLPs, the requirements for the assembly of both N and GP into particles were defined. We found that coexpression of N with Z protein in the absence of minigenome and other viral proteins was sufficient to recruit N within lipid-enveloped Z-containing VLPs. In addition, whereas GP was not required for the incorporation of N, coexpression of N substantially enhanced the ratio of GP to Z into VLPs. Disruption of the RING structure or mutation of residue L79 to alanine within Z protein, although it had no effect on Z self-budding, severely impaired VLP infectivity. These mutations drastically altered intracellular Z-N interactions and the incorporation of both N and GP into VLPs. Our results support the conclusion that the interaction between Z and N is required for assembly of both the nucleocapsids and the glycoproteins into infectious arenavirus budding particles.

  14. 7 CFR 868.256 - Milling requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Brown Rice for Processing Principles....252(g)) in brown rice for processing, the degree of milling shall be equal to, or better than, that of the interpretive line sample for “well-milled” rice. [42 FR 40869, Aug. 12, 1977. Redesignated at...

  15. 7 CFR 868.256 - Milling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Brown Rice for Processing Principles....252(g)) in brown rice for processing, the degree of milling shall be equal to, or better than, that of the interpretive line sample for “well-milled” rice. [42 FR 40869, Aug. 12, 1977. Redesignated at...

  16. 7 CFR 868.205 - Milling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Principles Governing... rough rice, the degree of milling shall be equal to, or better than, that of the interpretive line sample for “well-milled” rice. [42 FR 40869, Aug. 12, 1977. Redesignated at 54 FR 21413, May 18, 1989...

  17. 7 CFR 868.205 - Milling requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Principles Governing... rough rice, the degree of milling shall be equal to, or better than, that of the interpretive line sample for “well-milled” rice. [42 FR 40869, Aug. 12, 1977. Redesignated at 54 FR 21413, May 18, 1989...

  18. 7 CFR 305.26 - Khapra beetle treatment schedule for feeds and milled products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Heat... requirements. This treatment must be specifically authorized in each case by the Director of Plant Health... 7 Agriculture 5 2010-01-01 2010-01-01 false Khapra beetle treatment schedule for feeds and milled...

  19. The structure and dynamics of Nano Particles encapsulated by the SDS monolayer collapse at the water/TCE interface

    PubMed Central

    Shi, Wenxiong

    2016-01-01

    The super-saturated surfactant monolayer collapses with the nanoparticles (NPs) at the water/trichloroethylene (TCE) interface are investigated using molecular dynamics (MD) simulations. The results show that sodium alkyl sulfate (SDS) monolayer collapse is initiated by buckling and followed primarily by budding and the bud encapsulating the NPs and oil molecules. The developed bud detaches from the monolayer into a water phase and forms the swollen micelle emulsion with NPs and oil molecules. We investigate the wavelength of the initial budding and the theoretical description of the budding process. The wavelength of the monolayer increases with bending modulus. The energy barrier of the budding can be easily overcome by thermal fluctuation energy, which indicates that budding process proceeds rapidly. PMID:27853312

  20. The structure and dynamics of Nano Particles encapsulated by the SDS monolayer collapse at the water/TCE interface

    NASA Astrophysics Data System (ADS)

    Shi, Wenxiong

    2016-11-01

    The super-saturated surfactant monolayer collapses with the nanoparticles (NPs) at the water/trichloroethylene (TCE) interface are investigated using molecular dynamics (MD) simulations. The results show that sodium alkyl sulfate (SDS) monolayer collapse is initiated by buckling and followed primarily by budding and the bud encapsulating the NPs and oil molecules. The developed bud detaches from the monolayer into a water phase and forms the swollen micelle emulsion with NPs and oil molecules. We investigate the wavelength of the initial budding and the theoretical description of the budding process. The wavelength of the monolayer increases with bending modulus. The energy barrier of the budding can be easily overcome by thermal fluctuation energy, which indicates that budding process proceeds rapidly.

  1. Actin cable dynamics in budding yeast

    PubMed Central

    Yang, Hyeong-Cheol; Pon, Liza A.

    2002-01-01

    Actin cables, bundles of actin filaments that align along the long axis of budding yeast, are crucial for establishment of cell polarity. We fused green fluorescent protein (GFP) to actin binding protein 140 (Abp140p) and visualized actin cable dynamics in living yeast. We detected two populations of actin cables: (i) bud-associated cables, which extend from the bud along the mother-bud axis, and (ii) randomly oriented cables, which are relatively short. Time-lapse imaging of Abp140p–GFP revealed an apparent increase in the length of bud-associated actin cables. Analysis of movement of Abp140p–GFP fiduciary marks on bud-associated cables and fluorescence loss in photobleaching experiments revealed that this apparent elongation occurs by assembly of new material at the end of the cable within the bud and movement of the opposite end of the cable toward the tip of the mother cell distal to the bud. The rate of extension of the tip of an elongating actin cable is 0.29 ± 0.08 μm/s. Latrunculin A (Lat-A) treatment completely blocked this process. We also observed movement of randomly oriented cables around the cortex of cells at a rate of 0.59 ± 0.14 μm/s. Mild treatment with Lat-A did not affect the velocity of movement of randomly oriented cables. However, Lat-A treatment did increase the number of randomly oriented, motile cables per cell. Our observations suggest that establishment of bud-associated actin cables during the cell cycle is accomplished not by realignment of existing cables but by assembly of new cables within the bud or bud neck, followed by elongation. PMID:11805329

  2. BudBurst Buddies: Introducing Young Citizen Scientists to Plants and Environmental Change

    NASA Astrophysics Data System (ADS)

    Ward, D.; Gardiner, L. S.; Henderson, S.

    2011-12-01

    As part of Project BudBurst, the BudBurst Buddies recently moved to the National Ecological Network (NEON) as part of its Education and Public Engagement efforts. The BudBurst Buddies (www.budburstbuddies.org) were created to engage elementary school age children in the science of observing plants and the timing of phenological (life cycle) events. BudBurst Buddies is a part of the Project BudBurst national citizen science initiative (www.budburst.org), which allows individuals to engage in the scientific process, contributing to a better understanding of climate change while increasing public awareness of phenology and the impacts of climate change on plants. As a first step towards engaging the next generation of citizen scientists, BudBurst Buddies provides the opportunity for children to gain experience with scientific research and increases awareness of how plants change throughout the year. Hundreds of young students have participated in the inaugural year of BudBurst Buddies. Children can participate in BudBurst Buddies on their own, with their families, or in formal or informal education settings. The program was recently highlighted by education staff at the New York Hall of Science and numerous classrooms have been implementing this resource as part of their curriculum. Each child who participates creates a journal about a plant of his or her choosing, makes observations of the plant over the growing season and submits findings online, earning an official BudBurst Buddies certificate. An online storybook for kids tells how two children, Lily and Sage, observed plants in their neighborhood and became BudBurst Buddies. This presentation will provide an overview of the BudBurst Buddies resources including a new implementation guide and will also share feedback from the first year of implementation.

  3. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.

    PubMed

    Basler, David; Körner, Christian

    2014-04-01

    Spring phenology of temperate forest trees is optimized to maximize the length of the growing season while minimizing the risk of freezing damage. The release from winter dormancy is environmentally mediated by species-specific responses to temperature and photoperiod. We investigated the response of early spring phenology to temperature and photoperiod at different stages of dormancy release in cuttings from four temperate tree species in controlled environments. By tracking bud development, we were able to identify the onset of bud swelling and bud growth in Acer pseudoplatanus L., Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl. and Picea abies (L.) H. Karst. At a given early stage of dormancy release, the onset and duration of the bud swelling prior to bud burst are driven by concurrent temperature and photoperiod, while the maximum growth rate is temperature dependent only, except for Fagus, where long photoperiods also increased bud growth rates. Similarly, the later bud burst was controlled by temperature and photoperiod (in the photoperiod sensitive species Fagus, Quercus and Picea). We conclude that photoperiod is involved in the release of dormancy during the ecodormancy phase and may influence bud burst in trees that have experienced sufficient chilling. This study explored and documented the early bud swelling period that precedes and defines later phenological stages such as canopy greening in conventional phenological works. It is the early bud growth resumption that needs to be understood in order to arrive at a causal interpretation and modelling of tree phenology at a large scale. Classic spring phenology events mark visible endpoints of a cascade of processes as evidenced here.

  4. Mitochondrial anchorage and fusion contribute to mitochondrial inheritance and quality control in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Higuchi-Sanabria, Ryo; Charalel, Joseph K; Viana, Matheus P; Garcia, Enrique J; Sing, Cierra N; Koenigsberg, Andrea; Swayne, Theresa C; Vevea, Jason D; Boldogh, Istvan R; Rafelski, Susanne M; Pon, Liza A

    2016-03-01

    Higher-functioning mitochondria that are more reduced and have less ROS are anchored in the yeast bud tip by the Dsl1-family protein Mmr1p. Here we report a role for mitochondrial fusion in bud-tip anchorage of mitochondria. Fluorescence loss in photobleaching (FLIP) and network analysis experiments revealed that mitochondria in large buds are a continuous reticulum that is physically distinct from mitochondria in mother cells. FLIP studies also showed that mitochondria that enter the bud can fuse with mitochondria that are anchored in the bud tip. In addition, loss of fusion and mitochondrial DNA (mtDNA) by deletion of mitochondrial outer or inner membrane fusion proteins (Fzo1p or Mgm1p) leads to decreased accumulation of mitochondria at the bud tip and inheritance of fitter mitochondria by buds compared with cells with no mtDNA. Conversely, increasing the accumulation and anchorage of mitochondria in the bud tip by overexpression of MMR1 results in inheritance of less-fit mitochondria by buds and decreased replicative lifespan and healthspan. Thus quantity and quality of mitochondrial inheritance are ensured by two opposing processes: bud-tip anchorage by mitochondrial fusion and Mmr1p, which favors bulk inheritance; and quality control mechanisms that promote segregation of fitter mitochondria to the bud. © 2016 Higuchi-Sanabria et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho- type GTPases in yeast

    PubMed Central

    1994-01-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine- nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases. PMID:7962098

  6. 48 CFR 1419.705-6 - Postaward responsibilities of the contracting officer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... subcontracting program. Reviews shall be conducted as required based on problems perceived such as insufficient... format shown at 1453.303-70. At the discretion of the CO, the BUDS may conduct the reviews. In addition...

  7. Tyrosine kinase receptor B (TrkB) expression in colorectal cancers highlights anoikis resistance as a survival mechanism of tumour budding cells.

    PubMed

    Dawson, Heather; Grundmann, Sandra; Koelzer, Viktor H; Galván, José A; Kirsch, Richard; Karamitopoulou, Eva; Lugli, Alessandro; Inderbitzin, Daniel; Zlobec, Inti

    2015-04-01

    Tumour buds in colorectal cancer represent an aggressive subgroup of non-proliferating and non-apoptotic tumour cells. We hypothesize that the survival of tumour buds is dependent upon anoikis resistance. The role of tyrosine kinase receptor B (TrkB), a promoter of epithelial-mesenchymal transition and anoikis resistance, in facilitating budding was investigated. Tyrosine kinase receptor B immunohistochemistry was performed on a multiple-punch tissue microarray of 211 colorectal cancer resections. Membranous/cytoplasmic and nuclear expression was evaluated in tumour and buds. Tumour budding was assessed on corresponding whole tissue slides. Relationship to Ki-67 and caspase-3 was investigated. Analysis of Kirsten Ras (KRAS), proto-oncogene B-RAF (BRAF) and cytosine-phosphate-guanosine island methylator phenotype (CIMP) was performed. Membranous/cytoplasmic and nuclear TrkB were strongly, inversely correlated (P < 0.0001; r = -0.41). Membranous/cytoplasmic TrkB was overexpressed in buds compared to the main tumour body (P < 0.0001), associated with larger tumours (P = 0.0236), high-grade budding (P = 0.0011) and KRAS mutation (P = 0.0008). Nuclear TrkB was absent in buds (P <0.0001) and in high-grade budding cancers (P =0.0073). Among patients with membranous/cytoplasmic TrkB-positive buds, high tumour membranous/cytoplasmic TrkB expression was a significant, independent adverse prognostic factor [P = 0.033; 1.79, 95% confidence interval (CI) 1.05-3.05]. Inverse correlations between membranous/cytoplasmic TrkB and Ki-67 (r = -0.41; P < 0.0001) and caspase-3 (r =-0.19; P < 0.05) were observed. Membranous/cytoplasmic TrkB may promote an epithelial-mesenchymal transition (EMT)-like phenotype with high-grade budding and maintain viability of buds themselves. © 2014 John Wiley & Sons Ltd.

  8. The epigenetic memory of temperature during embryogenesis modifies the expression of bud burst-related genes in Norway spruce epitypes.

    PubMed

    Carneros, Elena; Yakovlev, Igor; Viejo, Marcos; Olsen, Jorunn E; Fossdal, Carl Gunnar

    2017-09-01

    Epigenetic memory affects the timing of bud burst phenology and the expression of bud burst-related genes in genetically identical Norway spruce epitypes in a manner usually associated with ecotypes. In Norway spruce, a temperature-dependent epigenetic memory established during embryogenesis affects the timing of bud burst and bud set in a reproducible and predictable manner. We hypothesize that the clinal variation in these phenological traits, which is associated with adaptation to growth under frost-free conditions, has an epigenetic component. In Norway spruce, dehydrins (DHNs) have been associated with extreme frost tolerance. DHN transcript levels decrease gradually prior to flushing, a time when trees are highly sensitive to frost. Furthermore, EARLY BUD BREAK 1 genes (EBB1) and the FT-TFL1-LIKE 2-gene (PaFTL2) were previously suggested to be implied in control of bud phenology. Here we report an analysis of transcript levels of 12 DHNs, 3 EBB1 genes and FTL2 in epitypes of the same genotype generated at different epitype-inducing temperatures, before and during spring bud burst. Earlier flushing of epitypes originating from embryos developed at 18 °C as compared to 28 °C, was associated with differential expression of these genes between epitypes and between buds and last year's needles. The majority of these genes showed significantly different expressions between epitypes in at least one time point. The general trend in DHN expression pattern in buds showed the expected reduction in transcript levels when approaching flushing, whereas, surprisingly, transcript levels peaked later in needles, mainly at the moment of bud burst. Collectively, our results demonstrate that the epigenetic memory of temperature during embryogenesis affects bud burst phenology and expression of the bud burst-related DHN, EBB1 and FTL2 genes in genetically identical Norway spruce epitypes.

  9. Auxin flow-mediated competition between axillary buds to restore apical dominance

    PubMed Central

    Balla, Jozef; Medveďová, Zuzana; Kalousek, Petr; Matiješčuková, Natálie; Friml, Jiří; Reinöhl, Vilém; Procházka, Stanislav

    2016-01-01

    Apical dominance is one of the fundamental developmental phenomena in plant biology, which determines the overall architecture of aerial plant parts. Here we show apex decapitation activated competition for dominance in adjacent upper and lower axillary buds. A two-nodal-bud pea (Pisum sativum L.) was used as a model system to monitor and assess auxin flow, auxin transport channels, and dormancy and initiation status of axillary buds. Auxin flow was manipulated by lateral stem wounds or chemically by auxin efflux inhibitors 2,3,5-triiodobenzoic acid (TIBA), 1-N-naphtylphtalamic acid (NPA), or protein synthesis inhibitor cycloheximide (CHX) treatments, which served to interfere with axillary bud competition. Redirecting auxin flow to different points influenced which bud formed the outgrowing and dominant shoot. The obtained results proved that competition between upper and lower axillary buds as secondary auxin sources is based on the same auxin canalization principle that operates between the shoot apex and axillary bud. PMID:27824063

  10. Formulation of a dry powder influenza vaccine for nasal delivery.

    PubMed

    Garmise, Robert J; Mar, Kevin; Crowder, Timothy M; Hwang, C Robin; Ferriter, Matthew; Huang, Juan; Mikszta, John A; Sullivan, Vincent J; Hickey, Anthony J

    2006-03-10

    The purpose of this research was to prepare a dry powder vaccine formulation containing whole inactivated influenza virus (WIIV) and a mucoadhesive compound suitable for nasal delivery. Powders containing WIIV and either lactose or trehalose were produced by lyophilization. A micro-ball mill was used to reduce the lyophilized cake to sizes suitable for nasal delivery. Chitosan flakes were reduced in size using a cryo-milling technique. Milled powders were sieved between 45 and 125 microm aggregate sizes and characterized for particle size and distribution, morphology, and flow properties. Powders were blended in the micro-ball mill without the ball. Lyophilization followed by milling produced irregularly shaped, polydisperse particles with a median primary particle diameter of approximately 21 microm and a yield of approximately 37% of particles in the 45 to 125 microm particle size range. Flow properties of lactose and trehalose powders after lyophilization followed by milling and sieving were similar. Cryo-milling produced a small yield of particles in the desired size range (<10%). Lyophilization followed by milling and sieving produced particles suitable for nasal delivery with different physicochemical properties as a function of processing conditions and components of the formulation. Further optimization of particle size and morphology is required for these powders to be suitable for clinical evaluation.

  11. Processing umami and other tastes in mammalian taste buds.

    PubMed

    Roper, Stephen D; Chaudhari, Nirupa

    2009-07-01

    Neuroscientists are now coming to appreciate that a significant degree of information processing occurs in the peripheral sensory organs of taste prior to signals propagating to the brain. Gustatory stimulation causes taste bud cells to secrete neurotransmitters that act on adjacent taste bud cells (paracrine transmitters) as well as on primary sensory afferent fibers (neurocrine transmitters). Paracrine transmission, representing cell-cell communication within the taste bud, has the potential to shape the final signal output that taste buds transmit to the brain. The following paragraphs summarize current thinking about how taste signals generally, and umami taste in particular, are processed in taste buds.

  12. Chemical Fate of a Metamorphic Inducer in Larvae-like Buds of the Cnidarian Cassiopea andromeda.

    PubMed

    Fleck, J

    1998-02-01

    Larvae-like vegetative buds of the scyphozoan Cassiopea andromeda metamorphose into polyps in the presence of oligopeptides that have a well-defined primary structure. Buds were incubated with the hexapeptide 14C-dansyl-GPGGPA, a representative inducer. Autoradiography of longitudinal sections of these buds revealed rapid internalization of peptide by the buds. Silver grain density was highest in the pre-pedal disc region (or aboral knob) of metamorphosing buds. Larvae and buds sporadically explore their habitat with this aboral knob, searching for a suitable solid substrate to which irreversible attachment will be made. Buds were incubated for 3, 8, or 16 h with 14C-dansyl-GPGGPA, then homogenized and the supernatants analyzed to determine the chemical fate of the inducer. The signal molecule was shown to be partly degraded to 14C-dansyl-GP, partly to 14C-dansyl-G, and in part still present in its original structure. These cleavage products were also found in the surrounding medium after an incubation time of 8 h with 14C-dansyl-GPGGPA, but did not induce metamorphosis. This study suggests that exposure of metamorphosis-inducing peptides to buds of Cassiopea andromeda results in signal termination.

  13. Kinetics of human immunodeficiency virus budding and assembly

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Nguyen, Toan

    2009-03-01

    Human immunodeficiency virus (HIV) belongs to a large family of RNA viruses, retroviruses. Unlike budding of regular enveloped viruses, retroviruses bud concurrently with the assembly of retroviral capsids on the cell membrane. The kinetics of HIV (and other retroviruses) budding and assembly is therefore strongly affected by the elastic energy of the membrane and fundamentally different from regular viruses. The main result of this work shows that the kinetics is tunable from a fast budding process to a slow and effectively trapped partial budding process, by varying the attractive energy of retroviral proteins (call Gags), relative to the membrane elastic energy. When the Gag-Gag attraction is relatively high, the membrane elastic energy provides a kinetic barrier for the two pieces of the partial capsids to merge. This energy barrier determines the slowest step in the kinetics and the budding time. In the opposite limit, the membrane elastic energy provides not only a kinetic energy barrier, but a free energy barrier. The budding and assembly is effectively trapped at local free energy minimum, corresponding to a partially budded state. The time scale to escape from this metastable state is exponentially large. In both cases, our result fit with experimental measurements pretty well.

  14. Dehydration and osmotic adjustment in apple stem tissue during winter as it relates to the frost resistance of buds.

    PubMed

    Pramsohler, Manuel; Neuner, Gilbert

    2013-08-01

    In deciduous trees, measurement of stem water potential can be difficult during the leafless period in winter. By using thermocouple psychrometry, osmotic water potentials (Ψo; actual Ψo: Ψo(act); Ψo at full saturation: Ψo(sat)) of expressed sap of bark and bud tissue were measured in order to test if the severity of winter desiccation in apple stems could be sufficiently assessed with Ψo. Water potentials were related to frost resistance and freezing behaviour of buds. The determination of Ψo reliably allowed winter desiccation and osmotic adjustments in apple stem tissue to be assessed. In winter in bark tissue, a pronounced decrease in Ψo(act) and Ψo(sat) was found. Decreased Ψo(sat) indicates active osmotic adjustment in the bark as observed earlier in the leaves of evergreen woody plants. In terminal bud meristems, no significant osmotic adjustments occurred and dehydration during winter was much less. Osmotic water potentials, Ψo(act) and Ψo(sat), of bud tissue were always less negative than in the bark. To prevent water movement and dehydration of the bud tissue via this osmotic gradient, it must be compensated for either by a sufficiently high turgor pressure (Ψp) in bark tissue or by the isolation of the bud tissue from the bark during midwinter. During freezing of apple buds, freeze dehydration and extra-organ freezing could be demonstrated by significantly reduced Ψo(act) values of bud meristems that had been excised in the frozen state. Infrared video thermography was used to monitor freezing patterns in apple twigs. During extracellular freezing of intact and longitudinally dissected stems, infrared differential thermal analysis (IDTA) images showed that the bud meristem remains ice free. Even if cooled to temperatures below the frost-killing temperature, no freezing event could be detected in bud meristems during winter. In contrast, after bud break, terminal buds showed a second freezing at the frost-killing temperature that indicates deep supercooling. Our results demonstrate the applicability of thermocouple psychrometry for the assessment of winter desiccation in stem tissues of deciduous trees and corroborate the finding that dormant apple buds survive by extra-organ freezing and do not deep supercool. In addition, they indicate that significant changes of the frost-survival mechanism can occur during the apple bud development in spring.

  15. Gravi-photomorphogenesis of the moss Pottia intermedia protonemata

    NASA Astrophysics Data System (ADS)

    Demkiv, O. T.; Kyjak, N. Y.; Khorkavtsiv, Y. D.; Kit, N. A.

    The protonemata development proceeds in the process of gradual differentiation of growing apical cells and intercalar cells the shortened lateral branches of the latters being transformed into three-dimensional gametophore buds (Demkiv et al., 1991). Normal course of plant development needs favourable external conditions. Sometimes, however, external environment agents can accelerate the development of organism. So, apical protonema cells of darkgrown gravitropic P. intermedia differentiate gametophore-buds in light of low intensity (Ripetskyj, 1999). We investigate the influence of gravistimulation on bud formation in haploid and diploid P. intermedia protonema. Diploid protonema was found to react on light weaker than haploid one. Under the influence of light the darkgrown apical cells and lateral branches of haploid protonema were directly transformed into buds, while in diploid protonema at first the formation of bundles of rhizoid type filaments takes place on the tips of caulonema and buds appeared in center of such bundles. The participation of gravity in gametophore bud formation was assessed by clinorotating protonema in darkness. Being illuminated such protonema also developed buds quickly the latters being formed along all stolon. It can be suggested that at 1g the growth zone of apical cells actively attract inductors of bud formation. During clinorotation the inductors probably are transferred much more slower than under stationary state and that is why the buds arised not only at the tips of stolons but along all their length. It is known that gametophore bud formation can be stimulated by exogenous phytohormones. As M. Bopp (1980) has shown, that kinetin selectively promotes bud formation on moss protonema. Our observations have shown 0,5 -- 50 μ M of kinetin stimulate the bud formation on diploid aposporic protonema much more effectively that on haploid one. It can be concluded that the amount of endogenous cytokinins in haploid protonemal cells is sufficiently high and the addition of exogenous kinetin may be superfluous for bud formation being, however, not superfluous in diploid. It was established earlier that IAA participates gametophore bud formation stimulating caulonema differentiation and inducing the competence to cytokinins action. 3,0 μ M and 30,0 μ M phytotropin of N-1-naphthylphthalamic acid (NPA), the blockator of IAA efflux, were used in our investigations. 1,0 μ M of synthesized auxin I-NAA did not essentially influence gametophore bud formation in both haploid and diploid P. intermedia protonema. However, during combine action of NPA and NAA the inhibitory effect of 3,0 μ M of NPA was eliminated the ability of gravitropic protonema to form gametophore buds being renewed.

  16. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection.

    PubMed

    Li, Yi-Ke; Yang, Juan-Mei; Huang, Yi-Bo; Ren, Dong-Dong; Chi, Fang-Lu

    2015-06-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  17. Comparative ultrastructure of vallate, foliate and fungiform taste buds of golden Syrian hamster.

    PubMed

    Miller, R L; Chaudhry, A P

    1976-01-01

    A fine-structure study of the hamster fungiform, foliate and vallate taste buds was undertaken for comparative purposes. All three taste bud types shared in common composition of the dark cells, light cells, basal cells, nerve fibers and nerve endings and undifferentiated peripheral cells, but morphological difference existed among them. The foliate and vallate taste buds were quite similar in their ultrastructural morphology. Their dark cells displayed long apical necks, long apical microvilli, apical osmiophilic secretory granules and an abundant rough endoplasmic reticulum. The dark cells of the fungiform taste buds, however, showed no neck formation and lacked apical osmiophilic granules. They had short apical microvilli and relatively scant rough endoplasmic reticulum. There was no difference in the fine structure features of the light cells, basal cells and neural elements of different types of taste buds. Both light and dark cells were much more readily distinguishable in foliate and vallate buds than in fungiform buds at both light-and electron-microscopic levels. Foliate and vallate buds demonstrated homogeneous dense substance within the taste pores while fungiform pores were frequently empty. It is speculated that the differences in taste bud morphology may be due to their different lingual locations and/or may be a reflection of the differences in the inductive influences from different nerves. Furthermore, structural differences may be responsible for varying thresholds to different taste modalities.

  18. Role for cER and Mmr1p in anchorage of mitochondria at sites of polarized surface growth in budding yeast.

    PubMed

    Swayne, Theresa C; Zhou, Chun; Boldogh, Istvan R; Charalel, Joseph K; McFaline-Figueroa, José Ricardo; Thoms, Sven; Yang, Christine; Leung, Galen; McInnes, Joseph; Erdmann, Ralf; Pon, Liza A

    2011-12-06

    Mitochondria accumulate at neuronal and immunological synapses and yeast bud tips and associate with the ER during phospholipid biosynthesis, calcium homeostasis, and mitochondrial fission. Here we show that mitochondria are associated with cortical ER (cER) sheets underlying the plasma membrane in the bud tip and confirm that a deletion in YPT11, which inhibits cER accumulation in the bud tip, also inhibits bud tip anchorage of mitochondria. Time-lapse imaging reveals that mitochondria are anchored at specific sites in the bud tip. Mmr1p, a member of the DSL1 family of tethering proteins, localizes to punctate structures on opposing surfaces of mitochondria and cER sheets underlying the bud tip and is recovered with isolated mitochondria and ER. Deletion of MMR1 impairs bud tip anchorage of mitochondria without affecting mitochondrial velocity or cER distribution. Deletion of the phosphatase PTC1 results in increased Mmr1p phosphorylation, mislocalization of Mmr1p, defects in association of Mmr1p with mitochondria and ER, and defects in bud tip anchorage of mitochondria. These findings indicate that Mmr1p contributes to mitochondrial inheritance as a mediator of anchorage of mitochondria to cER sheets in the yeast bud tip and that Ptc1p regulates Mmr1p phosphorylation, localization, and function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Solid-state reactions to synthesize nanostructured lead selenide semiconductor powders by high-energy milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Chavez, H., E-mail: uu_gg_oo@yahoo.com.mx; Reyes-Carmona, F.; Jaramillo-Vigueras, D.

    2011-10-15

    Highlights: {yields} PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. {yields} During high-energy milling oxygen has to be chemically reduced from the lead oxide. {yields} Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature.more » Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.« less

  20. A new milling machine for computer-aided, in-office restorations.

    PubMed

    Kurbad, Andreas

    Chairside computer-aided design/computer-aided manufacturing (CAD/CAM) technology requires an effective technical basis to obtain dental restorations with optimal marginal accuracy, esthetics, and longevity in as short a timeframe as possible. This article describes a compact, 5-axis milling machine based on an innovative milling technology (5XT - five-axis turn-milling technique), which is capable of achieving high-precision milling results within a very short processing time. Furthermore, the device's compact dimensioning and state-of-the-art mode of operation facilitate its use in the dental office. This model is also an option to be considered for use in smaller dental laboratories, especially as the open input format enables it to be quickly and simply integrated into digital processing systems already in use. The possibility of using ceramic and polymer materials with varying properties enables the manufacture of restorations covering all conceivable indications in the field of fixed dental prosthetics.

  1. Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.).

