Garkusheva, Natalya; Matafonova, Galina; Tsenter, Irina; Beck, Sara; Batoev, Valeriy; Linden, Karl
2017-07-29
This work evaluated the feasibility of a photo-Fenton-like process using persulfate (PS) and ferrous iron (Fe 2+ ) under simulated solar radiation for degrading the herbicide atrazine (ATZ, 6-Chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-2,4-diamine) and inactivating E. coli. Milli Q water, lake water, and diluted wastewater effluents were spiked both simultaneously and separately with ATZ (4 mg/L) and E. coli (10 5 CFU/mL), and exposed to treatment. A method for determining the average irradiance throughout the water media in the UV(A+B) range of the Xe lamp emission was developed for bench-scale experiments. These values were used to calculate the UV(A+B) fluences and the solar UV(A+B) energy doses per unit of volume (Q UV(A+B) , kJ/L). The obtained kinetic data were presented versus energy dose. Treatment of lake water at near-neutral pH was ineffective via the photo-Fenton-like process, attaining only 20% ATZ removal and 1-log reduction of E. coli. In Milli Q water and wastewater, the complete degradation of ATZ in the absence of bacteria was observed at an average energy dose of 1.5 kJ/L (60 min), while in the presence of cells the degradation efficiency was ∼60%. When ATZ was present, E. coli inactivation was also affected in Milli Q water, with 1.4-log reduction (93%) at a dose of 1.6 kJ/L (60 min), whereas in wastewater complete inactivation was achieved at a lower dose of 1.3 kJ/L (45 min). The energy requirements on a Q UV(A+B) basis for simultaneous 90% ATZ removal and 99.99% E. coli inactivation in Milli Q water and wastewater were shown to be less than 10 kJ/L. This suggests the solar/PS/Fe 2+ system is promising for simultaneous treatment and disinfection of wastewater effluents.
Risk Mitigation during Human Electromuscular Incapacitation Research
2015-04-30
that simulated different arrest conditions.Error! Bookmark not defined. Group 1 completed a 150 meter sprint followed by a 44-inch wall hurdle...mL thousandth (milli) of a liter mm thousandths (milli) of a meter mM/L thousandths (milli) of a mole per liter NAMRU-SA Naval Medical... sprint plus a 44-inch hurdle, 45 seconds of striking a heavy bag, a 10-second TASER X-25 EMI exposure, sprinting from a trained K-9 unit while wearing a
Possibility of high temperature superconducting phases in PdH
NASA Astrophysics Data System (ADS)
Tripodi, Paolo; Di Gioacchino, Daniele; Borelli, Rodolfo; Vinko, Jenny Darja
2003-05-01
Possible new superconducting phases with a high critical transition temperature (Tc) have been found in stable palladium-hydrogen (PdHx) samples for stoichiometric ratio x=H/Pd⩾1, in addition to the well-known low critical transition temperature (0⩽Tc⩽9) when x is in the range (0.75⩽x⩽1.00). Possible new measured superconducting phases with critical temperature in the range 51⩽Tc⩽295 K occur. This Tc varies considerably with every milli part of x when x exceeds unit. A superconducting critical current density Jc⩾6.1×104 A cm-2 has been measured at 77 K with HDC=0 T.
Succinonitrile Purification Facility
NASA Technical Reports Server (NTRS)
2003-01-01
The Succinonitrile (SCN) Purification Facility provides succinonitrile and succinonitrile alloys to several NRA selected investigations for flight and ground research at various levels of purity. The purification process employed includes both distillation and zone refining. Once the appropriate purification process is completed, samples are characterized to determine the liquidus and/or solidus temperature, which is then related to sample purity. The lab has various methods for measuring these temperatures with accuracies in the milliKelvin to tenths of milliKelvin range. The ultra-pure SCN produced in our facility is indistinguishable from the standard material provided by NIST to well within the stated +/- 1.5mK of the NIST triple point cells. In addition to delivering material to various investigations, our current activities include process improvement, characterization of impurities and triple point cell design and development. The purification process is being evaluated for each of the four vendors to determine the efficacy of each purification step. We are also collecting samples of the remainder from distillation and zone refining for analysis of the constituent impurities. The large triple point cells developed will contain SCN with a melting point of 58.0642 C +/- 1.5mK for use as a calibration standard for Standard Platinum Resistance Thermometers (SPRTs).
NASA Astrophysics Data System (ADS)
Xin, Jia; Tang, Fenglin; Zheng, Xilai
2016-04-01
Application of microscale zero-valent iron (mZVI) is a promising technology for in-situ contaminated groundwater remediation. However, its longevity would be negatively impacted by surface passivation, especially in saline groundwater. In this study, the aging behaviors of mZVI particles were investigated in three media (milli-Q water, fresh groundwater and saline groundwater) using batch experiments to evaluate their potential corrosion and passivation performance in different field conditions. The results indicated that mZVI was reactive between 0-7 days exposure to water and then gradually lost reactivity over the next few hundred days. The patterns of kinetic curve were analogous among the three different media. In comparison, during the early phase (0-7 d), mZVI in saline groundwater showed a faster corrosion rate with a k value of 1.357, which was relatively higher than k values in milli-Q water and fresh groundwater. However, as the corrosion process further developed, the fastest corrosion rate was observed in milli-Q water followed with fresh groundwater and saline groundwater. These changes in reactivity provided evidence for different patterns and formation mechanisms of passive layers on mZVI in three media. The SEM-EDS analysis demonstrated that in the saline groundwater, a compact and even oxide film of carbonate green rust or Fe oxide (hydroxyl) species was formed immediately on the surface due to the high concentration and widely distributed bicarbonate and hardness, whereas in the fresh groundwater and milli-Q water, the passive layer was composed of loosely and unevenly distributed precipitates which much slowly formed as the iron corrosion proceeded. These findings provide insight into the molecular-scale mechanism of mZVI passivation by inorganic salts with particular implications in saline groundwater.
Flight Demonstration of a Milli-Arcsecond Optical Pointing System for Direct Exoplanet Imaging
NASA Astrophysics Data System (ADS)
Mendillo, Christopher; Chakrabarti, S.; Cook, T.; Hicks, B.
2012-01-01
The PICTURE (Planetary Imaging Concept Testbed Using a Rocket Experiment) sounding rocket attempted to use a white-light nulling interferometer to image the exozodiacal dust disk of Epsilon Eridani (K2V, 3.22 pc) in reflected visible light down to an inner radius of 3 AU. PICTURE launched from White Sands Missile Range on October 8th, 2011. Unfortunately, the main science telemetry channel was lost seconds into flight and no science data was recovered. However, on-board diagnostic data does show that PICTURE successfully demonstrated a fast (200 Hz) optical tracking system that provided 2 milli-arcsecond in-flight pointing stability, a thousand-fold improvement over the raw pointing of the rocket's attitude control system (ACS). The PICTURE flight provides heritage for a technology that will be a key component for many future direct exoplanet imaging missions. We present a spectral analysis of the 200 Hz tracking data in comparison to the 50 Hz ACS gyro data and we provide a precise measurement of the true ACS performance at frequencies higher than 5 Hz where the ACS gyros become noise limited. This work is funded by NASA grant: NNG05WC17G.
VizieR Online Data Catalog: Gaia DR2 (Gaia Collaboration, 2018)
NASA Astrophysics Data System (ADS)
Gaia Collaboration
2018-04-01
Contents of Gaia DR2: The five-parameter astrometric solution - positions on the sky (alpha,delta), parallaxes, and proper motions - for more than 1.3 billion (109) sources, with a limiting magnitude of G=21 and a bright limit of G~=3. Parallax uncertainties are in the range of up to 0.04 milliarcsecond for sources at G<15, around 0.1mas for sources with G=17 and at the faint end, the uncertainty is of the order of 0.7mas at G=20. The corresponding uncertainties in the respective proper motion components are up to 0.06mas/yr (for G<15mag), 0.2mas/yr (for G=17mag) and 1.2mas/yr (for G=20mag). The Gaia DR2 parallaxes and proper motions are based only on Gaia data; they do no longer depend on the Tycho-2 Catalogue. Median radial velocities (i.e. the median value over the epochs) for more than 6 million stars with a mean G magnitude between about 4 and 13 and an effective temperature (Teff) in the range of about 3550 to 6900K. This leads to a full six-parameter solution: positions and motions on the sky with parallaxes and radial velocities, all combined with mean G magnitudes. The overall precision of the radial velocities at the bright end is in the order of 200-300m/s while at the faint end the overall precision is approximately 1.2km/s for a Teff of 4750K and about 2.5km/s for a Teff of 6500K. An additional set of more than 200 million sources for which a two-parameter solution is available: the positions on the sky (alpha,delta) combined with the mean G magnitude. These sources will have a positional uncertainty at G=20 of about 2mas, at J2015.5. G magnitudes for more than 1.5 billion sources, with precisions varying from around 1 milli-mag at the bright (G<13) end to around 20 milli-mag at G=20. Please be aware that the photometric system for the G band in Gaia DR2 will be different from the photometric system as used in Gaia DR1. GBP and GRP magnitudes for more than 1.1 billion sources, with precisions varying from a few milli-mag at the bright (G<13) end to around 200 milli-mag at G=20. Full passband definitions for G, BP and RP. These passbands are now available for download. A detailed description is given here. Epoch astrometry for more than 13,000 known asteroids based on more than 1.5 million CCD observations. 96% of the along-scan (AL) residuals are in the range -5 to 5mas, and 52% of the AL residuals are in the range of -1 to 1mas. The observations will be published in Gaia DR2 and also delivered to the Minor Planet Center (MPC). Subject to limitations the effective temperatures Teff for more than 150 million sources brighter than 17th magnitude with effective temperatures in the range 3000 to 10,000 K. For a subset of these sources also the line-of-sight extinction AG and reddening E(BP-RP) will be given, as well as the luminosity and radius. Lightcurves for more than 500,000 variable sources consisting of Cepheids, RR Lyrae, Mira and Semi-Regular Candidates as well as High-Amplitude Delta Scuti, BY Draconis candidates, SX Phoenicis Candidates and short time scale phenomena. Planned cross-matches between Gaia DR2 sources on the one hand and Hipparcos-2, Tycho-2, 2MASS PSC, SDSS DR9, Pan-STARRS1, GSC2.3, PPM-XL, AllWISE, and URAT-1 data on the other hand. Catalogue of radial velocity standard stars (Soubiran et al., 2018A&A..in.prep...): Individual and combined radial velocity measurements are presented for 4813 stars in rvstdcat.dat and rvstdmes.dat files. (20 data files).
NASA Astrophysics Data System (ADS)
Haug, M.; Haussmann, F.; Kellner, S.; Kern, L.; Eisenhauer, F.; Lizon, J.-L.; Dietrich, M.; Thummes, G.
2014-07-01
GRAVITY is a second generation VLTI instrument for high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band. The cryostat of the beam combiner instrument provides the required temperatures for the various subunits ranging from 40K to 290K with a milli-Kelvin temperature stability for some selected units. The bath cryostat is cooled with liquid nitrogen and makes use of the exhaust gas to cool the main optical bench to an intermediate temperature of 240K. The fringe tracking detector will be cooled separately by a single-stage pulse tube cooler to a temperature of 40K. The pulse tube cooler is optimized for minimum vibrations. In particular its warm side is connected to the 80K reservoir of the LN2 cryostat to minimize the required input power. All temperature levels are actively stabilized by electric heaters. The cold bench is supported separately from the vacuum vessel and the liquid nitrogen reservoir to minimize the transfer of acoustic noise onto the instrument.
Characteristics of salt taste and free chlorine or chloramine in drinking water.
Wiesenthal, K E; McGuire, M J; Suffet, I H
2007-01-01
Salty taste with or without chlorine or chloramine flavour is one of the major consumer complaints to water utilities. The flavour profile analysis (FPA) taste panel method determined the average taste threshold concentration for salt (NaCl) in Milli-Q water to be 640 +/- 3 mg/L at pH 8. Chlorine and chloramine disinfectants have no antagonistic or synergistic effects on the taste of NaCl, salt, in Milli-Q water. The flavour threshold concentrations for chlorine or chloramine in Milli-Q water alone or in the presence of NaCl could not be estimated by the Weber-Fechner curves due to the chlorine or chloramine flavour outliers in the 0.2-0.8 mg/L concentration range. Apparently, NaCl is not equilibrated with the concentration of ions in the saliva in the mouth and the concentration of free chlorine or chloramines cannot be tasted correctly. Therefore, dechlorinated tap water may be the best background water to use for a particular drinking water evaluation of chlorine and chloramine thresholds. Laboratory FPA studies of free chlorine found that a 67% dilution of Central Arizona Project (CAP) (Tucson, AZ) water with Milli-O water was required to reduce the free chlorine flavour to a threshold value instead of a theoretical value of 80% (Krasner and Barrett, 1980). No synergistic effect was found for chlorine flavour on the dilution of CAP water with Milli-Q water. When Central Avra Valley (AVRA) groundwater was used for the dilution of CAP water, a synergistic effect of the TDS present was observed for the chlorine flavour. Apparently, the actual mineral content of drinking water, and not just NaCl in Milli-Q water, is needed for comparative flavour tests for chlorine and chloramines.
Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability
NASA Astrophysics Data System (ADS)
Palmer, A.; Silevitch, D. M.; Feng, Yejun; Wang, Yishu; Jaramillo, R.; Banerjee, A.; Ren, Y.; Rosenbaum, T. F.
2015-09-01
We discuss techniques for performing continuous measurements across a wide range of pressure-field-temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, while at the same time making possible precise steps across abrupt phase transitions such as those from insulator to metal.
Detecting a heavy neutrino electric dipole moment at the LHC
NASA Astrophysics Data System (ADS)
Sher, Marc; Stevens, Justin R.
2018-02-01
The milliQan Collaboration has proposed to search for millicharged particles by looking for very weakly ionizing tracks in a detector installed in a cavern near the CMS experiment at the LHC. We note that another form of exotica can also yield weakly ionizing tracks. If a heavy neutrino has an electric dipole moment (EDM), then the milliQan experiment may be sensitive to it as well. In particular, writing the general dimension-5 operator for an EDM with a scale of a TeV and a one-loop factor, one finds a potential EDM as high as a few times 10-17 e-cm, and models exist where it is an order of magnitude higher. Redoing the Bethe calculation of ionization energy loss for an EDM, it is found that the milliQan detector is sensitive to EDMs as small as 10-17 e-cm. Using the production cross-section and analyzing the acceptance of the milliQan detector, we find the expected 95% exclusion and 3σ sensitivity over the range of neutrino masses from 5-1000 GeV for integrated luminosities of 300 and 3000 fb-1 at the LHC.
A milliKelvin scanning Hall probe microscope for high resolution magnetic imaging
NASA Astrophysics Data System (ADS)
Khotkevych, V. V.; Bending, S. J.
2009-02-01
The design and performance of a novel scanning Hall probe microscope for milliKelvin magnetic imaging with submicron lateral resolution is presented. The microscope head is housed in the vacuum chamber of a commercial 3He-refrigerator and operates between room temperature and 300 mK in magnetic fields up to 10 T. Mapping of the local magnetic induction at the sample surface is performed by a micro-fabricated 2DEG Hall probe equipped with an integrated STM tip. The latter provides a reliable mechanism of surface tracking by sensing and controlling the tunnel currents. We discuss the results of tests of the system and illustrate its potential with images of suitable reference samples captured in different modes of operation.
Frequency-doubled vertical-external-cavity surface-emitting laser
Raymond, Thomas D.; Alford, William J.; Crawford, Mary H.; Allerman, Andrew A.
2002-01-01
A frequency-doubled semiconductor vertical-external-cavity surface-emitting laser (VECSEL) is disclosed for generating light at a wavelength in the range of 300-550 nanometers. The VECSEL includes a semiconductor multi-quantum-well active region that is electrically or optically pumped to generate lasing at a fundamental wavelength in the range of 600-1100 nanometers. An intracavity nonlinear frequency-doubling crystal then converts the fundamental lasing into a second-harmonic output beam. With optical pumping with 330 milliWatts from a semiconductor diode pump laser, about 5 milliWatts or more of blue light can be generated at 490 nm. The device has applications for high-density optical data storage and retrieval, laser printing, optical image projection, chemical-sensing, materials processing and optical metrology.
46 CFR Appendix II to Part 153 - Metric Units Used in Part 153
Code of Federal Regulations, 2011 CFR
2011-10-01
... common metric Force Newton N 0.225 lbs. Length Meter m 39.37 in. Centimeter cm .3937 in. Pressure Pascal Pa 1.450×10−4 lbs/in 2. Kilo-Pascal (1,000 Pascals) kPa 0.145 lbs/in 2. Kilo-Pascal kPa 1.02×10−2 kg/cm2. ......do kPa 1×10 3 N/m 2. Temperature Degree Celsius °C 5/9 (°F-32). Viscosity milli-Pascal...
46 CFR Appendix II to Part 153 - Metric Units Used in Part 153
Code of Federal Regulations, 2010 CFR
2010-10-01
... common metric Force Newton N 0.225 lbs. Length Meter m 39.37 in. Centimeter cm .3937 in. Pressure Pascal Pa 1.450×10−4 lbs/in 2. Kilo-Pascal (1,000 Pascals) kPa 0.145 lbs/in 2. Kilo-Pascal kPa 1.02×10−2 kg/cm2. ......do kPa 1×10 3 N/m 2. Temperature Degree Celsius °C 5/9 (°F-32). Viscosity milli-Pascal...
Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, A; Silevitch, D M; Feng, Yejun
2015-09-01
We discuss techniques for performing continuous measurements across a wide range of pressure–field–temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, whilemore » at the same time making possible precise steps across abrupt phase transitions such as those from insulator to metal.« less
Inhibition of bacterial activity in acid mine drainage
NASA Astrophysics Data System (ADS)
Singh, Gurdeep; Bhatnagar, Miss Mridula
1988-12-01
Acid mine drainage water give rise to rapid growth and activity of an iron- and sulphur- oxidizing bacterium Thiobacillus ferrooxidians which greatly accelerate acid producing reactions by oxidation of pyrite material associated with coal and adjoining strata. The role of this bacterium in production of acid mine drainage is described. This study presents the data which demonstrate the inhibitory effect of certain organic acids, sodium benzoate, sodium lauryl sulphate, quarternary ammonium compounds on the growth of the acidophilic aerobic autotroph Thiobacillus ferrooxidians. In each experiment, 10 milli-litres of laboratory developed culture of Thiobacillus ferrooxidians was added to 250 milli-litres Erlenmeyer flask containing 90 milli-litres of 9-k media supplemented with FeSO4 7H2O and organic compounds at various concentrations. Control experiments were also carried out. The treated and untreated (control) samples analysed at various time intervals for Ferrous Iron and pH levels. Results from this investigation showed that some organic acids, sodium benzoate, sodium lauryl sulphate and quarternary ammonium compounds at low concentration (10-2 M, 10-50 ppm concentration levels) are effective bactericides and able to inhibit and reduce the Ferrous Iron oxidation and acidity formation by inhibiting the growth of Thiobacillus ferrooxidians is also discussed and presented
He, Yi-San; Chen, Kuan-Fu; Lin, Chien-Hung; Lin, Min-Tsung; Chen, Chien-Chung; Lin, Cheng-Huang
2013-03-19
The use of an accelerometer as a gas detector in gas chromatography (GC) is described for the first time. A milli-whistle was connected to the outlet of the GC capillary. When the eluted and GC carrier gases pass through the capillary and milli-whistle, a sound is produced. After a fast Fourier transform (FFT), the sound wave generated from the milli-whistle is picked up by a microphone and the resulting vibration of the milli-whistle body can be recorded by an accelerometer. The release of hydrogen gas, as the result of thermal energy, from ammonia borane (NH3BH3), which has been suggested as a storage medium for hydrogen, was selected as the model sample. The findings show that the frequencies generated, either by sound or by the vibration from the whistle body, were identical. The concentration levels of the released hydrogen gas can be determined online, based on the frequency changes. Ammonia borane was placed in a brass reservoir, heated continually, and the released hydrogen gas was directly injected into the GC inlet at 0.5 min intervals, using a home-built electromagnetic pulse injector. The concentration of hydrogen for each injection can be calculated immediately. When the ammonia borane was encapsulated within a polycarbonate (PC) microtube array membrane, the temperature required for the release of hydrogen can be decreased, which would make such a material more convenient for use. The findings indicate that 1.0 mg of ammonia borane can produce hydrogen in the range of 1.0-1.25 mL, in the temperature range of 85-115 °C.
Improvement of the Power Control Unit for Ion Thruster to Cope with Milli-Newton Range RIT
NASA Astrophysics Data System (ADS)
Ceruti, Luca; Polli, Aldo; Galantini, Paolo
2014-08-01
The recent development and testing activities of a miniaturized Radio-Frequency Ion Thruster, with relevant ancillary elements, in the range of 10 to 100 micro-Newtons, joined with past flight heritage in the milli-Newton range (RIT-10 for Artemis), shows an appealing capability of such an electrical propulsion technology to support thrust in a wide range of space applications from very fine attitude control up to deorbiting of small-medium satellites. As expectable, this implies that the mentioned ancillary elements (mainly Radio-Frequency Generator and Power Control Unit) require adaptation to the different requirements imposed to different missions and thrust ranges. Regarding the Power Control Unit different power levels, both the controllability requirements and the spacecraft interfaces impose non negligible adaptation leading to significant increase of development activities and associated cost (nonrecurring) increase. From that and with the main purpose to minimize such impacts and provide reliable equipments, Selex ES since a few years is devoting maximum attention in the incremental innovation of the existing design in order to maximize their reuse.
A Study of Communication Processor Systems
1979-12-01
STUDYSCOFONLA (A . TIS R I8TIO S" - EEG R AN T-i R $a t 17. DITR UTO STTEeN in h b’*l.elldi 1Ok 0 ~45ft i9~a R,1OI)7 -C S. APeMr’wl NOTES Uh a DC gt~ & C...MM Fig. 3.3 Pluribus syste m II 24 -4~ I tm ap B u s- ----I FP K K Cmi Cornrnjer MeodUlO Fig. 3.4 Carnegie "iellLfn CmI* 25 0I M r K K P M K KP M K...144 bits incurs a mean transmission delay (o ) of 0.29 milli- seconds. The maximum transmission delays TDF and TDC can be obtained as 15 milliseconds
Investigation of gunshot residue patterns using milli-XRF-techniques: first experiences in casework
NASA Astrophysics Data System (ADS)
Schumacher, Rüdiger; Barth, Martin; Neimke, Dieter; Niewöhner, Ludwig
2010-06-01
The investigation of gunshot residue (GSR) patterns for shooting range estimation is usually based on visualizing the lead, copper, or nitrocellulose distributions on targets like fabric or adhesive tape by chemographic color tests. The method usually provides good results but has its drawbacks when it comes to the examination of ammunition containing lead-free primers or bloody clothing. A milli-X-ray fluorescence (m-XRF) spectrometer with a large motorized stage can help to circumvent these problems allowing the acquisition of XRF mappings of relatively large areas (up to 20 x 20 cm) in millimeter resolution within reasonable time (2-10 hours) for almost all elements. First experiences in GSR casework at the Forensic Science Institute of the Bundeskriminalamt (BKA) have shown, that m-XRF is a useful supplementation for conventional methods in shooting ranges estimation, which helps if there are problems in transferring a GSR pattern to secondary targets (e.g. bloody or stained garments) or if there is no suitable color test available for the element of interest. The resulting elemental distributions are a good estimate for the shooting range and can be evaluated by calculating radial distributions or integrated count rates of irregular shaped regions like pieces of human skin which are too small to be investigated with a conventional WD-XRF spectrometer. Beside a mapping mode the milli-XRF offers also point and line scan modes which can also be utilized in gunshot crime investigations as a quick survey tool to identify bullet holes based on the elements present in the wipe ring.
A search at the millijansky level for milli-arcsecond cores in a complete sample of radio galaxies
NASA Technical Reports Server (NTRS)
Wehrle, A. E.; Preston, R. A.; Meier, D. L.; Gorenstein, M. V.; Shapiro, I. I.; Rogers, A. E. E.; Rius, A.
1984-01-01
A complete sample of 26 extended radio galaxies was observed at 2.29 GHz with the Mark III VLBI system. The fringe spacing was about 3 milli-arcsec, and the detection limit was about 2 millijanskys. Half of the galaxies were found to possess milli-arcsec radio cores. In all but three sources, the nuclear flux density was less than 0.04 of the total flux density. Galaxies with high optical luminosity (less than -21.2) were more likely than less luminous galaxies to contain a detectable milliparcsec radio core (69 percent vs. 20 percent). For objects with arcsec cores, 80 percent were found to have a milli-arcsec core, even though the milli-arcsec object did not always contribute the greater part of the arcsec flux density.
Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in-situ tunability
Palmer, Alexander; Silevitch, Daniel; Feng, Yejun; ...
2015-09-04
We discuss techniques for performing continuous measurements across a wide range of pressure-field-temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with that of the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we then characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide rangemore » of pressure, while at the same time making possible precise steps across abrupt phase transitions such as that from insulator to metal.« less
Biomedical Applications of Untethered Mobile Milli/Microrobots
Sitti, Metin; Ceylan, Hakan; Hu, Wenqi; Giltinan, Joshua; Turan, Mehmet; Yim, Sehyuk; Diller, Eric
2016-01-01
Untethered robots miniaturized to the length scale of millimeter and below attract growing attention for the prospect of transforming many aspects of health care and bioengineering. As the robot size goes down to the order of a single cell, previously inaccessible body sites would become available for high-resolution in situ and in vivo manipulations. This unprecedented direct access would enable an extensive range of minimally invasive medical operations. Here, we provide a comprehensive review of the current advances in biome dical untethered mobile milli/microrobots. We put a special emphasis on the potential impacts of biomedical microrobots in the near future. Finally, we discuss the existing challenges and emerging concepts associated with designing such a miniaturized robot for operation inside a biological environment for biomedical applications. PMID:27746484
DOE Research and Development Accomplishments Site Index (A-Z)
dropdown arrow Site Map A-Z Index Menu Synopsis A - Z Index A B C D E F G H I J K L M N O P Q R S T U V W X Buckminsterfullerene Curl Smalley Buckyball Curl Smalley TOP A B C D E F G H I J K L M N O P Q R S T U V W X Y Z C transcription Dresselhaus, Mildred (Millie) Drosophila dynamics TOP A B C D E F G H I J K L M N O P Q R S T U V
46 CFR Appendix II to Part 153 - Metric Units Used in Part 153
Code of Federal Regulations, 2013 CFR
2013-10-01
.../cm2. ......do kPa 1×10 3 N/m 2. Temperature Degree Celsius °C 5/9 (°F-32). Viscosity milli-Pascal... 46 Shipping 5 2013-10-01 2013-10-01 false Metric Units Used in Part 153 II Appendix II to Part 153... common metric Force Newton N 0.225 lbs. Length Meter m 39.37 in. Centimeter cm .3937 in. Pressure Pascal...
46 CFR Appendix II to Part 153 - Metric Units Used in Part 153
Code of Federal Regulations, 2012 CFR
2012-10-01
.../cm2. ......do kPa 1×10 3 N/m 2. Temperature Degree Celsius °C 5/9 (°F-32). Viscosity milli-Pascal... 46 Shipping 5 2012-10-01 2012-10-01 false Metric Units Used in Part 153 II Appendix II to Part 153... common metric Force Newton N 0.225 lbs. Length Meter m 39.37 in. Centimeter cm .3937 in. Pressure Pascal...
46 CFR Appendix II to Part 153 - Metric Units Used in Part 153
Code of Federal Regulations, 2014 CFR
2014-10-01
.../cm2. ......do kPa 1×10 3 N/m 2. Temperature Degree Celsius °C 5/9 (°F-32). Viscosity milli-Pascal... 46 Shipping 5 2014-10-01 2014-10-01 false Metric Units Used in Part 153 II Appendix II to Part 153... common metric Force Newton N 0.225 lbs. Length Meter m 39.37 in. Centimeter cm .3937 in. Pressure Pascal...
NASA Astrophysics Data System (ADS)
Rahimi, A.; Shahrisvand, M.
2017-09-01
GRACE satellites (the Gravity Recovery And climate Experiment) are very useful sensors to extract gravity anomalies after earthquakes. In this study, we reveal co-seismic signals of the two combined earthquakes, the 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands from GRACE observations. We compute monthly full gravitational gradient tensor in the local north-east-down frame for Kuril Islands earthquakes without spatial averaging and de-striping filters. Some of gravitational gradient components (e.g. ΔVxx, ΔVxz) enhance high frequency components of the earth gravity field and reveal more details in spatial and temporal domain. Therefore, co-seismic activity can be better illustrated. For the first time, we show that the positive-negative-positive co-seismic ΔVxx due to the Kuril Islands earthquakes ranges from - 0.13 to + 0.11 milli Eötvös, and ΔVxz shows a positive-negative-positive pattern ranges from - 0.16 to + 0.13 milli Eötvös, agree well with seismic model predictions.
Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate
Schuck, Carsten; Pernice, Wolfram H. P.; Tang, Hong X.
2013-01-01
Superconducting nanowire single-photon detectors are an ideal match for integrated quantum photonic circuits due to their high detection efficiency for telecom wavelength photons. Quantum optical technology also requires single-photon detection with low dark count rate and high timing accuracy. Here we present very low noise superconducting nanowire single-photon detectors based on NbTiN thin films patterned directly on top of Si3N4 waveguides. We systematically investigate a large variety of detector designs and characterize their detection noise performance. Milli-Hz dark count rates are demonstrated over the entire operating range of the nanowire detectors which also feature low timing jitter. The ultra-low dark count rate, in combination with the high detection efficiency inherent to our travelling wave detector geometry, gives rise to a measured noise equivalent power at the 10−20 W/Hz1/2 level. PMID:23714696
A robust and stable PLC based control system for 40kJ/25kV EMM system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vijay; Saroj, P.C.; Kulkarni, M.R.
2014-07-01
This paper describes the PLC based control system developed for a 40kJ/25kV Electro-magnetic machining (EMM) system. In EMM system large capacitor banks is charged with high voltage to store large energy and the banks is made to discharge into a coil within few milli-seconds using a triggered spark gaps. During discharge of the capacitor large surges and transients are generated in the system. The control system monitors/controls and interlocks all the units of the system for proper operation. The control system is the only subsystem which is electrically connected to all the low and high voltage subsystems. Care should bemore » taken at the signal interfacing with the control system to protect the control system. (author)« less
Toward milli-Newton electro- and magneto-static microactuators
NASA Technical Reports Server (NTRS)
Fan, Long-Sheng
1993-01-01
Microtechnologies can potentially push integrated electro- and magnetostatic actuators toward the regime where constant forces in the order of milli-Newton (or torques in the order of micro-Newton meter) can be generated with constant inputs within a volume of 1.0 x 1.0 x 0.02 mm with 'conventional' technology. 'Micro' actuators are, by definition, actuators with dimensions confined within a millimeter cube. Integrated microactuators based on electrostatics typically have force/torque in the order of sub-micro-Newton (sub-nano-Newton meter). These devices are capable of moving small objects at MHz frequencies. On the other hand, suppose we want to move a one cubic millimeter object around with 100 G acceleration; a few milli-Newton force will be required. Thus, milli-Newton microactuators are very desirable for some immediate applications, and it challenges micromechanical researchers to develop new process technologies, designs, and materials toward this goal.
Xu, Feng; Liang, Xinmiao; Lin, Bingcheng; Schramm, Karl-Werner; Kettrup, Antonius
2002-08-30
The retention factors (k) of 104 hydrophobic organic chemicals (HOCs) were measured in soil column chromatography (SCC) over columns filled with three naturally occurring reference soils and eluted with Milli-Q water. A novel method for the estimation of soil organic partition coefficient (Koc) was developed based on correlations with k in soil/water systems. Strong log Koc versus log k correlations (r>0.96) were found. The estimated Koc values were in accordance with the literature values with a maximum deviation of less than 0.4 log units. All estimated Koc values from three soils were consistent with each other. The SCC approach is promising for fast screening of a large number of chemicals in their environmental applications.
Milli-arcsecond images of the Herbig Ae star HD 163296
NASA Astrophysics Data System (ADS)
Renard, S.; Malbet, F.; Benisty, M.; Thiébaut, E.; Berger, J.-P.
2010-09-01
Context. The very close environments of young stars are the hosts of fundamental physical processes, such as planet formation, star-disk interactions, mass accretion, and ejection. The complex morphological structure of these environments has been confirmed by the now quite rich data sets obtained for a few objects by near-infrared long-baseline interferometry. Aims: We gathered numerous interferometric measurements for the young star HD 163296 with various interferometers (VLTI, IOTA, KeckI and CHARA), allowing for the first time an image independent of any a priori model to be reconstructed. Methods: Using the Multi-aperture image Reconstruction Algorithm (MiRA), we reconstruct images of HD 163296 in the H and K bands. We compare these images with reconstructed images obtained from simulated data using a physical model of the environment of HD 163296. Results: We obtain model-independent H and K-band images of the surroundings of HD 163296. The images detect several significant features that we can relate to an inclined asymmetric flared disk around HD 163296 with the strongest intensity at about 4-5 mas. Because of the incomplete spatial frequency coverage, we cannot state whether each of them individually is peculiar in any way. Conclusions: For the first time, milli-arcsecond images of the environment of a young star are produced. These images confirm that the morphology of the close environment of young stars is more complex than the simple models used in the literature so far.
An Investigation of Community Attitudes Toward Blast Noise. Complaint Survey Protocol
2012-04-01
range from a few milli- seconds to a few seconds and have acoustical spectrums that range from 1- 2000 Hertz (Hz). Most of the acoustical energy of blast...since both signatures have the majority of their acoustical energy at low frequen- cies (e.g., 10-100 Hz). Whether a single assessment criteria can...respondents lived in Oklahoma City, OK, and the acoustic measure was peak level. When the US Environmental Protection Agency (USEPA) published a set of
Asimakopoulos, Alexandros G; Elangovan, Madhavan; Kannan, Kurunthachalam
2016-12-20
Parabens (p-hydroxybenzoic acid esters), bisphenols, benzophenone-type UV filters, triclosan, and triclocarban are used in a variety of consumer products, including baby teethers. Nevertheless, the exposure of infants to these chemicals through the use of teethers is still unknown. In this study, 59 teethers, encompassing three types, namely solid plastic, gel-filled, and water-filled (most labeled "bisphenol A-free"), were collected from the U.S. market and analyzed for 26 potential endocrine-disrupting chemicals (EDCs) from intact surfaces through migration/leaching tests performed with Milli-Q water and methanol. The total amount of the sum of six parent parabens (Σ 6 Parabens) leached from teethers ranged from 2.0 to 1990 ng, whereas that of their four transformation products (Σ 4 Parabens) ranged from 0.47 to 839 ng. The total amount of the sum of nine bisphenols (Σ 9 bisphenols) and 5 benzophenones (Σ 5 benzophenones) leached from teethers ranged from 1.93 to 213 ng and 0.59 to 297 ng, respectively. Triclosan and triclocarban were found in the extracts of teethers at approximately 10-fold less amounts than were bisphenols and benzophenones. Based on the amount leached into Milli-Q water, daily intake of these chemicals was estimated from the use of teethers by infants at 12 months of age. This is the first study to document the occurrence and migration of a wide range EDCs from intact surfaces of baby teethers.
Design and additive manufacture for flow chemistry.
Capel, Andrew J; Edmondson, Steve; Christie, Steven D R; Goodridge, Ruth D; Bibb, Richard J; Thurstans, Matthew
2013-12-07
We review the use of additive manufacturing (AM) as a novel manufacturing technique for the production of milli-scale reactor systems. Five well-developed additive manufacturing techniques: stereolithography (SL), multi-jet modelling (MJM), selective laser melting (SLM), laser sintering (LS) and fused deposition modelling (FDM) were used to manufacture a number of miniaturised reactors which were tested using a range of organic and inorganic reactions.
USDA-ARS?s Scientific Manuscript database
In this study our principal goal was to quantify the main effects and interactions of several primary nutrient and bulk solution ions. The total ion concentration range chosen spans fresh to brackish waters (1-30 milliMolar) and explores most of the hypervolume delineated by the five ion/concentrat...
2016-09-07
After one of her ten-week-old premature twins died, Millie Smith was told by someone else in the neonatal unit - unaware of the tragedy - that she was lucky not to have twins. Millie came up with the idea of placing a purple butterfly symbol on cots to signal that a baby from a multiple birth had died.
NASA Astrophysics Data System (ADS)
Britt, Christopher T.; Strader, Jay; Chomiuk, Laura; Halpern, Jules P.; Tremou, Evangelina; Peacock, Mark; Salinas, Ricardo
2018-01-01
We present the orbital solution for the donor star of the candidate transitional millisecond pulsar 3FGL J1544.6-1125, currently observed as an accreting low-mass X-ray binary. The orbital period is 0.2415361(36) days, entirely consistent with the spectral classification of the donor star as a mid to late K dwarf. The semi-amplitude of the radial velocity curve is exceptionally low at K2=39.3+/-1.5 km s-1, implying a remarkably face-on inclination in the range 5-8o, depending on the neutron star and donor masses. After determining the veiling of the secondary, we derive a distance to the binary of 3.8+/-0.7 kpc, yielding a 0.3-10 keV X-ray luminosity of 6.1+/-1.9 x1033 erg s-1, similar to confirmed transitional millisecond pulsars. As face-on binaries rarely occur by chance, we discuss the possibility that Fermi-selected samples of transitional milli-second pulsars in the sub-luminous disk state are affected by beaming. By phasing emission line strength on the spectroscopic ephemeris, we find coherent variations, and argue that some optical light originates from emission from an asymmetric shock originating near the inner disk.
NASA Astrophysics Data System (ADS)
Pereira, R.
2016-02-01
Suppression of gas transfer velocity (kw) by surfactants are well established, both in laboratory wind flumes and purposeful oceanic releases. However, the effects on kw of time and space varying concentrations of natural surfactant are inadequately studied. We have developed an automated gas exchange tank for simultaneous high precision measurement of kw in unmodified seawater samples. Here we present data from two studies along a coastal North Sea transect during 2012-2013 and the Atlantic Meridional Transect (AMT) 24 from September to November 2014. Measurements of surfactant activity (SA), CDOM absorbance and chlorophyll-a have enabled us to characterize the effects of variable amounts of natural surfactant on kw. North Sea coastal waters range in k660 (kw normalized to the value for CO2 in freshwater at 20oC) was 6.8-24.5 cm hr-1 (n=20), with the ranges of SA, total CDOM absorbance (200-450 nm) and chlorophyll-a measured in the surface microlayer (SML) of our seawater samples were 0.08-0.38 mg l-1 T-X-100, 0.13-4.7 and 0.09-1.54 µg l-1, respectively. The AMT k660 ranged from 7.0-23.9 cm hr-1 (n=22), with SA measured in the SML and subsurface water (SSW) of our seawater samples ranging from 0.15-1.08 mg l-1 T-X-100 and 0.07-0.43 mg l-1 T-X-100, respectively. Importantly, we found 12-45% (North Sea) and 1-43% (AMT) k660 suppression relative to Milli-Q water that relate to seasonal and spatial differences in SA. The North Sea demonstrated notable seasonal influences on k660 suppression that were related to CDOM absorbance and chlorophyll-a. The degree of k660 suppression was highest in summer consistent with k660 control by natural surfactant. The degree of k660 suppression decreased with distance offshore in the North Sea and displayed a strong relationship with SA (r2 = 0.51-0.64, p = 0.02, n = 20). The AMT demonstrated notable differences in k660 suppression between hemispheres and across the Longhurst Provinces but the overall relationship between k660 suppression and SA is much weaker (r2 = <0.01, n = 22). While organic matter composition and sources may have variable control on air-sea gas exchange between the provinces, the poor relationship observed between SA and k660 suggests that other environmental factors maybe more influential on air-sea gas exchange in the open ocean compared to North Sea coastal waters.
Human Outer Solar System Exploration via Q-Thruster Technology
NASA Technical Reports Server (NTRS)
Joosten, B. Kent; White, Harold G.
2014-01-01
Propulsion technology development efforts at the NASA Johnson Space Center continue to advance the understanding of the quantum vacuum plasma thruster (QThruster), a form of electric propulsion. Through the use of electric and magnetic fields, a Q-thruster pushes quantum particles (electrons/positrons) in one direction, while the Qthruster recoils to conserve momentum. This principle is similar to how a submarine uses its propeller to push water in one direction, while the submarine recoils to conserve momentum. Based on laboratory results, it appears that continuous specific thrust levels of 0.4 - 4.0 N/kWe are achievable with essentially no onboard propellant consumption. To evaluate the potential of this technology, a mission analysis tool was developed utilizing the Generalized Reduced Gradient non-linear parameter optimization engine contained in the Microsoft Excel® platform. This tool allowed very rapid assessments of "Q-Ship" minimum time transfers from earth to the outer planets and back utilizing parametric variations in thrust acceleration while enforcing constraints on planetary phase angles and minimum heliocentric distances. A conservative Q-Thruster specific thrust assumption (0.4 N/kWe) combined with "moderate" levels of space nuclear power (1 - 2 MWe) and vehicle specific mass (45 - 55 kg/kWe) results in continuous milli-g thrust acceleration, opening up realms of human spaceflight performance completely unattainable by any current systems or near-term proposed technologies. Minimum flight times to Mars are predicted to be as low as 75 days, but perhaps more importantly new "retro-phase" and "gravity-augmented" trajectory shaping techniques were revealed which overcome adverse planetary phasing and allow virtually unrestricted departure and return opportunities. Even more impressively, the Jovian and Saturnian systems would be opened up to human exploration with round-trip times of 21 and 32 months respectively including 6 to 12 months of exploration at the destinations. Finally, interstellar trip times are assessed at milli-g acceleration levels.
NASA Technical Reports Server (NTRS)
Parker, J. Morgan; Wilson, Michael J.
2005-01-01
The Minimum Impulse Thruster (MIT) was developed to improve the state-of-the-art minimum impulse capability of hydrazine monopropellant thrusters. Specifically, a new fast response solenoid valve was developed, capable of responding to a much shorter electrical pulse width, thereby reducing the propellant flow time and the minimum impulse bit. The new valve was combined with the Aerojet MR-103, 0.2 lbf (0.9 N) thruster and put through an extensive Delta-qualification test program, resulting in a factor of 5 reduction in the minimum impulse bit, from roughly 1.1 milli-lbf-seconds (5 milliNewton seconds) to - 0.22 milli-lbf-seconds (1 mN-s). To maintain it's extensive heritage, the thruster itself was left unchanged. The Minimum Impulse Thruster provides mission and spacecraft designers new design options for precision pointing and precision translation of spacecraft.
STS-40 Payload Specialist Millie Hughes-Fulford trains in JSC's SLS mockup
1987-03-10
STS-40 Payload Specialist Millie Hughes-Fulford conducts Spacelab Life Sciences 1 (SLS-1) Experiment No. 198, Pulmonary Function During Weightlessness, in JSC's Life Sciences Project Division (LSPD) SLS mockup located in the Bioengineering and Test Support Facility Bldg 36. Hughes-Fulford sets switches on Rack 8. Behind her in the center aisle are the stowed bicycle ergometer (foreground) and the body restraint system.
2016-03-01
increase in certain circulating cytokines reflected tumors that progress. This study’s cytokine assay employed the MilliPlex map Human Cytokine...receptors were assayed using MILLIPLEX MAP Human Soluble Cytokine Receptor Panel (cat# HSCRMAG-32K) and included: sCD30, sgp130, sIL-1RI, sIL-1RII, sIL-2Rα...sIL-4R, sIL-6R, sRAGE, sTNFRI, sTNFRII, sVEGF-R1, sVEGF-R2, sVEGF-R3. Separately were run TGF β 1, TGF β 2, and TGF β 3 using the MILLIPLEX MAP
Digital antimicrobial susceptibility testing using the MilliDrop technology.
Jiang, L; Boitard, L; Broyer, P; Chareire, A-C; Bourne-Branchu, P; Mahé, P; Tournoud, M; Franceschi, C; Zambardi, G; Baudry, J; Bibette, J
2016-03-01
We present the MilliDrop Analyzer (MDA), a droplet-based millifluidic system for digital antimicrobial susceptibility testing (D-AST), which enables us to determine minimum inhibitory concentrations (MICs) precisely and accurately. The MilliDrop technology was validated by using resazurin for fluorescence readout, for comparison with standard methodology, and for conducting reproducibility studies. In this first assessment, the susceptibility of a reference Gram-negative strain Escherichia coli ATCC 25922 to gentamicin, chloramphenicol, and nalidixic acid were tested by the MDA, VITEK®2, and broth microdilution as a reference standard. We measured the susceptibility of clinically relevant Gram-positive strains of Staphylococcus aureus to vancomycin, including vancomycin-intermediate S. aureus (VISA), heterogeneous vancomycin-intermediate S. aureus (hVISA), and vancomycin-susceptible S. aureus (VSSA) strains. The MDA provided results which were much more accurate than those of VITEK®2 and standard broth microdilution. The enhanced accuracy enabled us to reliably discriminate between VSSA and hVISA strains.
MASSIM, the Milli-Arc-Second Structure Imager
NASA Technical Reports Server (NTRS)
Skinner, Gerry
2008-01-01
The MASSIM (Milli-Arc-Second Structure Imager) mission will use a set of achromatic diffractive-refractive Fresnel lenses to achieve imaging in the X-ray band with unprecedented angular resolution. It has been proposed for study within the context of NASA's "Astrophysics Strategic Mission Concept Studies" program. Lenses on an optics spacecraft will focus 5-11 keV X-rays onto detectors on a second spacecraft flying in formation 1000 km away. It will have a point-source sensitivity comparable with that of the current generation of major X-ray observatories (Chandra, XMM-Newton) but an angular resolution some three orders of magnitude better. MASSIM is optimized for the study of jets and other phenomena that occur in the immediate vicinity of black holes and neutron stars. It can also be used for studying other phenomena on the milli-arc-second scale, such as those involving proto-stars, the surfaces and surroundings of nearby active stars and interacting winds.
Reentrant Metal-Insulator Transitions in Silicon -
NASA Astrophysics Data System (ADS)
Campbell, John William M.
This thesis describes a study of reentrant metal -insulator transitions observed in the inversion layer of extremely high mobility Si-MOSFETs. Magneto-transport measurements were carried out in the temperature range 20mK-4.2 K in a ^3He/^4 He dilution refrigerator which was surrounded by a 15 Tesla superconducting magnet. Below a melting temperature (T_{M}~500 mK) and a critical electron density (n_{s }~9times10^{10} cm^{-2}), the Shubnikov -de Haas oscillations in the diagonal resistivity enormous maximum values at the half filled Landau levels while maintaining deep minima corresponding to the quantum Hall effect at filled Landau levels. At even lower electron densities the insulating regions began to spread and eventually a metal-insulator transition could be induced at zero magnetic field. The measurement of extremely large resistances in the milliKelvin temperature range required the use of very low currents (typically in the 10^ {-12} A range) and in certain measurements minimizing the noise was also a consideration. The improvements achieved in these areas through the use of shielding, optical decouplers and battery operated instruments are described. The transport signatures of the insulating state are considered in terms of two basic mechanisms: single particle localization with transport by variable range hopping and the formation of a collective state such as a pinned Wigner crystal or electron solid with transport through the motion of bound dislocation pairs. The experimental data is best described by the latter model. Thus the two dimensional electron system in these high mobility Si-MOSFETs provides the first and only experimental demonstration to date of the formation of an electron solid at zero and low magnetic fields in the quantum limit where the Coulomb interaction energy dominates over the zero point oscillation energy. The role of disorder in favouring either single particle localization or the formation of a Wigner crystal is explored by considering a variety of samples with a wide range of mobilities and by varying the ratio of the carrier density (controlled by the applied gate voltage) to the impurity density (fixed during sample growth). A phase diagram showing the boundaries between the two dimensional electron gas, the Wigner solid, and the single particle localization induced insulator is established in terms of carrier density and sample mobility.
Development of a very small telescope for a milli-arcsec space astrometry
NASA Astrophysics Data System (ADS)
Suganuma, M.; Kobayashi, Y.; Gouda, N.; Yano, T.; Yamada, Y.; Takato, N.; Yamauchi, M.
2008-07-01
We are preparing a reflecting telescope for Nano-JASMINE, a very small satellite for global space astrometry of milli-arcsecond accuracy. The telescope has a 5-cm diameter primary mirror and a beam-combiner in front of it. It occupies only about 12x12x17cm and is entirely made out of aluminum alloy. The telescope and its surrounding structures are carefully designed for thermal stability of the optics, especially to control changes in the relative angle of the beam-combiner.
Solid state lighting component
Yuan, Thomas; Keller, Bernd; Tarsa, Eric; Ibbetson, James; Morgan, Frederick; Dowling, Kevin; Lys, Ihor
2017-10-17
An LED component according to the present invention comprising an array of LED chips mounted on a submount with the LED chips capable of emitting light in response to an electrical signal. The array can comprise LED chips emitting at two colors of light wherein the LED component emits light comprising the combination of the two colors of light. A single lens is included over the array of LED chips. The LED chip array can emit light of greater than 800 lumens with a drive current of less than 150 milli-Amps. The LED chip component can also operate at temperatures less than 3000 degrees K. In one embodiment, the LED array is in a substantially circular pattern on the submount.
Lin, Fan; Chandrasekaran, Gayathri; de Gooijer, Mark C; Beijnen, Jos H; van Tellingen, Olaf
2012-07-15
NVP-BEZ235 is a novel dual inhibitor of PI3K/mTOR and currently undergoing phase I/II clinical trials for advanced solid tumors. We developed a sensitive and selective reversed-phase high-performance liquid chromatographic (HPLC) assay with fluorometric detection for quantification of NVP-BEZ235 in biological matrices. Liquid-liquid extraction with tert-butyl methyl ether was used for sample pre-treatment, yielding a recovery of >84%. Chromatographic separation of NVP-BEZ235 and the internal standard (IS) NVP-BBD130 was achieved on a GraceSmart C-18 column by isocratic elution with a mobile phase which consisted of acetonitrile, methanol, and milliQ water adjusted with acetic acid to pH 3.7 (20:36:44, v/v/v). Fluorescence detection using excitation and emission wavelengths of 270 and 425 nm, respectively, provided a selectivity and sensitivity allowing quantification down to 1 ng/ml in human plasma and linear calibration curves within a range of 1-1000 ng/ml. The assay was validated for human plasma, mouse plasma and a range of tissues. The accuracy, within-day and between-day precision for all matrices, was within the generally accepted 15% range. NVP-BEZ235 was stable for 72 h in pretreated samples in reconstitution mixture (acetonitrile-water (30:70, v/v)), but unstable in mouse tissue homogenates upon repeated freeze-thaw cycles or long term storage (≥24 h) at room temperature. A pilot pharmacokinetic study in mice demonstrated the applicability of this method for pharmacokinetic purposes. Overall, this assay is suitable for the pharmacokinetic studies of NVP-BEZ235 in mice and in human plasma. Copyright © 2012 Elsevier B.V. All rights reserved.
Sonochemical degradation of perfluorooctanesulfonate in aqueous film-forming foams.
Vecitis, Chad D; Wang, Yajuan; Cheng, Jie; Park, Hyunwoong; Mader, Brian T; Hoffmann, Michael R
2010-01-01
Aqueous film-forming foams (AFFFs) are fire extinguishing agents developed by the Navy to quickly and effectively combat fires occurring close to explosive materials and are utilized today at car races, airports, oil refineries, and military locations. Fluorochemical (FC) surfactants represent 1-5% of the AFFF composition, which impart properties such as high spreadability, negligible fuel diffusion, and thermal stability to the foam. FC's are oxidatively recalcitrant, persistent in the environment, and have been detected in groundwater at AFFF training sites. Ultrasonic irradiation of aqueous FCs has been reported to degrade and subsequently mineralize the FC surfactants perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS). Here we present results of the sonochemical degradation of aqueous dilutions of FC-600, a mixture of hydrocarbon (HC) and fluorochemical components including cosolvents, anionic hydrocarbon surfactants, fluorinated amphiphilic surfactants, anionic fluorinated surfactants, and thickeners such as starch. The primary FC surfactant in FC-600, PFOS, was sonolytically degraded over a range of FC-600 aqueous dilutions, 65 ppb < [PFOS]i < 13100 ppb. Sonochemical PFOS-AFFF decomposition rates, RAFFF-PFOS, are similar to PFOS-Milli-Q rates, RMQ-PFOS, indicating that the AFFF matrix only had a minor effect on the sonochemical degradation rate, 0.5 < RAFFF-PFOS/RMQ-PFOS < 2.0, even though the total organic concentration was 50 times the PFOS concentration, [Org]tot/[PFOS] 50, consistent with the superior FC surfactant properties. Sonochemical sulfate production is quantitative, delta[SO42-]/delta[PFOS] > or = 1, indicating that bubble-water interfacial pyrolytic cleavage of the C-S bond in PFOS is the initial degradation step, in agreement with previous studies done in Milli-Q water. Sonochemical fluoride production is significantly below quantitative expectations, delta[F-]/delta[PFOS] 4 vs 17, suggesting that in the AFFF matrix, PFOS' fluorochemical tail is not completely degraded, whereas Milli-Q studies yielded quantitative F- production. Measurements of time-dependent methylene blue active substances and total organic carbon indicate that the other FC-600 components were also sonolytically decomposed.
Payload specialists Millie Hughes-Fulford in Body Mass Measurement Device
1985-02-01
S85-26553 (Feb 1985) --- STS-40/SLS-1 payload specialist Millie Hughes-Fulford sits strapped in the special device scientists have developed for determining mass on orbit. As the chair swings back and forth, a timer records how much the crewmember's mass retards the chair's movement. Dr. Hughes-Fulford will be joined by three mission specialists, the mission commander, the pilot and a second payload specialist for the scheduled 10-day Spacelab Life Sciences-1 (SLS-1) mission. The flight is totally dedicated to biological and medical experimentation.
Harvey, Todd Alan; Bostwick, Kimberly S; Marschner, Steve
2013-09-06
Diverse plumages have evolved among birds through complex morphological modifications. We investigate how the interplay of light with surface and subsurface feather morphology determines the direction of light propagation, an understudied aspect of avian visual signalling. We hypothesize that milli-scale modifications of feathers produce anisotropic reflectance, the direction of which may be predicted by the orientation of the milli-scale structure. The subject of this study is the African Emerald Cuckoo, Chrysococcyx cupreus, noted for its shimmering green iridescent appearance. Using a spherical gantry, we measured the change in the directional reflectance across the feather surface and over a hemisphere of incident lighting directions. Using a microCT scanner, we also studied the morphology of the structural branches of the barb. We tracked the changes in the directional reflectance to the orientation of the structural branches as observed in the CT data. We conclude that (i) the far-field signal of the feather consists of multiple specular components, each associated with a different structural branch and (ii) the direction of each specular component is correlated to the orientation of the corresponding structure.
Harvey, Todd Alan; Bostwick, Kimberly S.; Marschner, Steve
2013-01-01
Diverse plumages have evolved among birds through complex morphological modifications. We investigate how the interplay of light with surface and subsurface feather morphology determines the direction of light propagation, an understudied aspect of avian visual signalling. We hypothesize that milli-scale modifications of feathers produce anisotropic reflectance, the direction of which may be predicted by the orientation of the milli-scale structure. The subject of this study is the African Emerald Cuckoo, Chrysococcyx cupreus, noted for its shimmering green iridescent appearance. Using a spherical gantry, we measured the change in the directional reflectance across the feather surface and over a hemisphere of incident lighting directions. Using a microCT scanner, we also studied the morphology of the structural branches of the barb. We tracked the changes in the directional reflectance to the orientation of the structural branches as observed in the CT data. We conclude that (i) the far-field signal of the feather consists of multiple specular components, each associated with a different structural branch and (ii) the direction of each specular component is correlated to the orientation of the corresponding structure. PMID:23825113
Superconducting Resonators with Parasitic Electromagnetic Environments
NASA Astrophysics Data System (ADS)
Hornibrook, John; Mitchell, Emma; Reilly, David
2012-02-01
Microwave losses in niobium superconducting resonators are investigated at milli-Kelvin temperatures and with low drive power. In addition to the well-known suppression of Q-factor that arises from coupling between the resonator and two-level defects in the dielectric substrate [1-4], we report strong dependence of the loaded Q-factor and resonance line-shape on the electromagnetic environment. Methods to suppress parasitic coupling between the resonator and its environment are demonstrated.[4pt] [1] Day, P.K. et al., Nature 425, 817-821 (2003).[0pt] [2] Wallraff, A. et. al., Nature 451, 162-167 (2004).[0pt] [3] Macha, P. et. al., Appl. Phys. Lett., 96, 062503 (2010).[0pt] [4] O'Connell, A.D. et. al., Appl. Phys. Lett., 92, 112903 (2008).
NASA Astrophysics Data System (ADS)
Bondi, M.; Dallacasa, D.; Stanghellini, C.; Marchã, M. J. M.
We obtained two-epoch VLBA observations at 5 GHz of a list of radio galaxies drawn from the 200 mJy sample (Marcha et al. 1996). The objects selected for milli-arcsecond scale observations are classified, on the basis of their optical spectroscopic and polarimetric properties, as BL Lac objects, normal weak line radio galaxies, broad line radio galaxies, and transition objects (those with intermediate properties). We present preliminary results on the radio polarization properties, on the milli-arcsecond scale, of objects with different optical properties and discuss structural variations detected from the two epochs.
Cross-correlation measurement of quantum shot noise using homemade transimpedance amplifiers
NASA Astrophysics Data System (ADS)
Hashisaka, Masayuki; Ota, Tomoaki; Yamagishi, Masakazu; Fujisawa, Toshimasa; Muraki, Koji
2014-05-01
We report a cross-correlation measurement system, based on a new approach, which can be used to measure shot noise in a mesoscopic conductor at milliKelvin temperatures. In contrast to other measurement systems in which high-speed low-noise voltage amplifiers are commonly used, our system employs homemade transimpedance amplifiers (TAs). The low input impedance of the TAs significantly reduces the crosstalk caused by unavoidable parasitic capacitance between wires. The TAs are designed to have a flat gain over a frequency band from 2 kHz to 1 MHz. Low-noise performance is attained by installing the TAs at a 4 K stage of a dilution refrigerator. Our system thus fulfills the technical requirements for cross-correlation measurements: low noise floor, high frequency band, and negligible crosstalk between two signal lines. Using our system, shot noise generated at a quantum point contact embedded in a quantum Hall system is measured. The good agreement between the obtained shot-noise data and theoretical predictions demonstrates the accuracy of the measurements.
NASA Astrophysics Data System (ADS)
Mrugała, Felicja; Kraemer, Wolfgang P.
2013-03-01
The paper presents a theoretical study of the low-energy dynamics of the radiative charge transfer (RCT) reaction He+(^{2}S) + H2(X ^{1}Σ +g) rArr He(^{1}S) + H2+(X 2Σ +g)+hν extending our previous studies on radiative association of HeH2+ [F. Mrugała, V. Špirko, and W. P. Kraemer, J. Chem. Phys. 118, 10547 (2003), 10.1063/1.1573184; F. Mrugała and W. P. Kraemer, J. Chem. Phys. 122, 224321 (2005), 10.1063/1.1924453]. The calculations account for the vibrational and rotational motions of the H2/H_2^+ diatomics and for the atom-diatom complex formation in the reactant and the product channels of the RCT reaction. Continuum states of He+ + H2(v = 0, j = 0) in the collision energy range ˜10-7-18.6 meV and all quasi-bound states of the He+ - H2(para; v = 0) complex formed in this range are taken into account. Close-coupling calculations are performed to determine rates of radiative transitions from these states to the continuum and quasi-bound states of the He + H+2 system in the energy range extending up to ˜0.16 eV above the opening of the HeH+ + H arrangement channel. From the detailed state-to-state calculated characteristics global functions of the RCT reaction, such as cross-section σ(E), emission intensity I(ν, T), and rate constant k(T) are derived, and are presented together with their counterparts for the radiative association (RA) reaction He+(2S) + H_2(X ^{1}Σ +g) rArr HeH2+(X ^{2}A^' })+ hν. The rate constant kRCT is approximately 20 times larger than kRA at the considered temperatures, 0.1 μK-50 K. Formation of rotational Feshbach resonances in the reactant channel plays an important role in both reactions. Transitions mediated by these resonances contribute more than 70% to the respective rates. An extension of the one-dimensional optical potential model is developed to allow inclusion of all three vibrational modes in the atom-diatom system. This three-dimensional optical potential model is used to check to which extent the state-to-state RCT rate constant is influenced by the possibility to access ground state continuum levels well above the opening of the HeH++ H arrangement channel. The results indicate that these transitions contribute about 30% to the "true" rate constant kRCT whereas their impact on the populations of the vibration-rotational states of the product H2+ ion is only minor. Present theoretical rate constant functions kRCT(T) obtained at different approximation levels are compared to experimental data: 1-1.1 × 10-14 s-1 cm3 at T = 15-35 K and ˜7.5 × 10-15 s-1 cm3 at 40 K [M. M. Schauer, S. R. Jefferts, S. E. Barlow, and G. H. Dunn, J. Chem. Phys. 91, 4593 (1989), 10.1063/1.456748]. The most reliable theoretical values of kRCT, obtained by combining results from the state-to-state and the optical potential calculations, are between 2.5 and 3.5 times larger than these experimental numbers. Possible sources for discrepancies are discussed.
Near-IR trigonometric parallaxes of nearby stars in the Galactic plane using the VVV survey
NASA Astrophysics Data System (ADS)
Beamín, J. C.; Mendez, R. A.; Smart, R. L.; Jara, R.; Kurtev, R.; Gromadzki, M.; Villanueva, V.; Minniti, D.; Smith, L. C.; Lucas, P. W.
2018-01-01
We used VVV multi-epoch KS band observations, over a ˜ 5 years baseline to obtain milli and sub-milli arcsec precision astrometry for a sample of 18 previously known high proper motion sources, including precise parallaxes for the first time. Five of these systems are most likely very low mass stars (VLMS) belonging to the galactic halo based on their tangential velocities. This proves the capability of the VVV project to measure high precision trigonometric parallaxes for VLMS up to distances of ˜ 400 pc reaching farther than most other ground based surveys or space missions for these types of stars.
NASA Technical Reports Server (NTRS)
Skinner, Gerry; Arzoumanian, Z.; Cash, W.; Gehrels, N.; Gendreau, K.; Gorenstein, P.; Krizmanic, J.; Leitner, J.; Miller, M.; Reasenberg, R.;
2008-01-01
MASSIM, the Milli-Arc-Second Structure Imager, is a mission that has been proposed for study within the context of NASA's "Astrophysics Strategic Mission Concept Studies" program. It uses a set of achromatic diffractive-refractive Fresnel lenses on an optics spacecraft to focus 5-11 keV X-rays onto detectors on a second spacecraft flying in formation 1000 km away. It will have a point-source sensitivity comparable with that of the current generation of major X-ray observatories (Chandra, XMM-Newton) but an angular resolution some three orders of magnitude better. MASSIM is optimized for the study of jets and other phenomena that occur in the immediate vicinity of black holes and neutron stars. It can also be used for studying other astrophysical phenomena on the milli-arc-second scale, such as those involving proto-stars, the surfaces and surroundings of nearby active stars and interacting winds. After introducing the principle of diffractive imaging in the x-ray/gamma-ray regime, the MASSIM mission concept and baseline design will be described along with a discussion of the options and trade-offs within the X-ray optics design.
The use of micro-/milli-fluidics to better understand the mechanisms behind deep venous thrombosis
NASA Astrophysics Data System (ADS)
Schofield, Zoe; Alexiadis, Alessio; Brill, Alexander; Nash, Gerard; Vigolo, Daniele
2016-11-01
Deep venous thrombosis (DVT) is a dangerous and painful condition in which blood clots form in deep veins (e.g., femoral vein). If these clots become unstable and detach from the thrombus they can be delivered to the lungs resulting in a life threatening complication called pulmonary embolism (PE). Mechanisms of clot development in veins remain unclear but researchers suspect that the specific flow patterns in veins, especially around the valve flaps, play a fundamental role. Here we show how it is now possible to mimic the current murine model by developing micro-/milli-fluidic experiments. We exploited a novel detection technique, ghost particle velocimetry (GPV), to analyse the velocity profiles for various geometries. These vary from regular microfluidics with a rectangular cross section with a range of geometries (mimicking the presence of side and back branches in veins, closed side branch and flexible valves) to a more accurate venous representation with a 3D cylindrical geometry obtained by 3D printing. In addition to the GPV experiments, we analysed the flow field developing in these geometries by using computational fluid dynamic simulations to develop a better understanding of the mechanisms behind DVT. ZS gratefully acknowledges financial support from the EPSRC through a studentship from the Sci-Phy-4-Health Centre for Doctoral Training (EP/L016346/1).
Milli-magnitude IR Transit Detection: OGLE-TR-113
NASA Astrophysics Data System (ADS)
Ramírez-Alegría, S.; Minniti, D.; Fernández, J. M.; Ruiz, M. T.; Gieren, W.; Pietrzynski, G.; Zoccali, M.; Ivanov, V.
2006-06-01
OGLE-TR-113-b is a giant exoplanet that was discovered independently by Bouchy et al. (2004, A&A, 421, L13), and by Konacki et al. (2004, ApJ, 609, L37). We present high quality near-IR and optical data during the transit of this planet in front of the star OGLE-TR-113 (V=14.42, α =10:52:24.4 and δ =-61:26:48.5). The K-band observations were obtained in May 2005 with SOFI+NTT, located at ESO La Silla (Chile), and the V-band observations were obtained in April 2005 with VIMOS+VLT, located at ESO Paranal (Chile). After the data reduction process and difference image photometry, it was possible to achieve millimagnitude precision for the transit light curves in both bands. The planetary transit is clearly seen for the first time in the K-band, with similar amplitudes A = 0.03 mag in both V, I, and K, confirming the planetary size of the OGLE-TR-113 companion. Our monitoring program for this and other OGLE transit candidates using accurate optical and near-IR photometry allows us to discard false positives (binaries, blends, giants, etc), and to refine the star/planet parameters.
MeV proton acceleration at kHz repetition rate from ultra-intense laser liquid interaction
NASA Astrophysics Data System (ADS)
Morrison, John T.; Feister, Scott; Frische, Kyle D.; Austin, Drake R.; Ngirmang, Gregory K.; Murphy, Neil R.; Orban, Chris; Chowdhury, Enam A.; Roquemore, W. M.
2018-02-01
Laser acceleration of ions to ≳MeV energies has been achieved on a variety of Petawatt laser systems, raising the prospect of ion beam applications using compact ultra-intense laser technology. However, translation from proof-of-concept laser experiment into real-world application requires MeV-scale ion energies and an appreciable repetition rate (>Hz). We demonstrate, for the first time, proton acceleration up to 2 MeV energies at a kHz repetition rate using a milli-joule-class short-pulse laser system. In these experiments, 5 mJ of ultrashort-pulse laser energy is delivered at an intensity near 5× {10}18 {{W}} {cm}}-2 onto a thin-sheet, liquid-density target. Key to this effort is a flowing liquid ethylene glycol target formed in vacuum with thicknesses down to 400 nm and full recovery at 70 μs, suggesting its potential use at ≫kHz rate. Novel detectors and experimental methods tailored to high-repetition-rate ion acceleration by lasers were essential to this study and are described. In addition, particle-in-cell simulations of the laser-plasma interaction show good agreement with experimental observations.