    PubMed

    Fichtner, Franziska; Barbier, Francois F; Feil, Regina; Watanabe, Mutsumi; Annunziata, Maria Grazia; Chabikwa, Tinashe G; Höfgen, Rainer; Stitt, Mark; Beveridge, Christine A; Lunn, John E

    2017-11-01

    Trehalose 6-phosphate (Tre6P) is a signal of sucrose availability in plants, and has been implicated in the regulation of shoot branching by the abnormal branching phenotypes of Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) mutants with altered Tre6P metabolism. Decapitation of garden pea (Pisum sativum) plants has been proposed to release the dormancy of axillary buds lower down the stem due to changes in sucrose supply, and we hypothesized that this response is mediated by Tre6P. Decapitation led to a rapid and sustained rise in Tre6P levels in axillary buds, coinciding with the onset of bud outgrowth. This response was suppressed by simultaneous defoliation that restricts the supply of sucrose to axillary buds in decapitated plants. Decapitation also led to a rise in amino acid levels in buds, but a fall in phosphoenolpyruvate and 2-oxoglutarate. Supplying sucrose to stem node explants in vitro triggered a concentration-dependent increase in the Tre6P content of the buds that was highly correlated with their rate of outgrowth. These data show that changes in bud Tre6P levels are correlated with initiation of bud outgrowth following decapitation, suggesting that Tre6P is involved in the release of bud dormancy by sucrose. Tre6P might also be linked to a reconfiguration of carbon and nitrogen metabolism to support the subsequent growth of the bud into a new shoot. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  2. Distribution, Innervation, and Cellular Organization of Taste Buds in the Sea Catfish, Plotosus japonicus.

    PubMed

    Nakamura, Tatsufumi; Matsuyama, Naoki; Kirino, Masato; Kasai, Masanori; Kiyohara, Sadao; Ikenaga, Takanori

    2017-01-01

    The gustatory system of the sea catfish Plotosus japonicus, like that of other catfishes, is highly developed. To clarify the details of the morphology of the peripheral gustatory system of Plotosus, we used whole-mount immunohistochemistry to investigate the distribution and innervation of the taste buds within multiple organs including the barbels, oropharyngeal cavity, fins (pectoral, dorsal, and caudal), and trunk. Labeled taste buds could be observed in all the organs examined. The density of the taste buds was higher along the leading edges of the barbels and fins; this likely increases the chance of detecting food. In all the fins, the taste buds were distributed in linear arrays parallel to the fin rays. Labeling of nerve fibers by anti-acetylated tubulin antibody showed that the taste buds within each sensory field are innervated in different ways. In the barbels, large nerve bundles run along the length of the organ, with fascicles branching off to innervate polygonally organized groups of taste buds. In the fins, nerve bundles run along the axis of fin rays to innervate taste buds lying in a line. In each case, small fascicles of fibers branch from large bundles and terminate within the basal portions of the taste buds. Serotonin immunohistochemistry demonstrated that most of the taste buds in all the organs examined contained disk-shaped serotonin-immunopositive cells in their basal region. This indicates a similar organization of the taste buds, in terms of the existence of serotonin-immunopositive basal cells, across the different sensory fields in this species. © 2017 S. Karger AG, Basel.

  3. FgBud3, a Rho4-Interacting Guanine Nucleotide Exchange Factor, Is Involved in Polarity Growth, Cell Division and Pathogenicity of Fusarium graminearum.

    PubMed

    Zhang, Chengkang; Luo, Zenghong; He, Dongdong; Su, Li; Yin, Hui; Wang, Guo; Liu, Hong; Rensing, Christopher; Wang, Zonghua

    2018-01-01

    Rho GTPases are signaling macromolecules that are associated with developmental progression and pathogenesis of Fusarium graminearum . Generally, enzymatic activities of Rho GTPases are regulated by Rho GTPase guanine nucleotide exchange factors (RhoGEFs). In this study, we identified a putative RhoGEF encoding gene ( FgBUD3 ) in F. graminearum database and proceeded further by using a functional genetic approach to generate FgBUD3 targeted gene deletion mutant. Phenotypic analysis results showed that the deletion of FgBUD3 caused severe reduction in growth of FgBUD3 mutant generated during this study. We also observed that the deletion of FgBUD3 completely abolished sexual reproduction and triggered the production of abnormal asexual spores with nearly no septum in ΔFgbud3 strain. Further results obtained from infection assays conducted during this research revealed that the FgBUD3 defective mutant lost its pathogenicity on wheat and hence, suggests FgBud3 plays an essential role in the pathogenicity of F. graminearum . Additional, results derived from yeast two-hybrid assays revealed that FgBud3 strongly interacted with FgRho4 compared to the interaction with FgRho2, FgRho3, and FgCdc42. Moreover, we found that FgBud3 interacted with both GTP-bound and GDP-bound form of FgRho4. From these results, we subsequently concluded that, the Rho4-interacting GEF protein FgBud3 crucially promotes vegetative growth, asexual and sexual development, cell division and pathogenicity in F. graminearum .

  4. Evaluation of twig pre-harvest temperature for effective cryopreservation of Vaccinium dormant buds

    USDA-ARS?s Scientific Manuscript database

    Cryopreservation of plant material by dormant buds is less expensive than using shoot tips; however currently, dormant buds are used only for preservation of selected temperate tree and shrub species. Using dormant buds could be an efficient strategy for long-term preservation of blueberry (Vacciniu...

  5. Phenology of perennial native grass below-ground axillary buds in the northern mixed-grass prairie

    USDA-ARS?s Scientific Manuscript database

    Vegetative reproduction from belowground bud banks is the primary driver of grassland systems. Despite the importance of vegetative reproduction, the timing of belowground bud recruitment is unknown for most dominant, perennial native grasses as is the relationship between bud development and envir...

  6. ILK modulates epithelial polarity and matrix formation in hair follicles.

    PubMed

    Rudkouskaya, Alena; Welch, Ian; Dagnino, Lina

    2014-03-01

    Hair follicle morphogenesis requires coordination of multiple signals and communication between its epithelial and mesenchymal constituents. Cell adhesion protein platforms, which include integrins and integrin-linked kinase (ILK), are critical for hair follicle formation. However, their precise contribution to this process is poorly understood. We show that in the absence of ILK, the hair follicle matrix lineage fails to develop, likely due to abnormalities in development of apical-basal cell polarity, as well as in laminin-511 and basement membrane assembly at the tip of the hair bud. These defects also result in impaired specification of hair matrix and absence of precortex and inner sheath root cell lineages. The molecular pathways affected in ILK-deficient follicles are similar to those in the absence of epidermal integrin β1 and include Wnt, but not sonic hedgehog, signaling. ILK-deficient hair buds also show abnormalities in the dermal papilla. Addition of exogenous laminin-511 restores morphological and molecular markers associated with hair matrix formation, indicating that ILK regulates hair bud cell polarity and functions upstream from laminin-511 assembly to regulate the developmental progression of hair follicles beyond the germ stage.

  7. Paramyxovirus glycoprotein incorporation, assembly and budding: a three way dance for infectious particle production.

    PubMed

    El Najjar, Farah; Schmitt, Anthony P; Dutch, Rebecca Ellis

    2014-08-07

    Paramyxoviruses are a family of negative sense RNA viruses whose members cause serious diseases in humans, such as measles virus, mumps virus and respiratory syncytial virus; and in animals, such as Newcastle disease virus and rinderpest virus. Paramyxovirus particles form by assembly of the viral matrix protein, the ribonucleoprotein complex and the surface glycoproteins at the plasma membrane of infected cells and subsequent viral budding. Two major glycoproteins expressed on the viral envelope, the attachment protein and the fusion protein, promote attachment of the virus to host cells and subsequent virus-cell membrane fusion. Incorporation of the surface glycoproteins into infectious progeny particles requires coordinated interplay between the three viral structural components, driven primarily by the matrix protein. In this review, we discuss recent progress in understanding the contributions of the matrix protein and glycoproteins in driving paramyxovirus assembly and budding while focusing on the viral protein interactions underlying this process and the intracellular trafficking pathways for targeting viral components to assembly sites. Differences in the mechanisms of particle production among the different family members will be highlighted throughout.

  8. Paramyxovirus Glycoprotein Incorporation, Assembly and Budding: A Three Way Dance for Infectious Particle Production

    PubMed Central

    El Najjar, Farah; Schmitt, Anthony P.; Dutch, Rebecca Ellis

    2014-01-01

    Paramyxoviruses are a family of negative sense RNA viruses whose members cause serious diseases in humans, such as measles virus, mumps virus and respiratory syncytial virus; and in animals, such as Newcastle disease virus and rinderpest virus. Paramyxovirus particles form by assembly of the viral matrix protein, the ribonucleoprotein complex and the surface glycoproteins at the plasma membrane of infected cells and subsequent viral budding. Two major glycoproteins expressed on the viral envelope, the attachment protein and the fusion protein, promote attachment of the virus to host cells and subsequent virus-cell membrane fusion. Incorporation of the surface glycoproteins into infectious progeny particles requires coordinated interplay between the three viral structural components, driven primarily by the matrix protein. In this review, we discuss recent progress in understanding the contributions of the matrix protein and glycoproteins in driving paramyxovirus assembly and budding while focusing on the viral protein interactions underlying this process and the intracellular trafficking pathways for targeting viral components to assembly sites. Differences in the mechanisms of particle production among the different family members will be highlighted throughout. PMID:25105277

  9. Furniture rough mill costs evaluated by computer simulation

    Treesearch

    R. Bruce Anderson

    1983-01-01

    A crosscut-first furniture rough mill was simulated to evaluate processing and raw material costs on an individual part basis. Distributions representing the real-world characteristics of lumber, equipment feed speeds, and processing requirements are programed into the simulation. Costs of parts from a specific cutting bill are given, and effects of lumber input costs...

  10. 7 CFR 319.8-17 - Importation for exportation, and importation for transportation and exportation; storage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... exportation, vacuum fumigation, or utilization in accordance with the requirements in this subpart, may be... movement to an approved mill or plant for vacuum fumigation or utilization, when there are inspectors... of storage in the north pending exportation, fumigation, or utilization in an approved mill or plant...

  11. 7 CFR 319.8-17 - Importation for exportation, and importation for transportation and exportation; storage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... exportation, vacuum fumigation, or utilization in accordance with the requirements in this subpart, may be... movement to an approved mill or plant for vacuum fumigation or utilization, when there are inspectors... of storage in the north pending exportation, fumigation, or utilization in an approved mill or plant...

  12. 7 CFR 319.8-17 - Importation for exportation, and importation for transportation and exportation; storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... exportation, vacuum fumigation, or utilization in accordance with the requirements in this subpart, may be... movement to an approved mill or plant for vacuum fumigation or utilization, when there are inspectors... of storage in the north pending exportation, fumigation, or utilization in an approved mill or plant...

  13. 7 CFR 319.8-17 - Importation for exportation, and importation for transportation and exportation; storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... exportation, vacuum fumigation, or utilization in accordance with the requirements in this subpart, may be... movement to an approved mill or plant for vacuum fumigation or utilization, when there are inspectors... of storage in the north pending exportation, fumigation, or utilization in an approved mill or plant...

  14. Minimization of energy and surface roughness of the products machined by milling

    NASA Astrophysics Data System (ADS)

    Belloufi, A.; Abdelkrim, M.; Bouakba, M.; Rezgui, I.

    2017-08-01

    Metal cutting represents a large portion in the manufacturing industries, which makes this process the largest consumer of energy. Energy consumption is an indirect source of carbon footprint, we know that CO2 emissions come from the production of energy. Therefore high energy consumption requires a large production, which leads to high cost and a large amount of CO2 emissions. At this day, a lot of researches done on the Metal cutting, but the environmental problems of the processes are rarely discussed. The right selection of cutting parameters is an effective method to reduce energy consumption because of the direct relationship between energy consumption and cutting parameters in machining processes. Therefore, one of the objectives of this research is to propose an optimization strategy suitable for machining processes (milling) to achieve the optimum cutting conditions based on the criterion of the energy consumed during the milling. In this paper the problem of energy consumed in milling is solved by an optimization method chosen. The optimization is done according to the different requirements in the process of roughing and finishing under various technological constraints.

  15. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species

    Treesearch

    Constance A. Harrington; Peter J. Gould

    2015-01-01

    Many temperate and boreal tree species have a chilling requirement, that is, they need to experience cold temperatures during fall and winter to burst bud normally in the spring. Results from trials with 11 Pacific Northwest tree species are consistent with the concept that plants can accumulate both chilling and forcing units simultaneously during the dormant season...

  16. Effects of light and growth regulators on adventitious bud formation in horseradish (Armoracia rusticana).

    PubMed

    Kamada, H; Tachikawa, Y; Saitou, T; Harada, H

    1995-07-01

    To clarify that the presence of Ri T-DNA genes are not prerequisite for the light-induced bud formation in horseradish (Armoracia rusticana) hairy roots, leaf and root segments of nontransformed horseradish plants were used as explants. Bud formation from nontransformed tissues was observed in hormone-free medium under 16 h daylight conditions, but not under continuous darkness. To investigate the effects of growth regulators on bud formation, leaf and root explants were treated with auxin (1-naphthaleneacetic acid; NAA) and / or cytokinin (6-benzyl-aminopurine; BA). The most effective treatment in the dark to stimulate bud formation was BA at 1 mg·1(-1). These results show that adventitious bud formation in horseradish can be induced by light and growth regulators, and especially cytokinin, may be involved in bud formation, irrespective of whether the tissues were transformed with Ri T-DNA.

  17. Greater bud outgrowth of Bromus inermis than Pascopyrum smithii under multiple environmental conditions

    Treesearch

    Jacqueline P. Ott; Jack L. Butler; Yuping Rong; Lan. Xu

    2017-01-01

    Tiller recruitment of perennial grasses in mixed-grass prairie primarily occurs from belowground buds. Environmental conditions, such as temperature, soil moisture and grazing can affect bud outgrowth of both invasive and native perennial grasses. Differential bud outgrowth responses of native and invasive species to climate change and grazing could alter...

  18. 48 CFR 1419.202-70 - Acquisition screening and BUDS recommendations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BUDS recommendations. 1419.202-70 Section 1419.202-70 Federal Acquisition Regulations System DEPARTMENT... screening and BUDS recommendations. (a) For open market acquisitions estimated to exceed the SAT, the DI... document the rationale for not accepting a BUDS recommendation on DI Form 1886, under “Notes.” (See FAR 19...

  19. Sonic hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance.

    PubMed

    Castillo-Azofeifa, David; Losacco, Justin T; Salcedo, Ernesto; Golden, Erin J; Finger, Thomas E; Barlow, Linda A

    2017-09-01

    The integrity of taste buds is intimately dependent on an intact gustatory innervation, yet the molecular nature of this dependency is unknown. Here, we show that differentiation of new taste bud cells, but not progenitor proliferation, is interrupted in mice treated with a hedgehog (Hh) pathway inhibitor (HPI), and that gustatory nerves are a source of sonic hedgehog (Shh) for taste bud renewal. Additionally, epithelial taste precursor cells express Shh transiently, and provide a local supply of Hh ligand that supports taste cell renewal. Taste buds are minimally affected when Shh is lost from either tissue source. However, when both the epithelial and neural supply of Shh are removed, taste buds largely disappear. We conclude Shh supplied by taste nerves and local taste epithelium act in concert to support continued taste bud differentiation. However, although neurally derived Shh is in part responsible for the dependence of taste cell renewal on gustatory innervation, neurotrophic support of taste buds likely involves a complex set of factors. © 2017. Published by The Company of Biologists Ltd.

  20. The JNM1 gene in the yeast Saccharomyces cerevisiae is required for nuclear migration and spindle orientation during the mitotic cell cycle

    PubMed Central

    1994-01-01

    JNM1, a novel gene on chromosome XIII in the yeast Saccharomyces cerevisiae, is required for proper nuclear migration. jnm1 null mutants have a temperature-dependent defect in nuclear migration and an accompanying alteration in astral microtubules. At 30 degrees C, a significant proportion of the mitotic spindles is not properly located at the neck between the mother cell and the bud. This defect is more severe at low temperature. At 11 degrees C, 60% of the cells accumulate with large buds, most of which have two DAPI staining regions in the mother cell. Although mitosis is delayed and nuclear migration is defective in jnm1 mutant, we rarely observe more than two nuclei in a cell, nor do we frequently observe anuclear cells. No loss of viability is observed at 11 degrees C and cells continue to grow exponentially with increased doubling time. At low temperature the large budded cells of jnm1 mutants exhibit extremely long astral microtubules that often wind around the periphery of the cell. jnm1 mutants are not defective in chromosome segregation during mitosis, as assayed by the rate of chromosome loss, or nuclear migration during conjugation, as assayed by the rate of mating and cytoduction. The phenotype of a jnm1 mutant is strikingly similar to that for mutants in the dynein heavy chain gene (Eshel, D., L. A. Urrestarazu, S. Vissers, J.-C. Jauniaux, J. C. van Vliet-Reedijk, R. J. Plants, and I. R. Gibbons. 1993. Proc. Natl. Acad. Sci. USA. 90:11172-11176; Li, Y. Y., E. Yeh, T. Hays, and K. Bloom. 1993. Proc. Natl. Acad. Sci. USA. 90:10096-10100). The JNM1 gene product is predicted to encode a 44-kD protein containing three coiled coil domains. A JNM1:lacZ gene fusion is able to complement the cold sensitivity and microtubule phenotype of a jnm1 deletion strain. This hybrid protein localizes to a single spot in the cell, most often near the spindle pole body in unbudded cells and in the bud in large budded cells. Together these results point to a specific role for Jnm1p in spindle migration, possibly as a subunit or accessory protein for yeast dynein. PMID:8138567

  1. Photosynthetic leaf area modulates tiller bud outgrowth in sorghum: Bud outgrowth is sensitive to leaf area

    DOE PAGES

    Kebrom, Tesfamichael H.; Mullet, John E.

    2014-12-12

    Shoot branches or tillers develop from axillary buds. The dormancy versus outgrowth fates of buds depends on genetic, environmental and hormonal signals. Defoliation inhibits bud outgrowth indicating the role of leaf-derived metabolic factors such as sucrose in bud outgrowth. In this study, the sensitivity of bud outgrowth to selective defoliation was investigated. At 6 d after planting (6 DAP), the first two leaves of sorghum were fully expanded and the third was partially emerged. Therefore, the leaves were selectively defoliated at 6 DAP and the length of the bud in the first leaf axil was measured at 8 DAP. Budmore » outgrowth was inhibited by defoliation of only 2 cm from the tip of the second leaf blade. The expression of dormancy and sucrose-starvation marker genes was up-regulated and cell cycle and sucrose-inducible genes was down-regulated during the first 24 h postdefoliation of the second leaf.At 48 h, the expression of these genes was similar to controls as the defoliated plant recovers. Our results demonstrate that small changes in photosynthetic leaf area affect the propensity of tiller buds for outgrowth. Therefore, variation in leaf area and photosynthetic activity should be included when integrating sucrose into models of shoot branching.« less

  2. Sponge budding is a spatiotemporal morphological patterning process: Insights from synchrotron radiation-based x-ray microtomography into the asexual reproduction of Tethya wilhelma.

    PubMed

    Hammel, Jörg U; Herzen, Julia; Beckmann, Felix; Nickel, Michael

    2009-09-08

    Primary agametic-asexual reproduction mechanisms such as budding and fission are present in all non-bilaterian and many bilaterian animal taxa and are likely to be metazoan ground pattern characters. Cnidarians display highly organized and regulated budding processes. In contrast, budding in poriferans was thought to be less specific and related to the general ability of this group to reorganize their tissues. Here we test the hypothesis of morphological pattern formation during sponge budding. We investigated the budding process in Tethya wilhelma (Demospongiae) by applying 3D morphometrics to high resolution synchrotron radiation-based x-ray microtomography (SR-muCT) image data. We followed the morphogenesis of characteristic body structures and identified distinct morphological states which indeed reveal characteristic spatiotemporal morphological patterns in sponge bud development. We discovered the distribution of skeletal elements, canal system and sponge tissue to be based on a sequential series of distinct morphological states. Based on morphometric data we defined four typical bud stages. Once they have reached the final stage buds are released as fully functional juvenile sponges which are morphologically and functionally equivalent to adult specimens. Our results demonstrate that budding in demosponges is considerably more highly organized and regulated than previously assumed. Morphological pattern formation in asexual reproduction with underlying genetic regulation seems to have evolved early in metazoans and was likely part of the developmental program of the last common ancestor of all Metazoa (LCAM).

  3. Sponge budding is a spatiotemporal morphological patterning process: Insights from synchrotron radiation-based x-ray microtomography into the asexual reproduction of Tethya wilhelma

    PubMed Central

    Hammel, Jörg U; Herzen, Julia; Beckmann, Felix; Nickel, Michael

    2009-01-01

    Background Primary agametic-asexual reproduction mechanisms such as budding and fission are present in all non-bilaterian and many bilaterian animal taxa and are likely to be metazoan ground pattern characters. Cnidarians display highly organized and regulated budding processes. In contrast, budding in poriferans was thought to be less specific and related to the general ability of this group to reorganize their tissues. Here we test the hypothesis of morphological pattern formation during sponge budding. Results We investigated the budding process in Tethya wilhelma (Demospongiae) by applying 3D morphometrics to high resolution synchrotron radiation-based x-ray microtomography (SR-μCT) image data. We followed the morphogenesis of characteristic body structures and identified distinct morphological states which indeed reveal characteristic spatiotemporal morphological patterns in sponge bud development. We discovered the distribution of skeletal elements, canal system and sponge tissue to be based on a sequential series of distinct morphological states. Based on morphometric data we defined four typical bud stages. Once they have reached the final stage buds are released as fully functional juvenile sponges which are morphologically and functionally equivalent to adult specimens. Conclusion Our results demonstrate that budding in demosponges is considerably more highly organized and regulated than previously assumed. Morphological pattern formation in asexual reproduction with underlying genetic regulation seems to have evolved early in metazoans and was likely part of the developmental program of the last common ancestor of all Metazoa (LCAM). PMID:19737392

  4. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development

    PubMed Central

    Thirumangalathu, Shoba; Barlow, Linda A.

    2015-01-01

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh+ placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh+ precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. PMID:26525674

  5. Localization of Ulex europaeus agglutinin-I (UEA-I) in the developing gustatory epithelium of the rat.

    PubMed

    Taniguchi, Ryo; Shi, Lei; Honma, Shiho; Fujii, Masae; Ueda, Katsura; El-Sharaby, Ashraf; Wakisaka, Satoshi

    2004-09-01

    To understand the development of the gustatory structures necessitates a reliable marker for both immature and mature taste buds. It has been reported that the intragemmal cells within the taste buds of adult rats were bound to Ulex europaeus agglutinin-I (UEA-I), a specific lectin for alpha-linked fucose, but it has not been determined whether immature taste buds, i.e. taste buds without an apparent taste pore, are labeled with UEA-I. The present study was conducted to examine the UEA-I binding pattern during the development of the rat gustatory epithelium. In adult animals, UEA-I bound to the membrane of taste buds in all examined regions of the gustatory epithelium. Within the individual taste buds, UEA-I labeled almost all intragemmal cells. The binding of UEA-I was occasionally detected below the keratinized layer of the trench wall epithelium but could not be found in the lingual epithelium of the adult animal. During the development of circumvallate papilla, some cells within the immature taste buds were also labeled with UEA-I. The developmental changes in the UEA-I binding pattern in fungiform papillae were almost identical to those in the circumvallate papilla: both immature and mature taste buds were labeled with UEA-I. The present results indicate that UEA-I is a specific lectin for the intragemmal cells of both immature and mature taste buds and, thus, UEA-I can be used as a reliable marker for all taste buds in the rat.

  6. Taste buds and nerve fibers in the rat larynx: an ultrastructural and immunohistochemical study.

    PubMed

    Nishijima, Kazutoshi; Atoji, Yasuro

    2004-09-01

    We investigated the rat laryngeal taste buds and their innervation by electron microscopy and immunohistochemical methods. Taste buds were densely arranged in the surface facing the laryngeal cavity of the epiglottis, the aryepiglottic fold, and the cuneiform process of the arytenoid cartilages. The cells of the buds were classified into types I, II, III, and basal cells, the ultrastucture of which was almost the same as that previously reported in lingual taste buds. The type III cells that had synaptic contacts with nerve fibers were considered to be sensory cells. Immunohistochemical analysis revealed thick calbindin D28k-immunoreactive fibers and thin varicose fibers immunoreactive for calcitonin gene-related peptide or substance P in and around the taste bud. Serotonin-immunoreactive cells were also observed here. The results revealed the innervation pattern of laryngeal taste buds to be the same as that in lingual taste buds. Carbonic anhydrase (CA) is known to catalyze the hydration of CO2 and dehydration of H2CO3, and seems to be essential in CO2 reception. Immunoreactivity for CAI was detected in slender cells and that for CAIII was observed in barrel-like cells in the laryngeal taste buds. The pH-sensitive inward rectifier K+ (Kir) channel in the cell membrane may be involved in CO2 reception as well. CAII-reactive cells were also reactive to Kir4.1, PGP 9.5 and serotonin. Our results indicated that CAII and Kir4.1 are located in type III cells of the laryngeal taste buds, and supported the idea that the buds may be involved in the recognition of CO2.

  7. Transcriptome Profiling of Tiller Buds Provides New Insights into PhyB Regulation of Tillering and Indeterminate Growth in Sorghum1

    PubMed Central

    2016-01-01

    Phytochrome B (phyB) enables plants to modify shoot branching or tillering in response to varying light intensities and ratios of red and far-red light caused by shading and neighbor proximity. Tillering is inhibited in sorghum genotypes that lack phytochrome B (58M, phyB-1) until after floral initiation. The growth of tiller buds in the first leaf axil of wild-type (100M, PHYB) and phyB-1 sorghum genotypes is similar until 6 d after planting when buds of phyB-1 arrest growth, while wild-type buds continue growing and develop into tillers. Transcriptome analysis at this early stage of bud development identified numerous genes that were up to 50-fold differentially expressed in wild-type/phyB-1 buds. Up-regulation of terminal flower1, GA2oxidase, and TPPI could protect axillary meristems in phyB-1 from precocious floral induction and decrease bud sensitivity to sugar signals. After bud growth arrest in phyB-1, expression of dormancy-associated genes such as DRM1, GT1, AF1, and CKX1 increased and ENOD93, ACCoxidase, ARR3/6/9, CGA1, and SHY2 decreased. Continued bud outgrowth in wild-type was correlated with increased expression of genes encoding a SWEET transporter and cell wall invertases. The SWEET transporter may facilitate Suc unloading from the phloem to the apoplast where cell wall invertases generate monosaccharides for uptake and utilization to sustain bud outgrowth. Elevated expression of these genes was correlated with higher levels of cytokinin/sugar signaling in growing buds of wild-type plants. PMID:26893475

  8. Spatial Variability of Grapevine Bud Burst Percentage and Its Association with Soil Properties at Field Scale

    PubMed Central

    Li, Tao; Hao, Xinmei; Kang, Shaozhong

    2016-01-01

    There is a growing interest in precision viticulture with the development of global positioning system and geographical information system technologies. Limited information is available on spatial variation of bud behavior and its possible association with soil properties. The objective of this study was to investigate spatial variability of bud burst percentage and its association with soil properties based on 2-year experiments at a vineyard of arid northwest China. Geostatistical approach was used to describe the spatial variation in bud burst percentage within the vineyard. Partial least square regressions (PLSRs) of bud burst percentage with soil properties were used to evaluate the contribution of soil properties to overall spatial variability in bud burst percentage for the high, medium and low bud burst percentage groups. Within the vineyard, the coefficient of variation (CV) of bud burst percentage was 20% and 15% for 2012 and 2013 respectively. Bud burst percentage within the vineyard showed moderate spatial variability, and the overall spatial pattern of bud burst percentage was similar between the two years. Soil properties alone explained 31% and 37% of the total spatial variation respectively for the low group of 2012 and 2013, and 16% and 24% for the high group of 2012 and 2013 respectively. For the low group, the fraction of variations explained by soil properties was found similar between the two years, while there was substantial difference for the high group. The findings are expected to lay a good foundation for developing remedy measures in the areas with low bud burst percentage, thus in turn improving the overall grape yield and quality. PMID:27798692

  9. Ontogeny and innervation of taste buds in mouse palatal gustatory epithelium.

    PubMed

    Rashwan, Ahmed; Konishi, Hiroyuki; El-Sharaby, Ashraf; Kiyama, Hiroshi

    2016-01-01

    We investigated the relationship between mouse taste bud development and innervation of the soft palate. We employed scanning electron microscopy and immunohistochemistry using antibodies against protein gene product 9.5 and peripherin to detect sensory nerves, and cytokeratin 8 and α-gustducin to stain palatal taste buds. At E14, nerve fibers were observed along the medial border of the palatal shelves that tracked toward the epithelium. At E15.5, primordial stages of taste buds in the basal lamina of the soft palate first appeared. At E16, the taste buds became large spherical masses of columnar cells scattered in the soft palate basal lamina. At E17, the morphology and also the location of taste buds changed. At E18-19, some taste buds acquired a more elongated shape with a short neck, extending a variable distance from the soft palate basal lamina toward the surface epithelium. At E18, mature taste buds with taste pores and perigemmal nerve fibers were observed on the surface epithelium of the soft palate. The expression of α-gustducin was demonstrated at postnatal day 1 and the number of pored taste buds increased with age and they became pear-shaped at 8 weeks. The percent of pored fungiform-like papillae at birth was 58.3% of the whole palate; this increased to 83.8% at postnatal day 8 and reached a maximum of 95.7% at 12 weeks. The innervation of the soft palate was classified into three types of plexuses in relation to taste buds: basal nerve plexus, intragemmal and perigemmal nerve fibers. This study reveals that the nerve fibers preceded the development of taste buds in the palate of mice, and therefore the nerve fibers have roles in the initial induction of taste buds in the soft palate. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Functional cell types in taste buds have distinct longevities.

    PubMed

    Perea-Martinez, Isabel; Nagai, Takatoshi; Chaudhari, Nirupa

    2013-01-01

    Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8-12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2'-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.

  11. Functional Cell Types in Taste Buds Have Distinct Longevities

    PubMed Central

    Perea-Martinez, Isabel; Nagai, Takatoshi; Chaudhari, Nirupa

    2013-01-01

    Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8–12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2′-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells. PMID:23320081

  12. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster.