High-speed micro-droplet impact on a super-heated surface
NASA Astrophysics Data System (ADS)
Fujita, Yuta; Tran, Tuan; Tagawa, Yoshiyuki; Xie, Yanbo; Sun, Chao; Lohse, Detlef
2017-11-01
In this study, we experimentally show that the condition for micro-droplets to splash depends on the temperature of the surface on which the droplets impact. We vary droplet diameter (30 120 μm) and surface temperature (20 500°C). For an impacting droplet, splashing becomes possible for high surface temperature T > 160°C and Weber number We > 100. In contrast, at low surface temperature T < 140°C, no splash was observed up to the maximum Weber number in our experiments, i.e. We 7,000. Our results show that the criteria for splashing of micro-droplets may be different from those of milli-sized droplets, in particular when the impacted surface is heated. This work was supported by JSPS KAKENHI Grant Number 16K14166.
NASA Astrophysics Data System (ADS)
Mandal, Snehal; Mazumdar, Dipak; Das, I.
2018-04-01
Ultrathin film of Co0.4Fe0.4B0.2 was prepared on p-type Si (100) substrate by RF magnetron sputtering. X-Ray Reflectivity and Atomic Force Microscopy measurements were performed to estimate the thickness and surface roughness of the film. Electrical transport measurements were performed by four-probe method in a current-in-plane (CIP) geometry. Presence of non-linearity in the current-voltage (I-V) characteristics was observed at higher current range. The electrical resistivity was found to change by several orders of magnitude (105) by changing the bias current from nano-ampere (nA) to milli-ampere (mA) range. This bias current dependence of the resistivity has been explained by different transport mechanisms.
NASA Astrophysics Data System (ADS)
Stefansson, Gudmundur; Hearty, Frederick; Robertson, Paul; Mahadevan, Suvrath; Anderson, Tyler; Levi, Eric; Bender, Chad; Nelson, Matthew; Monson, Andrew; Blank, Basil; Halverson, Samuel; Henderson, Chuck; Ramsey, Lawrence; Roy, Arpita; Schwab, Christian; Terrien, Ryan
2016-12-01
Insufficient instrument thermomechanical stability is one of the many roadblocks for achieving 10 cm s-1 Doppler radial velocity precision, the precision needed to detect Earth-twins orbiting solar-type stars. Highly temperature and pressure stabilized spectrographs allow us to better calibrate out instrumental drifts, thereby helping in distinguishing instrumental noise from astrophysical stellar signals. We present the design and performance of the Environmental Control System (ECS) for the Habitable-zone Planet Finder (HPF), a high-resolution (R = 50,000) fiber-fed near-infrared (NIR) spectrograph for the 10 {{m}} Hobby-Eberly Telescope at McDonald Observatory. HPF will operate at 180 {{K}}, driven by the choice of an H2RG NIR detector array with a 1.7 μ {{m}} cutoff. This ECS has demonstrated 0.6 {mK} rms stability over 15 days at both 180 and 300 {{K}}, and maintained high-quality vacuum (\\lt {10}-7 {Torr}) over months, during long-term stability tests conducted without a planned passive thermal enclosure surrounding the vacuum chamber. This control scheme is versatile and can be applied as a blueprint to stabilize future NIR and optical high-precision Doppler instruments over a wide temperature range from ˜77 {{K}} to elevated room temperatures. A similar ECS is being implemented to stabilize NEID, the NASA/NSF NN-EXPLORE spectrograph for the 3.5 {{m}} WIYN telescope at Kitt Peak, operating at 300 {{K}}. A [full SolidWorks 3D-CAD model] and a comprehensive parts list of the HPF ECS are included with this manuscript to facilitate the adaptation of this versatile environmental control scheme in the broader astronomical community. Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
Silva, D F C; Azevedo, A M; Fernandes, P; Chu, V; Conde, J P; Aires-Barros, M R
2017-03-03
Aqueous two phase systems (ATPS) offer great potential for selective separation of a wide range of biomolecules by exploring differences in molecular solubility in each of the two immiscible phases. However, ATPS use has been limited due to the difficulty in predicting the behavior of a given biomolecule in the partition environment together with the empirical and time-consuming techniques that are used for the determination of partition and extraction parameters. In this work, a fast and novel technique based on a microfluidic platform and using fluorescence microscopy was developed to determine the partition coefficients of biomolecules in different ATPS. This method consists of using a microfluidic device with a single microchannel and three inlets. In two of the inlets, solutions containing the ATPS forming components were loaded while the third inlet was fed with the FITC tagged biomolecule of interest prepared in milli-Q water. Using fluorescence microscopy, it was possible to follow the location of the FITC-tagged biomolecule and, by simply varying the pumping rates of the solutions, to quickly test a wide variety of ATPS compositions. The ATPS system is allowed 4min for stabilization and fluorescence micrographs are used to determine the partition coefficient.The partition coefficients obtained were shown to be consistent with results from macroscale ATPS partition. This process allows for faster screening of partition coefficients using only a few microliters of material for each ATPS composition and is amenable to automation. The partitioning behavior of several biomolecules with molecular weights (MW) ranging from 5.8 to 150kDa, and isoelectric points (pI) ranging from 4.7 to 6.4 was investigated, as well as the effect of the molecular weight of the polymer ATPS component. Copyright © 2016 Elsevier B.V. All rights reserved.
The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source
Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M.; Lee, Sooheyong; Lemke, Henrik T.; Nelson, Silke; Bong, Eric; Sikorski, Marcin; Song, Sanghoon; Srinivasan, Venkat; Stefanescu, Daniel; Zhu, Diling; Robert, Aymeric
2015-01-01
The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. A description of the instrument capabilities and recent achievements is presented. PMID:25931061
Application of tissue mesodissection to molecular cancer diagnostics.
Krizman, David; Adey, Nils; Parry, Robert
2015-02-01
To demonstrate clinical application of a mesodissection platform that was developed to combine advantages of laser-based instrumentation with the speed/ease of manual dissection for automated dissection of tissue off standard glass slides. Genomic analysis for KRAS gene mutation was performed on formalin fixed paraffin embedded (FFPE) cancer patient tissue that was dissected using the mesodissection platform. Selected reaction monitoring proteomic analysis for quantitative Her2 protein expression was performed on FFPE patient tumour tissue dissected by a laser-based instrument and the MilliSect instrument. Genomic analysis demonstrates highly confident detection of KRAS mutation specifically in lung cancer cells and not the surrounding benign, non-tumour tissue. Proteomic analysis demonstrates Her2 quantitative protein expression in breast cancer cells dissected manually, by laser-based instrumentation and by MilliSect instrumentation (mesodissection). Slide-mounted tissue dissection is commonly performed using laser-based instruments or manually scraping tissue by scalpel. Here we demonstrate that the mesodissection platform as performed by the MilliSect instrument for tissue dissection is cost-effective; it functions comparably to laser-based dissection and which can be adopted into a clinical diagnostic workflow. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Cross-correlation measurement of quantum shot noise using homemade transimpedance amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashisaka, Masayuki, E-mail: hashisaka@phys.titech.ac.jp; Ota, Tomoaki; Yamagishi, Masakazu
We report a cross-correlation measurement system, based on a new approach, which can be used to measure shot noise in a mesoscopic conductor at milliKelvin temperatures. In contrast to other measurement systems in which high-speed low-noise voltage amplifiers are commonly used, our system employs homemade transimpedance amplifiers (TAs). The low input impedance of the TAs significantly reduces the crosstalk caused by unavoidable parasitic capacitance between wires. The TAs are designed to have a flat gain over a frequency band from 2 kHz to 1 MHz. Low-noise performance is attained by installing the TAs at a 4 K stage of amore » dilution refrigerator. Our system thus fulfills the technical requirements for cross-correlation measurements: low noise floor, high frequency band, and negligible crosstalk between two signal lines. Using our system, shot noise generated at a quantum point contact embedded in a quantum Hall system is measured. The good agreement between the obtained shot-noise data and theoretical predictions demonstrates the accuracy of the measurements.« less
NASA Astrophysics Data System (ADS)
Constantinescu, Bogdan; Cristea-Stan, Daniela; Szőkefalvi-Nagy, Zoltán; Kovács, Imre; Harsányi, Ildikó; Kasztovszky, Zsolt
2018-02-01
Combined external milli-beam Particle Induced X-ray Emission (PIXE) and Prompt Gamma Activation Analysis (PGAA) analysis was applied to characterize the composition of paste and colorants from some fragments of Byzantine bracelets (10th-12th Centuries AD), late medieval (17th-18th Centuries AD) and modern Murano glass pieces. As fluxes, PGAA revealed the samples are soda-lime glass, except four samples - two medieval vessel white shards and two dark Byzantine fragments of bracelets - which have potash flux. Aluminium was detected in various proportions in all samples indicating different sources for the added sand. The presence of Magnesium is relevant only in one bracelet fragment suggesting the use of plant (wood?) ash and confirming that the Byzantine bracelet is manufactured from the mixture of both types of glass (natron and plant ash based). PGAA also indicated the presence of low quantities of Cadmium, high level of Arsenic and Lead (possibly lead arsenate) in one medieval sample and of ZnO in Murano glass, and of CoO traces (maximum 0.1%) in all blue-colored Byzantine, late medieval to modern Murano glass artefacts. PIXE confirmed the use of small quantities of CoO for blue color, indicated Manganese combined with Iron for dark glass, Copper for green, Lead, Tin and an Arsenic compound (orpiment?) for yellow and in the case of modern Murano glass Selenium and Cadmium to obtain a reddish color. Despite PIXE - PIGE combination is probably the best one for glass analysis, our external milli-PIXE - PGAA methods proved to be adequate complementary tools to determine many chemical elements from glass composition - Si, Na, K, Ca, Al, Mg, various metallic oxides.
Patyra, Ewelina; Nebot, Carolina; Gavilán, Rosa Elvira; Cepeda, Alberto; Kwiatek, Krzysztof
2018-05-01
A new multi-compound method for the analysis of veterinary drugs, namely tiamulin, trimethoprim, tylosin, sulfadiazine and sulfamethazine was developed and validated in medicated feeds. After extraction, the samples were centrifuged, diluted in Milli-Q water, filtered and analysed by high performance liquid chromatography coupled to tandem mass spectrometry. The separation of the analytes was performed on a biphenyl column with a gradient of 0.1% formic acid in acetonitrile and 0.1% formic acid in Milli-Q water. Quantitative validation was done in accordance with the guidelines laid down in European Commission Decision 2002/657/EC. Method performances were evaluated by the following parameters: linearity (R 2 < 0.99), precision (repeatability <14% and within-laboratory reproducibility <24%), recovery (73.58-115.21%), sensitivity, limit of detection (LOD), limit of quantification (LOQ), selectivity and expanded measurement uncertainty (k. = 2). The validated method was successfully applied to the 2 medicated feeds obtained from the interlaboratory studies and feed manufactures from Spain in August 2017. In these samples, tiamulin, tylosin and sulfamethazine were detected at the concentration levels declared by the manufacturers. The developed method can therefore be successfully used to routinely control the content and homogeneity of these antibacterial substances in medicated feed. Abbreviations AAFCO - Association of American Feed Control Officials; TYL - tylosin; TIAM - tiamulin fumarate; TRIM - trimethoprim; SDZ - sulfadiazine; SMZ - sulfamethazine; UV - ultraviolet detector; FLD - fluorescence detector; HPLC - high performance liquid chromatography; MS/MS - tandem mass spectrometry; LOD - limit of detection; LOQ - limit of quantification; CV - coefficient of variation; SD - standard deviation; U - uncertainty.
Perez, Magali; Simpson, Stuart L; Lespes, Gaëtane; King, Josh J; Adams, Merrin S; Jarolimek, Chad V; Grassl, Bruno; Schaumlöffel, Dirk
2016-12-01
Fluctuations in concentrations of bioavailable metals occur in most natural waters. In situ measurements are desirable to predict risks of adverse effects to aquatic organisms. We evaluated Diffusive Milli-Gels (DMG), a new in situ passive sampler, for assessing the bioavailability and toxicity of copper in waters exhibiting a wide range of characteristics. The performance was compared to an established Chelex-column method that measures labile copper concentrations by discrete sampling, and the ability to predict acute toxicity to the cladoceran, Ceriodaphnia dubia. The labile copper concentrations measured by the DMG and Chelex-column methods decreased with increasing dissolved organic carbon (DOC) (1.9-15 mg L -1 ) and hardness (21-270 mg CaCO 3 L -1 hardness), with 20-70% of total dissolved copper being present as labile copper. Toxicity decreased with increasing DOC and hardness. Strong linear relationships existed between the EC50 for C. dubia and DOC, and when the EC50 was related to either the labile copper concentrations measured by DMG (r 2 = 0.874) or the Chelex column (0.956) methods. The study demonstrates that the DMG passive sampler is a relevant tool for the in situ assessment of environmental risks posed by metals whose toxicity is strongly influenced by speciation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tölgyessy, P; Nagyová, S; Sládkovičová, M
2017-04-21
A simple, robust, sensitive and environment friendly method for the determination of short chain chlorinated paraffins (SCCPs) in water using stir bar sorptive extraction (SBSE) coupled to thermal desorption-gas chromatography-triple quadrupole tandem mass spectrometry (TD-GC-QqQ-MS/MS) was developed. SBSE was performed using 100mL of water sample, 20mL of methanol as a modifier, and a commercial sorptive stir bar (with 10mm×0.5mm PDMS layer) during extraction period of 16h. After extraction, the sorptive stir bar was thermally desorbed and online analysed by GC-MS/MS. Method performance was evaluated for MilliQ and surface water spiked samples. For both types of matrices, a linear dynamic range of 0.5-3.0μgL -1 with correlation coefficients >0.999 and relative standard deviations (RSDs) of the relative response factors (RRFs) <12% was established. The limits of quantification (LOQs) of 0.06 and 0.08μgL -1 , and the precision (repeatability) of 6.4 and 7.7% (RSDs) were achieved for MilliQ and surface water, respectively. The method also showed good robustness, recovery and accuracy. The obtained performance characteristics indicate that the method is suitable for screening and monitoring and compliance checking with environmental quality standards (EQS, set by the EU) for SCCPs in surface waters. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satyanarayana, N.; Basu, Shibaji; Rajawat, R.K., E-mail: satya_3026@yahoo.com
2014-07-01
This paper highlights the development of Rod Pinch (RP) diode for flash X-ray generation as intense radiographic source at BARC, Vizag. The typical RP diode employed used a small diameter (1-2 mm) anode rod extended through a cathode circular aperture (5-6 mm inner diameter). The diode chamber is maintained at 10{sup -5} Torr vacuum by a rotary backed diffusion pump. Experiments performed on a modified Kali 1000 Pulsed Power System (300 kV, 30 kA, 100 ns) were aimed at optimizing the source by maximizing the figure of merit (dose @ 1m in rad/spot diameter{sup 2} in mm{sup 2}) with minimizingmore » of the diode impedance. The typical electron beam parameters used in the experiments are 240-270 kV, 20-25 kA, 100 ns, with a few hundreds of kA/cm{sup 2} current density. The optimization resulted in a configuration with tungsten anode rod having dimensions of a 1.6 mm diameter, tapering extension length 5-25 mm beyond the graphite cathode aperture (Cathode disk ID = 5 mm, thickness = 3mm) to produce a radiation dose of 150-200 milli rad at 1 m distance having an estimated spot-size of 1-2 mm. The radiation emitted from a rod-pinch diode is measured using Thermoluminescence dosimeters (TLDs) at an angular interval of 15° on either side of the rod in horizontal and vertical plane. (author)« less
NASA Astrophysics Data System (ADS)
Aydin, Isil; Fidan, Celal; Kavak, Orhan; Erek, Figen; Aydin, Firat
2017-12-01
Asphaltite is one of the naturally occurring black, solid bitumen’s, which are soluble at heating in carbon disulphide band fuse. Asphaltite is also a solidified hydro carbon compound derived from petroleum [1]. According to the World Energy Council, Turkish National Committee (1998), the total reserve of the asphaltic substances that are found in south eastern Turkey is about 82 million tons, with Silopi and Sirnak reserves to get her comprising the major part of the Asphaltite deposits. Selenium and Nickel are very important elements both environmental and health. Selenium plays an important role in the formation of the enzyme antioxidant effect in the cell. The need for Selenium increases in situations such as pregnancy, menopause, grow than development, air pollution. Nickel is used for preventing iron-poor blood, increasing iron absorption, and treating weak bones. In this study, asphaltites were taken from Milli vein from Sirnak deposit in SE Anatolia of Turkey. A total of 6.500.000 tons of Asphaltite reserves have been identified as asphaltites in Milli (Sirnak). The sample preparation method was developed in Asphaltite by spectroanalytical techniques, wet acid digestion. MW-AD followed by ICP-OES were used for the determination of Selenium and Nickel in Asphaltite. Proximate analysis of Asphaltite fly ash samples was made. It also, Selenium and Nickel element analysis in Asphaltite were made.
NASA Astrophysics Data System (ADS)
Studenikin, S. A.; Fedorych, O. N.; Maude, D. K.; Potemski, M.; Sachrajda, A. S.; Wasilewski, Z. R.; Gupta, J. A.; Magarill, L. I.
2008-03-01
In this work we investigate microwave induced resistance oscillations (MIROs) in a GaAs/AlGaAs heterostructure containing a high mobility two-dimensional electron gas (2DEG). We show that MIROs can be explained within a purely classical mechanism based on the Boltzmann equation [L.I. Magarill, I.A. Panaev, S.A. Studenikin, Condens. Matter 7 (1995) 1101]. The MIRO-related transitions can be observed in absorption and we demonstrate it experimentally for the first time using EPR-cavity absorption technique. Next we investigate MIROs and Shubnikov-de Haas (SdH) oscillations at milli-Kelvin temperatures. We find that MIROs persist to approximately three times lower magnetic field as compared with the SdH oscillations, which at temperatures below 50 mK are defined purely by the quantum relaxation time. This finding indicates a possible quasi-classical origin of MIROs.
Extreme Field Sensitivity of Magnetic Tunneling in Fe-Doped Li3 N
NASA Astrophysics Data System (ADS)
Fix, M.; Atkinson, J. H.; Canfield, P. C.; del Barco, E.; Jesche, A.
2018-04-01
The magnetic properties of dilute Li2 (Li1 -xFex )N with x ˜0.001 are dominated by the spin of single, isolated Fe atoms. Below T =10 K the spin-relaxation times become temperature independent indicating a crossover from thermal excitations to the quantum tunneling regime. We report on a strong increase of the spin-flip probability in transverse magnetic fields that proves the resonant character of this tunneling process. Longitudinal fields, on the other hand, lift the ground-state degeneracy and destroy the tunneling condition. An increase of the relaxation time by 4 orders of magnitude in applied fields of only a few milliTesla reveals exceptionally sharp tunneling resonances. Li2 (Li1 -xFex )N represents a comparatively simple and clean model system that opens the possibility to study quantum tunneling of the magnetization at liquid helium temperatures.
Extreme Field Sensitivity of Magnetic Tunneling in Fe-Doped Li 3 N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, M.; Atkinson, J. H.; Canfield, P. C.
Here, the magnetic properties of dilute Li 2(Li 1–xFe x)N with x~0.001 are dominated by the spin of single, isolated Fe atoms. Below T=10 K the spin-relaxation times become temperature independent indicating a crossover from thermal excitations to the quantum tunneling regime. We report on a strong increase of the spin-flip probability in transverse magnetic fields that proves the resonant character of this tunneling process. Longitudinal fields, on the other hand, lift the ground-state degeneracy and destroy the tunneling condition. An increase of the relaxation time by 4 orders of magnitude in applied fields of only a few milliTesla revealsmore » exceptionally sharp tunneling resonances. Li 2(Li 1–xFe x)N represents a comparatively simple and clean model system that opens the possibility to study quantum tunneling of the magnetization at liquid helium temperatures.« less
Extreme Field Sensitivity of Magnetic Tunneling in Fe-Doped Li 3 N
Fix, M.; Atkinson, J. H.; Canfield, P. C.; ...
2018-04-04
Here, the magnetic properties of dilute Li 2(Li 1–xFe x)N with x~0.001 are dominated by the spin of single, isolated Fe atoms. Below T=10 K the spin-relaxation times become temperature independent indicating a crossover from thermal excitations to the quantum tunneling regime. We report on a strong increase of the spin-flip probability in transverse magnetic fields that proves the resonant character of this tunneling process. Longitudinal fields, on the other hand, lift the ground-state degeneracy and destroy the tunneling condition. An increase of the relaxation time by 4 orders of magnitude in applied fields of only a few milliTesla revealsmore » exceptionally sharp tunneling resonances. Li 2(Li 1–xFe x)N represents a comparatively simple and clean model system that opens the possibility to study quantum tunneling of the magnetization at liquid helium temperatures.« less
Extreme Field Sensitivity of Magnetic Tunneling in Fe-Doped Li_{3}N.
Fix, M; Atkinson, J H; Canfield, P C; Del Barco, E; Jesche, A
2018-04-06
The magnetic properties of dilute Li_{2}(Li_{1-x}Fe_{x})N with x∼0.001 are dominated by the spin of single, isolated Fe atoms. Below T=10 K the spin-relaxation times become temperature independent indicating a crossover from thermal excitations to the quantum tunneling regime. We report on a strong increase of the spin-flip probability in transverse magnetic fields that proves the resonant character of this tunneling process. Longitudinal fields, on the other hand, lift the ground-state degeneracy and destroy the tunneling condition. An increase of the relaxation time by 4 orders of magnitude in applied fields of only a few milliTesla reveals exceptionally sharp tunneling resonances. Li_{2}(Li_{1-x}Fe_{x})N represents a comparatively simple and clean model system that opens the possibility to study quantum tunneling of the magnetization at liquid helium temperatures.
Selective Determination of Lipid Hydroperoxides in Natural Waters Using a Fluorescent Probe
NASA Astrophysics Data System (ADS)
Sunday, M. O.; Sakugawa, H.
2016-12-01
The presence of various lipids in natural waters and the availability of conditions needed for their oxidation to lipid hydroperoxides (LHPs) suggest that LHPs may be part of the hydroperoxide mix in natural waters. While other hydroperoxides, including H2O2, methyl hydroperoxide (MHP) and ethyl hydroperoxide (EHP) etc. have been investigated, there is no information on LHPs in natural waters. In this study, we report the presence of LHPs in natural waters. Firstly, a method selective to LHPs determination was developed using 2-(4-diphenylphosphanyl-phenyl)-9-(3,6,9,12-tetraoxatridecyl)-anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10-tetraone, Liperfluo, as a fluorescent probe. A flow injector analysis equipped with fluorescence detector was used for fluorescence measurement of Liperfluo-Ox formed from the reaction between Liperfluo and LHP. Under the optimized conditions, the reaction of Liperfluo with LHP in MilliQ and river water had a linear range of 0-500 nM LHP. The method detection limit was 10.1 nM and 7.3 nM in riverwater and MilliQ respectively. The coefficient of variation for five replicate measurements each for 100 nM and 500 nM LHP was ≤ 3.8%. The probe and the conditions used in this study showed high selectivity for LHP over other natural water hydroperoxides, including H2O2, MHP and EHP. The method was applied in the quantification of LHPs in water from the Kurose River (Japan). The concentration ranged from below detection limit to 98 nM (ave. 37.2 nM; n=12). Increase in H2O2 formation upon irradiation of LHP-spiked riverwater in a solar simulator suggests H2O2 formation as one of the possible sinks of LHPs in natural waters. For the first time, this study reveals that LHPs are part of the hydroperoxide mix in natural waters and provides insight on its fate in natural waters.
Silicon device performance measurements to support temperature range enhancement
NASA Technical Reports Server (NTRS)
Bromstead, James; Weir, Bennett; Nelms, R. Mark; Johnson, R. Wayne; Askew, Ray
1994-01-01
Silicon based power devices can be used at 200 C. The device measurements made during this program show a predictable shift in device parameters with increasing temperature. No catastrophic or abrupt changes occurred in the parameters over the temperature range. As expected, the most dramatic change was the increase in leakage currents with increasing temperature. At 200 C the leakage current was in the milliAmp range but was still several orders of magnitude lower than the on-state current capabilities of the devices under test. This increase must be considered in the design of circuits using power transistors at elevated temperature. Three circuit topologies have been prototyped using MOSFET's and IGBT's. The circuits were designed using zero current or zero voltage switching techniques to eliminate or minimize hard switching of the power transistors. These circuits have functioned properly over the temperature range. One thousand hour life data have been collected for two power supplies with no failures and no significant change in operating efficiency. While additional reliability testing should be conducted, the feasibility of designing soft switched circuits for operation at 200 C has been successfully demonstrated.
NASA Technical Reports Server (NTRS)
Riley, B. R.
1986-01-01
The self-induced molecular contamination around the space station could have adverse effects on space station components (for example solar panels) as well as scientific experiments that might be done on or near the space station. Aerospace engineers need to design a space station (SS) propulsion system that keeps the SS in a stable orbit and at the same time does not allow the propellant gases to interfere with the experiments of the user. One scenario that might accomplish the above requirements is to use an electrothermal propulsion system, resistojet, that will thrust continuously in the hundreds of milli-Newton range which will provide a constant altitude for the SS with a low g environment. As a first attempt to understand the contamination from such a propulsion system, a point source model was developed. The numerical results of the point source model are given. Number column densities for CO2 are presented as a function of direction of observation (line of sight), temperature of the exit gas, and mean exit velocity. All the results are for a constant exhaust rate of 5,000 kg/year. In addition, a mathematical model to study the effect of nozzle design on the induced molecular environment around the space station produced by simple gas propellants is described. The mathematical model would allow one to follow the expansion of the gas from the throat of a nozzle to the nozzle exit plane and then into the space external to the nozzle.
Adiabatic Demagnetisation Refrigerators for Future Sub-Millimetre Space Missions
NASA Astrophysics Data System (ADS)
Hepburn, I. D.; Davenport, I.; Smith, A.
1995-10-01
Space worthy refrigeration capable of providing a 100 mK and below heat load sink for bolometric detectors will be required for the next generation of sub-millimetre space missions. Adiabatic demagnetisation refrigeration (ADR), being a gravity independent laboratory method for obtaining such temperatures, is a favourable technique for utilisation in space. We show that by considering a 3 salt pill refrigerator rather than the classic single salt pill design the space prohibitive laboratory ADR properties of high magnetic field (6 Tesla) and a<2 K environment (provided by a bath of liquid4He) can be alleviated, while maintaining a sufficient low temperature hold time and short recycle time. The additional salt pills, composed of Gadolinium Gallium Garnet (GGG) provide intermediate cooling stages, enabling operation from a 4 K environment provided by a single 4 K mechanical cooler, thereby providing consumable free operation. Such ADRs could operate with fields as low as 1 Tesla allowing the use of high temperature, mechanically cooled superconducting magnets and so effectively remove the risk of quenching. We discuss the possibility of increasing the hold time from 3 hours, for the model presented, to between 40 and 80 hours, plus reducing the number of salt pills to two, through the use of a more efficient Garnet. We believe the technical advances necessitated by the envisaged ADRs are minimal and conclude that such ADRs offer a long orbital life time, consumable free, high efficiency means of milli-Kelvin cooling, requiring relatively little laboratory development.
Zheng, Xiaoming
2017-12-01
The purpose of this work was to examine the effects of relationship functions between diagnostic image quality and radiation dose on the governing equations for image acquisition parameter variations in X-ray imaging. Various equations were derived for the optimal selection of peak kilovoltage (kVp) and exposure parameter (milliAmpere second, mAs) in computed tomography (CT), computed radiography (CR), and direct digital radiography. Logistic, logarithmic, and linear functions were employed to establish the relationship between radiation dose and diagnostic image quality. The radiation dose to the patient, as a function of image acquisition parameters (kVp, mAs) and patient size (d), was used in radiation dose and image quality optimization. Both logistic and logarithmic functions resulted in the same governing equation for optimal selection of image acquisition parameters using a dose efficiency index. For image quality as a linear function of radiation dose, the same governing equation was derived from the linear relationship. The general equations should be used in guiding clinical X-ray imaging through optimal selection of image acquisition parameters. The radiation dose to the patient could be reduced from current levels in medical X-ray imaging.
Flow chemistry using milli- and microstructured reactors-from conventional to novel process windows.
Illg, Tobias; Löb, Patrick; Hessel, Volker
2010-06-01
The terminology Novel Process Window unites different methods to improve existing processes by applying unconventional and harsh process conditions like: process routes at much elevated pressure, much elevated temperature, or processing in a thermal runaway regime to achieve a significant impact on process performance. This paper is a review of parts of IMM's works in particular the applicability of above mentioned Novel Process Windows on selected chemical reactions. First, general characteristics of microreactors are discussed like excellent mass and heat transfer and improved mixing quality. Different types of reactions are presented in which the use of microstructured devices led to an increased process performance by applying Novel Process Windows. These examples were chosen to demonstrate how chemical reactions can benefit from the use of milli- and microstructured devices and how existing protocols can be changed toward process conditions hitherto not applicable in standard laboratory equipment. The used milli- and microstructured reactors can also offer advantages in other areas, for example, high-throughput screening of catalysts and better control of size distribution in a particle synthesis process by improved mixing, etc. The chemical industry is under continuous improvement. So, a lot of research is being done to synthesize high value chemicals, to optimize existing processes in view of process safety and energy consumption and to search for new routes to produce such chemicals. Leitmotifs of such undertakings are often sustainable development(1) and Green Chemistry(2).
Line shape parameters of the 22-GHz water line for accurate modeling in atmospheric applications
NASA Astrophysics Data System (ADS)
Koshelev, M. A.; Golubiatnikov, G. Yu.; Vilkov, I. N.; Tretyakov, M. Yu.
2018-01-01
The paper concerns refining parameters of one of the major atmospheric diagnostic lines of water vapor at 22 GHz. Two high resolution microwave spectrometers based on different principles of operation covering together the pressure range from a few milliTorr up to a few Torr were used. Special efforts were made to minimize possible sources of systematic measurement errors. Satisfactory self-consistency of the obtained data was achieved ensuring reliability of the obtained parameters. Collisional broadening and shifting parameters of the line in pure water vapor and in its mixture with air were determined at room temperature. Comparative analysis of the obtained parameters with previous data is given. The speed dependence effect impact on the line shape was evaluated.
Experimental Study of the NaK 3(1)Pi State.
Laub; Mazsa; Webb; La Civita J; Prodan; Jabbour; Namiotka; Huennekens
1999-02-01
We report the results of an optical-optical double resonance experiment to determine the NaK 3(1)Pi state potential energy curve. In the first step, a narrow band cw dye laser (PUMP) is tuned to line center of a particular 2(A)1Sigma+(v', J') <-- 1(X)1Sigma+(v", J") transition, and its frequency is then fixed. A second narrowband tunable cw Ti:Sapphirelaser (PROBE) is then scanned, while 3(1)Pi --> 1(X)1Sigma+ violet fluorescence is monitored. The Doppler-free signals accurately map the 3(1)Pi(v, J) ro-vibrational energy levels. These energy levels are then fit to a Dunham expansion to provide a set of molecular constants. The Dunham constants, in turn, are used to construct an RKR potential curve. Resolved 3(1)Pi(v, J) --> 1(X)1Sigma+(v", J") fluorescence scans are also recorded with both PUMP and PROBE laser frequencies fixed. Comparison between observed and calculated Franck-Condon factors is used to determine the absolute vibrational numbering of the 3(1)Pi state levels and to determine the variation of the 3(1)Pi --> 1(X)1Sigma+ transitiondipole moment with internuclear separation. The recent theoretical calculation of the NaK 3(1)Pi state potential reported by Magnier and Millié (1996, Phys. Rev. A 54, 204) is in excellent agreement with the present experimental RKR curve. Copyright 1999 Academic Press.
Experimental Study of the NaK 3 1Π State
NASA Astrophysics Data System (ADS)
Laub, E.; Mazsa, I.; Webb, S. C.; La Civita, J.; Prodan, I.; Jabbour, Z. J.; Namiotka, R. K.; Huennekens, J.
1999-02-01
We report the results of an optical-optical double resonance experiment to determine the NaK 31Π state potential energy curve. In the first step, a narrow band cw dye laser (PUMP) is tuned to line center of a particular 2(A)1Σ+(v‧,J‧) ← 1(X)1Σ+(v",J") transition, and its frequency is then fixed. A second narrowband tunable cw Ti:Sapphirelaser (PROBE) is then scanned, while 31Π → 1(X)1Σ+violet fluorescence is monitored. The Doppler-free signals accurately map the 31Π(v,J) ro-vibrational energy levels. These energy levels are then fit to a Dunham expansion to provide a set of molecular constants. The Dunham constants, in turn, are used to construct an RKR potential curve. Resolved 31Π(v,J) → 1(X)1Σ+(v",J") fluorescence scans are also recorded with both PUMP and PROBE laser frequencies fixed. Comparison between observed and calculated Franck-Condon factors is used to determine the absolute vibrational numbering of the 31Π state levels and to determine the variation of the 31Π → 1(X)1Σ+transitiondipole moment with internuclear separation. The recent theoretical calculation of the NaK 31Π state potential reported by Magnier and Millié (1996,Phys. Rev. A54, 204) is in excellent agreement with the present experimental RKR curve.
Ravi, Koustuban; Schimpf, Damian N; Kärtner, Franz X
2016-10-31
The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled (100 K) periodically poled Lithium Niobate is proposed and studied. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves (or pump depletion), show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser induced damage limitations at Joule-level pumping by 1µm lasers to enable multi-cycle terahertz sources with pulse energies > 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. The physics governing terahertz generation using pulse sequences in this high conversion efficiency regime, limitations and practical considerations are discussed. It is shown that varying the poling period along the crystal length and further reduction of absorption can lead to even higher energy conversion efficiencies >10%. In addition to numerical calculations, an analytic formulation valid for arbitrary pulse formats and closed-form expressions for important cases are presented. Parameters optimizing conversion efficiency in the 0.1-1 THz range, the corresponding peak electric fields, crystal lengths and terahertz pulse properties are furnished.
Douglas, Erik S; Hsiao, Sonny C; Onoe, Hiroaki; Bertozzi, Carolyn R; Francis, Matthew B; Mathies, Richard A
2009-07-21
A microdevice is developed for DNA-barcode directed capture of single cells on an array of pH-sensitive microelectrodes for metabolic analysis. Cells are modified with membrane-bound single-stranded DNA, and specific single-cell capture is directed by the complementary strand bound in the sensor area of the iridium oxide pH microelectrodes within a microfluidic channel. This bifunctional microelectrode array is demonstrated for the pH monitoring and differentiation of primary T cells and Jurkat T lymphoma cells. Single Jurkat cells exhibited an extracellular acidification rate of 11 milli-pH min(-1), while primary T cells exhibited only 2 milli-pH min(-1). This system can be used to capture non-adherent cells specifically and to discriminate between visually similar healthy and cancerous cells in a heterogeneous ensemble based on their altered metabolic properties.
Douglas, Erik S.; Hsiao, Sonny C.; Onoe, Hiroaki; Bertozzi, Carolyn R.; Francis, Matthew B.; Mathies, Richard A.
2010-01-01
A microdevice is developed for DNA-barcode directed capture of single cells on an array of pH-sensitive microelectrodes for metabolic analysis. Cells are modified with membrane-bound single-stranded DNA, and specific single-cell capture is directed by the complementary strand bound in the sensor area of the iridium oxide pH microelectrodes within a microfluidic channel. This bifunctional microelectrode array is demonstrated for the pH monitoring and differentiation of primary T cells and Jurkat T lymphoma cells. Single Jurkat cells exhibited an extracellular acidification rate of 11 milli-pH min−1, while primary T cells exhibited only 2 milli-pH min−1. This system can be used to capture non-adherent cells specifically and to discriminate between visually similar healthy and cancerous cells in a heterogeneous ensemble based on their altered metabolic properties. PMID:19568668
Electronic reconstruction of doped Mott insulator heterojunctions
NASA Astrophysics Data System (ADS)
Charlebois, M.; Hassan, S. R.; Karan, R.; Dion, M.; Senechal, D.; Tremblay, A.-M. S.
2012-02-01
Correlated electron heterostructures became a possible alternative when thin-film deposition techniques achieved structures with a sharp interface transition [1]. Soon thereafter, Okamoto & Millis introduced the concept of ``electronic reconstruction'' [2]. We study here the electronic reconstruction of doped Mott insulator heterostructures based on a Cluster Dynamical Mean Field Theory (CDMFT) calculations of the Hubbard model in the limit where electrostatic energy dominates over the kinetic energy associated with transport across layers. The grand potential of individual layers is first computed within CDMFT and then the electrostatic potential energy is taken into account in the Hartree approximation. The charge reconstruction in an ensemble of stacked planes of different nature can lead to a distribution of electron charge and to transport properties that are unique to doped-Mott insulators.[4pt] [1] J. Mannhart, D. G. Schlom, Science 327, 1607 (2010).[0pt] [2] S. Okamoto and A. J. Millis, Nature 428, 630 (2004).
NASA Astrophysics Data System (ADS)
Suganthi, K.; Malarvizhi, S.
2018-03-01
A high gain, low power, low Noise figure (NF) and wide band of milli-meter Wave (mmW) circuits design at 50 GHz are used for Radio Frequency (RF) front end. The fundamental necessity of a receiver front-end includes perfect output and input impedance matching and port-to-port isolation with high gain and low noise over the entire band of interest. In this paper, a design of Cascade-Cascode CMOS LNA circuit at 50 GHz for Q-band application is proposed. The design of Low noise amplifier at 50 GHz using Agilent ADS tool with microstrip lines which provides simplicity in fabrication and less chip area. The low off-leakage current Ioff can be maintained with high K-dielectrics CMOS structure. Nano-scale electronics can be achieved with increased robustness. The design has overall gain of 11.091 dB and noise figure of 2.673 dB for the Q-band of 48.3 GHz to 51.3 GHz. Impedance matching is done by T matching network and the obtained input and output reflection coefficients are S11 = <-10 dB and S22 = <-10 dB. Compared to Silicon (Si) material, Wide Band Gap semiconductor materials used attains higher junction temperatures which is well matched to ceramics used in packaging technology, the protection and reliability also can be achieved with the electronic packaging. The reverse transmission coefficient S21 is less than -21 dB has shown that LNA has better isolation between input and output, Stability factor greater than 1 and Power is also optimized in this design. Layout is designed, power gain of 4.6 dB is achieved and area is optimized which is nearly equal to 502 740 μm2. The observed results show that the proposed Cascade-Cascode LNA design can find its suitability in future milli-meter Wave Radar application.
Development of weathering profile of a forest hillslope in clay-rich sedimentary system
NASA Astrophysics Data System (ADS)
Nicklas, R. W.; Kim, H.; Bishop, J. K.; Rempe, D. M.
2012-12-01
Hillslopes are an essential element to the understanding of landscape evolution, storm flow generation and biogeochemical processes. Since 2008, extensive studies of climate variables, vegetation, soil moisture, subsurface hydrology, and water chemistry have taken place at a small forested hillslope, "Rivendell", at the Angelo Coast Range Reserve located at the headwaters of the Eel River, California. Here we report on the signature of weathering processes through analysis of core and soil samples collected during well drilling campaigns. Core samples from multiple depths at four wells (at creek edge, mid-slope, up-slope, and ridge-top) were selected and include 1) soil; 2) unsaturated fractured/ weathered zone; 3) zone of seasonal water table fluctuation within weathered bedrock; and 4) chronically saturated fresh bedrock zone. We also include soil samples from a groundwater seep located at the toe of the slope. The mineralogy of these samples was identified using X-ray diffraction. Samples were analyzed for salt and Ca(Mg)CO3 concentrations, and cation exchange capacity using Milli-Q water and acetic acid extraction and BaCl2-NH4Cl treatments, respectively. To further quantify the mineral dissolution and secondary mineral precipitation, a sequential extraction of trace metals were conducted - 1) exchangeable using MgCl2; 2) bound to carbonates using NaOAc; 3) bound to Fe-Mn oxides using NH2OH HCl; and 4) bound to organic matters using H2O2 and HNO3. The total elemental contents were determined using HF-HNO3-HClO4 dissolution. The mineralogy of the fresh bedrock zone showed similar patterns throughout the site -for clay minerals, chlorite, illite, interstratified illite/smectite were dominant; K-feldspar dominated the primary minerals. Shallow (<30 cm) soils had kaolinite, and chlorite was absent in some samples. CaCO3 was also predominantly found in the fresh bedrock zone and progressively increased with depth. The depletion profile of major cations (Ca, Na, Mg, K, and Si) and trace metals (Fe, Mn and Al) show the mineral dissolution fronts. K-feldspar, chlorite and CaCO3 dissolution and secondary mineral precipitation are thus the major processes that are critical to the interpretation of groundwater chemistry.
Gravitational Lens: Deep Space Probe Design
2012-03-01
Lieutenant, USAF Approved: Timothy Lawrence, Col, USAF (Chairman) Date Carl Hartsfield, Lt Col, USAF (Member) Date Marc G. Millis (Member) Date Abstract A...23 RTG Radioisotope Thermoelectric Generators . . . . . . . . . . . . . . . . . 26 EOL End of Life...26 ASRG Advanced Stirling Radioisotope Generator . . . . . . . . . . . . . . . . 26 GPHS
Pluto's Atmospheric Figure from the P131.1 Stellar Occultation
NASA Astrophysics Data System (ADS)
Person, M. J.; Elliot, J. L.; Clancy, K. B.; Kern, S. D.; Salyk, C. V.; Tholen, D. J.; Pasachoff, J. M.; Babcock, B. A.; Souza, S. P.; Ticehurst, D. R.; Hall, D.; Roberts, L. C., Jr.; Bosh, A. S.; Buie, M. W.; Dunham, E. W.; Olkin, C. B.; Taylor, B.; Levine, S. E.; Eikenberry, S. S.; Moon, D.-S.; Osip, D. J.
2003-05-01
The stellar occultation by Pluto of the 15th magnitude star designated P131.1 (McDonald and Elliot, AJ, 119, 1999) on 2002 August 21 (UT) provided the first significant chance to compare Pluto's atmospheric structure to that determined from the 1988 occultation of P8 (Millis, et al., Icarus, 105, 282). The P131.1 occultation was observed from several stations in Hawaii and the western United States (Elliot et al., Nature, in press, 2003). Numerous occultation chords were obtained enabling us to examine Pluto's atmospheric figure. The light curves from the observations were analyzed together in the occultation coordinate system of Elliot et al., (AJ, 106, 2544). The Mauna Kea and Lick datasets straddle the center of Pluto's figure, providing strong constraints on model fits to cross sections of the atmospheric shape. In 1988, Millis (et al., Icarus, 105, 282) did not report any deviation from sphericity in Pluto's atmospheric figure. From the 2002 data, Pluto;s isobars at the radii probed by the occultation ( 1250 km) appear to be distorted from a circular cross-section. Least-squares fits to this cross-section by elliptical models reveal ellipticities in the range 0.05-0.08 although the shape may be more complex than ellipsoidal. The orientation of the distortion appears uncorrelated with Pluto;s rotational axis. Taken at face value, this ellipticity could imply wind speeds of up to twice the sonic speed ( 200 m/s), which would be difficult to explain. Similar distortions have been reported for Triton's atmosphere (Elliot, J. L., et al., Icarus 148, 347). This work has been supported in part by Research Corporation, the Air Force Research Laboratory, NSF, and NASA.
Kelvin Probe Force Microscopy in liquid using Electrochemical Force Microscopy
Collins, Liam; Jesse, Stephen; Kilpatrick, J.; ...
2015-01-19
Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q watermore » and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.« less
NASA Technical Reports Server (NTRS)
Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.;
2016-01-01
The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of approximately 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 kiloelectronvolts. The instrument will provide unprecedented spectral resolution of approximately 2.5 electronvolts at energies of up to 7 kiloelectronvolts and will accommodate photon fluxes of 1 milliCrab (90 counts per second) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28 arcseconds pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 by × 18 small pixel array (SPA) of 2 arcseconds pixels in the central approximately 36 arcseconds region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 milliCrabs (900 counts per second) or alternately for improved spectral performance (less than 1.5 electronvolts) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.
NASA Astrophysics Data System (ADS)
Erturk, Alper; Delporte, Ghislain
2011-12-01
Fiber-based flexible piezoelectric composites offer several advantages to use in energy harvesting and biomimetic locomotion. These advantages include ease of application, high power density, effective bending actuation, silent operation over a range of frequencies, and light weight. Piezoelectric materials exhibit the well-known direct and converse piezoelectric effects. The direct piezoelectric effect has received growing attention for low-power generation to use in wireless electronic applications while the converse piezoelectric effect constitutes an alternative to replace the conventional actuators used in biomimetic locomotion. In this paper, underwater thrust and electricity generation are investigated experimentally by focusing on biomimetic structures with macro-fiber composite piezoelectrics. Fish-like bimorph configurations with and without a passive caudal fin (tail) are fabricated and compared. The favorable effect of having a passive caudal fin on the frequency bandwidth is reported. The presence of a passive caudal fin is observed to bring the second bending mode close to the first one, yielding a wideband behavior in thrust generation. The same smart fish configuration is tested for underwater piezoelectric power generation in response to harmonic excitation from its head. Resonant piezohydroelastic actuation is reported to generate milli-newton level hydrodynamic thrust using milli-watt level actuation power input. The average actuation power requirement for generating a mean thrust of 19 mN at 6 Hz using a 10 g piezoelastic fish with a caudal fin is measured as 120 mW. This work also discusses the feasibility of thrust generation using the harvested energy toward enabling self-powered swimmer-sensor platforms with comparisons based on the capacity levels of structural thin-film battery layers as well as harvested solar and vibrational energy.
Lundholm, Ida V.; Rodilla, Helena; Wahlgren, Weixiao Y.; Duelli, Annette; Bourenkov, Gleb; Vukusic, Josip; Friedman, Ran; Stake, Jan; Schneider, Thomas; Katona, Gergely
2015-01-01
Whether long-range quantum coherent states could exist in biological systems, and beyond low-temperature regimes where quantum physics is known to be applicable, has been the subject to debate for decades. It was proposed by Fröhlich that vibrational modes within protein molecules can order and condense into a lowest-frequency vibrational mode in a process similar to Bose-Einstein condensation, and thus that macroscopic coherence could potentially be observed in biological systems. Despite the prediction of these so-called Fröhlich condensates almost five decades ago, experimental evidence thereof has been lacking. Here, we present the first experimental observation of Fröhlich condensation in a protein structure. To that end, and to overcome the challenges associated with probing low-frequency molecular vibrations in proteins (which has hampered understanding of their role in proteins' function), we combined terahertz techniques with a highly sensitive X-ray crystallographic method to visualize low-frequency vibrational modes in the protein structure of hen-egg white lysozyme. We found that 0.4 THz electromagnetic radiation induces non-thermal changes in electron density. In particular, we observed a local increase of electron density in a long α-helix motif consistent with a subtle longitudinal compression of the helix. These observed electron density changes occur at a low absorption rate indicating that thermalization of terahertz photons happens on a micro- to milli-second time scale, which is much slower than the expected nanosecond time scale due to damping of delocalized low frequency vibrations. Our analyses show that the micro- to milli-second lifetime of the vibration can only be explained by Fröhlich condensation, a phenomenon predicted almost half a century ago, yet never experimentally confirmed. PMID:26798828
Lundholm, Ida V; Rodilla, Helena; Wahlgren, Weixiao Y; Duelli, Annette; Bourenkov, Gleb; Vukusic, Josip; Friedman, Ran; Stake, Jan; Schneider, Thomas; Katona, Gergely
2015-09-01
Whether long-range quantum coherent states could exist in biological systems, and beyond low-temperature regimes where quantum physics is known to be applicable, has been the subject to debate for decades. It was proposed by Fröhlich that vibrational modes within protein molecules can order and condense into a lowest-frequency vibrational mode in a process similar to Bose-Einstein condensation, and thus that macroscopic coherence could potentially be observed in biological systems. Despite the prediction of these so-called Fröhlich condensates almost five decades ago, experimental evidence thereof has been lacking. Here, we present the first experimental observation of Fröhlich condensation in a protein structure. To that end, and to overcome the challenges associated with probing low-frequency molecular vibrations in proteins (which has hampered understanding of their role in proteins' function), we combined terahertz techniques with a highly sensitive X-ray crystallographic method to visualize low-frequency vibrational modes in the protein structure of hen-egg white lysozyme. We found that 0.4 THz electromagnetic radiation induces non-thermal changes in electron density. In particular, we observed a local increase of electron density in a long α-helix motif consistent with a subtle longitudinal compression of the helix. These observed electron density changes occur at a low absorption rate indicating that thermalization of terahertz photons happens on a micro- to milli-second time scale, which is much slower than the expected nanosecond time scale due to damping of delocalized low frequency vibrations. Our analyses show that the micro- to milli-second lifetime of the vibration can only be explained by Fröhlich condensation, a phenomenon predicted almost half a century ago, yet never experimentally confirmed.
Extensive retroviral diversity in shark.
Han, Guan-Zhu
2015-04-28
Retroviruses infect a wide range of vertebrates. However, little is known about the diversity of retroviruses in basal vertebrates. Endogenous retrovirus (ERV) provides a valuable resource to study the ecology and evolution of retrovirus. I performed a genome-scale screening for ERVs in the elephant shark (Callorhinchus milii) and identified three complete or nearly complete ERVs and many short ERV fragments. I designate these retroviral elements "C. milli ERVs" (CmiERVs). Phylogenetic analysis shows that the CmiERVs form three distinct lineages. The genome invasions by these retroviruses are estimated to take place more than 50 million years ago. My results reveal the extensive retroviral diversity in the elephant shark. Diverse retroviruses appear to have been associated with cartilaginous fishes for millions of years. These findings have important implications in understanding the diversity and evolution of retroviruses.
A Low-cost Environmental Control System for Precise Radial Velocity Spectrometers
NASA Astrophysics Data System (ADS)
Sliski, David H.; Blake, Cullen H.; Halverson, Samuel
2017-12-01
We present an environmental control system (ECS) designed to achieve milliKelvin (mK) level temperature stability for small-scale astronomical instruments. This ECS is inexpensive and is primarily built from commercially available components. The primary application for our ECS is the high-precision Doppler spectrometer MINERVA-Red, where the thermal variations of the optical components within the instrument represent a major source of systematic error. We demonstrate ±2 mK temperature stability within a 0.5 m3 thermal enclosure using resistive heaters in conjunction with a commercially available PID controller and off-the-shelf thermal sensors. The enclosure is maintained above ambient temperature, enabling rapid cooling through heat dissipation into the surrounding environment. We demonstrate peak-to-valley (PV) temperature stability of better than 5 mK within the MINERVA-Red vacuum chamber, which is located inside the thermal enclosure, despite large temperature swings in the ambient laboratory environment. During periods of stable laboratory conditions, the PV variations within the vacuum chamber are less than 3 mK. This temperature stability is comparable to the best stability demonstrated for Doppler spectrometers currently achieving m s-1 radial velocity precision. We discuss the challenges of using commercially available thermoelectrically cooled CCD cameras in a temperature-stabilized environment, and demonstrate that the effects of variable heat output from the CCD camera body can be mitigated using PID-controlled chilled water systems. The ECS presented here could potentially provide the stable operating environment required for future compact “astrophotonic” precise radial velocity (PRV) spectrometers to achieve high Doppler measurement precision with a modest budget.
Clow, G.D.; Saltus, R.W.; Waddington, E.D.
1996-01-01
We describe a high-precision (0.1-1.0 mK) borehole-temperature (BT) logging system developed at the United States Geological Survey (USGS) for use in remote polar regions. We discuss calibration, operational and data-processing procedures, and present an analysis of the measurement errors. The system is modular to facilitate calibration procedures and field repairs. By interchanging logging cables and temperature sensors, measurements can be made in either shallow air-filled boreholes or liquid-filled holes up to 7 km deep. Data can be acquired in either incremental or continuous-logging modes. The precision of data collected by the new logging system is high enough to detect and quantify various thermal effects at the milli-Kelvin level. To illustrate this capability, we present sample data from the 3 km deep borehole at GISP2, Greenland, and from a 130m deep air-filled hole at Taylor Dome, Antarctica. The precision of the processed GTSP2 continuous temperature logs is 0.25-0.34 mK, while the accuracy is estimated to be 4.5 mK. The effects of fluid convection and the dissipation of the thermal disturbance caused by drilling the borehole are clearly visible in the data. The precision of the incremental Taylor Dome measurements varies from 0.11 to 0.32mK, depending on the wind strength during the experiments. With this precision, we found that temperature fluctuations and multi-hour trends in the BT measurements correlate well with atmospheric-pressure changes.
The Effect of Fluid Properties on Two-Phase Regimes of Flow in a Wide Rectangular Microchannel
NASA Astrophysics Data System (ADS)
Ronshin, F. V.; Cheverda, V. V.; Chinnov, E. A.; Kabov, O. A.
2018-04-01
We have experimentally studied a two-phase flow in a microchannel with a height of 150 μm and a width of 20 mm. Different liquids have been used, namely, a purified Milli-Q water, an 50% aqueous-ethanol solution, and FC-72. Before and after the experiment, the height of the microchannel was controlled, as well as the wettability of its walls and surface tension of liquids. Using the schlieren method, the main characteristics of two-phase flow in wide ranges of gas- and liquid-flow rates have been revealed. The flow regime-formation mechanism has been found to depend on the properties of the liquid used. The flow regime has been registered when the droplets moving along the microchannel are vertical liquid bridges. It has been shown that, when using FC-72 liquid, a film of liquid is formed on the upper channel wall in the whole range of gas- and liquid-flow rates.
Kinetics modeling and reaction mechanism of ferrate(VI) oxidation of benzotriazoles.
Yang, Bin; Ying, Guang-Guo; Zhang, Li-Juan; Zhou, Li-Jun; Liu, Shan; Fang, Yi-Xiang
2011-03-01
Benzotriazoles (BTs) are high production volume chemicals with broad application in various industrial processes and in households, and have been found to be omnipresent in aquatic environments. We investigated oxidation of five benzotriazoles (BT: 1H-benzotriazole; 5MBT: 5-methyl-1H-benzotriazole; DMBT: 5,6-dimethyl-1H-benzotriazole hydrate; 5CBT: 5-chloro-1H-benzotriazole; HBT: 1-hydroxybenzotriazole) by aqueous ferrate (Fe(VI)) to determine reaction kinetics as a function of pH (6.0-10.0), and interpreted the reaction mechanism of Fe(VI) with BTs by using a linear free-energy relationship. The pK(a) values of BT and DMBT were also determined using UV-Visible spectroscopic method in order to calculate the species-specific rate constants, and they were 8.37 ± 0.0 and 8.98 ± 0.08 respectively. Each of BTs reacted moderately with Fe(VI) with the k(app) ranged from 7.2 to 103.8 M(-1)s(-1) at pH 7.0 and 24 ± 1 °C. When the molar ratio of Fe(VI) and BTs increased up to 30:1, the removal rate of BTs reached about >95% in buffered milli-Q water or secondary wastewater effluent. The electrophilic oxidation mechanism of the above reaction was illustrated by using a linear free-energy relationship between pH-dependence of species-specific rate constants and substituent effects (σ(p)). Fe(VI) reacts initially with BTs by electrophilic attack at the 1,2,3-triazole moiety of BT, 5MBT, DMBT and 5CBT, and at the N-OH bond of HBT. Moreover, for BT, 5MBT, DMBT and 5CBT, the reactions with the species HFeO(4)(-) predominantly controled the reaction rates. For HBT, the species H(2)FeO(4) with dissociated HBT played a major role in the reaction. The results showed that Fe(VI) has the ability to degrade benzotriazoles in water. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Becker, M. W.; Ciervo, C.; Cole, M.; Coleman, T.; Mondanos, M.
2017-07-01
A new method of measuring dynamic strain in boreholes was used to record fracture displacement in response to head oscillation. Fiber optic distributed acoustic sensing (DAS) was used to measure strain at mHz frequencies, rather than the Hz to kHz frequencies typical for seismic and acoustic monitoring. Fiber optic cable was mechanically coupled to the wall of a borehole drilled into fractured crystalline bedrock. Oscillating hydraulic signals were applied at a companion borehole 30 m away. The DAS instrument measured fracture displacement at frequencies of less than 1 mHz and amplitudes of less than 1 nm, in response to fluid pressure changes of less 20 Pa (2 mm H2O). Displacement was linearly related to the log of effective stress, a relationship typically explained by the effect of self-affine fracture roughness on fracture closure. These results imply that fracture roughness affects closure even when displacement is a million times smaller than the fracture aperture.
NASA Astrophysics Data System (ADS)
Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Chad Webb, R.; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A.
2014-09-01
Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or ‘epidermal’, photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.
Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Webb, R Chad; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A
2014-09-19
Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or 'epidermal', photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.
NASA Astrophysics Data System (ADS)
Nouara, Amel; Panagiotopoulos, Christos; Balesdent, Jérôme; Sempéré, Richard
2017-04-01
Carbohydrates are among the most abundant organic molecules on the Earth and are present in all geochemical systems. Despite their high abundance in the environment, very few studies assessed their origin using molecular carbohydrate isotopic analyses. In contrast with bulk stable isotope analysis (BSIA), which gives the isotopic signature of the entire sample without any specification about its chemical composition, compound specific 13C isotopic analysis of individual sugars (CSIA) offers valuable information about the origin of single molecules. Previous investigations used gas or liquid chromatography coupled with isotope ratio mass spectroscopy (GC-IRMS; HPLC-IRMS) for CSIA of sugars however the former requires δ13C corrections due to the carbon added to the sugar (derivatization) while the later does not provide always adequate separations among monosaccharides. Here we used cation preparative chromatography (Ca2+, Pb2+ and Na+) with refractive index detection in order to produce pure monosaccharide targets for subsequent EA-IRMS analyses. Milli-Q water was used as eluant at a flow rate 0.6 ml min-1. In general, three successive purifications (Ca2+, Pb2+, Ca2+) were sufficient to produce pure compounds. Pure monosaccharides were compared with authentic monosaccharide standards using 1H NMR and/or mass spectroscopy. The detection limit of our technique was about 1µM/sugar with a precision of 10% (n=6). Blanks run with Milli-Q water after three successive purifications resulted in carbon content of 0.13 to 2.77 µgC per collected sugar. These values are much lower than the minimum required amount (5 µgC) of the EA-IRSMS system with a precision of ± 0.35 ‰. Application of our method to environmental samples resulted in δ13C values of glucose, fructose, and levoglucosan in the range of -24 to -26 ‰ (PM10 atmospheric particles), and -15‰ to -22 ‰ for arabinose, glucose, and xylose (marine high molecular dissolved organic matter). These results fall in the range of previous reported values for terrestrial and aquatic ecosystems.
Redefine Water Infrastructure Adaptation to a Nonstationary Climate (Editorial)
The statement “Climate Stationarity is Dead” by Milly et al. (2008) stresses the need to evaluate and when necessary, incorporate non-stationary hydroclimatic changes into water resources and infrastructure planning and engineering. Variations of this theme echo in several other ...
Guionet, Alexis; David, Fabienne; Zaepffel, Clément; Coustets, Mathilde; Helmi, Karim; Cheype, Cyril; Packan, Denis; Garnier, Jean-Pierre; Blanckaert, Vincent; Teissié, Justin
2015-06-01
One of the different ways to eradicate microorganisms, and particularly bacteria that might have an impact on health consists in the delivery of pulsed electric fields (PEFs). The technologies of millisecond (ms) or microsecond (μs) PEF are still well known and used for instance in the process of fruit juice sterilization. However, this concept is costly in terms of delivered energy which might be too expensive for some other industrial processes. Nanosecond pulsed electric fields (nsPEFs) might be an alternative at least for lower energetic cost. However, only few insights were available and stipulate a gain in cost and in efficiency as well. Using Escherichia coli, the impact of frequency and low rate on eradication and energy consumption by msPEF, μsPEF and nsPEF have been studied and compared. While a 1 log10 was reached with an energy cost of 100 and 158 kJ/L with micro- and millisecond PEFs respectively, nsPEF reached the reduction for similar energy consumption. The best condition was obtained for a 1 log10 deactivation in 0.5h, for energy consumption of 143 kJ/L corresponding to 0.04 W · h when the field was around 100 kV/cm. Improvement can also be expected by producing a generator capable to increase the electric field. Copyright © 2014 Elsevier B.V. All rights reserved.
Son, Jino; Vavra, Janna; Li, Yusong; Seymour, Megan; Forbes, Valery
2015-04-01
The preparation of a stable nanoparticle stock suspension is the first step in nanotoxicological studies, but how different preparation methods influence the physicochemical properties of nanoparticles in a solution, even in Milli-Q water, is often under-appreciated. In this study, a systematic approach using a central composite design (CCD) was employed to investigate the effects of sonication time and suspension concentration on the physicochemical properties (i.e. hydrodynamic diameter, zeta potential and ion dissolution) of silver (Ag) and copper oxide (CuO) nanoparticles (NPs) and to identify optimal conditions for suspension preparation in Milli-Q water; defined as giving the smallest particle sizes, highest suspension stability and lowest ion dissolution. Indeed, all the physicochemical properties of AgNPs and CuONPs varied dramatically depending on how the stock suspensions were prepared and differed profoundly between nanoparticle types, indicating the importance of suspension preparation. Moreover, the physicochemical properties of AgNPs and CuONPs, at least in simple media (Milli-Q water), behaved in predictable ways as a function of sonication time and suspension concentration, confirming the validity of our models. Overall, the approach allows systematic assessment of the influence of various factors on key properties of nanoparticle suspensions, which will facilitate optimization of the preparation of nanoparticle stock suspensions and improve the reproducibility of nanotoxicological results. We recommend that further attention be given to details of stock suspension preparation before conducting nanotoxicological studies as these can have an important influence on the behavior and subsequent toxicity of nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.
COMPETITIVE ADSORPTION OF VOCS AND BOM-OXIC AND ANOXIC ENVIRONMENTS
The effect of the presence of molecular oxygen on the adsorption of volatile organic compounds (VOCs) in distilled Milli-Q water and in water supplemented with background organic matter (BOM) is evaluated. Experiments are conducted under conditions where molecular oxygen is prese...
Nguyen, T T; Biadillah, Y; Mongrain, R; Brunette, J; Tardif, J C; Bertrand, O F
2004-08-01
In this work, we propose a simple method to simultaneously match the refractive index and kinematic viscosity of a circulating blood analog in hydraulic models for optical flow measurement techniques (PIV, PMFV, LDA, and LIF). The method is based on the determination of the volumetric proportions and temperature at which two transparent miscible liquids should be mixed to reproduce the targeted fluid characteristics. The temperature dependence models are a linear relation for the refractive index and an Arrhenius relation for the dynamic viscosity of each liquid. Then the dynamic viscosity of the mixture is represented with a Grunberg-Nissan model of type 1. Experimental tests for acrylic and blood viscosity were found to be in very good agreement with the targeted values (measured refractive index of 1.486 and kinematic viscosity of 3.454 milli-m2/s with targeted values of 1.47 and 3.300 milli-m2/s).
NASA Astrophysics Data System (ADS)
Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel
2015-04-01
We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/μg and 1.72(14) nL/μg were found for Milli-Q water and lysis-binding buffer, respectively.
Millie Hughes-Fulford, Scientist and Prior Astronaut
2014-03-13
CAPE CANAVERAL, Fla. - Researcher and principal investigator Dr. Millie Hughes-Fulford, of the Hughes-Fulford Laboratory, San Francisco, Calif., at the microscope, examines T-cells as part of preflight experiment operations in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston
Ultrafast mid-infrared spectroscopy by chirped pulse upconversion in 1800-1000cm(-1) region.
Zhu, Jingyi; Mathes, Tilo; Stahl, Andreas D; Kennis, John T M; Groot, Marie Louise
2012-05-07
Broadband femtosecond mid-infrared pulses can be converted into the visible spectral region by chirped pulse upconversion. We report here the upconversion of pump probe transient signals in the frequency region below 1800cm(-1), using the nonlinear optical crystal AgGaGeS4, realizing an important expansion of the application range of this method. Experiments were demonstrated with a slab of GaAs, in which the upconverted signals cover a window of 120cm(-1), with 1.5cm(-1) resolution. In experiments on the BLUF photoreceptor Slr1694, signals below 1 milliOD were well resolved after baseline correction. Possibilities for further optimization of the method are discussed. We conclude that this method is an attractive alternative for the traditional MCT arrays used in most mid-infrared pump probe experiments.
Kuwabara, Chikako; Kasuga, Jun; Wang, Donghui; Fukushi, Yukiharu; Arakawa, Keita; Koyama, Toshie; Inada, Takaaki; Fujikawa, Seizo
2011-12-01
Deep supercooling xylem parenchyma cells (XPCs) in Katsura tree contain flavonol glycosides with high supercooling-facilitating capability in solutions containing the ice nucleation bacterium (INB) Erwinia ananas, which is thought to have an important role in deep supercooling of XPCs. The present study, in order to further clarify the roles of these flavonol glycosides in deep supercooling of XPCs, the effects of these supercooling-facilitating (anti-ice nucleating) flavonol glycosides, kaempferol 3-O-β-D-glucopyranoside (K3Glc), kaempferol 7-O-β-D-glucopyranoside (K7Glc) and quercetin 3-O-β-D-glucopyranoside (Q3Glc), in buffered Milli-Q water (BMQW) containing different kinds of ice nucleators, including INB Xanthomonas campestris, silver iodide and phloroglucinol, were examined by a droplet freezing assay. The results showed that all of the flavonol glycosides promoted supercooling in all solutions containing different kinds of ice nucleators, although the magnitudes of supercooling capability of each flavonol glycoside changed in solutions containing different kinds of ice nucleators. On the other hand, these flavonol glycosides exhibited complicated nucleating reactions in BMQW, which did not contain identified ice nucleators but contained only unidentified airborne impurities. Q3Glc exhibited both supercooling-facilitating and ice nucleating capabilities depending on the concentrations in such water. Both K3Glc and K7Glc exhibited only ice nucleation capability in such water. It was also shown by an emulsion freezing assay in BMQW that K3Glc and Q3Glc had no effect on homogeneous ice nucleation temperature, whereas K7Glc increased ice nucleation temperature. The results indicated that each flavonol glycoside affected ice nucleation by very complicated and varied reactions. More studies are necessary to determine the exact roles of these flavonol glycosides in deep supercooling of XPCs in which unidentified heterogeneous ice nucleators may exist. Copyright © 2011 Elsevier Inc. All rights reserved.
2004 Michigan traffic crash facts
DOT National Transportation Integrated Search
2005-04-11
The 2004 traffic fatality count was 1,159, down 9.7 percent from the 2003 figure of 1,283. : Compared with 2003, injuries were down 5.6 percent and total crashes were down 4.7 : percent. These figures translated into a death rate of 1.1 per 100 milli...
1998 Michigan traffic crash facts
DOT National Transportation Integrated Search
1999-05-01
The 1998 traffic fatality count was 1,367, down 5.5 percent from the 1997 figure of 1,446. : Compared with 1997, injuries were down 4.3 percent and total crashes were down 5.2 : percent. These figures translated into a death rate of 1.5 per 100 milli...
2001 Michigan traffic crash facts
DOT National Transportation Integrated Search
2002-06-18
The 2001 traffic fatality count was 1,328, down 3.9 percent from the 2000 figure of 1,382. : Compared with 2000, injuries were down 7.8 percent and total crashes were down 5.7 : percent. These figures translated into a death rate of 1.4 per 100 milli...
2002 Michigan traffic crash facts
DOT National Transportation Integrated Search
2003-05-19
The 2002 traffic fatality count was 1,279, down 3.7 percent from the 2001 figure of 1,328. : Compared with 2001, injuries were down 0.2 percent and total crashes were down 1.3 : percent. These figures translated into a death rate of 1.3 per 100 milli...