    PubMed

    Ganchrow, Donald; Ganchrow, Judith R; Verdin-Alcazar, Mary; Whitehead, Mark C

    2003-01-01

    The neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), as well as their respective tyrosine kinase (Trk) receptors, TrkB and TrkC, influence peripheral target cell innervation, survival, and proliferation. In the mature taste system the role of neurotrophins and their receptors is not known. The mature hamster is an intriguing model because anterior lingual fungiform, unlike posterior lingual foliate and circumvallate, taste buds survive denervation. In light of this difference, we examined whether the degree of neurotrophin- or neurotrophin receptor-like immunoreactivity (IR) normally differs among lingual gemmal fields. In single- and double-labeled immunofluorescent experiments, 3,209 taste bud sections (profiles) from 13 hamsters were examined for immunopositive gemmal cells or nerve fibers using antibodies to BDNF and NT-3, their respective receptors TrkB and TrkC, and the neural marker ubiquitin c-terminal hydrolase L-1 [protein gene product (PGP) 9.5]. In each gemmal field, more than 75% of taste bud profiles showed immunopositivity to BDNF, NT-3, and TrkB. Across bud fields, BDNF-, TrkB-, and BDNF/TrkB-like IR, as well as PGP 9.5 and PGP 9.5/BDNF-like IR in centrally located, fungiform bud cells was greater (P < 0.0001 to P < 0.002) than in circumvallate or foliate buds. Within bud fields, the number of BDNF-like, labeled bud cells/bud profile was greater than that for NT-3-like IR in fungiform (P < 0.0002) and foliate (P < 0.0001) buds. TrkC was immunonegative in gemmal cells. The average density of TrkB- and TrkC-like fiber IR was more pronounced in fungiform than posterior gemmal-bearing papillae. Thus, fungiform papillae, whose taste buds are least affected by denervation, exhibit specific neurotrophin and receptor enrichment. Copyright 2002 Wiley-Liss, Inc.

  13. Preparation of autogenous bone grafts in two different bone mills.

    PubMed

    Erpenstein, H; Diedrich, P; Borchard, R

    2001-12-01

    The purpose of this study was to evaluate the performance of two bone mills (R Quetin Bone Mill and Micro Knochenmühle, Aesculap) for the grinding of autogenous bone (intraoral, cortical) according to the following criteria: (1) loss of bone during the grinding process, (2) particle size of the chips, (3) variability in chip size, (4) technical handling, and (5) cost-benefit ratio. The amount of material loss was determined by harvesting 30 bone cores from the mandibular symphysis of a pig. Each specimen was weighed before and after the grinding procedure on scales with an accuracy of 0.1 mg. The size and variability of the bone particles were determined histomorphometrically. Twenty-seven bone specimens from different patients were analyzed. Eight were ground with the Aesculap and 12 with the Quetin mill. Seven specimens harvested with a Brånemark implant bur served as controls. A histologic section was prepared from each specimen, and 10 bone particles per section were subjected to histomorphometric analysis. The Quetin mill was superior in all points to the Aesculap mill for the requirements of a periodontal practice.

  14. Optical behaviour of copper phthalocyanine preparations for inkjet inks.

    PubMed

    Otáhalová, Lenka; Kaplanová, Marie; Gunde, Marta Klanjšek; Puchta, Miloš

    2011-06-01

    The present study investigates the preparation of the copper phthalocyanine pigment for inkjet printing inks. The pigment particle size distribution was measured with laser diffraction at different times of wet milling. Simultaneously, the absorbance spectra in a visible-near infrared spectral region of the corresponding diluted pigment dispersions were measured. At the beginning of the milling process, the particle size distribution is bimodal, showing the presence of aggregates and agglomerates. During the second hour of milling, the particle size distribution changes to unimodal due to the breaking of agglomerates, and the corresponding absorbance spectra change accordingly. Further milling diminishes the size of pigment aggregates up to the steady state value of around 130 nm, where also the absorbance in the corresponding spectra does not increase. A detailed analysis of intensity and position of the absorbance peak at 340 nm in dependence on the milling time and pigment concentration confirms the idea that an optical spectroscopy could be used for the assessment of optimal milling time required for the preparation of pigments with the maximum absorption ability.

  15. Spontaneous emergence of milling (vortex state) in a Vicsek-like model

    NASA Astrophysics Data System (ADS)

    Costanzo, A.; Hemelrijk, C. K.

    2018-04-01

    Collective motion is of interest to laymen and scientists in different fields. In groups of animals, many patterns of collective motion arise such as polarized schools and mills (i.e. circular motion). Collective motion can be generated in computational models of different degrees of complexity. In these models, moving individuals coordinate with others nearby. In the more complex models, individuals attract each other, aligning their headings, and avoiding collisions. Simpler models may include only one or two of these types of interactions. The collective pattern that interests us here is milling, which is observed in many animal species. It has been reproduced in the more complex models, but not in simpler models that are based only on alignment, such as the well-known Vicsek model. Our aim is to provide insight in the minimal conditions required for milling by making minimal modifications to the Vicsek model. Our results show that milling occurs when both the field of view and the maximal angular velocity are decreased. Remarkably, apart from milling, our minimal model also exhibits many of the other patterns of collective motion observed in animal groups.

  16. Effect Of Milling Time on Particle Size of Forsterite (Mg2SiO4) from South Solok District

    NASA Astrophysics Data System (ADS)

    Sarimai, S.; Ratnawulan, R.; Ramli, R.; Fauzi, A.

    2018-04-01

    West Sumatra has considerable serpentine mineral resources, including the Jorong Sungai Padi Nagari Lubuak Gadang Sangir Subdistrict, South Solok District. Exploitation of minerals of serpentine is still processed in raw or semi-finished material so that it has a low selling value. Serpentine minerals contain forsterite minerals that have higher economic value if in the form of nanoparticles. The manufacture of forsterite nanoparticles has been done using synthetic materials, while synthetic materials are expensive and require a long process to make them. The treatment of temperature variations of calcination to serpentine minerals, obtained results found forsterite phase that dominates at a temperature of 800 °C. Serpentine minerals can be used as alternative ingredients for the nanoparticle makers of forsterite that are easy to find in the deep, and do not require expensive to make them. The purpose of this study was to investigate the effect of milling time on the microstructure and grain size of the serpentine forsterite mineral nanoparticles in the form of crystal structure, crystal size, and particle size. The results of the study showed grain size of 5, 10, 20, and 40 hours milling time are 579, 478, 451, and 385 nm respectively. Based on the research that has been done can be drawn conclusion Time milling effect on the grain size of forsterite mineral serpentine from South Solok District, the longer milling time the size of forsterite grains smaller. Optimum milling time to produce nano forsterite is 40 hours with a grain size of 385 nm.

  17. Requirement for an intact T-cell actin and tubulin cytoskeleton for efficient assembly and spread of human immunodeficiency virus type 1.

    PubMed

    Jolly, Clare; Mitar, Ivonne; Sattentau, Quentin J

    2007-06-01

    Human immunodeficiency virus type 1 (HIV-1) infection of CD4(+) T cells leads to the production of new virions that assemble at the plasma membrane. Gag and Env accumulate in the context of lipid rafts at the inner and outer leaflets of the plasma membrane, respectively, forming polarized domains from which HIV-1 buds. HIV-1 budding can result in either release of cell-free virions or direct cell-cell spread via a virological synapse (VS). The recruitment of Gag and Env to these plasma membrane caps in T cells is poorly understood but may require elements of the T-cell secretory apparatus coordinated by the cytoskeleton. Using fixed-cell immunofluorescence labeling and confocal microscopy, we observed a high percentage of HIV-1-infected T cells with polarized Env and Gag in capped, lipid raft-like assembly domains. Treatment of infected T cells with inhibitors of actin or tubulin remodeling disrupted Gag and Env compartmentalization within the polarized raft-like domains. Depolymerization of the actin cytoskeleton reduced Gag release and viral infectivity, and actin and tubulin inhibitors reduced Env incorporation into virions. Live- and fixed-cell confocal imaging and assay of de novo DNA synthesis by real-time PCR allowed quantification of HIV-1 cell-cell transfer. Inhibition of actin and tubulin remodeling in infected cells interfered with cell-cell spread across a VS and reduced new viral DNA synthesis. Based on these data, we propose that HIV-1 requires both actin and tubulin components of the T-cell cytoskeleton to direct its assembly and budding and to elaborate a functional VS.

  18. iAID: an improved auxin-inducible degron system for the construction of a 'tight' conditional mutant in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Tanaka, Seiji; Miyazawa-Onami, Mayumi; Iida, Tetsushi; Araki, Hiroyuki

    2015-08-01

    Isolation of a 'tight' conditional mutant of a gene of interest is an effective way of studying the functions of essential genes. Strategies that use ubiquitin-mediated protein degradation to eliminate the product of a gene of interest, such as heat-inducible degron (td) and auxin-inducible degron (AID), are powerful methods for constructing conditional mutants. However, these methods do not work with some genes. Here, we describe an improved AID system (iAID) for isolating tight conditional mutants in the budding yeast Saccharomyces cerevisiae. In this method, transcriptional repression by the 'Tet-OFF' promoter is combined with proteolytic elimination of the target protein by the AID system. To provide examples, we describe the construction of tight mutants of the replication factors Dpb11 and Mcm10, dpb11-iAID, and mcm10-iAID. Because Dpb11 and Mcm10 are required for the initiation of DNA replication, their tight mutants are unable to enter S phase. This is the case for dpb11-iAID and mcm10-iAID cells after the addition of tetracycline and auxin. Both the 'Tet-OFF' promoter and the AID system have been shown to work in model eukaryotes other than budding yeast. Therefore, the iAID system is not only useful in budding yeast, but also can be applied to other model systems to isolate tight conditional mutants. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Hardwood Chip Export Mills in Arkansas - Implications for Sustainability

    Treesearch

    John L. Gray; James M. Guldin

    2001-01-01

    Abstract - Two new hardwood chip export mills (HCEM’s) recently began operating in west-central Arkansas,and a third is planned. Together,they will require 1.1 million tons of nonhickory hardwood roundwood annually, primarily from the nonindustrial private sector. Overall, total physical and operable growth surpluses could support the new sector, but...

  20. Energy and precious fuels requirements of fuel alcohol production. Volume 2, appendices A and B: Ethanol from grain

    NASA Technical Reports Server (NTRS)

    Weinblatt, H.; Reddy, T. S.; Turhollow, A., Jr.

    1982-01-01

    Energy currently used in grain production, the effect of ethanol production on agricultural energy consumption, energy credits for ethanol by-products, and land availability and the potential for obtaining ethanol from grain are discussed. Dry milling, wet milling, sensitivity analysis, potential for reduced energy consumption are also discussed.

  1. Improving lumber yield using a dual system

    Treesearch

    R. Edward Thomas; Omar Espinoza; Urs Buehlmann

    2015-01-01

    Rough mills embody the process of cutting up kiln-dried lumber to components used by discrete wood products manufacturers to manufacture products like furniture, kitchen cabinets, flooring, or other items. Rough mills traditionally have either ripped the lumber first (e.g., the lumber is first cut into strips lengthwise) then cut the strips to the required part lengths...

  2. Pollution in Higher Education. Efforts of the U.S. Office of Education in Relation to Degree Mills.

    ERIC Educational Resources Information Center

    Bureau of Postsecondary Education (DHEW/OE), Washington, DC. Accreditation and Institutional Eligibility Staff.

    These papers concern the efforts of the U.S. Office of Education to eradicate "degree mills", that is, organizations that award degrees without requiring their students to meet educational standards for such degrees, standards that have been established and traditionally followed by reputable educational institutions. The rapid growth in…

  3. System 6 alternatives: an economic analysis

    Treesearch

    Bruce G. Hansen; Hugh W. Reynolds; Hugh W. Reynolds

    1984-01-01

    Three System 6 mill-size alternatives were designed and evaluated to determine their overall economic potential for producing standard-size hardwood blanks. Internal rates of return ranged from about 15 to 35 percent after taxes. Cost per square foot of blanks ranged from about $0.88 to $1.19, depending on mill size and the amount of new investment required.

  4. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds

    PubMed Central

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Doron-Faigenboim, Adi; Blumwald, Eduardo; Sadka, Avi

    2014-01-01

    Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca2+-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed. PMID:24706719

  5. Bud development and shoot morphology in relation to crown location

    PubMed Central

    Kukk, Maarja; Sõber, Anu

    2015-01-01

    Plant architecture is shaped by endogenous growth processes interacting with the local environment. The current study investigated crown development in young black alder trees, assessing the effects of local light conditions and branch height on individual bud mass and contents. In addition, we examined the characteristics of parent shoots [the cross-sectional area (CSA) of stem and total leaf area, shoot length, the number of nodes, the number and total mass of buds per shoot] and leaf–stem as well as bud–stem allometry, as several recent studies link bud development to hydraulic architecture. We sampled shoots from top branches and two lower-crown locations: one subjected to deep shade and the other resembling the upper branches in light availability. Sampling was carried out three times between mid-July and late October, spanning from the early stages of bud growth to dormancy. Individual bud mass and shoot characteristics varied in response to light conditions, whereas leaf–stem allometry depended on branch height, most likely compensating for the increasing length of hydraulic pathways. Despite the differences in individual bud mass, the number of preformed leaves varied little across the crown, indicating that the plasticity in shoot characteristics was mainly achieved by neoformation. The relationship between total bud mass and stem CSA scaled similarly across crown locations. However, scaling slopes gradually decreased throughout the sampling period, driven by bud rather than by stem growth. This suggests that the allometry of total bud mass and CSA of stem is regulated locally, instead of resulting from crown-level processes. PMID:26187607

  6. A Growing Stem Inhibits Bud Outgrowth - The Overlooked Theory of Apical Dominance.

    PubMed

    Kebrom, Tesfamichael H

    2017-01-01

    Three theories of apical dominance, direct, diversion, and indirect, were proposed in the 1930s to explain how auxin synthesized in the shoot apex might inhibit axillary bud outgrowth, and thus shoot branching. The direct and diversion theories of apical dominance have been investigated in detail, and they are replaced with the current auxin transport canalization and second messenger theories, respectively. These two current theories still cannot entirely explain the phenomenon of apical dominance. Although there is ample evidence that the inhibition of bud outgrowth by auxin from the shoot apex is linked to stem elongation and highly branched auxin biosynthesis or signaling mutants are dwarf, the third theory proposed in the 1930s, the indirect theory, that explains apical dominance as auxin-induced stem growth indirectly inhibits bud outgrowth has been overlooked. The indirect theory did not propose how a growing stem might inhibit bud outgrowth. Recent discoveries indicate bud dormancy (syn. quiescence, paradormancy) in response to intrinsic and environmental factors in diverse species is linked to enhanced growth of the main shoot and reduced sugar level in the buds. Since a growing stem is a strong sink for sugars, and sugar is indispensable for shoot branching, the indirect theory of apical dominance might now be explained as auxin-induced stem growth inhibits bud outgrowth by diverting sugars away from buds. Detailed study of the indirect theory and the effect of source-sink status on dormancy and outgrowth of axillary buds will advance our knowledge of apical dominance and shoot branching in plants.

  7. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development.

    PubMed

    Thirumangalathu, Shoba; Barlow, Linda A

    2015-12-15

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh(+) placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh(+) precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. © 2015. Published by The Company of Biologists Ltd.

  8. Norepinephrine is coreleased with serotonin in mouse taste buds.

    PubMed

    Huang, Yijen A; Maruyama, Yutaka; Roper, Stephen D

    2008-12-03

    ATP and serotonin (5-HT) are neurotransmitters secreted from taste bud receptor (type II) and presynaptic (type III) cells, respectively. Norepinephrine (NE) has also been proposed to be a neurotransmitter or paracrine hormone in taste buds. Yet, to date, the specific stimulus for NE release in taste buds is not well understood, and the identity of the taste cells that secrete NE is not known. Chinese hamster ovary cells were transfected with alpha(1A) adrenoceptors and loaded with fura-2 ("biosensors") to detect NE secreted from isolated mouse taste buds and taste cells. Biosensors responded to low concentrations of NE (>or=10 nm) with a reliable fura-2 signal. NE biosensors did not respond to stimulation with KCl or taste compounds. However, we recorded robust responses from NE biosensors when they were positioned against mouse circumvallate taste buds and the taste buds were stimulated with KCl (50 mm) or a mixture of taste compounds (cycloheximide, 10 microm; saccharin, 2 mm; denatonium, 1 mm; SC45647, 100 microm). NE biosensor responses evoked by stimulating taste buds were reversibly blocked by prazosin, an alpha(1A) receptor antagonist. Together, these findings indicate that taste bud cells secrete NE when they are stimulated. We isolated individual taste bud cells to identify the origin of NE release. NE was secreted only from presynaptic (type III) taste cells and not receptor (type II) cells. Stimulus-evoked NE release depended on Ca(2+) in the bathing medium. Using dual biosensors (sensitive to 5-HT and NE), we found all presynaptic cells secrete 5-HT and 33% corelease NE with 5-HT.

  9. Chromatin-associated regulation of sorbitol synthesis in flower buds of peach.

    PubMed

    Lloret, Alba; Martínez-Fuentes, Amparo; Agustí, Manuel; Badenes, María Luisa; Ríos, Gabino

    2017-11-01

    PpeS6PDH gene is postulated to mediate sorbitol synthesis in flower buds of peach concomitantly with specific chromatin modifications. Perennial plants have evolved an adaptive mechanism involving protection of meristems within specialized structures named buds in order to survive low temperatures and water deprivation during winter. A seasonal period of dormancy further improves tolerance of buds to environmental stresses through specific mechanisms poorly known at the molecular level. We have shown that peach PpeS6PDH gene is down-regulated in flower buds after dormancy release, concomitantly with changes in the methylation level at specific lysine residues of histone H3 (H3K27 and H3K4) in the chromatin around the translation start site of the gene. PpeS6PDH encodes a NADPH-dependent sorbitol-6-phosphate dehydrogenase, the key enzyme for biosynthesis of sorbitol. Consistently, sorbitol accumulates in dormant buds showing higher PpeS6PDH expression. Moreover, PpeS6PDH gene expression is affected by cold and water deficit stress. Particularly, its expression is up-regulated by low temperature in buds and leaves, whereas desiccation treatment induces PpeS6PDH in buds and represses the gene in leaves. These data reveal the concurrent participation of chromatin modification mechanisms, transcriptional regulation of PpeS6PDH and sorbitol accumulation in flower buds of peach. In addition to its role as a major translocatable photosynthate in Rosaceae species, sorbitol is a widespread compatible solute and cryoprotectant, which suggests its participation in tolerance to environmental stresses in flower buds of peach.

  10. Response of cranberry weevil (Coleoptera: Curculionidae) to host plant volatiles.

    PubMed

    Szendrei, Zsofia; Malo, Edi; Stelinski, Lukasz; Rodriguez-Saona, Cesar

    2009-06-01

    The oligophagous cranberry weevil, Anthonomus musculus Say, causes economic losses to blueberry growers in New Jersey because females deposit eggs into developing flower buds and subsequent larval feeding damages buds, which fail to produce fruit. A cost-effective and reliable method is needed for monitoring this pest to correctly time insecticide applications. We studied the behavioral and antennal responses of adult A. musculus to its host plant volatiles to determine their potential for monitoring this pest. We evaluated A. musculus response to intact and damaged host plant parts, such as buds and flowers in Y-tube bioassays. We also collected and identified host plant volatiles from blueberry buds and open flowers and performed electroantennograms with identified compounds to determine the specific chemicals eliciting antennal responses. Male weevils were more attracted to blueberry flower buds and were repelled by conspecific-damaged buds compared with clean air. In contrast, females were more attracted to open flowers compared with flower buds. Nineteen volatiles were identified from blueberry buds; 10 of these were also emitted from blueberry flowers. Four of the volatiles emitted from both blueberry buds and flowers [hexanol, (Z)-3-hexenyl acetate, hexyl acetate, and (Z)-3-hexenyl butyrate] elicited strong antennal responses from A. musculus. Future laboratory and field testing of the identified compounds in combination with various trap designs is planned to develop a reliable monitoring trap for A. musculus.

  11. Red to Far-Red Light Ratio Modulates Hormonal and Genetic Control of Axillary bud Outgrowth in Chrysanthemum (Dendranthema grandiflorum 'Jinba').

    PubMed

    Yuan, Cunquan; Ahmad, Sagheer; Cheng, Tangren; Wang, Jia; Pan, Huitang; Zhao, Liangjun; Zhang, Qixiang

    2018-05-28

    Single-flower cut Chrysanthemum ( Dendranthema grandiflorum 'Jinba') holds a unique status in global floriculture industry. However, the extensive axillary bud outgrowth presents a major drawback. Shade is an environment cue that inhibits shoot branching. Present study was aimed at investigating the effect of ratio of red to far-red light (R:FR) in regulating the lateral bud outgrowth of Chrysanthemum and the detailed mechanism. Results showed that the fate of axillary buds at specific positions in stem exhibited difference in response to R:FR. Decreasing R:FR resulted in elevation of abscisic acid (ABA) accumulation in axillary buds. Expression of ABA, indole-3-acetic acid (IAA) and strigolactones (SL) -related metabolism and signal transduction genes was significantly changed in response to low R:FR. In addition, low R:FR caused the re-distribution of sucrose across the whole plant, driving more sucrose towards bottom buds. Our results indicate that low R:FR not always inhibits bud outgrowth, rather its influence depends on the bud position in the stem. ABA, SL and auxin pathways were involved in the process. Interestingly, sucrose also appears to be involved in the process which is necessary to pay attention in the further studies. The present study also lays the foundation for developing methods to regulate axillary bud outgrowth in Chrysanthemum.

  12. Expression of ABA Metabolism-Related Genes Suggests Similarities and Differences Between Seed Dormancy and Bud Dormancy of Peach (Prunus persica)

    PubMed Central

    Wang, Dongling; Gao, Zhenzhen; Du, Peiyong; Xiao, Wei; Tan, Qiuping; Chen, Xiude; Li, Ling; Gao, Dongsheng

    2016-01-01

    Dormancy inhibits seed and bud growth of perennial plants until the environmental conditions are optimal for survival. Previous studies indicated that certain co-regulation pathways exist in seed and bud dormancy. In our study, we found that seed and bud dormancy are similar to some extent but show different reactions to chemical treatments that induce breaking of dormancy. Whether the abscisic acid (ABA) regulatory networks are similar in dormant peach seeds and buds is not well known; however, ABA is generally believed to play a critical role in seed and bud dormancy. In peach, some genes putatively involved in ABA synthesis and catabolism were identified and their expression patterns were studied to learn more about ABA homeostasis and the possible crosstalk between bud dormancy and seed dormancy mechanisms. The analysis demonstrated that two 9-cis-epoxycarotenoid dioxygenase-encoding genes seem to be key in regulating ABA biosynthesis to induce seed and bud dormancy. Three CYP707As play an overlapping role in controlling ABA inactivation, resulting in dormancy-release. In addition, Transcript analysis of ABA metabolism-related genes was much similar demonstrated that ABA pathways was similar in the regulation of vegetative and flower bud dormancy, whereas, expression patterns of ABA metabolism-related genes were different in seed dormancy showed that ABA pathway maybe different in regulating seed dormancy in peach. PMID:26793222

  13. Format and style for environmental documents prepared as part of the Uranium Mill Tailings Remedial Action Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-01

    The Uranium Mill Tailings Remedial Action Program will require the preparation of several environmental impact statements and several environmental assessments. This guide begins with a section describing in general terms the efforts required to make these documents readable. The sections describe the formats to be used for the pages, headings, front matter, footnotes, lists, figures, tables, references, glossaries, indexes, and appendixes in these documents. A final section presents some rules of style to be followed in writing the texts.

  14. Seasonal fluxes of native grass bud banks in response to season and return interval of fire in the Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Axillary buds play a fundamental role in perennial population persistence through regeneration of bud banks. However, fire could affect bud bank dynamics by altering the size and cycles of dormant and active periods. We examined impacts of fire return interval (1.5, 3, or 6 yr) and season of fire ...

  15. Visible dormant buds as related to tree diameter and log position

    Treesearch

    H. Clay Smith

    1967-01-01

    Red oaks and yellow-poplars in a stand of second-growth cove hardwoods in West Virginia were studied to determine whether visible dormant buds are related to tree size or log position. No correlation was found between dormant buds and tree size, for either species; but yellow-poplars had a significantly greater number of buds on the upper log.

  16. The timing of bud break in warming conditions: variation among seven sympatric conifer species from Eastern Canada

    NASA Astrophysics Data System (ADS)

    Rossi, Sergio; Isabel, Nathalie

    2017-11-01

    Phenological changes are expected with the ongoing global warming, which could create mismatches in the growth patterns among sympatric species or create synchrony with insect herbivores. In this study, we performed a comparative assessment of the timings of bud break among seven conifer species of Eastern Canada by evaluating seedling development in growth chambers under different temperatures (16, 20 and 24 °C). Bud break occurred earliest in Larix laricina, while Pinus strobus and Pinus resinosa had the latest. Warmer conditions advanced bud break, with the greatest effects being observed at the lower temperatures. Mixed models estimated that one additional degree of temperature produced advancements of 5.3 and 2.1 days at 16 and 20 °C, respectively. The hypothesis of an asynchronous change between species under warming was demonstrated only for the last phenological phases (split buds and exposed shoots), and principally in pines. Abies balsamea showed changes in bud break comparable with the other species analysed, rejecting the hypothesis of mismatches under warmer conditions. The observed non-linear responses of the timings of bud break to warming suggest that the major changes in bud phenology should be expected at the lowest temperatures.

  17. Isolation of chicken taste buds for real-time Ca2+ imaging.

    PubMed

    Kudo, Ken-ichi; Kawabata, Fuminori; Nomura, Toumi; Aridome, Ayumi; Nishimura, Shotaro; Tabata, Shoji

    2014-10-01

    We isolated chicken taste buds and used a real-time Ca2+ imaging technique to investigate the functions of the taste cells. With RT-PCR, we found that isolated chicken taste bud-like cell subsets express chicken gustducin messenger RNA. Immunocytochemical techniques revealed that the cell subsets were also immunopositive for chicken gustducin. These results provided strong evidence that the isolated cell subsets contain chicken taste buds. The isolated cell subsets were spindle-shaped and approximately 61-75 μm wide and 88-98 μm long, and these characteristics are similar to those of sectional chicken taste buds. Using Ca2+ imaging, we observed the buds' response to 2 mmol/L quinine hydrochloride (a bitter substance) and their response to a mixture of 25 mmol/L L-glutamic acid monopotassium salt monohydrate and 1 mmol/L inosine 5'-monophosphate disodium salt, umami substances. The present study is the first morphological demonstration of isolated chicken taste buds, and our results indicate that the isolated taste buds were intact and functional approaches for examining the taste senses of the chicken using Ca2+ imaging can be informative. © 2014 Japanese Society of Animal Science.

  18. Ift25 is not a cystic kidney disease gene but is required for early steps of kidney development.

    PubMed

    Desai, Paurav B; San Agustin, Jovenal T; Stuck, Michael W; Jonassen, Julie A; Bates, Carlton M; Pazour, Gregory J

    2018-06-01

    Eukaryotic cilia are assembled by intraflagellar transport (IFT) where large protein complexes called IFT particles move ciliary components from the cell body to the cilium. Defects in most IFT particle proteins disrupt ciliary assembly and cause mid gestational lethality in the mouse. IFT25 and IFT27 are unusual components of IFT-B in that they are not required for ciliary assembly and mutant mice survive to term. The mutants die shortly after birth with numerous organ defects including duplex kidneys. Completely duplex kidneys result from defects in ureteric bud formation at the earliest steps of metanephric kidney development. Ureteric bud initiation is a highly regulated process involving reciprocal signaling between the ureteric epithelium and the overlying metanephric mesenchyme with regulation by the peri-Wolffian duct stroma. The finding of duplex kidney in Ift25 and Ift27 mutants suggests functions for these genes in regulation of ureteric bud initiation. Typically the deletion of IFT genes in the kidney causes rapid cyst growth in the early postnatal period. In contrast, the loss of Ift25 results in smaller kidneys, which show only mild tubule dilations that become apparent in adulthood. The smaller kidneys appear to result from reduced branching in the developing metanephric kidney. This work indicates that IFT25 and IFT27 are important players in the early development of the kidney and suggest that duplex kidney is part of the ciliopathy spectrum. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. MICROSPOROGENESIS AND EMBRYOGENESIS IN QUERCUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stairs, G. R.

    1962-01-01

    Representative species from two subgenera in the genus Quercus were examined for floral structure and phenology, microsporogenesis, and embryogenesis. The species selected for investigation were: Quercus alba in the Lepidobalanus subgenera, and Quercus coccinea and Quercus ilicifolia from the Erythrobalanus group. Photographs of flowering and photomicrographs of microsporogensis and embryogenesis are used for illustration. The male flowers of the three species are borne on catkins which develop in the scale leaf axils of the current vegetative bud or in separate male buds. Meiosis occurred in the spring at the beginning of bud enlargement; division figures were regular in all themore » material observed. A haploid chromosome number of 12 was confirmed for the three species. Pollen was shed on May 10, 1962, from trees of Quercus coccinea and Quercus ilicifolia; and on May 26, 1962 from Quercus alba. The female flowers are located in the axils of the new leaves. Seed development requires one growing season in Quercus alba, but two growing seasons are required to mature seed of Quercus coccinea and Quercus ilicifolia. The chronology of embryo development was similar for Quercus coccinea and Quercus ilicifolia; embryo development of Quercus alba was about two weeks behind that of the other two species. Definition of ovule dominance within a seed occurred at the time of early embryo development. Failure of this physiological expression of dominance results in multiseeded acorns. No abnormal embryogenesis per se was observed in relation to multiple embryo development. (auth)« less

  20. The role of hormone transport and metabolism in apical dominance in oats

    NASA Technical Reports Server (NTRS)

    Harrison, M. A.; Kaufman, P. B.

    1984-01-01

    14C-benzyladenine (BA) and 14C-indole-3-acetic acid (IAA) were used to study hormone transport to the tiller bud and hormone catabolism in excised oat stem segments. Acropetal BA transport was greatest from upright stem segments to tiller buds suppressed by apical dominance. IAA, abscisic acid (ABA), and C2H4 inhibited BA transport to the tiller bud. IAA transport to the tiller bud site was inhibited by BA, C2H4, or after gravistimulation, which affected BA transport to a lesser extent than IAA transport. Multiple peaks of radioactivity were observed in 14C-BA- or 14C-IAA-treated stem segments after 9 h of transport. IAA, ABA, and C2H4 promoted BA catabolism. Auxin, ABA, and C2H4 may inhibit tiller bud release by inhibiting cytokinin transport to the tiller bud and by promoting cytokinin catabolism. Gravistimulation may promote tiller release by inhibiting IAA transport to the tiller bud and allowing cytokinins to accumulate there preferentially.

  1. Cryopreservation of redwood (Sequoia sempervirens) in vitro buds using vitrification-based techniques.

    PubMed

    Ozudogru, E A; Kirdok, E; Kaya, E; Capuana, M; Benelli, C; Engelmann, E

    2011-01-01

    In this study, the efficiency of three vitrification-based cryopreservation techniques, i.e. vitrification, encapsulation-vitrification and droplet-vitrification were compared for cryopreserving Sequoia sempervirens apical and basal buds sampled from in vitro shoot cultures. The effect of cold-hardening of mother-plants and of bud culture medium and sucrose preculture was also investigated. Culture of apical and basal buds sampled from cold-hardened mother-plants on Quoirin and Lepoivre medium with activated charcoal had a positive effect on regrowth. Only droplet-vitrification ensured survival and regrowth after cryopreservation. After cryopreservation, regeneration of apical buds was possible for PVS2 exposure durations between 90 and 180 min but it remained low, with a maximum of 18 percent after 135 min treatment. With basal buds, regeneration after cryopreservation was possible over a larger range of PVS2 treatment durations, between 30 and 180 min. The highest regeneration percentage was slightly higher (22 percent) than that measured with apical buds, and was also achieved after 135 min PVS2 exposure.

  2. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid.

    PubMed

    Aihara, Eitaro; Mahe, Maxime M; Schumacher, Michael A; Matthis, Andrea L; Feng, Rui; Ren, Wenwen; Noah, Taeko K; Matsu-ura, Toru; Moore, Sean R; Hong, Christian I; Zavros, Yana; Herness, Scott; Shroyer, Noah F; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A; Montrose, Marshall H

    2015-11-24

    Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5(+)) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5(+) cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration.

  3. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid

    PubMed Central

    Aihara, Eitaro; Mahe, Maxime M.; Schumacher, Michael A.; Matthis, Andrea L.; Feng, Rui; Ren, Wenwen; Noah, Taeko K.; Matsu-ura, Toru; Moore, Sean R.; Hong, Christian I.; Zavros, Yana; Herness, Scott; Shroyer, Noah F.; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A.; Montrose, Marshall H.

    2015-01-01

    Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5+) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5+ cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration. PMID:26597788

  4. Bioengineered Tooth Buds Exhibit Features of Natural Tooth Buds.

    PubMed

    Smith, E E; Angstadt, S; Monteiro, N; Zhang, W; Khademhosseini, A; Yelick, P C

    2018-06-01

    Tooth loss is a significant health issue currently affecting millions of people worldwide. Artificial dental implants, the current gold standard tooth replacement therapy, do not exhibit many properties of natural teeth and can be associated with complications leading to implant failure. Here we propose bioengineered tooth buds as a superior alternative tooth replacement therapy. We describe improved methods to create highly cellularized bioengineered tooth bud constructs that formed hallmark features that resemble natural tooth buds such as the dental epithelial stem cell niche, enamel knot signaling centers, transient amplifying cells, and mineralized dental tissue formation. These constructs were composed of postnatal dental cells encapsulated within a hydrogel material that were implanted subcutaneously into immunocompromised rats. To our knowledge, this is the first report describing the use of postnatal dental cells to create bioengineered tooth buds that exhibit evidence of these features of natural tooth development. We propose future bioengineered tooth buds as a promising, clinically relevant tooth replacement therapy.

  5. Acid-sensing ion channels (ASICs) in the taste buds of adult zebrafish.

    PubMed

    Viña, E; Parisi, V; Cabo, R; Laurà, R; López-Velasco, S; López-Muñiz, A; García-Suárez, O; Germanà, A; Vega, J A

    2013-03-01

    In detecting chemical properties of food, different molecules and ion channels are involved including members of the acid-sensing ion channels (ASICs) family. Consistently ASICs are present in sensory cells of taste buds of mammals. In the present study the presence of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) was investigated in the taste buds of adult zebrafish (zASICs) using Western blot and immunohistochemistry. zASIC1 and zASIC3 were regularly absent from taste buds, whereas faint zASIC2 and robust zASIC4 immunoreactivities were detected in sensory cells. Moreover, zASIC2 also immunolabelled nerves supplying taste buds. The present results demonstrate for the first time the presence of zASICs in taste buds of teleosts, with different patterns to that occurring in mammals, probably due to the function of taste buds in aquatic environment and feeding. Nevertheless, the role of zASICs in taste remains to be demonstrated. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Inheritance of yeast nuclear pore complexes requires the Nsp1p subcomplex

    PubMed Central

    Makio, Tadashi; Lapetina, Diego L.

    2013-01-01

    In the yeast Saccharomyces cerevisiae, organelles and macromolecular complexes are delivered from the mother to the emerging daughter during cell division, thereby ensuring progeny viability. Here, we have shown that during mitosis nuclear pore complexes (NPCs) in the mother nucleus are actively delivered through the bud neck and into the daughter cell concomitantly with the nuclear envelope. Furthermore, we show that NPC movement into the daughter cell requires members of an NPC subcomplex containing Nsp1p and its interacting partners. NPCs lacking these nucleoporins (Nups) were blocked from entry into the daughter by a putative barrier at the bud neck. This selection process could be observed within individual cells such that NPCs containing Nup82p (an Nsp1p-interacting Nup) were transferred to the daughter cells while functionally compromised NPCs lacking Nup82p were retained in the mother. This mechanism is proposed to facilitate the inheritance of functional NPCs by daughter cells. PMID:24165935

  7. A pathway of targeted autophagy is induced by DNA damage in budding yeast

    PubMed Central

    Eapen, Vinay V.; Waterman, David P.; Bernard, Amélie; Schiffmann, Nathan; Sayas, Enrich; Kamber, Roarke; Lemos, Brenda; Memisoglu, Gonen; Ang, Jessie; Mazella, Allison; Chuartzman, Silvia G.; Loewith, Robbie J.; Schuldiner, Maya; Denic, Vladimir; Klionsky, Daniel J.; Haber, James E.

    2017-01-01

    Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response. PMID:28154131

  8. A pathway of targeted autophagy is induced by DNA damage in budding yeast.

    PubMed

    Eapen, Vinay V; Waterman, David P; Bernard, Amélie; Schiffmann, Nathan; Sayas, Enrich; Kamber, Roarke; Lemos, Brenda; Memisoglu, Gonen; Ang, Jessie; Mazella, Allison; Chuartzman, Silvia G; Loewith, Robbie J; Schuldiner, Maya; Denic, Vladimir; Klionsky, Daniel J; Haber, James E

    2017-02-14

    Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response.

  9. Flank wear analysing of high speed end milling for hardened steel D2 using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Hazza Faizi Al-Hazza, Muataz; Ibrahim, Nur Asmawiyah bt; Adesta, Erry T. Y.; Khan, Ahsan Ali; Abdullah Sidek, Atiah Bt.

    2017-03-01

    One of the main challenges for any manufacturer is how to decrease the machining cost without affecting the final quality of the product. One of the new advanced machining processes in industry is the high speed hard end milling process that merges three advanced machining processes: high speed milling, hard milling and dry milling. However, one of the most important challenges in this process is to control the flank wear rate. Therefore a analyzing the flank wear rate during machining should be investigated in order to determine the best cutting levels that will not affect the final quality of the product. In this research Taguchi method has been used to investigate the effect of cutting speed, feed rate and depth of cut and determine the best level s to minimize the flank wear rate up to total length of 0.3mm based on the ISO standard to maintain the finishing requirements.

  10. Gravity-induced buds formation from protonemata apical cells in the mosses

    NASA Astrophysics Data System (ADS)

    Kyyak, Natalia; Khorkavtsiv, Yaroslava

    The acceleration of moss protonemata development after the exit it to light from darkness is important gravidependent morphogenetic manifestation of the moss protonemata. The accelerated development of mosses shows in transformation of apical protonemata cells into the gametophores buds (Ripetskyj et al., 1999). In order to establish, that such reaction on gravitation is general property of gravisensity species, or its typical only for single moss species, experiments with the following moss species - Bryum intermedium (Ludw.) Brig., Bryum caespiticium Hedw., Bryum argenteum Hedw., Dicranodontium denudatum (Brid.) Britt. were carried out. All these species in response to influence of gravitation were capable to form rich bunches of gravitropical protonemata in darkness, that testified to their gravisensity. After the transference of Petri dishes with gravitropical protonemata from darkness on light was revealed, that in 3 of the investigated species the gametophores buds were absent. Only B. argenteum has reacted to action of gravitation by buds formation from apical cells of the gravitropical protonemata. With the purpose of strengthening of buds formation process, the experiments with action of exogenous kinetin (in concentration of 10 (-6) M) were carried out. Kinetin essentially stimulated apical buds formation of B. argenteum. The quantity of apical buds has increased almost in three times in comparison with the control. Besides, on separate stolons a few (3-4) buds from one apical cell were formed. Experimentally was established, that the gametophores buds formation in mosses is controlled by phytohormones (Bopp, 1985; Demkiv et al., 1991). In conditions of gravity influence its essentially accelerated. Probably, gravity essentially strengthened acropetal transport of phytohormones and formation of attractive center in the protonemata apical cell. Our investigations have allowed to make the conclusion, that gravi-dependent formation of the apical buds is particular species-specific feature. Obviously, the important role in this process also played the duration of the period of gametophyte development. All species selected for this analysis, excepted B. argenteum, characterized by sufficiently long process of gametophyte development. On light the process of cells differentiation of these species and the buds formation occurs during 5-6 weeks, in B. argenteum - 16-18 days. The essential strengthening of process of buds formation on the apical cells was received under influence of exogenous kinetin that confirms the concept of key role of kinetin in gametophores buds formation.

  11. Transient etiolation: protochlorophyll(ide) and chlorophyll forms in differentiating plastids of closed and breaking leaf buds of horse chestnut (Aesculus hippocastanum).

    PubMed

    Solymosi, Katalin; Bóka, Károly; Böddi, Béla

    2006-08-01

    An accompanying paper reports the accumulation of photoactive protochlorophyllide (Pchlide) in the innermost leaf primordia of buds of many tree species. In this paper, we describe plastid differentiation, changes in pigment concentrations and spectral properties of bud scales and leaf primordia of horse chestnut (Aesculus hippocastanum L.) from January until the end of bud break in April. The bud scales contained plastids with grana, stroma thylakoids characteristic of chloroplasts and large dense bodies within the stroma. In January, proplastids and young chloroplasts were present in the leaf primordia, and the fluorescence spectra of the primordia were similar to those of green leaves except for a minor band at 630 nm, indicative of a protochlorophyll(ide). During bud break, the pigment concentrations of the green bud scales and the outermost leaf primordia increased, and Pchlide forms with emission maxima at 633, 644 and 655 nm accumulated in the middle and innermost leaf primordia. Depending on the position of the leaf primordia within the bud, their plastids and their pigment concentrations varied. Etio-chloroplasts with prolamellar bodies (PLBs) and prothylakoids with developing grana were observed in the innermost leaves. Besides the above-mentioned Pchlide forms, the middle and innnermost leaf primordia contained only a Chl band with an emission maximum at 686 nm. The outermost leaf primordia contained etio-chloroplasts with well-developed grana and small, narrow-type PLBs. These outermost leaves contained only chlorophyll forms like the mature green leaves. No Pchlide accumulation was observed after bud break, indicating that etiolation of the innermost and middle leaves is transient. The Pchlide forms and the plastid types of the primordia in buds grown in nature were similar to those of leaves of dark-germinated seedlings and to those of the leaf primordia of dark-forced buds. We conclude that transient etiolation occurs under natural conditions. The formation of PLBs and etio-chloroplasts and the accumulation of the light-dependent NADPH:protochlorophyllide oxidoreductase are involved in the natural greening process and ontogenesis of young leaf primordia of horse chestnut buds.

  12. Effectiveness of Routine BCG Vaccination on Buruli Ulcer Disease: A Case-Control Study in the Democratic Republic of Congo, Ghana and Togo

    PubMed Central

    Phillips, Richard Odame; Phanzu, Delphin Mavinga; Beissner, Marcus; Badziklou, Kossi; Luzolo, Elysée Kalundieko; Sarfo, Fred Stephen; Halatoko, Wemboo Afiwa; Amoako, Yaw; Frimpong, Michael; Kabiru, Abass Mohammed; Piten, Ebekalisai; Maman, Issaka; Bidjada, Bawimodom; Koba, Adjaho; Awoussi, Koffi Somenou; Kobara, Basile; Nitschke, Jörg; Wiedemann, Franz Xaver; Kere, Abiba Banla; Adjei, Ohene; Löscher, Thomas; Fleischer, Bernhard; Bretzel, Gisela; Herbinger, Karl-Heinz

    2015-01-01

    Background The only available vaccine that could be potentially beneficial against mycobacterial diseases contains live attenuated bovine tuberculosis bacillus (Mycobacterium bovis) also called Bacillus Calmette-Guérin (BCG). Even though the BCG vaccine is still widely used, results on its effectiveness in preventing mycobacterial diseases are partially contradictory, especially regarding Buruli Ulcer Disease (BUD). The aim of this case-control study is to evaluate the possible protective effect of BCG vaccination on BUD. Methodology The present study was performed in three different countries and sites where BUD is endemic: in the Democratic Republic of the Congo, Ghana, and Togo from 2010 through 2013. The large study population was comprised of 401 cases with laboratory confirmed BUD and 826 controls, mostly family members or neighbors. Principal Findings After stratification by the three countries, two sexes and four age groups, no significant correlation was found between the presence of BCG scar and BUD status of individuals. Multivariate analysis has shown that the independent variables country (p = 0.31), sex (p = 0.24), age (p = 0.96), and presence of a BCG scar (p = 0.07) did not significantly influence the development of BUD category I or category II/III. Furthermore, the status of BCG vaccination was also not significantly related to duration of BUD or time to healing of lesions. Conclusions In our study, we did not observe significant evidence of a protective effect of routine BCG vaccination on the risk of developing either BUD or severe forms of BUD. Since accurate data on BCG strains used in these three countries were not available, no final conclusion can be drawn on the effectiveness of BCG strain in protecting against BUD. As has been suggested for tuberculosis and leprosy, well-designed prospective studies on different existing BCG vaccine strains are needed also for BUD. PMID:25569674

  13. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds.

    PubMed

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Doron-Faigenboim, Adi; Blumwald, Eduardo; Sadka, Avi

    2014-07-01

    Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca(2+)-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Abscisic Acid (ABA ) Promotes the Induction and Maintenance of Pear (Pyrus pyrifolia White Pear Group) Flower Bud Endodormancy

    PubMed Central

    Li, Jianzhao; Xu, Ying; Niu, Qingfeng; He, Lufang; Teng, Yuanwen; Bai, Songling

    2018-01-01

    Dormancy is an adaptive mechanism that allows temperate deciduous plants to survive unfavorable winter conditions. In the present work, we investigated the possible function of abscisic acid (ABA) on the endodormancy process in pear. The ABA content increased during pear flower bud endodormancy establishment and decreased towards endodormancy release. In total, 39 putative genes related to ABA metabolism and signal transductions were identified from pear genome. During the para- to endodormancy transition, PpNCED-2 and PpNCED-3 had high expression levels, while PpCYP707As expression levels were low. However, during endodormancy, the expression of PpCYP707A-3 sharply increased with increasing cold accumulation. At the same time, the ABA content of pear buds declined, and the percentage of bud breaks rapidly increased. On the other hand, the expression levels of PpPYLs, PpPP2Cs, PpSnRK2s, and PpABI4/ABI5s were also changed during the pear flower bud dormancy cycle. Furthermore, exogenous ABA application to para-dormant buds significantly reduced the bud breaks and accelerated the transition to endodormancy. During the whole treatment time, the expression level of PpPP2C-12 decreased to a greater extent in ABA-treated buds than in control. However, the expression levels of PpSnRK2-1, PpSnRK2-4, and PpABI5-1 were higher in ABA-treated buds. Our results indicated that PpCYP707A-3 and PpNCEDs play pivotal roles on the regulation of endodormancy release, while ABA signal transduction pathway also appears to be involved in the process. The present work provided the basic information about the function of ABA-related genes during pear flower bud dormancy process. PMID:29361708

  15. Sensitivity of bud burst in key tree species in the UK to recent climate variability and change

    NASA Astrophysics Data System (ADS)

    Abernethy, Rachel; Cook, Sally; Hemming, Deborah; McCarthy, Mark

    2017-04-01

    Analysing the relationship between the changing climate of the UK and the spatial and temporal distribution of spring bud burst plays an important role in understanding ecosystem functionality and predicting future phenological trends. The location and timing of bud burst of eleven species of trees alongside climatic factors such as, temperature, precipitation and hours of sunshine (photoperiod) were used to investigate: i. which species' bud burst timing experiences the greatest impact from a changing climate, ii. which climatic factor has the greatest influence on the timing of bud burst, and iii. whether the location of bud burst is influenced by climate variability. Winter heatwave duration was also analysed as part of an investigation into the relationship between temperature trends of a specific winter period and the following spring events. Geographic Information Systems (GIS) and statistical analysis tools were used to visualise spatial patterns and to analyse the phenological and climate data through regression and analysis of variance (ANOVA) tests. Where there were areas that showed a strong positive or negative relationship between phenology and climate, satellite imagery was used to calculate a Normalised Difference Vegetation Index (NDVI) and a Leaf Area Index (LAI) to further investigate the relationships found. It was expected that in the north of the UK, where bud burst tends to occur later in the year than in the south, that the bud bursts would begin to occur earlier due to increasing temperatures and increased hours of sunshine. However, initial results show that for some species, the bud burst timing tends to remain or become later in the year. Interesting results will be found when investigating the statistical significance between the changing location of the bud bursts and each climatic factor.

  16. Release of Apical Dominance in Potato Tuber Is Accompanied by Programmed Cell Death in the Apical Bud Meristem[C][W

    PubMed Central

    Teper-Bamnolker, Paula; Buskila, Yossi; Lopesco, Yael; Ben-Dor, Shifra; Saad, Inbal; Holdengreber, Vered; Belausov, Eduard; Zemach, Hanita; Ori, Naomi; Lers, Amnon; Eshel, Dani

    2012-01-01

    Potato (Solanum tuberosum) tuber, a swollen underground stem, is used as a model system for the study of dormancy release and sprouting. Natural dormancy release, at room temperature, is initiated by tuber apical bud meristem (TAB-meristem) sprouting characterized by apical dominance (AD). Dormancy is shortened by treatments such as bromoethane (BE), which mimics the phenotype of dormancy release in cold storage by inducing early sprouting of several buds simultaneously. We studied the mechanisms governing TAB-meristem dominance release. TAB-meristem decapitation resulted in the development of increasing numbers of axillary buds with time in storage, suggesting the need for autonomous dormancy release of each bud prior to control by the apical bud. Hallmarks of programmed cell death (PCD) were identified in the TAB-meristems during normal growth, and these were more extensive when AD was lost following either extended cold storage or BE treatment. Hallmarks included DNA fragmentation, induced gene expression of vacuolar processing enzyme1 (VPE1), and elevated VPE activity. VPE1 protein was semipurified from BE-treated apical buds, and its endogenous activity was fully inhibited by a cysteinyl aspartate-specific protease-1-specific inhibitor N-Acetyl-Tyr-Val-Ala-Asp-CHO (Ac-YVAD-CHO). Transmission electron microscopy further revealed PCD-related structural alterations in the TAB-meristem of BE-treated tubers: a knob-like body in the vacuole, development of cytoplasmic vesicles, and budding-like nuclear segmentations. Treatment of tubers with BE and then VPE inhibitor induced faster growth and recovered AD in detached and nondetached apical buds, respectively. We hypothesize that PCD occurrence is associated with the weakening of tuber AD, allowing early sprouting of mature lateral buds. PMID:22362870

  17. Inflammation activates the interferon signaling pathways in taste bud cells.

    PubMed

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-10-03

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.

  18. Control of head morphogenesis in an invertebrate asexually produced larva-like bud ( Cassiopea andromeda; Cnidaria: Scyphozoa).

    PubMed

    Thieme, Claudia; Hofmann, Dietrich Kurt

    2003-04-01

    Scyphopolyps of Cassiopea andromeda propagate asexually by forming larva-like buds which separate from the parent in a developmentally quiescent state. These buds metamorphose into sessile polyps when exposed to specific biogenic, chemical inducers. Morphogenesis of transversely dissected buds indicates the presence of pattern-determining signals; whereas the basal bud fragments may still form a complete scyphistoma the apical bud fragments develop spontaneously in the absence of an inducer into a polyp head without stalk and foot. Based on these findings Neumann (dissertation, Cologne University, 1980) postulated a head-inhibiting signal which is released at the basal pole and inhibits head formation at the apical end. Contrary to this hypothesis dissection itself might induce the development of head structures. The present study deals with the control of polyp head formation in C. andromeda. It concentrates on two points, namely the postulated head inhibitor and the involvement of compounds known to act during metamorphosis (the enzyme protein kinase C and the specific metamorphosis inducer Z-GPGGPA). We found that compared to intact buds and apical bud fragments transversely incised buds reached an intermediate stage of head development. This confirms Neumann's hypothesis. Consequently we focused on the mode of action and the chemical nature of the head-inhibiting signal in C. andromeda. Our results indicate that the head inhibitor may be included in one of six pooled fractions isolated from bud homogenate via gel filtration on a Sephadex G-50 column. The inhibitor is supposed to be water-soluble and to have a molecular weight of 850-1,500 Da. Furthermore we prove that head formation is not promoted by the metamorphosis-inducer Z-GPGGPA but is prevented by the inhibitors psychosine, chelerythrine and RO-32-0432 showing the involvement of protein kinase C in this process.

  19. Comparison of the oropharyngeal cavity in the Starksiini (Teleostei: Blenniiformes: Labrisomidae): taste buds and teeth, including a comparison with closely-related genera.

    PubMed

    Fishelson, Lev; Baldwin, Carole C; Hastings, Philip A

    2012-06-01

    The present study describes the distribution of taste buds and teeth in the oropharyngeal cavity of 13 species of adult (18-60 mm SL) Starksiini fishes inhabiting subtidal waters of the Neotropical region. Four types of taste buds described previously in other fish groups were observed within the oropharyngeal cavity, of which type I, situated on prominent protruding papillae, is the most common. The number of taste buds in this cavity varies considerably, ranging from ca. 202 in Starksia lepicoelia to ca. 770 in S. sluiteri. In all the studied species, taste buds are more numerous on the posterior (160-396) than on the anterior (42-294) part of the oropharyngeal cavity. The presence of different numbers of taste buds in different Starksiini species of the same standard length suggests that numbers of taste buds are not directly correlated with size and may be species-specific. Teeth are found on the premaxilla, dentary, vomer, palatine (in some species) and the upper and lower pharyngeal jaws (third pharyngobranchials and fifth ceratobranchials, respectively); the form and number of teeth and taste buds on each of these sites differs among the various species of Starksiini and between them and closely related species of the labrisomid tribes Labrisomini, Mnierpini, and Paraclinini. The results thus suggest potential systematic value in certain features of the oropharyngeal cavity for blenniiform fishes. It is also shown that benthic-feeding omnivorous fishes have higher densities of taste buds than piscivorous fishes. A possible correlation among numbers of taste buds, their positions in the oropharyngeal cavity, and other parameters is discussed. Copyright © 2012 Wiley Periodicals, Inc.

  20. Variation in human fungiform taste bud densities among regions and subjects.

    PubMed

    Miller, I J

    1986-12-01

    Taste sensitivity is known to vary among regions of the tongue and between subjects. The distribution of taste buds on the human tongue is examined in this report to determine if interregional and intersubject variation of taste bud density might account for some of the variation in human taste sensitivity. The subjects were ten males, aged 22-80 years, who died from acute trauma or an acute cardiovascular episode. Specimens were obtained as anatomical gifts or from autopsy. A sample of tissue about 1 cm2 was taken from the tongue tip and midlateral region; frozen sections were prepared for light microscopy; and serial sections were examined by light microscopy to count the taste buds. The average taste bud (tb) density on the tongue tip was 116 tb/cm2 with a range from 3.6 to 514 among subjects. The number of gustatory papillae on the tip averaged 24.5 papillae/cm2 with a range from 2.4 to 80. Taste bud density in the midregion averaged 25.2 tb/cm2 (range: 0-85.9), and the mean number of gustatory papillae was 8.25/cm2 (range: 0-28). The mean number of taste buds per papilla was 3.8 +/- 2.2 (s.d.) on the tip and 2.6 +/- 1.5 (s.d.) on the midregion. Subjects with the highest taste bud densities on the tip also had the highest densities in the midregion and the highest number of taste buds per papilla. Taste bud density was 4.6 times higher on the tip than the midregion, which probably accounts for some of the regional difference in taste sensitivity.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Potential for yield improvement in combined rip-first and crosscut-first rough mill processing

    Treesearch

    Ed Thomas; Urs Buehlmann

    2016-01-01

    Traditionally, lumber cutting systems in rough mills have either first ripped lumber into wide strips and then crosscut the resulting strips into component lengths (rip-first), or first crosscut the lumber into component lengths, then ripped the segments to the required widths (crosscut-first). Each method has its advantages and disadvantages. Crosscut-first typically...

  2. Economic Assessment of Rural District Heating by Bio-Steam Supplied by a Paper Mill in Canada

    ERIC Educational Resources Information Center

    Marinova, Mariya; Beaudry, Catherine; Taoussi, Abdelaziz; Trepanier, Martin; Paris, Jean

    2008-01-01

    The article investigates the feasibility of district heating in a small town adjacent to a Kraft pulp mill in eastern Canada. A detailed heat demand analysis is performed for all buildings using a geographical information system and archived data provided by the municipality. The study shows that the entire space heating requirement of the town…

  3. 1. GENERAL VIEW OF LOG POND AND BOOM FOR UNLOADING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF LOG POND AND BOOM FOR UNLOADING CEDAR LOGS FROM TRUCKS AT LOG DUMP, ADJACENT TO MILL; TRUCKS FORMERLY USED TRIP STAKES, THOUGH FOR SAFER HANDLING OF LOGS WELDED STAKES ARE NOW REQUIRED; AS A RESULT LOADING IS NOW DONE WITH A CRANE - Lester Shingle Mill, 1602 North Eighteenth Street, Sweet Home, Linn County, OR

  4. 77 FR 39985 - Information Collection; Forest Industries and Residential Fuelwood and Post Data Collection Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ...-pulp or composite panel, primary wood-using mills, including small, part-time mills, as well as large... 1978 require the Forest Service to evaluate trends in the use of logs and wood chips, to forecast anticipated levels of logs and wood chips, and to analyze changes in the harvest of these resources from the...

  5. Estimating sawmill processing capacity for Tongass timber: 2005 and 2006 update

    Treesearch

    Allen M. Brackley; Lisa K. Crone

    2009-01-01

    In spring 2006 and 2007, sawmill capacity and wood utilization information was collected for selected mills in southeast Alaska. The collected information is required to prepare information for compliance with Section 705(a) of the Tongass Timber Reform Act. The total estimated design capacity in the region (active and inactive mills) was 289,850 thousand board feet (...

  6. Estimating sawmill processing capacity for Tongass timber: 2003 and 2004 update.

    Treesearch

    Allen M. Brackley; Daniel J. Parrent; Thomas D. Rojas

    2006-01-01

    In spring 2004 and 2005, sawmill capacity and wood utilization information was collected for selected mills in southeast Alaska. The collected information is required to prepare information for compliance with Section 705(a) of the Tongass Timber Reform Act. The total capacity in the region (active and inactive mills) was 370,350 thousand board feet (mbf) Scribner log...

  7. Azithromycin add-on therapy in high-risk postendoscopic sinus surgery patients failing corticosteroid irrigations: A clinical practice audit.