1997 Michigan traffic crash facts
DOT National Transportation Integrated Search
1998-05-01
The 1997 traffic fatality count was 1,446, down 3.9 percent from the 1996 figure of 1,505. : Compared with 1996, injuries were down 3.5 percent and total crashes were down 2.2 : percent. These figures translated into a death rate of 1.6 per 100 milli...
Mildred (Millie) Dresselhaus and Her Impacts on Science and Women in
yield numerous scientific discoveries.'1 'Professor Dresselhaus began her MIT career at the Lincoln , Emeritus Institute Professor. 'Throughout her career, ... [Dr. Dresselhaus] has combined significant scientific environment, Dr. Dresselhaus's esteemed career provides a decisive and resounding answer. Her
Accurate high-speed liquid handling of very small biological samples.
Schober, A; Günther, R; Schwienhorst, A; Döring, M; Lindemann, B F
1993-08-01
Molecular biology techniques require the accurate pipetting of buffers and solutions with volumes in the microliter range. Traditionally, hand-held pipetting devices are used to fulfill these requirements, but many laboratories have also introduced robotic workstations for the handling of liquids. Piston-operated pumps are commonly used in manually as well as automatically operated pipettors. These devices cannot meet the demands for extremely accurate pipetting of very small volumes at the high speed that would be necessary for certain applications (e.g., in sequencing projects with high throughput). In this paper we describe a technique for the accurate microdispensation of biochemically relevant solutions and suspensions with the aid of a piezoelectric transducer. It is suitable for liquids of a viscosity between 0.5 and 500 milliPascals. The obtainable drop sizes range from 5 picoliters to a few nanoliters with up to 10,000 drops per second. Liquids can be dispensed in single or accumulated drops to handle a wide volume range. The system proved to be excellently suitable for the handling of biological samples. It did not show any detectable negative impact on the biological function of dissolved or suspended molecules or particles.
Method for bonding thin film thermocouples to ceramics
Kreider, Kenneth G.
1993-01-01
A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium. The thin layer of reactive metal may be deposited by sputtering in ultra high purity argon in a vacuum of approximately 2 milliTorr (0.3 Pascals).
Chen, Wen-Ling; Cheng, Jiun-Yi; Lin, Xiao-Qian
2018-05-08
Pharmaceuticals and personal care products (PPCPs) are an emerging concern because of the large amount of PPCPs that is discharged and its potential ecological effects on the aquatic environment. Chlorination has proven efficient for removing some aromatic PPCPs from wastewater, but the formation of by-products has not been thoroughly investigated partly because of analytical difficulties. This study developed a method for systematically screening and identifying the transformation products (TPs) of multiple aromatic PPCPs through high-resolution mass spectrometry (HRMS). We spiked an environmentally relevant concentration (5000 ng/L) of three anti-inflammatory drugs, four parabens, bisphenol A, oxybenzone, and triclosan in the Milli-Q water and water containing natural organic matter (NOM). Low-dose chlorination (0.2-0.7 mg/L) was performed. We compared the chemical profiles of the chlorinated and untreated water and selected the ions to be identified based on the results of t-test and the ratio of signal intensities. Compound matching and isotopic pattern comparison were applied to characterising the molecular formulae of TPs. The fragmentation of the PPCPs and TPs was used in elucidating the structures of the TPs. The confirmation of TPs was achieved by comparing the retention time and fragment patterns of TPs with the isomer standards. In the chlorinated water, the aromatic PPCPs were substantially removed, except for the anti-inflammatory drugs (removal rates -5.2%-26%). Even with moderate chlorine dosages, all of the aromatic PPCPs, except for acetylsalicylic acid, were transformed into chlorinated derivatives in the Milli-Q water, and so were some PPCPs in the NOM-added water. The results of structure elucidation and compound confirmation as well as the increases in log K ow suggested that chlorination could transform aromatic PPCPs into more persistent, bioaccumulative, and toxic TPs. The presence of these TPs in the effluents where the PPCPs are removed through chlorination may pose increased risks to aquatic organisms. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Stephen P, E-mail: stephen.knight@health.qld.gov.au
The aim of this review was to develop a radiographic optimisation strategy to make use of digital radiography (DR) and needle phosphor computerised radiography (CR) detectors, in order to lower radiation dose and improve image quality for paediatrics. This review was based on evidence-based practice, of which a component was a review of the relevant literature. The resulting exposure chart was developed with two distinct groups of exposure optimisation strategies – body exposures (for head, trunk, humerus, femur) and distal extremity exposures (elbow to finger, knee to toe). Exposure variables manipulated included kilovoltage peak (kVp), target detector exposure and milli-ampere-secondsmore » (mAs), automatic exposure control (AEC), additional beam filtration, and use of antiscatter grid. Mean dose area product (DAP) reductions of up to 83% for anterior–posterior (AP)/posterior–anterior (PA) abdomen projections were recorded postoptimisation due to manipulation of multiple-exposure variables. For body exposures, the target EI and detector exposure, and thus the required mAs were typically 20% less postoptimisation. Image quality for some distal extremity exposures was improved by lowering kVp and increasing mAs around constant entrance skin dose. It is recommended that purchasing digital X-ray equipment with high detective quantum efficiency detectors, and then optimising the exposure chart for use with these detectors is of high importance for sites performing paediatric imaging. Multiple-exposure variables may need to be manipulated to achieve optimal outcomes.« less
EBCO Technologies TR Cyclotrons, Dynamics, Equipment, and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.R.; Univ British Columbia; Erdman, K. L.
2003-08-26
The Ebco Technologies TR cyclotrons have a common parent in the 500 MeV negative ion cyclotron at TRIUMF in Vancouver. As such, the TR cyclotrons have features that can be adapted for specific application. The cyclotron design is modularized into ion source and injection system, central region and then extraction. The cyclotron ion source is configured for cyclotron beam currents ranging from 50 microAmps to 2 milliAmps. The injection line can be operated in either continuous (CW) or in pulsed mode. The center region of the cyclotron is configured to match the ion source configuration. The extracted beams are directedmore » either to a local target station or to beam lines and thence to target stations. There has been development both in solid, liquid and gas targets. There has been development in radioisotope handling techniques, target material recovery and radiochemical synthesis.« less
Hand held lasers, a hazard to aircraft: How do we address this?
NASA Astrophysics Data System (ADS)
Barat, K.
2015-10-01
The availability of hand held lasers, commonly termed "laser pointers" is easy and wide spread, through commercial web sites and brick & mortar stores. The output of these hand held devices ranges from 1-5 milliWatts (mW) the legal laser pointer output limit, to 5000mW (5Watts). This is thousand times the maximum limit for pointers. Sadly the abuse of these devices is also wide spread. Over the last few years over 3000 aircraft are exposed to laser hits per year. While these aircraft exposures are of no danger to the aircraft frame but they can cause pilot distractions with the potential to cause a serve accident. The presentation will discuss the problem review visual effects, the regulatory response and how educators need to be aware of the problem and can take steps to educate students in the hope of having an effect.
Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.
2015-01-01
Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10−19 W/Hz−1/2 range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms. PMID:26061283
Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N; Korneev, Alexander; Pernice, Wolfram H P
2015-06-10
Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10(-19) W/Hz(-1/2) range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms.
Time Domain Simulations of Arm Locking in LISA
NASA Technical Reports Server (NTRS)
Thorpe, J. I.; Maghami, P.; Livas, Jeff
2011-01-01
Arm locking is a technique that has been proposed for reducing laser frequency fluctuations in the Laser Interferometer Space Antenna (LISA). a gravitational-wave observatory sensitive' in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that comprise LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of arm locking including the expected limiting noise sources (shot noise, clock noise. spacecraft jitter noise. and residual laser frequency noise). The effect of imperfect a priori knowledge of the LISA heterodyne frequencies and associated "pulling" of an arm locked laser is included. We find that our implementation meets requirements both on the noise and dynamic range of the laser frequency.
A Polarization-Diversity Simultaneous-Lobing Angle-Tracking Receiver
NASA Technical Reports Server (NTRS)
Renhult, W. B.
1961-01-01
This report describes a simultaneous-lobing angle-tracking receiver operating in the 225-260 milli-cycle-per-second telemetry band and employing polarization diversity. Its operation is considered primarily in the context of the Mercury range and tracking of the Mercury capsule. Several methods of providing diversity are briefly considered, and a number of ways of implementing the phase shifts required at one polarization for coherent signal addition are discussed. A prototype receiver is briefly described although circuitry which may be somewhat novel is covered in greater detail. No attempt has been made to include all of the sophistication one might expect in a receiver of this type; circuits have been simplified in some areas where, for example, a manual control can replace an automatic function and reduce complexity. Some conclusions are drawn as to how this receiver might perform in the Mercury environment.
STS-40 Payload Specialist Hughes-Fulford "flies" through SLS-1 module
1991-06-14
STS040-212-006 (5-14 June 1991) --- Payload specialist Millie Hughes-Fulford floats through the Spacelab Life Sciences (SLS-1) module aboard the Earth-orbiting Columbia. Astronaut James P. Bagian, mission specialist, is at the blood draw station in the background. The scene was photographed with a 35mm camera.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-22
... Water Resources Notice of Successive Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On February 1, 2011, the Utah Board of Water... reservoir. Applicant Contact: Mr. Eric Millis, Utah Board of Water Resources, 1594 W. North Temple, Salt...
1984-05-01
distribution systems were ob- ride content per unit weight of insulation was deter- tained from Johns - Manville , Pabco, and Owens- mined as the ratio...either adding more distilled-deionized water to the Aecomecial oraoh milly ana-yzedias-received samples of Johns - Manville . Owens-Corning, suspension, or
NASA Astrophysics Data System (ADS)
Michalik, D.; Lindegren, L.; Hobbs, D.; Lammers, U.; Yamada, Y.
2012-09-01
The Hipparcos mission (1989-1993) resulted in the first space-based stellar catalogue including measurements of positions, parallaxes and annual proper motions accurate to about one milli-arcsecond. More space astrometry missions will follow in the near future. The ultra-small Japanese mission Nano-JASMINE (launch in late 2013) will determine positions and annual proper motions with some milli-arcsecond accuracy. In mid 2013 the next-generation ESA mission Gaia will deliver some tens of micro-arcsecond accurate astrometric parameters. Until the final Gaia catalogue is published in early 2020 the best way of improving proper motion values is the combination of positions from different missions separated by long time intervals. Rather than comparing positions from separately reduced catalogues, we propose an optimal method to combine the information from the different data sets by making a joint astrometric solution. This allows to obtain good results even when each data set alone is insufficient for an accurate reduction. We demonstrate our method by combining Hipparcos and simulated Nano-JASMINE data in a joint solution. We show a significant improvement over the conventional catalogue combination.
Chen, Kuan-Fu; Wu, Hui-Hsin; Lin, Chien-Hung; Lin, Cheng-Huang
2013-08-30
The use of an accelerometer for detecting inorganic gases in gas chromatography (GC) is described. A milli-whistle was connected to the outlet of the GC capillary and was used instead of a classical GC detector. When the GC carrier gases and the sample gases pass through the milli-whistle, a sound is produced, leading to vibrational changes, which can be recorded using an accelerometer. Inorganic gases, including SO2, N2 and CO2, which are released from traditional Chinese firework-rockets at relatively high levels as the result of burning the propellant and explosive material inside could be rapidly determined using the GC/whistle-accelerometer system. The method described herein is safe, the instrumentation is compact and has potential to be modified so as to be portable for use in the field. It also can be used in conjunction with FID (flame ionization detector) or TCD (thermal conductivity detector), in which either no response for FID (CO2, N2, NO2, SO2, etc.) or helium gas is needed for TCD, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Millie Hughes-Fulford, Scientist and Prior Astronaut
2014-03-13
CAPE CANAVERAL, Fla. - From left, T-cell science team members Emily Martinez, Miya Yoshida and Tara Candelario, of the Hughes-Fulford Laboratory, San Francisco, Calif., discuss preflight and post-flight experiment operations with researcher and principal investigator Dr. Millie Hughes-Fulford in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston
Millie Hughes-Fulford, Scientist and Prior Astronaut
2014-03-13
CAPE CANAVERAL, Fla. - T-cell science team member Tara Candelario of the Hughes-Fulford Laboratory, San Francisco, Calif., at the microscope, discusses preflight and post-flight experiment operations with researcher and principal investigator Dr. Millie Hughes-Fulford in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida as T-cell science team members Emily Martinez, left, and Miya Yoshida look on. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston
Millie Hughes-Fulford, Scientist and Prior Astronaut
2014-03-13
CAPE CANAVERAL, Fla. - Researcher and principal investigator Dr. Millie Hughes-Fulford of the Hughes-Fulford Laboratory, San Francisco, Calif., at right, plans preflight and post-flight experiment operations with T-cell science team members Emily Martinez, left, and Tara Candelario in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston
Millie Hughes-Fulford, Scientist and Prior Astronaut
2014-03-13
CAPE CANAVERAL, Fla. - Researcher and former NASA payload specialist Millie Hughes-Fulford, of the Hughes-Fulford Laboratory, San Francisco, Calif., discusses her laboratory's T-cell experiment and the impact the research may have on aging adults and their immune systems with an interviewer in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston
Precision Pointing for the Wide-Field Infrared Survey Telescope (WFIRST)
NASA Technical Reports Server (NTRS)
Stoneking, Eric; Hsu, Oscar; Welter, Gary
2017-01-01
The Wide-Field Infrared Survey Telescope (WFIRST) mission, scheduled for a mid-2020's launch, is currently in its definition phase. The mission is designed to investigate essential questions in the areas of dark energy, exoplanets, and infrared astrophysics. WFIRST will use a 2.4-meter primary telescope (same size as the Hubble Space Telescope's primary mirror) and two instruments: the Wide Field Instrument (WFI) and the Coronagraph Instrument (CGI). In order to ad-dress the critical science requirements, the WFIRST mission will conduct large-scale surveys of the infrared sky, requiring both agility and precision pointing (11.6 milli-arcsec stability, 14 milli-arcsec jitter). This paper describes some of the challenges this mission profile presents to the GNC subsystem, and some of the design elements chosen to accommodate those challenges. The high-galactic-latitude survey is characterized by 3-minute observations separated by slews ranging from 0.025 deg to 0.8 deg. The need for observation efficiency drives the slew and settle process to be as rapid as possible. A description of the shaped slew profile chosen to minimize excitation of structural oscillation, and the handoff from star tracker-gyro control to fine guidance sensor control is detailed. Also presented is the fine guidance sensor (FGS), which is integral with the primary instrument (WFI). The FGS is capable of tracking up to 18 guide stars, enabling robust FGS acquisition and precision pointing. To avoid excitation of observatory structural jitter, reaction wheel speeds are operationally maintained within set limits. In addition, the wheel balance law is designed to maintain 1-Hz separation between the wheel speeds to avoid reinforcing jitter excitation at any particular frequency. The wheel balance law and operational implications are described. Finally, the candidate GNC hardware suite needed to meet the requirements of the mission is presented.
Precision Pointing for the Wide-Field Infrared Survey Telescope(WFIRST)
NASA Technical Reports Server (NTRS)
Stoneking, Eric T.; Hsu, Oscar C.; Welter, Gary
2017-01-01
The Wide-Field Infrared Survey Telescope (WFIRST) mission, scheduled for a mid-2020's launch, is currently in its definition phase. The mission is designed to investigate essential questions in the areas of dark energy, exoplanets, and infrared astrophysics. WFIRST will use a 2.4-meter primary telescope (same size as the Hubble Space Telescope's primary mirror) and two instruments: the Wide Field Instrument (WFI) and the Coronagraph Instrument (CGI). In order to address the critical science requirements, the WFIRST mission will conduct large-scale surveys of the infrared sky, requiring both agility and precision pointing (11.6 milli-arcsec stability, 14 milli-arcsec jitter). This paper describes some of the challenges this mission profile presents to the Guidance, Navigation, and Control (GNC) subsystem, and some of the design elements chosen to accommodate those challenges. The high-galactic-latitude survey is characterized by 3-minute observations separated by slews ranging from 0.025 deg to 0.8 deg. The need for observation efficiency drives the slew and settle process to be as rapid as possible. A description of the shaped slew profile chosen to minimize excitation of structural oscillation, and the handoff from star tracker-gyro control to fine guidance sensor control is detailed. Also presented is the fine guidance sensor (FGS), which is integral with the primary instrument (WFI). The FGS is capable of tracking up to 18 guide stars, enabling robust FGS acquisition and precision pointing. To avoid excitation of observatory structural jitter, reaction wheel speeds are operationally maintained within set limits. In addition, the wheel balance law is designed to maintain 1-Hz separation between the wheel speeds to avoid reinforcing jitter excitation at any particular frequency. The wheel balance law and operational implications are described. Finally, the candidate GNC hardware suite needed to meet the requirements of the mission is presented.
NASA Astrophysics Data System (ADS)
Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Arakaki, T.; Tanahara, A.; Oomori, T.; Miyagi, T.; Kadena, H.; Ishizaki, T.; Nakama, F.
2007-12-01
The study of perchlorate has become quite active in the U.S. in the last several years. Perchlorate has been recognized as a new environmental pollutant and it attracted much attention quickly in the world. The health concern about perchlorate stems from the fact that it displaces iodide in the thyroid gland, while iodine-containing thyroid hormones are essential for proper neural development from the fetal stage through the first years of life. In this study, we determined the concentrations of perchlorate ion present in the atmospheric aerosols collected in Okinawa Island, Japan. We then examined the relationships between the perchlorate concentrations and the environmental parameters and the climatic conditions peculiar to Okinawa. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS). Each sampling duration was one week. The quartz filters with aerosols were stirred with Milli-Q pure water for three hours before perchlorate ion was extracted. The extracted perchlorate ion concentrations were determined by ion chromatography (ICS-2000, DIONEX). The mean perchlorate concentration for the samples collected at CHAAMS was 1.83 ng/m3, and the minimum was 0.18 ng/m3. The samples collected during November 21-27, 2005, January 23-30, 2006 and April 24-01, 2006 had highest perchlorate concentrations. For these three samples, we performed back trajectory analysis, and found that the air mass for the three samples arrived from the Asian continent. A relatively strong correlation (r2 = 0.55) was found between perchlorate and nss-sulfate concentrations for the CHAAMS samples. Furthermore, we analyzed perchlorate in the soils and the fertilizers used for sugar cane farming around the CHAAMS area. The Milli-Q extract of the soil and the fertilizers did not contain any detectable levels of perchlorate ions. Therefore, it was suggested that perchlorate found in the atmospheric aerosols collected at CHAAMS was probably transported from the Asian continent.
Fine pointing control for a Next-Generation Space Telescope
NASA Astrophysics Data System (ADS)
Mosier, Gary E.; Femiano, Michael; Ha, Kong; Bely, Pierre Y.; Burg, Richard; Redding, David C.; Kissil, Andrew; Rakoczy, John; Craig, Larry
1998-08-01
The Next Generation Space Telescope will provide at least ten times the collecting area of the Hubble Space Telescope in a package that fits into the shroud of an expendable launch vehicle. The resulting large, flexible structure provides a challenge to the design of a pointing control system for which the requirements are at the milli-arcsecond level. This paper describes a design concept in which pointing stability is achieved by means of a nested-loop design involving an inertial attitude control system (ACS) and a fast steering mirror (FSM). A key to the integrated control design is that the ACS controllers has a bandwidth well below known structural modes and the FSM uses a rotationally balanced mechanism which should not interact with the flexible modes that are within its control bandwidth. The ACS controller provides stable pointing of the spacecraft bus with star trackers and gyros. This low bandwidth loop uses nearly co-located sensors and actuators to slew and acquire faint guide stars in the NIR camera. This controller provides a payload reference stable to the arcsecond level. Low-frequency pointing errors due to sensor noise and dynamic disturbances are suppressed by a 2-axis gimbaled FSM locate din the instrument module. The FSM servo bandwidth of 6 Hz is intended to keep the guide star position stable in the NIR focal plane to the required milli-arcsecond level. The mirror is kept centered in its range of travel by a low-bandwidth loop closed around the ACS. This paper presents the result of parametric trade studies designed to assess the performance of this control design in the presence of modeled reaction wheel disturbances, assumed to be the principle source of vibration for the NGST, and variations in structural dynamics. Additionally, requirements for reaction wheel disturbance levels and potential vibration isolation subsystems were developed.
PRD3000: A novel Personnel Radiation Detector with Radiation Exposure Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallu-Labruyere, A.; Micou, C.; Schulcz, F.
PRD3000{sup TM} is a novel Personal Radiation Detector (PRD) with personnel radiation dose exposure monitoring. It is intended for First Responders, Law Enforcement, Customs Inspectors protecting critical infrastructures for detecting unexpected radioactive sources, who also need real time Hp(10) dose equivalent information. Traditional PRD devices use scintillator materials instrumented through either a photomultiplier tube or a photodiode photodetector. While the former is bulky and sensitive to magnetic fields, the latter has to compromise radiation sensitivity and energy threshold given its current noise per unit of photo-detection surface. Recently, solid state photodetectors (SiPM), based on arrays of Geiger operated diodes, havemore » emerged as a scalable digital photodetector for photon counting. Their strong breakdown voltage temperature dependence (on the order of tens of milli-volts per K) has however limited their use for portable instruments where strong temperature gradients can be experienced, and limited power is available to temperature stabilize. The PRD3000 is based on the industry standard DMC3000 active dosimeter that complies with IEC 61526 Ed. 3 and ANSI 42.20 for direct reading personal dose equivalent meters and active personnel radiation monitors. An extension module is based on a CsI(Tl) scintillator readout by a temperature compensated SiPM. Preliminary nuclear tests combined with a measured continuous operation in excess of 240 hours from a single AAA battery cell indicate that the PRD3000 complies with the IEC 62401 Ed.2 and ANSI 42.32 without sacrificing battery life time. We present a summary of the device test results, starting with performance stability over a temperature range of - 20 deg. C to 50 deg. C, false alarm rates and dynamic response time. (authors)« less
NASA Astrophysics Data System (ADS)
Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley
2015-09-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman;
2015-01-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.
2004-02-01
outcome. The author wishes to apologize in advance to fellow NASA BPP researchers for not including their work in this report . However, Millis (2003a...San Rafael Ave. Las Vegas, NV 89120 September 2004 Special Report APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED...AIR FORCE RESEARCH LABORATORY AIR FORCE MATERIEL COMMAND EDWARDS AIR FORCE BASE CA 93524-7048 REPORT DOCUMENTATION PAGE Form Approved
The Role of the University in Modern Society
Odegaard, Charles E.
1967-01-01
President Odegaard here presents some stimulating thoughts for medical educators and for other members of the medical profession. Although a historian by profession, he has considerable familiarity with medical matters from his membership in the Citizens Commission on Graduate Medical Education (Millis Commission), the President's National Advisory Commission on Health Manpower and the Natonal Advisory Health Council. PMID:6046041
Omede, A. A.; Bhuiyan, M. M.; lslam, A. F.; Iji, P. A.
2017-01-01
Objective This study explored the physico-chemical properties of late-incubation egg amniotic fluid and a potential in ovo feed (IOF) supplement. Methods Amniotic fluid was collected from broiler breeders (Ross 308, 51 weeks and Cobb 500, 35 weeks) on day 17 after incubation. A mixture of high-quality soy protein supplement – Hamlet Protein AviStart (HPA) was serially diluted in MilliQ water to obtain solutions ranging from 150 to 9.375 mg/mL. The mixtures were heat-treated (0, 30, 60 minutes) in a waterbath (80°C) and then centrifuged to obtain supernatants. The amniotic fluid and HPA supernatants were analysed for their physico-chemical properties. Results Only viscosity and K+ were significantly (p<0.05) different in both strains. Of all essential amino acids, leucine and lysine were in the highest concentration in both strains. The osmolality, viscosity and pCO2 of the supernatants decreased (p<0.05) with decreasing HPA concentration. Heat treatment significantly (p<0.05) affected osmolality, pH, and pCO2, of the supernatants. The interactions between HPA concentration and heat treatment were significant with regards to osmolality (p<0.01), pH (p<0.01), pCO2 (p<0.05), glucose (p<0.05), lactate (p<0.01) and acid-base status (p<0.01) of HPA solutions. The Ca2+, K+, glucose, and lactate increased with increasing concentration of HPA solution. The protein content of HPA solutions decreased (p<0.05) with reduced HPA solution concentrations. The supernatant from 150 mg/mL HPA solution was richest in glutamic acid, aspartic acid, arginine and lysine. Amino acids concentrations were reduced (p<0.05) with each serial dilution but increased with longer heating. Conclusion The values obtained in the primary solution (highest concentration) are close to the profiles of high-protein ingredients. This supplement, as a solution, hence, may be suitable for use as an IOF supplement and should be tested for this potential. PMID:28183170
Exposure Range For Cine Radiographic Procedures
NASA Astrophysics Data System (ADS)
Moore, Robert J.
1980-08-01
Based on the author's experience, state-of-the-art cine radiographic equipment of the type used in modern cardiovascular laboratories for selective coronary arteriography must perform at well-defined levels to produce cine images with acceptable quantum mottle, contrast, and detail, as judged by consensus of across section of American cardiologists/radiologists experienced in viewing such images. Accordingly, a "standard" undertable state-of-the-art cine radiographic imaging system is postulated to answer the question of what patient exposure range is necessary to obtain cine images of acceptable quality. It is shown that such a standard system would be expected to produce a 'tabletop exposure of about 25 milliRoentgens per frame for the "standard" adult patient, plus-or-minus 33% for accept-able variation of system parameters. This means that for cine radiography at 60 frames per second (30 frames per second) the exposure rate range based on this model is 60 to 120 Roentgens per minute (30 to 60 Roentgens per minute). The author contends that studies at exposure levels below these will yield cine images of questionable diagnostic value; studies at exposure levels above these may yield cine images of excellent visual quality but having little additional diagnostic value, at the expense of added patient/personnel radiation exposure and added x-ray tube heat loading.
EXOMARS IRAS (DOSE) radiation measurements.
NASA Astrophysics Data System (ADS)
Federico, C.; Di Lellis, A. M.; Fonte, S.; Pauselli, C.; Reitz, G.; Beaujean, R.
The characterization and the study of the radiations on their interaction with organic matter is of great interest in view of the human exploration on Mars. The Ionizing RAdiation Sensor (IRAS) selected in the frame of the ExoMars/Pasteur ESA mission is a lightweight particle spectrometer combining various techniques of radiation detection in space. It characterizes the first time the radiation environment on the Mars surface, and provide dose and dose equivalent rates as precursor information absolutely necessary to develop ways to mitigate the radiation risks for future human exploration on Mars. The Martian radiation levels are much higher than those found on Earth and they are relatively low for space. Measurements on the surface will show if they are similar or not to those seen in orbit (modified by the presence of ``albedo'' neutrons produced in the regolith and by the thin Martian atmosphere). IRAS consists of a telescope based on segmented silicon detectors of about 40\\userk\\milli\\metre\\user;k diameter and 300\\user;k\\micro\\metre\\user;k thickness, a segmented organic scintillator, and of a thermoluminescence dosimeter. The telescope will continuously monitor temporal variation of the particle count rate, the dose rate, particle and LET (Linear Energy Transfer) spectra. Tissue equivalent BC430 scintillator material will be used to measure the neutron dose. Neutrons are selected by a criteria requiring no signal in the anti-coincidence. Last, the passive thermoluminescence dosimeter, based on LiF:Mg detectors, regardless the on board operation timing, will measure the total dose accumulated during the exposure period and due to beta and gamma radiation, with a responsivity very close to that of a human tissue.
USDA-ARS?s Scientific Manuscript database
Peanut (Arachis hyogaea) is an important oil seed crop that is grown as a principle source of edible oil and vegetable protein. Over 1.6 million acres of peanuts were planted in the United States during 2012. Peanuts require large amounts of Calcium (Ca) and Phosphorus (P). In 2010, over 10 milli...
Ronnie, Millie, Lila--Women's History for Games: A Manifesto and a Way Forward
ERIC Educational Resources Information Center
Kocurek, Carly
2017-01-01
The author discusses how, in practice, historians often obscure the effect of women's lives, work, and contributions on their topic, and she takes special note of video game history. Using both history and film studies as examples, she argues that games historians can and should adopt feminist viewpoints to help ensure a fuller, more diverse…
Bimaterial Microcantilevers as a Hybrid Sensing Platform
2008-01-01
cantilevers are immersed in dilute solution (milli molar) of desired organic molecule (e.g., alkanethiols) in aqueous or organic solvent (e.g., water... active layers, and some of the im- portant applications. Emphasizing the material design aspects, the review underscores the most important findings... active sensing materials in microelectromechanical systems (MEMS), soft matter-inclusive sensors bring a desir- able diversity in signal transduction
Development and Calibration of an Oil Spill Behavior Model.
1982-09-01
7675A purge-and-trap sampler. The GC column was a wide bore 50 meter long glass capillary column coated with SE-30 (WCOT from Alltech Associates, Inc...commonly used CGS unit of 1 dyne/cm is 10- 9 N/m or 1 milli-Newtons/meter (mN/m). An advantage of the technique is that there is no solid surface in
NASA Astrophysics Data System (ADS)
Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita
2009-04-01
The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI’s science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a “Flagship and Landmark Discovery Mission” in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA’s Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/
NASA Astrophysics Data System (ADS)
Rowlands, Neil; Hutchings, John; Murowinski, Richard G.; Alexander, Russ
2003-03-01
Instrumentation for the Next Generation Space Telescope (NGST) is currently in the Phase A definition stage. We have developed a concept for the NGST Fine Guidance Sensor or FGS. The FGS is a detector array based imager which resides in the NGST focal plane. We report here on tradeoff studies aimed at defining an overall configuration of the FGS which will meet the performance and interface requirements. A key performance requirement is a noise equivalent angle of 3 milli-arcseconds to be achieved with 95% probability for any pointing of the observatory in the celestial sphere. A key interface requirement is compatibility with the architecture of the Integrated Science Instrument Module (ISIM). The concept developed consists of two independent and redundant FGS modules, each with a 4' x 2' field of view covered by two 2048 x 2048 infrared detector arrays, providing 60 milli-arcsecond sampling. Performance modeling supporting the choice of this architecture and the trade space considered is presented. Each module has a set of readout electronics which perform star detection, pixel-by-pixel correction, and in fine guiding mode, centroid calculation. These readout electronics communicate with the ISIM Command &Data Handling Units where the FGS control software is based. Rationale for this choice of architecture is also presented.
Proportion hyperglycosylated hCG: a new test for discriminating gestational trophoblastic diseases.
Cole, Laurence A
2014-11-01
Hyperglycosylated human chorionic gonadotropin (hCG) is a variant of hCG with large oligosaccharide side chains. Although hCG is produced by syncytiotrophoblast cells, hyperglycosylated hCG marks cytotrophoblast cell. Hyperglycosylated hCG signals placental implantation. Total hCG in serum and urine is measured by the Siemens Immulite hCG pregnancy test; the result is in milli-international unit per milliliter. Hyperglycosylated hCG is determined by the B152 microtiter plate assay; the result is in nanogram per milliliter. Hyperglycosylated hCG results can be converted to milli-international unit per milliliter equivalents by multiplying by 11. The test measures proportion hyperglycosylated hCG, hyperglycosylated hCG / total hCG. Proportion hyperglycosylated hCG marks cases intent on developing persistent hydatidiform mole (68% detection at 17% false detection). Proportion hyperglycosylated hCG also marks persistent hydatidiform mole (100% detection at 5.1% false detection). Proportion hyperglycosylated hCG distinguishes choriocarcinoma and gestational trophoblastic neoplasm cases, absolutely discriminating aggressive cases and minimally aggressive cases. Proportion hyperglycosylated hCG identifies quiescent gestational trophoblastic disease cases. It recognizes quiescent cases that become persistent disease (100% detection at 0% false positive). Proportion hyperglycosylated hCG is an invaluable test for discriminating gestational trophoblastic diseases.
Millie Hughes-Fulford, Scientist and Prior Astronaut
2014-03-13
CAPE CANAVERAL, Fla. - Researcher and former NASA payload specialist Millie Hughes-Fulford, of the Hughes-Fulford Laboratory, San Francisco, Calif., accepts the European Space Agency ESA T-cell experiment flight units being handed over in a Space Station Processing Facility laboratory at NASA's Kennedy Space Center in Florida. From left are Raimondo Fortezza of ESA, Hughes-Fulford, and Pier Luigi Ganga and Fabio Creati of Kayser Italia, manufacturer of the hardware. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston
Millie Hughes-Fulford, Scientist and Prior Astronaut
2014-03-13
CAPE CANAVERAL, Fla. - Researcher and former NASA payload specialist Millie Hughes-Fulford, of the Hughes-Fulford Laboratory, San Francisco, Calif., accepts the European Space Agency ESA T-cell experiment flight units being handed over in a Space Station Processing Facility laboratory at NASA's Kennedy Space Center in Florida. From left are Raimondo Fortezza of ESA, Hughes-Fulford, and Pier Luigi Ganga, Marco Vukich and Fabio Creati of Kayser Italia, manufacturer of the hardware. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston
Millie Hughes-Fulford, Scientist and Prior Astronaut
2014-03-13
CAPE CANAVERAL, Fla. - Researcher and principal investigator Dr. Millie Hughes-Fulford, of the Hughes-Fulford Laboratory, San Francisco, Calif., discusses her laboratory's T-cell experiment and the impact the research may have on aging adults and their immune systems with an interviewer in the Space Station Processing Facility. From left, T-cell science team members Miya Yoshida, Emily Martinez and Tara Candelario are at work preparing for launch in the background. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston
Millie Hughes-Fulford, Scientist and Prior Astronaut
2014-03-13
CAPE CANAVERAL, Fla. - Researcher and former NASA payload specialist Millie Hughes-Fulford, of the Hughes-Fulford Laboratory, San Francisco, Calif., accepts the European Space Agency ESA T-cell experiment flight units being handed over in a Space Station Processing Facility laboratory at NASA's Kennedy Space Center in Florida. From left are Hughes-Fulford shaking hands with Pier Luigi Ganga of Kayser Italia, manufacturer of the hardware, with Raimondo Fortezza of ESA looking on. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston
User needs, benefits and integration of robotic systems in a space station laboratory
NASA Technical Reports Server (NTRS)
Farnell, K. E.; Richard, J. A.; Ploge, E.; Badgley, M. B.; Konkel, C. R.; Dodd, W. R.
1989-01-01
The methodology, results and conclusions of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in the Space Station Microgravity and Materials Processing Facility are summarized. Study goals include the determination of user requirements for robotics within the Space Station, United States Laboratory. Three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. A NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of low gravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz.) and Level 2 (less than = 10-6 G at 0.1 Hz). This included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in order to determine their ability to perform a range of tasks related to the three low gravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements were determined such that definition of requirements for an orbital flight demonstration experiment may be established.
Vulcan Identification of Eclipsing Binaries in the Kepler Field of View
NASA Astrophysics Data System (ADS)
Mjaseth, Kimberly; Batalha, N.; Borucki, W.; Caldwell, D.; Latham, D.; Martin, K. R.; Rabbette, M.; Witteborn, F.
2007-05-01
We report the discovery of 236 new eclipsing binary stars located in and around the field of view of the Kepler Mission. The binaries were identified from photometric light curves from the Vulcan exoplanet transit survey. The Vulcan camera is comprised of a modest aperture (10cm) f/2.8 Canon lens focusing a 7° x 7° field of view onto a 4096 x 4096 Kodak CCD. The system yields an hour-to-hour relative precision of 0.003 on 12th magnitude stars and saturates at 9th magnitude. The binaries have magnitudes in the range of 9.5 < V < 13.5 and periods ranging from 0.5 to 13 days. The milli-magnitude photometric precision allows detection of transits as shallow as 1%. The catalog contains a total of 273 eclipsing binary stars, including detached systems (high and low mass ratio), contact binaries, and triple systems. We present the derived orbital/transit properties, light curves, and stellar properties for selected targets. In addition, we summarize the results of radial velocity follow-up work. Support for this work came from NASA's Discovery Program and NASA's Origins of the Solar System Program.
Characterisation of flash X-ray source generated by Kali-1000 Pulse Power System
NASA Astrophysics Data System (ADS)
Satyanarayana, N.; Durga Prasada Rao, A.; Mittal, K. C.
2016-02-01
The electron beam-driven Rod Pinch Diode (RPD) is presently fielded on KALI-1000 Pulse Power System at Bhabha Atomic Research Centre, Visakhapatnam and is a leading candidate for future flash X-ray radiographic sources. The diode is capable of producing less than 2-mm radiation spot sizes and greater than 350 milli rads of dose measured at 1 m from the X-ray source. KALI-1000 Pulse Power Source is capable of delivering up to 600 kV using a Tesla Transformer with Demineralized Insulated Transmission Line (DITL), the diode typically operates between 250-330 kV . Since the radiation dose has a power-law dependence on diode voltage, this limits the dose production on KALI-1000 system. Radiation dose with angular variation is measured using thermoluminescent detectors (TLD's) and the X-ray spot size is measured using pin hole arrangement with image plate (IP) to obtain the time-integrated source profile as well as a time-resolved spot diagnostic. An X-ray pinhole camera was used to pick out where the energetic e-beam connects to the anode. Ideally the diode should function such that the radiation is emitted from the tip. The camera was mounted perpendicular to the machine's axis to view the radiation from the tip. Comparison of the spot sizes of the X-ray sources obtained by the pin hole and rolled edge arrangements was carried and results obtained by both the techniques are with in ± 10% of the average values.
Standard Galactic Field RR Lyrae. I. Optical to Mid-infrared Phased Photometry
NASA Astrophysics Data System (ADS)
Monson, Andrew J.; Beaton, Rachael L.; Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Rich, Jeffrey A.; Seibert, Mark; Kollmeier, Juna A.; Clementini, Gisella
2017-03-01
We present a multi-wavelength compilation of new and previously published photometry for 55 Galactic field RR Lyrae variables. Individual studies, spanning a time baseline of up to 30 years, are self-consistently phased to produce light curves in 10 photometric bands covering the wavelength range from 0.4 to 4.5 microns. Data smoothing via the GLOESS technique is described and applied to generate high-fidelity light curves, from which mean magnitudes, amplitudes, rise times, and times of minimum and maximum light are derived. 60,000 observations were acquired using the new robotic Three-hundred MilliMeter Telescope (TMMT), which was first deployed at the Carnegie Observatories in Pasadena, CA, and is now permanently installed and operating at Las Campanas Observatory in Chile. We provide a full description of the TMMT hardware, software, and data reduction pipeline. Archival photometry contributed approximately 31,000 observations. Photometric data are given in the standard Johnson UBV, Kron-Cousins {R}C{I}C, 2MASS JHK, and Spitzer [3.6] and [4.5] bandpasses.
High fidelity, radiation tolerant analog-to-digital converters
NASA Technical Reports Server (NTRS)
Wang, Charles Chang-I (Inventor); Linscott, Ivan Richard (Inventor); Inan, Umran S. (Inventor)
2012-01-01
Techniques for an analog-to-digital converter (ADC) using pipeline architecture includes a linearization technique for a spurious-free dynamic range (SFDR) over 80 deciBels. In some embodiments, sampling rates exceed a megahertz. According to a second approach, a switched-capacitor circuit is configured for correct operation in a high radiation environment. In one embodiment, the combination yields high fidelity ADC (>88 deciBel SFDR) while sampling at 5 megahertz sampling rates and consuming <60 milliWatts. Furthermore, even though it is manufactured in a commercial 0.25-.mu.m CMOS technology (1 .mu.m=12.sup.-6 meters), it maintains this performance in harsh radiation environments. Specifically, the stated performance is sustained through a highest tested 2 megarad(Si) total dose, and the ADC displays no latchup up to a highest tested linear energy transfer of 63 million electron Volts square centimeters per milligram at elevated temperature (131 degrees C.) and supply (2.7 Volts, versus 2.5 Volts nominal).
Zhao, Li; Nakae, Yuki; Qin, Hongmei; Ito, Tadamasa; Kimura, Takahide; Kojima, Hideto; Chan, Lawrence
2014-01-01
Summary A gene vector consisting of nanodiamond, polyglycerol, and basic polypeptide (ND-PG-BPP) has been designed, synthesized, and characterized. The ND-PG-BPP was synthesized by PG functionalization of ND through ring-opening polymerization of glycidol on the ND surface, multistep organic transformations (–OH → –OTs (tosylate) → –N3) in the PG layer, and click conjugation of the basic polypeptides (Arg8, Lys8 or His8) terminated with propargyl glycine. The ND-PG-BPP exhibited good dispersibility in water (>1.0 mg/mL) and positive zeta potential ranging from +14.2 mV to +44.1 mV at neutral pH in Milli-Q water. It was confirmed by gel retardation assay that ND-PG-Arg8 and ND-PG-Lys8 with higher zeta potential hybridized with plasmid DNA (pDNA) through electrostatic attraction, making them promising as nonviral vectors for gene delivery. PMID:24778723
Side-band mutual interactions in the magnetosphere
NASA Technical Reports Server (NTRS)
Chang, D. C. D.; Helliwell, R. A.; Bell, T. F.
1980-01-01
Sideband mutual interactions between VLF waves in the magnetosphere are investigated. Results of an experimental program involving the generation of sidebands by means of frequency shift keying are presented which indicate that the energetic electrons in the magnetosphere can interact only with sidebands generated by signals with short modulation periods. Using the value of the memory time during which electrons interact with the waves implied by the above result, it is estimated that the length of the electron interaction region in the magnetosphere is between 4000 and 2000 km. Sideband interactions are found to be similar to those between constant-frequency signals, exhibiting suppression and energy coupling. Results from a second sideband transmitting program show that for most cases the coherence bandwidth of sidebands is about 50 Hz. Sideband mutual interactions are then explained by the overlap of the ranges of the parallel velocity of the electrons which the sidebands organize, and the wave intensity in the interaction region is estimated to be 2.5-10 milli-gamma, in agreement with satellite measurements.
SSM on AstroSat detects neutron star X-ray transient, Aql_X-1 in its outburst
NASA Astrophysics Data System (ADS)
Ramadevi, M. C.; Ravishankar, B. T.; Sarwade, Abhilash R.; Vaishali, S.; Hasan, Mohammed; Agarwal, Vivek Kumar; Baby, Blessy Elizabeth; Bhattacharya, Dipankar; Seetha, S.; Agarwal, Anil
2017-06-01
We report on the X-ray outburst of the neutron star X-ray source Aql X-1 as observed by SSM onboard AstroSat. Flux reported by SSM on its first observation of the source during this outburst on 01 June 2017 at 08:55 UT is about 820 milliCrab (2.24 +/- 0.02 photons/s-cm^2).
A Very Small Astrometry Satellite, Nano-JASMINE: Its Telescope and Mission Goals
NASA Astrophysics Data System (ADS)
Hatsutori, Yoichi; Suganuma, Masahiro; Kobayashi, Yukiyasu; Gouda, Naoteru; Yano, Taihei; Yamada, Yoshiyuki; Yamauchi, Masahiro
This paper introduces a small astrometry satellite, Nano-JASMINE. Nano-JASMINE is mounted a 5-cm effective diameter telescope and aims to measure positions of ten or twenty thousands of stars of z ≤ 8 mag for all-sky with the accuracy of a few milli-arcseconds. The mission goals are clarified and the current status of development of the telescope is reported.
USDA-ARS?s Scientific Manuscript database
Peanut (Arachis hyogaea) is an important oil seed crop that is grown as a principle source of edible oil and vegetable protein. Over 1.6 million acres of peanuts were planted in the United States during 2012. Peanuts require large amounts of calcium (Ca) and phosphorus (P). In 2010, over 10 milli...
2011-10-30
techniques can produce nanostructured programmable objects. The length scale of the driving physics limits the size scale of objects in DNA origami ...been working on developing a more compact design for 3D origami , with layers of helices packed on a square lattice, that can be folded successfully...version of the CADnano DNA origami CAD software to support square lattice designs. Achieving a simple and standardized way to create designs with the
SLS-1 crewmembers in high fidelity mockup of the Spacelab
1985-02-01
S85-26571 (Feb 1985) --- Wearing a special collar, Millie Hughes-Fulford, payload specialist, practices medical test operations scheduled for the Spacelab Life Sciences (SLS-1) mission. Robert Ward Phillips, backup payload specialist, looks on. The collar, called the baroflex neck pressure chamber, is designed to stimulate the bioceptors in the carotid artery, one of the two main arteries that supply blood to the head.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wester, W.; /Fermilab
2011-11-01
Physics beyond the Standard Model might include Weakly Interacting Slim Particles (WISPs) that address questions such as what is the nature of dark matter or even shed insight into the underlying nature of dark energy. WISPs are a general class of particles that include axions, axion-like particles, hidden sector photons, milli-charged particles, chameleons, etc. The GammeV (Gamma to milli-eV) experiment originated in 2007 in order to test a positive anomalous axion-like particle interpretation of the PVLAS experiment which was not evident in subsequent data. The experiment was also motivated as it was realized that the milli-eV scale appears naturally inmore » a see-saw between the electroweak and Planck scales, neutrino mass differences, the dark energy density, and the possible mass for certain dark matter candidates. GammeV was first to exclude both a scalar and pseudoscalar axion-like particle interpretation of the anomalous PVLAS result setting a limit of around 3.1 x 10{sup -7} GeV{sup -1} on the coupling to photons for low mass axion-like particles. It has also been found that the parameter space of a variety of other WISP candidates is both largely unexplored and is accessible by modest experiments employing lasers and possibly accelerator magnets. GammeV data has also been used to set limits on possible hidden sector photons. Further work by the GammeV team has focused on a reconfiguration of the apparatus to be sensitive to possible chameleon particles. Chameleons are scalar (or pseudoscalar) particles that couple to the stress energy tensor in a potential such that their properties depend on their environment. In particular, a chameleon acquires an effective mass which increases with local matter density, {rho}. For a certain class of such potentials, the chameleon field has properties that might explain dark energy. GammeV set the first limits on the coupling of chameleons to photons. A dedicated follow-up experiment, GammeV-CHASE, (CHameleon Afterglow SEarch), has also been performed and sets limits on both photon and some model dependent matter couplings as a function of an effective chameleon mass.« less
Vidmar, Janja; Oprčkal, Primož; Milačič, Radmila; Mladenovič, Ana; Ščančar, Janez
2018-04-12
Zero-valent iron nanoparticles (nZVI) exhibit great potential for the removal of metal contaminants from wastewater. After their use, there is a risk that nZVI will remain dispersed in remediated water and represent potential nano-threats to the environment. Therefore, the behaviour of nZVI after remediation must be explored. To accomplish this, we optimised a novel method using single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) for the sizing and quantification of nZVI in wastewater matrices. H 2 reaction gas was used in MS/MS mode for the sensitive and interference-free determination of low concentrations of nZVI with a low size limit of detection (36nm). This method was applied to study the influence of different iron (Fe) loads (0.1, 0.25, 0.5 and 1.0gL -1 ) and water matrices (Milli-Q water, synthetic and effluent wastewater) on the behaviour of nZVI, their interactions with Cd 2+ and the efficiency of Cd 2+ removal. The aggregation and sedimentation of nZVI increased with settling time. Sedimentation was slower in effluent wastewater than in Milli-Q water or synthetic wastewater. Consequently, Cd 2+ was more efficiently (86%) removed from effluent wastewater than from synthetic wastewater (73%), while its removal from Milli-Q water was inefficient (19%). The trace amounts of Cd 2+ that remained in the remediated water were either dissolved or sorbed to residual nZVI. The results of the nanoremediation of effluent wastewater with varying Fe loads showed that sedimentation was faster at higher initial concentrations of nZVI. After seven days of settling, low concentrations of Fe remained in the effluent wastewater at Fe loads of 0.5gL -1 or higher, which could indicate that the use of nZVI in nanoremediation under the described conditions may not represent an environmental nano-threat. However, further studies are needed to assess the ecotoxicological impact of Fe-related NPs used for the nanoremediation of wastewaters. Copyright © 2018 Elsevier B.V. All rights reserved.
Filipe, O M S; Santos, Sónia A O; Domingues, M Rosário M; Vidal, M M; Silvestre, A J D; Neto, C P; Santos, E B H
2013-05-01
In this study, the relevance of photodegradation processes on the persistence of the fungicide thiram in waters was investigated. The photodegradation of thiram in Milli-Q water and in aqueous solutions of humic and fulvic acids, as well as the photodegradation in spiked river water were studied. Both pure thiram and one of its commercial formulations were used to prepare the solutions which were irradiated in a solar light simulator. In general, thiram photodegradation follows pseudo-first order kinetics. The half-life time of thiram 2mgL(-1) in Milli-Q water was 28min. However, the degradation rate of thiram was significantly increased (p=0.02) by the inert components of the thiram commercial formulation as well as by commercial humic acids and by fulvic acids isolated from river water (p<0.004). Thus, the half-life time of thiram decreased to 24min in the presence of the inert formulation components, while, in the presence of both humic and fulvic acids (10mgL(-1)) it decreased to 22min. Furthermore, thiram photodegradation in natural river water showed that there is a significant enhancement of the degradation rate constant of thiram relatively to Milli-Q water, corresponding to a decrease of about 38% in its half-life time. This increase of the degradation rate in river water seems to be higher than that observed in the presence of FA, suggesting that beyond organic matter, other natural river components can increase the thiram photodegradation rate. These results allow us to conclude that photodegradation by solar radiation can be an important degradation pathway of thiram in natural waters. HPLC-MS/MS allowed to identify, for the first time, three products of the photodegradation of thiram in aqueous solution. Three compounds were identified and their structure was corroborated by the MS(n) spectra fragmentation profile. Pathways for the formation of the products from thiram photodegradation are proposed and discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Clofibric acid degradation in UV254/H2O2 process: effect of temperature.
Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei
2010-04-15
The degradation of clofibric acid (CA) in UV(254)/H(2)O(2) process under three temperature ranges, i.e. T1 (9.0-11.5 degrees C), T2 (19.0-21.0 degrees C) and T3 (29.0-30.0 degrees C) was investigated. The effects of solution constituents including NO(3)(-) and HCO(3)(-) anions, and humic acid (HA) on CA degradation were evaluated in Milli-Q waters. CA degradation behaviors were simulated with the pseudo-first-order kinetic model and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated. The results showed that higher temperature would favor CA degradation, and CA degradation was taken place mostly by indirect oxidation through the formation of OH radicals in UV(254)/H(2)O(2) process. In addition, the effects of both NO(3)(-) and HCO(3)(-) anions at two selected concentrations (1.0x10(-3) and 0.1 mol L(-1)) and HA (20 mg L(-1)) on CA degradation were investigated. The results showed that HA had negative effect on CA degradation, and this effect was much more apparent under low temperature condition. On the other hand, the inhibitive effect on CA degradation at both lower and higher concentrations of bicarbonate was observed, and this inhibitive effect was much more apparent at higher bicarbonate concentration and lower temperature condition. While, at higher nitrate concentration the inhibitive effect on CA degradation under three temperature ranges was observed, and with the temperature increase this negative effect was apparently weakened. However, at lower nitrate concentration a slightly positive effect on CA degradation was found under T2 and T3 conditions. Moreover, when using a real wastewater treatment plant (WWTP) effluent spiked with CA over 99% of CA removal could be achieved under 30 degrees C within only 15 min compared with 40 and 80 min under 20 and 10 degrees C respectively, suggesting a significant promotion in CA degradation under higher temperature condition. Therefore, it can be concluded that temperature plays an important role in CA degradation in UV/H(2)O(2) process. 2009 Elsevier B.V. All rights reserved.
Seitz, Frank; Lüderwald, Simon; Rosenfeldt, Ricki R.; Schulz, Ralf; Bundschuh, Mirco
2015-01-01
During their aquatic life cycle, nanoparticles are subject to environmentally driven surface modifications (e.g. agglomeration or coating) associated with aging. Although the ecotoxicological potential of nanoparticles might be affected by these processes, only limited information about the potential impact of aging is available. In this context, the present study investigated acute (96 h) and chronic (21 d) implications of systematically aged titanium dioxide nanoparticles (nTiO2; ~90 nm) on the standard test species Daphnia magna by following the respective test guidelines. The nTiO2 were aged for 0, 1, 3 and 6 d in media with varying ionic strengths (Milli-Q water: approx. 0.00 mmol/L and ASTM: 9.25 mmol/L) in the presence or absence of natural organic matter (NOM). Irrespective of the other parameters, aging in Milli-Q did not change the acute toxicity relative to an unaged control. In contrast, 6 d aged nTiO2 in ASTM without NOM caused a fourfold decreased acute toxicity. Relative to the 0 d aged particles, nTiO2 aged for 1 and 3 d in ASTM with NOM, which is the most environmentally-relevant setup used here, significantly increased acute toxicity (by approximately 30%), while a toxicity reduction (60%) was observed for 6 d aged nTiO2. Comparable patterns were observed during the chronic experiments. A likely explanation for this phenomenon is that the aging of nTiO2 increases the particle size at the start of the experiment or the time of the water exchange from <100 nm to approximately 500 nm, which is the optimal size range to be taken up by filter feeding D. magna. If subjected to further agglomeration, larger nTiO2 particles, however, cannot be retained by the daphnids’ filter apparatus ultimately reducing their ecotoxicological potential. This non-linear pattern of increasing and decreasing nTiO2 related toxicity over the aging duration, highlights the knowledge gap regarding the underlying mechanisms and processes. This understanding seems, however, fundamental to predict the risks of nanoparticles in the field. PMID:25933435
NASA Astrophysics Data System (ADS)
Meldrum, J.; Averyt, K.; Caldwell, P.; Sun, G.; Huber-lee, A. T.; McNulty, S.
2012-12-01
Assessing the sustainability of human activities depends, in part, on the availability of water supplies to meet the demands of those activities. Thermoelectric cooling, agriculture, and municipal uses all compete for water supplies, but each sector differs in its characteristic ratio of water consumption versus withdrawals. This creates different implications for contributing to water supply stress and, conversely, vulnerabilities within each sector to changing water supplies. In this study, we use two measures of water stress, relating to water withdrawals and to water consumption, and calculate the role of each of these three sectors in contributing to the two different measures. We estimate water stress with an enhanced version of the Water Supply Stress Index (WaSSI), calculating the ratio of water demand to water supply at the 8-digit Hydrologic Unit Code (HUC) scale (Sun et al. 2008, 2011; Caldwell et al. 2011). Current water supplies are based on an integrated water balance and flow routing model of the conterminous United States, which accounts for surface water supply, groundwater supply, and major return flows. Future supplies are based on simulated regional changes in streamflow in 2050 from an ensemble of 12 climate models (Milly et al. 2005). We estimate water demands separately for agriculture, municipal uses, and thermoelectric cooling, with the first two based on Kenny et al. (2005) and the last on the approach of Averyt et al. (2011). We find substantial regional variation not only in the overall WaSSI for withdrawals and consumption but also in contribution of the three water use sectors to that total. Results suggest that the relative vulnerabilities of different sectors of human activity to water supply stress vary spatially and that policies for alleviating that stress must consider the specific, regional context of the tradeoffs between competing water demands. Ref's: Averyt, K., Fisher, J., Huber-Lee, A., Lewis, A., Macknick, J., Madden, N., Rogers, J., and Tellinghuisen, S. 2011. Freshwater use by US power plants: electricity's thirst for a precious resource. A report of the Energy and Water in a Warming World initiative, Cambridge, MA: Union of Concerned Scientists, 52 pp. Caldwell, P., Sun, G., McNulty, S., Cohen, E., and Moore Myers, J. 2011. Modeling Impacts of Environmental Change on Ecosystem Services across the Conterminous United States, in: Proceedings of the Fourth Interagency Conference on Research in the Watersheds, Fairbanks, AK, 26-30 Sept 2011, 63-69. Kenny, J., Barber, N., Hutson, S., Linsey, K., Lovelace, J., and Maupin, M. 2009. Estimated use of water in the United States in 2005. US Geological Survey Circular 1344, 52 pp. Milly, P. C. D., Dunne, K. A., and Vecchia, A. V. 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438(7066):347-350. Sun, G., McNulty, S., Moore Myers, J., and Cohen, E. 2008. Impacts of multiple stresses on water demand and supply across the Southeastern United States. Journal of American Water Resources Association 44(6):1441-1457. Sun, G., Caldwell, P., Noormets, A., Cohen, E., McNulty, S., Treasure, E., Domec, J., Mu, Q., Xiao, J., John, R., and Chen, J. 2011. Upscaling key ecosystem functions across the Conterminous United States by a water-centric ecosystem model, J. Geophys. Res., 116.
Rediscovering Interwar American Theorists
2017-05-25
society .” See Millis, American Military Thought, xvi. 7 Weigley, The American Way of War: A History of United States Military Strategy and Policy, 214...maintains that Americans failed to perceive the, “operational field as a new and distinct cognition,” until the publication of AirLand Battle doctrine in...developments in operational theory, but values evidence of practice above theory. He contends that Americans failed to benefit from advances in operational
How Bilayer Graphene Got a Bandgap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng Wang
2009-06-02
Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.
How Bilayer Graphene Got a Bandgap
Feng Wang
2017-12-09
Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.
How Bilayer Graphene Got a Bandgap
Wang, Feng
2018-01-08
Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.
NASA Technical Reports Server (NTRS)
Clapp, Brian R.; Sills, Joel W., Jr.; Voorhees, Carl R.; Griffin, Thomas J. (Technical Monitor)
2002-01-01
The Vibration Admittance Test (VET) was performed to measure the emitted disturbances of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryogenic Cooler (NCC) in preparation for NCC installation onboard the Hubble Space Telescope (HST) during Servicing Mission 3B (SM3B). Details of the VET ground-test are described, including facility characteristics, sensor complement and configuration, NCC suspension, and background noise measurements. Kinematic equations used to compute NCC mass center displacements and accelerations from raw measurements are presented, and dynamic equations of motion for the NCC VET system are developed and verified using modal test data. A MIMO linear frequency-domain analysis method is used to compute NCC-induced loads and HST boresight jitter from VET measurements. These results are verified by a nonlinear time-domain analysis approach using a high-fidelity structural dynamics and pointing control simulation for HST. NCC emitted acceleration levels not exceeding 35 micro-g rms were measured in the VET and analysis methods herein predict 3.1 milli-areseconds rms jitter for HST on-orbit. Because the NCC is predicted to become the predominant disturbance source for HST, VET results indicate that HST will continue to meet the 7 milli-arcsecond pointing stability mission requirement in the post-SM3B era.
U-PHOS Project: Development of a Large Diameter Pulsating Heat Pipe Experiment on board REXUS 22
NASA Astrophysics Data System (ADS)
Nannipieri, P.; Anichini, M.; Barsocchi, L.; Becatti, G.; Buoni, L.; Celi, F.; Catarsi, A.; Di Giorgio, P.; Fattibene, P.; Ferrato, E.; Guardati, P.; Mancini, E.; Meoni, G.; Nesti, F.; Piacquadio, S.; Pratelli, E.; Quadrelli, L.; Viglione, A. S.; Zanaboni, F.; Mameli, M.; Baronti, F.; Fanucci, L.; Marcuccio, S.; Bartoli, C.; Di Marco, P.; Bianco, N.; Marengo, M.; Filippeschi, S.
2017-01-01
U-PHOS Project aims at analysing and characterising the behaviour of a large diameter Pulsating Heat Pipe (PHP) on board REXUS 22 sounding rocket. A PHP is a passive thermal control device where the heat is efficiently transported by means of the self-sustained oscillatory fluid motion driven by the phase change phenomena. Since, in milli-gravity conditions, buoyancy forces become less intense, the PHP diameter may be increased still maintaining the slug/plug typical flow pattern. Consequently, the PHP heat power capability may be increased too. U-PHOS aims at proving that a large diameter PHP effectively works in milli-g conditions by characterizing its thermal response during a sounding rocket flight. The actual PHP tube is made of aluminum (3 mm inner diameter, filled with FC-72), heated at the evaporator by a compact electrical resistance, cooled at the condenser by a Phase Change Material (PCM) embedded in a metallic foam. The tube wall temperatures are recorded by means of Fibre Bragg Grating (FBG) sensors; the local fluid pressure is acquired by means of a pressure transducer. The present work intends to report the actual status of the project, focusing in particular on the experiment improvements with respect to the previous campaign.
Dolar, Davor; Vuković, Ana; Asperger, Danijela; Kosutić, Kresimir
2011-01-01
This study explored the removal of five veterinary pharmaceuticals (VPs) (sulfamethoxazole (SMETOX), trimethoprim (TMP), ciprofloxacin (CIPRO), dexamethasone (DEXA) and febantel (FEBA)) from different water matrices (Milli-Q water, model water, tap water and real pharmaceutical wastewater using four types of nanofiltration (NF) membranes (NF90, NF270, NF and HL) and two reverse osmosis (RO) membranes (LFC-1 and XLE). All VPs were added to different water matrices at a concentration of 10 mg/L. Rejections of VPs and water flux were measured. The rejection increased with increase of molecular weight. The highest rejections were obtained with RO membranes (LFC-1, XLE) and tight NF (NF90) membrane. In general, the rejection of VPs was higher in model water and tap water than in Milli-Q water, but the water flux was lower. This was mainly explained by ion adsorption inside the membranes pores. Narrower pore size counteracted the effect of presence of low concentration of natural organic matter (NOM) in tap water. The NOM was assumed to enhance the adsorption of VPs onto membrane surface, increased the size exclusion and electrostatic repulsion also appeared during the transport. Investigated water matrices had influence on water flux decline due to their complexity.
The AMoRE: Search for Neutrinoless Double Beta Decay in 100Mo
NASA Astrophysics Data System (ADS)
Park, HyangKyu; AMoRE Collaboration
2016-04-01
The AMoRE (Advanced Mo-based Rare process Experiment) collaboration is going to use calcium molybdate, 40Ca100MoO4 (CMO), crystal scintillators enriched in 100Mo and depleted in 48Ca to search for neutrinoless double-beta (0 νββ) decay of 100Mo using a technique of cryogenic scintillating bolometers at the underground laboratory in Korea. The collaboration is going to utilize metallic magnetic calorimeters (MMC) as temperature sensors both in heat and light channels of CMO detectors operated at milli-Kelvin temperature. Application of relatively fast MMC sensors provides excellent energy resolution, powerful discrimination of internal alpha particles, effective pulse-shape discrimination of randomly coinciding events of two-neutrino double-beta decay of 100Mo. In its first phase, the AMoRE-10 will use about 10 kg of CMO crystals. As a next step, the AMoRE-200 is going to build about 200 kg detector to reach a half-life sensitivity on the level of 1026 years with an aim to explore inverted hierarchy region of the effective Majorana neutrino mass 0.02 - 0.05 eV. Recent progress on the calcium molybdate detectors developments at room and milli-Kelvin temperatures as well as background study based on Monte Carlo simulations will be presented.
Linking Deep Astrometric Standards to the ICRF
NASA Astrophysics Data System (ADS)
Frey, S.; Platais, I.; Fey, A. L.
2007-07-01
The next-generation large aperature and large field-of-view telescopes will address fundamantal questions of astrophysica and cosmology such as the nature of dark matter and dark energy. For a variety of applications, the CCD mosaic detectors in the focal plane arrays require astronomic calibrationat the milli-arcsecond (mas) level. The existing optical reference frames are insufficient to support such calibrations. To address this problem, deep optical astronomic fields are being established near the Galactic plane. In order to achiev a 5-10-mas or better positional accuracyfor the Deepp Astrometric Standards (DAS), and to obtain bsolute stellar proper motions for the study of Galactic structure, it is crucial to link these fields to the International Celestial Reference Frame (ICRF). To this end, we selected 15 candidate compact extragalactic radio sources in the Gemini-Orion-Taurus (GOT) field. These sources were observed with the European VLBI Network (EVN) at 5 GHz in phase-reference mode. The bright compact calibrator source J0603+2159 and seven other sources were detected and imaged at the angular resolution of -1.5-8 mas. Relative astrometric positions were derived for these sources at a milli-arcsecond accuracy level. The detection of the optical counterparts of these extragalactic radio sources will allow us to establish a direct link to the ICRF locally in the GOT field.
The Next-Generation Very Large Array: Technical Overview
NASA Astrophysics Data System (ADS)
McKinnon, Mark; Selina, Rob
2018-01-01
As part of its mandate as a national observatory, the NRAO is looking toward the long range future of radio astronomy and fostering the long term growth of the US astronomical community. NRAO has sponsored a series of science and technical community meetings to consider the science mission and design of a next-generation Very Large Array (ngVLA), building on the legacies of the Atacama Large Millimeter/submillimeter Array (ALMA) and the Very Large Array (VLA).The basic ngVLA design emerging from these discussions is an interferometric array with approximately ten times the sensitivity and ten times higher spatial resolution than the VLA and ALMA radio telescopes, optimized for operation in the wavelength range 0.3cm to 3cm. The ngVLA would open a new window on the Universe through ultra-sensitive imaging of thermal line and continuum emission down to milli-arcsecond resolution, as well as unprecedented broadband continuum polarimetric imaging of non-thermal processes. The specifications and concepts for major ngVLA system elements are rapidly converging.We will provide an overview of the current system design of the ngVLA. The concepts for major system elements such as the antenna, receiving electronics, and central signal processing will be presented. We will also describe the major development activities that are presently underway to advance the design.
Applicability of Generalized Peek's Law to Scaling of Corona Onset Voltages in Electropositive Gases
NASA Astrophysics Data System (ADS)
Li, Yan-Ming
2008-10-01
We have developed the steady state positive corona model with the ionization zone physics in the point-plane configuration. The geometry is axisymmetric, consisting of a pointed anode of small tip radius and a planar cathode. The model solves the Poisson equation, drift dominated electron and the positive ion transport equations with the nonlinear Townsend ionization source terms, to give the complete electric field, electron and positive ion density distributions. The corona plasma properties can be determined as function of discharge current, ranging from the pico-ampere up to a milli-ampere. The calculated voltage-current characteristics obeyed the Townsend equation, agreeing with the general experimental observations. The model is applied to different electropositive gases, argon, xenon, nitrogen and mercury. Corona onset potentials are determined based on the discharge voltages at very low currents. Extensive parametric study for argon positive corona with varying anode tip radius, gap distance and gas pressure has been completed. All the simulated corona onset voltages are very well described by the generalized Peek's Law [1]. At sufficiently high current in the range of 0.1 mA, discharge filament is formed near the anode tip. [1] Peek F. W., Dielectric Phenomena in High Voltage Engineering, McGraw Hill, New York (1929).
User Needs, Benefits, and Integration of Robotic Systems in a Space Station Laboratory
NASA Technical Reports Server (NTRS)
Dodd, W. R.; Badgley, M. B.; Konkel, C. R.
1989-01-01
The methodology, results and conclusions of all tasks of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in a Space Station Laboratory are summarized. Study goals included the determination of user requirements for robotics within the Space Station, United States Laboratory. In Task 1, three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. In Task 2, a NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of microgravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz) and Level 2 (less than equal 10-6 G at 0.1 Hz). This task included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in Task 3 in order to determine their ability to perform a range of tasks related to the three microgravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements for an orbital flight demonstration were determined in Task 4. Task 5 assessed the impact of robotics.
NASA Astrophysics Data System (ADS)
Mérand, A.
2018-03-01
ESO's Very Large Telescope Interferometer (VLTI) was a unique facility when it was conceived more than 30 years ago, and it remains competitive today in the field of milli-arcsecond angular resolution astronomy. Over the past decade, while the VLTI matured into an operationally efficient facility, it became limited by its first-generation instruments. As the second generation of VLTI instrumentation achieves first light, further developments for this unique facility are being planned and are described here.
Conduct and Accountability; A Report to the President.
1986-06-01
developments ats passage o)fthe E~thics in] () % I I ertI eitI cto I f19 7 8. F venI inII’ Ir its cret v ers1 in , D I re c t Ive 550O. 7 1) rovId(Ie s milly...part, that, ’The Plant Rep/ACO is the team contractors’ policies, procedures, manager for all PCO requests for field pric ing controls, and practices
Analysis of Acoustic Depth Sounder Signals with Artificial Neural Networks
1991-04-01
battery pack, processor, and mode switches and (2) a stainless steel shaft 1 meter long and 27 millimeters in diameter, containing 8 milliCurie of...returned signal which is not used in conventional depth sounders due to lack of real-time tools for interpreting the 36 information. The shape and...develop some software tools for conducting the research. Commercial programs for neural network implementation were available, but were "black box" in
2008-09-01
One implication of this is that the instrument can physically resolve satellites at smaller separations than current and existing optical SSA assets...with the potential for 24/7 taskability and near-real time capability. By optimizing an instrument to perform position measurement rather than...sensors. The J-MAPS baseline also includes a novel filter-grating wheel, of interest in the area of non- resolved object characterization. We discuss the
Estimating Energy Expenditure with ActiGraph GT9X Inertial Measurement Unit.
Hibbing, Paul R; Lamunion, Samuel R; Kaplan, Andrew S; Crouter, Scott E
2018-05-01
The purpose of this study was to explore whether gyroscope and magnetometer data from the ActiGraph GT9X improved accelerometer-based predictions of energy expenditure (EE). Thirty participants (mean ± SD: age, 23.0 ± 2.3 yr; body mass index, 25.2 ± 3.9 kg·m) volunteered to complete the study. Participants wore five GT9X monitors (right hip, both wrists, and both ankles) while performing 10 activities ranging from rest to running. A Cosmed K4b was worn during the trial, as a criterion measure of EE (30-s averages) expressed in METs. Triaxial accelerometer data (80 Hz) were converted to milli-G using Euclidean norm minus one (ENMO; 1-s epochs). Gyroscope data (100 Hz) were expressed as a vector magnitude (GVM) in degrees per second (1-s epochs) and magnetometer data (100 Hz) were expressed as direction changes per 5 s. Minutes 4-6 of each activity were used for analysis. Three two-regression algorithms were developed for each wear location: 1) ENMO, 2) ENMO and GVM, and 3) ENMO, GVM, and direction changes. Leave-one-participant-out cross-validation was used to evaluate the root mean square error (RMSE) and mean absolute percent error (MAPE) of each algorithm. Adding gyroscope to accelerometer-only algorithms resulted in RMSE reductions between 0.0 METs (right wrist) and 0.17 METs (right ankle), and MAPE reductions between 0.1% (right wrist) and 6.0% (hip). When direction changes were added, RMSE changed by ≤0.03 METs and MAPE by ≤0.21%. The combined use of gyroscope and accelerometer at the hip and ankles improved individual-level prediction of EE compared with accelerometer only. For the wrists, adding gyroscope produced negligible changes. The magnetometer did not meaningfully improve estimates for any algorithms.
2009-01-01
employs a set of reference targets such as asteroids that are relatively numer- ous, more or less uniformly distributed around the Sun, and relatively...point source-like. Just such a population exists—90 km-class asteroids . There are about 100 of these objects with relatively well-know orbits...These are main belt objects that are approximately evenly distributed around the sun. They are large enough to be quasi-spherical in nature, and as a
The Underpotential Deposition of Copper on Pt(311): Site Selective Deposition and Anion Effects
1994-03-14
water (18 MOhms Millipore Milli-Q water). Aqueous acid solutions were prepared from high-purity (ULTREX) sulfuric acid . Copper ion solutions were...prepared by dissolution of CuSO 4 .5H 2 0 (Aldrich Gold Label 5N5) in sulfuric acid solutions. Chloride and bromide containing solutions were prepared by...Voltammetric characteristics of a Pt(311) electrode in acidic solutions containing chloride and bromide. Fig. 1 shows cyclic voltammograxns for the
Smith, R W; Yang, B J; Huang, W D
2004-11-01
Liquid diffusion experiments conducted on the MIR space station using the Canadian Space Agency QUELD II processing facility and the microgravity isolation mount (MIM) showed that g-jitter significantly increased the measured solute diffusion coefficients. In some experiments, milli-g forced vibration was superimposed on the sample when isolated from the ambient g-jitter; this resulted in markedly increased solute transport. To further explore the effects arising in these long capillary diffusion couples from the absence of unit-gravity and the presence of the forced g-jitter, the effects of a 1 milli-g forcing vibration on the mass transport in a 1.5 mm diameter long capillary diffusion couple have been simulated. In addition, to increase understanding of the role of unit gravity in determining the extent to which gravity can influence measured diffusion coefficient values, comparative experiments involving gold, silver, and antimony diffusing in liquid lead have been carried out using a similar QUELD II facility to that employed in the QUELD II/MIM/MIR campaign but under terrestrial conditions. It was found that buoyancy-driven convection may still persist in the liquid even when conditions are arranged for a continuously decreasing density gradient up the axis of a vertical long capillary diffusion couple due to the presence of small radial temperature gradients.
NASA Astrophysics Data System (ADS)
Voeikov, Vladimir L.; Kondakov, Sergey E.; Buravleva, Ekaterina; Kaganovsky, Isaak; Reznikov, Mikhail
2000-05-01
An automatic device for high-temporal resolution of the process of red blood sedimentation was designed. The position of the boundary between red blood and plasma may be registered each 30 sec in several pipettes simultaneously with +/- 10 mkm precision. Fractional rates of the boundary movement are deduced with high accuracy. Data are processed by a PC and presented as velocity-time curves (ESR-grams) and the curves describing time evolution of the boundary position. Several unexpected phenomena in the process of red blood sedimentation have been revealed. Upward fast movements of the boundary up to 1 mm were noted. In patients' blood sets of 5 - 10 milliHz oscillations of sedimentation rate were usually developing at early stages of blood sedimentation. In non-diluted healthy donors' blood high amplitude periodic oscillations were either absent, or were emerging only after blood resided in pipettes for several hours. When blood was diluted to a certain degree with physiological saline or with own plasma long-term low frequency (1 - 3 milliHz) rate oscillations regularly appeared. Non-trivial dependence of patterns of ESR-grams on diluting of blood with own plasma or saline was observed. Thus, non-linear dynamic behavior of living blood has been revealed due to application of the principles of the system of technical vision for the detailed analysis of red blood sedimentation kinetics.
Near-IR trigonometric parallaxes of nearby stars in the Galactic plane using the VVV survey
NASA Astrophysics Data System (ADS)
Beamín, J. C.; Mendez, R. A.; Smart, R. L.; Jara, R.; Kurtev, R.; Gromadzki, M.; Villanueva, V.; Minniti, D.; Smith, L. C.; Lucas, P. W.
2017-07-01
We use the multi-epoch KS band observations, covering a ˜ 5 years baseline to obtain milli and sub-milli arcsec precision astrometry for a sample of eighteen previously known high proper motion sources, including precise parallaxes for these sources for the first time. In this pioneer study we show the capability of the VVV project to measure high precision trigonometric parallaxes for very low mass stars (VLMS) up to distances of ˜ 400 pc reaching farther than most other ground based surveys or space missions for these types of stars. Two stars in our sample are low mass companions to sources in the TGAS catalog, the VVV astrometry of the fainter source is consistent within 1-σ with the astrometry for the primary source in TGAS catalog, confirming the excellent astrometric quality of the VVV data even nearby of saturated sources, as in these cases. Additionally, we used spectral energy distribution to search for evidence of unresolved binary systems and cool sub-dwarfs. We detected five systems that are most likely VLMS belonging to the Galactic halo based on their tangential velocities, and four objects within 60 pc that are likely members of the thick disk. A more comprehensive study of high proper motion sources and parallaxes of VLMS and brown dwarfs with the VVV is ongoing, including thousands of newly discovered objects (Kurtev et al. 2016).
Follana-Berná, Jorge; Seetharaman, Sairaman; Martín-Gomis, Luis; Charalambidis, Georgios; Trapali, Adelais; Karr, Paul A; Coutsolelos, Athanassios G; Fernández-Lázaro, Fernando; D'Souza, Francis; Sastre-Santos, Ángela
2018-03-14
A new zinc phthalocyanine-zinc porphyrin dyad (ZnPc-ZnP) fused through a pyrazine ring has been synthesized as a receptor for imidazole-substituted C 60 (C 60 Im) electron acceptor. Self-assembly via metal-ligand axial coordination and the pertinent association constants in solution were determined by 1 H-NMR, UV-Vis and fluorescence titration experiments at room temperature. The designed host was able to bind up to two C 60 Im electron acceptor guest molecules to yield C 60 Im:ZnPc-ZnP:ImC 60 donor-acceptor supramolecular complex. The spectral data showed that the two binding sites behave independently with binding constants similar in magnitude. Steady-state fluorescence studies were indicative of an efficient singlet-singlet energy transfer from zinc porphyrin to zinc phthalocyanine within the fused dyad. Accordingly, the transient absorption studies covering a wide timescale of femto-to-milli seconds revealed ultrafast energy transfer from 1 ZnP* to ZnPc (k EnT ∼ 10 12 s -1 ) in the fused dyad. Further, a photo induced electron transfer was observed in the supramolecularly assembled C 60 Im:ZnPc-ZnP:ImC 60 donor-acceptor complex leading to charge separated states, which persisted for about 200 ns.
Do over 200 million healthy altitude residents really suffer from chronic Acid-base disorders?
Zubieta-Calleja, Gustavo; Zubieta-Castillo, Gustavo; Zubieta-Calleja, Luis; Ardaya-Zubieta, Gustavo; Paulev, Poul-Erik
2011-01-01
As the oxygen tension of inspired air falls with increasing altitude in normal subjects, hyperventilation ensues. This acute respiratory alkalosis, induces increased renal excretion of bicarbonate, returning the pH back to normal, giving rise to compensated respiratory alkalosis or chronic hypocapnia. It seems a contradiction that so many normal people at high altitude should permanently live as chronic acid-base patients. Blood gas analyses of 1,865 subjects at 3,510 m, reported a P(a)CO(2) (arterial carbon dioxide tension ± SEM) = 29.4 ± 0.16 mmHg and pH = 7.40 ± 0.005. Base excess, calculated with the Van Slyke sea level equation, is -5 mM (milliMolar or mmol/l) as an average, suggesting chronic hypocapnia. THID, a new term replacing "Base Excess" is determined by titration to a pH of 7.40 at a P(a)CO(2) of 5.33 kPa (40 mmHg) at sea level, oxygen saturated and at 37°C blood temperature. Since our new modified Van Slyke equations operate with normal values for P(a)CO(2) at the actual altitude, a calculation of THID will always result in normal values-that is, zero.
Breakdown of the Debye approximation for the acoustic modes with nanometric wavelengths in glasses
Monaco, Giulio; Giordano, Valentina M.
2009-01-01
On the macroscopic scale, the wavelengths of sound waves in glasses are large enough that the details of the disordered microscopic structure are usually irrelevant, and the medium can be considered as a continuum. On decreasing the wavelength this approximation must of course fail at one point. We show here that this takes place unexpectedly on the mesoscopic scale characteristic of the medium range order of glasses, where it still works well for the corresponding crystalline phases. Specifically, we find that the acoustic excitations with nanometric wavelengths show the clear signature of being strongly scattered, indicating the existence of a cross-over between well-defined acoustic modes for larger wavelengths and ill-defined ones for smaller wavelengths. This cross-over region is accompanied by a softening of the sound velocity that quantitatively accounts for the excess observed in the vibrational density of states of glasses over the Debye level at energies of a few milli-electronvolts. These findings thus highlight the acoustic contribution to the well-known universal low-temperature anomalies found in the specific heat of glasses. PMID:19240211
Flight deck magnetic fields in commercial aircraft.
Nicholas, J S; Butler, G C; Lackland, D T; Hood, W C; Hoel, D G; Mohr, L C
2000-11-01
Airline pilots are exposed to magnetic fields generated by the aircraft's electrical system. The objectives of this study were (1) to directly measure flight deck magnetic fields in terms of personal exposure to the pilots when flying on different aircraft types over a 75-hour flight-duty month, and (2) to compare magnetic field exposures across flight deck types and job titles. Measurements were taken using personal dosimeters carried by either the Captain or the First Officer on Boeing 737/200, Boeing 747/400, Boeing 767/300ER, and Airbus 320 aircraft. Approximately 1,008 block hours were recorded at a sampling frequency of 3 seconds. Total block time exposure to the pilots ranged from a harmonic geometric mean of 6.7 milliGauss (mG) for the Boeing 767/300ER to 12.7 mG for the Boeing 737/200. Measured flight deck magnetic field levels were substantially above the 0.8-1 mG level typically found in the home or office and suggest the need for further study to evaluate potential health effects of long-term exposure. Copyright 2000 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Alothman, Abdulaziz; Elsaka, Basem
The gravity field models from the GRACE and GOCE missions have increased the knowledge of the earth’s global gravity field. The latter GOCE mission has provided accuracies of about 1-2 cm and 1milli-Gal level in the global geoid and gravity anomaly, respectively. However, determining all wavelength ranges of the gravity field spectrum cannot be only achieved from satellite gravimetry but from the allowed terrestrial gravity data. In this contribution, we use a gravity network of 42 first-order absolute gravity stations, observed by LaCosta Romberg gravimeter during the period 1967-1969 by Ministry of Petroleum and Mineral Resources, to validate the GOCE gravity models in order to gain more detailed regional gravity information. The network stations are randomly distributed all over the country with a spacing of about 200 km apart. The results show that the geoid height and gravity anomaly determined from terrestrial gravity data agree with the GOCE based models and give additional information to the satellite gravity solutions.
Backshort-Under-Grid arrays for infrared astronomy
NASA Astrophysics Data System (ADS)
Allen, C. A.; Benford, D. J.; Chervenak, J. A.; Chuss, D. T.; Miller, T. M.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.
2006-04-01
We are developing a kilopixel, filled bolometer array for space infrared astronomy. The array consists of three individual components, to be merged into a single, working unit; (1) a transition edge sensor bolometer array, operating in the milliKelvin regime, (2) a quarter-wave backshort grid, and (3) superconducting quantum interference device multiplexer readout. The detector array is designed as a filled, square grid of suspended, silicon bolometers with superconducting sensors. The backshort arrays are fabricated separately and will be positioned in the cavities created behind each detector during fabrication. The grids have a unique interlocking feature machined into the walls for positioning and mechanical stability. The spacing of the backshort beneath the detector grid can be set from ˜30 300 μm, by independently adjusting two process parameters during fabrication. The ultimate goal is to develop a large-format array architecture with background-limited sensitivity, suitable for a wide range of wavelengths and applications, to be directly bump bonded to a multiplexer circuit. We have produced prototype two-dimensional arrays having 8×8 detector elements. We present detector design, fabrication overview, and assembly technologies.
Computational Methodology for Absolute Calibration Curves for Microfluidic Optical Analyses
Chang, Chia-Pin; Nagel, David J.; Zaghloul, Mona E.
2010-01-01
Optical fluorescence and absorption are two of the primary techniques used for analytical microfluidics. We provide a thorough yet tractable method for computing the performance of diverse optical micro-analytical systems. Sample sizes range from nano- to many micro-liters and concentrations from nano- to milli-molar. Equations are provided to trace quantitatively the flow of the fundamental entities, namely photons and electrons, and the conversion of energy from the source, through optical components, samples and spectral-selective components, to the detectors and beyond. The equations permit facile computations of calibration curves that relate the concentrations or numbers of molecules measured to the absolute signals from the system. This methodology provides the basis for both detailed understanding and improved design of microfluidic optical analytical systems. It saves prototype turn-around time, and is much simpler and faster to use than ray tracing programs. Over two thousand spreadsheet computations were performed during this study. We found that some design variations produce higher signal levels and, for constant noise levels, lower minimum detection limits. Improvements of more than a factor of 1,000 were realized. PMID:22163573
Precise starshade stationkeeping and pointing with a Zernike wavefront sensor
NASA Astrophysics Data System (ADS)
Bottom, Michael; Martin, Stefan; Seubert, Carl; Cady, Eric; Zareh, Shannon Kian; Shaklan, Stuart
2017-09-01
Starshades, large occulters positioned tens of thousands of kilometers in front of space telescopes, offer one of the few paths to imaging and characterizing Earth-like extrasolar planets. However, for a starshade to generate a sufficiently dark shadow on the telescope, the two must be coaligned to just 1 meter laterally, even at these large separations. The principal challenge to achieving this level of control is in determining the position of the starshade with respect to the space telescope. In this paper, we present numerical simulations and laboratory results demonstrating that a Zernike wavefront sensor coupled to a WFIRST-type telescope is able to deliver the stationkeeping precision required, by measuring light outside of the science wavelengths. The sensor can determine the starshade lateral position to centimeter level in seconds of open shutter time for stars brighter than eighth magnitude, with a capture range of 10 meters. We discuss the potential for fast (ms) tip/tilt pointing control at the milli-arcsecond level by illuminating the sensor with a laser mounted on the starshade. Finally, we present early laboratory results.
NASA Astrophysics Data System (ADS)
Ren, Guoyan; Li, Bafang; Zhao, Xue; Zhuang, Yongliang; Yan, Mingyan; Hou, Hu; Zhang, Xiukun; Chen, Li
2009-03-01
In order to select an optimum extraction method for the target glycoprotein (TGP) from jellyfish ( Rhopilema esculentum) oral-arms, a high performance liquid chromatography (HPLC)-assay for the determination of the TGP was developed. Purified target glycoprotein was taken as a standard glycoprotein. The results showed that the calibration curves for peak area plotted against concentration for TGP were linear ( r = 0.9984, y = 4.5895 x+47.601) over concentrations ranging from 50 to 400 mgL-1. The mean extraction recovery was 97.84% (CV2.60%). The fractions containing TGP were isolated from jellyfish ( R. esculentum) oral-arms by four extraction methods: 1) water extraction (WE), 2) phosphate buffer solution (PBS) extraction (PE), 3) ultrasound-assisted water extraction (UA-WE), 4) ultrasound-assisted PBS extraction (UA-PE). The lyophilized extract was dissolved in Milli-Q water and analyzed directly on a short TSK-GEL G4000PWXL (7.8 mm×300 mm) column. Our results indicated that the UA-PE method was the optimum extraction method selected by HPLC.
Vacuum-induced coherence in quantum dot systems
NASA Astrophysics Data System (ADS)
Sitek, Anna; Machnikowski, Paweł
2012-11-01
We present a theoretical study of vacuum-induced coherence in a pair of vertically stacked semiconductor quantum dots. The process consists in a coherent excitation transfer from a single-exciton state localized in one dot to a delocalized state in which the exciton occupation gets trapped. We study the influence of the factors characteristic of quantum dot systems (as opposed to natural atoms): energy mismatch, coupling between the single-exciton states localized in different dots, and different and nonparallel dipoles due to sub-band mixing, as well as coupling to phonons. We show that the destructive effect of the energy mismatch can be overcome by an appropriate interplay of the dipole moments and coupling between the dots which allows one to observe the trapping effect even in a structure with technologically realistic energy splitting of the order of milli-electron volts. We also analyze the impact of phonon dynamics on the occupation trapping and show that phonon effects are suppressed in a certain range of system parameters. This analysis shows that the vacuum-induced coherence effect and the associated long-living trapped excitonic population can be achieved in quantum dots.
First Results of Venus Express Spacecraft Observations with Wettzell
NASA Technical Reports Server (NTRS)
Calves, Guifre Molera; Wagner, Jan; Neidhardt, Alexander; Kronschnabl, Gerhard; Ayucar, Miguel Perez; Cimo, Giuseppe; Pogrebenko, Sergei
2010-01-01
The ESA Venus Express spacecraft was observed at X-band with the Wettzell radio telescope in October-December 2009 in the framework of an assessment study of the possible contribution of the European VLBI Network to the upcoming ESA deep space missions. A major goal of these observations was to develop and test the scheduling, data capture, transfer, processing, and analysis pipeline. Recorded data were transferred from Wettzell to Metsahovi for processing, and the processed data were sent from Mets ahovi to JIVE for analysis. A turnover time of 24 hours from observations to analysis results was achieved. The high dynamic range of the detections allowed us to achieve a milliHz level of spectral resolution accuracy and to extract the phase of the spacecraft signal carrier line. Several physical parameters can be determined from these observational results with more observational data collected. Among other important results, the measured phase fluctuations of the carrier line at different time scales can be used to determine the influence of the solar wind plasma density fluctuations on the accuracy of the astrometric VLBI observations.
Biocompatible silver nanoparticles prepared with amino acids and a green method.
de Matos, Ricardo Almeida; Courrol, Lilia Coronato
2017-02-01
The synthesis of nanoparticles is usually carried out by chemical reduction, which is effective but uses many toxic substances, making the process potentially harmful to the environment. Hence, as part of the search for environmentally friendly or green synthetic methods, this study aimed to produce silver nanoparticles (AgNPs) using only AgNO 3 , Milli-Q water, white light from a xenon lamp (Xe) and amino acids. Nanoparticles were synthetized using 21 amino acids, and the shapes and sizes of the resultant nanoparticles were evaluated. The products were characterized by UV-Vis, zeta potential measurements and transmission electron microscopy. The synthesis of silver nanoparticles with tryptophan and tyrosine, methionine, cystine and histidine was possible through photoreduction method. Spherical nanoparticles were produced, with sizes ranging from 15 to 30 nm. Tryptophan does not require illumination nor heating, and the solution color changes immediately after the mixing of reagents if sodium hydroxide is added to the solution (pH = 10). The Xe illumination acts as sodium hydroxide in the nanoparticles synthesis, releases H + and allows the reduction of silver ions (Ag + ) in metallic silver (Ag 0 ).
Khajepour, Abolhasan; Rahmani, Faezeh
2017-01-01
In this study, a 90 Sr radioisotope thermoelectric generator (RTG) with power of milliWatt was designed to operate in the determined temperature (300-312K). For this purpose, the combination of analytical and Monte Carlo methods with ANSYS and COMSOL software as well as the MCNP code was used. This designed RTG contains 90 Sr as a radioisotope heat source (RHS) and 127 coupled thermoelectric modules (TEMs) based on bismuth telluride. Kapton (2.45mm in thickness) and Cryotherm sheets (0.78mm in thickness) were selected as the thermal insulators of the RHS, as well as a stainless steel container was used as a generator chamber. The initial design of the RHS geometry was performed according to the amount of radioactive material (strontium titanate) as well as the heat transfer calculations and mechanical strength considerations. According to the Monte Carlo simulation performed by the MCNP code, approximately 0.35 kCi of 90 Sr is sufficient to generate heat power in the RHS. To determine the optimal design of the RTG, the distribution of temperature as well as the dissipated heat and input power to the module were calculated in different parts of the generator using the ANSYS software. Output voltage according to temperature distribution on TEM was calculated using COMSOL. Optimization of the dimension of the RHS and heat insulator was performed to adapt the average temperature of the hot plate of TEM to the determined hot temperature value. This designed RTG generates 8mW in power with an efficiency of 1%. This proposed approach of combination method can be used for the precise design of various types of RTGs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mini- and microgenerators applicable in the MEMS technology
NASA Astrophysics Data System (ADS)
Fiala, P.; Szabo, Z.; Marcon, P.; Roubal, Z.
2017-06-01
The article presents certain general conclusions obtained from an investigation of a vibration-powered milli- or microgenerator functioning as a harvester. In this context, the authors summarize the parameters that are critical in designing optimal generators to retrieve the residual energy contained in an electromechanical system and transferred through the vibrations of an independent structure. The discussion exploits our previous results, which theoretically define the properties characterizing the models of individual basic configurations of a generator based on Faraday's law of induction.
1991-06-05
Launched aboard the Space Shuttle Columbia on June 5, 1991 at 9:24; am (EDT), the STS-40 mission was the fifth dedicated Spacelab Mission, Spacelab Life Sciences-1 (SLS-1), and the first mission dedicated solely to life sciences. The STS-40 crew included 7 astronauts: Bryan D. O’Connor, commander; Sidney M. Gutierrez, pilot; F. Drew Gaffney, payload specialist 1; Milli-Hughes Fulford, payload specialist 2; James P. Bagian, mission specialist 1; Tamara E. Jernigan, mission specialist 2; and M. Rhea Seddon, mission specialist 3.
VLBI phase-referencing for observations of weak radio sources
NASA Technical Reports Server (NTRS)
Lestrade, J.-F.
1991-01-01
Phase-referencing is a technique used in VLBI to extend the signal coherence time from a few minutes to a few hours in order to enhance significantly its sensitivity. With this technique, VLBI observations of milliJansky radio sources can be conducted for high-accuracy differential astrometry as well as imaging. We describe the technique in some details and present, as an example, a submilliarcsecond differential astrometric experiment design to identify the star responsible for the weak radio emission in the binary system Algol.
Joint Milli-Arcsecond Pathfinder Survey (JMAPS): Overview and Application to NWO Mission
2009-03-11
degrade at a much reduced rate over time when compared with the Hipparcos catalog. JMAPS will accomplish this with a relatively modest aperture...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...JMAPS instrument is operated in a fashion similar to standard star trackers. A star field is imaged—in the case of JMAPS, integration times of 1
Ahmad, Aftab; Al-Abbasi, Fahad A; Sadath, Saida; Ali, Soad Shaker; Abuzinadah, Mohammed F; Alhadrami, Hani A; Mohammad Alghamdi, Anwar Ali; Aseeri, Ali H; Khan, Shah Alam; Husain, Asif
2018-01-01
Camel milk (CM) and Nigella sativa (NS) have been traditionally claimed to cure wide range of diseases and used as medicine in different part of world, particularly in Saudi Arabia. Several research studies have been published that proved beneficial effects of CM and NS. This study was undertaken to investigate the antihepatotxic potential of CM and NS oil (NSO) against thioacetamide (TAA)-induced hepato and nephrotoxicity in rats. Thirty female Albino Wistar rats were randomly divided in to six groups having five rats in each group. A single subcutaneous injection of TAA (100 mg/kg b. w.) was administered to all the rats in Group-II to VI on 1 st day to induce hepatorenal damage. Group I served as a normal control while Group II served as toxic control for comparison purpose. Experimental animals in Group III, IV, and V were supplemented with fresh CM, (250 mL/24 h/cage), NSO (2 mL/kg/day p. o.), and NSO + fresh CM, respectively. Group VI was treated with a polyherbal hepatoprotective Unani medicine Jigreen (2 mL/kg/day p. o.) for 21 days. TAA-induced hepatorenal damage and protective effects of CM and NSO were assessed by analyzing liver and kidney function tests in the serum. Histopathology of liver and kidney tissues was also carried out to corroborate the findings of biochemical investigation. The results indicated that the TAA intoxicated rats showed significant increase in the alanine transaminase, aspartate transaminase, gamma-glutamyl transpeptidase, alkaline phosphatase, lipid profile, urea, creatinine, uric acid, sodium, and potassium levels in serum. Treatment of rats with CM, NSO, and CM plus NSO combination and Jigreen significantly reversed the damage and brought down the serum biochemical parameters and lipid profile toward the normal levels. The histopathological studies also support the hepato and nephroprotective effects of CM and NSO. This study demonstrated the ameliorative effects of CM, NSO, and CM plus NSO combination against TAA-induced hepatorenal toxicity in rats. The antihepatotxic potential of Camel's Milk (CM) and Nigella sativa oil (NSO) against thioacetamide (TAA) induced hepatorenal toxicity was evaluated in ratsThe oral administration of fresh CM (250 mL/24h/cage), NSO (2 mL/kg/day) and NSO+fresh CM and Jigreen (2 mL/kg/day) for 21 days significantly decreased the hepatorenal toxicity as evidenced from analyzed biochemical parameters in serum and histopathological studies of liver and kidney tissuesThis study demonstrated the ameliorative effects of CM and NSO against TAA induced hepatorenal toxicity. Abbreviations used: CM: Camel milk; NS: Nigella sativa ; NSO: Nigella sativa Oil; TAA: Thioacetamide; S.C.: Subcutaneous; Jig: Jigreen; b.w.: Body Weight; mL: Milli liter; mg: Milli gram; g: Gram; Kg: Kilo gram; ALT: Alanine transaminase; AST: Aspartate transaminase; GGT: Gamma-Glutamyl Transpeptidase; ALP: Alkaline Phosphatase; TC: Total Cholesterol; HDL-C: High Density Lipoprotein Cholesterol; LDL-C: Low Density Lipoprotein Cholesterol; TG: Triglyceride; TB: Total bilirubin; K + : Potassium; Na + : Sodium; CCl 4 : Carbon Tetrachloride; °C: Degree Celsius; p.o.: Per Oral; RPM: Revolutions per minute; H&E: Hematoxylin and Eosin; SEM: Standard Error of Mean; ANOVA: The one-way analysis of variance.
Ahmad, Aftab; Al-Abbasi, Fahad A.; Sadath, Saida; Ali, Soad Shaker; Abuzinadah, Mohammed F.; Alhadrami, Hani A.; Mohammad Alghamdi, Anwar Ali; Aseeri, Ali H.; Khan, Shah Alam; Husain, Asif
2018-01-01
Background: Camel milk (CM) and Nigella sativa (NS) have been traditionally claimed to cure wide range of diseases and used as medicine in different part of world, particularly in Saudi Arabia. Several research studies have been published that proved beneficial effects of CM and NS. Objective: This study was undertaken to investigate the antihepatotxic potential of CM and NS oil (NSO) against thioacetamide (TAA)-induced hepato and nephrotoxicity in rats. Materials and Methods: Thirty female Albino Wistar rats were randomly divided in to six groups having five rats in each group. A single subcutaneous injection of TAA (100 mg/kg b. w.) was administered to all the rats in Group-II to VI on 1st day to induce hepatorenal damage. Group I served as a normal control while Group II served as toxic control for comparison purpose. Experimental animals in Group III, IV, and V were supplemented with fresh CM, (250 mL/24 h/cage), NSO (2 mL/kg/day p. o.), and NSO + fresh CM, respectively. Group VI was treated with a polyherbal hepatoprotective Unani medicine Jigreen (2 mL/kg/day p. o.) for 21 days. TAA-induced hepatorenal damage and protective effects of CM and NSO were assessed by analyzing liver and kidney function tests in the serum. Histopathology of liver and kidney tissues was also carried out to corroborate the findings of biochemical investigation. Results: The results indicated that the TAA intoxicated rats showed significant increase in the alanine transaminase, aspartate transaminase, gamma-glutamyl transpeptidase, alkaline phosphatase, lipid profile, urea, creatinine, uric acid, sodium, and potassium levels in serum. Treatment of rats with CM, NSO, and CM plus NSO combination and Jigreen significantly reversed the damage and brought down the serum biochemical parameters and lipid profile toward the normal levels. The histopathological studies also support the hepato and nephroprotective effects of CM and NSO. Conclusion: This study demonstrated the ameliorative effects of CM, NSO, and CM plus NSO combination against TAA-induced hepatorenal toxicity in rats. SUMMARY The antihepatotxic potential of Camel's Milk (CM) and Nigella sativa oil (NSO) against thioacetamide (TAA) induced hepatorenal toxicity was evaluated in ratsThe oral administration of fresh CM (250 mL/24h/cage), NSO (2 mL/kg/day) and NSO+fresh CM and Jigreen (2 mL/kg/day) for 21 days significantly decreased the hepatorenal toxicity as evidenced from analyzed biochemical parameters in serum and histopathological studies of liver and kidney tissuesThis study demonstrated the ameliorative effects of CM and NSO against TAA induced hepatorenal toxicity. Abbreviations used: CM: Camel milk; NS: Nigella sativa; NSO: Nigella sativa Oil; TAA: Thioacetamide; S.C.: Subcutaneous; Jig: Jigreen; b.w.: Body Weight; mL: Milli liter; mg: Milli gram; g: Gram; Kg: Kilo gram; ALT: Alanine transaminase; AST: Aspartate transaminase; GGT: Gamma-Glutamyl Transpeptidase; ALP: Alkaline Phosphatase; TC: Total Cholesterol; HDL-C: High Density Lipoprotein Cholesterol; LDL-C: Low Density Lipoprotein Cholesterol; TG: Triglyceride; TB: Total bilirubin; K+: Potassium; Na+: Sodium; CCl4: Carbon Tetrachloride; °C: Degree Celsius; p.o.: Per Oral; RPM: Revolutions per minute; H&E: Hematoxylin and Eosin; SEM: Standard Error of Mean; ANOVA: The one-way analysis of variance. PMID:29576698
Degradation of progestagens by oxidation with potassium permanganate in wastewater effluents.
Fayad, Paul B; Zamyadi, Arash; Broseus, Romain; Prévost, Michèle; Sauvé, Sébastien
2013-01-01
This study investigated the oxidation of selected progestagenic steroid hormones by potassium permanganate at pH 6.0 and 8.0 in ultrapure water and wastewater effluents, using bench-scale assays. Second order rate constants for the reaction of potassium permanganate with progestagens (levonorgestrel, medroxyprogesterone, norethindrone and progesterone) was determined as a function of pH, presence of natural organic matter and temperature. This work also illustrates the advantages of using a novel analytical method, the laser diode thermal desorption (LDTD-APCI) interface coupled to tandem mass spectrometry apparatus, allowing for the quick determination of oxidation rate constants and increasing sample throughput. The second-order rate constants for progestagens with permanganate determined in bench-scale experiments ranged from 23 to 368 M(-1) sec(-1) in both wastewater and ultrapure waters with pH values of 6.0 and 8.0. Two pairs of progestagens exhibited similar reaction rate constants, i.e. progesterone and medroxyprogesterone (23 to 80 M(-1) sec(-1) in ultrapure water and 26 to 149 M(-1) sec(-1) in wastewaters, at pH 6.0 and 8.0) and levonorgestrel and norethindrone (179 to 224 M(-1) sec(-1) in ultrapure water and 180 to 368 M(-1) sec(-1) in wastewaters, at pH 6.0 and 8.0). The presence of dissolved natural organic matter and the pH conditions improved the oxidation rate constants for progestagens with potassium permanganate only at alkaline pH. Reaction rates measured in Milli-Q water could therefore be used to provide conservative estimates for the oxidation rates of the four selected progestagens in wastewaters when exposed to potassium permanganate. The progestagen removal efficiencies was lower for progesterone and medroxyprogesterone (48 to 87 %) than for levonorgestrel and norethindrone (78 to 97%) in Milli-Q and wastewaters at pH 6.0-8.2 using potassium permanganate dosages of 1 to 5 mg L(-1) after contact times of 10 to 60 min. This work presents the first results on the permanganate-promoted oxidation of progestagens, as a function of pH, temperature as well as NOM. Progestagen concentrations used to determine rate constants were analyzed using an ultrafast laser diode thermal desorption interface coupled to tandem mass spectrometry for the analysis of water sample for progestagens.
Magnetic field exposure of commercial airline pilots.
Hood; Nicholas; Butler; Lackland; Hoel; Mohr
2000-10-01
PURPOSE: Airline pilots are exposed to magnetic fields generated by the aircraft's electrical and electronic systems. The purpose of this study was to directly measure the flight deck magnetic fields to which commercial airline pilots are exposed when flying on different aircraft types over a 75-hour flight-duty month.METHODS: Magentic field measurements were taken using personal dosimeters capable of measuring magnetic fields in the 40-800 Hz frequency range. Dosimeters were carried by either the Captain or the First Officer on Boeing 737/200, Boeing 747/400, Boeing 767/300ER, and Airbus 320 aircraft. The data were analyzed by aircraft type, with statistics based on block hours. Block hours begin when the aircraft departs the gate prior to take off and end when the aircraft returns to the gate after landing.RESULTS: Approximately 1008 block hours were recorded at a sampling rate of 3 seconds. Total block time exposure to the pilots ranged from a harmonic geometric mean of 6.7 milliGauss (mG) for the Boeing 767/300ER to 12.7 mG for the Boeing 737/200.CONCLUSIONS: Measured flight deck magnetic field levels were substantially above the 0.8 to 1 mG level typically found in the home or office and suggest the need for further study to evaluate potential health effects of long-term exposure.
Lam, Diana; Wootton-Gorges, Sandra L.; McGahan, John P.; Stern, Robin; Boone, John M.
2012-01-01
Computed tomography (CT) is used extensively in cancer diagnosis, staging, evaluation of response to treatment, and in active surveillance for cancer reoccurrence. A review of CT technology is provided, at a level of detail appropriate for a busy clinician to review. The basis of x-ray CT dosimetry is also discussed, and concepts of absorbed dose and effective dose are distinguished. Absorbed dose is a physical quantity (measured in milliGray) equal to the x-ray energy deposited in a mass of tissue, whereas effective dose utilizes an organ-specific weighting method which converts organ doses to effective dose measured in milliSieverts. The organ weighting values carry with them a measure of radiation risk, and so effective dose (in mSv) is not a physical dose metric but rather is one that conveys radiation risk. The use of CT in a cancer surveillance protocol was used as an example of a pediatric patient who had kidney cancer, with surgery and radiation therapy. The active use of CT for cancer surveillance along with diagnostic CT scans led to a total of 50 CT scans performed on this child in a 7 year period. It was estimated that the patient received an average organ dose of 431 mGy from these CT scans. By comparison, the radiation therapy was performed and delivered 50.4 Gy to the patient’s abdomen. Thus, the total dose from CT represented only 0.8% of the patients radiation dose. PMID:21362521
Historical changes in annual peak flows in Maine and implications for flood-frequency analyses
Hodgkins, Glenn A.
2010-01-01
To safely and economically design bridges, culverts, and other structures that are in or near streams (fig. 1 for example), it is necessary to determine the magnitude of peak streamflows such as the 100-year flow. Flood-frequency analyses use statistical methods to compute peak flows for selected recurrence intervals (100 years, for example). The recurrence interval is the average number of years between peak flows that are equal to or greater than a specified peak flow. Floodfrequency analyses are based on annual peak flows at a stream. It has long been assumed that annual peak streamflows are stationary over very long periods of time, except in river basins subject to urbanization, regulation, and other direct human activities. Stationarity is the concept that natural systems fluctuate within an envelope of variability that does not change over time (Milly and others, 2008). Because of the potential effects of global warming on peak flows, the assumption of peak-flow stationarity has recently been questioned (Milly and others, 2008). Maine has many streamgaging stations with 50 to 105 years of recorded annual peak streamflows. This long-term record has been tested for historical flood-frequency stationarity, to provide some insight into future flood frequency (Hodgkins, 2010). This fact sheet, prepared by the U.S. Geological Survey (USGS) in cooperation with the Maine Department of Transportation (MaineDOT), provides a partial summary of the results of the study by Hodgkins (2010).
Othman, Rahimah; Vladisavljević, Goran T; Simone, Elena; Nagy, Zoltan K; Holdich, Richard G
2017-12-06
Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7-34 μm and was controlled by the PRX concentration in the feed solution (15-25 g L -1 ), antisolvent/solvent volume ratio (5-30), and type of antisolvent (Milli-Q water or 0.1-0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L -1 PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals.
Xin, Jia; Tang, Fenglin; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf; Lu, Xin
2016-09-01
Application of microscale zero-valent iron (mZVI) is a promising technology for in-situ contaminated groundwater remediation; however, its longevity is negatively impacted by surface passivation, especially in saline groundwater. In this study, the aging behavior of mZVI particles was investigated in three media (milli-Q water, fresh groundwater and saline groundwater) using batch experiments to evaluate their potential corrosion and passivation performance under different field conditions. The results indicated that mZVI was reactive for 0-7 days of exposure to water and then gradually lost H2-generating capacity over the next hundred days in all of the tested media. In comparison, mZVI in saline groundwater exhibited the fastest corrosion rate during the early phase (0-7 d), followed by the sharpest kinetic constant decline in the latter phases. The SEM-EDS and XPS analyses demonstrated that in the saline groundwater, a thin and compact oxide film was immediately formed on the surface and significantly shielded the iron reactive site. Nevertheless, in fresh groundwater and milli-Q water, a passive layer composed of loosely and unevenly distributed precipitates slowly formed, with abundant reactive sites available to support continuous iron corrosion. These findings provide insight into the molecular-scale mechanism that governs mZVI passivation and provide implications for long-term mZVI application in saline contaminated groundwater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Interfacial pattern changes of imprinted multilayered material in milli- and microscales
NASA Astrophysics Data System (ADS)
Yonekura, Kazuhiro; Tokumaru, Kazuki; Tsumori, Fujio
2018-06-01
Nanoimprint lithography (NIL) is a technique that transfers a mold pattern of nanometer order to the surface of a resist material by heating and pressing. NIL is an excellent technology in terms of high productivity, accuracy, and resolution. Recently, NIL has been applied to the processing of different multilayered materials, in which it is possible to process multiple materials simultaneously. In this processing of multilayered materials, it is possible to form an interfacial pattern between the upper layer and the lower layer simultaneously with patterning on the mold surface. This interface pattern can be controlled by the deformation characteristics, initial thickness, and so forth. In this research, we compared the interfacial pattern changes of imprinted multilayered materials in milli- and microscales. For multilayered imprint using multiple materials, it is important to know the flow of the resist and its dependence on the scale. If there is similarity in the relationship produced by the scale on the imprinted samples, a process design with a number of feedbacks could be realized. It also becomes easier to treat structures in the millimeter scale for the experiment. In this study, we employed micropowder imprint (µPI) for multilayered material imprint. A compound sheet of alumina powder and polymer binder was used for imprint. Two similar experiments in different scales, micro- and millimeter scales, were carried out. Results indicate that the interfacial patterns of micro- and millimeter-scale-imprinted samples are similar.
The Removal of Terrestrial Dissolved Organic Matter in Coastal Regions by Photo-Flocculation Process
NASA Astrophysics Data System (ADS)
Abdulla, H. A.; Mopper, K.
2015-12-01
The fate of terrestrial dissolved organic matter (tDOM) as it moves to open ocean was the focus of many studies for the last three decades, most of these studies were focused on three major removal processes: 1) Photochemical mineralization of tDOM (conversion to inorganic forms); 2) Microbial oxidation; and 3) Mixing-induced flocculation. Based on recent estimations, the combination of theses removal processes accounts for ~20-35% of the loss of tDOM in estuaries and coastal regions; which is far from closing the gap between the riverine fluxes of tDOM and the amount of tDOM detected in the open ocean. In a preliminary experiment to determine if photo-flocculation indeed occurs at pH values and ionic strengths found in estuaries. A 0.1-μm filtered riverine was diluted 1:1 with artificial seawater and MilliQ water to yield final salinities ranging from 0 - 15; the pH of the saline samples was ranged from 6-8. Photo-flocculation was observed for all salinities, with particles organic carbon (POC) values ranged from 3.2 to 8.5% of the original DOC. Interestingly, the composition of the Photo-flocculated particles in the saline samples was markedly different from the zero salinity samples as shown in their FT-IR spectra. The photo-flocculated particles that formed in the saline samples appear to be rich in carbohydrate and amide functionalities (protein-like), while containing insignificant deprotonated carboxylate. While the flocs that formed in freshwater (salinity zero) are richer in deprotonated carboxyl groups, and relatively depleted in carbohydrate functionality.
NASA Astrophysics Data System (ADS)
Shinnaka, Yoshiharu; Kawakita, Hideyo; Kobayashi, Hitomi; Naka, Chiharu; Arai, Akira; Arasaki, Takayuki; Kitao, Eiji; Taguchi, Gaku; Ikeda, Yuji
2013-02-01
We performed low-dispersion spectroscopic observations of Comet 103P/Hartley 2 in optical wavelengths using the LOSA/F2 mounted on the 1.3 m-Araki telescope at Koyama Astronomical Observatory on UT 2010 November 4 during the close approach of the Deep Impact spacecraft to the nucleus of Comet 103P/Hartley 2 in the EPOXI mission flyby. Our observations have revealed the chemistry of the coma at optical wavelengths; including CN, C3, C2 and NH2 along with H2O from [OI] emission at 6300 Å. Resultant mixing ratios of these radicals put the comet into the normal group in chemical composition. The mixing ratios with respect to H2O obtained in our observations are basically consistent with the previous optical spectro-photometric observations of Comet 103P/Hartley 2 in 1991 by A'Hearn et al. (A'Hearn, M.F., Millis, R.L., Schleicher, D.G., Osip, D.J., Birch, P.V. [1995]. Icarus 118, 223-270), the optical spectroscopic observations in 1998 by Fink (Fink, U. [2009]. Icarus 201, 311-334) and also consistent with the observations on UT 2010 October 27 and 29 by Lara et al. (Lara, L.M., Lin, Z.-Y., Meech, K. [2011]. Astron. Astrophys. 532, A87) (but only for the ratio relative to CN).
Frequency stability measurement of pulsed superradiance from strontium
NASA Astrophysics Data System (ADS)
Norcia, Matthew; Cline, Julia; Robinson, John; Ye, Jun; Thompson, James
2017-04-01
Superradiant laser light from an ultra-narrow optical transition holds promise as a next-generation of active frequency references. We have recently demonstrated pulsed lasing on the milliHertz linewidth clock transition in strontium. Here, we present the first frequency comparisons between such a superradiant source and a state of the art stable laser system. We characterize the stability of the superradiant system, and demonstrate a reduction in sensitivity to cavity frequency fluctuations of nearly five orders of magnitude compared to a conventional laser. DARPA QUASAR, NIST, NSF PFC.
NASA Astrophysics Data System (ADS)
Chang, Hung-Pin; Qian, Jiangyuan; Bachman, Mark; Congdon, Philip; Li, Guann-pyng
2002-07-01
A novel planarization technique, compressive molding planarization (CMP) is developed for implementation of a multi-layered micro coil device. Applying CMP and other micromachining techniques, a multi-layered micro coil device has been designed and fabricated, and its use in the magnetic micro actuators for hard disk drive applications has been demonstrated, showing that it can produce milli-Newton of magnetic force suitable for driving a micro actuator. The novel CMP technique can be equally applicable in other MEMS devices fabrication to ease the process integration for the complicated structure.
Optimization of the Automated Spray Layer-by-Layer Technique for Thin Film Deposition
2010-06-01
pieces. All silicon was cleaned with ethanol and Milli-Q water to hydroxylate the surface. Quartz Crystal Microbalance Si02 coated sensors (Q-sense...was deposited onto a SiO2 coated QCM crystal using the automated dipping process described earlier. Once the film was deposited, it was dried over...night, and then placed in the QCM -D device. An additional layer of PAH was deposited onto the crystal in the QCM -D chamber at a flow rate of 1pL/minute
NASA Technical Reports Server (NTRS)
Gillett, Frederick; Houck, James; Bally, John; Becklin, Eric; Brown, Robert Hamilton; Draine, Bruce; Frogel, Jay; Gatley, Ian; Gehrz, Robert; Hildebrand, Roger
1991-01-01
The decade of 1990's presents an opportunity to address fundamental astrophysical issues through observations at IR wavelengths made possible by technological and scientific advances during the last decade. The major elements of recommended program are: the Space Infrared Telescope Facility (SIRTF), the Stratospheric Observatory For Infrared Astronomy (SOFIA) and the IR Optimized 8-m Telescope (IRO), a detector and instrumentation program, the SubMilliMeter Mission (SMMM), the 2 Microns All Sky Survey (2MASS), a sound infrastructure, and technology development programs. Also presented are: perspective, science opportunities, technical overview, project recommendations, future directions, and infrastructure.
Campo-Deaño, Laura; Dullens, Roel P A; Aarts, Dirk G A L; Pinho, Fernando T; Oliveira, Mónica S N
2013-01-01
The non-Newtonian properties of blood are of great importance since they are closely related with incident cardiovascular diseases. A good understanding of the hemodynamics through the main vessels of the human circulatory system is thus fundamental in the detection and especially in the treatment of these diseases. Very often such studies take place in vitro for convenience and better flow control and these generally require blood analogue solutions that not only adequately mimic the viscoelastic properties of blood but also minimize undesirable optical distortions arising from vessel curvature that could interfere in flow visualizations or particle image velocimetry measurements. In this work, we present the viscoelastic moduli of whole human blood obtained by means of passive microrheology experiments. These results and existing shear and extensional rheological data for whole human blood in the literature enabled us to develop solutions with rheological behavior analogous to real whole blood and with a refractive index suited for PDMS (polydymethylsiloxane) micro- and milli-channels. In addition, these blood analogues can be modified in order to obtain a larger range of refractive indices from 1.38 to 1.43 to match the refractive index of several materials other than PDMS.
In Situ and Ex Situ Low-Field NMR Spectroscopy and MRI Endowed by SABRE Hyperpolarization**
Barskiy, Danila A.; Kovtunov, Kirill V.; Koptyug, Igor V.; He, Ping; Groome, Kirsten A.; Best, Quinn A.; Shi, Fan; Goodson, Boyd M.; Shchepin, Roman V.; Truong, Milton L.; Coffey, Aaron M.; Waddell, Kevin W.; Chekmenev, Eduard Y.
2015-01-01
By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 105-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. PMID:25367202
NASA Technical Reports Server (NTRS)
Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.
2008-01-01
Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.
NASA Astrophysics Data System (ADS)
Debnath, Asim; Goswami, Debarghya; Mandal, Pradip Kumar
2018-04-01
Most of the liquid crystal display (LCD) devices starting from simplest wrist watches or calculators to complex laptops or flat TV sets are based on nematics. Although a tremendous improvement in the quality of display as well as reduction of manufacturing cost has taken place over the years, there are many issues which the LC industry is trying hard to address. Ferroelectric liquid crystals (FLC) are of current interest in the LCD industry since among various other advantages FLC based displays have micro-second order switching compared to milli-second order switching in nematic based displays. To meet the market demand much effort has been made to optimize the physical parameters of FLCs, such as temperature range, spontaneous polarization (PS), helical pitch (p), switching time (τ), tilt angle (θ) and rotational viscosity (γ). Multicomponent mixtures are, therefore, formulated to optimize all the required properties for practical applications since no single FLC compound can satisfy the above requirements. To the best of our knowledge electroclinic, ferroelectric and antiferroelectric liquid crystal mixtures have been formulated first time by any Indian group which have properties suitable for FLC based display devices and at par with mixtures used in the industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorpe, J. I.; Livas, J.; Maghami, P.
Arm locking is a proposed laser frequency stabilization technique for the Laser Interferometer Space Antenna (LISA), a gravitational-wave observatory sensitive in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that compose LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of a Kalman-filter-based arm-locking system that includes the expected limiting noise sources as well as the effects of imperfect a priorimore » knowledge of the constellation geometry on which the design is based. We use the simulation to study aspects of the system performance that are difficult to capture in a steady-state frequency-domain analysis such as frequency pulling of the master laser due to errors in estimates of heterodyne frequency. We find that our implementation meets requirements on both the noise and dynamic range of the laser frequency with acceptable tolerances and that the design is sufficiently insensitive to errors in the estimated constellation geometry that the required performance can be maintained for the longest continuous measurement intervals expected for the LISA mission.« less
A near-Infrared SETI Experiment: Alignment and Astrometric precision
NASA Astrophysics Data System (ADS)
Duenas, Andres; Maire, Jerome; Wright, Shelley; Drake, Frank D.; Marcy, Geoffrey W.; Siemion, Andrew; Stone, Remington P. S.; Tallis, Melisa; Treffers, Richard R.; Werthimer, Dan
2016-06-01
Beginning in March 2015, a Near-InfraRed Optical SETI (NIROSETI) instrument aiming to search for fast nanosecond laser pulses, has been commissioned on the Nickel 1m-telescope at Lick Observatory. The NIROSETI instrument makes use of an optical guide camera, SONY ICX694 CCD from PointGrey, to align our selected sources into two 200µm near-infrared Avalanche Photo Diodes (APD) with a field-of-view of 2.5"x2.5" each. These APD detectors operate at very fast bandwidths and are able to detect pulse widths extending down into the nanosecond range. Aligning sources onto these relatively small detectors requires characterizing the guide camera plate scale, static optical distortion solution, and relative orientation with respect to the APD detectors. We determined the guide camera plate scale as 55.9+- 2.7 milli-arcseconds/pixel and magnitude limit of 18.15mag (+1.07/-0.58) in V-band. We will present the full distortion solution of the guide camera, orientation, and our alignment method between the camera and the two APDs, and will discuss target selection within the NIROSETI observational campaign, including coordination with Breakthrough Listen.
Right-handed neutrinos as the dark radiation: Status and forecasts for the LHC
NASA Astrophysics Data System (ADS)
Anchordoqui, Luis A.; Goldberg, Haim; Steigman, Gary
2013-01-01
Precision data from cosmology (probing the CMB decoupling epoch) and light-element abundances (probing the BBN epoch) have hinted at the presence of extra relativistic degrees of freedom, the so-called "dark radiation." We present a model independent study to account for the dark radiation by means of the right-handed partners of the three, left-handed, standard model neutrinos. We show that milli-weak interactions of these Dirac states (through their coupling to a TeV-scale Z‧ gauge boson) may allow the νR's to decouple much earlier, at a higher temperature, than their left-handed counterparts. If the νR's decouple during the quark-hadron crossover transition, they are considerably cooler than the νL's and contribute less than 3 extra "equivalent neutrinos" to the early Universe energy density. For decoupling in this transition region, the 3νR generate ΔNν=3(<3, extra relativistic degrees of freedom at BBN and at the CMB epochs. Consistency with present constraints on dark radiation permits us to identify the allowed region in the parameter space of Z‧ masses and couplings. Remarkably, the allowed region is within the range of discovery of LHC14.
NASA Astrophysics Data System (ADS)
Ma, J.; Zhang, Z.; Wei, G.; Zhang, L.
2017-12-01
A method including a novel column Rb separation procedure and high-precision Rb isotope measurement in geological materials by using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) in standard-sample-bracketing (SSB) mode has been developed. Sr-Spec resin was employed, in which the distribution coefficients for Rb, K, Ba and Sr are different in nitric acid, to sequentially separate them from the matrix. The dissolved samples were loaded on the column in 3 M HNO3, the main matrix such as Al, Ca, Fe, Mg, Mn and Na were removed by rinsing with 4.5 mL HNO3, Rb and K were then sequentially eluted by 3 M HNO3 in different volumes. After that, Ba was eluted by 8 M HNO3, and Sr was finally eluted by Milli-Q water. This enable us to collect the pure Rb, K, Ba and Sr one by one with recovery close to 100% for their isotopic compositions measurement on MC-ICP-MS. We here focus on Rb isotope measurement. The measurement using MC-ICP-MS yielded an internal precision for δ87Rb of < ± 0.03‰ (2SE), and the external precision was generally better than ± 0.06‰ (2SD) based on the long-term results of the Rb standard solutions NIST SRM 984. A series of geological rock standards, were analyzed using this method, and the results indicate significant Rb isotope differences in different geologic materials. This will provide a powerful tool to investigate Rb isotope fractionation during geological processes.Based on this method, Rb isotope compositions from a basaltic weathering profile were carried out. The data show the lighter Rb (85Rb) isotope is preferentially leached from the weathering profile and remains heavy Rb isotope (87Rb) in the weathered residues during the incipient weathering stage. From the moderate to advanced weathering stage, the significant variations of Rb isotope were observed and multiple factors, such as leaching, adsorption, desorption, and precipitation, should play important role in fractionating Rb isotope.
2017-01-01
Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7–34 μm and was controlled by the PRX concentration in the feed solution (15–25 g L–1), antisolvent/solvent volume ratio (5–30), and type of antisolvent (Milli-Q water or 0.1–0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L–1 PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals. PMID:29234241
Microbial Interactions with Natural Organic Matter Extracted from the Oak Ridge FRC
NASA Astrophysics Data System (ADS)
Wu, X.; Jagadamma, S.; Lancaster, A.; Adams, M. W. W.; Hazen, T.; Justice, N.; Chakraborty, R.
2015-12-01
Natural organic matter (NOM) is central to microbial food webs; however, little is known about the interplay between the physical and chemical characteristics of NOM and its turnover by microbial communities based upon biotic and abiotic parameters (e.g., biogenic precursors, redox state, bioavailability). Microbial activity changes the structures and properties that influence further bioavailability of NOM. To date, our understanding of these interactions is insufficient, and indigenous microbial activities that regulate NOM turnover are poorly resolved. It is critical to identify NOM characteristics to the structure and composition of microbial communities and to the metabolic potential of that community. Towards that end, sediment samples collected from the background area well FW305 (Oak Ridge Field Research Center, Oak Ridge, TN) were tested for NOM extraction methods that used three mild solvents, e.g., phosphate buffered saline (PBS), pyrophosphate, and MilliQ-water. MilliQ-water was finally chosen for extracting sediment samples via shaking and sonication. Groundwater from well FW301 was used as an inoculum to which the extracted NOM was added as carbon sources to feed native microbes. To identify the specific functional groups of extracted NOM that are bioavailable to indigenous microbes, several techniques, including FTIR, LC-MS, EEM, were applied to characterize the extracted NOM as well as the transformed NOM metabolites. 16S rDNA amplicon sequencing was also performed to identify the specific microbial diversity that was enriched and microbial isolates that preferentially grew with these NOM was also cultivated in the lab for future detailed studies.
Determination and characterization of the Hubble Space Telescope pointing stability
NASA Technical Reports Server (NTRS)
Bradley, A. J.; Connor, C. T.; Del Toro, Y.; Andersen, G. C.; Bely, Pierre Y.; Decker, J.; Franz, O. G.; Wasserman, L. H.; Van Altena, William F.
1993-01-01
The Hubble Space Telescope (HST) was designed to maintian a pointing stability (jitter) of 0.007 arc seconds rms throughout every observing period, which can last from a few seconds to several orbits. On-orbit measurements indicate that the hardware excitation induced by the reaction wheels. gyros, high gain antennae, science instrument mechanisms and tape recorders are well within specifications. Unexpectedly, the solar arrays because the dominant source of jitter. Every passage through an orbital terminator produces vibrations which emanate from the solar arrays due to thermal effects, which affect the relative positional stability. Broadband frequencies centered about 0.11 and 0.65 Hz were detected in the frequency content of the vehicle jitter. On-board modifications to the control law have attenuated the disturbance torques and reduced the vehicle jitter close to specification. Replacement of the solar arrays in December, 1993, should eliminate the torque distubances. Astrometric science observations are extremely susceptible to corruption from vehicle jitter. The removal of vehicle jitter from astrometric Transfer function scans of binary stars is explained in detail. A binary star separation of 16 milli-seconds of arc has been achieved, a separation resolution of 10 to 12 milli-seconds of arc appears feasible, with a binary star magnitude of 9 m(sub V). The achievement of this resolution is in part due to vehicle jitter removal. Comparison of vehicle jitter measurements from the position path of the vehicle control law, or from the guiding Fine Guidance Sensors (FGS), are shown to be equivalent to approximately 0.001 arc second.
Determination and characterization of the Hubble Space Telescope pointing stability
NASA Astrophysics Data System (ADS)
Bradley, A. J.; Connor, C. T.; del Toro, Y.; Andersen, G. C.; Bely, Pierre Y.; Decker, J.; Franz, O. G.; Wasserman, L. H.; van Altena, William F.
The Hubble Space Telescope (HST) was designed to maintian a pointing stability (jitter) of 0.007 arc seconds rms throughout every observing period, which can last from a few seconds to several orbits. On-orbit measurements indicate that the hardware excitation induced by the reaction wheels. gyros, high gain antennae, science instrument mechanisms and tape recorders are well within specifications. Unexpectedly, the solar arrays because the dominant source of jitter. Every passage through an orbital terminator produces vibrations which emanate from the solar arrays due to thermal effects, which affect the relative positional stability. Broadband frequencies centered about 0.11 and 0.65 Hz were detected in the frequency content of the vehicle jitter. On-board modifications to the control law have attenuated the disturbance torques and reduced the vehicle jitter close to specification. Replacement of the solar arrays in December, 1993, should eliminate the torque distubances. Astrometric science observations are extremely susceptible to corruption from vehicle jitter. The removal of vehicle jitter from astrometric Transfer function scans of binary stars is explained in detail. A binary star separation of 16 milli-seconds of arc has been achieved, a separation resolution of 10 to 12 milli-seconds of arc appears feasible, with a binary star magnitude of 9 m(sub V). The achievement of this resolution is in part due to vehicle jitter removal. Comparison of vehicle jitter measurements from the position path of the vehicle control law, or from the guiding Fine Guidance Sensors (FGS), are shown to be equivalent to approximately 0.001 arc second.
NASA Astrophysics Data System (ADS)
Elliot, J. L.
2002-09-01
Pluto's tenuous atmosphere -- detected with a widely observed stellar occultation in 1988 (Millis et al., 1993, Icarus 105, 282) -- consists primarily of N2, with trace amounts of CO and CH4. The N2 gas is in vapor-pressure equilibrium with surface ice, which should maintain a uniform temperature for the N2 ice on the surface of the body. Data from the Kuiper Airborne Observatory (KAO) for the 1988 occultation showed Pluto's middle atmosphere to be isothermal at about 105 K for at least a scale height above a radius of about 1215 km (Pluto's surface radius is 1175 +/- 25 km; Tholen & Buie 1997, in Pluto and Charon, 193). This temperature can be explained with radiative-conductive models (e.g. Yelle & Lunine 1989, Nature 339, 288; Strobel et al. 1996, Icarus 120 266), using the spectroscopically measured amount of CH4 (Young et al. 1997, Icarus, 127 258). Below the isothermal region there is an abrupt drop in the KAO occultation light curve, which has been interpreted as being caused either by (i) an absorption layer, or (ii) a sharp thermal gradient. As Pluto recedes from the sun, the diminishing solar flux provides less energy for sublimation, which may lead to a substantial drop in surface pressure. On the other hand, the emissivity change that accompanies the α - β phase transition for N2 ice may leave the surface pressure relatively unchanged from its present value (Stansberry & Yelle 1999, Icarus 141, 299). Stellar occultation observations were successfully carried out in 2002 July and August (Sicardy et al., Buie et al., and Elliot et al., this conference) from a large number of telescopes: the IRTF, UH 2.2 m, UH 0.6 m, UKIRT, CFHT, Lick 3 m, Lowell 1.8 m, Palomar 5 m, as well as 0.35 m and smaller portable telescopes. The wavelengths of these observations ranged from the visible to near IR. These new data give us a snapshot of Pluto's atmospheric structure 14 years after the initial observations and reveal changes in the structure of Pluto's atmosphere. Occultation research at MIT is supported, in part, by NASA (NAG5-10444) and NSF (AST-0073447).
Degradation of progestagens by oxidation with potassium permanganate in wastewater effluents
2013-01-01
Background This study investigated the oxidation of selected progestagenic steroid hormones by potassium permanganate at pH 6.0 and 8.0 in ultrapure water and wastewater effluents, using bench-scale assays. Second order rate constants for the reaction of potassium permanganate with progestagens (levonorgestrel, medroxyprogesterone, norethindrone and progesterone) was determined as a function of pH, presence of natural organic matter and temperature. This work also illustrates the advantages of using a novel analytical method, the laser diode thermal desorption (LDTD-APCI) interface coupled to tandem mass spectrometry apparatus, allowing for the quick determination of oxidation rate constants and increasing sample throughput. Results The second-order rate constants for progestagens with permanganate determined in bench-scale experiments ranged from 23 to 368 M-1 sec-1 in both wastewater and ultrapure waters with pH values of 6.0 and 8.0. Two pairs of progestagens exhibited similar reaction rate constants, i.e. progesterone and medroxyprogesterone (23 to 80 M-1 sec-1 in ultrapure water and 26 to 149 M-1 sec-1 in wastewaters, at pH 6.0 and 8.0) and levonorgestrel and norethindrone (179 to 224 M-1 sec-1 in ultrapure water and 180 to 368 M-1 sec-1 in wastewaters, at pH 6.0 and 8.0). The presence of dissolved natural organic matter and the pH conditions improved the oxidation rate constants for progestagens with potassium permanganate only at alkaline pH. Reaction rates measured in Milli-Q water could therefore be used to provide conservative estimates for the oxidation rates of the four selected progestagens in wastewaters when exposed to potassium permanganate. The progestagen removal efficiencies was lower for progesterone and medroxyprogesterone (48 to 87 %) than for levonorgestrel and norethindrone (78 to 97%) in Milli-Q and wastewaters at pH 6.0-8.2 using potassium permanganate dosages of 1 to 5 mg L-1 after contact times of 10 to 60 min. Conclusion This work presents the first results on the permanganate-promoted oxidation of progestagens, as a function of pH, temperature as well as NOM. Progestagen concentrations used to determine rate constants were analyzed using an ultrafast laser diode thermal desorption interface coupled to tandem mass spectrometry for the analysis of water sample for progestagens. PMID:23675917
Improved Airborne Gravity Results Using New Relative Gravity Sensor Technology
NASA Astrophysics Data System (ADS)
Brady, N.
2013-12-01
Airborne gravity data has contributed greatly to our knowledge of subsurface geophysics particularly in rugged and otherwise inaccessible areas such as Antarctica. Reliable high quality GPS data has renewed interest in improving the accuracy of airborne gravity systems and recent improvements in the electronic control of the sensor have increased the accuracy and ability of the classic Lacoste and Romberg zero length spring gravity meters to operate in turbulent air conditions. Lacoste and Romberg type gravity meters provide increased sensitivity over other relative gravity meters by utilizing a mass attached to a horizontal beam which is balanced by a ';zero length spring'. This type of dynamic gravity sensor is capable of measuring gravity changes on the order of 0.05 milliGals in laboratory conditions but more commonly 0.7 to 1 milliGal in survey use. The sensor may have errors induced by the electronics used to read the beam position as well as noise induced by unwanted accelerations, commonly turbulence, which moves the beam away from its ideal balance position otherwise known as the reading line. The sensor relies on a measuring screw controlled by a computer which attempts to bring the beam back to the reading line position. The beam is also heavily damped so that it does not react to most unwanted high frequency accelerations. However this heavily damped system is slow to react, particularly in turns where there are very high Eotvos effects. New sensor technology utilizes magnetic damping of the beam coupled with an active feedback system which acts to effectively keep the beam locked at the reading line position. The feedback system operates over the entire range of the system so there is now no requirement for a measuring screw. The feedback system operates at very high speed so that even large turbulent events have minimal impact on data quality and very little, if any, survey line data is lost because of large beam displacement errors. Airborne testing along with results from ground based van testing and laboratory results have shown that the new sensor provides more consistent gravity data, as measured by repeated line surveys, as well as preserving the inherent sensitivity of the Lacoste and Romberg zero length spring design. The sensor also provides reliability during survey operation as there is no mechanical counter screw. Results will be presented which show the advantages of the new sensor system over the current technology in both data quality and survey productivity. Applications include high resolution geoid mapping, crustal structure investigations and resource mapping of minerals, oil and gas.
Binary Cepheids From High-Angular Resolution
NASA Astrophysics Data System (ADS)
Gallenne, A.; Mérand, A.; Kervella, P.
2015-12-01
Optical interferometry is the only technique giving access to milli-arcsecond (mas) spatial resolution. This is a powerful and unique tool to detect the close orbiting companions of Cepheids, and offers an unique opportunity to make progress in resolving the Cepheid mass discrepancy. Our goal in studying binary Cepheids is to measure the astrometric position of the high-contrast companion, and then combine them with spectroscopic measurements to derive the orbital elements, distances, and dynamical masses. In the course of this program, we developed a new tool, CANDID, to search for high-contrast companions and set detection limits from interferometric observations
First Images from HERO: A Hard-X-Ray Focusing Telescope
NASA Technical Reports Server (NTRS)
Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Benson, Carl M.; Dietz, Kurtis L.; Elsner, Ronald F.; Engelhaupt, Darell E.; Ghosh, Kajal K.; Kolodziejczak, Jeffery J.; ODell, Stephen L.;
2001-01-01
We are developing a balloon-borne hard-x-ray telescope that utilizes grazing incidence optics. Termed HERO, for High-Energy Replicated Optics, the instrument will provide unprecented sensitivity in the hard-x-ray region and will achieve milliCrab-level sensitivity in a typical 3-hour balloon-flight observation and 50 microCrab sensitivity on ultra-long-duration flights. A recent proof-of-concept flight, featuring a small number of mirror shells captured the first focused hard-x-ray images of galactic x-ray sources. Full details of the payload, its expected future performance and its recent measurements are provided.