    PubMed

    Maniakas, Anastasios; Desrosiers, Martin

    2014-01-01

    Chronic rhinosinusitis (CRS) has a high potential for recurrence after endoscopic sinus surgery (ESS), despite a postoperative therapy of topical corticosteroid irrigations. Azithromycin (AZI) is a macrolide antibiotic with anti-inflammatory properties that may be of benefit in such steroid-unresponsive patients. Follow-up study was performed to (1) review the effectiveness of the management strategy of adding AZI in high-risk post-ESS patients failing standard management and (2) identify predictive factors for steroid nonresponsiveness. A retrospective audit of the postoperative evolution of all patients undergoing ESS for CRS in 2010 by a single surgeon was undertaken. Patients deemed at high risk of recurrence based on preoperative history and/or perioperative findings received nasal irrigation with 0.5 mg of budesonide (BUD) in 240 mL of saline twice daily after ESS. Patients showing signs of endoscopic recurrence at 4 months, despite BUD, had AZI at 250 mg three times a week added to their treatment regimen. A total of 57 high-risk patients underwent ESS during this period. At 4 months, 63.2% (36/57) had a favorable outcome solely with BUD. Twelve of the 21 nonresponders received AZI, with an additional 66.7% (8/12) subsequently showing a favorable response. Failure of BUD was associated with female gender (p = 0.048), having elevated alpha-1-antitrypsin levels (p = 0.037) and lower recovery rates of Staphylococcus aureus (p = 0.063). Although the AZI subgroup was too small for statistical analysis, female gender was more frequently associated with failure of both BUD and AZI, while IgE was not useful. A significant subgroup of high-risk patients showing disease recurrence after ESS despite topical corticosteroid therapy may respond to the addition of AZI as part of their therapy. These findings suggest that topical steroid-unresponsive CRS may represent a distinct entity and that alternate anti-inflammatory agents may be required for optimal management.

  8. The time course of taste bud regeneration after glossopharyngeal or greater superficial petrosal nerve transection in rats.

    PubMed

    St John, Steven J; Garcea, Mircea; Spector, Alan C

    2003-01-01

    We previously have published data detailing the time course of taste bud regeneration in the anterior tongue following transection of the chorda tympani (CT) nerve in the rat. This study extends the prior work by determining the time course of taste bud regeneration in the vallate papilla, soft palate and nasoincisor ducts (NID) following transection of either the glossopharyngeal (GL) or greater superficial petrosal (GSP) nerve. Following GL transection in rats (n = 6 per time point), taste buds reappeared in the vallate papilla between 15 and 28 days after surgery, and returned to 80.3% of control levels (n = 12) of taste buds by 70 days postsurgery. The first appearance and the final percentage of the normal complement of regenerated vallate taste buds after GL transection resembled that seen previously in the anterior tongue after CT transection. However, in the latter case, regenerated taste buds reached asymptotic levels by 42 days after surgery, whereas within the time frame of the present study, a clear asymptotic return of vallate taste buds was not observed. In contrast to the posterior (and anterior) tongue, only 25% of the normal complement of palatal taste buds regenerated by 112 days and 224 days after GSP transection (n = 9). The difference in regenerative capacity might relate to the surgical approach used to transect the GSP. These experiments provide useful parametric data for investigators studying the functional consequences of gustatory nerve transection and regeneration.

  9. Aspects of vertebrate gustatory phylogeny: morphology and turnover of chick taste bud cells.

    PubMed

    Ganchrow, J R; Ganchrow, D; Royer, S M; Kinnamon, J C

    1993-10-01

    The taste bud is a receptor form observed across vertebrates. The present report compares chick taste buds to those of other vertebrates using light and electron microscopy. Unlike mammals, but common to many modern avians, the dorsal surface of chick anterior tongue lacks taste papillae and taste buds. Ultrastructurally, chick buds located in the anterior floor of the mouth (as in some reptiles and amphibians) and palate contain dark, intermediate, light, and basal cell types. Dark, intermediate, and light cells extend microvilli into intragemmal lumina and pores communicating with the oral cavity. As specialized features, dark cell apices lack dense granules and exhibit short microvilli relative to light and intermediate cells. Dark cell cytoplasmic fingers envelop intragemmal nerve fibers and cells as in other species, and sometimes contain abundant clear vesicles. Nerve profile expansions often are located adjacent to dark, intermediate, and light cell nuclei. Classical afferent synaptic contacts are rarely observed. Taste cell turnover is suggested by mitotic and degenerating figures in chick buds. In addition, tritiated thymidine injected into hatchlings, whose anterior mandibular oral taste bud population approximates that in adults, reveals a turnover rate of about 4.5 days. This is about half that observed in altricial mammals, reflecting a species difference or developmental factor in precocial avians. It is concluded that chick taste buds exhibit morphologic features common to other vertebrate buds with specializations reflecting the influences of niche, glandular relations, and/or age.

  10. An investigation into the design and performance of an automatic shape control system for a Sendzimir cold rolling mill

    NASA Astrophysics Data System (ADS)

    Dutton, Kenneth

    Shape (or flatness) control for rolled steel strip is becoming increasingly important as customer requirements become more stringent. Automatic shape control is now more or less mandatory on all new four-high cold mills, but no comprehensive scheme yet exists on a Sendzimir mill. This is due to the complexity of the control system design on such a mill, where many more degrees of freedom for control exist than is the case with the four-high mills.The objective of the current work is to develop, from first principles, such a system; including automatic control of the As-U-Roll and first intermediate roll actuators in response to the measured strip shape. This thesis concerns itself primarily with the As-U-Roll control system. The material presented is extremely wide-ranging. Areas covered include the development of original static and dynamic mathematical models of the mill systems, and testing of the plant by data-logging to tune these models. A basic control system philosophy proposed by other workers is modified and developed to suit the practical system requirements and the data provided by the models. The control strategy is tested by comprehensive multivariable simulation studies. Finally, details are given of the practical problems faced when installing the system on the plant. These include problems of manual control inter-action bumpless transfer and integral desaturation.At the time of presentation of the thesis, system commissioning is still in progress and production results are therefore not yet available. Nevertheless, the simulation studies predict a successful outcome, although performance is expected to be limited until the first intermediate roll actuators are eventually included in the scheme also.

  11. 46 CFR 50.25-5 - Products requiring manufacturer or mill certification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-5 Products requiring..., the application of the product does not require knowledge of the exact chemical analysis or mechanical...

  12. 46 CFR 50.25-5 - Products requiring manufacturer or mill certification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-5 Products requiring..., the application of the product does not require knowledge of the exact chemical analysis or mechanical...

  13. 46 CFR 50.25-5 - Products requiring manufacturer or mill certification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-5 Products requiring..., the application of the product does not require knowledge of the exact chemical analysis or mechanical...

  14. 46 CFR 50.25-5 - Products requiring manufacturer or mill certification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-5 Products requiring..., the application of the product does not require knowledge of the exact chemical analysis or mechanical...

  15. 46 CFR 50.25-5 - Products requiring manufacturer or mill certification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-5 Products requiring..., the application of the product does not require knowledge of the exact chemical analysis or mechanical...

  16. The Sprouting Potential of Dormant Buds on the Bole of Pole-Size Sugar Maple

    Treesearch

    Richard M. Godman; Gilbert A. Mattson

    1970-01-01

    A study of epicormic sprouting in pole-size sugar maples showed that all visible dormant buds on the bole were capable of producing epicormic shoots. The buds were induced to break dormancy by applying four methods of crown removal known to stimulate sprouting. The amount of crown removed determined the year that the buds broke dormancy; this may be accounted for by...

  17. Effect of Simulated Anthonomus signatus (Coleoptera: Curculionidae) Injury on Strawberries (Fragaria × ananassa) Grown in Southeastern Plasticulture Production.

    PubMed

    McPhie, Douglas; Burrack, Hannah J

    2017-02-01

    Female strawberry bud weevils (Anthonomus signatus Say) oviposit in developing flower buds of strawberries (Fragaria spp.), caneberries (Rubus spp.), and red bud (Cercis canadensis). After laying a single egg, weevils will girdle or "clip" the buds at the pedicel, killing the bud and preventing fruit development. This injury is of concern to commercial strawberry growers, who typically assume the loss of one clipped bud is the loss of one average sized fruit, causing the economic threshold to be set extremely low. There is evidence of compensation in some cultivars of strawberries, but research has previously only been conducted in perennial strawberry production. The majority of strawberries in the southeastern United States are grown in annual plasticulture systems. We assessed the ability of five strawberry cultivars commonly grown in annual plasticulture to compensate for A. signatus injury by removing buds at different growth stages. There was no effect of bud removal on total yield in any of the cultivars tested. Harvest timing was affected by simulated A. signatus damage in some cultivars, which may be an important consideration for direct market strawberry growers. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Variations in phenology and growth of European white birch (Betula pendula) clones.

    PubMed

    Rousi, Matti; Pusenius, Jyrki

    2005-02-01

    Phenology can have a profound effect on growth and climatic adaptability of northern tree species. Although the large interannual variations in dates of bud burst and growth termination have been widely discussed, little is known about the genotypic and spatial variations in phenology and how these sources of variation are related to temporal variation. We measured bud burst of eight white birch (Betula pendula Roth) clones in two field experiments daily over 6 years, and determined the termination of growth for the same clones over 2 years. We also measured yearly height growth. We found considerable genetic variation in phenological characteristics among the birch clones. There was large interannual variation in the date of bud burst and especially in the termination of growth, indicating that, in addition to genetic effects, environmental factors have a strong influence on both bud burst and growth termination. Height growth was correlated with timing of growth termination, length of growth period and bud burst, but the relationships were weak and varied among years. We accurately predicted the date of bud burst from the temperature accumulation after January 1, and base temperatures between +2 and -1 degrees C. There was large clonal variation in the duration of bud burst. Interannual variation in bud burst may have important consequences for insect herbivory of birches.

  19. Taste Bud Homeostasis in Health, Disease, and Aging

    PubMed Central

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50–100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8–12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging. PMID:24287552

  20. Taste bud homeostasis in health, disease, and aging.

    PubMed

    Feng, Pu; Huang, Liquan; Wang, Hong

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging.

  1. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates

    PubMed Central

    Gaillard, Dany; Xu, Mingang; Liu, Fei; Millar, Sarah E.; Barlow, Linda A.

    2015-01-01

    Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells. PMID:26020789

  2. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates.

    PubMed

    Gaillard, Dany; Xu, Mingang; Liu, Fei; Millar, Sarah E; Barlow, Linda A

    2015-05-01

    Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.

  3. Evolutionary origins of taste buds: phylogenetic analysis of purinergic neurotransmission in epithelial chemosensors

    PubMed Central

    Kirino, Masato; Parnes, Jason; Hansen, Anne; Kiyohara, Sadao; Finger, Thomas E.

    2013-01-01

    Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates. PMID:23466675

  4. Evolutionary origins of taste buds: phylogenetic analysis of purinergic neurotransmission in epithelial chemosensors.

    PubMed

    Kirino, Masato; Parnes, Jason; Hansen, Anne; Kiyohara, Sadao; Finger, Thomas E

    2013-03-06

    Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates.

  5. Expression of Msx genes in regenerating and developing limbs of axolotl.

    PubMed

    Koshiba, K; Kuroiwa, A; Yamamoto, H; Tamura, K; Ide, H

    1998-12-15

    Msx genes, homeobox-containing genes, have been isolated as homologues of the Drosophila msh gene and are thought to play important roles in the development of chick or mouse limb buds. We isolated two Msx genes, Msx1 and Msx2, from regenerating blastemas of axolotl limbs and examined their expression patterns using Northern blot and whole mount in situ hybridization during regeneration and development. Northern blot analysis revealed that the expression level of both Msx genes increased during limb regeneration. The Msx2 expression level increased in the blastema at the early bud stage, and Msx1 expression level increased at the late bud stage. Whole mount in situ hybridization revealed that Msx2 was expressed in the distal mesenchyme and Msx1 in the entire mesenchyme of the blastema at the late bud stage. In the developing limb bud, Msx1 was expressed in the entire mesenchyme, while Msx2 was expressed in the distal and peripheral mesenchyme. The expression patterns of Msx genes in the blastemas and limb buds of the axolotl were different from those reported for chick or mouse limb buds. These expression patterns of axolotl Msx genes are discussed in relation to the blastema or limb bud morphology and their possible roles in limb patterning.

  6. Three-dimensional patterning in polymer optical waveguides using focused ion beam milling

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin; Burrell, Derek; Middlebrook, Christopher

    2016-07-01

    Waveguide (WG) photonic-bridge taper modules are designed for symmetric planar coupling between silicon WGs and single-mode fibers (SMFs) to minimize photonic chip and packaging footprint requirements with improving broadband functionality. Micromachined fabrication and evaluation of polymer WG tapers utilizing high-resolution focused ion beam (FIB) milling is performed and presented. Polymer etch rates utilizing the FIB and optimal methods for milling polymer tapers are identified for three-dimensional patterning. Polymer WG tapers with low sidewall roughness are manufactured utilizing FIB milling and optically tested for fabrication loss. FIB platforms utilize a focused beam of ions (Ga+) to etch submicron patterns into substrates. Fabricating low-loss polymer WG taper prototypes with the FIB before moving on to mass-production techniques provides theoretical understanding of the polymer taper and its feasibility for connectorization devices between silicon WGs and SMFs.

  7. ILK modulates epithelial polarity and matrix formation in hair follicles

    PubMed Central

    Rudkouskaya, Alena; Welch, Ian; Dagnino, Lina

    2014-01-01

    Hair follicle morphogenesis requires coordination of multiple signals and communication between its epithelial and mesenchymal constituents. Cell adhesion protein platforms, which include integrins and integrin-linked kinase (ILK), are critical for hair follicle formation. However, their precise contribution to this process is poorly understood. We show that in the absence of ILK, the hair follicle matrix lineage fails to develop, likely due to abnormalities in development of apical–basal cell polarity, as well as in laminin-511 and basement membrane assembly at the tip of the hair bud. These defects also result in impaired specification of hair matrix and absence of precortex and inner sheath root cell lineages. The molecular pathways affected in ILK-deficient follicles are similar to those in the absence of epidermal integrin β1 and include Wnt, but not sonic hedgehog, signaling. ILK-deficient hair buds also show abnormalities in the dermal papilla. Addition of exogenous laminin-511 restores morphological and molecular markers associated with hair matrix formation, indicating that ILK regulates hair bud cell polarity and functions upstream from laminin-511 assembly to regulate the developmental progression of hair follicles beyond the germ stage. PMID:24371086

  8. Kinetic Analysis of a Molecular Model of the Budding Yeast Cell Cycle

    PubMed Central

    Chen, Katherine C.; Csikasz-Nagy, Attila; Gyorffy, Bela; Val, John; Novak, Bela; Tyson, John J.

    2000-01-01

    The molecular machinery of cell cycle control is known in more detail for budding yeast, Saccharomyces cerevisiae, than for any other eukaryotic organism. In recent years, many elegant experiments on budding yeast have dissected the roles of cyclin molecules (Cln1–3 and Clb1–6) in coordinating the events of DNA synthesis, bud emergence, spindle formation, nuclear division, and cell separation. These experimental clues suggest a mechanism for the principal molecular interactions controlling cyclin synthesis and degradation. Using standard techniques of biochemical kinetics, we convert the mechanism into a set of differential equations, which describe the time courses of three major classes of cyclin-dependent kinase activities. Model in hand, we examine the molecular events controlling “Start” (the commitment step to a new round of chromosome replication, bud formation, and mitosis) and “Finish” (the transition from metaphase to anaphase, when sister chromatids are pulled apart and the bud separates from the mother cell) in wild-type cells and 50 mutants. The model accounts for many details of the physiology, biochemistry, and genetics of cell cycle control in budding yeast. PMID:10637314

  9. The final cut: cell polarity meets cytokinesis at the bud neck in S. cerevisiae.

    PubMed

    Juanes, Maria Angeles; Piatti, Simonetta

    2016-08-01

    Cell division is a fundamental but complex process that gives rise to two daughter cells. It includes an ordered set of events, altogether called "the cell cycle", that culminate with cytokinesis, the final stage of mitosis leading to the physical separation of the two daughter cells. Symmetric cell division equally partitions cellular components between the two daughter cells, which are therefore identical to one another and often share the same fate. In many cases, however, cell division is asymmetrical and generates two daughter cells that differ in specific protein inheritance, cell size, or developmental potential. The budding yeast Saccharomyces cerevisiae has proven to be an excellent system to investigate the molecular mechanisms governing asymmetric cell division and cytokinesis. Budding yeast is highly polarized during the cell cycle and divides asymmetrically, producing two cells with distinct sizes and fates. Many components of the machinery establishing cell polarization during budding are relocalized to the division site (i.e., the bud neck) for cytokinesis. In this review we recapitulate how budding yeast cells undergo polarized processes at the bud neck for cell division.

  10. Changes in ABA and gene expression in cold-acclimated sugar maple.

    PubMed

    Bertrand, A; Robitaille, G; Castonguay, Y; Nadeau, P; Boutin, R

    1997-01-01

    To determine if cold acclimation of sugar maple (Acer saccharum Marsh.) is associated with specific changes in gene expression under natural hardening conditions, we compared bud and root translatable mRNAs of potted maple seedlings after cold acclimation under natural conditions and following spring dehardening. Cold-hardened roots and buds were sampled in January when tissues reached their maximum hardiness. Freezing tolerance, expressed as the lethal temperature for 50% of the tissues (LT(50)), was estimated at -17 degrees C for roots, and at lower than -36 degrees C for buds. Approximately ten transcripts were specifically synthesized in cold-acclimated buds, or were more abundant in cold-acclimated buds than in unhardened buds. Cold hardening was also associated with changes in translation. At least five translation products were more abundant in cold-acclimated buds and roots compared with unhardened tissues. Abscisic acid (ABA) concentration increased approximately tenfold in the xylem sap following winter acclimation, and the maximum concentration was reached just before maximal acclimation. We discuss the potential involvement of ABA in the observed modification of gene expression during cold hardening.

  11. A multisensor system for detection and characterization of UXO(MM-0437) - Demonstration Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasperikova, Erika; Smith, J.T.; Morrison, H.F.

    2006-06-01

    The Berkeley UXO discriminator (BUD) (Figure 1) is a portable Active Electromagnetic (AEM) system for UXO detection and characterization that quickly determines the location, size, and symmetry properties of a suspected UXO. The BUD comprises of three orthogonal transmitters that 'illuminate' a target with fields in three independent directions in order to stimulate the three polarization modes that, in general, characterize the target EM response. In addition, the BUD uses eight pairs of differenced receivers for response recording. Eight receiver coils are placed horizontally along the two diagonals of the upper and lower planes of the two horizontal transmitter loops.more » These receiver coil pairs are located on symmetry lines through the center of the system and each pair sees identical fields during the on-time of the pulse in all of the transmitter coils. They are wired in opposition to produce zero output during the on-time of the pulses in three orthogonal transmitters. Moreover, this configuration dramatically reduces noise in the measurements by canceling the background electromagnetic fields (these fields are uniform over the scale of the receiver array and are consequently nulled by the differencing operation), and by canceling the noise contributed by the tilt of the receivers in the Earth's magnetic field, and greatly enhances receivers sensitivity to the gradients of the target response. The BUD performs target characterization from a single position of the sensor platform above a target. BUD was designed to detect and characterize UXO in the 20 mm to 155 mm size range for depths between 0 and 1 m. The relationship between the object size and the depth at which it can be detected is illustrated in Figure 2. This curve was calculated for BUD assuming that the receiver plane is 20 cm above the ground. Figure 2 shows that, for example, BUD can detect and characterize an object with 10 cm diameter down to the depth of 90 cm with depth uncertainty of 10%. Any objects buried at the depth more than 1 m have a low probability of detection. With existing algorithms in the system computer it is not possible to recover the principal polarizabilities of large objects close to the system. Detection of large shallow objects is assured, but at present real time discrimination for shallow objects is not. Post processing of the field data is required for shape discrimination of large shallow targets. Next generation of BUD software will not have this limitation. Successful application of the inversion algorithm that solves for the target parameters is contingent upon resolution of this limitation. At the moment, interpretation software is developed for a single object only. In case of multiple objects the software indicates the presence of a cluster of objects but is unable to provide characteristics of each individual object.« less

  12. Evidence of divergent selection for drought and cold tolerance at landscape and local scales in Abies alba Mill. in the French Mediterranean Alps.

    PubMed

    Roschanski, Anna M; Csilléry, Katalin; Liepelt, Sascha; Oddou-Muratorio, Sylvie; Ziegenhagen, Birgit; Huard, Frédéric; Ullrich, Kristian K; Postolache, Dragos; Vendramin, Giovanni G; Fady, Bruno

    2016-02-01

    Understanding local adaptation in forest trees is currently a key research and societal priority. Geographically and ecologically marginal populations provide ideal case studies, because environmental stress along with reduced gene flow can facilitate the establishment of locally adapted populations. We sampled European silver fir (Abies alba Mill.) trees in the French Mediterranean Alps, along the margin of its distribution range, from pairs of high- and low-elevation plots on four different mountains situated along a 170-km east-west transect. The analysis of 267 SNP loci from 175 candidate genes suggested a neutral pattern of east-west isolation by distance among mountain sites. F(ST) outlier tests revealed 16 SNPs that showed patterns of divergent selection. Plot climate was characterized using both in situ measurements and gridded data that revealed marked differences between and within mountains with different trends depending on the season. Association between allelic frequencies and bioclimatic variables revealed eight genes that contained candidate SNPs, of which two were also detected using F(ST) outlier methods. All SNPs were associated with winter drought, and one of them showed strong evidence of selection with respect to elevation. Q(ST)-F(ST) tests for fitness-related traits measured in a common garden suggested adaptive divergence for the date of bud flush and for growth rate. Overall, our results suggest a complex adaptive picture for A. alba in the southern French Alps where, during the east-to-west Holocene recolonization, locally advantageous genetic variants established at both the landscape and local scales. © 2015 John Wiley & Sons Ltd.

  13. Tasting

    MedlinePlus Videos and Cool Tools

    ... about 10,000 taste buds. The taste buds are linked to the brain by nerve fibers. Food particles are detected by the taste buds, which send nerve ... to the brain. Certain areas of the tongue are more sensitive to certain tastes, like bitter, sour, ...

  14. Feeding and oviposition deterrent activities of flower buds of globemallow,Sphaeralcea emoryi torrey, against boll weevil,Anthonomus grandis Boheman (Coleoptera: Curculionidae).

    PubMed

    Honda, H; Bowers, W S

    1996-01-01

    The globemallow,Sphaeralcea emoryi Torrey, a plant native to Arizona was evaluated as a source of feeding or oviposition deterrents to the boll weevil,Anthonomus grandis Boheman. Feeding and oviposition responses of reproductive weevils to the flower buds and artificial diets spiked with dry powder or extracts of the globemallow buds were determined. Boll weevils were deterred from feeding and ovipositing in the flower buds unless the calyxes were removed. Male and virgin female weevils were discouraged from feeding as much as gravid weevils. Secondary chemicals in the flower buds served primarily as feeding deterrents but also prevented oviposition. The concentration of these chemicals was highest in the calyxes of the buds, and potent deterrent activity could be extracted from the calyxes with methanol. Boll weevils were able to perceive the deterrents by contact chemosensory organs on the antennae, maxillary palps and labial palps.

  15. Lgr5 Identifies Progenitor Cells Capable of Taste Bud Regeneration after Injury.

    PubMed

    Takeda, Norifumi; Jain, Rajan; Li, Deqiang; Li, Li; Lu, Min Min; Epstein, Jonathan A

    2013-01-01

    Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.

  16. Computational model of polarized actin cables and cytokinetic actin ring formation in budding yeast

    PubMed Central

    Tang, Haosu; Bidone, Tamara C.

    2015-01-01

    The budding yeast actin cables and contractile ring are important for polarized growth and division, revealing basic aspects of cytoskeletal function. To study these formin-nucleated structures, we built a 3D computational model with actin filaments represented as beads connected by springs. Polymerization by formins at the bud tip and bud neck, crosslinking, severing, and myosin pulling, are included. Parameter values were estimated from prior experiments. The model generates actin cable structures and dynamics similar to those of wild type and formin deletion mutant cells. Simulations with increased polymerization rate result in long, wavy cables. Simulated pulling by type V myosin stretches actin cables. Increasing the affinity of actin filaments for the bud neck together with reduced myosin V pulling promotes the formation of a bundle of antiparallel filaments at the bud neck, which we suggest as a model for the assembly of actin filaments to the contractile ring. PMID:26538307

  17. The number of taste buds is related to bitter taste sensitivity in layer and broiler chickens.

    PubMed

    Kudo, Ken-ichi; Shiraishi, Jun-ichi; Nishimura, Shotaro; Bungo, Takashi; Tabata, Shoji

    2010-04-01

    The relationship between taste sensitivity and the number of taste buds using a bitter tastant, quinine hydrochloride, was investigated in White Leghorn, Rhode Island Red, and broiler chickens. The White Leghorn and Rhode Island Red strains were able to perceive 2.0 mmol/L quinine hydrochloride, but the taste sensitivity of Rhode Island Red chickens was higher than that of White Leghorn chickens. Broiler chickens perceived 0.5 mmol/L quinine hydrochloride. The number of taste buds in the White Leghorn strain was the lowest, then the Rhode Island Red strain, with the number of taste buds highest in the broiler chickens. The number of taste buds was well correlated with bitter taste sensitivity. Therefore, we suggest that the number of taste buds is a vital factor in the perception of bitter taste and may be useful in selecting appropriate feeds for chickens.

  18. Spatial signals link exit from mitosis to spindle position.

    PubMed

    Falk, Jill Elaine; Tsuchiya, Dai; Verdaasdonk, Jolien; Lacefield, Soni; Bloom, Kerry; Amon, Angelika

    2016-05-11

    In budding yeast, if the spindle becomes mispositioned, cells prevent exit from mitosis by inhibiting the mitotic exit network (MEN). The MEN is a signaling cascade that localizes to spindle pole bodies (SPBs) and activates the phosphatase Cdc14. There are two competing models that explain MEN regulation by spindle position. In the 'zone model', exit from mitosis occurs when a MEN-bearing SPB enters the bud. The 'cMT-bud neck model' posits that cytoplasmic microtubule (cMT)-bud neck interactions prevent MEN activity. Here we find that 1) eliminating cMT- bud neck interactions does not trigger exit from mitosis and 2) loss of these interactions does not precede Cdc14 activation. Furthermore, using binucleate cells, we show that exit from mitosis occurs when one SPB enters the bud despite the presence of a mispositioned spindle. We conclude that exit from mitosis is triggered by a correctly positioned spindle rather than inhibited by improper spindle position.

  19. The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning.

    PubMed

    Nagalakshmi, Vidya K; Yu, Jing

    2015-03-01

    The mammalian metanephric kidney is composed of two epithelial components, the collecting duct system and the nephron epithelium, that differentiate from two different tissues -the ureteric bud epithelium and the nephron progenitors, respectively-of intermediate mesoderm origin. The collecting duct system is generated through reiterative ureteric bud branching morphogenesis, whereas the nephron epithelium is formed in a process termed nephrogenesis, which is initiated with the mesenchymal-epithelial transition of the nephron progenitors. Ureteric bud branching morphogenesis is regulated by nephron progenitors, and in return, the ureteric bud epithelium regulates nephrogenesis. The metanephric kidney is physiologically divided along the corticomedullary axis into subcompartments that are enriched with specific segments of these two epithelial structures. Here, we provide an overview of the major molecular and cellular processes underlying the morphogenesis and patterning of the ureteric bud epithelium and its roles in the cortico-medullary patterning of the metanephric kidney. © 2015 Wiley Periodicals, Inc.

  20. [Study on two preparation methods for beta-CD inclusion compound of four traditional Chinese medicine volatile oils].

    PubMed

    Li, Hailiang; Cui, Xiaoli; Tong, Yan; Gong, Muxin

    2012-04-01

    To compare inclusion effects and process conditions of two preparation methods-colloid mill and saturated solution-for beta-CD inclusion compound of four traditional Chinese medicine volatile oils and study the relationship between each process condition and volatile oil physical properties and the regularity of selective inclusion of volatile oil components. Volatile oils from Nardostachyos Radix et Rhizoma, Amomi Fructus, Zingiberis Rhizoma and Angelicaesinensis Radix were prepared using two methods in the orthogonal test. These inclusion compounds by optimized processes were assessed and compared by such methods as TLC, IR and scanning electron microscope. Inclusion oils were extracted by steam distillation, and the components found before and after inclusion were analyzed by GC-MS. Analysis showed that new inclusion compounds, but inclusion compounds prepared by the two processes had differences to some extent. The colloid mill method showed a better inclusion effect than the saturated solution method, indicating that their process conditions had relations with volatile oil physical properties. There were differences in the inclusion selectivity of components between each other. The colloid mill method for inclusion preparation is more suitable for industrial requirements. To prepare volatile oil inclusion compounds with heavy gravity and high refractive index, the colloid mill method needs longer time and more water, while the saturated solution method requires higher temperature and more beta-cyclodextrin. The inclusion complex prepared with the colloid mill method contains extended molecular weight chemical composition, but the kinds of components are reduced.