AC to DC Bridgeless Boost Converter for Ultra Low Input Energy Harvesting
NASA Astrophysics Data System (ADS)
Dawam, A. H. A.; Muhamad, M.
2018-03-01
This paper presents design of circuit which converts low input AC voltage to a higher output DC voltage. A buck-boost topology and boost topology are combined to condition cycle of an AC input voltage. the unique integration of a combining circuit of buck-boost and boost circuit have been proposed in order to introduce a new direct ac-dc power converter topology without conventional diode bridge rectifier. The converter achieved to convert a milli-volt scale of input AC voltage into a volt scale of output DC voltages which is from 400mV to 3.3V.
STS-40 crewmembers use inflight blood collection system (IBCS) kit on middeck
NASA Technical Reports Server (NTRS)
1991-01-01
STS-40 crewmembers follow procedures for Experiment No. 261, The Influence of Space Flight on Erythrokinetics in Man, while on the middeck of Columbia, Orbiter Vehicle (OV) 102. Payload Specialist F. Drew Gaffney (center) draws blood from Payload Specialist Millie Hughes-Fulford (left) as Mission Specialist (MS) James P. Bagian looks on. The crewmembers are using the inflight blood collection system (IBCS) kit in front of the forward lockers and the orbiter refrigerator freezer (ORF). Displayed on the forward lockers are decals representing the Air Force, the Air Force Reserves (AFRES), University of Tennessee, Colorado State, and Stanford University.
Cryo Cooler Induced Micro-Vibration Disturbances to the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Jedrich, Nick; Zimbelman, Darrell; Turczyn, Mark; Sills, Joel; Voorhees, Carl; Clapp, Brian; Brumfield, Mark (Technical Monitor)
2002-01-01
This paper presents an overview of the Hubble Space Telescope (HST) Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (MCC) system, a description of the micro-vibration characterization testing performed, and a discussion of the simulated performance. The NCC is a reverse Brayton cycle system that employs micro turbo-machinery to provide cooling to the NICMOS instrument. Extensive testing was conducted to quantify the expected on-orbit disturbances caused by the micro turbo-machinery and provide input to a flexible-body dynamic simulation to demonstrate compliance with the HST 7 milli-arcsecond root mean square jitter requirement.
1991-01-28
The STS-40 crew portrait includes 7 astronauts. Pictured on the front row from left to right are F. Drew Gaffney, payload specialist 1; Milli-Hughes Fulford, payload specialist 2; M. Rhea Seddon, mission specialist 3; and James P. Bagian, mission specialist 1. Standing in the rear, left to right, are Bryan D. O’Connor, commander; Tamara E. Jernigan, mission specialist 2; and Sidney M. Gutierrez, pilot. Launched aboard the Space Shuttle Columbia on June 5, 1991 at 9:24; am (EDT), the STS-40 mission was the fifth dedicated Spacelab Mission, Spacelab Life Sciences-1 (SLS-1), and the first mission dedicated solely to life sciences.
2010-01-01
mg/L; low ionic strength (conductivity milliSiemens per centimeter [mS/cm]); a pH of 6.5 to 8; and relatively low concentrations of TCE, 1,2-DCA...include: • Groundwater dissolved oxygen (DO) levels as low as 0.01 mg/L and as high as 8 mg/L; • Groundwater with low ionic strength (conductivity ...held at 980°C. The chlorinated ethene was oxidized in the oven to CO2 and water. The water was removed via a Nafion ™ membrane water trap and the CO2
Long range intermolecular interactions between the alkali diatomics Na2, K2, and NaK
NASA Astrophysics Data System (ADS)
Zemke, Warren T.; Byrd, Jason N.; Michels, H. Harvey; Montgomery, John A.; Stwalley, William C.
2010-06-01
Long range interactions between the ground state alkali diatomics Na2-Na2, K2-K2, Na2-K2, and NaK-NaK are examined. Interaction energies are first determined from ab initio calculations at the coupled-cluster with singles, doubles, and perturbative triples [CCSD(T)] level of theory, including counterpoise corrections. Long range energies calculated from diatomic molecular properties (polarizabilities and dipole and quadrupole moments) are then compared with the ab initio energies. A simple asymptotic model potential ELR=Eelec+Edisp+Eind is shown to accurately represent the intermolecular interactions for these systems at long range.
Long range intermolecular interactions between the alkali diatomics Na(2), K(2), and NaK.
Zemke, Warren T; Byrd, Jason N; Michels, H Harvey; Montgomery, John A; Stwalley, William C
2010-06-28
Long range interactions between the ground state alkali diatomics Na(2)-Na(2), K(2)-K(2), Na(2)-K(2), and NaK-NaK are examined. Interaction energies are first determined from ab initio calculations at the coupled-cluster with singles, doubles, and perturbative triples [CCSD(T)] level of theory, including counterpoise corrections. Long range energies calculated from diatomic molecular properties (polarizabilities and dipole and quadrupole moments) are then compared with the ab initio energies. A simple asymptotic model potential E(LR)=E(elec)+E(disp)+E(ind) is shown to accurately represent the intermolecular interactions for these systems at long range.
Traceable low and ultra-low temperatures in The Netherlands
NASA Astrophysics Data System (ADS)
Peruzzi, A.; Bosch, W. A.
2009-02-01
The basis for worldwide uniformity of low and ultra-low temperature measurements is provided by two international temperature scales, the International Temperature Scale of 1990 (ITS-90) for temperatures above 0.65 K and the Provisional Low Temperature Scale of 2000 (PLTS-2000) for temperatures in the range 0.9 mK to 1 K. Over the past 10 years, the thermometry research in the Netherlands provided substantial contributions to the definition, realization and dissemination of these scales. We first give an overview of the Dutch contributions to the ITS-90 realization: a) 3He and 4He vapour pressure thermometer range of the ITS-90, 0.65 K to 4 K (1997), b) 4He interpolating constant volume gas thermometry for the ITS-90 range 3 K to 24.5 K (2007) and c) cryogenic fixed points for the ITS-90 range 13.8 K to 273.16 K (2005). Then we highlight our work on 3He melting pressure thermometry from 10 mK to 1 K (2003) to support the dissemination of the PLTS-2000. Finally we present the current status of the Dutch calibration facilities and dissemination devices providing for traceable low and ultra-low temperatures for use in science and industry: a) the NMi-VSL cryogenic calibration facility for the range 0.65 K to 273.16 K and b) the SRD1000 superconductive reference devices for the range 10 mK to 1 K.
The Polarbear-2 and the Simons Array experiments
Suzuki, A.; Ade, P.; Akiba, Y.; ...
2016-01-06
Here, we present an overview of the design and status of the POLARBEAR-2 and the Simons Array experiments. POLARBEAR- 2 is a Cosmic Microwave Background polarimetry experiment which aims to characterize the arc-minute angular scale B-mode signal from weak gravitational lensing and search for the degree angular scale B-mode signal from inflationary gravitational waves. The receiver has a 365 mm diameter focal plane cooled to 270 milli-Kelvin. The focal plane is filled with 7,588 dichroic lenslet-antenna coupled polarization sensitive Transition Edge Sensor (TES) bolometric pixels that are sensitive to 95 GHz and 150 GHz bands simultaneously. The TES bolometers aremore » read-out by SQUIDs with 40 channel frequency domain multiplexing. Refractive optical elements are made with high purity alumina to achieve high optical throughput. The receiver is designed to achieve noise equivalent temperature of 5.8 µK CMB√s in each frequency band. POLARBEAR-2 will deploy in 2016 in the Atacama desert in Chile. The Simons Array is a project to further increase sensitivity by deploying three POLARBEAR-2 type receivers. The Simons Array will cover 95 GHz, 150 GHz and 220 GHz frequency bands for foreground control. The Simons Array will be able to constrain tensor-to-scalar ratio and sum of neutrino masses to σ(r) = 6×10 $-$3 at r = 0.1 and Σm ν(σ = 1) to 40 meV.« less
NASA Astrophysics Data System (ADS)
Salerno, Marco
2010-09-01
Different combinations of metal tips and oxide coatings have been tested for possible operation in electrochemical scanning tunneling microscopy. Silicon and magnesium oxides have been thermally evaporated onto gold and platinum-iridium tips, respectively. Two different thickness values have been explored for both materials, namely, 40 and 120 nm for silicon oxide and 20 and 60 nm for magnesium oxide. Alternatively, tungsten oxide has been grown on tungsten tips via electrochemical anodization. In the latter case, to seek optimal results we have varied the pH of the anodizing electrolyte between one and four. The oxide coated tips have been first inspected by means of scanning electron microscopy equipped with microanalysis to determine the morphological results of the coating. Second, the coated tips have been electrically characterized ex situ for stability in time by means of cyclic voltammetry in 1 M aqueous KCl supporting electrolyte, both bare and supplemented with K3[Fe(CN)6] complex at 10 mM concentration in milliQ water as an analyte. Only the tungsten oxide coated tungsten tips have shown stable electrical behavior in the electrolyte. For these tips, the uncoated metal area has been estimated from the electrical current levels, and they have been successfully tested by imaging a gold grating in situ, which provided stable results for several hours. The successful tungsten oxide coating obtained at pH=4 has been assigned to the WO3 form.
Salerno, Marco
2010-09-01
Different combinations of metal tips and oxide coatings have been tested for possible operation in electrochemical scanning tunneling microscopy. Silicon and magnesium oxides have been thermally evaporated onto gold and platinum-iridium tips, respectively. Two different thickness values have been explored for both materials, namely, 40 and 120 nm for silicon oxide and 20 and 60 nm for magnesium oxide. Alternatively, tungsten oxide has been grown on tungsten tips via electrochemical anodization. In the latter case, to seek optimal results we have varied the pH of the anodizing electrolyte between one and four. The oxide coated tips have been first inspected by means of scanning electron microscopy equipped with microanalysis to determine the morphological results of the coating. Second, the coated tips have been electrically characterized ex situ for stability in time by means of cyclic voltammetry in 1 M aqueous KCl supporting electrolyte, both bare and supplemented with K(3)[Fe(CN)(6)] complex at 10 mM concentration in milliQ water as an analyte. Only the tungsten oxide coated tungsten tips have shown stable electrical behavior in the electrolyte. For these tips, the uncoated metal area has been estimated from the electrical current levels, and they have been successfully tested by imaging a gold grating in situ, which provided stable results for several hours. The successful tungsten oxide coating obtained at pH=4 has been assigned to the WO(3) form.
NASA Astrophysics Data System (ADS)
Jougnot, D.; Jimenez-Martinez, J.; Legendre, R.; Le Borgne, T.; Meheust, Y.; Linde, N.
2017-12-01
The use of time-lapse electrical resistivity tomography has been largely developed in environmental studies to remotely monitor water saturation and contaminant plumes migration. However, subsurface heterogeneities, and corresponding preferential transport paths, yield a potentially large anisotropy in the electrical properties of the subsurface. In order to study this effect, we have used a newly developed geoelectrical milli-fluidic experimental set-up with a flow cell that contains a 2D porous medium consisting of a single layer of cylindrical solid grains. We performed saline tracer tests under full and partial water saturations in that cell by jointly injecting air and aqueous solutions with different salinities. The flow cell is equipped with four electrodes to measure the bulk electrical resistivity at the cell's scale. The spatial distribution of the water/air phases and the saline solute concentration field in the water phase are captured simultaneously with a high-resolution camera by combining a fluorescent tracer with the saline solute. These data are used to compute the longitudinal and transverse effective electrical resistivity numerically from the measured spatial distributions of the fluid phases and the salinity field. This approach is validated as the computed longitudinal effective resistivities are in good agreement with the laboratory measurements. The anisotropy in electrical resistivity is then inferred from the computed longitudinal and transverse effective resistivities. We find that the spatial distribution of saline tracer, and potentially air phase, drive temporal changes in the effective resistivity through preferential paths or barriers for electrical current at the pore scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical resistivity, especially for partially saturated conditions. Therefore, considering the electrical resistivity as a tensor could improve our understanding of transport properties from field-scale time-lapse ERT.
Life cycle assessment of central softening of very hard drinking water.
Godskesen, B; Hauschild, M; Rygaard, M; Zambrano, K; Albrechtsen, H-J
2012-08-30
Many consumers prefer softened water due to convenience issues such as avoidance of removing limescale deposits from household appliances and surfaces, and to reduce consumption of cleaning agents and laundry detergents leading to lower household expenses. Even though central softening of drinking water entailed an increased use of energy, sand and chemicals at the waterworks, the distributed and softened drinking water supported a decrease in consumption of energy and chemical agents in the households along with a prolonged service life of household appliances which heat water. This study used Life Cycle Assessment (LCA) to quantify the environmental impacts of central softening of drinking water considering both the negative effects at the waterworks and the positive effects imposed by the changed water quality in the households. The LCA modeling considered central softening of drinking water from the initial hardness of the region of study (Copenhagen, Denmark) which is 362 mg/L as CaCO(3) to a final hardness as CaCO(3) of 254 (a softening depth of 108) mg/L or 145 (a softening depth of 217) mg/L. Our study showed that the consumer preference can be met together with reducing the impact on the environment and the resource consumption. Environmental impacts decreased by up to 3 mPET (milli Personal Equivalent Targeted) and the break-even point from where central softening becomes environmentally beneficial was reached at a softening depth of only 22 mg/L as CaCO(3). Both energy-related and chemically related environmental impacts were reduced as well as the consumption of resources. Based on scarcity criteria, nickel was identified as the most problematic non-renewable resource in the system, and savings of up to 8 mPR (milli Person Reserve) were found. Copyright © 2012 Elsevier Ltd. All rights reserved.
Polloni-Silva, Juliana; Valdehita, Ana; Fracácio, Renata; Navas, José M
2017-04-01
Chemical substances with potential to disrupt endocrine systems have been detected in aquatic environments worldwide, making necessary the investigation about water treatments able to inhibit such potential. The present work aimed to assess the efficiency for removing endocrine disruptors (with estrogenic and androgenic activity) of three simple and inexpensive substrates that could be potentially used in sectors or regions with limited resources: powdered activated carbon (PAC), powdered natural zeolite (ZEO) (both at a concentration of 500 mg L -1 ) and natural aquatic humic substances (AHS) (at 30 mg L -1 ). MilliQ-water and mature water from fish facilities (aquarium water, AW), were artificially spiked with 17β-estradiol (E2), 17α-ethinylestradiol and dihydrotestosterone. Moreover, effluent samples from waste water treatment plants (WWTP) were also submitted to the remediation treatments. Estrogenic and androgenic activities were assessed with two cell lines permanently transfected with luciferase as reporter gene under the control of hormone receptors: AR-EcoScreen containing the human androgen receptor and HER-LUC transfected with the sea bass estrogen receptor. PAC was efficiently removing the estrogenic and androgenic compounds added to milliQ and AW. However, androgenic activity detected in WWTP effluents was only reduced after treatment with ZEO. The higher surface area of PAC could have facilitated the removal of spiked hormones in clean waters. However, it is possible that the substances responsible of the hormonal activity in WWTP have adsorbed to micro and nanoparticles present in suspension that would have been retained with higher efficiency by ZEO that show pores of several microns in size. Copyright © 2017 Elsevier Ltd. All rights reserved.
High Frequency Variations of Earth Rotation Parameters from GPS and GLONASS Observations
Wei, Erhu; Jin, Shuanggen; Wan, Lihua; Liu, Wenjie; Yang, Yali; Hu, Zhenghong
2015-01-01
The Earth's rotation undergoes changes with the influence of geophysical factors, such as Earth's surface fluid mass redistribution of the atmosphere, ocean and hydrology. However, variations of Earth Rotation Parameters (ERP) are still not well understood, particularly the short-period variations (e.g., diurnal and semi-diurnal variations) and their causes. In this paper, the hourly time series of Earth Rotation Parameters are estimated using Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), and combining GPS and GLONASS data collected from nearly 80 sites from 1 November 2012 to 10 April 2014. These new observations with combining different satellite systems can help to decorrelate orbit biases and ERP, which improve estimation of ERP. The high frequency variations of ERP are analyzed using a de-trending method. The maximum of total diurnal and semidiurnal variations are within one milli-arcseconds (mas) in Polar Motion (PM) and 0.5 milli-seconds (ms) in UT1-UTC. The semidiurnal and diurnal variations are mainly related to the ocean tides. Furthermore, the impacts of satellite orbit and time interval used to determinate ERP on the amplitudes of tidal terms are analyzed. We obtain some small terms that are not described in the ocean tide model of the IERS Conventions 2010, which may be caused by the strategies and models we used or the signal noises as well as artifacts. In addition, there are also small differences on the amplitudes between our results and IERS convention. This might be a result of other geophysical excitations, such as the high-frequency variations in atmospheric angular momentum (AAM) and hydrological angular momentum (HAM), which needs more detailed analysis with more geophysical data in the future. PMID:25635416
NASA Technical Reports Server (NTRS)
Morrell, Frederick R.; Bailey, Melvin L.
1987-01-01
A vector-based failure detection and isolation technique for a skewed array of two degree-of-freedom inertial sensors is developed. Failure detection is based on comparison of parity equations with a threshold, and isolation is based on comparison of logic variables which are keyed to pass/fail results of the parity test. A multi-level approach to failure detection is used to ensure adequate coverage for the flight control, display, and navigation avionics functions. Sensor error models are introduced to expose the susceptibility of the parity equations to sensor errors and physical separation effects. The algorithm is evaluated in a simulation of a commercial transport operating in a range of light to severe turbulence environments. A bias-jump failure level of 0.2 deg/hr was detected and isolated properly in the light and moderate turbulence environments, but not detected in the extreme turbulence environment. An accelerometer bias-jump failure level of 1.5 milli-g was detected over all turbulence environments. For both types of inertial sensor, hard-over, and null type failures were detected in all environments without incident. The algorithm functioned without false alarm or isolation over all turbulence environments for the runs tested.
High Current ESD Test of Advanced Triple Junction Solar Array Coupon
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie
2014-01-01
Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration of flight-type design that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four string currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-ESD functional testing showed that no degradation occurred due to the TSA events. These test results point to a robust design for application to a high-current, high-power mission.
In situ and ex situ low-field NMR spectroscopy and MRI endowed by SABRE hyperpolarization.
Barskiy, Danila A; Kovtunov, Kirill V; Koptyug, Igor V; He, Ping; Groome, Kirsten A; Best, Quinn A; Shi, Fan; Goodson, Boyd M; Shchepin, Roman V; Truong, Milton L; Coffey, Aaron M; Waddell, Kevin W; Chekmenev, Eduard Y
2014-12-15
By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 10(5)-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
TOPICAL REVIEW: Self-assembly from milli- to nanoscales: methods and applications
NASA Astrophysics Data System (ADS)
Mastrangeli, M.; Abbasi, S.; Varel, C.; Van Hoof, C.; Celis, J.-P.; Böhringer, K. F.
2009-08-01
The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed.
Campo-Deaño, Laura; Dullens, Roel P. A.; Aarts, Dirk G. A. L.; Pinho, Fernando T.; Oliveira, Mónica S. N.
2013-01-01
The non-Newtonian properties of blood are of great importance since they are closely related with incident cardiovascular diseases. A good understanding of the hemodynamics through the main vessels of the human circulatory system is thus fundamental in the detection and especially in the treatment of these diseases. Very often such studies take place in vitro for convenience and better flow control and these generally require blood analogue solutions that not only adequately mimic the viscoelastic properties of blood but also minimize undesirable optical distortions arising from vessel curvature that could interfere in flow visualizations or particle image velocimetry measurements. In this work, we present the viscoelastic moduli of whole human blood obtained by means of passive microrheology experiments. These results and existing shear and extensional rheological data for whole human blood in the literature enabled us to develop solutions with rheological behavior analogous to real whole blood and with a refractive index suited for PDMS (polydymethylsiloxane) micro- and milli-channels. In addition, these blood analogues can be modified in order to obtain a larger range of refractive indices from 1.38 to 1.43 to match the refractive index of several materials other than PDMS. PMID:24404022
Self-assembly from milli- to nanoscales: methods and applications
Mastrangeli, M; Abbasi, S; Varel, C; Van Hoof, C; Celis, J-P; Böhringer, K F
2009-01-01
The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed. PMID:20209016
Film Vetoes for Alpha Background Rejection in Bolometer Detectors
NASA Astrophysics Data System (ADS)
Deporzio, Nicholas; Bucci, Carlo; Canonica, Lucia; Divacri, Marialaura; Cuore Collaboration; Absurd Team
2015-04-01
This study characterizes the effectiveness of encasing bolometer detectors in scintillator, metal ionization, and more exotic films to veto alpha radiation background. Bolometers are highly susceptible to alpha background and a successful veto should boost the statistical strength, speed, and signal-background ratio of bolometer particle searches. Plastic scintillator films are cooled to bolometer temperatures and bombarded with 1.4 MeV to 6.0 MeV alpha particles representative of detector conditions. Photomultipliers detect the keV range scintillation light and produce a veto signal. Also, layered films of a primary metal, dielectric, and secondary metal, such as gold-polyethylene-gold films, are cooled to milli-kelvin temperatures and biased with 0.1V to 100V to produce a current signal when incident 1.4 MeV to 6.0 MeV alpha particles ionize conduction paths through the film. Veto signals are characterized by their affect on bolometer detection of 865 keV target signals. Similar methods are applied to more exotic films. Early results show scintillator films raise target signal count rate and suppress counts above target energy by at least a factor of 10. This indicates scintillation vetoes are effective and that metal ionization and other films under study will also be effective.
Zhang, Yiwei; Li, Jian; Meng, Zhiyun; Zhu, Xiaoxia; Gan, Hui; Gu, Ruolan; Wu, Zhuona; Zheng, Ying; Wei, Jinbin; Dou, Guifang
2017-06-15
17-Ethinyl-3,17-dihydroxyandrost-5-ene (EAD) is an agent designed for the treatment of acute radiation syndrome (ARS). Given its vital role played in the prevention and mitigation of ARS, the development of a sharp, sensitive and robust liquid chromatography tandem mass spectrometry (LC-MS/MS) method to monitor the metabolism of EAD in vivo was crucial. A new method was constructed and validated for the determination of EAD with the internal standard of androst-5-ene-3β,17β-diol (5-AED). The blood samples were precipitated with methanol, centrifuged, from which the supernatant was separated on UPLC with C18 column and eluted in gradient with acetonitrile and Milli-Q water both containing 0.1% formic acid (FA). Quantification was performed by a triple quadrupole mass spectrometer with electro spray ionization (ESI) in multiple reactive monitoring (MRM) positive mode. A good linearity was obtained with R>0.99 for EAD within its calibration range from 5 to 1000ngmL -1 with a lowest limit of quantification (LLOQ) of 5ngmL -1 . Inter- and intra-day accuracy and precision of three levels of quality control (QC) samples were within the range of 15%, while the LLOQ was within 20%. Samples were stable under the circumstances of the experiments. The method was simple, accurate and robust applied to determine the concentrations of EAD in Wistar rat after a single administration of EAD orally at the dose of 100mgkg -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
Advanced Ultrafast Spectroscopy for Chemical Detection of Nuclear Fuel Cycle Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa-Aleman, E.; Houk, A.; Spencer, W.
The development of new signatures and observables from processes related to proliferation activities are often related to the development of technologies. In our physical world, the intensity of observables is linearly related to the input drivers (light, current, voltage, etc.). Ultrafast lasers with high peak energies, opens the door to a new regime where the intensity of the observables is not necessarily linear with the laser energy. Potential nonlinear spectroscopic applications include chemical detection via remote sensing through filament generation, material characterization and processing, chemical reaction specificity, surface phenomena modifications, X-ray production, nuclear fusion, etc. The National Security Directorate lasermore » laboratory is currently working to develop new tools for nonproliferation research with femtosecond and picosecond lasers. Prior to this project, we could only achieve laser energies in the 5 nano-Joule range, preventing the study of nonlinear phenomena. To advance our nonproliferation research into the nonlinear regime we require laser pulses in the milli-Joule (mJ) energy range. We have procured and installed a 35 fs-7 mJ laser, operating at one-kilohertz repetition rate, to investigate elemental and molecular detection of materials in the laboratory with potential applications in remote sensing. Advanced, nonlinear Raman techniques will be used to study materials of interest that are in a matrix of many materials and currently with these nonlinear techniques we can achieve greater than three orders of magnitude signal enhancement. This work studying nuclear fuel cycle materials with nonlinear spectroscopies will advance SRNL research capabilities and grow a core capability within the DOE complex.« less
Kumar, Namala Durga Atchuta; Babu, K. Sudhakar; Gosada, Ullas; Sharma, Nitish
2012-01-01
Introduction: A selective, specific, and sensitive “Ultra High-Pressure Liquid Chromatography” (UPLC) method was developed for determination of candesartan cilexetil impurities as well asits degradent in tablet formulation. Materials and Methods: The chromatographic separation was performed on Waters Acquity UPLC system and BEH Shield RP18 column using gradient elution of mobile phase A and B. 0.01 M phosphate buffer adjusted pH 3.0 with Orthophosphoric acid was used as mobile phase A and 95% acetonitrile with 5% Milli Q Water was used as mobile phase B. Ultraviolet (UV) detection was performed at 254 nm and 210 nm, where (CDS-6), (CDS-5), (CDS-7), (Ethyl Candesartan), (Desethyl CCX), (N-Ethyl), (CCX-1), (1 N Ethyl Oxo CCX), (2 N Ethyl Oxo CCX), (2 N Ethyl) and any unknown impurity were monitored at 254 nm wavelength, and two process-related impurities, trityl alcohol and MTE impurity, were estimated at 210 nm. Candesartan cilexetil andimpurities were chromatographed with a total run time of 20 min. Results: Calibration showed that the response of impurity was a linear function of concentration over the range limit of quantification to 2 μg/mL (r2≥0.999) and the method was validated over this range for precision, intermediate precision, accuracy, linearity, and specificity. For the precision study, percentage relative standard deviation of each impurity was <15% (n=6). Conclusion: The method was found to be precise, accurate, linear, and specific. The proposed method was successfully employed for estimation of candesartan cilexetil impurities in pharmaceutical preparations. PMID:23781475
Schmuziger, Nicolas; Probst, Rudolf; Smurzynski, Jacek
2004-04-01
The purposes of the study were: (1) To evaluate the intrasession test-retest reliability of pure-tone thresholds measured in the 0.5-16 kHz frequency range for a group of otologically healthy subjects using Sennheiser HDA 200 circumaural and Etymotic Research ER-2 insert earphones and (2) to compare the data with existing criteria of significant threshold shifts related to ototoxicity and noise-induced hearing loss. Auditory thresholds in the frequency range from 0.5 to 6 kHz and in the extended high-frequency range from 8 to 16 kHz were measured in one ear of 138 otologically healthy subjects (77 women, 61 men; mean age, 24.4 yr; range, 12-51 yr) using HDA 200 and ER-2 earphones. For each subject, measurements of thresholds were obtained twice for both transducers during the same test session. For analysis, the extended high-frequency range from 8 to 16 kHz was subdivided into 8 to 12.5 and 14 to 16 kHz ranges. Data for each frequency and frequency range were analyzed separately. There were no significant differences in repeatability for the two transducer types for all frequency ranges. The intrasession variability increased slightly, but significantly, as frequency increased with the greatest amount of variability in the 14 to 16 kHz range. Analyzing each individual frequency, variability was increased particularly at 16 kHz. At each individual frequency and for both transducer types, intrasession test-retest repeatability from 0.5 to 6 kHz and 8 to 16 kHz was within 10 dB for >99% and >94% of measurements, respectively. The results indicated a false-positive rate of <3% in reference to the criteria for cochleotoxicity for both transducer types. In reference to the Occupational Safety and Health Administration Standard Threshold Shift criteria for noise-induced hazards, the results showed a minor false-positive rate of <1% for the HDA 200. Repeatability was similar for both transducer types. Intrasession test-retest repeatability from 0.5 to 12.5 kHz at each individual frequency including the frequency range susceptible to noise-induced hearing loss was excellent for both transducers. Repeatability was slightly, but significantly poorer in the frequency range from 14 to 16 kHz compared with the frequency ranges from 0.5 to 6 or 8 to 12.5 kHz. Measurements in the extended high-frequency range from 8 to 14 kHz, but not up to 16 kHz, may be recommended for monitoring purposes.
Properties of large nearly perfect crystals at very low temperatures
NASA Technical Reports Server (NTRS)
Davis, W.; Krack, K. R.; Richard, J. P.; Weber, J.
1983-01-01
A liquid helium cryostat of a size and construction unavailable commercially, was built for use in measuring the Q of several materials at milli-Kelvin temperatures. The design and testing of the cryostat is described as well as the design of the experiment vacuum chamber and adaptor for the dilution refrigerator insert. Theory, design, and testing are also discussed for the magnetic coils built to levitate the materials so as to isolate them and increase the measured Q. A four point suspension with capacitor end plates as the transducer was used to obtain preliminary Q measurements of 6061 aluminum alloy and single crystal silicon. Results are tabulated.
Performance Evaluation of Nano-JASMINE
NASA Astrophysics Data System (ADS)
Hatsutori, Y.; Kobayashi, Y.; Gouda, N.; Yano, T.; Murooka, J.; Niwa, Y.; Yamada, Y.
We report the results of performance evaluation of the first Japanese astrometry satellite, Nano-JASMINE. It is a very small satellite and weighs only 35 kg. It aims to carry out astrometry measurement of nearby bright stars (z ≤ 7.5 mag) with an accuracy of 3 milli-arcseconds. Nano-JASMINE will be launched by Cyclone-4 rocket in August 2011 from Brazil. The current status is in the process of evaluating the performances. A series of performance tests and numerical analysis were conducted. As a result, the engineering model (EM) of the telescope was measured to be achieving a diffraction-limited performance and confirmed that it has enough performance for scientific astrometry.
Report of the panel on lithospheric structure and evolution, section 3
NASA Technical Reports Server (NTRS)
Chase, Clement G.; Lang, Harold; Mcnutt, Marcia K.; Paylor, Earnest D.; Sandwell, David T.; Stern, Robert J.
1991-01-01
The panel concluded that NASA can contribute to developing a refined understanding of the compositional, structural, and thermal differences between continental and oceanic lithosphere through a vigorous program in solid Earth science with the following objectives: determine the most fundamental geophysical property of the planet; determine the global gravity field to an accuracy of a few milliGals at wavelengths of 100 km or less; determine the global lithospheric magnetic field to a few nanoTeslas at a wavelength of 100 km; determine how the lithosphere has evolved to its present state via acquiring geologic remote sensing data over all the continents.
STS-40 crewmembers use inflight blood collection system (IBCS) kit on middeck
NASA Technical Reports Server (NTRS)
1991-01-01
STS-40 crewmembers follow procedures for Experiment No. 261, The Influence of Space Flight on Erythrokinetics in Man, while on the middeck of Columbia, Orbiter Vehicle (OV) 102. Mission Specialist (MS) James P. Bagian (right) draws blood from Payload Specialist F. Drew Gaffney (center) as the second Spacelab Life Sciences 1 (SLS-1) Payload Specialist Millie Hughes-Fulford looks on. The crewmembers are using the inflight blood collection system (IBCS) kit in front of the forward lockers and the orbiter refrigerator freezer (ORF). Displayed on the forward lockers are decals representing the University of Tennessee, Colorado State, and Stanford University and several drink containers.
Development of Camera Electronics for the Advanced Gamma-ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Tajima, Hiroyasu
2009-05-01
AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. We have developed test systems for some of these concepts and are testing their performance. Here we present test results of the test systems.
The Advanced Gamma-ray Imaging System (AGIS) - Camera Electronics Development
NASA Astrophysics Data System (ADS)
Tajima, Hiroyasu; Bechtol, K.; Buehler, R.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Hanna, D.; Horan, D.; Humensky, B.; Karlsson, N.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Mukherjee, R.; Ong, R.; Otte, N.; Quinn, J.; Schroedter, M.; Swordy, S.; Wagner, R.; Wakely, S.; Weinstein, A.; Williams, D.; Camera Working Group; AGIS Collaboration
2010-03-01
AGIS, a next-generation imaging atmospheric Cherenkov telescope (IACT) array, aims to achieve a sensitivity level of about one milliCrab for gamma-ray observations in the energy band of 50 GeV to 100 TeV. Achieving this level of performance will require on the order of 50 telescopes with perhaps as many as 1M total electronics channels. The larger scale of AGIS requires a very different approach from the currently operating IACTs, with lower-cost and lower-power electronics incorporated into camera modules designed for high reliability and easy maintenance. Here we present the concept and development status of the AGIS camera electronics.
Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation
NASA Technical Reports Server (NTRS)
Woo, D. S.
1980-01-01
The double layer metallization technology applied on p type silicon gate CMOS/SOS integrated circuits is described. A smooth metal surface was obtained by using the 2% Si-sputtered Al. More than 10% probe yield was achieved on solar cell controller circuit TCS136 (or MSFC-SC101). Reliability tests were performed on 15 arrays at 150 C. Only three arrays failed during the burn in, and 18 arrays out of 22 functioning arrays maintained the leakage current below 100 milli-A. Analysis indicates that this technology will be a viable process if the metal short circuit problem between the two metals can be reduced.
Optical frequency standards for gravitational wave detection using satellite velocimetry
NASA Astrophysics Data System (ADS)
Vutha, Amar
2015-04-01
Satellite Doppler velocimetry, building on the work of Kaufmann and Estabrook and Wahlquist, is a complementary technique to interferometric methods of gravitational wave detection. This method is based on the fact that the gravitational wave amplitude appears in the apparent Doppler shift of photons propagating from an emitter to a receiver. This apparent Doppler shift can be resolved provided that a frequency standard, capable of quickly averaging down to a high stability, is available. We present a design for a space-capable optical atomic frequency standard, and analyze the sensitivity of satellite Doppler velocimetry for gravitational wave astronomy in the milli-hertz frequency band.
Monitoring of a 1 kWp Solar Photovoltaic System
NASA Astrophysics Data System (ADS)
Malek, M. F.; Zainuddin, H.; Rejab, S. N. M.; Shaari, S. N.; Shaari, S.; Omar, A. M.; Rusop, M.
2009-06-01
A 1 kWp `stand alone' PV system consists of 4 module (2 BP SX75U module and 2 BP 275F module), inverter, 2 thermocouple, 3 voltage sensor, 3 current sensor, 4 battery and data logger (Data Taker DT80) has been set up. This research involve nine parameters which are irradiance (Ia), ambient temperature (Tamb), module temperature (Tmod), module voltage (Vmod), battery voltage (Vbat), load voltage (Vload), module current (Imod), battery current (Ibat) and load current (Iload). All parameters were measured using the equipments and sensors that connected directly to data logger (Data Taker DT80) to interpret and show the data on computer using the Delogger sofware. The data then was transferred into the computer and analyzed using the Deview and Microsoft Excel software to determine the performance indices for the stand alone PV system. From the analysis a few performance indices were determined. The range of daily solar irradiation is between 2.20 kWhm-2 to 4.00 kWhm-2, while the range of total global irradiation is between 5.76 kWh to 10.48 kWh. For daily total energy yield, the range is between 0.23 kWh d-1 to 0.28 kWh d-1. The range for clearness index is between 0.49% to 0.89%. The range for final yield is between 0.77 kWh d-1 kWp-1 to 0.93 kWhd-1 kWp-1 while the range of array efficiency is between 2.53% to 4.65%. Lastly, the range of the performance ratio is between 22.08% to 40.58%.
NASA Technical Reports Server (NTRS)
Ryu, Si-Ok; Hwang, Soon Muk; Rabinowitz, Martin Jay
1995-01-01
The rate coefficient of the reaction H + 02 = OH + 0 was determined using OH laser absorption spectroscopy behind reflected shock waves over the temperature range 1050-2500 K and the pressure range 0.7-4.0 atm. Eight mixtures and three stoichiometries were used. Two distinct and independent criteria were employed in the evaluation of k(sub 1). Our recommended expression for k(sub 1) is k(sub 1) = 7.13 x 10(exp 13)exp(-6957 K/T) cm(exp 3)mol(exp -1)s(exp -1) with a statistical uncertainty of 6%. A critical review of recent evaluations of k(sub 1) yields a consensus expression given by k(sub 1) = 7.82 x 10(exp 13)exp(-7105 K/7) cm(exp 3)mol(exp -1)s(exp -1) over the temperature range 960-5300 K. We do not support a non-Arrhenius rate coefficient expression, nor do we find evidence of composition dependence upon the determination of k(sub 1).
Rubio, Francisco; Alemán, Fernando; Nieves-Cordones, Manuel; Martínez, Vicente
2010-06-01
The high-affinity K(+) transporter AtHAK5 and the inward-rectifier K(+) channel AtAKT1 have been described to contribute to K(+) uptake in Arabidopsis thaliana. Studies with T-DNA insertion lines showed that both systems participate in the high-affinity range of concentrations and only AtAKT1 in the low-affinity range. However the contribution of other systems could not be excluded with the information and plant material available. The results presented here with a double knock-out athak5, atakt1 mutant show that AtHAK5 is the only system mediating K(+) uptake at concentrations below 0.01 mM. In the range between 0.01 and 0.05 mM K(+) AtHAK5 and AtAKT1 are the only contributors to K(+) acquisition. At higher K(+) concentrations, unknown systems come into operation and participate together with AtAKT1 in low-affinity K(+) uptake. These systems can supply sufficient K(+) to promote plant growth even in the absence of AtAKT1 or in the presence of 10 mM K(+) where AtAKT1 is not essential.
Biochars impact on water infiltration and water quality through a compacted subsoil layer.
Novak, Jeff; Sigua, Gilbert; Watts, Don; Cantrell, Keri; Shumaker, Paul; Szogi, Ariel; Johnson, Mark G; Spokas, Kurt
2016-01-01
Soils in the SE USA Coastal Plain region frequently have a compacted subsoil layer (E horizon), which is a barrier for water infiltration. Four different biochars were evaluated to increase water infiltration through a compacted horizon from a Norfolk soil (fine-loamy, kaolinitic, thermic, Typic Kandiudult). In addition, we also evaluated biochars effect on water quality. Biochars were produced by pyrolysis at 500 °C from pine chips (Pinus taeda), poultry litter (Gallus domesticus) feedstocks, and as blends (50:50 and 80:20) of pine chip:poultry litter. Prior to pyrolysis, the feedstocks were pelletized and sieved to >2-mm pellets. Each biochar was mixed with the subsoil at 20 g/kg (w/w) and the mixture was placed in columns. The columns were leached four times with Milli-Q water over 128 d of incubation. Except for the biochar produced from poultry litter, all other applied biochars resulted in significant water infiltration increases (0.157-0.219 mL min(-1); p<0.05) compared to the control (0.095 mL min(-1)). However, water infiltration in each treatment were influenced by additional water leaching. Leachates were enriched in PO4, SO4, Cl, Na, and K after addition of poultry litter biochar, however, their concentrations declined in pine chip blended biochar treatments and after multiple leaching. Adding biochars (except 100% poultry litter biochar) to a compacted subsoil layer can initially improve water infiltration, but, additional leaching revealed that the effect remained only for the 50:50 pine chip:poultry litter blended biochar while it declined in other biochar treatments. Published by Elsevier Ltd.
Electrical transport via variable range hopping in an individual multi-wall carbon nanotube
NASA Astrophysics Data System (ADS)
Husain Khan, Zishan; Husain, M.; Perng, T. P.; Salah, Numan; Habib, Sami
2008-11-01
E-beam lithography is used to make four leads on an individual multi-wall carbon nanotube for carrying out electrical transport measurements. Temperature dependence of conductance of an individual multi-wall carbon nanotube (MWNT) is studied over a temperature range of (297 4.8 K). The results indicate that the conduction is governed by variable range hopping (VRH) for the entire temperature range (297 4.8 K). This VRH mechanism changes from three dimensions (3D) to two dimensions (2D) as we go down to 70 K. Three-dimensional variable range hopping (3D VRH) is responsible for conduction in the temperature range (297 70 K), which changes to two-dimensional VRH for much lower temperatures (70 4.8 K). For 3D VRH, various Mott parameters such as density of states, hopping distance and hopping energy have been calculated. The 2D VRH mechanism has been applied for the temperature range (70 4.8 K) and, with the help of this model, the parameters such as localization length and hopping distance are calculated. All these parameters give interesting information about this complex structure, which may be useful for many applications.
Analysis of Er{sup 3+} and Ho{sup 3+} codoped fluoroindate glasses as wide range temperature sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haro-Gonzalez, P., E-mail: patharo@ull.es; Leon-Luis, S.F.; Gonzalez-Perez, S.
2011-07-15
Graphical abstract: The sensor sensitivity as a function of the temperature of erbium and holmium doped fluoroindate glasses. A wide temperature range from 20 K to 425 K is covered with a sensitivity larger than 0.0005. Highlights: {yields} The FIR technique has been carried out in fluoroindate glass sample. {yields} The Er doped fluoroindate sample has a maximum sensitivity of 0.0028 K{sup -1} at 425 K. {yields} The Ho doped fluoroindate sample has a maximum sensitivity of 0.0036 K{sup -1} at 59 K. -- Abstract: The fluorescence intensity ratio technique for two fluoroindate glass samples has been carried out. Themore » green emissions at 523 nm and at 545 nm in a 0.1 mol% of Er{sup 3+} doped fluoroindate glass was studied in a wide range of temperature from 125 K to 425 K with a maximum sensitivity of 0.0028 K{sup -1} for 425 K. In a sample doped with 0.1 mol% of Ho{sup 3+} the emissions at 545 nm and at 750 nm were analyzed as a function of temperature from 20 K to 300 K obtaining a maximum sensitivity of 0.0036 K{sup -1} at 59 K. Using both fluoroindate glass samples a wide temperature range from 20 K to 425 K is easily covered pumping with two low-cost diode laser at 406 nm and 473 nm.« less
Schaefer, D.H.; Thomas, J.M.; Duffrin, B.G.
1984-01-01
During March through July 1979, gravity measurements were made at 300 stations in Dixie Valley, Nevada. In December 1981, 45 additional stations were added--7 in Dixie Valley, 23 in Fairview Valley, and 15 in Stingaree Valley. Most altitudes were determined by using altimeters or topographic maps. The gravity observations were made with a Worden temperature-controlled gravimeter with an initial scale factor of 0.0965 milliGal/scale division. Principal facts for each of the 345 stations are tabulated; they consist of latitude, longitude, altitude, observed gravity, free-air anomaly, terrain correction, and Bouguer anomaly values at a bedrock density of 2.67 grams/cu cm. (Lantz-PTT)
MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission
NASA Technical Reports Server (NTRS)
Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.
1989-01-01
A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.
The Science of Gravitational Waves with Space Observatories
NASA Technical Reports Server (NTRS)
Thorpe, James Ira
2013-01-01
After decades of effort, direct detection of gravitational waves from astrophysical sources is on the horizon. Aside from teaching us about gravity itself, gravitational waves hold immense promise as a tool for general astrophysics. In this talk I will provide an overview of the science enabled by a space-based gravitational wave observatory sensitive in the milli-Hertz frequency band including the nature and evolution of massive black holes and their host galaxies, the demographics of stellar remnant compact objects in the Milky Way, and the behavior of gravity in the strong-field regime. I will also summarize the current status of efforts in the US and Europe to implement a space-based gravitational wave observatory.
18 centimeter VLBI observations of the quasar NRAO 140 during and after a low-frequency outburst
NASA Astrophysics Data System (ADS)
Marscher, Alan P.; Broderick, John J.; Padrielli, Lucia; Bartel, Norbert; Romney, Jonathan D.
1987-08-01
The authors have observed the quasar NRAO 140 using an eight station very long baseline array at 18 cm in 1984 April and a seven station array at 6 cm in 1984 May. They compare both the map and the data at 18 cm with those obtained by Marscher and Broderick in 1981 October. The latter coincided with a ≡25% outburst in flux density at wavelengths greater than ≡30 cm. The analysis indicates that a component ≡5 milli-arc seconds southeast of the "core" dropped significantly in brightness between 1981 October and 1984 April. The authors identify this component as the likely site of the low-frequency variations.
Availability of Water in the Kabul Basin, Afghanistan
Mack, Thomas J.; Chornack, Michael P.; Coplen, T.B.; Plummer, Niel; Rezai, M.T.; Verstraeten, Ingrid M.
2010-01-01
The availability of water resources is vital to the social and economic well being and rebuilding of Afghanistan. Kabul City currently (2010) has a population of nearly 4 million and is growing rapidly as a result of periods of relative security and the return of refugees. Population growth and recent droughts have placed new stresses on the city's limited water resources and have caused many wells to become contaminated, dry, or inoperable in recent years. The projected vulnerability of Central and West Asia to climate change (Cruz and others, 2007; Milly and others, 2005) and observations of diminishing glaciers in Afghanistan (Molnia, 2009) have heightened concerns for future water availability in the Kabul Basin of Afghanistan.
STS-40 crew trains in JSC's SLS mockup located in Bldg 36
1987-03-10
STS-40 Payload Specialist Millie Hughes-Fulford along with backup payload specialist Robert Ward Phillips familiarize themselves with Spacelab Life Sciences 1 (SLS-1) equipment. The two scientists are in JSC's Life Sciences Project Division (LSPD) SLS mockup located in the Bioengineering and Test Support Facility Bldg 36. Hughes-Fulford, in the center aisle, pulls equipment from an overhead stowage locker while Phillips, in the foreground, experiments with the baroreflex neck pressure chamber at Rack 11. The baroreflex collar will be used in conjuction with Experiment No. 022, Influence of Weightlessness Upon Human Autonomic Cardiovascular Control. Behind Phillips in the center aisle are body mass measurement device (BMMD) (foreground) and the stowed bicycle ergometer.
3D-printed Bioanalytical Devices
Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F
2016-01-01
While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices. PMID:27250897
Kaufman, M H
2011-08-01
Since the Victoria Cross was introduced in January 1856 by Queen Victoria to reward acts of valour in the face of the enemy, initially during the Crimean War, over 1350 medals have been awarded. Of these, three were awarded to medical officers who had previously gained the Licentiate Diploma of the Royal College of Surgeons of Edinburgh (LRCS Edin) - Valentine Munbee McMaster on 25 September 1857, Henry Thomas Sylvester on 20 November 1857 (although the acts of valour for which he was awarded his VC occurred on two occasions in September 1855) and Campbell Mellis (or Millis) Douglas on 7 May 1867.
STS-40 crewmembers pose for onboard (in space) portrait on OV-102's middeck
1991-06-14
STS040-605-009 (5-14 June 1991) --- The seven crew members for STS-40 pose for an in-space portrait on the Space Shuttle Columbia's mid-deck. Left to right, in front are F. Andrew Gaffney, Sidney M. Gutierrez, Rhea Seddon and James P. Bagian; in back, Bryan D. O'Connor, Tamara E. Jernigan and Millie Hughes-Fulford. The five astronauts and two payload specialists are spending nine days in space in support of the Spacelab Life Sciences (SLS-1) mission. The image was one of 25 visuals used by the STS-40 crew at its Post Flight Press Conference (PFPC) on June 28, 1991.
Magnetic circuit modifications in resonant vibration harvesters
NASA Astrophysics Data System (ADS)
Szabo, Zoltan; Fiala, Pavel; Dohnal, Premysl
2018-01-01
The paper discusses the conclusions obtained from a research centered on a vibration-powered milli- or micro generator (MG) operating as a harvester to yield the maximum amount of energy transferred by the vibration of an independent system. The investigation expands on the results proposed within papers that theoretically define the properties characterizing the basic configurations of a generator based on applied Faraday's law of induction. We compared two basic principles of circuit closing in a magnetic circuit that, fully or partially, utilizes a ferromagnetic material, and a large number of generator design solutions were examined and tested. In the given context, the article brings a compact survey of the rules facilitating energy transformation and the designing of harvesters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Peng; Department of Physics, Renmin University of China, Beijing 100872; Naidon, Pascal
Most of the current theories on the p-wave superfluid in cold atomic gases are based on the effective-range theory for the two-body scattering, where the low-energy p-wave scattering amplitude f{sub 1}(k) is given by f{sub 1}(k)=-1/[ik+1/(Vk{sup 2})+1/R]. Here k is the incident momentum, V and R are the k-independent scattering volume and effective range, respectively. However, due to the long-range nature of the van der Waals interaction between two colliding ultracold atoms, the p-wave scattering amplitude of the two atoms is not described by the effective-range theory [J. Math. Phys. 4, 54 (1963); Phys. Rev. A 58, 4222 (1998)]. Inmore » this paper we provide an explicit calculation for the p-wave scattering of two ultracold atoms near the p-wave magnetic Feshbach resonance. We show that in this case the low-energy p-wave scattering amplitude f{sub 1}(k)=-1/[ik+1/(V{sup eff}k{sup 2})+1/(S{sup eff}k)+1/R{sup eff}] where V{sup eff}, S{sup eff}, and R{sup eff} are k-dependent parameters. Based on this result, we identify sufficient conditions for the effective-range theory to be a good approximation of the exact scattering amplitude. Using these conditions we show that the effective-range theory is a good approximation for the p-wave scattering in the ultracold gases of {sup 6}Li and {sup 40}K when the scattering volume is enhanced by the resonance.« less
Average size of random polygons with fixed knot topology.
Matsuda, Hiroshi; Yao, Akihisa; Tsukahara, Hiroshi; Deguchi, Tetsuo; Furuta, Ko; Inami, Takeo
2003-07-01
We have evaluated by numerical simulation the average size R(K) of random polygons of fixed knot topology K=,3(1),3(1) musical sharp 4(1), and we have confirmed the scaling law R(2)(K) approximately N(2nu(K)) for the number N of polygonal nodes in a wide range; N=100-2200. The best fit gives 2nu(K) approximately 1.11-1.16 with good fitting curves in the whole range of N. The estimate of 2nu(K) is consistent with the exponent of self-avoiding polygons. In a limited range of N (N greater, similar 600), however, we have another fit with 2nu(K) approximately 1.01-1.07, which is close to the exponent of random polygons.
Electrically injected GaAsBi/GaAs single quantum well laser diodes
NASA Astrophysics Data System (ADS)
Liu, Juanjuan; Pan, Wenwu; Wu, Xiaoyan; Cao, Chunfang; Li, Yaoyao; Chen, Xiren; Zhang, Yanchao; Wang, Lijuan; Yan, Jinyi; Zhang, Dongliang; Song, Yuxin; Shao, Jun; Wang, Shumin
2017-11-01
We present electrically injected GaAs/GaAsBi single quantum well laser diodes (LDs) emitting at a record long wavelength of 1141 nm at room temperature grown by molecular beam epitaxy. The LDs have excellent device performances with internal quantum efficiency of 86%, internal loss of 10 cm-1 and transparency current density of 196 A/cm2. The LDs can operate under continuous-wave mode up to 273 K. The characteristic temperature are extracted to be 125 K in the temperature range of 77˜150 K, and reduced to 90 K in the range of 150˜273 K. The temperature coefficient of 0.3 nm/K is extracted in the temperature range of 77˜273 K.
Silk produced by hornets: thermophotovoltaic properties-a review.
Kirshboim, S; Ishay, J S
2000-09-01
This article deals with the silk weave produced by pupating larvae of the Oriental hornet and its electric properties. Larvae of this hornet commence pupation at approximately 2 weeks of age. Creation of the cocoonal silk weave requires a number of hours and the encased pupa remains in the cocoon for approximately 2 more weeks before ecloding as an adult. The silk weave is initially of a creamish white color, but gradually becomes brown-gray owing to the activity of certain bacteria secreted in the silk. The silk weave is composed of fibers arranged in multiple layers with interposed surfaces occupying a considerable part of the area and containing pockets of bacteria. The spun silk contains both metallic and non-metallic elements, mostly K and Cl but also Mg, P, S, Ca, Ti and V. Shaped as a dome, the silk projects considerably beyond the cell proper, contributing importantly to its total volume and providing a shield for the contained pupa against predators, parasites, or extreme changes in temperature, as well as affording a 'sterile and clean room' in which the pupa can form its new cuticle without the interference of contaminating dust particles or the turbulence of air currents. The silk is endowed with electric properties. Inter alia, a thermoelectric phenomenon was observed in the dark, namely, upon increase in temperature the current rose to several hundred nano Amperes (nA); in light, a photovoltaic effect was observed involving voltages of several dozen millivolts (mV), with a sharp transition between the current and voltage during transition from darkness to light. Also recorded was a very high electric capacitance, amounting to scores of milli farads (mF). In all, the pupal silk behaves like an organic semiconductor, in that its electric properties are temperature-dependent, and it also displays ferroelectric properties. Additionally, a luminescence phenomenon was recorded on the silk, wherein excitation at wavelengths within the UV(i.e. 249, 290 and 312 nm) range yielded an emission spectrum at a wavelength of 450 and of 530 nm. The silk caps are anisotropic in that the emission from the outside is lower than that from the inside. By way of recap, the various mentioned properties of the pupal silk are discussed from their biological and physical aspects.
VizieR Online Data Catalog: Pulsation model data for delta Cep and eta Aql (Merand+, 2015)
NASA Astrophysics Data System (ADS)
Merand, A.; Kervella, P.; Breitfelder, J.; Gallenne, A.; Coude du Foresto, V.; ten Brummelaar, T. A.; McAlister, H. A.; Ridgway, S.; Sturmann, L.; Sturmann, J.; Turner, N. H.
2015-09-01
FITS files containing the stars' (delta Cep and eta Aql) data and model presented in the paper. Each fits file has 3 HDU: 1- primary HDU: contains no data apart from the header. The header has the parameters of the model (keywords 'HIERARCH PARAM') as well as some other quantities derived from the modeling (keywords 'HIERARCH MODEL'). These quantities are aimed at people who would like to reproduce or compare their results with us. 2- 'DATA' HDU: this contains the data used for the fit. Each line is a scalar measurement described as follow: col1='MJD' (E) modified Julian date of the observations col2='OBS' (A50) description of the data point: the string before ";" defines the type, after ";" is the source. after | are anciliary data: for diam, UDdiam: [wavelengthum, interfbaseline_m] for mag: photometric band for color: photometric band1 - photometric band2 col3='MEAS' (E) the actual measurements. units are km/s for Vpuls or Vrad (which includes the p-factor correction), and mas (milli-arcseconds) for diameters (diam of UDdiam). col4='ERR' (E) the uncertainty on the measurement. col5='MODEL' (E) corresponding value predicted by the model col6='PHASE' (E) pulsation phase computed from the model ranges from 0 to 1. col7='PERIOD' (E) pulsation period computed from the model in days 3- 'MODEL' HDU: a tabulation of the pulsation model, as a function of pulsation phase. col1='PHASE' (E) phase from 0 to 1. col2='Vpuls' (E) pulsation velocity, in km/s. col3='Vrad' (E) radial velocity, in km/s. It is Vpuls/p-factor + Vgamma. col4='diam' (E) Rosseland angular diameter, in milliarcseconds (mas). col5='Teff' (E) effective temperature, in Kelvin. col6='Lum' (E) Luminosity in solar luminosities. col7='logg' (E) surface gravity, in log_10(cm/s2). col8,9,10='diamK xxxm' (E) biased angular diameters measured by an interferometer at baselines xxx (in m), for xxx=[100, 200, 300]. In milliarcseconds col>=11= 'MAG ...' or 'COLOR ...' (E) reddenned magnitudes or colors in various bands, depending on the data entry. '...' is the name of band for magnitudes, and pair of bands for colors. (6 data files).
Effects of the Extended Water Retention Curve on Coupled Heat and Water Transport in the Vadose Zone
NASA Astrophysics Data System (ADS)
Yang, Z.; Mohanty, B.
2017-12-01
Understanding and simulating coupled heat and water transfer appropriately in the shallow subsurface is of vital significance for accurate prediction of soil evaporation that would improve the coupling between land surface and atmosphere. The theory of Philip and de Vries (1957) and its extensions (de Vries, 1958; Milly, 1982), although physically incomplete, are still adopted successfully to describe the coupled heat and water movement in field soils. However, the adsorptive water retention, which was ignored in Philip and de Vries theory and its extensions for characterizing soil hydraulic parameters, was shown to be non-negligible for soil moisture and evaporation flux calculation in dry field soils based on a recent synthetic analysis (Mohanty and Yang, 2013). In this study, we attempt to comprehensively investigate the effects of full range water retention curve on coupled heat and water transport simulation with a focus on soil moisture content, temperature and soil evaporative flux, based on two synthetic (sand and loam) and two field sites (Riverside, California and Audubon, Arizona) analysis. The results of synthetic sand and loam numerical modeling showed that when neglecting the adsorptive water retention, the resulting simulated soil water content would be larger, and the evaporative flux would be lower, respectively, compared to that obtained by the full range water retention curve mode. The simulated temperature did not show significant difference with or without accounting for adsorptive water retention. The evaporation underestimation when neglecting the adsorptive water retention is mainly caused by isothermal hydraulic conductivity underprediction. These synthetic findings were further corroborated by the Audubon, Arizona field site experimental results. The results from Riverside, California field experimental site showed that the soil surface can reach very dry status, although the soil profile below the drying front is not dry, which also to some extent justifies the necessity of employing full range water retention function in such generally not quite dry scenarios.
Tomlinson, S.A.
1994-01-01
The report describes instrumentation, methods, and preliminary results for a study on evapo- transpiration at a grassland in Snively Basin of the Arid Lands Ecology Reserve. Instrumentation was used to collect data from May 30 to October 15, 1990. A combination of the Bowen-ratio and Penman-Monteith methods was used to calculate estimates of evapotranspiration. The Bowen-ratio method could be used to calculate estimates of latent-heat flux and evapotranspiration during only parts of the study period. Latent-heat flux values obtained during these periods were used in the Penman-Monteith method to estimate the canopy resistance. These canopy resistances were averaged for each day and the average values were used to recalculate the laten-heat flux for all periods using the Penman-Monteith method. The canopy resistance ranged from near zero during periods of rainfall to more than 40,000 seconds per meter during periods of extreme dryness. Evapotranspiration estimates varied during the study period. Daily evapotranspiration ranged from less than 0.1 millimeter on some days in August, September, and October to about 2 milli- meters on June 3 and August 22. Monthly totals of evapotranspiration were as follows: June, 28.2 millimeters; July, 10.5 millimeters; August, 15.0 millimeters; September, 5.3 millimeters; and October 1-15, 1.8 millimeters. Evapotranspiration values given in the report are estimates. Some error, perhaps as low as 25 percent on a daily basis and 4 percent on a monthly total basis, is probably introduced into these estimates through complexities of data collection, data analysis, and canopy-resistance estimation, particularly when evapotranspiration was near zero.
Chanthasakda, Nattaporn; Nitiyanontakit, Sira; Varanusupakul, Pakorn
2016-02-01
Hollow fiber membrane liquid phase microextraction (HF-LPME) of metal oxoanions was studied using an ionic carrier enhanced by the application of an electric field (electro-enhanced HF-LPME). The Cr(VI) oxoanion was used as the model. The transportation of Cr(VI) oxoanions across the supported liquid membrane (SLM) was explored via the ion-exchange process and electrokinetic migration. The type of SLM, type of acceptor solution, extraction time, electric potential, and stirring rate were investigated and optimized using MilliQ water. Electro-enhanced HF-LPME provided a much higher enrichment factor compared to conventional HF-LPME (no electric potential) for the same extraction time. A mixture of an anion exchange carrier (methyltrialkyl-ammonium chloride, Aliquat 336) in the SLM facilitated the transportation of Cr(VI) oxoanions. The SLM that gave the best performance was 1-heptanol mixed with 5% Aliquat 336 with 1M NaOH as the acceptor. Linearity was obtained in the working range of 3-15 µg L(-1) Cr(VI) (R(2)>0.99) at 30 V with a 5 min extraction time. The limit of detection was below 5 µg L(-1). The relative standard deviation was less than 12%. The method was applied to drinking water samples. The recoveries of spiked Cr(VI) in drinking water samples were in the range of 96-101% based on the matrix-matched calibration curves. The method was limited to samples containing low levels of ions due to the occurrence of electrolysis. The type of SLM, particularly regarding its resistance, should be tuned to control this problematic phenomenon. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Houtas, Franzeska; Teets, Edward H., Jr.
2010-01-01
A comparison study by the National Aeronautics and Space Administration Dryden Flight Research Center, Edwards, CA and the Naval Post Graduate School Center for Interdisciplinary Remotely-Piloted Aircraft Studies, Marina, CA was conducted to show the advantages of an airborne wind profiling lidar system in reducing drift uncertainty along a reentry vehicle descent trajectory. This effort was in support of the once planned Orion Crew Exploration Vehicle ground landing. A Twin Otter Doppler Wind Lidar was flown on multiple flights along the approximate ground track of an ascending weather balloons launched from the Marina Municipal Airport. The airborne lidar used was a 5-milli-Joules, 2-micron infrared laser with a 10-centimeter telescope and a two-axis scanner. Each lidar wind profile contains data for an altitude range between the surface and flight altitude of 2,700 meters, processed on board every 20 seconds. In comparison, a typical weather balloon would traverse that same altitude range with a similar data set available in approximately 15-20 minutes. These tests were conducted on November 15 & 16, 2007. Results comparing the balloon and a 10 minute multiple lidar profile averages show a best case absolute difference of 0.18 m/s (0.35 knots) in speed and 1 degree in direction during light and variable (less than 5 knots, without constant direction) wind conditions. These limited test results indicated a standard deviation wind velocity and direction differences of 0.71 m/s (1.3 knots) and 7.17 degrees for 1800Z, and 0.70 m/s (1.3 knots) and 6.79 degrees, outside of cloud layer.
Basic features of the STS/Spacelab vibration environment
NASA Technical Reports Server (NTRS)
Baugher, Charles R.; Ramachandran, N.
1994-01-01
The Space Shuttle acceleration environment is characterized. The acceleration environment is composed of a residual or quasi-steady component and higher frequency components induced by vehicle structural modes and the operation of onboard machinery. Quasi-steady accelerations are generally due to atmospheric drag, gravity gradient effects, and rotational forces. These accelerations tend to vary with the orbital frequency (approx. 10(exp -4) Hz) and have magnitudes less than or equal to 10(exp -6) g(sub 0) (where 1 g(sub 0) is terrestrial gravity). Higher frequency g-jitter is characterized by oscillatory disturbances in the 1-100 Hz range and transient components. Oscillatory accelerations are related to the response of large flexible structures like antennae, the Spacelab module, and the Orbiter itself, and to the operation of rotating machinery. The Orbiter structural modes in the 1-10 Hz range, are excited by oscillatory and transient disturbances and tend to dominate the energy spectrum of the acceleration environment. A comparison of the acceleration measurements from different Space Shuttle missions reveals the characteristic signature of the structural modes of the Orbiter overlaid with mission specific hardware induced disturbances and their harmonics. Transient accelerations are usually attributed to crew activity and Orbiter thruster operations. During crew sleep periods, the acceleration levels are typically on the order of 10(exp -6) g(sub 0) (1 micro-g). Crew work and exercise tend to raise the accelerations to the 10(exp -3) g(sub 0) (1 milli-g) level. Vernier reaction control system firings tend to cause accelerations of 10(exp -4) g(sub 0), while primary reaction control system and Orbiter maneuvering system firings cause accelerations as large as 10(exp -2) g(sub 0). Vibration isolation techniques (both active and passive systems) used during crew exercise have been shown to significantly reduce the acceleration magnitudes.
High-efficiency VCSEL arrays for illumination and sensing in consumer applications
NASA Astrophysics Data System (ADS)
Seurin, Jean-Francois; Zhou, Delai; Xu, Guoyang; Miglo, Alexander; Li, Daizong; Chen, Tong; Guo, Baiming; Ghosh, Chuni
2016-03-01
There has been increased interest in vertical-cavity surface-emitting lasers (VCSELs) for illumination and sensing in the consumer market, especially for 3D sensing ("gesture recognition") and 3D image capture. For these applications, the typical wavelength range of interest is 830~950nm and power levels vary from a few milli-Watts to several Watts. The devices are operated in short pulse mode (a few nano-seconds) with fast rise and fall times for time-of-flight applications (ToF), or in CW/quasi-CW for structured light applications. In VCSELs, the narrow spectrum and its low temperature dependence allows the use of narrower filters and therefore better signal-to-noise performance, especially for outdoor applications. In portable devices (mobile devices, wearable devices, laptops etc.) the size of the illumination module (VCSEL and optics) is a primary consideration. VCSELs offer a unique benefit compared to other laser sources in that they are "surface-mountable" and can be easily integrated along with other electronics components on a printed circuit board (PCB). A critical concern is the power-conversion efficiency (PCE) of the illumination source operating at high temperatures (>50 deg C). We report on various VCSEL based devices and diffuser-integrated modules with high efficiency at high temperatures. Over 40% PCE was achieved in broad temperature range of 0-70 °C for either low power single devices or high power VCSEL arrays, with sub- nano-second rise and fall time. These high power VCSEL arrays show excellent reliability, with extracted mean-time-to-failure (MTTF) of over 500 years at 60 °C ambient temperature and 8W peak output.
González-Sálamo, Javier; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Ángel
2017-12-29
In this work, the first application of core-shell poly(dopamine) magnetic nanoparticles as sorbent for the extraction of a group of eleven phthalic acid esters of interest (i.e. diethyl phthalate (DEP), dipropyl phthalate (DPP), dibutyl phthalate (DBP), bis-isopentyl phthalate (DIPP), bis-n-pentyl phthalate (DNPP), benzylbutyl phthalate (BBP), dicyclohexyl phthalate (DCHP), di-(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP), diisononyl phthalate (DINP) and diisodecyl phthalate (DIDP)) and one adipate (bis (2-ethylhexyl) adipate, DEHA) from different water samples (Milli-Q, mineral, tap, pond and waste water) is proposed. Analysis were carried out by gas chromatography triple quadrupole tandem mass spectrometry. Parameters that affect the extraction performance were optimized following a step by step approach, being the optimum conditions the extraction of water at pH 6, with 60mg of sorbent and the elution with 6mL of dichloromethane. The methodology was validated for the five selected water samples using DBP-d 4 as internal standard. Determination coefficients of matrix-matched calibration curves were above 0.9904 in all cases while relative recovery values ranged between 71 and 120%, with relative standard deviation values below 19%. The limits of quantification of the method ranged between 9 and 20ng/L. Matrix effects were found for most analytes and water samples. Real water samples were also analyzed, finding DEP and DBP at concentrations below 4.20 and 1.23μg/L, respectively, in mineral, tap and waste water. DCHP, DEHP and BBP were also found in some of the samples at concentrations below the LOQs of the method. Copyright © 2017 Elsevier B.V. All rights reserved.
In vivo field-cycling relaxometry using an insert coil for magnetic field offset.
Pine, Kerrin J; Goldie, Fred; Lurie, David J
2014-11-01
The T(1) of tissue has a strong dependence on the measurement magnetic field strength. T(1) -dispersion could be a useful contrast parameter, but is unavailable to clinical MR systems which operate at fixed magnetic field strength. The purpose of this work was to implement a removable insert magnet coil for field-cycling T(1) -dispersion measurements on a vertical-field MRI scanner, by offsetting the static field over a volume of interest. An insert magnet coil was constructed for use with a whole-body sized 59 milli-Tesla (mT) vertical-field, permanent-magnet based imager. The coil has diameter 38 cm and thickness 6.1 cm and a homogeneous region (± 5%) of 5 cm DSV, offset by 5 cm from the coil surface. Surface radiofrequency (RF) coils were also constructed. The insert coil was used in conjunction with a surface RF coil and a volume-localized inversion-recovery pulse sequence to plot T(1) -dispersion in a human volunteer's forearm over a range of field strengths from 1 mT to 70 mT. T(1) -dispersion measurements were demonstrated on a fixed-field MRI scanner, using an insert coil. This demonstrates the feasibility of relaxation dispersion measurements on an otherwise conventional MR imager, facilitating the exploitation of T(1) -dispersion contrast for enhanced diagnosis. Copyright © 2013 Wiley Periodicals, Inc.
Anticipating and addressing workplace static magnetic field effects at levels <0.5 mT.
Emery, R J; Hopkins, J R; Charlton, M A
2000-11-01
Magnetic resonance, once a research tool limited to the basic sciences, has experienced an increase in popularity due to its unique ability to analyze certain living systems in vivo. Expanding applications in the biomedical sciences have resulted in magnetic sources being located in research institutions nationally. Space and resource limitations sometimes necessitate siting magnetic resonance units in proximity to other institutional operations. For magnetic field shielding and personnel protection considerations, the generally accepted 0.5 mT (milliTesla) limit for implanted cardiac devices is commonly used as the conservative basis for decisions. But the effects of magnetic fields on equipment can be easily observed at levels far below 0.5 mT, often resulting in concern and apprehension on the part of personnel in the surrounding areas. Responding to recurrent worker concerns spawned by noticeable effects on equipment at exposure levels <0.5 mT can strain finite radiation safety program resources. To enhance the ability to anticipate possible facility incompatibility issues associated with the installation of magnetic sources, a literature review was conducted to summarize documented equipment effects. Various types of equipment were found to be impacted at levels ranging down to perhaps 0.001 mT. Armed with this information, practicing radiation safety professionals can better anticipate facility incompatibility issues and improve their responses to worker concerns initiated by observed effects on equipment.
Flexible nano-GFO/PVDF piezoelectric-polymer nano-composite films for mechanical energy harvesting
NASA Astrophysics Data System (ADS)
Mishra, Monali; Roy, Amritendu; Dash, Sukalyan; Mukherjee, Somdutta
2018-03-01
Owing to the persistent quest of renewable energy technology, piezoelectric energy harvesters are gathering considerable research interest due to their potential in driving microelectronic devices with small power requirement. Electrical energy (milli to microwatt range) is generated from mechanical counterparts such as vibrations of machines, human motion, flowing water etc. based on the principles of piezoelectricity. Flexible high piezoelectric constant (d33) ceramic/polymer composites are crucial components for fabricating these energy harvesters. The polymer composites composed of gallium ferrite nanoparticles and polyvinylidene fluoride (PVDF) as the matrix have been synthesized by solvent casting method. First, 8 wt. % PVDF was dissolved in DMF and then different compositions of GaFeO3 or GFO (10, 20, 30 wt. %) (with respect to PVDF only) nanocomposites were synthesized. The phase of the synthesized nanocomposites were studied by X- Ray diffraction which shows that with the increase in the GFO concentration, the intensity of diffraction peaks of PVDF steadily decreased and GFO peaks became increasingly sharp. As the concentration of GFO increases in the PVDF polymer matrix, band gap is also increased albeit to a small extent. The maximum measured output voltage and current during mechanical pressing and releasing conditions were found to be ~ 3.5 volt and 4 nA, respectively in 30 wt % GFO-PVDF composite, comparable to the available literature.
Orbital Gravity Gradiometry Beyond GOCE: Mission Concepts
NASA Technical Reports Server (NTRS)
Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.; Paik, Ho Jung; Moody, M. Vol; Venkateswara, Krishna Y.; Han, Shin-Chan; Ditmar, Pavel; Klees, Roland; Jekeli, Christopher;
2010-01-01
Significant advances in the technologies needed for space-based cryogenic instruments have been made in the last decade, including cryocoolers, spacecraft architectures and cryogenic amplifiers. These enable considerably more complex instruments to be put into orbit for long-duration missions. One such instrument is the Superconducting Gravity Gradiometer (SGG) developed by Paik, et al. A magnetically levitated version is under consideration for a follow-on mission to GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity field and steady-state Ocean Circulation Explorer). With its inherently greater rejection of common mode accelerations and ability to cancel the coupling of angular accelerations into the gradient signal, the SGG can achieve [an accuracy of] 0.01 milli-Eotvos (gravitational gradient of the Earth) divided by the square root of frequency in hertz, with requirements for attitude control that can be met with existing spacecraft. In addition, the use of a cryocooler for cooling the instrument will alleviate the previously severe constraint on mission lifetime imposed by the use of superfluid helium,. enabling mission durations in the 5-10 year range. Studies are underway to determine requirements for orbit (polar versus sun-synchronous), altitude (which affects spacecraft drag), instrument temperature and stability, cryocooler vibration control, and control and readout electronics. These will be used to determine the SGG's sensitivity and ultimate resolution for gravity recovery. This paper will discuss preliminary instrument and spacecraft design, and toplevel mission requirements.
Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying
NASA Technical Reports Server (NTRS)
Calhoun, Philip; Novo-Gradac, Anne-Marie; Shah, Neerav
2017-01-01
Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m-500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as microthruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.
Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Novo-Gradac, Anne-Marie; Shah, Neerav
2017-01-01
Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m 500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as micro-thruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.
Gamma-ray Emission from Globular Clusters
NASA Astrophysics Data System (ADS)
Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.
2016-03-01
Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.
Measurements of Argon-39 at the U20az underground nuclear explosion site.
McIntyre, J I; Aalseth, C E; Alexander, T R; Back, H O; Bellgraph, B J; Bowyer, T W; Chipman, V; Cooper, M W; Day, A R; Drellack, S; Foxe, M P; Fritz, B G; Hayes, J C; Humble, P; Keillor, M E; Kirkham, R R; Krogstad, E J; Lowrey, J D; Mace, E K; Mayer, M F; Milbrath, B D; Misner, A; Morley, S M; Panisko, M E; Olsen, K B; Ripplinger, M D; Seifert, A; Suarez, R
2017-11-01
Pacific Northwest National Laboratory reports on the detection of 39 Ar at the location of an underground nuclear explosion on the Nevada Nuclear Security Site. The presence of 39 Ar was not anticipated at the outset of the experimental campaign but results from this work demonstrated that it is present, along with 37 Ar and 85 Kr in the subsurface at the site of an underground nuclear explosion. Our analysis showed that by using state-of-the-art technology optimized for radioargon measurements, it was difficult to distinguish 39 Ar from the fission product 85 Kr. Proportional counters are currently used for high-sensitivity measurement of 37 Ar and 39 Ar. Physical and chemical separation processes are used to separate argon from air or soil gas, yielding pure argon with contaminant gases reduced to the parts-per-million level or below. However, even with purification at these levels, the beta decay signature of 85 Kr can be mistaken for that of 39 Ar, and the presence of either isotope increases the measurement background level for the measurement of 37 Ar. Measured values for the 39 Ar measured at the site ranged from 36,000 milli- Becquerel/standard-cubic-meter-of-air (mBq/SCM) for shallow bore holes to 997,000 mBq/SCM from the rubble chimney from the underground nuclear explosion. Published by Elsevier Ltd.
Design and Performance of the ARIANNA HRA-3 Neutrino Detector Systems
NASA Astrophysics Data System (ADS)
Barwick, S. W.; Berg, E. C.; Besson, D. Z.; Duffin, T.; Hanson, J. C.; Klein, S. R.; Kleinfelder, S. A.; Ratzlaff, K.; Reed, C.; Roumi, M.; Stezelberger, T.; Tatar, J.; Walker, J.; Young, R.; Zou, L.
2015-10-01
We report on the development, installation, and operation of the first three of seven stations deployed at the ARIANNA site's pilot Hexagonal Radio Array (HRA) in Antarctica. The primary goal of the ARIANNA project is to observe ultrahigh energy ( > 100 PeV) cosmogenic neutrino signatures using a large array of autonomous stations, each 1 km apart on the surface of the Ross Ice Shelf. Sensing radio emissions of 100 MHz to 1 GHz, each station in the array contains RF antennas, amplifiers, 1.92 G-sample/s, 850 MHz bandwidth signal acquisition circuitry, pattern-matching trigger capabilities, an embedded CPU, 32 GB of solid-state data storage, and long-distance wireless and satellite communications. Power is provided by the sun and buffered in LiFePO 4 storage batteries, and each station consumes an average of 7 W of power. Operation on solar power has resulted in ≥58% per calendar-year live-time. The station's pattern-trigger capabilities reduce the trigger rates to a few milli-Hertz with 4-sigma voltage thresholds while retaining good stability and high efficiency for neutrino signals. The timing resolution of the station has been found to be 0.049 ns, RMS, and the angular precision of event reconstructions of signals bounced off of the sea-ice interface of the Ross Ice Shelf ranged from 0.14 to 0.17 °.
NASA Astrophysics Data System (ADS)
Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.
2017-12-01
In this work, we report the successful synthesis of a new intermetallic compound Tm2 Ni0.93 Si2.93 that forms in single phase only in defect crystal structure. The compound does not show any long range magnetic ordering down to 2 K. The material exhibits a large magnetic entropy change (-Δ S_M˜13.7 J kg-1 K-1) and adiabatic temperature change (Δ T_ad˜4.4 K) at 2.2 K for a field change of 20 kOe which can be realized by permanent magnets, thus being very beneficial for application purpose. In the absence of long-range magnetic ordering down to 2 K, the metastable nature of low-temperature spin dynamics and short-range magnetic correlations are considered to be responsible for such a large magnetocaloric effect over a wide temperature region.
Mitsa, V; Feher, A; Petretskyi, S; Holomb, R; Tkac, V; Ihnatolia, P; Laver, A
2017-12-01
Experimental results of the thermal conductivity (k(T)) of nanostructured g-As 2 S 3 during cooling and heating processes within the temperature range from 2.5 to 100 K have been analysed. The paper has considered thermal conductivity is weakly temperature k(T) dependent from 2.5 to 100 K showing a plateau in region from 3.6 to 10.7 K during both cooling and heating regimes. This paper is the first attempt to consider the k(T) hysteresis above plateau while heating in the range of temperature from 11 to 60 K. The results obtained have not been reported yet in the scientific literature. Differential curve Δk(T) of k(T) (heating k(T) curve minus cooling k(T) curve) possesses a complex asymmetric peak in the energy range from 1 to 10 meV. Δk(T) reproduces the density of states in a g(ω)/ω 2 representation estimated from a boson peak experimentally obtained by Raman measurement within the range of low and room temperatures. Theoretical and experimental spectroscopic studies have confirmed a glassy structure of g-As 2 S 3 in cluster approximation. The origin of the low-frequency excitations resulted from a rich variety of vibrational properties. The nanocluster vibrations can be created by disorder on atomic scale.
NASA Astrophysics Data System (ADS)
Catapano, Ilaria; Soldovieri, Francesco
2015-04-01
In the research field of art and archaeology, scientific observation and analysis are hugely demanded to gather as more information as possible on the materials and techniques used to create artworks as well as in previous restoration actions. In this frame, diagnostic tools exploiting electromagnetic waves deserve massive interest tanks to their ability to provide non-invasive and possibly contactless characterization of the investigated objects. Among the electromagnetic diagnostic technologies, those working at frequencies belonging to the 0.1-10 THz range are currently deserving an increased attention since THz waves are capable of penetrating into optically opaque materials (up to the preparation layers), without direct contact and by involving sufficiently low energy to be considered as perfectly non-invasive in practice [1,2]. Moreover, being THz non-ionizing radiations, a moderate exposure to them implies minor long term risks to the molecular stability of the historical artifact and humans. Finally, recent developments of THz technology have allowed the commercialization of compact, flexible and portable systems. One of them is the Fiber-Coupled Terahertz Time Domain System (FICO) developed by Z-Omega, acquired by the Institute of Electromagnetic Sensing of the Environment (IREA) in 2013. This system works in the range from 60GHz to 3THz with a waveform acquisition speed up to 500Hz, it is equipped with fiber optic coupled transmitting and receiving probes and, few months ago, has been potentiated by means of an automatic positioning system enabling to scan a 150mm x 150mm area. In the frame of the IREA research activities regarding cultural heritage, the FICO system is currently adopted to perform both spectroscopy and imaging, which are the two kind of analysis wherein THz technology can be profitably explored [3]. In particular, THz spectroscopy is used to distinguish different artists materials by exploiting their peculiar fingerprint in the absorption spectra, while imaging includes THz tomography and it is considered to obtain non-invasive cross-section images of the artwork under test. Preliminary experiments regarding laboratory designed objects and not precious artworks have been carried out at the IREA laboratory mainly to trace measurements protocols and deeply investigate the diagnostic capabilities of the FICO system. The obtained results will be illustrated and discussed at the conference. REFERENCES [1] K. Fukunaga and I. Hosako, Innovative non-invasive analysis techniques for cultural heritage using terahertz technology, C.R. Physique 11, 519-526, 2010. [2] M. Perenzoni and D. J. Paul, Physics and Applications of Terahertz Radiation, Springer Series in Optical Sciences 173, 2014. [3] J.P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, P.Mounaix, Review of Terahertz Tomography Techniques, J. Infrared MilliTerahz Waves 35, 382-411, 2014.
Revamping of entisol soil physical characteristics with compost treatment
NASA Astrophysics Data System (ADS)
Sumono; Loka, S. P.; Nasution, D. L. S.
2018-02-01
Physical characteristic of Entisol soil is an important factor for the growth of plant. The aim of this research was to know the effect of compost application on physical characteristics of Entisol soil. The research method used was experimental method with 6 (six) treatments and 3 replications of which K1 = 10 kg Entisol soil without compost, K2 = 9 Kg Entisol soil with 1 kg compost, K3 = 8 kg Entisol soil with 2 kg compost, K4 = 7 kg Entisol soilwith3 kg compost, K5 = 6 kg Entisol soil with 4 kg compost and K6 = 5 kg Entisol soil with 5 kg compost. The observed parameters were soil texture, soil organic matter, soil thickness, porosity, soil pore size, soil permeability and water availability. The results showed that the Entisol soil texture was loamy sand texture, the value of soil organic matter ranged from 0.74% to 4.69%, soil thickness ranged from 13.83 to 20.16 cm, porosity ranged from16% to 37%, soil pore size ranged from 2.859 to 5.493 µm, permeability ranged from 1.24 to 5.64 cm/hour and water availability ranged from 6.67% to 9.12% by each treatment.
Accurate free and forced rotational motions of rigid Venus
NASA Astrophysics Data System (ADS)
Cottereau, L.; Souchay, J.; Aljbaae, S.
2010-06-01
Context. The precise and accurate modelling of a terrestrial planet like Venus is an exciting and challenging topic, all the more interesting because it can be compared with that of Earth for which such a modelling has already been achieved at the milli-arcsecond level. Aims: We aim to complete a previous study, by determining the polhody at the milli-arcsecond level, i.e. the torque-free motion of the angular momentum axis of a rigid Venus in a body-fixed frame, as well as the nutation of its third axis of figure in space, which is fundamental from an observational point of view. Methods: We use the same theoretical framework as Kinoshita (1977, Celest. Mech., 15, 277) did to determine the precession-nutation motion of a rigid Earth. It is based on a representation of the rotation of a rigid Venus, with the help of Andoyer variables and a set of canonical equations in Hamiltonian formalism. Results: In a first part we computed the polhody, we showed that this motion is highly elliptical, with a very long period of 525 cy compared with 430 d for the Earth. This is due to the very small dynamical flattening of Venus in comparison with our planet. In a second part we precisely computed the Oppolzer terms, which allow us to represent the motion in space of the third Venus figure axis with respect to the Venus angular momentum axis under the influence of the solar gravitational torque. We determined the corresponding tables of the nutation coefficients of the third figure axis both in longitude and in obliquity due to the Sun, which are of the same order of amplitude as for the Earth. We showed that the nutation coefficients for the third figure axis are significantly different from those of the angular momentum axis on the contrary of the Earth. Our analytical results have been validated by a numerical integration, which revealed the indirect planetary effects.
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth
2007-01-01
The Stellar Imager (SI) is one of NASA's "Vision Missions" - concepts for future, space-based, strategic missions that could enormously increase our capabilities for observing the Cosmos. SI is designed as a UV/Optical Interferometer which will enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI, with a characteristic angular resolution of 0.1 milli-arcseconds at 2000 Angstroms, represents an advance in image detail of several hundred times over that provided by the Hubble Space Telescope. The Stellar Imager will zoom in on what today-with few exceptions - we only know as point sources, revealing processes never before seen, thus providing a tool as fundamental to astrophysics as the microscope is to the study of life on Earth. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. It's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. Stellar Imager is included as a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap (May, 2005) and as such is a candidate mission for the 2025-2030 timeframe. An artist's drawing of the current "baseline" concept for SI is presented.
Wear Behavior and Mechanism of a Cr-Mo-V Cast Hot-Working Die Steel
NASA Astrophysics Data System (ADS)
Wei, M. X.; Wang, S. Q.; Zhao, Y. T.; Chen, K. M.; Cui, X. H.
2011-06-01
The wear behavior and mechanisms of a Cr-Mo-V cast hot-working die steel with three microstructures (tempered martensite, troostite, and sorbite) were studied systematically through the dry-sliding wear tests within a normal load range of 50 to 300 N and an ambient temperature range of 298 K to 673 K (25 °C to 400 °C) by a pin-on-disk high-temperature wear machine. Five different mechanisms were observed in the experiments, namely adhesive, abrasive, mild oxidative, oxidative, and extrusive wear; one or more of those mechanisms would be dominant within particular ranges of load and temperature. The transition of wear mechanisms depended on the formation of tribo-oxides, which was related closely to load and temperature, and their delamination, which was mainly influenced by the matrix. By increasing the load and ambient temperature, the protective effect of tribo-oxides first strengthened, then decreased, and in some cases disappeared. Under a load ranging 50 to 300 N at 298 K (25 °C) and a load of 50 N at 473 K (200 °C), adhesive wear was the dominant wear mechanism, and abrasive wear appeared simultaneously. The wear was of mild oxidative type under a load ranging 100 to 300 N at 473 K (200 °C) and a load ranging 50 to 150 N at 673 K (400 °C) for tempered martensite and tempered troostite as well as under a load of 100 N at 473 K (200 °C) and a load ranging 50 to 100 N at 673 K (400 °C) for tempered sorbite. At the load of 200 N or greater, or the temperatures above 673 K (400 °C), oxidative wear (beyond mild oxidative wear) prevailed. When the highest load of 300 N at 673 K (400 °C) was applied, extrusive wear started to dominate for the tempered sorbite.
Thiex, Nancy J
2016-07-01
A previously validated method for the determination of both citrate-EDTA-soluble P and K and acid-soluble P and K in commercial inorganic fertilizers by inductively coupled plasma-optical emission spectrometry was submitted to the expert review panel (ERP) for fertilizers for consideration of First Action Official Method(SM) status. The ERP evaluated the single-laboratory validation results and recommended the method for First Action Official Method status and provided recommendations for achieving Final Action. Validation materials ranging from 4.4 to 52.4% P2O5 (1.7-22.7% P) and 3-62% K2O (2.5-51.1% K) were used for the validation. Recoveries from validation materials for citrate-soluble P and K ranged from 99.3 to 124.9% P and from 98.4 to 100.7% K. Recoveries from validation materials for acid-soluble "total" P and K ranged from 95.53 to 99.40% P and from 98.36 to 107.28% K. Values of r for citrate-soluble P and K, expressed as RSD, ranged from 0.28 to 1.30% for P and from 0.41 to 1.52% for K. Values of r for total P and K, expressed as RSD, ranged from 0.71 to 1.13% for P and from 0.39 to 1.18% for K. Based on the validation data, the ERP recommended the method (with alternatives for the citrate-soluble and the acid-soluble extractions) for First Action Official Method status and provided recommendations for achieving Final Action status.
Nuclear thermionic power plants in the 50-300 kWe range.
NASA Technical Reports Server (NTRS)
Van Hoomissen, J. E.; Sawyer, C. D.; Prickett, W. Z.
1972-01-01
This paper reviews the results of recent studies performed by General Electric on in-core thermionic reactor power plants in the 50-300 kWe range. In particular, a 100 kWe manned Space Base mission and a 240 kWe unmanned electric propulsion mission are singled out as representative design points for this concept.
Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior.
Oh, Se Heang; An, Dan Bi; Kim, Tae Ho; Lee, Jin Ho
2016-04-15
Although stiffness-controllable substrates have been developed to investigate the effect of stiffness on cell behavior and function, the use of separate substrates with different degrees of stiffness, substrates with a narrow range stiffness gradient, toxicity of residues, different surface composition, complex fabrication procedures/devices, and low cell adhesion are still considered as hurdles of conventional techniques. In this study, a cylindrical polyvinyl alcohol (PVA)/hyaluronic acid (HA) hydrogel with a wide-range stiffness gradient (between ∼20kPa and ∼200kPa) and cell adhesiveness was prepared by a liquid nitrogen (LN2)-contacting gradual freezing-thawing method that does not use any additives or specific devices to produce the stiffness gradient hydrogel. From an in vitro cell culture using the stiffness gradient PVA/HA hydrogel, it was observed that human bone marrow mesenchymal stem cells have favorable stiffness ranges for induction of differentiation into specific cell types (∼20kPa for nerve cell, ∼40kPa for muscle cell, ∼80kPa for chondrocyte, and ∼190kPa for osteoblast). The PVA/HA hydrogel with a wide range of stiffness spectrum can be a useful tool for basic studies related with the stem cell differentiation, cell reprogramming, cell migration, and tissue regeneration in terms of substrate stiffness. It is postulated that the stiffness of the extracellular matrix influences cell behavior. To prove this concept, various techniques to prepare substrates with a stiffness gradient have been developed. However, the narrow ranges of stiffness gradient and complex fabrication procedures/devices are still remained as limitations. Herein, we develop a substrate (hydrogel) with a wide-range stiffness gradient using a gradual freezing-thawing method which does not need specific devices to produce a stiffness gradient hydrogel. From cell culture experiments using the hydrogel, it is observed that human bone marrow mesenchymal stem cells have favorable stiffness ranges for induction of differentiation into specific cell types (∼20kPa for nerve, ∼40kPa for muscle, ∼80kPa for cartilage, and ∼190kPa for bone in our hydrogel system). Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Improved apparatus for measuring hydraulic conductivity at low water content
Nimmo, J.R.; Akstin, K.C.; Mello, K.A.
1992-01-01
A modification of the steady-state centrifuge method for unsaturated hydraulic conductivity (K) measurement improves the range and adjustability of this method. The modified apparatus allows mechanical adjustment to vary the measured K by a factor of 360. In addition, the use of different flow-regulation ceramic materials can give a total K range covering about six orders of magnitude. The range extension afforded has led to the lowest steady-state K measurement to date, for a sandy soil of the Delhi series (Typic Xeropsamment). -from Authors
Kinetics of the reaction of Cl atoms with CHCl 3 over the temperature range 253-313 K
NASA Astrophysics Data System (ADS)
Nilsson, Elna J. K.; Hoff, Janus; Nielsen, Ole John; Johnson, Matthew S.
2010-07-01
The reaction CHCl 3 + Cl → CCl 3 + HCl was studied in the atmospherically relevant temperature range from 253 to 313 K and in 930 mbar of N 2 diluent using the relative rate method. A temperature dependent reaction rate constant, valid in the temperature range 220-330 K, was determined by a fit to the result of the present study and that of Orlando (1999); k = (3.77 ± 0.32) × 10 -12 exp((-1011 ± 24)/T) cm 3 molecule -1 s -1.
NASA Astrophysics Data System (ADS)
Tennakoon, Sumudu P.
Relaxor ferroelectric lead magnesium niobate-lead titanate (PMN-PT) material exhibits exceptional electromechanical properties. The material undergoes a series of structural phase transitions with changes in temperature and the chemical composition. The work covered in this dissertation seek to gain insight into the phase diagram of PMN-PT using temperature and pressure dependence of the elastic properties. Single crystal PMN-PT with a composition near morphotropic phase boundary (MPB) was investigated using a resonant ultrasound spectroscopy (RUS) methodologies in the temperature range of 293 K - 800 K and the pressure range from near vacuum to 3.4 MPa. At atmospheric pressure, significantly high acoustic attenuation of PMN-PT is observed at temperatures below 400 K. A strong stiffening is observed in the temperature range of 400 K - 673 K, followed by a gradual softening at higher temperatures. With varying pressure, an increased pressure sensitivity of the elastic properties of PMN-PT is observed at the temperatures in the stiffening phase. Elastic behavior at elevated temperatures and pressures were studied for correlations with the ferroelectric domains at temperatures below the Curie temperature (TC), the locally polarized nano-regions, and an existence of pseudo-cubic crystalline at higher temperatures between (TC and TB). Thermoelectric lanthanum tellurides and skutterudites are being investigated by NASA's Jet Propulsion Laboratory for advanced thermoelectric generates (TEGs). Effects of nickel (Ni) doping on elastic properties of lanthanum tellurides at elevated temperatures were investigated in the temperature range of 293 K - 800 K. A linear stiffening was observed with increasing the Ni content in the material. Elastic properties of p-type and n-type bismuth-based skutterudites were investigated in the temperature range of 293 K - 723 K. Elastic properties of rare-earth doped strontium titanate were also investigated in the temperature range of 293 K - 750 K.
NASA Astrophysics Data System (ADS)
Ferris, Thomas D.; Farrar, Thomas C.
The temperature dependence of the hydroxyl proton chemical shift and deuterium quadrupolar relaxation time of neat ethanol were measured over the temperature range 190-350 K. The proton isotropic chemical shift varies from 6.2 ppm at 190 K to 4.7 ppm at 350 K. The deuterium NMR relaxation time in ethanol- d 1 varies from 6.2 ms to 309 ms over the same range. Ab initio calculations performed on various ethanol clusters ranging in size from monomer to hexamer show a linear correlation ( R 2 = 0.99) between ≤D, the deuterium quadrupole coupling parameter, and δH, the isotropic proton chemical shift in ppm relative to TMS: ≤D(kHz) = 297.60 - 15.28 δH. The temperature dependence of ≤D ranges from 199.5 kHz at 190 K to 221.4 kHz at 350 K. Using the values for ≤D and the relaxation time data, the temperature dependence of the OD rotational correlation time was found to vary from 282 ps at 190 K to 4.5 ps near the boiling point (350 K). Using these correlation times and bulk viscosity data, the Gierer-Wirtz model predicts a supramolecular cluster volume of about 317 A 3 , the approximate volume of a cyclic pentamer cluter of ethanol molecules. The cluster volume was nearly constant from 340 K to about 290 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katona, T.; Guczi, L.; Somorjai, G.A.
1992-06-01
The reaction system of nitric oxide, ammonia, and oxygen was studied using batch-mode measurements in partial pressure ranges of 65-1000 Pa (0.5-7.6 Torr) on polycrystalline Pt foils over the temperature range 423-598 K. Under these conditions the oxidation of nitric oxide was not detectable. The ammonia oxidation reaction, using dioxygen, occurred in the temperature range 423-493 K, producing nitrogen and water as the only products. The activation energy of the nitrogen formation was found to be 86 kJ/mol. Above this temperature range, flow-mode measurements showed the formation of both nitrous oxide and nitric oxide. The reaction rate between ammonia andmore » oxygen was greatly decreased (about a factor of 10) by nitric oxide, while the reaction rate between nitric oxide and ammonia was accelerated (about 10-fold) due to the presence of oxygen. Nitric oxide reduction by ammonia in the presence of oxygen occurred in the temperature range 423-598 K. The products of the reaction were nitrogen, oxygen nitrous oxide, and water. The Arrhenius plot of the reaction showed a break near 523 K. Below this temperature the activation energy of the reaction was 13 kJ/mol, and in the higher-temperature range it was 62 kJ/mol. At 473 K, the N[sub 2]/N[sub 2]O ratio was about 0.6 and O[sub 2] formation was also monitored. At 573 K, the N[sub 2]N[sub 2]O ratio was approximately 2 and oxygen was consumed in the course of the reaction as well.« less
Multiple competing interactions and reentrant ferrimagnetism in Tb 0.8Nd 0.2Mn 6Ge 6
NASA Astrophysics Data System (ADS)
Schobinger-Papamantellos, P.; André, G.; Rodríguez-Carvajal, J.; Duong, N. P.; Buschow, K. H. J.
2001-06-01
The magnetic ordering of the hexagonal compound Tb 0.8Nd 0.2Mn 6Ge 6 has been studied by neutron diffraction and magnetic measurements in the temperature range 1.5-800 K. This compound was found to undergo consecutive magnetic transitions with temperature. The magnetic phase diagram comprises four distinct regions and requires the wave vectors: q1=(0, 0, qz) and q2=0 for its description. The low temperature range (LT): 1.5 K< T< T1=85 K, is characterised by a triple ferrimagnetic conical (spiral) structure with qz=0.128 r.l.u and a net moment along the c direction ( q2=0). The intermediate temperature range displays two transitions: At T1=85 K the conical structure transforms to a simple triple (flat) spiral persisting in range (ITa) 85 K< T< T2≈340 K, with a small thermal variation of the wave vector. Above T2 in range (ITb) T2< T< TS≈390 K the destabilised spiral transforms to a FAN-like structure with a fast decrease of the wave vector length towards zero while a ferrimagnetic planar structure ( q2=0) develops at the cost of the spiral. The planar ferrimagnetic magnetic structure ( q2=0) dominates the high temperature range (HT) 390 K< T< Tc=450 K. The onset of re-entrant ferrimagnetism reflects the interplay of multiple competing inter- and intra- sublattice interactions of the three types of magnetic ions with different crystal field anisotropies. The Nd and Tb sublattices are coupled antiferromagnetically while the Tb-Mn and Nd-Mn interactions are negative and positive, respectively.
On the reaction of the NH 2 radical with NO at 295-620 K
NASA Astrophysics Data System (ADS)
Bulatov, V. P.; Ioffe, A. A.; Lozovsky, V. A.; Sarkisov, O. M.
1989-09-01
The reaction of the NH 2 radical with NO, NH 2+NO→ k1 products, was investigated using intracavity laser spectroscopy. The temperature dependence of k1( T) over the range 295-620 K is well approximated by the expression k1( T)=(2.0±0.4)×10 -11×( T/298) -2.2 cm 3 s -1. The branching ratios for the OH radical, α=( k1b+ k1c)/ k1, where NH 2+NO→ k1b N 2H+OH→ k1c N 2+H+OH, obtained at different temperatures over the range 295-620 K are as follows: α(295 K)=0.1±0.02; α(470 K)=0.14±0.03; α(620 K)=0.2±0.04.
Thermal Decomposition Study on CuInSe2 Single Crystals
NASA Astrophysics Data System (ADS)
Chauhan, Sanjaysinh M.; Chaki, Sunil H.; Deshpande, M. P.; Malek, Tasmira J.; Tailor, J. P.
2018-01-01
The thermal analysis of the chemical vapor transport (CVT)-grown CuInSe2 single crystals was carried out by recording the thermogravimetric, differential thermogravimetric and differential thermal analysis curves. All the three thermo-curves were recorded simultaneously by thermal analyzer in the temperature range of ambient to 1080 K in inert nitrogen atmosphere. The thermo-curves were recorded for four heating rates of 5 K \\cdot min^{-1}, 10 K \\cdot min^{-1}, 15 K \\cdot min^{-1} and 20 K \\cdot min^{-1}. The TG curve analysis showed negligible mass loss in the temperature range of ambient to 600 K, stating the sample material to be thermally stable in this temperature range. Above 601 K to the temperature of 1080 K, the sample showed continuous mass loss. The DTG curves showed two peaks in the temperature range of 601 K to 1080 K. The corresponding DTA showed initial minor exothermic nature followed by endothermic nature up to nearly 750 K and above it showed exothermic nature. The initial exothermic nature is due to absorbed water converting to water vapor, whereas the endothermic nature states the absorption of heat by the sample up to nearly 950 K. Above nearly 950 K the exothermic nature is due to the decomposition of sample material. The absorption of heat in the endothermic region is substantiated by corresponding weight loss in TG. The thermal kinetic parameters of the CVT-grown CuInSe2 single crystals were determined employing the non-mechanistic Kissinger relation. The determined kinetic parameters support the observations of the thermo-curves.
A Pair Production Telescope for Medium-Energy Gamma-Ray Polarimetry
NASA Technical Reports Server (NTRS)
Hunter, Stanley D.; Bloser, Peter F.; Depaola, Gerardo; Dion, Michael P.; DeNolfo, Georgia A.; Hanu, Andrei; Iparraguirre, Marcos; Legere, Jason; Longo, Francesco; McConnell, Mark L.;
2014-01-01
We describe the science motivation and development of a pair production telescope for medium-energy (approximately 5-200 Mega electron Volts) gamma-ray polarimetry. Our instrument concept, the Advanced Energetic Pair Telescope (AdEPT), takes advantage of the Three-Dimensional Track Imager, a low-density gaseous time projection chamber, to achieve angular resolution within a factor of two of the pair production kinematics limit (approximately 0.6 deg at 70 Mega electron Volts), continuum sensitivity comparable with the Fermi-LAT front detector (is less than 3 x 10(exp -6) Mega electron Volts per square centimeter per second at 70 Mega electron Volts), and minimum detectable polarization less than 10% for a 10 milliCrab source in 10(exp 6) s.
Itinerant ferromagnetism in fermionic systems with SP (2 N) symmetry
NASA Astrophysics Data System (ADS)
Yang, Wang; Wu, Congjun
The Ginzburg-Landau free energy of systems with SP (2 N) symmetry describes a second order phase transition on the mean field level, since the Casimir invariants of the SP (2 N) group can be only of even order combinations of the generators of the SP (2 N) group. This is in contrast with systems having the SU (N) symmetry, where the allowance of cubic term generally makes the phase transition into first order. In this work, we consider the Hertz-Millis type itinerant ferromagnetism in an interacting fermionic system with SP (2 N) symmetry, where the ferromagnetic orders are enriched by the multi-component nature of the system. The quantum criticality is discussed near the second order phase transition point.
CCD centroiding analysis for Nano-JASMINE observation data
NASA Astrophysics Data System (ADS)
Niwa, Yoshito; Yano, Taihei; Araki, Hiroshi; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Tazawa, Seiichi; Hanada, Hideo
2010-07-01
Nano-JASMINE is a very small satellite mission for global space astrometry with milli-arcsecond accuracy, which will be launched in 2011. In this mission, centroids of stars in CCD image frames are estimated with sub-pixel accuracy. In order to realize such a high precision centroiding an algorithm utilizing a least square method is employed. One of the advantages is that centroids can be calculated without explicit assumption of the point spread functions of stars. CCD centroiding experiment has been performed to investigate whether this data analysis is available, and centroids of artificial star images on a CCD are determined with a precision of less than 0.001 pixel. This result indicates parallaxes of stars within 300 pc from Sun can be observed in Nano-JASMINE.
Trapping of CH4, CO, and CO2 in Amorphous Water Ice
NASA Astrophysics Data System (ADS)
Mastrapa, R. M. E.; Brown, R. H.; Anicich, V. G.; Cohen, B. A.; Dai, W.; Lunine, J. I.
1999-09-01
In this study, CO, CH4, and CO2 were trapped in H2O at temperatures as low as 20 K and pressures between 10-5 and 10-8 Torr. IR spectra were taken of each sample before sublimation to confirm the presence of volatiles. The samples were then heated at rates from 0.25 K/min to 1 K/min and the escape ranges were measured with a mass spectrometer. The volatiles escaped from the ice mixtures in temperature ranges similar to those found in previous work (1, 2, 3), namely 48-52 K, 145-160 K, 170-185 K. H2O is released from 150 K to 185 K. However, the temperature range of escape is strongly dependent on deposition temperature and heating rate. If the deposition temperature is below the point where the solid volatile rapidly sublimates in the ambient environment of our experiment, then the first range of volatile escape is centered around it's sublimation point, and there is little of the volatile remaining from 170-185 K. The location of the third escape range shifts to lower temperatures with slower sublimation rate. It was determined that 0.5 K/min is the ideal sample heating rate to determine these escape ranges. In our data, the infrared spectrum of CO trapped in water ice shows a splitting of the 2145 cm-1 solid CO line into two bands at 2343 cm-1 and 2135 cm-1. These shifts are similar to those seen by Sandford, et al. (4). (1) Bar-Nun, A., G. Herman, D. Laufer, and M. L. Rappaport, (1985), Icarus, 63, 317-332. (2) Bar-Nun, A., J. Dror, E. Kochavi, and D. Laufer, (1987), Physical Review B, 35, no. 5, 2427-2435. (3) Hudson, R. L., and B. Donn, (1991), Icarus, 94, 326-332. (4) Sandford, S. A., L. J. Allamandola, A. G. G. M. Tielens, and G. J. Valero, (1988), Astrophysical Journal, 329, 498-510.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egorov, A. Yu., E-mail: anton@beam.ioffe.ru; Babichev, A. V.; Karachinsky, L. Ya.
2015-11-15
The lasing of multiperiod quantum-cascade lasers in the spectral range of (5.6–5.8)-μm under current pumping are demonstrated. The quantum-cascade laser heterostructure is grown by molecular-beam epitaxy technique. Despite the relatively short laser cavity length and high level of external loss the laser shows the lasing in the temperature range of 80–220 K. The threshold current density below 4 kA/cm{sup 2} at 220 K with the characteristic temperature T{sub 0} = 123 K was demonstrated.
Underwater audiogram of a false killer whale (Pseudorca crassidens).
Thomas, J; Chun, N; Au, W; Pugh, K
1988-09-01
Underwater audiograms are available for only a few odontocete species. A false killer whale (Pseudorca crassidens) was trained at Sea Life Park in Oahu, Hawaii for an underwater hearing test using a go/no-go response paradigm. Over a 6-month period, auditory thresholds from 2-115 kHz were measured using an up/down staircase psychometric technique. The resulting audiogram showed hearing sensitivities below 64 kHz similar to those of belugas (Delphinapterus leucas) and Atlantic bottlenosed dolphins (Tursiops truncatus). Above 64 kHz, this Pseudorca had a rapid decrease in sensitivity of about 150 dB per octave. A similar decrease in sensitivity occurs at 32 kHz in the killer whale, at 50 kHz in the Amazon River dolphin, at 120 kHz in the beluga, at 140 kHz in the bottlenosed dolphin, and at 140 kHz in the harbor porpoise. The most sensitive range of hearing was from 16-64 kHz (a range of 10 dB from the maximum sensitivity). This range corresponds with the peak frequency of echolocation pulses recorded from captive Pseudorca.
Mody, Vino C; Kakar, Manoj; Elfving, Ase; Löfgren, Stefan
2008-03-01
To study if ascorbate supplementation decreases ultraviolet radiation (UVR)-induced cataract development in the guinea pig. Sixty 6-9-week-old pigmented guinea pigs received drinking water supplemented with or without 5.5 mm l-ascorbate for 4 weeks. After supplementation, 40 animals were exposed unilaterally in vivo under anaesthesia to 80 kJ/m(2) UVR-B. One day later, the animals were killed and lenses were extracted. Degree of cataract was quantified by measurement of intensity of forward lens light scattering. Lens ascorbate concentration was determined with high-performance liquid chromatography (HPLC) with UVR detection at 254 nm. Twenty animals were used as non-exposed control. Supplementation increased lens ascorbate concentration significantly. In UVR-exposed animals, mean 95% confidence intervals (CIs) for animal-averaged lens ascorbate concentration (micromol/g wet weight lens) were 0.54 +/- 0.07 (no ascorbate) and 0.83 +/- 0.05 (5.5 mm ascorbate). In non-exposed control animals, mean 95% CIs for animal-averaged lens ascorbate concentration (micromol/g wet weight lens) were 0.72 +/- 0.12 (0 mm ascorbate) and 0.90 +/- 0.15 (5.5 mm ascorbate). All non-exposed lenses were devoid of cataract. Superficial anterior cataract developed in all UVR-exposed lenses. The lens light scattering was 39.2 +/- 14.1 milli transformed equivalent diazepam concentration (m(tEDC)) without and 35.9 +/- 14.0 m(tEDC) with ascorbate supplementation. Superficial anterior cataract develops in lenses exposed to UVR-B. Ascorbate supplementation is non-toxic to both UVR-B-exposed lenses and non-exposed control lenses. Ascorbate supplementation does not reduce in vivo lens forward light scattering secondary to UVR-B exposure in the guinea pig.
Sayed, Murtaza; Shah, Luqman Ali; Khan, Javed Ali; Shah, Noor S; Nisar, Jan; Khan, Hasan M; Zhang, Pengyi; Khan, Abdur Rahman
2016-12-22
In this study, a novel immobilized TiO 2 /Ti film with exposed {001} facets was prepared via a facile one-pot hydrothermal route for the degradation of norfloxacin from aqueous media. The effects of various hydrothermal conditions (i.e., solution pH, hydrothermal time (H T ) and HF concentration) on the growth of {001} faceted TiO 2 /Ti film were investigated. The maximum photocatalytic performance of {001} faceted TiO 2 /Ti film was observed when prepared at pH 2.62, H T of 3 h and at HF concentration of 0.02 M. The as-prepared {001} faceted TiO 2 /Ti films were fully characterized by field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM), and X-ray photoelectron spectroscopy (XPS). More importantly, the as-prepared {001} faceted TiO 2 /Ti film exhibited excellent photocatalytic performance toward degradation of norfloxacin in various water matrices (Milli-Q water, tap water, river water and synthetic wastewater). The individual influence of various anions (SO 4 2- , HCO 3 - , NO 3 - , Cl - ) and cations (K + , Ca 2+ , Mg 2+ , Cu 2+ , Na + , Fe 3+ ) usually present in the real water samples on the photocatalytic performance of as-prepared TiO 2 /Ti film with exposed {001} facet was investigated. The mechanistic studies revealed that • OH is mainly involved in the photocatalytic degradation of norfloxacin by {001} faceted TiO 2 /Ti film. In addition, norfloxacin degradation byproducts were investigated, on the basis of which degradation schemes were proposed.
The Primordial Inflation Polarization Explorer (PIPER)
NASA Technical Reports Server (NTRS)
Lazear, Justin Scott; Ade, Peter A.; Benford, Dominic J.; Bennett, Charles L.; Chuss, David T.; Dotson, Jessie L.; Eimer, Joseph R.; Fixsen, Dale J.; Halpern, Mark; Hinderks, James;
2014-01-01
The Primordial Inflation Polarization ExploreR (Piper) is a balloon-borne cosmic microwave background (CMB) polarimeter designed to search for evidence of inflation by measuring the large-angular scale CMB polarization signal. Bicep2 recently reported a detection of B-mode power corresponding to the tensor-to-scalar ratio r = 0.2 on approximately 2 degree scales. If the Bicep2 signal is caused by inflationary gravitational waves (IGWs), then there should be a corresponding increase in B-mode power on angular scales larger than 18 degrees. Piper is currently the only suborbital instrument capable of fully testing and extending the Bicep2 results by measuring the B-mode power spectrum on angular scales theta ? = approximately 0.6 deg to 90 deg, covering both the reionization bump and recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007, and four frequency bands to distinguish foregrounds. Piper will accomplish this by mapping 85% of the sky in four frequency bands (200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from the northern and southern hemispheres. The instrument has background-limited sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal onto four 32×40-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 140 milli-Kelvin. Polarization sensitivity and systematic control are provided by front-end Variabledelay Polarization Modulators (VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow Piper to instantaneously measure the full Stokes vector (I,Q,U,0V) for each pointing. We describe the Piper instrument and progress towards its first flight.
NASA Astrophysics Data System (ADS)
El-Haddad, Mohamed T.; Malone, Joseph D.; Li, Jianwei D.; Bozic, Ivan; Arquitola, Amber M.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.
2017-08-01
Ophthalmic surgery involves manipulation of delicate, layered tissue structures on milli- to micrometer scales. Traditional surgical microscopes provide an inherently two-dimensional view of the surgical field with limited depth perception which precludes accurate depth-resolved visualization of these tissue layers, and limits the development of novel surgical techniques. We demonstrate multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) to address current limitations of image-guided ophthalmic microsurgery. SS-SESLO-OCT provides inherently co-registered en face and cross-sectional field-of-views (FOVs) at a line rate of 400 kHz and >2 GPix/s throughput. We show in vivo imaging of the anterior segment and retinal fundus of a healthy volunteer, and preliminary results of multi-volumetric mosaicking for ultrawide-field retinal imaging with 90° FOV. Additionally, a scan-head was rapid-prototyped with a modular architecture which enabled integration of SS-SESLO-OCT with traditional surgical microscope and slit-lamp imaging optics. Ex vivo surgical maneuvers were simulated in cadaveric porcine eyes. The system throughput enabled volumetric acquisition at 10 volumes-per-second (vps) and allowed visualization of surgical dynamics in corneal sweeps, compressions, and dissections, and retinal sweeps, compressions, and elevations. SESLO en face images enabled simple real-time co-registration with the surgical microscope FOV, and OCT cross-sections provided depth-resolved visualization of instrument-tissue interactions. Finally, we demonstrate novel augmented-reality integration with the surgical view using segmentation overlays to aid surgical guidance. SS-SESLO-OCT may benefit clinical diagnostics by enabling aiming, registration, and mosaicking; and intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted biomarkers of disease.
Thermodynamic Properties of Polyphenylquinoxaline in the Temperature Range of T → 0 to 570 K
NASA Astrophysics Data System (ADS)
Smirnova, N. N.; Markin, A. V.; Samosudova, Ya. S.; Bykova, T. A.; Shifrina, Z. B.; Serkova, E. S.; Kuchkina, N. V.
2018-02-01
The thermodynamic properties of amorphous polyphenylquinoxaline in the temperature range of 6 to 570 K are studied via precision adiabatic vacuum calorimetry and differential scanning calorimetry. The thermodynamic characteristics of glass transition are determined. Standard thermodynamic functions C ° p, H°( T) - H°(0), S°( T) - S°(0), and G°( T) - H°(0) in the range of T → 0 to 570 K and the standard entropy of formation at T = 298.15 K are calculated. The low-temperature ( T ≤ 50 K) heat capacity is analyzed using a multifractal model for the processing of heat capacity, fractal dimension D values are determined, and conclusions on the topological structure of the compound are drawn.
Measuring Systems for Thermometer Calibration in Low-Temperature Range
NASA Astrophysics Data System (ADS)
Szmyrka-Grzebyk, A.; Lipiński, L.; Manuszkiewicz, H.; Kowal, A.; Grykałowska, A.; Jancewicz, D.
2011-12-01
The national temperature standard for the low-temperature range between 13.8033 K and 273.16 K has been established in Poland at the Institute of Low Temperature and Structure Research (INTiBS). The standard consists of sealed cells for realization of six fixed points of the International Temperature Scale of 1990 (ITS-90) in the low-temperature range, an adiabatic cryostat and Isotech water and mercury triple-point baths, capsule standard resistance thermometers (CSPRT), and AC and DC bridges with standard resistors for thermometers resistance measurements. INTiBS calibrates CSPRTs at the low-temperature fixed points with uncertainties less than 1 mK. In lower temperature range—between 2.5 K and about 25 K — rhodium-iron (RhFe) resistance thermometers are calibrated by comparison with a standard which participated in the EURAMET.T-K1.1 comparison. INTiBS offers a calibration service for industrial platinum resistance thermometers and for digital thermometers between 77 K and 273 K. These types of thermometers may be calibrated at INTiBS also in a higher temperature range up to 550°C. The Laboratory of Temperature Standard at INTiBS acquired an accreditation from the Polish Centre for Accreditation. A management system according to EN ISO/IEC 17025:2005 was established at the Laboratory and presented on EURAMET QSM Forum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Connor, Isabel A., E-mail: i.oconnor@science.ru.nl; Huijbregts, Mark A.J., E-mail: m.huijbregts@science.ru.nl; Ragas, Ad M.J., E-mail: a.ragas@science.ru.nl
Environmental risk assessment requires models for estimating the bioaccumulation of untested compounds. So far, bioaccumulation models have focused on lipophilic compounds, and only a few have included hydrophilic compounds. Our aim was to extend an existing bioaccumulation model to estimate the oral uptake efficiency of pollutants in mammals for compounds over a wide K{sub ow} range with an emphasis on hydrophilic compounds, i.e. compounds in the lower K{sub ow} range. Usually, most models use octanol as a single surrogate for the membrane and thus neglect the bilayer structure of the membrane. However, compounds with polar groups can have different affinitiesmore » for the different membrane regions. Therefore, an existing bioaccumulation model was extended by dividing the diffusion resistance through the membrane into an outer and inner membrane resistance, where the solvents octanol and heptane were used as surrogates for these membrane regions, respectively. The model was calibrated with uptake efficiencies of environmental pollutants measured in different mammals during feeding studies combined with human oral uptake efficiencies of pharmaceuticals. The new model estimated the uptake efficiency of neutral (RMSE = 14.6) and dissociating (RMSE = 19.5) compounds with logK{sub ow} ranging from − 10 to + 8. The inclusion of the K{sub hw} improved uptake estimation for 33% of the hydrophilic compounds (logK{sub ow} < 0) (r{sup 2} = 0.51, RMSE = 22.8) compared with the model based on K{sub ow} only (r{sup 2} = 0.05, RMSE = 34.9), while hydrophobic compounds (logK{sub ow} > 0) were estimated equally by both model versions with RMSE = 15.2 (K{sub ow} and K{sub hw}) and RMSE = 15.7 (K{sub ow} only). The model can be used to estimate the oral uptake efficiency for both hydrophilic and hydrophobic compounds. -- Highlights: ► A mechanistic model was developed to estimate oral uptake efficiency. ► Model covers wide logK{sub ow} range (- 10 to + 8) and several mammalian species. ► K{sub ow} and the heptane water partition coefficient K{sub hw} were combined. ► K{sub ow} and K{sub hw} reflect the inner and the outer membrane diffusion resistance. ► Combining K{sub ow} and K{sub hw} improved uptake estimation for hydrophilic compounds.« less
NASA Astrophysics Data System (ADS)
Nair, Harikrishnan S.; Ogunbunmi, Michael O.; Ghosh, S. K.; Adroja, D. T.; Koza, M. M.; Guidi, T.; Strydom, A. M.
2018-04-01
Signatures of absence of a long-range ordered magnetic ground state down to 0.36 K are observed in magnetic susceptibility, specific heat, thermal/electrical transport and inelastic neutron scattering data of the quasi-skutterudite compound Pr3Rh4Sn13 which crystallizes in the Yb3Rh4Sn13-type structure with a cage-like network of Sn atoms. In this structure, Pr3+ occupies a lattice site with D 2d point symmetry having a ninefold degeneracy corresponding to J = 4. The magnetic susceptibility of Pr3Rh4Sn13 shows only a weak temperature dependence below 10 K otherwise remaining paramagnetic-like in the range, 10 K-300 K. From the inelastic neutron scattering intensity of Pr3Rh4Sn13 recorded at different temperatures, we identify excitations at 4.5(7) K, 5.42(6) K, 10.77(5) K, 27.27(5) K, 192.28(4) K and 308.33(3) K through a careful peak analysis. However, no signatures of long-range magnetic order are observed in the neutron data down to 1.5 K, which is also confirmed by the specific heat data down to 0.36 K. A broad Schottky-like peak is recovered for the magnetic part of the specific heat, C 4f, which suggests the role of crystal electric fields of Pr3+ . A crystalline electric field model consisting of 7 levels was applied to C 4f which leads to the estimation of energy levels at 4.48(2) K, 6.94(4) K, 11.23(8) K, 27.01(5) K, 193.12(6) K and 367.30(2) K. The CEF energy levels estimated from the heat capacity analysis are in close agreement with the excitation energies seen in the neutron data. The Sommerfeld coefficient estimated from the analysis of magnetic specific heat is γ = 761(6) mJ K-2 mol-Pr which suggests the formation of heavy itinerant quasi-particles in Pr3Rh4Sn13. Combining inelastic neutron scattering results, analysis of the specific heat data down to 0.36 K, magnetic susceptibility and, electrical and thermal transport, we establish the absence of long-range ordered magnetic ground state in Pr3Rh4Sn13.
Dielectric Properties of Iron- and Sodium-Fumarate
NASA Astrophysics Data System (ADS)
Skuban, Sonja J.; Džomić, Tanja; Kapor, Agneš
2007-04-01
The behaviour of dielectric parameters such as relative dielectric constant (ɛ'), relative loss factor (V'') and ac conductivity of well known pharmaceutical materials Fe(II)-fumarate and sodium-fumarate have been studied as a function of temperature (range 303 K to 483 K) and frequency (range 0.1 Hz to 100 kHz).
NASA Astrophysics Data System (ADS)
Li, Xiaoli; Ding, Kai; Liu, Jian; Gao, Junxuan; Zhang, Weifeng
2018-01-01
Different doped silicon substrates have different device applications and have been used to fabricate solar panels and large scale integrated circuits. The thermal transport in silicon substrates are dominated by lattice vibrations, doping type, and doping concentration. In this paper, a variable-temperature Raman spectroscopic system is applied to record the frequency and linewidth changes of the silicon peak at 520 cm-1 in five chips of silicon substrate with different doping concentration of phosphorus and boron at the 83K to 1473K temperature range. The doping has better heat sensitive to temperature on the frequency shift over the low temperature range from 83K to 300K but on FWHM in high temperature range from 300K to 1473K. The results will be helpful for fundamental study and practical applications of silicon substrates.
Thermal conductivity anisotropy of rocks
NASA Astrophysics Data System (ADS)
Lee, Youngmin; Keehm, Youngseuk; Shin, Sang Ho
2013-04-01
The interior heat of the lithosphere of the Earth is mainly transferred by conduction that depends on thermal conductivity of rocks. Many sedimentary and metamorphic rocks have thermal conductivity anisotropy, i.e. heat is preferentially transferred in the direction parallel to the bedding and foliation of these rocks. Deming (JGR, 1994) proposed an empirical relationship between K(perp) and anisotropy (K(par)/K(perp)) using 89 measurements on rock samples from literatures. In Deming's model, thermal conductivity is almost isotropic for K(perp) > 4 W/mK, but anisotropy is exponentially increasing with decreasing K(perp), with final anisotropy of ~2.5 at K(perp) < 1.0 W/mK. However, Davis et al. (JGR, 2007) argued that there is little evidence for Deming's suggestion that thermal conductivity anisotropy of all rocks increases systematically to about 2.5 for rocks with low thermal conductivity. Davis et al. insisted that Deming's increase in anisotropy for 1 < K(perp) < 4 W/mK with decreasing K(perp) could be due to the fractures filled with air or water, which causes thermal conductivity anisotropy. To test Deming's suggestion and Davis et al.'s argument on thermal conductivity anisotropy, we measured thermal conductivity parallel (K(par)) and perpendicular (K(perp)) to bedding or foliation and performed analytical & numerical modeling. Our measurements on 53 rock samples show the anisotropy range from 0.79 to 1.36 for 1.84 < K(prep) < 4.06 W/mK. Analytical models show that anisotropy can increase or stay the same at the range of 1 < K(perp) < 4 W/mK. Numerical modeling for gneiss shows that anisotropy ranges 1.21 to 1.36 for 2.5 < K(perp) < 4.8 W/mK. Another numerical modeling with interbedded coal layers in high thermal conductivity rocks (3.5 W/mK) shows anisotropy of 1.87 when K(perp) is 1.7 W/mK. Finally, numerical modeling with fractures indicates that the fractures does not seem to affect thermal conductivity anisotropy significantly. In conclusion, our preliminary results imply that thermal conductivity anisotropy can increase or stay at low value in the range of 1.0 < K(perp) < 4.0 W/mK. Both cases are shown to be possible through lab measurements and analytical & numerical modeling.
NASA Astrophysics Data System (ADS)
Laesecke, Arno; Muzny, Chris D.
2017-12-01
A wide-ranging formulation for the viscosity of methane in the limit of zero density is presented. Using ab initio calculated data of Hellmann et al. (J Chem Phys 129, 064302, 2008) from 80 K to 1500 K, the functional form was developed by guided symbolic regression with the constraints of correct extrapolation to T → 0 and in the high-temperature limit. The formulation was adjusted to the recalibrated experimental data of May et al. (Int J Thermophys 28, 1085-1110, 2007) so that these are represented within their estimated expanded uncertainty of 0.053 % (k = 2) in their temperature range from 210.756 K to 391.551 K. Based on comparisons with original data and recalibrated viscosity ratio measurements, the expanded uncertainty of the new correlation is estimated outside this temperature range to be 0.2 % to 700 K, 0.5 % to 1100 K, 1 % to 1500 K, and physically correct at higher temperatures. At temperatures below 210 K, the new correlation agrees with recalibrated experimental data within 0.3 % down to 150 K. Hellmann et al. estimated the expanded uncertainty of their calculated data at 1 % to 80 K. The new formulation extrapolates without a singularity to T→ 0.
Jamieson, Terra S; Schiff, Sherry L; Taylor, William D
2013-02-01
Gas exchange can be a key component of the dissolved oxygen (DO) mass balance in aquatic ecosystems. Quantification of gas transfer rates is essential for the estimation of DO production and consumption rates, and determination of assimilation capacities of systems receiving organic inputs. Currently, the accurate determination of gas transfer rate is a topic of debate in DO modeling, and there are a wide variety of approaches that have been proposed in the literature. The current study investigates the use of repeated measures of stable isotopes of O₂ and DO and a dynamic dual mass-balance model to quantify gas transfer coefficients (k) in the Grand River, Ontario, Canada. Measurements were conducted over a longitudinal gradient that reflected watershed changes from agricultural to urban. Values of k in the Grand River ranged from 3.6 to 8.6 day⁻¹, over discharges ranging from 5.6 to 22.4 m³ s⁻¹, with one high-flow event of 73.1 m³ s⁻¹. The k values were relatively constant over the range of discharge conditions studied. The range in discharge observed in this study is generally representative of non-storm and summer low-flow events; a greater range in k might be observed under a wider range of hydrologic conditions. Overall, k values obtained with the dual model for the Grand River were found to be lower than predicted by the traditional approaches evaluated, highlighting the importance of determining site-specific values of k. The dual mass balance approach provides a more constrained estimate of k than using DO only, and is applicable to large rivers where other approaches would be difficult to use. The addition of an isotopic mass balance provides for a corroboration of the input parameter estimates between the two balances. Constraining the range of potential input values allows for a direct estimate of k in large, productive systems where other k-estimation approaches may be uncertain or logistically infeasible. Copyright © 2012 Elsevier Ltd. All rights reserved.
Temperature-dependence of stress and elasticity in wet-transferred graphene membranes
NASA Astrophysics Data System (ADS)
De Alba, Roberto; Abhilash, T. S.; Hui, Aaron; Storch, Isaac R.; Craighead, Harold G.; Parpia, Jeevak M.
2018-03-01
We report measurements of the mechanical properties of two suspended graphene membranes in the temperature range of 80 K to 550 K. For this entire range, the resonant frequency and quality factor of each device were monitored continuously during cooling and heating. Below 300 K, we have additionally measured the resonant frequency's tunability via electrostatic force, and modeled this data to determine graphene's tension and elastic modulus; both of these parameters are found to be strongly temperature-dependent in this range. Above 300 K, we observe a resonant frequency (and therefore tension) minimum near room temperature. This suggests that the thermal expansion coefficient is positive for temperatures below roughly 315 K, and negative for higher temperatures. Lastly, we observe a large, reproducible hysteresis in the resonant frequency as our graphene devices are cycled between 300 K and 550 K. After returning to 300 K, the measured frequency evolves exponentially in time with a time constant of ˜24 h. Our results clash with expectations for pristine graphene membranes, but are consistent with expectations for composite membranes composed of graphene coated by a thin layer of polymer residue.
Yee, Micaela V; Barron, Rochelle A; Knobloch, Tom A; Pandey, Umesh; Twyford, Catherine; Freebairn, Ross C
2012-08-01
To describe the cumulative effective dose of radiation that was received during the initial Emergency Department assessment and ICU stay of patients admitted with trauma, who required mechanical ventilation, during two time periods. A retrospective analysis of radiological and clinical data, set in a regional nonurban ICU. Two cohorts (starting 1 January 2004 and 1 January 2009), each comprising 45 adult patients admitted with trauma who were mechanically ventilated in intensive care, were studied. Frequency and type of radiological examinations, demographic information, and clinical data were collated from the radiological database, hospital admission record and Australian Outcomes Research Tool for Intensive Care database. Cumulative effective doses were calculated and expressed as a total dose and average daily dose for each cohort. The median cumulative effective dose per patient (in milliSieverts) increased from 34.59 [interquartile range (IQR) 9.08-43.91] in 2004 to 40.51 (IQR 22.01-48.87) in 2009, P=0.045. An increased number of computed tomography examinations per patient was also observed over the same interval from an average of 2.11 (median 2, IQR 1-3) in 2004 to an average of 2.62 (2, 2-4) in 2009, P=0.046. The radiation exposure of mechanically ventilated trauma patients in intensive care has increased over time. Radiation exposure should be prospectively monitored and staff should be aware of the increased risk resulting from this change in practice.
Darwin : the technical challenges of an optical nulling interferometer in space
NASA Astrophysics Data System (ADS)
Viard, Thierry; Lund, Glenn; Thomas, Eric; Vacance, Michel
2017-11-01
Alcatel Space has been responsible for a feasibility study contract, awarded by the European Space Agency, and dedicated to the definition of preliminary interferometric concepts for the direct detection and characterisation of exo-planets associated with nearby stars. The retained concept is a six free-flyer-telescope interferometer, with a variable baseline ranging from 50 to 500 m. The collected wavefronts are combined on a 7th free-flying hub satellite at the centre of the array, and the observations are performed in the thermal Infra-Red spectral band. The latter choice is made for two reasons : firstly, the wavelength providing optimal contrast between the planetary and stellar (background) signals is approximately 10μm secondly, the spectral features of interest for the detection of life as we know it (CO2, H2O, O3 , CH4 ... ) lie in the band between 6 and 18 μm. The system requirements for such an instrument are very severe, owing to the physical nature of the mission concept; i.e. that of a coronographic stellar interferometer: in order to achieve satisfactory extinction of the unwanted flux generated by the central star, such a concept will impose the control of optical pathlength differences between telescopes to within a small fraction of a wavelength, milli-arcsec pointing stabilities, 10-3 amplitude equalisation, achromatic check-shifts of some beams with respect to the others, and the use of passively cooled cryogenic telescopes.
Is there a sign of new physics in beryllium transitions?
NASA Astrophysics Data System (ADS)
Fornal, Bartosz
2017-01-01
A 6.8 σ anomaly in the invariant mass distribution of e+e- pairs produced via internal pair creation in 8 Be nuclear transitions has been reported recently by Krasznahorkay et al. in Phys. Rev. Lett. 116 (2016) 042501. The data can be explained by a 17 MeV vector gauge boson X produced in the transition of an excited beryllium state to the ground state, 8Be* ->8 Be X , followed by the decay X ->e+e- . We find that the gauge boson X can be associated with a new ``protophobic'' fifth force (i.e.with a coupling to protons suppressed compared to its coupling to neutrons) with a characteristic range of 10 fm and milli-charged couplings to first generation quarks and electrons. We show that such a ``protophobic'' gauge boson is consistent with all available experimental constraints and we discuss several ways to embed this new particle into an anomaly-free extension of the Standard Model. One of the most appealing theories of this type is a model with gauged baryon number, in which the new gauge boson kinetically mixes with the photon, and provides a portal to the dark matter sector. Apart from the phenomenological richness of the model, it can also alleviate the current 3.6 σ discrepancy between the predicted and measured values of the muon's anomalous magnetic moment. B.F. acknowledges partial support from DOE Grant DE-SC0009919 and NSF Grant PHY-1316792.
A study of Tycho's SNR at TeV energies with the HEGRA CT-System
NASA Astrophysics Data System (ADS)
Aharonian, F. A.; Akhperjanian, A. G.; Barrio, J. A.; Bernlöhr, K.; Börst, H.; Bojahr, H.; Bolz, O.; Contreras, J. L.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Gonzalez, J. C.; Götting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Ibarra, A.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lorenz, E.; Lucarelli, F.; Magnussen, N.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Padilla, L.; Panter, M.; Plaga, R.; Plyasheshnikov, A.; Prahl, J.; Pühlhofer, G.; Rauterberg, G.; Röhring, A.; Rhode, W.; Rowell, G. P.; Sahakian, V.; Samorski, M.; Schilling, M.; Schröder, F.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiedner, C.; Wittek, W.
2001-07-01
Tycho's supernova remnant (SNR) was observed during 1997 and 1998 with the HEGRA Čerenkov Telescope System in a search for gamma-ray emission at energies above ~ 1 TeV. An analysis of these data, ~ 65 hours in total, resulted in no evidence for TeV gamma-ray emission. The 3sigma upper limit to the gamma-ray flux (>1 TeV) from Tycho is estimated at 5.78x 10-13 photons cm-2 s-1, or 33 milli-Crab. We interpret our upper limit within the framework of the following scenarios: (1) that the observed hard X-ray tail is due to synchrotron emission. A lower limit on the magnetic field within Tycho may be estimated B>=22 mu G, assuming that the RXTE-detected X-rays were due to synchrotron emission. However, using results from a detailed model of the ASCA emission, a more conservative lower limit B>=6 mu G is derived. (2) The hadronic model of Drury and (3) the more recent time-dependent kinetic theory of Berezhko & Völk. Our upper limit lies within the range of predicted values of both hadronic models, according to uncertainties in physical parameters of Tycho, and shock acceleration details. In the latter case, the model was scaled to suit the parameters of Tycho and re-normalised to account for a simplification of the original model. We find that we cannot rule out Tycho as a potential contributor at an average level to the Galactic cosmic-ray flux.
High-precision infra-red stellar interferometry
NASA Astrophysics Data System (ADS)
Lane, Benjamin F.
2003-08-01
This dissertation describes work performed at the Palomar Testbed Interferometer (PTI) during 1998 2002. Using PTI, we developed a method to measure stellar angular diameters in the 1 3 milli-arcsecond range with a precision of better than 5%. Such diameter measurements were used to measure the mass-radius relations of several lower main sequence stars and hence verify model predictions for these stars. In addition, by measuring the changes in Cepheid angular diameters during the pulsational cycle and applying a Baade-Wesselink analysis we are able to derive the distances to two galactic Cepheids (η Aql & ζ Gem) with a precision of ˜10%; such distance determinations provide an independent calibration of the Cepheid period- luminosity relations that underpin current estimates of cosmic distance scales. Second, we used PTI and the adaptive optics facility at the Keck Telescope on Mauna Kea to resolve the low mass binary systems BY Dra and GJ 569B, resulting in dynamical mass determinations for these systems. GJ 569B most likely contains at least one sub-stellar component, and as such represents the first dynamical mass determination of a brown dwarf. Finally, a new observing technique, dual star phase referencing, was developed and demonstrated at PTI. Phase referencing allows interferometric observations of stars previously too faint to observe, and is a prerequisite for large-scale interferometric astrometry programs such as the one planned for the Keck Interferometer; interferometric astrometry is a promising technique for the study of extra-solar planetary systems, particularly ones with long-period planets.