  1. How the embryo makes a limb: determination, polarity and identity

    PubMed Central

    Tickle, Cheryll

    2015-01-01

    The vertebrate limb with its complex anatomy develops from a small bud of undifferentiated mesoderm cells encased in ectoderm. The bud has its own intrinsic polarity and can develop autonomously into a limb without reference to the rest of the embryo. In this review, recent advances are integrated with classical embryology, carried out mainly in chick embryos, to present an overview of how the embryo makes a limb bud. We will focus on how mesoderm cells in precise locations in the embryo become determined to form a limb and express the key transcription factors Tbx4 (leg/hindlimb) or Tbx5 (wing/forelimb). These Tbx transcription factors have equivalent functions in the control of bud formation by initiating a signalling cascade involving Wnts and fibroblast growth factors (FGFs) and by regulating recruitment of mesenchymal cells from the coelomic epithelium into the bud. The mesoderm that will form limb buds and the polarity of the buds is determined with respect to both antero-posterior and dorso-ventral axes of the body. The position in which a bud develops along the antero-posterior axis of the body will also determine its identity – wing/forelimb or leg/hindlimb. Hox gene activity, under the influence of retinoic acid signalling, is directly linked with the initiation of Tbx5 gene expression in the region along the antero-posterior axis of the body that will form wings/forelimbs and determines antero-posterior polarity of the buds. In contrast, Tbx4 expression in the regions that will form legs/hindlimbs is regulated by the homeoprotein Pitx1 and there is no evidence that Hox genes determine antero-posterior polarity of the buds. Bone morphogenetic protein (BMP) signalling determines the region along the dorso-ventral axis of the body in which both wings/forelimbs and legs/hindlimbs develop and dorso-ventral polarity of the buds. The polarity of the buds leads to the establishment of signalling regions – the dorsal and ventral ectoderm, producing Wnts and BMPs, respectively, the apical ectodermal ridge producing fibroblast growth factors and the polarizing region, Sonic hedgehog (Shh). These signals are the same in both wings/forelimbs and legs/hindlimbs and control growth and pattern formation by providing the mesoderm cells of the limb bud as it develops with positional information. The precise anatomy of the limb depends on the mesoderm cells in the developing bud interpreting positional information according to their identity – determined by Pitx1 in hindlimbs – and genotype. The competence to form a limb extends along the entire antero-posterior axis of the trunk – with Hox gene activity inhibiting the formation of forelimbs in the interlimb region – and also along the dorso-ventral axis. PMID:26249743

  2. How the embryo makes a limb: determination, polarity and identity.

    PubMed

    Tickle, Cheryll

    2015-10-01

    The vertebrate limb with its complex anatomy develops from a small bud of undifferentiated mesoderm cells encased in ectoderm. The bud has its own intrinsic polarity and can develop autonomously into a limb without reference to the rest of the embryo. In this review, recent advances are integrated with classical embryology, carried out mainly in chick embryos, to present an overview of how the embryo makes a limb bud. We will focus on how mesoderm cells in precise locations in the embryo become determined to form a limb and express the key transcription factors Tbx4 (leg/hindlimb) or Tbx5 (wing/forelimb). These Tbx transcription factors have equivalent functions in the control of bud formation by initiating a signalling cascade involving Wnts and fibroblast growth factors (FGFs) and by regulating recruitment of mesenchymal cells from the coelomic epithelium into the bud. The mesoderm that will form limb buds and the polarity of the buds is determined with respect to both antero-posterior and dorso-ventral axes of the body. The position in which a bud develops along the antero-posterior axis of the body will also determine its identity - wing/forelimb or leg/hindlimb. Hox gene activity, under the influence of retinoic acid signalling, is directly linked with the initiation of Tbx5 gene expression in the region along the antero-posterior axis of the body that will form wings/forelimbs and determines antero-posterior polarity of the buds. In contrast, Tbx4 expression in the regions that will form legs/hindlimbs is regulated by the homeoprotein Pitx1 and there is no evidence that Hox genes determine antero-posterior polarity of the buds. Bone morphogenetic protein (BMP) signalling determines the region along the dorso-ventral axis of the body in which both wings/forelimbs and legs/hindlimbs develop and dorso-ventral polarity of the buds. The polarity of the buds leads to the establishment of signalling regions - the dorsal and ventral ectoderm, producing Wnts and BMPs, respectively, the apical ectodermal ridge producing fibroblast growth factors and the polarizing region, Sonic hedgehog (Shh). These signals are the same in both wings/forelimbs and legs/hindlimbs and control growth and pattern formation by providing the mesoderm cells of the limb bud as it develops with positional information. The precise anatomy of the limb depends on the mesoderm cells in the developing bud interpreting positional information according to their identity - determined by Pitx1 in hindlimbs - and genotype. The competence to form a limb extends along the entire antero-posterior axis of the trunk - with Hox gene activity inhibiting the formation of forelimbs in the interlimb region - and also along the dorso-ventral axis. © 2015 Anatomical Society.

  3. Polarized Growth in the Absence of F-Actin in Saccharomyces cerevisiae Exiting Quiescence

    PubMed Central

    Sahin, Annelise; Daignan-Fornier, Bertrand; Sagot, Isabelle

    2008-01-01

    Background Polarity establishment and maintenance are crucial for morphogenesis and development. In budding yeast, these two intricate processes involve the superposition of regulatory loops between polarity landmarks, RHO GTPases, actin-mediated vesicles transport and endocytosis. Deciphering the chronology and the significance of each molecular step of polarized growth is therefore very challenging. Principal Findings We have taken advantage of the fact that yeast quiescent cells display actin bodies, a non polarized actin structure, to evaluate the role of F-actin in bud emergence. Here we show that upon exit from quiescence, actin cables are not required for the first steps of polarized growth. We further show that polarized growth can occur in the absence of actin patch-mediated endocytosis. We finally establish, using latrunculin-A, that the first steps of polarized growth do not require any F-actin containing structures. Yet, these structures are required for the formation of a bona fide daughter cell and cell cycle completion. We propose that upon exit from quiescence in the absence of F-actin, secretory vesicles randomly reach the plasma membrane but preferentially dock and fuse where polarity cues are localized, this being sufficient to trigger polarized growth. PMID:18596916

  4. Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast

    PubMed Central

    Li, Ping; Jin, Hui; Yu, Hong-Guo

    2014-01-01

    During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity. PMID:25103240

  5. Genome-wide characterization of Mediator recruitment, function, and regulation.

    PubMed

    Grünberg, Sebastian; Zentner, Gabriel E

    2017-05-27

    Mediator is a conserved and essential coactivator complex broadly required for RNA polymerase II (RNAPII) transcription. Recent genome-wide studies of Mediator binding in budding yeast have revealed new insights into the functions of this critical complex and raised new questions about its role in the regulation of gene expression.

  6. Variation in the chilling requirement and bud burst rate of wild Vitis species

    USDA-ARS?s Scientific Manuscript database

    Cultivated grapevine (Vitis vinifera) is one of the most important agricultural fruit crops in the world. In the United States, grapevines are often grown in environments very different than the Mediterranean climate from where the cultivated species was domesticated. Predictions of changing clima...

  7. Replication Origins and Timing of Temporal Replication in Budding Yeast: How to Solve the Conundrum?

    PubMed Central

    Barberis, Matteo; Spiesser, Thomas W.; Klipp, Edda

    2010-01-01

    Similarly to metazoans, the budding yeast Saccharomyces cereviasiae replicates its genome with a defined timing. In this organism, well-defined, site-specific origins, are efficient and fire in almost every round of DNA replication. However, this strategy is neither conserved in the fission yeast Saccharomyces pombe, nor in Xenopus or Drosophila embryos, nor in higher eukaryotes, in which DNA replication initiates asynchronously throughout S phase at random sites. Temporal and spatial controls can contribute to the timing of replication such as Cdk activity, origin localization, epigenetic status or gene expression. However, a debate is going on to answer the question how individual origins are selected to fire in budding yeast. Two opposing theories were proposed: the “replicon paradigm” or “temporal program” vs. the “stochastic firing”. Recent data support the temporal regulation of origin activation, clustering origins into temporal blocks of early and late replication. Contrarily, strong evidences suggest that stochastic processes acting on origins can generate the observed kinetics of replication without requiring a temporal order. In mammalian cells, a spatiotemporal model that accounts for a partially deterministic and partially stochastic order of DNA replication has been proposed. Is this strategy the solution to reconcile the conundrum of having both organized replication timing and stochastic origin firing also for budding yeast? In this review we discuss this possibility in the light of our recent study on the origin activation, suggesting that there might be a stochastic component in the temporal activation of the replication origins, especially under perturbed conditions. PMID:21037857

  8. Nucleolar asymmetry and the importance of septin integrity upon cell cycle arrest

    PubMed Central

    Rai, Urvashi; Najm, Fadi

    2017-01-01

    Cell cycle arrest can be imposed by inactivating the anaphase promoting complex (APC). In S. cerevisiae this arrest has been reported to stabilize a metaphase-like intermediate in which the nuclear envelope spans the bud neck, while chromatin repeatedly translocates between the mother and bud domains. The present investigation was undertaken to learn how other features of nuclear organization are affected upon depletion of the APC activator, Cdc20. We observe that the spindle pole bodies and the spindle repeatedly translocate across the narrow orifice at the level of the neck. Nevertheless, we find that the nucleolus (organized around rDNA repeats on the long right arm of chromosome XII) remains in the mother domain, marking the polarity of the nucleus. Accordingly, chromosome XII is polarized: TelXIIR remains in the mother domain and its centromere is predominantly located in the bud domain. In order to learn why the nucleolus remains in the mother domain, we studied the impact of inhibiting rRNA synthesis in arrested cells. We observed that this fragments the nucleolus and that these fragments entered the bud domain. Taken together with earlier observations, the restriction of the nucleolus to the mother domain therefore can be attributed to its massive structure. We also observed that inactivation of septins allowed arrested cells to complete the cell cycle, that the alternative APC activator, Cdh1, was required for completion of the cell cycle and that induction of Cdh1 itself caused arrested cells to progress to the end of the cell cycle. PMID:28339487

  9. Heat Transfer Processes Linking Fire Behavior and Tree Mortality

    NASA Astrophysics Data System (ADS)

    Michaletz, S. T.; Johnson, E. A.

    2004-12-01

    Traditional methods for predicting post-fire tree mortality employ statistical models which neglect the processes linking fire behavior to physiological mortality mechanisms. Here we present a physical process approach which predicts tree mortality by linking fireline intensity with lateral (vascular cambium) and apical (vegetative bud) meristem necrosis. We use a linefire plume model with independently validated conduction and lumped capacitance heat transfer analyses to predict lethal meristem temperatures in tree stems, branches, and buds. These models show that meristem necrosis in large diameter (Bi ≥ 0.3) stems/branches is governed by meristem height, bark thickness, and bark water content, while meristem necrosis in small diameter (Bi < 0.3) branches/buds is governed by meristem height, branch/bud size, branch/bud water content, and foliage architecture. To investigate effects of interspecfic variation in these properties, we compare model results for Picea glauca (Moench) Voss and Pinus contorta Loudon var. latifolia Engelm. at fireline intensities from 50 to 3000 kWm-1. Parameters are obtained from allometric models which relate stem/branch diameter to bark thickness and height, as well as bark and bud water content data collected in the southern Canadian Rocky Mountains. Variation in foliage architecture is quantified using forced convection heat transfer coefficients measured in a laminar flow wind tunnel at Re from 100 to 2000, typical for branches/buds in a linefire plume. Results indicate that in unfoliated stems/branches, P. glauca meristems are more protected due to thicker bark, whereas in foliated branches/buds, P. contorta meristems are more protected due to larger bud size and foliage architecture.

  10. Partial pedigree analysis of the segregation of yeast mitochondrial genes during vegetative reproduction.

    PubMed

    Waxman, M F; Birk, C W

    1982-08-01

    A three-factor cross of Saccharomyces cerevisiae involving the cap1, ery1, and oli1 loci was done, with partial pedigree analyses of 117 zygotes. First, second, and third buds were removed and the genotypes of their diploid progeny determined, along with those of the residual zygote mother cell. Results were analyzed in terms of frequencies of individual alleles and of recombinant genotypes in the dividing cells. There is a gradual increase in the frequency of homoplasmic cells and in gene frequency variance during these three generations, as would result from stochastic partitioning of mtDNA molecules between mother and bud, probably coupled with random drift of gene frequencies in interphase cells. These phenomena are more pronounced for buds than for mothers, suggesting that buds receive a smaller sample of molecules. End buds are more likely to be homoplasmic and have a lower frequency of recombinant genotypes than do central buds; an end bud is particularly enriched in alleles contributed by the parent that formed that end of the zygote. Zygotes with first central buds produce clones with a higher recombination frequency than do those with first end buds. These results confirm previous studies and suggest that mixing of parental genotypes occurs first in the center of the zygote. If segregation were strictly random, the number of segregating units would have to be much smaller than the number of mtDNA molecules in the zygote. On the other hand, there is no evidence for a region of the molecule ("attachment point") which segregates deterministically.

  11. Degeneration process of fungiform taste buds after severing the human chorda tympani nerve--observation by confocal laser scanning microscopy.

    PubMed

    Saito, Takehisa; Ito, Tetsufumi; Ito, Yumi; Kato, Yuji; Manabe, Yasuhiro; Narita, Norihiko

    2015-03-01

    To elucidate the degeneration process of fungiform taste buds after severing the chorda tympani nerve (CTN) by confocal laser scanning microscopy in vivo. Prospective study. University hospital. Seven consecutive patients whose CTN was severed during tympanoplasty for middle ear cholesteatoma. Diagnostic. Preoperative and postoperative gustatory functions were assessed by electrogustometry (EGM). An average of 10 fungiform papillae (FP) in the midlateral region of the tongue were periodically observed, and the number of taste buds was counted using a confocal laser microscope. Among them, 2 to 3 reference FPs were selected based on the typical form of the FP or characteristic arrangements of taste pores. Observation was performed before surgery, 1 or 2 days after surgery, 2 or 3 times a week until 2 weeks after surgery, once a week between 2 and 4 weeks, and every 2 to 4 weeks thereafter until all taste buds had disappeared. EGM thresholds showed no response within 1 month after surgery in all patients. The initial change in the degeneration process was the disappearance of taste pores. The surface of taste buds became covered with epithelium. Finally, taste buds themselves atrofied and disappeared. The time course of degeneration differed depending upon individuals, each FP, and each taste bud. By employing the generalized linear mixed model under the Poisson distribution, it was calculated that all taste buds would disappear at around 50 days after surgery. Confocal laser scanning microscopy was useful for clarifying the degeneration process of fungiform taste buds.

  12. Discrete element method based scale-up model for material synthesis using ball milling

    NASA Astrophysics Data System (ADS)

    Santhanam, Priya Radhi

    Mechanical milling is a widely used technique for powder processing in various areas. In this work, a scale-up model for describing this ball milling process is developed. The thesis is a combination of experimental and modeling efforts. Initially, Discrete Element Model (DEM) is used to describe energy transfer from milling tools to the milled powder for shaker, planetary, and attritor mills. The rolling and static friction coefficients are determined experimentally. Computations predict a quasisteady rate of energy dissipation, E d, for each experimental configuration. It is proposed that the milling dose defined as a product of Ed and milling time, t, divided by the mass of milled powder, mp characterizes the milling progress independently of the milling device or milling conditions used. Once the milling dose is determined for one experimental configuration, it can be used to predict the milling time required to prepare the same material in any milling configuration, for which Ed is calculated. The concept is validated experimentally for DEM describing planetary and shaker mills. For attritor, the predicted Ed includes substantial contribution from milling tool interaction events with abnormally high forces (>103 N). The energy in such events is likely dissipated to heat or plastically deform milling tools rather than refine material. Indeed, DEM predictions for the attritor correlate with experiments when such events are ignored in the analysis. With an objective of obtaining real-time indicators of milling progress, power, torque, and rotation speed of the impeller of an attritor mill are measured during preparation of metal matrix composite powders in the subsequent portion of this thesis. Two material systems are selected and comparisons made between in-situ parameters and experimental milling progress indicators. It is established that real-time measurements can certainly be used to describe milling progress. However, they need to be interpreted carefully depending on hardness of brittle component relative to milling media. To improve the DEM model of the attritor mill, it is desired to avoid the removal of unrealistic, high-force events using an approach that would not predict such events in the first place. It is observed that during experiments in attritor, balls may jam causing an increased resistance to the impeller's rotation. The impeller may instantaneously slow down, quickly returning to its pre-set rotation rate. Previous DEM models did not account for such rapid changes in the impeller's rotation. In this work, this relationship between impeller's torque and rotation rate is obtained experimentally and introduced in DEM. As a result, predicted Ed, are shown to correlate well with the experimental data. Finally, a methodology is proposed combining an experiment and its DEM description enabling one to identify the appropriate interaction parameters for powder systems. The experiment uses a miniature vibrating hopper and can be applied to characterize the powder flow for variety of materials. The hopper is designed to hold up to 20,000 particles of 50-mum diameter, which can be directly described in DEM. Based on comparison of discharge rate from experiments and model, all 6 interaction parameters were analyzed and the ideal conditions identified for Zirconia beads. The values of these parameters for powders are generally not the same as those established for macroscopic bodies. In addition, effects of some other experimental parameters such as particle size distribution and amplitude of vibration are also investigated.

  13. Liquid in vitro culture for the propagation of Arundo donax.

    PubMed

    Herrera-Alamillo, Miguel Angel; Robert, Manuel L

    2012-01-01

    We describe a simple and inexpensive plant micropropagation system for giant reed (Arundo donax L.) that uses axillary buds from the lateral stems of elite plants selected from field- or nursery-grown plants. The buds, attached to the stems are cultured in stationary liquid MS culture medium, supplemented with indole 3-acetic acid and kinetin. This formulation is the only one required for all the stages. Contrary to what happens in semisolid medium where roots are not formed, the plants cultured in liquid medium are whole plants with shoots and roots that develop at the same time. The survival rate of these plants when transferred to soil is close to 100% during acclimatization. A clonal line of 900 plants from a single mother plant can be produced in 4 months.

  14. Effect of cutting bill requirements on lumber yield in a rip-first rough mill

    Treesearch

    Urs Buehlmann; Janice K. Wiedenbeck; E. Earl Kline; E. Earl Kline

    2003-01-01

    In recent years, producers of solid wood dimension parts have emphasized improvements in lumber yield, focusing primarily on lumber grade and cutting technology rather than cutting bill design. Yet, cutting bills have a significant impact on yield. Using rip-first rough mill simulation software, a data bank of red oak lumber samples, and a cutting bill that resembles...

  15. Phytochrome mediated gravimorphogenesis in the moss protonemata

    NASA Astrophysics Data System (ADS)

    Demkiv, O.; Khorkavtsiv, Y.

    Moss protonemata are among the few cell types known that both sense and respond to gravity and light. Apical cells of moss protonemata grow by oriented tip growth which is negatively gravitropic in the dark or positively phototropic in unilateral light. Gametophore buds always arise some 4 - 6 cells behind the apical cells of main protonemal filaments differentiating from apical cells of shortened side branches. It has been shown, however, that in Pohlia nutans, as in Pottia intermedia (Ripetskyj et al, 1997) the apical cells of main filaments of dark grown protonemata differentiate buds under the influence of light. We tested the effectiveness of white and monochromatic light of the visible spectrum on the bud formation of Pohlia nutans which had been grown in darkness. The most morphogenetically effective light was red light, but green, yellow and white light were also active. Blue light alone completely inhibits bud formation but supplemented with red light this inhibitory effect of blue light is couneracted and buds are formed, provided a minimum exposure of red light is maintained. M.Bopp (1985) had demosnrated that exclusively cell that had not reached 80 μm in length initiated bud formation. Red light seemed to inhibit growth of apical cells and to promote bud formation. The action spectra for the induction of buds formation are, as expected, very similar to the absorption spectra of Pf r . The relatively small effectivity of quanta in the short-wave spectral range is caused by the strong absorption of radiation of < 520 nm by carotenoids and flavines. Red light might act as a triger for morphogenetic processes in dark-grown cells. The white or red light stopped an elongation of main filaments apical cells of protonema grown in the dark for 7 days retaining the rate of the cell divisions practically constant. As a result short apical cells are formed ready for a transition to new morphogenetic pathway of gametophore buds formation. The reaction proved to be reversible one. Transfering of the moss protonemata after 2 days illumination back into the dark leads to dedifferentiation of the apical bud cells into apical protonemal cells. Clinostat rotation of the dark-grown protonemata partially ihibited the light- dependent transformation of their apical cells into gameophore buds. The mechanisms of transformation of apical into the gametophore buds in the Pohlia nutans protonemata are discussed.

  16. Altered regulation of TERMINAL FLOWER 1 causes the unique vernalisation response in an arctic woodland strawberry accession.

    PubMed

    Koskela, Elli A; Kurokura, Takeshi; Toivainen, Tuomas; Sønsteby, Anita; Heide, Ola M; Sargent, Daniel J; Isobe, Sachiko; Jaakola, Laura; Hilmarsson, Hrannar; Elomaa, Paula; Hytönen, Timo

    2017-11-01

    Vernalisation requirement is an agriculturally important trait that postpones the development of cold-sensitive floral organs until the spring. The family Rosaceae includes many agriculturally important fruit and berry crops that suffer from crop losses caused by frost injury to overwintering flower buds. Recently, a vernalisation-requiring accession of the Rosaceae model woodland strawberry (Fragaria vesca) has been identified in northern Norway. Understanding the molecular basis of the vernalisation requirement in this accession would advance the development of strawberry cultivars better adapted to temperate climate. We use gene silencing, gene expression analysis, genetic mapping and population genomics to study the genetic basis of the vernalisation requirement in woodland strawberry. Our results indicate that the woodland strawberry vernalisation requirement is endemic to northern Norwegian population, and mapping data suggest the orthologue of TERMINAL FLOWER1 (FvTFL1) as the causal floral repressor. We demonstrate that exceptionally low temperatures are needed to downregulate FvTFL1 and to make these plants competent to induce flowering at low postvernalisation temperatures in the spring. We show that altered regulation of FvTFL1 in the northern Norwegian woodland strawberry accession postpones flower induction until the spring, allowing plants to avoid winter injuries of flower buds that commonly occur in temperate regions. © 2017 The Authors New Phytologist © 2017 New Phytologist Trust.

  17. Characteristics of the digestive vacuole membrane of the alga-bearing ciliate Paramecium bursaria.

    PubMed

    Kodama, Yuuki; Fujishima, Masahiro

    2012-07-01

    Cells of the ciliate Paramecium bursaria harbor symbiotic Chlorella spp. in their cytoplasm. To establish endosymbiosis with alga-free P. bursaria, symbiotic algae must leave the digestive vacuole (DV) to appear in the cytoplasm by budding of the DV membrane. This budding was induced not only by intact algae but also by boiled or fixed algae. However, this budding was not induced when food bacteria or India ink were ingested into the DVs. These results raise the possibility that P. bursaria can recognize sizes of the contents in the DVs. To elucidate this possibility, microbeads with various diameters were mixed with alga-free P. bursaria and traced their fate. Microbeads with 0.20μm diameter did not induce budding of the DVs. Microbeads with 0.80μm diameter produced DVs of 5-10μm diameter at 3min after mixing; then the DVs fragmented and became vacuoles of 2-5μm diameter until 3h after mixing. Each microbead with a diameter larger than 3.00μm induced budding similarly to symbiotic Chlorella. These observations reveal that induction of DV budding depends on the size of the contents in the DVs. Dynasore, a dynamin inhibitor, greatly inhibited DV budding, suggesting that dynamin might be involved in DV budding. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. A permeability barrier surrounds taste buds in lingual epithelia

    PubMed Central

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa

    2014-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003–1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. PMID:25209263

  19. Effects of streptozotocin-induced diabetes on taste buds in rat vallate papillae.

    PubMed

    Pai, Man-Hui; Ko, Tsui-Ling; Chou, Hsiu-Chu

    2007-01-01

    Some studies have documented taste changes in patients with diabetes mellitus (DM). In order to understand the relationships between taste disorders caused by DM and the innervation and morphologic changes in the taste buds, we studied the vallate papillae and their taste buds in rats with DM. DM was induced in these rats with streptozotocin (STZ), which causes the death of beta cells of the pancreas. The rats were sacrificed and the vallate papillae were dissected for morphometric and quantitative immunohistochemical analyses. The innervations of the vallate papillae and taste buds in diabetic and control rats were detected using immunohistochemistry employing antibodies directed against protein gene product 9.5 (PGP 9.5) and calcitonin gene-related peptide (CGRP). The results showed that PGP 9.5- and CGRP-immunoreactive nerve fibers in the trench wall of diabetic vallate papillae, as well as taste cells in the taste buds, gradually decreased both intragemmally and intergemmally. The morphometry revealed no significant difference in papilla size between the control and diabetic groups, but there were fewer taste buds per papilla (per animal). The quantification of innervation in taste buds of the diabetic rats supported the visual assessment of immunohistochemical labeling, that the innervation of taste cells was significantly reduced in diabetic animals. These findings suggest that taste impairment in diabetic subjects may be caused by neuropathy defects and/or morphological changes in the taste buds.

  20. Observation of regenerated fungiform taste buds after severing the chorda tympani nerve using confocal laser scanning microscopy in vivo.

    PubMed

    Saito, Takehisa; Ito, Tetsufumi; Kato, Yuji; Yamada, Takechiyo; Manabe, Yasuhiro; Narita, Norihiko

    2014-03-01

    To evaluate whether regenerated fungiform taste buds after severing the chorda tympani nerve can be detected by confocal laser scanning microscopy in vivo. Retrospective study. University hospital. Six patients with a normal gustatory function (Group 1), 9 patients with taste function recovery after severing the CTN (Group 2), and 5 patients without taste function recovery (Group 3) were included. In Groups 2 and 3, canal wall up (closed) tympanoplasty or canal wall down with canal reconstruction tympanoplasty was performed in all patients. Diagnostic. The severed nerves were readapted or approximated on the temporalis muscle fascia used to reconstruct the eardrum during surgery. Preoperative and postoperative gustatory functions were assessed using electrogustometry. Twelve to 260 months after severing the CTN, the surface of the midlateral region of the tongue was observed with a confocal laser microscope. EGM thresholds showed no response 1 month after surgery in all patients of Groups 2 and 3. In Group 2, EGM thresholds showed recovery 1 to 2 years after surgery and before confocal microscopy (-1.3 ± 6.5 dB). There was a significant difference between Group 1 (-5.7 ± 2.0 dB; p < 0.01) and Group 2. In Group 3, EGM thresholds showed no response for more than 2 years. In the control group (Group 1), 0 to 16 taste buds were observed in each FP, and 55 (79.7%) of 69 FP contained at least 1 taste bud. The mean number of taste bud per papilla was 3.7 ± 3.6. In patients with a recovered taste function (Group 2), 0 to 8 taste buds were observed in each FP. In this group, 54 (56.2%) of 94 FP contained at least 1 taste bud. The mean number of taste bud per papilla was 2.0 ± 2.2 (p < 0.01). In Group 3, without recovery, the FP was atrophied, and no taste bud was observed. Regenerated fungiform taste bud could be observed in vivo using confocal laser scanning microscopy, indicating that regenerated taste bud can be detected without biopsy.

  1. Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds.

    PubMed

    Biggs, Bradley T; Tang, Tao; Krimm, Robin F

    2016-01-01

    Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling.

  2. Effect of Thawing Time, Cooling Rate and Boron Nutrition on Freezing Point of the Primordial Shoot in Norway Spruce Buds

    PubMed Central

    RÄISÄNEN, MIKKO; REPO, TAPANI; LEHTO, TARJA

    2006-01-01

    • Background Effects of cooling rates on bud frost hardiness have been studied but there is little information on bud responses to thawing. Since the cell wall pore size has been found to increase with boron (B) deficiency, B deficiency may affect the supercooling ability of buds in winter. • Methods The effects of duration of thawing time and rate of cooling on bud frost hardiness of Norway spruce (Picea abies) were studied in a B fertilization trial in February 2003 and March 2005. Frost hardiness of apical buds was determined by differential thermal analysis (DTA) and visual scoring of damage. • Key Results In 2003, the freezing point of primordial shoots of buds (Tf), i.e. the low-temperature exotherm (LTE), was, on average, −39 °C when buds were thawed for less than 3 h and the Tf increased to −21 °C after 18 h of thawing. During the first 4 h of thawing, the rate of dehardening was 6 °C h−1. In 2005, buds dehardened linearly from −39 °C to −35 °C at a rate of 0·7 °C h−1. In 2003, different cooling rates of 1–5 °C h−1 had a minor effect on Tf but in 2005 with slow cooling rates Tf decreased. In both samplings, at cooling rates of 2 and 1 °C h−1, Tf was slightly higher in B-fertilized than in non-fertilized trees. By contrast, at very short thawing times in 2003, Tf was somewhat lower in B-fertilized trees. • Conclusions There was little evidence of reduced frost hardiness in trees with low B status. This study showed that buds deharden rapidly when exposed to above-freezing temperatures in winter, but if cooled again they reharden more slowly. According to this study, rapid dehardening of buds has to be taken into account in assessments of frost hardiness. PMID:16464880

  3. Antioxidant effects of clove bud (Syzygium aromaticum) extract used with different extenders on ram spermatozoa during cryopreservation.

    PubMed

    Baghshahi, H; Riasi, A; Mahdavi, A H; Shirazi, A

    2014-12-01

    Clove bud (Syzygium aromaticum) extract was added at concentrations of 0, 35, 75, and 115 μg/ml to ovine semen extenders in order to investigate the antioxidant activities of clove bud extract and its effects on semen quality parameters after cryopreservation of ram spermatozoa. The basic extender was composed of Tris, egg yolk, and glycerol. Two other extenders were prepared by substitution of egg yolk with either LDL or egg yolk+SDS. The DPPH inhibition test was employed to assess the antioxidant activity of clove bud extract. Results showed that, compared to vitamin E, clove bud extract had a higher antioxidant activity. Better sperm motility and movement characteristics (P<0.05) were observed in the semen diluted with medium containing egg yolk+SDS than in that containing egg yolk and LDL. Progressive motility and movement characteristics of the sperm were significantly improved (P<0.05) by adding 35 and/or 75 μg/ml of clove bud extract to semen extenders. Sperm viability and plasma membrane integrity were also higher (P<0.05) in the semen exposed to medium containing egg yolk+SDS and 75 μg of clove buds extract after cryopreservation processes. Higher levels of clove bud extract, however, had adverse effects on all the sperm quality parameters and significantly reduced (P<0.05) the motility, movement parameters, viability, and plasma membrane integrity of ovine sperm. It was concluded that the clove bud extract had an antioxidant potential that makes it useful for addition to semen extenders and that the best results are obtained with a maximum clove bud extract of 75 μg/ml. Moreover, the combination of egg yolk and a detergent was found to improve sperm quality after the cooling and freeze-thawing processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate

    PubMed Central

    Mederacke, Ingmar; Komatsu, Yoshihiro; Stice, Steve; Schwabe, Robert F.; Mistretta, Charlotte M.; Mishina, Yuji; Liu, Hong-Xiang

    2016-01-01

    Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC. PMID:26741369

  5. Project BudBurst: Continental-scale citizen science for all seasons

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Newman, S. J.; Ward, D.; Havens-Young, K.; Alaback, P.; Meymaris, K.