NASA Astrophysics Data System (ADS)
Moser, Stefan; Nau, Siegfried; Salk, Manfred; Thoma, Klaus
2014-02-01
The in situ investigation of dynamic events, ranging from car crash to ballistics, often is key to the understanding of dynamic material behavior. In many cases the important processes and interactions happen on the scale of milli- to microseconds at speeds of 1000 m s-1 or more. Often, 3D information is necessary to fully capture and analyze all relevant effects. High-speed 3D-visualization techniques are thus required for the in situ analysis. 3D-capable optical high-speed methods often are impaired by luminous effects and dust, while flash x-ray based methods usually deliver only 2D data. In this paper, a novel 3D-capable flash x-ray based method, in situ flash x-ray high-speed computed tomography is presented. The method is capable of producing 3D reconstructions of high-speed processes based on an undersampled dataset consisting of only a few (typically 3 to 6) x-ray projections. The major challenges are identified, discussed and the chosen solution outlined. The application is illustrated with an exemplary application of a 1000 m s-1 high-speed impact event on the scale of microseconds. A quantitative analysis of the in situ measurement of the material fragments with a 3D reconstruction with 1 mm voxel size is presented and the results are discussed. The results show that the HSCT method allows gaining valuable visual and quantitative mechanical information for the understanding and interpretation of high-speed events.
Parameters optimization for synthesis of Al-doped ZnO nanoparticles by laser ablation in water
NASA Astrophysics Data System (ADS)
Krstulović, Nikša; Salamon, Krešimir; Budimlija, Ognjen; Kovač, Janez; Dasović, Jasna; Umek, Polona; Capan, Ivana
2018-05-01
Al-doped ZnO crystalline colloidal nanoparticles were synthesized by a laser ablation of ZnO:Al2O3 in MilliQ water. Experiments were performed systematically by changing the number of applied laser pulses and laser output energy with the aim to affect the nanoparticle size, composition (Al/Zn ratio) and characteristics (band-gap, crystallinity). Distinctly, set of nanoparticle syntheses was performed in deionized water for comparison. SEM investigation of colloidal nanoparticles revealed that the formed nanoparticles are 30 nm thick discs with average diameters ranging from 450 to 510 nm. It was found that craters in the target formed during the laser ablation influence the size of synthesized colloidal nanoparticles. This is explained by efficient nanoparticle growth through diffusion process which take place in spatially restricted volume of the target crater. When laser ablation takes place in deionized water the synthesized nanoparticles have a mesh-like structure with sparse concentration of disc-like nanoparticles. Al/Zn ratio and band-gap energy of nanoparticles are highly influenced by the number and output energy of applied laser pulses. In addition, the procedure how to calculate the concentration of colloidal nanoparticles synthesized by laser ablation in liquids is proposed. The Al-doped ZnO colloidal nanoparticles properties were obtained using different techniques like scanning electron microscopy, optical microscopy, energy-dispersive X-ray spectroscopy, grazing-incidence X-ray diffraction, photoabsorption, photoluminescence and X-ray photoelectron spectroscopy.
NASA Astrophysics Data System (ADS)
Yonemaru, Naoyuki; Kumamoto, Hiroki; Takahashi, Keitaro; Kuroyanagi, Sachiko
2018-04-01
A new detection method for ultra-low frequency gravitational waves (GWs) with a frequency much lower than the observational range of pulsar timing arrays (PTAs) was suggested in Yonemaru et al. (2016). In the PTA analysis, ultra-low frequency GWs (≲ 10-10 Hz) which evolve just linearly during the observation time span are absorbed by the pulsar spin-down rates since both have the same effect on the pulse arrival time. Therefore, such GWs cannot be detected by the conventional method of PTAs. However, the bias on the observed spin-down rates depends on relative direction of a pulsar and GW source and shows a quadrupole pattern in the sky. Thus, if we divide the pulsars according to the position in the sky and see the difference in the statistics of the spin-down rates, ultra-low frequency GWs from a single source can be detected. In this paper, we evaluate the potential of this method by Monte-Carlo simulations and estimate the sensitivity, considering only the "Earth term" while the "pulsar term" acts like random noise for GW frequencies 10-13 - 10-10 Hz. We find that with 3,000 milli-second pulsars, which are expected to be discovered by a future survey with the Square Kilometre Array, GWs with the derivative of amplitude of about 3 × 10^{-19} {s}^{-1} can in principle be detected. Implications for possible supermassive binary black holes in Sgr* and M87 are also given.
Component separation of a isotropic Gravitational Wave Background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parida, Abhishek; Jhingan, Sanjay; Mitra, Sanjit, E-mail: abhishek@jmi.ac.in, E-mail: sanjit@iucaa.in, E-mail: sjhingan@jmi.ac.in
2016-04-01
A Gravitational Wave Background (GWB) is expected in the universe from the superposition of a large number of unresolved astrophysical sources and phenomena in the early universe. Each component of the background (e.g., from primordial metric perturbations, binary neutron stars, milli-second pulsars etc.) has its own spectral shape. Many ongoing experiments aim to probe GWB at a variety of frequency bands. In the last two decades, using data from ground-based laser interferometric gravitational wave (GW) observatories, upper limits on GWB were placed in the frequency range of 0∼ 50−100 Hz, considering one spectral shape at a time. However, one strong componentmore » can significantly enhance the estimated strength of another component. Hence, estimation of the amplitudes of the components with different spectral shapes should be done jointly. Here we propose a method for 'component separation' of a statistically isotropic background, that can, for the first time, jointly estimate the amplitudes of many components and place upper limits. The method is rather straightforward and needs negligible amount of computation. It utilises the linear relationship between the measurements and the amplitudes of the actual components, alleviating the need for a sampling based method, e.g., Markov Chain Monte Carlo (MCMC) or matched filtering, which are computationally intensive and cumbersome in a multi-dimensional parameter space. Using this formalism we could also study how many independent components can be separated using a given dataset from a network of current and upcoming ground based interferometric detectors.« less
40 plus or minus 10, a new magical number: reply to Russell.
Larrabee, Glenn J; Millis, Scott R; Meyers, John E
2009-07-01
Russell (2009 this issue) has criticized our recently published investigation (Larrabee, Millis, & Meyers, 2008) comparing the diagnostic discrimination of an ability-focused neuropsychological battery (AFB) to that of the Halstead Reitan Battery (HRB). He contended that our symptom validity test (SVT) screening excluding 43% of brain dysfunction and 15% of control patients using computations based on Digit Span inappropriately excluded patients with brain damage, due to the correlation of Digit Span with the Average Index Score (AIS). Our exclusion of 43% of brain dysfunction participants matches the frequency of invalid neuropsychological data of 40-50% or more reported by numerous studies for a wide range of settings with external incentive. Moreover, our study was not an investigation of malingering; rather, we screened our data to insure that only valid data remained, for the most meaningful comparison of the AFB to the HRB. Russell's argument that Digit Span is correlated with brain damage confounds the criterion, AIS (a composite cognitive score), with the predictor, Digit Span (another cognitive score), rather than employing a truly independent neurologic criterion. The fact that Digit Span is notoriously insensitive to brain dysfunction underscores the robustness of our findings, for if we inappropriately excluded brain-damaged patients for low Digit Span, as Russell claimed, this resulted in our sample reflecting more subtle degree of brain dysfunction, and the superiority of the AFB over the HRB was demonstrated under the most challenging of discriminative conditions.
Corrosion behavior of 2205 duplex stainless steel.
Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K
1997-07-01
The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires.
47 CFR 73.322 - FM stereophonic sound transmission standards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... transmission, modulation of the carrier by audio components within the baseband range of 50 Hz to 15 kHz shall... the carrier by audio components within the audio baseband range of 23 kHz to 99 kHz shall not exceed... method described in (a), must limit the modulation of the carrier by audio components within the audio...
47 CFR 73.322 - FM stereophonic sound transmission standards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... transmission, modulation of the carrier by audio components within the baseband range of 50 Hz to 15 kHz shall... the carrier by audio components within the audio baseband range of 23 kHz to 99 kHz shall not exceed... method described in (a), must limit the modulation of the carrier by audio components within the audio...
47 CFR 73.322 - FM stereophonic sound transmission standards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... transmission, modulation of the carrier by audio components within the baseband range of 50 Hz to 15 kHz shall... the carrier by audio components within the audio baseband range of 23 kHz to 99 kHz shall not exceed... method described in (a), must limit the modulation of the carrier by audio components within the audio...
47 CFR 73.322 - FM stereophonic sound transmission standards.
Code of Federal Regulations, 2012 CFR
2012-10-01
... transmission, modulation of the carrier by audio components within the baseband range of 50 Hz to 15 kHz shall... the carrier by audio components within the audio baseband range of 23 kHz to 99 kHz shall not exceed... method described in (a), must limit the modulation of the carrier by audio components within the audio...
Kawaguchi, Ai; Matsunaga, Yuta; Suzuki, Shoichi; Chida, Koichi
2017-03-01
This study aimed to investigate the energy dependence and the angular dependence of commercially available optically stimulated luminescence (OSL) point dosimeters in the mammography energy range. The energy dependence was evaluated to calculate calibration factors (CFs). The half-value layer range was 0.31-0.60 mmAl (Mo/Mo 22-28 kV, Mo/Rh 28-32 kV, and W/Rh 30-34 kV at 2-kV intervals). Mo/Rh 28 kV was the reference condition. Angular dependence was tested by rotating the X-ray tube from -90° to 90° in 30° increments, and signal counts from angled nanoDots were normalized to the 0° signal counts. Angular dependence was compared with three tube voltage and target/filter combinations (Mo/Mo 26 kV, Mo/Rh 28 kV and W/Rh 32 kV). The CFs of energy dependence were 0.94-1.06. In Mo/Mo 26-28 kV and Mo/Rh 28-32 kV, the range of CF was 0.99-1.01, which was very similar. For angular dependence, the most deteriorated normalized values (Mo/Mo, 0.37; Mo/Rh, 0.43; and W/Rh, 0.58) were observed when the X-ray tube was rotated at a 90° angle, compared to 0°. The most angular dependences of ± 30°, 60°, and 90° decreased by approximately 4%, 14%, and 63% respectively. The mean deteriorated measurement 30° intervals from 0° to ± 30° was 2%, from ± 30° to ± 60° was 8%, and from ± 60° to ± 90° was 40%. The range of energy dependence in typical mammography energy range was not as much as that in general radiography and computed tomography. For accurate measurement using nanoDot, the tilt needs to be under 30°. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Bowles, Ann E; Denes, Samuel L; Shane, Michael A
2010-11-01
Ultrasonic coded transmitters (UCTs) producing frequencies of 69-83 kHz are used increasingly to track fish and invertebrates in coastal and estuarine waters. To address concerns that they might be audible to marine mammals, acoustic properties of UCTs were measured off Mission Beach, San Diego, and at the U.S. Navy TRANSDEC facility. A regression model fitted to VEMCO UCT data yielded an estimated source level of 147 dB re 1 μPa SPL @ 1 m and spreading constant of 14.0. Based on TRANSDEC measurements, five VEMCO 69 kHz UCTs had source levels ranging from 146 to 149 dB re 1 μPa SPL @ 1 m. Five Sonotronics UCTs (69 kHz and 83 kHz) had source levels ranging from 129 to 137 dB re 1 μPa SPL @ 1 m. Transmitter directionality ranged from 3.9 to 18.2 dB. Based on propagation models and published data on marine mammal auditory psychophysics, harbor seals potentially could detect the VEMCO 69 kHz UCTs at ranges between 19 and >200 m, while odontocetes potentially could detect them at much greater ranges. California sea lions were not expected to detect any of the tested UCTs at useful ranges.
NEUTRON CAPTURE THERAPY OF A CEREBELLAR HEMANGIOSARCOMA AFTER SURGICAL AND RADIATION TREATMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farr, L.E.; Yamamoto, L.Y.
1961-10-01
A patient with a hioghly maliognant vascular sarcoma of the cerebellum was treated hv neutron capture therapy. Almost complete elimination of the neoplasm was attained. Other than the skin, normal tissues about and within the neoplastioc mass did not appear to be adversely affected. An unusual and unexpected bulbar conjunctivitis was observed as a complication. The degree of control attained by this experimental procedure was more positive than that previously attained by surgery or conventional x-ray therapy. This is the first attempt to control an intracranial tumor other than glioblastoma multiforme by this procedure. The patient is noteworthy for themore » extreme retention of carbon dioxiode, 60 milli-equivalents per liter in the blood, apparently resulting from functional disturbances of the respiratory center. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seong-Joo, E-mail: sj.lee@kriss.re.kr; Shim, Jeong Hyun; Kim, Kiwoong
A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach,more » the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.« less
Hubble Space Telescope Reduced-Gyro Control Law Design, Implementation, and On-Orbit Performance
NASA Technical Reports Server (NTRS)
Clapp, Brian R.; Ramsey, Patrick R.; Wirzburger, John H.; Smith, Daniel C.; VanArsadall, John C.
2008-01-01
Following gyro failures in April 2001 and April 2003, HST Pointing Control System engineers designed reduced-gyro control laws to extend the spacecraft science mission. The Two-Gyro Science (TGS) and One-Gyro Science (OGS) control laws were designed and implemented using magnetometers, star trackers, and Fine Guidance Sensors in succession to control vehicle rate about the missing gyro axes. Both TGS and OGS have demonstrated on-orbit pointing stability of 7 milli-arcseconds or less, which depends upon the guide star magnitude used by the Fine Guidance Sensor. This paper describes the design, implementation, and on-orbit performance of the TGS and OGS control law fine-pointing modes using Fixed Head Star Trackers and Fine Guidance Sensors, after successfully achieving coarse-pointing control using magnetometers.
The Momentum Distribution of Liquid ⁴He
Prisk, T. R.; Bryan, M. S.; Sokol, P. E.; ...
2017-07-24
We report a high-resolution neutron Compton scattering study of liquid ⁴He under milli-Kelvin temperature control. To interpret the scattering data, we performed Quantum Monte Carlo calculations of the atomic momentum distribution and final state effects for the conditions of temperature and density considered in the experiment. There is excellent agreement between the observed scattering and ab initio calculations of its lineshape at all temperatures. We also used model fit functions to obtain from the scattering data empirical estimates of the average atomic kinetic energy and Bose condensate fraction. These quantities are also in excellent agreement with ab initio calculations. Wemore » conclude that contemporary Quantum Monte Carlo methods can furnish accurate predictions for the properties of Bose liquids, including the condensate fraction, close to the superfluid transition temperature.« less
Modular cryogenic interconnects for multi-qubit devices.
Colless, J I; Reilly, D J
2014-11-01
We have developed a modular interconnect platform for the control and readout of multiple solid-state qubits at cryogenic temperatures. The setup provides 74 filtered dc-bias connections, 32 control and readout connections with -3 dB frequency above 5 GHz, and 4 microwave feed lines that allow low loss (less than 3 dB) transmission 10 GHz. The incorporation of a radio-frequency interposer enables the platform to be separated into two printed circuit boards, decoupling the simple board that is bonded to the qubit chip from the multilayer board that incorporates expensive connectors and components. This modular approach lifts the burden of duplicating complex interconnect circuits for every prototype device. We report the performance of this platform at milli-Kelvin temperatures, including signal transmission and crosstalk measurements.
Underwater audiogram of a tucuxi (Sotalia fluviatilis guianensis).
Sauerland, M; Dehnhardt, G
1998-02-01
Using a go/no go response paradigm, a tucuxi (Sotalia fluviatilis guianensis) was trained to respond to pure-tone signals for an underwater hearing test. Auditory thresholds were obtained from 4 to 135 kHz. The audiogram curve shows that this Sotalia had an upper limit of hearing at 135 kHz; from 125 to 135 kHz sensitivity decreased by 475 dB/oct. This coincides with results from electrophysiological threshold measurements. The range of best hearing (defined as 10 dB from maximum sensitivity) was between 64 and 105 kHz. This range appears to be narrower and more restricted to higher frequencies in Sotalia fluviatilis guianensis than in other odontocete species that had been tested before. Peak frequencies of echolocation pulses reported from free-ranging Sotalia correspond with the range of most sensitive hearing of this test subject.
Life and Operating Range Extension of the BPT-4000 Qualification Model Hall Thruster
NASA Technical Reports Server (NTRS)
Welander, Ben; Carpenter, Christian; deGrys, Kristi; Hofer, Richard R.; Randolph, Thomas M.; Manzella, David H.
2006-01-01
Following completion of the 5,600 hr qualification life test of the BPT-4000 4.5 kW Hall Thruster Propulsion System, NASA and Aerojet have undertaken efforts to extend the qualified operating range and lifetime of the thruster to support a wider range of NASA missions. The system was originally designed for orbit raising and stationkeeping applications on military and commercial geostationary satellites. As such, it was designed to operate over a range of power levels from 3 to 4.5 kW. Studies of robotic exploration applications have shown that the cost savings provided by utilizing commercial technology that can operate over a wider range of power levels provides significant mission benefits. The testing reported on here shows that the 4.5 kW thruster as designed has the capability to operate efficiently down to power levels as low as 1 kW. At the time of writing, the BPT-4000 qualification thruster and cathode have accumulated over 400 hr of operation between 1 to 2 kW with an additional 600 hr currently planned. The thruster has demonstrated no issues with longer duration operation at low power.
Spannagel, Ruven; Hamann, Ines; Sanjuan, Josep; Schuldt, Thilo; Gohlke, Martin; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus
2016-10-01
Space applications demand light weight materials with excellent dimensional stability for telescopes, optical benches, optical resonators, etc. Glass-ceramics and composite materials can be tuned to reach very low coefficient of thermal expansion (CTE) at different temperatures. In order to determine such CTEs, very accurate setups are needed. Here we present a dilatometer that is able to measure the CTE of a large variety of materials in the temperature range of 140 K to 250 K. The dilatometer is based on a heterodyne interferometer with nanometer noise levels to measure the expansion of a sample when applying small amplitude controlled temperature signals. In this article, the CTE of a carbon fiber reinforced polymer sample has been determined with an accuracy in the 10 -8 K -1 range.
47 CFR 15.33 - Frequency range of radiated measurements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates... level of radiated emissions within the frequency range 9 kHz to 30 MHz, such as a CB receiver or a... used in the device, without going below 9 kHz (25 MHz for CB receivers), up to the frequency shown in...
47 CFR 15.33 - Frequency range of radiated measurements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates... level of radiated emissions within the frequency range 9 kHz to 30 MHz, such as a CB receiver or a... used in the device, without going below 9 kHz (25 MHz for CB receivers), up to the frequency shown in...
47 CFR 15.33 - Frequency range of radiated measurements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates... level of radiated emissions within the frequency range 9 kHz to 30 MHz, such as a CB receiver or a... used in the device, without going below 9 kHz (25 MHz for CB receivers), up to the frequency shown in...
47 CFR 15.33 - Frequency range of radiated measurements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates... level of radiated emissions within the frequency range 9 kHz to 30 MHz, such as a CB receiver or a... used in the device, without going below 9 kHz (25 MHz for CB receivers), up to the frequency shown in...
Energy Spectrum in the Dissipation Range of Fluid Turbulence
NASA Technical Reports Server (NTRS)
Martinez, D. O.; Chen, S.; Doolen, G. D.; Kraichnan, R. H.; Wang, L.-P.; Zhou, Y.
1996-01-01
High resolution, direct numerical simulations of the three-dimensional incompressible Navier-Stokes equations are carried out to study the energy spectrum in the dissipation range. An energy spectrum of the form A(k/k( sub d))(sup alpha) exp[- betak/k(sub d) is confirmed. The possible values of the parameters alpha and beta, as well as their dependence on Revnolds numbers and length scales, are investigated, showing good agreement with recent theoretical predictions. A "bottleneck'-type effect is reported at k/k(sub d) approximately 4, exhibiting a possible transition from near-dissipation to far- dissipation.
NASA Astrophysics Data System (ADS)
Zou, M.; Pecharsky, V. K.; Gschneidner, K. A., Jr.; Schlagel, D. L.; Lograsso, T. A.
2008-07-01
Magnetic phase transitions in a Tb5Si2.2Ge1.8 single crystal have been studied as a function of temperature and magnetic field. Magnetic-field dependencies of the critical temperatures are highly anisotropic for both the main magnetic ordering process occurring around 120 K and a spin reorientation transition at ˜70K . Magnetic-field-induced phase transitions occur with the magnetic field applied isothermally along the a and b axes (but not along the c axis) between 1.8 and 70 K in fields below 70 kOe. Strong anisotropic thermal irreversibility is observed in the Griffiths phase regime between 120 and 200 K with applied fields ranging from 10 to 1000 Oe. Our data (1) show that the magnetic and structural phase transitions around 120 K are narrowly decoupled; (2) uncover the anisotropy of ferromagnetic short-range order in the Griffiths phase; and (3) reveal some unusual magnetic domain effects in the long-range ordered state of the Tb5Si2.2Ge1.8 compound. The temperature-magnetic field phase diagrams with field applied along the three major crystallographic directions have been constructed.
A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range
Tian, He; Shu, Yi; Wang, Xue-Feng; Mohammad, Mohammad Ali; Bie, Zhi; Xie, Qian-Yi; Li, Cheng; Mi, Wen-Tian; Yang, Yi; Ren, Tian-Ling
2015-01-01
Pressure sensors are a key component in electronic skin (e-skin) sensing systems. Most reported resistive pressure sensors have a high sensitivity at low pressures (<5 kPa) to enable ultra-sensitive detection. However, the sensitivity drops significantly at high pressures (>5 kPa), which is inadequate for practical applications. For example, actions like a gentle touch and object manipulation have pressures below 10 kPa, and 10–100 kPa, respectively. Maintaining a high sensitivity in a wide pressure range is in great demand. Here, a flexible, wide range and ultra-sensitive resistive pressure sensor with a foam-like structure based on laser-scribed graphene (LSG) is demonstrated. Benefitting from the large spacing between graphene layers and the unique v-shaped microstructure of the LSG, the sensitivity of the pressure sensor is as high as 0.96 kPa−1 in a wide pressure range (0 ~ 50 kPa). Considering both sensitivity and pressure sensing range, the pressure sensor developed in this work is the best among all reported pressure sensors to date. A model of the LSG pressure sensor is also established, which agrees well with the experimental results. This work indicates that laser scribed flexible graphene pressure sensors could be widely used for artificial e-skin, medical-sensing, bio-sensing and many other areas. PMID:25721159
NASA Astrophysics Data System (ADS)
Ji, Cheng; Wang, Zilin; Wu, Chenhui; Zhu, Miaoyong
2018-04-01
According to the calculation results of a 3D thermomechanical-coupled finite-element (FE) model of GCr15 bearing steel bloom during a heavy reduction (HR) process, the variation ranges in the strain rate and strain under HR were described. In addition, the hot deformation behavior of the GCr15 bearing steel was studied over the temperature range from 1023 K to 1573 K (750 °C to 1300 °C) with strain rates of 0.001, 0.01, and 0.1 s-1 in single-pass thermosimulation compression experiments. To ensure the accuracy of the constitutive model, the temperature range was divided into two temperature intervals according to the fully austenitic temperature of GCr15 steel [1173 K (900 °C)]. Two sets of material parameters for the constitutive model were derived based on the true stress-strain curves of the two temperature intervals. A flow stress constitutive model was established using a revised Arrhenius-type constitutive equation, which considers the relationships among the material parameters and true strain. This equation describes dynamic softening during hot compression processes. Considering the effect of glide and climb on the deformation mechanism, the Arrhenius-type constitutive equation was modified by a physically based approach. This model is the most accurate over the temperatures ranging from 1173 K to 1573 K (900 °C to 1300 °C) under HR deformation conditions (ignoring the range from 1273 K to 1573 K (1000 °C to 1300 °C) with a strain rate of 0.1 s-1). To ensure the convergence of the FE calculation, an approximated method was used to estimate the flow stress at temperatures greater than 1573 K (1300 °C).
Mammographic x-ray unit kilovoltage test tool based on k-edge absorption effect.
Napolitano, Mary E; Trueblood, Jon H; Hertel, Nolan E; David, George
2002-09-01
A simple tool to determine the peak kilovoltage (kVp) of a mammographic x-ray unit has been designed. Tool design is based on comparing the effect of k-edge discontinuity of the attenuation coefficient for a series of element filters. Compatibility with the mammography accreditation phantom (MAP) to obtain a single quality control film is a second design objective. When the attenuation of a series of sequential elements is studied simultaneously, differences in the absorption characteristics due to the k-edge discontinuities are more evident. Specifically, when the incident photon energy is higher than the k-edge energy of a number of the elements and lower than the remainder, an inflection may be seen in the resulting attenuation data. The maximum energy of the incident photon spectra may be determined based on this inflection point for a series of element filters. Monte Carlo photon transport analysis was used to estimate the photon transmission probabilities for each of the sequential k-edge filter elements. The photon transmission corresponds directly to optical density recorded on mammographic x-ray film. To observe the inflection, the element filters chosen must have k-edge energies that span a range greater than the expected range of the end point energies to be determined. For the design, incident x-ray spectra ranging from 25 to 40 kVp were assumed to be from a molybdenum target. Over this range, the k-edge energy changes by approximately 1.5 keV between sequential elements. For this design 21 elements spanning an energy range from 20 to 50 keV were chosen. Optimum filter element thicknesses were calculated to maximize attenuation differences at the k-edge while maintaining optical densities between 0.10 and 3.00. Calculated relative transmission data show that the kVp could be determined to within +/-1 kV. To obtain experimental data, a phantom was constructed containing 21 different elements placed in an acrylic holder. MAP images were used to determine appropriate exposure techniques for a series of end point energies from 25 to 35 kVp. The average difference between the kVp determination and the calibrated dial setting was 0.8 and 1.0 kV for a Senographe 600 T and a Senographe DMR, respectively. Since the k-edge absorption energies of the filter materials are well known, independent calibration or a series of calibration curves is not required.
Single crystal growth, magnetic and thermal properties of perovskite YFe0.6Mn0.4O3 single crystal
NASA Astrophysics Data System (ADS)
Xie, Tao; Shen, Hui; Zhao, Xiangyang; Man, Peiwen; Wu, Anhua; Su, Liangbi; Xu, Jiayue
2016-11-01
High quality YFe0.6Mn0.4O3 single crystal was grown by floating zone technique using a four-mirror-image-furnace under flowing air. Powder X-ray diffraction gives well evidence that the specimen has an orthorhombic structure, with space group Pbnm. Temperature dependence of the magnetizations of YFe0.6Mn0.4O3 single crystal were studied under ZFC and FC modes in the temperature range from 5 K to 400 K. A clear spin reorientation transition behavior (Γ4→Γ1) is observed in the temperature range of 322-316 K, due to the substitution of Mn at the Fe site of YFeO3. Its Néel temperature is around 385 K. Moreover, the spin reorientation is verified by the change of magnetic hysteresis loops of the sample along [001] axis in the temperature range of 50-385 K. The thermal properties of the sample were measured by the differential scanning calorimeter (DSC) from 300 K to 500 K, which also clearly appear anomaly in the spin reorientation region.
NASA Astrophysics Data System (ADS)
Sikolenko, V. V.; Troyanchuk, I. O.; Karpinsky, D. V.; Rogalev, A.; Wilhelm, F.; Rosenberg, R.; Prabhakaran, D.; Efimova, E. A.; Efimov, V. V.; Tiutiunnikov, S. I.; Bobrikov, I. A.
2018-02-01
Spin transitions of cobalt ions in LaCoO3 single crystals have been studied by the method of X-ray magnetic circular dichroism (XMCD) at the K- and L 2,3-edges of Co3+ ions. The orbital momentum of cobalt ions obtained for the K-edge at the 3 d level in the region of the spin transition in the temperature range from 25 to 120 K increases by a factor of approximately 1.6, whereas the slope of the magnetization curve value in the same temperature range and magnetic field increases by a factor of more than 10. XMCD experiments at the cobalt L 2,3-edges demonstrate gradual growth of the ratio of the orbital momentum to the spin one L/ S from 0.48 to 0.53 in the temperature range from 60 K to 120 K.
The RF spectra of first and subsequent lightning return strokes in the 1- to 200-km range
NASA Technical Reports Server (NTRS)
Serhan, G. I.; Uman, M. A.; Childers, D. G.; Lin, Y. T.
1980-01-01
An experimental characterization of the frequency spectra of first and subsequent stroke electric fields are presented over a distance range from about 1 km, where the fields are primarily electrostatic, to 200 km, where they are primarily radiation. Spectra are presented to about 700 kHz for lightning within 12 km and to about 300 kHz for lightning at 50 and 200 km. It is shown that the return stroke ground wave spectrum beyond 50 km has a peak near 4 kHz but that within 10 km the spectrum shows a steady increase with decreasing frequency to 1 kHz. Frequency spectra at all ranges fall off roughly as 1/f for frequencies between 5 and 100 kHz, while the falloff above 100 kHz is faster as the distance to the stroke increases. From this high-frequency attenuation an RF conductivity for central Florida of between 0.002 and 0.005/ohm/m was determined.
The influence of point defects on the thermal conductivity of AlN crystals
NASA Astrophysics Data System (ADS)
Rounds, Robert; Sarkar, Biplab; Alden, Dorian; Guo, Qiang; Klump, Andrew; Hartmann, Carsten; Nagashima, Toru; Kirste, Ronny; Franke, Alexander; Bickermann, Matthias; Kumagai, Yoshinao; Sitar, Zlatko; Collazo, Ramón
2018-05-01
The average bulk thermal conductivity of free-standing physical vapor transport and hydride vapor phase epitaxy single crystal AlN samples with different impurity concentrations is analyzed using the 3ω method in the temperature range of 30-325 K. AlN wafers grown by physical vapor transport show significant variation in thermal conductivity at room temperature with values ranging between 268 W/m K and 339 W/m K. AlN crystals grown by hydride vapor phase epitaxy yield values between 298 W/m K and 341 W/m K at room temperature, suggesting that the same fundamental mechanisms limit the thermal conductivity of AlN grown by both techniques. All samples in this work show phonon resonance behavior resulting from incorporated point defects. Samples shown by optical analysis to contain carbon-silicon complexes exhibit higher thermal conductivity above 100 K. Phonon scattering by point defects is determined to be the main limiting factor for thermal conductivity of AlN within the investigated temperature range.
Preliminary Evaluation of a 10 kW Hall Thruster
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; McLean, Chris; McVey, John
1999-01-01
A 10 kW Hall thruster was characterized over a range of discharge voltages from 300-500 V and a range of discharge currents from 15-23 A. This corresponds to power levels from a low of 4.6 kW to a high of 10.7 kW. Over this range of discharge powers, thrust varied from 278 mN to 524 mN, specific impulse ranged from 1644 to 2392 seconds, and efficiency peaked at approximately 59%. A continuous 40 hour test was also undertaken in an attempt to gain insight with regard to long term operation of the engine. For this portion of the testing the thruster was operated at a discharge voltage of 500 V and a discharge current of 20 A. Steady-state temperatures were achieved after 3-5 hrs and very little variation in performance was detected.
Magneto-crystalline anisotropy of NdFe0.9Mn0.1O3 single crystal
NASA Astrophysics Data System (ADS)
Mihalik, Marián; Mihalik, Matúš; Zentková, Mária; Uhlířová, Klára; Kratochvílová, Marie; Roupcová, Pavla
2018-05-01
Our present study on oriented single crystal revealed huge magneto-crystalline anisotropy with respect to principal crystallographic axes, even several magnetic transitions were observed below TN = 748 K (c-axis) at 700 K (a-axis) as well 657 K (b-axis). The spin reorientation of magnetic moment takes place in very narrow temperature range between 135 K and 125 K and is attributed to vanishing of ferromagnetic component aligned along b-axis. Measurements of magnetic isotherms trace the development of ferromagnetic component and revealed the intermediate temperature range between 120 K and 20 K which is characterised by zero ferromagnetic components in any principal crystal direction. The ferromagnetic component develops consecutive at low temperature below 20 K along a-axis. Our study indicates completely different magnetic structure of NdFe0.9Mn0.1O3 below 135 K in comparison with NdFeO3.
Uptake of 40K and 137Cs in native plants of the Marshall Islands.
Simon, S L; Graham, J C; Terp, S D
2002-01-01
Uptake of 137Cs and 40K was studied in seven native plant species of the Marshall Islands. Plant and soil samples were obtained across a broad range of soil 137Cs concentrations (0.08-3900 Bq/kg) and a narrower range of 40K soil concentrations (2.3-55 Bq/kg), but with no systematic variation of 40K relative to 137Cs. Potassium-40 concentrations in plants varied little within the range of 40K soil concentrations observed. Unlike the case for 40K, 137Cs concentrations increased in plants with increasing 137Cs soil concentrations though not precisely in a proportionate manner. The best-fit relationship between soil and plant concentrations was P = aSb where a and b are regression coefficients and P and S are plant and soil concentrations, respectively. The exponent b for 40K was zero, implying plant concentrations were a single value, while b for 137Cs varied between 0.51 and 0.82, depending on the species. For both 40K and 137Cs, we observed a decreasing concentration ratio (where concentration ratio=plant concentration/soil concentration) with increasing soil concentrations. For the CR values, the best-fit relationship was of the form CR = aSb/S = aSb(-1). For the 40K CR functions, the exponent b - 1 was close to - 1 for all species. For the 137Cs CR functions, the exponent b - 1 varied from -0.19 to -0.48. The findings presented here, aswell as those by other investigators, collectively argue against the usefulness of simplistic ratio models to accurately predict uptake of either 40K or 137Cs in plants over wide ranges of soil concentration.
NASA Astrophysics Data System (ADS)
Kozyrev, E. A.; Solodov, E. P.; Akhmetshin, R. R.; Amirkhanov, A. N.; Anisenkov, A. V.; Aulchenko, V. M.; Banzarov, V. S.; Bashtovoy, N. S.; Berkaev, D. E.; Bondar, A. E.; Bragin, A. V.; Eidelman, S. I.; Epifanov, D. A.; Epshteyn, L. B.; Erofeev, A. L.; Fedotovich, G. V.; Gayazov, S. E.; Grebenuk, A. A.; Gribanov, S. S.; Grigoriev, D. N.; Ignatov, F. V.; Ivanov, V. L.; Karpov, S. V.; Kasaev, A. S.; Kazanin, V. F.; Korobov, A. A.; Koop, I. A.; Kozyrev, A. N.; Krokovny, P. P.; Kuzmenko, A. E.; Kuzmin, A. S.; Logashenko, I. B.; Lukin, P. A.; Lysenko, A. P.; Mikhailov, K. Yu.; Okhapkin, V. S.; Perevedentsev, E. A.; Pestov, Yu. N.; Popov, A. S.; Razuvaev, G. P.; Rogovsky, Yu. A.; Ruban, A. A.; Ryskulov, N. M.; Ryzhenenkov, A. E.; Shebalin, V. E.; Shemyakin, D. N.; Shwartz, B. A.; Shwartz, D. B.; Sibidanov, A. L.; Shatunov, Yu. M.; Talyshev, A. A.; Vorobiov, A. I.; Yudin, Yu. V.
2018-04-01
The process e+e- →K+K- has been studied using 1.7 ×106 events from a data sample corresponding to an integrated luminosity of 5.7 pb-1 collected with the CMD-3 detector in the center-of-mass energy range 1010-1060 MeV. The cross section is measured with about 2% systematic uncertainty and is used to calculate the contribution to the anomalous magnetic moment of the muon aμK+K- = (19.33 ± 0.40) ×10-10, and to obtain the ϕ (1020) meson parameters. We consider the relationship between the e+e- →K+K- and e+e- → KS0 KL0 cross sections and compare it to the theoretical prediction.
Overview of Air Liquide refrigeration systems between 1.8 K and 200 K
NASA Astrophysics Data System (ADS)
Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S.; Baguer, G. M. Gistau
2014-01-01
Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.
Overview of Air Liquide refrigeration systems between 1.8 K and 200 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gondrand, C.; Durand, F.; Delcayre, F.
Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves weremore » used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayub, J. Juri; Velasco, R. H.; Rizzotto, M.
2008-08-07
Activity concentrations of {sup 40}K, {sup 226}Ra and {sup 137}Cs have been analyzed in soil and plant samples, collected in permanent grassland in central Argentina. Two near areas (A1 and A2) under field conditions with soil undisturbed at least in the last four decades were selected. For each of the three studied radionuclides we do not find differences in the inventories between both areas. The inventories range from 143 kBq m{sup -2} to 197 kBq m{sup -2} for {sup 40}K and from 13 kBq m{sup -2} to 18 kBq m{sup -2} for {sup 226}Ra. The vertical distributions of {sup 40}Kmore » and {sup 226}Ra are uniform through de soil profile. For {sup 137}Cs the inventories range from 0.33 kBq m{sup -2} to 0.73 kBq m{sup -2}. In spite of {sup 137}Cs inventories are similar in both areas the distribution through vertical profile is different. {sup 137}Cs activity concentration has a maximum for layers 5-10 cm depth in A1 and 10-15 cm depth in A2. For deeper layers both areas show similar activity concentrations. The diffusion coefficient (D{sub s}) and convection velocity (v{sub s}) are estimated with a convection-diffusion model. D{sub s} values are in the range reported in the bibliography, while v{sub s} values are one order of magnitude higher. After 40 years most {sup 137}Cs fallout is still in the layer 10-15 cm depth. The great penetration of {sup 137}Cs (25 cm) in these soils may be the result of a high sand and low fine materials content. {sup 137}Cs and {sup 226}Ra were not detected in grass samples. Activity concentration of {sup 40}K in vegetal samples ranges from 116 Bq kg{sup -1} to 613 Bq kg{sup -1}. The TF values obtained for {sup 40}K show a lognormal distribution and ranges from 0.05 to 0.42.« less
Cardoso, Julia Gabiroboertz; Iorio, Natalia Lopes Pontes; Rodrigues, Luís Fernando; Couri, Maria Luiza Barra; Farah, Adriana; Maia, Lucianne Cople; Antonio, Andréa Gonçalves
2016-05-01
This study investigated the anti-demineralizing and antibacterial effects of a propolis ethanolic extract (EEP) against Streptococcus mutans dental biofilm. Blocks of sound bovine enamel (n=24) were fixed on polystyrene plates. S. mutans inoculum (ATCC 25175) and culture media were added (48 h-37 °C) to form biofilm. Blocks with biofilm received daily treatment (30 μL/1 min), for 5 days, as following: G1 (EEP 33.3%); G2 (chlorhexidine digluconate 0.12%); G3 (ethanol 80%); and G4 (Milli-Q water). G5 and G6 were blocks without biofilm that received only EEP and Milli-Q water, respectively. Final surface hardness was evaluated and the percentage of hardness loss (%HL) was calculated. The EEP extract pH and total solids were determined. S. mutans count was expressed by log10 scale of Colony-Forming Units (CFU/mL). One way ANOVA was used to compare results which differed at a 95% significance level. G2 presented the lowest average %HL value (68.44% ± 12.98) (p=0.010), while G4 presented the highest (90.49% ± 5.38%HL) (p=0.007). G1 showed %HL (84.41% ± 2.77) similar to G3 (87.80% ± 6.89) (p=0.477). Groups G5 and G6 presented %HL=16.11% ± 7.92 and 20.55% ± 10.65; respectively (p=0.952). G1 and G4 differed as regards to S. mutans count: 7.26 ± 0.08 and 8.29 ± 0.17 CFU/mL, respectively (p=0.001). The lowest bacterial count was observed in chlorhexidine group (G2=6.79 ± 0.10 CFU/mL) (p=0.043). There was no difference between S. mutans count of G3 and G4 (p=0.435). The EEP showed pH 4.8 and total soluble solids content=25.9 Brix. The EEP seems to be a potent antibacterial substance against S. mutans dental biofilm, but presented no inhibitory action on the de-remineralization of caries process. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jougnot, Damien; Jiménez-Martínez, Joaquín; Legendre, Raphaël; Le Borgne, Tanguy; Méheust, Yves; Linde, Niklas
2018-03-01
Time-lapse electrical resistivity tomography (ERT) is a geophysical method widely used to remotely monitor the migration of electrically-conductive tracers and contaminant plumes in the subsurface. Interpretations of time-lapse ERT inversion results are generally based on the assumption of a homogeneous solute concentration below the resolution limits of the tomogram depicting inferred electrical conductivity variations. We suggest that ignoring small-scale solute concentration variability (i.e., at the sub-resolution scale) is a major reason for the often-observed apparent loss of solute mass in ERT tracer studies. To demonstrate this, we developed a geoelectrical milli-fluidic setup where the bulk electric conductivity of a 2D analogous porous medium, consisting of cylindrical grains positioned randomly inside a Hele-Shaw cell, is monitored continuously in time while saline tracer tests are performed through the medium under fully and partially saturated conditions. High resolution images of the porous medium are recorded with a camera at regular time intervals, and provide both the spatial distribution of the fluid phases (aqueous solution and air), and the saline solute concentration field (where the solute consists of a mixture of salt and fluorescein, the latter being used as a proxy for the salt concentration). Effective bulk electrical conductivities computed numerically from the measured solute concentration field and the spatial distributions of fluid phases agree well with the measured bulk conductivities. We find that the effective bulk electrical conductivity is highly influenced by the connectivity of high electrical conductivity regions. The spatial distribution of air, saline tracer fingering, and mixing phenomena drive temporal changes in the effective bulk electrical conductivity by creating preferential paths or barriers for electrical current at the pore-scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical conductivity, especially for partially saturated conditions. We highlight how these phenomena contribute to the typically large apparent mass loss observed when conducting field-scale time-lapse ERT.
NASA Astrophysics Data System (ADS)
Idris, Mohd Idzat; Yamazaki, Saishun; Yoshida, Katsumi; Yano, Toyohiko
2015-10-01
Two kinds of high purity cubic (β) SiC polycrystals, PureBeta-SiC and CVD-SiC, were irradiated in the BR2 reactor (Belgium) up to a fluence of 2.0-2.5 × 1024 (E > 0.1 MeV) at 333-363 K. Changes in macroscopic lengths were examined by post-irradiation thermal annealing using a precision dilatometer up to 1673 K with a step-heating method. The specimen was held at each temperature step for 6 h and the change in length of the specimen was recorded during each isothermal annealing step from 373 K to 1673 K with 50 K increments. The recovery curves were analyzed with the first order model, and rate constants at each annealing step were obtained. Recovery of defects, induced by neutron irradiation in high purity β-SiC, has four stages of different activation energies. At 373-573 K, the activation energy of PureBeta-SiC and CVD-SiC was in the range of 0.17-0.24 eV and 0.12-0.14 eV; 0.002-0.04 eV and 0.006-0.04 eV at 723-923 K; 0.20-0.27 eV and 0.26-0.31 eV at 923-1223 K; and 1.37-1.38 eV and 1.26-1.29 eV at 1323-1523 K, respectively. Below ∼1223 K the recombination occurred possibly for closely positioned C and Si Frenkel pairs, and no long range migration is deemed essential. Nearly three-fourths of recovery, induced by neutron irradiation, occur by this mechanism. In addition, at 1323-1523 K, recombination of slightly separated C Frenkel pairs and more long-range migration of Si interstitials may have occurred for PureBeta-SiC and CVD-SiC specimens. Migration of both vacancies may be restricted up to ∼1523 K. Comparing to hexagonal α-SiC, high purity β-SiC recovered more quickly in the lower annealing temperature range of less than 873 K, in particular less than 573 K.
NASA Astrophysics Data System (ADS)
Smirnova, N. N.; Markin, A. V.; Tsvetkova, L. Ya.; Kuchkina, N. V.; Yuzik-Klimova, E. Yu.; Shifrina, Z. B.
2016-05-01
The heat capacity of a glassy third-generation poly(phenylene-pyridyl) dendron decorated with dodecyl groups is studied for the first time via high-precision adiabatic vacuum and differential scanning calorimetry in the temperature range of 6 to 520 K. The standard thermodynamic functions (molar heat capacity C p ° , enthalpy H°( T), entropy S°( T), and Gibbs energy G°( T)- H°(0)) in the range of T → 0 to 480 K, and the entropy of formation at 298.15 K, are calculated on the basis of the obtained data. The thermodynamic properties of the dendron and the corresponding third-generation poly(phenylene-pyridyl) dendrimer studied earlier are compared.
Astronomical near-infrared echelle gratings
NASA Astrophysics Data System (ADS)
Hinkle, Kenneth H.; Joyce, Richard R.; Liang, Ming
2014-07-01
High-resolution near-infrared echelle spectrographs require coarse rulings in order to match the free spectral range to the detector size. Standard near-IR detector arrays typically are 2 K x 2 K or 4 K x 4 K. Detectors of this size combined with resolutions in the range 30000 to 100000 require grating groove spacings in the range 5 to 20 lines/mm. Moderately high blaze angles are desirable to reduce instrument size. Echelle gratings with these characteristics have potential wide application in both ambient temperature and cryogenic astronomical echelle spectrographs. We discuss optical designs for spectrographs employing immersed and reflective echelle gratings. The optical designs set constraints on grating characteristics. We report on market choices for obtaining these gratings and review our experiments with custom diamond turned rulings.
Electron impact ionization from p-orbital targets
NASA Astrophysics Data System (ADS)
Saha, Bidhan; Basak, Arun K.; Alfaz Uddin, M.
2006-05-01
Electron impact ionization cross sections are evaluated using a modified version [1] of the BELL formula [2] for a wide range of isoelectronic targets, ranging from Li to Ne targets with both the open and closed shell configurations. In this report the MBELL parameters are generalized for treating the orbital quantum numbers nl dependency; its accuracy has been tested by evaluating cross sections for a wider range of species and energies. Details will be presented at the meeting. [1] A. K. F. Haque, M. A. Uddin, A. K. Basak, K. R. Karim and B. C. Saha, Phys. Rev. A73, 012708 (2005). [2] K. L. Bell, H. B. Gilbody, J. G. Hughes, A. E. Kingston, and F. J. Smith, J. Phys. Chem. Ref. Data 12, 891 (1983).
Temperature dependence of resonant secondary emission in NaNO 2: Spectral behavior
NASA Astrophysics Data System (ADS)
Kato, Riso; Kawaguchi, Yoshizo; Ashida, Masaaki
1990-05-01
Spectral behavior of resonant secondary emission in NaNO 2 has been investigated in the temperature range from 2 to 30 K under the excitation near the v00 line of the lowest singlet absorption. With increasing temperature, luminescence lines separated from multiple-order Raman lines become detectable even under the excitation with the off-resonance energy Δ c ≳ 13 cm -1. The intensity of the luminescence line IL( T) increases with temperature in proportion to the phonon number n( hvp, T) in the temperature range T ≲ Δ c/ k, while it increases more steeply in the range T ≳ Δ c/ k. The temperature dependence of IL( T) is ascribed to the increase in the luminescence from the v00 level after the one-phonon assisted transition to the level induced by the off-resonant incident light. The intensity of the Raman line IR( T) decreases gradually in 2-12 K range and shows rapid drop above 12 K. The temperature dependence of IR( T) is ascribed to the dephasing of the intermediate state due to the two-phonon interaction with the reservoir.
Electrical and thermoluminescence properties of γ-irradiated La2CuO4 crystals
NASA Astrophysics Data System (ADS)
El-Kolaly, M. A.; Abd El-Kader, H. I.; Kassem, M. E.
1994-12-01
Measurements of the electrical properties of unirradiated as well as ?-irradiated La2CuO4 crystals were carried out at different temperatures in the frequency range of 0.1-100 kHz. Thermoluminescence (TL) studies were also performed on such crystals in the temperature range of 300-600K. The conductivity of the unirradiated La2CuO4 crystals were found to obey the power law frequency dependence at each measured temperature below the transition temperature (Tc = 450K). The activation energies for conduction and dielectric relaxation time have been calculated. The TL response and the dc resistance were found to increase with ?-irradiation dose up to 9-10 kGy. The results showed that the ferroelastic domain walls of La2CuO4 crystal as well as its TL traps are sensitive to ?-raditaion. This material can be used in radiation measurements in the range 225 Gy-10 kGy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karcı, Özgür; Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara; Dede, Münir
We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hardmore » disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.« less
Effectiveness of vitamin K2 on osteoporosis in adults with cerebral palsy.
Kodama, Yuichi; Okamoto, Yasuhiro; Kubota, Tomohiro; Hiroyama, Yoshifumi; Fukami, Hiroshi; Matsushita, Kensuke; Kawano, Yoshifumi
2017-11-01
Osteoporosis can lead to spontaneous fractures in adults with cerebral palsy (CP). Undercarboxylated osteocalcin (ucOC) is a useful marker for vitamin K insufficiency in osteoporosis. The primary objective of this study was to determine the effect of vitamin K2 on bone mineral density (BMD) in adults with CP and vitamin K insufficiency. Sixteen adults, median age of 56years, with CP and osteoporosis in whom the serum ucOC concentration exceeded 4.5ng/mL were included. All patients received 45mg of vitamin K2 per day. BMD was measured and presented as a percentage of the young adult mean (%YAM). Serum levels of ucOC and BMD were measured at baseline and after 6 and 12months. Serum levels of ucOC decreased from 7.8ng/mL (range, 4.9-32) at baseline to 3.9ng/mL (range, 1.9-6.8) after 6months (P=0.001). BMD increased from 59%YAM (range, 45-67) at baseline to 68%YAM (range, 50-79) after 12months (P=0.003). Vitamin K2 had a positive effect on BMD in osteoporotic adults with CP and high serum concentrations of ucOC, and might be useful as a first line treatment for osteoporotic adults with CP and vitamin K insufficiency. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
High level gamma radiation effects on Cernox™ cryogenic temperature sensors
NASA Astrophysics Data System (ADS)
Courts, S. S.
2017-12-01
Cryogenic temperature sensors are used in high energy particle colliders to monitor the temperatures of superconducting magnets, superconducting RF cavities, and cryogen infrastructure. While not intentional, these components are irradiated by leakage radiation during operation of the collider. A common type of cryogenic thermometer used in these applications is the Cernox™ resistance thermometer (CxRT) manufactured by Lake Shore Cryotronics, Inc. This work examines the radiation-induced calibration offsets on CxRT models CX-1050-SD-HT and CX-1080-SD-HT resulting from exposure to very high levels of gamma radiation. Samples from two different wafers of each of the two models tested were subjected to a gamma radiation dose ranging from 10 kGy to 5 MGy. Data were analysed in terms of the temperature-equivalent resistance change between pre- and post-irradiation calibrations. The data show that the resistance of these devices decreased following irradiation resulting in positive temperature offsets across the 1.4 K to 330 K temperature range. Variations in response were observed between wafers of the same CxRT model. Overall, the offsets increased with increasing temperature and increasing gamma radiation dose. At 1.8 K, the average offset increased from 0 mK to +13 mK as total dose increased from 10 kGy to 5 MGy. At 4.2 K, the average offset increased from +4 mK to +33 mK as total dose increased from 10 kGy to 5 MGy. Equivalent temperature offset data are presented over the 1.4 K to 330 K temperature range by CxRT model, wafer, and total gamma dose.
Zhang, Hui; Bayen, Stéphane; Kelly, Barry C
2015-08-01
A gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) based method was developed for determination of 86 hydrophobic organic compounds in seawater. Solid-phase extraction (SPE) was employed for sequestration of target analytes in the dissolved phase. Ultrasound assisted extraction (UAE) and florisil chromatography were utilized for determination of concentrations in suspended sediments (particulate phase). The target compounds included multi-class hydrophobic contaminants with a wide range of physical-chemical properties. This list includes several polycyclic and nitro-aromatic musks, brominated and chlorinated flame retardants, methyl triclosan, chlorobenzenes, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). Spiked MilliQ water and seawater samples were used to evaluate the method performance. Analyte recoveries were generally good, with the exception of some of the more volatile target analytes (chlorobenzenes and bromobenzenes). The method is very sensitive, with method detection limits typically in the low parts per quadrillion (ppq) range. Analysis of 51 field-collected seawater samples (dissolved and particulate-bound phases) from four distinct coastal sites around Singapore showed trace detection of several polychlorinated biphenyl congeners and other legacy POPs, as well as several current-use emerging organic contaminants (EOCs). Polycyclic and nitro-aromatic musks, bromobenzenes, dechlorane plus isomers (syn-DP, anti-DP) and methyl triclosan were frequently detected at appreciable levels (2-20,000pgL(-1)). The observed concentrations of the monitored contaminants in Singapore's marine environment were generally comparable to previously reported levels in other coastal marine systems. To our knowledge, these are the first measurements of these emerging contaminants of concern in Singapore or Southeast Asia. The developed method may prove beneficial for future environmental monitoring of hydrophobic organic contaminants in marine environments. Further, the study provides novel information regarding several potentially hazardous contaminants of concern in Singapore's marine environment, which will aid future risk assessment initiatives. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Ramachandran Narayanan; Mazuruk, Konstantin
1998-01-01
The use of a rotating magnetic field for stirring metallic melts has been a commonly adopted practice for a fairly long period. The elegance of the technique stems from its non-intrusive nature and the intense stirring it can produce in an electrically conducting medium. A further application of the method in recent times has been in the area of crystal growth from melts (e.g. germanium). The latter experiments have been mainly research oriented in order to understand the basic physics of the process and to establish norms for optimizing such a technique for the commercial production of crystals. When adapted for crystal growth applications, the rotating magnetic field is used to induce a slow flow or rotation in the melt which in effect significantly curtails temperature field oscillations in the melt. These oscillations are known to cause dopant striations and thereby inhomogeneities in the grown crystal that essentially degrades the crystal quality. The applied field strength is typically of the order of milli-Teslas with a frequency range between 50-400 Hz. In this investigation, we report findings from experiments that explore the feasibility of applying a rotating magnetic field to aqueous salt solutions, that are characterized by conductivities that are several orders of magnitude smaller than semi-conductor melts. The aim is to study the induced magnetic field and consequently the induced flow in such in application. Detailed flow field description obtained through non-intrusive particle displacement tracking will be reported along with an analytical assessment of the results. It is anticipated that the obtained results will facilitate in establishing a parameter range over which the technique can be applied to obtain a desired flow field distribution. This method can find applicability in the growth of crystals from aqueous solutions and give an experimenter another controllable parameter towards improving the quality of the grown crystal.
Cross sections for the γp→K*0Σ+ reaction at Eγ=1.7 3.0 GeV
NASA Astrophysics Data System (ADS)
Hleiqawi, I.; Hicks, K.; Carman, D. S.; Mibe, T.; Niculescu, G.; Tkabladze, A.; Amarian, M.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Batourine, V.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bellis, M.; Benmouna, N.; Berman, B. L.; Biselli, A. S.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carnahan, B.; Chen, S.; Cole, P. L.; Collins, P.; Coltharp, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; Masi, R. De; Vita, R. De; Sanctis, E. De; Degtyarenko, P. V.; Dennis, L.; Deur, A.; Djalali, C.; Dickson, R.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Feldman, G.; Fersch, R.; Feuerbach, R.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gonenc, A.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Kellie, J. D.; Khandaker, M.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Kossov, M.; Krahn, Z.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Li, J.; Livingston, K.; Lu, H. Y.; Lukashin, K.; MacCormick, M.; McAleer, S.; McKinnon, B.; McNabb, J.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Moriya, K.; Morrow, S. A.; Moteabbed, M.; Mutchler, G. S.; Munevar, E.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Pierce, J.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Preedom, B.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Todor, L.; Tkachenko, S.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weygand, D. P.; Whisnant, S.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z.
2007-04-01
Differential cross sections for the reaction γp→K*0Σ+ are presented in the photon energy range of 1.7 to 3.0 GeV. The K*0 was detected by its decay products, K+π-, in the Continuous Electron Beam Accelerator Facility's large acceptance spectrometer (CLAS) detector at the Thomas Jefferson National Accelerator Facility. These data are the first K*0 photoproduction cross sections ever published over a broad range of angles. Comparison with a theoretical model based on the vector and tensor K*-quark couplings shows good agreement with the data, except at forward angles, suggesting that the role of scalar κ meson exchange should be investigated.
Thermophysical Property Measurements of Liquid Gadolinium by Containerless Methods
NASA Astrophysics Data System (ADS)
Ishikawa, T.; Okada, J. T.; Paradis, P.-F.; Watanabe, Y.
2010-02-01
Thermophysical properties of liquid gadolinium were measured using non-contact diagnostic techniques with an electrostatic levitator. Over the 1585 K to 1920 K temperature range, the density can be expressed as ρ( T) = 7.41 × 103 - 0.46 ( T - T m) (kg · m-3) where T m = 1585 K, yielding a volume expansion coefficient of 6.2 × 10-5 K-1. In addition, the surface tension data can be fitted as γ( T) = 8.22 × 102 - 0.097( T - T m)(10-3 N · m-1) over the 1613 K to 1803 K span and the viscosity as η( T) = 1.7exp[1.4 × 104/( RT)](10-3 Pa · s) over the same temperature range.
A low noise 410-495 heterodyne two tuner mixer, using submicron Nb/Al2O3/Nb tunneljunctions
NASA Technical Reports Server (NTRS)
Delange, G.; Honingh, C. E.; Dierichs, M. M. T. M.; Panhuyzen, R. A.; Schaeffer, H. H. A.; Klapwijk, T. M.; Vandestadt, H.; Degraauw, M. W. M.
1992-01-01
A 410-495 GHz heterodyne receiver, with an array of two Nb/Al2O3/Nb tunneljunctions as mixing element is described. The noise temperature of this receiver is below 230 K (DSB) over the whole frequency range, and has lowest values of 160 K in the 435-460 GHz range. The calculated DSB mixergain over the whole frequency range varies from -11.9 plus or minus 0.6 dB to -12.6 plus or minus 0.6 dB and the mixer noise is 90 plus or minus 30 K.
The thermal decomposition of peroxyacetyl nitrate (PAN) in NO-NO2-air (or N2) mixtures has been studied at 740 torr total pressure over the temperature range 283-313 K. he experimental data obtained yield a rate constant for the thermal decomposition of PAN of k3 = 2.52 x 1016 e-...
Electric propulsion options for 10 kW class earth space missions
NASA Technical Reports Server (NTRS)
Patterson, M. J.; Curran, Francis M.
1989-01-01
Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment have been evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA II 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10(7) to 2.1x10(7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA II 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10(6) to 3.6x10(6) N-s, and approximately 662 to 1072 m/s, respectively.
Crystal growth and magnetic anisotropy in the spin-chain ruthenate Na2RuO4
NASA Astrophysics Data System (ADS)
Balodhi, Ashiwini; Singh, Yogesh
2018-02-01
We report single-crystal growth, electrical resistivity ρ , anisotropic magnetic susceptibility χ , and heat capacity Cp measurements on the one-dimensional spin-chain ruthenate Na2RuO4 . We observe variable range hopping (VRH) behavior in ρ (T ) . The magnetic susceptibility with magnetic field perpendicular (χ⊥) and parallel (χ∥) to the spin chains is reported. The magnetic properties are anisotropic with χ⊥>χ∥ in the temperature range of measurements T ≈2 -305 K with χ⊥/χ∥≈1.4 at 305 K. From an analysis of the χ (T ) data we attempt to estimate the anisotropy in the g factor and Van Vleck paramagnetic contribution. An anomaly in χ (T ) and a corresponding step-like anomaly in Cp at TN=37 K confirms long-range antiferromagnetic ordering. This temperature is an order of magnitude smaller than the Weiss temperature θ ≈-250 K and points to suppression of long-range magnetic order due to low dimensionality. A fit of the experimental χ (T ) by a one-dimensional spin-chain model gave an estimate of the intrachain exchange interaction 2 J ≈-85 K and the magnitude of the interchain coupling |2 J⊥|≈3 K.
NASA Astrophysics Data System (ADS)
Das, Shirsendu; Bhunia, Ritamay; Hussain, Shamima; Bhar, Radhaballabh; Kumar Pal, Arun
2017-04-01
This study is focused on the measurement of alternate current (a.c.) electrical conductivity of BSb films, deposited on fluorine-doped tin oxide (FTO)-coated glass substrates at 673K by the pulsed laser deposition (PLD) technique. The frequency-dependent a.c. conductivity is measured as a function of temperature (10-275K) and frequency (100Hz-100kHz). The transport processes governing the electrical conduction processes in this material are analyzed critically. It is observed from FESEM micrograph that the film is composed of small discrete grain with sizes varying in the range 6-12nm. It is interesting to notice from \\lnσ_ac versus 1000/T plot that there are three distinct zones: i) Semiconductor zone at high temperature from 275 to 150K, ii) Insulator zone at low temperature from 70 to 10K and iii) an abrupt change of the \\lnσ_ac versus 1000/T plot at ˜ 75 indicating MIS transition occurring in this BSb film. We found that the activation energy for the BSb films in the lower-temperature range was quite low ˜ 6 to 41neV, while that in the higher-temperature range was 20 to 50meV.
Berg, Wendie A; Mendelson, Ellen B; Cosgrove, David O; Doré, Caroline J; Gay, Joel; Henry, Jean-Pierre; Cohen-Bacrie, Claude
2015-08-01
The objective of our study was to compare quantitative maximum breast mass stiffness on shear-wave elastography (SWE) with histopathologic outcome. From September 2008 through September 2010, at 16 centers in the United States and Europe, 1647 women with a sonographically visible breast mass consented to undergo quantitative SWE in this prospective protocol; 1562 masses in 1562 women had an acceptable reference standard. The quantitative maximum stiffness (termed "Emax") on three acquisitions was recorded for each mass with the range set from 0 (very soft) to 180 kPa (very stiff). The median Emax and interquartile ranges (IQRs) were determined as a function of histopathologic diagnosis and were compared using the Mann-Whitney U test. We considered the impact of mass size on maximum stiffness by performing the same comparisons for masses 9 mm or smaller and those larger than 9 mm in diameter. The median patient age was 50 years (mean, 51.8 years; SD, 14.5 years; range, 21-94 years), and the median lesion diameter was 12 mm (mean, 14 mm; SD, 7.9 mm; range, 1-53 mm). The median Emax of the 1562 masses (32.1% malignant) was 71 kPa (mean, 90 kPa; SD, 65 kPa; IQR, 31-170 kPa). Of 502 malignancies, 23 (4.6%) ductal carcinoma in situ (DCIS) masses had a median Emax of 126 kPa (IQR, 71-180 kPa) and were less stiff than 468 invasive carcinomas (median Emax, 180 kPa [IQR, 138-180 kPa]; p = 0.002). Benign lesions were much softer than malignancies (median Emax, 43 kPa [IQR, 24-83 kPa] vs 180 kPa [IQR, 129-180 kPa]; p < 0.0001). Usual benign lesions were soft, including 62 cases of fibrocystic change (median Emax, 32 kPa; IQR, 24-94 kPa), 51 cases of fibrosis (median Emax, 36 kPa; IQR, 22-102 kPa), and 301 fibroadenomas (median Emax, 45 kPa; IQR, 30-79 kPa). Eight lipomas (median Emax, 14 kPa; IQR, 8-15 kPa), 154 cysts (median Emax, 29 kPa; IQR, 10-58 kPa), and seven lymph nodes (median Emax, 17 kPa; IQR, 9-40 kPa) were softer than usual benign lesions (p < 0.0001 for lipomas and cysts; p = 0.007 for lymph nodes). Risk lesions were slightly stiffer than usual benign lesions (p = 0.002) but tended to be softer than DCIS (p = 0.14). Fat necrosis and abscesses were relatively stiff. Conclusions were similar for both small and large masses. Despite overlap in Emax values, maximum stiffness measured by SWE is a highly effective predictor of the histopathologic severity of sonographically depicted breast masses.
Optimal Detection Range of RFID Tag for RFID-based Positioning System Using the k-NN Algorithm.
Han, Soohee; Kim, Junghwan; Park, Choung-Hwan; Yoon, Hee-Cheon; Heo, Joon
2009-01-01
Positioning technology to track a moving object is an important and essential component of ubiquitous computing environments and applications. An RFID-based positioning system using the k-nearest neighbor (k-NN) algorithm can determine the position of a moving reader from observed reference data. In this study, the optimal detection range of an RFID-based positioning system was determined on the principle that tag spacing can be derived from the detection range. It was assumed that reference tags without signal strength information are regularly distributed in 1-, 2- and 3-dimensional spaces. The optimal detection range was determined, through analytical and numerical approaches, to be 125% of the tag-spacing distance in 1-dimensional space. Through numerical approaches, the range was 134% in 2-dimensional space, 143% in 3-dimensional space.
Hot Ductility and Compression Deformation Behavior of TRIP980 at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Zhang, Mei; Li, Haiyang; Gan, Bin; Zhao, Xue; Yao, Yi; Wang, Li
2018-02-01
The hot ductility tests of a kind of 980 MPa class Fe-0.31C (wt pct) TRIP steel (TRIP980) with the addition of Ti/V/Nb were conducted on a Gleeble-3500 thermomechanical simulator in the temperatures ranging from 873 K to 1573 K (600 °C to 1300 °C) at a constant strain rate of 0.001 s-1. It is found that the hot ductility trough ranges from 873 K to 1123 K (600 °C to 850 °C). The recommended straightening temperatures are from 1173 K to 1523 K (900 °C to 1250 °C). The isothermal hot compression deformation behavior was also studied by means of Gleeble-3500 in the temperatures ranging from 1173 K to 1373 K (900 °C to 1100 °C) at strain rates ranging from 0.01 s-1 to 10 s-1. The results show that the peak stress decreases with the increasing temperature and the decreasing strain rate. The deformation activation energy of the test steel is 436.7 kJ/mol. The hot deformation equation of the steel has been established, and the processing maps have been developed on the basis of experimental data and the principle of dynamic materials model (DMM). By analyzing the processing maps of strains of 0.5, 0.7, and 0.9, it is found that dynamic recrystallization occurs in the peak power dissipation efficiency domain, which is the optimal area of hot working. Finally, the factors influencing hot ductility and thermal activation energy of the test steel were investigated by means of microscopic analysis. It indicates that the additional microalloying elements play important roles both in the loss of hot ductility and in the enormous increase of deformation activation energy for the TRIP980 steel.
K+-selective nanospheres: maximising response range and minimising response time.
Ruedas-Rama, Maria Jose; Hall, Elizabeth A H
2006-12-01
Cross-linked K(+) ion-selective copolymer nanospheres have been prepared by free-radical photo-initiated polymerization of n-butyl acrylate (nBA) with hexanedioldiacrylate (HDDA). Nanospheres (<200 nm) containing H(+)-chromoionophore (ETH 5294) and lipophilic salt (KTClPB) for H(+)-sensors, or ETH 5294, a K(+)-selective ionophore (valinomycin) and anionic sites for K(+)-sensors were compared, and the effect of varying the normalised concentrations for beta (R(T)(-)/L(T)) and gamma (C(m)(T)/L(T)) was studied. Experimental data were fitted to theoretical curves for the dynamic response range, based on the effect of changes in the concentration of these lipophilic sensing components incorporated into the spheres, and conditions identified for maximising the response range. A complex valinomycin-K(+) formation constant, log K(IL) = 13.13 +/- 2.22, was obtained in the nBA matrix, and from the calibration curves the apparent acid-dissociation equilibrium constant (pK(a) = 12.92 +/- 0.03) was extracted for the H(+)-sensing system, and the equilibrium exchange constant (pK(exch) = 6.16 +/- 0.03, at pH 7) calculated for the K(+)-sensing nanospheres. A basis for establishing optimum performance was identified, whereby response range and response time were balanced with maximum fluorescence yield. Parameters for achieving nanospheres with a response time <5 minutes, covering 2-3 orders of magnitude change in activity were identified, demanding nanospheres with radius <300 nm and beta(crit) approximately 0.6. An RSD(%) approximately 3% was obtained in a study of the reproducibility of the response of the proposed nanospheres, and selectivity was also evaluated for a K(+)-selective nanosensor using several cations as interfering agents. In most cases, the fluorescent emission spectra showed no response to the cations tested, confirming the selectivity of nanospheres to potassium ion. The nanosensors were satisfactorily applied to the determination of K(+) in samples mimicking physiological conditions.
Electron and thermal transport via variable range hopping in MoSe2 single crystals
NASA Astrophysics Data System (ADS)
Suri, Dhavala; Patel, R. S.
2017-06-01
Bulk single crystal molybdenum diselenide has been studied for its electronic and thermal transport properties. We perform resistivity measurements with current in-plane (CIP) and current perpendicular to plane (CPP) as a function of temperature. The CIP measurements exhibit metal to semiconductor transition at ≃31 K. In the semiconducting phase (T > 31 K), the transport is best explained by the variable range hopping (VRH) model. Large magnitude of resistivity in the CPP mode indicates strong structural anisotropy. The Seebeck coefficient as a function of temperature measured in the range of 90-300 K also agrees well with the VRH model. The room temperature Seebeck coefficient is found to be 139 μV/K. VRH fittings of the resistivity and the Seebeck coefficient data indicate high degree of localization.
Compressed liquid densities, saturated liquid densities, and vapor pressures of 1,1-difluoroethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Defibaugh, D.R.; Morrison, G.
1996-05-01
The compressed liquid densities and vapor pressures of 1,1-difluoroethane (HFC-152a) have been measured, correlated, and compared with other data. The liquid densities were measured with a combined standard uncertainty of {+-}0.05% using a vibrating tube densimeter over a temperature range of 243 K to 371 K and at pressures from near the saturated vapor pressure to 6,500 kPa; thus the data extend nearly to the critical point ({Tc} = 386.41 K and P{sub c} = 4514.7 kPa). The vapor pressures were measured with a combined standard uncertainty of {+-}0.02% using a stainless steel ebulliometer in the temperature range from 280more » K to 335 K. Saturated liquid densities were calculated by extrapolating the compressed liquid isotherms to the saturation pressure.« less
NASA Astrophysics Data System (ADS)
Singal, Jack Edward
2006-02-01
This work presents a measurement of the radiometric temperature of the Cosmic Microwave Background (CMB) and of the intensity of Galactic emission at 8.1 and 8.3 GHz. These are the science results of the first flight of the ARCADE 2 instrument, on which the author's design, fabrication, and data analysis work forms the basis of this dissertation. ARCADE 2 (Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission) is a balloon-borne instrument designed to perform measurements of the radiometric temperatures of the sky at six microwave frequency bands, from 3 to 90 GHz, to milliKelvin precision. ARCADE 2 features a novel cryogenic design and sophisticated radiometry as described herein. During the first flight of the instrument, a mechanical failure allowed for the accumulation of scientifically meaningful data in only one frequency band, and those results are not as well constrained as that from future flights will be. However, the measurement presented here of the radiometric temperature of the CMB is in fact the one of most well constrained below 10 GHz, and the measurement of Galactic free-free and synchrotron emission presented here is a potentially significant confirmation of existing results. The temperature of the CMB at 8.0 and 8.3 GHz is found to be 2.90 × .12 K and 2.77 × .16 K respectively. The level of Galactic synchrotron emission at these frequencies is found to be that which would be expected by naively interpolating the previously available data at other frequencies, and the level of Galactic free-free emission is found to be two-thirds as high, providing an independent confirmation of changes recently announced in the three year Galactic foreground results release from the WMAP satellite. The first section of this work is a comprehensive review of important topics in cosmology, the CMB, and deviations from a blackbody spectrum therein, as well as Galactic microwave emission. The second section describes the ARCADE 2 instrument and instrumental considerations, with some emphasis on design and fabrication contributions by the author. The third section presents the data obtained from the first flight of the instrument, the data analysis as carried out by the author, and the science results.
Magnetic resonance imaging without field cycling at less than earth's magnetic field
NASA Astrophysics Data System (ADS)
Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min
2015-03-01
A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π / 2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.
The distinguishing signature of Magnetic Penrose Process
NASA Astrophysics Data System (ADS)
Dadhich, Naresh; Tursunov, Arman; Ahmedov, Bobomurat; Stuchlík, Zdeněk
2018-04-01
In this Letter, we wish to point out that the distinguishing feature of Magnetic Penrose process (MPP) is its super high efficiency exceeding 100% (which was established in mid 1980s for discrete particle accretion) of extraction of rotational energy of a rotating black hole electromagnetically for a magnetic field of milli Gauss order. Another similar process, which is also driven by electromagnetic field, is Blandford-Znajek mechanism (BZ), which could be envisaged as high magnetic field limit MPP as it requires threshold magnetic field of order 104G. Recent simulation studies of fully relativistic magnetohydrodynamic flows have borne out super high efficiency signature of the process for high magnetic field regime; viz BZ. We would like to make a clear prediction that similar simulation studies of MHD flows for low magnetic field regime, where BZ would be inoperative, would also have super efficiency.
Development of an extraction method for perchlorate in soils.
Cañas, Jaclyn E; Patel, Rashila; Tian, Kang; Anderson, Todd A
2006-03-01
Perchlorate originates as a contaminant in the environment from its use in solid rocket fuels and munitions. The current US EPA methods for perchlorate determination via ion chromatography using conductivity detection do not include recommendations for the extraction of perchlorate from soil. This study evaluated and identified appropriate conditions for the extraction of perchlorate from clay loam, loamy sand, and sandy soils. Based on the results of this evaluation, soils should be extracted in a dry, ground (mortar and pestle) state with Milli-Q water in a 1 ratio 1 soil ratio water ratio and diluted no more than 5-fold before analysis. When sandy soils were extracted in this manner, the calculated method detection limit was 3.5 microg kg(-1). The findings of this study have aided in the establishment of a standardized extraction method for perchlorate in soil.
Vertical dynamic deflection measurement in concrete beams with the Microsoft Kinect.
Qi, Xiaojuan; Lichti, Derek; El-Badry, Mamdouh; Chow, Jacky; Ang, Kathleen
2014-02-19
The Microsoft Kinect is arguably the most popular RGB-D camera currently on the market, partially due to its low cost. It offers many advantages for the measurement of dynamic phenomena since it can directly measure three-dimensional coordinates of objects at video frame rate using a single sensor. This paper presents the results of an investigation into the development of a Microsoft Kinect-based system for measuring the deflection of reinforced concrete beams subjected to cyclic loads. New segmentation methods for object extraction from the Kinect's depth imagery and vertical displacement reconstruction algorithms have been developed and implemented to reconstruct the time-dependent displacement of concrete beams tested in laboratory conditions. The results demonstrate that the amplitude and frequency of the vertical displacements can be reconstructed with submillimetre and milliHz-level precision and accuracy, respectively.
Vertical Dynamic Deflection Measurement in Concrete Beams with the Microsoft Kinect
Qi, Xiaojuan; Lichti, Derek; El-Badry, Mamdouh; Chow, Jacky; Ang, Kathleen
2014-01-01
The Microsoft Kinect is arguably the most popular RGB-D camera currently on the market, partially due to its low cost. It offers many advantages for the measurement of dynamic phenomena since it can directly measure three-dimensional coordinates of objects at video frame rate using a single sensor. This paper presents the results of an investigation into the development of a Microsoft Kinect-based system for measuring the deflection of reinforced concrete beams subjected to cyclic loads. New segmentation methods for object extraction from the Kinect's depth imagery and vertical displacement reconstruction algorithms have been developed and implemented to reconstruct the time-dependent displacement of concrete beams tested in laboratory conditions. The results demonstrate that the amplitude and frequency of the vertical displacements can be reconstructed with submillimetre and milliHz-level precision and accuracy, respectively. PMID:24556668
Corneal and skin laser exposures from 1540-nm laser pulses
NASA Astrophysics Data System (ADS)
Johnson, Thomas E.; Mitchell, Michael A.; Rico, Pedro J.; Fletcher, David J.; Eurell, Thomas E.; Roach, William P.
2000-06-01
Mechanisms of tissue damage are investigated for skin and cornea exposures from 1540 nm ('eye safe') laser single pulses of 0.8 milli-seconds. New skin model data point out the advantages of using the Yucatan mini-pig versus the Yorkshire pig for in-vivo skin laser exposures. Major advantages found include similarities in thickness and melanin content when compared with human skin. Histology from Yucatan mini-pig skin exposures and the calculation of an initial ED50 threshold indicate that the main photon tissue interaction may not be solely due to water absorption. In-vitro corneal equivalents compared well with in-vivo rabbit cornea exposure under similar laser conditions. In-vivo and in-vitro histology show that initial energy deposition leading to damage occurs intrastromally, while epithelial cells show no direct injury due to laser light absorption.
The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs
NASA Astrophysics Data System (ADS)
Tajima, H.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Williams, D.
2008-04-01
AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off in the studies of these design concepts.
The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs
NASA Astrophysics Data System (ADS)
Tajima, Hiroyasu; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Wakely, S.; Williams, D.; Camera Electronics Working Group; AGIS Collaboration
2008-03-01
AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off studies of these design concepts.
A high sensitivity ultralow temperature RF conductance and noise measurement setup.
Parmentier, F D; Mahé, A; Denis, A; Berroir, J-M; Glattli, D C; Plaçais, B; Fève, G
2011-01-01
We report on the realization of a high sensitivity RF noise measurement scheme to study small current fluctuations of mesoscopic systems at milli-Kelvin temperatures. The setup relies on the combination of an interferometric amplification scheme and a quarter-wave impedance transformer, allowing the measurement of noise power spectral densities with gigahertz bandwidth up to five orders of magnitude below the amplifier noise floor. We simultaneously measure the high frequency conductance of the sample by derivating a portion of the signal to a microwave homodyne detection. We describe the principle of the setup, as well as its implementation and calibration. Finally, we show that our setup allows to fully characterize a subnanosecond on-demand single electron source. More generally, its sensitivity and bandwidth make it suitable for applications manipulating single charges at GHz frequencies.
Dynamic/jitter assessment of multiple potential HabEx structural designs
NASA Astrophysics Data System (ADS)
Knight, J. Brent; Stahl, H. Philip; Singleton, Andy; Hunt, Ron; Therrell, Melissa; Caldwell, Kate; Garcia, Jay; Baysinger, Mike
2017-09-01
One of the driving structural requirements of the Habitable Exo-Planet (HabEx) telescope is to maintain Line Of Sight (LOS) stability between the Primary Mirror (PM) and Secondary Mirror (SM) of <= 5 milli-arc seconds (mas). Dynamic analyses of two configurations of a proposed HabEx 4 meter off-axis telescope structure were performed to predict effects of a vibration input on primary/secondary mirror alignment. The dynamic disturbance used as the forcing function was the James Webb Space Telescope reaction wheel assembly vibration emission specification level. The objective of these analyses was to predict "order-of-magnitude" performance for various structural configurations which contribute to efforts in defining the HabEx structural design's global architecture. Two variations of the basic architectural design were analyzed. Relative motion between the PM and the SM for each design configuration are reported.
Solubility of uranium oxide in molten salt electrolysis bath of LiF-BaF2 with LaF3 additive
NASA Astrophysics Data System (ADS)
Alangi, Nagaraj; Mukherjee, Jaya; Gantayet, L. M.
2016-03-01
The solubility of UO2 in the molten mixtures of equimolar LiF-BaF2(1:1) with LaF3 as additive was studied in the range of 1423 K-1523 K. The molten fluoride salt mixture LiF-BaF2 LaF3 was equilibrated with a sintered uranium oxide pellet at 1423 K, 1473 K, 1523 K and the salt samples were collected after equilibration. Studies were conducted in the range of 10%-50% by weight additions of LaF3 in the equimolar LiF-BaF2(1:1) base fluoride salt bath. Solubility of UO2 increased with rise in LaF3 concentration in the molten fluoride in the temperature range of 1423 K-1523 K. At a given concentration of LaF3, the UO2 solubility increased monotonously with temperature. With mixed solvent, when UF4 was added as a replacement of part of LaF3 in LiF-BaF2(1:1)-10 wt% LaF3 and LiF-BaF2(1:1)-30 wt% LaF3, there was an enhancement of solubility of UO2.
Johnson Noise Thermometry in the range 505 K to 933 K
NASA Astrophysics Data System (ADS)
Tew, Weston; Labenski, John; Nam, Sae Woo; Benz, Samuel; Dresselhaus, Paul; Martinis, John
2006-03-01
The International Temperature Scale of 1990 (ITS-90) is an artifact-based temperature scale, T90, designed to approximate thermodynamic temperature T. The thermodynamic errors of the ITS-90, characterized as the value of T-T90, only recently have been quantified by primary thermodynamic methods. Johnson Noise Thermometry (JNT) is a primary method which can be applied over wide temperature ranges, and NIST is currently using JNT to determine T-T90 in the range 505 K to 933 K, overlapping both acoustic gas-based and radiation-based thermometry. Advances in digital electronics have now made the computationally intensive processing required for JNT viable using noise voltage correlation in the frequency domain. We have also optimized the design of the 5-wire JNT temperature probes to minimize electromagnetic interference and transmission line effects. Statistical uncertainties under 50 μK/K are achievable using relatively modest bandwidths of ˜100 kHz. The NIST JNT system will provide critical data for T-T90 linking together the highly accurate acoustic gas-based data at lower temperatures with the higher-temperature radiation-based data, forming the basis for a new International Temperature Scale with greatly improved thermodynamic accuracy.
Killer whale (Orcinus orca) hearing: auditory brainstem response and behavioral audiograms.
Szymanski, M D; Bain, D E; Kiehl, K; Pennington, S; Wong, S; Henry, K R
1999-08-01
Killer whale (Orcinus orca) audiograms were measured using behavioral responses and auditory evoked potentials (AEPs) from two trained adult females. The mean auditory brainstem response (ABR) audiogram to tones between 1 and 100 kHz was 12 dB (re 1 mu Pa) less sensitive than behavioral audiograms from the same individuals (+/- 8 dB). The ABR and behavioral audiogram curves had shapes that were generally consistent and had the best threshold agreement (5 dB) in the most sensitive range 18-42 kHz, and the least (22 dB) at higher frequencies 60-100 kHz. The most sensitive frequency in the mean Orcinus audiogram was 20 kHz (36 dB), a frequency lower than many other odontocetes, but one that matches peak spectral energy reported for wild killer whale echolocation clicks. A previously reported audiogram of a male Orcinus had greatest sensitivity in this range (15 kHz, approximately 35 dB). Both whales reliably responded to 100-kHz tones (95 dB), and one whale to a 120-kHz tone, a variation from an earlier reported high-frequency limit of 32 kHz for a male Orcinus. Despite smaller amplitude ABRs than smaller delphinids, the results demonstrated that ABR audiometry can provide a useful suprathreshold estimate of hearing range in toothed whales.
Four-choice sound localization abilities of two Florida manatees, Trichechus manatus latirostris.
Colbert, Debborah E; Gaspard, Joseph C; Reep, Roger; Mann, David A; Bauer, Gordon B
2009-07-01
The absolute sound localization abilities of two Florida manatees (Trichechus manatus latirostris) were measured using a four-choice discrimination paradigm, with test locations positioned at 45 deg., 90 deg., 270 deg. and 315 deg. angles relative to subjects facing 0 deg. Three broadband signals were tested at four durations (200, 500, 1000, 3000 ms), including a stimulus that spanned a wide range of frequencies (0.2-20 kHz), one stimulus that was restricted to frequencies with wavelengths shorter than their interaural time distances (6-20 kHz) and one that was limited to those with wavelengths longer than their interaural time distances (0.2-2 kHz). Two 3000 ms tonal signals were tested, including a 4 kHz stimulus, which is the midpoint of the 2.5-5.9 kHz fundamental frequency range of manatee vocalizations and a 16 kHz stimulus, which is in the range of manatee best-hearing sensitivity. Percentage correct within the broadband conditions ranged from 79% to 93% for Subject 1 and from 51% to 93% for Subject 2. Both performed above chance with the tonal signals but had much lower accuracy than with broadband signals, with Subject 1 at 44% and 33% and Subject 2 at 49% and 32% at the 4 kHz and 16 kHz conditions, respectively. These results demonstrate that manatees are able to localize frequency bands with wavelengths that are both shorter and longer than their interaural time distances and suggest that they have the ability to localize both manatee vocalizations and recreational boat engine noises.
Energy requirements for waste water treatment.
Svardal, K; Kroiss, H
2011-01-01
The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.
Thermal expansion of coesite determined by synchrotron powder X-ray diffraction
NASA Astrophysics Data System (ADS)
Kulik, Eleonora; Murzin, Vadim; Kawaguchi, Shogo; Nishiyama, Norimasa; Katsura, Tomoo
2018-05-01
Thermal expansion of synthetic coesite was studied with synchrotron powder X-ray diffraction in the temperature range of 100-1000 K. We determined the unit cell parameters of monoclinic coesite (a, b, c, and β) every 50 K in this temperature range. We observed that a and b parameters increase with increasing temperature, while c decreases. The β angle also decreases with temperature and approaches 120°. As a result, the unit cell volume expands by only 0.7% in this temperature range. Our measurements provide thermal expansion coefficients of coesite as a function of temperature: it increases from 3.4 × 10-6 K-1 at 100 K to 9.3 × 10-6 K-1 at 600 K and remains nearly constant above this temperature. The Suzuki model based on the zero-pressure Mie-Grüneisen equation of state was implemented to fit the unit cell volume data. The refined parameters are {V_0} = 546.30(2) Å3, Q = 7.20(12) × 106 J/mol and {θ D} = 1018(43) K, where {θ D} is the Debye temperature and {V_0} is the unit cell volume at 0 K with an assumption that {K^' } is equal to 1.8. The obtained Debye temperature is consistent with that determined in a previous study for heat capacity measurements.
SU-E-CAMPUS-J-06: The Impact of CT-Scan Energy On Range Uncertainty in Proton Therapy Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grantham, K; Li, H; Zhao, T
2014-06-15
Purpose: To investigate the impact of tube potential (kVp) on the CTnumber (HU) to proton stopping power ratio (PSPR) conversion table; the range uncertainty and the dosimetric change introduced by a mismatch in kVp between the CT and the HU to PSPR table used to calculate dose are analyzed. Methods: A CIRS CT-ED phantom was scanned with a Philips Brilliance 64-slice scanner under 90kVp and 120kVp tube potentials. Two HU to PSPR curves were then created. Using Eclipse (Varian) a treatment plan was created for a single beam in a water phantom (HU=0) passing through a wedge-shaped heterogeneity (HU=1488). Themore » dose was recalculated by changing only the HU to PSPR table used in the dose calculation. The change in range (the distal 90% isodose line) relative to a distal structure was recorded as a function of heterogeneity thickness in the beam. To show the dosimetric impact of a mismatch in kVp between the CT and the HU to PSPR table, we repeated this procedure using a clinical plan comparing DVH data. Results: The HU to PSPR tables diverge for low-density bone and higher density structures. In the phantom plan, the divergence of the tables results in a change in range of ~1mm per cm of bone in the beam path for the HU used. For the clinical plan, a mismatch in kVp showed a 28% increase in mean dose to the brainstem along with a 10% increase in maximum dose to the brainstem center. Conclusion: A mismatch in kVp between the CT and the HU to PSPR table can introduce significant uncertainty in the proton beam range. For dense bone, the measured range uncertainty is about 1mm per cm of bone in the beam. CT-scan energy verification should be employed, particularly when high-density media is in the proton beam path.« less
Transport property correlations for the niobium-1% zirconium alloy
NASA Astrophysics Data System (ADS)
Senor, David J.; Thomas, J. Kelly; Peddicord, K. L.
1990-10-01
Correlations were developed for the electrical resistivity (ρ), thermal conductivity ( k), and hemispherical total emittance (ɛ) of niobium-1% zirconium as functions of temperature. All three correlations were developed as empirical fits to experimental data. ρ = 5.571 + 4.160 × 10 -2(T) - 4.192 × 10 -6(T) 2 μΩcm , k = 13.16( T) 0.2149W/ mK, ɛ = 6.39 × 10 -2 + 4.98 × 10 -5( T) + 3.62 × 10 -8( T) 2 - 7.28 × 10 -12( T) 3. The relative standard deviation of the electrical resistivity correlation is 1.72% and it is valid over the temperature range 273 to 2700 K. The thermal conductivity correlation has a relative standard deviation of 3.24% and is valid over the temperature range 379 to 1421 K. The hemispherical total emittance correlation was developed for smooth surface materials only and represents a conservative estimate of the emittance of the alloy for space reactor fuel element modeling applications. It has a relative standard deviation of 9.50% and is valid over the temperature range 755 to 2670 K.
Design and Development of High-Repetition-Rate Satellite Laser Ranging System
NASA Astrophysics Data System (ADS)
Choi, Eun-Jung; Bang, Seong-Cheol; Sung, Ki-Pyoung; Lim, Hyung-Chul; Jung, Chan-Gyu; Kim, In-Yeung; Choi, Jae-Seung
2015-09-01
The Accurate Ranging System for Geodetic Observation ? Mobile (ARGO-M) was successfully developed as the first Korean mobile Satellite Laser Ranging (SLR) system in 2012, and has joined in the International Laser Ranging Service (ILRS) tracking network, DAEdeoK (DAEK) station. The DAEK SLR station was approved as a validated station in April 2014, through the ILRS station ¡°data validation¡± process. The ARGO-M system is designed to enable 2 kHz laser ranging with millimeter-level precision for geodetic, remote sensing, navigation, and experimental satellites equipped with Laser Retroreflector Arrays (LRAs). In this paper, we present the design and development of a next generation high-repetition-rate SLR system for ARGO-M. The laser ranging rate up to 10 kHz is becoming an important issue in the SLR community to improve ranging precision. To implement high-repetition-rate SLR system, the High-repetition-rate SLR operation system (HSLR-10) was designed and developed using ARGO-M Range Gate Generator (A-RGG), so as to enable laser ranging from 50 Hz to 10 kHz. HSLR-10 includes both hardware controlling software and data post-processing software. This paper shows the design and development of key technologies of high-repetition-rate SLR system. The developed system was tested successfully at DAEK station and then moved to Sejong station, a new Korean SLR station, on July 1, 2015. HSLR-10 will begin normal operations at Sejong station in the near future.
The strengths of r- and K-selection shape diversity-disturbance relationships.
Bohn, Kristin; Pavlick, Ryan; Reu, Björn; Kleidon, Axel
2014-01-01
Disturbance is a key factor shaping species abundance and diversity in plant communities. Here, we use a mechanistic model of vegetation diversity to show that different strengths of r- and K-selection result in different disturbance-diversity relationships. R- and K-selection constrain the range of viable species through the colonization-competition tradeoff, with strong r-selection favoring colonizers and strong K-selection favoring competitors, but the level of disturbance also affects the success of species. This interplay among r- and K-selection and disturbance results in different shapes of disturbance-diversity relationships, with little variation of diversity with no r- and no K-selection, a decrease in diversity with r-selection with disturbance rate, an increase in diversity with K-selection, and a peak at intermediate values with strong r- and K-selection. We conclude that different disturbance-diversity relationships found in observations may reflect different intensities of r- and K-selection within communities, which should be inferable from broader observations of community composition and their ecophysiological trait ranges.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) LORAN-C is a long range navigation system which operates in the 90-110 kHz band. (2) Radiobeacon... station. Radiobeacons operate in the bands 190-285 kHz; 325-435 kHz; 510-525 kHz; and 525-535 kHz. Radiobeacons may be authorized, primarily for off-shore use, in the band 525-535 kHz on a non-interference...
Comparison of the NIST and BIPM Air-Kerma Standards for Measurements in the Low-Energy X-Ray Range
Burns, D. T.; Lamperti, P.; O’Brien, M.
1999-01-01
A direct comparison was made between the air-kerma standards used for the measurement of low-energy x rays at the National Institute of Standards and Technology (NIST) and the Bureau International des Poids et Mesures (BIPM). The comparison was carried out at the BIPM using the BIPM reference beam qualities in the range from 10 kV to 100 kV. The results show the standards to be in agreement to around 0.5 % at reference beam qualities up to 50 kV and at 100 kV. The result at the 80 kV beam quality is less favorable, with agreement at the 1 % level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hranisavljevic, J.; Michael, V.; Chemistry
1998-09-24
The shock tube technique coupled with H-atom atomic resonance absorption spectrometry has been used to study the reactions (1) CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H and (2) CF{sub 3}H + H{yields} CF{sub 3} + H{sub 2} over the temperature ranges 1168-1673 K and 1111-1550 K, respectively. The results can be represented by the Arrhenius expressions k1 = 2.56 x 10{sup -11} exp(-8549K/T) and k2 = 6.13 x 10{sup -11} exp(-7364K/T), both in cm3 molecule-1 s-1. Equilibrium constants were calculated from the two Arrhenius expressions in the overlapping temperature range, and good agreement was obtained with themore » literature values. The rate constants for reaction 2 were converted into rate constants for reaction 1 using literature equilibrium constants. These data are indistinguishable from direct k1 measurements, and an Arrhenius fit for the joint set is k{sub 1} = 1.88 x 10{sup -11} exp(-8185K/T) cm3 molecule-1 s-1. The CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H reaction was further modeled using conventional transition-state theory, which included ab initio electronic structure determinations of reactants, transition state, and products.« less
1976-07-16
Influence of Range 10 5 Range Performance Penalty Function II 6 Influence of Closing Velocity 12 7 Energy Influence Function 14 8 Comparison of the...flELtSHAlL, ..E^) RANGE RANGE Figure 7 Energy Influence Function 14 TM 76-1 SA ! PERFORMANCE INDEX COMPARATIVE ANALYSIS Maneuver Conversion Model...hnergy Integral ■’> E s K Energy Influence Function K* Proportionality Constant MT Target Mach Number N Normal Acceleration (load factor) z
Optical Measurement of the Speed of Sound in Air Over the Temperature Range 300-650 K
NASA Technical Reports Server (NTRS)
Hart, Roger C.; Balla, R. Jeffrey; Herring, G. C.
2000-01-01
Using laser-induced thermal acoustics (LITA), the speed of sound in room air (1 atm) is measured over the temperature range 300-650 K. Since the LITA apparatus maintains a fixed sound wavelength as temperature is varied, this temperature range simultaneously corresponds to a sound frequency range of 10-15 MHz. The data are compared to a published model and typically agree within 0.1%-0.4% at each of 21 temperatures.
Modular compact solid-state modulators for particle accelerators
NASA Astrophysics Data System (ADS)
Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.
2017-12-01
The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.
High-precision 41K/39K measurements by MC-ICP-MS indicate terrestrial variability of δ41K
Morgan, Leah; Santiago Ramos, Danielle P.; Davidheiser-Kroll, Brett; Faithfull, John; Lloyd, Nicholas S.; Ellam, Rob M.; Higgins, John A.
2018-01-01
Potassium is a major component in continental crust, the fourth-most abundant cation in seawater, and a key element in biological processes. Until recently, difficulties with existing analytical techniques hindered our ability to identify natural isotopic variability of potassium isotopes in terrestrial materials. However, measurement precision has greatly improved and a range of K isotopic compositions has now been demonstrated in natural samples. In this study, we present a new technique for high-precision measurement of K isotopic ratios using high-resolution, cold plasma multi-collector mass spectrometry. We apply this technique to demonstrate natural variability in the ratio of 41K to 39K in a diverse group of geological and biological samples, including silicate and evaporite minerals, seawater, and plant and animal tissues. The total range in 41K/39K ratios is ca. 2.6‰, with a long-term external reproducibility of 0.17‰ (2, N=108). Seawater and seawater-derived evaporite minerals are systematically enriched in 41K compared to silicate minerals by ca. 0.6‰, a result consistent with recent findings1, 2. Although our average bulk-silicate Earth value (-0.54‰) is indistinguishable from previously published values, we find systematic δ41K variability in some high-temperature sample suites, particularly those with evidence for the presence of fluids. The δ41K values of biological samples span a range of ca. 1.2‰ between terrestrial mammals, plants, and marine organisms. Implications of terrestrial K isotope variability for the atomic weight of K and K-based geochronology are discussed. Our results indicate that high-precision measurements of stable K isotopes, made using commercially available mass spectrometers, can provide unique insights into the chemistry of potassium in geological and biological systems.
NASA Astrophysics Data System (ADS)
Solehah, A. R.; Yasir, M. S.; Samat, S. B.
2016-11-01
The activity concentrations of the natural radionuclides 226Ra, 232Th, and 40K were determined in vegetable crops consumed by Malaysian people in Sungai Besar, Selangor. Sample of vegetables and the soil where the crops were cultivated and collected at five different location. The activity concentrations in Bq/kg of 226Ra, 232Th, and 40K were measured by the gamma-ray spectroscopy using the high purity germanium detector. The range activity concentration in soil is between 51.81 and 71.84 Bq/kg, 64.18 and 78.00 Bq/kg, and 210.49 and 244.29 Bq/kg for 226Ra, 232Th, and 40K, respectively. The activity concentration of 226Ra, 232Th, and 40K in vegetables were found to be in the range of 2.06 to 5.44 Bq/kg, Not Detectable to 0.61 Bq/kg, and 101.00 to 1223.09 Bq/kg, respectively. The activity concentration in both soil and vegetables were all less than lower limit stated by UNSCEAR. The Transfer Factors range value for 226Ra, 232Th, and 40K varied from 0.02 to 0.06, 0.003 to 0.008, and 1.79 to 5.19 respectively. Radium equivalent for soil range from 165.57 to 194.84 Bq/kg. It was within the international accepted value (370 Bq/kg). Absorb dose rate for soil range between 73.5 to 86.40 nGyh-1, in safe range from limit of international accepted value (55nGyh-1). Effective dose rate is found to be in range of 0.09 to 0.11 mSvy-1 for soil which is less than 2.4 mSv/y. External and Internal Hazard indices of soil was all below 1, within agreement of other researcher and UNSCEAR. The estimation of the consequent radiological risk due to the presence of those radionuclides is significantly low.
Surface mass diffusion over an extended temperature range on Pt(111)
NASA Astrophysics Data System (ADS)
Rajappan, M.; Swiech, W.; Ondrejcek, M.; Flynn, C. P.
2007-06-01
Surface mass diffusion is investigated on Pt(111) at temperatures in the range 710-1220 K. This greatly extends the range over which diffusion is known from step fluctuation spectroscopy (SFS). In the present research, a beam of Pt- self-ions is employed to create a suitable structure on step edges. The surface mass diffusion coefficients then follow from the decay of Fourier components observed by low-energy electron microscopy (LEEM) at selected annealing temperatures. The results agree with SFS values where they overlap, and continue smoothly to low temperature. This makes it unlikely that diffusion along step edges plays a major role in step edge relaxation through the temperature range studied. The surface mass diffusion coefficient for the range 710-1520 K deduced from the present work, together with previous SFS data, is Ds = 4 × 10-3 exp(-1.47 eV/kBT) cm2 s-1.
Design and application of gas-gap heat switches
NASA Technical Reports Server (NTRS)
Chan, C. K.; Ross, R. G., Jr.
1990-01-01
Gas-gap heat switches can serve as an effective means of thermally disconnecting a standby cryocooler when the primary (operating) cooler is connected and vice versa. The final phase of the development and test of a cryogenic heat switch designed for loads ranging from 2 watts at 8 K, to 100 watts at 80 K are described. Achieved heat-switch on/off conductance ratio ranged from 11,000 at 8 K to 2200 at 80 K. A particularly challenging element of heat-switch design is achieving satisfactory operation when large temperatures differentials exist across the switch. A special series of tests and analyses was conducted and used in this Phase-2 activity to evaluate the developed switches for temperature differentials ranging up to 200 K. Problems encountered at the maximum levels are described and analyzed, and means of avoiding the problems in the future are presented. A comprehensive summary of the overall heat-switch design methodology is also presented with special emphasis on lessons learned over the course of the 4-year development effort.
Superconducting and magnetic properties of Bi 2Sr 2Ca 1- xY xCu 2O y (0≦ x≦1)
NASA Astrophysics Data System (ADS)
Yoshizaki, R.; Saito, Y.; Abe, Y.; Ikeda, H.
1988-07-01
The effect of substitution of Y atoms for Ca atoms has been studied in the Bi 2Sr 2Ca 1- xY xCu 2O y compound system. For x<0.5, superconductivity is observed and its fractional volume is reduced with increasing x, though the transition temperature of about 85 K is maintained. For x≧0.5 samples, the electrical resistivity behavior can be well described by the three-dimensional variable range hopping conduction, indicating that the system is essentially insulating. In this range of x, magnetic susceptibility shows spin-glass-type cusp at 13 K in the heating process after zero-field cooling and an enhanced cusp at 11 K in the field-cooling process. In the temperature range above about 150 K the Curie-Weiss dependence holds well with a positive paramagnetic Curie temperature, which increases to 40 K with increasing x in the insulating region.
Ice nucleation rates near ˜225 K
NASA Astrophysics Data System (ADS)
Amaya, Andrew J.; Wyslouzil, Barbara E.
2018-02-01
We have measured the ice nucleation rates, Jice, in supercooled nano-droplets with radii ranging from 6.6 nm to 10 nm and droplet temperatures, Td, ranging from 225 K to 204 K. The initial temperature of the 10 nm water droplets is ˜250 K, i.e., well above the homogeneous nucleation temperature for micron sized water droplets, TH ˜235 K. The nucleation rates increase systematically from ˜1021 cm-3 s-1 to ˜1022 cm-3 s-1 in this temperature range, overlap with the nucleation rates of Manka et al. [Phys. Chem. Chem. Phys. 14, 4505 (2012)], and suggest that experiments with larger droplets would extrapolate smoothly the rates of Hagen et al. [J. Atmos. Sci. 38, 1236 (1981)]. The sharp corner in the rate data as temperature drops is, however, difficult to match with available theory even if we correct classical nucleation theory and the physical properties of water for the high internal pressure of the nanodroplets.
High-performance thermoelectric minerals: Colusites Cu26V2M6S32 (M = Ge, Sn)
NASA Astrophysics Data System (ADS)
Suekuni, Koichiro; Kim, Fiseong S.; Nishiate, Hirotaka; Ohta, Michihiro; Tanaka, Hiromi I.; Takabatake, Toshiro
2014-09-01
We report thermoelectric (TE) properties of dense samples of colusites Cu26V2M6S32 (M = Ge, Sn), most of which are composed of earth-abundant elements; Cu and S. The combination of p-type metallic conduction and large thermopowers greater than 200 μV/K leads to high TE power factors of 0.61 and 0.48 mW/K2 m at 663 K for M = Ge and Sn samples, respectively. Furthermore, the lattice thermal conductivity is smaller than 0.6 W/Km over the temperature range from 350 K to 663 K due to the structural complexity. As a consequence, the values of dimensionless TE figure of merit ZT for M = Ge and Sn reach 0.73 and 0.56 at 663 K, respectively. Thus, the colusites are promising candidates for environmental friendly TE materials usable in the range of 500-700 K.
Development of an integrated sub-picometric SWIFTS-based wavelength meter
NASA Astrophysics Data System (ADS)
Duchemin, Céline; Thomas, Fabrice; Martin, Bruno; Morino, Eric; Puget, Renaud; Oliveres, Robin; Bonneville, Christophe; Gonthiez, Thierry; Valognes, Nicolas
2017-02-01
SWIFTSTM technology has been known for over five years to offer compact and high-resolution laser spectrum analyzers. The increase of wavelength monitoring demand with even better accuracy and resolution has pushed the development of a wavelength meter based on SWIFTSTM technology, named LW-10. As a reminder, SWIFTSTM principle consists in a waveguide in which a stationary wave is created, sampled and read out by a linear image sensor array. Due to its inherent properties (non-uniform subsampling) and aliasing signal (as presented in Shannon-Nyquist criterion), the system offers short spectral window bandwidths thus needs an a priori on the working wavelength and thermal monitoring. Although SWIFTSTM-based devices are barely sensitive to atmospheric pressure, temperature control is a key factor to master both high accuracy and wavelength meter resolution. Temperature control went from passive (temperature probing only) to active control (Peltier thermoelectric cooler) with milli-degree accuracy. The software part consists in dropping the Fourier-like transform, for a least-squares method directly on the interference pattern. Moreover, the consideration of the system's chromatic behavior provides a "signature" for automated wavelength detection and discrimination. This SWIFTSTM-based new device - LW-10 - shows outstanding results in terms of absolute accuracy, wavelength meter resolution as well as calibration robustness within a compact device, compared to other existing technologies. On the 630 - 1100 nm range, the final device configuration allows pulsed or CW lasers monitoring with 20 MHz resolution and 200 MHz absolute accuracy. Non-exhaustive applications include tunable laser control and frequency locking experiments
NASA Astrophysics Data System (ADS)
Bartholomeusz, Daniel A.; Davies, Rupert H.; Andrade, Joseph D.
2006-02-01
A centrifugal-based microfluidic device1 was built with lyophilized bioluminescent reagents for measuring multiple metabolites from a sample of less than 15 μL. Microfluidic channels, reaction wells, and valves were cut in adhesive vinyl film using a knife plotter with features down to 30 μm and transferred to metalized polycarbonate compact disks (CDs). The fabrication method was simple enough to test over 100 prototypes within a few months. It also allowed enzymes to be packaged in microchannels without exposure to heat or chemicals. The valves were rendered hydrophobic using liquid phase deposition. Microchannels were patterned using soft lithography to make them hydrophilic. Reagents and calibration standards were deposited and lyophilized in different wells before being covered with another adhesive film. Sample delivery was controlled by a modified CD ROM. The CD was capable of distributing 200 nL sample aliquots to 36 channels, each with a different set of reagents that mixed with the sample before initiating the luminescent reactions. Reflection of light from the metalized layer and lens configuration allowed for 20% of the available light to be collected from each channel. ATP was detected down to 0.1 μM. Creatinine, glucose, and galactose were also measured in micro and milliMolar ranges. Other optical-based analytical assays can easily be incorporated into the device design. The minimal sample size needed and expandability of the device make it easier to simultaneously measure a variety of clinically relevant analytes in point-of-care settings.
High Current ESD Test of Advanced Triple Junction Solar Array Coupon
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie
2014-01-01
Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems/Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four array currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, D. N., E-mail: d.n.kagan@mtu-net.ru; Krechetova, G. A.; Shpil'rain, E. E.
A detailed procedural analysis is given and results of implementation of the new version of the effusion method for determining the Gibbs energy (thermodynamic activity) of binary and ternary systems of alkali metals Cs-Na, K-Na, Cs-K, and Cs-K-Na are presented. The activity is determined using partial pressures of the components measured according the effusion method by the intensity of their atomic beams. The pressure range used in the experiment is intermediate between the Knudsen and hydrodynamic effusion modes. A generalized version of the effusion method involves the pressure range beyond the limits of the applicability of the Hertz-Knudsen equation. Employmentmore » of this method provides the differential equation of chemical thermodynamics; solution of this equation makes it possible to construct the Gibbs energy in the range of temperatures 400 {<=} T {<=} 1200 K and concentrations 0 {<=} x{sub i} {<=} 1.« less
Effect of impurities of selenium and iron on the Anderson localization of 1T-TaS 2
NASA Astrophysics Data System (ADS)
Ōnuki, Y.; Inada, R.; Tanuma, S.
1980-01-01
The temperature dependence of electrical resistivities θ( T) of 1T-TaS 2, 1T-TaS 2- xSe x and 1T-Fe xTa 1- xS 2 is found to be θ( T) ∝ exp( T0/ T) 1/n in the temperature range of 4 K to the measured lowest temperature, 0.1 K, showing the variable range hopping of Anderson localized states. The n-value is nearly 3 for selenium doping and nearly 2 for non-doping and iron doping. The positive magnetoresistance, which is sizable only in the temperature range of 2 K to 0.5 K in 1T-TaS 2, is found to be remarkably enhanced by the selenium doping, while the tendency is reversed by the iron doping.
Improving the Dynamic Emissivity Measurement Above 1000 K by Extending the Spectral Range
NASA Astrophysics Data System (ADS)
Urban, D.; Krenek, S.; Anhalt, K.; Taubert, D. R.
2018-01-01
To improve the dynamic emissivity measurement, which is based on the laser-flash method, an array spectrometer is characterized regarding its spectral radiance responsivity for a spectrally resolved emissivity measurement above 1000 K in the wavelength range between 550 nm and 1100 nm. Influences like dark signals, the nonlinearity of the detector, the size-of-source effect, wavelength calibration and the spectral radiance responsivity of the system are investigated to obtain an uncertainty budget for the spectral radiance and emissivity measurements. Uncertainties for the spectral radiance of lower than a relative 2 % are achieved for wavelengths longer than 550 nm. Finally, the spectral emissivity of a graphite sample was determined in the temperature range between 1000 K and 1700 K, and the experimental data show a good repeatability and agreement with literature data.
Kinetics of Alkaline Decomposition and Cyaniding of Argentian Rubidium Jarosite in NaOH Medium
NASA Astrophysics Data System (ADS)
Rodríguez, Eleazar Salinas; Sáenz, Eduardo Cerecedo; Ramírez, Marius; Cardona, Francisco Patiño; Labra, Miguel Pérez
2012-10-01
The alkaline decomposition of Argentian rubidium jarosite in NaOH media is characterized by an induction period and a progressive conversion period in which the sulfate and rubidium ions pass to the solution, leaving an amorphous iron hydroxide residue. The process is chemically controlled and the order of reaction with respect to hydroxide concentration in the range of 1.75 and 20.4 mol OH- m-3 is 0.94, while activation energy in the range of temperatures of 298 K to 328 K (25 °C to 55 °C) is 91.3 kJ mol-1. Cyaniding of Argentian rubidium jarosite in NaOH media presents a reaction order of 0 with respect to NaCN concentration (in the range of 5 to 41 mol m-3) and an order of reaction of 0.62 with respect to hydroxide concentration, in the range of 1.1 and 30 mol [OH-] m-3. In this case, the cyaniding process can be described, as in other jarosites, as the following two-step process: (1) a step (slow) of alkaline decomposition that controls the overall process followed by (2) a fast step of silver complexation. The activation energy during cyaniding in the range of temperatures of 298 K to 333 K (25 °C to 60 °C) is 43.5 kJ mol-1, which is characteristic of a process controlled by chemical reaction. These results are quite similar to that observed for several synthetic jarosites and that precipitated in a zinc hydrometallurgical plant (Industrial Minera México, San Luis Potosi).
Pratte, Pascal; van den Bergh, Hubert; Rossi, Michel J
2006-03-09
The kinetics of condensation (kc) and the evaporation flux (J(ev)) of H2O on ice were studied in the range 130-210 K using pulsed-valve and steady-state techniques in a low-pressure flow reactor. The uptake coefficient gamma was measured for different types of ice, namely, condensed (C), bulk (B), single crystal (SC), snow (S), and cubic ice (K). The negative temperature dependence of gamma for C, B, SC, and S ice reveals a precursor-mediated adsorption/desorption process in agreement with the proposal of Davy and Somorjai.(1) The non-Arrhenius behavior of the rate of condensation, kc, manifests itself in a discontinuity in the range 170-190 K depending on the type of ice and is consistent with the precursor model. The average of the energy of sublimation DeltaH(S) degrees is (12.0 +/- 1.4) kcal/mol for C, B, S, and SC ice and is identical within experimental uncertainty between 136 and 210 K. The same is true for the entropy of sublimation DeltaS(S). In contrast, both gamma and the evaporative flux J(ev) are significantly different for different ices. In the range 130-210 K, J(ev) of H2O ice was significantly smaller than the maximum theoretically allowed value. This corroborates gamma values significantly smaller than unity in that T range. On the basis of the present kinetic parameters, the time to complete evaporation of a small ice particle of radius 1 mum is approximately a factor of 5 larger than that previously thought.
Electric Propulsion Options for 10 kW Class Earth-Space Missions
NASA Technical Reports Server (NTRS)
Patterson, M. J.; Curran, Francis M.
1989-01-01
Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment were evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA 2 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10 (exp 7) to 2.1x10 (exp 7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA 2 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10 (exp 6) to 3.6x10 (exp 6) N-s, and approximately 662 to 1072 m/s, respectively.
NASA Astrophysics Data System (ADS)
Park, Jonghwa; Kim, Jinyoung; Hong, Jaehyung; Lee, Hochan; Lee, Youngoh; Cho, Seungse; Kim, Sung-Woo; Kim, Jae Joon; Kim, Sung Youb; Ko, Hyunhyub
2018-04-01
Electronic skins (e-skins) with high sensitivity to multidirectional mechanical stimuli are crucial for healthcare monitoring devices, robotics, and wearable sensors. In this study, we present piezoresistive e-skins with tunable force sensitivity and selectivity to multidirectional forces through the engineered microstructure geometries (i.e., dome, pyramid, and pillar). Depending on the microstructure geometry, distinct variations in contact area and localized stress distribution are observed under different mechanical forces (i.e., normal, shear, stretching, and bending), which critically affect the force sensitivity, selectivity, response/relaxation time, and mechanical stability of e-skins. Microdome structures present the best force sensitivities for normal, tensile, and bending stresses. In particular, microdome structures exhibit extremely high pressure sensitivities over broad pressure ranges (47,062 kPa-1 in the range of <1 kPa, 90,657 kPa-1 in the range of 1-10 kPa, and 30,214 kPa-1 in the range of 10-26 kPa). On the other hand, for shear stress, micropillar structures exhibit the highest sensitivity. As proof-of-concept applications in healthcare monitoring devices, we show that our e-skins can precisely monitor acoustic waves, breathing, and human artery/carotid pulse pressures. Unveiling the relationship between the microstructure geometry of e-skins and their sensing capability would provide a platform for future development of high-performance microstructured e-skins.
NASA Technical Reports Server (NTRS)
Feofilov, A. G.; Kutepov, A. A.; Rezac, L.; Smith, M. D.
2015-01-01
This paper describes a methodology for performing a temperature retrieval in the Martian atmosphere in the 50-90 km altitude range using spectrally integrated 15 micrometers C02 limb emissions measured by the Thermal Emission Spectrometer (TES), the thermal infrared spectrometer on board the Mars Global Surveyor (MGS). We demonstrate that temperature retrievals from limb observations in the 75-90 km altitude range require accounting for the non-local thermodynamic equilibrium (non-LTE) populations of the C02(v2) vibrational levels. Using the methodology described in the paper, we have retrieved approximately 1200 individual temperature profiles from MGS TES limb observations in the altitude range between 60 and 90 km. 0ur dataset of retrieved temperature profiles is available for download in supplemental materials of this paper. The temperature retrieval uncertainties are mainly caused by radiance noise, and are estimated to be about 2 K at 60 km and below, 4 K at 70 km, 7 K at 80 km, 10 K at 85 km, and 20 K at 90 km. We compare the retrieved profiles to Mars Climate Database temperature profiles and find good qualitative agreement. Quantitatively, our retrieved profiles are in general warmer and demonstrate strong variability with the following values for bias and standard deviations (in brackets) compared to the Martian Year 24 dataset of the Mars Climate Database: 6 (+/-20) K at 60 km, 7.5 (+/-25) K at 65 km, 9 (+/-27) K at 70 km, 9.5 (+/-27) K at 75 km, 10 (+/-28) K at 80 km, 11 (+/-29) K at 85 km, and 11.5 (+/-31) K at 90 km. Possible reasons for the positive temperature bias are discussed. carbon dioxide molecular vibrations
NASA Astrophysics Data System (ADS)
Urusova, A. S.; Cherepanov, V. A.; Aksenova, T. V.; Gavrilova, L. Ya.; Kiselev, E. A.
2013-06-01
The phase equilibria in the Y-Ba-Co-O system were systematically studied at 1373 K in air. The intermediate phases formed in the Y-Ba-Co-O system at 1373 K in air were: YBaCo2O5+δ, YBaCo4O7 and BaCo1-yYyO3-δ (0.09≤y≤0.42). It was shown that YBaCo2O5+δ possesses tetragonal structure with the 3ap×3ap×2ap superstructure (sp. gr. P4/mmm). High-temperature X-ray diffraction analysis of the YBaCo2O5+δ in the temperature range from 298 K up to 1073 K under Po2=0.21 аtm has not shown any phase transformations. The value of oxygen content for the YBaCo2O5+δ at room temperature was estimated as 5.40 and at 1323 K it was equal to 5.04. Thermal expansion of sample shows a linear characteristics and the average thermal expansion coefficient (TEC) is about 13.8×10-6, K-1 in the temperature range 298-1273 K. The homogeneity range and crystal structure of the BaCo1-yYyO3-δ (0.09≤y≤0.42) solid solutions were determined by X-ray diffraction of quenched samples. All BaCo1-yYyO3-δ solid solutions were found to have cubic structure (sp. gr. Pm3m). The unit cell parameters were refined using Rietveld full-profile analysis. Oxygen nonstoichiometry of BaCo1-yYyO3-δ solid solutions with 0.1≤y≤0.4 was measured by means of thermogravimetric technique within the temperature range 298-1373 K in air. Thermal expansion of BaCo1-yYyO3-δ (у=0.0; 0.1; 0.2; 0.3) samples was studied within the temperature range 298-1200 K in air. The projection of isothermal-isobaric phase diagram for the Y-Ba-Co-O system to the compositional triangle of metallic components was presented.
Srinivasan, N K; Su, M-C; Sutherland, J W; Michael, J V
2005-03-10
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm has been used to study the reactions OH + CH(4) --> CH(3) + H(2)O and CH(3) + NO(2) --> CH(3)O + NO. Over the temperature range 840-2025 K, the rate constants for the first reaction can be represented by the Arrhenius expression k = (9.52 +/- 1.62) x 10(-11) exp[(-4134 +/- 222 K)/T] cm(3) molecule(-1) s(-1). Since this reaction is important in both combustion and atmospheric chemistry, there have been many prior investigations with a variety of techniques. The present results extend the temperature range by 500 K and have been combined with the most accurate earlier studies to derive an evaluation over the extended temperature range 195-2025 K. A three-parameter expression describes the rate behavior over this temperature range, k = (1.66 x 10(-18))T(2.182) exp[(-1231 K)/T] cm(3) molecule(-1) s(-1). Previous theoretical studies are discussed, and the present evaluation is compared to earlier theoretical estimates. Since CH(3) radicals are a product of the reaction and could cause secondary perturbations in rate constant determinations, the second reaction was studied by OH radical production from the fast reactions CH(3)O --> CH(2)O + H and H + NO(2) --> OH + NO. The measured rate constant is 2.26 x 10(-11) cm(3) molecule(-1) s(-1) and is not dependent on temperature from 233 to 1700 K within experimental error.
Xia, Lang; Mao, Kebiao; Ma, Ying; Zhao, Fen; Jiang, Lipeng; Shen, Xinyi; Qin, Zhihao
2014-01-01
A practical algorithm was proposed to retrieve land surface temperature (LST) from Visible Infrared Imager Radiometer Suite (VIIRS) data in mid-latitude regions. The key parameter transmittance is generally computed from water vapor content, while water vapor channel is absent in VIIRS data. In order to overcome this shortcoming, the water vapor content was obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) data in this study. The analyses on the estimation errors of vapor content and emissivity indicate that when the water vapor errors are within the range of ±0.5 g/cm2, the mean retrieval error of the present algorithm is 0.634 K; while the land surface emissivity errors range from −0.005 to +0.005, the mean retrieval error is less than 1.0 K. Validation with the standard atmospheric simulation shows the average LST retrieval error for the twenty-three land types is 0.734 K, with a standard deviation value of 0.575 K. The comparison between the ground station LST data indicates the retrieval mean accuracy is −0.395 K, and the standard deviation value is 1.490 K in the regions with vegetation and water cover. Besides, the retrieval results of the test data have also been compared with the results measured by the National Oceanic and Atmospheric Administration (NOAA) VIIRS LST products, and the results indicate that 82.63% of the difference values are within the range of −1 to 1 K, and 17.37% of the difference values are within the range of ±2 to ±1 K. In a conclusion, with the advantages of multi-sensors taken fully exploited, more accurate results can be achieved in the retrieval of land surface temperature. PMID:25397919
NASA Astrophysics Data System (ADS)
Liu, Yi; Li, Hai-Jin; Zhang, Qing; Li, Yong; Liu, Hou-Tong
2013-05-01
Electrical transport and thermoelectric properties of Ni-doped YCo1-xNixO3(0 <= x <= 0.07), prepared by using the sol-gel process, are investigated in a temperature range from 100 to 780 K. The results show that with the increase of Ni doping content, the values of DC resistivity of YCo1-xNixO3 decrease, but carrier concentration increases. The temperature dependences of the resistivity for YCo1-xNixO3 are found to follow a relation of ln ρ ∝ 1/T in a low-temperature range (LTR) (T < ~ 304 K for x = 0; ~ 230 K < T < ~ 500 K for x = 0.02, 0.05, and 0.07) and high-temperature range (HTR) (T > ~ 655 K for all compounds), respectively. The estimated apparent activation energies for conduction Ea1 in LRT and Ea2 in HTR are both found to decrease monotonically with doping content increasing. At very low temperatures (T < ~230 K), Mott's law is observed for YCo1—xNixO3 (x >= 0.02), indicating that considerable localized states form in the heavy doping compounds. Although the Seebeck coefficient of the compound decreases after Ni doping, the power factor of YCo1-xNixO3 is enhanced remarkably in a temperature range from 300 to 740 K, i.e., a 6-fold increase is achieved at 500 K for YCo0.98Ni0.02O3, indicating that the high-temperature thermoelectric property of YCoO3 can be improved by partial substitution of Ni for Co.
Thermal Conductivity of Powder Insulations Below 180 K
NASA Astrophysics Data System (ADS)
Barrios, M. N.; Choi, Y. S.; Van Sciver, S. W.
2008-03-01
We have measured the thermal conductivity of aerogel beads and glass microspheres at average temperatures ranging from 30 K to 180 K. The measuring device consists of two closed, concentric cylinders suspended inside of a vacuum insulated cryostat. The insulation being tested occupies the annular space between the cylinders. A single stage Gifford-McMahon cryocooler, thermally anchored to the outer cylinder, cools the apparatus to a desired temperature range. A heater mounted on the inner cylinder generates uniform heat flux through the insulating material between the two cylinders. During each measurement, a temperature difference of roughly 10 K across the insulation is maintained. Fourier's law of heat conduction is used to relate the temperature difference between the two cylinders and the applied heating power to a bulk effective thermal conductivity of the powder insulation. Data were collected for aerogel beads between 30 K and 80 K and for glass bubbles between 30 K and 180 K. Results are compared to data from the literature.
Temperature effect on bacterial azo bond reduction kinetics: an Arrhenius plot analysis.
Angelova, Blaga; Avramova, Tatyana; Stefanova, Lilyana; Mutafov, Sava
2008-06-01
Studied was the effect of temperature in the range 12-46 degrees C on the rate of bacterial decolorization of the mono-azo dye Acid Orange 7 by Alcaligenes faecalis 6132 and Rhodococcus erythropolis 24. With both strains the raise of temperature led to a corresponding raise of decolorization rate better manifested by R. erythropolis. The analysis of the Arrhenius plot revealed a break near the middle of the temperature range. The regression analysis showed practically complete identity of the observed break point temperatures (T (BP)): 20.7 degrees C for Alc. faecalis and 20.8 degrees C for R. erythropolis. The values of the activation energy of the decolorization reaction (E (a)) were found to depend on both the organism and the temperature range. In the range below T (BP) the estimated values of E (a) were 138 +/- 7 kJ mol(-1) for Alc. faecalis and 160 +/- 8 kJ mol(-1) for R. erythropolis. In the range above T (BP) they were 54.2 +/- 1.8 kJ mol(-1) for Alc. faecalis and 37.6 +/- 4.1 kJ mol(-1) for R. erythropolis. Discussed are the possible reasons for the observed abrupt change of the activation energy.
NASA Astrophysics Data System (ADS)
Mishra, D. K.; Roul, B. K.; Singh, S. K.; Srinivasu, V. V.
2018-02-01
We report on the possible observation of Griffith phase in a wide range of temperature (>272-378 K) in the 2.5 min plasma sintered La0.67Ca0.33MnO3 (LCMO) as deduced from careful electron spin resonance studies. This is 106 K higher than the paramagnetic to ferromagnetic transition (Curie transition ∼272 K) temperature. The indication of Griffith phase in such a wide range is not reported earlier by any group. We purposefully prepared LCMO samples by plasma sintering technique so as to create a disordered structure by rapid quenching which we believe, is the prime reason for the observation of Griffith Phase above the Curie transition temperature. The inverse susceptibility curve represents the existence of ferromagnetic cluster in paramagnetic region. The large resonance peak width (40-60 mT) within the temperature range 330-378 K confirms the sample magnetically inhomogeneity which is also established from our electron probe microstructure analysis (EPMA). EPMA establishes the presence of higher percentage of Mn3+ cluster in comparison to Mn4+. This is the reason for which Griffith state is enhanced largely to a higher range of temperature.
Rubio, Francisco; Nieves-Cordones, Manuel; Alemán, Fernando; Martínez, Vicente
2008-12-01
The relative contribution of the high-affinity K(+) transporter AtHAK5 and the inward rectifier K(+) channel AtAKT1 to K(+) uptake in the high-affinity range of concentrations was studied in Arabidopsis thaliana ecotype Columbia (Col-0). The results obtained with wild-type lines, with T-DNA insertion in both genes and specific uptake inhibitors, show that AtHAK5 and AtAKT1 mediate the NH4+-sensitive and the Ba(2+)-sensitive components of uptake, respectively, and that they are the two major contributors to uptake in the high-affinity range of Rb(+) concentrations. Using Rb(+) as a K(+) analogue, it was shown that AtHAK5 mediates absorption at lower Rb(+) concentrations than AtAKT1 and depletes external Rb(+) to values around 1 muM. Factors such as the presence of K(+) or NH4+ during plant growth determine the relative contribution of each system. The presence of NH4+ in the growth solution inhibits the induction of AtHAK5 by K(+) starvation. In K(+)-starved plants grown without NH4+, both systems are operative, but when NH4+ is present in the growth solution, AtAKT1 is probably the only system mediating Rb(+) absorption, and the capacity of the roots to deplete Rb(+) is reduced.
Gerbil middle-ear sound transmission from 100 Hz to 60 kHz1
Ravicz, Michael E.; Cooper, Nigel P.; Rosowski, John J.
2008-01-01
Middle-ear sound transmission was evaluated as the middle-ear transfer admittance HMY (the ratio of stapes velocity to ear-canal sound pressure near the umbo) in gerbils during closed-field sound stimulation at frequencies from 0.1 to 60 kHz, a range that spans the gerbil’s audiometric range. Similar measurements were performed in two laboratories. The HMY magnitude (a) increased with frequency below 1 kHz, (b) remained approximately constant with frequency from 5 to 35 kHz, and (c) decreased substantially from 35 to 50 kHz. The HMY phase increased linearly with frequency from 5 to 35 kHz, consistent with a 20–29 μs delay, and flattened at higher frequencies. Measurements from different directions showed that stapes motion is predominantly pistonlike except in a narrow frequency band around 10 kHz. Cochlear input impedance was estimated from HMY and previously-measured cochlear sound pressure. Results do not support the idea that the middle ear is a lossless matched transmission line. Results support the ideas that (1) middle-ear transmission is consistent with a mechanical transmission line or multiresonant network between 5 and 35 kHz and decreases at higher frequencies, (2) stapes motion is pistonlike over most of the gerbil auditory range, and (3) middle-ear transmission properties are a determinant of the audiogram. PMID:18646983
NASA Technical Reports Server (NTRS)
Raj, S. V.; Locci, I. E.; Noebe, R. D.
1992-01-01
The deformation properties of an extruded Ni-30Al-20Fe-0.05Zr (at. pct) alloy in the temperature range 300-1300 K were investigated under initial tensile strain rates that varied between 10 exp -6 and 10 exp -3/sec and in constant load compression creep between 1073 and 1300 K. Three deformation regimes were observed: region I, occurring between 400 and 673 K, which consisted of an athermal regime of less than 0.3 percent tensile ductility; region II, between 673 and 1073, where exponential creep was dominant; and region III, between 1073 and 1300 K, where a significant improvement in tensile ductility was observed.
NASA Astrophysics Data System (ADS)
Li, Liang-Sheng
2016-12-01
We explore the tricritical points and the critical lines of both Blume-Emery-Grifnths and Ising model within long-range interactions in the microcanonical ensemble. For K = K MTP , the tricritical exponents take the values β = 1/4, 1 = γ- ≠ γ+ = 1/2 and 0 = α- ≠ α+ = -1/2, which disagree with classical (mean held) values. When K > K MTP , the phase transition becomes second order and the critical exponents have classical values except close to the canonical tricritical parameters (K CTP ), where the values of the critical expoents become β = 1/2, 1 = γ- ≠ γ+ = 2 and 0 = α- ≠ α+ = 1. Supported by the National Natural Science Foundation of China under Grant No. 11104032
Temperature dependent optical properties of ZnO thin film using ellipsometry and photoluminescence
NASA Astrophysics Data System (ADS)
Bouzourâa, M.-B.; Battie, Y.; Dalmasso, S.; Zaïbi, M.-A.; Oueslati, M.; En Naciri, A.
2018-05-01
We report the temperature dependence of the dielectric function, the exciton binding energy and the electronic transitions of crystallized ZnO thin film using spectroscopic ellipsometry (SE) and photoluminescence (PL). ZnO layers were prepared by sol-gel method and deposited on crystalline silicon (Si) by spin coating technique. The ZnO optical properties were determined between 300 K and 620 K. Rigorous study of optical responses was achieved in order to demonstrate the quenching exciton of ZnO as a function of temperature. Numerical technique named constrained cubic splines approximation (CCS), Tauc-Lorentz (TL) and Tanguy dispersion models were selected for the ellipsometry data modeling in order to obtain the dielectric function of ZnO. The results reveals that the exciton bound becomes widely flattening at 470 K on the one hand, and on the other that the Tanguy dispersion law is more appropriate for determining the optical responses of ZnO thin film in the temperature range of 300 K-420 K. The Tauc-Lorentz, for its part, reproduces correctly the ZnO dielectric function in 470 K-620 K temperature range. The temperature dependence of the electronic transition given by SE and PL shows that the exciton quenching was observed in 420 K-∼520 K temperature range. This quenching effect can be explained by the equilibrium between the Coulomb force of exciton and its kinetic energy in the film. The kinetic energy was found to induce three degrees of freedom of the exciton.
Absence of ferroelectric features in Eu2BaNiO5: An anomalous case within this rare-earth family
NASA Astrophysics Data System (ADS)
Upadhyay, Sanjay Kumar; Sampathkumaran, E. V.
2018-04-01
We report the results of magnetization, heat-capacity, magnetodielectric and pyrocurrent measurements above 2 K for the compound, Eu2BaNiO5, a Haldane spin-chain compound. This compound has been known to exhibit a magnetic transition in the vicinity of 5 K from Eu and Ni, but we do not find any evidence for ferroelectricity above 2 K, in sharp contrast to the multiferroic behavior reported for other members of this Haldane spin-chain family. Instead, there is a pyrocurrent peak around 40 K, which is sensitive to the rate of change of temperature thereby providing an evidence for thermally stimulated depolarization current. Additionally, this study brings out two more features: (i) There is a dielectric anomaly in the range 75-100 K, attributable to short-range magnetic correlations, similar to the situation encountered in another spin-chain system Ca3Co2O6, and (ii) there is a sign crossover of magnetodielectric effect (MDE) with varying magnetic field well below 8 K only, with relatively negligible values of MDE above 4 K, and this observation establishes the existence of a coupling between magnetic and electric dipoles at the onset of long-range magnetic order.
Low-Temperature Rate Coefficients of C2H with CH4 and CD4 from 154 to 359 K
NASA Technical Reports Server (NTRS)
Opansky, Brian J.; Leone, Stephen R.
1996-01-01
Rate coefficients for the reaction C2H + CH4 yields C2H2 + CH3 and C2H + CD4 yields C2HD + CD3 are measured over the temperature range 154-359 K using transient infrared laser absorption spectroscopy. Ethynyl radicals are produced by pulsed laser photolysis of C2H2 in a variable temperature flow cell, and a tunable color center laser probes the transient removal of C2H (Chi(exp 2) Sigma(+) (0,0,0)) in absorption. The rate coefficients for the reactions of C2H with CH4 and CD4 both show a positive temperature dependence over the range 154-359 K, which can be expressed as k(sub CH4) = (1.2 +/- 0.1) x 10(exp -11) exp((-491 +/- 12)/T) and k(sub CD4) = (8.7 +/- 1.8) x 10(exp -12) exp((-650 +/- 61)/T) cm(exp 3) molecule(exp -1) s(exp -1), respectively. The reaction of C2H + CH4 exhibits a significant kinetic isotope effect at 300 K of k(sub CH4)/k(sub CD4) = 2.5 +/- 0.2. Temperature dependent rate constants for C2H + C2H2 were also remeasured over an increased temperature range from 143 to 359 K and found to show a slight negative temperature dependence, which can be expressed as k(sub C2H2) = 8.6 x 10(exp -16) T(exp 1.8) exp((474 +/- 90)/T) cm(exp 3) molecule(exp -1) s(exp -1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hranisavljevic, J.; Michael, J.V.
1998-09-24
The shock tube technique coupled with H-atom atomic resonance absorption spectrometry has been used to study the reactions (1) CF{sub 3} + H{sub 2} {r_arrow} CF{sub 3}H + H and (2) CF{sub 3}H + H {r_arrow} CF{sub 3} + H{sub 2} over the temperature ranges 1168--1673 K and 1111--1550 K, respectively. The results can be represented by the Arrhenius expressions k{sub 1} = 2.56 {times} 10{sup {minus}11} exp({minus}8549K/T) and k{sub 2} = 6.13 {times} 10{sup {minus}11} exp({minus}7364K/T), both in cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. Equilibrium constants were calculated from the two Arrhenius expressions in the overlapping temperature range, andmore » good agreement was obtained with the literature values. The rate constants for reaction 2 were converted into rate constants for reaction 1 using literature equilibrium constants. These data are indistinguishable from direct k{sub 1} measurements, and an Arrhenius fit for the joint set is k{sub 1} = 1.88 {times} 10{sup {minus}11} exp({minus}8185K/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. The CF{sub 3} + H{sub 2} {r_arrow} CF{sub 3}H + H reaction was further modeled using conventional transition-state theory, which included ab initio electronic structure determinations of reactants, transition state, and products.« less
Amano, Hikaru; Ogawa, Hidekuni; Maki, Hiromichi; Tsukamoto, Sosuke; Yonezawa, Yoshiharu; Hahn, Allen W; Caldwell, W Morton
2011-01-01
We have been searching for a suitable frequency range for an electrical impedance measurement infusion solution drip monitoring system, which we have previously reported. This electrical impedance, which is formed between two electrodes wrapped around the infusion supply polyvinyl-chloride tube and around the drip chamber, is changed by the growth and fall of each drop of fluid. Thus, the drip rate can be detected by measuring this impedance. However, many different kinds of infusion solutions such as glucose, amino acid, soya oil, and lactated Ringers solution are used in hospitals and care facilities. Therefore, it was necessary to find a suitable frequency for driving the capacitance-change sensor with a wide range of infusion solutions. In this study, the sensor electrical impedance change of 16 infusion solutions was measured from 1 kHz up to 1 MHz. The drip impedance produced by 5% glucose solution, 10% glucose solution and soya oil indicated the maximum sensor output change at 10 kHz, 20 kHz, and 70 kHz, respectively. The other 13 infusion solutions increased up to 10 kHz, and were constant from 10 kHz to 1 MHz. However, the growth, fall, and drip rate of the drops of all the infusion solutions were monitored by measuring the impedance change from 10 kHz to 30 kHz. Our experimental results indicated that most suitable excitation range for the infusion monitoring system is from 10 kHz to 30 kHz. Thus, we can now fine-tune the system for optimal sensing.