    2011-12-01

    Project BudBurst's (budburst.org) recent move to the National Ecological Observatory Network (NEON) has benefitted both programs. NEON has been able to use Project BudBurst as a testbed to learn best practices, network with experts in the field, and prototype potential tools for engaging people in continental-scale ecology as NEON develops its citizen science program. Participation in Project BudBurst has grown significantly since the move to NEON. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. This presentation will provide an overview of Project BudBurst and will report on the results of the 2010 field campaign and discuss plans to expand Project BudBurst in 2012 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst is co-managed by the National Ecological Observatory Network and the Chicago Botanic Garden.

  6. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate.

    PubMed

    Boggs, Kristin; Venkatesan, Nandakumar; Mederacke, Ingmar; Komatsu, Yoshihiro; Stice, Steve; Schwabe, Robert F; Mistretta, Charlotte M; Mishina, Yuji; Liu, Hong-Xiang

    2016-01-01

    Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC.

  7. Flufenoxuron, an insect growth regulator, promotes peroral infection by nucleopolyhedrovirus (BmNPV) budded particles in the silkworm, Bombyx mori L.

    PubMed

    Arakawa, Toru; Furuta, Yoji; Miyazawa, Mitsuhiro; Kato, Masao

    2002-02-01

    A novel method was developed to infect perorally the silkworm Bombyx mori L. with budded particles of nucleopolyhedrovirus (BmNPV) using flufenoxuron, an insect growth regulator. NPV vectors are used to obtain proteins that occur naturally in minute amounts. NPV vectors are constructed conventionally by replacing the polyhedrin gene with the foreign gene of interest. These vectors thus do not produce polyhedra. The budded virus particle suspension of these vectors is produced in a cell culture and used as the stock inoculum. Budded NPV particles do not infect their host perorally. The inoculum is injected manually into the individual host using a syringe. It was found that B. mori L. fed on the insect growth regulator flufenoxuron were sensitive to BmNPV budded particles given perorally. Over 90% of B. mori L. ingesting BmNPV budded particles (1.3 x 10(6) TCID(50) units per larva) after consuming an artificial diet for 24 h, containing 0.1% (w/w) flufenoxuron died of the viral infection. The peroral inoculation of BmNPV budded particles by flufenoxuron may thus lead to industrial pharmaceutical production using a baculovirus vector for large numbers of insect hosts.

  8. Cryotolerance of apple tree bud is independent of endodormancy

    PubMed Central

    Bilavcik, Alois; Zamecnik, Jiri; Faltus, Milos

    2015-01-01

    Increasing interest in cryopreservation of dormant buds reveals the need for better understanding of the role of dormancy in cryotolerance. Dormancy stage and low-temperature survival of vegetative apple buds (Malus domestica Borkh.), cultivars ‘Sampion’ and ‘Spartan’, collected from orchard were evaluated during three seasons contrasting in temperature and precipitation throughout the arrested plant growth period. During each season, the cultivars differed either in the onset of the endodormancy or in the length of the endodormant period. A simple relation between endodormancy of the buds and their water content was not detected. The cryosurvival of vegetative apple buds of both cultivars correlated with their cold hardening without direct regard to their particular phase of dormancy. The period of the highest bud cryotolerance after low-temperature exposure overlapped with the endodormant period in some evaluated seasons. Both cultivars had the highest cryosurvival in December and January. The presented data were compared with our previous results from a dormancy study of in vitro apple culture. Endodormancy coincided with the period of successful cryosurvival of apple buds after liquid nitrogen exposure, but as such, it was not decisive for their survival and did not limit their successful cryopreservation. PMID:26442012

  9. Surface morphology of taste buds in catfish barbels.

    PubMed

    Ovalle, W K; Shinn, S L

    1977-03-16

    External taste buds abound on barbels of the adult catfish Corydoras arcuatus. When examined by scanning electron microscopy, they are visualized as a series of punctate, conical elevations projecting from the general surface epithelium. All taste buds were found to be of one type. Both their external and internal surface features could be clearly elucidated on intact barbels and in barbels fractured transversely at various positions along their length. An extensive nerve terminal network penetrates the base of each taste bud. Two populations of elongated cells bearing prominent microvilli project through the central pore at the tip of each bud. One set of microvilli is thicker, longer and more club-shaped than its counterpart. While both are randomly distributed within each central pore, the small, short microvilli appear to outnumber the larger ones. A third population of cells, devoid of any apical microvilli, was also seen in some of the taste buds examined internally. These cells do not project to the external surface and are interpreted as "basal" cells described in previous light and transmission electron microscope studies of taste buds in other vertebrate species. The functional significance of some of these morphological findings is discussed.

  10. Taste Bud Labeling in Whole Tongue Epithelial Sheet in Adult Mice.

    PubMed

    Venkatesan, Nandakumar; Boggs, Kristin; Liu, Hong-Xiang

    2016-04-01

    Molecular labeling in whole-mount tissues provides an efficient way to obtain general information about the formation, maintenance, degeneration, and regeneration of many organs and tissues. However, labeling of lingual taste buds in whole tongue tissues in adult mice has been problematic because of the strong permeability barrier of the tongue epithelium. In this study, we present a simple method for labeling taste buds in the intact tongue epithelial sheet of an adult mouse. Following intralingual protease injection and incubation, immediate fixation of the tongue on mandible in 4% paraformaldehyde enabled the in situ shape of the tongue epithelium to be well maintained after peeling. The peeled epithelium was accessible to taste bud labeling with a pan-taste cell marker, keratin 8, and a type II taste cell marker, α-gustducin, in all three types of taste papillae, that is, fungiform, foliate, and circumvallate. Overnight incubation of tongue epithelial sheets with primary and secondary antibodies was sufficient for intense labeling of taste buds with both fluorescent and DAB visualizations. Labeled individual taste buds were easy to identify and quantify. This protocol provides an efficient way for phenotypic analyses of taste buds, especially regarding distribution pattern and number.

  11. Sox-2 in taste bud and lateral line system of zebrafish during development.

    PubMed

    Germanà, A; Montalbano, G; Guerrera, M C; Laura, R; Levanti, M; Abbate, F; de Carlos, F; Vega, J A; Ciriaco, E

    2009-12-18

    The Sox-2 is a transcription factor involved in adult neurogenesis in different vertebrate species, including fishes. Sox-2 also participates in growth and renewal on sensory cells in neuromasts of the fish lateral line system, and it is essential for development of taste buds in mammals. Using immunohistochemistry and Western blot we have investigated the occurrence and localization of Sox-2 taste buds and neuromast of zebrafish from 10 days post-fertilization to adult stage (1 year). The antibody used identifies two protein bands with estimated molecular weights of 34 and 37kDa which are consistent with those predicted for Sox-2. Sensory cells in taste buds displayed Sox-2 immunoreactivity at all the ages sampled, whereas in the neuromasts Sox-2 expression was restricted to the basal non-sensory cells. Interestingly Sox-2 immunoreactivity was observed in epithelial cells associated with both taste buds and neuromasts. Present results demonstrate that Sox-2 expressed in taste buds and neuromasts of zebrafish during the whole lifespan. Nevertheless, whereas the role of Sox-2 in taste buds of zebrafish remains to be established, the results in neuromast suggest that Sox-2 could participate in cell renewal of the mechanosensory cells.

  12. The protein phosphatase inhibitor cantharidin induces head and foot formation in buds of Cassiopea andromeda (Rhizostomae, Scyphozoa).

    PubMed

    Kehls, N E; Herrmann, K; Berking, S

    1999-01-01

    The polyps of Cassiopea andromeda produce spindle shaped, freely swimming buds which do not develop a head (a mouth opening surrounded by tentacles) and a foot (a sticky plate at the opposite end) until settlement to a suited substrate. The buds, therewith, look very similar to the planula larvae produced in sexual reproduction. With respect to both, buds and planulae, several peptides and the phorbolester TPA have been found to induce the transformation into a polyp. Here it is shown that cantharidin, a serine/threonine protein phosphatase inhibitor, induces head and foot formation in buds very efficiently in a 30 min treatment, the shortest yet known efficient treatment. Some resultant polyps show malformations which indicate that a bud is ordinary polyp tissue in which preparatory steps of head and foot formation mutually block each other from proceeding. Various compounds related to the transfer of methyl groups have been shown to affect head and foot formation in larvae of the hydrozoon Hydractinia echinata. These compounds including methionine, homocysteine, trigonelline, nicotinic acid and cycloleucine are shown to also interfere with the initiation of the processes which finally lead to head and foot formation in buds of Cassiopea andromeda.

  13. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    PubMed

    Huang, Yijen A; Grant, Jeff; Roper, Stephen

    2012-01-01

    Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (∼50%) respond to 100 µM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  14. Multi-category micro-milling tool wear monitoring with continuous hidden Markov models

    NASA Astrophysics Data System (ADS)

    Zhu, Kunpeng; Wong, Yoke San; Hong, Geok Soon

    2009-02-01

    In-process monitoring of tool conditions is important in micro-machining due to the high precision requirement and high tool wear rate. Tool condition monitoring in micro-machining poses new challenges compared to conventional machining. In this paper, a multi-category classification approach is proposed for tool flank wear state identification in micro-milling. Continuous Hidden Markov models (HMMs) are adapted for modeling of the tool wear process in micro-milling, and estimation of the tool wear state given the cutting force features. For a noise-robust approach, the HMM outputs are connected via a medium filter to minimize the tool state before entry into the next state due to high noise level. A detailed study on the selection of HMM structures for tool condition monitoring (TCM) is presented. Case studies on the tool state estimation in the micro-milling of pure copper and steel demonstrate the effectiveness and potential of these methods.

  15. BUD31 and Lipid Metabolism: A New Potential Therapeutic Entry Point for Myc-Driven Breast Cancer

    DTIC Science & Technology

    2016-02-01

    AWARD NUMBER: W81XWH-14-1-0039 TITLE: BUD31 and Lipid Metabolism: A New Potential Therapeutic Entry Point for Myc-Driven Breast Cancer...TITLE AND SUBTITLE 5a. CONTRACT NUMBER BUD31 and Lipid Metabolism: A New Potential Therapeutic Entry Point for Myc-Driven Breast Cancer 5b. GRANT...To directly test the hypothesis above, we propose the following specific aims. AIM1: To determine if BUD31 interactions with lipid metabolism

  16. Role of Tulipa gesneriana TEOSINTE BRANCHED1 (TgTB1) in the control of axillary bud outgrowth in bulbs.

    PubMed

    Moreno-Pachon, Natalia M; Mutimawurugo, Marie-Chantal; Heynen, Eveline; Sergeeva, Lidiya; Benders, Anne; Blilou, Ikram; Hilhorst, Henk W M; Immink, Richard G H

    2018-06-01

    Tulip vegetative reproduction. Tulips reproduce asexually by the outgrowth of their axillary meristems located in the axil of each bulb scale. The number of axillary meristems in one bulb is low, and not all of them grow out during the yearly growth cycle of the bulb. Since the degree of axillary bud outgrowth in tulip determines the success of their vegetative propagation, this study aimed at understanding the mechanism controlling the differential axillary bud activity. We used a combined physiological and "bottom-up" molecular approach to shed light on this process and found that first two inner located buds do not seem to experience dormancy during the growth cycle, while mid-located buds enter dormancy by the end of the growing season. Dormancy was assessed by weight increase and TgTB1 expression levels, a conserved TCP transcription factor and well-known master integrator of environmental and endogenous signals influencing axillary meristem outgrowth in plants. We showed that TgTB1 expression in tulip bulbs can be modulated by sucrose, cytokinin and strigolactone, just as it has been reported for other species. However, the limited growth of mid-located buds, even when their TgTB1 expression is downregulated, points at other factors, probably physical, inhibiting their growth. We conclude that the time of axillary bud initiation determines the degree of dormancy and the sink strength of the bud. Thus, development, apical dominance, sink strength, hormonal cross-talk, expression of TgTB1 and other possibly physical but unidentified players, all converge to determine the growth capacity of tulip axillary buds.

  17. Interrelationship of clinical, histomorphometric and immunohistochemical features of oral lesions in chronic paracoccidioidomycosis.

    PubMed

    de Abreu E Silva, Mariana À; Salum, Fernanda G; Figueiredo, Maria A; Lopes, Tiago G; da Silva, Vinicius D; Cherubini, Karen

    2013-03-01

    This study aimed to analyze the oral lesions of chronic paracoccidioidomycosis concerning their histomorphometric, immunohistochemical, and clinical features in a standardized sample. Fifty biopsy specimens of oral lesions of chronic paracoccidioidomycosis were submitted to hematoxylin and eosin (H&E), Grocott-Gomori and immunohistochemical staining. Data regarding disease duration and size and number of oral lesions, as well as erythrocytes, leukocytes, lymphocytes, hematocrit, hemoglobin, and erythrocyte sedimentation rate, were collected from medical charts. Granuloma density and number and diameter of buds and fungal cells, and IL-2, TNF-alpha and IFN-gamma expression, as well as clinical and hematological features, were quantified and correlated. Bud diameter was significantly greater in intermediate density granulomas compared to higher density granulomas. The other variables (number of buds, number and diameter of fungi, expression of IL-2, TNF-alpha and IFN-gamma, and clinical and hematological features) did not significantly change with the density of granulomas. There was a positive correlation between bud number and fungal cell number (r = 0.834), bud diameter and fungal cell diameter (r = 0.496), erythrocytes and number of fungi (r = 0.420), erythrocytes and bud number (r = 0.408), and leukocytes and bud number (r = 0.396). Negative correlation occurred between number and diameter of fungi (r = -0.419), bud diameter and granuloma density (r = -0.367), TNF-alpha expression and number of fungi (r = -0.372), and TNF-alpha expression and bud number (r = -0.300). The histological, immunological, and clinical features of oral lesions evaluated did not differ significantly between patients in our sample of chronic paracoccidioidomycosis. TNF-alpha levels were inversely correlated with intensity of infection. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  18. Moving and fusion of the pancreatic buds in the rat embryos during the embryonic period (carnegie stages 13-17) by a three-dimensional computer-assisted reconstruction.

    PubMed

    Godlewski, Guilhem; Gaubert, Jacques; Cristol-Gaubert, Renée; Radi, Maïada; Baecker, Volker; Travo, Pierre; Prudhomme, Michel; Prat-Pradal, Dominique

    2011-10-01

    The purpose of the present study was to illustrate the modality of rotation of ventral and dorsal pancreatic buds by three-dimensional (3D) reconstructions in the rat embryos, during the Carnegie stages 13-17. Serial sections of thirty rat embryos stages 13-17, were observed. The embryos were fixed in Bouin's solution, dehydrated, and paraffin embedded. The sections, 7 μm thick, were cut in longitudinal or transverse planes and were stained alternately by hematoxylin-eosin or Heindenhain' azan. The images were digitalized by Canon Camera 350 EOS D. The 3D reconstruction was performed by computer using Cell Image Analyser software. The two pancreatic buds ventral and dorsal, were clearly identified at stage 13, in anterior and posterior position, respectively, in relation to the duodenum. In stage 15, the duodenum started its rotation of 90° clockwise. The ventral bud moved 90° from the midline to the right. In stage 16, the ventral pancreas continued its rotation until 180° in posterior position behind the duodenum. In stage 17, the two pancreatic buds were related closely to the ventral part of the portal vein. The two buds began to merge. The anterior face of the pancreas's head was arising from the dorsal pancreatic bud. The rest of the head including the omental tuberosity and the uncinate process emanated from the ventral pancreatic bud. The use of 3D reconstruction of the pancreas of rat embryos illustrates the modality of the two pancreatic buds rotation and fusion. This method explains the final position of the pancreas.

  19. Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution.

    PubMed

    Yamamoto, Yoshiyuki; Byerly, Mardi S; Jackman, William R; Jeffery, William R

    2009-06-01

    This study addresses the role of sonic hedgehog (shh) in increasing oral-pharyngeal constructive traits (jaws and taste buds) at the expense of eyes in the blind cavefish Astyanax mexicanus. In cavefish embryos, eye primordia degenerate under the influence of hyperactive Shh signaling. In concert, cavefish show amplified jaw size and taste bud numbers as part of a change in feeding behavior. To determine whether pleiotropic effects of hyperactive Shh signaling link these regressive and constructive traits, shh expression was compared during late development of the surface-dwelling (surface fish) and cave-dwelling (cavefish) forms of Astyanax. After an initial expansion along the midline of early embryos, shh was elevated in the oral-pharyngeal region in cavefish and later was confined to taste buds. The results of shh inhibition and overexpression experiments indicate that Shh signaling has an important role in oral and taste bud development. Conditional overexpression of an injected shh transgene at specific times in development showed that taste bud amplification and eye degeneration are sensitive to shh overexpression during the same early developmental period, although taste buds are not formed until much later. Genetic crosses between cavefish and surface fish revealed an inverse relationship between eye size and jaw size/taste bud number, supporting a link between oral-pharyngeal constructive traits and eye degeneration. The results suggest that hyperactive Shh signaling increases oral and taste bud amplification in cavefish at the expense of eyes. Therefore, selection for constructive oral-pharyngeal traits may be responsible for eye loss during cavefish evolution via pleiotropic function of the Shh signaling pathway.

  20. Molecular profiling of tumour budding implicates TGFβ-mediated epithelial-mesenchymal transition as a therapeutic target in oral squamous cell carcinoma.

    PubMed

    Jensen, D H; Dabelsteen, E; Specht, L; Fiehn, A M K; Therkildsen, M H; Jønson, L; Vikesaa, J; Nielsen, F C; von Buchwald, C

    2015-08-01

    Although tumour budding is an adverse prognostic factor for many cancer types, the molecular mechanisms governing this phenomenon are incompletely understood. Therefore, understanding the molecular basis of tumour budding may provide new therapeutic and diagnostic options. We employ digital image analysis to demonstrate that the number of tumour buds in cytokeratin-stained sections correlates with patients having lymph node metastases at diagnosis. The tumour bud count was also a predictor of overall survival, independent of TNM stage. Tumour buds and paired central tumour areas were subsequently collected from oral squamous cell carcinoma (OSCC) specimens, using laser capture microdissection, and examined with RNA sequencing and miRNA-qPCR arrays. Compared with cells from the central parts of the tumours, budding cells exhibited a particular gene expression signature, comprising factors involved in epithelial-mesenchymal transition (EMT) and activated TGFβ signalling. Transcription factors ZEB1 and PRRX1 were up-regulated concomitantly with the decreased expression of mesenchymal-epithelial (MET) transcription factors (eg OVOL1) in addition to Krüppel-like factors and Grainyhead-like factors. Moreover, miR-200 family members were down-regulated in budding tumour cells. We used immunohistochemistry to validate five markers of the EMT/MET process in 199 OSCC tumours, as well as in situ hybridization in 20 OSCC samples. Given the strong relationship between tumour budding and the development of lymph node metastases and an adverse prognosis, therapeutics based on inhibiting the activation of TGFβ signalling may prove useful in the treatment of OSCC. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  1. Effects of intratracheal budesonide during early postnatal life on lung maturity of premature fetal rabbits.

    PubMed

    Li, Ling; Yang, Chen; Feng, Xiuliang; Du, Yongping; Zhang, Zhihong; Zhang, Yueping

    2018-01-01

    This study aimed to study the effects of intratracheal instillation of budesonide on lung maturity of premature fetal rabbits. The developmental pattern of pulmonary alveoli in rabbits is similar to that in humans. Fetal rabbits were taken out from female rabbits on the 28th day of pregnancy (full term = 31 days) by cesarean section (c-section). The fetal rabbits were divided into four groups: control (normal saline, NS), budesonide (budesonide, BUD), calf pulmonary surfactant for injection (pulmonary surfactant, PS), and calf pulmonary surfactant + budesonide for injection (pulmonary surfactant + budesonide, PS + BUD). All premature rabbits were kept warm after c-section. After 15-min autonomous respiration, a tracheal cannula was implemented for instilling NS, BUD, PS, and PS + BUD. The morphology of lung tissues of premature fetal rabbits was analyzed using optical and electron microscopes. Surfactant protein B (SP-B) mRNA and protein levels in lung tissues were determined using polymerase chain reaction and Western blotting, respectively. Intratracheal instillation of BUD could increase the alveolar area of the fetal rabbits (P < 0.01), decrease the alveolar wall thickness (P < 0.01), and increase the mean density of lamellar bodies (P < 0.05) and SP-B protein levels in type II epithelial cells of pulmonary alveoli (P < 0.05). Intratracheal instillation of BUD during early postnatal life is effective in promoting alveolarization and increasing SP-B expression, the pro-pulmonary maturity of BUD combined with PS is superior to that of BUD or PS alone. However, the long-term effect of BUD on lung development needs further exploration. © 2017 Wiley Periodicals, Inc.

  2. Real-time monitoring of the budding index in Saccharomyces cerevisiae batch cultivations with in situ microscopy.

    PubMed

    Marbà-Ardébol, Anna-Maria; Emmerich, Jörn; Muthig, Michael; Neubauer, Peter; Junne, Stefan

    2018-05-15

    The morphology of yeast cells changes during budding, depending on the growth rate and cultivation conditions. A photo-optical microscope was adapted and used to observe such morphological changes of individual cells directly in the cell suspension. In order to obtain statistically representative samples of the population without the influence of sampling, in situ microscopy (ISM) was applied in the different phases of a Saccharomyces cerevisiae batch cultivation. The real-time measurement was performed by coupling a photo-optical probe to an automated image analysis based on a neural network approach. Automatic cell recognition and classification of budding and non-budding cells was conducted successfully. Deviations between automated and manual counting were considerably low. A differentiation of growth activity across all process stages of a batch cultivation in complex media became feasible. An increased homogeneity among the population during the growth phase was well observable. At growth retardation, the portion of smaller cells increased due to a reduced bud formation. The maturation state of the cells was monitored by determining the budding index as a ratio between the number of cells, which were detected with buds and the total number of cells. A linear correlation between the budding index as monitored with ISM and the growth rate was found. It is shown that ISM is a meaningful analytical tool, as the budding index can provide valuable information about the growth activity of a yeast cell, e.g. in seed breeding or during any other cultivation process. The determination of the single-cell size and shape distributions provided information on the morphological heterogeneity among the populations. The ability to track changes in cell morphology directly on line enables new perspectives for monitoring and control, both in process development and on a production scale.

  3. Loop-Mediated Isothermal Amplification for Laboratory Confirmation of Buruli Ulcer Disease—Towards a Point-of-Care Test

    PubMed Central

    Beissner, Marcus; Phillips, Richard Odame; Battke, Florian; Bauer, Malkin; Badziklou, Kossi; Sarfo, Fred Stephen; Maman, Issaka; Rhomberg, Agata; Piten, Ebekalisai; Frimpong, Michael; Huber, Kristina Lydia; Symank, Dominik; Jansson, Moritz; Wiedemann, Franz Xaver; Banla Kere, Abiba; Herbinger, Karl-Heinz; Löscher, Thomas; Bretzel, Gisela

    2015-01-01

    Background As the major burden of Buruli ulcer disease (BUD) occurs in remote rural areas, development of point-of-care (POC) tests is considered a research priority to bring diagnostic services closer to the patients. Loop-mediated isothermal amplification (LAMP), a simple, robust and cost-effective technology, has been selected as a promising POC test candidate. Three BUD-specific LAMP assays are available to date, but various technical challenges still hamper decentralized application. To overcome the requirement of cold-chains for transport and storage of reagents, the aim of this study was to establish a dry-reagent-based LAMP assay (DRB-LAMP) employing lyophilized reagents. Methodology/Principal Findings Following the design of an IS2404 based conventional LAMP (cLAMP) assay suitable to apply lyophilized reagents, a lyophylization protocol for the DRB-LAMP format was developed. Clinical performance of cLAMP was validated through testing of 140 clinical samples from 91 suspected BUD cases by routine assays, i.e. IS2404 dry-reagent-based (DRB) PCR, conventional IS2404 PCR (cPCR), IS2404 qPCR, compared to cLAMP. Whereas qPCR rendered an additional 10% of confirmed cases and samples respectively, case confirmation and positivity rates of DRB-PCR or cPCR (64.84% and 56.43%; 100% concordant results in both assays) and cLAMP (62.64% and 52.86%) were comparable and there was no significant difference between the sensitivity of the assays (DRB PCR and cPCR, 86.76%; cLAMP, 83.82%). Likewise, sensitivity of cLAMP (95.83%) and DRB-LAMP (91.67%) were comparable as determined on a set of 24 samples tested positive in all routine assays. Conclusions/Significance Both LAMP formats constitute equivalent alternatives to conventional PCR techniques. Provided the envisaged availability of field friendly DNA extraction formats, both assays are suitable for decentralized laboratory confirmation of BUD, whereby DRB-LAMP scores with the additional advantage of not requiring cold-chains. As validation of the assays was conducted in a third-level laboratory environment, field based evaluation trials are necessary to determine the clinical performance at peripheral health care level. PMID:26566026

  4. Ubiquitin is part of the retrovirus budding machinery

    NASA Astrophysics Data System (ADS)

    Patnaik, Akash; Chau, Vincent; Wills, John W.

    2000-11-01

    Retroviruses contain relatively large amounts of ubiquitin, but the significance of this finding has been unknown. Here, we show that drugs that are known to reduce the level of free ubiquitin in the cell dramatically reduced the release of Rous sarcoma virus, an avian retrovirus. This effect was suppressed by overexpressing ubiquitin and also by directly fusing ubiquitin to the C terminus of Gag, the viral protein that directs budding and particle release. The block to budding was found to be at the plasma membrane, and electron microscopy revealed that the reduced level of ubiquitin results in a failure of mature virus particles to separate from each other and from the plasma membrane during budding. These data indicate that ubiquitin is actually part of the budding machinery.

  5. Solid State Reduction of MoO3 with Carbon via Mechanical Alloying to Synthesize Nano-Crystaline MoO2

    NASA Astrophysics Data System (ADS)

    Saghafi, M.; Ataie, A.; Heshmati-Manesh, S.

    In this research, effect of milling time on solid state reduction of MoO3 with carbon has been investigated. It was found that mechanical activation of a mixture of MoO3 and carbon at ambient temperature by high energy ball milling was not able to reduce MoO3 to metallic molybdenum. MoO3 was converted to MoO2 at the first stage of reduction and peaks of the latter phase in X-ray diffraction patterns were detected when the milling time exceeded from 50 hours. The main effect of increased milling time at this stage was decreasing of MoO3 peak intensities and significant peak broadening due to decrease in size of crystallites. After prolonged milling, MoO3 was fully reduced to nano-crystalline MoO2 and its mean crystallite size was calculated using Williamson-Hall technique and found to be 17.5 nm. Thermodynamic investigations also confirm the possibility of reduction of MoO3 to MoO2 during the milling operation at room temperature. But, further reduction to metallic molybdenum requires thermal activation at higher temperature near 1100 K. XRD and SEM techniques were employed to evaluate the powder particles characteristics.

  6. Cavity formation and surface modeling of laser milling process under a thin-flowing water layer

    NASA Astrophysics Data System (ADS)

    Tangwarodomnukun, Viboon

    2016-11-01

    Laser milling process normally involves a number of laser scans over a workpiece to selectively remove the material and then to form cavities with shape and dimensions required. However, this process adversely causes a heat accumulation in work material, which can in turn damage the laser-milled area and vicinity in terms of recast deposition and change of material properties. Laser milling process performing in a thin-flowing water layer is a promising method that can overcome such damage. With the use of this technique, water can flush away the cut debris and at the same time cool the workpiece during the ablation. To understand the potential of this technique for milling application, the effects of process parameters on cavity dimensions and surface roughness were experimentally examined in this study. Titanium sheet was used as a workpiece to be milled by a nanosecond pulse laser under different water flow velocities. A smooth and uniform cut feature can be obtained when the metal was ablated under the high laser pulse frequency and high water flow velocity. Furthermore, a surface model based on the energy balance was developed in this study to predict the cavity profile and surface roughness. By comparing to the experiments, the predicted profiles had a good agreement with the measured ones.

  7. Pioneering In Situ Recrystallization during Bead Milling: A Top-down Approach to Prepare Zeolite A Nanocrystals.

    PubMed

    Anand, Chokkalingam; Yamaguchi, Yudai; Liu, Zhendong; Ibe, Sayoko; Elangovan, Shanmugam P; Ishii, Toshihiro; Ishikawa, Tsuyoshi; Endo, Akira; Okubo, Tatsuya; Wakihara, Toru

    2016-07-05

    Top-down approach has been viewed as an efficient and straightforward method to prepare nanosized zeolites. Yet, the mechanical breaking of zeolite causes amorphization, which usually requires a post-milling recrystallization to obtain fully crystalline nanoparticles. Herein we present a facile methodology to prepare zeolite nanocrystals, where milling and recrystallization can be performed in situ. A milling apparatus specially designed to work under conditions of high alkalinity and temperature enables the in situ recrystallization during milling. Taking zeolite A as an example, we demonstrate its size reduction from ~3 μm to 66 nm in 30 min, which is quite faster than previous methods reported. Three functions, viz., miniaturization, amorphization and recrystallization were found to take effect concurrently during this one-pot process. The dynamic balance between these three functions was achieved by adjusting the milling period and temperature, which lead to the tuning of zeolite A particle size. Particle size and crystallinity of the zeolite A nanocrystals were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and water adsorption-desorption. This work presents a pioneering advancement in this field of nanosized zeolites, and will facilitate the mass production as well as boost the wide applications of nanosized zeolites.

  8. Pioneering In Situ Recrystallization during Bead Milling: A Top-down Approach to Prepare Zeolite A Nanocrystals

    PubMed Central

    Anand, Chokkalingam; Yamaguchi, Yudai; Liu, Zhendong; Ibe, Sayoko; Elangovan, Shanmugam P.; Ishii, Toshihiro; Ishikawa, Tsuyoshi; Endo, Akira; Okubo, Tatsuya; Wakihara, Toru

    2016-01-01

    Top-down approach has been viewed as an efficient and straightforward method to prepare nanosized zeolites. Yet, the mechanical breaking of zeolite causes amorphization, which usually requires a post-milling recrystallization to obtain fully crystalline nanoparticles. Herein we present a facile methodology to prepare zeolite nanocrystals, where milling and recrystallization can be performed in situ. A milling apparatus specially designed to work under conditions of high alkalinity and temperature enables the in situ recrystallization during milling. Taking zeolite A as an example, we demonstrate its size reduction from ~3 μm to 66 nm in 30 min, which is quite faster than previous methods reported. Three functions, viz., miniaturization, amorphization and recrystallization were found to take effect concurrently during this one-pot process. The dynamic balance between these three functions was achieved by adjusting the milling period and temperature, which lead to the tuning of zeolite A particle size. Particle size and crystallinity of the zeolite A nanocrystals were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and water adsorption-desorption. This work presents a pioneering advancement in this field of nanosized zeolites, and will facilitate the mass production as well as boost the wide applications of nanosized zeolites. PMID:27378145

  9. The yeast prefoldin-like URI-orthologue Bud27 associates with the RSC nucleosome remodeler and modulates transcription

    PubMed Central

    Mirón-García, María Carmen; Garrido-Godino, Ana Isabel; Martínez-Fernández, Verónica; Fernández-Pevida, Antonio; Cuevas-Bermúdez, Abel; Martín-Expósito, Manuel; Chávez, Sebastián; de la Cruz, Jesús; Navarro, Francisco

    2014-01-01

    Bud27, the yeast orthologue of human URI/RMP, is a member of the prefoldin-like family of ATP-independent molecular chaperones. It has recently been shown to mediate the assembly of the three RNA polymerases in an Rpb5-dependent manner. In this work, we present evidence of Bud27 modulating RNA pol II transcription elongation. We show that Bud27 associates with RNA pol II phosphorylated forms (CTD-Ser5P and CTD-Ser2P), and that its absence affects RNA pol II occupancy of transcribed genes. We also reveal that Bud27 associates in vivo with the Sth1 component of the chromatin remodeling complex RSC and mediates its association with RNA pol II. Our data suggest that Bud27, in addition of contributing to Rpb5 folding within the RNA polymerases, also participates in the correct assembly of other chromatin-associated protein complexes, such as RSC, thereby modulating their activity. PMID:25081216

  10. Taste buds as peripheral chemosensory processors

    PubMed Central

    Roper, Stephen D.

    2012-01-01

    Taste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50–100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds – Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Type I cells appear to be glial-like cells. Receptor cells express G protein-coupled taste receptors for sweet, bitter, or umami compounds. Presynaptic cells transduce acid stimuli (sour taste). Cells that sense salt (NaCl) taste have not yet been confidently identified in terms of these cell types. During gustatory stimulation, taste bud cells secrete synaptic, autocrine, and paracrine transmitters. These transmitters include ATP, acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE), and GABA. Glutamate is an efferent transmitter that stimulates Presynaptic cells to release 5-HT. This chapter discusses these transmitters, which cells release them, the postsynaptic targets for the transmitters, and how cell–cell communication shapes taste bud signaling via these transmitters. PMID:23261954

  11. Taste buds as peripheral chemosensory processors.

    PubMed

    Roper, Stephen D

    2013-01-01

    Taste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50-100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds - Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Type I cells appear to be glial-like cells. Receptor cells express G protein-coupled taste receptors for sweet, bitter, or umami compounds. Presynaptic cells transduce acid stimuli (sour taste). Cells that sense salt (NaCl) taste have not yet been confidently identified in terms of these cell types. During gustatory stimulation, taste bud cells secrete synaptic, autocrine, and paracrine transmitters. These transmitters include ATP, acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE), and GABA. Glutamate is an efferent transmitter that stimulates Presynaptic cells to release 5-HT. This chapter discusses these transmitters, which cells release them, the postsynaptic targets for the transmitters, and how cell-cell communication shapes taste bud signaling via these transmitters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Spatial signals link exit from mitosis to spindle position

    PubMed Central

    Falk, Jill Elaine; Tsuchiya, Dai; Verdaasdonk, Jolien; Lacefield, Soni; Bloom, Kerry; Amon, Angelika

    2016-01-01

    In budding yeast, if the spindle becomes mispositioned, cells prevent exit from mitosis by inhibiting the mitotic exit network (MEN). The MEN is a signaling cascade that localizes to spindle pole bodies (SPBs) and activates the phosphatase Cdc14. There are two competing models that explain MEN regulation by spindle position. In the 'zone model', exit from mitosis occurs when a MEN-bearing SPB enters the bud. The 'cMT-bud neck model' posits that cytoplasmic microtubule (cMT)-bud neck interactions prevent MEN activity. Here we find that 1) eliminating cMT– bud neck interactions does not trigger exit from mitosis and 2) loss of these interactions does not precede Cdc14 activation. Furthermore, using binucleate cells, we show that exit from mitosis occurs when one SPB enters the bud despite the presence of a mispositioned spindle. We conclude that exit from mitosis is triggered by a correctly positioned spindle rather than inhibited by improper spindle position. DOI: http://dx.doi.org/10.7554/eLife.14036.001 PMID:27166637

  13. Seasonality and phenology alter functional leaf traits.

    PubMed

    McKown, Athena D; Guy, Robert D; Azam, M Shofiul; Drewes, Eric C; Quamme, Linda K

    2013-07-01

    In plant ecophysiology, functional leaf traits are generally not assessed in relation to phenological phase of the canopy. Leaf traits measured in deciduous perennial species are known to vary between spring and summer seasons, but there is a knowledge gap relating to the late-summer phase marked by growth cessation and bud set occurring well before fall leaf senescence. The effects of phenology on canopy physiology were tested using a common garden of over 2,000 black cottonwood (Populus trichocarpa) individuals originating from a wide geographical range (44-60ºN). Annual phenological events and 12 leaf-based functional trait measurements were collected spanning the entire summer season prior to, and following, bud set. Patterns of seasonal trait change emerged by synchronizing trees using their date of bud set. In particular, photosynthetic, mass, and N-based traits increased substantially following bud set. Most traits were significantly different between pre-bud set and post-bud set phase trees, with many traits showing at least 25% alteration in mean value. Post-bud set, both the significance and direction of trait-trait relationships could be modified, with many relating directly to changes in leaf mass. In Populus, these dynamics in leaf traits throughout the summer season reflected a shift in whole plant physiology, but occurred long before the onset of leaf senescence. The marked shifts in measured trait values following bud set underscores the necessity to include phenology in trait-based ecological studies or large-scale phenotyping efforts, both at the local level and larger geographical scale.

  14. Variations of metabolites and proteome in Lonicera japonica Thunb. buds and flowers under UV radiation.

    PubMed

    Zhu, Wei; Zheng, Wen; Hu, Xingjiang; Xu, Xiaobao; Zhang, Lin; Tian, Jingkui

    2017-04-01

    Lonicera japonica Thunb., also known as Jin Yin Hua and Japanese honeysuckle, is used as a herbal medicine in Asian countries. Its flowers have been used in folk medicine in the clinic and in making food or healthy beverages for over 1500years in China. To investigate the molecular processes involved in L. japonica development from buds to flowers exposed to UV radiation, a comparative proteomics analysis was performed. Fifty-four proteins were identified as differentially expressed, including 42 that had increased expression and 12 that had decreased expression. The levels of the proteins related to glycolysis, TCA/organic acid transformation, major carbohydrate metabolism, oxidative pentose phosphate, stress, secondary metabolism, hormone, and mitochondrial electron transport were increased during flower opening process after exposure to UV radiation. Six metabolites in L. japonica buds and flowers were identified and relatively quantified using LC-MS/MS. The antioxidant activity was performed using a 1,1-diphenyl-2-picrylhydrazyl assay, which revealed that L. japonica buds had more activity than the UV irradiated flowers. This suggests that UV-B radiation induces production of endogenous ethylene in L. japonica buds, thus facilitating blossoming of the buds and activating the antioxidant system. Additionally, the higher metabolite contents and antioxidant properties of L. japonica buds indicate that the L. japonica bud stage may be a more optimal time to harvest than the flower stage when using for medicinal properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Peroral infection of nuclear polyhedrosis virus budded particles in the host, Bombyx mori l., enabled by an optical brightener, Tinopal UNPA-GX.

    PubMed

    Arakawa, T; Kamimura, M; Furuta, Y; Miyazawa, M; Kato, M

    2000-08-01

    Perorally inoculated budded particles of a nuclear polyhedrosis virus was used to infect Bombyx mori (BmNPV) (Lepidoptera; Bombycidae), aided by an optical brightener, Tinopal UNPA-GX (Tinopal). BmNPV budded particles not occluded in the occlusion body do not infect successfully the host, B. mori, when administered perorally. It was found that feeding the host Tinopal enabled perorally delivered BmNPV budded particles to infect the host. B. mori larvae ingesting BmNPV budded particles (1.3 x 10(6) TCID(50) units per larva) after they consumed an artificial diet containing 0. 3% Tinopal died of the viral infection. Peroral administration of these particles to host larvae with 1% Tinopal also resulted in virus infection. Tinopal is a candidate for viral activity enhancing agent promoting viral insecticide infection in hosts. The results suggest that B. mori-BmNPV budded particles are convenient for detecting viral infection enhancement activity of a chemical of interest. Since recombinant baculovirus vectors are constructed by replacing the polyhedrin gene with the foreign gene of interest, they do not produce occlusion bodies, i.e. polyhedra. Budded particles of a baculovirus vector not occluded in polyhedra cannot infect their hosts when administered perorally. The peroral inoculation of BmNPV budded particles by Tinopal leads to industrial pharmaceutics production using a baculovirus vector for a huge number of insect hosts, i.e. an 'insect factory'.

  16. Early dietary sodium restriction disrupts the peripheral anatomical development of the gustatory system.

    PubMed

    Krimm, R F; Hill, D L

    1999-05-01

    Dietary sodium restriction has profound effects on the development of peripheral taste function and central taste system anatomy. This study examined whether early dietary sodium restriction also affects innervation of taste buds. The number of geniculate ganglion cells that innervate single fungiform taste buds were quantified for the midregion of the tongue in two groups of rats: those fed either a low-sodium diet and those fed a sodium replete diet (control rats) from early prenatal development through adulthood. The same mean number of ganglion cells in developmentally sodium-restricted and control adult rats innervated taste buds on the midregion of the tongue. However, the characteristic relationship of the larger the taste bud, the more neurons that innervate it did not develop in sodium-restricted rats. The failure to form such a relationship in experimental rats was likely due to a substantially smaller mean taste bud volume than controls and probably not to changes in innervation. Further experiments demonstrated that the altered association between number of innervating neurons and taste bud size in restricted rats was reversible. Feeding developmentally sodium-restricted rats a sodium replete diet at adulthood resulted in an increase in taste bud size. Accordingly, the high correlation between taste bud volume and innervation was established in sodium-replete rats. Findings from the current study reveal that early dietary manipulations influence neuron-target interactions; however, the effects of dietary sodium restriction on peripheral gustatory anatomy can be completely restored, even in adult animals.

  17. Relationship between gustatory function and average number of taste buds per fungiform papilla measured by confocal laser scanning microscopy in humans.

    PubMed

    Saito, Takehisa; Ito, Tetsufumi; Ito, Yumi; Manabe, Yasuhiro; Sano, Kazuo

    2017-02-01

    The aim of this study was to elucidate the relationship between the gustatory function and average number of taste buds per fungiform papilla (FP) in humans. Systemically healthy volunteers (n = 211), pre-operative patients with chronic otitis media (n = 79), and postoperative patients, with or without a chorda tympani nerve (CTN) severed during middle ear surgery (n = 63), were included. Confocal laser scanning microscopy was employed to observe fungiform taste buds because it allows many FP to be observed non-invasively in a short period of time. Taste buds in an average of 10 FP in the midlateral region of the tongue were counted. In total, 3,849 FP were observed in 353 subjects. The gustatory function was measured by electrogustometry (EGM). An inverse relationship was found between the gustatory function and average number of fungiform taste buds per papilla. The healthy volunteers showed a lower EGM threshold (better gustatory function) and had more taste buds than did the patients with otitis media, and the patients with otitis media showed a lower EGM threshold and had more taste buds than did postoperative patients, reflecting the severity of damage to the CTN. It was concluded that the confocal laser scanning microscope is a very useful tool for using to observe a large number of taste buds non-invasively. © 2017 Eur J Oral Sci.

  18. A permeability barrier surrounds taste buds in lingual epithelia.

    PubMed

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2015-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. Copyright © 2015 the American Physiological Society.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj K. Rajamani; Sanjeeva Latchireddi; Sravan K. Prathy

    The U.S. mining industry operates approximately 80 semi-autogenesis grinding mills (SAG) throughout the United States. Depending on the mill size the SAG mills draws between 2 MW and 17 MW. The product from the SAG mill is further reduced in size using pebble crushers and ball mills. Hence, typical gold or copper ore requires between 2.0 and 7.5 kWh per ton of energy to reduce the particle size. Considering a typical mining operation processes 10,000 to 100,000 tons per day the energy expenditure in grinding is 50 percent of the cost of production of the metal. A research team frommore » the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Kennecott Utah Copper Corporation, Process Engineering Resources Inc. and others. In the current project, Cortez Gold Mines played a key role in facilitating the 26-ft SAG mill at Cortez as a test mill for this study. According to plant personnel, there were a number of unscheduled shut downs to repair broken liners and the mill throughput fluctuated depending on ore type. The University team had two softwares, Millsoft and FlowMod to tackle the problem. Millsoft is capable of simulating the motion of charge in the mill. FlowMod calculates the slurry flow through the grate and pulp lifters. Based on this data the two models were fine-tuned to fit the Cortez SAG will. In the summer of 2004 a new design of shell lifters were presented to Cortez and in September 2004 these lifters were installed in the SAG mill. By December 2004 Cortez Mines realized that the SAG mill is drawing approximately 236-kW less power than before while maintaining the same level of production. In the first month there was extreme cycling and operators had to learn more. Now the power consumption is 0.3-1.3 kWh/ton lower than before. The actual SAG mill power draw is 230-370 kW lower. Mill runs 1 rpm lesser in speed on the average. The re-circulation to the cone crusher is reduced by 1-10%, which means more efficient grinding of critical size material is taking place in the mill. All of the savings have resulted in reduction of operating cost be about $0.023-$0.048/ ton.« less

  20. Bud gall midges - potential invaders on larches in North America

    Treesearch

    Yuri N. Baranchikov

    2007-01-01

    Larch bud gall midges (Diptera: Cecidomyiidae) form a specialized group of gall insects inhabiting buds of larch (Larix) in the northern Palaearctic Region. Currently there are four described species in this group. Dasineura kellneri Henschel is found in Central Europe and infests Larix decidua; D....

  1. Bud Dormancy and Growth

    USDA-ARS?s Scientific Manuscript database

    Nearly all land plants produce ancillary meristems in the form of axillary or adventitious buds in addition to the shoot apical meristem. Outgrowth of these buds has a significant impact on plant architecture and the ability of plants to compete with neighboring plants, as well as to respond to and ...

  2. Foliar applied abscisic acid increases 'Chardonnay' grapevines (Vitis vinifera) bud freezing tolerance during Autumn cold acclimation

    USDA-ARS?s Scientific Manuscript database

    Economic loss due to cold weather events is a major constraint to winegrape-related industries where extreme and/or fluctuating winter temperatures induce injury and required remedial retraining and replanting increases production costs and lowers yield and fruit quality. The purpose of this study ...

  3. Genome-wide characterization of Mediator recruitment, function, and regulation

    PubMed Central

    2017-01-01

    ABSTRACT Mediator is a conserved and essential coactivator complex broadly required for RNA polymerase II (RNAPII) transcription. Recent genome-wide studies of Mediator binding in budding yeast have revealed new insights into the functions of this critical complex and raised new questions about its role in the regulation of gene expression. PMID:28301289

  4. A Meier-Gorlin syndrome mutation in a conserved C-terminal helix of Orc6 impedes origin recognition complex formation.

    PubMed

    Bleichert, Franziska; Balasov, Maxim; Chesnokov, Igor; Nogales, Eva; Botchan, Michael R; Berger, James M

    2013-10-08

    In eukaryotes, DNA replication requires the origin recognition complex (ORC), a six-subunit assembly that promotes replisome formation on chromosomal origins. Despite extant homology between certain subunits, the degree of structural and organizational overlap between budding yeast and metazoan ORC has been unclear. Using 3D electron microscopy, we determined the subunit organization of metazoan ORC, revealing that it adopts a global architecture very similar to the budding yeast complex. Bioinformatic analysis extends this conservation to Orc6, a subunit of somewhat enigmatic function. Unexpectedly, a mutation in the Orc6 C-terminus linked to Meier-Gorlin syndrome, a dwarfism disorder, impedes proper recruitment of Orc6 into ORC; biochemical studies reveal that this region of Orc6 associates with a previously uncharacterized domain of Orc3 and is required for ORC function and MCM2-7 loading in vivo. Together, our results suggest that Meier-Gorlin syndrome mutations in Orc6 impair the formation of ORC hexamers, interfering with appropriate ORC functions. DOI:http://dx.doi.org/10.7554/eLife.00882.001.

  5. In Vitro Propagation and Branching Morphogenesis from Single Ureteric Bud Cells.

    PubMed

    Yuri, Shunsuke; Nishikawa, Masaki; Yanagawa, Naomi; Jo, Oak D; Yanagawa, Norimoto

    2017-02-14

    A method to maintain and rebuild ureteric bud (UB)-like structures from UB cells in vitro could provide a useful tool for kidney regeneration. We aimed in our present study to establish a serum-free culture system that enables the expansion of UB progenitor cells, i.e., UB tip cells, and reconstruction of UB-like structures. We found that fibroblast growth factors or retinoic acid (RA) was sufficient for the survival of UB cells in serum-free condition, while the proliferation and maintenance of UB tip cells required glial cell-derived neurotrophic factor together with signaling from either WNT-β-catenin pathway or RA. The activation of WNT-β-catenin signaling in UB cells by endogenous WNT proteins required R-spondins. Together with Rho kinase inhibitor, our culture system facilitated the expansion of UB tip cells to form UB-like structures from dispersed single cells. The UB-like structures thus formed retained the original UB characteristics and integrated into the native embryonic kidneys. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. A Structure-Based Mechanism for Arf1-Dependent Recruitment of Coatomer to Membranes

    PubMed Central

    Yu, Xinchao; Breitman, Marianna; Goldberg, Jonathan

    2012-01-01

    Summary Budding of COPI-coated vesicles from Golgi membranes requires an Arf-family G protein and the coatomer complex recruited from cytosol. Arf is also required with coatomer-related clathrin adaptor complexes to bud vesicles from the trans-Golgi network and endosomal compartments. To understand the structural basis for Arf-dependent recruitment of a vesicular coat to the membrane, we determined the structure of Arf1 bound to the γζ-COP subcomplex of coatomer. Structure-guided biochemical analysis reveals that a second Arf1-GTP molecule binds to βδ-COP at a site common to the γ- and β-COP subunits. The Arf1-binding sites on coatomer are spatially related to PtdIns4,5P2-binding sites on the endocytic AP2 complex, providing evidence that the orientation of membrane binding is general for this class of vesicular coat proteins. A bivalent GTP-dependent binding mode has implications for the dynamics of coatomer interaction with the Golgi and for the selection of cargo molecules. PMID:22304919

  7. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control--a review.

    PubMed

    Bhatnagar, Amit; Kaczala, Fabio; Hogland, William; Marques, Marcia; Paraskeva, Christakis A; Papadakis, Vagelis G; Sillanpää, Mika

    2014-01-01

    The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5% of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78% between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  8. Sine-Bar Attachment For Machine Tools

    NASA Technical Reports Server (NTRS)

    Mann, Franklin D.

    1988-01-01

    Sine-bar attachment for collets, spindles, and chucks helps machinists set up quickly for precise angular cuts that require greater precision than provided by graduations of machine tools. Machinist uses attachment to index head, carriage of milling machine or lathe relative to table or turning axis of tool. Attachment accurate to 1 minute or arc depending on length of sine bar and precision of gauge blocks in setup. Attachment installs quickly and easily on almost any type of lathe or mill. Requires no special clamps or fixtures, and eliminates many trial-and-error measurements. More stable than improvised setups and not jarred out of position readily.

  9. Phenological bud bank development of Bouteloua gracilis, Hesperostipa comata, and Pascopyrum smithii during drought in the Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Vegetative reproduction in rangelands relies on tiller recruitment from belowground bud banks. Improved understanding of species-specific bud production and phenology would facilitate timing of aboveground management strategies. Twelve individual plants of the warm season grass (Bouteloua gracilis...

  10. Unequivocal Identification of 1-Phenylethyl Acetate in Clove Buds (syzygium aromaticum (L.) Merr. & L.M.Perry) and Clove Essential Oil.

    PubMed

    Gassenmeier, Klaus; Schwager, Hugo; Houben, Eric; Clery, Robin

    2017-06-27

    The natural occurrence of 1-phenylethyl acetate (styrallyl acetate) was confirmed in commercially available dried clove buds and also in the hydrodistilled oil from clove buds. This confirms previous reports and other anecdotal evidence for its occurrence in nature.

  11. Shoot Morphogenesis Associated With Flowering in Populus deltoides (Salicaceae)

    Treesearch

    Cetin Yuceer; Samuel B. Land; Mark E. Kubiske; Richard L. Harkess

    2003-01-01

    Temporal and spatial formation and differentiation of axillary buds in developing shoots of mature eastern cottonwood (Populus deltoides) were investigated. Shoots sequentially initiate early vegetative, floral, and late vegetative buds. Associated with these buds is the formation of three distinct leaf types. In May of the first growing season, the...

  12. An Indirect Role for Ethylene in Shoot-inversion Release of Apical Dominance in Pharbitis Nil

    NASA Technical Reports Server (NTRS)

    Cline, M. G.

    1985-01-01

    Evidence is presented which indicated that ethylene does not play a direct role in promoting or inhibiting bud outgrowth as a gravity response. It is concluded that the treatment of inactive or induced lateral buds with ethylene inhibitors or ethrel has no significant effect on bud outgrowth and that no changes occur in ethylene emanation in the Highest Lateral Bud (HLB) or HLB node following shoot inversion. Possible mechanisms by which ethylene released by shoot inversion may indirectly promote outgrowth of the HLB is presented.

  13. [Acaricidal activity of clove bud oil against Dermatophagoides farinae (Acari: Pyroglyphidae)].

    PubMed

    Li, Jing; Wu, Hai-Qiang; Liu, Zhi-Gang

    2009-12-01

    Volatile oil from the clove bud was extracted by petroleum ether using Soxhlet Extractor. The acaricidal activity was examined using direct contact and vapour phase toxicity bioassays. In a filter paper contact toxicity bio-assay, at 2.5 h after treatment, clove bud oil at a dose of 12.20 microg/cm2 killed all dust mites. As judged by 24-h LD50 values, potent fumigant action was observed with clove bud oil (12.20 microg/cm2), showing an adequate acaricidal activity against indoor Dermatophagoides farinae.

  14. Nerve-independent and ectopically additional induction of taste buds in organ culture of fetal tongues.

    PubMed

    Honda, Kotaro; Tomooka, Yasuhiro

    2016-10-01

    An improved organ culture system allowed to observe morphogenesis of mouse lingual papillae and taste buds relatively for longer period, in which fetal tongues were analyzed for 6 d. Taste cells were defined as eosinophobic epithelial cells expressing CK8 and Sox2 within lingual epithelium. Addition of glycogen synthase kinase 3 beta inhibitor CHIR99021 induced many taste cells and buds in non-gustatory and gustatory stratified lingual epithelium. The present study clearly demonstrated induction of taste cells and buds ectopically and without innervation.

  15. [In vitro flowering of cultures from a hybrid of Cymbidium goeringii and C. hybridium].

    PubMed

    Zheng, Li-Ming; Pang, Ji-Liang

    2006-06-01

    Wild-type female spring orchid (Cymbidium goeringii) was crossed with male Cymbidium hybridium. Over eight hundred protocorm clones were obtained from hybrid offsprings. Among them, one protocorm clone was identified to differentiate visible floral buds two months after subculture in vitro (Plate I). The protocorms and shoots derived from this clone were further used in studying the effects of abscisic acid (ABA) and paclobutrazol (PP333) pretreatment as well as different concentrations of 6-benzyladenine (6-BA) on floral bud differentiation. The optimum combination of hormones in floral bud induction was 6-BA 1.0 mg/L and NAA 0.1 mg/L, and total frequency of floral bud formation was up to 31% (Table 1). The optimum length of shoots used in floral bud induction was 1-2 cm, and the frequency of floral bud formation was 19% (Table 1). The increase in total frequency was not significant in floral bud induction from protocorms and shoots with length of 1-2 cm or 2-4 cm cultured on MS medium containing 6-BA 1.0 mg/L and NAA 0.1 mg/L after pretreatment on MS medium supplemented with ABA 0.5 mg/L and PP333 0.5 mg/L for 35 d (Table 2).

  16. Dielectric modelling of cell division for budding and fission yeast

    NASA Astrophysics Data System (ADS)

    Asami, Koji; Sekine, Katsuhisa

    2007-02-01

    The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast.

  17. Mash1-expressing cells could differentiate to type III cells in adult mouse taste buds.

    PubMed

    Takagi, Hiroki; Seta, Yuji; Kataoka, Shinji; Nakatomi, Mitsushiro; Toyono, Takashi; Kawamoto, Tatsuo

    2018-03-10

    The gustatory cells in taste buds have been identified as paraneuronal; they possess characteristics of both neuronal and epithelial cells. Like neurons, they form synapses, store and release transmitters, and are capable of generating an action potential. Like epithelial cells, taste cells have a limited life span and are regularly replaced throughout life. However, little is known about the molecular mechanisms that regulate taste cell genesis and differentiation. In the present study, to begin to understand these mechanisms, we investigated the role of Mash1-positive cells in regulating adult taste bud cell differentiation through the loss of Mash1-positive cells using the Cre-loxP system. We found that the cells expressing type III cell markers-aromatic L-amino acid decarboxylase (AADC), carbonic anhydrase 4 (CA4), glutamate decarboxylase 67 (GAD67), neural cell adhesion molecule (NCAM), and synaptosomal-associated protein 25 (SNAP25)-were significantly reduced in the circumvallate taste buds after the administration of tamoxifen. However, gustducin and phospholipase C beta2 (PLC beta2)-markers of type II taste bud cells-were not significantly changed in the circumvallate taste buds after the administration of tamoxifen. These results suggest that Mash1-positive cells could be differentiated to type III cells, not type II cells in the taste buds.

  18. Expression of sulfonylurea receptors in rat taste buds.

    PubMed

    Liu, Dian-Xin; Liu, Xiao-Min; Zhou, Li-Hong; Feng, Xiao-Hong; Zhang, Xiao-Juan

    2011-07-01

    To test the possibility that a fast-onset promoting agent repaglinide may initiate prandial insulin secretion through the mechanism of cephalic-phase insulin release, we explored the expression and distribution character of sulfonylurea receptors in rat taste buds. Twenty male Wistar rats aged 10 weeks old were killed after general anesthesia. The circumvallate papillae, fungiform papillae and pancreas tissues were separately collected. Immunohistochemical staining was used to detect the expression and distribution of sulfonylurea receptor 1 (SUR1) or sulfonylurea receptor 2 (SUR2) in rat taste buds. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to analyze the expression of SUR1 or SUR2 mRNA. The pancreatic tissues from the same rat were used as positive control. This is the first study to report that SUR1 is uniquely expressed in the taste buds of fungiform papillae of each rat tongue, while the expression of SUR1 or SUR2 was not detected in the taste buds of circumvallate papillae. SUR1 is selectively expressed in rat taste buds, and its distribution pattern may be functionally relevant, suggesting that the rapid insulin secretion-promoting effect of repaglinide may be exerted through the cephalic-phase secretion pathway mediated by taste buds. Copyright © 2010 Elsevier GmbH. All rights reserved.

  19. Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds

    PubMed Central

    Biggs, Bradley T.; Tang, Tao; Krimm, Robin F.

    2016-01-01

    Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling. PMID:26901525

  20. Through its F-BAR and RhoGAP domains, Rgd1p acts in different polarized growth processes in budding yeast

    PubMed Central

    Lefebvre, Fabien; Prouzet-Mauléon, Valérie; Vieillemard, Aurélie; Thoraval, Didier; Crouzet, Marc

    2009-01-01

    Protein domain architecture can be used to construct supramolecular structures, to carry out specific functions and to mediate signaling in prokaryotic and eukaryotic cells. The Rgd1p protein of budding yeast contains two domains with different functions in the cell: the F-BAR and RhoGAP domains. The F-BAR domain has been shown to interact with membrane phospholipids and is thought to induce or sense membrane curvature. The RhoGAP domain activates the GTP hydrolysis of two Rho GTPases, thereby regulating different cellular pathways. Specific molecular interactions with the F-BAR and RhoGAP domains, cell signaling and interplay between these domains may allow the Rgd1p protein to act in several different biological processes, all of which are required for polarized growth in yeast. PMID:19704907

Top